
•
•
•
•
•
•
•
•
•

Android
Recipes

Dave Smith

A Problem-Solution Approach

FOURTH EDITION

Hundreds of problems and solutions of code recipes

using Android 5.0

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Author ..xxi

About the Technical Reviewer ..xxiii

Acknowledgments ...xxv

Introduction ...xxvii

Chapter 1: Layouts and Views ■ ... 1

Chapter 2: User Interaction Recipes ■ .. 89

Chapter 3: Communications and Networking ■ .. 199

Chapter 4: Interacting with Device Hardware and Media ■ 289

Chapter 5: Persisting Data ■ ... 391

Chapter 6: Interacting with the System ■ ... 471

Chapter 7: Graphics and Drawing ■ .. 613

Chapter 8: Working with Android NDK and RenderScript ■ 689

Index ... 737

www.allitebooks.com

http://www.allitebooks.org

xxvii

Introduction

Welcome to the fourth edition of Android Recipes!

If you are reading this book, you probably don’t need to be told of the immense opportunity

that mobile devices represent for software developers and users. In recent years, Android

has become one of the top mobile platforms for device users. This means that you, as a

developer, must know how to harness Android so you can stay connected to this market

and the potential that it offers. But any new platform brings with it uncertainty about best

practices and solutions to common needs and problems.

What we aim to do with Android Recipes is give you the tools to write applications for the

Android platform through direct examples targeted at the specific problems you are trying

to solve. This book is not a deep dive into the Android SDK, NDK, or any of the other tools.

We don’t weigh you down with all the details and theory behind the curtain. That’s not to

say that those details aren’t interesting or important. You should take the time to learn them,

as they may save you from making future mistakes. However, more often than not, they are

simply a distraction when you are just looking for a solution to an immediate problem.

This book is not meant to teach you Java programming or even the building blocks of an

Android application. You won’t find many basic recipes in this book (such as how to display

text with TextView, for instance), as we feel these are tasks easily remembered once learned.

Instead, we set out to address tasks that developers, once comfortable with Android, need

to do often but find too complex to accomplish with a few lines of code.

Treat Android Recipes as a reference to consult, a resource-filled cookbook that you can

always open to find the pragmatic advice you need to get the job done quickly and well.

www.allitebooks.com

http://www.allitebooks.org

xxviii Introduction

What Will You Find in the Book?
We dive into using the Android SDK to solve real problems. You will learn tricks for effectively

creating a user interface that runs well across device boundaries. You will become a master

at incorporating the collection of hardware (radios, sensors, and cameras) that makes

mobile devices unique platforms. We’ll even discuss how to make the system work for you

by integrating with the services and applications provided by Google and various device

manufacturers.

Performance matters if you want your applications to succeed. Most of the time, this isn’t

a problem because the Android runtime engines get progressively better at compiling

bytecode into the device’s native code. However, you might need to leverage the Android

NDK to boost performance. Chapter 8 offers you an introduction to the NDK and integrating

native code into your application using Java Native Interface (JNI) bindings.

The NDK is a complex technology, which can also reduce your application’s portability.

Also, while good at increasing performance, the NDK doesn’t address multicore processing

very well for heavy workloads. Fortunately, Google has eliminated this tedium and simplified

the execute-on-multiple-cores task while achieving portability by introducing RenderScript.

Chapter 8 introduces you to RenderScript and shows you how to use its compute engine

(and automatically leverage CPU cores) to process images.

Keep a Level Eye on the Target
Throughout the book, you will see that we have marked most recipes with the minimum API

level that is required to support them. Most of the recipes in this book are marked API Level 1,

meaning that the code used can be run in applications targeting any version of Android

since 1.0. However, where necessary, we use APIs introduced in later versions. Pay close

attention to the API level marking of each recipe to ensure that you are not using code that

doesn’t match up with the version of Android your application is targeted to support.

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Layouts and Views

The Android platform is designed to operate on a variety of device types, screen sizes,

and screen resolutions. To assist developers in meeting this challenge, Android provides a

rich toolkit of user interface (UI) components to utilize and customize to the needs of their

specific applications. Android also relies heavily on an extensible XML framework and set

resource qualifiers to create liquid layouts that can adapt to these environmental changes.

In this chapter, we take a look at some practical ways to shape this framework to fit your

specific development needs.

1-1. Styling Common Components

Problem
You want to create a consistent look and feel for your application across all the versions of

Android your users may be running, while reducing the amount of code required to maintain

those customizations.

Solution
(API Level 1)

You can abstract common attributes that define the look and feel of your application views

into XML styles. Styles are collections of view attribute customizations, such as text size

or background color, that should be applied to multiple views throughout the application.

Abstracting these attributes into a style allows the common elements to be defined in a

single location, making the code easier to update and maintain.

Android also supports grouping multiple styles together in a global element called a theme.

Themes apply to an entire context (such as an activity or application), and define styles that

should apply to all the views within that context. Every activity launch in your application has

a theme applied to it, even if you don’t define one. In such cases, the default system theme

is applied instead.

www.allitebooks.com

http://www.allitebooks.org

2 CHAPTER 1: Layouts and Views

How It Works
To explore the styles concept, let’s create an activity layout that looks like Figure 1-1.

Figure 1-1. Styled widgets

As you can see, this view has some elements that we want to customize to look different

than they normally do with the styling from the default system theme applied. One option

would be to define all the attributes for all the views directly in our activity layout. If we were

to do so, it would look like Listing 1-1.

Listing 1-1. res/layout/activity_styled.xml

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="22sp"
 android:textStyle="bold"
 android:text="Select One"/>

www.allitebooks.com

http://www.allitebooks.org

3CHAPTER 1: Layouts and Views

 <RadioGroup
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <RadioButton
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:minHeight="@dimen/buttonHeight"
 android:button="@null"
 android:background="@drawable/background_radio"
 android:gravity="center"
 android:text="One"/>
 <RadioButton
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:minHeight="@dimen/buttonHeight"
 android:button="@null"
 android:background="@drawable/background_radio"
 android:gravity="center"
 android:text="Two"/>
 <RadioButton
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:minHeight="@dimen/buttonHeight"
 android:button="@null"
 android:background="@drawable/background_radio"
 android:gravity="center"
 android:text="Three"/>
 </RadioGroup>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="22sp"
 android:textStyle="bold"
 android:text="Select All"/>
 <TableRow>
 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:minHeight="@dimen/buttonHeight"
 android:minWidth="@dimen/checkboxWidth"
 android:button="@null"
 android:gravity="center"
 android:textStyle="italic"
 android:textColor="@color/text_checkbox"
 android:text="One"/>

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1: Layouts and Views

 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:minHeight="@dimen/buttonHeight"
 android:minWidth="@dimen/checkboxWidth"
 android:button="@null"
 android:gravity="center"
 android:textStyle="italic"
 android:textColor="@color/text_checkbox"
 android:text="Two"/>
 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:minHeight="@dimen/buttonHeight"
 android:minWidth="@dimen/checkboxWidth"
 android:button="@null"
 android:gravity="center"
 android:textStyle="italic"
 android:textColor="@color/text_checkbox"
 android:text="Three"/>
 </TableRow>

 <TableRow>
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:minWidth="@dimen/buttonWidth"
 android:background="@drawable/background_button"
 android:textColor="@color/accentPink"
 android:text="@android:string/ok"/>
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:minWidth="@dimen/buttonWidth"
 android:background="@drawable/background_button"
 android:textColor="@color/accentPink"
 android:text="@android:string/cancel"/>
 </TableRow>
</TableLayout>

To add emphasis, we’ve highlighted the attributes in each view that are common to other

views of the same type. These are the attributes that make the buttons, text headings, and

checkable elements all look the same. There’s a lot of duplication to make this happen, and

we can clean it up with a style.

First, we need to create a new resource file, and define each attribute group with a <style>

tag. Listing 1-2 shows the completed abstractions.

www.allitebooks.com

http://www.allitebooks.org

5CHAPTER 1: Layouts and Views

Listing 1-2. res/values/styles.xml

<resources>
 <!-- Widget Styles -->
 <style name="LabelText" parent="android:TextAppearance.Large">
 <item name="android:textStyle">bold</item>
 </style>

 <style name="FormButton" parent="android:Widget.Button">
 <item name="android:minWidth">@dimen/buttonWidth</item>
 <item name="android:background">@drawable/background_button</item>
 <item name="android:textColor">@color/accentPink</item>
 </style>

 <style name="FormRadioButton" parent="android:Widget.CompoundButton.RadioButton">
 <item name="android:minHeight">@dimen/buttonHeight</item>
 <item name="android:button">@null</item>
 <item name="android:background">@drawable/background_radio</item>
 <item name="android:gravity">center</item>
 </style>

 <style name="FormCheckBox" parent="android:Widget.CompoundButton.CheckBox">
 <item name="android:minHeight">@dimen/buttonHeight</item>
 <item name="android:minWidth">@dimen/checkboxWidth</item>
 <item name="android:button">@null</item>
 <item name="android:gravity">center</item>
 <item name="android:textStyle">italic</item>
 <item name="android:textColor">@color/text_checkbox</item>
 </style>

</resources>

A <style> groups together the common attributes we need to apply to each view type.

Views can accept only a single style definition, so all the attributes for that view must be

collected in one group. Styles do support inheritance, however, which allows us to cascade

our definitions of each style before they are applied to the view.

Notice how each style also declares a parent. This is the base framework style that we

should inherit from. Parent styles are not required, but because of the single style rule on

each view, overwriting the default with your custom version replaces the theme’s default.

If you don’t inherit from a base parent, you will be forced to define all the attributes that

view needs. Extending a widget’s style from the framework’s base ensures that we are

responsible only for adding the attributes we want to customize beyond the default theme’s

look and feel.

www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1: Layouts and Views

EXPLICIT VS. IMPLICIT PARENTING

Style inheritance takes one of two forms. A style can explicitly declare its parent, as we’ve seen before:

<style name="BaseStyle" />
<style name="NewStyle" parent="BaseStyle" />

NewStyle is an extension of BaseStyle, and includes all the attributes defined in the parent. Styles also

support an implicit parenting syntax as follows:

<style name="BaseStyle" />
<style name="BaseStyle.Extended" />

In the same way, BaseStyle.Extended inherits its attributes from BaseStyle. The functionality of this

version is identical to the explicit example, just in a more compact convention. The two forms should never be

mixed, and doing so doesn’t allow for multiple parents on a single style. When this is done, the explicit parent

always wins anyway, and the readability of the code is reduced.

We can apply the new styles to our original layout file, and the cleaner result is shown in

Listing 1-3.

Listing 1-3. res/layout/activity_styled.xml

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="@style/LabelText"
 android:text="Select One"/>
 <RadioGroup
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <RadioButton
 style="@style/FormRadioButton"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="One"/>

7CHAPTER 1: Layouts and Views

 <RadioButton
 style="@style/FormRadioButton"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Two"/>
 <RadioButton
 style="@style/FormRadioButton"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Three"/>
 </RadioGroup>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="@style/LabelText"
 android:text="Select All"/>
 <TableRow>
 <CheckBox
 style="@style/FormCheckBox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="One"/>
 <CheckBox
 style="@style/FormCheckBox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Two"/>
 <CheckBox
 style="@style/FormCheckBox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Three"/>
 </TableRow>

 <TableRow>
 <Button
 style="@style/FormButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@android:string/ok"/>
 <Button
 style="@style/FormButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@android:string/cancel"/>
 </TableRow>
</TableLayout>

8 CHAPTER 1: Layouts and Views

By applying a style attribute to each view, we can remove the explicit attribute references

that were duplicated in favor of a single reference on each element. The one exception to

this behavior is our TextView headings, which accept a special android:textAppearance

attribute. This attribute takes a style reference, and applies only to text-formatting attributes

(size, style, color, and so forth). When used, a TextView still allows a separate style attribute

to be applied concurrently. In this way, it is the one supported instance in the framework of

multiple styles on a single view.

Themes

A theme in Android is a type of appearance style that is applicable to an entire application or

activity. There are two choices when applying a theme: use a system theme or create a custom

one. In either case, a theme is applied in the AndroidManifest.xml file, as shown in Listing 1-4.

Listing 1-4. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ...>
 <!—Apply to the application tag for a global theme -->
 <application android:theme="APPLICATION_THEME_NAME"
 ...>
 <!—Apply to the activity tag for an individual theme -->
 <activity android:name=".Activity"
 android:theme="ACTIVITY_THEME_NAME"
 ...>
 <intent-filter>
 ...
 </intent-filter>
 </activity>
 </application>
</manifest>

System Themes

The styles.xml and themes.xml files packaged with the Android framework include a few

options for themes with some useful custom properties. Referencing R.style in the SDK

documentation will provide the full list, but here are a few useful examples:

	Theme.Light: Variation on the standard theme that uses an inverse

color scheme for the background and user elements. This is the default

recommended base theme for applications prior to Android 3.0.

	Theme.NoTitleBar.Fullscreen: Removes the title bar and status bar, filling

the entire screen (minus any onscreen controls that may be present).

	Theme.Dialog: A useful theme to make an activity look like a dialog box.

	Theme.Holo.Light: (API Level 11) Theme that uses an inverse color

scheme and that has an action bar by default. This is the default

recommended base theme for applications on Android 3.0.

9CHAPTER 1: Layouts and Views

	Theme.Holo.Light.DarkActionBar: (API Level 14) Theme with an

inverse color scheme but a dark solid action bar. This is the default

recommended base theme for applications on Android 4.0.

	Theme.Material.Light: (API Level 21) Theme with a simplified color

scheme governed by a small palette of primary colors. This theme also

supports tinting of the standard widgets using the supplied primary

colors. This is the default recommended base theme for applications on

Android 5.0.

Note When using the AppCompat Library, other versions for each of these themes should be used

instead (for example, Theme.AppCompat.Light.DarkActionBar).

Listing 1-5 is an example of a system theme applied to the entire application by setting the

android:theme attribute in the AndroidManifest.xml file.

Listing 1-5. Manifest with Theme Set on Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ...>
 <!—Apply to the application tag for a global theme -->
 <application android:theme="Theme.Material.Light"
 ...>
 ...
 </application>
</manifest>

Custom Themes

Sometimes the provided system choices aren’t enough. After all, some of the customizable

elements in the window are not even addressed in the system options. Defining a custom

theme to do the job is simple.

If there is not one already, create a styles.xml file in the res/values path of the project.

Remember, themes are just styles applied on a wider scale, so they are defined in the same

place. Theme aspects related to window customization can be found in the R.attr reference

of the SDK, but here are the most common items:

	android:windowNoTitle: Governs whether to remove the default title bar;

set to true to remove the title bar.

	android:windowFullscreen: Governs whether to remove the system

status bar; set to true to remove the status bar and fill the entire screen.

10 CHAPTER 1: Layouts and Views

	android:windowBackground: Color or drawable resource to apply as a

background.

	android:windowContentOverlay: Drawable placed over the window

content foreground. By default, this is a shadow below the status bar.

Set to any resource to use in place of the default status bar shadow, or

null (@null in XML) to remove it.

In addition, the Material themes accept a series of color attributes that are used to tint the

application interface widgets:

	android:colorPrimary: Used to tint primary interface elements, like the

action bar and the scrolling edge glow effects. Also affects the recent

tasks title bar color.

	android:colorPrimaryDark: Tints the system controls, such as the

status bar background.

	android:colorAccent: Default color applied to controls that are focused

or activated.

	android:colorControlNormal: Override color for controls that are not

focused or activated.

	android:colorControlActivated: Override color for focused and

activated controls. Takes place of the accent color if both are defined.

	android:colorControlHighlight: Override color for controls that are

being pressed.

Listing 1-6 is an example of a styles.xml file that creates a custom theme in order to supply

brand-specific colors for the application interface.

Listing 1-6. res/values/styles.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="BaseAppTheme" parent="@style/Theme.AppCompat.Light.DarkActionBar">
 <!-- Action bar background color -->
 <item name="colorPrimary">@color/primaryBlue</item>
 <!-- Status bar tint color -->
 <item name="colorPrimaryDark">@color/primaryDarkBlue</item>
 <!-- Default color applied to all focused/activated controls -->
 <item name="colorAccent">@color/accentPink</item>

 <!-- Unselected controls color -->
 <item name="colorControlNormal">@color/controlNormalGreen</item>
 <!-- Activated control color; overrides accent -->
 <item name="colorControlActivated">@color/controlActivatedGreen</item>
 </style>

</resources>

11CHAPTER 1: Layouts and Views

Notice that a theme may also indicate a parent from which to inherit properties, so the entire

theme need not be created from scratch. In the example, we inherit from Android’s default

system theme, customizing only the properties that we needed to differentiate. All platform

themes are defined in res/values/themes.xml of the Android package. Refer to the SDK

documentation on styles and themes for more details.

Listing 1-7 shows how to apply these themes to individual activity instances in the

AndroidManifest.xml.

Listing 1-7. Manifest with Themes Set on Activity

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ...>
 <!—Apply to the application tag for a global theme -->
 <application
 ...>
 <!—Apply to the activity tag for an individual theme -->
 <activity android:name=".ThemedActivity"
 android:theme="@style/AppTheme"
 ...>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

1-2. Toggling System UI Elements

Problem
Your application experience requires access to the display, removing any system

decorations such as the status bar and software navigation buttons.

Solution
(API Level 11)

Many applications that target a more immersive content experience (such as readers or

video players) can benefit from temporarily hiding the system’s UI components to provide as

much screen real estate as possible to the application when the content is visible. Beginning

with Android 3.0, developers are able to adjust many of these properties at runtime without

the need to statically request a window feature or declare values inside a theme.

12 CHAPTER 1: Layouts and Views

How It Works

Dark Mode

Dark mode is also often called lights-out mode. This mode dims the onscreen navigation

controls (and the system status bar in later releases) without actually removing them, to

prevent any onscreen system elements from distracting the user from the current view in the

application.

To enable this mode, we simply have to call setSystemUiVisibility() on any View in our

hierarchy with the SYSTEM_UI_FLAG_LOW_PROFILE flag. To set the mode back to the default,

call the same method with SYSTEM_UI_FLAG_VISIBLE instead. We can determine which mode

we are in by calling getSystemUiVisibility() and checking the current status of the flags

(see Listings 1-8 and 1-9).

Listing 1-8. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:text="Toggle Mode"
 android:onClick="onToggleClick" />
</RelativeLayout>

Listing 1-9. Activity Toggling Dark Mode

public class DarkActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onToggleClick(View v) {
 int currentVis = v.getSystemUiVisibility();
 int newVis;
 if ((currentVis & View.SYSTEM_UI_FLAG_LOW_PROFILE)
 == View.SYSTEM_UI_FLAG_LOW_PROFILE) {
 newVis = View.SYSTEM_UI_FLAG_VISIBLE;
 } else {
 newVis = View.SYSTEM_UI_FLAG_LOW_PROFILE;
 }
 v.setSystemUiVisibility(newVis);
 }
}

13CHAPTER 1: Layouts and Views

The methods setSystemUiVisibility() and getSystemUiVisibility() can be called on any

view currently visible inside the window where you want to adjust these parameters.

Hiding Navigation Controls

(API Level 14)

SYSTEM_UI_FLAG_HIDE_NAVIGATION removes the onscreen HOME and BACK controls for

devices that do not have physical buttons. While Android gives developers the ability to do

this, it is with caution because these functions are extremely important to the user. If the

navigation controls are manually hidden, any tap on the screen will bring them back.

Listing 1-10 shows an example of this in practice.

Listing 1-10. Activity Toggling Navigation Controls

public class HideActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 }

 public void onToggleClick(View v) {
 //Here we only need to hide the controls on a tap because
 // Android will make the controls reappear automatically
 // anytime the screen is tapped after they are hidden.
 v.setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);
 }
}

Notice also when running this example that the button will shift up and down to

accommodate the changes in content space because of our centering requirement in the

root layout. If you plan to use this flag, note that any views being laid out relative to the

bottom of the screen will move as the layout changes.

Note These flag names were introduced in API Level 14 (Android 4.0); prior to that they were

named STATUS_BAR_HIDDEN and STATUS_BAR_VISIBLE. The values of each are the same, so

the new flags will produce the same behavior on Android 3.x devices.

14 CHAPTER 1: Layouts and Views

Full-Screen UI Mode

Prior to Android 4.1, there is no method of hiding the system status bar dynamically; it has to

be done with a static theme. To hide and show the action bar, however, ActionBar.show() and

ActionBar.hide() will animate the element in and out of view. If FEATURE_ACTION_BAR_OVERLAY

is requested, this change will not affect the content of the activity; otherwise, the view content

will shift up and down to accommodate the change.

(API Level 16)

Listing 1-11 illustrates an example of how to hide all system UI controls temporarily.

Listing 1-11. Activity Toggling All System UI Controls

public class FullActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request this feature so the ActionBar will hide
 requestWindowFeature(Window.FEATURE_ACTION_BAR_OVERLAY);
 setContentView(R.layout.main);
 }

 public void onToggleClick(View v) {
 //Here we only need to hide the UI on a tap because
 // Android will make the controls reappear automatically
 // anytime the screen is tapped after they are hidden.
 v.setSystemUiVisibility(
 /* This flag tells Android not to shift
 * our layout when resizing the window to
 * hide/show the system elements
 */
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 /* This flag hides the system status bar. If
 * ACTION_BAR_OVERLAY is requested, it will hide
 * the ActionBar as well.
 */
 | View.SYSTEM_UI_FLAG_FULLSCREEN
 /* This flag hides the onscreen controls
 */
 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);
 }
}

Similar to the example of hiding only the navigation controls, we do not need to show

the controls again because any tap on the screen will bring them back. As a convenience

beginning in Android 4.1, when the system clears the SYSTEM_UI_FLAG_HIDE_NAVIGATION in

this way, it will also clear the SYSTEM_UI_FLAG_FULLSCREEN, so the top and bottom elements

will become visible together. Android will hide the action bar as part of the full-screen flag

only if we request FEATURE_ACTION_BAR_OVERLAY; otherwise, only the status bar will be

affected.

15CHAPTER 1: Layouts and Views

We have added one other flag of interest in this example: SYSTEM_UI_LAYOUT_STABLE.

This flag tells Android not to shift our content view as a result of adding and removing the

system UI. Because of this, our button will stay centered as the elements toggle.

1-3. Creating and Displaying Views

Problem
Your application needs view elements in order to display information and interact with the user.

Solution
(API Level 1)

Whether using one of the many views and widgets available in the Android SDK or creating

a custom display, all applications need views to interact with the user. The preferred method

for creating user interfaces in Android is to define them in XML and inflate them at runtime.

The view structure in Android is a tree, with the root typically being the activity or window’s

content view. ViewGroups are special views that manage the display of one or more child

views, which could be another ViewGroup, and the tree continues to grow. All the standard

layout classes descend from ViewGroup, and they are the most common choices for the root

node of the XML layout file.

How It Works
Let’s define a layout with two Button instances and an EditText to accept user input. We can

define a file in res/layout/ called main.xml with the following contents (see Listing 1-12).

Listing 1-12. res/layout/main.xml

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <Button
 android:id="@+id/save"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Save" />

www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1: Layouts and Views

 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Cancel" />
 </LinearLayout>
</LinearLayout>

LinearLayout is a ViewGroup that lays out its elements one after the other in either a

horizontal or vertical fashion. In main.xml, the EditText and inner LinearLayout are laid

out vertically in order. The contents of the inner LinearLayout (the buttons) are laid out

horizontally. The view elements with an android:id value are elements that will need to be

referenced in the Java code for further customization or display.

To make this layout the display contents of an activity, it must be inflated at runtime. The

Activity.setContentView() method is overloaded with a convenience method to do this

for you, requiring only the layout ID value. In this case, setting the layout in the activity is as

simple as this:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Continue Activity initialization
}

Nothing beyond supplying the ID value (main.xml automatically has an ID of R.layout.main)

is required. If the layout needs a little more customization before it is attached to the window,

you can inflate it manually and do some work before adding it as the content view. Listing 1-13

inflates the same layout and adds a third button before displaying it.

Listing 1-13. Layout Modification Prior to Display

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Inflate the layout file
 LinearLayout layout = (LinearLayout)getLayoutInflater()
 .inflate(R.layout.main, null);
 //Add a new button
 Button reset = new Button(this);
 reset.setText("Reset Form");
 layout.addView(reset,
 new LinearLayout.LayoutParams(LayoutParams.MATCH_PARENT,
 LayoutParams.WRAP_CONTENT));

 //Attach the view to the window
 setContentView(layout);
}

In this instance, the XML layout is inflated in the activity code with a LayoutInflater, whose

inflate() method returns a handle to the inflated View. Since LayoutInflater.inflate()

returns a View, we must cast it to the specific subclass in the XML in order to do more than

just attach it to the window.

17CHAPTER 1: Layouts and Views

The second parameter to inflate() is the parent ViewGroup, and this is extremely important

because it defines how the LayoutParams from the inflated layout are interpreted. Whenever

possible, if you know the parent of this inflated hierarchy, it should be passed here;

otherwise, the LayoutParams from the root view of the XML will be ignored. When passing a

parent, also note that the third parameter of inflate() controls whether the inflated layout

is automatically attached to the parent. We will see in future recipes how this can be useful

for doing custom views. In this instance, however, we are inflating the top-level view of our

activity, so we pass null here.

Completely Custom Views

Sometimes, the widgets available in the SDK just aren’t enough to provide the output you

need. Or perhaps you want to reduce the number of views you have in your hierarchy

by combining multiple display elements into a single view to improve performance. For

these cases, you may want to create your own View subclass. In doing so, there are two

main interaction points between your class and the framework that need to be observed:

measurement and drawing.

Measurement

The first requirement that a custom view must fulfill is to provide a measurement for its

content to the framework. Before a view hierarchy is displayed, Android calls onMeasure()

for each element (both layouts and view nodes), and passes it two constraints the view

should use to govern how it reports the size that it should be. Each constraint is a packed

integer known as a MeasureSpec, which includes a mode flag and a size value. The mode will

be one of the following values:

	AT_MOST: This mode is typically used when the layout parameters of the

view are match_parent, or there is some other upper limit on the size.

This tells the view it should report any size it wants, as long as it doesn’t

exceed the value in the spec.

	EXACTLY: This mode is typically used when the layout parameters of the

view are a fixed value. The framework expects the view to set its size to

match the spec—no more, no less.

	UNSPECIFIED: This value is often used to figure out how big the view

wants to be if unconstrained. This may be a precursor to another

measurement with different constraints, or it may simply be because the

layout parameters were set to wrap_content and no other constraints

exist in the parent. The view may report its size to be whatever it wants

in this case. The size in this spec is often zero.

Note The root element in the XML layout file is the View element returned from

LayoutInflater.inflate().

18 CHAPTER 1: Layouts and Views

Once you have done your calculations on what size to report, those values must be passed

in a call to setMeasuredDimension() before onMeasure() returns. If you do not do this, the

framework will be quite upset with you.

Measurement is also an opportunity to configure your view’s output based on the space

available. The measurement constraints essentially tell you how much space has been

allocated inside the layout, so if you want to create a view that orients its content differently

when it has, say, more or less vertical space, onMeasure() will give you what you need to

make that decision.

Note During measurement, your view doesn’t actually have a size yet; it has only a measured

dimension. If you want to do some custom work in your view after the size has been assigned,

override onSizeChanged() and put your code there.

Drawing

The second, and arguably most important, step for your custom view is drawing content.

Once a view has been measured and placed inside the layout hierarchy, the framework will

construct a Canvas instance, sized and placed appropriately for your view, and pass it via

onDraw() for your view to use. The Canvas is an object that hosts individual drawing calls so

it includes methods such as drawLine(), drawBitmap(), and drawText() for you to lay out

the view content discretely. Canvas (as the name implies) uses a painter’s algorithm, so items

drawn last will go on top of items drawn first.

Drawing is clipped to the bounds of the view provided via measurement and layout, so while

the Canvas element can be translated, scaled, rotated, and so on, you cannot draw content

outside the rectangle where your view has been placed.

Finally, the content supplied in onDraw() does not include the view’s background, which

can be set with methods such as setBackgroundColor() or setBackgroundResource(). If a

background is set on the view, it will be drawn for you, and you do not need to handle that

inside onDraw().

Listing 1-14 shows a very simple custom view template that your application can follow.

For content, we are drawing a series of concentric circles to represent a bull’s-eye target.

19CHAPTER 1: Layouts and Views

Listing 1-14. Custom View Example

public class BullsEyeView extends View {

 private Paint mPaint;

 private Point mCenter;
 private float mRadius;

 /*
 * Java Constructor
 */
 public BullsEyeView(Context context) {
 this(context, null);
 }

 /*
 * XML Constructor
 */
 public BullsEyeView(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 /*
 * XML Constructor with Style
 */
 public BullsEyeView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 //Do any initialization of your view in this constructor

 //Create a paintbrush to draw with
 mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 //We want to draw our circles filled in
 mPaint.setStyle(Style.FILL);
 //Create the center point for our circle
 mCenter = new Point();
 }

 @Override
 protected void onMeasure(int widthMeasureSpec,
 int heightMeasureSpec) {
 int width, height;
 //Determine the ideal size of your content, unconstrained
 int contentWidth = 200;
 int contentHeight = 200;

20 CHAPTER 1: Layouts and Views

 width = getMeasurement(widthMeasureSpec, contentWidth);
 height = getMeasurement(heightMeasureSpec, contentHeight);
 //MUST call this method with the measured values!
 setMeasuredDimension(width, height);
 }

 /*
 * Helper method to measure width and height
 */
 private int getMeasurement(int measureSpec, int contentSize) {
 int specSize = MeasureSpec.getSize(measureSpec);
 switch (MeasureSpec.getMode(measureSpec)) {
 case MeasureSpec.AT_MOST:
 return Math.min(specSize, contentSize);
 case MeasureSpec.UNSPECIFIED:
 return contentSize;
 case MeasureSpec.EXACTLY:
 return specSize;
 default:
 return 0;
 }
 }

 @Override
 protected void onSizeChanged(int w, int h,
 int oldw, int oldh) {
 if (w != oldw || h != oldh) {
 //If there was a change, reset the parameters
 mCenter.x = w / 2;
 mCenter.y = h / 2;
 mRadius = Math.min(mCenter.x, mCenter.y);
 }
 }

 @Override
 protected void onDraw(Canvas canvas) {
 //Draw a series of concentric circles,
 // smallest to largest, alternating colors
 mPaint.setColor(Color.RED);
 canvas.drawCircle(mCenter.x, mCenter.y, mRadius, mPaint);

 mPaint.setColor(Color.WHITE);
 canvas.drawCircle(mCenter.x, mCenter.y, mRadius * 0.8f, mPaint);

 mPaint.setColor(Color.BLUE);
 canvas.drawCircle(mCenter.x, mCenter.y, mRadius * 0.6f, mPaint);

21CHAPTER 1: Layouts and Views

 mPaint.setColor(Color.WHITE);
 canvas.drawCircle(mCenter.x, mCenter.y, mRadius * 0.4f, mPaint);

 mPaint.setColor(Color.RED);
 canvas.drawCircle(mCenter.x, mCenter.y, mRadius * 0.2f,
 mPaint);
 }
}

The first thing you may notice is that View has three constructors:

	View(Context): This version is used when a view is constructed from

within Java code.

	View(Context, AttributeSet): This version is used when a view is

inflated from XML. AttributeSet includes all the attributes attached to

the XML element for the view.

	View(Context, AttributeSet, int): This version is similar to the

previous one, but is called when a style attribute is added to the XML

element.

It is a common pattern to chain all three together and implement customizations in only the

final constructor, which is what we have done in the example view.

From onMeasure(), we use a simple utility method to return the correct dimension based

on the measurement constraints. We basically have a choice between the size we want our

content to be (which is arbitrarily selected here, but should represent your view content in a

real application) and the size given to us. In the case of AT_MOST, we pick the value that is the

lesser of the two; thus saying the view will be the size necessary to fit our content as long as

it doesn’t exceed the spec. We use onSizeChanged(), called after measurement is finished,

to gather some basic data we will need to draw our target circles. We wait until this point to

ensure we use the values that exactly match how the view is laid out.

Inside onDraw() is where we construct the display. Five concentric circles are painted onto

the Canvas with a steadily decreasing radius and alternating colors. The Paint element

controls information about the style of the content being drawn, such as stroke width, text

sizes, and colors. When we declared the Paint for this view, we set the style to FILL, which

ensures that the circles are filled in with each color. Because of the painter’s algorithm, the

smaller circles are drawn on top of the larger, giving us the target look we were going for.

Adding this view to an XML layout is simple, but because the view doesn’t reside in the

android.view or android.widget packages, we need to name the element with the fully

qualified package name of the class. So, for example, if our application package were

com.androidrecipes.customwidgets, the XML would be as follows:

<com.androidrecipes.customwidgets.BullsEyeView
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

22 CHAPTER 1: Layouts and Views

1-4. Animating a View

Problem
Your application needs to animate a view object, either as a transition or for effect.

Solution
(API Level 12)

An ObjectAnimator instance, such as ViewPropertyAnimator, can be used to manipulate

the properties of a View, such as its position or rotation. ViewPropertyAnimator is

obtained through View.animate(), and then modified with the specifics of the animation.

Modifications made through this API will alter the actual properties of the View itself.

Figure 1-2. Bull’s-eye custom view

Figure 1-2 shows the result of adding this view to an activity.

23CHAPTER 1: Layouts and Views

How It Works
ViewPropertyAnimator is the most convenient method for animating view content. The API

works similarly to a builder, where the calls to modify the different properties can be chained

together to create a single animation. Any calls made to the same ViewPropertyAnimator

during the same iteration of the current thread’s Looper will be lumped into a single

animation. Listings 1-15 and 1-16 illustrate a simple view transition example activity.

Listing 1-15. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/toggleButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to Toggle" />

 <View
 android:id="@+id/theView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#AAA" />
</LinearLayout>

Listing 1-16. Activity Using ViewPropertyAnimator

public class AnimateActivity extends Activity implements View.OnClickListener {

 View viewToAnimate;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button button = (Button)findViewById(R.id.toggleButton);
 button.setOnClickListener(this);

 viewToAnimate = findViewById(R.id.theView);
 }

 @Override
 public void onClick(View v) {
 if(viewToAnimate.getAlpha() > 0f) {
 //If the view is visible, slide it out to the right
 viewToAnimate.animate().alpha(0f).translationX(1000f);
 } else {

24 CHAPTER 1: Layouts and Views

 //If the view is hidden, do a fade-in in place
 //Property Animations actually modify the view, so
 // we have to reset the view's location first
 viewToAnimate.setTranslationX(0f);
 viewToAnimate.animate().alpha(1f);
 }
 }
}

In this example, the slide and fade-out transition is accomplished by chaining together a

modification of the alpha and translationX properties, with a translation value sufficiently

large to go offscreen. We do not have to chain these methods together for them to be

considered a single animation. If we had called them on two separate lines, they would

still execute together because they were both set in the same iteration of the main thread’s

Looper.

Notice that we have to reset the translation property for our View to fade in without a slide.

This is because property animations manipulate the actual View, rather than where it is

temporarily drawn (which is the case with the older animation APIs). If we did not reset this

property, it would fade in but would still be 1,000 pixels off to the right.

ObjectAnimator

While ViewPropertyAnimator is convenient for animating simple properties quickly, you may

find it a bit limiting if you want to do more-complex work such as chaining animations together.

For this purpose, we can go to the parent class, ObjectAnimator. With ObjectAnimator, we can

set listeners to be notified when the animation begins and ends; also, they can be notified with

incremental updates as to what point of the animation we are in.

Listings 1-17 and 1-18 show how we can use this to construct a simple coin-flip animation.

Listing 1-17. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <ImageView
 android:id="@+id/flip_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"/>
</FrameLayout>

25CHAPTER 1: Layouts and Views

Listing 1-18. Flipper Animation with ObjectAnimator

public class FlipperActivity extends Activity {

 private boolean mIsHeads;
 private ObjectAnimator mFlipper;
 private Bitmap mHeadsImage, mTailsImage;
 private ImageView mFlipImage;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mHeadsImage = BitmapFactory.decodeResource(getResources(), R.drawable.heads);
 mTailsImage = BitmapFactory.decodeResource(getResources(), R.drawable.tails);

 mFlipImage = (ImageView)findViewById(R.id.flip_image);
 mFlipImage.setImageBitmap(mHeadsImage);
 mIsHeads = true;

 mFlipper = ObjectAnimator.ofFloat(mFlipImage, "rotationY", 0f, 360f);
 mFlipper.setDuration(500);
 mFlipper.addUpdateListener(new AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 if (animation.getAnimatedFraction() >= 0.25f && mIsHeads) {
 mFlipImage.setImageBitmap(mTailsImage);
 mIsHeads = false;
 }
 if (animation.getAnimatedFraction() >= 0.75f && !mIsHeads) {
 mFlipImage.setImageBitmap(mHeadsImage);
 mIsHeads = true;
 }
 }
 });
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 if(event.getAction() == MotionEvent.ACTION_DOWN) {
 mFlipper.start();
 return true;
 }
 return super.onTouchEvent(event);
 }
}

Property animations provide transformations that were not previously available with the

older animation system, such as rotations about the x and y axes that create the effect of

a three-dimensional transformation. In this example, we don’t have to fake the rotation by

doing a calculated scale; we can just tell the view to rotate about the y axis. Because of

this, we no longer need two animations to flip the coin; we can just animate the rotationY

property of the view for one full rotation.

www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 1: Layouts and Views

Another powerful addition is the AnimationUpdateListener, which provides regular callbacks

while the animation is going on. The getAnimatedFraction() method returns the current

percentage to completion of the animation. You can also use getAnimatedValue() to get the

exact value of the property at the current point in time.

In the example, we use the first of these methods to swap the heads and tails images when

the animation reaches the two points where the coin should change sides (90 degrees and

270 degrees, or 25 percent and 75 percent of the animation duration). Because there is no

guarantee that we will get called for every degree, we just change the image as soon as we

have crossed the threshold. We also set a Boolean flag to avoid setting the image to the

same value on each iteration afterward, which would slow performance unnecessarily.

ObjectAnimator also supports a more traditional AnimationListener for major animation

events such as start, end, and repeat, if chaining multiple animations together is still

necessary for the application.

Tip On Android 4.4+, Animator also supports pause() and resume() methods to suspend a

running animation without completely canceling it.

AnimatorSet

When you need to execute multiple animations, they can be collected in an AnimatorSet. Sets

of animations can be played together at the same time, or sequenced to play one after the

other. Defining collections of animations can get a bit verbose in Java code, so we will turn

to the XML animation format for this example. Listing 1-19 defines a set of animations we will

apply to our coin flip.

Listing 1-19. res/animator/flip.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:ordering="together">

 <!-- Make a linear repeat for the coin rotations -->
 <objectAnimator
 android:propertyName="rotationX"
 android:duration="400"
 android:valueFrom="0"
 android:valueTo="360"
 android:valueType="floatType"
 android:repeatMode="restart"
 android:repeatCount="3"
 android:interpolator="@android:interpolator/linear"/>

27CHAPTER 1: Layouts and Views

 <!-- Add a lift to show the coin rising in the air -->
 <objectAnimator
 android:propertyName="translationY"
 android:duration="800"
 android:valueTo="-200"
 android:valueType="floatType"
 android:repeatMode="reverse"
 android:repeatCount="1" />
</set>

Here we have defined two animations to be played at the same time (via

android:ordering="together") inside a <set>. The first animation mirrors what we saw

previously, to rotate the coin image once. The animation is set to repeat three times, giving

us three full rotations. The default interpolator for this image is an ease-in/ease-out timing

curve, which looks off with a coin flip. To provide a consistent speed throughout, we apply

the system’s linear interpolator to the animation instead.

The second animation causes the coin to slide up in the view during the rotations. This gives

more of an effect that the coin is being tossed into the air. Since the coin must also come

back down, the animation is set to run once in reverse after it completes.

Listing 1-20 shows this new animation attached to the flipper activity.

Listing 1-20. Flipper Animation with XML AnimatorSet

public class FlipperActivity extends Activity {

 private boolean mIsHeads;
 private AnimatorSet mFlipper;
 private Bitmap mHeadsImage, mTailsImage;
 private ImageView mFlipImage;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mHeadsImage = BitmapFactory.decodeResource(getResources(), R.drawable.heads);
 mTailsImage = BitmapFactory.decodeResource(getResources(), R.drawable.tails);

 mFlipImage = (ImageView)findViewById(R.id.flip_image);
 mFlipImage.setImageResource(R.drawable.heads);
 mIsHeads = true;

 mFlipper = (AnimatorSet) AnimatorInflater.loadAnimator(this, R.animator.flip);
 mFlipper.setTarget(mFlipImage);

28 CHAPTER 1: Layouts and Views

 ObjectAnimator flipAnimator = (ObjectAnimator) mFlipper.getChildAnimations().get(0);
 flipAnimator.addUpdateListener(new ValueAnimator.AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 if (animation.getAnimatedFraction() >= 0.25f && mIsHeads) {
 mFlipImage.setImageBitmap(mTailsImage);
 mIsHeads = false;
 }
 if (animation.getAnimatedFraction() >= 0.75f && !mIsHeads) {
 mFlipImage.setImageBitmap(mHeadsImage);
 mIsHeads = true;
 }
 }
 });
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 if(event.getAction() == MotionEvent.ACTION_DOWN) {
 mFlipper.start();
 return true;
 }
 return super.onTouchEvent(event);
 }
}

In this case, we’ve used an AnimatorInflater to construct the AnimatorSet object from

our XML. The resulting animation must be attached to the appropriate target view via

setTarget(), which is something ObjectAnimator.ofFloat() did for us implicitly. We also still

need our AnimatorUpdateListener to determine when to switch from heads to tails, but that

cannot be applied to a set object. Instead, we have to find the rotation animation inside the

set using getChildAnimations() in order to attach the listener in the appropriate place.

Running this new example will give us a slightly more realistic coin-flip animation.

1-5. Animating Layout Changes

Problem
Your application dynamically adds or removes views from a layout, and you would like those

changes to be animated.

Solution
(API Level 11)

Use the LayoutTransition object to customize how modifications to the view hierarchy in a

given layout should be animated. In Android 3.0 and later, any ViewGroup can have changes

to its layout animated by simply enabling the android:animateLayoutChanges flag in XML or

by adding a LayoutTransition object in Java code.

29CHAPTER 1: Layouts and Views

There are five states during a layout transition that each View in the layout may incur.

An application can set a custom animation for each one of the following states:

	APPEARING: An item that is appearing in the container

	DISAPPEARING: An item that is disappearing from the container

	CHANGING: An item that is changing because of a layout change, such as

a resize, that doesn’t involve views being added or removed

	CHANGE_APPEARING: An item changing because of another view appearing

	CHANGE_DISAPPEARING: An item changing because of another view

disappearing

How It Works
Listings 1-21 and 1-22 illustrate an application that animates changes on a basic

LinearLayout.

Listing 1-21. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center_horizontal"
 android:orientation="vertical" >

 <Button
 android:id="@+id/button_add"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="onAddClick"
 android:text="Click To Add Item" />

 <LinearLayout
 android:id="@+id/verticalContainer"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:animateLayoutChanges="true"
 android:orientation="vertical" />

</LinearLayout>

30 CHAPTER 1: Layouts and Views

Listing 1-22. Activity Adding and Removing Views

public class MainActivity extends Activity {

 LinearLayout mContainer;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mContainer =
 (LinearLayout) findViewById(R.id.verticalContainer);
 }

 //Add a new button that can remove itself
 public void onAddClick(View v) {
 Button button = new Button(this);
 button.setText("Click To Remove");
 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mContainer.removeView(v);
 }
 });

 mContainer.addView(button, new LinearLayout.LayoutParams(
 LayoutParams.MATCH_PARENT,
 LayoutParams.WRAP_CONTENT));
 }
}

This simple example adds Button instances to a LinearLayout when the Add Item button is

tapped. Each new button is outfitted with the ability to remove itself from the layout when it

is tapped. In order to animate this process, all we need to do is set android:animateLayou
tChanges="true" on the LinearLayout, and the framework does the rest. By default, a new

button will fade in to its new location without disturbing the other views, and a removed

button will fade out while the surrounding items slide in to fill the gap.

We can customize the transition animations individually to create custom effects. Take a look

at Listing 1-23, where we add some custom transitions to the previous activity.

Listing 1-23. Activity Using Custom LayoutTransition

public class MainActivity extends Activity {

 LinearLayout mContainer;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

31CHAPTER 1: Layouts and Views

 // Layout Changes Animation
 mContainer = (LinearLayout) findViewById(R.id.verticalContainer);
 LayoutTransition transition = new LayoutTransition();
 mContainer.setLayoutTransition(transition);

 // Override the default appear animation with a flip in
 Animator appearAnim = ObjectAnimator.ofFloat(null,
 "rotationY", 90f, 0f).setDuration(
 transition.getDuration(LayoutTransition.APPEARING));
 transition.setAnimator(LayoutTransition.APPEARING, appearAnim);

 // Override the default disappear animation with a flip out
 Animator disappearAnim = ObjectAnimator.ofFloat(null,
 "rotationX", 0f, 90f).setDuration(
 transition.getDuration(LayoutTransition.DISAPPEARING));
 transition.setAnimator(LayoutTransition.DISAPPEARING,
 disappearAnim);

 // Override the default change with a more animated slide
 // We animate several properties at once, so we create an
 // animation out of multiple PropertyValueHolder objects.
 // This animation slides the views in and temporarily shrinks
 // the view to half size.
 PropertyValuesHolder pvhSlide =
 PropertyValuesHolder.ofFloat("y", 0, 1);
 PropertyValuesHolder pvhScaleY =
 PropertyValuesHolder.ofFloat("scaleY", 1f, 0.5f, 1f);
 PropertyValuesHolder pvhScaleX =
 PropertyValuesHolder.ofFloat("scaleX", 1f, 0.5f, 1f);
 Animator changingAppearingAnim =
 ObjectAnimator.ofPropertyValuesHolder(
 this, pvhSlide, pvhScaleY, pvhScaleX);
 changingAppearingAnim.setDuration(
 transition.getDuration(LayoutTransition.CHANGE_DISAPPEARING)
);
 transition.setAnimator(LayoutTransition.CHANGE_DISAPPEARING,
 changingAppearingAnim);
 }

 public void onAddClick(View v) {
 Button button = new Button(this);
 button.setText("Click To Remove");
 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mContainer.removeView(v);
 }
 });

 mContainer.addView(button, new LinearLayout.LayoutParams(
 LayoutParams.MATCH_PARENT, LayoutParams.WRAP_CONTENT));
 }
}

32 CHAPTER 1: Layouts and Views

In this example, we have modified the APPEARING, DISAPPEARING, and CHANGE_DISAPPEARING

transition animations for our Button layout. The first two transitions affect the item being added

or removed. When the Add Item button is clicked, the new item horizontally rotates into view.

When any of the Remove buttons are clicked, that item will vertically rotate out of view. Both of

these transitions are created by making a new ObjectAnimator for the custom rotation property,

setting its duration to the default duration for that transition type, and attaching it to our

LayoutTransition instance along with a key for the specific transition type. The final transition is

a little more complicated; we need to create an animation that slides the surrounding views into

their new location, but we also want to apply a scale animation during that time.

Note When customizing a change transition, it is important to add a component that moves the

location of the view, or you will likely see flickering as the view moves to create or fill the view gap.

In order to do this, we need to create an ObjectAnimator that operates on several properties,

in the form of PropertyValuesHolder instances. Each property that will be part of the animation

becomes a separate PropertyValuesHolder, and all of them are added to the animator by using

the ofPropertyValuesHolder() factory method. This final transition will cause the remaining

items below any removed button to slide up and shrink slightly as they move into place.

1-6. Implementing Situation-Specific Layouts

Problem
Your application must be universal, running on different screen sizes and orientations.

You need to provide different layout resources for each of these instances.

Solution
(API Level 4)

Build multiple layout files, and use resource qualifiers to let Android pick what’s appropriate.

We will look at using resources to create layouts specific to different screen orientations and

sizes. We will also explore using layout aliases to reduce duplication in cases where multiple

configurations share the same layout.

How It Works

Orientation-Specific

In order to create different resources for an activity to use in portrait vs. landscape

orientations, use the following qualifiers:

	resource-land

	resource-port

33CHAPTER 1: Layouts and Views

Using these qualifiers works for all resource types, but they are most commonly found

with layouts. Therefore, instead of a res/layout/ directory in the project, there would be a

res/layout-port/ and a res/layout-land/ directory.

Note It is good practice to include a default resource directory without a qualifier. This gives

Android something to fall back on if it is running on a device that doesn’t match any of the specific

criteria you list.

Size-Specific

There are also screen-size qualifiers (physical size, not to be confused with pixel density) that we

can use to target large-screen devices such as tablets. In most cases, a single layout will suffice

for all physical screen sizes of mobile phones. However, you may want to add more features to a

tablet layout to assist in filling the noticeably larger screen real estate the user has to operate.

Prior to Android 3.2 (API Level 13), the following resource qualifiers were acceptable for

physical screen sizes:

	resource-small: Screen measuring at least 426dp×320dp

	resource-medium: Screen measuring at least 470dp×320dp

	resource-large: Screen measuring at least 640dp×480dp

	resource-xlarge: Screen measuring at least 960dp×720dp

As larger screens became more common on both handset devices and tablets, it was

apparent that the four generalized buckets weren’t enough to avoid overlap in defining

resources. In Android 3.2, a new system based on the screen’s actual dimensions (in dp

units) was introduced. With the new system, the following resource qualifiers are acceptable

for physical screen sizes:

Smallest Width (resource-sw___dp): Screen with at least the noted

density-independent pixels in the shortest direction (meaning

irrespective of orientation)

A 640dp×480dp screen always has a smallest width of 480dp.	
Width (resource-w___dp): Screen with at least the noted density-

independent pixels in the current horizontal direction

A 640dp×480dp screen has a width of 640dp when in landscape 	
and 480dp when in portrait.

Height (resource-h___dp): Screen with at least the noted density-

independent pixels in the current vertical direction

A 640dp×480dp screen has a height of 640dp when in portrait and 	
480dp when in landscape.

So, to include a tablet-only layout to a universal application, we could add a res/layout-large/

directory for older tablets and a res/layout-sw720dp/ directory for newer tablets as well.

34 CHAPTER 1: Layouts and Views

Layout Aliases

There is one final concept to discuss when creating universal application UIs, and that is

layout aliases. Often the same layout should be used for multiple device configurations,

but chaining multiple resource qualifiers together (such as a smallest width qualifier and a

traditional size qualifier) on the same resource directory can be problematic. This can often

lead developers to create multiple copies of the same layout in different directories, which is

a maintenance nightmare.

We can solve this problem with aliasing. By creating a single layout file in the default

resource directory, we can create multiple aliases to that single file in resource-qualified

values directories for each configuration that uses the layout. The following snippet

illustrates an alias to the res/layout/main_tablet.xml file:

<resources>
 <item name="main" type="layout">@layout/main_tablet</item>
</resources>

The name attribute represents the aliased name, which is the resource this alias is meant to

represent in the selected configuration. This alias links the main_tablet.xml file to be used

when R.layout.main is requested in code. This code could be placed into res/values-
xlarge/layout.xml and res/values-sw720dp/layout.xml, and both configurations would link

to the same layout.

Tying It Together

Let’s look at a quick example that puts this into practice. We’ll define a single activity that

loads a single layout resource in code. However, this layout will be defined differently in the

resources to produce different results in portrait, in landscape, and on tablet devices. First,

the activity is shown in Listing 1-24.

Listing 1-24. Simple Activity Loading One Layout

public class UniversalActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

We’ll now define three separate layouts to use for this activity in different configurations.

Listings 1-25 through 1-27 show layouts to be used for the default, landscape, and tablet

configurations of the UI.

35CHAPTER 1: Layouts and Views

Listing 1-25. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- DEFAULT LAYOUT -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="This is the default layout" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button One" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button Two" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button Three" />
</LinearLayout>

Listing 1-26. res/layout-land/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- LANDSCAPE LAYOUT -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This is a horizontal layout for LANDSCAPE"
 />
 <!-- Three buttons to fill screen equally using weight -->
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <Button
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Button One" />

www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 1: Layouts and Views

 <Button
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Button Two" />
 <Button
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Button Three" />
 </LinearLayout>
</LinearLayout>

Listing 1-27. res/layout/main_tablet.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- TABLET LAYOUT -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
 <!-- Group of user buttons taking 25% of screen width -->
 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:orientation="vertical">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="This is the layout for TABLETS" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button One" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button Two" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button Three" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button Four" />
 </LinearLayout>

37CHAPTER 1: Layouts and Views

 <!-- Extra view to show detail content -->
 <TextView
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="3"
 android:text="Detail View"
 android:background="#CCC" />
</LinearLayout>

One option would have been to create three files with the same name and to place them

in qualified directories, such as res/layout-land for landscape and res/layout-large for

tablet. That scheme works great if each layout file is used only once, but we will need to

reuse each layout in multiple configurations, so in this example we will create qualified

aliases to these three layouts. Listings 1-28 through 1-31 reveal how we link each layout to

the correct configuration.

Listing 1-28. res/values-large-land/layout.xml

<?xml version="1.0" encoding="utf-8"?>
<resources
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item name="main" type="layout">@layout/main_tablet</item>
</resources>

Listing 1-29. res/value-sw600dp-land/layout.xml

<?xml version="1.0" encoding="utf-8"?>
<resources
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item name="main" type="layout">@layout/main_tablet</item>
</resources>

Listing 1-30. res/values-xlarge/layout.xml

<?xml version="1.0" encoding="utf-8"?>
<resources
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item name="main" type="layout">@layout/main_tablet</item>
</resources>

Listing 1-31. res/values-sw720dp/layout.xml

<?xml version="1.0" encoding="utf-8"?>
<resources
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item name="main" type="layout">@layout/main_tablet</item>
</resources>

38 CHAPTER 1: Layouts and Views

We have defined configuration groups to accommodate three classes of devices: handsets,

7-inch tablet devices, and 10-inch tablet devices. Handset devices will load the default

layout when in portrait mode, and the landscape layout when the device is rotated. Because

this is the only configuration using these files, they are placed directly into the res/layout

and res/layout-land directories, respectively.

The 7-inch tablet devices in the previous size scheme were typically defined as large

screens, and in the new scheme they have a smallest width, of around 600dp. In portrait

mode, we have decided that our application should use the default layout, but in landscape

mode we have significantly more real estate, so we load the tablet layout instead. To do

this, we create qualified directories for the landscape orientation that match this device size

class. Using both smallest-width and bucket-size qualifiers ensures we are compatible with

older and newer tablets.

The 10-inch tablet devices in the previous size scheme were considered extra-large screens,

and in the new scheme they have a smallest width of around 720dp. For these devices, the

screen is large enough to use the tablet layout in both orientations, so we create qualified

directories that call out only the screen size. Again, as with the smaller tablets, using both

smallest-width and bucket-size qualifiers ensures we are compatible with all tablet versions.

In all cases in which the tablet layout was referenced, we had to create only one layout file

to manage, thanks to the power of using aliases. Now when we run the application, you

can see how Android selects the appropriate layout to match our configuration. Figure 1-3

shows default and landscape layouts on a handset device.

39CHAPTER 1: Layouts and Views

The same application on a 7-inch tablet device displays the default layout in portrait

orientation, but we get the full tablet layout in landscape (see Figure 1-4).

Figure 1-3. Handset portrait and landscape layouts

40 CHAPTER 1: Layouts and Views

Finally, in Figure 1-5 we can see the larger screen on the 10-inch tablet running the full tablet

layout in both portrait and landscape orientations.

Figure 1-4. Default portrait and tablet landscape layout on a 7-inch tablet

41CHAPTER 1: Layouts and Views

With the extensive capabilities of the Android resource selection system, the difficulty of

supporting different UI layouts optimized for each device type is greatly reduced.

Figure 1-5. Full tablet layout in both orientations on a 10-inch tablet

42 CHAPTER 1: Layouts and Views

1-7. Customizing AdapterView Empty Views

Problem
You want to display a custom view when an AdapterView (ListView, GridView, and the like)

has an empty data set.

Solution
(API Level 1)

Lay out the view you would like displayed in the same tree as the AdapterView and call

AdapterView.setEmptyView() to have the AdapterView manage it. The AdapterView will

switch the visibility parameters between itself and its empty view based on the result of the

attached ListAdapter’s isEmpty() method.

Important Be sure to include both the AdapterView and the empty view in your layout. The

AdapterView changes only the visibility parameters on the two objects; it does not insert or remove

them in the layout tree.

How It Works
Here is how this would look with a simple TextView used as the empty view. First, a layout

includes both views, shown in Listing 1-32.

Listing 1-32. res/layout/empty.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/myempty"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="No Items to Display"
 />
 <ListView
 android:id="@+id/mylist"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</FrameLayout>

43CHAPTER 1: Layouts and Views

Then, in the activity, give the ListView a reference to the empty view so it can be managed

(see Listing 1-33).

Listing 1-33. Activity Connecting the Empty View to the List

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.empty);

 ListView list = (ListView)findViewById(R.id.mylist);
 TextView empty = (TextView)findViewById(R.id.myempty);

 /*
 * Attach the empty view. The framework will show this
 * view when the ListView's adapter has no elements.
 */
 list.setEmptyView(empty);

 //Continue adding adapters and data to the list
}

Make Empty Interesting

Empty views don’t have to be simple and boring like the single TextView. Let’s try to make

things a little more useful for the user and add a Refresh button when the list is empty

(see Listing 1-34).

Listing 1-34. Interactive Empty Layout

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:id="@+id/myempty"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="No Items to Display"
 />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Tap Here to Refresh"
 />
 </LinearLayout>

44 CHAPTER 1: Layouts and Views

 <ListView
 android:id="@+id/mylist"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</FrameLayout>

Now, with the same activity code from before, we have set an entire layout as the empty

view and have added the ability for users to do something about their lack of data.

1-8. Customizing ListView Rows

Problem
Your application needs to use a more customized look for each row in a ListView.

Solution
(API Level 1)

Create a custom XML layout and pass it to one of the common adapters, or extend your

own. You can then apply custom state drawables for overriding the background and

selected states of each row.

How It Works

Starting Simple

If your needs are simple, create a layout that can connect to an existing ListAdapter for

population; we’ll use ArrayAdapter as an example. The ArrayAdapter can take parameters

for a custom layout resource to inflate and the ID of one TextView in that layout to populate

with data. Let’s create some custom drawables for the background and a layout that meets

these requirements (see Listings 1-35 through 1-37).

Listing 1-35. res/drawable/row_background_default.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <gradient
 android:startColor="#EFEFEF"
 android:endColor="#989898"
 android:type="linear"
 android:angle="270"
 />
</shape>

45CHAPTER 1: Layouts and Views

Listing 1-36. res/drawable/row_background_pressed.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <gradient
 android:startColor="#0B8CF2"
 android:endColor="#0661E5"
 android:type="linear"
 android:angle="270"
 />
</shape>

Listing 1-37. res/drawable/row_background.xml

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true"
 android:drawable="@drawable/row_background_pressed"/>
 <item android:drawable="@drawable/row_background_default"/>
</selector>

Listing 1-38 shows a custom layout with the text fully centered in the row instead of aligned

to the left.

Listing 1-38. res/layout/custom_row.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="10dip"
 android:background="@drawable/row_background">
 <TextView
 android:id="@+id/line1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 />
</LinearLayout>

This layout has the custom gradient state-list set as its background, and this sets up the

default and pressed states for each item in the list. Now, because we have defined a layout

that matches up with what an ArrayAdapter expects, we can create one and set it on our list

without any further customization (see Listing 1-39).

www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 1: Layouts and Views

Listing 1-39. Activity Using the Custom Row Layout

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView list = new ListView(this);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
 R.layout.custom_row,
 R.id.line1,
 new String[] {"Bill","Tom","Sally","Jenny"});
 list.setAdapter(adapter);

 setContentView(list);
}

Adapting to a More Complex Choice

Sometimes customizing the list rows means extending a ListAdapter as well. This is usually

the case if you have multiple pieces of data in a single row or if any of them are not text.

In this example, let’s utilize the custom drawables again for the background, but we’ll make

the layout a little more interesting (see Listing 1-40).

Listing 1-40. res/layout/custom_row.xml Modified

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="10dip">
 <ImageView
 android:id="@+id/leftimage"
 android:layout_width="32dip"
 android:layout_height="32dip"
 />
 <ImageView
 android:id="@+id/rightimage"
 android:layout_width="32dip"
 android:layout_height="32dip"
 android:layout_alignParentRight="true"
 />

 <TextView
 android:id="@+id/line1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/rightimage"
 android:layout_toRightOf="@id/leftimage"
 android:layout_centerVertical="true"
 android:gravity="center_horizontal"
 />
</RelativeLayout>

47CHAPTER 1: Layouts and Views

This layout contains the same centered TextView but bordered with an ImageView on

each side. In order to apply this layout to the ListView, we will need to extend one of

the ListAdapters in the SDK. Which one you extend depends on the data source you

are presenting in the list. If the data is still just a simple array of strings, an extension of

ArrayAdapter is sufficient. If the data is more complex, a full extension of the abstract

BaseAdapter may be necessary. The only required method to extend is getView(), which

governs how each row in the list is presented.

In our case, the data is a simple array of strings, so we will create a simple extension of

ArrayAdapter (see Listing 1-41).

Listing 1-41. Activity and Custom ListAdapter to Display the New Layout

public class MyActivity extends Activity {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView list = new ListView(this);
 setContentView(list);

 CustomAdapter adapter = new CustomAdapter(this,
 R.layout.custom_row,
 R.id.line1,
 new String[] {"Bill","Tom","Sally","Jenny"});
 list.setAdapter(adapter);

 }

 private static class CustomAdapter extends ArrayAdapter<String> {

 public CustomAdapter(Context context, int layout, int resId,
 String[] items) {
 //Call through to ArrayAdapter implementation
 super(context, layout, resId, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row = convertView;
 //Inflate a new row if one isn't recycled
 if(row == null) {
 row = LayoutInflater.from(getContext())
 .inflate(R.layout.custom_row, parent, false);
 }
 String item = getItem(position);
 ImageView left =
 (ImageView)row.findViewById(R.id.leftimage);
 ImageView right =
 (ImageView)row.findViewById(R.id.rightimage);
 TextView text = (TextView)row.findViewById(R.id.line1);

48 CHAPTER 1: Layouts and Views

 left.setImageResource(R.drawable.icon);
 right.setImageResource(R.drawable.icon);
 text.setText(item);

 return row;
 }
 }
}

Notice that we use the same constructor to create an instance of the adapter as before,

because it is inherited from ArrayAdapter. We have overridden the view display mechanism

of the adapter, and the only reason the R.layout.custom_row and R.id.line1 are now

passed into the constructor is that they are required parameters of the constructor; they

don’t serve a useful purpose in this example anymore.

Now, when the ListView wants to display a row, it will call getView() on its adapter, which

we have customized so we can control how each row returns. The getView() method is

passed a parameter called the convertView, which is very important for performance. Layout

inflation from XML is an expensive process: to minimize its impact on the system, ListView

recycles views as the list scrolls. If a recycled view is available to be reused, it is passed into

getView() as the convertView. Whenever possible, reuse these views instead of inflating

new ones to keep the scrolling performance of the list fast and responsive.

In this example, we use getItem() to get the current value at that position in the list

(our array of strings), and then later we set that value on the TextView for that row. We can

also set the images in each row to something significant for the data, although here they are

set to the app icon for simplicity.

1-9. Making ListView Section Headers

Problem
You want to create a list with multiple sections, each with a header at the top.

Solution
(API Level 1)

We can achieve this effect by building a custom list adapter that leverages multiple view type

support. Adapters rely on getViewTypeCount() and getItemViewType() to determine how

many kinds of views will be used as rows in the list. In most cases, when all rows are the

same type, these methods are ignored. However, here we can use these callbacks to define

a unique type for the header rows vs. the content rows.

49CHAPTER 1: Layouts and Views

How It Works
Figure 1-6 shows a preview of the example list with section headers.

Figure 1-6. Sectioned list

We begin by defining a SectionItem data structure in Listing 1-42 to represent each section

in our list. This item will house the title of the section, and the subset array of data to be

listed under that heading.

Listing 1-42. Structure to Contain Each Section’s Data

public class SectionItem<T> {
 private String mTitle;
 private T[] mItems;

 public SectionItem(String title, T[] items) {
 if (title == null) title = "";

 mTitle = title;
 mItems = items;
 }

50 CHAPTER 1: Layouts and Views

 public String getTitle() {
 return mTitle;
 }

 public T getItem(int position) {
 return mItems[position];
 }

 public int getCount() {
 //Include an additional item for the section header
 return (mItems == null ? 1 : 1 + mItems.length);
 }

 @Override
 public boolean equals(Object object) {
 //Two sections are equal if they have the same title
 if (object != null && object instanceof SectionItem) {
 return ((SectionItem) object).getTitle().equals(mTitle);
 }

 return false;
 }
}

This structure will make the logic in our list adapter a bit easier to manage. In Listing 1-43,

we can see the adapter that will provide the views for our sectioned list. The job of the

adapter will be to map the positions of the individual section items (including their headers)

into the global positions of the visible list that adapter views (like ListView) understand.

Listing 1-43. List Adapter for Displaying Multiple Sections

public abstract class SimpleSectionsAdapter<T> extends BaseAdapter implements
 AdapterView.OnItemClickListener {

 /* Define constants for each view type */
 private static final int TYPE_HEADER = 0;
 private static final int TYPE_ITEM = 1;

 private LayoutInflater mLayoutInflater;
 private int mHeaderResource;
 private int mItemResource;

 /* Unique collection of all sections */
 private List<SectionItem<T>> mSections;
 /* Grouping of sections, keyed by their initial position */
 private SparseArray<SectionItem<T>> mKeyedSections;

 public SimpleSectionsAdapter(ListView parent, int headerResId, int itemResId) {
 mLayoutInflater = LayoutInflater.from(parent.getContext());
 mHeaderResource = headerResId;
 mItemResource = itemResId;

51CHAPTER 1: Layouts and Views

 //Create a collection with automatically sorted keys
 mSections = new ArrayList<SectionItem<T>>();
 mKeyedSections = new SparseArray<SectionItem<T>>();

 //Attach ourselves as the list's click handler
 parent.setOnItemClickListener(this);
 }

 /*
 * Add a new titled section to the list,
 * or update and existing one
 */
 public void addSection(String title, T[] items) {
 SectionItem<T> sectionItem = new SectionItem<T>(title, items);
 //Add the section, replacing any existing version with the same title
 int currentIndex = mSections.indexOf(sectionItem);
 if (currentIndex >= 0) {
 mSections.remove(sectionItem);
 mSections.add(currentIndex, sectionItem);
 } else {
 mSections.add(sectionItem);
 }

 //Sort the latest collection
 reorderSections();
 //Tell the view data has changed
 notifyDataSetChanged();
 }

 /*
 * Mark the sections with their initial global position
 * as a referable key
 */
 private void reorderSections() {
 mKeyedSections.clear();
 int startPosition = 0;
 for (SectionItem<T> item : mSections) {
 mKeyedSections.put(startPosition, item);
 //This count includes the header view
 startPosition += item.getCount();
 }
 }

 @Override
 public int getCount() {
 int count = 0;
 for (SectionItem<T> item : mSections) {
 //Add the items count
 count += item.getCount();
 }

 return count;
 }

52 CHAPTER 1: Layouts and Views

 @Override
 public int getViewTypeCount() {
 //Two view types: headers and items
 return 2;
 }

 @Override
 public int getItemViewType(int position) {
 if (isHeaderAtPosition(position)) {
 return TYPE_HEADER;
 } else {
 return TYPE_ITEM;
 }
 }

 @Override
 public T getItem(int position) {
 return findSectionItemAtPosition(position);
 }

 @Override
 public long getItemId(int position) {
 return position;
 }

 /*
 * Override and return false to tell the ListView we
 * have some items (headers) that aren't tappable
 */
 @Override
 public boolean areAllItemsEnabled() {
 return false;
 }

 /*
 * Override to tell the ListView which items (headers)
 * are not tappable
 */
 @Override
 public boolean isEnabled(int position) {
 return !isHeaderAtPosition(position);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 switch (getItemViewType(position)) {
 case TYPE_HEADER:
 return getHeaderView(position, convertView, parent);
 case TYPE_ITEM:
 return getItemView(position, convertView, parent);

53CHAPTER 1: Layouts and Views

 default:
 return convertView;
 }
 }

 private View getHeaderView(int position, View convertView, ViewGroup parent) {
 if (convertView == null) {
 convertView = mLayoutInflater.inflate(mHeaderResource, parent, false);
 }

 SectionItem<T> item = mKeyedSections.get(position);
 TextView textView = (TextView) convertView.findViewById(android.R.id.text1);

 textView.setText(item.getTitle());

 return convertView;
 }

 private View getItemView(int position, View convertView, ViewGroup parent) {
 if (convertView == null) {
 convertView = mLayoutInflater.inflate(mItemResource, parent, false);
 }

 T item = findSectionItemAtPosition(position);
 TextView textView = (TextView) convertView.findViewById(android.R.id.text1);

 textView.setText(item.toString());

 return convertView;
 }

 /** OnItemClickListener Methods */

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
 T item = findSectionItemAtPosition(position);
 if (item != null) {
 onSectionItemClick(item);
 }
 }

 /**
 * Override method to handle click events on specific elements
 * @param item List item the user clicked
 */
 public abstract void onSectionItemClick(T item);

 /* Helper Methods to Map Items to Sections */

 /*
 * Check is a global position value represent a
 * section's header.
 */

54 CHAPTER 1: Layouts and Views

 private boolean isHeaderAtPosition(int position) {
 for (int i=0; i < mKeyedSections.size(); i++) {
 //If this position is a key value, it's a header position
 if (position == mKeyedSections.keyAt(i)) {
 return true;
 }
 }

 return false;
 }

 /*
 * Return the explicit list item for the given global
 * position.
 */
 private T findSectionItemAtPosition(int position) {
 int firstIndex, lastIndex;
 for (int i=0; i < mKeyedSections.size(); i++) {
 firstIndex = mKeyedSections.keyAt(i);
 lastIndex = firstIndex + mKeyedSections.valueAt(i).getCount();
 if (position >= firstIndex && position < lastIndex) {
 int sectionPosition = position - firstIndex - 1;
 return mKeyedSections.valueAt(i).getItem(sectionPosition);
 }
 }

 return null;
 }
}

Our SimpleSectionsAdapter returns 2 from getViewTypeCount(), enabling us to support

header views and content views separately. We are required to provide a unique type

identifier for each view. These values are used by the internal list as indices, so they should

always start at zero and increment from there, as you can see with the TYPE_HEADER and

TYPE_ITEM constants.

We supply the data to this adapter by section, via the addSection() method, which accepts

a section title and array of items for that portion. Our adapter enforces that each section title

appears only once, so each attempt to add a new section will remove any existing section

with the same title.

When a new section is added, all the sections are enumerated to determine what their global

starting position is within the list. For faster access later, these values are stored as keys in

a SparseArray. This collection will be used to search for the section within which a given

position falls. Finally, each section change requires us to call notifyDataSetChanged(), which

tells the view that it needs to query the adapter again and refresh the display.

The count of all items is determined by summing up the counts in each section. This

includes the header views, which the list treats the same as any other row. Traditionally, this

means those items are also interactive and will transfer a click event to an attached listener.

Since we don’t want this behavior for headers, we must also override areAllItemsEnabled()

and isEnabled() to indicate to the view that headers should not be interactive.

55CHAPTER 1: Layouts and Views

Inside the getView() method, we are passed a view type that we can use to determine

which type of view should be returned. We know that for TYPE_HEADER, we need to return a

header row with the title text set. For TYPE_ITEM, we return a content row with the correct

item shown. The framework knows which view type should exist at each position via the

implementation of getItemViewType(), which maps positions to type identifiers. We have

created a simple isHeaderAtPosition() helper method to make this determination. By

checking whether the given position matches one of the section keys (which would make it

the first position in a section and, thus, a header), we can quickly determine type.

When obtaining a view for each item, we have to determine the section in which the given

position would fall. Another helper, findSectionItemAtPosition(), does this search by validating

the position against the section keys previously computed. We also make use of this when the

user taps on an item, to return the item itself to the listener rather than just a position value. In a

simple list, the position may be enough to find the correct data, but with the positional mapping

going on here, it is easier for the listener to receive the item it needs directly.

We have defined this adapter as abstract, and this is simply to require that the application

implementation provide a handler for list item click events. Listings 1-44 and 1-45 show how

this adapter can be bound to data and displayed in an activity.

Listing 1-44. res/layout/list_header.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="8dp"
 android:background="#CCF">
 <TextView
 android:id="@android:id/text1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
</LinearLayout>

Listing 1-45. Activity Displaying a Sectioned List

public class SectionsActivity extends ActionBarActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView list = new ListView(this);

 SimpleSectionsAdapter<String> adapter = new SimpleSectionsAdapter<String>(
 list, /* Context for resource inflation */
 R.layout.list_header, /* Layout for header views */
 android.R.layout.simple_list_item_1 /* Layout for item views */
) {
 //Click handler for item taps
 @Override
 public void onSectionItemClick(String item) {
 Toast.makeText(SectionsActivity.this, item, Toast.LENGTH_SHORT).show();
 }
 };

www.allitebooks.com

http://www.allitebooks.org

56 CHAPTER 1: Layouts and Views

 adapter.addSection("Fruits", new String[]{"Apples", "Oranges", "Bananas", "Mangos"});
 adapter.addSection("Vegetables", new String[]{"Carrots", "Peas", "Broccoli"});
 adapter.addSection("Meats", new String[]{"Pork", "Chicken", "Beef", "Lamb"});

 list.setAdapter(adapter);
 setContentView(list);
 }
}

Inside the activity, a ListView is set up to show three sections: fruits, vegetables, and meats.

The SimpleSectionsAdapter takes two resource IDs of the layouts that the adapter should

inflate for headers and content. The header layout in this example is a custom layout

centering a single TextView, while the content layout is a standard layout from the framework

(android.R.id.simple_list_item_1). Since the adapter is abstract, we are required to

provide a definition of onSectionClick(), which in this case just displays the name of the

selected item in a Toast.

1-10. Creating Compound Controls

Problem
You need to create a custom widget that is a collection of existing elements.

Solution
(API Level 1)

Create a custom widget by extending a common ViewGroup and adding functionality. One of

the simplest and most powerful ways to create custom or reusable UI elements is to create

compound controls leveraging the existing widgets provided by the Android SDK.

How It Works
ViewGroup (and its subclasses LinearLayout, RelativeLayout, and so on) gives you the

tools to make this simple by assisting you with component placement, so you can be more

concerned with the added functionality.

TextImageButton

Let’s create an example by making a widget that the Android SDK does not have natively:

a button containing either an image or text as its content. To do this, we are going to create

the TextImageButton class, which is an extension of FrameLayout. It will contain a TextView

to handle text content as well as an ImageView for image content (see Listing 1-46).

57CHAPTER 1: Layouts and Views

Listing 1-46. Custom TextImageButton Widget

public class TextImageButton extends FrameLayout {

 private ImageView imageView;
 private TextView textView;

 /* Constructors */
 public TextImageButton(Context context) {
 this(context, null);
 }

 public TextImageButton(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public TextImageButton(Context context, AttributeSet attrs,
 int defaultStyle) {
 // Initialize the parent layout with the system's button style
 // This sets the clickable attributes and button background
 // to match the current theme.
 super(context, attrs, android.R.attr.buttonStyle);
 //Create the child views
 imageView = new ImageView(context, attrs, defaultStyle);
 textView = new TextView(context, attrs, defaultStyle);
 //Create LayoutParams for children to wrap content and center
 FrameLayout.LayoutParams params = new FrameLayout.LayoutParams(
 LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT,
 Gravity.CENTER);
 //Add the views
 this.addView(imageView, params);
 this.addView(textView, params);

 //If an image is present, switch to image mode
 if(imageView.getDrawable() != null) {
 textView.setVisibility(View.GONE);
 imageView.setVisibility(View.VISIBLE);
 } else {
 textView.setVisibility(View.VISIBLE);
 imageView.setVisibility(View.GONE);
 }
 }

 /* Accessors */
 public void setText(CharSequence text) {
 //Switch to text
 textView.setVisibility(View.VISIBLE);
 imageView.setVisibility(View.GONE);
 //Apply text
 textView.setText(text);
 }

58 CHAPTER 1: Layouts and Views

 public void setImageResource(int resId) {
 //Switch to image
 textView.setVisibility(View.GONE);
 imageView.setVisibility(View.VISIBLE);
 //Apply image
 imageView.setImageResource(resId);
 }

 public void setImageDrawable(Drawable drawable) {
 //Switch to image
 textView.setVisibility(View.GONE);
 imageView.setVisibility(View.VISIBLE);
 //Apply image
 imageView.setImageDrawable(drawable);
 }
}

All of the widgets in the SDK have at least two, and often three, constructors. The first

constructor takes only Context as a parameter and is generally used to create a new view

in code. The remaining two are used when a view is inflated from XML, where the attributes

defined in the XML file are passed in as the AttributeSet parameter. Here we use Java’s

this() notation to drill the first two constructors down to the one that really does all the

work. Building the custom control in this fashion ensures that we can still define this view in

XML layouts. Without implementing the attributed constructors, this would not be possible.

In order to make the FrameLayout look like a standard button, we pass the attribute

android.R.attr.buttonStyle to the constructor. This defines the style value that should

be pulled from the current theme and applied to the view. This sets up the background to

match other button instances, but it also makes the view clickable and focusable, as those

flags are also part of the system’s style. Whenever possible, you should load your custom

widget’s look and feel from the current theme to allow easy customization and consistency

with the rest of your application.

The constructor also creates a TextView and ImageView, and it places them inside the layout.

Each child constructor is passed the same set of attributes so that any XML attributes that

were set specific to one or the other (such as text or image state) are properly read. The

remaining code sets the default display mode (either text or image) based on the data that

was passed in as attributes.

The accessor functions are added as a convenience to later switch the button contents. These

functions are also tasked with switching between text and image mode if the content change

warrants it.

Because this custom control is not in the android.view or android.widget packages, we

must use the fully qualified name when it is used in an XML layout. Listings 1-47 and 1-48

show an example activity displaying the custom widget.

59CHAPTER 1: Layouts and Views

Listing 1-47. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <com.examples.customwidgets.TextImageButton
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Click Me!"
 android:textColor="#000" />
 <com.examples.customwidgets.TextImageButton
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
</LinearLayout>

Listing 1-48. Activity Using the New Custom Widget

public class MyActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Notice that we can still use traditional attributes to define properties such as the text or

image to display. This is because we construct each item (the FrameLayout, TextView, and

ImageView) with the attributed constructors, so each view sets the parameters it is interested

in and ignores the rest.

60 CHAPTER 1: Layouts and Views

1-11. Customizing Transition Animations

Problem
Your application needs to customize the transition animations that happen when moving

from one activity to another or between fragments.

Solution
(API Level 5)

To modify an activity transition, use the overridePendingTransition() API for a single

occurrence, or declare custom animation values in your application’s theme to make a

more global change. To modify a fragment transition, use the onCreateAnimation() or

onCreateAnimator() API methods.

Figure 1-7. TextImageButton displayed in both text and image modes

If we define an activity to use this layout, the result looks like Figure 1-7.

61CHAPTER 1: Layouts and Views

How It Works

Activity

When customizing the transitions from one activity to another, there are four animations to

consider: the enter and exit animation pair when a new activity opens, and the entry and

exit animation pair when the current activity closes. Each animation is applied to one of the

two activity elements involved in the transition. For example, when starting a new activity,

the current activity will run the “open exit” animation and the new activity will run the “open

enter” animation. Because these are run simultaneously, they should create somewhat of a

complementary pair or they may look visually incorrect. Listings 1-49 through 1-52 illustrate

four such animations.

Listing 1-49. res/anim/activity_open_enter.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <rotate
 android:fromDegrees="90" android:toDegrees="0"
 android:pivotX="0%" android:pivotY="0%"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
 <alpha
 android:fromAlpha="0.0" android:toAlpha="1.0"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
</set>

Listing 1-50. res/anim/activity_open_exit.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <rotate
 android:fromDegrees="0" android:toDegrees="-90"
 android:pivotX="0%" android:pivotY="0%"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
 <alpha
 android:fromAlpha="1.0" android:toAlpha="0.0"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
</set>

62 CHAPTER 1: Layouts and Views

Listing 1-51. res/anim/activity_close_enter.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <rotate
 android:fromDegrees="-90" android:toDegrees="0"
 android:pivotX="0%p" android:pivotY="0%p"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
 <alpha
 android:fromAlpha="0.0" android:toAlpha="1.0"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
</set>

Listing 1-52. res/anim/activity_close_exit.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android" >
 <rotate
 android:fromDegrees="0" android:toDegrees="90"
 android:pivotX="0%p" android:pivotY="0%p"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
 <alpha
 android:fromAlpha="1.0" android:toAlpha="0.0"
 android:fillEnabled="true"
 android:fillBefore="true" android:fillAfter="true"
 android:duration="500" />
</set>

What we have created are two “open” animations that rotate the old activity out and the new

activity in, clockwise. The complementary “close” animations rotate the current activity out

and the previous activity in, counterclockwise. Each animation also has with it a fade-out or

fade-in effect to make the transition seem more smooth. To apply these custom animations at

a specific moment, we can call the method overridePendingTransition() immediately after

either startActivity() or finish(), like so:

//Start a new Activity with custom transition
Intent intent = new Intent(...);
startActivity(intent);
overridePendingTransition(R.anim.activity_open_enter,
 R.anim.activity_open_exit);

//Close the current Activity with custom transition
finish();
overridePendingTransition(R.anim.activity_close_enter,
 R.anim.activity_close_exit);

63CHAPTER 1: Layouts and Views

This is useful if you need to customize transitions in only a few places. But suppose

you need to customize every activity transition in your application; calling this method

everywhere would be quite a hassle. Instead it would make more sense to customize the

animations in your application’s theme. Listing 1-53 illustrates a custom theme that overrides

these transitions globally.

Listing 1-53. res/values/styles.xml

<resources>
 <style name="AppTheme" parent="android:Theme.Holo.Light">
 <item name="android:windowAnimationStyle">
 @style/ActivityAnimation</item>
 </style>

 <style name="ActivityAnimation"
 parent="@android:style/Animation.Activity">
 <item name="android:activityOpenEnterAnimation">
 @anim/activity_open_enter</item>
 <item name="android:activityOpenExitAnimation">
 @anim/activity_open_exit</item>
 <item name="android:activityCloseEnterAnimation">
 @anim/activity_close_enter</item>
 <item name="android:activityCloseExitAnimation">
 @anim/activity_close_exit</item>
 </style>

</resources>

By supplying a custom attribute for the android:windowAnimationStyle value of the theme,

we can customize these transition animations. It is important to also refer back to the parent

style in the framework because these four animations are not the only ones defined in this

style, and you don’t want to erase the other existing window animations inadvertently.

Support Fragments

Customizing the animations for fragment transitions is different, depending on whether you

are using the Support Library. The variance exists because the native version uses the new

Animator objects, which are not available in the Support Library version.

When using the Support Library, you can override the transition animations for a single

FragmentTransaction by calling setCustomAnimations(). The version of this method that

takes two parameters will set the animation for the add/replace/remove action, but it will

not animate on popping the back stack. The version that takes four parameters will add

custom animations for popping the back stack as well. Using the same Animation objects

64 CHAPTER 1: Layouts and Views

from our previous example, the following snippet shows how to add these animations to a

FragmentTransaction:

FragmentTransaction ft = getSupportFragmentManager().beginTransaction();
 //Must be called first!
 ft.setCustomAnimations(R.anim.activity_open_enter,
 R.anim.activity_open_exit,
 R.anim.activity_close_enter,
 R.anim.activity_close_exit);
 ft.replace(R.id.container_fragment, fragment);
 ft.addToBackStack(null);
ft.commit();

Important setCustomAnimations() must be called before add(), replace(), or any other

action method, or the animation will not run. It is good practice to simply call this method first in the

transaction block.

If you would like the same animations to run for a certain fragment all the time, you may

want to override the onCreateAnimation() method inside the fragment instead. Listing 1-54

reveals a fragment with its animations defined in this way.

Listing 1-54. Fragment with Custom Animations

public class SupportFragment extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 TextView tv = new TextView(getActivity());
 tv.setText("Fragment");
 tv.setBackgroundColor(Color.RED);
 return tv;
 }

 @Override
 public Animation onCreateAnimation(int transit, boolean enter,
 int nextAnim) {
 switch (transit) {
 case FragmentTransaction.TRANSIT_FRAGMENT_FADE:
 if (enter) {
 return AnimationUtils.loadAnimation(getActivity(),
 android.R.anim.fade_in);
 } else {
 return AnimationUtils.loadAnimation(getActivity(),
 android.R.anim.fade_out);
 }

65CHAPTER 1: Layouts and Views

 case FragmentTransaction.TRANSIT_FRAGMENT_CLOSE:
 if (enter) {
 return AnimationUtils.loadAnimation(getActivity(),
 R.anim.activity_close_enter);
 } else {
 return AnimationUtils.loadAnimation(getActivity(),
 R.anim.activity_close_exit);
 }
 case FragmentTransaction.TRANSIT_FRAGMENT_OPEN:
 default:
 if (enter) {
 return AnimationUtils.loadAnimation(getActivity(),
 R.anim.activity_open_enter);
 } else {
 return AnimationUtils.loadAnimation(getActivity(),
 R.anim.activity_open_exit);
 }
 }
 }
}

How the fragment animations behave has a lot to do with how the FragmentTransaction is

set up. Various transition values can be attached to the transaction with setTransition().

If no call to setTransition() is made, the fragment cannot determine the difference between

an open or close animation set, and the only data we have to determine which animation to

run is whether this is an entry or exit.

To obtain the same behavior as we implemented previously with setCustomAnimations(), the

transaction should be run with the transition set to TRANSIT_FRAGMENT_OPEN. This will call the

initial transaction with this transition value, but it will call the action to pop the back stack

with TRANSIT_FRAGMENT_CLOSE, allowing the fragment to provide a different animation in this

case. The following snippet illustrates constructing a transaction in this way:

FragmentTransaction ft = getSupportFragmentManager().beginTransaction();
 //Set the transition value to trigger the correct animations
 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);
 ft.replace(R.id.container_fragment, fragment);
 ft.addToBackStack(null);
ft.commit();

Fragments also have a third state that you won’t find with activities, and it is defined by the

TRANSIT_FRAGMENT_FADE transition value. This animation should occur when the transition is

not part of a change, such as add or replace, but rather the fragment is just being hidden or

shown. In our example, we use the standard system-fade animations for this case.

Native Fragments

If your application is targeting API Level 11 or later, you do not need to use fragments from

the Support Library, and in this case the custom animation code works slightly differently.

The native fragment implementation uses the newer Animator object to create the transitions

rather than the older Animation object.

www.allitebooks.com

http://www.allitebooks.org

66 CHAPTER 1: Layouts and Views

This requires a few modifications to the code; first of all, we need to define all our XML

animations with Animator instead. Listings 1-55 through 1-58 show this.

Listing 1-55. res/animator/fragment_exit.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android" >
 <objectAnimator
 android:valueFrom="0" android:valueTo="-90"
 android:valueType="floatType"
 android:propertyName="rotation"
 android:duration="500"/>
 <objectAnimator
 android:valueFrom="1.0" android:valueTo="0.0"
 android:valueType="floatType"
 android:propertyName="alpha"
 android:duration="500"/>
</set>

Listing 1-56. res/animator/fragment_enter.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android" >
 <objectAnimator
 android:valueFrom="90" android:valueTo="0"
 android:valueType="floatType"
 android:propertyName="rotation"
 android:duration="500"/>
 <objectAnimator
 android:valueFrom="0.0" android:valueTo="1.0"
 android:valueType="floatType"
 android:propertyName="alpha"
 android:duration="500"/>
</set>

Listing 1-57. res/animator/fragment_pop_exit.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android" >
 <objectAnimator
 android:valueFrom="0" android:valueTo="90"
 android:valueType="floatType"
 android:propertyName="rotation"
 android:duration="500"/>
 <objectAnimator
 android:valueFrom="1.0" android:valueTo="0.0"
 android:valueType="floatType"
 android:propertyName="alpha"
 android:duration="500"/>
</set>

67CHAPTER 1: Layouts and Views

Listing 1-58. res/animator/fragment_pop_enter.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android" >
 <objectAnimator
 android:valueFrom="-90" android:valueTo="0"
 android:valueType="floatType"
 android:propertyName="rotation"
 android:duration="500"/>
 <objectAnimator
 android:valueFrom="0.0" android:valueTo="1.0"
 android:valueType="floatType"
 android:propertyName="alpha"
 android:duration="500"/>
</set>

Apart from the slightly different syntax, these animations are almost identical to the versions

we created previously. The only other difference is that these animations are set to pivot

around the center of the view (the default behavior) rather than the top-left corner.

As before, we can customize a single transition directly on a FragmentTransaction with

setCustomAnimations(); however, the newer version takes our Animator instances. The

following snippet shows this with the newer API:

FragmentTransaction ft = getFragmentManager().beginTransaction();
 //Must be called first!
 ft.setCustomAnimations(R.animator.fragment_enter,
 R.animator.fragment_exit,
 R.animator.fragment_pop_enter,
 R.animator.fragment_pop_exit);
 ft.replace(R.id.container_fragment, fragment);
 ft.addToBackStack(null);
ft.commit();

If you prefer to set the same transitions to always run for a given subclass, we can customize

the fragment as before. However, a native fragment will not have onCreateAnimation(), but

rather an onCreateAnimator() method instead. Have a look at Listing 1-59, which redefines

the fragment we created using the newer API.

Listing 1-59. Native Fragment with Custom Transitions

public class NativeFragment extends Fragment {

@Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 TextView tv = new TextView(getActivity());
 tv.setText("Fragment");
 tv.setBackgroundColor(Color.BLUE);
 return tv;
 }

68 CHAPTER 1: Layouts and Views

 @Override
 public Animator onCreateAnimator(int transit, boolean enter,
 int nextAnim) {
 switch (transit) {
 case FragmentTransaction.TRANSIT_FRAGMENT_FADE:
 if (enter) {
 return AnimatorInflater.loadAnimator(
 getActivity(),
 android.R.animator.fade_in);
 } else {
 return AnimatorInflater.loadAnimator(
 getActivity(),
 android.R.animator.fade_out);
 }
 case FragmentTransaction.TRANSIT_FRAGMENT_CLOSE:
 if (enter) {
 return AnimatorInflater.loadAnimator(
 getActivity(),
 R.animator.fragment_pop_enter);
 } else {
 return AnimatorInflater.loadAnimator(
 getActivity(),
 R.animator.fragment_pop_exit);
 }
 case FragmentTransaction.TRANSIT_FRAGMENT_OPEN:
 default:
 if (enter) {
 return AnimatorInflater.loadAnimator(
 getActivity(),
 R.animator.fragment_enter);
 } else {
 return AnimatorInflater.loadAnimator(
 getActivity(),
 R.animator.fragment_exit);
 }
 }
 }
}

Again, we are checking for the same transition values as in the support example; we are just

returning Animator instances instead. Here is the same snippet of code to properly begin a

transaction with the transition value set:

FragmentTransaction ft = getFragmentManager().beginTransaction();
 //Set the transition value to trigger the correct animations
 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);
 ft.replace(R.id.container_fragment, fragment);
 ft.addToBackStack(null);
ft.commit();

69CHAPTER 1: Layouts and Views

The final method you can use to set these custom transitions globally for the entire

application is to attach them to your application’s theme. Listing 1-60 shows a custom

theme with our fragment animations applied.

Listing 1-60. res/values/styles.xml

<resources>
 <style name="AppTheme" parent="android:Theme.Holo.Light">
 <item name="android:windowAnimationStyle">
 @style/FragmentAnimation</item>
 </style>

 <style name="FragmentAnimation"
 parent="@android:style/Animation.Activity">
 <item name="android:fragmentOpenEnterAnimation">
 @animator/fragment_enter</item>
 <item name="android:fragmentOpenExitAnimation">
 @animator/fragment_exit</item>
 <item name="android:fragmentCloseEnterAnimation">
 @animator/fragment_pop_enter</item>
 <item name="android:fragmentCloseExitAnimation">
 @animator/fragment_pop_exit</item>
 <item name="android:fragmentFadeEnterAnimation">
 @android:animator/fade_in</item>
 <item name="android:fragmentFadeExitAnimation">
 @android:animator/fade_out</item>
 </style>
</resources>

As you can see, the attributes for a theme’s default fragment animations are part of the

same windowAnimationStyle attribute. Therefore, when we customize them, we make

sure to inherit from the same parent so as not to erase the other system defaults, such

as activity transitions. You must still properly request the correct transition type in your

FragmentTransaction to trigger the animation.

If you wanted to customize both the activity and fragment transitions in the theme, you could

do so by putting them all together in the same custom style (see Listing 1-61).

Listing 1-61. res/values/styles.xml

<resources>
 <style name="AppTheme" parent="android:Theme.Holo.Light">
 <item name="android:windowAnimationStyle">
 @style/TransitionAnimation</item>
 </style>

 <style name="TransitionAnimation"
 parent="@android:style/Animation.Activity">
 <item name="android:activityOpenEnterAnimation">
 @anim/activity_open_enter</item>
 <item name="android:activityOpenExitAnimation">
 @anim/activity_open_exit</item>

70 CHAPTER 1: Layouts and Views

 <item name="android:activityCloseEnterAnimation">
 @anim/activity_close_enter</item>
 <item name="android:activityCloseExitAnimation">
 @anim/activity_close_exit</item>
 <item name="android:fragmentOpenEnterAnimation">
 @animator/fragment_enter</item>
 <item name="android:fragmentOpenExitAnimation">
 @animator/fragment_exit</item>
 <item name="android:fragmentCloseEnterAnimation">
 @animator/fragment_pop_enter</item>
 <item name="android:fragmentCloseExitAnimation">
 @animator/fragment_pop_exit</item>
 <item name="android:fragmentFadeEnterAnimation">
 @android:animator/fade_in</item>
 <item name="android:fragmentFadeExitAnimation">
 @android:animator/fade_out</item>
 </style>
</resources>

Caution Adding fragment transitions to the theme will work only for the native implementation.

The Support Library cannot look for these attributes in a theme because they did not exist in earlier

platform versions.

1-12. Creating View Transformations

Problem
Your application needs to dynamically transform how views look in order to add visual

effects such as perspective.

Solution
(API Level 1)

The API for static transformations that is available on ViewGroup provides a simple method

of applying visual effects such as rotation, scale, or alpha changes without resorting to

animations. It can also be a convenient place to apply transforms that are easier to apply from

the context of a parent view, such as a scale that varies with position.

Static transformations can be enabled on any ViewGroup by calling setStaticTranformations
Enabled(true) during initialization. With this enabled, the framework will regularly call

getChildStaticTransformation for each child view to allow your application to apply the

transform.

How It Works
Let’s first take a look at an example in which the transformations are applied once and don’t

change (see Listing 1-62).

71CHAPTER 1: Layouts and Views

Listing 1-62. Custom Layout with Static Transformations

public class PerspectiveLayout extends LinearLayout {

 public PerspectiveLayout(Context context) {
 super(context);
 init();
 }

 public PerspectiveLayout(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 public PerspectiveLayout(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 init();
 }

 private void init() {
 // Enable static transformations so each child will
 // have getChildStaticTransformation() called.
 setStaticTransformationsEnabled(true);
 }

 @Override
 protected boolean getChildStaticTransformation(View child,
 Transformation t) {
 // Clear any existing transformation
 t.clear();

 if (getOrientation() == HORIZONTAL) {
 // Scale children based on distance from left edge
 float delta = 1.0f - ((float) child.getLeft() / getWidth());

 t.getMatrix().setScale(delta, delta, child.getWidth() / 2,
 child.getHeight() / 2);
 } else {
 // Scale children based on distance from top edge
 float delta = 1.0f - ((float) child.getTop() / getHeight());

 t.getMatrix().setScale(delta, delta, child.getWidth() / 2,
 child.getHeight() / 2);
 //Also apply a fade effect based on its location
 t.setAlpha(delta);
 }
 return true;
 }
}

72 CHAPTER 1: Layouts and Views

This example illustrates a custom LinearLayout that applies a scale transformation to each

of its children, based on that child’s location from the beginning edge of the view. The code

in getChildStaticTransformation() calculates the scale factor to apply by figuring out the

distance from the left or top edge as a percentage of the full parent size. The return value

from this method notifies the framework when a transformation has been set. In any case

where your application sets a custom transform, you must also return true to ensure that it

gets attached to the view.

Most of the visual effects such as rotation or scale are actually applied to the Matrix of

the Transformation. In our example, we adjust the scale of each child by calling

getMatrix().setScale() and passing in the scale factor and the pivot point. The pivot point

is the location about which the scale will take place; we set this to the midpoint of the view so

that the scaled result is centered.

If the layout orientation is vertical, we also apply an alpha fade to the child view based on

the same distance value, which is set directly on the Transformation with setAlpha().

See Listing 1-63 for an example layout that uses this view.

Listing 1-63. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <!-- Horizontal Custom Layout -->
 <com.examples.statictransforms.PerspectiveLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 </com.examples.statictransforms.PerspectiveLayout>
 <!-- Vertical Custom Layout -->
 <com.examples.statictransforms.PerspectiveLayout
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:orientation="vertical" >

73CHAPTER 1: Layouts and Views

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_launcher" />
 </com.examples.statictransforms.PerspectiveLayout>
</LinearLayout>

Figure 1-8 shows the results of the example transformation.

Figure 1-8. Horizontal and vertical perspective layouts

74 CHAPTER 1: Layouts and Views

In the horizontal layout, as the views move to the right, they have a smaller scale

factor applied to them. Similarly, the vertical views reduce in scale as they move down.

Additionally, the vertical views begin to fade out because of the alpha change.

Now let’s look at an example that provides a more dynamic change. Listing 1-64 shows a

custom layout that is meant to be housed within a HorizontalScrollView. This layout uses

static transformations to scale the child views as they scroll. The view in the center of the

screen is always normal size, and each view scales down as it approaches the edge. This

provides the effect that the views are coming closer as they move to the center and then

moving away as they scroll to the edges.

Listing 1-64. Custom Perspective Scroll Content

public class PerspectiveScrollContentView extends LinearLayout {

 /* Adjustable scale factor for child views */
 private static final float SCALE_FACTOR = 0.7f;
 /* Anchor point for transformation. (0,0) is top left,
 * (1,1) is bottom right. This is currently set for
 * the bottom middle (0.5, 1)
 */
 private static final float ANCHOR_X = 0.5f;
 private static final float ANCHOR_Y = 1.0f;

 public PerspectiveScrollContentView(Context context) {
 super(context);
 init();
 }

 public PerspectiveScrollContentView(Context context,
 AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 public PerspectiveScrollContentView(Context context,
 AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 init();
 }

 private void init() {
 // Enable static transformations so each child will
 // have getChildStaticTransformation() called.
 setStaticTransformationsEnabled(true);
 }

 /*
 * Utility method to calculate the current position of any
 * View in the screen's coordinates
 */

75CHAPTER 1: Layouts and Views

 private int getViewCenter(View view) {
 int[] childCoords = new int[2];
 view.getLocationOnScreen(childCoords);
 int childCenter = childCoords[0] + (view.getWidth() / 2);

 return childCenter;
 }

 @Override
 protected boolean getChildStaticTransformation(View child,
 Transformation t) {
 HorizontalScrollView scrollView = null;
 if (getParent() instanceof HorizontalScrollView) {
 scrollView = (HorizontalScrollView) getParent();
 }
 if (scrollView == null) {
 return false;
 }

 int childCenter = getViewCenter(child);
 int viewCenter = getViewCenter(scrollView);

 // Calculate the delta between this and our parent's center.
 // That will determine the scale factor applied.
 float delta = Math.min(1.0f, Math.abs(childCenter - viewCenter)
 / (float) viewCenter);
 //Set the minimum scale factor to 0.4
 float scale = Math.max(0.4f, 1.0f - (SCALE_FACTOR * delta));
 float xTrans = child.getWidth() * ANCHOR_X;
 float yTrans = child.getHeight() * ANCHOR_Y;

 //Clear any existing transformation
 t.clear();
 //Set the transformation for the child view
 t.getMatrix().setScale(scale, scale, xTrans, yTrans);

 return true;
 }
}

In this example, the custom layout calculates the transformation for each child based on its

location with respect to the center of the parent HorizontalScrollView. As the user scrolls,

each child’s transformation will be recalculated so the views will grow and shrink dynamically

as they move. The example sets the anchor point of the transformation at the bottom center

of each child, which will create the effect of each view growing vertically by remaining

centered horizontally. Listing 1-65 shows an example activity that puts this custom layout

into practice.

76 CHAPTER 1: Layouts and Views

Listing 1-65. Activity Using PerspectiveScrollContentView

public class ScrollActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 HorizontalScrollView parentView = new HorizontalScrollView(this);
 PerspectiveScrollContentView contentView =
 new PerspectiveScrollContentView(this);

 //Disable hardware acceleration for this view, dynamic adjustment
 // of child transformations does not currently work in hardware.
 //You can also disable for the entire Activity or Application
 // with android:hardwareAccelerated="false" in the manifest,
 // but it is better to disable acceleration in as few places
 // as possible for best performance.
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 contentView.setLayerType(View.LAYER_TYPE_SOFTWARE, null);
 }

 //Add a handful of images to scroll through
 for (int i = 0; i < 20; i++) {
 ImageView iv = new ImageView(this);
 iv.setImageResource(R.drawable.ic_launcher);
 contentView.addView(iv);
 }
 //Add the views to the display
 parentView.addView(contentView);
 setContentView(parentView);
 }
}

This example creates a scrolling view and attaches a custom PerspectiveScrollContentView

with several images to scroll through. The code here isn’t much to look at, but there is

one very important piece worth mentioning. While static transformations in general are

supported, dynamically updating the transform when the view is invalidated does not work

with hardware acceleration in the current versions of the SDK. As a result, if your application

has a target SDK of 11 or higher, or has enabled hardware acceleration in some other way, it

will need to be disabled for this view.

This is done globally in the manifest via android:hardwareAccelerated="false" on any

<activity> or the entire <application>, but we can also set it discretely in Java code for just

this custom view by calling setLayerType() and setting it to LAYER_TYPE_SOFTWARE. If your

application is targeting an SDK lower than this, hardware acceleration is disabled by default

for compatibility reasons, even on newer devices, so this code may not be necessary.

77CHAPTER 1: Layouts and Views

1-13. Making Extensible Collection Views

Problem
You have a large collection of data that you would like to present in a unique way, rather than

in a vertically scrolling list, or styled in a way that AdapterView widgets don’t easily support.

Solution
(API Level 7)

Build your solution on top of RecyclerView in the Android Support Library. RecyclerView is

a widget that leverages the same view-recycling capabilities of AdapterView components to

provide memory-efficient display of large data collections. However, unlike its companions in

the core framework, RecyclerView is built on a more flexible model in which the placement

of child view components is delegated to a LayoutManager instance. The library supports two

built-in layout managers:

	LinearLayoutManager: Place child views vertically (top to bottom) or

horizontally (left to right) in a list. The vertical layout behavior is similar to

the framework ListView.

	GridLayoutManager: Place child views vertically (top to bottom) or

horizontally (left to right) in a grid. The manager supports adding a

row/column span value to stagger the child views within the grid.

The vertical layout behavior with single-span items is similar to the

framework GridView.

RecyclerView.ItemDecoration instances allow applications to support custom drawing

operations above and underneath the child views, in addition to providing direct support

for margins to add space between child views. This could be used to draw something as

simple as grid lines and connector lines, or a more complex pattern or image within the

content area.

RecyclerView.Adapter instances also include new methods for notifying the view of data

set changes that better allow the widget to handle animating changes such as adding or

removing elements—something that is much more difficult with AdapterView:

	notifyItemInserted(), notifyItemRemoved(), notifyItemChanged():

Indicate a single item in the associated data set that has been added,

been removed, or changed position.

	notifyItemRangeInserted(), notifyItemRangeRemoved(),

notifyItemRangeChanged(): Indicate a position range of items that were

modified in the associated data set.

Since these methods accept specific item positions, RecyclerView can make intelligent

decisions about how to animate the change. The standard notifyDataSetChanged() method

is still supported, but it will not animate the changes.

78 CHAPTER 1: Layouts and Views

How It Works
The following example uses four distinct LayoutManager instances to display the same

item data using RecyclerView. Figure 1-9 shows the data displayed in a vertical and

horizontal list.

Important RecyclerView is available only as part of the Android Support Library; it is not part

of the native SDK at any platform level. However, any application targeting API Level 7 or later can

make use of the widget with the Support Library included. For more information on including the

Support Library in your project, reference http://developer.android.com/tools/

support-library/index.html.

Figure 1-9. Vertical and horizontal list collections

Figure 1-10 shows the same data displayed in a staggered vertical and uniform

horizontal grid.

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html

79CHAPTER 1: Layouts and Views

To begin, Listings 1-66 and 1-67 show the activity and options menu used to select the layout.

Listing 1-66. Activity Displaying Data with RecyclerView

public class SimpleRecyclerActivity extends ActionBarActivity implements
 SimpleItemAdapter.OnItemClickListener {

 private RecyclerView mRecyclerView;
 private SimpleItemAdapter mAdapter;

 /* Layout Managers */
 private LinearLayoutManager mHorizontalManager;
 private LinearLayoutManager mVerticalManager;
 private GridLayoutManager mVerticalGridManager;
 private GridLayoutManager mHorizontalGridManager;

 /* Decorations */
 private ConnectorDecoration mConnectors;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mRecyclerView = new RecyclerView(this);

Figure 1-10. Vertical and horizontal grid collections

80 CHAPTER 1: Layouts and Views

 mHorizontalManager = new LinearLayoutManager(this,
 LinearLayoutManager.HORIZONTAL, false);
 mVerticalManager = new LinearLayoutManager(this,
 LinearLayoutManager.VERTICAL, false);
 mVerticalGridManager = new GridLayoutManager(this,
 2, /* Number of grid columns */
 LinearLayoutManager.VERTICAL, /* Orient grid vertically */
 false);
 mHorizontalGridManager = new GridLayoutManager(this,
 3, /* Number of grid rows */
 LinearLayoutManager.HORIZONTAL, /* Orient grid horizontally */
 false);

 //Connector line decorations for vertical grid
 mConnectors = new ConnectorDecoration(this);

 //Stagger the vertical grid
 mVerticalGridManager.setSpanSizeLookup(new GridStaggerLookup());

 mAdapter = new SimpleItemAdapter(this);
 mAdapter.setOnItemClickListener(this);
 mRecyclerView.setAdapter(mAdapter);

 //Apply margins decoration to all collections
 mRecyclerView.addItemDecoration(new InsetDecoration(this));

 //Default to vertical layout
 selectLayoutManager(R.id.action_vertical);
 setContentView(mRecyclerView);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.layout_options, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 return selectLayoutManager(item.getItemId());
 }

 private boolean selectLayoutManager(int id) {
 switch (id) {
 case R.id.action_vertical:
 mRecyclerView.setLayoutManager(mVerticalManager);
 mRecyclerView.removeItemDecoration(mConnectors);
 return true;
 case R.id.action_horizontal:
 mRecyclerView.setLayoutManager(mHorizontalManager);
 mRecyclerView.removeItemDecoration(mConnectors);
 return true;

81CHAPTER 1: Layouts and Views

 case R.id.action_grid_vertical:
 mRecyclerView.setLayoutManager(mVerticalGridManager);
 mRecyclerView.addItemDecoration(mConnectors);
 return true;
 case R.id.action_grid_horizontal:
 mRecyclerView.setLayoutManager(mHorizontalGridManager);
 mRecyclerView.removeItemDecoration(mConnectors);
 return true;
 case R.id.action_add_item:
 //Insert a new item
 mAdapter.insertItemAtIndex("Android Recipes", 1);
 return true;
 case R.id.action_remove_item:
 //Remove the first item
 mAdapter.removeItemAtIndex(1);
 return true;
 default:
 return false;
 }
 }

 /** OnItemClickListener Methods */

 @Override
 public void onItemClick(SimpleItemAdapter.ItemHolder item, int position) {
 Toast.makeText(this, item.getSummary(), Toast.LENGTH_SHORT).show();
 }
}

Listing 1-67. res/menu/layout_options.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/action_add_item"
 android:title="Add Item"
 android:icon="@android:drawable/ic_menu_add"
 app:showAsAction="ifRoom" />
 <item
 android:id="@+id/action_remove_item"
 android:title="Remove Item"
 android:icon="@android:drawable/ic_menu_delete"
 app:showAsAction="ifRoom" />
 <item
 android:id="@+id/action_vertical"
 android:title="Vertical List"
 app:showAsAction="never"/>
 <item
 android:id="@+id/action_horizontal"
 android:title="Horizontal List"
 app:showAsAction="never"/>

82 CHAPTER 1: Layouts and Views

 <item
 android:id="@+id/action_grid_vertical"
 android:title="Vertical Grid"
 app:showAsAction="never"/>
 <item
 android:id="@+id/action_grid_horizontal"
 android:title="Horizontal Grid"
 app:showAsAction="never"/>
</menu>

Our example uses the options menu to select the layout manager we should apply to

RecyclerView. The selectLayoutManager() helper method is triggered on any change to

pass the requested manager to setLayoutManager(). This will reload the existing data from

the existing adapter, so we don’t need to maintain multiple RecyclerView instances to

change the layout on the fly.

As you can see, there isn’t much code involved in leveraging the built-in layout managers.

The example constructs two LinearLayoutManager instances, which take the orientation

constant in their constructor (either VERTICAL or HORIZONTAL). The manager also supports

(via the final Boolean parameter) reversing the layout so that the adapter’s data is laid out

with the last item first.

Similarly, we construct two GridLayoutManager instances for horizontal and vertical.

This object takes an additional parameter, named spanCount, to represent the number

of rows (for horizontal grids) or columns (for vertical grids) the layout should use. This

parameter does not have anything to do with supporting stagger; we will see that shortly.

As with all collection views, we need to have an adapter to bind our data items to the view.

You may have noticed that in the activity listing we have created a SimpleItemAdapter class.

The implementation can be found in Listings 1-68 and 1-69.

Listing 1-68. res/layout/collection_item.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:padding="8dp"
 android:background="#CCF">
 <TextView
 android:id="@+id/text_title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:textAppearanceLarge"/>
 <TextView
 android:id="@+id/text_summary"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:textAppearanceMedium"/>
</LinearLayout>

83CHAPTER 1: Layouts and Views

Listing 1-69. Adapter Implementation for RecyclerView

public class SimpleItemAdapter extends RecyclerView.Adapter<SimpleItemAdapter.ItemHolder> {

 /*
 * Click handler interface. RecyclerView does not have
 * its own built in like AdapterViews do.
 */
 public interface OnItemClickListener {
 public void onItemClick(ItemHolder item, int position);
 }

 private static final String[] ITEMS = {
 "Apples", "Oranges", "Bananas", "Mangos",
 "Carrots", "Peas", "Broccoli",
 "Pork", "Chicken", "Beef", "Lamb"
 };
 private List<String> mItems;

 private OnItemClickListener mOnItemClickListener;
 private LayoutInflater mLayoutInflater;

 public SimpleItemAdapter(Context context) {
 mLayoutInflater = LayoutInflater.from(context);
 //Create static list of dummy items
 mItems = new ArrayList<String>();
 mItems.addAll(Arrays.asList(ITEMS));
 mItems.addAll(Arrays.asList(ITEMS));
 }

 @Override
 public ItemHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 View itemView = mLayoutInflater.inflate(R.layout.collection_item, parent, false);

 return new ItemHolder(itemView, this);
 }

 @Override
 public void onBindViewHolder(ItemHolder holder, int position) {
 holder.setTitle("Item #"+(position+1));
 holder.setSummary(mItems.get(position));
 }

 @Override
 public int getItemCount() {
 return mItems.size();
 }

84 CHAPTER 1: Layouts and Views

 public OnItemClickListener getOnItemClickListener() {
 return mOnItemClickListener;
 }

 public void setOnItemClickListener(OnItemClickListener listener) {
 mOnItemClickListener = listener;
 }

 /* Methods to manage modifying the data set */
 public void insertItemAtIndex(String item, int position) {
 mItems.add(position, item);
 //Notify the view to trigger a change animation
 notifyItemInserted(position);
 }

 public void removeItemAtIndex(int position) {
 if (position >= mItems.size()) return;

 mItems.remove(position);
 //Notify the view to trigger a change animation
 notifyItemRemoved(position);
 }

 /* Required implementation of ViewHolder to wrap item view */
 public static class ItemHolder extends RecyclerView.ViewHolder implements
 View.OnClickListener {
 private SimpleItemAdapter mParent;
 private TextView mTitleView, mSummaryView;

 public ItemHolder(View itemView, SimpleItemAdapter parent) {
 super(itemView);
 itemView.setOnClickListener(this);
 mParent = parent;

 mTitleView = (TextView) itemView.findViewById(R.id.text_title);
 mSummaryView = (TextView) itemView.findViewById(R.id.text_summary);
 }

 public void setTitle(CharSequence title) {
 mTitleView.setText(title);
 }

 public void setSummary(CharSequence summary) {
 mSummaryView.setText(summary);
 }

 public CharSequence getSummary() {
 return mSummaryView.getText();
 }

85CHAPTER 1: Layouts and Views

 @Override
 public void onClick(View v) {
 final OnItemClickListener listener = mParent.getOnItemClickListener();
 if (listener != null) {
 listener.onItemClick(this, getPosition());
 }
 }
 }
}

The RecyclerView.Adapter heavily enforces the view holder design pattern, to the point

where it requires that the implementation return a subclass of the RecyclerView.ViewHolder

type. This class is used internally as a storage location for metadata associated with the

child item (such as its current position and stable ID). It is common for your implementation

to also provide direct access to the view fields within it, to minimize repeated calls to

findViewById(), which can be expensive since it traverses the entire view hierarchy to find

the requested child.

RecyclerView.Adapter implements a similar pattern to CursorAdapter, in which the create

and bind steps are separated via onCreateViewHolder() and onBindViewHolder(). The

former method is called whenever a new view must be created from scratch, so we

construct a new ItemHolder to return in this case. The latter method is called anytime the

data at a certain position (in our case, just simple strings) needs to be attached to a new

view; this view may be newly created or recycled. This is in contrast to an ArrayAdapter,

which combines both into the single getView() method.

In our example, we also leverage the adapter to provide one additional feature from

AdapterView that is not inherently supported in RecyclerView: item click listeners. In order to

handle click events on child views with the least amount of reference swapping, we set each

ViewHolder as the OnClickListener for the root item view. These events are then processed

by the view holder and sent back to a common listener interface defined on the adapter.

This is done so the view holder can add the position metadata into the final listener callback,

something we’ve come to expect from the likes of AdapterView.OnItemClickListener.

Staggered Grid

In the activity example, the vertical grid layout manager was also outfitted with a

SpanSizeLookup helper class, which allows us to generate the staggered effect seen in

Figure 1-10. Listing 1-70 shows us the implementation.

Listing 1-70. Staggered Grid SpanSizeLookup

public class GridStaggerLookup extends GridLayoutManager.SpanSizeLookup {

 @Override
 public int getSpanSize(int position) {
 return (position % 3 == 0 ? 2 : 1);
 }
}

86 CHAPTER 1: Layouts and Views

The getSpanSize() method lets us provide a lookup that tells the layout manager how

many spans (rows or columns, depending on the layout orientation) the given position

should take up. This example indicates that every third position should take up two

columns, while all others should take only one.

Decorating Items

You may have noticed that we also added two ItemDecoration instances in the activity

example. The first decoration, InsetDecoration, is applied to all the example layout

managers to provide margins for each child. The second, ConnectorDecoration, is applied to

only the vertical staggered grid, and is used to draw connecting lines between the major and

minor grid items. These decorations are defined in Listings 1-71 through 1-73.

Listing 1-71. ItemDecoration Providing Inset Margins

public class InsetDecoration extends RecyclerView.ItemDecoration {

 private int mInsetMargin;

 public InsetDecoration(Context context) {
 super();
 mInsetMargin = context.getResources()
 .getDimensionPixelOffset(R.dimen.inset_margin);
 }

 @Override
 public void getItemOffsets(Rect outRect, View view, RecyclerView parent,
 RecyclerView.State state) {
 //Apply the calculated margin to all four edges of the child view
 outRect.set(mInsetMargin, mInsetMargin, mInsetMargin, mInsetMargin);
 }
}

Listing 1-72. ItemDecoration Providing Connecting Lines

public class ConnectorDecoration extends RecyclerView.ItemDecoration {

 private Paint mLinePaint;
 private int mLineLength;

 public ConnectorDecoration(Context context) {
 super();
 mLineLength = context.getResources()
 .getDimensionPixelOffset(R.dimen.inset_margin);
 int connectorStroke = context.getResources()
 .getDimensionPixelSize(R.dimen.connector_stroke);

 mLinePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mLinePaint.setColor(Color.BLACK);
 mLinePaint.setStyle(Paint.Style.STROKE);
 mLinePaint.setStrokeWidth(connectorStroke);
 }

87CHAPTER 1: Layouts and Views

 @Override
 public void onDraw(Canvas c, RecyclerView parent, RecyclerView.State state) {
 final RecyclerView.LayoutManager manager = parent.getLayoutManager();

 for (int i=0; i < parent.getChildCount(); i++) {
 final View child = parent.getChildAt(i);
 boolean isLarge = parent.getChildViewHolder(child).getPosition() % 3 == 0;

 if (!isLarge) {
 final int childLeft = manager.getDecoratedLeft(child);
 final int childRight = manager.getDecoratedRight(child);
 final int childTop = manager.getDecoratedTop(child);
 final int x = childLeft + ((childRight - childLeft) / 2);

 c.drawLine(x, childTop - mLineLength,
 x, childTop + mLineLength,
 mLinePaint);
 }
 }
 }
}

Listing 1-73. res/values/dimens.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="inset_margin">8dp</dimen>
 <dimen name="connector_stroke">2dp</dimen>
</resources>

There are three primary callbacks that an ItemDecoration can implement. The first is

getItemOffsets(), which provides a Rect instance that the decorator can use to apply

margins to the given child view. In our case, we want all child views to have the same

margins, so we set the same values in every call.

Tip Even though you don’t get the position as a parameter in getItemOffsets(), you

can still obtain it from the RecyclerView parameter via getChildViewHolder(view).

getPosition() if you need it to determine how to apply margins.

The remaining callbacks, onDraw() and onDrawOver(), supply a Canvas that the decorator

may use to draw additional content. These methods draw underneath and on top of,

respectively, the child views. Our ConnectorDecoration uses onDraw() to render connecting

lines between any visible children. To do this, we iterate through the child views and draw

a centered line above every child that is not taking up two spans (per our staggered lookup

described previously).

88 CHAPTER 1: Layouts and Views

These drawing callbacks will be invoked anytime the RecyclerView needs to redraw, such

as while content is scrolling, so we must constantly read where the views are currently

positioned in order to know where to draw the lines. Rather than asking the child view

directly for its left/top/right/bottom coordinates, requesting this information from the layout

manager via the getDecoratedXxx() methods is preferred. This is because other decorations

(such as our InsetDecoration, for example) may modify the bounds of the view after the

fact, and our drawing needs to take those into account.

Item Animations

Logic to support change animations for the adapter’s data set are built into each layout

manager. In order for the manager to appropriately determine how to animate the data

set when it changes, we have to use the adapter update methods that are specific to

RecyclerView, instead of the plain old notifyDataSetChanged().

Modifying the adapter data is a two-step process: the data item must first be added or

removed, and then the adapter must notify the view with the exact position where the

change occurred. In the example, the add option triggers notifyItemInserted() and the

remove option triggers notifyItemRemoved() on the adapter.

Summary
In this chapter, you saw many of the tools that the Android framework provides to display

content to the user. We explored techniques for creating, customizing, and animating views.

You were exposed to the many customizations available in the application window, including

custom transition animations from one screen to another. Finally, we looked at how you can

leverage the resource qualifier system to create optimized view layouts for different screen

configurations.

In the next chapter, we will examine some more of the elements in the UI toolkit that are

focused on interacting with the user and implementing common patterns for app navigation.

89

Chapter 2
User Interaction Recipes

A great-looking application design means nothing if users do not find the application easy

to use and its features easy to discover. The user interaction patterns found in most Android

applications are designed to engineer experiences that are consistent for users from one

application to another. By maintaining consistency with the platform, users will feel familiar

with your application’s functionality even if they have never used it before. In this chapter,

you’ll investigate some of the common implementation patterns for presenting information to

users and retrieving their input.

2-1. Leveraging the Action Bar

Problem
You want to use the latest action bar patterns in your application, while staying backward

compatible with older devices, and you want to customize the look and feel to match your

application’s theme.

Solution
(API Level 7)

The action bar was introduced to the SDK in Android 3.0 (API Level 11), but was back-ported

to earlier versions via ActionBarActivity within the AppCompat component of the Android

Support Library. Using ActionBarActivity, along with the included styles and resources from

AppCompat, we can put an action bar into any application targeting Android 2.1 and later.

Important ActionBarActivity is available only in the AppCompat Library, found as part of

the Android Support Library; it is not part of the native SDK at any platform level. However, any

application targeting API Level 7 or later can make use of the widget with the Support Library

included. For more information on including the Support Library in your project, reference

http://developer.android.com/tools/support-library/index.html.

http://developer.android.com/tools/support-library/index.html

90 CHAPTER 2: User Interaction Recipes

The action bar is part of the top-level window décor, which means that application content

will always be rendered below it. This makes tasks such as drawing content over the bar

or animating the bar’s location difficult. When this is necessary, use Toolbar in place of the

traditional action bar. A toolbar is placed inside your layout, giving you control over where

it sits. When given a toolbar reference, an activity will treat that view as its décor action bar

instead.

Figure 2-1. Standard action bar (left) with Up button (right)

Note Toolbar was introduced in API Level 21, but is also available in AppCompat.

How It Works
Figure 2-1 shows an activity with a standard action bar in place.

To have an action bar added to our window décor, we simply need to apply a theme to the

activity that enables it. All the default Holo and Material native themes include the action bar.

This is true of AppCompat as well. Notice that the action bar supports a title and subtitle on

the left, and a series of action buttons on the right. There is also an optional Up navigation

button that we can enable to provide navigation similar to the Back button. We’ll discuss

that more in a later chapter.

91CHAPTER 2: User Interaction Recipes

You can see in Listings 2-1 through 2-3 how we attach an AppCompat theme to our activity

to achieve the look from Figure 2-1.

Listing 2-1. Manifest with Action Bar Theme

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidrecipes.actionbar">

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name=".SupportActionActivity"
 android:label="@string/label_actionbar"
 android:theme="@style/AppTheme">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
</manifest>

Listing 2-2. res/values/styles.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- Defines a "theme" that will apply to the entire application,
 or at least a handful of its activities -->
 <style name="AppTheme" parent="@style/Theme.AppCompat.Light.DarkActionBar">
 <!-- Provide decor theme colors -->
 <item name="colorPrimary">@color/primaryGreen</item>
 <item name="colorPrimaryDark">@color/darkGreen</item>
 <item name="colorAccent">@color/accentGreen</item>

 </style>
</resources>

Listing 2-3. res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primaryGreen">#259b24</color>
 <color name="darkGreen">#0a7e07</color>
 <color name="accentGreen">#d0f8ce</color>
</resources>

By applying Theme.AppCompat.Light.DarkActionBar to the activity, we enable the action bar

to show up. We also use the standard color theming attributes to apply the green shade to

the activity.

92 CHAPTER 2: User Interaction Recipes

The icons on the right side are generated by the activity’s options menu, which we see

defined in Listing 2-4. We will talk about using options menus later in this chapter; this menu

is simply added here for completeness. In Listing 2-5, we can see how the basic attributes

of the action bar are set up in code.

Listing 2-4. res/menu/support.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/action_send"
 android:title="@string/action_send"
 android:icon="@android:drawable/ic_menu_send"
 app:showAsAction="ifRoom" />
 <item android:id="@+id/action_settings"
 android:title="@string/action_settings"
 android:orderInCategory="100"
 app:showAsAction="never"/>
</menu>

Listing 2-5. Action Bar Setup

public class SupportActionActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ActionBar actionBar = getSupportActionBar();

 //Display home with the "up" arrow indicator
 actionBar.setDisplayHomeAsUpEnabled(true);
 //Set the title text
 actionBar.setTitle("Android Recipes");
 //Set the subtitle text
 actionBar.setSubtitle("ActionBar Recipes");
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.support, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 Toast.makeText(this, "Home", Toast.LENGTH_SHORT).show();
 default:
 return super.onOptionsItemSelected(item);
 }
 }
}

93CHAPTER 2: User Interaction Recipes

We obtain a reference to the action bar in onCreate() via getSupportActionBar(), and

commence setting its title attributes. The subtitle is optional, but if a title is not provided, the

action bar will display the android:label string present in the manifest for the activity.

Using the setDisplayHomeAsUpEnabled() method, we can activate the optional Up arrow if

we need it. This is used to provide navigation back to a parent activity, and is generally not

enabled on top-level activities. The behavior of the Up button is defined by the application.

User clicks on the button will trigger in the activity’s onOptionsItemSelected() method with

the android.R.id.home value.

Custom Views

Acton bars also support a custom view. When set, this view is displayed between the title and

the action buttons. If the view layout fills width, it will hide the title text. A custom view cannot

overlap the Up button if it is enabled. Listing 2-6 shows us an activity enabling a custom view

in the action bar.

Listing 2-6. Action Bar Custom View

public class SupportActionActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ActionBar actionBar = getSupportActionBar();

 actionBar.setDisplayShowCustomEnabled(true);

 //Show an image in place of the titles
 ImageView imageView = new ImageView(this);
 imageView.setImageResource(R.drawable.ic_launcher);
 imageView.setScaleType(ImageView.ScaleType.CENTER);

 ActionBar.LayoutParams lp = new ActionBar.LayoutParams(
 ActionBar.LayoutParams.MATCH_PARENT,
 ActionBar.LayoutParams.MATCH_PARENT);

 actionBar.setCustomView(imageView, lp);
 }
}

This will place an image of the application’s launcher icon into the action bar, where the title

text was before—producing the result we see in Figure 2-2.

94 CHAPTER 2: User Interaction Recipes

Figure 2-2. Action bar custom view

Toolbar

When your application design calls for more control over the placement and ordering of the

action bar, Toolbar can step in to replace it. A toolbar replaces the standard action bar, so

we have to apply a theme to the activity that removes the action bar from the window décor.

Listings 2-7 and 2-8 start us off with the modified theme applied.

Listing 2-7. Toolbar Activity Manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidrecipes.actionbar">

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name=".SupportToolbarActivity"
 android:label="@string/label_toolbar"
 android:theme="@style/AppToolbarTheme">

95CHAPTER 2: User Interaction Recipes

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Listing 2-8. res/values/styles.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- The toolbar will replace the standard action bar, so we
 need a theme that removes the action bar from the window decor -->
 <style name="AppToolbarTheme" parent="@style/Theme.AppCompat.Light.NoActionBar">
 <!-- Provide decor theme colors -->
 <item name="colorPrimary">@color/primaryGreen</item>
 <item name="colorPrimaryDark">@color/darkGreen</item>
 <item name="colorAccent">@color/accentGreen</item>

 </style>
</resources>

In this case, our styles theme inherits from Theme.AppCompt.Light.NoActionBar, which

disables the default action bar in the window; we will be replacing it with our own instead.

Listing 2-9 shows the layout for our toolbar activity.

Listing 2-9. res/layout/activity_toolbar.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <!-- Toolbar widget -->
 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:minHeight="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>

 <!-- Remaining application view contents here -->

</LinearLayout>

The Toolbar widget must be somewhere in our view hierarchy, typically at the top of the

view. Toolbars don’t receive theme styling automatically, so we need to set the background

color as the colorPrimary attribute from the current active theme. We must also pass a

96 CHAPTER 2: User Interaction Recipes

theme attribute to the toolbar. This attribute will be used by the toolbar to style the inflated

resources it creates, such as the action buttons and pop-up list menus. ThemeOverlay.
AppCompat.Dark.ActionBar is part of a special “overlay” class of themes that AppCompat

supplies to apply only the elements necessary for an action bar or toolbar to style its internal

components. Listing 2-10 shows the activity code to wire everything together.

Listing 2-10. Toolbar Activity

public class SupportToolbarActivity extends ActionBarActivity {

 private Toolbar mToolbar;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_toolbar);

 //We have to tell the activity where the toolbar is
 mToolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(mToolbar);
 }

 @Override
 protected void onPostCreate(Bundle savedInstanceState) {
 super.onPostCreate(savedInstanceState);

 /*
 * With a toolbar, we have to set the title text after
 * onCreate(), or the default label will overwrite our
 * settings.
 */

 //Set the title text
 mToolbar.setTitle("Android Recipes");
 //Set the subtitle text
 mToolbar.setSubtitle("Toolbar Recipes");
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.support, menu);
 return true;
 }
}

Inside onCreate(), we are responsible for passing the activity a reference to Toolbar inside

the layout via setSupportActionBar(). Despite the ambiguous naming, this method does

require Toolbar as a parameter. This allows the activity to apply the options menu and other

specific items to that view.

97CHAPTER 2: User Interaction Recipes

There is one modification we have to make to our previous example when using a toolbar.

The activity implementation sets the title values of a toolbar instance after onCreate()

is complete. This means that any title we set in onCreate() would get reset back to the

manifest’s android:label value. To counteract this behavior, we must make our changes in

onPostCreate() for our changes to stick.

If you run this activity, it ought to look exactly like Figure 2-1. Later in this chapter, we’ll

see examples of how different UI paradigms favor the use of toolbars instead of top-level

action bars.

2-2. Locking Activity Orientation

Problem
A certain activity in your application should not be allowed to rotate, or rotation requires

more-direct intervention from the application code.

Solution
(API Level 1)

Using static declarations in the AndroidManifest.xml file, you can modify each individual

activity to lock into either portrait or landscape orientation. This can be applied only to the

<activity> tag, so it cannot be done once for the entire application scope.

Simply add the android:screenOrientation attribute to the <activity> element, and the

activity will always display in the specified orientation, regardless of how the device is

positioned. The following attributes are the most commonly used:

	portrait: Screen oriented with the top of the device pointing up

	landscape: Screen oriented with the right side of the device pointing up

	sensorPortrait: Screen oriented in portrait mode (smallest width

horizontal) with either short side of the device pointing up

	sensorLandscape: Screen oriented in landscape mode (smallest width

vertical) with either long side of the device pointing up

	behind: Screen oriented to match the previous activity in the stack

For a complete list of available options, consult the SDK documentation for the <activity>

manifest element.

98 CHAPTER 2: User Interaction Recipes

How It Works
The example AndroidManifest.xml depicted in Listing 2-11 has three activities, each locked

in a different orientation.

Listing 2-11. Manifest with Some Activities Locked in Portrait

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.rotation"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name"
 android:screenOrientation="portrait">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name=".ResultActivity"
 android:screenOrientation="landscape"/>

 <activity android:name=".UserEntryActivity"
 android:screenOrientation="sensorLandscape"/>
 </application>
</manifest>

2-3. Performing Dynamic Orientation Locking

Problem
Conditions exist during which the screen should not rotate, but the condition is temporary or

dependent on user wishes.

Solution
(API Level 1)

Using the requested orientation mechanism in Android, an application can adjust

the screen orientation used to display the activity, fixing it to a specific orientation

or releasing it to the device to decide. This is accomplished through the use of the

Activity.setRequestedOrientation() method, which takes an integer constant from the

ActivityInfo.screenOrientation attribute grouping.

99CHAPTER 2: User Interaction Recipes

By default, the requested orientation is set to SCREEN_ORIENTATION_UNSPECIFIED, which

allows the device to decide for itself which orientation should be used. This is a decision

typically based on the physical orientation of the device. The current requested orientation

can be retrieved at any time as well by using Activity.getRequestedOrientation().

How It Works
As an example, let’s create a ToggleButton instance that controls whether to lock the current

orientation, allowing the user to control at any point whether the activity should change

orientation. Listing 2-12 depicts a simple layout in which a ToggleButton instance is defined.

Listing 2-12. res/layout/activity_lock.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ToggleButton
 android:id="@+id/toggleButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:textOff="Lock"
 android:textOn="LOCKED"
 />
</FrameLayout>

In the activity code, we will create a listener to the button’s state that locks and releases the

screen orientation based on its current value (see Listing 2-13).

Listing 2-13. Activity to Dynamically Lock/Unlock Screen Orientation

public class LockActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_lock);

 //Get handle to the button resource
 ToggleButton toggle = (ToggleButton)findViewById(R.id.toggleButton);
 //Set the default state before adding the listener
 if(getRequestedOrientation() != ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED) {
 toggle.setChecked(true);
 } else {
 toggle.setChecked(false);
 }
 //Attach the listener to the button
 toggle.setOnCheckedChangeListener(new OrientationLockListener());
 }

100 CHAPTER 2: User Interaction Recipes

 private class OrientationLockListener implements CompoundButton.OnCheckedChangeListener {

 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 int current = getResources().getConfiguration().orientation;
 if(isChecked) {
 switch(current) {
 case Configuration.ORIENTATION_LANDSCAPE:
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
 break;
 case Configuration.ORIENTATION_PORTRAIT:
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
 break;
 default:
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED);
 }
 } else {
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED);
 }
 }
 };

}

The code in the listener is the key ingredient to this recipe. If the user presses the button

and it toggles to the ON state, the current orientation is read by storing the orientation

parameter from Resources.getConfiguration(). The Configuration object and the

requested orientation use different constants to map the states, so we switch on the current

orientation and call setRequestedOrientation() with the appropriate constant.

Note If an orientation is requested that is different from the current state, and your activity is in

the foreground, the activity will change immediately to accommodate the request.

If the user presses the button and it toggles to the OFF state, we no longer want to lock

the orientation, so setRequestedOrientation() is called with the SCREEN_ORIENTATION_
UNSPECIFIED constant again to return control back to the device. This may also cause an

immediate change to occur if the device’s physical orientation differs from the activity

orientation when the lock is removed.

Note Setting a requested orientation does not keep the default activity life cycle from occurring.

If a device configuration change occurs (the keyboard slides out or the device orientation changes),

the activity will still be destroyed and re-created, so all rules about persisting activity state

still apply.

101CHAPTER 2: User Interaction Recipes

2-4. Manually Handling Rotation

Problem
The default behavior destroying and re-creating an activity during rotation causes an

unacceptable performance penalty in the application.

Without customization, Android will respond to configuration changes by finishing the

current activity instance and creating a new one in its place, appropriate for the new

configuration. This can cause undue performance penalties because the UI state must be

saved and then completely rebuilt.

Solution
(API Level 1)

Utilize the android:configChanges manifest parameter to instruct Android that a certain

activity will handle rotation events without assistance from the runtime. This reduces the

amount of work required not only from Android, destroying and re-creating the activity

instance, but also from your application. With the activity instance intact, the application

does not have to necessarily spend time to save and restore the current state in order to

maintain consistency for the user.

An activity that registers for one or more configuration changes will be notified via the

Activity.onConfigurationChanged() callback method, where it can perform any necessary

manual handling associated with the change.

There are three configuration change parameters the activity should register for in order to

handle rotation completely: orientation, keyboardHidden, and screenSize.

	orientation: Registers the activity for any event when the device

orientation changes.

	screenSize: Registers the activity for events when the device screen

aspect ratio changes. This also occurs on every orientation change.

	keyboardHidden: Registers the activity for the event when the user slides a

physical keyboard in or out.

While the latter may not be directly of interest, if you do not register for these events,

Android will re-create your activity when they occur, which may subvert your efforts in

handling rotation in the first place.

How It Works
These parameters are added to any <activity> element in AndroidManifest.xml, like so:

<activity android:name=".ManualRotationActivity"
 android:configChanges="orientation|keyboardHidden|screenSize" />

102 CHAPTER 2: User Interaction Recipes

Multiple changes can be registered in the same assignment statement, using a pipe (|)

character between them. Because these parameters cannot be applied to an <application>

element, each individual activity must register in the manifest file.

Upon a configuration change, the registered activities receive a call to their

onConfigurationChanged() method. Listings 2-14 through 2-16 define a simple activity

definition that can be used to handle the callback received when the changes occur.

Listing 2-14. res/layout/activity_manual.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:text="Rotate the device, Activity will remain"/>
 <CheckBox
 android:id="@+id/override"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Check to Force Reload View"/>
 <EditText
 android:id="@+id/text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

Listing 2-15. res/layout-land/activity_manual.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <CheckBox
 android:id="@+id/override"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Check to Force Reload View"/>
 <EditText
 android:id="@+id/text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

103CHAPTER 2: User Interaction Recipes

Listing 2-16. Activity to Manage Rotation Manually

public class ManualRotationActivity extends Activity {

 //References to view elements
 private EditText mEditText;
 private CheckBox mCheckBox;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 //Calling super is required
 super.onCreate(savedInstanceState);
 //Load view resources
 loadView();
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 //Calling super is required
 super.onConfigurationChanged(newConfig);

 //Only reload the view under the new configuration
 // if the box is checked.
 if (mCheckBox.isChecked()) {
 final Bundle uiState = new Bundle();
 //Store important UI state
 saveState(uiState);
 //Reload the view
 loadView();
 //Restore UI state
 restoreState(uiState);
 }
 }

 //Implement any code to persist the UI state
 private void saveState(Bundle state) {
 state.putBoolean("checkbox", mCheckBox.isChecked());
 state.putString("text", mEditText.getText().toString());
 }

 //Restore any elements you saved before reloading
 private void restoreState(Bundle state) {
 mCheckBox.setChecked(state.getBoolean("checkbox"));
 mEditText.setText(state.getString("text"));
 }

 //Set the content view and obtain view references
 private void loadView() {
 setContentView(R.layout.activity_manual);

 //We have to reset our view references anytime a new layout is set
 mCheckBox = (CheckBox) findViewById(R.id.override);
 mEditText = (EditText) findViewById(R.id.text);
 }
}

104 CHAPTER 2: User Interaction Recipes

Note Google does not recommend handling rotation in this fashion unless it is necessary for

the application’s performance. All configuration-specific resources must be loaded manually in

response to each change event.

Google recommends allowing the default re-creation behavior on activity rotation unless the

performance of your application requires circumventing it. Primarily, this is because you lose

all assistance Android provides for loading alternative resources if you have them stored in

resource-qualified directories (such as res/layout-land/ for landscape layouts).

In the example activity, all code dealing with the view layout is abstracted to a private

method, loadView(), called from both onCreate() and onConfigurationChanged(). In this

method, code such as setContentView() is placed to ensure that the appropriate layout is

loaded to match the configuration.

Calling setContentView() will completely reload the view, so any UI state that is

important still needs to be saved, without the assistance of life-cycle callbacks such as

onSaveInstanceState() and onRestoreInstanceState(). We implement our own saveState()

and restoreState() methods for this purpose.

To demonstrate the behavior of the activity without any view reloading code, we have wired

up the check box in the layout to determine whether the view loads again on a configuration

change. With this check box selected, the activity will still rotate and redraw its contents in

the new orientation. However, the opposite configuration layout (landscape or portrait) will

not be reloaded.

2-5. Creating Contextual Actions

Problem
You want to provide the user with multiple actions to take as a result of that user selecting a

certain part of the UI.

Solution
(API Level 11)

For contextual actions related to a single item, use a PopupMenu to display them anchored to

the related view. In the case where multiple items should be affected, enable an ActionMode

in response to the user action.

105CHAPTER 2: User Interaction Recipes

Figure 2-3. List view with contextual actions (left) and action mode (right)

Note This example uses the AppCompat support library to achieve the best version compatibility.

If your application is purely supporting later platforms versions, you can use the native APIs to

achieve the same result. For more information on including the Support Library in your project,

reference http://developer.android.com/tools/support-library/index.html.

How It Works
For this example, we will construct an activity that looks like Figure 2-3.

The items in each list provide contextual actions via a pop-up list when the overflow button

on the right side of the item view is tapped. When any of the items are long-pressed, the

activity will activate an action mode that can apply the same action to multiple selected items.

Contextual Pop-ups

PopupMenu allows you to take an options menu resource and easily attach it as a small pop-up

window to any view. First, we need to create an XML file in res/menu/ to define the menu

itself; we’ll call this one contextmenu.xml (see Listing 2-17).

http://developer.android.com/tools/support-library/index.html

106 CHAPTER 2: User Interaction Recipes

Listing 2-17. res/menu/contextmenu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_delete"
 android:icon="@android:drawable/ic_menu_delete"
 android:title="Delete Item"
 />
 <item
 android:id="@+id/menu_edit"
 android:icon="@android:drawable/ic_menu_edit"
 android:title="Edit Item"
 />
</menu>

We will inflate this resource into a PopupMenu instance for each item housed inside the list. To

better encapsulate the logic, Listings 2-18 and 2-19 define a custom ContextListItem class

for the list row layouts.

Listing 2-18. Custom Row Item View

public class ContextListItem extends LinearLayout implements
 PopupMenu.OnMenuItemClickListener,
 View.OnClickListener {

 private PopupMenu mPopupMenu;
 private TextView mTextView;

 public ContextListItem(Context context) {
 super(context);
 }

 public ContextListItem(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public ContextListItem(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }

 @Override
 protected void onFinishInflate() {
 super.onFinishInflate();
 mTextView = (TextView) findViewById(R.id.text);

 //Attach click handlers
 View contextButton = findViewById(R.id.context);
 contextButton.setOnClickListener(this);

107CHAPTER 2: User Interaction Recipes

 //Create the context menu
 mPopupMenu = new PopupMenu(getContext(), contextButton);
 mPopupMenu.setOnMenuItemClickListener(this);
 mPopupMenu.inflate(R.menu.contextmenu);
 }

 @Override
 public void onClick(View v) {
 //Handle context button click to show the menu
 mPopupMenu.show();
 }

 @Override
 public boolean onMenuItemClick(MenuItem item) {
 String itemText = mTextView.getText().toString();

 switch (item.getItemId()) {
 case R.id.menu_edit:
 Toast.makeText(getContext(), "Edit "+itemText, Toast.LENGTH_SHORT).show();
 break;
 case R.id.menu_delete:
 Toast.makeText(getContext(), "Delete "+itemText, Toast.LENGTH_SHORT).show();
 break;
 }
 return true;
 }
}

Listing 2-19. res/layout/list_item.xml

<com.examples.popupmenus.ContextListItem
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="?android:attr/listPreferredItemHeightSmall"
 android:paddingLeft="?android:attr/listPreferredItemPaddingLeft"
 android:paddingRight="?android:attr/listPreferredItemPaddingRight"
 android:background="?android:attr/activatedBackgroundIndicator" >
 <TextView
 android:id="@+id/text"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textAppearance="?android:attr/textAppearanceListItemSmall"
 android:layout_gravity="center_vertical" />

 <ImageView
 android:id="@+id/context"
 style="@style/Widget.AppCompat.Light.ActionButton.Overflow"
 android:layout_width="?android:attr/listPreferredItemHeightSmall"
 android:layout_height="match_parent"

108 CHAPTER 2: User Interaction Recipes

 android:clickable="true"
 android:focusable="false"/>
</com.examples.popupmenus.ContextListItem>

ContextListItem is a LinearLayout containing a text item and image button for the context

menu. For platform consistency, we apply the Widget.AppCompat.Light.ActionButton.Overflow

style to the button so that it looks and behaves like a standard overflow menu button. When

the view is created, we build a PopupMenu to display R.menu.contextmenu, and wire it up to show

anytime the overflow button is pressed. The row view is also set as the OnMenuItemClickLIstener

in order to handle the selection of the appropriate option from the pop-up.

Note Clickable items inside ListView need to have android:focusable set to false, or the

ability to also click the top-level list item will be disabled.

To bind this view to the data in our list, we need to create a basic adapter that references our

list item layout:

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
 R.layout.list_item, R.id.text, ITEMS);

We’ll see the full activity code that ties this in with the other features soon, but first let’s look

at implementing the multiple selection logic.

ActionMode

The ActionMode API solves a similar problem of allowing the user to take actions on specific

items in your user interface; however, it does so in a slightly different way. Activating

ActionMode overtakes the window’s action bar with an overlay that includes menu options

you provide and an extra option to exit ActionMode. It also allows you to select multiple items

at once on which to apply a single action. Listing 2-20 illustrates this feature.

Listing 2-20. Activity Utilizing Contextual Actions

public class ActionActivity extends ActionBarActivity implements
AbsListView.MultiChoiceModeListener {

 private static final String[] ITEMS = {
 "Mom", "Dad", "Brother", "Sister", "Uncle", "Aunt",
 "Cousin", "Grandfather", "Grandmother"};

 private ListView mList;

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Register a button for context events
 mList = new ListView(this);

109CHAPTER 2: User Interaction Recipes

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
 R.layout.list_item, R.id.text, ITEMS);
 mList.setAdapter(adapter);
 mList.setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
 mList.setMultiChoiceModeListener(this);

 setContentView(mList, new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT));
 }

 @Override
 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
 //You can do extra work here to update the menu if the
 // ActionMode is ever invalidated
 return true;
 }

 @Override
 public void onDestroyActionMode(ActionMode mode) {
 //This is called when the action mode has ben exited
 }

 @Override
 public boolean onCreateActionMode(ActionMode mode, Menu menu) {
 MenuInflater inflater = mode.getMenuInflater();
 inflater.inflate(R.menu.contextmenu, menu);
 return true;
 }

 @Override
 public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
 SparseBooleanArray items = mList.getCheckedItemPositions();
 //Switch on the item's ID to find the action the user selected
 switch(item.getItemId()) {
 case R.id.menu_delete:
 //Perform delete actions
 break;
 case R.id.menu_edit:
 //Perform edit actions
 break;
 default:
 return false;
 }
 return true;
 }

 @Override
 public void onItemCheckedStateChanged(ActionMode mode, int position,
 long id, boolean checked) {
 int count = mList.getCheckedItemCount();
 mode.setTitle(String.format("%d Selected", count));
 }
}

110 CHAPTER 2: User Interaction Recipes

To use our ListView to activate a multiple selection ActionMode, we set its choiceMode

attribute to CHOICE_MODE_MULTIPLE_MODAL. This is different from the traditional CHOICE_MODE_
MULTIPLE, which will provide selection widgets on each list item to make the selection. The

modal flag applies this selection mode only while an ActionMode is active.

A series of callbacks are required to implement an ActionMode that are not built directly into

an activity like the ContextMenu. We need to implement the ActionMode.Callback interface

to respond to the events of creating the menu and selecting options. ListView has a special

interface called MultiChoiceModeListener, a subinterface of ActionMode.Callback, which we

implement in the example.

In onCreateActionMode(), we respond similarly to onCreateContextMenu(), just inflating

our menu options for the overlay to display. Your menu does not need to contain icons;

ActionMode can display the item names instead. The onItemCheckedStateChanged() method

is where we will get feedback for each item selection. Here, we use that change to update

the title of ActionMode to display the number of items that are currently selected.

The onActionItemClicked() method will be called when the user has finished making

selections and taps an option item. Because there are multiple items to work on, we go back

to the list to get all the items selected with getCheckedItemPositions() so we can apply the

selected operation.

2-6. Displaying a User Dialog Box

Problem
You need to display a simple pop-up dialog box to the user to either notify of an event or

present a list of selections.

Solution
(API Level 1)

AlertDialog is the most efficient method of displaying important modal information to your

user quickly. The content it displays is easy to customize, and the framework provides a

convenient AlertDialog.Builder class to construct a pop-up quickly.

How It Works
When you use AlertDialog.Builder, you can construct a similar alert dialog box but with

some additional options. AlertDialog is a versatile class for creating simple pop-ups to get

feedback from the user. With AlertDialog.Builder, a single or multichoice list, buttons, and

a message string can all be easily added into one compact widget.

To illustrate this, let’s create the same pop-up selection as before by using AlertDialog. This

time, we will add a Cancel button to the bottom of the options list (see Listing 2-21).

111CHAPTER 2: User Interaction Recipes

Listing 2-21. Action Menu Using AlertDialog

public class DialogActivity extends Activity implements
 DialogInterface.OnClickListener,
 View.OnClickListener {

 private static final String[] ZONES = {
 "Pacific Time", "Mountain Time",
 "Central Time", "Eastern Time",
 "Atlantic Time"};

 Button mButton;
 AlertDialog mActions;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mButton = new Button(this);
 mButton.setText("Click for Time Zones");
 mButton.setOnClickListener(this);

 AlertDialog.Builder builder =
 new AlertDialog.Builder(this);
 builder.setTitle("Select Time Zone");
 builder.setItems(ZONES, this);
 //Cancel action does nothing but dismiss, we could
 // add another listener here to do something extra
 // when the user hits the Cancel button
 builder.setNegativeButton("Cancel", null);
 mActions = builder.create();

 setContentView(mButton);
 }

 //List selection action handled here
 @Override
 public void onClick(DialogInterface dialog, int which) {
 String selected = ZONES[which];
 mButton.setText(selected);
 }

 //Button action handled here (pop up the dialog)
 @Override
 public void onClick(View v) {
 mActions.show();
 }
}

112 CHAPTER 2: User Interaction Recipes

In this example, we create a new AlertDialog.Builder instance and use its convenience

methods to add the following items:

A title, using 	 setTitle()

The selectable list of options, using 	 setItems() with an array of strings

(also works with array resources)

A Cancel button, using 	 setNegativeButton()

The listener that we attach to the list items returns which list item was selected as a zero-

based index into the array we supplied, so we use that information to update the text of the

button with the user’s selection. We pass in null for the Cancel button’s listener, because in

this instance we just want Cancel to dismiss the dialog. If there is some important work to be

done upon pressing Cancel, another listener could be passed in to the setNegativeButton()

method.

The builder provides several other options for you to set the content of the dialog to

something other than a selectable list:

	setMessage() applies a simple text message as the body content.

	setSingleChoiceItems() and setMultiChoiceItems() create a list similar to

this example but with selection modes applied so that the items will appear as

being selected.

	setView() applies any arbitrary custom view as the dialog’s content.

The resulting application looks like Figure 2-4 when the button is pressed.

Figure 2-4. Alert dialog box with items list

113CHAPTER 2: User Interaction Recipes

Custom List Items

AlertDialog.Builder allows for a custom ListAdapter to be passed in as the source of the

list items the dialog box should display. This means we can create custom row layouts to

display more-detailed information to the user. In Listings 2-22 and 2-23, we enhance the

previous example by using a custom row layout to display extra data for each item.

Listing 2-22. res/layout/list_item.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingLeft="10dp"
 android:paddingRight="10dp"
 android:minHeight="?android:attr/listPreferredItemHeight">
 <TextView
 android:id="@+id/text_name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:textAppearance="?android:attr/textAppearanceMedium"
 />
 <TextView
 android:id="@+id/text_detail"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_centerVertical="true"
 android:textAppearance="?android:attr/textAppearanceSmall"
 />
</RelativeLayout>

Listing 2-23. AlertDialog with Custom Layout

public class CustomItemActivity extends Activity implements
 DialogInterface.OnClickListener,
 View.OnClickListener {

 private static final String[] ZONES = {
 "Pacific Time", "Mountain Time",
 "Central Time", "Eastern Time",
 "Atlantic Time"};

 private static final String[] OFFSETS = {
 "GMT-08:00", "GMT-07:00", "GMT-06:00",
 "GMT-05:00", "GMT-04:00"};

 Button mButton;
 AlertDialog mActions;

114 CHAPTER 2: User Interaction Recipes

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mButton = new Button(this);
 mButton.setText("Click for Time Zones");
 mButton.setOnClickListener(this);

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(
 this,
 R.layout.list_item) {
 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row = convertView;
 if (row == null) {
 row = getLayoutInflater().inflate(R.layout.list_item,
 parent, false);
 }

 TextView name =
 (TextView) row.findViewById(R.id.text_name);
 TextView detail =
 (TextView) row.findViewById(R.id.text_detail);

 name.setText(ZONES[position]);
 detail.setText(OFFSETS[position]);

 return row;
 }

 @Override
 public int getCount() {
 return ZONES.length;
 }
 };

 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Select Time Zone");
 builder.setAdapter(adapter, this);
 // Cancel action does nothing but dismiss, we could add
 // another listener here to do something extra when the
 // user hits the Cancel button
 builder.setNegativeButton("Cancel", null);
 mActions = builder.create();

 setContentView(mButton);
 }

115CHAPTER 2: User Interaction Recipes

 //List selection action handled here
 @Override
 public void onClick(DialogInterface dialog, int which) {
 String selected = ZONES[which];
 mButton.setText(selected);
 }

 //Button action handled here (pop up the dialog)
 @Override
 public void onClick(View v) {
 mActions.show();
 }
}

Here we have provided an ArrayAdapter to the builder instead of simply passing the array of

items. This adapter has a custom implementation of getView() that returns a custom layout

we’ve defined in XML to display two text labels: one aligned left and the other aligned right.

With this custom layout, we can now display the Greenwich Mean Time (GMT) offset value

alongside the time-zone name. We’ll talk more about the specifics of custom adapters later in

this chapter. Figure 2-5 displays our new, more useful pop-up dialog box.

Figure 2-5. AlertDialog with custom items

116 CHAPTER 2: User Interaction Recipes

2-7. Customizing Menus and Actions

Problem
Your application needs to provide a set of actions to the user that you don’t want to have

taking up screen real estate in your view hierarchy.

Solution
(API Level 7)

Use the options menu functionality in the framework to provide commonly used actions

inside the action bar, and additional options in an overflow pop-up menu. Additionally,

menus can be attached to any existing view and shown as a floating drop-down by using

PopupMenu. This feature allows you to place menus anywhere in your application besides just

the action bar, but still keep them out of view until the user requires them.

The menu functionality in Android varies, depending on the device. In early releases, all Android

devices had a physical MENU key that would trigger this functionality. Starting with Android 3.0,

devices without physical buttons started to emerge, and the menu functionality became part of

the action bar.

Action items resident in the action bar can also expand to reveal a custom widget known as an

action view. This is helpful for providing features such as a search field that requires additional

user input, but that you want to hide behind a single action item until the user taps to reveal it.

Note This example uses several compatibility classes from the Android Support Library to foster

compatibility back to devices running Android 2.1 (API Level 7). For more information on including the

Support Library in your project, reference http://developer.android.com/tools/support-

library/index.html.

How It Works
Listing 2-24 defines the options menu we will use in XML.

Listing 2-24. res/menu/options.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:appcompat="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/menu_add"
 android:title="Add Item"
 android:icon="@android:drawable/ic_menu_add"
 appcompat:showAsAction="always|collapseActionView"
 appcompat:actionLayout="@layout/view_action" />
 <item android:id="@+id/menu_remove"
 android:title="Remove Item"
 android:icon="@android:drawable/ic_menu_delete"
 appcompat:showAsAction="ifRoom" />

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html

117CHAPTER 2: User Interaction Recipes

 <item android:id="@+id/menu_edit"
 android:title="Edit Item"
 android:icon="@android:drawable/ic_menu_edit"
 appcompat:showAsAction="ifRoom" />
 <item android:id="@+id/menu_settings"
 android:title="Settings"
 android:icon="@android:drawable/ic_menu_preferences"
 appcompat:showAsAction="never" />
</menu>

The title and icon attributes define how each item will be displayed; older platforms will

show both values, while newer versions will show one or the other based on placement.

Only Android 3.0 and later devices will recognize the showAsAction attribute, which defines

whether the item should be promoted to an action on the action bar or placed into the

overflow menu. The most common values for this attribute are as follows:

	always: Always display as an action by its icon.

	never: Always display in the overflow menu by its name.

	ifRoom: Display as an action if there is room on the action bar;

otherwise, place in overflow.

The first item in our menu also defines an android:actionLayout resource that points to

the widget we want to expand into when this item is tapped, and an additional display flag,

collapseActionView, to tell the framework this item has a collapsible action view to display.

Listing 2-25 shows the action view layout, which is just a simple layout with two CheckBox

instances.

Listing 2-25. res/layout/view_action.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <CheckBox
 android:id="@+id/option_first"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="First"/>
 <CheckBox
 android:id="@+id/option_second"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Second"/>
</LinearLayout>

Listing 2-26 shows the full activity in which we are inflating our options menu into the action

bar and housing an expandable action view inside one of our action items.

118 CHAPTER 2: User Interaction Recipes

Listing 2-26. Activity Overriding Menu Action

public class OptionsActivity extends ActionBarActivity implements
 PopupMenu.OnMenuItemClickListener,
 CompoundButton.OnCheckedChangeListener {

 private MenuItem mOptionsItem;
 private CheckBox mFirstOption, mSecondOption;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //No additional work in this example
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 //Use this callback to create the menu and do any
 // initial setup necessary
 getMenuInflater().inflate(R.menu.options, menu);

 //Find and initialize our action item
 mOptionsItem = menu.findItem(R.id.menu_add);
 MenuItemCompat.setOnActionExpandListener(mOptionsItem,
 new MenuItemCompat.OnActionExpandListener() {

 @Override
 public boolean onMenuItemActionExpand(MenuItem item) {
 //Must return true to have item expand
 return true;
 }

 @Override
 public boolean onMenuItemActionCollapse(MenuItem item) {
 mFirstOption.setChecked(false);
 mSecondOption.setChecked(false);
 //Must return true to have item collapse
 return true;
 }
 });

 mFirstOption = (CheckBox) MenuItemCompat.getActionView(mOptionsItem)
 .findViewById(R.id.option_first);
 mFirstOption.setOnCheckedChangeListener(this);
 mSecondOption = (CheckBox) MenuItemCompat.getActionView(mOptionsItem)
 .findViewById(R.id.option_second);
 mSecondOption.setOnCheckedChangeListener(this);

 return true;
 }

119CHAPTER 2: User Interaction Recipes

 /* CheckBox Callback Methods */

 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 if (mFirstOption.isChecked() && mSecondOption.isChecked()) {
 MenuItemCompat.collapseActionView(mOptionsItem);
 }
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 //Use this callback to do setup that needs to happen
 // each time the menu opens
 return super.onPrepareOptionsMenu(menu);
 }

 //Callback from the PopupMenu click
 public boolean onMenuItemClick(MenuItem item) {
 menuItemSelected(item);
 return true;
 }

 //Callback from a standard options menu click
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 menuItemSelected(item);
 return true;
 }

 //Private helper so each unique callback can trigger the same actions
 private void menuItemSelected(MenuItem item) {
 //Get the selected option by id
 switch (item.getItemId()) {
 case R.id.menu_add:
 //Do add action
 break;
 case R.id.menu_remove:
 //Do remove action
 break;
 case R.id.menu_edit:
 //Do edit action
 break;
 case R.id.menu_settings:
 //Do settings action
 break;
 default:
 break;
 }
 }
}

120 CHAPTER 2: User Interaction Recipes

When the user presses the MENU key on the device, or an activity loads with an action bar

present, the onCreateOptionsMenu() method is called to set up the menu. There is a special

LayoutInflater object called MenuInflater that is used to create menus from XML. We

use the instance already available to the activity with getMenuInflater() to return our XML

menu.

If there are any actions you need to take each time the user opens the menu, you can do so

in onPrepareOptionsMenu(). Be advised that any actions promoted to the action bar will not

trigger this callback when the user selects them; actions in the overflow menu, however, will

still trigger it.

When the user makes a selection, the onOptionsItemSelected() callback will be triggered

with the selected menu item. Since we defined a unique ID for each item in our XML

menu, we can use a switch statement to check which item the user selected and take the

appropriate action.

Finally, we find some additional setup for our expandable action view inside

onCreateOptionsMenu(). Here we obtain a reference to the menu item that includes the

action view layout and attach an OnActionExpandListener callback. The callback is used

here simply to clear both selected elements in the action view whenever the item collapses.

Important If you provide an OnActionExpandListener, you will need to return true inside

onMenuItemActionExpand(), or the expansion will never occur!

We can use the getActionView() method from MenuItem to get a reference to the inflated

action layout set in the menu XML. In our example, we use this to set a selected listener on

each CheckBox inside the layout. Whenever both items are selected inside the action view,

we call collapseActionView() to turn the view back into a single action item icon.

Figure 2-6 shows how this menu is displayed across different device versions and

configurations. Devices that have physical keys will display the promoted actions in the

action bar, but the overflow menu is still triggered by the MENU key. Devices with soft keys

will display the overflow menu as a button next to the action bar actions.

121CHAPTER 2: User Interaction Recipes

Figure 2-7 shows the expandable action view that is displayed when the Add action is

tapped in the action bar.

Figure 2-6. Android with physical keys (left) and with soft keys (right)

122 CHAPTER 2: User Interaction Recipes

2-8. Customizing BACK Behavior

Problem
Your application needs to handle the user pressing the hardware BACK button in a

custom manner.

Solution
(API Level 5)

Use the onBackPressed() callback inside an activity, or manipulate the back stack inside a

fragment.

Figure 2-7. Custom action view

123CHAPTER 2: User Interaction Recipes

How It Works
If you need to be notified when the user presses BACK on your activity, you can override

onBackPressed() as follows:

@Override
public void onBackPressed() {
 //Custom back button processing

 //Call super to do normal processing (like finishing Activity)
 super.onBackPressed();
}

The default implementation of this method will pop any fragments currently on the back stack

and then finish the activity. If you are not intending to interrupt this workflow, you will want to

make sure to call the super class implementation when you are done to ensure this processing

still happens normally.

Caution Overriding hardware button events should be done with care. All hardware buttons have

consistent functionality across the Android system, and adjusting the functionality to work outside

these bounds will be confusing and upsetting to users.

BACK Behavior and Fragments

When working with fragments in your UI, you have further opportunities to customize

the behavior of the devices’ BACK button. By default, the action of adding or replacing

fragments in your UI is not something added to the task’s back stack, so when the user

presses the BACK button, that user won’t be able to step backward through those actions.

However, any FragmentTransaction can be added as an entry in the back stack by simply

calling addToBackStack() before the transaction is committed.

By default, the activity will call FragmentManager.popBackStackImmediate() when the user

presses BACK, so each FragmentTransaction added in this way will unravel with each tap

until there are none left; then the activity will finish. Variations on this method, however,

allow you to jump directly to places in the stack as well. Let’s take a look at Listings 2-27

and 2-28.

Listing 2-27. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

124 CHAPTER 2: User Interaction Recipes

 android:text="Go Home"
 android:onClick="onHomeClick" />
 <FrameLayout
 android:id="@+id/container_fragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

Listing 2-28. Activity Customizing Fragment Back Stack

public class MyActivity extends FragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Build a stack of UI fragments
 FragmentTransaction ft =
 getSupportFragmentManager().beginTransaction();
 ft.add(R.id.container_fragment,
 MyFragment.newInstance("First Fragment"));
 ft.commit();

 ft = getSupportFragmentManager().beginTransaction();
 ft.add(R.id.container_fragment,
 MyFragment.newInstance("Second Fragment"));
 ft.addToBackStack("second");
 ft.commit();

 ft = getSupportFragmentManager().beginTransaction();
 ft.add(R.id.container_fragment,
 MyFragment.newInstance("Third Fragment"));
 ft.addToBackStack("third");
 ft.commit();

 ft = getSupportFragmentManager().beginTransaction();
 ft.add(R.id.container_fragment,
 MyFragment.newInstance("Fourth Fragment"));
 ft.addToBackStack("fourth");
 ft.commit();
 }

 public void onHomeClick(View v) {
 getSupportFragmentManager().popBackStack("second",
 FragmentManager.POP_BACK_STACK_INCLUSIVE);
 }

 public static class MyFragment extends Fragment {
 private CharSequence mTitle;

125CHAPTER 2: User Interaction Recipes

 public static MyFragment newInstance(String title) {
 MyFragment fragment = new MyFragment();
 fragment.setTitle(title);

 return fragment;
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 TextView text = new TextView(getActivity());
 text.setText(mTitle);
 text.setBackgroundColor(Color.WHITE);

 return text;
 }

 public void setTitle(CharSequence title) {
 mTitle = title;
 }
 }
}

Note We are using the Support Library in this example to allow the use of fragments

prior to Android 3.0. If your application is targeting API Level 11 or higher, you can replace

FragmentActivity with Activity, and getSupportFragmentManager() with

getFragmentManager().

This example loads four custom fragment instances into a stack, so the last one added

is displayed when the application runs. With each transaction, we call addToBackStack()

with a tag name to identify this transaction. This is not required, and if you do not wish to

jump to places in the stack, it is easier to just pass null here. With each press of the BACK

button, a single fragment is removed until only the first remains, at which point the activity

will finish normally.

Notice the first transaction was not added to the stack; this is because here we want the first

fragment to act as the root view. Adding it to the back stack as well would cause it to pop

off the stack before finishing the activity, leaving the UI in a blank state.

This application also has a button marked Go Home, which immediately takes users back to

the root fragment no matter where they currently are. It does this by calling popBackStack() on

FragmentManager, taking the tag of the transaction we want to jump back to. We also pass the

flag POP_BACK_STACK_INCLUSIVE to instruct the manager to also remove the transaction we’ve

indicated from the stack. Without this flag, the example would jump to the “second” fragment,

rather than the root.

126 CHAPTER 2: User Interaction Recipes

Note Android pops back to the first transaction that matches the given tag. If the same tag is

used multiple times, it will pop to the first transaction added, not the most recent.

Important Whenever you are modifying the behavior of a system button, be extremely sure you

are not disrupting what the user’s expectation of that action should be.

We cannot go directly to the root with this method because we do not have a back stack

tag associated with that transaction to reference. There is another version of this method

that takes a unique transaction ID (the return value from commit() on FragmentTransaction).

Using this method, we could jump directly to the root without requiring the inclusive flag.

2-9. Emulating the HOME Button

Problem
Your application needs to take the same action as if the user pressed the hardware HOME

button.

Solution
(API Level 5)

When the user hits the HOME button, this sends an Intent to the system telling it to load the

Home activity. This is no different from starting any other activity in your application; you just

have to construct the proper Intent to get the effect.

How It Works
Add the following lines wherever you want this action to occur in your activity:

Intent intent = new Intent(Intent.ACTION_MAIN);
intent.addCategory(Intent.CATEGORY_HOME);
startActivity(intent);

A common use of this function is to override the BACK button to go home instead of to the

previous activity. This is useful when everything underneath the foreground activity may be

protected (by a login screen, for instance), and letting the default BACK button behavior

occur could allow unsecured access to the system.

127CHAPTER 2: User Interaction Recipes

Here is an example of using the two in concert to make a certain activity bring up the home

screen when BACK is pressed:

@Override
public void onBackPressed() {
 Intent intent = new Intent(Intent.ACTION_MAIN);
 intent.addCategory(Intent.CATEGORY_HOME);
 startActivity(intent);
}

2-10. Monitoring TextView Changes

Problem
Your application needs to continuously monitor for text changes in a TextView widget

(for example, EditText).

Solution
(API Level 1)

Implement the android.text.TextWatcher interface. TextWatcher provides three callback

methods during the process of updating text:

public void beforeTextChanged(CharSequence s, int start, int count, int after);
public void onTextChanged(CharSequence s, int start, int before, int count);
public void afterTextChanged(Editable s);

The beforeTextChanged() and onTextChanged() methods are provided mainly as notifications,

as you cannot actually make changes to the CharSequence in either of these methods. If

you are attempting to intercept the text entered into the view, changes may be made when

afterTextChanged() is called.

How It Works
To register a TextWatcher instance with a TextView, call the TextView.
addTextChangedListener() method. Notice from the syntax that more than one TextWatcher

can be registered with a TextView.

Character Counter Example

A simple use of TextWatcher is to create a live character counter that follows an EditText

as the user types or deletes information. Listing 2-29 is an example activity that implements

TextWatcher for this purpose, registers with an EditText widget, and prints the character

count in the activity title.

128 CHAPTER 2: User Interaction Recipes

Listing 2-29. Character Counter Activity

public class MyActivity extends Activity implements TextWatcher {

 EditText text;
 int textCount;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Create an EditText widget and add the watcher
 text = new EditText(this);
 text.addTextChangedListener(this);

 setContentView(text);
 }

 /* TextWatcher Implemention Methods */
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count,
 int after) { }

 @Override
 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 textCount = text.getText().length();
 setTitle(String.valueOf(textCount));
 }

 @Override
 public void afterTextChanged(Editable s) { }

}

Because our needs do not include modifying the text being inserted, we can read the

count from onTextChanged(), which happens as soon as the text change occurs. The other

methods are unused and left empty.

Currency Formatter Example

The SDK has a handful of predefined TextWatcher instances to format text input;

PhoneNumberFormattingTextWatcher is one of these. Their job is to apply standard formatting

for users while they type, reducing the number of keystrokes required to enter legible data.

In Listing 2-30, we create a CurrencyTextWatcher to insert the currency symbol and

separator point into a TextView.

129CHAPTER 2: User Interaction Recipes

Listing 2-30. Currency Formatter

public class CurrencyTextWatcher implements TextWatcher {

 boolean mEditing;

 public CurrencyTextWatcher() {
 mEditing = false;
 }

 @Override
 public synchronized void afterTextChanged(Editable s) {
 if(!mEditing) {
 mEditing = true;

 //Strip symbols
 String digits = s.toString().replaceAll("\\D", "");
 NumberFormat nf = NumberFormat.getCurrencyInstance();
 try{
 String formatted =
 nf.format(Double.parseDouble(digits)/100);
 s.replace(0, s.length(), formatted);
 } catch (NumberFormatException nfe) {
 s.clear();
 }

 mEditing = false;
 }
 }

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count,
 int after) { }

 @Override
 public void onTextChanged(CharSequence s, int start, int before,
 int count) { }

}

Note Making changes to the Editable value in afterTextChanged() will cause the

TextWatcher methods to be called again (after all, you just changed the text). For this reason,

custom TextWatcher implementations that edit should use a Boolean or some other tracking

mechanism to track where the editing is coming from, or you may create an infinite loop.

130 CHAPTER 2: User Interaction Recipes

We can apply this custom text formatter to EditText in an activity (see Listing 2-31).

Listing 2-31. Activity Using Currency Formatter

public class MyActivity extends Activity {

 EditText text;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 text = new EditText(this);
 text.addTextChangedListener(new CurrencyTextWatcher());

 setContentView(text);
 }

}

If you are formatting user input with this formatter, it is handy to define EditText in XML so

you can apply the android:inputType and android:digits constraints to easily protect the

field against entry errors. In particular, adding android:digits="0123456789." (notice

the period at the end for a decimal point) to EditText will protect this formatter as well

as the user.

2-11. Customizing Keyboard Actions

Problem
You want to customize the appearance of the soft keyboard’s Enter key, the action that

occurs when a user taps it, or both.

Solution
(API Level 3)

Customize the input method (IME) options for the widget in which the keyboard is

entering data.

131CHAPTER 2: User Interaction Recipes

How It Works
Custom Enter Key

When the keyboard is visible onscreen, the text on the Enter key typically indicates its action

based on the order of focusable items in the view. While unspecified, the keyboard will display

a “next” action if there are more focusables in the view to move to, or a “done” action if the

last item is currently focused on. In the case of a multiline field, this action is a line return. This

value is customizable, however, for each input view by setting the android:imeOptions value in

the view’s XML. The values you may set to customize the Enter key are listed here:

	actionUnspecified: Default. Displays action of the device’s choice

Action event is 	 IME_NULL

	actionGo: Displays Go as the Enter key

Action event is 	 IME_ACTION_GO

	actionSearch: Displays a search glass as the Enter key

Action event is 	 IME_ACTION_SEARCH

	actionSend: Displays Send as the Enter key

Action event is 	 IME_ACTION_SEND

	actionNext: Displays Next as the Enter key

Action event is 	 IME_ACTION_NEXT

	actionDone: Displays Done as the Enter key

Action event is 	 IME_ACTION_DONE

Let’s look at an example layout with two editable text fields, shown in Listing 2-32. The first

will display the search magnifying glass on the Enter key, and the second will display Go.

Listing 2-32. res/layout/main.xml

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <EditText
 android:id="@+id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 android:imeOptions="actionSearch" />
 <EditText
 android:id="@+id/text2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 android:imeOptions="actionGo" />
</LinearLayout>

132 CHAPTER 2: User Interaction Recipes

The resulting display of the keyboard will vary somewhat, as some manufacturer-specific

UI kits include different keyboards, but the results on a pure Google UI will show up as in

Figure 2-8.

Note Custom editor options apply only to the soft input methods. Changing this value will not

affect the events that are generated when the user presses Enter on a physical hardware keyboard.

Custom Action

Customizing what happens when the user presses the Enter key can be just as important as

adjusting its display. Overriding the default behavior of any action simply requires that

TextView.OnEditorActionListener be attached to the view of interest. Let’s continue with

the preceding example layout, and this time we’ll add a custom action to both views (see

Listing 2-33).

Figure 2-8. Result of custom input options on the Enter key

133CHAPTER 2: User Interaction Recipes

Listing 2-33. Activity Implementing a Custom Keyboard Action

public class MyActivity extends Activity implements
 OnEditorActionListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Add the listener to the views
 EditText text1 = (EditText)findViewById(R.id.text1);
 text1.setOnEditorActionListener(this);
 EditText text2 = (EditText)findViewById(R.id.text2);
 text2.setOnEditorActionListener(this);
 }

 @Override
 public boolean onEditorAction(TextView v, int actionId,
 KeyEvent event) {
 if(actionId == EditorInfo.IME_ACTION_SEARCH) {
 //Handle search key click
 return true;
 }
 if(actionId == EditorInfo.IME_ACTION_GO) {
 //Handle go key click
 return true;
 }
 return false;
 }
}

The Boolean return value of onEditorAction() tells the system whether your

implementation has consumed the event or whether it should be passed on to the next

possible responder, if any. It is important for you to return true when your implementation

handles the event so no other processing occurs. However, it is just as important for you

to return false when you are not handling the event so your application does not steal key

events from the rest of the system.

Note If your application customizes the actionId value returned for a certain keyboard, be

aware that this will happen only on soft keyboard IMEs. If the device has a physical keyboard

attached, the Enter key on that keyboard will always return an actionId of 0 or IME_NULL.

134 CHAPTER 2: User Interaction Recipes

2-12. Dismissing the Soft Keyboard

Problem
You need an event on the UI to hide or dismiss the soft keyboard from the screen.

Solution
(API Level 3)

Tell the Input Method Manager explicitly to hide any visible input methods by using the

InputMethodManager.hideSoftInputFromWindow() method.

How It Works
Here is an example of how to call this method inside View.OnClickListener:

public void onClick(View view) {
 InputMethodManager imm = (InputMethodManager)getSystemService(
 Context.INPUT_METHOD_SERVICE);
 imm.hideSoftInputFromWindow(view.getWindowToken(), 0);
}

The hideSoftInputFromWindow() takes an IBinder window token as a parameter. This can be

retrieved from any View object currently attached to the window via View.getWindowToken().

In most cases, the callback method for the specific event will either have a reference to the

TextView where the editing is taking place or the view that was tapped to generate the event

(for example, a button). These views are the most convenient objects to call on to get the

window token and pass it to the InputMethodManager.

2-13. Handling Complex Touch Events

Problem
Your application needs to implement customized single or multitouch interactions with the UI.

Solution
(API Level 3)

Use the GestureDetector and ScaleGestureDetector in the framework, or just manually

handle all touch events passed to your views by overriding onTouchEvent() and

onInterceptTouchEvent(). Working with the former is a very simple way to add complex

gesture control to your application. The latter option is extremely powerful, but it has some

pitfalls to be aware of.

Android handles touch events on the UI by using a top-down dispatch system, which is a

common pattern in the framework for sending messages through a hierarchy. Touch events

135CHAPTER 2: User Interaction Recipes

originate at the top-level window and are delivered to the activity first. From there, they are

dispatched to the root view of the loaded hierarchy and subsequently passed down from parent

to child view until something consumes the event or the entire chain has been traversed.

It is the job of each parent view to validate which children a touch event should be sent to

(usually by checking the view’s bounds) and to dispatch the event in the correct order. If

multiple children are valid candidates (such as when they overlap), the parent will deliver the

event to each child in the reverse order that they were added, so as to guarantee that the

child view with the highest z-order (visibly layered on top) gets a chance first. If no children

consume the event, the parent itself will get a chance to consume it before the event is

passed back up the hierarchy.

Any view can declare interest in a particular touch event by returning true from its

onTouchEvent() method, which consumes the event and stops it from being delivered

elsewhere. Any ViewGroup has the additional ability to intercept or steal touch events being

delivered to its children via the onInterceptTouchEvent() callback. This is helpful in cases

where the parent view needs to take over control for a particular use case, for example, a

ScrollView taking control of touches after it detects that the user is dragging a finger.

Touch events will have several action identifiers during the course of a gesture:

	ACTION_DOWN: Initial event when the first finger hits the screen. This event

is always the beginning of a new gesture.

	ACTION_MOVE: Event that occurs when one of the fingers on the screen

has changed location.

	ACTION_UP: Final event, when the last finger leaves the screen. This event

is always the end of a gesture.

	ACTION_CANCEL: Received by child views when their parent has

intercepted the gesture they were currently receiving. Like ACTION_UP,

this should signal the view that the gesture is over from their perspective.

	ACTION_POINTER_DOWN: Event that occurs when an additional finger hits

the screen. Useful for switching into a multitouch gesture.

	ACTION_POINTER_UP: Event that occurs when an additional finger leaves

the screen. Useful for switching out of a multitouch gesture.

For efficiency, Android will not deliver subsequent events to any view that did not consume

ACTION_DOWN. Therefore, if you are doing custom touch handling and want to do something

interesting with later events, you must return true for ACTION_DOWN.

If you are implementing a custom touch handler inside a parent ViewGroup, you will probably

also need to have some code in onInterceptTouchEvent(). This method works in a similar

fashion to onTouchEvent() in that, if you return true, your custom view will take over receiving

all touch events for the remainder of that gesture (that is, until ACTION_UP). This operation cannot

be undone, so do not intercept these events until you are sure you want to take them all!

Finally, Android provides a number of useful threshold constants that are scaled for device

screen density and should be used to build custom touch interaction. These constants are all

housed in the ViewConfiguration class. In this example, we will use the minimum and maximum

fling velocity values and the touch slop constant, which denotes how far ACTION_MOVE events

should be allowed to vary before considering them as an actual move of the user’s finger.

136 CHAPTER 2: User Interaction Recipes

How It Works
Listing 2-34 illustrates a custom ViewGroup that implements pan-style scrolling, meaning it

allows the user to scroll in both horizontal and vertical directions, assuming the content is

large enough to do so. This implementation uses GestureDetector to handle the touch events.

Listing 2-34. Custom ViewGroup with GestureDetector

public class PanGestureScrollView extends FrameLayout {

 private GestureDetector mDetector;
 private Scroller mScroller;

 /* Positions of the last motion event */
 private float mInitialX, mInitialY;
 /* Drag threshold */
 private int mTouchSlop;

 public PanGestureScrollView(Context context) {
 super(context);
 init(context);
 }

 public PanGestureScrollView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context);
 }

 public PanGestureScrollView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 init(context);
 }

 private void init(Context context) {
 mDetector = new GestureDetector(context, mListener);
 mScroller = new Scroller(context);
 // Get system constants for touch thresholds
 mTouchSlop = ViewConfiguration.get(context).getScaledTouchSlop();
 }

 /*
 * Override measureChild... implementations to guarantee the child
 * view gets measured to be as large as it wants to be. The default
 * implementation will force some children to be only as large as
 * this view.
 */
 @Override
 protected void measureChild(View child, int parentWidthMeasureSpec,
 int parentHeightMeasureSpec) {
 int childWidthMeasureSpec;
 int childHeightMeasureSpec;

137CHAPTER 2: User Interaction Recipes

 childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(0,
 MeasureSpec.UNSPECIFIED);
 childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(0,
 MeasureSpec.UNSPECIFIED);

 child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
 }

 @Override
 protected void measureChildWithMargins(View child,
 int parentWidthMeasureSpec, int widthUsed,
 int parentHeightMeasureSpec, int heightUsed) {
 final MarginLayoutParams lp =
 (MarginLayoutParams) child.getLayoutParams();

 final int childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(
 lp.leftMargin + lp.rightMargin, MeasureSpec.UNSPECIFIED);
 final int childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
 lp.topMargin + lp.bottomMargin, MeasureSpec.UNSPECIFIED);

 child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
 }

 // Listener to handle all the touch events
 private SimpleOnGestureListener mListener =
 new SimpleOnGestureListener() {
 public boolean onDown(MotionEvent e) {
 // Cancel any current fling
 if (!mScroller.isFinished()) {
 mScroller.abortAnimation();
 }
 return true;
 }

 public boolean onFling(MotionEvent e1, MotionEvent e2,
 float velocityX, float velocityY) {
 // Call a helper method to start the scroller animation
 fling((int) -velocityX / 3, (int) -velocityY / 3);
 return true;
 }

 public boolean onScroll(MotionEvent e1, MotionEvent e2,
 float distanceX, float distanceY) {
 // Any view can be scrolled by simply calling scrollBy()
 scrollBy((int) distanceX, (int) distanceY);
 return true;
 }
 };

138 CHAPTER 2: User Interaction Recipes

 @Override
 public void computeScroll() {
 if (mScroller.computeScrollOffset()) {
 // This is called at drawing time by ViewGroup. We use
 // this method to keep the fling animation going through
 // to completion.
 int oldX = getScrollX();
 int oldY = getScrollY();
 int x = mScroller.getCurrX();
 int y = mScroller.getCurrY();

 if (getChildCount() > 0) {
 View child = getChildAt(0);
 x = clamp(x,
 getWidth() - getPaddingRight() - getPaddingLeft(),
 child.getWidth());
 y = clamp(y,
 getHeight() - getPaddingBottom() - getPaddingTop(),
 child.getHeight());
 if (x != oldX || y != oldY) {
 scrollTo(x, y);
 }
 }

 // Keep on drawing until the animation has finished.
 postInvalidate();
 }
 }

 // Override scrollTo to do bounds checks on any scrolling request
 @Override
 public void scrollTo(int x, int y) {
 // we rely on the fact the View.scrollBy calls scrollTo.
 if (getChildCount() > 0) {
 View child = getChildAt(0);
 x = clamp(x,
 getWidth() - getPaddingRight() - getPaddingLeft(),
 child.getWidth());
 y = clamp(y,
 getHeight() - getPaddingBottom() - getPaddingTop(),
 child.getHeight());
 if (x != getScrollX() || y != getScrollY()) {
 super.scrollTo(x, y);
 }
 }
 }

139CHAPTER 2: User Interaction Recipes

 /*
 * Monitor touch events passed down to the children and intercept
 * as soon as it is determined we are dragging
 */
 @Override
 public boolean onInterceptTouchEvent(MotionEvent event) {
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 mInitialX = event.getX();
 mInitialY = event.getY();
 // Feed the down event to the detector so it has
 // context when/if dragging begins
 mDetector.onTouchEvent(event);
 break;
 case MotionEvent.ACTION_MOVE:
 final float x = event.getX();
 final float y = event.getY();
 final int yDiff = (int) Math.abs(y - mInitialY);
 final int xDiff = (int) Math.abs(x - mInitialX);
 // Verify that either difference is enough to be a drag
 if (yDiff > mTouchSlop || xDiff > mTouchSlop) {
 // Start capturing events
 return true;
 }
 break;
 }

 return super.onInterceptTouchEvent(event);
 }

 /*
 * Feed all touch events we receive to the detector for processing.
 */
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 return mDetector.onTouchEvent(event);
 }

 /*
 * Utility method to initialize the Scroller and start redrawing
 */
 public void fling(int velocityX, int velocityY) {
 if (getChildCount() > 0) {
 int height =
 getHeight() - getPaddingBottom() - getPaddingTop();
 int width =
 getWidth() - getPaddingLeft() - getPaddingRight();
 int bottom = getChildAt(0).getHeight();
 int right = getChildAt(0).getWidth();

140 CHAPTER 2: User Interaction Recipes

 mScroller.fling(getScrollX(), getScrollY(),
 velocityX, velocityY,
 0, Math.max(0, right - width),
 0, Math.max(0, bottom - height));

 invalidate();
 }
 }

 /*
 * Utility method to assist in doing bounds checking
 */
 private int clamp(int n, int my, int child) {
 if (my >= child || n < 0) {
 // The child is beyond one of the parent bounds
 // or is smaller than the parent and can't scroll
 return 0;
 }
 if ((my + n) > child) {
 // Requested scroll is beyond right bound of child
 return child - my;
 }
 return n;
 }

}

Similar to ScrollView or HorizontalScrollView, this example takes a single child and scrolls

its contents based on user input. Much of the code in this example is not directly related

to touch handling; instead it scrolls and keeps the scroll position from going beyond the

bounds of the child.

As a ViewGroup, the first place where we will see any touch event will be

onInterceptTouchEvent(). This method is where we must analyze the user touches and see

whether they are actually dragging. The interaction between ACTION_DOWN and ACTION_MOVE in

this method is designed to determine how far the user has moved their finger, and if it’s greater

than the system’s touch slop constant, we call it a drag event and intercept subsequent

touches. This implementation allows simple tap events to go on to the children, so buttons

and other widgets can safely be children of this view and still get click events. If no interactive

widgets were children of this view, the events would pass directly to our onTouchEvent()

method, but since we want to allow that possibility, we have to do this initial checking here.

The onTouchEvent() method here is straightforward because all events simply get

forwarded to our GestureDetector, which does all the tracking and calculations to know

when the user is doing specific actions. We then react to those events through the

SimpleOnGestureListener, specifically the onScroll() and onFling() events. To ensure that

the GestureDetector has the initial point of the gesture correctly set, we also forward the

ACTION_DOWN event from onInterceptTouchEvent() to it.

The onScroll() method is called repeatedly with the incremental distance traveled by the

user’s finger. Conveniently, we can pass these values directly to the view’s scrollBy()

method to move the content while the finger is dragging.

141CHAPTER 2: User Interaction Recipes

The onFling() method requires slightly more work. For those unaware, in a fling operation,

the user rapidly moves a finger on the screen and lifts it. The resulting expected behavior

of this is an animated inertial scroll. Again, the work of calculating the velocity of the user’s

finger when it is lifted is done for us, but we must still do the scrolling animation. This is

where Scroller comes in. Scroller is a component of the framework designed to take the

user input values and provide the time-interpolated animation slices necessary to animate

the view’s scrolling. The animation is started by calling fling() on the Scroller and

invalidating the view.

Note If you are targeting API Level 9 and higher, you can drop OverScroller in place of

Scroller, and it will provide more-consistent performance on newer devices. It will also allow you

to include the overscroll glow animations. You can spice up the fling animation by passing a custom

Interpolator to either one.

This starts a looping process in which the framework will call computeScroll() regularly

as it draws the view. We use this opportunity to check the current state of the Scroller

and to nudge the view forward if the animation is not complete. This is something many

developers can find confusing about Scroller. It is a component designed to animate the

view, but it doesn’t actually do any animation. It simply provides the timing and calculations

for how far the view should move on each draw frame. The application must both call

computeScrollOffset() to get the new locations and then actually call a method to

incrementally change the view, which in our example is scrollTo().

The final callback we use in the GestureDetector is onDown(), which gets called with any

ACTION_DOWN the detector receives. We use this callback to abort any currently running fling

animation if the user presses a finger back onto the screen. Listing 2-35 shows how we can use

this custom view inside an activity.

Listing 2-35. Activity Using PanGestureScrollView

public class PanScrollActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 PanGestureScrollView scrollView =
 new PanGestureScrollView(this);

 LinearLayout layout = new LinearLayout(this);
 layout.setOrientation(LinearLayout.VERTICAL);
 for(int i=0; i < 5; i++) {
 ImageView iv = new ImageButton(this);
 iv.setImageResource(R.drawable.ic_launcher);
 //Make each view large enough to require scrolling
 layout.addView(iv,
 new LinearLayout.LayoutParams(1000, 500));
 }

142 CHAPTER 2: User Interaction Recipes

 scrollView.addView(layout);
 setContentView(scrollView);
 }
}

We use a handful of ImageButton instances to fill up the custom scroller view on purpose

to illustrate that you can click any one of these buttons and the event will still go through,

but as soon as you drag or fling your finger, the scrolling will take over. To illustrate just how

much work GestureDetector does for us, take a look at Listing 2-36, which implements the

same functionality but by manually handling all touches in onTouchEvent().

Listing 2-36. PanScrollView Using Custom Touch Handling

public class PanScrollView extends FrameLayout {

 // Fling components
 private Scroller mScroller;
 private VelocityTracker mVelocityTracker;

 /* Positions of the last motion event */
 private float mLastTouchX, mLastTouchY;
 /* Drag threshold */
 private int mTouchSlop;
 /* Fling Velocity */
 private int mMaximumVelocity, mMinimumVelocity;
 /* Drag Lock */
 private boolean mDragging = false;

 public PanScrollView(Context context) {
 super(context);
 init(context);
 }

 public PanScrollView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context);
 }

 public PanScrollView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 init(context);
 }

 private void init(Context context) {
 mScroller = new Scroller(context);
 mVelocityTracker = VelocityTracker.obtain();
 // Get system constants for touch thresholds
 mTouchSlop = ViewConfiguration.get(context).getScaledTouchSlop();
 mMaximumVelocity = ViewConfiguration.get(context)
 .getScaledMaximumFlingVelocity();
 mMinimumVelocity = ViewConfiguration.get(context)
 .getScaledMinimumFlingVelocity();
 }

143CHAPTER 2: User Interaction Recipes

 /*
 * Override measureChild... implementations to guarantee the child
 * view gets measured to be as large as it wants to be. The default
 * implementation will force some children to be only as large as
 * this view.
 */
 @Override
 protected void measureChild(View child, int parentWidthMeasureSpec,
 int parentHeightMeasureSpec) {
 int childWidthMeasureSpec;
 int childHeightMeasureSpec;

 childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(0,
 MeasureSpec.UNSPECIFIED);
 childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(0,
 MeasureSpec.UNSPECIFIED);

 child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
 }

 @Override
 protected void measureChildWithMargins(View child,
 int parentWidthMeasureSpec, int widthUsed,
 int parentHeightMeasureSpec, int heightUsed) {
 final MarginLayoutParams lp =
 (MarginLayoutParams) child.getLayoutParams();

 final int childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(
 lp.leftMargin + lp.rightMargin, MeasureSpec.UNSPECIFIED);
 final int childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
 lp.topMargin + lp.bottomMargin, MeasureSpec.UNSPECIFIED);

 child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
 }

 @Override
 public void computeScroll() {
 if (mScroller.computeScrollOffset()) {
 // This is called at drawing time by ViewGroup. We use
 // this method to keep the fling animation going through
 // to completion.
 int oldX = getScrollX();
 int oldY = getScrollY();
 int x = mScroller.getCurrX();
 int y = mScroller.getCurrY();

144 CHAPTER 2: User Interaction Recipes

 if (getChildCount() > 0) {
 View child = getChildAt(0);
 x = clamp(x,
 getWidth() - getPaddingRight() - getPaddingLeft(),
 child.getWidth());
 y = clamp(y,
 getHeight() - getPaddingBottom() - getPaddingTop(),
 child.getHeight());
 if (x != oldX || y != oldY) {
 scrollTo(x, y);
 }
 }

 // Keep on drawing until the animation has finished.
 postInvalidate();
 }
 }

 // Override scrollTo to do bounds checks on any scrolling request
 @Override
 public void scrollTo(int x, int y) {
 // we rely on the fact the View.scrollBy calls scrollTo.
 if (getChildCount() > 0) {
 View child = getChildAt(0);
 x = clamp(x,
 getWidth() - getPaddingRight() - getPaddingLeft(),
 child.getWidth());
 y = clamp(y,
 getHeight() - getPaddingBottom() - getPaddingTop(),
 child.getHeight());
 if (x != getScrollX() || y != getScrollY()) {
 super.scrollTo(x, y);
 }
 }
 }

 /*
 * Monitor touch events passed down to the children and
 * intercept as soon as it is determined we are dragging.
 * This allows child views to still receive touch events
 * if they are interactive (i.e., Buttons)
 */
 @Override
 public boolean onInterceptTouchEvent(MotionEvent event) {
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 // Stop any flinging in progress
 if (!mScroller.isFinished()) {
 mScroller.abortAnimation();
 }

145CHAPTER 2: User Interaction Recipes

 // Reset the velocity tracker
 mVelocityTracker.clear();
 mVelocityTracker.addMovement(event);
 // Save the initial touch point
 mLastTouchX = event.getX();
 mLastTouchY = event.getY();
 break;
 case MotionEvent.ACTION_MOVE:
 final float x = event.getX();
 final float y = event.getY();
 final int yDiff = (int) Math.abs(y - mLastTouchY);
 final int xDiff = (int) Math.abs(x - mLastTouchX);
 // Verify that either difference is enough for a drag
 if (yDiff > mTouchSlop || xDiff > mTouchSlop) {
 mDragging = true;
 mVelocityTracker.addMovement(event);
 // Start capturing events ourselves
 return true;
 }
 break;
 case MotionEvent.ACTION_CANCEL:
 case MotionEvent.ACTION_UP:
 mDragging = false;
 mVelocityTracker.clear();
 break;
 }

 return super.onInterceptTouchEvent(event);
 }

 /*
 * Feed all touch events we receive to the detector
 */
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 mVelocityTracker.addMovement(event);

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 // We've already stored the initial point,
 // but if we got here, a child view didn't capture
 // the event, so we need to.
 return true;
 case MotionEvent.ACTION_MOVE:
 final float x = event.getX();
 final float y = event.getY();
 float deltaY = mLastTouchY - y;
 float deltaX = mLastTouchX - x;

146 CHAPTER 2: User Interaction Recipes

 // Check for slop on direct events
 if ((Math.abs(deltaY) > mTouchSlop
 || Math.abs(deltaX) > mTouchSlop)
 && !mDragging) {
 mDragging = true;
 }
 if (mDragging) {
 // Scroll the view
 scrollBy((int) deltaX, (int) deltaY);
 // Update the last touch event
 mLastTouchX = x;
 mLastTouchY = y;
 }
 break;
 case MotionEvent.ACTION_CANCEL:
 mDragging = false;
 // Stop any flinging in progress
 if (!mScroller.isFinished()) {
 mScroller.abortAnimation();
 }
 break;
 case MotionEvent.ACTION_UP:
 mDragging = false;
 // Compute the current velocity and start a fling if
 // it is above the minimum threshold.
 mVelocityTracker.computeCurrentVelocity(1000,
 mMaximumVelocity);
 int velocityX = (int) mVelocityTracker.getXVelocity();
 int velocityY = (int) mVelocityTracker.getYVelocity();
 if (Math.abs(velocityX) > mMinimumVelocity
 || Math.abs(velocityY) > mMinimumVelocity) {
 fling(-velocityX, -velocityY);
 }
 break;
 }
 return super.onTouchEvent(event);
 }

 /*
 * Utility method to initialize the Scroller and
 * start redrawing
 */
 public void fling(int velocityX, int velocityY) {
 if (getChildCount() > 0) {
 int height =
 getHeight() - getPaddingBottom() - getPaddingTop();
 int width =
 getWidth() - getPaddingLeft() - getPaddingRight();
 int bottom = getChildAt(0).getHeight();
 int right = getChildAt(0).getWidth();

147CHAPTER 2: User Interaction Recipes

 mScroller.fling(getScrollX(), getScrollY(),
 velocityX, velocityY,
 0, Math.max(0, right - width),
 0, Math.max(0, bottom - height));

 invalidate();
 }
 }

 /*
 * Utility method to assist in doing bounds checking
 */
 private int clamp(int n, int my, int child) {
 if (my >= child || n < 0) {
 // The child is beyond one of the parent bounds
 // or is smaller than the parent and can't scroll
 return 0;
 }
 if ((my + n) > child) {
 // Requested scroll is beyond right bound of child
 return child - my;
 }
 return n;
 }
}

In this example, both onInterceptTouchEvent() and onTouchEvent() have a bit more going

on. If a child view is currently handling initial touches, ACTION_DOWN and the first few move

events will be delivered through onInterceptTouchEvent() before we take control; however,

if no interactive child exists, all those initial events will go directly to onTouchEvent().

Therefore, we must do the slop checking for the initial drag in both places and set a flag to

indicate when a scroll event has truly started. Once we have flagged the user dragging, the

code to scroll the view is the same as before, with a call to scrollBy().

Tip As soon as a ViewGroup returns true from onTouchEvent(), no more events will be

delivered to onInterceptTouchEvent(), even if an intercept was not explicitly requested.

To implement the fling behavior, we must manually track the user’s scroll velocity by using a

VelocityTracker object. This object collects touch events as they occur with the addMovement()

method, and it then calculates the average velocity on demand with computeCurrentVelocity().

Our custom view calculates this value each time the user’s finger is lifted and determines, based

on the ViewConfiguration minimum velocity, whether to start a fling animation.

Tip In cases where you don’t need to explicitly return true to consume an event, return the

super implementation rather than false. Often there is a lot of hidden processing for View and

ViewGroup that you don’t want to override.

148 CHAPTER 2: User Interaction Recipes

Listing 2-37 shows our example activity again, this time with the new custom view in place.

Listing 2-37. Activity Using PanScrollView

public class PanScrollActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 PanScrollView scrollView = new PanScrollView(this);

 LinearLayout layout = new LinearLayout(this);
 layout.setOrientation(LinearLayout.VERTICAL);
 for(int i=0; i < 5; i++) {
 ImageView iv = new ImageView(this);
 iv.setImageResource(R.drawable.ic_launcher);
 layout.addView(iv,
 new LinearLayout.LayoutParams(1000, 500));
 }

 scrollView.addView(layout);
 setContentView(scrollView);
 }
}

We have also changed the content to be ImageView instead of ImageButton to illustrate the

contrast when the child views are not interactive.

Multitouch Handling

(API Level 8)

Now let’s take a look at an example of handling multitouch events. Listing 2-38 contains a

customized ImageView with some multitouch interactions added in.

Listing 2-38. ImageView with Multitouch Handling

public class RotateZoomImageView extends ImageView {

 private ScaleGestureDetector mScaleDetector;
 private Matrix mImageMatrix;
 /* Last Rotation Angle */
 private int mLastAngle = 0;
 /* Pivot Point for Transforms */
 private int mPivotX, mPivotY;

 public RotateZoomImageView(Context context) {
 super(context);
 init(context);
 }

149CHAPTER 2: User Interaction Recipes

 public RotateZoomImageView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context);
 }

 public RotateZoomImageView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 init(context);
 }

 private void init(Context context) {
 mScaleDetector = new ScaleGestureDetector(context,
 mScaleListener);

 setScaleType(ScaleType.MATRIX);
 mImageMatrix = new Matrix();
 }

 /*
 * Use onSizeChanged() to calculate values based on the view's size.
 * The view has no size during init(), so we must wait for this
 * callback.
 */
 @Override
 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 if (w != oldw || h != oldh) {
 //Shift the image to the center of the view
 int translateX =
 Math.abs(w - getDrawable().getIntrinsicWidth()) / 2;
 int translateY =
 Math.abs(h - getDrawable().getIntrinsicHeight()) / 2;
 mImageMatrix.setTranslate(translateX, translateY);
 setImageMatrix(mImageMatrix);
 //Get the center point for future scale and rotate transforms
 mPivotX = w / 2;
 mPivotY = h / 2;
 }
 }

 private SimpleOnScaleGestureListener mScaleListener =
 new SimpleOnScaleGestureListener() {
 @Override
 public boolean onScale(ScaleGestureDetector detector) {
 // ScaleGestureDetector calculates a scale factor based on
 // whether the fingers are moving apart or together
 float scaleFactor = detector.getScaleFactor();

150 CHAPTER 2: User Interaction Recipes

 //Pass that factor to a scale for the image
 mImageMatrix.postScale(scaleFactor, scaleFactor,
 mPivotX, mPivotY);
 setImageMatrix(mImageMatrix);

 return true;
 }
 };

 /*
 * Operate on two-finger events to rotate the image.
 * This method calculates the change in angle between the
 * pointers and rotates the image accordingly. As the user
 * rotates their fingers, the image will follow.
 */
 private boolean doRotationEvent(MotionEvent event) {
 //Calculate the angle between the two fingers
 float deltaX = event.getX(0) - event.getX(1);
 float deltaY = event.getY(0) - event.getY(1);
 double radians = Math.atan(deltaY / deltaX);
 //Convert to degrees
 int degrees = (int)(radians * 180 / Math.PI);

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 //Mark the initial angle
 mLastAngle = degrees;
 break;
 case MotionEvent.ACTION_MOVE:
 // ATAN returns a converted value between +/-90deg
 // which creates a point when two fingers are vertical
 // where the angle flips sign. We handle this case by
 // rotating a small amount (5 degrees) in the
 // direction we were traveling

 if ((degrees - mLastAngle) > 45) {
 //Going CCW across the boundary
 mImageMatrix.postRotate(-5, mPivotX, mPivotY);
 } else if ((degrees - mLastAngle) < -45) {
 //Going CW across the boundary
 mImageMatrix.postRotate(5, mPivotX, mPivotY);
 } else {
 //Normal rotation, rotate the difference
 mImageMatrix.postRotate(degrees - mLastAngle,
 mPivotX, mPivotY);
 }
 //Post the rotation to the image
 setImageMatrix(mImageMatrix);
 //Save the current angle
 mLastAngle = degrees;
 break;
 }

 return true;
 }

151CHAPTER 2: User Interaction Recipes

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 // We don't care about this event directly, but we
 // declare interest to get later multitouch events.
 return true;
 }

 switch (event.getPointerCount()) {
 case 3:
 // With three fingers down, zoom the image
 // using the ScaleGestureDetector
 return mScaleDetector.onTouchEvent(event);
 case 2:
 // With two fingers down, rotate the image
 // following the fingers
 return doRotationEvent(event);
 default:
 //Ignore this event
 return super.onTouchEvent(event);
 }
 }
}

This example creates a custom ImageView that listens for multitouch events and transforms

the image content in response. The two events this view will detect are a two-finger

rotate and a three-finger pinch. The rotate event is handled manually by processing each

MotionEvent, while ScaleGestureDetector handles the pinch events. The ScaleType of the

view is set to MATRIX, which will allow us to modify the image’s appearance by applying

different Matrix transformations.

Once the view is measured and laid out, the onSizeChanged() callback will trigger. This method

can get called more than once, so we make changes only if the values from one instance to

the next have changed. We take this opportunity to set up some values based around the

view’s size; we will need these values to center the image content inside the view and later

perform the correct transformations. We also perform the first transformation here, which

centers the image inside the view.

We decide which event to process by analyzing the events we receive in onTouchEvent(). By

checking the getPointerCount() method of each MotionEvent, we can determine how many

fingers are down and can deliver the event to the appropriate handler. As we’ve said before,

we must also consume the initial ACTION_DOWN event here; otherwise, the subsequent event

for the user’s other fingers will never get delivered to this view. While we don’t have anything

interesting to do in this case, it is still necessary to explicitly return true.

ScaleGestureDetector operates by analyzing each touch event the application feeds to it

and calling a series of OnScaleGestureListener callback methods when scale events occur.

The most important callback is onScale(), which gets called regularly as the user’s fingers

move, but developers can also use onScaleBegin() and onScaleEnd() to do processing

before and after the gesture.

152 CHAPTER 2: User Interaction Recipes

ScaleGestureDetector provides a number of useful calculated values that the application

can use in modifying the UI:

	getCurrentSpan(): Gets the distance between the two pointers being

used in this gesture.

	getFocusX()/getFocusY(): Gets the coordinates of the focal point for the

current gesture. This is the average location about which the pointers

are expanding and contracting.

	getScaleFactor(): Gets the ratio of span changes between this event

and the previous event. As fingers move apart, this value will be slightly

larger than 1, and as they move together, it will be slightly less than 1.

This example takes the scale factor from the detector and uses it to scale up or down the

image content of the view by using postScale() on the image’s Matrix.

Our two-finger rotate event is handled manually. For each event that is passed in, we

calculate the x and y distance between the two fingers with getX() and getY(). The

parameter these methods take is the pointer index, where 0 would be the initial pointer, and

1 would be the secondary pointer.

With these distances, we can do a little trigonometry to figure out the angle of the invisible

line that would be formed between the two fingers. This angle is the control value we will

use for our transformation. During ACTION_DOWN, we take whatever that angle is to be the

initial value and simply store it. On subsequent ACTION_MOVE events, we post a rotation to the

image based on the difference in angle between each touch event.

There is one edge case this example has to handle, and it has to do with the Math.atan()

trig function. This method will return an angle in the range of –90 degrees to +90 degrees,

and this rollover happens when the two fingers are vertically one above the other. The issue

this creates is that the touch angle is no longer a gradual change: it jumps from +90 to –90

immediately as the fingers rotate, making the image jump. To solve this issue, we check

for the case where the previous and current angle values cross this boundary, and then

apply a small 5-degree rotation in the same direction of travel to keep the animation moving

smoothly.

Notice that in all cases we are transforming the image with postScale() and postRotate(),

rather than the setXXX versions of these methods as we did with setTranslation(). This is

because each transformation is meant to be additive, meaning it should augment the current

state rather than replace it. Calling setScale() or setRotate() would erase the existing state

and leave that as the only transformation in the Matrix.

We also do each of these transformations around the pivot point that we calculated

in onSizeChanged() as the midpoint of the view. We do this because, by default, the

transformations would occur with a target point of (0,0), which is the top-left corner of the

view. Because we have centered the image, we need to make sure all transformations also

occur at the same center.

153CHAPTER 2: User Interaction Recipes

2-14. Forwarding Touch Events

Problem
You have views or other touch targets in your application that are too small for the average

finger to reliably activate.

Solution
(API Level 1)

Use TouchDelegate to designate an arbitrary rectangle to forward touch events to your

small views. TouchDelegate is designed to attach to a parent ViewGroup for the purpose

of forwarding touch events it detects within a specific space to one of its children.

TouchDelegate modifies each event to look to the target view as if it had happened within its

own bounds.

How It Works
Listings 2-39 and 2-40 illustrate the use of TouchDelegate within a custom parent ViewGroup.

Listing 2-39. Custom Parent Implementing TouchDelegate

public class TouchDelegateLayout extends FrameLayout {

 public TouchDelegateLayout(Context context) {
 super(context);
 init(context);
 }

 public TouchDelegateLayout(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context);
 }

 public TouchDelegateLayout(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 init(context);
 }

 private CheckBox mButton;
 private void init(Context context) {
 //Create a small child view we want to forward touches to.
 mButton = new CheckBox(context);
 mButton.setText("Tap Anywhere");

154 CHAPTER 2: User Interaction Recipes

 LayoutParams lp = new FrameLayout.LayoutParams(
 LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT,
 Gravity.CENTER);
 addView(mButton, lp);
 }

 /*
 * TouchDelegate is applied to this view (parent) to delegate all
 * touches within the specified rectangle to the CheckBox (child).
 * Here, the rectangle is the entire size of this parent view.
 *
 * This must be done after the view has a size so we know how big
 * to make the Rect, thus we've chosen to add the delegate in
 * onSizeChanged()
 */
 @Override
 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 if (w != oldw || h != oldh) {
 //Apply the whole area of this view as the delegate area
 Rect bounds = new Rect(0, 0, w, h);
 TouchDelegate delegate = new TouchDelegate(bounds, mButton);
 setTouchDelegate(delegate);
 }
 }
}

Listing 2-40. Example Activity

public class DelegateActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TouchDelegateLayout layout =
 new TouchDelegateLayout(this);

 setContentView(layout);
 }
}

In this example, we create a parent view that contains a centered check box. This view also

contains a TouchDelegate that will forward touches received anywhere inside the bounds of

the parent to the check box. Because we want to pass the full size of the parent layout as the

rectangle to forward events, we wait until onSizeChanged() is called on the view to construct

and attach the TouchDelegate instance. Doing so in the constructor would not work, because

at that point, the view has not been measured and will not have a size we can read.

The framework automatically dispatches unhandled touch events from the parent through

TouchDelegate to its delegate view, so no additional code is needed to forward these events.

You can see in Figure 2-9 that this application is receiving touch events far away from the

check box, and the check box reacts as if it has been touched directly.

155CHAPTER 2: User Interaction Recipes

Custom Touch Forwarding (Remote Scroller)

TouchDelegate is great for forwarding tap events, but it has one drawback: each event

forwarded to the delegate first has its location reset to the exact midpoint of the delegate

view. This means that if you attempt to forward a series of ACTION_MOVE events through

TouchDelegate, the results won’t be what you expect, because they will look to the delegate

view as if the finger isn’t really moving at all.

If you need to reroute touch events in a more pure form, you can do so by manually calling

the dispatchTouchEvent() method of the target view. Have a look at Listings 2-41 and 2-42

to see how this works.

Listing 2-41. res/layout/main.xml

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/text_touch"
 android:layout_width="match_parent"
 android:layout_height="0dp"

Figure 2-9. Sample application with check box (left), and check box receiving a forwarded touch event (right)

156 CHAPTER 2: User Interaction Recipes

 android:layout_weight="1"
 android:gravity="center"
 android:text="Scroll Anywhere Here" />

 <HorizontalScrollView
 android:id="@+id/scroll_view"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:background="#CCC">
 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
 <ImageView
 android:layout_width="250dp"
 android:layout_height="match_parent"
 android:scaleType="fitXY"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="250dp"
 android:layout_height="match_parent"
 android:scaleType="fitXY"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="250dp"
 android:layout_height="match_parent"
 android:scaleType="fitXY"
 android:src="@drawable/ic_launcher" />
 <ImageView
 android:layout_width="250dp"
 android:layout_height="match_parent"
 android:scaleType="fitXY"
 android:src="@drawable/ic_launcher" />
 </LinearLayout>
 </HorizontalScrollView>
</LinearLayout>

Listing 2-42. Activity Forwarding Touches

public class RemoteScrollActivity extends Activity implements
 View.OnTouchListener {

 private TextView mTouchText;
 private HorizontalScrollView mScrollView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

157CHAPTER 2: User Interaction Recipes

 mTouchText = (TextView) findViewById(R.id.text_touch);
 mScrollView =
 (HorizontalScrollView) findViewById(R.id.scroll_view);
 //Attach a listener for touch events to the top view
 mTouchText.setOnTouchListener(this);
 }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 // You can massage the event location if necessary.
 // Here we set the vertical location for each event to
 // the middle of the HorizontalScrollView.

 // Views expect events to be relative to their
 // local coordinates.
 event.setLocation(event.getX(),
 mScrollView.getHeight() / 2);

 // Forward each event from the TextView to the
 // HorizontalScrollView
 mScrollView.dispatchTouchEvent(event);
 return true;
 }
}

This example displays an activity that is divided in half. The top half is a TextView that

prompts you to touch and scroll around, and the bottom half is a HorizontalScrollView

with a series of images contained inside. The activity is set as the OnTouchListener for the

TextView so that we can forward all touches it receives to the HorizontalScrollView.

We want the events that the HorizontalScrollView sees to look, from its perspective, as

if they were originally inside the view bounds. So before we forward the event, we call

setLocation() to change the x/y coordinates. In this case, the x coordinate is fine as is,

but we adjust the y coordinate to be in the center of the HorizontalScrollView. Now the

events look as if the user’s finger is moving back and forth along the middle of the view. We

then call dispatchTouchEvent() with the modified event to have the HorizontalScrollView

process it.

Note Avoid calling onTouchEvent() directly to forward touches. Calling

dispatchTouchEvent() allows the event processing of the target view to take place the same

way it does for normal touch events, including any intercepts that may be necessary.

158 CHAPTER 2: User Interaction Recipes

2-15. Blocking Touch Thieves

Problem
You have designed nested touch interactions in your application views that don’t work well

with the standard flow of touch hierarchy, in which higher-level container views handle touch

events directly by stealing them back from child views.

Solution
(API Level 1)

ViewGroup, which is the base class for all layouts and containers in the framework, provides the

descriptively named method requestDisallowTouchIntercept() for just this purpose. Setting

this flag on any container view indicates to the framework that, for the duration of the current

gesture, we would prefer the container not intercept the events coming into its child views.

How It Works
To showcase this in action, we have created an example in which two competing touchable

views live in the same space. The outer containing view is a ListView, which responds

to touch events that indicate a vertical drag by scrolling the content. Inside the ListView,

added as a header, is a ViewPager, which responds to horizontal drag touch events for

swiping between pages. In and of itself, this creates a problem in that any attempts to

horizontally swipe the ViewPager that even remotely vary in the vertical direction will be

cancelled in favor of the ListView scrolling, because ListView is monitoring and intercepting

those events. Since humans are not very capable of dragging in an exactly horizontal or

vertical motion, this creates a usability problem.

To set up this example, we first have to declare a dimension resource (see Listing 2-43), and

then the full activity is found in Listing 2-44.

Listing 2-43. res/values/dimens.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="header_height">150dp</dimen>
</resources>

Listing 2-44. Activity Managing Touch Intercept

public class DisallowActivity extends Activity implements
 ViewPager.OnPageChangeListener {
 private static final String[] ITEMS = {
 "Row One", "Row Two", "Row Three", "Row Four",
 "Row Five", "Row Six", "Row Seven", "Row Eight",
 "Row Nine", "Row Ten"
 };

 private ViewPager mViewPager;

 private ListView mListView;

159CHAPTER 2: User Interaction Recipes

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //Create a header view of horizontal swiping items
 mViewPager = new ViewPager(this);
 //As a ListView header, ViewPager must have a fixed height
 mViewPager.setLayoutParams(new ListView.LayoutParams(
 ListView.LayoutParams.MATCH_PARENT,
 getResources().getDimensionPixelSize(
 R.dimen.header_height)));
 // Listen for paging state changes to disable
 // parent touches
 mViewPager.setOnPageChangeListener(this);
 mViewPager.setAdapter(new HeaderAdapter(this));

 // Create a vertical scrolling list
 mListView = new ListView(this);
 // Add the pager as the list header
 mListView.addHeaderView(mViewPager);
 // Add list items
 mListView.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, ITEMS));

 setContentView(mListView);
 }

 /* OnPageChangeListener Methods */

 @Override
 public void onPageScrolled(int position,
 float positionOffset, int positionOffsetPixels) { }

 @Override
 public void onPageSelected(int position) { }

 @Override
 public void onPageScrollStateChanged(int state) {
 //While the ViewPager is scrolling, disable the
 // ScrollView touch intercept so it cannot take over and
 // try to vertical scroll. This flag must be set for each
 // gesture you want to override.
 boolean isScrolling =
 state != ViewPager.SCROLL_STATE_IDLE;
 mListView.requestDisallowInterceptTouchEvent(isScrolling);
 }

 private static class HeaderAdapter extends PagerAdapter {
 private Context mContext;

 public HeaderAdapter(Context context) {
 mContext = context;
 }

160 CHAPTER 2: User Interaction Recipes

 @Override
 public int getCount() {
 return 5;
 }

 @Override
 public Object instantiateItem(ViewGroup container,
 int position) {
 // Create a new page view
 TextView tv = new TextView(mContext);
 tv.setText(String.format("Page %d", position + 1));
 tv.setBackgroundColor((position % 2 == 0) ? Color.RED
 : Color.GREEN);
 tv.setGravity(Gravity.CENTER);
 tv.setTextColor(Color.BLACK);

 // Add as the view for this position, and return as
 // the object for this position
 container.addView(tv);
 return tv;
 }

 @Override
 public void destroyItem(ViewGroup container,
 int position, Object object) {
 View page = (View) object;
 container.removeView(page);
 }

 @Override
 public boolean isViewFromObject(View view,
 Object object) {
 return (view == object);
 }
 }
}

In this activity, we have a ListView that is the root view with a basic adapter included to

display a static list of string items. Also in onCreate(), a ViewPager instance is created

and added to the list as its header view. We will talk in more detail about how ViewPager

works later in this chapter, but suffice it to say here that we are creating a simple ViewPager

instance with a custom PagerAdapter that displays a handful of colored views as its pages

for the user to swipe between.

When the ViewPager is created, we construct and apply a set of ListView.LayoutParams to

govern how it should be displayed as the header. We must do this because the ViewPager

itself has no inherent content size and list headers don’t work well with a view that isn’t explicit

about its height. The fixed height is applied from our dimension’s resource so we can easily get

a properly scaled dp value that is device independent. This is simpler than attempting to fully

construct a dp value completely in Java code.

161CHAPTER 2: User Interaction Recipes

The key to this example is in the OnPageChangeListener the activity implements (which

is then applied to the ViewPager). This callback is triggered as the user interacts with

ViewPager and swipes left and right. Inside the onPageScrollStateChanged() method,

we are passed a value that indicates whether the ViewPager is idle, actively scrolling, or

settling to a page after being scrolled. This is a perfect place to control the touch intercept

behavior of the parent ListView. Whenever the scrolling state of the ViewPager is not idle, we

don’t want the ListView to steal the touch events ViewPager is using, so we set the flag in

requestDisallowTouchIntercept().

There is another reason we continuously trigger this value. We mentioned in the original

solution that this flag is valid for the current gesture. This means that each time a new

ACTION_DOWN event occurs, we need to set the flag again. Rather than adding touch listeners

just to look for specific events, we continuously set the flag based on the scrolling behavior of

the child view and we get the same effect.

2-16. Making Drag-and-Drop Views

Problem
Your application’s UI needs to allow the user to drag views around on the screen and to

possibly drop them on top of other views.

Solution
(API Level 11)

Use the drag-and-drop APIs available in the Android 3.0 framework. The View class

includes all the enhancements necessary to manage a drag event on the screen, and the

OnDragListener interface can be attached to any View that needs to be notified of drag

events as they occur. To begin a drag event, simply call startDrag() on the view you would

like the user to begin dragging. This method takes a DragShadowBuilder instance, which

will be used to construct what the dragging portion of the view should look like, and two

additional parameters that will be passed forward to the drop targets and listeners.

The first of these is a ClipData object to pass forward a set of text or a Uri instance. This

can be useful for passing a file location or a query to be made on a ContentProvider. The

second is an Object referred to as the local state of the drag event. This can be any object

and is designed to be a lightweight instance describing something application-specific

about the drag. The ClipData will be available only to the listener where the dragged view

is dropped, but the local state will be accessible to any listener at any time by calling

getLocalState() on the DragEvent.

162 CHAPTER 2: User Interaction Recipes

The OnDragListener.onDrag() method will get called for each specific event that occurs

during the drag-and-drop process, passing in a DragEvent to describe the specifics of each

event. Each DragEvent will have one of the following actions:

	ACTION_DRAG_STARTED: Sent to all views when a new drag event begins

with a call to startDrag()

The location can be obtained with 	 getX() and getY().

	ACTION_DRAG_ENTERED: Sent to a view when the drag event enters its

bounding box

	ACTION_DRAG_EXITED: Sent to a view when the drag event leaves its

bounding box

	ACTION_DRAG_LOCATION: Sent to a view between ACTION_DRAG_ENTERED and

ACTION_DRAG_EXITED with the current location of the drag inside that view

The location can be obtained with 	 getX() and getY().

	ACTION_DROP: Sent to a view when the drag terminates and is still

currently inside the bounds of that view

The location can be obtained with 	 getX() and getY().

	ClipData passed with the event can be obtained with getClipData()

for this action only.

	ACTION_DRAG_ENDED: Sent to all views when the current drag event is

complete

The result of the drag operation can be obtained here with 	 getResult().

This return value is based on whether the target view of the drop had 	
an active OnDragListener that returned true for the ACTION_DROP event.

This method works in a similar way to custom touch handling, in that the value you return

from the listener will govern how future events are delivered. If a particular OnDragListener

does not return true for ACTION_DRAG_STARTED, it will not receive any further events for the

remainder of the drag except for ACTION_DRAG_ENDED.

How It Works
Let’s look at an example of the drag-and-drop functionality, starting with Listing 2-45. Here

we have created a custom ImageView that implements the OnDragListener interface.

Listing 2-45. Custom View Implementing OnDragListener

public class DropTargetView extends ImageView implements OnDragListener {

 private boolean mDropped;

 public DropTargetView(Context context) {
 super(context);
 init();
 }

163CHAPTER 2: User Interaction Recipes

 public DropTargetView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 public DropTargetView(Context context, AttributeSet attrs,
 int defaultStyle) {
 super(context, attrs, defaultStyle);
 init();
 }

 private void init() {
 //We must set a valid listener to receive DragEvents
 setOnDragListener(this);
 }

 @Override
 public boolean onDrag(View v, DragEvent event) {
 PropertyValuesHolder pvhX, pvhY;
 switch (event.getAction()) {
 case DragEvent.ACTION_DRAG_STARTED:
 //React to a new drag by shrinking the view
 pvhX = PropertyValuesHolder.ofFloat("scaleX", 0.5f);
 pvhY = PropertyValuesHolder.ofFloat("scaleY", 0.5f);
 ObjectAnimator.ofPropertyValuesHolder(this,
 pvhX, pvhY).start();
 //Clear the current drop image on a new event
 setImageDrawable(null);
 mDropped = false;
 break;
 case DragEvent.ACTION_DRAG_ENDED:
 // React to a drag ending by resetting the view size
 // if we weren't the drop target.
 if (!mDropped) {
 pvhX = PropertyValuesHolder.ofFloat("scaleX", 1f);
 pvhY = PropertyValuesHolder.ofFloat("scaleY", 1f);
 ObjectAnimator.ofPropertyValuesHolder(this,
 pvhX, pvhY).start();
 mDropped = false;
 }
 break;
 case DragEvent.ACTION_DRAG_ENTERED:
 //React to a drag entering this view by growing slightly
 pvhX = PropertyValuesHolder.ofFloat("scaleX", 0.75f);
 pvhY = PropertyValuesHolder.ofFloat("scaleY", 0.75f);
 ObjectAnimator.ofPropertyValuesHolder(this,
 pvhX, pvhY).start();
 break;
 case DragEvent.ACTION_DRAG_EXITED:
 //React to a drag leaving by returning to previous size
 pvhX = PropertyValuesHolder.ofFloat("scaleX", 0.5f);
 pvhY = PropertyValuesHolder.ofFloat("scaleY", 0.5f);

164 CHAPTER 2: User Interaction Recipes

 ObjectAnimator.ofPropertyValuesHolder(this,
 pvhX, pvhY).start();
 break;
 case DragEvent.ACTION_DROP:
 // React to a drop event with a short keyframe animation
 // and setting this view's image to the drawable passed along
 // with the drag event

 // This animation shrinks the view briefly down to nothing
 // and then back.
 Keyframe frame0 = Keyframe.ofFloat(0f, 0.75f);
 Keyframe frame1 = Keyframe.ofFloat(0.5f, 0f);
 Keyframe frame2 = Keyframe.ofFloat(1f, 0.75f);
 pvhX = PropertyValuesHolder.ofKeyframe("scaleX",
 frame0, frame1, frame2);
 pvhY = PropertyValuesHolder.ofKeyframe("scaleY",
 frame0, frame1, frame2);
 ObjectAnimator.ofPropertyValuesHolder(this,
 pvhX, pvhY).start();
 //Set our image from the Object passed with the DragEvent
 setImageDrawable((Drawable) event.getLocalState());
 //We set the dropped flag so the ENDED animation will
 // not also run
 mDropped = true;
 break;
 default:
 //Ignore events we aren't interested in
 return false;
 }
 //Declare interest in all events we have noted
 return true;
 }

}

This ImageView is set up to monitor incoming drag events and animate itself accordingly.

Whenever a new drag begins, the ACTION_DRAG_STARTED event will be sent here, and this view

will scale itself down to 50 percent size. This is a good indication to the user where they can

drag this view they’ve just picked up. We also make sure that this listener is structured to

return true from this event so that it receives other events during the drag.

If the user drags their view onto this one, ACTION_DRAG_ENTERED will trigger the view to scale

up slightly, indicating it as the active recipient if the view were to be dropped. ACTION_DRAG_
EXITED will be received if the view is dragged away, and this view will respond by scaling

back down to the same size as when we entered “drag mode.” If the user releases the drag

over the top of this view, ACTION_DROP will be triggered, and a special animation is run to

indicate the drop was received. We also read the local state variable of the event at this

point, assume it is a Drawable, and set it as the image content for this view.

ACTION_DRAG_ENDED will notify this view to return to its original size because we are no longer

in drag mode. However, if this view was also the target of the drop, we want it to keep its

size, so we ignore this event in that case.

165CHAPTER 2: User Interaction Recipes

Listings 2-46 and 2-47 show an example activity that allows the user to long-press an image

and then drag that image to our custom drop target.

Listing 2-46. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <!-- Top Row of Draggable Items -->
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <ImageView
 android:id="@+id/image1"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/ic_send" />
 <ImageView
 android:id="@+id/image2"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/ic_share" />
 <ImageView
 android:id="@+id/image3"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/ic_favorite" />
 </LinearLayout>

 <!-- Bottom Row of Drop Targets -->
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:orientation="horizontal" >
 <com.examples.dragtouch.DropTargetView
 android:id="@+id/drag_target1"
 android:layout_width="0dp"
 android:layout_height="100dp"
 android:layout_weight="1"
 android:background="#A00" />
 <com.examples.dragtouch.DropTargetView
 android:id="@+id/drag_target2"
 android:layout_width="0dp"
 android:layout_height="100dp"

166 CHAPTER 2: User Interaction Recipes

 android:layout_weight="1"
 android:background="#0A0" />
 <com.examples.dragtouch.DropTargetView
 android:id="@+id/drag_target3"
 android:layout_width="0dp"
 android:layout_height="100dp"
 android:layout_weight="1"
 android:background="#00A" />
 </LinearLayout>

</RelativeLayout>

Listing 2-47. Activity Forwarding Touches

public class DragTouchActivity extends Activity implements
 OnLongClickListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Attach long-press listener to each ImageView
 findViewById(R.id.image1).setOnLongClickListener(this);
 findViewById(R.id.image2).setOnLongClickListener(this);
 findViewById(R.id.image3).setOnLongClickListener(this);
 }

 @Override
 public boolean onLongClick(View v) {
 DragShadowBuilder shadowBuilder =
 new DragShadowBuilder(v);
 // Start a drag, and pass the View's image along as
 // the local state
 v.startDrag(null, shadowBuilder,
 ((ImageView) v).getDrawable(), 0);

 return true;
 }

}

This example displays a row of three images at the top of the screen, along with three of

our custom drop target views at the bottom of the screen. Each image is set up with a

listener for long-press events, and the long-press triggers a new drag via startDrag(). The

DragShadowBuilder passed to the drag initializer is the default implementation provided by

the framework. In the next section, we’ll look at how this can be customized, but this version

just creates a slightly transparent copy of the view being dragged and places it centered

underneath the touch point.

We also capture the image content of the view the user selected with getDrawable() and

pass that along as the local state of the drag, which the custom drop target will use to

set as its image. This will create the appearance that the view was dropped on the target.

167CHAPTER 2: User Interaction Recipes

Figure 2-10. Drag example before the drag (top), while the user is dragging and hovering over a target (bottom left),

and after the view has been dropped (bottom right)

Figure 2-10 shows how this example looks when it loads, during a drag operation, and after

the image has been dropped on a target.

168 CHAPTER 2: User Interaction Recipes

Customizing DragShadowBuilder

The default implementation of DragShadowBuilder is extremely convenient, but it may not be

what your application needs. Let’s take a look at Listing 2-48, which is a customized builder

implementation.

Listing 2-48. Custom DragShadowBuilder

public class DrawableDragShadowBuilder extends DragShadowBuilder {
 private Drawable mDrawable;

 public DrawableDragShadowBuilder(View view, Drawable drawable) {
 super(view);
 // Set the Drawable and apply a green filter to it
 mDrawable = drawable;
 mDrawable.setColorFilter(new PorterDuffColorFilter(
 Color.GREEN, PorterDuff.Mode.MULTIPLY));
 }

 @Override
 public void onProvideShadowMetrics(Point shadowSize,
 Point touchPoint) {
 // Fill in the size
 shadowSize.x = mDrawable.getIntrinsicWidth();
 shadowSize.y = mDrawable.getIntrinsicHeight();
 // Fill in the location of the shadow relative to the touch.
 // Here we center the shadow under the finger.
 touchPoint.x = mDrawable.getIntrinsicWidth() / 2;
 touchPoint.y = mDrawable.getIntrinsicHeight() / 2;

 mDrawable.setBounds(new Rect(0, 0, shadowSize.x, shadowSize.y));
 }

 @Override
 public void onDrawShadow(Canvas canvas) {
 //Draw the shadow view onto the provided canvas
 mDrawable.draw(canvas);
 }
}

This custom implementation takes in the image that it will display as the shadow as a

separate Drawable parameter rather than making a visual copy of the source view. We also

apply a green ColorFilter to it for added effect. It turns out that DragShadowBuilder is a fairly

straightforward class to extend. Two primary methods are required to effectively override it.

The first is onProvideShadowMetrics(), which is called once initially with two Point objects

for the builder to fill in. The first should be filled with the size of the image to be used for the

shadow, where the desired width is set as the x value and the desired height is set as the y

value. In our example, we have set this to be the intrinsic width and height of the image. The

second should be filled with the desired touch location for the shadow. This defines how the

shadow image should be positioned in relation to the user’s finger; for example, setting both x

and y to zero would place it at the top-left corner of the image. In our example, we have set it

to the image’s midpoint so the image will be centered under the user’s finger.

169CHAPTER 2: User Interaction Recipes

The second method is onDrawShadow(), which is called repeatedly to render the shadow

image. The Canvas passed into this method is created by the framework based on the

information contained in onProvideShadowMetrics(). Here you can do all sorts of custom

drawing as you might with any other custom view. Our example simply tells Drawable to

draw itself on the Canvas.

2-17. Building a Navigation Drawer

Problem
Your application needs a top-level navigation menu, and you want to implement one that

animates in and out from the side of the screen in compliance with the latest Google design

guidelines.

Solution
(API Level 7)

Integrate the DrawerLayout widget to manage menu views that slide in from the left or right

of the screen, available in the Android Support Library. DrawerLayout is a container widget

that manages each of the first child views in its hierarchy with a specified Gravity value of

LEFT or RIGHT (or START/END if supporting right-to-left layouts) as an animated content drawer.

By default, each view is hidden, but will be animated in from its respective side when either

the openDrawer() method is called or a finger swipe occurs inward from the appropriate side

bezel. To help indicate the presence of a drawer, DrawerLayout will also show a peek of the

appropriate view if a finger is held down on the appropriate side of the screen.

DrawerLayout supports multiple drawers, one for each gravity setting, and they can be

placed anywhere in the layout hierarchy. The only soft rule is that they should be added after

the main content view in the layout (that is, placed after that view element in the layout XML).

Otherwise, the z-ordering of the views will keep the drawer(s) from being visible.

Integration with the action bar is also supported by way of the ActionBarDrawerToggle

element. This is a widget that monitors taps on the Home button area of the action bar and

toggles the visibility of the “main” drawer (the drawer with Gravity.LEFT or Gravity.START set).

Important DrawerLayout is available only in the Android Support Library; it is not part of the

native SDK at any platform level. However, any application targeting API Level 4 or later can use

the widget with the Support Library included. For more information on including the Support Library

in your project, reference http://developer.android.com/tools/support-library/

index.html.

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html

170 CHAPTER 2: User Interaction Recipes

How It Works
While it is not required for you to use an action bar at all with DrawerLayout, it is the most

common use case. The following examples show how to create navigation drawers with

DrawerLayout as well as integrate the action bar.

The following example creates an application with two navigation drawers: a main drawer on

the left with a list of options to select from, and a secondary drawer on the right with some

additional interactive content. Selecting an item from the list in the main drawer will modify

the background color of the primary content view.

In Listing 2-49, we have a layout that includes a DrawerLayout. Notice that because this

widget is not a core element, we must use its fully qualified class name in the XML.

Listing 2-49. res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.DrawerLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/container_drawer"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <!-- Main Content Pane -->
 <FrameLayout
 android:id="@+id/container_root"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <!-- Put your main contents here -->

 </FrameLayout>

 <!-- Main Drawer Content -->
 <!--
 Can be any View or ViewGroup content
 Standard drawer width is 240dp
 You MUST set the gravity
 Needs a solid background to be visible overtop the content.
 -->
 <ListView
 android:id="@+id/drawer_main"
 android:layout_width="240dp"
 android:layout_height="match_parent"
 android:layout_gravity="left"
 android:background="#555" />

 <!--
 You can create additional drawers, this one, for example
 will show up with a swipe from the right of the screen.
 -->

171CHAPTER 2: User Interaction Recipes

 <LinearLayout
 android:id="@+id/drawer_right"
 android:layout_width="240dp"
 android:layout_height="match_parent"
 android:layout_gravity="right"
 android:orientation="vertical"
 android:background="#CCC">
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Click Here!" />
 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:text="Tap Anywhere Else, Drawer will Hide" />
 </LinearLayout>
</android.support.v4.widget.DrawerLayout>

We have included two views that will be drawers in our application, one on the left and

another on the right; we control the alignment by setting their android:layout_gravity

attributes. DrawerLayout does the rest, mapping each view by inspecting the gravity, so we

do not need to link them in any other way. Before we get to the activity, our project has one

more resource in it; we have created an options menu to display some actions inside the

action bar (see Listing 2-50).

Listing 2-50. res/menu/main.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/action_delete"
 android:title="@string/action_delete"
 app:showAsAction="ifRoom"
 android:icon="@android:drawable/ic_menu_delete"/>
 <item
 android:id="@+id/action_settings"
 android:title="@string/action_settings"
 android:orderInCategory="100"
 app:showAsAction="never"/>
</menu>

Finally, we have the activity in Listing 2-51. In addition to the DrawerLayout, this example

includes an ActionBarDrawerToggle to provide integration with the action bar Home button.

Listing 2-51. Activity with DrawerLayout Integrated

public class SupportActivity extends ActionBarActivity
 implements AdapterView.OnItemClickListener {

 private static final String[] ITEMS =
 {"White", "Red", "Green", "Blue"};
 private static final int[] COLORS =
 {Color.WHITE, 0xffe51c23, 0xff259b24, 0xff5677fc};

172 CHAPTER 2: User Interaction Recipes

 private DrawerLayout mDrawerContainer;
 /* Root content pane in layout */
 private View mMainContent;
 /* Main (left) sliding drawer */
 private ListView mDrawerContent;
 /* Toggle object for ActionBar */
 private ActionBarDrawerToggle mDrawerToggle;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mDrawerContainer = (DrawerLayout) findViewById(R.id.container_drawer);
 mDrawerContent = (ListView) findViewById(R.id.drawer_main);
 mMainContent = findViewById(R.id.container_root);

 //Toggle indicator must also be the drawer listener,
 // so we extend it to listen for the events ourselves.
 mDrawerToggle = new ActionBarDrawerToggle(
 this, //Host Activity
 mDrawerContainer, //Container to use
 R.string.drawer_open, //Content description strings
 R.string.drawer_close) {

 @Override
 public void onDrawerOpened(View drawerView) {
 super.onDrawerOpened(drawerView);
 //Update the options menu
 supportInvalidateOptionsMenu();
 }

 @Override
 public void onDrawerStateChanged(int newState) {
 super.onDrawerStateChanged(newState);
 //Update the options menu
 supportInvalidateOptionsMenu();
 }

 @Override
 public void onDrawerClosed(View drawerView) {
 super.onDrawerClosed(drawerView);
 //Update the options menu
 supportInvalidateOptionsMenu();
 }
 };

 ListAdapter adapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, ITEMS);
 mDrawerContent.setAdapter(adapter);
 mDrawerContent.setOnItemClickListener(this);

173CHAPTER 2: User Interaction Recipes

 //Set the toggle as the drawer's event listener
 mDrawerContainer.setDrawerListener(mDrawerToggle);

 //Enable home button actions in the ActionBar
 getSupportActionBar().setDisplayHomeAsUpEnabled(true);
 getSupportActionBar().setHomeButtonEnabled(true);
 }

 @Override
 protected void onPostCreate(Bundle savedInstanceState) {
 super.onPostCreate(savedInstanceState);
 //Synchronize the state of the drawer after any instance
 // state has been restored by the framework
 mDrawerToggle.syncState();
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 //Update state on any configuration changes
 mDrawerToggle.onConfigurationChanged(newConfig);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Create the ActionBar actions
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 //Display the action options based on main drawer state
 boolean isOpen =
 mDrawerContainer.isDrawerVisible(mDrawerContent);
 menu.findItem(R.id.action_delete).setVisible(!isOpen);
 menu.findItem(R.id.action_settings).setVisible(!isOpen);

 return super.onPrepareOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 //Let the drawer have a crack at the event first
 // to handle home button events
 if (mDrawerToggle.onOptionsItemSelected(item)) {
 //If this was a drawer toggle, we need to update the
 // options menu, but we have to wait until the next
 // loop iteration for the drawer state to change.
 mDrawerContainer.post(new Runnable() {
 @Override
 public void run() {

174 CHAPTER 2: User Interaction Recipes

 //Update the options menu
 supportInvalidateOptionsMenu();
 }
 });
 return true;
 }

 //...Handle other options selections here as normal...
 switch (item.getItemId()) {
 case R.id.action_delete:
 //Delete Action
 return true;
 case R.id.action_settings:
 //Settings Action
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }

 //Handle click events from items in the list of our main drawer
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 //Update the background color of the main content
 mMainContent.setBackgroundColor(COLORS[position]);

 //Manually close the drawer
 mDrawerContainer.closeDrawer(mDrawerContent);
 }
}

When the activity is initialized, we create an ActionBarDrawerToggle instance and set it as

the DrawerListener of the DrawerLayout. This is required so the toggle can listen for events,

but it also means we cannot listen for those events in our application unless we extend

ActionBarDrawerToggle to override the listener method, which we’ve done here. The toggle

is linked to the hosting activity and the DrawerLayout it should control.

There is a fair amount of boilerplate code required to get ActionBarDrawerToggle integrated,

as it does not hook itself directly into any of the life-cycle methods of the activity. The

methods syncState(), onConfigurationChanged(), and onOptionsItemSelected() all need to

be called from their appropriate activity callbacks to allow the toggle widget to receive input

and maintain state along with the activity instance. In order to trigger Home button events

in the action bar, we must also enable it by calling setHomeButtonEnabled(). Finally, adding

setDisplayHomeAsUpEnabled() enables the icon (an arrow by default) to be displayed next to

the Home logo; this icon is what the drawer toggle customizes with its own version.

DrawerLayout is designed to close an open drawer when the main content view receives

touch events (that is, the user touches outside the drawer). Touch events inside the layout

(such as tapping an item in our main list or the button in our secondary drawer) require us

to close the drawer manually when necessary. Inside the OnItemClickListener registered to

our list, after changing the background color of the content view, we call closeDrawer() to

175CHAPTER 2: User Interaction Recipes

do just that. It is interesting to note that even if the user taps on a noninteractive view inside

a drawer (for example, a TextView), those touch events will be delivered to the next child

view in line. If that child is the main content view (most common), then the drawer will close

in the same fashion as if the user touched outside it.

Notice how methods such as openDrawer() and closeDrawer() take a view as an argument.

Since DrawerLayout can manage more than one drawer, we have to tell it which drawer widget

to act on. These methods can also be triggered using the Gravity parameter associated with

the drawer if your application doesn’t have a reference to the drawer view itself.

Recall that we extended the ActionBarDrawerToggle in order to override the drawer’s event

listener methods. Inside each method we call invalidateOptionsMenu(), which simply

tells the activity to update the menu and call its setup methods again. Recall also that we

created some actions to display inside the action bar by using an XML menu, and inside

onPrepareOptionsMenu(), we control whether those actions are visible by the visibility

state of the drawer. This way, the actions are shown only when the main drawer is not. The

purpose of invalidating the menu in each event callback is to allow the menu visibility to

update based on changes in the drawer.

Figure 2-11 shows how tapping the Home button in the action bar expands the main drawer

to expose the options list; notice also that the actions are gone when the drawer is open.

Figure 2-12 illustrates the secondary drawer peeking in from a bezel swipe on the right side

of the screen, and then fully open.

Figure 2-11. Activity with main drawer

176 CHAPTER 2: User Interaction Recipes

THE REAL STAR OF THE SHOW

The drag and edge-swipe behavior provided in DrawerLayout is actually the work of another class also

available in the Support Library: ViewDragHelper. This class can be quite helpful if you need to do any

custom view manipulation based on user dragging.

ViewDragHelper is a touch event processor (similar to GestureDetector), so it needs to be fed events

from your views. Typically, every event received in onTouchEvent() of your view must be handed directly to

processTouchEvent() on the helper.

@Override

public boolean onTouchEvent(MotionEvent event) {

 mHelper.processTouchEvent(event);

}

When ViewDragHelper is instantiated, an instance of ViewDragHelper.Callback must be passed

as the handler for all events the helper will pass to your application. The most important of these is

tryCaptureView(), which will be called when the helper starts seeing a drag over a given view; returning

true causes the view to become “captured,” meaning its position will begin to follow the subsequent touch

events in the gesture.

Figure 2-12. Activity with secondary drawer

177CHAPTER 2: User Interaction Recipes

ViewDragHelper also supports swipes from the view edges if setEdgeTrackingEnabled() has

been called with one or more valid edge flags. When edge events occur, onEdgeTouched() and

onEdgeDragStarted() will be triggered on the Callback.

One final tip: A single ViewDragHelper is designed to capture and manage only one view at a time. Problems

will occur if you attempt to use the same instance to slide two views at the same time. DrawerLayout, for

example, has one ViewDragHelper for each drawer it supports to avoid this very issue.

Drawing Over with Toolbar

An adaptation of this pattern that shows up in Google’s design guides requires the drawer

to slide over the top of the action bar. This is not possible with the action bar as part of the

window décor, but if we replace it with a toolbar, we can achieve it easily. For reference,

Figure 2-13 shows how the drawer differs when open.

Figure 2-13. Activity with toolbar drawer

As with previous toolbar examples, we have to make sure that our activity uses a theme that

disables the window’s action bar (see Listing 2-52).

178 CHAPTER 2: User Interaction Recipes

Listing 2-52. Partial AndroidManifest.xml for Toolbar Activity

<activity
 android:name=".ToolbarActivity"
 android:label="@string/title_toolbar"
 android:theme="@style/Theme.AppCompat.Light.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>

This requires us to include a modified layout that has a Toolbar element defined in the

hierarchy, as we see in Listing 2-53.

Listing 2-53. res/layout/activity_toolbar.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.DrawerLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/container_drawer"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <!-- Main Content Pane -->
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <!-- Use a toolbar for the action bar so
 our views can draw on top of it -->
 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:minHeight="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>

 <FrameLayout
 android:id="@+id/container_root"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <!-- Put your view contents here -->
 </FrameLayout>
 </LinearLayout>

179CHAPTER 2: User Interaction Recipes

 <!-- Main Drawer Content -->
 <!--
 Can be any View or ViewGroup content
 Standard drawer width is 240dp
 MUST set the gravity, and it must be "left" or "start".
 Needs a solid background to be visible overtop the content.
 -->
 <ListView
 android:id="@+id/drawer_main"
 android:layout_width="240dp"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 android:background="#FFF" />

 <!--
 You can create additional drawers, this one, for example
 will show up with a swipe from the right of the screen.
 -->
 <LinearLayout
 android:id="@+id/drawer_right"
 android:layout_width="240dp"
 android:layout_height="match_parent"
 android:layout_gravity="end"
 android:orientation="vertical"
 android:background="#CCC">
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Click Here!" />
 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:text="Tap Anywhere Else, Drawer will Hide" />
 </LinearLayout>

</android.support.v4.widget.DrawerLayout>

The activity code is identical to the previous drawer example, with the exception of two lines

within onCreate() that register the Toolbar from our layout with the activity.

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(toolbar);

180 CHAPTER 2: User Interaction Recipes

2-18. Swiping Between Views

Problem
You need to implement paging with a swipe gesture in your application’s UI in order to move

between views or fragments.

Solution
(API Level 4)

Implement the ViewPager widget to provide paging with swipe scroll gestures. ViewPager is

a modified implementation of the AdapterView pattern that the framework uses for widgets

such as ListView and GridView. It requires its own adapter implementation as a subclass

of PagerAdapter, but it is conceptually very similar to the patterns used in BaseAdapter and

ListAdapter. It does not inherently implement recycling of the components being paged,

but it does provide callbacks to create and destroy the items on the fly so that only a fixed

number of content views are in memory at a given time.

Important ViewPager is available only in the Android Support Library; it is not part of the native

SDK at any platform level. However, any application targeting API Level 4 or later can use the widget

with the Support Library included. For more information on including the Support Library in your

project, reference http://developer.android.com/tools/support-library/index.html.

How It Works
Most of the heavy lifting in working with ViewPager is in the PagerAdapter implementation you

provide. Let’s start with a simple example, shown in Listing 2-54, that pages between a series

of images.

Listing 2-54. Custom PagerAdapter for Images

public class ImagePagerAdapter extends PagerAdapter {
 private Context mContext;

 private static final int[] IMAGES = {
 android.R.drawable.ic_menu_camera,
 android.R.drawable.ic_menu_add,
 android.R.drawable.ic_menu_delete,
 android.R.drawable.ic_menu_share,
 android.R.drawable.ic_menu_edit
 };

 private static final int[] COLORS = {
 Color.RED,
 Color.BLUE,

http://developer.android.com/tools/support-library/index.html

181CHAPTER 2: User Interaction Recipes

 Color.GREEN,
 Color.GRAY,
 Color.MAGENTA
 };

 public ImagePagerAdapter(Context context) {
 super();
 mContext = context;
 }

 /*
 * Provide the total number of pages
 */
 @Override
 public int getCount() {
 return IMAGES.length;
 }

 /*
 * Override this method if you want to show more than one page
 * at a time inside the ViewPager's content bounds.
 */
 @Override
 public float getPageWidth(int position) {
 return 1f;
 }

 @Override
 public Object instantiateItem(ViewGroup container, int position) {
 // Create a new ImageView and add it to the supplied container
 ImageView iv = new ImageView(mContext);
 // Set the content for this position
 iv.setImageResource(IMAGES[position]);
 iv.setBackgroundColor(COLORS[position]);

 // You MUST add the view here, the framework will not
 container.addView(iv);
 //Return this view also as the key object for this position
 return iv;
 }

 @Override
 public void destroyItem(ViewGroup container, int position,
 Object object) {
 //Remove the view from the container here
 container.removeView((View) object);
 }

 @Override
 public boolean isViewFromObject(View view, Object object) {
 // Validate that the object returned from instantiateItem()
 // is associated with the view added to the container in
 // that location. Our example uses the same object in

182 CHAPTER 2: User Interaction Recipes

 // both places.
 return (view == object);
 }

}

In this example, we have an implementation of PagerAdapter that serves up a series of

ImageView instances for the user to page through. The first required override in the adapter

is getCount(), which, just like its AdapterView counterpart, should return the total number of

items available.

ViewPager works by keeping track of a key object for each item alongside a view to display

for that object; this keeps the separation between the adapter items and their views that

developers are used to with AdapterView. However, the implementation is a bit different. With

AdapterView, the adapter’s getView() method is called to construct and return the view to

display for that item. With ViewPager, the callback’s instantiateItem() and destroyItem()

will be called when a new view needs to be created, or when one has scrolled outside the

bounds of the pager’s limit and should be removed; the number of items that any ViewPager

will keep hold of is set by the setOffscreenPageLimit() method.

Note The default value for the offscreen page limit is 3. This means ViewPager will track the

currently visible page, one to the left, and one to the right. The number of tracked pages is always

centered around the currently visible page.

In our example, we use instantiateItem() to create a new ImageView and then apply the

properties for that particular position. Unlike AdapterView, the PagerAdapter must attach the

View to display to the supplied ViewGroup in addition to returning the unique key object to

represent this item. These two things don’t have to be the same, but they can be in a simple

example like this. The callback isViewFromObject() is a required override on PagerAdapter

so the application can provide the link between which key object goes with which view. In

our example, we attach the ImageView to the supplied parent and then also return the same

instance as the key from instantiateItem(). The code for isViewFromObject() becomes

simple, then, as we return true if both parameters are the same instance.

Complementary to instantiate, PagerAdapter must also remove the specified view from the

parent container in destroyItem(). If the views displayed in the pager are heavyweight and

you wanted to implement some basic view recycling in your adapter, you could hold on to

the view after it was removed so it could be handed back to instantiateItem() to attach

to another key object. See Listing 2-55, which shows an example activity using our custom

adapter with a ViewPager. The resulting application is shown in Figure 2-14.

183CHAPTER 2: User Interaction Recipes

Figure 2-14. ViewPager dragging between two pages

Listing 2-55. Activity Using ViewPager and ImagePagerAdapter

public class PagerActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ViewPager pager = new ViewPager(this);
 pager.setAdapter(new ImagePagerAdapter(this));

 setContentView(pager);
 }
}

Running this application, the user can horizontally swipe a finger to page between all the

images provided by the custom adapter, and each page displays full-screen. There is one

method defined in the example we did not mention: getPageWidth(). This method allows you

to define for each position how large the page should be as a percentage of the ViewPager

size. By default it is set to 1, and the previous example didn’t change this. But let’s say we

wanted to display multiple pages at once; we can adjust the value this method returns.

184 CHAPTER 2: User Interaction Recipes

If we modify getPageWidth() as in the following snippet, we can display three pages at once:

/*
 * Override this method if you want to show more than one page
 * at a time inside the ViewPager's content bounds.
 */
@Override
public float getPageWidth(int position) {
 //Page width should be 1/3 of the view
 return 0.333f;
}

You can see in Figure 2-15 how this modifies the resulting application.

Figure 2-15. ViewPager showing three pages at once

185CHAPTER 2: User Interaction Recipes

Adding and Removing Pages

Listing 2-56 illustrates a slightly more complex adapter for use with ViewPager. This example

uses FragmentPagerAdapter as a base, which is another class in the framework where each

page item is a fragment instead of a simple view.

Listing 2-56. FragmentPagerAdapter to Display a List

public class ListPagerAdapter extends FragmentPagerAdapter {

 private static final int ITEMS_PER_PAGE = 3;

 private List<String> mItems;

 public ListPagerAdapter(FragmentManager manager,
 List<String> items) {
 super(manager);
 mItems = items;
 }

 /*
 * This method will get called only the first time a
 * fragment is needed for this position.
 */
 @Override
 public Fragment getItem(int position) {
 int start = position * ITEMS_PER_PAGE;
 return ArrayListFragment.newInstance(
 getPageList(position), start);
 }

 @Override
 public int getCount() {
 // Get whole number
 int pages = mItems.size() / ITEMS_PER_PAGE;
 // Add one more page for any remaining values if list size
 // is not divisible by page size
 int excess = mItems.size() % ITEMS_PER_PAGE;
 if (excess > 0) {
 pages++;
 }

 return pages;
 }

 /*
 * This will get called after getItem() for new Fragments, but
 * also when Fragments beyond the offscreen page limit are added
 * back; we need to make sure to update the list for these elements.
 */

186 CHAPTER 2: User Interaction Recipes

 @Override
 public Object instantiateItem(ViewGroup container, int position) {
 ArrayListFragment fragment =
 (ArrayListFragment) super.instantiateItem(container,
 position);
 fragment.updateListItems(getPageList(position));
 return fragment;
 }

 /*
 * Called by the framework when notifyDataSetChanged() is called,
 * we must decide how each Fragment has changed for the new data set.
 * We also return POSITION_NONE if a Fragment at a particular
 * position is no longer needed so the adapter can remove it.
 */
 @Override
 public int getItemPosition(Object object) {
 ArrayListFragment fragment = (ArrayListFragment)object;
 int position = fragment.getBaseIndex() / ITEMS_PER_PAGE;
 if(position >= getCount()) {
 //This page no longer needed
 return POSITION_NONE;
 } else {
 //Refresh fragment data display
 fragment.updateListItems(getPageList(position));

 return position;
 }
 }

 /*
 * Helper method to obtain the piece of the overall list that
 * should be applied to a given Fragment
 */
 private List<String> getPageList(int position) {
 int start = position * ITEMS_PER_PAGE;
 int end = Math.min(start + ITEMS_PER_PAGE, mItems.size());
 List<String> itemPage = mItems.subList(start, end);

 return itemPage;
 }

 /*
 * Internal custom Fragment that displays a list section inside
 * of a ListView, and provides external methods for updating the list
 */
 public static class ArrayListFragment extends Fragment {
 private ArrayList<String> mItems;
 private ArrayAdapter<String> mAdapter;
 private int mBaseIndex;

187CHAPTER 2: User Interaction Recipes

 //Fragments are created by convention using a Factory
 static ArrayListFragment newInstance(List<String> page,
 int baseIndex) {
 ArrayListFragment fragment = new ArrayListFragment();
 fragment.updateListItems(page);
 fragment.setBaseIndex(baseIndex);
 return fragment;
 }

 public ArrayListFragment() {
 super();
 mItems = new ArrayList<String>();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Make a new adapter for the list items
 mAdapter = new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1, mItems);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 //Construct and return a ListView with our adapter
 ListView list = new ListView(getActivity());
 list.setAdapter(mAdapter);
 return list;
 }

 //Save the index in the global list where this page starts
 public void setBaseIndex(int index) {
 mBaseIndex = index;
 }

 //Retrieve the index where this page starts
 public int getBaseIndex() {
 return mBaseIndex;
 }
 public void updateListItems(List<String> items) {
 mItems.clear();
 for (String piece : items) {
 mItems.add(piece);
 }

 if (mAdapter != null) {
 mAdapter.notifyDataSetChanged();
 }
 }
 }
}

188 CHAPTER 2: User Interaction Recipes

This adapter also overrides one more method we did not see in the simple example, which

is getItemPosition(). This method will get called when notifyDataSetChanged() gets called

externally by the application. Its primary function is to sort out whether page items should

be moved or removed as a result of the change. If the item’s position has changed, the

implementation should return the new position value. If the item should not be moved, the

implementation should return the constant value PagerAdapter.POSITION_UNCHANGED. If the

page should be removed, the application should return PagerAdapter.POSITION_NONE.

The example checks the current page position (which we have to re-create from the initial

index data) against the current page count. If this page is greater than the count, we have

removed enough items from the list so that this page is no longer needed, and we return

POSITION_NONE. In any other case, we update the list of items that should now be displayed

for the current fragment and return the new calculated position.

The method getItemPosition() will get called for every page currently being tracked by

ViewPager, which will be the number of pages returned by getOffscreenPageLimit().

However, even though ViewPager doesn’t track a fragment that scrolls outside the limit,

FragmentManager still does. So when a previous fragment is scrolled back in, getItem()

will not be called again because the fragment exists. But, because of this, if a data set

change occurs during this time, the fragment list data will not update. This is why we have

overridden instantiateItem(). While it is not required to override instantiateItem() for

this adapter, we do need to update fragments that are outside the offscreen page limit when

modifications to the list take place. Because instantiateItem() will get called each time a

fragment scrolls back inside the page limit, it is an opportune place to reset the display list.

Let’s look at an example application that uses this adapter. See Listings 2-57 and 2-58.

Tip FragmentPagerAdapter retains all fragment instances as active whether or not they are

actively within the offscreen page limit. If your pager needs to hold a larger number of fragments,

or some are more heavyweight, look at using FragmentStatePagerAdapter instead. The latter

destroys fragments outside the offscreen page limit while maintaining their saved state—similar to

a rotation operation.

This example is designed to take a long list of data and break it into smaller sections that

display on each page. The Fragment this adapter displays is a custom inner implementation

that receives a List of items and displays them in a ListView.

FragmentPagerAdapter implements some of the underlying requirements of PagerAdapter for

us. Instead of implementing instantiateItem(), destroyItem(), and isViewFromObject(),

we only need to override getItem() to provide the Fragment for each page position. This

example defines a constant for the number of list items that should display on each page.

When we create the Fragment in getItem(), we pass in a subsection of the list based on the

index offset and this constant. The number of pages required, returned by getCount(), is

determined by the total size of the items list divided by the constant number of items per page.

189CHAPTER 2: User Interaction Recipes

Listing 2-57. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Add Item"
 android:onClick="onAddClick" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Remove Item"
 android:onClick="onRemoveClick" />

 <!-- ViewPager is a support widget, it needs the full name -->
 <android.support.v4.view.ViewPager
 android:id="@+id/view_pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

Listing 2-58. Activity with ListPagerAdapter

public class FragmentPagerActivity extends FragmentActivity {

 private ArrayList<String> mListItems;
 private ListPagerAdapter mAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Create the initial data set
 mListItems = new ArrayList<String>();
 mListItems.add("Mom");
 mListItems.add("Dad");
 mListItems.add("Sister");
 mListItems.add("Brother");
 mListItems.add("Cousin");
 mListItems.add("Niece");
 mListItems.add("Nephew");
 //Attach the data to the pager
 ViewPager pager =
 (ViewPager) findViewById(R.id.view_pager);
 mAdapter = new ListPagerAdapter(
 getSupportFragmentManager(),
 mListItems);

 pager.setAdapter(mAdapter);
 }

190 CHAPTER 2: User Interaction Recipes

 public void onAddClick(View v) {
 //Add a new unique item to the end of the list
 mListItems.add("Crazy Uncle "
 + System.currentTimeMillis());
 mAdapter.notifyDataSetChanged();
 }

 public void onRemoveClick(View v) {
 //Remove an item from the head of the list
 if (!mListItems.isEmpty()) {
 mListItems.remove(0);
 }
 mAdapter.notifyDataSetChanged();
 }
}

This example consists of two buttons to add and remove items from the data set as well

as a ViewPager. Notice that the ViewPager must be defined in XML using its fully qualified

package name because it is only part of the Support Library and does not exist in the

android.widget or android.view packages. The activity constructs a default list of items,

and it passes it to our custom adapter, which is then attached to the ViewPager.

Each Add button click appends a new item to the end of the list and triggers

ListPagerAdapter to update by calling notifyDataSetChanged(). Each Remove button click

removes an item from the front of the list and again notifies the adapter. With each change,

the adapter adjusts the number of pages available and updates the ViewPager. If all the

items are removed from the currently visible page, that page is removed and the previous

page will be displayed.

Using Other Helpful Methods

There are a few other methods on ViewPager that can be useful in your applications:

	setPageMargin() and setPageMarginDrawable() allow you to set some

extra space between pages and optionally supply a Drawable that will be

used to fill the margin spaces.

	setCurrentItem() allows you to programmatically set the page that

should be shown, with an option to disable the scrolling animation while

it switches pages.

	OnPageChangeListener can be used to notify the application of scroll and

change actions.

	onPageSelected() will be called when a new page is displayed.

	onPageScrolled() will be called continuously while a scroll operation

is taking place.

	onPageScrollStateChanged() will be called when the ViewPager

toggles from being idle, to being actively scrolled by the user, to

automatically scrolling to snap to the closest page.

191CHAPTER 2: User Interaction Recipes

2-19. Navigating with Tabs

Problem
You need to provide selectable tabs in your application for lateral screen navigation, but

Google does not provide a tab widget in the framework or support library.

Solution
(API Level 7)

We can build from the SlidingTabLayout that Google provides as an SDK sample to

implement tab navigation. Google has fully deprecated previous incarnations of Android

tabs, such as TabWidget and ActionBar.Tab, but SlidingTabLayout is consistent with the

current design patterns for tabs.

SlidingTabLayout is designed to work tightly with ViewPager, because part of the tabs

design pattern is to allow swiping between each view. Therefore, there is no API to manually

add tab items. Instead the tabs are derived from the page titles returned by the attached

PagerAdapter. If the tab contents extend beyond the display width, the user can scroll the

tabs left or right. As the pager is swiping, the current tab will automatically scroll to be visible

at the same time.

As of this writing, SlidingTabLayout was designed with the previous Holo design language

in mind. In the upcoming example, we will make a few tweaks to the layout to better support

the Material design instead.

Note In the future, these widgets may be moved into the Support Library, but for now they are

available only as sample code.

How It Works
Before we begin writing code of our own, we need to bring the sliding tabs sample code into

the project. We need to copy two classes from the SlidingTabsBasic SDK sample project

and into a package directory under src/main/java in our project: SlidingTabLayout and

SlidingTabStrip.

Note The SlidingTabsBasic SDK sample can be found at

<SDK-Directory>/samples/android-xx/ui/SlidingTabsBasic/.

192 CHAPTER 2: User Interaction Recipes

Since Google provides an explanation of how the sample is built, we won’t go into detail on

the tab widget here. We will treat it as a widget from any other library. When the example is

complete, we should have something like Figure 2-16.

Figure 2-16. Sliding tabs activity

Notice that the tabs sit below the action bar, and match the action bar background to

provide the appearance that they are a single element. Listings 2-59 and 2-60 define an

activity and layout to construct the tabs.

Listing 2-59. res/layout/activity_tabs.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <com.example.android.common.view.SlidingTabLayout
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@color/primaryGreen"/>

193CHAPTER 2: User Interaction Recipes

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

Listing 2-60. Sliding tabs activity

public class ActionTabsActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_tabs);

 ViewPager viewPager = (ViewPager) findViewById(R.id.pager);
 SlidingTabLayout tabLayout = (SlidingTabLayout) findViewById(R.id.tabs);

 viewPager.setAdapter(new TabsPagerAdapter(this));

 /*
 * SlidingTabLayout is bound to ViewPager, both for tab titles
 * and scroll tracking behavior.
 */
 tabLayout.setViewPager(viewPager);
 tabLayout.setCustomTabColorizer(new SlidingTabLayout.TabColorizer() {
 @Override
 public int getIndicatorColor(int position) {
 //Color to show underneath each tab position
 return Color.WHITE;
 }

 @Override
 public int getDividerColor(int position) {
 //Transparent to hide dividers
 return 0;
 }
 });
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.tabs, menu);
 return true;
 }

 /*
 * Simple PagerAdapter to display page views with static images
 */
 private static class TabsPagerAdapter extends PagerAdapter {
 private Context mContext;

194 CHAPTER 2: User Interaction Recipes

 public TabsPagerAdapter(Context context) {
 mContext = context;
 }

 /*
 * SlidingTabLayout requires this method to define the
 * text that each tab will display.
 */
 @Override
 public CharSequence getPageTitle(int position) {
 switch (position) {
 case 0:
 return "Primary";
 case 1:
 return "Secondary";
 case 2:
 return "Tertiary";
 case 3:
 return "Quaternary";
 case 4:
 return "Quinary";
 default:
 return "";
 }
 }

 @Override
 public int getCount() {
 return 5;
 }

 @Override
 public Object instantiateItem(ViewGroup container, int position) {
 ImageView pageView = new ImageView(mContext);
 pageView.setScaleType(ImageView.ScaleType.CENTER);
 pageView.setImageResource(R.drawable.ic_launcher);

 container.addView(pageView);

 return pageView;
 }

 @Override
 public void destroyItem(ViewGroup container, int position, Object object) {
 container.removeView((View) object);
 }

 @Override
 public boolean isViewFromObject(View view, Object object) {
 return (view == object);
 }
 }
}

195CHAPTER 2: User Interaction Recipes

Inside onCreate(), we must attach the ViewPager to our SlidingTabLayout by passing a

reference to setViewPager(). Internally, the layout will track scrolling events in the pager and

reflect changes in the currently selected page by scrolling the selector bar underneath the

corresponding tab.

The default colors for the tabs are pulled from the theme, and are usually incorrect. We can

use a TabColorizer instance to provide colors for the tab selector and the inter-tab dividers

lines. We have set the former to be pure white, and (as you can see in the figure) we have

hidden the divider lines to match the Material design look.

SlidingTabLayout derives its contents from the attached PagerAdapter. Our adapter

implementation must override getPageTitle() to provide the names that will appear on each

page’s tab.

Styling Tweaks

If you run your code at this point, the tabs will still look a bit off from Figure 2-16. We need

to make the following tweaks to SlidingTabLayout in order to bring it in line with Material

design:

Reduce selector height to 2dp	
Remove bottom shadow border	
Remove default bolded text	
Add support for different text colors on selected vs. nonselected tabs	

Note You can also use the versions of SlidingTabLayout and SlidingTabStrip provided in

the Android Recipes sample code to see these tweaks already applied.

Inside SlidingTabStrip.java, update the following constant values:

private static final int DEFAULT_BOTTOM_BORDER_THICKNESS_DIPS = 0;
...
private static final int SELECTED_INDICATOR_THICKNESS_DIPS = 2;

This will reduce the selector height and remove the shadow. Inside SlidingTabLayout.java,

we need to replace createDefaultTabView() with the version in Listing 2-61.

Listing 2-61. SlidingTabLayout Text Fixes

protected TextView createDefaultTabView(Context context) {
 TextView textView = new TextView(context);
 textView.setGravity(Gravity.CENTER);
 textView.setTextSize(TypedValue.COMPLEX_UNIT_SP, TAB_VIEW_TEXT_SIZE_SP);
 textView.setTypeface(Typeface.DEFAULT);

196 CHAPTER 2: User Interaction Recipes

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
 // If we're running on ICS or newer, enable all-caps to match the Action Bar tab style
 textView.setAllCaps(true);
 }

 int padding = (int) (TAB_VIEW_PADDING_DIPS * getResources().getDisplayMetrics().density);
 textView.setPadding(padding, padding, padding, padding);

 return textView;
}

This removes the default background highlight from Holo, and the bold text from the tabs.

Finally, we need to add support for two tab colors. The relevant additions are noted in

Listing 2-62.

Listing 2-62. SlidingTabLayout Text Colors

private int mDefaultTextColor;
private int mSelectedTextColor;

public SlidingTabLayout(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);

 //Obtain the tab colors, use theme default if not defined
 TypedArray a = context.obtainStyledAttributes(attrs, R.styleable.SlidingTabLayout);
 int defaultTextColor = a.getColor(R.styleable.SlidingTabLayout_android_

textColorPrimary, 0);
 mDefaultTextColor =
 a.getColor(R.styleable.SlidingTabLayout_textColorTabDefault, defaultTextColor);
 mSelectedTextColor =
 a.getColor(R.styleable.SlidingTabLayout_textColorTabSelected, defaultTextColor);
 a.recycle();

 // Disable the Scroll Bar
 setHorizontalScrollBarEnabled(false);
 // Make sure that the Tab Strip fills this View
 setFillViewport(true);

 mTitleOffset = (int) (TITLE_OFFSET_DIPS * getResources().getDisplayMetrics().density);

 mTabStrip = new SlidingTabStrip(context);
 addView(mTabStrip, LayoutParams.MATCH_PARENT, LayoutParams.WRAP_CONTENT);
}

...

//New method to update tab text colors on each selection change
private void updateSelectedTitle(int position) {
 final PagerAdapter adapter = mViewPager.getAdapter();
 for (int i = 0; i < adapter.getCount(); i++) {
 final View tabView = mTabStrip.getChildAt(i);

197CHAPTER 2: User Interaction Recipes

 if (TextView.class.isInstance(tabView)) {
 TextView titleView = (TextView) tabView;
 boolean isSelected = i == position;
 titleView.setTextColor(isSelected ? mSelectedTextColor
 : mDefaultTextColor);
 }
 }
}

...

private void scrollToTab(int tabIndex, int positionOffset) {
 final int tabStripChildCount = mTabStrip.getChildCount();
 if (tabStripChildCount == 0 || tabIndex < 0 || tabIndex >= tabStripChildCount) {
 return;
 }

 View selectedChild = mTabStrip.getChildAt(tabIndex);
 if (selectedChild != null) {
 //Add a call to our new method to update text colors on selection changes
 updateSelectedTitle(tabIndex);
 int targetScrollX = selectedChild.getLeft() + positionOffset;

 if (tabIndex > 0 || positionOffset > 0) {
 // If we're not at the first child and are mid-scroll, make sure we obey the offset
 targetScrollX -= mTitleOffset;
 }

 scrollTo(targetScrollX, 0);
 }
}

These additions allow us to define two text-color attributes in the application’s theme that

will apply to the selected tab and the other nonselected tabs. On each tab selection event,

our new updateSelectedTitle() method sets the text color of all the tabs based on the new

selection. Currently these attributes do not exist. Listing 2-63 defines them in the application

resources, Listing 2-64 applies a color to each in the current theme, and Listing 2-65 defines

the color values used.

Listing 2-63. res/values/attrs.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- Define Custom Attributes for our tab colors -->
 <declare-styleable name="SlidingTabLayout">
 <attr name="android:textColorPrimary" />
 <attr name="textColorTabDefault" format="color"/>
 <attr name="textColorTabSelected" format="color"/>
 </declare-styleable>
</resources>

198 CHAPTER 2: User Interaction Recipes

Listing 2-64. res/values/styles.xml

<resources>
 <!-- Base application theme. -->
 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Provide decor theme colors -->
 <item name="colorPrimary">@color/primaryGreen</item>
 <item name="colorPrimaryDark">@color/darkGreen</item>
 <item name="colorAccent">@color/accentGreen</item>

 <!-- Remove the action bar shadow -->
 <item name="android:windowContentOverlay">@null</item>

 <!-- Color attributes for our tabs -->
 <item name="textColorTabDefault">@color/tabTextDefault</item>
 <item name="textColorTabSelected">@color/tabTextSelected</item>
 </style>

</resources>

Listing 2-65. res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primaryGreen">#259b24</color>
 <color name="darkGreen">#0a7e07</color>
 <color name="accentGreen">#d0f8ce</color>

 <color name="tabTextDefault">#99ffffff</color>
 <color name="tabTextSelected">#ffffff</color>
</resources>

Here in our theme we can see the full white applied to the selected tab, alongside the 60%

white applied to the remaining tabs.

Summary
In this chapter, we explored techniques that we can use to build a compelling user interface

that conforms to the design guidelines that Google has set forth for the Android platform. We

started out looking at how to effectively use the action bar interface elements in applications.

We explored managing configuration changes such as device orientation in creative ways.

You saw techniques for managing user input through text and touch handling. Finally, you

were exposed to implementing common navigation patterns such as the drawer layout,

swipe-paging views, and tabs.

In the next chapter, we will look at using the SDK to communicate with the outside world by

accessing network resources and talking to other devices by using technologies such as USB

and Bluetooth.

199

Chapter 3
Communications and

Networking

The key to many successful mobile applications is their ability to connect and interact

with remote data sources. Web services and APIs are abundant in today’s world, allowing

an application to interact with just about any service, from weather forecasts to personal

financial information. Bringing this data into the palm of a user’s hand and making it

accessible from anywhere is one of the greatest powers of the mobile platform. Android

builds on the web foundations that Google is known for and provides a rich toolset for

communicating with the outside world.

3-1. Displaying Web Information

Problem
HTML or image data from the Web needs to be presented in the application without any

modification or processing.

Solution
(API Level 3)

Display the information in a WebView. WebView is a view widget that can be embedded in any

layout to display web content, both local and remote, in your application. WebView is based

on the same open source engine that powers the Android Browser application, affording

applications the same level of power and capability.

200 CHAPTER 3: Communications and Networking

How It Works
WebView has some very desirable properties when displaying assets downloaded from the

Web, not the least of which are two-dimensional scrolling (horizontal and vertical at the same

time) and zoom controls. A WebView can be the perfect place to house a large image, such as

a stadium map, in which the user may want to pan and zoom around. Here we will discuss

how to do this with both local and remote assets.

Display a URL

The simplest case is displaying an HTML page or image by supplying the URL of the

resource to the WebView. The following are a handful of practical uses for this technique in

your applications:

Provide access to your corporate site without leaving the application.	
Display a page of live content from a web server, such as an FAQ 	
section, that can be changed without requiring an upgrade to the

application.

Display a large image resource that the user would want to interact with 	
using pan/zoom.

Let’s take a look at a simple example that loads a popular web page inside the content view

of an activity instead of within the browser (see Listings 3-1 and 3-2).

Listing 3-1. Activity Containing a WebView

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 //Enable JavaScript support
 webview.getSettings().setJavaScriptEnabled(true);
 webview.loadUrl("http://www.android.com/");

 setContentView(webview);
 }
}

201CHAPTER 3: Communications and Networking

Listing 3-2. AndroidManifest.xml Setting the Required Permissions

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.webview">

 <uses-permission android:name="android.permission.INTERNET" />

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MyActivity">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Important If the content you are loading into WebView is remote, AndroidManifest.xml must

declare that it uses the android.permission.INTERNET permission.

The result displays the HTML page in your activity (see Figure 3-1).

Note By default, WebView has JavaScript support disabled. Be sure to enable JavaScript in the

WebView.WebSettings object if the content you are displaying requires it.

202 CHAPTER 3: Communications and Networking

Note that if you click on any links inside the view, the device’s browser application will

launch. This is because all web URL loads are handled by the system as intents by default.

If you want to handle links internally, you have to intercept those events. We will discuss how

to do that later in this chapter.

Display Local Assets

WebView is also quite useful in displaying local content to take advantage of either

HTML/CSS formatting or the pan/zoom behavior it provides to its contents. You may use

the assets directory of your Android project to store resources you would like to display in

a WebView, such as large images or HTML files. To better organize the assets, you may also

create subdirectories under assets to store files in.

WebView.loadUrl() can display files stored under assets by using the

file:///android_asset/<resource path> URL schema. For example, if the file

android.jpg was placed into the assets directory, it could be loaded into a WebView

using the following URL:

file:///android_asset/android.jpg

Figure 3-1. HTML page in a WebView

203CHAPTER 3: Communications and Networking

If that same file were placed in a directory named images under assets, WebView could load it

with the following URL:

file:///android_asset/images/android.jpg

In addition, WebView.loadData() will load raw HTML stored in a string resource or variable

into the view. Using this technique, preformatted HTML text could be stored in res/values/
strings.xml or downloaded from a remote API and displayed in the application.

Listings 3-3 and 3-4 show an example activity with two WebView widgets stacked vertically

on top of one another. The upper view is displaying a large image file stored in the assets

directory, and the lower view is displaying an HTML string stored in the application’s string

resources.

Listing 3-3. res/layout/main.xml

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <WebView
 android:id="@+id/upperview"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"/>

 <WebView
 android:id="@+id/lowerview"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"/>
</LinearLayout>

Listing 3-4. Activity to Display Local Web Content

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 WebView upperView = (WebView)findViewById(R.id.upperview);
 //Zoom feature must be enabled
 upperView.getSettings().setBuiltInZoomControls(true);
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 //Android 3.0+ has pinch-zoom, don't need buttons
 upperView.getSettings().setDisplayZoomControls(false);
 }
 upperView.loadUrl("file:///android_asset/android.jpg");

204 CHAPTER 3: Communications and Networking

 WebView lowerView = (WebView)findViewById(R.id.lowerview);
 String htmlString =
 "<h1>Header</h1><p>This is HTML text
"
 + "<i>Formatted in italics</i></p>";
 lowerView.loadData(htmlString, "text/html", "utf-8");
 }
}

When the activity is displayed, each WebView occupies half of the screen’s vertical space.

The HTML string is formatted as expected, while the large image can be scrolled both

horizontally and vertically; the user may even zoom in or out (see Figure 3-2).

Figure 3-2. Two WebViews displaying local resources

We enable the user to zoom in and out of the content via setBuiltInZoomControls(true).

By default this will also display a button overlay with tappable zoom controls. On

Android 3.0 and later, you might additionally consider including WebView.getSettings().
setDisplayZoomControls(false). These platforms natively support zooming with a

pinch gesture, so showing the overlay buttons is unnecessary. This does not replace

setBuiltInZoomControls(), which must also be enabled for pinch to work.

205CHAPTER 3: Communications and Networking

3-2. Intercepting WebView Events

Problem
Your application is using a WebView to display content, but it also needs to listen and respond

to users clicking links on the page.

Solution
(API Level 1)

Implement a WebViewClient and attach it to the WebView. WebViewClient and

WebChromeClient are two WebKit classes that allow an application to get event callbacks

and customize the behavior of the WebView. By default, WebView will pass a URL to the

ActivityManager to be handled if no WebViewClient is present, which usually results in any

clicked link loading in the Browser application instead of the current WebView.

How It Works
In Listing 3-5, we create an activity with a WebView that will handle its own URL loading.

Listing 3-5. Activity with a WebView That Handles URLs

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 webview.getSettings().setJavaScriptEnabled(true);
 //Add a client to the view
 webview.setWebViewClient(new WebViewClient());
 webview.loadUrl("http://www.android.com");
 setContentView(webview);
 }
}

In this example, simply providing a plain vanilla WebViewClient to WebView allows it to

handle any URL requests itself, instead of passing them up to the ActivityManager, so

clicking a link will load the requested page inside the same view. This is because the default

implementation simply returns false for shouldOverrideUrlLoading(), which tells the client

to pass the URL to the WebView and not to the application.

In this next case, we will take advantage of the WebViewClient.shouldOverrideUrlLoading()

callback to intercept and monitor user activity (see Listing 3-6).

206 CHAPTER 3: Communications and Networking

Listing 3-6. Activity That Intercepts WebView URLs

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 webview.getSettings().setJavaScriptEnabled(true);
 //Add a client to the view
 webview.setWebViewClient(mClient);
 webview.loadUrl("http://www.google.com");
 setContentView(webview);
 }

 private WebViewClient mClient = new WebViewClient() {
 @Override
 public boolean shouldOverrideUrlLoading(WebView view,
 String url) {
 Uri request = Uri.parse(url);

 if(TextUtils.equals(request.getAuthority(),
 "www.google.com")) {
 //Allow the load
 return false;
 }

 Toast.makeText(MyActivity.this,
 "Sorry, buddy",
 Toast.LENGTH_SHORT).show();
 return true;
 }
 };
}

In this example, shouldOverrideUrlLoading() determines whether to load the content back

in this WebView based on the URL it was passed, keeping the user from leaving Google’s

site. Uri.getAuthority() returns the hostname portion of a URL, and we use that to

check whether the link the user clicked is on Google’s domain (www.google.com). If we can

verify that the link is to another Google page, returning false allows the WebView to load

the content. If not, we notify the user and, returning true, tell the WebViewClient that the

application has taken care of this URL and not to allow the WebView to load it.

This technique can be more sophisticated, enabling the application to actually handle the

URL by doing something interesting. A custom schema could even be developed to create a

full interface between your application and the WebView content.

http://www.google.com/

207CHAPTER 3: Communications and Networking

3-3. Accessing WebView with JavaScript

Problem
Your application needs access to the raw HTML of the current contents displayed in a

WebView, either to read or modify specific values.

Solution
(API Level 1)

Create a JavaScript interface to bridge between the WebView and application code.

How It Works
WebView.addJavascriptInterface() binds a Java object to JavaScript so that its methods

can then be called within the WebView. Using this interface, JavaScript can be used to

marshal data between your application code and the WebView’s HTML.

Caution Allowing JavaScript to control your application can inherently present a security threat,

allowing remote execution of application code. This interface should be utilized with that possibility

in mind.

Let’s look at an example of this in action. Listing 3-7 presents a simple HTML form to be

loaded into the WebView from the local assets directory. Listing 3-8 is an activity that uses

two JavaScript functions to exchange data between the activity preferences and content in

the WebView.

Listing 3-7. assets/form.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>

<form name="input" action="form.html" method="get">
Enter Email: <input type="text" id="emailAddress" />
<input type="submit" value="Submit" />
</form>

</html>

208 CHAPTER 3: Communications and Networking

Listing 3-8. Activity with JavaScript Bridge Interface

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 //JavaScript is not enabled by default
 webview.getSettings().setJavaScriptEnabled(true);
 webview.setWebViewClient(mClient);
 //Attach the custom interface to the view
 webview.addJavascriptInterface(new MyJavaScriptInterface(), "BRIDGE");

 setContentView(webview);

 webview.loadUrl("file:///android_asset/form.html");
 }

 private static final String JS_SETELEMENT =
 "javascript:document.getElementById('%s').value='%s'";
 private static final String JS_GETELEMENT =
 "javascript:window.BRIDGE"
 + ".storeElement('%s',document.getElementById('%s').value)";
 private static final String ELEMENTID = "emailAddress";

 private WebViewClient mClient = new WebViewClient() {
 @Override
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 //Before leaving the page, attempt to retrieve the email
 // using JavaScript
 executeJavascript(view,
 String.format(JS_GETELEMENT, ELEMENTID, ELEMENTID));
 return false;
 }

 @Override
 public void onPageFinished(WebView view, String url) {
 //When page loads, inject address into page using JavaScript
 SharedPreferences prefs = getPreferences(Activity.MODE_PRIVATE);
 executeJavascript(view, String.format(JS_SETELEMENT, ELEMENTID,
 prefs.getString(ELEMENTID, "")));
 }
 };

 private void executeJavascript(WebView view, String script) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 view.evaluateJavascript(script, null);
 } else {
 view.loadUrl(script);
 }
 }

209CHAPTER 3: Communications and Networking

 private class MyJavaScriptInterface {
 //Store an element in preferences
 @JavascriptInterface
 public void storeElement(String id, String element) {
 SharedPreferences.Editor edit =
 getPreferences(Activity.MODE_PRIVATE).edit();
 edit.putString(id, element);
 edit.commit();
 //If element is valid, raise a Toast
 if(!TextUtils.isEmpty(element)) {
 Toast.makeText(MyActivity.this, element, Toast.LENGTH_SHORT)
 .show();
 }
 }
 }
}

In this somewhat contrived example, a single element form is created in HTML and displayed

in a WebView. In the activity code, we look for a form value in the WebView with the ID of

emailAddress, and its value is saved to SharedPreferences every time a link is clicked on the

page (in this case, the Submit button of the form) through the shouldOverrideUrlLoading()

callback. Whenever the page finishes loading (that is, onPageFinished() is called), we attempt

to inject the current value from SharedPreferences back into the web form.

Note JavaScript is not enabled by default in WebView. In order to inject or even simply render

JavaScript, we must call WebSettings.setJavaScriptEnabled(true) when initializing the view.

A Java class is created called MyJavaScriptInterface, which defines the method

storeElement(). When the view is created, we call the WebView.addJavascriptInterface()

method to attach this object to the view and give it the name BRIDGE. When calling this

method, the string parameter is a name used to reference the interface inside JavaScript code.

We have defined two JavaScript methods as constant strings here: JS_GETELEMENT and

JS_SETELEMENT. Prior to Android 4.4, we executed these methods on the WebView by calling

the same loadUrl() method we’ve seen before. However, in API Level 19 and beyond, we

have a new method on WebView named evaluateJavascript() for this purpose. The example

code verifies the API level currently in use and calls the appropriate method.

Notice that JS_GETELEMENT is a reference to calling our custom interface function (referenced

as BRIDGE.storeElement), which will call that method on MyJavaScriptInterface and store

the form element’s value in preferences. If the value retrieved from the form is not blank, a

Toast will also be raised.

Any JavaScript may be executed on the WebView in this manner, and it does not need to be

a method included as part of the custom interface. JS_SETELEMENT, for example, uses pure

JavaScript to set the value of the form element on the page.

One popular application of this technique is to remember form data that a user may need

to enter in the application, but the form must be web based, such as a reservation form or

payment form for a web application that doesn’t have a lower-level API to access.

210 CHAPTER 3: Communications and Networking

3-4. Downloading an Image File

Problem
Your application needs to download and display an image from the Web or another remote

server.

Solution
(API Level 4)

Use AsyncTask to download the data in a background thread. AsyncTask is a wrapper class

that makes threading long-running operations into the background painless and simple;

it also manages concurrency with an internal thread pool. In addition to handling the

background threading, callback methods are provided before, during, and after the operation

executes, allowing you to make any updates required on the main UI thread.

How It Works
In the context of downloading an image, let’s create a subclass of ImageView called

WebImageView, which will lazily load an image from a remote source and display it as soon

as it is available. The downloading will be performed inside an AsyncTask operation

(see Listing 3-9).

Listing 3-9. WebImageView

public class WebImageView extends ImageView {

 private Drawable mPlaceholder, mImage;

 public WebImageView(Context context) {
 this(context, null);
 }

 public WebImageView(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public WebImageView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 }

 public void setPlaceholderImage(Drawable drawable) {
 mPlaceholder = drawable;
 if(mImage == null) {
 setImageDrawable(mPlaceholder);
 }
 }

211CHAPTER 3: Communications and Networking

 public void setPlaceholderImage(int resid) {
 mPlaceholder = getResources().getDrawable(resid);
 if(mImage == null) {
 setImageDrawable(mPlaceholder);
 }
 }

 public void setImageUrl(String url) {
 DownloadTask task = new DownloadTask();
 task.execute(url);
 }

 private class DownloadTask extends
 AsyncTask<String, Void, Bitmap> {
 @Override
 protected Bitmap doInBackground(String... params) {
 String url = params[0];
 try {
 URLConnection connection =
 (new URL(url)).openConnection();
 InputStream is = connection.getInputStream();
 BufferedInputStream bis =
 new BufferedInputStream(is);

 ByteArrayBuffer baf = new ByteArrayBuffer(50);
 int current = 0;
 while ((current = bis.read()) != -1) {
 baf.append((byte)current);
 }
 byte[] imageData = baf.toByteArray();
 return BitmapFactory.decodeByteArray(imageData, 0,
 imageData.length);
 } catch (Exception exc) {
 return null;
 }
 }

 @Override
 protected void onPostExecute(Bitmap result) {
 mImage = new BitmapDrawable(getContext().getResources(), result);
 if(mImage != null) {
 setImageDrawable(mImage);
 }
 }
 };
}

As you can see, WebImageView is a simple extension of the Android ImageView widget. The

setPlaceholderImage() methods allow a local drawable to be set as the display image until

the remote content is finished downloading. The bulk of the interesting work begins after

the view has been given a remote URL using setImageUrl(), at which point the custom

AsyncTask begins work.

212 CHAPTER 3: Communications and Networking

Notice that an AsyncTask is strongly typed with three values for the input parameter, progress

value, and result. In this case, a string is passed to the task’s execute() method, and the

background operation should return a Bitmap. The middle value, the progress, we are not using

in this example, so it is set as Void. When extending AsyncTask, the only required method to

implement is doInBackground(), which defines the chunk of work to be run on a background

thread. In the previous example, this is where a connection is made to the remote URL

provided, and the image is downloaded. Upon completion, we attempt to create a Bitmap from

the downloaded data. If an error occurs at any point, the operation will abort and return null.

The other callback methods defined in AsyncTask, such as onPreExecute(),

onPostExecute(), and onProgressUpdate(), are called on the main thread for the purposes of

updating the user interface. In the previous example, onPostExecute() is used to update the

view’s image with the result data.

Important Android UI classes are not thread-safe. Be sure to use one of the callback methods

that occur on the main thread to make any updates to the UI. Do not update views from within

doInBackground().

Listings 3-10 and 3-11 show simple examples of using this class in an activity. Because this

class is not part of the android.widget or android.view packages, we must write the fully

qualified package name when using it in XML.

Listing 3-10. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <com.examples.WebImageView
 android:id="@+id/webImage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</LinearLayout>

Listing 3-11. Example Activity

public class WebImageActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 WebImageView imageView =
 (WebImageView) findViewById(R.id.webImage);
 imageView.setPlaceholderImage(R.drawable.ic_launcher);
 imageView.setImageUrl("http://lorempixel.com/400/200");
 }
}

213CHAPTER 3: Communications and Networking

In this example, we first set a local image (the application icon) as the WebImageView

placeholder. This image is displayed immediately to the user. We then tell the view to fetch

an image of the Apress logo from the Web. As noted previously, this downloads the image in

the background and, when it is complete, replaces the placeholder image in the view.

It is this simplicity in creating background operations that has led the Android team to refer

to AsyncTask as painless threading.

3-5. Downloading Completely in the Background

Problem
The application must download a large resource to the device, such as a movie file, that

must not require the user to keep the application active.

Solution
(API Level 9)

Use the DownloadManager API. The DownloadManager is a service added to the SDK with API

Level 9 that allows a long-running download to be handed off and managed completely

by the system. The primary advantage of using this service is that DownloadManager will

continue attempting to download the resource despite failures, connection changes, and

even device reboots.

How It Works
Listing 3-12 is a sample activity that uses DownloadManager to handle the download of a

large image file. When complete, the image is displayed in an ImageView. Whenever you

utilize DownloadManager to access content from the Web, be sure to declare you are using

android.permission.INTERNET in the application’s manifest.

Listing 3-12. DownloadManager Sample Activity

public class DownloadActivity extends Activity {

 private static final String DL_ID = "downloadId";
 private SharedPreferences prefs;

 private DownloadManager dm;
 private ImageView imageView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 imageView = new ImageView(this);
 setContentView(imageView);

214 CHAPTER 3: Communications and Networking

 prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
 dm = (DownloadManager)getSystemService(DOWNLOAD_SERVICE);
 }

 @Override
 public void onResume() {
 super.onResume();

 if(!prefs.contains(DL_ID)) {
 //Start the download
 Uri resource = Uri.parse(
 "http://www.bigfoto.com/dog-animal.jpg");
 DownloadManager.Request request =
 new DownloadManager.Request(resource);
 //Set allowed connections to process download
 request.setAllowedNetworkTypes(
 DownloadManager.Request.NETWORK_MOBILE
 | DownloadManager.Request.NETWORK_WIFI);
 request.setAllowedOverRoaming(false);

 //Display in the notification bar
 request.setTitle("Download Sample");
 long id = dm.enqueue(request);
 //Save the unique id
 prefs.edit().putLong(DL_ID, id).commit();
 } else {
 //Download already started, check status
 queryDownloadStatus();
 }

 registerReceiver(receiver, new IntentFilter(
 DownloadManager.ACTION_DOWNLOAD_COMPLETE));
 }

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(receiver);
 }

 private BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 queryDownloadStatus();
 }
 };

 private void queryDownloadStatus() {
 DownloadManager.Query query = new DownloadManager.Query();
 query.setFilterById(prefs.getLong(DL_ID, 0));
 Cursor c = dm.query(query);

215CHAPTER 3: Communications and Networking

 if(c.moveToFirst()) {
 int status = c.getInt(
 c.getColumnIndex(DownloadManager.COLUMN_STATUS));

 switch(status) {
 case DownloadManager.STATUS_PAUSED:
 case DownloadManager.STATUS_PENDING:
 case DownloadManager.STATUS_RUNNING:
 //Do nothing, still in progress
 break;
 case DownloadManager.STATUS_SUCCESSFUL:
 //Done, display the image
 try {
 ParcelFileDescriptor file =
 dm.openDownloadedFile(
 prefs.getLong(DL_ID, 0));
 FileInputStream fis = new ParcelFileDescriptor
 .AutoCloseInputStream(file);
 imageView.setImageBitmap(
 BitmapFactory.decodeStream(fis));
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case DownloadManager.STATUS_FAILED:
 //Clear the download and try again later
 dm.remove(prefs.getLong(DL_ID, 0));
 prefs.edit().clear().commit();
 break;
 }
 }
 }

}

Important As of this book’s publishing date, a bug in the SDK throws an Exception claiming

that android.permission.ACCESS_ALL_DOWNLOADS is required to use DownloadManager.

This Exception is actually thrown when android.permission.INTERNET is not in your

manifest.

This example does all of its useful work in the Activity.onResume() method so the

application can determine the status of the download each time the user returns to the

activity. Downloads within the manager can be referenced using a long ID value that is

returned when DownloadManager.enqueue() is called. In the example, we persist that value in

the application’s preferences in order to monitor and retrieve the downloaded content at

any time.

216 CHAPTER 3: Communications and Networking

Upon the first launch of the example application, a DownloadManager.Request object is

created to represent the content to download. At a minimum, this request needs the Uri of

the remote resource. However, there are many useful properties to set on the request as well

to control its behavior. Some of the useful properties include the following:

	Request.setAllowedNetworkTypes(): Set specific network types over

which the download may be retrieved.

	Request.setAllowedOverRoaming(): Set if the download is allowed to

occur while the device is on a roaming connection.

	Request.setDescription(): Set a description to be displayed in the

system notification for the download.

	Request.setTitle(): Set a title to be displayed in the system notification

for the download.

Once an ID has been obtained, the application uses that value to check the status of the

download. By registering a BroadcastReceiver to listen for the ACTION_DOWNLOAD_COMPLETE

broadcast, the application will react to the download finishing by setting the image file on the

activity’s ImageView. If the activity is paused while the download completes, upon the next

resume the status will be checked and the ImageView content will be set.

It is important to note that ACTION_DOWNLOAD_COMPLETE is a broadcast sent by the

DownloadManager for every download it may be managing. Because of this, we still must

check that the download ID we are interested in is really ready.

Destinations

In Listing 3-12, we never told the DownloadManager where to place the file. Instead, when

we wanted to access the file, we used the DownloadManager.openDownloadedFile() method

with the ID value stored in preferences to get a ParcelFileDescriptor, which can be turned

into a stream the application can read from. This is a simple and straightforward way to gain

access to the downloaded content, but it has some caveats to be aware of.

Without a specific destination, files are downloaded to the shared download cache, where

the system retains the right to delete them at any time to reclaim space. Downloading in this

fashion is a convenient way to get data quickly, but if your needs for the download are more

long-term, a permanent destination should be specified on external storage by using one of

the DownloadManager.Request methods:

	Request.setDestinationInExternalFilesDir(): Set the destination to a

hidden directory on external storage.

	Request.setDestinationInExternalPublicDir(): Set the destination to

a public directory on external storage.

	Request.setDestinationUri(): Set the destination to a file Uri located

on external storage.

217CHAPTER 3: Communications and Networking

Files without an explicit destination also often get removed when DownloadManager.remove()

gets called to clear the entry from the manager list or the user clears the downloads list; files

downloaded to external storage will not be removed by the system under these conditions.

3-6. Accessing a REST API

Problem
Your application needs to access a RESTful API over HTTP to interact with the web services

of a remote host.

Note All destination methods writing to external storage will require your application to declare

use of android.permission.WRITE_EXTERNAL_STORAGE in the manifest.

Note REST stands for Representational State Transfer. It is a common architectural style for web

services today. RESTful APIs are typically built using standard HTTP verbs to create requests of the

remote resource, and the responses are typically returned in a structured document format, such as

XML, JSON, or comma-separated values (CSV).

Solution
(API Level 9)

Google recommends HttpURLConnection to access network resources in Android. Use

the Java HttpURLConnection class inside an AsyncTask. Despite the target on this recipe,

HttpUrlConnection has been part of the Android framework since API Level 1 but has

been the recommended method for network I/O only since the release of Android 2.3.

This is primarily because there were bugs in its implementation prior to that, which made

HttpClient a more stable choice. However, moving forward, HttpURLConnection is where

the Android team will continue to make performance and stability enhancements, so it is the

recommended implementation choice.

Note HttpClient is from the Apache HttpComponents Library, which is baked into the Android

framework. This is an alternative you may consider if your application still supports platforms prior

to Gingerbread.

HttpURLConnection is lightweight, and newer versions of Android have response compression

and other enhancements built in. Its API is also quite low-level, so it is more ubiquitous,

and implementing any type of HTTP transaction is possible. The drawback to this is that it

requires more coding by the developer (but isn’t that why you bought this book?).

218 CHAPTER 3: Communications and Networking

How It Works
Let’s take a look at making HTTP requests with HttpUrlConnection. Network requests are

long, blocking operations, so they must not be executed on the application’s main thread.

This rule is so important that Android will crash your application with a NetworkOnMainThread

exception if you try!

So we must wrap our networking calls in something like an AsyncTask to make sure the work

is done on a background thread. We’ll start off by defining our own implementation called

RestTask in Listing 3-13, with a helper class in Listing 3-14.

Listing 3-13. RestTask Using HttpUrlConnection

public class RestTask extends AsyncTask<Void, Integer, Object> {
 private static final String TAG = "RestTask";

 public interface ResponseCallback {
 public void onRequestSuccess(String response);

 public void onRequestError(Exception error);
 }

 public interface ProgressCallback {
 public void onProgressUpdate(int progress);
 }

 private HttpURLConnection mConnection;
 private String mFormBody;
 private File mUploadFile;
 private String mUploadFileName;

 //Activity callbacks. Use WeakReferences to avoid blocking
 // operations causing linked objects to stay in memory
 private WeakReference<ResponseCallback> mResponseCallback;
 private WeakReference<ProgressCallback> mProgressCallback;

 public RestTask(HttpURLConnection connection) {
 mConnection = connection;
 }

 public void setFormBody(List<NameValuePair> formData) {
 if (formData == null) {
 mFormBody = null;
 return;
 }

219CHAPTER 3: Communications and Networking

 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < formData.size(); i++) {
 NameValuePair item = formData.get(i);
 sb.append(URLEncoder.encode(item.getName()));
 sb.append("=");
 sb.append(URLEncoder.encode(item.getValue()));
 if (i != (formData.size() - 1)) {
 sb.append("&");
 }
 }

 mFormBody = sb.toString();
 }

 public void setUploadFile(File file, String fileName) {
 mUploadFile = file;
 mUploadFileName = fileName;
 }

 public void setResponseCallback(ResponseCallback callback) {
 mResponseCallback =
 new WeakReference<ResponseCallback>(callback);
 }

 public void setProgressCallback(ProgressCallback callback) {
 mProgressCallback =
 new WeakReference<ProgressCallback>(callback);
 }

 private void writeMultipart(String boundary,
 String charset,
 OutputStream output,
 boolean writeContent) throws IOException {

 BufferedWriter writer = null;
 try {
 writer = new BufferedWriter(
 new OutputStreamWriter(output,
 Charset.forName(charset)), 8192);
 // Post Form Data Component
 if (mFormBody != null) {
 writer.write("--" + boundary);
 writer.write("\r\n");
 writer.write(
 "Content-Disposition: form-data;"
 + " name=\"parameters\"");
 writer.write("\r\n");
 writer.write("Content-Type: text/plain; charset="
 + charset);
 writer.write("\r\n");
 writer.write("\r\n");

220 CHAPTER 3: Communications and Networking

 if (writeContent) {
 writer.write(mFormBody);
 }
 writer.write("\r\n");
 writer.flush();
 }

 // Send binary file.
 writer.write("--" + boundary);
 writer.write("\r\n");
 writer.write("Content-Disposition: form-data; name=\""
 + mUploadFileName + "\"; filename=\""
 + mUploadFile.getName() + "\"");
 writer.write("\r\n");
 writer.write("Content-Type: "
 + URLConnection.guessContentTypeFromName(
 mUploadFile.getName()));
 writer.write("\r\n");
 writer.write("Content-Transfer-Encoding: binary");
 writer.write("\r\n");
 writer.write("\r\n");
 writer.flush();
 if (writeContent) {
 InputStream input = null;
 try {
 input = new FileInputStream(mUploadFile);
 byte[] buffer = new byte[1024];
 for (int length = 0;
 (length = input.read(buffer)) > 0;) {
 output.write(buffer, 0, length);
 }
 // Don't close the OutputStream yet
 output.flush();
 } catch (IOException e) {
 Log.w(TAG, e);
 } finally {
 if (input != null) {
 try {
 input.close();
 } catch (IOException e) {
 }
 }
 }
 }
 // This CRLF signifies the end of the binary chunk
 writer.write("\r\n");
 writer.flush();

221CHAPTER 3: Communications and Networking

 // End of multipart/form-data.
 writer.write("--" + boundary + "--");
 writer.write("\r\n");
 writer.flush();
 } finally {
 if (writer != null) {
 writer.close();
 }
 }
 }

 private void writeFormData(String charset,
 OutputStream output) throws IOException {
 try {
 output.write(mFormBody.getBytes(charset));
 output.flush();
 } finally {
 if (output != null) {
 output.close();
 }
 }
 }

 @Override
 protected Object doInBackground(Void... params) {
 //Generate random string for boundary
 String boundary =
 Long.toHexString(System.currentTimeMillis());
 String charset = Charset.defaultCharset().displayName();

 try {
 // Set up output if applicable
 if (mUploadFile != null) {
 //We must do a multipart request
 mConnection.setRequestProperty("Content-Type",
 "multipart/form-data; boundary="
 + boundary);

 //Calculate the size of the extra metadata
 ByteArrayOutputStream bos =
 new ByteArrayOutputStream();
 writeMultipart(boundary, charset, bos, false);
 byte[] extra = bos.toByteArray();
 int contentLength = extra.length;
 //Add the file size to the length
 contentLength += mUploadFile.length();
 //Add the form body, if it exists
 if (mFormBody != null) {
 contentLength += mFormBody.length();
 }

222 CHAPTER 3: Communications and Networking

 mConnection
 .setFixedLengthStreamingMode(contentLength);
 } else if (mFormBody != null) {
 //In this case, it is just form data to post
 mConnection.setRequestProperty("Content-Type",
 "application/x-www-form-urlencoded; charset="
 + charset);
 mConnection.setFixedLengthStreamingMode(
 mFormBody.length());
 }

 //This is the first call on URLConnection that
 // actually does Network IO. Even openConnection() is
 // still just doing local operations.
 mConnection.connect();

 // Do output if applicable (for a POST)
 if (mUploadFile != null) {
 OutputStream out = mConnection.getOutputStream();
 writeMultipart(boundary, charset, out, true);
 } else if (mFormBody != null) {
 OutputStream out = mConnection.getOutputStream();
 writeFormData(charset, out);
 }

 // Get response data
 int status = mConnection.getResponseCode();
 if (status >= 300) {
 String message = mConnection.getResponseMessage();
 return new HttpResponseException(status, message);
 }

 InputStream in = mConnection.getInputStream();
 String encoding = mConnection.getContentEncoding();
 int contentLength = mConnection.getContentLength();
 if (encoding == null) {
 encoding = "UTF-8";
 }

 byte[] buffer = new byte[1024];

 int length = contentLength > 0 ? contentLength : 0;
 ByteArrayOutputStream out = new ByteArrayOutputStream(length);

 int downloadedBytes = 0;
 int read;
 while ((read = in.read(buffer)) != -1) {
 downloadedBytes += read;
 publishProgress((downloadedBytes * 100) / contentLength);
 out.write(buffer, 0, read);
 }

223CHAPTER 3: Communications and Networking

 return new String(out.toByteArray(), encoding);
 } catch (Exception e) {
 Log.w(TAG, e);
 return e;
 } finally {
 if (mConnection != null) {
 mConnection.disconnect();
 }
 }
 }

 @Override
 protected void onProgressUpdate(Integer... values) {
 // Update progress UI
 if (mProgressCallback != null
 && mProgressCallback.get() != null) {
 mProgressCallback.get().onProgressUpdate(values[0]);
 }
 }

 @Override
 protected void onPostExecute(Object result) {
 if (mResponseCallback != null
 && mResponseCallback.get() != null) {
 final ResponseCallback cb = mResponseCallback.get();
 if (result instanceof String) {
 cb.onRequestSuccess((String) result);
 } else if (result instanceof Exception) {
 cb.onRequestError((Exception) result);
 } else {
 cb.onRequestError(new IOException(
 "Unknown Error Contacting Host"));
 }
 }
 }
}

Listing 3-14. Util Class to Create Requests

public class RestUtil {

 public static RestTask obtainGetTask(String url)
 throws MalformedURLException, IOException {
 HttpURLConnection connection =
 (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoInput(true);

 RestTask task = new RestTask(connection);
 return task;
 }

224 CHAPTER 3: Communications and Networking

 public static RestTask obtainFormPostTask(String url,
 List<NameValuePair> formData)
 throws MalformedURLException, IOException {
 HttpURLConnection connection =
 (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoOutput(true);

 RestTask task = new RestTask(connection);
 task.setFormBody(formData);

 return task;
 }

 public static RestTask obtainMultipartPostTask(
 String url, List<NameValuePair> formPart,
 File file, String fileName)
 throws MalformedURLException, IOException {
 HttpURLConnection connection =
 (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoOutput(true);

 RestTask task = new RestTask(connection);
 task.setFormBody(formPart);
 task.setUploadFile(file, fileName);

 return task;
 }
}

We have written a RestTask that is capable of handling GET, simple POST, and multipart

POST requests, and we define the parameters of the request dynamically based on the

components added to RestTask.

The task supports attaching two optional callbacks: one to be notified when the request

has completed, and the other to update any visible UI of the progress while downloading

response content.

In this example, an application would create an instance of RestTask through the RestUtil

helper class. This subdivides the setup required on HttpURLConnection, which doesn’t

actually do any network I/O from the portions that connect and interact with the host. The

helper class creates the connection instance and also sets up any time-out values and the

HTTP request method.

225CHAPTER 3: Communications and Networking

If there is any body content, in the case of a POST, those values are set directly on our

custom task to be written when the task executes.

Once a RestTask is executed, it goes through and determines whether there is any body

data attached that it needs to write. If we have attached form data (as name-value pairs)

or a file for upload, it takes that as a trigger to construct a POST body and send it. With

HttpURLConnection, we are responsible for all aspects of the connection, including telling

the server the amount of data that is coming. Therefore, RestTask takes the time to calculate

how much data will be posted and calls setFixedLengthStreamingMode() to construct a

header field telling the server how large our content is. In the case of a simple form post, this

calculation is trivial, and we just pass the length of the body string.

A multipart POST that may include file data is more complex, however. Multipart has lots

of extra data in the body to designate the boundaries between each part of the POST, and

all those bytes must be accounted for in the length we set. In order to accomplish this,

writeMultipart() is constructed in such a way that we can pass a local OutputStream (in

this case, a ByteArrayOutputStream) to write all the extra data into it so we can measure

it. When the method is called in this way, it skips over the actual content pieces, such as

the file and form data, as those can be added in later by calling their respective length()

methods, and we don’t want to waste time loading them into memory.

Note By default, any URLConnection will have its request method set to GET. Calling

setDoOutput() implicitly sets that method to POST. If you need to set that value to any other

HTTP verb, use setRequestMethod().

Note If you do not know how big the content is that you want to POST, HttpURLConnection

also supports chunked uploads via setChunkedStreamingMode(). In this case, you need only to

pass the size of the data chunks you will be sending.

Once the task has written any POST data to the host, it is time to read the response content.

If the initial request was a GET request, the task skips directly to this step because there was

no additional data to write. The task first checks the value of the response code to make

sure there were no server-side errors, and it then downloads the contents of the response

into a StringBuilder. The download reads in chunks of data roughly 4KB at a time,

notifying the progress callback handler with a percentage downloaded as a fraction of the

total response content length. When all the content is downloaded, the task completes by

handing back the resulting response as a string.

226 CHAPTER 3: Communications and Networking

GET Example

In the following example, we utilize the Google Custom Search REST API. This API takes a

few parameters for each request:

	key: Unique value to identify the application making the request

	cx: Identifier for the custom search engine you want to access

	q: String representing the search query you want to execute

Note Visit https://developers.google.com/custom-search/ to receive more information

about this API.

A GET request is the simplest and most common request in many public APIs. Parameters

that must be sent with the request are encoded into the URL string itself, so no additional

data must be provided. Let’s create a GET request to search for Android (see Listing 3-15).

Listing 3-15. Activity Executing API GET Request

public class SearchActivity extends Activity implements
 RestTask.ProgressCallback, RestTask.ResponseCallback {

 private static final String SEARCH_URI =
 "https://www.googleapis.com/customsearch/v1"
 + "?key=%s&cx=%s&q=%s";
 private static final String SEARCH_KEY =
 "AIzaSyBbW-W1SHCK4eW0kK74VGMLJj_b-byNzkI";
 private static final String SEARCH_CX =
 "008212991319514020231:1mkouq8yagw";
 private static final String SEARCH_QUERY = "Android";

 private TextView mResult;
 private ProgressDialog mProgress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ScrollView scrollView = new ScrollView(this);
 mResult = new TextView(this);
 scrollView.addView(mResult, new ViewGroup.LayoutParams(
 LayoutParams.MATCH_PARENT,
 LayoutParams.WRAP_CONTENT));
 setContentView(scrollView);

https://developers.google.com/custom-search/

227CHAPTER 3: Communications and Networking

 //Create the request
 try{
 //Simple GET
 String url = String.format(SEARCH_URI, SEARCH_KEY,
 SEARCH_CX, SEARCH_QUERY);
 RestTask getTask = RestUtil.obtainGetTask(url);
 getTask.setResponseCallback(this);
 getTask.setProgressCallback(this);

 getTask.execute();

 //Display progress to the user
 mProgress = ProgressDialog.show(this, "Searching",
 "Waiting For Results...", true);
 } catch (Exception e) {
 mResult.setText(e.getMessage());
 }
 }

 @Override
 public void onProgressUpdate(int progress) {
 if (progress >= 0) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 //Update user of progress
 mResult.setText(String.format(
 "Download Progress: %d%%", progress));
 }
 }

 @Override
 public void onRequestSuccess(String response) {
 //Clear progress indicator
 if(mProgress != null) {
 mProgress.dismiss();
 }
 //Process the response data (here we just display it)
 mResult.setText(response);
 }

 @Override
 public void onRequestError(Exception error) {
 //Clear progress indicator
 if(mProgress != null) {
 mProgress.dismiss();
 }
 //Process the response data (here we just display it)
 mResult.setText("An Error Occurred: "+error.getMessage());
 }
}

228 CHAPTER 3: Communications and Networking

In the example, we obtain the GET request task that we need with the URL that we want to

connect to (in this case, a GET request to googleapis.com). The URL is stored as a constant

format string, and the required parameters for the Google API are added at runtime just

before the request is created.

A RestTask is created with the activity set as its callback, and the task is executed. When the

task is complete, either onRequestSuccess() or onRequestError() will be called and, in the

case of a success, the API response can be unpacked and processed.

We have also added ProgressCallback to the list of interfaces this activity implements so

it can be notified of how the download is going. Not all web servers return a valid content

length for requests, instead returning –1, which makes progress based on the percentage

difficult to do. In those cases, our callback simply leaves the indeterminate progress dialog

box visible until the download is complete. However, in cases where valid progress can be

determined, the dialog box is dismissed and the percentage of progress is displayed on

the screen.

Once the download is complete, the activity receives a callback with the resulting JSON

string. We will discuss parsing structured XML and JSON responses like this one in

Recipes 3-7 and 3-8, so for now the example simply displays the raw response to the

user interface.

POST Example

Many times, APIs require that you provide some data as part of the request, perhaps an

authentication token or the contents of a search query. The API will require you to send the

request over HTTP POST so these values may be encoded into the request body instead

of the URL. To demonstrate a working POST, we will be sending a request to httpbin.org,

which is a development site designed to read and validate the contents of a request and

echo them back (see Listing 3-16).

Listing 3-16. Activity Executing API POST Request

public class SearchActivity extends Activity implements
 RestTask.ProgressCallback, RestTask.ResponseCallback {

 private static final String POST_URI =
 "http://httpbin.org/post";

 private TextView mResult;
 private ProgressDialog mProgress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ScrollView scrollView = new ScrollView(this);
 mResult = new TextView(this);
 scrollView.addView(mResult, new ViewGroup.LayoutParams(
 LayoutParams.MATCH_PARENT,
 LayoutParams.WRAP_CONTENT));
 setContentView(scrollView);

229CHAPTER 3: Communications and Networking

 //Create the request
 try{
 //Simple POST
 List<NameValuePair> parameters =
 new ArrayList<NameValuePair>();
 parameters.add(new BasicNameValuePair("title",
 "Android Recipes"));
 parameters.add(new BasicNameValuePair("summary",
 "Learn Android Quickly"));
 parameters.add(new BasicNameValuePair("author",
 "Smith"));
 RestTask postTask = RestUtil.obtainFormPostTask(
 POST_URI, parameters);
 postTask.setResponseCallback(this);
 postTask.setProgressCallback(this);

 postTask.execute();

 //Display progress to the user
 mProgress = ProgressDialog.show(this, "Searching",
 "Waiting For Results...", true);
 } catch (Exception e) {
 mResult.setText(e.getMessage());
 }
 }

 @Override
 public void onProgressUpdate(int progress) {
 if (progress >= 0) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 //Update user of progress
 mResult.setText(String.format(
 "Download Progress: %d%%", progress));
 }
 }

 @Override
 public void onRequestSuccess(String response) {
 //Clear progress indicator
 if(mProgress != null) {
 mProgress.dismiss();
 }
 //Process the response data (here we just display it)
 mResult.setText(response);
 }

230 CHAPTER 3: Communications and Networking

 @Override
 public void onRequestError(Exception error) {
 //Clear progress indicator
 if(mProgress != null) {
 mProgress.dismiss();
 }
 //Process the response data (here we just display it)
 mResult.setText("An Error Occurred: "+error.getMessage());
 }
}

This is an example of a typical form data POST, with the form fields passed in as name-value

pairs. Since our RestTask is equipped to handle this already, we just have to obtain the

correct task from RestUtil, and fill in the form data. As with the GET example, we will discuss

parsing structured XML and JSON responses like this one in Recipes 3-7 and 3-8, so for

now the example simply displays the raw response to the user interface.

It should be noted here that the progress callbacks are related only to the download of

the response, and not the upload of the POST data, though that is certainly possible for the

developer to implement.

Upload Example

Listing 3-17 illustrates a slightly more complicated multipart POST. Here we combine the

uploading of raw binary data with some name-value form data.

Listing 3-17. Activity Executing API Multipart POST Request

public class SearchActivity extends Activity implements
 RestTask.ProgressCallback, RestTask.ResponseCallback {

 private static final String POST_URI =
 "http://httpbin.org/post";

 private TextView mResult;
 private ProgressDialog mProgress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ScrollView scrollView = new ScrollView(this);
 mResult = new TextView(this);
 scrollView.addView(mResult, new ViewGroup.LayoutParams(
 LayoutParams.MATCH_PARENT,
 LayoutParams.WRAP_CONTENT));
 setContentView(scrollView);

231CHAPTER 3: Communications and Networking

 //Create the request
 try{
 //File POST
 Bitmap image = BitmapFactory.decodeResource(
 getResources(),
 R.drawable.ic_launcher);
 File imageFile = new File(
 getExternalCacheDir(), "myImage.png");
 FileOutputStream out =
 new FileOutputStream(imageFile);
 image.compress(Bitmap.CompressFormat.PNG, 0, out);
 out.flush();
 out.close();
 List<NameValuePair> fileParameters =
 new ArrayList<NameValuePair>();
 fileParameters.add(new BasicNameValuePair("title",
 "Android Recipes"));
 fileParameters.add(new BasicNameValuePair("desc",
 "Image File Upload"));
 RestTask uploadTask =
 RestUtil.obtainMultipartPostTask(
 POST_URI, fileParameters,
 imageFile, "avatarImage");
 uploadTask.setResponseCallback(this);
 uploadTask.setProgressCallback(this);

 uploadTask.execute();

 //Display progress to the user
 mProgress = ProgressDialog.show(this, "Searching",
 "Waiting For Results...", true);
 } catch (Exception e) {
 mResult.setText(e.getMessage());
 }
 }

 @Override
 public void onProgressUpdate(int progress) {
 if (progress >= 0) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 //Update user of progress
 mResult.setText(String.format(
 "Download Progress: %d%%", progress));
 }
 }

232 CHAPTER 3: Communications and Networking

 @Override
 public void onRequestSuccess(String response) {
 //Clear progress indicator
 if(mProgress != null) {
 mProgress.dismiss();
 }
 //Process the response data (here we just display it)
 mResult.setText(response);
 }

 @Override
 public void onRequestError(Exception error) {
 //Clear progress indicator
 if(mProgress != null) {
 mProgress.dismiss();
 }
 //Process the response data (here we just display it)
 mResult.setText("An Error Occurred: "+error.getMessage());
 }
}

In this example, we construct a POST request that has two distinct parts: a form data part

(made up of name-value pairs) and a file part. For the purposes of the example, we take the

application’s icon and quickly write it out to external storage as a PNG file to use for the upload.

In this case, the JSON response from httpbin will echo back both the form data elements as

well as a Base64-encoded representation of the PNG image.

Basic Authorization

Adding basic authorization to the RestTask is fairly straightforward. It can be done in one of

two ways: either directly on each request or globally using a class called Authenticator. First

let’s take a look at attaching basic authorization to an individual request. Listing 3-18 modifies

RestUtil to include methods that attach a username and password in the proper format.

Listing 3-18. RestUtil with Basic Authorization

public class RestUtil {

 public static RestTask obtainGetTask(String url)
 throws MalformedURLException, IOException {
 HttpURLConnection connection =
 (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoInput(true);

 RestTask task = new RestTask(connection);
 return task;
 }

233CHAPTER 3: Communications and Networking

 public static RestTask obtainAuthenticatedGetTask(
 String url, String username, String password)
 throws MalformedURLException, IOException {
 HttpURLConnection connection =
 (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoInput(true);

 attachBasicAuthentication(connection, username, password);

 RestTask task = new RestTask(connection);
 return task;
 }

 public static RestTask obtainFormPostTask(String url,
 List<NameValuePair> formData) throws MalformedURLException,
 IOException {
 HttpURLConnection connection = (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoOutput(true);

 RestTask task = new RestTask(connection);
 task.setFormBody(formData);

 return task;
 }

 public static RestTask obtainAuthenticatedFormPostTask(
 String url, List<NameValuePair> formData,
 String username, String password)
 throws MalformedURLException, IOException {
 HttpURLConnection connection =
 (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoOutput(true);

 attachBasicAuthentication(connection, username, password);

 RestTask task = new RestTask(connection);
 task.setFormBody(formData);

 return task;
 }

234 CHAPTER 3: Communications and Networking

 public static RestTask obtainMultipartPostTask(String url,
 List<NameValuePair> formPart, File file, String fileName)
 throws MalformedURLException, IOException {
 HttpURLConnection connection = (HttpURLConnection) (new URL(url))
 .openConnection();

 connection.setReadTimeout(10000);
 connection.setConnectTimeout(15000);
 connection.setDoOutput(true);

 RestTask task = new RestTask(connection);
 task.setFormBody(formPart);
 task.setUploadFile(file, fileName);

 return task;
 }

 private static void attachBasicAuthentication(
 URLConnection connection,
 String username, String password) {
 //Add Basic Authentication Headers
 String userpassword = username + ":" + password;
 String encodedAuthorization = Base64.encodeToString(
 userpassword.getBytes(), Base64.NO_WRAP);
 connection.setRequestProperty("Authorization", "Basic "
 + encodedAuthorization);
 }

}

Basic authorization is added to an HTTP request as a header field with the name

Authorization and the value of Basic followed by a Base64-encoded string of your

username and password. The helper method attachBasicAuthentication() applies this

property to the URLConnection before it is given to RestTask. The Base64.NO_WRAP flag is

added to ensure that the encoder doesn’t add any extra new lines, which will create an

invalid value.

This is a really nice way of applying authentication to requests if not all your requests need to

be authenticated in the same way. However, sometimes it’s easier to just set your credentials

once and let all your requests use them. This is where Authenticator comes in. Authenticator

allows you to globally set the username and password credentials for the requests in your

application process. Let’s take a look at Listing 3-19, which shows how this can be done.

Listing 3-19. Activity Using Authenticator

public class AuthActivity extends Activity implements
 ResponseCallback {

 private static final String URI =
 "http://httpbin.org/basic-auth/android/recipes";
 private static final String USERNAME = "android";
 private static final String PASSWORD = "recipes";

235CHAPTER 3: Communications and Networking

 private TextView mResult;
 private ProgressDialog mProgress;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mResult = new TextView(this);
 setContentView(mResult);

 Authenticator.setDefault(new Authenticator() {
 @Override
 protected PasswordAuthentication
 getPasswordAuthentication() {
 return new PasswordAuthentication(USERNAME,
 PASSWORD.toCharArray());
 }
 });

 try {
 RestTask task = RestUtil.obtainGetTask(URI);
 task.setResponseCallback(this);
 task.execute();
 } catch (Exception e) {
 mResult.setText(e.getMessage());
 }
 }

 @Override
 public void onRequestSuccess(String response) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 mResult.setText(response);
 }

 @Override
 public void onRequestError(Exception error) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 mResult.setText(error.getMessage());
 }

}

This example connects to httpbin again, this time to an endpoint used to validate

credentials. The username and password the host will require are coded into the URL

path, and if those credentials are not properly supplied, the response from the host will be

UNAUTHORIZED.

236 CHAPTER 3: Communications and Networking

With a single call to Authenticator.setDefault() passing in a new Authenticator instance,

all subsequent requests will use the provided credentials for authentication challenges.

So we pass the correct username and password to Authenticator by creating a new

PasswordAuthentication instance whenever asked, and all URLConnection instances in

our process will make use of that. Notice that in this example, our request does not have

credentials attached to it, but when the request is made, we will get an authenticated

response.

Caching Responses

(API Level 13)

One final platform enhancement you can take advantage of when you use

HttpURLConnection is response caching with HttpResponseCache. A great way to speed

up the response of your application is to cache responses coming back from the remote

host so your application can load frequent requests from the cache rather than hitting the

network each time. Installing and removing a cache in your application requires just a few

simple lines of code.

These setup and teardown methods need to be called only once, so they can be placed in

an activity or application-level class outside the scope of each request:

//Installing a response cache
try {
 File httpCacheDir = new File(context.getCacheDir(), "http");
 long httpCacheSize = 10 * 1024 * 1024; // 10 MiB
 HttpResponseCache.install(httpCacheDir, httpCacheSize);
catch (IOException e) {
 Log.i(TAG, "HTTP response cache installation failed:" + e);
}

//Clearing a response cache
HttpResponseCache cache = HttpResponseCache.getInstalled();
if (cache != null) {
 cache.flush();
}

Note HttpResponseCache works with only HttpURLConnection variants. It will not work if

you are using Apache HttpClient.

237CHAPTER 3: Communications and Networking

3-7. Parsing JSON

Problem
Your application needs to parse responses from an API or other source that is formatted in

JavaScript Object Notation (JSON).

Solution
(API Level 1)

Use the org.json parser classes that are baked into Android. The SDK comes with a very

efficient set of classes for parsing JSON-formatted strings in the org.json package. Simply

create a new JSONObject or JSONArray from the formatted string data and you’ll be armed with a

set of accessor methods to get primitive data or nested JSONObjects and JSONArrays from within.

How It Works
This JSON parser is strict by default, meaning that it will halt with an exception when

encountering invalid JSON data or an invalid key. Accessor methods that prefix with get will

throw a JSONException if the requested value is not found. In some cases this behavior is

not ideal, and for that there is a companion set of methods that are prefixed with opt. These

methods will return null instead of throwing an exception when a value for the requested

key is not found. In addition, many of them have an overloaded version that also takes a

fallback parameter to return instead of null.

Let’s look at an example of how to parse a JSON string into useful pieces. Consider the

JSON in Listing 3-20.

Listing 3-20. Example JSON

{
 "person": {
 "name": "John",
 "age": 30,
 "children": [
 {
 "name": "Billy"
 "age": 5
 },
 {
 "name": "Sarah"
 "age": 7
 },
 {
 "name": "Tommy"
 "age": 9
 }
]
 }
}

238 CHAPTER 3: Communications and Networking

This defines a single object with three values: name (string), age (integer), and children. The

parameter entitled children is an array of three more objects, each with its own name and

age. If we were to use org.json to parse this data and display some elements in TextViews,

it would look like the examples in Listings 3-21 and 3-22.

Listing 3-21. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <TextView
 android:id="@+id/line1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/line2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/line3"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Listing 3-22. Sample JSON Parsing Activity

public class MyActivity extends Activity {
 private static final String JSON_STRING =
 "{\"person\":"
 + "{\"name\":\"John\",\"age\":30,\"children\":["
 + "{\"name\":\"Billy\",\"age\":5},"
 + "{\"name\":\"Sarah\",\"age\":7},"
 + "{\"name\":\"Tommy\",\"age\":9}"
 + "] } }";
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView line1 = (TextView)findViewById(R.id.line1);
 TextView line2 = (TextView)findViewById(R.id.line2);
 TextView line3 = (TextView)findViewById(R.id.line3);
 try {
 JSONObject person = (new JSONObject(JSON_STRING))
 .getJSONObject("person");
 String name = person.getString("name");
 line1.setText("This person's name is " + name);
 line2.setText(name + " is " + person.getInt("age")
 + " years old.");

239CHAPTER 3: Communications and Networking

 line3.setText(name + " has "
 + person.getJSONArray("children").length()
 + " children.");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
}

For this example, the JSON string has been hard-coded as a constant. When the activity is

created, the string is turned into a JSONObject, at which point all its data can be accessed

as key-value pairs, just as if it were stored in a map or dictionary. All the business logic is

wrapped in a try block because we are using the strict methods for accessing data.

Functions such as JSONObject.getString() and JSONObject.getInt() are used to read

primitive data out and place it in the TextView; the getJSONArray() method pulls out the

nested children array. JSONArray has the same set of accessor methods as JSONObject to

read data, but they take an index into the array as a parameter instead of the name of the

key. In addition, a JSONArray can return its length, which we used in the example to display

the number of children the person had.

The result of the sample application is shown in Figure 3-3.

Figure 3-3. Display of parsed JSON data in the activity

240 CHAPTER 3: Communications and Networking

PRETTY-PRINTING JSON

JSON is a very efficient notation; however, it can be difficult for humans to read a raw JSON string, which can

make it hard to debug parsing issues. Quite often the JSON you are parsing is coming from a remote source or

is not completely familiar to you, and you need to display it for debugging purposes.

Both JSONObject and JSONArray have an overloaded toString() method that takes an integer parameter

for pretty-printing the data in a returned and indented fashion, making it easier to decipher. Often adding

something like myJsonObject.toString(2) to a troublesome section can save you time and a headache.

3-8. Parsing XML

Problem
Your application needs to parse responses, from an API or other source, that are formatted

as XML.

Solution
(API Level 1)

Implement a subclass of org.xml.sax.helpers.DefaultHandler to parse the data using

event-based Simple API for XML (SAX). Android has three primary methods you can use

to parse XML data: Document Object Model (DOM), SAX, and Pull. The simplest of these

to implement, and the most memory-efficient, is the SAX parser. SAX parsing works by

traversing the XML data and generating callback events at the beginning and end of each

element.

How It Works
To describe this further, let’s look at the format of the XML that is returned when requesting

an RSS/Atom news feed (see Listing 3-23).

Listing 3-23. RSS Basic Structure

<rss version="2.0">
 <channel>
 <item>
 <title></title>
 <link></link>
 <description></description>
 </item>
 <item>
 <title></title>
 <link></link>
 <description></description>
 </item>

241CHAPTER 3: Communications and Networking

 <item>
 <title></title>
 <link></link>
 <description></description>
 </item>
 ...
 </channel>
</rss>

Between each set of <title>, <link>, and <description> tags is the value associated with

each item. Using SAX, we can parse this data out into an array of items that the application

could then display to the user in a list (see Listing 3-24).

Listing 3-24. Custom Handler to Parse RSS

public class RSSHandler extends DefaultHandler {

 public class NewsItem {
 public String title;
 public String link;
 public String description;

 @Override
 public String toString() {
 return title;
 }
 }

 private StringBuffer buf;
 private ArrayList<NewsItem> feedItems;
 private NewsItem item;

 private boolean inItem = false;

 public ArrayList<NewsItem> getParsedItems() {
 return feedItems;
 }

 //Called at the head of each new element
 @Override
 public void startElement(String uri, String name,
 String qName, Attributes attrs) {
 if("channel".equals(name)) {
 feedItems = new ArrayList<NewsItem>();
 } else if("item".equals(name)) {
 item = new NewsItem();
 inItem = true;
 } else if("title".equals(name) && inItem) {
 buf = new StringBuffer();
 } else if("link".equals(name) && inItem) {
 buf = new StringBuffer();

242 CHAPTER 3: Communications and Networking

 } else if("description".equals(name) && inItem) {
 buf = new StringBuffer();
 }
 }

 //Called at the tail of each element end
 @Override
 public void endElement(String uri, String name,
 String qName) {
 if("item".equals(name)) {
 feedItems.add(item);
 inItem = false;
 } else if("title".equals(name) && inItem) {
 item.title = buf.toString();
 } else if("link".equals(name) && inItem) {
 item.link = buf.toString();
 } else if("description".equals(name) && inItem) {
 item.description = buf.toString();
 }

 buf = null;
 }

 //Called with character data inside elements
 @Override
 public void characters(char ch[], int start, int length) {
 //Don't bother if buffer isn't initialized
 if(buf != null) {
 for (int i=start; i<start+length; i++) {
 buf.append(ch[i]);
 }
 }
 }
}

The RSSHandler is notified at the beginning and end of each element via startElement() and

endElement(). In between, the characters that make up the element’s value are passed into

the characters() callback. As the parser moves through the document, the following steps

occur:

1. When the parser encounters the first element, the list of items is

initialized.

2. When each item element is encountered, a new NewsItem model is

initialized.

3. Inside each item element, data elements are captured in a

StringBuffer and inserted into the members of the NewsItem.

4. When the end of each item is reached, the NewsItem is added to the list.

5. When parsing is complete, feedItems is a complete list of all the

items in the feed.

243CHAPTER 3: Communications and Networking

Let’s look at this in action by using some of the tricks from the API example in Recipe 3-6 to

download the latest Google News in RSS form (see Listing 3-25).

Listing 3-25. Activity That Parses the XML and Displays the Items

public class FeedActivity extends Activity implements ResponseCallback {
 private static final String TAG = "FeedReader";
 private static final String FEED_URI =
 "http://news.google.com/?output=rss";

 private ListView mList;
 private ArrayAdapter<NewsItem> mAdapter;
 private ProgressDialog mProgress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mList = new ListView(this);
 mAdapter = new ArrayAdapter<NewsItem>(this,
 android.R.layout.simple_list_item_1,
 android.R.id.text1);
 mList.setAdapter(mAdapter);
 mList.setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View v,
 int position, long id) {
 NewsItem item = mAdapter.getItem(position);
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse(item.link));
 startActivity(intent);
 }
 });

 setContentView(mList);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Retrieve the RSS feed
 try{
 RestTask task = RestUtil.obtainGetTask(FEED_URI);
 task.setResponseCallback(this);
 task.execute();
 mProgress = ProgressDialog.show(this, "Searching",
 "Waiting For Results...", true);
 } catch (Exception e) {
 Log.w(TAG, e);
 }
 }

244 CHAPTER 3: Communications and Networking

 @Override
 public void onRequestSuccess(String response) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 //Process the response data
 try {
 SAXParserFactory factory =
 SAXParserFactory.newInstance();
 SAXParser p = factory.newSAXParser();
 RSSHandler parser = new RSSHandler();
 p.parse(new InputSource(new StringReader(response)),
 parser);

 mAdapter.clear();
 for(NewsItem item : parser.getParsedItems()) {
 mAdapter.add(item);
 }
 mAdapter.notifyDataSetChanged();
 } catch (Exception e) {
 Log.w(TAG, e);
 }
 }

 @Override
 public void onRequestError(Exception error) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 //Display the error
 mAdapter.clear();
 mAdapter.notifyDataSetChanged();
 Toast.makeText(this, error.getMessage(),
 Toast.LENGTH_SHORT).show();
 }
}

The example has been modified to display a ListView, which will be populated by the

parsed items from the RSS feed. In the example, we add an OnItemClickListener to the list

that will launch the news item’s link in the browser.

Once the data is returned from the API in the response callback, Android’s built-in SAX

parser handles the job of traversing the XML string. SAXParser.parse() uses an instance

of our RSSHandler to process the XML, which results in the handler’s feedItems list being

populated. The receiver then iterates through all the parsed items and adds them to an

ArrayAdapter for display in the ListView.

245CHAPTER 3: Communications and Networking

XmlPullParser

The XmlPullParser provided by the framework is another efficient way of parsing incoming

XML data. Like SAX, the parsing is stream based; it does not require much memory to parse

large document feeds because the entire XML data structure does not need to be loaded

before parsing can begin. Let’s see an example of using XmlPullParser to parse our RSS

feed data. Unlike with SAX, however, we must manually advance the parser through the data

stream every step of the way, even over the tag elements we aren’t interested in.

Listing 3-26 contains a factory class that iterates over the feed to construct model elements.

Listing 3-26. Factory Class to Parse XML into Model Objects

public class NewsItemFactory {

 /* Data Model Class */
 public static class NewsItem {
 public String title;
 public String link;
 public String description;

 @Override
 public String toString() {
 return title;
 }
 }

 /*
 * Parse the RSS feed out into a list of NewsItem elements
 */
 public static List<NewsItem> parseFeed(XmlPullParser parser)
 throws XmlPullParserException, IOException {
 List<NewsItem> items = new ArrayList<NewsItem>();

 while (parser.next() != XmlPullParser.END_TAG) {
 if (parser.getEventType() != XmlPullParser.START_TAG){
 continue;
 }

 if (parser.getName().equals("rss") ||
 parser.getName().equals("channel")) {
 //Skip these items, but allow to drill inside
 } else if (parser.getName().equals("item")) {
 NewsItem newsItem = readItem(parser);
 items.add(newsItem);
 } else {
 //Skip any other elements and their children
 skip(parser);
 }
 }

246 CHAPTER 3: Communications and Networking

 //Return the parsed list
 return items;
 }

 /*
 * Parse each <item> element in the XML into a NewsItem
 */
 private static NewsItem readItem(XmlPullParser parser) throws
 XmlPullParserException, IOException {
 NewsItem newsItem = new NewsItem();

 //Must start with an <item> element to be valid
 parser.require(XmlPullParser.START_TAG, null, "item");
 while (parser.next() != XmlPullParser.END_TAG) {
 if (parser.getEventType() != XmlPullParser.START_TAG){
 continue;
 }

 String name = parser.getName();
 if (name.equals("title")) {
 parser.require(XmlPullParser.START_TAG,
 null, "title");
 newsItem.title = readText(parser);
 parser.require(XmlPullParser.END_TAG,
 null, "title");
 } else if (name.equals("link")) {
 parser.require(XmlPullParser.START_TAG,
 null, "link");
 newsItem.link = readText(parser);
 parser.require(XmlPullParser.END_TAG,
 null, "link");
 } else if (name.equals("description")) {
 parser.require(XmlPullParser.START_TAG,
 null, "description");
 newsItem.description = readText(parser);
 parser.require(XmlPullParser.END_TAG,
 null, "description");
 } else {
 //Skip any other elements and their children
 skip(parser);
 }
 }

 return newsItem;
 }

247CHAPTER 3: Communications and Networking

 /*
 * Read the text content of the current element, which is the
 * data contained between the start and end tag
 */
 private static String readText(XmlPullParser parser) throws
 IOException, XmlPullParserException {
 String result = "";
 if (parser.next() == XmlPullParser.TEXT) {
 result = parser.getText();
 parser.nextTag();
 }
 return result;
 }

 /*
 * Helper method to skip over the current element and any
 * children it may have underneath it
 */
 private static void skip(XmlPullParser parser) throws
 XmlPullParserException, IOException {
 if (parser.getEventType() != XmlPullParser.START_TAG) {
 throw new IllegalStateException();
 }

 /*
 * For every new tag, increase the depth counter.
 * Decrease it for each tag's end and return when we
 * have reached an end tag that matches the one we
 * started with.
 */
 int depth = 1;
 while (depth != 0) {
 switch (parser.next()) {
 case XmlPullParser.END_TAG:
 depth--;
 break;
 case XmlPullParser.START_TAG:
 depth++;
 break;
 }
 }
 }
}

248 CHAPTER 3: Communications and Networking

Pull parsing works by processing the data stream as a series of events. The application

advances the parser to the next event by calling the next() method or one of the specialized

variations. The following are the event types the parser will advance within:

	START_DOCUMENT: The parser will return this event when it is first

initialized. It will be in this state only until the first call to next(),

nextToken(), or nextTag().

	START_TAG: The parser has just read a start tag element. The tag name

can be retrieved with getName(), and any attributes that were present

can be read with getAttributeValue() and associated methods.

	TEXT: Character data inside the tag element was read and can be

obtained with getText().

	END_TAG: The parser has just read an end tag element. The tag name of

the matching start tag can be retrieved with getName().

	END_DOCUMENT: The end of the data stream has been reached.

Because we must advance the parser ourselves, we have created a helper skip() method

to assist in moving the parser past tags we aren’t interested in. This method walks from the

current position through all nested child elements until the matching end tag is reached,

skipping over them. It does this through a depth counter that increments for each start tag

and decrements for each end tag. When the depth counter reaches zero, we have reached

the matching end tag for the initial position.

The parser in this example starts iterating through the tags in the stream, looking for <item>

tags that it can parse into a NewsItem when the parseFeed() method is called. Every element

that is not one of these is skipped over, with the exception of two: <rss> and <channel>. All

the items are nested within these two tags, so although we aren’t interested in them directly,

we cannot hand them off to skip(), or all our items will be skipped as well.

The task of parsing each <item> element is handled by readItem(), where a new NewsItem is

constructed and filled in by the data found within. The method begins by calling require(),

which is a security check to ensure the XML is formatted as we expect. The method will

quietly return if the current parser event matches the namespace and tag name passed

in; otherwise, it will throw an exception. As we iterate through the child elements, we look

specifically for the title, link, and description tags so we can read their values into the

model data. After finding each tag, readText() advances the parser and pulls the enclosed

character data out. Again, there are other elements inside <item> that we aren’t parsing, so

we call skip() in the case of any tag we don’t need.

You can see that XmlPullParser is extremely flexible because you control every step of the

process, but this also requires more code to accomplish the same result. Listing 3-27 shows

our feed display activity reworked to use the new parser.

Listing 3-27. Activity Displaying Parsed XML Feed

public class PullFeedActivity extends Activity implements
 ResponseCallback {
 private static final String TAG = "FeedReader";
 private static final String FEED_URI =
 "http://news.google.com/?output=rss";

249CHAPTER 3: Communications and Networking

 private ListView mList;
 private ArrayAdapter<NewsItem> mAdapter;
 private ProgressDialog mProgress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mList = new ListView(this);
 mAdapter = new ArrayAdapter<NewsItem>(this,
 android.R.layout.simple_list_item_1,
 android.R.id.text1);
 mList.setAdapter(mAdapter);
 mList.setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View v,
 int position, long id) {
 NewsItem item = mAdapter.getItem(position);
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse(item.link));
 startActivity(intent);
 }
 });

 setContentView(mList);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Retrieve the RSS feed
 try{
 RestTask task = RestUtil.obtainGetTask(FEED_URI);
 task.setResponseCallback(this);
 task.execute();
 mProgress = ProgressDialog.show(this, "Searching",
 "Waiting For Results...", true);
 } catch (Exception e) {
 Log.w(TAG, e);
 }
 }

 @Override
 public void onRequestSuccess(String response) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }

250 CHAPTER 3: Communications and Networking

 //Process the response data
 try {
 XmlPullParser parser = Xml.newPullParser();
 parser.setInput(new StringReader(response));
 //Jump to the first tag
 parser.nextTag();

 mAdapter.clear();
 for(NewsItem i : NewsItemFactory.parseFeed(parser)) {
 mAdapter.add(i);
 }
 mAdapter.notifyDataSetChanged();
 } catch (Exception e) {
 Log.w(TAG, e);
 }
 }

 @Override
 public void onRequestError(Exception error) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }
 //Display the error
 mAdapter.clear();
 mAdapter.notifyDataSetChanged();
 Toast.makeText(this, error.getMessage(),
 Toast.LENGTH_SHORT).show();
 }
}

A fresh XmlPullParser can be instantiated using Xml.newPullParser(), and the input

data source can be a Reader or InputStream instance passed to setInput(). In our case,

the response data from the web service is already in a String, so we wrap that in a

StringReader to have the parser consume. We can pass the parser to NewsItemFactory,

which will then return a list of NewsItem elements that we can add to the ListAdapter and

display just as we did before.

Tip You can also use XmlPullParser to parse local XML data you may want to bundle in

your application. By placing your raw XML into resources (such as res/xml/), you can use

Resources.getXml() to instantiate an XmlResourceParser preloaded with your local data.

251CHAPTER 3: Communications and Networking

3-9. Receiving SMS

Problem
Your application must react to incoming SMS messages, commonly called text messages.

Solution
(API Level 4)

Register a BroadcastReceiver to listen for incoming messages, and process them in

onReceive(). The operating system will fire a broadcast intent with the android.provider.
Telephony.SMS_RECEIVED action whenever there is an incoming SMS message. Your

application can register a BroadcastReceiver to filter for this intent and process the

incoming data.

Note Receiving this broadcast does not prevent the rest of the system’s applications from receiving

it as well. The default messaging application will still receive and display any incoming SMS.

How It Works
In previous recipes, we defined BroadcastReceivers as private internal members to an

activity. In this case, it is probably best to define the receiver separately and register it in

AndroidManifest.xml by using the <receiver> tag. This will allow your receiver to process

the incoming events even when your application is not active. Listings 3-28 and 3-29 show

an example of a receiver that monitors all incoming SMS and raises a Toast when one

arrives from the party of interest.

Listing 3-28. Incoming SMS BroadcastReceiver

public class SmsReceiver extends BroadcastReceiver {
 //Device address we would like to listen for (phone number, shortcode, etc.)
 private static final String SENDER_ADDRESS = "<ENTER YOUR NUMBER HERE>";

 @Override
 public void onReceive(Context context, Intent intent) {
 Bundle bundle = intent.getExtras();

 Object[] messages = (Object[])bundle.get("pdus");
 SmsMessage[] sms = new SmsMessage[messages.length];
 //Create messages for each incoming PDU
 for(int n=0; n < messages.length; n++) {
 sms[n] =
 SmsMessage.createFromPdu((byte[]) messages[n]);
 }

252 CHAPTER 3: Communications and Networking

 for(SmsMessage msg : sms) {
 //Verify if the message came from our known sender
 if(TextUtils.equals(
 msg.getOriginatingAddress(), SENDER_ADDRESS)) {
 //Keep other apps from processing this message
 abortBroadcast();

 //Display our own notification
 Toast.makeText(context,
 "Received message from the mothership: "
 + msg.getMessageBody(),
 Toast.LENGTH_SHORT).show();
 }
 }
 }
}

Listing 3-29. Partial AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest ...>

 <uses-permission
 android:name="android.permission.RECEIVE_SMS" />

 <application ...>
 <receiver android:name=".SmsReceiver">
 <!-- Add a priority to catch the ordered broadcast -->
 <intent-filter android:priority="5">
 <action
 android:name="android.provider.Telephony.SMS_RECEIVED"
 />
 </intent-filter>
 </receiver>
 </application>

</manifest>

Important Receiving SMS messages requires that the android.permission.RECEIVE_SMS

permission be declared in the manifest!

Incoming SMS messages are passed via the extras of the broadcast intent as an Object

array of byte arrays, each byte array representing an SMS protocol data unit (PDU).

SmsMessage.createFromPdu() is a convenience method allowing us to create SmsMessage

objects from the raw PDU data. With the setup work complete, we can inspect each

message to determine whether there is something interesting to handle or process. In the

example, we compare the originating address of each message against a known short code,

and the user is notified when one arrives.

253CHAPTER 3: Communications and Networking

The broadcast triggered by the framework is an ordered broadcast message, which means

that each registered receiver will receive the message in order and will have an opportunity

to modify the broadcast before it is handed to the next receiver or to cancel it and stop any

lower-priority receivers from receiving it at all.

In the AndroidManifest.xml entry for the <intent-filter>, we had added an arbitrary priority

value to insert our receiver above the core system Messages application (which uses the

default priority of zero). This allows our application to process the SMS message first.

Note With an ordered broadcast, receivers that are registered at the same priority will receive the

intent at the “same time,” such that the order between them is not determined. Additionally, one

receiver cannot cancel the broadcast from being delivered to the other(s) of the same priority.

Then, once we verify that the message we are looking at came from the sender we are tracking,

a call to abortBroadcast() terminates the responder chain. This keeps the SMS messages we

are processing from displaying to the user and cluttering up the user’s SMS inbox.

Important There is no external method of verifying that other apps on the system may also be

registered to handle this broadcast and have a very high priority (or at least, higher than your app).

Your application is at the mercy of a higher-priority application not aborting the broadcast for the

message you want to process.

At the point in the example where the Toast is raised, you may wish to provide something

more useful to the user. Perhaps the SMS message includes an offer code for your

application, and you could launch the appropriate activity to display this information to the

user within the application.

DEFAULT SMS APPLICATIONS

Starting with Android 4.4, the behavior of applications using SMS has changed. The device’s Settings

application now provides the user with a Default SMS App option that selects the application the user would

prefer to use for SMS. At the framework level, this augments some of the behaviors around sending and

receiving messages.

Applications that are not selected as the default may still send outgoing SMS and monitor incoming messages

by using the same ordered broadcast described in this recipe. However, two new broadcast actions have been

added for the default SMS app to receive messages:

	android.provider.telephony.SMS_DELIVER

	android.provider.telephony.WAP_PUSH_DELIVER

254 CHAPTER 3: Communications and Networking

The framework will broadcast incoming SMS/MMS message data to the default SMS app separately from other

applications using these two actions. Although the original SMS_RECEIVED action is still an ordered broadcast,

aborting that broadcast can no longer be used as a technique to intercept certain messages from being

delivered to that application. However, aborting the broadcast will still interrupt the chain from going to any

other third-party app that is monitoring incoming SMS.

Additionally, an SMS application marked as the default is responsible for writing all SMS data received on the

device to the device’s internal content provider exposed publicly in API Level 19 via android.provider.
Telephony. This application is the only one on the system with privileges to write data to the SMS provider,

regardless of an application’s request to obtain the android.permission.WRITE_SMS permission.

Other applications may still read the SMS provider data if they have obtained the android.permission.
READ_SMS permission. We will look in more detail at reading the SMS provider in Chapter 7.

3-10. Sending an SMS Message

Problem
Your application must issue outgoing SMS messages.

Solution
(API Level 4)

Use the SMSManager to send text and data SMS messages. SMSManager is a system service

that handles sending SMS and providing feedback to the application about the status of

the operation. SMSManager provides methods to send text messages by using SmsManager.
sendTextMessage() and SmsManager.sendMultipartTextMessage(), or data messages

by using SmsManager.sendDataMessage(). Each of these methods takes PendingIntent

parameters to deliver status for the send operation and the message delivery back to a

requested destination.

How It Works
Let’s take a look at a simple example activity that sends an SMS message and monitors its

status (see Listing 3-30).

Listing 3-30. Activity to Send SMS Messages

public class SmsActivity extends Activity {
 //Device address where we would like to send (phone number, shortcode, etc.)
 private static final String RECIPIENT_ADDRESS = "<ENTER YOUR NUMBER HERE>";

 private static final String ACTION_SENT =
 "com.examples.sms.SENT";
 private static final String ACTION_DELIVERED =
 "com.examples.sms.DELIVERED";

255CHAPTER 3: Communications and Networking

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Button sendButton = new Button(this);
 sendButton.setText("Hail the Mothership");
 sendButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 sendSMS("Beam us up!");
 }
 });

 setContentView(sendButton);
 }

 @Override
 protected void onResume() {
 super.onResume();
 //Monitor status of the operations
 registerReceiver(sent, new IntentFilter(ACTION_SENT));
 registerReceiver(delivered, new IntentFilter(ACTION_DELIVERED));
 }

 @Override
 protected void onPause() {
 super.onPause();
 //Make sure receivers aren't active while we are in the background
 unregisterReceiver(sent);
 unregisterReceiver(delivered);
 }

 private void sendSMS(String message) {
 PendingIntent sIntent = PendingIntent.getBroadcast(
 this, 0, new Intent(ACTION_SENT), 0);
 PendingIntent dIntent = PendingIntent.getBroadcast(
 this, 0, new Intent(ACTION_DELIVERED), 0);

 //Send the message
 SmsManager manager = SmsManager.getDefault();
 manager.sendTextMessage(RECIPIENT_ADDRESS, null, message,
 sIntent, dIntent);
 }

 private BroadcastReceiver sent = new BroadcastReceiver(){
 @Override
 public void onReceive(Context context, Intent intent) {
 switch (getResultCode()) {
 case Activity.RESULT_OK:
 //Handle sent success
 break;

256 CHAPTER 3: Communications and Networking

 case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
 case SmsManager.RESULT_ERROR_NO_SERVICE:
 case SmsManager.RESULT_ERROR_NULL_PDU:
 case SmsManager.RESULT_ERROR_RADIO_OFF:
 //Handle sent error
 break;
 }
 }
 };

 private BroadcastReceiver delivered = new BroadcastReceiver(){
 @Override
 public void onReceive(Context context, Intent intent) {
 switch (getResultCode()) {
 case Activity.RESULT_OK:
 //Handle delivery success
 break;
 case Activity.RESULT_CANCELED:
 //Handle delivery failure
 break;
 }
 }
 };
}

Important Sending SMS messages requires that the android.permission.SEND_SMS

permission be declared in the manifest!

In the example, an SMS message is sent out via the SMSManager whenever the user taps

the button. Because SMSManager is a system service, the static SMSManager.getDefault()

method must be called to get a reference to it. sendTextMessage() takes the destination

address (number), service center address, and message as parameters. The service center

address should be null to allow SMSManager to use the system default.

Two BroadcastReceivers are registered to receive the callback intents that will be sent: one

for status of the send operation and the other for status of the delivery. The receivers are

registered only while the operations are pending, and they unregister themselves as soon as

the intent is processed.

257CHAPTER 3: Communications and Networking

3-11. Communicating over Bluetooth

Problem
You want to leverage Bluetooth communication to transmit data between devices in your

application.

Solution
(API Level 5)

Use the Bluetooth APIs introduced in API Level 5 to create a peer-to-peer connection over

the radio frequency communications (RFCOMM) protocol interface. Bluetooth is a popular

wireless radio technology that is in almost all mobile devices today. Many users think of

Bluetooth as a way for their mobile devices to connect with a wireless headset or integrate

with a vehicle’s stereo system. However, Bluetooth can also be a simple and effective way

for developers to create peer-to-peer connections in their applications.

How It Works

Important Bluetooth is not currently supported in the Android emulator. To execute the code in

this example, Bluetooth must be run on an Android device. Furthermore, to appropriately test the

functionality, you need two devices running the application simultaneously.

Bluetooth Peer-to-Peer

Listings 3-31 through 3-33 illustrate an example that uses Bluetooth to find other users

nearby and quickly exchange contact information (in this case, just an e-mail address).

Connections are made over Bluetooth by discovering available “services” and connecting to

them by referencing their 128-bit universally unique identifier (UUID) value. The UUID of the

service you want to use must either be discovered or known ahead of time.

In this example, the same application is running on both devices on each end of the

connection, so we have the freedom to define the UUID in code as a constant because both

devices will have a reference to it.

Note To ensure that the UUID you choose is unique, use one of the many free UUID generators

available on the Web or tools such as uuidgen on Mac/Linux.

258 CHAPTER 3: Communications and Networking

Listing 3-31. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.bluetooth">

 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission
 android:name="android.permission.BLUETOOTH_ADMIN"/>

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".ExchangeActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Important Remember that android.permission.BLUETOOTH must be declared in the

manifest to use these APIs. In addition, android.permission.BLUETOOTH_ADMIN must be

declared to make changes to preferences such as discoverability and to enable/disable the adapter.

Listing 3-32. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Enter Your Email:" />
 <EditText
 android:id="@+id/emailField"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/label"
 android:singleLine="true"
 android:inputType="textEmailAddress" />

259CHAPTER 3: Communications and Networking

 <Button
 android:id="@+id/scanButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Connect and Share" />
 <Button
 android:id="@+id/listenButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_above="@id/scanButton"
 android:text="Listen for Sharers" />
</RelativeLayout>

The user interface for this example consists of an EditText for users to enter an e-mail

address, and two buttons to initiate communication. The Listen for Sharers button puts the

device into listen mode. In this mode, the device will accept and communicate with any

device that attempts to connect with it. The Connect and Share button puts the device into

search mode. In this mode, the device searches for any device that is currently listening and

makes a connection (see Listing 3-33).

Listing 3-33. Bluetooth Exchange Activity

public class ExchangeActivity extends Activity {

 // Unique UUID for this application
 private static final UUID MY_UUID =
 UUID.fromString("321cb8fa-9066-4f58-935e-ef55d1ae06ec");
 //Friendly name to match while discovering
 private static final String SEARCH_NAME = "bluetooth.recipe";

 BluetoothAdapter mBtAdapter;
 BluetoothSocket mBtSocket;
 Button listenButton, scanButton;
 EditText emailField;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(
 Window.FEATURE_INDETERMINATE_PROGRESS);
 setContentView(R.layout.main);

 //Check the system status
 mBtAdapter = BluetoothAdapter.getDefaultAdapter();
 if(mBtAdapter == null) {
 Toast.makeText(this, "Bluetooth is not supported.",
 Toast.LENGTH_SHORT).show();
 finish();
 return;
 }

260 CHAPTER 3: Communications and Networking

 if (!mBtAdapter.isEnabled()) {
 Intent enableIntent = new Intent(
 BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableIntent, REQUEST_ENABLE);
 }

 emailField = (EditText)findViewById(R.id.emailField);
 listenButton = (Button)findViewById(R.id.listenButton);
 listenButton.setOnClickListener(
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 //Make sure the device is discoverable first
 if (mBtAdapter.getScanMode() != BluetoothAdapter
 .SCAN_MODE_CONNECTABLE_DISCOVERABLE) {
 Intent discoverableIntent = new Intent(
 BluetoothAdapter
 .ACTION_REQUEST_DISCOVERABLE);
 discoverableIntent.putExtra(BluetoothAdapter.
 EXTRA_DISCOVERABLE_DURATION, 300);
 startActivityForResult(discoverableIntent,
 REQUEST_DISCOVERABLE);
 return;
 }
 startListening();
 }
 });
 scanButton = (Button)findViewById(R.id.scanButton);
 scanButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mBtAdapter.startDiscovery();
 setProgressBarIndeterminateVisibility(true);
 }
 });
 }

 @Override
 public void onResume() {
 super.onResume();
 //Register the activity for broadcast intents
 IntentFilter filter = new IntentFilter(
 BluetoothDevice.ACTION_FOUND);
 registerReceiver(mReceiver, filter);
 filter = new IntentFilter(
 BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
 registerReceiver(mReceiver, filter);
 }

261CHAPTER 3: Communications and Networking

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(mReceiver);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 try {
 if(mBtSocket != null) {
 mBtSocket.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 private static final int REQUEST_ENABLE = 1;
 private static final int REQUEST_DISCOVERABLE = 2;

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 switch(requestCode) {
 case REQUEST_ENABLE:
 if(resultCode != Activity.RESULT_OK) {
 Toast.makeText(this, "Bluetooth Not Enabled.",
 Toast.LENGTH_SHORT).show();
 finish();
 }
 break;
 case REQUEST_DISCOVERABLE:
 if(resultCode == Activity.RESULT_CANCELED) {
 Toast.makeText(this, "Must be discoverable.",
 Toast.LENGTH_SHORT).show();
 } else {
 startListening();
 }
 break;
 default:
 break;
 }
 }

 //Start a server socket and listen
 private void startListening() {
 AcceptTask task = new AcceptTask();
 task.execute(MY_UUID);
 setProgressBarIndeterminateVisibility(true);
 }

262 CHAPTER 3: Communications and Networking

 //AsyncTask to accept incoming connections
 private class AcceptTask extends
 AsyncTask<UUID, Void, BluetoothSocket> {

 @Override
 protected BluetoothSocket doInBackground(UUID... params) {
 String name = mBtAdapter.getName();
 try {
 //While listening, set the discovery name to
 // a specific value
 mBtAdapter.setName(SEARCH_NAME);
 BluetoothServerSocket socket = mBtAdapter
 .listenUsingRfcommWithServiceRecord(
 "BluetoothRecipe", params[0]);
 BluetoothSocket connected = socket.accept();
 //Reset the BT adapter name
 mBtAdapter.setName(name);
 return connected;
 } catch (IOException e) {
 e.printStackTrace();
 mBtAdapter.setName(name);
 return null;
 }
 }

 @Override
 protected void onPostExecute(BluetoothSocket socket) {
 if(socket == null) {
 return;
 }
 mBtSocket = socket;
 ConnectedTask task = new ConnectedTask();
 task.execute(mBtSocket);
 }

 }

 //AsyncTask to receive a single line of data and post
 private class ConnectedTask extends
 AsyncTask<BluetoothSocket,Void,String> {

 @Override
 protected String doInBackground(
 BluetoothSocket... params) {
 InputStream in = null;
 OutputStream out = null;
 try {
 //Send your data
 out = params[0].getOutputStream();
 String email = emailField.getText().toString();
 out.write(email.getBytes());

263CHAPTER 3: Communications and Networking

 //Receive the other's data
 in = params[0].getInputStream();
 byte[] buffer = new byte[1024];
 in.read(buffer);
 //Create a clean string from results
 String result = new String(buffer);
 //Close the connection
 mBtSocket.close();
 return result.trim();
 } catch (Exception exc) {
 return null;
 }
 }

 @Override
 protected void onPostExecute(String result) {
 Toast.makeText(ExchangeActivity.this, result,
 Toast.LENGTH_SHORT).show();
 setProgressBarIndeterminateVisibility(false);
 }
 }

 // The BroadcastReceiver that listens for discovered devices
 private BroadcastReceiver mReceiver =
 new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();

 // When discovery finds a device
 if (BluetoothDevice.ACTION_FOUND.equals(action)) {
 // Get the BluetoothDevice object from the Intent
 BluetoothDevice device =
 intent.getParcelableExtra(
 BluetoothDevice.EXTRA_DEVICE);
 if(TextUtils.equals(device.getName(),
 SEARCH_NAME)) {
 //Matching device found, connect
 mBtAdapter.cancelDiscovery();
 try {
 mBtSocket = device
 .createRfcommSocketToServiceRecord(
 MY_UUID);
 mBtSocket.connect();
 ConnectedTask task = new ConnectedTask();
 task.execute(mBtSocket);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

264 CHAPTER 3: Communications and Networking

 //When discovery is complete
 } else if (BluetoothAdapter.ACTION_DISCOVERY_FINISHED
 .equals(action)) {
 setProgressBarIndeterminateVisibility(false);
 }

 }
 };
}

When the application first starts up, it runs some basic checks on the Bluetooth status of

the device. If BluetoothAdapter.getDefaultAdapter() returns null, it is an indication that

the device does not have Bluetooth support, and the application will go no further. Even

with Bluetooth on the device, it must be enabled for the application to use it. If Bluetooth is

disabled, the preferred method for enabling the adapter is to send an intent to the system

with BluetoothAdapter.ACTION_REQUEST_ENABLE as the action. This notifies the user of

the issue, and that user can then enable Bluetooth. A BluetoothAdapter can be manually

enabled with the enable() method, but we strongly discourage you from doing this unless

you have requested the user’s permission another way.

With Bluetooth validated, the application waits for user input. As mentioned previously, the

example can be put into one of two modes on each device: listen mode or search mode.

Let’s look at the path each mode takes.

Listen Mode

Tapping the Listen for Sharers button starts the application listening for incoming connections.

In order for a device to accept incoming connections from devices it may not know, it must

be set as discoverable. The application verifies this by checking whether the adapter’s

scan mode is equal to SCAN_MODE_CONNECTABLE_DISCOVERABLE. If the adapter does not meet

this requirement, another intent is sent to the system to notify the user to allow the device

to be discoverable, similar to the method used to request that Bluetooth be enabled. If the

user accepts this request, the activity will return a result equal to the length of time that user

allowed the device to be discoverable; if the user cancels the request, the activity will return

Activity.RESULT_CANCELED. Our example monitors for a user canceling in onActivityResult(),

and finishes under those conditions.

If the user allows discovery, or if the device was already discoverable, an AcceptTask is

created and executed. This task creates a listener socket for the specified UUID of the

service we defined, and it blocks the calling thread while waiting for an incoming connection

request. Once a valid request is received, it is accepted, and the application moves into

connected mode.

During the period of time while the device is listening, its Bluetooth name is set to a known

unique value (SEARCH_NAME) to speed up the discovery process (you’ll see more about why in

the “Search Mode” section). Once the connection is established, the default name given to

the adapter is restored.

265CHAPTER 3: Communications and Networking

Search Mode

Tapping the Connect and Share button tells the application to begin searching for another

device to connect with. It does this by starting a Bluetooth discovery process and handling

the results in a BroadcastReceiver. When a discovery is started via BluetoothAdapter.
startDiscovery(), Android will asynchronously call back with broadcasts under two

conditions: when another device is found, and when the process is complete.

The private receiver mReceiver is registered at all times when the activity is visible to the

user, and it will receive a broadcast with each new discovered device. Recall from the

discussion on listen mode that the device name of a listening device was set to a unique

value. Upon each discovery made, the receiver checks that the device name matches

our known value, and it attempts to connect when one is found. This is important to the

speed of the discovery process, because otherwise the only way to validate each device

is to attempt a connection to the specific service UUID and see whether the operation is

successful. The Bluetooth connection process is heavyweight and slow and should be done

only when necessary to keep things performing well.

This method of matching devices also relieves the user of the need to select manually

which device to connect to. The application is smart enough to find another device that is

running the same application and in a listening mode to complete the transfer. Removing the

user also means that this value should be unique and obscure so as to avoid finding other

devices that may accidentally have the same name.

With a matching device found, we cancel the discovery process (as it is also heavyweight

and will slow down the connection) and then make a connection to the service’s UUID. With

a successful connection made, the application moves into connected mode.

Tip There are many places where you can generate your own unique ID (UUID) value. Sites on the

Web, such as https://www.uuidgenerator.net/, will create one on the fly. Users of Mac OS X

and Linux can also run uuidgen from the command line.

Connected Mode

Once connected, the application on both devices will create a ConnectedTask to send and

receive the user contact information. The connected BluetoothSocket has an InputStream

and an OutputStream available to do data transfer. First, the current value of the e-mail

text field is packaged up and written to the OutputStream. Then, the InputStream is read to

receive the remote device’s information. Finally, each device takes the raw data it received

and packages this into a clean string to display for the user.

The ConnectedTask.onPostExecute() method is tasked with displaying the results of the

exchange to the user; currently, this is done by raising a Toast with the received contents.

After the transaction, the connection is closed, and both devices are in the same mode and

ready to execute another exchange.

https://www.uuidgenerator.net/

266 CHAPTER 3: Communications and Networking

For more information on this topic, take a look at the BluetoothChat sample application

provided with the Android SDK. This application provides a great demonstration of making a

long-lived connection for users to send chat messages between devices.

BLUETOOTH BEYOND ANDROID

As we mentioned in the beginning of this section, Bluetooth is found in many wireless devices besides mobile

phones and tablets. RFCOMM interfaces also exist in devices such as Bluetooth modems and serial adapters.

The same APIs that were used to create the peer-to-peer connection between Android devices can also be used

to connect to other embedded Bluetooth devices for the purposes of monitoring and control.

The key to establishing a connection with these embedded devices is obtaining the UUID of the RFCOMM

services they support. Bluetooth services that are part of a profile standard, and their identifiers, are defined

by the Bluetooth Special Interest Group (SIG); so you may be able to obtain the UUID you require for a given

device from the documentation provided on www.bluetooth.org. However, if your device manufacturer has

defined a device-specific UUID for a custom service type and it is not readily documented, we must have a way

to discover it. As with the previous example, with the proper UUID we can create a BluetoothSocket and

transmit data.

The capability to do this exists in the SDK, although prior to Android 4.0.3 (API Level 15) it was not part of

the public SDK. Two methods on BluetoothDevice will provide this information: fetchUuidsWithSdp()

and getUuids(). The latter simply returns the cached instances for the device found during discovery,

while the former asynchronously connects to the device and does a fresh query. Because of this, when using

fetchUuidsWithSdp(), you must register a BroadcastReceiver that will receive intents set with the

BluetoothDevice.ACTION_UUID action string to discover the UUID values.

3-12. Querying Network Reachability

Problem
Your application needs to be aware of changes in network connectivity.

Solution
(API Level 1)

Keep tabs on the device’s connectivity with ConnectivityManager. One of the paramount

issues to consider in mobile application design is that the network is not always available for

use. As people move about, the speeds and capabilities of networks are subject to change.

An application that uses network resources should always be able to detect whether those

resources are reachable and then notify the user when they are not.

In addition to reachability, ConnectivityManager can provide the application with information

about the connection type. This allows you to make decisions such as whether to download

a large file because the user is currently roaming and it may cost the user a fortune.

http://www.bluetooth.org/

267CHAPTER 3: Communications and Networking

How It Works
Listing 3-34 creates a wrapper method you can place in your code to check for network

connectivity.

Listing 3-34. ConnectivityManager Wrapper

public static boolean isNetworkReachable(Context context) {
 final ConnectivityManager mManager =
 (ConnectivityManager)context.getSystemService(
 Context.CONNECTIVITY_SERVICE);
 NetworkInfo current = mManager.getActiveNetworkInfo();
 if(current == null) {
 return false;
 }
 return (current.getState() == NetworkInfo.State.CONNECTED);
}

ConnectivityManager does the work of evaluating which network data interface is

considered active (Wi-Fi or cellular). In the simplest case, we check only if the given interface

is connected. Note that ConnectivityManager.getActiveNetworkInfo() will return null if

there is no active data connection available, so we must check for that case first. If there is

an active network, we can inspect its state, which will return one of the following:

	DISCONNECTED

	CONNECTING

	CONNECTED

	DISCONNECTING

When the state returns as CONNECTED, the network is considered stable and we can utilize it

to access remote resources.

Verifying a Route

Mobile devices have multiple connectivity routes (Wi-Fi, 3G/4G, and so forth), and it is

common for a device to be connected to a network that doesn’t have a route to the external

Web; this is especially common with Wi-Fi networks. ConnectivityManager alone simply

notifies you of whether or not your device has associated with a particular network, but says

nothing of that network’s ability to access an outside IP address. Add to this the fact that

when a device attempts to connect through a network that is “connected” but has no valid

route, the time the network stack can take to time out and fail properly can be minutes.

You may find yourself in a situation where it is smarter to check for a valid Internet

connection rather than just an association with a network. Listing 3-35 builds on the

previous reachability check to do just that.

268 CHAPTER 3: Communications and Networking

Listing 3-35. Smarter ConnectivityManager Wrapper

public static boolean hasNetworkConnection(Context context) {
 final ConnectivityManager connectivityManager =
 (ConnectivityManager) context.getSystemService(
 Context.CONNECTIVITY_SERVICE);
 final NetworkInfo activeNetworkInfo =
 connectivityManager.getActiveNetworkInfo();

 //If we aren't even associated with a network, we're done
 boolean connected = (null != activeNetworkInfo)
 && activeNetworkInfo.isConnected();
 if (!connected) return false;

 //Check if we can access a remote server
 boolean routeExists;
 try {
 //Check Google Public DNS
 InetAddress host = InetAddress.getByName("8.8.8.8");

 Socket s = new Socket();
 s.connect(new InetSocketAddress(host, 53), 5000);
 //It exists if no exception is thrown
 routeExists = true;
 s.close();
 } catch (IOException e) {
 routeExists = false;
 }

 return (connected && routeExists);
 }

After verifying the same reachability condition as before, Listing 3-35 goes a step further and

attempts to open a socket to the well-known standard IPv4 address for the Google Public

DNS (8.8.8.8) with a 5-second time-out. If a connection to this host succeeds, we can have

a relatively high level of confidence that the device can access any active Internet resource.

The advantage to this approach over attempting to fully connect directly to your remote

server is that this code will fail faster, forcing up to only a 5-second delay before telling the

user they really don’t have the Internet connection they think they do.

It is considered good practice to call a reachability check whenever a network request fails

and to notify the user that the request failed because of a lack of connectivity. Listing 3-36 is

an example of doing this when a network access fails.

269CHAPTER 3: Communications and Networking

Listing 3-36. Notify User of Connectivity Failure

try {
 //Attempt to access network resource. May throw
 // HttpResponseException or some other IOException on failure
} catch (Exception e) {
 if(!isNetworkReachable()) {
 AlertDialog.Builder builder =
 new AlertDialog.Builder(context);
 builder.setTitle("No Network Connection");
 builder.setMessage("The Network is unavailable."
 + " Please try your request again later.");
 builder.setPositiveButton("OK",null);
 builder.create().show();
 }
}

Determining Connection Type

When it is also essential to know whether the user is connected to a network that charges

for bandwidth, we can call NetworkInfo.getType() on the active network connection

(see Listing 3-37).

Listing 3-37. ConnectivityManager Bandwidth Checking

public boolean isWifiReachable(Context context) {
 ConnectivityManager mManager =
 (ConnectivityManager)context.getSystemService(
 Context.CONNECTIVITY_SERVICE);
 NetworkInfo current = mManager.getActiveNetworkInfo();
 if(current == null) {
 return false;
 }
 return (current.getType() == ConnectivityManager.TYPE_WIFI);
}

This modified version of the reachability check determines whether the user is attached to a

Wi-Fi connection, typically indicating that the user has a faster connection where bandwidth

isn’t tariffed.

270 CHAPTER 3: Communications and Networking

3-13. Transferring Data with NFC

Problem
You have an application that must quickly transfer small data packets between two Android

devices with minimal setup.

Solution
(API Level 16)

Use the near field communication (NFC) Beam APIs. NFC communication was originally

added to the SDK in Android 2.3 and was expanded in 4.0 to make short-message transfer

between devices painless through a process called Android Beam. In Android 4.1, even

more was added to make the Beam APIs fully mature for transferring data between two

devices.

One of the major additions in 4.1 was the ability to transfer large data over alternate

connections. NFC is a great method of discovering devices and setting up an initial

connection, but it is low bandwidth and inefficient for sending large data packets such as

full-color images. Previously, developers could use NFC to connect two devices but would

need to manually negotiate a second connection over Wi-Fi Direct or Bluetooth to transfer

the file data. In Android 4.1, the framework now handles that entire process, and any

application can share large files over any available connection with a single API call.

How It Works
Depending on the size of the content you wish to push, two mechanisms are available to

transfer data from one device to another.

Beaming with Foreground Push

If you want to send simple content between devices over NFC, you can use the foreground

push mechanism to create an NfcMessage containing one or more NfcRecord instances.

Listings 3-38 and 3-39 illustrate creating a simple NfcMessage to push to another device.

Listing 3-38. AndroidManifest.xml

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.nfcbeam">

 <uses-permission android:name="android.permission.NFC" />
 <application
 android:icon="@drawable/ic_launcher"
 android:label="NfcBeam">
 <activity
 android:name=".NfcActivity"
 android:label="NfcActivity"

271CHAPTER 3: Communications and Networking

 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType=
 "application/com.example.androidrecipes.beamtext"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

First notice that android.permission.NFC is required to work with the NFC service. Second,

note the custom <intent-filter> placed on our activity. This is how Android will know

which application to launch in response to the content it receives.

Listing 3-39. Activity Generating an NFC Foreground Push

public class NfcActivity extends Activity implements
 CreateNdefMessageCallback, OnNdefPushCompleteCallback {
 private static final String TAG = "NfcBeam";
 private NfcAdapter mNfcAdapter;
 private TextView mDisplay;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mDisplay = new TextView(this);
 setContentView(mDisplay);

 // Check for available NFC Adapter
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 mDisplay.setText("NFC not available on this device.");
 } else {
 // Register callback to set NDEF message. Setting
 // this makes NFC data push active while the Activity
 // is in the foreground.
 mNfcAdapter.setNdefPushMessageCallback(this, this);
 // Register callback for message-sent success
 mNfcAdapter.setOnNdefPushCompleteCallback(this, this);
 }
 }

272 CHAPTER 3: Communications and Networking

 @Override
 public void onResume() {
 super.onResume();
 // Check to see if a Beam launched this Activity
 if (NfcAdapter.ACTION_NDEF_DISCOVERED
 .equals(getIntent().getAction())) {
 processIntent(getIntent());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 // onResume gets called after this to handle the intent
 setIntent(intent);
 }

 void processIntent(Intent intent) {
 Parcelable[] rawMsgs = intent.getParcelableArrayExtra(
 NfcAdapter.EXTRA_NDEF_MESSAGES);
 // only one message sent during the beam
 NdefMessage msg = (NdefMessage) rawMsgs[0];
 // record 0 contains the MIME type
 mDisplay.setText(new String(
 msg.getRecords()[0].getPayload()));
 }

 @Override
 public NdefMessage createNdefMessage(NfcEvent event) {
 String text = String.format(
 "Sending A Message From Android Recipes at %s",
 DateFormat.getTimeFormat(this)
 .format(new Date()));
 NdefMessage msg = new NdefMessage(NdefRecord.createMime(
 "application/com.example.androidrecipes.beamtext",
 text.getBytes()));
 return msg;
 }

 @Override
 public void onNdefPushComplete(NfcEvent event) {
 //This callback happens on a binder thread, don't update
 // the UI directly from this method.
 Log.i(TAG, "Message Sent!");
 }
}

273CHAPTER 3: Communications and Networking

This example application encompasses both the sending and receiving of an NFC push,

so the same application should be installed on both devices: the one that is sending

and the one that is receiving the data. The activity registers itself for foreground push by

using the setNdefPushMessageCallback() method on the NfcAdapter. This call does two

things simultaneously. It tells the NFC service to call this activity at the moment a transfer

is initiated to receive the message it needs to send, and it also activates an NFC push

whenever this activity is in the foreground. There is also an alternate version of this called

setNdefPushMessage() that takes the message directly rather than implementing a callback.

The callback method constructs an NdefMessage containing a single NFC Data Exchange

Format (NDEF) MIME record (created with the NdefRecord.createMime() method). MIME

records are simple ways of passing application-specific data. The createMime() method

takes both a string for the MIME type and a byte array for the raw data. The information can

be anything from a text string to a small image; your application is responsible for packing

and unpacking it. Notice that the MIME type here matches the type defined in the manifest’s

<intent-filter>.

In order for the push to work, the sending device must have this activity active in the

foreground, and the receiving device must not be locked. When the user touches the

two devices together, the sending screen shows Android’s Touch to Beam UI, and a

tap of the screen sends the message to the other device. As soon as the message is

received, the application launches on the receiving device, and the sending device’s

onNdefPushComplete() callback is triggered.

On the receiving device, the activity is launched with the ACTION_NDEF_DISCOVERED intent, so

our example will inspect the intent for the NdefMessage and unpack the payload, turning it

back from bytes into a string. This method of using intent matching to send NFC data is the

most flexible, but sometimes you want your application to be explicitly called. This is where

Android Application Records come in.

Android Application Records

Your application can provide an additional NdefRecord inside an NdefMessage that directs

Android to call a specific package name on the receiving device. To include this in our

previous example, we would simply modify the CreateNdefMessageCallback, like so:

@Override
public NdefMessage createNdefMessage(NfcEvent event) {
 String text = String.format(
 "Sending A Message From Android Recipes at %s",
 DateFormat.getTimeFormat(this)
 .format(new Date()));
 NdefMessage msg = new NdefMessage(NdefRecord.createMime(
 "application/com.example.androidrecipes.beamtext",
 text.getBytes()),
 NdefRecord
 .createApplicationRecord("com.examples.nfcbeam"));
 return msg;
}

274 CHAPTER 3: Communications and Networking

With the addition of NdefRecord.createApplicationRecord(), this push message is now

guaranteed to launch only our com.examples.nfcbeam package. The text information is

still the first record in the message, so our unpacking of the received message remains

unchanged.

Beaming Larger Content

We mentioned at the beginning of this recipe that sending large content blobs over NFC is

not a great idea. However, Android Beam has the capability to handle that as well. Have a

look at Listings 3-40 through 3-42 for examples of sending large image files over Beam.

Listing 3-40. AndroidManifest.xml

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.nfcbeam">

 <uses-permission android:name="android.permission.NFC" />
 <application
 android:icon="@drawable/ic_launcher"
 android:label="NfcBeam">
 <activity
 android:name=".BeamActivity"
 android:label="BeamActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="image/*" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Listing 3-41. res/layout/main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Select Image"
 android:onClick="onSelectClick" />

275CHAPTER 3: Communications and Networking

 <TextView
 android:id="@+id/text_uri"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <ImageView
 android:id="@+id/image_preview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="center" />
</LinearLayout>

Listing 3-42. Activity to Transfer an Image File

public class BeamActivity extends Activity implements
 CreateBeamUrisCallback, OnNdefPushCompleteCallback {
 private static final String TAG = "NfcBeam";
 private static final int PICK_IMAGE = 100;

 private NfcAdapter mNfcAdapter;
 private Uri mSelectedImage;

 private TextView mUriName;
 private ImageView mPreviewImage;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mUriName = (TextView) findViewById(R.id.text_uri);
 mPreviewImage =
 (ImageView) findViewById(R.id.image_preview);

 // Check for available NFC Adapter
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 mUriName.setText("NFC not available on this device.");
 } else {
 // Register callback to set NDEF message
 mNfcAdapter.setBeamPushUrisCallback(this, this);
 // Register callback for message-sent success
 mNfcAdapter.setOnNdefPushCompleteCallback(this, this);
 }
 }

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == PICK_IMAGE && resultCode == RESULT_OK
 && data != null) {
 mUriName.setText(data.getData().toString());
 mSelectedImage = data.getData();
 }
 }

276 CHAPTER 3: Communications and Networking

 @Override
 public void onResume() {
 super.onResume();
 //Check to see that the Activity started due to
 // an Android Beam
 if (Intent.ACTION_VIEW.equals(getIntent().getAction())) {
 processIntent(getIntent());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 // onResume gets called after this to handle the intent
 setIntent(intent);
 }

 void processIntent(Intent intent) {
 Uri data = intent.getData();
 if(data != null) {
 mPreviewImage.setImageURI(data);
 } else {
 mUriName.setText("Received Invalid Image Uri");
 }
 }

 public void onSelectClick(View v) {
 Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
 intent.setType("image/*");
 startActivityForResult(intent, PICK_IMAGE);
 }

 @Override
 public Uri[] createBeamUris(NfcEvent event) {
 if (mSelectedImage == null) {
 return null;
 }
 return new Uri[] {mSelectedImage};
 }

 @Override
 public void onNdefPushComplete(NfcEvent event) {
 //This callback happens on a binder thread, don't update
 // the UI directly from this method. This is a good time
 // to tell your user they don't need to hold
 // their phones together anymore!
 Log.i(TAG, "Push Complete!");
 }
}

277CHAPTER 3: Communications and Networking

This example uses CreateBeamUrisCallback, which allows an application to construct an

array of Uri instances pointing to content you would like to transmit. Android will do the

work of negotiating the initial connection over NFC but will then drop to a more suitable

connection such as Bluetooth or Wi-Fi Direct to finish the larger transfers.

In this case, the data on the receiving device is launched using the system’s standard

Intent.ACTION_VIEW action, so it is not necessary to load the application on both devices.

However, our application does filter for ACTION_VIEW so the receiving device could use it to

view the received image content if the user prefers.

Here, the user is asked to select an image from the device to transfer, and then the Uri of

that content is displayed once selected. As soon as the user touches that device to another,

the same Touch to Beam UI (see Figure 3-4) displays, and the transfer begins when the

screen is tapped.

Figure 3-4. Activity with Touch to Beam activated

278 CHAPTER 3: Communications and Networking

Once the NFC portion of the transfer is complete, the onNdefPushComplete() method is

called on the sending device. At this point, the transfer has moved to another connection, so

the users don’t need to hold their phones together anymore.

The receiving device will display a progress notification in the system’s window shade while

the file is transferring. When the transfer is complete, the user can tap on the notification to

view the content. If this application is chosen as the content viewer, the image will be shown

in our application’s ImageView. One possible disadvantage to registering your application

with such a generic intent is that every application on the device can then ask your

application to view images, so choose your filters wisely!

3-14. Connecting over USB

Problem
Your application needs to communicate with a USB device for the purposes of control or

transferring data.

Solution
(API Level 12)

Android has built-in support for devices that contain USB Host circuitry to allow them to

enumerate and communicate with connected USB devices. USBManager is the system service

that provides applications access to any external devices connected via USB, and we are

going to see how you can use that service to establish a connection from your application.

USB Host circuitry is becoming more common on devices, but it is still rare. Initially,

only tablet devices had this capability, but it is growing rapidly and may soon become a

commonplace interface on commercial Android handsets as well. However, because of this

you will certainly want to include the following element in your application manifest:

<uses-feature android:name="android.hardware.usb.host" />

This will limit your application to devices that have the available hardware to do the

communications.

The APIs provided by Android are pretty much direct mirrors of the USB specification,

without much in the way of higher-level abstraction. This means that if you would like to use

them, you will need at least a basic knowledge of USB and how devices communicate.

279CHAPTER 3: Communications and Networking

USB Overview

Before looking at an example of how Android interacts with USB devices, let’s take a

moment to define some USB terms:

	Endpoint: The smallest building block of a USB device. These are what

your application eventually connects to for the purpose of sending and

receiving data. They can take the form of four main types:

	Control: Used for configuration and status commands. Every device has

at least one control endpoint, called endpoint 0, that is not attached to any

interface.

	Interrupt: Used for small, high-priority control commands.

	Bulk: Large data transfer. Commonly found in bidirectional pair

(1 IN and 1 OUT).

	Isochronous: Used for real-time data transfer such as audio. Not supported

by the latest Android SDK as of this writing.

	Interface: A collection of endpoints to represent a “logical” device.

Physical USB devices can manifest themselves to the host as multiple logical 	
devices, and they do this by exposing multiple interfaces.

	Configuration: Collection of one or more interfaces. The USB protocol

enforces that only one configuration can be active at any one time on a

device. In fact, most devices have only one configuration at all. Think of

this as the device’s operating mode.

How It Works
Listings 3-43 and 3-44 show examples that use UsbManager to inspect devices connected

over USB and then use control transfers to further query the configuration.

Listing 3-43. res/layout/main.xml

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <Button
 android:id="@+id/button_connect"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Connect"
 android:onClick="onConnectClick" />
 <TextView
 android:id="@+id/text_status"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

280 CHAPTER 3: Communications and Networking

 <TextView
 android:id="@+id/text_data"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

</LinearLayout>

Listing 3-44. Activity on USB Host Querying Devices

public class USBActivity extends Activity {
 private static final String TAG = "UsbHost";

 TextView mDeviceText, mDisplayText;
 Button mConnectButton;

 UsbManager mUsbManager;
 UsbDevice mDevice;
 PendingIntent mPermissionIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mDeviceText = (TextView) findViewById(R.id.text_status);
 mDisplayText = (TextView) findViewById(R.id.text_data);
 mConnectButton =
 (Button) findViewById(R.id.button_connect);

 mUsbManager =
 (UsbManager) getSystemService(Context.USB_SERVICE);
 }

 @Override
 protected void onResume() {
 super.onResume();
 mPermissionIntent =
 PendingIntent.getBroadcast(this, 0,
 new Intent(ACTION_USB_PERMISSION), 0);
 IntentFilter filter =
 new IntentFilter(ACTION_USB_PERMISSION);
 registerReceiver(mUsbReceiver, filter);

 //Check currently connected devices
 updateDeviceList();
 }

 @Override
 protected void onPause() {
 super.onPause();
 unregisterReceiver(mUsbReceiver);
 }

281CHAPTER 3: Communications and Networking

 public void onConnectClick(View v) {
 if (mDevice == null) {
 return;
 }
 mDisplayText.setText("---");

 //This will either prompt the user with a grant permission
 // dialog, or immediately fire the ACTION_USB_PERMISSION
 // broadcast if the user has already granted it to us.
 mUsbManager.requestPermission(mDevice, mPermissionIntent);
 }

 /*
 * Receiver to catch user permission responses, which are
 * required in order to actually interact with a connected
 * device.
 */
 private static final String ACTION_USB_PERMISSION =
 "com.android.recipes.USB_PERMISSION";
 private final BroadcastReceiver mUsbReceiver =
 new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if (ACTION_USB_PERMISSION.equals(action)) {
 UsbDevice device =
 (UsbDevice) intent.getParcelableExtra(
 UsbManager.EXTRA_DEVICE);

 if (intent.getBooleanExtra(
 UsbManager.EXTRA_PERMISSION_GRANTED, false)
 && device != null) {
 //Query the device's descriptor
 getDeviceStatus(device);
 } else {
 Log.d(TAG, "permission denied for " + device);
 }
 }
 }
 };

 //Type: Indicates whether this is a read or write
 // Matches USB_ENDPOINT_DIR_MASK for either IN or OUT
 private static final int REQUEST_TYPE = 0x80;
 //Request: GET_CONFIGURATION_DESCRIPTOR = 0x06
 private static final int REQUEST = 0x06;
 //Value: Descriptor Type (High) and Index (Low)
 // Configuration Descriptor = 0x2
 // Index = 0x0 (First configuration)
 private static final int REQ_VALUE = 0x200;
 private static final int REQ_INDEX = 0x00;
 private static final int LENGTH = 64;

282 CHAPTER 3: Communications and Networking

 /*
 * Initiate a control transfer to request the first
 * configuration descriptor of the device.
 */
 private void getDeviceStatus(UsbDevice device) {
 UsbDeviceConnection connection =
 mUsbManager.openDevice(device);
 //Create a sufficiently large buffer for incoming data
 byte[] buffer = new byte[LENGTH];
 connection.controlTransfer(REQUEST_TYPE, REQUEST,
 REQ_VALUE, REQ_INDEX, buffer, LENGTH, 2000);
 //Parse received data into a description
 String description = parseConfigDescriptor(buffer);

 mDisplayText.setText(description);
 connection.close();
 }

 /*
 * Parse the USB configuration descriptor response per the
 * USB Specification. Return a printable description of
 * the connected device.
 */
 private static final int DESC_SIZE_CONFIG = 9;
 private String parseConfigDescriptor(byte[] buffer) {
 StringBuilder sb = new StringBuilder();
 //Parse configuration descriptor header
 int totalLength = (buffer[3] &0xFF) << 8;
 totalLength += (buffer[2] & 0xFF);
 //Interface count
 int numInterfaces = (buffer[5] & 0xFF);
 //Configuration attributes
 int attributes = (buffer[7] & 0xFF);
 //Power is given in 2mA increments
 int maxPower = (buffer[8] & 0xFF) * 2;

 sb.append("Configuration Descriptor:\n");
 sb.append("Length: " + totalLength + " bytes\n");
 sb.append(numInterfaces + " Interfaces\n");
 sb.append(String.format("Attributes:%s%s%s\n",
 (attributes & 0x80) == 0x80 ? " BusPowered" : "",
 (attributes & 0x40) == 0x40 ? " SelfPowered" : "",
 (attributes & 0x20) == 0x20 ? " RemoteWakeup" : ""));
 sb.append("Max Power: " + maxPower + "mA\n");

 //The rest of the descriptor is interfaces and endpoints
 int index = DESC_SIZE_CONFIG;
 while (index < totalLength) {
 //Read length and type
 int len = (buffer[index] & 0xFF);
 int type = (buffer[index+1] & 0xFF);
 switch (type) {

283CHAPTER 3: Communications and Networking

 case 0x04: //Interface Descriptor
 int intfNumber = (buffer[index+2] & 0xFF);
 int numEndpoints = (buffer[index+4] & 0xFF);
 int intfClass = (buffer[index+5] & 0xFF);

 sb.append(String.format(
 "- Interface %d, %s, %d Endpoints\n",
 intfNumber,
 nameForClass(intfClass),
 numEndpoints));
 break;
 case 0x05: //Endpoint Descriptor
 int endpointAddr = ((buffer[index+2] & 0xFF));
 //Number is lower 4 bits
 int endpointNum = (endpointAddr & 0x0F);
 //Direction is high bit
 int direction = (endpointAddr & 0x80);

 int endpointAttrs = (buffer[index+3] & 0xFF);
 //Type is the lower two bits
 int endpointType = (endpointAttrs & 0x3);

 sb.append(String.format("-- Endpoint %d, %s %s\n",
 endpointNum,
 nameForEndpointType(endpointType),
 nameForDirection(direction)));
 break;
 }
 //Advance to next descriptor
 index += len;
 }

 return sb.toString();
 }

 private void updateDeviceList() {
 HashMap<String, UsbDevice> connectedDevices =
 mUsbManager.getDeviceList();
 if (connectedDevices.isEmpty()) {
 mDevice = null;
 mDeviceText.setText("No Devices Currently Connected");
 mConnectButton.setEnabled(false);
 } else {
 StringBuilder builder = new StringBuilder();
 for (UsbDevice device : connectedDevices.values()) {
 //Use the last device detected (if multiple)
 // to open
 mDevice = device;
 builder.append(readDevice(device));
 builder.append("\n\n");
 }

284 CHAPTER 3: Communications and Networking

 mDeviceText.setText(builder.toString());
 mConnectButton.setEnabled(true);
 }
 }

 /*
 * Enumerate the endpoints and interfaces on the connected
 * device. We do not need permission to do anything here, it
 * is all "publicly available" until we try to connect to
 * an actual device.
 */
 private String readDevice(UsbDevice device) {
 StringBuilder sb = new StringBuilder();
 sb.append("Device Name: " + device.getDeviceName()
 + "\n");
 sb.append(String.format(
 "Device Class: %s -> Subclass: 0x%02x -> "
 + "Protocol: 0x%02x\n",
 nameForClass(device.getDeviceClass()),
 device.getDeviceSubclass(),
 device.getDeviceProtocol())
);

 for (int i = 0; i < device.getInterfaceCount(); i++) {
 UsbInterface intf = device.getInterface(i);
 sb.append(String.format(
 "+--Interface %d Class: %s -> "
 + "Subclass: 0x%02x -> Protocol: 0x%02x\n",
 intf.getId(),
 nameForClass(intf.getInterfaceClass()),
 intf.getInterfaceSubclass(),
 intf.getInterfaceProtocol())
);

 for (int j = 0; j < intf.getEndpointCount(); j++) {
 UsbEndpoint endpoint = intf.getEndpoint(j);
 sb.append(String.format(
 " +---Endpoint %d: %s %s\n",
 endpoint.getEndpointNumber(),
 nameForEndpointType(endpoint.getType()),
 nameForDirection(endpoint.getDirection()))
);
 }
 }

 return sb.toString();
 }

 /* Helper Methods to Provide Readable Names for USB Constants
 */

285CHAPTER 3: Communications and Networking

 private String nameForClass(int classType) {
 switch (classType) {
 case UsbConstants.USB_CLASS_APP_SPEC:
 return String.format(
 "Application Specific 0x%02x", classType);
 case UsbConstants.USB_CLASS_AUDIO:
 return "Audio";
 case UsbConstants.USB_CLASS_CDC_DATA:
 return "CDC Control";
 case UsbConstants.USB_CLASS_COMM:
 return "Communications";
 case UsbConstants.USB_CLASS_CONTENT_SEC:
 return "Content Security";
 case UsbConstants.USB_CLASS_CSCID:
 return "Content Smart Card";
 case UsbConstants.USB_CLASS_HID:
 return "Human Interface Device";
 case UsbConstants.USB_CLASS_HUB:
 return "Hub";
 case UsbConstants.USB_CLASS_MASS_STORAGE:
 return "Mass Storage";
 case UsbConstants.USB_CLASS_MISC:
 return "Wireless Miscellaneous";
 case UsbConstants.USB_CLASS_PER_INTERFACE:
 return "(Defined Per Interface)";
 case UsbConstants.USB_CLASS_PHYSICA:
 return "Physical";
 case UsbConstants.USB_CLASS_PRINTER:
 return "Printer";
 case UsbConstants.USB_CLASS_STILL_IMAGE:
 return "Still Image";
 case UsbConstants.USB_CLASS_VENDOR_SPEC:
 return String.format(
 "Vendor Specific 0x%02x", classType);
 case UsbConstants.USB_CLASS_VIDEO:
 return "Video";
 case UsbConstants.USB_CLASS_WIRELESS_CONTROLLER:
 return "Wireless Controller";
 default:
 return String.format("0x%02x", classType);
 }
 }

 private String nameForEndpointType(int type) {
 switch (type) {
 case UsbConstants.USB_ENDPOINT_XFER_BULK:
 return "Bulk";
 case UsbConstants.USB_ENDPOINT_XFER_CONTROL:
 return "Control";
 case UsbConstants.USB_ENDPOINT_XFER_INT:
 return "Interrupt";

286 CHAPTER 3: Communications and Networking

 case UsbConstants.USB_ENDPOINT_XFER_ISOC:
 return "Isochronous";
 default:
 return "Unknown Type";
 }
 }

 private String nameForDirection(int direction) {
 switch (direction) {
 case UsbConstants.USB_DIR_IN:
 return "IN";
 case UsbConstants.USB_DIR_OUT:
 return "OUT";
 default:
 return "Unknown Direction";
 }
 }
}

When the activity first comes into the foreground, it registers a BroadcastReceiver with a

custom action (which we’ll discuss in more detail shortly), and it queries the list of currently

connected devices by using UsbManager.getDeviceList(), which returns a HashMap of

UsbDevice items that we can iterate over and interrogate. For each device connected, we

query each interface and endpoint, building a description string to print to the user about

what this device is. We then print all that data to the user interface.

Note This application, as it stands, does not require any manifest permissions. We do not need to

declare a permission simply to query information about devices connected to the host.

You can see that UsbManager provides APIs to inspect just about every piece of information

you would need to discover if a connected device is the one you are interested in

communicating with. All standard definitions for device classes, endpoint types, and transfer

directions are also defined in UsbConstants, so you can match the types you want without

defining all of this yourself.

So, what about that BroadcastReceiver we registered? The remainder of this example

code takes action when the user presses the Connect button on the screen. At this point,

we would like to talk to the connected device, which is an operation that does require user

permission. Here, when the user clicks the button, we call UsbManager.requestPermission()

to ask the user if we can connect. If permission has not yet been granted, the user will see a

dialog box asking him or her to grant permission to connect.

Upon saying yes, the PendingIntent passed along to the method will get fired. In our example,

that intent was a broadcast with a custom action string we defined, so this will trigger

onReceive() in that BroadcastReceiver; any subsequent calls to requestPermission() will

immediately trigger the receiver as well. Inside the receiver, we check to make sure that the result

was a permission-granted response, and we attempt to open a connection to the device with

UsbManager.openDevice(), which returns a UsbDeviceConnection instance when successful.

287CHAPTER 3: Communications and Networking

With a valid connection made, we request some more detailed information about the

device by requesting its configuration descriptor via a control transfer. Control transfers

are requests always made on endpoint 0 of the device. A configuration descriptor contains

information about the configuration as well as each interface and endpoint, so its length is

variable. We allocate a decent-sized buffer to ensure we capture everything.

Upon returning from controlTransfer(), the buffer is filled with the response data. Our

application then processes the bytes, determining some more information about the device,

including its maximum power draw and whether the device is configured to be powered from

the USB post (bus-powered) or by an external source (self-powered). This example parses

out only a fraction of the useful information that can be found inside these descriptors. Once

again, all the parsed data is put into a string report and displayed to the user interface.

Much of the data read in the first section from the framework APIs and in the second section

directly from the device is the same. Therefore the content displayed in the user interface

should match in each section. One thing to note is that this application works only if the device

is already connected when the application runs: it will not be notified if a connection happens

while it is in the foreground. We will look at how to handle that scenario in the next section.

Getting Notified of Device Connections

In order for Android to notify your application when a particular device is connected, you

need to register the device types you are interested in with an <intent-filter> in the

manifest. Take a look at Listings 3-45 and 3-46 to see how this is done.

Listing 3-45. Partial AndroidManifest.xml

<activity
 android:name=".USBActivity"
 android:label="@string/title_activity_usb" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name=
 "android.hardware.usb.action.USB_DEVICE_ATTACHED" />
 </intent-filter>

 <meta-data android:name=
 "android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_filter" />
</activity>

Listing 3-46. res/xml/device_filter.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <usb-device vendor-id="5432" product-id="9876" />
</resources>

288 CHAPTER 3: Communications and Networking

The activity you want to launch with a connection has a filter added to it with the

USB_DEVICE_ATTACHED action string and with some XML metadata describing the devices you

are interested in. There are several device attribute fields you can place into <usb-device> to

filter which connection events notify your application:

	vendor-id

	product-id

	class

	subclass

	protocol

You can define as many of these as necessary to fit your application. For example, if you

want to communicate with only one specific device, you might define both vendor-id and

product-id as the example code did. If you are more interested in all devices of a given type

(say, all mass-storage devices), you might define only the class attribute. It is even allowable

to define no attributes, and have your application match on any device connected!

Summary
Connecting an Android application to the Web and web services is a great way to add user

value in today’s connected world. Android’s framework for connecting to the Web and other

remote hosts makes adding this functionality straightforward. We’ve explored how to bring

the standards of the Web into your application, using HTML and JavaScript to interact with

the user, but within a native context. You also saw how to use Android to download content

from remote servers and consume it in your application. We also showed that a web server

is not the only host worth connecting to, by using Bluetooth, NFC, and SMS to communicate

directly from one device to another. In the next chapter, we will look at using the tools that

Android provides to interact with a device’s hardware resources.

289

Chapter 4
Interacting with Device

Hardware and Media

Integrating application software with device hardware presents opportunities to create unique

user experiences that only the mobile platform can provide. Capturing media by using the

microphone and camera allows applications to incorporate a personal touch through a

photo or recorded greeting. Integration of sensor and location data can help you develop

applications to answer relevant questions such as “Where am I?” and “What am I looking at?”

In this chapter, we investigate how to leverage the location, media, and sensor APIs

provided by Android to add that unique value the mobile device brings to your applications.

4-1. Integrating Device Location

Problem
You want to leverage the device’s ability to report its current physical position in an application.

Solution
(API Level 9)

Utilize Google’s fused location provider, available inside the Google Play Services library.

One of the most powerful benefits that a mobile application can often provide to the user

is the ability to add context by including information based on where that user is currently

located. Applications may ask the location services to provide updates of a device’s location

based on the following criteria:

	Frequency: Minimum amount of time (in milliseconds) before another

update is delivered to the application.

	Distance: Minimum distance device must move before another update is

delivered.

290 CHAPTER 4: Interacting with Device Hardware and Media

	Count: Maximum number of updates to deliver before shutting down the

provider.

	Expiration time: Maximum amount of time after the request is initialized

before the provider is shut down.

Note Android has non-Google location services directly available in the LocationManager as

well. This API is less assistive, and developers have to manage requests from discrete location

sources separately.

Android allows applications to obtain location data from multiple sources. High-accuracy

(and also high-power-drain) fixes come from on on-board GPS. Lower-accuracy data is obtained

from network sources, such as cellular towers and Wi-Fi hotspots. Google’s fused location

provider gets its name from “fusing” these multiple sources together to provide developers with

the best result at all times. Location requests are made with higher-level criteria, and the device

does the work of determining which hardware interfaces should be involved:

	PRIORITY_BALANCED_POWER_ACCURACY: Provides a mix of GPS and network

sources to get good accuracy with lower power and quicker fixes.

	PRIORITY_HIGH_ACCURACY: Requires a final fix to come from GPS (most

accurate), though initial fixes may come from elsewhere. This option

also requires the most power as the GPS is typically on all the time.

	PRIORITY_LOW_POWER: Provides the quickest fixes—but without GPS

assistance, the accuracy is generally not better than “city” level.

	PRIORITY_NO_POWER: Enables your application to be a passive observer.

Updates will be delivered only when another application triggers them.

Important The location services in this example are distributed as part of the Google Play

Services library; they are not part of the native SDK at any platform level. However, any application

targeting API Level 9 or later and devices inside the Google Play ecosystem can use the mapping

library. For more information on including Google Play Services in your project, reference

https://developer.android.com/google/play-services/setup.html.

How It Works
In Listing 4-1, we register an activity to listen for location updates while it is visible to the

user and to display that location onscreen.

https://developer.android.com/google/play-services/setup.html

291CHAPTER 4: Interacting with Device Hardware and Media

Note This example uses ActionBarActivity from the AppCompat Library to allow the use of

fragments prior to API Level 11.

Listing 4-1. Activity Monitoring Location Updates

public class MainActivity extends ActionBarActivity implements
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener,
 com.google.android.gms.location.LocationListener {
 private static final String TAG = "AndroidRecipes";

 private static final int UPDATE_INTERVAL = 15 * 1000;
 private static final int FASTEST_UPDATE_INTERVAL = 2 * 1000;

 /* Client interface to Play Services */
 private LocationClient mLocationClient;
 /* Metadata about updates we want to receive */
 private LocationRequest mLocationRequest;
 /* Last-known device location */
 private Location mCurrentLocation;

 private TextView mLocationView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mLocationView = new TextView(this);
 setContentView(mLocationView);

 //Verify Play Services is active and up-to-date
 int resultCode =
 GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 switch (resultCode) {
 case ConnectionResult.SUCCESS:
 Log.d(TAG, "Google Play Services is ready to go!");
 break;
 default:
 showPlayServicesError(resultCode);
 return;
 }

 //Add location updates monitoring
 mLocationClient = new LocationClient(this, this, this);

 mLocationRequest = LocationRequest.create()
 //Set the required accuracy level
 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY)
 //Set the desired (inexact) frequency of location updates
 .setInterval(UPDATE_INTERVAL)

292 CHAPTER 4: Interacting with Device Hardware and Media

 //Throttle the max rate of update requests
 .setFastestInterval(FASTEST_UPDATE_INTERVAL);
 }

 @Override
 public void onResume() {
 super.onResume();
 //When we move into the foreground, attach to Play Services
 mLocationClient.connect();
 }

 @Override
 public void onPause() {
 super.onPause();
 //Disable updates when we are not in the foreground
 if (mLocationClient.isConnected()) {
 mLocationClient.removeLocationUpdates(this);
 }
 //Detach from Play Services
 mLocationClient.disconnect();
 }

 private void updateDisplay() {
 if(mCurrentLocation == null) {
 mLocationView.setText("Determining Your Location...");
 } else {
 mLocationView.setText(String.format("Your Location:\n%.2f, %.2f",
 mCurrentLocation.getLatitude(),
 mCurrentLocation.getLongitude()));
 }
 }

 /** Play Services Location */

 /*
 * When Play Services is missing or at the wrong version, the client
 * library will assist with a dialog to help the user update.
 */
 private void showPlayServicesError(int errorCode) {
 // Get the error dialog from Google Play Services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 1000 /* RequestCode */);
 // If Google Play Services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 SupportErrorDialogFragment errorFragment =
 SupportErrorDialogFragment.newInstance(errorDialog);

293CHAPTER 4: Interacting with Device Hardware and Media

 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Location Updates");
 }
 }

 @Override
 public void onConnected(Bundle bundle) {
 Log.d(TAG, "Connected to Play Services");
 //Get last-known location immediately
 mCurrentLocation = mLocationClient.getLastLocation();
 //Register for updates
 mLocationClient.requestLocationUpdates(mLocationRequest, this);
 }

 @Override
 public void onDisconnected() { }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) { }

 /** LocationListener Callbacks */

 @Override
 public void onLocationChanged(Location location) {
 Log.d(TAG, "Received location update");
 mCurrentLocation = location;
 updateDisplay();
 }
}

Important When using location services in an application, keep in mind that android.

permission.ACCESS_COARSE_LOCATION or android.permission.ACCESS_FINE_

LOCATION must be declared in the application manifest. If you declare android.permission.

ACCESS_FINE_LOCATION, you do not need both because it includes coarse permissions as well.

This example constructs a LocationRequest containing all the criteria we want applied to the

updates received. We instruct the service to return only high-accuracy results, at an interval

of 15 seconds. This interval is inexact, meaning Android will deliver the updates roughly

every 15 seconds—maybe more, maybe less. The only guarantee is that you will receive at

most one update in that interval. In order to set an upper bound on this interval, we also set

the fastest interval to 2 seconds. This throttles the updates to ensure that we never receive

any two updates faster than 2 seconds apart.

294 CHAPTER 4: Interacting with Device Hardware and Media

Gathering location data is a resource-intensive operation, so we want to make sure it

happens only while our activity is in the foreground. Our example waits until onResume() to

connect to the location services, and disconnects immediately in onPause(). Google Play

Services APIs are asynchronous, meaning we have to connect and wait for a callback before

doing the real setup. Access to LocationClient is not valid until the connection to Play

Services has been established.

When our LocationClient.connect() attempt later triggers onConnected(), then we can start

requesting updates using the request we constructed earlier with requestLocationUpdates().

This is also a good time to get the last-known location from getLastLocation() in case we

need to reference the data before another update is available. This value can return null if

there is no recent fix.

EMULATING LOCATION CHANGES

If you are testing your application inside the Android emulator, your application will not be able to receive real

location data from any of the system providers. Using the Monitor tool in the SDK, however, you are able to

inject location change events manually.

With the DDMS perspective active, select the Emulator Control tab and find the Location Controls section.

A tabbed interface allows you to enter a latitude/longitude pair directly, or have series of them read from

common file formats.

When entering a single value manually, a valid latitude and longitude must be entered in the text boxes. You

may then click the Send button to inject that location as an event inside the selected emulator. Any applications

registered to listen to location changes will also receive an update with this location value.

When location updates arrive, the onLocationChanged() method of the registered listener

is called. The example keeps a running reference to the latest location it received, and with

each incoming update, the location value is reset and the user interface display is updated to

reflect the new change.

Note If you are receiving updates in a service or other background operation, Google

recommends that the minimum time interval should be no less than 60,000 (60 seconds).

For this application to build and function properly, we need to set up some additional hooks.

Listings 4-2 and 4-3 describe these requirements.

Listing 4-2. Partial build.gradle

apply plugin: 'com.android.application'

android {
 compileSdkVersion 19
 buildToolsVersion "20.0.0"

295CHAPTER 4: Interacting with Device Hardware and Media

 defaultConfig {
 applicationId "com.androidrecipes.mylocation"
 ...
 }

 ...
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.google.android.gms:play-services:6.1.+'
 compile 'com.android.support:appcompat-v7:21.0.+'
}

Listing 4-3. Partial AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.mylocation">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application ...>

 <!-- Required boilerplate to launch Play Services -->
 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

 <activity ...>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

Inside the project’s build.gradle file, Google Play Services must be added as a dependency.

Here we are using the plus notation to ensure that we always build with the latest client

library. Play Services also requires adding a <meta-data> element to the application with the

client library version. This is what the library uses to determine whether the Play Services

version on the device is current enough. The version number resource is built into the library,

so don’t worry about defining it.

Since we are accessing location services of the device, we need to request the

ACCESS_FINE_LOCATION permission as well. This permission is required to access GPS

location services. If your application uses a lower accuracy value, you may be able to get

away with requesting the ACCESS_COARSE_LOCATION permission instead.

296 CHAPTER 4: Interacting with Device Hardware and Media

WHEN GOOGLE PLAY SERVICES IS UNAVAILABLE

At the top of this example (in Listing 4-1), there is some boilerplate code for checking whether Google Play

Services is running and up-to-date on the device with isGooglePlayServicesAvailable() from

GooglePlayServicesUtil. This method will verify that Play Services is running on the device with at least the

version specified in your client application.

If this check is not successful, Play Services also provides the UI, in the form of an ErrorDialogFragment, to

display to users for getting them up-to-date. The dialog box will trigger the proper settings UI to automatically

update Play Services to the latest version. In our example, the showPlayServicesError() method handles

this. We will see this same pattern in all the recipes this book uses that include Play Services access.

4-2. Mapping Locations

Problem
You would like to display one or more locations on a map for the user. Additionally, you

would like to display the user’s own location on that same map.

Solution
(API Level 9)

The simplest way to show the user a map is to create an intent with the location data and

pass it to the Android system to launch in a mapping application. We’ll look more in depth

at this method for doing various tasks in Chapter 6. You can embed maps within your

application by using MapView and MapFragment, provided by the Google Maps v2 library

component of the Google Play Services library.

Important Google Maps v2 is distributed as part of the Google Play Services library; it is not part

of the native SDK at any platform level. However, any application targeting API Level 9 or later and

devices inside the Google Play ecosystem can use the mapping library. For more information on

including Google Play Services in your project, reference https://developer.android.com/

google/play-services/setup.html.

https://developer.android.com/google/play-services/setup.html
https://developer.android.com/google/play-services/setup.html

297CHAPTER 4: Interacting with Device Hardware and Media

Obtaining an API Key

To get started with Maps v2, you will need to create an API project, enable the Maps v2 service

inside that project, and generate an API key to include in your application code. Without

an API key, the mapping classes may be utilized, but no map tiles will be returned to the

application. Follow these steps:

1. Visit https://code.google.com/apis/console/ and log in with your

Google account to access the Google API console.

2. Select Create Project to make a new project for your maps. If you

already have an existing project, you can add the Maps v2 service and

keys to that if you prefer. In that case, select the project where you

would like to add Maps v2.

3. In the navigation panel, select Services, scroll down to Google Maps

Android API v2, and enable the service.

4. Select API Access in the navigation panel, and select Create New

Android Key.

5. Follow the onscreen instructions to add keystore signature/

application package pairs to your key for the apps you want to use.

In our case, the package name for the sample application is

com.androidrecipes.mapper, and the signature comes from the

debug key on your development machine, usually located at

<USERHOME>/.android/debug.keystore.

Note For more information on the SDK, and the most up-to-date instructions on getting an API

key, visit https://developers.google.com/maps/documentation/android/start.

If you are running code in an emulator to test, that emulator must be built using an SDK target of

Android 4.3 or later that includes the Google APIs for mapping to operate properly. Previous

versions of the SDK are bundled in the Maps v1 library rather than Google Play Services, so they

will not work for testing.

If you create emulators from the command line, these targets are named Google Inc.:Google

APIs:X, where X is the API version indicator. If you create emulators from inside an IDE (such as

Eclipse), the target has a similar naming convention of Google APIs (Google Inc.) – X, where X is

the API version indicator.

https://code.google.com/apis/console/
https://developers.google.com/maps/documentation/android/start

298 CHAPTER 4: Interacting with Device Hardware and Media

Meeting Manifest Requirements

Once you have obtained a valid API key, you need to include it in your AndroidManifest.xml

file. The following code block must be inside the <application> element:

<meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="YOUR_KEY_HERE" />

Additionally, Maps v2 has a device requirement of at least OpenGL ES 2.0. We can require

this as a device feature by adding the following block inside your <manifest> element,

typically placed just above the <application> element:

<!-- Maps v2 requires OpenGL ES 2.0 -->
<uses-feature
 android:glEsVersion="0x00020000"
 android:required="true" />

Finally, Maps v2 requires a set of permissions to talk to Google Play Services and render the

map tiles. So we must add one more block inside the <manifest> element, typically placed

just above the <application> element:

<!-- Permissions Required to Display a Map -->
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"
/>
<uses-permission android:name=
 "com.google.android.providers.gsf.permission.READ_GSERVICES"
/>

Altogether, your manifest should look something like Listing 4-4.

Listing 4-4. Partial AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidrecipes.mapper">

 <!-- Required to display the user's location on the map -->
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <!-- Permissions Required to Display a Map -->
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 />

299CHAPTER 4: Interacting with Device Hardware and Media

 <uses-permission android:name=
 "com.google.android.providers.gsf.permission.READ_GSERVICES"
 />

 <!-- Maps v2 requires OpenGL ES 2.0 -->
 <uses-feature
 android:glEsVersion="0x00020000"
 android:required="true" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <!-- Activities, Services, Providers, and such -->

 <meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="YOUR_KEY_HERE" />
 </application>

</manifest>

With the API key in hand and a suitable test platform in place, you are ready to begin.

How It Works
To display a map, simply create an instance of MapView or MapFragment. The API key is global

to your application, so any instance of these elements will use this value. You do not need to

add the key to each instance, as was the case with Maps v1.

Note In addition to the permissions described previously, we must also add android.

permission.ACCESS_FINE_LOCATION for this example. This is required only because this

example is hooking back up to the LocationManager to get the cached location value.

We are going to create a simple application that shows the user’s last-known location on a

Google map, as seen in Figure 4-1.

300 CHAPTER 4: Interacting with Device Hardware and Media

Now, let’s begin by looking at the layout we need to construct this view. See Listing 4-5.

Listing 4-5. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:text="Map Of Your Location" />
 <RadioGroup
 android:id="@+id/group_maptype"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <RadioButton
 android:id="@+id/type_normal"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Normal Map" />

Figure 4-1. Map of user location

301CHAPTER 4: Interacting with Device Hardware and Media

 <RadioButton
 android:id="@+id/type_satellite"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Satellite Map" />
 </RadioGroup>

 <fragment
 class="com.google.android.gms.maps.SupportMapFragment"
 android:id="@+id/map"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

Note When adding MapView or MapFragment to an XML layout, the fully qualified package name

must be included, because the class does not exist in android.view or android.widget.

Here we have created a simple layout that includes a selector to toggle the map type

displayed alongside a MapFragment instance. Listing 4-6 reveals the activity code to control

the map.

Listing 4-6. Activity Displaying Cached Location

public class BasicMapActivity extends FragmentActivity implements
 RadioGroup.OnCheckedChangeListener {
 private static final String TAG = "AndroidRecipes";

 private SupportMapFragment mMapFragment;
 private GoogleMap mMap;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Verify Play Services is active and up-to-date
 int resultCode =
 GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 switch (resultCode) {
 case ConnectionResult.SUCCESS:
 Log.d(TAG, "Google Play Services is ready to go!");
 break;
 default:
 showPlayServicesError(resultCode);
 return;
 }

302 CHAPTER 4: Interacting with Device Hardware and Media

 mMapFragment = (SupportMapFragment)
 getSupportFragmentManager().findFragmentById(R.id.map);
 mMap = mMapFragment.getMap();

 //Quickly see if our last-known user location is valid, and center
 // the map around that point. If not, use a default location.
 LocationManager manager =
 (LocationManager)getSystemService(Context.LOCATION_SERVICE);
 Location location =
 manager.getLastKnownLocation(LocationManager.GPS_PROVIDER);

 LatLng mapCenter;
 if(location != null) {
 mapCenter = new LatLng(location.getLatitude(),
 location.getLongitude());
 } else {
 //Use a default location
 mapCenter = new LatLng(37.4218, -122.0840);
 }

 //Center and zoom the map simultaneously
 CameraUpdate newCamera =
 CameraUpdateFactory.newLatLngZoom(mapCenter, 13);
 mMap.moveCamera(newCamera);

 // Wire up the map type selector UI
 RadioGroup typeSelect = (RadioGroup) findViewById(R.id.group_maptype);
 typeSelect.setOnCheckedChangeListener(this);
 typeSelect.check(R.id.type_normal);
 }

 @Override
 public void onResume() {
 super.onResume();
 if (mMap != null) {
 //Enable user location display on the map
 mMap.setMyLocationEnabled(true);
 }
 }

 @Override
 public void onPause() {
 super.onResume();
 if (mMap != null) {
 //Disable user location when not visible
 mMap.setMyLocationEnabled(false);
 }
 }

303CHAPTER 4: Interacting with Device Hardware and Media

 /*
 * When Play Services is missing or at the wrong version, the client
 * library will assist with a dialog to help the user update.
 */
 private void showPlayServicesError(int errorCode) {
 // Get the error dialog from Google Play Services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 1000 /* RequestCode */);
 // If Google Play Services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 SupportErrorDialogFragment errorFragment =
 SupportErrorDialogFragment.newInstance(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Google Maps");
 }
 }

 /** OnCheckedChangeListener Methods */

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.type_satellite:
 //Show the satellite map view
 mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
 break;
 case R.id.type_normal:
 default:
 //Show the normal map view
 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);
 break;
 }
 }
}

Our first order of business is to verify that the correct version of Google Play Services is

installed on this device. Google manages the Google Play Services library automatically as

the user of the device interacts with Google applications such as Google Play. Play Services

is automatically updated in the background, so we need to verify at runtime that the user has

what we need by using methods from GooglePlayServicesUtil. The result we receive from

isGooglePlayServicesAvailable() will tell us whether the services are the correct version,

need an update, or are even installed at all.

304 CHAPTER 4: Interacting with Device Hardware and Media

This activity takes the latest user location and centers the map on that point. All control of the

map is done through a GoogleMap instance, which we obtain by calling MapFragment.getMap().

In this example, we use the map’s moveCamera() method to adjust the map display with a

CameraUpdate object.

A CameraUpdate allows you to make adjustments to one or more components of the map

display at once, such as modifying the zoom as well as the center point. The map’s zoom

level is a discrete value between 2.0 and 21.0, with the lowest value making the entire world

approximately 1,024dp wide, and each increasing level doubling the width of the world on

the display.

When the user selects a different radio button, the map type is toggled between satellite

view and the traditional map view. In addition to the values used in the example, other

allowable map types are as follows:

	MAP_TYPE_HYBRID: Displays map data (for example, streets and points of

interest) over the top of the satellite view

	MAP_TYPE_TERRAIN: Displays a map with terrain elevation contour lines

Finally, to enable the user location display and controls, we simply need to call

setMyLocationEnabled() on the map. Because this method will enable location tracking and

likely turn on elements such as the GPS, it should also be disabled when no longer needed

(when the view is not visible).

To properly build this application, Listing 4-7 shows us what dependencies we need in the

build.gradle file.

Listing 4-7. Partial build.gradle

apply plugin: 'com.android.application'

android {
 compileSdkVersion 14
 buildToolsVersion "20.0.0"

 defaultConfig {
 applicationId "com.androidrecipes.mapper"
 ...
 }

 ...
}

dependencies {
 compile 'com.android.support:support-v4:21.0.+'
 compile 'com.google.android.gms:play-services:+'
}

This is a great start, but perhaps a little boring. To bring in some more interactivity,

Recipe 4-3 will create markers and other annotations for the map, and show you how to

customize them.

305CHAPTER 4: Interacting with Device Hardware and Media

4-3. Annotating Maps

Problem
In addition to displaying a map centered on a specific location, your application needs to

mark a location more explicitly with an annotation.

Solution
(API Level 9)

Add Marker objects and shape elements such as Circle and Polygon to the map. Marker

objects are interactive objects defined by an icon that displays over a given location. That

location can be fixed, or you can set the Marker to be dragged by the user to any point. Each

Marker can respond to touch events such as taps and long-presses. Additionally, a Marker

can be given metadata including a title and text snippet that should be displayed in a

pop-up info window when the marker is tapped. You also can customize the display of

these windows.

Maps v2 also supports drawing discrete shape elements. These elements are not inherently

interactive, though you will see it is not difficult to add the capability to interact with a shape.

We can also use the Polyline shape to draw routes onto a map; Polyline does not attempt

to draw as a closed, filled shape like the other options.

Important Google Maps v2 is distributed as part of the Google Play Services library; it is not part

of the native SDK at any platform level. However, any application targeting API Level 9 or later and

devices inside the Google Play ecosystem can use the mapping library. For more information on

including Google Play Services in your project, reference https://developer.android.com/

google/play-services/setup.html.

How It Works
Figure 4-2 shows our previous map application with some points of interest added using

markers.

https://developer.android.com/google/play-services/setup.html
https://developer.android.com/google/play-services/setup.html

306 CHAPTER 4: Interacting with Device Hardware and Media

Figure 4-2. Map with custom markers

Listings 4-8 and 4-9 show a new activity example with some markers added to the map.

The XML layout is the same as we used in the previous recipe, so we won’t spend time

dissecting its components again, but it is added here for completeness.

Listing 4-8. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:text="Map Of Your Location" />
 <RadioGroup
 android:id="@+id/group_maptype"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <RadioButton

307CHAPTER 4: Interacting with Device Hardware and Media

 android:id="@+id/type_normal"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Normal Map" />
 <RadioButton
 android:id="@+id/type_satellite"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Satellite Map" />
 </RadioGroup>

 <fragment
 class="com.google.android.gms.maps.SupportMapFragment"
 android:id="@+id/map"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

Listing 4-9. Activity Showing Map with Markers

public class MarkerMapActivity extends FragmentActivity implements
 RadioGroup.OnCheckedChangeListener,
 GoogleMap.OnMarkerClickListener,
 GoogleMap.OnMarkerDragListener,
 GoogleMap.OnInfoWindowClickListener,
 GoogleMap.InfoWindowAdapter {
 private static final String TAG = "AndroidRecipes";

 private SupportMapFragment mMapFragment;
 private GoogleMap mMap;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Verify Play Services is active and up-to-date
 int resultCode =
 GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 switch (resultCode) {
 case ConnectionResult.SUCCESS:
 Log.d(TAG, "Google Play Services is ready to go!");
 break;
 default:
 showPlayServicesError(resultCode);
 return;
 }

308 CHAPTER 4: Interacting with Device Hardware and Media

 mMapFragment = (SupportMapFragment) getSupportFragmentManager()
 .findFragmentById(R.id.map);
 mMap = mMapFragment.getMap();

 // Monitor interaction with marker elements
 mMap.setOnMarkerClickListener(this);
 mMap.setOnMarkerDragListener(this);
 // Set our application to serve views for the info windows
 mMap.setInfoWindowAdapter(this);
 // Monitor click events on info windows
 mMap.setOnInfoWindowClickListener(this);

 // Google HQ 37.427,-122.099
 Marker marker = mMap.addMarker(new MarkerOptions()
 .position(new LatLng(37.4218, -122.0840))
 .title("Google HQ")
 // Show an image resource from our app as the marker
 .icon(BitmapDescriptorFactory
 .fromResource(R.drawable.logo))
 //Reduce the opacity
 .alpha(0.6f));
 //Make this marker draggable on the map
 marker.setDraggable(true);

 // Subtract 0.01 degrees
 mMap.addMarker(new MarkerOptions()
 .position(new LatLng(37.4118, -122.0740))
 .title("Neighbor #1")
 .snippet("Best Restaurant in Town")
 // Show a default marker, in the default color
 .icon(BitmapDescriptorFactory.defaultMarker()));

 // Add 0.01 degrees
 mMap.addMarker(new MarkerOptions()
 .position(new LatLng(37.4318, -122.0940))
 .title("Neighbor #2")
 .snippet("Worst Restaurant in Town")
 // Show a default marker, with a blue tint
 .icon(BitmapDescriptorFactory
 .defaultMarker(BitmapDescriptorFactory.HUE_AZURE)));

 // Center and zoom the map simultaneously
 LatLng mapCenter = new LatLng(37.4218, -122.0840);
 CameraUpdate newCamera = CameraUpdateFactory
 .newLatLngZoom(mapCenter, 13);
 mMap.moveCamera(newCamera);

 // Wire up the map type selector UI
 RadioGroup typeSelect = (RadioGroup) findViewById(R.id.group_maptype);
 typeSelect.setOnCheckedChangeListener(this);
 typeSelect.check(R.id.type_normal);
 }

309CHAPTER 4: Interacting with Device Hardware and Media

 /** OnCheckedChangeListener Methods */

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.type_satellite:
 mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
 break;
 case R.id.type_normal:
 default:
 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);
 break;
 }
 }

 /** OnMarkerClickListener Methods */

 @Override
 public boolean onMarkerClick(Marker marker) {
 // Return true to disable auto-center and info pop-up
 return false;
 }

 /** OnMarkerDragListener Methods */

 @Override
 public void onMarkerDrag(Marker marker) {
 // Do something while the marker is moving
 }

 @Override
 public void onMarkerDragEnd(Marker marker) {
 Log.i("MarkerTest", "Drag " + marker.getTitle()
 + " to " + marker.getPosition());
 }

 @Override
 public void onMarkerDragStart(Marker marker) {
 Log.d("MarkerTest", "Drag " + marker.getTitle()
 + " from " + marker.getPosition());
 }

 /** OnInfoWindowClickListener Methods */

 @Override
 public void onInfoWindowClick(Marker marker) {
 // Act upon the selection event, here we just close the window
 marker.hideInfoWindow();
 }

310 CHAPTER 4: Interacting with Device Hardware and Media

 /** InfoWindowAdapter Methods */

 /*
 * Return a content view to be placed inside a standard info window. Only
 * called if getInfoWindow() returns null.
 */
 @Override
 public View getInfoContents(Marker marker) {
 //Try returning createInfoView() here instead
 return null;
 }

 /*
 * Return the entire info window to be displayed.
 */
 @Override
 public View getInfoWindow(Marker marker) {
 View content = createInfoView(marker);
 content.setBackgroundResource(R.drawable.background);
 return content;
 }

 /*
 * Private helper method to construct the content view
 */
 private View createInfoView(Marker marker) {
 // We have no parent for layout, so pass null
 View content = getLayoutInflater().inflate(
 R.layout.info_window, null);
 ImageView image = (ImageView) content
 .findViewById(R.id.image);
 TextView text = (TextView) content
 .findViewById(R.id.text);

 image.setImageResource(R.drawable.ic_launcher);
 text.setText(marker.getTitle());

 return content;
 }

 /*
 * When Play Services is missing or at the wrong version, the client
 * library will assist with a dialog to help the user update.
 */
 private void showPlayServicesError(int errorCode) {
 // Get the error dialog from Google Play Services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 1000 /* RequestCode */);

311CHAPTER 4: Interacting with Device Hardware and Media

Disclaimer We have not visited the locations on this map to know if they are actually restaurants,

or if their customer ratings qualify them for the subtitles we’ve placed here!

 // If Google Play Services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 SupportErrorDialogFragment errorFragment =
 SupportErrorDialogFragment.newInstance(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Google Maps");
 }
 }
}

We’ve added some new listener interfaces to our activity, which is now set up to monitor for

click-and-drag events on each Marker, as well as click events on the pop-up info window

shown from a Marker tap. Additionally, we have implemented InfoWindowAdapter, which will

allow us to customize the pop-up windows eventually, but let’s table that for now.

Markers are added to the map by passing a MarkerOptions instance into GoogleMap.
addMarker(). MarkerOptions works like a builder, in that you can simply chain all the

information you want to apply right off the constructor (which is what we have done).

Basic information such as the marker location, display icon, and title are set here. You

will also find additional options available for modifying the marker display, such as alpha,

rotation, and anchor point. We’ve chosen to add a marker at Google HQ in Mountain View,

and two others nearby.

There are a host of supported methods for creating a Marker icon. These are applied using a

BitmapDescriptor object, and BitmapDescriptorFactory provides methods for creating all of

them. For two of our elements, we have chosen defaultMarker(), which creates a standard

Google pin to display. We can also pass in one of several constants to control the display

color of the pin.

The marker at Google HQ has been customized to display as an icon we have in our

application resources using fromResource(). You may also apply images that may be in our

assets directory with a separate factory method. Additionally, we have set this marker to

be draggable by the user. This means if the user were to long-press on this icon, it would

be picked up from its current location and the user could drag and drop the pin anywhere

desired, somewhere else on the map. The OnMarkerDragListener we implemented provides

callbacks as to where the marker is being placed.

If the user taps one of the markers, the standard info window will show above the icon.

That window will show the title and snippet applied to that marker. We have implemented

an OnInfoWindowClickListener that closes this window when it is tapped, which is not the

default behavior.

312 CHAPTER 4: Interacting with Device Hardware and Media

Note we do not need to implement OnMarkerClickListener in order to get this described

behavior; but if we want to override it, we will. By default, the info window will display and

the map will center on a selected marker. If we return true from onMarkerClick(), we can

disable this and provide our own behavior.

Customizing the Info Window

To see how we can customize the info window that pops up on a marker tap, let’s add a

custom UI for the window (see Listings 4-10 and 4-11) and modify the InfoWindowAdapter

methods implemented in our activity to look like Listing 4-12.

Listing 4-10. res/layout/info_window.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical" >
 <ImageView
 android:id="@+id/image"
 android:layout_width="35dp"
 android:layout_height="35dp"
 android:layout_gravity="center_horizontal"
 android:scaleType="fitCenter" />
 <TextView
 android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</LinearLayout>

Listing 4-11. res/drawable/background.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <corners
 android:radius="10dp"/>
 <solid
 android:color="#CCC"/>
 <padding
 android:left="10dp"
 android:right="10dp"
 android:top="10dp"
 android:bottom="10dp"/>
</shape>

313CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-12. InfoWindowAdapter Methods

/*
 * Return a content view to be placed inside a standard info
 * window. Only called if getInfoWindow() returns null.
 */
@Override
public View getInfoContents(Marker marker) {
 //Try returning createInfoView() here instead
 return null;
}

/*
 * Return the entire info window to be displayed.
 */
@Override
public View getInfoWindow(Marker marker) {
 View content = createInfoView(marker);
 content.setBackgroundResource(R.drawable.background);
 return content;
}

/*
 * Private helper method to construct the content view
 */
private View createInfoView(Marker marker) {
 // We have no parent for layout, so pass null
 View content = getLayoutInflater().inflate(
 R.layout.info_window, null);
 ImageView image = (ImageView) content
 .findViewById(R.id.image);
 TextView text = (TextView) content
 .findViewById(R.id.text);

 image.setImageResource(R.drawable.ic_launcher);
 text.setText(marker.getTitle());

 return content;
}

By returning a valid View from getInfoContents(), the view will be used as the content inside

the standard window background display. Returning the same View from getInfoWindow()

will display it as a fully custom window with no standard components. We have abstracted

the creation of our pop-up into a helper method so you can easily try it both ways.

Working with Shapes

Let’s talk about adding shape elements to a map. In the next example, we’ve created a

custom class called ShapeAdapter that creates and adds circular or rectangular shapes on

the map to describe map regions. The result will look like Figure 4-3.

314 CHAPTER 4: Interacting with Device Hardware and Media

Figure 4-3. Map overlay with tappable shape regions

This example also uses the OnMapClickListener of GoogleMap to validate when a user has

tapped a certain region to select it. Listing 4-13 shows the adapter code.

Listing 4-13. ShapeAdapter to Map Shapes

public class ShapeAdapter implements OnMapClickListener {

 private static final float STROKE_SELECTED = 6.0f;
 private static final float STROKE_NORMAL = 2.0f;
 /* Colors for the drawn regions */
 private static final int COLOR_STROKE = Color.RED;
 private static final int COLOR_FILL =
 Color.argb(127, 0, 0, 255);

 /*
 * External interface to notify listeners of a change in
 * the selected region based on user taps
 */
 public interface OnRegionSelectedListener {
 //User selected one of our tracked regions
 public void onRegionSelected(Region selectedRegion);
 //User selected an area where we have no regions
 public void onNoRegionSelected();
 }

315CHAPTER 4: Interacting with Device Hardware and Media

 /*
 * Base definition of an interactive region on the map.
 * Defines methods to change display and check user taps
 */
 public static abstract class Region {
 private String mRegionName;
 public Region(String regionName) {
 mRegionName = regionName;
 }

 public String getName() {
 return mRegionName;
 }
 //Check if a location is inside this region
 public abstract boolean hitTest(LatLng point);
 //Change display of the region based on selection
 public abstract void setSelected(boolean isSelected);
 }

 /*
 * Implementation of a region drawn as a circle
 */
 private static class CircleRegion extends Region {
 private Circle mCircle;

 public CircleRegion(String name, Circle circle) {
 super(name);
 mCircle = circle;
 }

 @Override
 public boolean hitTest(LatLng point) {
 final LatLng center = mCircle.getCenter();
 float[] result = new float[1];
 Location.distanceBetween(center.latitude,
 center.longitude,
 point.latitude,
 point.longitude,
 result);

 return (result[0] < mCircle.getRadius());
 }

 @Override
 public void setSelected(boolean isSelected) {
 mCircle.setStrokeWidth(isSelected ?
 STROKE_SELECTED : STROKE_NORMAL);
 }

 }

316 CHAPTER 4: Interacting with Device Hardware and Media

 /*
 * Implementation of a region drawn as a rectangle
 */
 private static class RectRegion extends Region {
 private Polygon mRect;
 private LatLngBounds mRectBounds;

 public RectRegion(String name, Polygon rect,
 LatLng southwest, LatLng northeast) {
 super(name);
 mRect = rect;
 mRectBounds = new LatLngBounds(southwest, northeast);
 }

 @Override
 public boolean hitTest(LatLng point) {
 return mRectBounds.contains(point);
 }

 @Override
 public void setSelected(boolean isSelected) {
 mRect.setStrokeWidth(isSelected ?
 STROKE_SELECTED : STROKE_NORMAL);
 }
 }

 private GoogleMap mMap;

 private OnRegionSelectedListener mRegionSelectedListener;
 private ArrayList<Region> mRegions;
 private Region mCurrentRegion;

 public ShapeAdapter(GoogleMap map) {
 //Internally track regions for selection validation
 mRegions = new ArrayList<Region>();

 mMap = map;
 mMap.setOnMapClickListener(this);
 }

 public void setOnRegionSelectedListener(
 OnRegionSelectedListener listener) {
 mRegionSelectedListener = listener;
 }

 /*
 * Construct and add a new circular region around the
 * given point.
 */

317CHAPTER 4: Interacting with Device Hardware and Media

 public void addCircularRegion(String name, LatLng center,
 double radius) {
 CircleOptions options = new CircleOptions()
 .center(center)
 .radius(radius);
 //Set display properties of the shape
 options
 .strokeWidth(STROKE_NORMAL)
 .strokeColor(COLOR_STROKE)
 .fillColor(COLOR_FILL);

 Circle c = mMap.addCircle(options);
 mRegions.add(new CircleRegion(name, c));
 }

 /*
 * Construct and add a new rectangular region with the
 * given boundaries.
 */
 public void addRectangularRegion(String name,
 LatLng southwest, LatLng northeast) {
 PolygonOptions options = new PolygonOptions().add(
 new LatLng(southwest.latitude,
 southwest.longitude),
 new LatLng(southwest.latitude,
 northeast.longitude),
 new LatLng(northeast.latitude,
 northeast.longitude),
 new LatLng(northeast.latitude,
 southwest.longitude));

 //Set display properties of the shape
 options
 .strokeWidth(STROKE_NORMAL)
 .strokeColor(COLOR_STROKE)
 .fillColor(COLOR_FILL);

 Polygon p = mMap.addPolygon(options);
 mRegions.add(new RectRegion(name, p,
 southwest, northeast));
 }

 /*
 * Handle incoming tap events from the map object.
 * Determine which region element may have been selected.
 * If regions overlap at this point, the first added will
 * be selected.
 */

318 CHAPTER 4: Interacting with Device Hardware and Media

 @Override
 public void onMapClick(LatLng point) {
 Region newSelection = null;
 //Find and select the tapped region
 for (Region region : mRegions) {
 if (region.hitTest(point) && newSelection == null) {
 region.setSelected(true);
 newSelection = region;
 } else {
 region.setSelected(false);
 }
 }

 if (mCurrentRegion != newSelection) {
 //Notify and update the change
 if (newSelection != null
 && mRegionSelectedListener != null) {
 mRegionSelectedListener
 .onRegionSelected(newSelection);
 } else if (mRegionSelectedListener != null) {
 mRegionSelectedListener.onNoRegionSelected();
 }

 mCurrentRegion = newSelection;
 }
 }
}

This class defines an abstract type called Region that we can use to define common

patterns between our shape types. Primarily, each region must define the logic for whether a

map location is inside the given region, and what to do when that region is selected. We then

define implementations of this for a Circle shape and a Polygon, which we will use to draw a

rectangle. A center point and a radius define the circular region, while the rectangular region

is defined by its southwest and northeast point. We construct the rectangle as a Polygon

defined by the four corner coordinates that make up the shape.

Tap events will come in through the onMapClick() method of the listener interface, and

the Maps library gives us the tap location as a LatLng location. We can validate that these

events are inside a circular region simply enough by checking whether the distance between

the center and the tap is larger than the radius. Location has a convenience method for

calculating direct distance between two map points. For a rectangular region, we use the

LatLngBounds class that is part of the Maps library because it can directly validate whether a

given point is inside or outside our shape.

For each tap event, we iterate over our list of regions to find the first one that considers

this location a hit. If we find no regions, the selected region is set to null. We then

determine whether the selection has changed, and call back one of the methods on

our custom OnRegionSelectedListener interface that higher-level objects can use to be

notified of these events.

319CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-14 shows how we can use this adapter inside an activity.

Listing 4-14. Activity Integrating ShapeAdapter

public class ShapeMapActivity extends FragmentActivity implements
 RadioGroup.OnCheckedChangeListener,
 ShapeAdapter.OnRegionSelectedListener {
 private static final String TAG = "AndroidRecipes";

 private SupportMapFragment mMapFragment;
 private GoogleMap mMap;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Verify Play Services is active and up-to-date
 int resultCode =
 GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 switch (resultCode) {
 case ConnectionResult.SUCCESS:
 Log.d(TAG, "Google Play Services is ready to go!");
 break;
 default:
 showPlayServicesError(resultCode);
 return;
 }

 mMapFragment = (SupportMapFragment) getSupportFragmentManager()
 .findFragmentById(R.id.map);
 mMap = mMapFragment.getMap();

 ShapeAdapter adapter = new ShapeAdapter(mMap);
 adapter.setOnRegionSelectedListener(this);

 adapter.addRectangularRegion("Google HQ",
 new LatLng(37.4168, -122.0890),
 new LatLng(37.4268, -122.0790));
 adapter.addCircularRegion("Neighbor #1",
 new LatLng(37.4118, -122.0740), 400);
 adapter.addCircularRegion("Neighbor #2",
 new LatLng(37.4318, -122.0940), 400);

 //Center and zoom map simultaneously
 LatLng mapCenter = new LatLng(37.4218, -122.0840);
 CameraUpdate newCamera =
 CameraUpdateFactory.newLatLngZoom(mapCenter, 13);
 mMap.moveCamera(newCamera);

320 CHAPTER 4: Interacting with Device Hardware and Media

 //Wire up the map type selector UI
 RadioGroup typeSelect = (RadioGroup) findViewById(R.id.group_maptype);
 typeSelect.setOnCheckedChangeListener(this);
 typeSelect.check(R.id.type_normal);
 }

 /** OnCheckedChangeListener Methods */

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.type_satellite:
 mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
 break;
 case R.id.type_normal:
 default:
 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);
 break;
 }
 }

 /** OnRegionSelectedListener Methods */

 @Override
 public void onRegionSelected(Region selectedRegion) {
 Toast.makeText(this, selectedRegion.getName(),
 Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onNoRegionSelected() {
 Toast.makeText(this, "No Region",
 Toast.LENGTH_SHORT).show();
 }

 /*
 * When Play Services is missing or at the wrong version, the client
 * library will assist with a dialog to help the user update.
 */
 private void showPlayServicesError(int errorCode) {
 // Get the error dialog from Google Play Services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 1000 /* RequestCode */);
 // If Google Play Services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 SupportErrorDialogFragment errorFragment =
 SupportErrorDialogFragment.newInstance(errorDialog);

321CHAPTER 4: Interacting with Device Hardware and Media

 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Google Maps");
 }
 }
}

Here we have added the same locations from our previous example, but this time as shape

regions using our new ShapeAdapter. Google HQ is added as a rectangular region, and the

other two as circles. When the user makes a selection change affecting any of these regions,

either of the methods onRegionSelected() or onNoRegionSelected() will be called and a

message displayed.

4-4. Monitoring Location Regions

Problem
You need your application to provide contextual information to your users when they enter or

exit specific location areas.

Solution
(API Level 9)

Use the geofencing features available as part of Google Play Services. With these features,

your application can define circular areas around a particular point for which you want to

receive callbacks when the user moves into or out of that region. Your application can create

multiple Geofence instances that are either tracked indefinitely, or automatically removed for

you after an expiration time.

Using region-based monitoring of a user’s location can be a significantly more power-efficient

method of tracking that user’s arrival at a location that you find important. Allowing the

services framework to track location and call you back in this manner will often result in much

better battery life than your application continuously tracking user location to find out when

that user reaches a given destination.

Important The geofencing features described here are part of the Google Play Services library;

they are not part of the native SDK at any platform level. However, any application targeting

API Level 8 or later and devices inside the Google Play ecosystem can use the mapping library.

For more information on including Google Play Services in your project, reference

https://developer.android.com/google/play-services/setup.html.

https://developer.android.com/google/play-services/setup.html

322 CHAPTER 4: Interacting with Device Hardware and Media

How It Works
We are going to create an application that consists of a simple activity to allow users to set

a geofence around their current location (see Figure 4-4), and then explicitly start or stop

monitoring.

Figure 4-4. RegionMonitor’s control activity

Important Because we are accessing the user’s location in this example, we need to request the

android.permission.ACCESS_FINE_LOCATION permission in our AndroidManifest.xml.

Once monitoring is enabled, a background service will be activated to respond to events

related to the user’s location transitioning into or out of the geofence area. The service

component allows us to respond to these events without the need for our application’s UI to

be in the foreground.

323CHAPTER 4: Interacting with Device Hardware and Media

Let’s start with Listing 4-15, which describes the layout of the activity.

Listing 4-15. res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:id="@+id/status"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <SeekBar
 android:id="@+id/radius"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:max="1000"/>
 <TextView
 android:id="@+id/radius_text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Set Geofence at My Location"
 android:onClick="onSetGeofenceClick" />

 <!-- Spacer -->
 <View
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1" />

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Monitoring"
 android:onClick="onStartMonitorClick" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop Monitoring"
 android:onClick="onStopMonitorClick" />
</LinearLayout>

The layout contains a SeekBar that enables the user to slide a finger to select the desired

radius value. The user can lock in the new geofence by tapping the uppermost button, and

start or stop monitoring by using the buttons at the bottom. Listing 4-16 shows the activity

code to manage the geofence monitoring.

324 CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-16. Activity to Set a Geofence

public class MainActivity extends Activity implements
 OnSeekBarChangeListener,
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener,
 LocationClient.OnAddGeofencesResultListener,
 LocationClient.OnRemoveGeofencesResultListener {
 private static final String TAG = "RegionMonitorActivity";

 //Unique identifier for our single geofence
 private static final String FENCE_ID =
 "com.androidrecipes.FENCE";

 private LocationClient mLocationClient;
 private SeekBar mRadiusSlider;
 private TextView mStatusText, mRadiusText;

 private Geofence mCurrentFence;
 private Intent mServiceIntent;
 private PendingIntent mCallbackIntent;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //Wire up the UI connections
 mStatusText = (TextView) findViewById(R.id.status);
 mRadiusText = (TextView) findViewById(R.id.radius_text);
 mRadiusSlider = (SeekBar) findViewById(R.id.radius);
 mRadiusSlider.setOnSeekBarChangeListener(this);
 updateRadiusDisplay();

 //Check if Google Play Services is up-to-date.
 switch (GooglePlayServicesUtil
 .isGooglePlayServicesAvailable(this)) {
 case ConnectionResult.SUCCESS:
 //Do nothing, move on
 break;
 case ConnectionResult.SERVICE_VERSION_UPDATE_REQUIRED:
 Toast.makeText(this,
 "Geofencing service requires an update,"
 + " please open Google Play.",
 Toast.LENGTH_SHORT).show();
 finish();
 return;

325CHAPTER 4: Interacting with Device Hardware and Media

 default:
 Toast.makeText(this,
 "Geofencing service is not available.",
 Toast.LENGTH_SHORT).show();
 finish();
 return;
 }
 //Create a client for Google Services
 mLocationClient = new LocationClient(this, this, this);
 //Create an Intent to trigger our service
 mServiceIntent = new Intent(this,
 RegionMonitorService.class);
 //Create a PendingIntent for Google Services callbacks
 mCallbackIntent = PendingIntent.getService(this, 0,
 mServiceIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);
 }

 @Override
 protected void onResume() {
 super.onResume();
 //Connect to all services
 if (!mLocationClient.isConnected()
 && !mLocationClient.isConnecting()) {
 mLocationClient.connect();
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 //Disconnect when not in the foreground
 mLocationClient.disconnect();
 }

 public void onSetGeofenceClick(View v) {
 //Obtain the last location from services and radius
 // from the UI
 Location current = mLocationClient.getLastLocation();
 int radius = mRadiusSlider.getProgress();

 //Create a new Geofence using the Builder
 Geofence.Builder builder = new Geofence.Builder();
 mCurrentFence = builder
 //Unique to this geofence
 .setRequestId(FENCE_ID)
 //Size and location
 .setCircularRegion(
 current.getLatitude(),
 current.getLongitude(),
 radius)

326 CHAPTER 4: Interacting with Device Hardware and Media

 //Events both in and out of the fence
 .setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER
 | Geofence.GEOFENCE_TRANSITION_EXIT)
 //Keep alive
 .setExpirationDuration(Geofence.NEVER_EXPIRE)
 .build();

 mStatusText.setText(String.format(
 "Geofence set at %.3f, %.3f",
 current.getLatitude(),
 current.getLongitude()));
 }

 public void onStartMonitorClick(View v) {
 if (mCurrentFence == null) {
 Toast.makeText(this, "Geofence Not Yet Set",
 Toast.LENGTH_SHORT).show();
 return;
 }

 //Add the fence to start tracking, the PendingIntent will
 // be triggered with new updates
 ArrayList<Geofence> geofences = new ArrayList<Geofence>();
 geofences.add(mCurrentFence);
 mLocationClient.addGeofences(geofences,
 mCallbackIntent, this);
 }

 public void onStopMonitorClick(View v) {
 //Remove to stop tracking
 mLocationClient.removeGeofences(mCallbackIntent, this);
 }

 /** SeekBar Callbacks */

 @Override
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 updateRadiusDisplay();
 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) { }

 @Override
 public void onStopTrackingTouch(SeekBar seekBar) { }

 private void updateRadiusDisplay() {
 mRadiusText.setText(mRadiusSlider.getProgress()
 + " meters");
 }

327CHAPTER 4: Interacting with Device Hardware and Media

 /** Google Services Connection Callbacks */

 @Override
 public void onConnected(Bundle connectionHint) {
 Log.v(TAG, "Google Services Connected");
 }

 @Override
 public void onDisconnected() {
 Log.w(TAG, "Google Services Disconnected");
 }

 @Override
 public void onConnectionFailed(ConnectionResult result) {
 Log.w(TAG, "Google Services Connection Failure");
 }

 /** LocationClient Callbacks */

 /*
 * Called when the asynchronous geofence add is complete.
 * When this happens, we start our monitoring service.
 */
 @Override
 public void onAddGeofencesResult(int statusCode,
 String[] geofenceRequestIds) {
 if (statusCode == LocationStatusCodes.SUCCESS) {
 Toast.makeText(this,
 "Geofence Added Successfully",
 Toast.LENGTH_SHORT).show();
 }

 Intent startIntent = new Intent(mServiceIntent);
 startIntent.setAction(RegionMonitorService.ACTION_INIT);
 startService(mServiceIntent);
 }

 /*
 * Called when the asynchronous geofence remove is complete.
 * The version called depends on whether you requested the
 * removal via PendingIntent or request Id.
 * When this happens, we stop our monitoring service.
 */
 @Override
 public void onRemoveGeofencesByPendingIntentResult(
 int statusCode, PendingIntent pendingIntent) {
 if (statusCode == LocationStatusCodes.SUCCESS) {
 Toast.makeText(this, "Geofence Removed Successfully",
 Toast.LENGTH_SHORT).show();
 }

 stopService(mServiceIntent);
 }

328 CHAPTER 4: Interacting with Device Hardware and Media

 @Override
 public void onRemoveGeofencesByRequestIdsResult(
 int statusCode, String[] geofenceRequestIds) {
 if (statusCode == LocationStatusCodes.SUCCESS) {
 Toast.makeText(this, "Geofence Removed Successfully",
 Toast.LENGTH_SHORT).show();
 }

 stopService(mServiceIntent);
 }
}

Our first order of business after the activity has been created is to verify that Google Play

Services exists and is up-to-date. If not, we need to encourage the user to visit Google Play

to trigger the latest automatic update.

With that out of the way, we make a connection to the location services through a

LocationClient instance. We want to stay connected to this only while in the foreground, so

the connection calls are balanced between onResume() and onPause(). This connection is

asynchronous, so we must wait for the onConnected() method before doing anything further.

In our case, we need to access the LocationClient only when the user presses a button, so

there is nothing of specific interest to do in this method.

Tip Asynchronous doesn’t have to mean slow. Just because a method call is asynchronous

doesn’t mean we should expect it to take a long time. It simply means we cannot access the object

immediately after the function returns. In most cases, these callbacks are still triggered long before

the activity is fully visible.

Once the user has selected the desired radius and taps the Set Geofence button, we obtain

the last-known location from the LocationClient and the selected radius to build our

geofence. Geofence instances are created using the Geofence.Builder, which allows us to set

the location of the geofence, a unique identifier, and any additional properties we may need.

With setTransitionTypes(), we control which transitions generate notifications. There are

two possible values for transitions: GEOFENCE_TRANSITION_ENTER and GEOFENCE_TRANSITION_
EXIT. You may request callbacks on one or both events; we’ve chosen both.

The expiration time, when positive, represents a time in the future from when the Geofence is

added that it should be automatically removed. Setting the value to NEVER_EXPIRE allows us

to track this region indefinitely until we remove it manually.

At any point in the future when the user taps the Start Monitoring button, we will request

updates for this region by calling LocationClient.addGeofences() with both the Geofence

and a PendingIntent that the framework will fire for each new monitoring event. Notice in

our case that PendingIntent points to a service. This request is also asynchronous, and we

will receive a callback via onAddGeofencesResult() when the operation is finished. At this

point, a start command is sent to our background service, which we will discuss in more

detail shortly.

329CHAPTER 4: Interacting with Device Hardware and Media

Finally, when the user taps the Stop Monitoring button, the geofence will be removed

and new updates will cease. We reference which element(s) to remove by using the same

PendingIntent that was passed to the original request. Geofences can also be removed by

using the unique identifier they were originally built with. Once the asynchronous remove is

complete, a stop command is sent to our background service.

In both the start and stop cases, we are sending an intent to the service with a unique action

string so the service can differentiate between these requests and the updates it will receive

from location services. Listing 4-17 reveals this background service that we’ve been hearing

so much about.

Listing 4-17. Region Monitor Service

public class RegionMonitorService extends Service {
 private static final String TAG = "RegionMonitorService";

 private static final int NOTE_ID = 100;
 //Unique action to identify start requests vs. events
 public static final String ACTION_INIT =
 "com.androidrecipes.regionmonitor.ACTION_INIT";

 private NotificationManager mNoteManager;

 @Override
 public void onCreate() {
 super.onCreate();
 mNoteManager = (NotificationManager) getSystemService(
 NOTIFICATION_SERVICE);
 //Post a system notification when the service starts
 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(this);
 builder.setSmallIcon(R.drawable.ic_launcher);
 builder.setContentTitle("Geofence Service");
 builder.setContentText("Waiting for transition...");
 builder.setOngoing(true);

 Notification note = builder.build();
 mNoteManager.notify(NOTE_ID, note);
 }

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 //Nothing to do yet, just starting the service
 if (ACTION_INIT.equals(intent.getAction())) {
 //We don't care if this service dies unexpectedly
 return START_NOT_STICKY;
 }

 if (LocationClient.hasError(intent)) {
 //Log any errors
 Log.w(TAG, "Error monitoring region: "
 + LocationClient.getErrorCode(intent));

330 CHAPTER 4: Interacting with Device Hardware and Media

 } else {
 //Update the ongoing notification from the new event
 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(this);
 builder.setSmallIcon(R.drawable.ic_launcher);
 builder.setDefaults(Notification.DEFAULT_SOUND
 | Notification.DEFAULT_LIGHTS);
 builder.setOngoing(true);

 int transitionType =
 LocationClient.getGeofenceTransition(intent);
 //Check whether we entered or exited the region
 if (transitionType ==
 Geofence.GEOFENCE_TRANSITION_ENTER) {
 builder.setContentTitle("Geofence Transition");
 builder.setContentText("Entered your Geofence");
 } else if (transitionType ==
 Geofence.GEOFENCE_TRANSITION_EXIT) {
 builder.setContentTitle("Geofence Transition");
 builder.setContentText("Exited your Geofence");
 }

 Notification note = builder.build();
 mNoteManager.notify(NOTE_ID, note);
 }

 //We don't care if this service dies unexpectedly
 return START_NOT_STICKY;
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 //When the service dies, cancel our ongoing notification
 mNoteManager.cancel(NOTE_ID);
 }

 /* We are not binding to this service */
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

The primary role of this service is to receive updates from the location services about our

monitored region and post them to a notification in the status bar so the user can see the

change. We will talk in more detail about how notifications work and how to create them in a

later chapter.

When the service is first created (which will happen when the start command is sent after

our button press), an initial notification is created and posted to the status bar. This will

be followed by the first onStartCommand(), where we find our unique action string and do

nothing further.

331CHAPTER 4: Interacting with Device Hardware and Media

Note If you have activated multiple Geofence instances by using the same PendingIntent,

you can use the additional method LocationClient.getTriggeringGeofences() to

determine which regions were part of any given event.

Relatively immediately after this occurs, the first region-monitoring event will come into this

service, calling onStartCommand() again. This first event is a transition that indicates the

initial state of the device location with respect to the Geofence. In this case, we check to see

whether the Intent contains an error message, and if it is a successful tracking event, we

construct an updated notification based on the transition information contained within and

post the update to the status bar.

This process will repeat for each new event we receive while the region monitoring is

active. When the user finally returns to our activity and presses Stop Monitoring, that stop

command will cause onDestroy() to be called in the service. It is here that we remove the

notification from the status bar to signify to the user that monitoring is no longer active.

4-5. Capturing Images and Video

Problem
Your application needs to use the device’s camera in order to capture media, whether it be

still images or short video clips.

Solution
(API Level 3)

Send an intent to Android to transfer control to the Camera application and to return the

image the user captured. Android does contain APIs for directly accessing the camera

hardware, previewing, and taking snapshots or videos. However, if your only goal is to

simply get the media content by using the camera with an interface the user is familiar with,

there is no better solution than a handoff.

How It Works
Let’s take a look at how to use the Camera application to take both still images and

video clips.

Image Capture

Let’s take a look at an example activity that will activate the Camera application when the

Take a Picture button is pressed; you will receive the result of this operation as a Bitmap.

See Listings 4-18 and 4-19.

332 CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-18. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/capture"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Take a Picture" />
 <ImageView
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerInside" />
</LinearLayout>

Listing 4-19. Activity to Capture an Image

public class MyActivity extends Activity {

 private static final int REQUEST_IMAGE = 100;

 Button captureButton;
 ImageView imageView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 captureButton = (Button)findViewById(R.id.capture);
 captureButton.setOnClickListener(listener);

 imageView = (ImageView)findViewById(R.id.image);
 }

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if(requestCode == REQUEST_IMAGE
 && resultCode == Activity.RESULT_OK) {
 //Process and display the image
 Bitmap userImage =
 (Bitmap)data.getExtras().get("data");
 imageView.setImageBitmap(userImage);
 }
 }

333CHAPTER 4: Interacting with Device Hardware and Media

Tip You can also query whether camera hardware is present with the PackageManager.

hasSystemFeature() method, passing in PackageManager.FEATURE_CAMERA as the

parameter.

This method captures the image and returns a scaled-down Bitmap as an extra in the data

field. If you need to capture the full-sized image, insert a Uri for the image destination into

the MediaStore.EXTRA_OUTPUT field of the intent before starting the capture, and the image

will be saved at that location. See Listing 4-20.

Listing 4-20. Full-Size Image Capture to File

public class MyActivity extends Activity {

 private static final int REQUEST_IMAGE = 100;

 Button captureButton;
 ImageView imageView;
 File destination;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 captureButton = (Button)findViewById(R.id.capture);
 captureButton.setOnClickListener(listener);

 private View.OnClickListener listener =
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 try {
 Intent intent =
 new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 startActivityForResult(intent, REQUEST_IMAGE);
 } catch (ActivityNotFoundException e) {
 //Handle if no application exists
 }
 }
 };
}

In this example, we construct an intent to activate the Camera application and capture an

image. While it is unlikely, we want to be prepared for the case that a Camera application

does not exist on the device. In this case, the call to startActivity() will throw an

ActivityNotFoundException, so we have wrapped the call in a try block in order to handle

this case gracefully.

334 CHAPTER 4: Interacting with Device Hardware and Media

 imageView = (ImageView)findViewById(R.id.image);

 destination = new File(Environment
 .getExternalStorageDirectory(), "image.jpg");
 }

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if(requestCode == REQUEST_IMAGE
 && resultCode == Activity.RESULT_OK) {
 try {
 FileInputStream in =
 new FileInputStream(destination);
 BitmapFactory.Options options =
 new BitmapFactory.Options();
 options.inSampleSize = 10; //Downsample by 10x

 Bitmap userImage = BitmapFactory
 .decodeStream(in, null, options);
 imageView.setImageBitmap(userImage);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private View.OnClickListener listener =
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 try {
 Intent intent =
 new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 //Add extra to save full-image somewhere
 intent.putExtra(MediaStore.EXTRA_OUTPUT,
 Uri.fromFile(destination));
 startActivityForResult(intent, REQUEST_IMAGE);
 } catch (ActivityNotFoundException e) {
 //Handle if no application exists
 }
 }
 };
}

This method will instruct the Camera application to store the image elsewhere (in this

case, on the device’s SD card as image.jpg), and the result will not be scaled down. When

retrieving the image after the operation returns, we now go directly to the file location where

we told the camera to store the image.

335CHAPTER 4: Interacting with Device Hardware and Media

Tip The documentation states that only one image output should be expected. If no Uri exists, a

small image is returned as data. Otherwise, the image is saved to the Uri location. You should not

expect to receive both, even if some devices in the market behave this way.

Using BitmapFactory. Options, however, we do still scale the image down prior to

displaying to the screen to avoid loading the full-size Bitmap into memory at once. Also

note that this example chose a file location that was on the device’s external storage, which

requires the android.permission.WRITE_EXTERNAL_STORAGE permission to be declared in API

Levels 4 and above. If your final solution writes the file elsewhere, this may not be necessary.

Video Capture

Capturing video clips by using this method is just as straightforward, although the results

produced are slightly different. There is no case under which the actual video-clip data is

returned directly in the intent extras, and it is always saved to a destination file location.

The following two parameters may be passed along as extras:

	MediaStore.EXTRA_VIDEO_QUALITY: Integer value to describe the quality

level used to capture the video. Allowed values are 0 for low quality and

1 for high quality.

	MediaStore.EXTRA_OUTPUT: Uri destination of where to save the video

content. If this is not present, the video will be saved in a standard

location for the device.

When the video recording is complete, the actual location where the data was saved is

returned as a Uri in the data field of the result Intent. Let’s take a look at a similar example

that allows the user to record and save videos and then display the saved location back to

the screen. See Listings 4-21 and 4-22.

Listing 4-21. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/capture"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Take a Video" />
 <TextView
 android:id="@+id/file"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

336 CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-22. Activity to Capture a Video Clip

public class MyActivity extends Activity {

 private static final int REQUEST_VIDEO = 100;

 Button captureButton;
 TextView text;
 File destination;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 captureButton = (Button)findViewById(R.id.capture);
 captureButton.setOnClickListener(listener);

 text = (TextView)findViewById(R.id.file);

 destination = new File(Environment
 .getExternalStorageDirectory(), "myVideo");
 }

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if(requestCode == REQUEST_VIDEO
 && resultCode == Activity.RESULT_OK) {
 String location = data.getData().toString();
 text.setText(location);
 }
 }

 private View.OnClickListener listener =
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 try {
 Intent intent =
 new Intent(MediaStore.ACTION_VIDEO_CAPTURE);
 //Add (optional) extra to save video to our file
 intent.putExtra(MediaStore.EXTRA_OUTPUT,
 Uri.fromFile(destination));
 //Optional extra to set video quality
 intent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 0);
 startActivityForResult(intent, REQUEST_VIDEO);

337CHAPTER 4: Interacting with Device Hardware and Media

 } catch (ActivityNotFoundException e) {
 //Handle if no application exists
 }
 }
 };
}

This example, like the previous example saving an image, puts the recorded video on the

device’s SD card (which requires the android.permission.WRITE_EXTERNAL_STORAGE permission

for API Levels 4+). To initiate the process, we send an intent with the MediaStore.ACTION_
VIDEO_CAPTURE action string to the system. Android will launch the default Camera application

to handle recording the video and return with an OK result when recording is complete. We

retrieve the location where the data was stored as a Uri by calling Intent.getData() in the

onActivityResult() callback method, and then display that location to the user.

This example requests explicitly that the video be shot using the low-quality setting, but

this parameter is optional. If MediaStore.EXTRA_VIDEO_QUALITY is not present in the request

intent, the device will usually choose to shoot using high quality.

In cases where MediaStore.EXTRA_OUTPUT is provided, the Uri returned should match the

location you requested, unless an error occurs that keeps the application from writing to that

location. If this parameter is not provided, the returned value will be a content:// Uri to

retrieve the media from the system’s MediaStore Content Provider.

Later, in Recipe 4-10, we will look at practical ways to play this media back in your application.

4-6. Making a Custom Camera Overlay

Problem
Many applications need more-direct access to the camera, either for the purposes of

overlaying a custom UI for controls or displaying metadata about what is visible through

information based on location and direction sensors (augmented reality).

Solution
(API Level 5)

Render preview frames directly from the camera hardware in an activity’s view hierarchy.

Android provides APIs to directly access the device’s camera for the purposes of obtaining

the preview feed and taking photos. We can access these when the needs of the application

grow beyond simply snapping and returning a photo for display.

Note Because we are taking a more direct approach to the camera here, the

android.permission.CAMERA permission must be declared in the manifest.

338 CHAPTER 4: Interacting with Device Hardware and Media

How It Works
We start by creating a SurfaceView, a dedicated view for live drawing where we will attach

the camera’s preview stream. This provides us with a live preview inside a view that we can

lay out any way we choose inside an activity. From there, it’s simply a matter of adding other

views and controls that suit the context of the application. Let’s take a look at the code

(see Listings 4-23 and 4-24).

Note The Camera class used here is android.hardware.Camera, not to be confused with

android.graphics.Camera. Ensure that you have imported the correct reference within

your application.

Listing 4-23. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <SurfaceView
 android:id="@+id/preview"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</RelativeLayout>

Listing 4-24. Activity Displaying Live Camera Preview

import android.hardware.Camera;

public class PreviewActivity extends Activity implements
 SurfaceHolder.Callback {

 Camera mCamera;
 SurfaceView mPreview;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mPreview = (SurfaceView)findViewById(R.id.preview);
 mPreview.getHolder().addCallback(this);
 //Needed for support prior to Android 3.0
 mPreview.getHolder()
 .setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mCamera = Camera.open();
 }

339CHAPTER 4: Interacting with Device Hardware and Media

 @Override
 public void onPause() {
 super.onPause();
 mCamera.stopPreview();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mCamera.release();
 }

 //Surface Callback Methods
 @Override
 public void surfaceChanged(SurfaceHolder holder, int format,
 int width, int height) {
 Camera.Parameters params = mCamera.getParameters();
 //Get the device's supported sizes and pick the first,
 // which is the largest
 List<Camera.Size> sizes =
 params.getSupportedPreviewSizes();
 Camera.Size selected = sizes.get(0);
 params.setPreviewSize(selected.width,selected.height);
 mCamera.setParameters(params);

 mCamera.startPreview();
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 try {
 mCamera.setPreviewDisplay(mPreview.getHolder());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) { }
}

Note If you are testing on an emulator, there may not be a camera to preview. Newer versions of the

SDK have started to use cameras built into some host machines, but this is not universal. If a camera

is unavailable, the emulator displays a fake preview that looks slightly different depending on the

version you are running. To verify that this code is working properly, open the Camera application on

your specific emulator and take note of what the preview looks like. The same display should appear

in this sample. It is always best to test code that integrates with device hardware on an actual device.

340 CHAPTER 4: Interacting with Device Hardware and Media

Note In versions earlier than 2.0 (API Level 5), it was acceptable to directly pass the height

and width parameters from this method as to Parameters.setPreviewSize(); but in 2.0

and later, the camera will set its preview to only one of the supported resolutions of the device.

Attempts otherwise will result in an exception.

Camera.startPreview()begins the live drawing of camera data on the surface. Notice that

the preview always displays in a landscape orientation. Prior to Android 2.2 (API Level 8),

there was no official way to adjust the rotation of the preview display. For that reason, it is

recommended that an activity using the camera preview have its orientation fixed with

android:screenOrientation="landscape" in the manifest to match if you must support

devices running older versions.

The Camera service can be accessed by only one application at a time. For this reason, it is

important that you call Camera.release()as soon as the camera is no longer needed. In the

example, we no longer need the camera when the activity is finished, so this call takes place

in onDestroy().

Important Some devices, such as Google’s Nexus 7 2012 tablet, do not have a rear-facing

camera, and so the old implementation of Camera.open() will return null. If you have a Camera

application that supports older versions of Android, you will want to branch your code and use the

newer API where available to get whatever camera the device has to offer.

In the example, we create a SurfaceView that fills the window and tells it that our activity is to

be notified of all the SurfaceHolder callbacks. The camera cannot begin displaying preview

information on the surface until it is fully initialized, so we wait until surfaceCreated() gets

called to attach the SurfaceHolder of our view to the Camera instance. Similarly, we wait to

size the preview and start drawing until the surface has been given its size, which occurs

when surfaceChanged() is called.

The camera hardware resources are opened and claimed for this application by calling

Camera.open(). An alternate version of this method, introduced in Android 2.3 (API Level 9),

takes an integer parameter (valid values being from 0 to getNumberOfCameras() - 1) to determine

which camera you would like to access for devices that have more than one. On these devices,

the version that takes no parameters will always default to the rear-facing camera.

Calling Parameters.getSupportedPreviewSizes() returns a list of all the sizes the device will

accept, and they are typically ordered largest to smallest. In the example, we pick the first

(and, thus, largest) preview resolution and use it to set the size.

341CHAPTER 4: Interacting with Device Hardware and Media

Changing Capture Orientation

(API Level 8)

Starting with Android 2.2, the ability to rotate the actual camera preview was added.

Applications can now call Camera.setDisplayOrientation()to rotate the incoming data to

match the orientation of their activity. Valid values are degrees of 0, 90, 180, and 270; 0 will

map to the default landscape orientation. This method affects primarily how the preview

data is drawn on the surface before the capture.

To rotate the output data from the camera, use the method setRotation()on Camera.
Parameters. This method’s implementation depends on the device; it will either rotate the

actual image output, update the EXIF data with a rotation parameter, or both.

Overlaying the Preview

We can now add on to the previous example any controls or views that are appropriate to

display on top of the camera preview. Let’s modify the preview to include a Cancel button

and a Snap Photo button. See Listings 4-25 and 4-26.

Listing 4-25. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <SurfaceView
 android:id="@+id/preview"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="100dip"
 android:layout_alignParentBottom="true"
 android:gravity="center_vertical"
 android:background="#A000">
 <Button
 android:layout_width="100dip"
 android:layout_height="wrap_content"
 android:text="Cancel"
 android:onClick="onCancelClick" />
 <Button
 android:layout_width="100dip"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:text="Snap Photo"
 android:onClick="onSnapClick" />
 </RelativeLayout>
</RelativeLayout>

342 CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-26. Activity with Photo Controls Added

public class PreviewActivity extends Activity implements
 SurfaceHolder.Callback, Camera.ShutterCallback, Camera.PictureCallback {

 Camera mCamera;
 SurfaceView mPreview;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mPreview = (SurfaceView)findViewById(R.id.preview);
 mPreview.getHolder().addCallback(this);
 //Needed for support prior to Android 3.0
 mPreview.getHolder()
 .setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mCamera = Camera.open();
 }

 @Override
 public void onPause() {
 super.onPause();
 mCamera.stopPreview();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mCamera.release();
 Log.d("CAMERA","Destroy");
 }

 public void onCancelClick(View v) {
 finish();
 }

 public void onSnapClick(View v) {
 //Snap a photo
 mCamera.takePicture(this, null, null, this);
 }

 //Camera Callback Methods
 @Override
 public void onShutter() {
 Toast.makeText(this, "Click!", Toast.LENGTH_SHORT).show();
 }

343CHAPTER 4: Interacting with Device Hardware and Media

 @Override
 public void onPictureTaken(byte[] data, Camera camera) {

 //Store the picture off somewhere
 //Here, we chose to save to external storage
 try {
 File directory = Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES);
 FileOutputStream out =
 new FileOutputStream(new File(directory, "picture.jpg"));
 out.write(data);
 out.flush();
 out.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Must restart preview
 camera.startPreview();
 }

 //Surface Callback Methods
 @Override
 public void surfaceChanged(SurfaceHolder holder, int format,
 int width, int height) {
 Camera.Parameters params = mCamera.getParameters();
 List<Camera.Size> sizes = params.getSupportedPreviewSizes();
 Camera.Size selected = sizes.get(0);
 params.setPreviewSize(selected.width,selected.height);
 mCamera.setParameters(params);

 mCamera.setDisplayOrientation(90);
 mCamera.startPreview();
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 try {
 mCamera.setPreviewDisplay(mPreview.getHolder());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) { }
}

344 CHAPTER 4: Interacting with Device Hardware and Media

Here we have added a simple, partially transparent overlay to include a pair of controls for

camera operation. The action taken by Cancel is nothing to speak of; we simply finish the

activity. However, Snap Photo introduces more of the Camera API in manually taking and

returning a photo to the application. A user action will initiate the Camera.takePicture()

method, which takes a series of callback pointers.

Notice that the activity in this example implements two more interfaces: Camera.
ShutterCallback and Camera.PictureCallback. The former is called as near as possible to

the moment when the image is captured (when the “shutter” closes), while the latter can be

called at multiple instances when different forms of the image are available.

The parameters of takePicture() are a single ShutterCallback and up to three

PictureCallback instances. The PictureCallbacks will be called at the following times (in the

order they appear as parameters):

After the image is captured with RAW image data. This may return 	 null

on devices with limited memory.

After the image is processed with scaled image data (known as the 	
POSTVIEW image). This may return null on devices with limited memory.

After the image is compressed with JPEG image data.	
This example cares to be notified only when the JPEG is ready. Consequently, that is also

the last callback made and the point in time when the preview must be started back up

again. If startPreview() is not called again after a picture is taken, then the preview on the

surface will remain frozen at the captured image.

Tip If you would like to guarantee that your application is downloaded only on devices that have

the appropriate hardware, you can use the market filter for the camera in your manifest with the

following line: <uses-feature android:name="android.hardware.camera" />.

4-7. Recording Audio

Problem
You have an application that needs to use the device microphone to record audio input.

Solution
(API Level 1)

Use MediaRecorder to capture the audio and store it in a file.

345CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-27. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/startButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Recording" />
 <Button
 android:id="@+id/stopButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop Recording"
 android:enabled="false" />
</LinearLayout>

Listing 4-28. Activity for Recording Audio

public class RecordActivity extends Activity {

 private MediaRecorder recorder;
 private Button start, stop;
 File path;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 start = (Button)findViewById(R.id.startButton);
 start.setOnClickListener(startListener);
 stop = (Button)findViewById(R.id.stopButton);
 stop.setOnClickListener(stopListener);

How It Works
MediaRecorder is quite simple to use. All you need to provide is some basic information about

the file format to use for encoding and where to store the data. Listings 4-27 and 4-28 provide

examples of how to record an audio file to the device’s SD card, monitoring user actions for

when to start and stop.

Important In order to use MediaRecorder to record audio input, you must also declare the

android.permission.RECORD_AUDIO permission in the application manifest.

346 CHAPTER 4: Interacting with Device Hardware and Media

 recorder = new MediaRecorder();
 path = new File(Environment.getExternalStorageDirectory(),
 "myRecording.3gp");

 resetRecorder();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 recorder.release();
 }

 private void resetRecorder() {
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(
 MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setAudioEncoder(
 MediaRecorder.AudioEncoder.DEFAULT);
 recorder.setOutputFile(path.getAbsolutePath());
 try {
 recorder.prepare();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private View.OnClickListener startListener =
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 try {
 recorder.start();

 start.setEnabled(false);
 stop.setEnabled(true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };

 private View.OnClickListener stopListener =
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 recorder.stop();
 resetRecorder();

347CHAPTER 4: Interacting with Device Hardware and Media

 start.setEnabled(true);
 stop.setEnabled(false);
 }
 };
}

The UI for this example is very basic. There are two buttons, and their uses alternate based

on the recording state. When the user presses Start, we enable the Stop button and begin

recording. When the user presses Stop, we re-enable the Start button and reset the recorder

to run again.

MediaRecorder setup is just as straightforward. We create a file on the SD card entitled

myRecording.3gp and pass the path in setOutputFile(). The remaining setup methods tell

the recorder to use the device microphone as input (AudioSource.MIC), and it will create a

3GP file format for the output using the default encoder.

For now, you could play this audio file by using any of the device’s file browser or media

player applications. Later, in Recipe 4-10, we will point out how to play audio back through

the application as well.

4-8. Capturing Custom Video

Problems
Your application requires video capture, but you need more control over the video-recording

process than Recipe 4-5 provides.

Solution
(API Level 8)

Use MediaRecorder and Camera directly in concert with each other to create your own

video-capture activity. This is slightly more complex than working with MediaRecorder in an

audio-only context as we did with the previous recipe. We want the user to be able to see

the camera preview even during the times that we aren’t recording video, and to do this, we

must manage the access to the camera between the two objects.

How It Works
Listings 4-29 through 4-31 illustrate an example of recording video to the device’s external

storage.

Listing 4-29. Partial AndroidManifest.xml

<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

...

348 CHAPTER 4: Interacting with Device Hardware and Media

<activity
 android:name=".VideoCaptureActivity"
 android:screenOrientation="portrait" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

The key element to point out in the manifest is that we have set our activity orientation to be

fixed in portrait. There is also a small host of permissions required to access the camera and

to make a recording that includes the audio track.

Listing 4-30. res/layout/main.xml

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <Button
 android:id="@+id/button_record"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:onClick="onRecordClick" />

 <SurfaceView
 android:id="@+id/surface_video"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_above="@id/button_record" />
</RelativeLayout>

Listing 4-31. Activity Capturing Video

public class VideoCaptureActivity extends Activity implements
 SurfaceHolder.Callback {

 private Camera mCamera;
 private MediaRecorder mRecorder;

 private SurfaceView mPreview;
 private Button mRecordButton;

 private boolean mRecording = false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

349CHAPTER 4: Interacting with Device Hardware and Media

 mRecordButton = (Button) findViewById(R.id.button_record);
 mRecordButton.setText("Start Recording");

 mPreview = (SurfaceView) findViewById(R.id.surface_video);
 mPreview.getHolder().addCallback(this);
 mPreview.getHolder()
 .setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mCamera = Camera.open();
 //Rotate the preview display to match portrait
 mCamera.setDisplayOrientation(90);
 mRecorder = new MediaRecorder();
 }

 @Override
 protected void onDestroy() {
 mCamera.release();
 mCamera = null;
 super.onDestroy();
 }

 public void onRecordClick(View v) {
 updateRecordingState();
 }

 /*
 * Initialize the camera and recorder.
 * The order of these methods is important because MediaRecorder is
 * a strict state machine that moves through states as each method
 * is called.
 */
 private void initializeRecorder() throws
 IllegalStateException, IOException {
 //Unlock the camera to let MediaRecorder use it
 mCamera.unlock();
 mRecorder.setCamera(mCamera);
 //Update the source settings
 mRecorder.setAudioSource(
 MediaRecorder.AudioSource.CAMCORDER);
 mRecorder.setVideoSource(
 MediaRecorder.VideoSource.CAMERA);
 //Update the output settings
 File recordOutput = new File(
 Environment.getExternalStorageDirectory(),
 "recorded_video.mp4");
 if (recordOutput.exists()) {
 recordOutput.delete();
 }

350 CHAPTER 4: Interacting with Device Hardware and Media

 CamcorderProfile cpHigh = CamcorderProfile.get(
 CamcorderProfile.QUALITY_HIGH);
 mRecorder.setProfile(cpHigh);
 mRecorder.setOutputFile(recordOutput.getAbsolutePath());
 //Attach the surface to the recorder to allow
 // preview while recording
 mRecorder.setPreviewDisplay(
 mPreview.getHolder().getSurface());

 //Optionally, set limit values on recording
 mRecorder.setMaxDuration(50000); // 50 seconds
 mRecorder.setMaxFileSize(5000000); // Approximately 5MB

 mRecorder.prepare();
 }

 private void updateRecordingState() {
 if (mRecording) {
 mRecording = false;
 //Reset the recorder state for the next recording
 mRecorder.stop();
 mRecorder.reset();
 //Take the camera back to let preview continue
 mCamera.lock();
 mRecordButton.setText("Start Recording");
 } else {
 try {
 //Reset the recorder for the next session
 initializeRecorder();
 //Start recording
 mRecording = true;
 mRecorder.start();
 mRecordButton.setText("Stop Recording");
 } catch (Exception e) {
 //Error occurred initializing recorder
 e.printStackTrace();
 }
 }
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 //When we get a surface, immediately start camera preview
 try {
 mCamera.setPreviewDisplay(holder);
 mCamera.startPreview();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

351CHAPTER 4: Interacting with Device Hardware and Media

Note It is possible to record video with MediaRecorder without having to manage the Camera

directly, but you will be unable to modify the display orientation and the application will display only

preview frames while recording is taking place.

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format,
 int width, int height) { }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) { }
}

When this activity is first created, it obtains an instance of the device’s camera and sets

its display orientation to match the portrait orientation we defined in the manifest. This call

will affect how only the preview content is displayed, not the recorded output; we will talk

more about this later in the section. When the activity becomes visible, we will receive the

surfaceCreated() callback, at which point the Camera begins sending preview data.

When the user decides to press the button and start recording, the Camera is unlocked and

handed over to MediaRecorder for use. The recorder is then set up with the proper sources

and formats that it should use to capture video, including both a time and file-size limit to

keep users from overloading their storage.

Once recording is finished, the file is automatically saved to external storage and we reset

the recorder instance to be ready if the user wants to record again. We also regain control of

the Camera so that preview frames will continue to draw.

Output Format Orientation

(API Level 9)

In our example, we used Camera.setDisplayOrientation() to match the preview display

orientation to our portrait activity. However, in some cases, if you play this video back on

your computer, the playback will still be in landscape. To fix this problem, we can use the

setOrientationHint() method on MediaRecorder. This method takes a value in degrees that

would match up with our display orientation and applies that value to the metadata of the

video container file (that is, the 3GP or MP4 file) to notify other video player applications that

the video should be oriented a certain way.

This may not be necessary because some video players determine orientation based on

which dimension of the video size is smaller. It is for this reason, and to keep compatibility

with API Level 8, that we have not added it to the example here.

352 CHAPTER 4: Interacting with Device Hardware and Media

4-9. Adding Speech Recognition
Problem
Your application needs speech-recognition technology in order to interpret voice input.

Solution
(API Level 3)

Use the classes of the android.speech package to leverage the built-in speech-recognition

technology of every Android device. Every Android device that is equipped with voice

search (available since Android 1.5) provides applications with the ability to use the built-in

SpeechRecognizer to process voice input.

To activate this process, the application needs only to send a RecognizerIntent to the

system, where the recognition service will handle recording the voice input and processing

it; then it returns to you a list of strings indicating what the recognizer thought it heard.

How It Works
Let’s examine this technology in action. See Listing 4-32.

Listing 4-32. Activity Launching and Processing Speech Recognition

public class RecognizeActivity extends Activity {

 private static final int REQUEST_RECOGNIZE = 100;

 TextView tv;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 tv = new TextView(this);
 setContentView(tv);

 Intent intent = new Intent(
 RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT,
 "Tell Me Your Name");
 try {
 startActivityForResult(intent, REQUEST_RECOGNIZE);
 } catch (ActivityNotFoundException e) {
 //If no recognizer exists, download from Google Play
 showDownloadDialog();
 }
 }

353CHAPTER 4: Interacting with Device Hardware and Media

 private void showDownloadDialog() {
 AlertDialog.Builder builder =
 new AlertDialog.Builder(this);
 builder.setTitle("Not Available");
 builder.setMessage(
 "There is no recognition application installed."
 + " Would you like to download one?");
 builder.setPositiveButton("Yes",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog,
 int which) {
 //Download, for example, Google Voice Search
 Intent marketIntent =
 new Intent(Intent.ACTION_VIEW);
 marketIntent.setData(
 Uri.parse("market://details?"
 + "id=com.google.android.voicesearch"));
 }
 });
 builder.setNegativeButton("No", null);
 builder.create().show();
 }

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if(requestCode == REQUEST_RECOGNIZE &&
 resultCode == Activity.RESULT_OK) {
 ArrayList<String> matches =
 data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);
 StringBuilder sb = new StringBuilder();
 for(String piece : matches) {
 sb.append(piece);
 sb.append('\n');
 }
 tv.setText(sb.toString());
 } else {
 Toast.makeText(this, "Operation Canceled",
 Toast.LENGTH_SHORT).show();
 }
 }
}

Note If you are testing your application in the emulator, beware that neither Google Play nor any

voice recognizers will likely be installed. It is best to test the operation of this example on a device.

354 CHAPTER 4: Interacting with Device Hardware and Media

This example automatically starts the speech-recognition activity upon launch of the

application and asks the user, “Tell Me Your Name.” Upon receiving speech from the user

and processing the result, the activity returns with a list of possible items the user could

have said. This list is in order of probability, and so in many cases, it would be prudent to

simply call matches.get(0) as the best possible choice and move on. However, this activity

takes all the returned values and displays them on the screen for entertainment purposes.

When starting up the SpeechRecognizer, a number of extras can be passed in the intent to

customize the behavior. This example uses the two that are most common:

	EXTRA_LANGUAGE_MODEL: A value to help fine-tune the results from the

speech processor.

Typical speech-to-text queries should use the 	
LANGUAGE_MODEL_FREE_FORM option.

If shorter request-type queries are being made, 	
LANGUAGE_MODEL_WEB_SEARCH may produce better results.

	EXTRA_PROMPT: This string value displays as the prompt for user speech.

In addition to these, a handful of other parameters may be useful to pass along:

	EXTRA_MAX_RESULTS: This integer sets the maximum number of returned

results.

	EXTRA_LANGUAGE: This requests that results be returned in a language

other than the current system default. The string value is a valid IETF

language tag, such as en-US or es.

4-10. Playing Back Audio/Video

Problem
An application needs to play audio or video content, either local or remote, on the device.

Solution
(API Level 1)

Use the MediaPlayer to play local or streamed media. Whether the content is audio or video,

local or remote, MediaPlayer will connect, prepare, and play the associated media efficiently.

In this recipe, we will also explore using MediaController and VideoView as simple ways to

include interaction and video play in an activity layout.

355CHAPTER 4: Interacting with Device Hardware and Media

How It Works

Note Before expecting a specific media clip or stream to play, please read the “Android Supported

Media Formats” section of the developer documentation to verify support.

Audio Playback

Let’s look at a simple example of just using MediaPlayer to play a sound. See Listing 4-33.

Listing 4-33. Activity Playing Local Sound

public class PlayActivity extends Activity implements
 MediaPlayer.OnCompletionListener {

 private Button mPlay;
 private MediaPlayer mPlayer;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mPlay = new Button(this);
 mPlay.setText("Play Sound");
 mPlay.setOnClickListener(playListener);

 setContentView(mPlay);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 if(mPlayer != null) {
 mPlayer.release();
 }
 }

 private View.OnClickListener playListener =
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if(mPlayer == null) {
 try {
 mPlayer = MediaPlayer.create(PlayActivity.this,
 R.raw.sound);
 mPlayer.start();
 } catch (Exception e) {
 e.printStackTrace();
 }

356 CHAPTER 4: Interacting with Device Hardware and Media

 } else {
 mPlayer.stop();
 mPlayer.release();
 mPlayer = null;
 }
 }
 };

 //OnCompletionListener Methods
 @Override
 public void onCompletion(MediaPlayer mp) {
 mPlayer.release();
 mPlayer = null;
 }

}

This example uses a button to start and stop playback of a local sound file that is stored

in the res/raw directory of a project. MediaPlayer.create() is a convenience method with

several forms, intended to construct and prepare a player object in one step. The form used

in this example takes a reference to a local resource ID, but create() can also be used to

access and play a remote resource using MediaPlayer.create(Context context, Uri uri).

Once created, the example starts playing the sound immediately. While the sound is playing,

the user may press the button again to stop play. The activity also implements the MediaPlayer.
OnCompletionListener interface, so it receives a callback when the playing operation completes

normally.

In either case, after play is stopped, the MediaPlayer instance is released. This method

allows the resources to be retained only as long as they are in use, and the sound may be

played multiple times. To be sure resources are not unnecessarily retained, the player is also

released when the activity is destroyed if it still exists.

If your application needs to play many different sounds, you may consider calling reset()

instead of release() when playback is over. Remember, though, to still call release() when

the player is no longer needed (or the activity goes away).

Audio Player

Beyond just simple playback, what if the application needs to create an interactive

experience for the user to be able to play, pause, and seek through the media? Methods

are available on MediaPlayer to implement all these functions with custom UI elements, but

Android also provides the MediaController view so you don’t have to.

Let’s construct a simple audio playback activity, as seen in Figure 4-5.

357CHAPTER 4: Interacting with Device Hardware and Media

Listings 4-34 and 4-35 describe the layout and activity source code for this example.

Listing 4-34. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Now Playing..." />
 <ImageView
 android:id="@+id/coverImage"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerInside" />
</LinearLayout>

Figure 4-5. Activity using MediaController

358 CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-35. Activity Playing Audio with MediaController

public class PlayerActivity extends Activity implements
 MediaController.MediaPlayerControl,
 MediaPlayer.OnBufferingUpdateListener {

 MediaController mController;
 MediaPlayer mPlayer;
 ImageView coverImage;

 int bufferPercent = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 coverImage = (ImageView)findViewById(R.id.coverImage);

 mController = new MediaController(this);
 mController.setAnchorView(findViewById(R.id.root));
 }

 @Override
 public void onResume() {
 super.onResume();
 mPlayer = new MediaPlayer();
 //Set the audio data source
 try {
 mPlayer.setDataSource(this,
 Uri.parse("<URI_TO_REMOTE_AUDIO>"));
 mPlayer.prepare();
 } catch (Exception e) {
 e.printStackTrace();
 }
 //Set an image for the album cover
 coverImage.setImageResource(R.drawable.icon);

 mController.setMediaPlayer(this);
 mController.setEnabled(true);
 }

 @Override
 public void onPause() {
 super.onPause();
 mPlayer.release();
 mPlayer = null;
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 mController.show();
 return super.onTouchEvent(event);
 }

359CHAPTER 4: Interacting with Device Hardware and Media

 //MediaPlayerControl Methods
 @Override
 public int getBufferPercentage() {
 return bufferPercent;
 }

 @Override
 public int getCurrentPosition() {
 return mPlayer.getCurrentPosition();
 }

 @Override
 public int getDuration() {
 return mPlayer.getDuration();
 }

 @Override
 public boolean isPlaying() {
 return mPlayer.isPlaying();
 }

 @Override
 public void pause() {
 mPlayer.pause();
 }

 @Override
 public void seekTo(int pos) {
 mPlayer.seekTo(pos);
 }

 @Override
 public void start() {
 mPlayer.start();
 }

 //BufferUpdateListener Methods
 @Override
 public void onBufferingUpdate(MediaPlayer mp, int percent) {
 bufferPercent = percent;
 }

 //Android 2.0+ Target Callbacks
 @Override
 public boolean canPause() {
 return true;
 }

360 CHAPTER 4: Interacting with Device Hardware and Media

 @Override
 public boolean canSeekBackward() {
 return true;
 }

 @Override
 public boolean canSeekForward() {
 return true;
 }

 //Android 4.3+ Target Callbacks
 @Override
 public int getAudioSessionId() {
 return mPlayer.getAudioSessionId();
 }
}

This example creates a simple audio player that displays an image for the artist or cover

art associated with the audio being played (we just set it to the application icon here). The

example still uses a MediaPlayer instance, but this time we are not creating it by using the

create() convenience method. Instead we use setDataSource() after the instance is created

to set the content. When attaching the content in this manner, the player is not automatically

prepared, so we must also call prepare() to ready the player for use.

At this point, the audio is ready to start. We would like MediaController to handle all

playback controls, but MediaController can attach to only objects that implement the

MediaController.MediaPlayerControl interface. Strangely, MediaPlayer alone does not

implement this interface, so we appoint the activity to do that job instead. Seven of the

eleven methods included in the interface are actually implemented by MediaPlayer, so we

just call down to those directly.

LATE ADDITIONS

If your application is targeting API Level 18 or later, there is one additional method to implement in the

MediaController.MediaPlayerControl interface:

getAudioSessionId()

This method is another wrapper around the method already implemented by MediaPlayer. This method is not

required if you target a lower API level, but you may implement it for best results when running on later versions.

The final method required to use MediaController is getBufferPercentage(). To obtain this

data, the activity is also tasked with implementing MediaPlayer.OnBufferingUpdateListener,

which updates the buffer percentage as it changes.

MediaController has one trick to its implementation. It is designed as a widget that floats

above an active view in its own window and it is visible for only a few seconds at a time.

As a result, we do not instantiate the widget in the XML layout of the content view, but

rather in code. The link is made between MediaController and the content view by calling

setAnchorView(), which also determines where the controller will show up onscreen.

In this example, we anchor it to the root layout object, so it will display at the bottom of the

361CHAPTER 4: Interacting with Device Hardware and Media

screen when visible. If MediaController is anchored to a child view in the hierarchy, it will

display next to that child instead.

Also, because of the controller’s separate window, MediaController.show() must not be

called from within onCreate(), and doing so will cause a fatal exception. MediaController

is designed to be hidden by default and activated by the user. In this example, we override

the onTouchEvent() method of the activity to show the controller whenever the user taps the

screen. Unless show() is called with a parameter of 0, it will fade out after the amount of time

noted by the parameter. Calling show() without any parameter tells it to fade out after the

default timeout, which is around 3 seconds.

Now all features of the audio playback are handled by the standard controller widget. The

version of setDataSource() used in this example takes a Uri, making it suitable for loading

audio from a ContentProvider or a remote location. Keep in mind that all of this works just

as well with local audio files and resources using the alternate forms of setDataSource().

Video Player

When playing video, typically a full set of playback controls is required to play, pause, and seek

through the content. In addition, MediaPlayer must have a reference to a SurfaceHolder onto

which it can draw the frames of the video. As we mentioned in the previous example, Android

provides APIs to do all of this and create a custom video-playing experience. However, in

many cases the most efficient path forward is to let the classes provided with the SDK, namely

MediaController and VideoView, do all the heavy lifting.

Let’s take a look at an example of creating a video player in an activity. See Listing 4-36.

Listing 4-36. Activity to Play Video Content

public class VideoActivity extends Activity {

 VideoView videoView;
 MediaController controller;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 videoView = new VideoView(this);

 videoView.setVideoURI(Uri.parse("URI_TO_REMOTE_VIDEO"));
 controller = new MediaController(this);
 videoView.setMediaController(controller);
 videoView.start();

 setContentView(videoView);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 videoView.stopPlayback();
 }
}

362 CHAPTER 4: Interacting with Device Hardware and Media

Note If you are pulling video content from a remote URI, don’t forget the INTERNET permission in

your manifest!

This example passes the URI of a remote video location to VideoView and tells it to handle

the rest. VideoView can be embedded in larger XML layout hierarchies as well, although

often it is the only view and is displayed as full-screen, so setting it in code as the only view

in the layout tree is not uncommon.

With VideoView, interaction with MediaController is much simpler. VideoView implements

the MediaController.MediaPlayerControl interface, so no additional glue logic is required

to make the controls functional. VideoView also internally handles the anchoring of the

controller to itself, so it displays onscreen in the proper location.

Handling Redirects

We have one final note about using the MediaPlayer classes to handle remote content. Many

media content servers on the Web today do not publicly expose a direct URL to the video

container. Either for the purposes of tracking or security, public media URLs can often redirect

one or more times before ending up at the true media content. MediaPlayer does not handle

this redirect process, and it will return an error when presented with a redirected URL.

If you are unable to directly retrieve locations of the content you want to display in an

application, that application must trace the redirect path before handing the URL to

MediaPlayer. Listing 4-37 is an example of a simple AsyncTask tracer that will do the job.

Listing 4-37. RedirectTracerTask

public class RedirectTracerTask extends AsyncTask<Uri, Void, Uri> {

 private VideoView mVideo;
 private Uri initialUri;

 public RedirectTracerTask(VideoView video) {
 super();
 mVideo = video;
 }

 @Override
 protected Uri doInBackground(Uri... params) {
 initialUri = params[0];
 String redirected = null;
 try {
 URL url = new URL(initialUri.toString());
 HttpURLConnection connection =
 (HttpURLConnection)url.openConnection();
 //Once connected, see where you ended up
 redirected = connection.getHeaderField("Location");

363CHAPTER 4: Interacting with Device Hardware and Media

 return Uri.parse(redirected);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 @Override
 protected void onPostExecute(Uri result) {
 if(result != null) {
 mVideo.setVideoURI(result);
 } else {
 mVideo.setVideoURI(initialUri);
 }
 mVideo.start();
 }

}

This helper class tracks down the final location by retrieving it out of the HTTP headers.

If there were no redirects in the supplied Uri, the background operation would end up

returning null, in which case the original Uri would be passed to VideoView.

Making use of this helper class, passing a Uri to the view would now look like the following

snippet:

VideoView videoView = new VideoView(this);
RedirectTracerTask task = new RedirectTracerTask(videoView);
Uri location = Uri.parse("URI_TO_REMOTE_VIDEO");

task.execute(location);

4-11. Playing Sound Effects

Problem
Your application requires short sound effects that need to be played in response to user

interaction with very low latency.

Solution
(API Level 1)

Use SoundPool to buffer-load your sound files into memory and play them back quickly in

response to the user’s actions. The Android framework provides SoundPool as a way to

decode small sound files and hold them in memory for rapid and repeated playback. It also

has some added features enabling the volume and playback speed of each sound to be

controlled at runtime. The sounds themselves can be housed in assets, resources, or just in

the device’s filesystem.

364 CHAPTER 4: Interacting with Device Hardware and Media

How It Works
Let’s take a look at how to use SoundPool to load up some sounds and attach them to

Button clicks. See Listings 4-38 and 4-39.

Listing 4-38. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <Button
 android:id="@+id/button_beep1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Play Beep 1" />
 <Button
 android:id="@+id/button_beep2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Play Beep 2" />
 <Button
 android:id="@+id/button_beep3"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Play Beep 3" />
</LinearLayout>

Listing 4-39. Activity with SoundPool

public class SoundPoolActivity extends Activity implements
 View.OnClickListener {

 private AudioManager mAudioManager;
 private SoundPool mSoundPool;
 private SparseIntArray mSoundMap;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Get the AudioManager system service
 mAudioManager =
 (AudioManager) getSystemService(AUDIO_SERVICE);
 //Set up pool to play only one sound at a time over the
 // standard speaker output.
 mSoundPool =
 new SoundPool(1, AudioManager.STREAM_MUSIC, 0);

365CHAPTER 4: Interacting with Device Hardware and Media

 findViewById(R.id.button_beep1).setOnClickListener(this);
 findViewById(R.id.button_beep2).setOnClickListener(this);
 findViewById(R.id.button_beep3).setOnClickListener(this);

 //Load each sound and save their streamId into a map
 mSoundMap = new SparseIntArray();
 AssetManager manager = getAssets();
 try {
 int streamId;
 streamId = mSoundPool.load(
 manager.openFd("Beep1.ogg"), 1);
 mSoundMap.put(R.id.button_beep1, streamId);

 streamId = mSoundPool.load(
 manager.openFd("Beep2.ogg"), 1);
 mSoundMap.put(R.id.button_beep2, streamId);

 streamId = mSoundPool.load(
 manager.openFd("Beep3.ogg"), 1);
 mSoundMap.put(R.id.button_beep3, streamId);
 } catch (IOException e) {
 Toast.makeText(this, "Error Loading Sound Effects",
 Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mSoundPool.release();
 mSoundPool = null;
 }

 @Override
 public void onClick(View v) {
 //Retrieve the appropriate sound ID
 int streamId = mSoundMap.get(v.getId());
 if (streamId > 0) {
 float streamVolumeCurrent = mAudioManager
 .getStreamVolume(AudioManager.STREAM_MUSIC);
 float streamVolumeMax = mAudioManager
 .getStreamMaxVolume(AudioManager.STREAM_MUSIC);
 float volume = streamVolumeCurrent / streamVolumeMax;

 //Play the sound at the specified volume, with no loop
 // and at the standard playback rate
 mSoundPool.play(streamId, volume, volume, 1, 0, 1.0f);
 }
 }
}

366 CHAPTER 4: Interacting with Device Hardware and Media

This example is fairly straightforward. The activity initially loads three sound files from the

application’s assets directory into the SoundPool. This step decodes them into raw PCM audio

and buffers them in memory. Each time a sound is loaded into the pool with load(), a stream

identifier is returned that will be used to play the sound later. We attach each sound to play

with a particular button by storing them together as a key/value pair inside SparseIntArray.

Note SparseIntArray (and its sibling SparseBooleanArray) is a key/value store similar to

a Map. However, it is significantly more efficient at storing primitive data such as integers because

it avoids unnecessary object creation caused by auto-boxing. Whenever possible, these classes

should be chosen over Map for best performance.

When the user presses one of the buttons, the stream identifier to play and call SoundPool

again to play the audio is retrieved. Because the maxStreams property of the SoundPool

constructor was set to 1, if the user taps multiple buttons in quick succession, new sounds

will cause older ones to stop. If this value is increased, multiple sounds can be played

together.

The parameters of the play() method allow the sound to be configured with each access.

Features such as looping the sound or playing it back slower or faster than the original

source can be controlled from here:

Looping supports any finite number of loops, or the value can be set to 	
–1 to loop infinitely.

Rate control supports any value between 0.5 and 2.0 (half-speed to 	
double-speed).

If you want to use SoundPool to dynamically change which sounds are loaded into memory

at a given time, without re-creating the pool, you can use the unload() method to remove

items from the pool in order to load() more in. When you are completely done with a

SoundPool, call release() to relinquish its native resources.

4-12. Creating a Tilt Monitor

Problem
Your application requires feedback from the device’s accelerometer that goes beyond just

understanding whether the device is oriented in portrait or landscape.

Solution
(API Level 3)

Use SensorManager to receive constant feedback from the accelerometer sensor. SensorManager

provides a generic abstracted interface for working with sensor hardware on Android devices.

The accelerometer is just one of many sensors that an application can register to receive regular

updates from.

367CHAPTER 4: Interacting with Device Hardware and Media

How It Works

Important Device sensors such as the accelerometer do not exist in the emulator. It is best to test

SensorManager code on an Android device.

This example activity registers with SensorManager for accelerometer updates and displays

the data onscreen. The raw X/Y/Z data is displayed in a TextView at the bottom of the

screen, but in addition the device’s “tilt” is visualized through a simple graph of four views in a

TableLayout. See Listings 4-40 and 4-41.

Note It is also recommended that you add android:screenOrientation="portrait" or a

ndroid:screenOrientation="landscape" to the application’s manifest to keep the activity

from trying to rotate as you move and tilt the device.

Listing 4-40. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="0,1,2">
 <TableRow
 android:layout_weight="1">
 <View
 android:id="@+id/top"
 android:layout_column="1" />
 </TableRow>
 <TableRow
 android:layout_weight="1">
 <View
 android:id="@+id/left"
 android:layout_column="0" />
 <View
 android:id="@+id/right"
 android:layout_column="2" />
 </TableRow>
 <TableRow
 android:layout_weight="1">
 <View
 android:id="@+id/bottom"
 android:layout_column="1" />

368 CHAPTER 4: Interacting with Device Hardware and Media

 </TableRow>
 </TableLayout>
 <TextView
 android:id="@+id/values"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true" />
</RelativeLayout>

Listing 4-41. Tilt Monitoring Activity

public class TiltActivity extends Activity implements
 SensorEventListener {

 private SensorManager mSensorManager;
 private Sensor mAccelerometer;
 private TextView valueView;
 private View mTop, mBottom, mLeft, mRight;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mSensorManager =
 (SensorManager)getSystemService(SENSOR_SERVICE);
 mAccelerometer = mSensorManager.getDefaultSensor(
 Sensor.TYPE_ACCELEROMETER);

 valueView = (TextView)findViewById(R.id.values);
 mTop = findViewById(R.id.top);
 mBottom = findViewById(R.id.bottom);
 mLeft = findViewById(R.id.left);
 mRight = findViewById(R.id.right);
 }

 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_UI);
 }

 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this);
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 final float[] values = event.values;
 float x = values[0] / 10;
 float y = values[1] / 10;
 int scaleFactor;

369CHAPTER 4: Interacting with Device Hardware and Media

 if(x > 0) {
 scaleFactor = (int)Math.min(x * 255, 255);
 mRight.setBackgroundColor(Color.TRANSPARENT);
 mLeft.setBackgroundColor(
 Color.argb(scaleFactor, 255, 0, 0));
 } else {
 scaleFactor = (int)Math.min(Math.abs(x) * 255, 255);
 mRight.setBackgroundColor(
 Color.argb(scaleFactor, 255, 0, 0));
 mLeft.setBackgroundColor(Color.TRANSPARENT);
 }

 if(y > 0) {
 scaleFactor = (int)Math.min(y * 255, 255);
 mTop.setBackgroundColor(Color.TRANSPARENT);
 mBottom.setBackgroundColor(
 Color.argb(scaleFactor, 255, 0, 0));
 } else {
 scaleFactor = (int)Math.min(Math.abs(y) * 255, 255);
 mTop.setBackgroundColor(
 Color.argb(scaleFactor, 255, 0, 0));
 mBottom.setBackgroundColor(Color.TRANSPARENT);
 }
 //Display the raw values
 valueView.setText(String.format(
 "X: %1$1.2f, Y: %2$1.2f, Z: %3$1.2f",
 values[0], values[1], values[2]));
 }
}

The orientation of the three axes on the device accelerometer is as follows, from the

perspective of looking at the device screen, upright in portrait:

	X: Horizontal axis with positive pointing to the right

	Y: Vertical axis with positive pointing up

	Z: Perpendicular axis with positive pointing back at you

When the activity is visible to the user (between onResume() and onPause()), it registers with

SensorManager to receive updates about the accelerometer. When registering, the last

parameter to registerListener() defines the update rate. The chosen value, SENSOR_DELAY_UI,

is the fastest recommended rate to receive updates and still directly modify the UI with

each update.

With each new sensor value, the onSensorChanged() method of our registered listener is

called with a SensorEvent value; this event contains the X/Y/Z acceleration values.

370 CHAPTER 4: Interacting with Device Hardware and Media

Quick science note An accelerometer measures the acceleration due to forces applied. When

a device is at rest, the only force operating on it is the force of gravity (~9.8 m/s2). The output

value on each axis is the product of this force (pointing down to the ground) and each orientation

vector. When the two are parallel, the value will be at its maximum (~9.8–10). When the two are

perpendicular, the value will be at its minimum (~0.0). Therefore, a device lying flat on a table will

read ~0.0 for both X and Y, and ~9.8 for Z.

The example application displays the raw acceleration values for each axis in the TextView

at the bottom of the screen. In addition, four Views are arranged in a grid (top/bottom/left/

right pattern), and we proportionally adjust the background color of this grid based on the

orientation. When the device is perfectly flat, both X and Y should be close to zero and the

entire screen will be black. As the device tilts, the squares on the low side of the tilt will

start to glow red until they are completely red once the device orientation reaches upright in

either position.

Tip Try modifying this example with some of the other rate values, such as SENSOR_DELAY_

NORMAL. Notice how the change affects the update rate in the example.

In addition, you can shake the device and see alternating grid boxes highlight as the device

accelerates in each direction.

SENSOR BATCHING

In Android 4.4 and later, applications can request that the sensors they interact with run in batch mode to

reduce overall power consumption when you need to monitor the sensor for an extended period of time. In this

mode, sensor events may be queued up in hardware buffers for a period without waking up the application

processor each time.

To enable batch mode for a sensor, simply utilize a version of SensorManager.registerListener() that

takes a maxBatchReportLatencyUs parameter. This parameter tells the hardware how long events can be

queued before the batch is sent to the application.

Additionally, if the application needs to get the current batch prior to the next interval, a flush() can be called

on SensorManager to force the sensor to deliver what it has to the listener.

Not all sensors will support batching on all devices, and in these cases the implementation will fall back to the

default continuous operation mode.

371CHAPTER 4: Interacting with Device Hardware and Media

4-13. Monitoring Compass Orientation

Problem
Your application wants to know which major direction the user is facing by monitoring the

device’s compass sensor.

Solution
(API Level 3)

SensorManager comes to the rescue once again. Android doesn’t provide a “compass”

sensor exactly; instead it includes the necessary methods to infer where the device is

pointing based on other sensor data. In this case, the device’s magnetic field sensor will be

used with the accelerometer to ascertain in which direction the user is facing.

We can then ask SensorManager for the user’s orientation with respect to the Earth by using

getOrientation().

How It Works

Important Device sensors such as the accelerometer do not exist in the emulator. It is best to test

SensorManager code on an Android device.

As with the previous accelerometer example, we use SensorManager to register for updates

on all sensors of interest (in this case, there are two) and to then process the results in

onSensorChanged(). This example calculates and displays the user orientation from the

device camera’s point of view, as it would be required for an application such as augmented

reality. See Listings 4-42 and 4-43.

Listing 4-42. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/direction"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:textSize="64sp"
 android:textStyle="bold" />
 <TextView

372 CHAPTER 4: Interacting with Device Hardware and Media

 android:id="@+id/values"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true" />
</RelativeLayout>

Listing 4-43. Activity Monitoring User Orientation

public class CompassActivity extends Activity implements SensorEventListener {

 private SensorManager mSensorManager;
 private Sensor mAccelerometer, mField;
 private TextView valueView, directionView;

 private float[] mGravity = new float[3];
 private float[] mMagnetic = new float[3];

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
 mAccelerometer =
 mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 mField =
 mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

 valueView = (TextView)findViewById(R.id.values);
 directionView = (TextView)findViewById(R.id.direction);
 }

 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_UI);
 mSensorManager.registerListener(this, mField,
 SensorManager.SENSOR_DELAY_UI);
 }

 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this);
 }

 //Allocate data arrays once and reuse
 float[] temp = new float[9];
 float[] rotation = new float[9];
 float[] values = new float[3];

 private void updateDirection() {
 //Load rotation matrix into R
 SensorManager.getRotationMatrix(temp, null, mGravity, mMagnetic);
 //Remap to camera's point of view
 SensorManager.remapCoordinateSystem(temp,
 SensorManager.AXIS_X, SensorManager.AXIS_Z, rotation);

373CHAPTER 4: Interacting with Device Hardware and Media

 //Return the orientation values
 SensorManager.getOrientation(rotation, values);
 //Convert to degrees
 for (int i=0; i < values.length; i++) {
 Double degrees = (values[i] * 180) / Math.PI;
 values[i] = degrees.floatValue();
 }
 //Display the compass direction
 directionView.setText(getDirectionFromDegrees(values[0]));
 //Display the raw values
 valueView.setText(
 String.format("Azimuth: %1$1.2f, Pitch: %2$1.2f, Roll: %3$1.2f",
 values[0], values[1], values[2]));
 }

 private String getDirectionFromDegrees(float degrees) {
 if(degrees >= -22.5 && degrees < 22.5) { return "N"; }
 if(degrees >= 22.5 && degrees < 67.5) { return "NE"; }
 if(degrees >= 67.5 && degrees < 112.5) { return "E"; }
 if(degrees >= 112.5 && degrees < 157.5) { return "SE"; }
 if(degrees >= 157.5 || degrees < -157.5) { return "S"; }
 if(degrees >= -157.5 && degrees < -112.5) { return "SW"; }
 if(degrees >= -112.5 && degrees < -67.5) { return "W"; }
 if(degrees >= -67.5 && degrees < -22.5) { return "NW"; }

 return null;
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 //Copy the latest values into the correct array
 switch(event.sensor.getType()) {
 case Sensor.TYPE_ACCELEROMETER:
 System.arraycopy(event.values, 0,
 mGravity, 0,
 event.values.length);
 break;
 case Sensor.TYPE_MAGNETIC_FIELD:
 System.arraycopy(event.values, 0,
 mMagnetic, 0,
 event.values.length);
 break;
 default:
 return;
 }

 if(mGravity != null && mMagnetic != null) {
 updateDirection();
 }
 }
}

374 CHAPTER 4: Interacting with Device Hardware and Media

This example activity displays the three raw values returned by the sensor calculation at the

bottom of the screen in real time. In addition, the compass direction associated with where

the user is currently facing is converted and displayed center-stage. As updates are received

from the sensors, local copies of the latest values from each are maintained. As soon as we

have received at least one reading from both sensors of interest, we allow the UI to begin

updating.

updateDirection()is where all the heavy lifting takes place. SensorManager.getOrientation()

provides the output information we require to display direction. The method returns no data,

and instead an empty float array is passed in for the method to fill in three angle values, and

they represent (in order):

	Azimuth: Angle of rotation about an axis pointing directly into the Earth.

This is the value of interest in the example.

	Pitch: Angle of rotation about an axis pointing west.

	Roll: Angle of rotation about an axis pointing at magnetic north.

One of the parameters passed to getOrientation() is a float array representing a rotation

matrix. A rotation matrix is a representation of how the current coordinate system of the

devices is oriented, so the method may provide appropriate rotation angles based on its

reference coordinates. The rotation matrix for the device orientation is obtained by using

getRotationMatrix(), which takes the latest values from the accelerometer and magnetic-

field sensor as input. Like getOrientation(), it also returns void; an empty float array of

length 9 or 16 (to represent a 3×3 or 4×4 matrix) must be passed in as the first parameter for

the method to fill in.

Finally, we want the output of the orientation calculation to be specific to the camera’s point

of view. To further transform the obtained rotation, we use the remapCoordinateSystem()

method. This method takes four parameters (in order):

1. Input array representing the matrix to transform

2. Which axis of the world (globe) is aligned with the device’s x axis

3. Which axis of the world (globe) is aligned with the device’s y axis

4. Empty array to fill in the result

In our example, we want to leave the x axis untouched, so we map X to X. However, we

would like to align the device’s y axis (vertical axis) to the world’s z axis (the one pointing into

the Earth). This orients the rotation matrix we receive to match up with the device being held

vertically upright, as if the user is using the camera and looking at the preview on the screen.

With the angular data calculated, we do some data conversion and display the result on

the screen. The unit output of getOrientation() is radians, so we first have to convert each

result to degrees before displaying it. In addition, we need to convert the azimuth value to

a compass direction; getDirectionFromDegrees() is a helper method to return the proper

direction based on the range the current reading falls within. Going in a full clockwise circle,

the azimuth will read from 0 to 180 degrees from north to south. Continuing around the

circle, the azimuth will read –180 to 0 degrees rotating from south to north.

375CHAPTER 4: Interacting with Device Hardware and Media

4-14. Retrieving Metadata from Media Content

Problem
Your application needs to gather thumbnail screenshots or other metadata from media

content on the device.

Solution
(API Level 10)

Use MediaMetadataRetriever to read media files and return useful information. This class

can read and track information such as album and artist data or data about the content

itself, such as the size of a video. In addition, you can use it to grab a screenshot of any

frame within a video file, either at a specific time or just any frame that Android considers

representative.

MediaMetadataRetriever is a great option for applications that work with lots of media

content from the device and that need to display extra data about the media to enrich the

user interface.

How It Works
Listings 4-44 and 4-45 show how to access this extra metadata on the device.

Listing 4-44. res/layout/main.xml

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <Button
 android:id="@+id/button_select"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Pick Video"
 android:onClick="onSelectClick" />
 <TextView
 android:id="@+id/text_metadata"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/button_select"
 android:layout_margin="15dp" />
 <ImageView
 android:id="@+id/image_frame"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_margin="10dp" />
</RelativeLayout>

376 CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-45. Activity with MediaMetadataRetriever

public class MetadataActivity extends Activity {
 private static final int PICK_VIDEO = 100;

 private ImageView mFrameView;
 private TextView mMetadataView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mFrameView = (ImageView) findViewById(R.id.image_frame);
 mMetadataView =
 (TextView) findViewById(R.id.text_metadata);
 }

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == PICK_VIDEO
 && resultCode == RESULT_OK
 && data != null) {
 Uri video = data.getData();
 MetadataTask task = new MetadataTask(this, mFrameView,
 mMetadataView);
 task.execute(video);
 }
 }

 public void onSelectClick(View v) {
 Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
 intent.setType("video/*");
 startActivityForResult(intent, PICK_VIDEO);
 }

 public static class MetadataTask
 extends AsyncTask<Uri, Void, Bundle> {
 private Context mContext;
 private ImageView mFrame;
 private TextView mMetadata;
 private ProgressDialog mProgress;

 public MetadataTask(Context context, ImageView frame,
 TextView metadata) {
 mContext = context;
 mFrame = frame;
 mMetadata = metadata;
 }

377CHAPTER 4: Interacting with Device Hardware and Media

 @Override
 protected void onPreExecute() {
 mProgress = ProgressDialog.show(mContext, "",
 "Analyzing Video File...", true);
 }

 @Override
 protected Bundle doInBackground(Uri... params) {
 Uri video = params[0];
 MediaMetadataRetriever retriever =
 new MediaMetadataRetriever();
 retriever.setDataSource(mContext, video);

 Bitmap frame = retriever.getFrameAtTime();

 String date = retriever.extractMetadata(
 MediaMetadataRetriever.METADATA_KEY_DATE);
 String duration = retriever.extractMetadata(
 MediaMetadataRetriever.METADATA_KEY_DURATION);
 String width = retriever.extractMetadata(
 MediaMetadataRetriever.METADATA_KEY_VIDEO_WIDTH);
 String height = retriever.extractMetadata(
 MediaMetadataRetriever.METADATA_KEY_VIDEO_HEIGHT);

 Bundle result = new Bundle();
 result.putParcelable("frame", frame);
 result.putString("date", date);
 result.putString("duration", duration);
 result.putString("width", width);
 result.putString("height", height);

 return result;
 }

 @Override
 protected void onPostExecute(Bundle result) {
 if (mProgress != null) {
 mProgress.dismiss();
 mProgress = null;
 }

 Bitmap frame = result.getParcelable("frame");
 mFrame.setImageBitmap(frame);
 String metadata = String.format("Video Date: %s\n"
 + "Video Duration: %s\nVideo Size: %s x %s",
 result.getString("date"),
 result.getString("duration"),
 result.getString("width"),
 result.getString("height"));
 mMetadata.setText(metadata);
 }
 }

}

378 CHAPTER 4: Interacting with Device Hardware and Media

In this example, the user can select a video file from the device to process. Upon receipt of a

valid video Uri, the activity starts an AsyncTask to parse some metadata out of the video. We

create an AsyncTask for this purpose because the process can take a few seconds or more

to complete, and we don’t want to block the UI thread while this is going on.

The background task creates a new MediaMetadataRetriever and sets the selected video

as its data source. We then call the method getFrameAtTime()to return a Bitmap image of a

frame in the video. This method is useful for creating thumbnails for a video in your UI. The

version we call takes no parameters, and the frame it returns is semirandom. If you are more

interested in a specific frame, an alternate version of the method can take the presentation

time (in microseconds) of the video where you would like a frame. In this case, it will return a

key frame in the video that is closest to the requested time.

In addition to the frame image, we also gather some basic information about the video,

including when it was created, how long it is, and how big it is. All the resulting data is

packaged into a bundle and passed back from the background thread. The onPostExecute()

method of the task is called on the main thread, so we use it to update the UI with the data

we retrieved.

4-15. Detecting User Motion

Problem
You would like your application to respond to changes in user behavior, such as whether the

device is sitting still, or if the user is currently active and in motion.

Solution
(API Level 9)

Google Play Services includes features to monitor user activity via the

ActivityRecognitionClient. The user activity tracking service is a low-power method of

receiving regular updates about what a user is doing. The service periodically monitors local

sensor data on the device in short bursts rather than relying on high-power means like web

services or GPS.

Using this API, applications will receive updates for one of the following events:

	IN_VEHICLE: The user is likely driving or riding in a vehicle, such as a car,

bus, or train.

	ON_BICYCLE: The user is likely on a bicycle.

	ON_FOOT: The user is likely walking or running.

	STILL: The user, or at least the device, is currently sitting still.

	TILTING: The device has recently been tilted. This can happen when the

device is picked up from rest or an orientation change occurs.

	UNKNOWN: There is not enough data to determine with significant

confidence what the user is currently doing.

379CHAPTER 4: Interacting with Device Hardware and Media

When working with ActivityRecognitionClient, an application initiates periodic updates by

calling requestActivityUpdates(). The parameters this method takes define the frequency

of updates to the application and a PendingIntent that will be used to trigger each event.

An application can pass any frequency interval, in milliseconds; passing a value of zero will

send updates as fast as possible to the application. This rate is not guaranteed by Google

Play Services; samples can be delayed if the service requires more sensor samples to make

a particular determination. In addition, if multiple applications are requesting activity updates,

Google Play Services will deliver updates to all applications at the fastest rate requested.

Each event includes a list of DetectedActivity instances, which wrap the activity type

(one of the options described previously) and the level of confidence the service has in its

prediction. The list is sorted by confidence, so the most probable user activity is first.

Important User-activity tracking is part of the Google Play Services library; it is not part of the

native SDK at any platform level. However, any application targeting API Level 9 or later on devices

inside the Google Play ecosystem can use the tracking library. For more information on including

Google Play Services in your project, reference https://developer.android.com/google/

play-services/setup.html.

How It Works
Let’s take a look at a basic example application that monitors user activity changes, logs

them to the display, and includes a safety precaution that locks the user out from the

application if the user attempts to access it while in a car or on a bicycle. We’ll start with

Listing 4-46, which is a snippet of the AndroidManfest.xml that reveals the permissions we

need to work with this service.

Note This example uses ActionBarActivity from the AppCompat Library to allow the use of

fragments prior to API Level 11.

Listing 4-46. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidrecipes.usermotionactivity">

 <!-- Required permission to User Activity Recognition -->
 <uses-permission
 android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION" />

https://developer.android.com/google/play-services/setup.html
https://developer.android.com/google/play-services/setup.html

380 CHAPTER 4: Interacting with Device Hardware and Media

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <!-- Required boilerplate for Google Play Services -->
 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

 <activity
 android:name=".MainActivity"
 android:label="User Activity"
 android:screenOrientation="portrait" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name=".UserMotionService" />
 </application>

</manifest>

You can see that we must declare a custom permission in the manifest specifically to read

activity recognition data from Google Play Services. We also need to be sure to have the

<meta-data> element defining the required version. This allows the client library to determine

whether the device is running the proper Play Services or requires an update. Listings 4-47

and 4-48 describe the activity we will use.

Listing 4-47. res/layout/activity_main.xml

<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <!-- List with transcript enabled to autoscroll content -->
 <ListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stackFromBottom="true"
 android:transcriptMode="normal" />

 <!-- Safety Blocking View -->
 <!-- Clickable to consume touch events when visible -->
 <TextView
 android:id="@+id/blocker"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

381CHAPTER 4: Interacting with Device Hardware and Media

 android:gravity="center"
 android:clickable="true"
 android:textSize="32sp"
 android:textColor="#F55"
 android:text="Do not operate your device in a vehicle!"
 android:background="#C333"
 android:visibility="gone" />
</FrameLayout>

Listing 4-48. Activity Displaying User Motion

public class MainActivity extends ActionBarActivity implements
 ServiceConnection,
 UserMotionService.OnActivityChangedListener,
 GooglePlayServicesClient.ConnectionCallbacks,
 GooglePlayServicesClient.OnConnectionFailedListener {
 private static final String TAG = "UserActivity";

 private Intent mServiceIntent;
 private PendingIntent mCallbackIntent;
 private UserMotionService mService;

 private ActivityRecognitionClient mRecognitionClient;
 //Custom list adapter to display our results
 private ActivityAdapter mListAdapter;

 private View mBlockingView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mBlockingView = findViewById(R.id.blocker);

 //Construct a simple list adapter that will display all the
 // incoming activity change events from the service.
 ListView list = (ListView) findViewById(R.id.list);
 mListAdapter = new ActivityAdapter(this);
 list.setAdapter(mListAdapter);

 //When the list is clicked, display all the probable activities
 list.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View v,
 int position, long id) {
 showDetails(mListAdapter.getItem(position));
 }
 });

382 CHAPTER 4: Interacting with Device Hardware and Media

 //Verify Play Services is active and up-to-date
 int resultCode =
 GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 switch (resultCode) {
 case ConnectionResult.SUCCESS:
 Log.d(TAG, "Google Play Services is ready to go!");
 break;
 default:
 showPlayServicesError(resultCode);
 return;
 }

 //Create a client instance for talking to Google Services
 mRecognitionClient = new ActivityRecognitionClient(this, this, this);
 //Create an Intent to bind to the service
 mServiceIntent = new Intent(this, UserMotionService.class);
 //Create a PendingIntent that Google Services will use for callbacks
 mCallbackIntent = PendingIntent.getService(this, 0,
 mServiceIntent, PendingIntent.FLAG_UPDATE_CURRENT);
 }

 @Override
 protected void onResume() {
 super.onResume();
 //Connect to Google Services and our Service
 mRecognitionClient.connect();
 bindService(mServiceIntent, this, BIND_AUTO_CREATE);
 }

 @Override
 protected void onPause() {
 super.onPause();
 //Disconnect from all services
 mRecognitionClient.removeActivityUpdates(mCallbackIntent);
 mRecognitionClient.disconnect();

 disconnectService();
 unbindService(this);
 }

 /** ServiceConnection Methods */

 public void onServiceConnected(ComponentName name, IBinder service) {
 //Attach ourselves to our Service as a callback for events
 mService = ((LocalBinder) service).getService();
 mService.setOnActivityChangedListener(this);
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 disconnectService();
 }

383CHAPTER 4: Interacting with Device Hardware and Media

 private void disconnectService() {
 if (mService != null) {
 mService.setOnActivityChangedListener(null);
 }
 mService = null;
 }

 /** Google Services Connection Callbacks */

 @Override
 public void onConnected(Bundle connectionHint) {
 //We must wait until the services are connected
 // to request any updates.
 mRecognitionClient.requestActivityUpdates(5000, mCallbackIntent);
 }

 @Override
 public void onDisconnected() {
 Log.w(TAG, "Google Services Disconnected");
 }

 @Override
 public void onConnectionFailed(ConnectionResult result) {
 Log.w(TAG, "Google Services Connection Failure");
 }

 /** OnActivityChangedListener Methods */

 @Override
 public void onUserActivityChanged(int bestChoice, int bestConfidence,
 ActivityRecognitionResult newActivity) {
 //Add latest event to the list
 mListAdapter.add(newActivity);
 mListAdapter.notifyDataSetChanged();

 //Determine user action based on our custom algorithm
 switch (bestChoice) {
 case DetectedActivity.IN_VEHICLE:
 case DetectedActivity.ON_BICYCLE:
 mBlockingView.setVisibility(View.VISIBLE);
 break;
 case DetectedActivity.ON_FOOT:
 case DetectedActivity.STILL:
 mBlockingView.setVisibility(View.GONE);
 break;
 default:
 //Ignore other states
 break;
 }
 }

384 CHAPTER 4: Interacting with Device Hardware and Media

 /*
 * Utility that builds a simple Toast with all the probable
 * activity choices with their confidence values
 */
 private void showDetails(ActivityRecognitionResult activity) {
 StringBuilder sb = new StringBuilder();
 sb.append("Details:");
 for(DetectedActivity element : activity.getProbableActivities()) {
 sb.append("\n"+UserMotionService.getActivityName(element)
 + ", " + element.getConfidence() + "% sure");
 }

 Toast.makeText(this, sb.toString(), Toast.LENGTH_SHORT).show();
 }

 /*
 * ListAdapter to display each activity result we receive from the service
 */
 private static class ActivityAdapter extends
 ArrayAdapter<ActivityRecognitionResult> {

 public ActivityAdapter(Context context) {
 super(context, android.R.layout.simple_list_item_1);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 if (convertView == null) {
 convertView = LayoutInflater.from(getContext())
 .inflate(android.R.layout.simple_list_item_1, parent, false);
 }
 //Display the most probable activity with its confidence in the list
 TextView tv = (TextView) convertView;
 ActivityRecognitionResult result = getItem(position);
 DetectedActivity newActivity = result.getMostProbableActivity();
 String entry = DateFormat.format("hh:mm:ss", result.getTime())
 + ": " + UserMotionService.getActivityName(newActivity)
 + ", " + newActivity.getConfidence() + "% confidence";
 tv.setText(entry);

 return convertView;
 }
 }

 /*
 * When Play Services is missing or at the wrong version, the client
 * library will assist with a dialog to help the user update.
 */
 private void showPlayServicesError(int errorCode) {
 // Get the error dialog from Google Play Services
 Dialog errorDialog = GooglePlayServicesUtil.getErrorDialog(
 errorCode,
 this,
 1000 /* RequestCode */);

385CHAPTER 4: Interacting with Device Hardware and Media

 // If Google Play Services can provide an error dialog
 if (errorDialog != null) {
 // Create a new DialogFragment for the error dialog
 SupportErrorDialogFragment errorFragment =
 SupportErrorDialogFragment.newInstance(errorDialog);
 // Show the error dialog in the DialogFragment
 errorFragment.show(
 getSupportFragmentManager(),
 "Activity Tracker");
 }
 }
}

In this example, our first order of business is to check whether Google Play Services

is available on the device and is up-to-date. With that verified, we can create our

ActivityRecognitionClient, an intent we will need to connect to our service (which we

haven’t seen yet), and the PendingIntent that we will give the recognition services to use in

calling us back.

Note Do not confuse Activity, the application component that displays UI, with activity as it

is used in this context to describe a user’s physical activity. The word is thrown around a lot in this

API, so keep in mind the difference.

When the application is brought to the foreground, we make a connection request to

the recognition service. This process is asynchronous, and we will later receive a call in

onConnected() when the connection is complete. To ensure that we don’t drain unnecessary

power, we remove these updates when going into the background.

During those same events, we bind and unbind with our own service so that binding is

active only while we are in the foreground. We will see shortly the significance this service

will have in the overall application.

Tip With bound services, onServiceDisconnected() is called only if the service crashes or

disconnects unexpectedly. Any cleanup you wish to do when disconnecting explicitly must also be

done alongside unbindService().

Once the recognition service is connected to us, we initiate updates using

requestActivityUpdates() with an interval of 5 seconds and our PendingIntent, which

describes where the updates will go. In our case, the PendingIntent is set to trigger the

UserMotionService, and the code for this service is in Listing 4-49.

386 CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-49. Service Receiving Motion Updates

public class UserMotionService extends IntentService {
 private static final String TAG = "UserMotionService";

 /*
 * Callback interface for detected activity type changes
 */
 public interface OnActivityChangedListener{
 public void onUserActivityChanged(int bestChoice,
 int bestConfidence,
 ActivityRecognitionResult newActivity);
 }

 /* Last detected activity type */
 private DetectedActivity mLastKnownActivity;

 /*
 * Marshals requests from the background thread so the
 * callbacks can be made on the main (UI) thread.
 */
 private CallbackHandler mHandler;
 private static class CallbackHandler extends Handler {
 /* Callback for activity changes */
 private OnActivityChangedListener mCallback;

 public void setCallback(
 OnActivityChangedListener callback) {
 mCallback = callback;
 }

 @Override
 public void handleMessage(Message msg) {
 if (mCallback != null) {
 //Read payload data out of the message and
 // fire callback
 ActivityRecognitionResult newActivity =
 (ActivityRecognitionResult) msg.obj;
 mCallback.onUserActivityChanged(
 msg.arg1,
 msg.arg2,
 newActivity);
 }
 }
 }

 public UserMotionService() {
 //String is used to name the background thread created
 super("UserMotionService");
 mHandler = new CallbackHandler();
 }

387CHAPTER 4: Interacting with Device Hardware and Media

 public void setOnActivityChangedListener(
 OnActivityChangedListener listener) {
 mHandler.setCallback(listener);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.w(TAG, "Service is stopping...");
 }

 /*
 * Incoming action events from the framework will come
 * in here. This is called on a background thread, so
 * we can do long processing here if we wish.
 */
 @Override
 protected void onHandleIntent(Intent intent) {
 if (ActivityRecognitionResult.hasResult(intent)) {
 //Extract the result from the Intent
 ActivityRecognitionResult result =
 ActivityRecognitionResult.extractResult(intent);
 DetectedActivity activity =
 result.getMostProbableActivity();
 Log.v(TAG, "New User Activity Event");

 //If the highest probability is UNKNOWN, but the
 // confidence is low, check if another exists and
 // select it instead.
 if (activity.getType() == DetectedActivity.UNKNOWN
 && activity.getConfidence() < 60
 && result.getProbableActivities().size() > 1){
 //Select the next probable element
 activity = result.getProbableActivities().get(1);
 }

 //On a change in activity, alert the callback
 if (mLastKnownActivity == null
 || mLastKnownActivity.getType()
 != activity.getType()
 || mLastKnownActivity.getConfidence()
 != activity.getConfidence()) {
 //Pass the results to the main thread in a Message
 Message msg = Message.obtain(null,
 0, //what
 activity.getType(), //arg1
 activity.getConfidence(), //arg2
 result); //obj
 mHandler.sendMessage(msg);
 }
 mLastKnownActivity = activity;
 }
 }

388 CHAPTER 4: Interacting with Device Hardware and Media

 /*
 * This is called when the Activity wants to bind to the
 * service. We have to provide a wrapper around this instance
 * to pass it back.
 */
 @Override
 public IBinder onBind(Intent intent) {
 return mBinder;
 }

 /*
 * This is a simple wrapper that we can pass to the Activity
 * to allow it direct access to this service.
 */
 private LocalBinder mBinder = new LocalBinder();
 public class LocalBinder extends Binder {
 public UserMotionService getService() {
 return UserMotionService.this;
 }
 }

 /*
 * Utility to get a good display name for each state
 */
 public static String getActivityName(
 DetectedActivity activity) {
 switch(activity.getType()) {
 case DetectedActivity.IN_VEHICLE:
 return "Driving";
 case DetectedActivity.ON_BICYCLE:
 return "Biking";
 case DetectedActivity.ON_FOOT:
 return "Walking";
 case DetectedActivity.STILL:
 return "Not Moving";
 case DetectedActivity.TILTING:
 return "Tilting";
 case DetectedActivity.UNKNOWN:
 default:
 return "No Clue";
 }
 }
}

UserMotionService is an IntentService, which is a service that forwards all intent

commands to a background thread it creates and processes them in the onHandleIntent()

method. Its primary advantage is a built-in mechanism to queue up intent requests and

process them in order, in the background, via this method.

389CHAPTER 4: Interacting with Device Hardware and Media

When the activity binds to this service, it will be automatically started and returned via

onBind() to the caller. The activity will receive the service instance in onServiceConnected(),

where we will register the activity as a callback for user activity change events

determined in the service. Once the activity unbinds from the service, it will automatically

stop itself as well.

Once the point is reached where the activity has registered for update events from Google

Play Services, the framework will start triggering the PendingIntent on a regular basis, which

results in onHandleIntent() in our service.

For each event, we use the utility methods on ActivityRecognitionResult to unpack the

data from the incoming intent. We then determine what the most probable user activity was.

We have customized the algorithm a little bit, in that if the most probable activity is UNKNOWN,

but the confidence in that decision is low, we will pick the next best option to return instead.

This pattern will work well for any additional custom decision logic you would like to put into

your application as well.

Once we have selected the user activity to compare, we check whether this is the same

activity type or a change in activity has occurred. In the case of a change, we want to post a

callback to the activity that registered itself when we were bound. We use a Handler instead

of calling the method directly because onHandleIntent() is running on a background thread,

and we want to post our callback on the main thread in case the activity (or other listeners)

want to do any work that involves updating the UI.

Finally, Listing 4-50 reminds us of the requirements we need; primarily, we must be sure that

the Play Services library is included as a dependency in our module build.

Listing 4-50. Partial build.gradle

apply plugin: 'com.android.application'

android {
 compileSdkVersion 18
 buildToolsVersion "20.0.0"

 defaultConfig {
 applicationId "com.androidrecipes.usermotionactivity"
 ...
 }

 ...
}

dependencies {
 compile 'com.android.support:support-v4:18.0.0'
 compile 'com.google.android.gms:play-services:+'
}

390 CHAPTER 4: Interacting with Device Hardware and Media

Summary
This collection of recipes exposed how to integrate maps, user location, and device sensor

data about the user’s surroundings into your Android applications. You learned about the

many additional APIs that Google provides to Android devices that exist within the Google

Play ecosystem. We also discussed how to utilize the device’s camera and microphone,

allowing users to capture, and sometimes interpret, what’s around them. Finally, using the

media APIs, you learned how to take media content, either captured locally by the user or

downloaded remotely from the Web, and play it back from within your applications. In the

next chapter, we will discuss how to use Android’s many persistence techniques to store

nonvolatile data on the device.

391

Chapter 5
Persisting Data

Even in the midst of grand architectures designed to shift as much user data into the cloud

as possible, the transient nature of mobile applications will always require that at least some

user data be persisted locally on the device. This data may range from cached responses

from a web service guaranteeing offline access to preferences that the user has set for

specific application behaviors. Android provides a series of helpful frameworks to take the

pain out of using files and databases to persist information.

5-1. Making a Preference Screen

Problem
You need to create a simple way to store, change, and display user preferences and settings

within your application.

Solution
(API Level 1)

Use PreferenceActivity and an XML Preference hierarchy to provide the user interface,

key/value combinations, and persistence all at once. Using this method will create a user

interface that is consistent with the Settings application on Android devices, and it will keep

users’ experiences consistent with their expectations.

Within the XML, an entire set of one or more screens can be defined with the associated

settings displayed and grouped into categories by using the PreferenceScreen,

PreferenceCategory, and associated Preference elements. The activity can then load this

hierarchy for the user by using very little code.

392 CHAPTER 5: Persisting Data

How It Works
Figure 5-1 illustrates the interface this example will have. We will be building a preferences

interface that consists of two screens, a primary and a secondary.

Figure 5-1. The root PreferenceScreen (left) displays first. If the user taps More Settings, the secondary screen

(right) displays

Listings 5-1 and 5-2 show the basic settings for an Android application. The XML defines

two screens with a variety of all the common preference types that this framework supports.

Notice that one screen is nested inside the other; the internal screen will be displayed when

the user clicks on its associated list item from the root screen.

Listing 5-1. res/xml/settings.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
 <EditTextPreference
 android:key="namePref"
 android:title="Name"
 android:summary="Tell Us Your Name"
 android:defaultValue="Apress" />
 <CheckBoxPreference
 android:key="morePref"
 android:title="Enable More Settings"
 android:defaultValue="false" />

393CHAPTER 5: Persisting Data

 <PreferenceScreen
 android:key="moreScreen"
 android:title="More Settings"
 android:dependency="morePref">
 <ListPreference
 android:key="colorPref"
 android:title="Favorite Color"
 android:summary="Choose your favorite color"
 android:entries="@array/color_names"
 android:entryValues="@array/color_values"
 android:defaultValue="GRN" />
 <PreferenceCategory
 android:title="Location Settings">
 <CheckBoxPreference
 android:key="gpsPref"
 android:title="Use GPS Location"
 android:summary="Use GPS to Find You"
 android:defaultValue="true" />
 <CheckBoxPreference
 android:key="networkPref"
 android:title="Use Network Location"
 android:summary="Use Network to Find You"
 android:defaultValue="true" />
 </PreferenceCategory>
 </PreferenceScreen>
</PreferenceScreen>

Listing 5-2. res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="color_names">
 <item>Black</item>
 <item>Red</item>
 <item>Green</item>
 </string-array>
 <string-array name="color_values">
 <item>BLK</item>
 <item>RED</item>
 <item>GRN</item>
 </string-array>
</resources>

Notice first the convention used to create the XML file. Although this resource could be

inflated from any directory (such as res/layout), the convention is to put it into a generic

directory for the project titled simply xml.

Also, notice that we provide an android:key attribute for each Preference object instead of

android:id. When each stored value is referenced elsewhere in the application through a

SharedPreferences object, it will be accessed using the key. In addition, PreferenceActivity

includes the findPreference() method for obtaining a reference to an inflated Preference in

Java code, which is more efficient than using findViewById(); findPreference() also takes the

key as a parameter.

394 CHAPTER 5: Persisting Data

When inflated, the root PreferenceScreen presents a list with the following three options

(in order):

1. Name: This is an instance of EditTextPreference, which stores a

string value. Tapping this item will present a text box so that the user

can type a new preference value.

2. Enable More Settings: This is an instance of CheckBoxPreference,

which stores a Boolean value. Tapping this item will toggle the

checked status of the check box.

3. More Settings: Tapping this item will load another PreferenceScreen

with more items.

When the user taps the More Settings item, a second screen is displayed with three more

items: a ListPreference item and two more CheckBoxPreferences grouped together by

a PreferenceCategory. PreferenceCategory is simply a way to create section breaks and

headers in the list for grouping actual preference items.

ListPreference is the final preference type used in the example. This item requires two array

parameters (although they can both be set to the same array) that represent a set of choices

the user may pick from. The android:entries array is the list of human-readable items to

display, while the android:entryValues array represents the actual value to be stored.

All the preference items may optionally have a default value set for them as well. This

value is not automatically loaded, however. It will load the first time this XML file is

inflated when the PreferenceActivity is displayed or when a call to PreferenceManager.
setDefaultValues() is made.

Now let’s take a look at how a PreferenceActivity would load and manage this.

See Listing 5-3.

Listing 5-3. PreferenceActivity in Action

public class SettingsActivity extends PreferenceActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Load preference data from XML
 addPreferencesFromResource(R.xml.settings);
 }
}

All that is required to display the preferences and allow the user to make changes is a call

to addPreferencesFromResource(). There is no need to call setContentView() when we

extend PreferenceActivity; addPreferencesFromResource() inflates the XML and manages

displaying the content in a list. However, a custom layout may be provided as long as it

contains a ListView with the android:id="@android:id/list" attribute set, which is where

PreferenceActivity will load the preference items.

Preference items can also be placed in the list for the sole purpose of controlling access.

In the example, we put the Enable More Settings item in the list just to allow the user to

enable or disable access to the second PreferenceScreen. To accomplish this, our nested

395CHAPTER 5: Persisting Data

PreferenceScreen includes the android:dependency attribute, which links its enabled state

to the state of another preference. Whenever the referenced preference is either not set or

false, this preference will be disabled.

Loading Defaults and Accessing Preferences

Typically, a PreferenceActivity such as this one is not the root of an application. Often, if

default values are set, they may need to be accessed by the rest of the application before

the user ever visits Settings (the first case under which the defaults will load). Therefore, it

can be helpful to put a call to the following method elsewhere in your application to ensure

that the defaults are loaded prior to being used:

PreferenceManager.setDefaultValues(Context context, int resId, boolean readAgain);

This method may be called multiple times, and the defaults will not get loaded over again.

It may be placed in the main activity so it is called on first launch, or perhaps it could be in a

common place where the application can call it before any access to shared preferences.

Preferences that are stored by using this mechanism are put into the default shared

preferences object, which can be accessed with any Context pointer by using the following:

PreferenceManager.getDefaultSharedPreferences(Context context);

An example activity that would load the defaults set in our previous example and access

some of the current values stored would look like Listing 5-4.

Listing 5-4. Activity Loading Preference Defaults

public class HomeActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Load the preference defaults
 PreferenceManager.setDefaultValues(this, R.xml.settings, false);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Access the current settings
 SharedPreferences settings =
 PreferenceManager.getDefaultSharedPreferences(this);

 String name = settings.getString("namePref", "");
 boolean isMoreEnabled = settings.getBoolean("morePref", false);
 }
}

396 CHAPTER 5: Persisting Data

Calling setDefaultValues() will create a value in the preference store for any item in the

XML file that includes an android:defaultValue attribute. This will make those defaults

accessible to the application, even if the user has not yet visited the settings screen.

These values can then be accessed using a set of typed accessor functions on the

SharedPreferences object. Each of these accessor methods requires both the name of the

preference key and a default value to be returned if a value for the preference key does not

yet exist.

Using PreferenceFragment

(API Level 11)

Starting with Android 3.0, a new method of creating preference screens was introduced in

the form of PreferenceFragment. This class is not in the Support Library, so it can be used as

a replacement for PreferenceActivity only if your application targets a minimum of API Level

11. Listings 5-5 and 5-6 modify the previous example to use PreferenceFragment instead.

Listing 5-5. Activity Containing Fragments

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 FragmentTransaction ft = getFragmentManager().beginTransaction();
 ft.add(android.R.id.content, new SettingsFragment());
 ft.commit();
 }
}

Listing 5-6. New PreferenceFragment

public class SettingsFragment extends PreferenceFragment {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Load preference data from XML
 addPreferencesFromResource(R.xml.settings);
 }
}

Now the preferences themselves are housed inside a PreferenceFragment, which manages

them in the same way as before. The other required change is that a fragment cannot live on

its own; it must be contained inside an activity, so we have created a new root activity where

the fragment is attached.

The Android framework has moved to fragments for preferences in order to more easily

allow multiple preference hierarchies (perhaps representing different top-level categories of

settings) to be easily displayed inside a single activity rather than forcing the user to jump in

and out of each category with multiple activity instances.

397CHAPTER 5: Persisting Data

KITKAT SECURITY

As of Android 4.4, a PreferenceActivity must override the isValidFragment() method in applications

targeting SDK Level 19 or higher. This method prevents external applications from performing fragment injection

by supplying an incorrect class name in the Intent extras directed at an exported PreferenceActivity

that hosts PreferenceFragment instances.

In applications with a lower SDK target, this method will always return true for compatibility, which also leaves

the security hole open. It is prudent for developers to update their target to 19+ and implement this method to

validate that only fragments you expect can be instantiated. If isValidFragment() is not overridden on an

app with an updated target SDK, an exception will be thrown.

5-2. Displaying Custom Preferences

Problem
The Preference elements provided by the framework are not flexible enough, and you need

to add a more specific UI for modifying the value.

Solution
(API Level 1)

Extend Preference, or one of its subclasses, to integrate a new type into a

PreferenceActivity or PreferenceFragment. When creating a new preference type, you need

to keep in mind two major objectives: how to provide an interface to the user for modifying

the preference, and how to persist the user’s selection back into SharedPreferences.

With regards to the user interface, there are several callback methods you may want to

override. Notice that they use a similar pattern to the adapters we see in ListView:

	onCreateView(): Construct a new layout to be used for this preference

element in the list. This is called the first time an instance of this

preference is needed. If multiple elements of the same type exist, these

views will be recycled when possible. If you don’t override this, the

default view with a title and summary will be displayed.

	onBindView(): Attach the data for this current preference to the view

constructed in onCreateView(), which is passed into this method as a

parameter. This will be called every time the preference is about to be

displayed.

	getSummary(): Override the summary value displayed in the

standard UI layout. This is useful only if you don’t override

onCreateView()/onBindView().

	onClick(): Handle an event when the user taps this item in the list.

398 CHAPTER 5: Persisting Data

Basic preferences in the framework, such as CheckBoxPreference, simply toggle the

persisted state on each click. Other preferences, such as EditTextPreference or

ListPreference, are subclasses of DialogPreference, which use the click event to display a

dialog box to provide a more complex UI for updating the given setting.

The second set of overrides you may have in a custom Preference deal with retrieving and

persisting data:

	onGetDefaultValue(): This method will be called to allow you to read

the android:defaultValue attribute from the preference’s XML definition.

You will receive the TypedArray where the attributes live and the index

necessary to obtain the value using whichever typed method makes

sense for the preference value.

	onSetInitialValue(): Locally set the value of this preference instance.

The restorePersistedValue flag indicates whether the value should

come from SharedPreferences or from the default value. The default

value parameter is the instance returned from onGetDefaultValue().

Anytime that your preference needs to read the current value saved in SharedPreferences,

you can invoke one of the typed getPersistedXxx() methods to return the value type your

preference is persisting (integer, boolean, string, and so forth). Conversely, when the

preference needs to save a new value, you can use the typed persistXxx() methods to

update SharedPreferences.

How It Works
In the following example, we create a ColorPreference: a simple extension of

DialogPreference that provides the user interface to select a color as three sliders that

provide the RGB values discretely. When we’re done, the results should look like Figure 5-2.

399CHAPTER 5: Persisting Data

Similar to ListPreference, an AlertDialog will display when the preference is selected from

the list. This is where the user will make a selection and save or cancel the change, rather

than in the list UI directly (as with CheckBoxPreference, for example). Listing 5-7 shows the

layout for our custom dialog box, followed by Listing 5-8, which reveals our ColorPreference

implementation.

Listing 5-7. res/layout/preference_color.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="16dp"
 android:minWidth="300dp"
 android:orientation="vertical" >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Red" />
 <SeekBar
 android:id="@+id/selector_red"
 android:layout_width="match_parent"

Figure 5-2. PreferenceScreen with our custom ColorPreference

400 CHAPTER 5: Persisting Data

 android:layout_height="wrap_content"
 android:max="255" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Green" />
 <SeekBar
 android:id="@+id/selector_green"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:max="255" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Blue" />
 <SeekBar
 android:id="@+id/selector_blue"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:max="255" />
</LinearLayout>

Listing 5-8. Custom Preference Definition

public class ColorPreference extends DialogPreference {

 private static final int DEFAULT_COLOR = Color.WHITE;
 /* Local copy of the current color setting */
 private int mCurrentColor;
 /* Sliders to set color components */
 private SeekBar mRedLevel, mGreenLevel, mBlueLevel;

 public ColorPreference(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 /*
 * Called to construct a new dialog to show when the preference
 * is clicked. We create and set up a new content view for
 * each instance.
 */
 @Override
 protected void onPrepareDialogBuilder(Builder builder) {
 //Create the dialog's content view
 View rootView =
 LayoutInflater.from(getContext()).inflate(R.layout.preference_color, null);
 mRedLevel = (SeekBar) rootView.findViewById(R.id.selector_red);
 mGreenLevel = (SeekBar) rootView.findViewById(R.id.selector_green);
 mBlueLevel = (SeekBar) rootView.findViewById(R.id.selector_blue);

401CHAPTER 5: Persisting Data

 mRedLevel.setProgress(Color.red(mCurrentColor));
 mGreenLevel.setProgress(Color.green(mCurrentColor));
 mBlueLevel.setProgress(Color.blue(mCurrentColor));

 //Attach the content view
 builder.setView(rootView);
 super.onPrepareDialogBuilder(builder);
 }

 /*
 * Called when the dialog is closed with the result of
 * the button tapped by the user.
 */
 @Override
 protected void onDialogClosed(boolean positiveResult) {
 if (positiveResult) {
 //When OK is pressed, obtain and save the color value
 int color = Color.rgb(
 mRedLevel.getProgress(),
 mGreenLevel.getProgress(),
 mBlueLevel.getProgress());
 setCurrentValue(color);
 }
 }

 /*
 * Called by the framework to obtain the default value
 * passed in the preference XML definition
 */
 @Override
 protected Object onGetDefaultValue(TypedArray a, int index) {
 //Return the default value from XML as a color int
 ColorStateList value = a.getColorStateList(index);
 if (value == null) {
 return DEFAULT_COLOR;
 }
 return value.getDefaultColor();
 }

 /*
 * Called by the framework to set the initial value of the
 * preference, either from its default or the last persisted
 * value.
 */
 @Override
 protected void onSetInitialValue(boolean restorePersistedValue, Object defaultValue) {
 setCurrentValue(restorePersistedValue ?
 getPersistedInt(DEFAULT_COLOR) : (Integer)defaultValue);
 }

 /*
 * Return a custom summary based on the current setting
 */

402 CHAPTER 5: Persisting Data

 @Override
 public CharSequence getSummary() {
 //Construct the summary with the color value in hex
 int color = getPersistedInt(DEFAULT_COLOR);
 String content = String.format("Current Value is 0x%02X%02X%02X",
 Color.red(color), Color.green(color), Color.blue(color));
 //Return the summary text as a Spannable, colored by the selection
 Spannable summary = new SpannableString (content);
 summary.setSpan(new ForegroundColorSpan(color), 0, summary.length(), 0);
 return summary;
 }

 private void setCurrentValue(int value) {
 //Update latest value
 mCurrentColor = value;

 //Save new value
 persistInt(value);
 //Notify preference listeners
 notifyDependencyChange(shouldDisableDependents());
 notifyChanged();
 }

}

When the ColorPreference is first created from XML, onGetDefaultValue() will be called with

the android:defaultValue attribute (if one was added) so we can parse it. We want to allow

any color attribute to be used, so we read the attribute’s value using getColorStateList(),

which supports reading color strings and references to color resources, and return the result

(which will be an integer).

Later, when the preference is attached to the activity, onSetInitialValue() will tell us whether

we should read that default value in or use a value already saved in SharedPreferences. On

the first run, we will choose the default, while each attempt after that will read the saved value

using getPersistedInt(). The parameter to getPersistedInt() is the default value we should

use if the persisted value doesn’t exist or can’t be read as an integer.

For the user interface, rather than monitoring onClick(), we have two new callbacks

provided by DialogPreference: onPrepareDialogBuilder() and onDialogClosed(). The

former is triggered with an AlertDialog.Builder instance so we can customize the dialog

box to be shown when a user clicks the preference; this will happen on each new click.

We are using this method to inflate and attach our dialog box layout containing the three

sliders—one each for the red, green, and blue components.

When we receive onDialogClosed(), we are told whether the user selected OK to save the

preference or Cancel to revert the change. In the positive case, we want to create the new

color from the UI sliders and persist the value using persistInt(). In the negative case, we

take no action to change the current setting.

Finally, whenever a new change is persisted, we call notifyDependencyChange() and

notifyChanged() to alert any preference listeners of the update. This also alerts the

PreferenceActivity to update the list display.

403CHAPTER 5: Persisting Data

We have made one final customization using getSummary(). In this example, we didn’t

provide a completely new layout, but rather we are customizing the summary display to

include the current color selection (as a hex string), and that text will be colored with the

selection. We can do this because getSummary() returns a CharSequence (instead of a pure

String), allowing styled Spannable types to be returned.

With our new preference constructed, we can simply add it to an XML definition of a

<PreferenceScreen> alongside other standard preferences, just as we saw in the previous

recipe (see Listings 5-9 and 5-10).

Listing 5-9. res/xml/settings.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
 <CheckBoxPreference
 android:key="dummyPref"
 android:title="CheckBox Select"
 android:summary="Standard preference element"
 android:defaultValue="false" />
 <com.androidrecipes.custompreference.ColorPreference
 android:key="customColorPref"
 android:title="Select Color"
 android:defaultValue="@android:color/black" />
</PreferenceScreen>

Listing 5-10. PreferenceActivity with New Settings

public class CustomPreferenceActivity extends PreferenceActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.settings);
 }
}

We have set the default value of our color preference to a framework resource for black,

which will be read by our onGetDefaultValue() override. You can see in Listing 5-10

that inflating this new preference hierarchy requires no modifications to the existing

PreferenceActivity code we saw in the previous recipe.

5-3. Persisting Simple Data

Problem
Your application needs a simple, low-overhead method of storing basic data such as

numbers and strings in persistent storage.

404 CHAPTER 5: Persisting Data

Solution
(API Level 1)

Using SharedPreferences objects, applications can quickly create one or more persistent

stores where data can be saved and retrieved at a later time. Underneath the hood, these

objects are actually stored as XML files in the application’s user data area. However, unlike

directly reading and writing data from files, SharedPreferences provide an efficient framework

for persisting basic data types.

Creating multiple SharedPreferences as opposed to dumping all your data in the default

object can be a good habit to get into, especially if the data you are storing will have a shelf

life. Keeping in mind that all preferences stored using the XML and PreferenceActivity

framework are also stored in the default location, what if you wanted to store a group

of items related to, say, a logged-in user? When that user logs out, you will need to

remove all the persisted data that goes along with that. If you store all that data in default

preferences, you will most likely need to remove each item individually. However, if you

create a preference object just for those settings, logging out can be as simple as calling

SharedPreferences.Editor.clear().

How It Works
Let’s look at a practical example of using SharedPreferences to persist simple data. Listings

5-11 and 5-12 create a data entry form for the user to send a simple message to a remote

server. To aid the user, we will remember all the data he or she enters for each field until a

successful request is made. This will allow the user to leave the screen (or be interrupted by

a text message or phone call) without having to enter all the information again.

Listing 5-11. res/layout/form.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Email:"
 android:padding="5dip" />
 <EditText
 android:id="@+id/email"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:singleLine="true" />
 <CheckBox
 android:id="@+id/age"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Are You Over 18?" />

405CHAPTER 5: Persisting Data

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Message:"
 android:padding="5dip" />
 <EditText
 android:id="@+id/message"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:minLines="3"
 android:maxLines="3" />
 <Button
 android:id="@+id/submit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Submit" />
</LinearLayout>

Listing 5-12. Entry Form with Persistence

public class FormActivity extends Activity implements View.OnClickListener {

 EditText email, message;
 CheckBox age;
 Button submit;

 SharedPreferences formStore;

 boolean submitSuccess = false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.form);

 email = (EditText)findViewById(R.id.email);
 message = (EditText)findViewById(R.id.message);
 age = (CheckBox)findViewById(R.id.age);

 submit = (Button)findViewById(R.id.submit);
 submit.setOnClickListener(this);

 //Retrieve or create the preferences object
 formStore = getPreferences(Activity.MODE_PRIVATE);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Restore the form data
 email.setText(formStore.getString("email", ""));
 message.setText(formStore.getString("message", ""));
 age.setChecked(formStore.getBoolean("age", false));
 }

406 CHAPTER 5: Persisting Data

 @Override
 public void onPause() {
 super.onPause();
 if(submitSuccess) {
 //Editor calls can be chained together
 formStore.edit().clear().commit();
 } else {
 //Store the form data
 SharedPreferences.Editor editor = formStore.edit();
 editor.putString("email", email.getText().toString());
 editor.putString("message", message.getText().toString());
 editor.putBoolean("age", age.isChecked());
 editor.commit();
 }
 }

 @Override
 public void onClick(View v) {

 //DO SOME WORK SUBMITTING A MESSAGE

 //Mark the operation successful
 submitSuccess = true;
 //Close
 finish();
 }
}

We start with a typical user form containing two simple EditText entry fields and a check

box. When the activity is created, we gather a SharedPreferences object using Activity.
getPreferences(), and this is where all the persisted data will be stored. If at any time the

activity is paused for a reason other than a successful submission (controlled by the Boolean

member), the current state of the form will be quickly loaded into the preferences and

persisted.

Note When saving data into SharedPreferences using an Editor, always remember to call

commit() or apply() after the changes are made. Otherwise, your changes will not be saved.

Conversely, whenever the activity becomes visible, onResume() loads the user interface with

the latest information stored in the preferences object. If no preferences exist, either because

they were cleared or never created (first launch), then the form is set to blank.

When a user presses Submit and the fake form submits successfully, the subsequent call to

onPause() will clear any stored form data in preferences. Because all these operations were

done on a private preferences object, clearing the data does not affect any user settings that

may have been stored using other means.

407CHAPTER 5: Persisting Data

Creating Common SharedPreferences

The previous example illustrated how to use a single SharedPreferences object within the

context of a single activity with an object obtained from Activity.getPreferences(). Truth be

told, this method is really just a convenience wrapper for Context.getSharedPreferences(),

in which it passes the activity name as the preference store name. If the data you are

storing is best shared between two or more activity instances, it might make sense to

call getSharedPreferences() instead and pass a more common name so the data can be

accessed easily from different places in code. See Listing 5-13.

Listing 5-13. Two Activities Using the Same Preferences

public class ActivityOne extends Activity {
 public static final String PREF_NAME = "myPreferences";
 private SharedPreferences mPreferences;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mPreferences = getSharedPreferences(PREF_NAME, Activity.MODE_PRIVATE);
 }
}

public class ActivityTwo extends Activity {

 private SharedPreferences mPreferences;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mPreferences = getSharedPreferences(ActivityOne.PREF_NAME,
 Activity.MODE_PRIVATE);
 }

}

In this example, both activity classes retrieve the SharedPreferences object using the same

name (defined as a constant string): thus they will be accessing the same set of preference

data. Furthermore, both references are even pointing at the same instance of preferences,

as the framework creates a singleton object for each set of SharedPreferences (a set being

defined by its name). This means that changes made on one side will immediately be

reflected on the other.

Note Methods called from an Editor always return the same Editor object, allowing them to

be chained together in places where doing so makes your code more readable.

408 CHAPTER 5: Persisting Data

A NOTE ABOUT MODE

Context.getSharedPreferences() also takes a mode parameter. Passing 0 or MODE_PRIVATE provides

the default behavior of allowing only the application that created the preferences (or another application

with the same user ID) to gain read/write access. This method supports two more mode parameters: MODE_
WORLD_READABLE and MODE_WORLD_WRITEABLE. These modes allow other applications to gain access to

these preferences by setting the user permissions on the file it creates appropriately. However, the external

application still requires a valid Context pointing back to the package where the preference file was created.

For example, let’s say you created SharedPreferences with world-readable permission in an application with

the package com.examples.myfirstapplication. In order to access those preferences from a second

application, the second application would obtain them using the following code:

Context otherContext = createPackageContext("com.examples.myfirstapplication", 0);
SharedPreferences externalPreferences = otherContext.getSharedPreferences(PREF_NAME, 0);

Caution If you choose to use the mode parameter to allow external access, be sure that

you are consistent in the mode you provide everywhere that getSharedPreferences()

is called. This mode is used only the first time the preference file gets created, so calling up

SharedPreferences with different mode parameters at different times will only lead to confusion

on your part.

5-4. Reading and Writing Files

Problem
Your application needs to read data in from an external file or write more-complex data out

for persistence.

Solution
(API Level 1)

Sometimes, there is no substitute for working with a filesystem. Working with files allows

your application to read and write data that does not lend itself well to other persistence

options such as key/value preferences and databases. Android also provides a number of

cache locations for files you can use to place data that you need to persist on a temporary

basis.

409CHAPTER 5: Persisting Data

Android supports all the standard Java file I/O APIs for create, read, update, and delete

(CRUD) operations, along with some additional helpers to make accessing those files

in specific locations a little more convenient. There are three main locations in which an

application can work with files:

	Internal storage: Protected directory space to read and write file data.

	External storage: Externally mountable space to read and write file data.

Requires the WRITE_EXTERNAL_STORAGE permission in API Level 4+. Often,

this is a physical SD card in the device.

	Assets: Protected read-only space inside the APK bundle. Good for

local resources that can’t or shouldn’t be compiled.

While the underlying mechanism to work with file data remains the same, we will look at the

details that make working with each destination slightly different.

How It Works
As we stated earlier, the traditional Java FileInputStream and FileOutputStream classes

constitute the primary method of accessing file data. In fact, you can create a File instance

at any time with an absolute path location and use one of these streams to read and write

data. However, with root paths varying on different devices and certain directories being

protected from your application, we recommend some slightly more efficient ways to work

with files.

Internal Storage

In order to create or modify a file’s location on internal storage, utilize the Context.
openFileInput() and Context.openFileOutput() methods. These methods require only

the name of the file as a parameter, instead of the entire path, and will reference the file in

relation to the application’s protected directory space, regardless of the exact path on the

specific device. See Listing 5-14.

Listing 5-14. CRUD a File on Internal Storage

public class InternalActivity extends Activity {

 private static final String FILENAME = "data.txt";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 //Create a new file and write some data
 try {
 FileOutputStream mOutput = openFileOutput(FILENAME, Activity.MODE_PRIVATE);
 String data = "THIS DATA WRITTEN TO A FILE";
 mOutput.write(data.getBytes());

410 CHAPTER 5: Persisting Data

 mOutput.flush();
 mOutput.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Read the created file and display to the screen
 try {
 FileInputStream mInput = openFileInput(FILENAME);
 byte[] data = new byte[128];
 mInput.read(data);
 mInput.close();

 String display = new String(data);
 tv.setText(display.trim());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Delete the created file
 deleteFile(FILENAME);
 }
}

This example uses Context.openFileOutput() to write some simple string data out to a

file. When using this method, the file will be created if it does not already exist. It takes two

parameters: a file name and an operating mode. In this case, we use the default operation

by defining the mode as MODE_PRIVATE. This mode will overwrite the file with each new write

operation; use MODE_APPEND if you prefer that each write append to the end of the existing file.

After the write is complete, the example uses Context.openFileInput(), which requires only

the file name again as a parameter to open an InputStream and read the file data. The data

will be read into a byte array and displayed to the user interface through a TextView. Upon

completing the operation, Context.deleteFile() is used to remove the file from storage.

Note Data is written to the file streams as bytes, so higher-level data (even strings) must be

converted into and out of this format.

This example leaves no traces of the file behind, but we encourage you to try the same

example without running deleteFile() at the end in order to keep the file in storage. Using

the SDK’s DDMS tool with an emulator or unlocked device, you may view the filesystem and

can find the file this application creates in its respective application data folder.

411CHAPTER 5: Persisting Data

Because these methods are a part of Context, and not bound to an activity, this type of file

access can occur anywhere in an application that you require, such as a BroadcastReceiver

or even a custom class. Many system constructs either are a subclass of Context or

will pass a reference to one in their callbacks. This allows the same open/close/delete

operations to take place anywhere.

External Storage

The key differentiator between internal and external storage is that external storage is

mountable. This means that the user can connect his or her device to a computer and have

the option of mounting that external storage as a removable disk on the PC. Often, the storage

itself is physically removable (such as an SD card), but this is not a requirement of the platform.

Important Writing to the external storage of the device will require that you add a declaration for

android.permission.WRITE_EXTERNAL_STORAGE to the application manifest. Reading from

external storage requires android.permission.READ_EXTERNAL_STORAGE as well on

API Level 19+.

During periods when the device’s external storage is either mounted externally or physically

removed, it is not accessible to an application. Because of this, it is always prudent to check

whether external storage is ready by checking Environment.getExternalStorageState().

Let’s modify the file example to do the same operation with the device’s external storage.

See Listing 5-15.

Listing 5-15. CRUD a File on External Storage

public class ExternalActivity extends Activity {

 private static final String FILENAME = "data.txt";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 //Create the file reference
 File dataFile = new File(Environment.getExternalStorageDirectory(), FILENAME);

 //Check if external storage is usable
 if(!Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
 Toast.makeText(this, "Cannot use storage.", Toast.LENGTH_SHORT).show();
 finish();
 return;
 }

412 CHAPTER 5: Persisting Data

 //Create a new file and write some data
 try {
 FileOutputStream mOutput = new FileOutputStream(dataFile, false);
 String data = "THIS DATA WRITTEN TO A FILE";
 mOutput.write(data.getBytes());
 mOutput.flush();
 //With external files, it is often good to sync the file
 mOutput.getFD().sync();
 mOutput.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Read the created file and display to the screen
 try {
 FileInputStream mInput = new FileInputStream(dataFile);
 byte[] data = new byte[128];
 mInput.read(data);
 mInput.close();

 String display = new String(data);
 tv.setText(display.trim());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Delete the created file
 dataFile.delete();
 }
}

With external storage, we utilize a little more of the traditional Java file I/O. The key to

working with external storage is calling Environment.getExternalStorageDirectory() to

retrieve the root path to the device’s external storage location.

Before any operations can take place, the status of the device’s external storage is first

checked with Environment.getExternalStorageState(). If the value returned is anything

other than Environment.MEDIA_MOUNTED, we do not proceed because the storage cannot be

written to, so the activity is closed. Otherwise, a new file can be created and the operations

may commence.

The input and output streams must now use default Java constructors, as opposed to the

Context convenience methods. The default behavior of the output stream will be to overwrite

the current file or to create it if it does not exist. If your application must append to the end

of the existing file with each write, change the Boolean parameter in the FileOutputStream

constructor to true.

Often, it makes sense to create a special directory on external storage for your application’s

files. We can accomplish this simply by using more of Java’s file API. See Listing 5-16.

413CHAPTER 5: Persisting Data

Listing 5-16. CRUD a File Inside a New Directory

public class ExternalActivity extends Activity {

 private static final String FILENAME = "data.txt";
 private static final String DNAME = "myfiles";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 //Create a new directory on external storage
 File rootPath = new File(Environment.getExternalStorageDirectory(), DNAME);
 if(!rootPath.exists()) {
 rootPath.mkdirs();
 }
 //Create the file reference
 File dataFile = new File(rootPath, FILENAME);

 //Create a new file and write some data
 try {
 FileOutputStream mOutput = new FileOutputStream(dataFile, false);
 String data = "THIS DATA WRITTEN TO A FILE";
 mOutput.write(data.getBytes());
 mOutput.flush();
 //With external files, it is often good to wait for the write
 mOutput.getFD().sync();

 mOutput.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Read the created file and display to the screen
 try {
 FileInputStream mInput = new FileInputStream(dataFile);
 byte[] data = new byte[128];
 mInput.read(data);
 mInput.close();

 String display = new String(data);
 tv.setText(display.trim());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

414 CHAPTER 5: Persisting Data

 //Delete the created file
 dataFile.delete();
 }
}

In this example, we created a new directory path within the external storage directory and

used that new location as the root location for the data file. Once the file reference is created

using the new directory location, the remainder of the example is the same.

A NOTE ABOUT WRITING FILES

Android applications run inside the Dalvik virtual machine environment. This has some effects to be aware of

when working with certain aspects of the system, such as the filesystem. Java APIs like FileOutputStream

do not share a 1:1 relationship with the native file descriptor inside the kernel. Typically, when data is written

to the stream by using the write() method, that data is written directly into a memory buffer for the file

and asynchronously written out to disk. In most cases, as long as your file access is strictly within the Dalvik

VM, you will never see this implementation detail. A file you just wrote could be opened and immediately read

without issue, for example.

However, when dealing with removable storage such as an SD card on a mobile handset or tablet, we may

often need to guarantee that the file data has made it all the way to the filesystem before returning an operation

to the user, since the user has the ability to physically remove the storage medium. The following is a good

standard code block to use when writing external files:

//Write the data
out.write();
//Clear the stream buffers
out.flush();
//Sync all data to the filesystem
out.getFD().sync();
//Close the stream
out.close();

The flush() method on an OutputStream is designed to ensure that all the data resident in the

stream is written out the VM’s memory buffer. In the direct case of FileOutputStream, this method

actually does nothing. However, in cases where that stream may be wrapped inside another (such as a

BufferedOutputStream), this method can be essential in clearing out internal buffers, so it is a good habit to

get into by calling it on every file write before closing the stream.

Additionally, with external files, we can issue a sync() to the underlying FileDescriptor. This method will

block until all the data has been successfully written to the underlying filesystem, so it is the best indicator of

when a user could safely remove physical storage media without file corruption.

External System Directories

There are additional methods in Environment and Context that provide standard locations on

external storage where specific files can be written. Some of these locations have additional

properties as well.

415CHAPTER 5: Persisting Data

	Environment.getExternalStoragePublicDirectory(String type)

API Level 8	
Returns a common directory where all applications store media files. 	
The contents of these directories are visible to users and other

applications. In particular, the media placed here will likely be

scanned and inserted into the device’s MediaStore for applications

such as the Gallery.

Valid type values include 	 DIRECTORY_PICTURES, DIRECTORY_MUSIC,

DIRECTORY_MOVIES, and DIRECTORY_RINGTONES.

	Context.getExternalFilesDir(String type)

API Level 8	
Returns a directory on external storage for media files that are 	
specific to the application. Media placed here will not be considered

public, however, and won’t show up in MediaStore.

This is external storage, however, so it is still possible for users 	
and other applications to see and edit the files directly: there is no

security enforced.

Files placed here will be removed when the application is uninstalled, 	
so it can be a good location in which to place large content files the

application needs that one may not want on internal storage.

Valid type values include 	 DIRECTORY_PICTURES, DIRECTORY_MUSIC,

DIRECTORY_MOVIES, and DIRECTORY_RINGTONES.

	Context.getExternalCacheDir()

API Level 8	
Returns a directory on internal storage for app-specific temporary 	
files. The contents of this directory are visible to users and other

applications.

Files placed here will be removed when the application is uninstalled, 	
so it can be a good location in which to place large content files the

application needs that one may not want on internal storage.

	Context.getExternalFilesDirs() and Context.getExternalCacheDirs()

API Level 19	
Identical features as their counterparts described previously, 	
but returns a list of paths for each storage volume on the device

(primary and any secondary volumes).

For example, a single device may have a block of internal flash for 	
primary external storage, and a removable SD card for secondary

external storage.

416 CHAPTER 5: Persisting Data

5-5. Using Files as Resources

Problem
Your application must utilize resource files that are in a format Android cannot compile into a

resource ID.

Solution
(API Level 1)

Use the assets directory to house files your application needs to read from, such as

local HTML, comma-separated values (CSV), or proprietary data. The assets directory is

a protected resource location for files in an Android application. The files placed in this

directory will be bundled with the final APK but will not be processed or compiled. Like all

other application resources, the files in assets are read-only.

How It Works
There are a few specific instances that we’ve seen already in this book, where assets can

be used to load content directly into widgets, such as WebView and MediaPlayer. However,

in most cases, assets is best accessed through a traditional InputStream. Listings 5-17

and 5-18 provide an example in which a private CSV file is read from assets and displayed

onscreen.

Listing 5-17. assets/data.csv

John,38,Red
Sally,42,Blue
Rudy,31,Yellow

Note As of KitKat (API Level 19), permissions are no longer required to read and write the

directory paths returned by getExternalFilesDir() and getExternalCacheDir() for your

application. Primary volumes are still writable outside these directories with the aforementioned

permissions. Secondary volumes (also new to the KitKat APIs) are fully write-protected outside

these directories, even if the WRITE_EXTERNAL_STORAGE permission is granted.

	Context.getExternalMediaDirs()

API Level 21	
Files placed in these volumes will be automatically scanned 	
and added to the device’s media store to expose them to other

applications. These will generally also be visible to the user through

core applications like the Gallery.

417CHAPTER 5: Persisting Data

Listing 5-18. Reading from an Asset File

public class AssetActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 try {
 //Access application assets
 AssetManager manager = getAssets();
 //Open our data file
 InputStream in = manager.open("data.csv");

 //Parse the CSV data and display
 ArrayList<Person> cooked = parse(in);
 StringBuilder builder = new StringBuilder();
 for(Person piece : cooked) {
 builder.append(String.format("%s is %s years old, and likes the color %s",
 piece.name, piece.age, piece.color));
 builder.append('\n');
 }
 tv.setText(builder.toString());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

 /* Simple CSV Parser */
 private static final int COL_NAME = 0;
 private static final int COL_AGE = 1;
 private static final int COL_COLOR = 2;

 private ArrayList<Person> parse(InputStream in) throws IOException {
 ArrayList<Person> results = new ArrayList<Person>();

 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
 String nextLine = null;
 while ((nextLine = reader.readLine()) != null) {
 String[] tokens = nextLine.split(",");
 if (tokens.length != 3) {
 Log.w("CSVParser", "Skipping Bad CSV Row");
 continue;
 }

418 CHAPTER 5: Persisting Data

 //Add new parsed result
 Person current = new Person();
 current.name = tokens[COL_NAME];
 current.color = tokens[COL_COLOR];
 current.age = tokens[COL_AGE];

 results.add(current);
 }

 in.close();

 return results;
 }

 private class Person {
 public String name;
 public String age;
 public String color;

 public Person() { }
 }
}

The key to accessing files in assets lies in using AssetManager, which will allow the

application to open any resource currently residing in the assets directory. Passing the name

of the file we are interested in to AssetManager.open() returns an InputStream for us to read

the file data. Once the stream is read into memory, the example passes the raw data off to a

parsing routine and displays the results to the user interface.

Parsing the CSV

This example also illustrates a simple method of taking data from a CSV file and parsing it

into a model object (called Person in this case). The method used here takes the entire file

and reads it into a byte array for processing as a single string. This method is not the most

memory efficient when the amount of data to be read is quite large, but for small files like

this one it works just fine.

The raw string is passed into a StringTokenizer instance, along with the required characters

to use as breakpoints for the tokens: comma and new line. At this point, each individual

chunk of the file can be processed in order. Using a basic state machine approach, the data

from each line is inserted into new Person instances and loaded into the resulting list.

419CHAPTER 5: Persisting Data

5-6. Managing a Database

Problem
Your application needs to persist data that can later be queried or modified as subsets or

individual records.

Solution
(API Level 1)

Create an SQLiteDatabase with the assistance of an SQLiteOpenHelper to manage your data

store. SQLite is a fast and lightweight database technology that utilizes SQL syntax to build

queries and manage data. Support for SQLite is baked in to the Android SDK, making it very

easy to set up and use in your applications.

How It Works
Customizing SQLiteOpenHelper allows you to manage the creation and modification of the

database schema itself. It is also an excellent place to insert any initial or default values

you may want into the database while it is created. Listing 5-19 is an example of how to

customize the helper in order to create a database with a single table that stores basic

information about people.

Listing 5-19. Custom SQLiteOpenHelper

public class MyDbHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "mydb";
 private static final int DB_VERSION = 1;

 public static final String TABLE_NAME = "people";
 public static final String COL_NAME = "pName";
 public static final String COL_DATE = "pDate";
 private static final String STRING_CREATE =
 "CREATE TABLE "+TABLE_NAME+" (_id INTEGER PRIMARY KEY AUTOINCREMENT, "
 + COL_NAME + " TEXT, " + COL_DATE + " DATE);";

 public MyDbHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 //Create the database table
 db.execSQL(STRING_CREATE);

 //You may also load initial values into the database here
 ContentValues cv = new ContentValues(2);
 cv.put(COL_NAME, "John Doe");

420 CHAPTER 5: Persisting Data

 //Create a formatter for SQL date format
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 cv.put(COL_DATE, dateFormat.format(new Date())); //Insert 'now' as the date
 db.insert(TABLE_NAME, null, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //For now, clear the database and re-create
 db.execSQL("DROP TABLE IF EXISTS "+TABLE_NAME);
 onCreate(db);
 }
}

The key pieces of information you will need for your database are a name and version

number. Creating and upgrading an SQLiteDatabase does require some light knowledge

of SQL, so we recommend glancing at an SQL reference briefly if you are unfamiliar with

some of the syntax. The helper will call onCreate() anytime this particular database is

accessed, using either SQLiteOpenHelper.getReadableDatabase() or SQLiteOpenHelper.
getWritableDatabase(), if it does not already exist.

The example abstracts the table and column names as constants for external use (a good

practice to get into). Here is the actual SQL create string that is used in onCreate() to make

our table:

CREATE TABLE people (_id INTEGER PRIMARY KEY AUTOINCREMENT, pName TEXT,
pAge INTEGER, pDate DATE);

When using SQLite in Android, the database must have a small amount of formatting in

order to work properly with the framework. Most of this formatting is created for you, but

one piece that the tables you create must have is a column for _id. The remainder of this

string creates two more columns for each record in the table:

A text field for the person’s name	
A date field for the date this record was entered	

Data is inserted into the database by using ContentValues objects. The example illustrates

how to use ContentValues to insert some default data into the database when it is created.

SQLiteDatabase.insert() takes a table name, null column hack, and ContentValues

representing the record to insert as parameters.

The null column hack is not used here but serves a purpose that may be vital to your

application. SQL cannot insert an entirely empty value into the database, and attempting to

do so will cause an error. If there is a chance that your implementation may pass an empty

ContentValues to insert(), the null column hack is used to instead insert a record where the

value of the referenced column is NULL.

421CHAPTER 5: Persisting Data

A Note About Upgrading

SQLiteOpenHelper also does a great job of assisting you with migrating your database schema

in future versions of the application. Whenever the database is accessed, but the version

on disk does not match the current version (meaning the version passed in the constructor),

onUpgrade() will be called.

In our example, we took the lazy way out and simply dropped the existing database and

re-created it. In practice, this may not be a suitable method if the database contains user-

entered data; a user probably won’t be too happy to see it disappear. So let’s digress for a

moment and look at an example of onUpgrade() that may be more useful. Take, for example,

the following three databases used throughout the lifetime of an application:

	Version 1: First release of the application

	Version 2: Application upgrade to include phone-number field

	Version 3: Application upgrade to include the date that the entry was

inserted

We can leverage onUpgrade() to alter the existing database instead of erasing all the current

information in place. See Listing 5-20.

Listing 5-20. Sample of onUpgrade()

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //Upgrade from v1. Adding phone number
 if(oldVersion <= 1) {
 db.execSQL("ALTER TABLE "+TABLE_NAME+" ADD COLUMN phone_number INTEGER;");
 }
 //Upgrade from v2. Add entry date
 if(oldVersion <= 2) {
 db.execSQL("ALTER TABLE "+TABLE_NAME+" ADD COLUMN entry_date DATE;");
 }
}

In this example, if the user’s existing database version is 1, both statements will be called

to add columns to the database. If a user already has version 2, just the latter statement

is called to add the entry date column. In both cases, any existing data in the application

database is preserved.

Tip SQLiteOpenHelper also supports onDowngrade() for API Level 11+. This method will be

called if the database version on disk is higher than the current version requested by the

application code.

422 CHAPTER 5: Persisting Data

Using the Database

Looking back to our original sample, let’s see how an activity would utilize the database

we’ve created. See Listings 5-21 and 5-22.

Listing 5-21. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <EditText
 android:id="@+id/name"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <Button
 android:id="@+id/add"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Add New Person" />
 <ListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

Listing 5-22. Activity to View and Manage Database

public class DbActivity extends Activity implements View.OnClickListener,
 AdapterView.OnItemClickListener {

 EditText mText;
 Button mAdd;
 ListView mList;

 MyDbHelper mHelper;
 SQLiteDatabase mDb;
 Cursor mCursor;
 SimpleCursorAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mText = (EditText)findViewById(R.id.name);
 mAdd = (Button)findViewById(R.id.add);
 mAdd.setOnClickListener(this);
 mList = (ListView)findViewById(R.id.list);
 mList.setOnItemClickListener(this);

 mHelper = new MyDbHelper(this);
 }

423CHAPTER 5: Persisting Data

 @Override
 public void onResume() {
 super.onResume();
 //Open connections to the database
 mDb = mHelper.getWritableDatabase();
 String[] columns = new String[] {"_id", MyDbHelper.COL_NAME, MyDbHelper.COL_DATE};
 mCursor = mDb.query(MyDbHelper.TABLE_NAME, columns, null, null, null, null,
 null);
 //Refresh the list
 String[] headers = new String[] {MyDbHelper.COL_NAME, MyDbHelper.COL_DATE};
 mAdapter = new SimpleCursorAdapter(this, android.R.layout.two_line_list_item,
 mCursor, headers, new int[]{android.R.id.text1, android.R.id.text2});
 mList.setAdapter(mAdapter);
 }

 @Override
 public void onPause() {
 super.onPause();
 //Close all connections
 mDb.close();
 mCursor.close();
 }

 @Override
 public void onClick(View v) {
 //Add a new value to the database
 ContentValues cv = new ContentValues(2);
 cv.put(MyDbHelper.COL_NAME, mText.getText().toString());
 //Create a formatter for SQL date format
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 //Insert 'now' as the date
 cv.put(MyDbHelper.COL_DATE, dateFormat.format(new Date()));
 mDb.insert(MyDbHelper.TABLE_NAME, null, cv);
 //Refresh the list
 mCursor.requery();
 mAdapter.notifyDataSetChanged();
 //Clear the edit field
 mText.setText(null);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 //Delete the item from the database
 mCursor.moveToPosition(position);
 //Get the id value of this row
 String rowId = mCursor.getString(0); //Column 0 of the cursor is the id
 mDb.delete(MyDbHelper.TABLE_NAME, "_id = ?", new String[]{rowId});
 //Refresh the list
 mCursor.requery();
 mAdapter.notifyDataSetChanged();
 }
}

424 CHAPTER 5: Persisting Data

In this example, we utilize our custom SQLiteOpenHelper to give us access to a database

instance, and it displays each record in that database as a list to the user interface.

Information from the database is returned in the form of a Cursor, an interface designed to

read, write, and traverse the results of a query.

When the activity becomes visible, a database query is made to return all records in the

people table. An array of column names must be passed to the query to tell the database

which values to return. The remaining parameters of query() are designed to narrow the

selection data set, and we will investigate this further in the next recipe. It is important to

close all database and cursor connections when they are no longer needed. In the example,

we do this in onPause(), when the activity is no longer in the foreground.

SimpleCursorAdapter is used to map the data from the database to the standard Android

two-line list item view. The string and int array parameters constitute the mapping; the data

from each item in the string array will be inserted into the view with the corresponding ID

value in the int array. The list of column names passed here is slightly different from the array

passed to the query. This is because we will need to know the record ID for other operations,

but it is not necessary in mapping the data to the user interface.

The user may enter a name in the text field and then press the Add New Person button

to create a new ContentValues instance and insert it into the database. At that point,

in order for the UI to display the change, we call Cursor.requery() and ListAdapter.
notifyDataSetChanged().

Conversely, tapping an item in the list will remove that specified item from the database. To

accomplish this, we must construct a simple SQL statement telling the database to remove

only records where the _id value matches this selection. At that point, the cursor and list

adapter are refreshed again.

The _id value of the selection is obtained by moving the cursor to the selected position

and calling getString(0) to get the value of column index zero. This request returns the _id

because the first parameter (index 0) passed in the columns list to the query was _id. The

delete statement is composed of two parameters: the statement string and the arguments.

An argument from the passed array will be inserted in the statement for each question mark

that appears in the string.

5-7. Querying a Database

Problem
Your application uses an SQLiteDatabase, and you need to return specific subsets of the

data contained therein.

425CHAPTER 5: Persisting Data

Solution
(API Level 1)

Using fully structured SQL queries, it is very simple to create filters for specific data

and return those subsets from the database. There are several overloaded forms of

SQLiteDatabase.query() to gather information from the database. We’ll examine the most

verbose of them here:

public Cursor query(String table, String[] columns,
 String selection,
 String[] selectionArgs,
 String groupBy,
 String having,
 String orderBy,
 String limit)

The first two parameters simply define the table in which to query data, as well as the

columns for each record that we would like to have access to. The remaining parameters

define how we will narrow the scope of the results.

	selection: SQL WHERE clause for the given query.

	selectionArgs: If question marks are in the selection, these items fill

in those fields.

	groupBy: SQL GROUP BY clause for the given query.

	having: SQL ORDER BY clause for the given query.

	orderBy: SQL ORDER BY clause for the given query.

	limit: Maximum number of results returned from the query.

As you can see, all of these parameters are designed to provide the full power of SQL to the

database queries.

How It Works
Let’s construct some example queries to address common practical use cases:

Return all rows with a value that matches a given parameter.	

String[] COLUMNS = new String[] {COL_NAME, COL_DATE};
String selection = COL_NAME+" = ?";
String[] args = new String[] {"NAME_TO_MATCH"};
Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

426 CHAPTER 5: Persisting Data

This query is fairly straightforward. The selection statement just tells the database to

match any data in the name column with the argument supplied (which is inserted in place

of ? in the selection string).

Return the last 10 rows inserted into the database.	

String orderBy = "_id DESC";
String limit = "10";
Cursor result = db.query(TABLE_NAME, COLUMNS, null, null, null, null, orderBy, limit);

This query has no special selection criteria but instead tells the database to order the results

by the auto-incrementing _id value, with the newest (highest _id) records first. The limit

clause sets the maximum number of returned results to 10.

Return rows with a date field that is within a specified range 	
(within the year 2000, in this example).

String[] COLUMNS = new String[] {COL_NAME, COL_DATE};
String selection = "datetime("+COL_DATE+") > datetime(?)"+
 " AND datetime("+COL_DATE+") < datetime(?)";
String[] args = new String[] {"2000-1-1 00:00:00","2000-12-31 23:59:59"};
Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

SQLite does not reserve a specific data type for dates, although they allow DATE as a

declaration type when creating a table. However, the standard SQL date and time functions

can be used to create representations of the data as TEXT, INTEGER, or REAL. Here, we

compare the return values of datetime() for both the value in the database and a formatted

string for the start and end dates of the range.

Return rows with an integer field that is within a specified range 	
(between 7 and 10 in the example).

String[] COLUMNS = new String[] {COL_NAME, COL_AGE};
String selection = COL_AGE+" > ? AND "+COL_AGE+" < ?";
String[] args = new String[] {"7","10"};
Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

This is similar to the previous example but is much less verbose. Here, we simply have to

create the selection statement to return values greater than the low limit, but less than the

high limit. Both limits are provided as arguments to be inserted so they can be dynamically

set in the application.

5-8. Backing Up Data

Problem
Your application persists data on the device, and you need to provide users with a way to

back up and restore this data in cases where they change devices or are forced to reinstall

the application.

427CHAPTER 5: Persisting Data

Solution
(API Level 3)

Use the device’s external storage as a safe location to copy databases and other files.

External storage is often physically removable, allowing the user to place it in another device

and do a restore. Even in cases where this is not possible, external storage can always be

mounted when the user connects a device to the computer, allowing data transfer to take

place.

How It Works
Listing 5-23 shows an implementation of AsyncTask that copies a database file back

and forth between the device’s external storage and its location in the application’s data

directory. It also defines an interface for an activity to implement to get notified when the

operation is complete. File operations such as copy can take some time to complete, so you

can implement this by using an AsyncTask so it can happen in the background and not block

the main thread.

Listing 5-23. AsyncTask for Backup and Restore

public class BackupTask extends AsyncTask<String,Void,Integer> {

 public interface CompletionListener {
 void onBackupComplete();
 void onRestoreComplete();
 void onError(int errorCode);
 }

 public static final int BACKUP_SUCCESS = 1;
 public static final int RESTORE_SUCCESS = 2;
 public static final int BACKUP_ERROR = 3;
 public static final int RESTORE_NOFILEERROR = 4;

 public static final String COMMAND_BACKUP = "backupDatabase";
 public static final String COMMAND_RESTORE = "restoreDatabase";

 private Context mContext;
 private CompletionListener listener;

 public BackupTask(Context context) {
 super();
 mContext = context;
 }

 public void setCompletionListener(CompletionListener aListener) {
 listener = aListener;
 }

428 CHAPTER 5: Persisting Data

 @Override
 protected Integer doInBackground(String... params) {

 //Get a reference to the database
 File dbFile = mContext.getDatabasePath("mydb");
 //Get a reference to the directory location for the backup
 File exportDir =
 new File(Environment.getExternalStorageDirectory(), "myAppBackups");
 if (!exportDir.exists()) {
 exportDir.mkdirs();
 }
 File backup = new File(exportDir, dbFile.getName());

 //Check the required operation
 String command = params[0];
 if(command.equals(COMMAND_BACKUP)) {
 //Attempt file copy
 try {
 backup.createNewFile();
 fileCopy(dbFile, backup);

 return BACKUP_SUCCESS;
 } catch (IOException e) {
 return BACKUP_ERROR;
 }
 } else if(command.equals(COMMAND_RESTORE)) {
 //Attempt file copy
 try {
 if(!backup.exists()) {
 return RESTORE_NOFILEERROR;
 }
 dbFile.createNewFile();
 fileCopy(backup, dbFile);
 return RESTORE_SUCCESS;
 } catch (IOException e) {
 return BACKUP_ERROR;
 }
 } else {
 return BACKUP_ERROR;
 }
 }

 @Override
 protected void onPostExecute(Integer result) {

 switch(result) {
 case BACKUP_SUCCESS:
 if(listener != null) {
 listener.onBackupComplete();
 }
 break;

429CHAPTER 5: Persisting Data

 case RESTORE_SUCCESS:
 if(listener != null) {
 listener.onRestoreComplete();
 }
 break;
 case RESTORE_NOFILEERROR:
 if(listener != null) {
 listener.onError(RESTORE_NOFILEERROR);
 }
 break;
 default:
 if(listener != null) {
 listener.onError(BACKUP_ERROR);
 }
 }
 }

 private void fileCopy(File source, File dest) throws IOException {
 FileChannel inChannel = new FileInputStream(source).getChannel();
 FileChannel outChannel = new FileOutputStream(dest).getChannel();
 try {
 inChannel.transferTo(0, inChannel.size(), outChannel);
 } finally {
 if (inChannel != null)
 inChannel.close();
 if (outChannel != null)
 outChannel.close();
 }
 }
}

As you can see, BackupTask operates by copying the current version of a named database to

a specific directory in external storage when COMMAND_BACKUP is passed to execute(), and it

copies the file back when COMMAND_RESTORE is passed.

Once executed, the task uses Context.getDatabasePath() to retrieve a reference to the

database file we need to back up. This line could easily be replaced with a call to Context.
getFilesDir(), accessing a file on the system’s internal storage to back up instead. A

reference to a backup directory we’ve created on external storage is also obtained.

The files are copied using traditional Java file I/O, and if all is successful, the registered

listener is notified. During the process, any exceptions thrown are caught and an error is

returned to the listener instead. Now let’s take a look at an activity that utilizes this task to

back up a database (see Listing 5-24).

Listing 5-24. Activity Using BackupTask

public class BackupActivity extends Activity implements BackupTask.CompletionListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

430 CHAPTER 5: Persisting Data

 //Dummy example database
 SQLiteDatabase db = openOrCreateDatabase("mydb", Activity.MODE_PRIVATE, null);
 db.close();
 }

 @Override
 public void onResume() {
 super.onResume();
 if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
 BackupTask task = new BackupTask(this);
 task.setCompletionListener(this);
 task.execute(BackupTask.COMMAND_RESTORE);
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
 BackupTask task = new BackupTask(this);
 task.execute(BackupTask.COMMAND_BACKUP);
 }
 }

 @Override
 public void onBackupComplete() {
 Toast.makeText(this, "Backup Successful", Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onError(int errorCode) {
 if(errorCode == BackupTask.RESTORE_NOFILEERROR) {
 Toast.makeText(this, "No Backup Found to Restore",
 Toast.LENGTH_SHORT).show();
 } else {
 Toast.makeText(this, "Error During Operation: "+errorCode,
 Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onRestoreComplete() {
 Toast.makeText(this, "Restore Successful", Toast.LENGTH_SHORT).show();
 }
}

The activity implements the CompletionListener defined by BackupTask, so it may be notified

when operations are finished or an error occurs. For the purposes of the example, a dummy

database is created in the application’s database directory. We call openOrCreateDatabase()

only to allow a file to be created, so the connection is immediately closed afterward. Under

normal circumstances, this database would already exist and these lines would not be

necessary.

431CHAPTER 5: Persisting Data

The example does a restore operation each time the activity is resumed, registering itself

with the task so it can be notified and raise a Toast to the user of the status result. Notice

that the task of checking whether external storage is usable falls to the activity as well, and

no tasks are executed if external storage is not accessible. When the activity is paused, a

backup operation is executed, this time without registering for callbacks. This is because the

activity is no longer interesting to the user, so we won’t need to raise a toast to point out the

operation results.

Extra Credit

This background task could be extended to save the data to a cloud-based service for

maximum safety and data portability. Many options are available to accomplish this,

including Google’s own set of web APIs, and we recommend you give this a try.

Android, as of API Level 8, also includes an API for backing up data to a cloud-based

service. This API may suit your purposes; however, we will not discuss it here. The Android

framework cannot guarantee that this service will be available on all Android devices, and

there is no API as of this writing to determine whether the device the user has will support

the Android backup, so it is not recommended for critical data.

5-9. Sharing Your Database

Problem
Your application would like to provide the database content it maintains to other applications

on the device.

Solution
(API Level 4)

Create a ContentProvider to act as an external interface for your application’s data.

ContentProvider exposes an arbitrary set of data to external requests through a database-

like interface of query(), insert(), update(), and delete(), though the implementer is free

to design how the interface maps to the actual data model. Creating a ContentProvider to

expose the data from an SQLiteDatabase is straightforward and simple. With some minor

exceptions, the developer needs only to pass calls from the provider down to the database.

Arguments about which data set to operate on are typically encoded in the Uri passed to

the ContentProvider. For example, sending a query Uri such as

content://com.examples.myprovider/friends

would tell the provider to return information from the friends table within its data set, while

content://com.examples.myprovider/friends/15

432 CHAPTER 5: Persisting Data

would instruct just the record ID 15 to return from the query. It should be noted that these

are only the conventions used by the rest of the system, and that you are responsible for

making the ContentProvider you create behave in this manner. There is nothing inherent about

ContentProvider that provides this functionality for you.

How It Works
First of all, to create a ContentProvider that interacts with a database, we must have a

database in place to interact with. Listing 5-25 is a sample SQLiteOpenHelper implementation

that we will use to create and access the database itself.

Listing 5-25. Sample SQLiteOpenHelper

public class ShareDbHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "frienddb";
 private static final int DB_VERSION = 1;

 public static final String TABLE_NAME = "friends";
 public static final String COL_FIRST = "firstName";
 public static final String COL_LAST = "lastName";
 public static final String COL_PHONE = "phoneNumber";

 private static final String STRING_CREATE =
 "CREATE TABLE "+TABLE_NAME+" (_id INTEGER PRIMARY KEY AUTOINCREMENT, "
 +COL_FIRST+" TEXT, "+COL_LAST+" TEXT, "+COL_PHONE+" TEXT);";

 public ShareDbHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 //Create the database table
 db.execSQL(STRING_CREATE);

 //Inserting example values into database
 ContentValues cv = new ContentValues(3);
 cv.put(COL_FIRST, "John");
 cv.put(COL_LAST, "Doe");
 cv.put(COL_PHONE, "8885551234");
 db.insert(TABLE_NAME, null, cv);
 cv = new ContentValues(3);
 cv.put(COL_FIRST, "Jane");
 cv.put(COL_LAST, "Doe");
 cv.put(COL_PHONE, "8885552345");
 db.insert(TABLE_NAME, null, cv);
 cv = new ContentValues(3);
 cv.put(COL_FIRST, "Jill");

433CHAPTER 5: Persisting Data

 cv.put(COL_LAST, "Doe");
 cv.put(COL_PHONE, "8885553456");
 db.insert(TABLE_NAME, null, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //For now, clear the database and re-create
 db.execSQL("DROP TABLE IF EXISTS "+TABLE_NAME);
 onCreate(db);
 }
}

Overall, this helper is fairly simple, creating a single table to keep a list of our friends with

just three columns for housing text data. For the purposes of this example, three row values

are inserted. Now let’s take a look at a ContentProvider that will expose this database to

other applications: see Listings 5-26 and 5-27.

Listing 5-26. Manifest Declaration for ContentProvider

<manifest xmlns:android="http://schemas.android.com/apk/res/android" ...>
 <application ...>
 <provider android:name=".FriendProvider"
 android:authorities="com.examples.sharedb.friendprovider">
 </provider>
 </application>
</manifest>

Listing 5-27. ContentProvider for a Database

public class FriendProvider extends ContentProvider {

 public static final Uri CONTENT_URI =
 Uri.parse("content://com.examples.sharedb.friendprovider/friends");

 public static final class Columns {
 public static final String _ID = "_id";
 public static final String FIRST = "firstName";
 public static final String LAST = "lastName";
 public static final String PHONE = "phoneNumber";
 }

 /* Uri Matching */
 private static final int FRIEND = 1;
 private static final int FRIEND_ID = 2;

 private static final UriMatcher matcher = new UriMatcher(UriMatcher.NO_MATCH);
 static {
 matcher.addURI(CONTENT_URI.getAuthority(), "friends", FRIEND);
 matcher.addURI(CONTENT_URI.getAuthority(), "friends/#", FRIEND_ID);
 }

 SQLiteDatabase db;

434 CHAPTER 5: Persisting Data

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 int result = matcher.match(uri);
 switch(result) {
 case FRIEND:
 return db.delete(ShareDbHelper.TABLE_NAME, selection, selectionArgs);
 case FRIEND_ID:
 return db.delete(ShareDbHelper.TABLE_NAME, "_ID = ?",
 new String[]{uri.getLastPathSegment()});
 default:
 return 0;
 }
 }

 @Override
 public String getType(Uri uri) {
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 long id = db.insert(ShareDbHelper.TABLE_NAME, null, values);
 if(id >= 0) {
 return Uri.withAppendedPath(uri, String.valueOf(id));
 } else {
 return null;
 }
 }

 @Override
 public boolean onCreate() {
 ShareDbHelper helper = new ShareDbHelper(getContext());
 db = helper.getWritableDatabase();
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 int result = matcher.match(uri);
 switch(result) {
 case FRIEND:
 return db.query(ShareDbHelper.TABLE_NAME, projection, selection,
 selectionArgs, null, null, sortOrder);
 case FRIEND_ID:
 return db.query(ShareDbHelper.TABLE_NAME, projection, "_ID = ?",
 new String[]{uri.getLastPathSegment()}, null, null, sortOrder);
 default:
 return null;
 }
 }

435CHAPTER 5: Persisting Data

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 int result = matcher.match(uri);
 switch(result) {
 case FRIEND:
 return db.update(ShareDbHelper.TABLE_NAME, values, selection,
 selectionArgs);
 case FRIEND_ID:
 return db.update(ShareDbHelper.TABLE_NAME, values, "_ID = ?",
 new String[]{uri.getLastPathSegment()});
 default:
 return 0;
 }
 }

}

A ContentProvider must be declared in the application’s manifest with the authority string

that it represents. This allows the provider to be accessed from external applications, but the

declaration is still required even if you use the provider only internally within your application.

The authority is what Android uses to match Uri requests to the provider, so it should match

the authority portion of the public CONTENT_URI.

The six required methods to override when extending ContentProvider are query(),

insert(), update(), delete(), getType(), and onCreate(). The first four of these methods

have direct counterparts in SQLiteDatabase, so the database method is simply called

with the appropriate parameters. The primary difference between the two is that the

ContentProvider method passes in a Uri, which the provider should inspect to determine

which portion of the database to operate on.

These four primary CRUD methods are called on the provider when an activity or other

system component calls the corresponding method on its internal ContentResolver (you see

this in action in Listing 5-27).

To adhere to the Uri convention mentioned in the first part of this recipe, insert() returns a

Uri object created by appending the newly created record ID onto the end of the path. This

Uri should be considered by its requester to be a direct reference back to the record that

was just created.

The remaining methods (query(), update(), and delete()) adhere to the convention by

inspecting the incoming Uri to see whether it refers to a specific record or to the whole

table. This task is accomplished with the help of the UriMatcher convenience class. The

UriMatcher.match() method compares a Uri to a set of supplied patterns and returns the

matching pattern as an int, or UriMatcher.NO_MATCH if one is not found. If a Uri is supplied

with a record ID appended, the call to the database is modified to affect only that specific row.

A UriMatcher should be initialized by supplying a set of patterns with UriMatcher.addURI();

Google recommends that this all be done in a static context within the ContentProvider,

so it will be initialized the first time the class is loaded into memory. Each pattern added is

also given a constant identifier that will be the return value when matches are made. Two

wildcard characters may be placed in the supplied patterns: the pound (#) character will

match any number, and the asterisk (*) will match any text.

436 CHAPTER 5: Persisting Data

Our example has created two patterns to match. The initial pattern matches the supplied

CONTENT_URI directly, and it is taken to reference the entire database table. The second

pattern looks for an appended number to the path, which will be taken to reference just the

record at that ID.

Access to the database is obtained through a reference given by the ShareDbHelper

in onCreate(). The size of the database that is used should be considered when

deciding whether this method will be appropriate for your application. Our database is

quite small when it is created, but larger databases may take a long time to create, in

which case the main thread should not be tied up while this operation is taking place;

getWritableDatabase() may need to be wrapped in an AsyncTask and done in the

background in these cases.

Now let’s take a look at a sample activity accessing the data. As you can see in Figure 5-3,

we will create a simple list that displays the results of a query against our provider’s data.

Figure 5-3. Information from a ContentProvider

437CHAPTER 5: Persisting Data

Listings 5-28 and 5-29 show us the manifest and activity source to complete this example.

Listing 5-28. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.sharedb" android:versionCode="1" android:versionName="1.0">
 <uses-sdk android:minSdkVersion="4" />
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ShareActivity" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider android:name=".FriendProvider"
 android:authorities="com.examples.sharedb.friendprovider">
 </provider>
 </application>
</manifest>

Listing 5-29. Activity Accessing the ContentProvider

public class ShareActivity extends FragmentActivity implements
 LoaderManager.LoaderCallbacks<Cursor>, AdapterView.OnItemClickListener {
 private static final int LOADER_LIST = 100;
 SimpleCursorAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getSupportLoaderManager().initLoader(LOADER_LIST, null, this);

 mAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, null,
 new String[]{FriendProvider.Columns.FIRST},
 new int[]{android.R.id.text1}, 0);

 ListView list = new ListView(this);
 list.setOnItemClickListener(this);
 list.setAdapter(mAdapter);

 setContentView(list);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 Cursor c = mAdapter.getCursor();
 c.moveToPosition(position);

438 CHAPTER 5: Persisting Data

 Uri uri = Uri.withAppendedPath(FriendProvider.CONTENT_URI, c.getString(0));
 String[] projection = new String[]{FriendProvider.Columns.FIRST,
 FriendProvider.Columns.LAST,
 FriendProvider.Columns.PHONE};
 //Get the full record
 Cursor cursor = getContentResolver().query(uri, projection, null, null, null);
 cursor.moveToFirst();

 String message = String.format("%s %s, %s", cursor.getString(0),
 cursor.getString(1), cursor.getString(2));
 Toast.makeText(this, message, Toast.LENGTH_SHORT).show();
 cursor.close();
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String[] projection = new String[]{FriendProvider.Columns._ID,
 FriendProvider.Columns.FIRST};
 return new CursorLoader(this, FriendProvider.CONTENT_URI,
 projection, null, null, null);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 mAdapter.swapCursor(data);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }
}

Important This example requires the Support Library to provide access to the Loader

pattern in Android 1.6 and above. If you are targeting Android 3.0+ in your application, you may

replace FragmentActivity with Activity, and getSupportLoaderManager() with

getLoaderManager().

This example queries the FriendsProvider for all its records and places them into a list,

displaying only the first-name column. In order for the Cursor to adapt properly into a list,

our projection must include the ID column, even though it is not displayed.

If the user taps any of the items in the list, another query is made of the provider using a Uri

constructed with the record ID appended to the end, forcing the provider to return only that

one record. In addition, an expanded projection is provided to get all the column data about

this friend.

439CHAPTER 5: Persisting Data

The returned data is placed into a Toast and raised for the user to see. Individual fields from

the cursor are accessed by their column index, corresponding to the index in the projection

passed to the query. The Cursor.getColumnIndex() method may also be used to query the

cursor for the index associated with a given column name.

A Cursor should always be closed when it is no longer needed, as we do with the Cursor

created after a user click. The only exceptions to this are Cursor instances created and

managed by the Loader.

5-10. Sharing Your SharedPreferences

Problem
You would like your application to provide the settings values it has stored in

SharedPreferences to other applications of the system and even to allow those applications

to modify those settings if they have permission to do so.

Solution
(API Level 1)

Create a ContentProvider to interface your application’s SharedPreferences with the rest of the

system. The settings data will be delivered using a MatrixCursor, which is an implementation

that can be used for data that does not reside in a database. The ContentProvider will

be protected by separate permissions to read/write the data within so that only permitted

applications will have access.

How It Works
To properly demonstrate the permissions aspect of this recipe, we need to create two

separate applications: one that actually contains our preference data and one that wants to

read and modify it through the ContentProvider interface. This is because Android does not

enforce permissions on anything operating within the same application. Let’s start with the

provider, shown in Listing 5-30.

Listing 5-30. ContentProvider for Application Settings

public class SettingsProvider extends ContentProvider {

 public static final Uri CONTENT_URI =
 Uri.parse("content://com.examples.sharepreferences.settingsprovider/settings");

 public static class Columns {
 public static final String _ID = Settings.NameValueTable._ID;
 public static final String NAME = Settings.NameValueTable.NAME;
 public static final String VALUE = Settings.NameValueTable.VALUE;
 }

440 CHAPTER 5: Persisting Data

 private static final String NAME_SELECTION = Columns.NAME + " = ?";

 private SharedPreferences mPreferences;

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 throw new UnsupportedOperationException(
 "This ContentProvider does not support removing Preferences");
 }

 @Override
 public String getType(Uri uri) {
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 throw new UnsupportedOperationException(
 "This ContentProvider does not support adding new Preferences");
 }

 @Override
 public boolean onCreate() {
 mPreferences = PreferenceManager.getDefaultSharedPreferences(getContext());
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 MatrixCursor cursor = new MatrixCursor(projection);
 Map<String, ?> preferences = mPreferences.getAll();
 Set<String> preferenceKeys = preferences.keySet();

 if(TextUtils.isEmpty(selection)) {
 //Get all items
 for(String key : preferenceKeys) {
 //Insert only the columns they requested
 MatrixCursor.RowBuilder builder = cursor.newRow();
 for(String column : projection) {
 if(column.equals(Columns._ID)) {
 //Generate a unique id
 builder.add(key.hashCode());
 }
 if(column.equals(Columns.NAME)) {
 builder.add(key);
 }
 if(column.equals(Columns.VALUE)) {
 builder.add(preferences.get(key));
 }
 }
 }

441CHAPTER 5: Persisting Data

 } else if (selection.equals(NAME_SELECTION)) {
 //Parse the key value and check if it exists
 String key = selectionArgs == null ? "" : selectionArgs[0];
 if(preferences.containsKey(key)) {
 //Get the requested item
 MatrixCursor.RowBuilder builder = cursor.newRow();
 for(String column : projection) {
 if(column.equals(Columns._ID)) {
 //Generate a unique id
 builder.add(key.hashCode());
 }
 if(column.equals(Columns.NAME)) {
 builder.add(key);
 }
 if(column.equals(Columns.VALUE)) {
 builder.add(preferences.get(key));
 }
 }
 }
 }

 return cursor;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 //Check if the key exists, and update its value
 String key = values.getAsString(Columns.NAME);
 if (mPreferences.contains(key)) {
 Object value = values.get(Columns.VALUE);
 SharedPreferences.Editor editor = mPreferences.edit();
 if (value instanceof Boolean) {
 editor.putBoolean(key, (Boolean)value);
 } else if (value instanceof Number) {
 editor.putFloat(key, ((Number)value).floatValue());
 } else if (value instanceof String) {
 editor.putString(key, (String)value);
 } else {
 //Invalid value, do not update
 return 0;
 }
 editor.commit();
 //Notify any observers
 getContext().getContentResolver().notifyChange(CONTENT_URI, null);
 return 1;
 }
 //Key not in preferences
 return 0;
 }
}

442 CHAPTER 5: Persisting Data

Upon creation of this ContentProvider, we obtain a reference to the application’s default

SharedPreferences rather than opening up a database connection as in the previous

example. We support only two methods in this provider—query() and update()—and throw

exceptions for the rest. This allows read/write access to the preference values without

allowing any ability to add or remove new preference types.

Inside the query() method, we check the selection string to determine whether we should

return all preference values or just the requested value. Three fields are defined for each

preference: _id, name, and value. The value of _id may not be related to the preference itself,

but if the client of this provider wants to display the results in a list by using CursorAdapter, this

field will need to exist and have a unique value for each record, so we generate one. Notice

that we obtain the preference value as an Object to insert in the cursor; we want to minimize

the amount of knowledge the provider should have about the types of data it contains.

The cursor implementation used in this provider is a MatrixCursor, which is a cursor

designed to be built around data not held inside a database. The example iterates through

the list of columns requested (the projection) and builds each row according to these

columns it contains. Each row is created by calling MatrixCursor.newRow(), which also

returns a Builder instance that will be used to add the column data. Care should always

be taken to match the order of the column data that is added to the order of the requested

projection. They should always match.

The implementation of update() inspects only the incoming ContentValues for the

preference it needs to update. Because this is enough to describe the exact item we need,

we don’t implement any further logic using the selection arguments. If the name value of

the preference already exists, the value for it is updated and saved. Unfortunately, there is

no method to simply insert an Object back into SharedPreferences, so you must inspect

it based on the valid types that ContentValues can return and call the appropriate setter

method to match. Finally, we call notifyObservers() so any registered ContentObserver

objects will be notified of the data change.

You may have noticed that there is no code in the ContentProvider to manage the read/write

permissions we promised to implement! This is handled by Android for us: we just need to

update the manifest appropriately. Have a look at Listing 5-31.

Listing 5-31. AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.sharepreferences"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk ... />

 <permission
 android:name="com.examples.sharepreferences.permission.READ_PREFERENCES"
 android:label="Read Application Settings"
 android:protectionLevel="normal" />
 <permission
 android:name="com.examples.sharepreferences.permission.WRITE_PREFERENCES"
 android:label="Write Application Settings"
 android:protectionLevel="dangerous" />

443CHAPTER 5: Persisting Data

 <uses-permission
 android:name="com.examples.sharepreferences.permission.READ_PREFERENCES" />
 <uses-permission
 android:name="com.examples.sharepreferences.permission.WRITE_PREFERENCES" />

 <application ... >
 <activity android:name=".SettingsActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="com.examples.sharepreferences.ACTION_SETTINGS" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 <provider
 android:name=".SettingsProvider"
 android:authorities="com.examples.sharepreferences.settingsprovider"
 android:readPermission=
 "com.examples.sharepreferences.permission.READ_PREFERENCES"
 android:writePermission=
 "com.examples.sharepreferences.permission.WRITE_PREFERENCES" >
 </provider>
 </application>

</manifest>

Here you can see two custom <permission> elements declared and attached to our

<provider> declaration. This is the only code we need to add, and Android knows to enforce

the read permissions for operations such as query(), and the write permission for insert(),

update(), and delete(). We have also declared a custom <intent-filter> on the activity

in this application, which will come in handy for any external applications that may want to

launch the settings UI directly. Listings 5-32 through 5-34 define the rest of this example.

Listing 5-32. res/xml/preferences.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >
 <CheckBoxPreference
 android:key="preferenceEnabled"
 android:title="Set Enabled"
 android:defaultValue="true"/>
 <EditTextPreference
 android:key="preferenceName"
 android:title="User Name"
 android:defaultValue="John Doe"/>
 <ListPreference
 android:key="preferenceSelection"
 android:title="Selection"
 android:entries="@array/selection_items"

444 CHAPTER 5: Persisting Data

 android:entryValues="@array/selection_items"
 android:defaultValue="Four"/>
</PreferenceScreen>

Listing 5-33. res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="selection_items">
 <item>One</item>
 <item>Two</item>
 <item>Three</item>
 <item>Four</item>
 </string-array>
</resources>

Listing 5-34. Preferences Activity

//Note the package for this application
package com.examples.sharepreferences;

public class SettingsActivity extends PreferenceActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Load the preferences defaults on first run
 PreferenceManager.setDefaultValues(this, R.xml.preferences, false);

 addPreferencesFromResource(R.xml.preferences);
 }
}

The settings values for this example application are manageable directly via a simple

PreferenceActivity, whose data is defined in the preferences.xml file.

Note PreferenceActivity was deprecated in Android 3.0 in favor of PreferenceFragment,

but at the time of this book’s publication, PreferenceFragment has not yet been added to the

Support Library. Therefore, we use it here to allow support for earlier versions of Android.

445CHAPTER 5: Persisting Data

Usage Example

Next let’s take a look at Listings 5-35 through 5-37, which define a second application that

will attempt to access our preferences data by using this ContentProvider interface.

Listing 5-35. AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.accesspreferences">

 <uses-sdk ... />

 <uses-permission
 android:name="com.examples.sharepreferences.permission.READ_PREFERENCES" />
 <uses-permission
 android:name="com.examples.sharepreferences.permission.WRITE_PREFERENCES" />

 <application ... >
 <activity android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

The key point here is that this application declares the use of both our custom

permissions as <uses-permission> elements. This is what allows it to have access to the

external provider. Without these, a request through ContentResolver would result in a

SecurityException.

Listing 5-36. res/layout/main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <Button
 android:id="@+id/button_settings"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Show Settings"
 android:onClick="onSettingsClick" />
 <CheckBox
 android:id="@+id/checkbox_enable"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/button_settings"
 android:text="Set Enable Setting"/>

446 CHAPTER 5: Persisting Data

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:orientation="vertical">
 <TextView
 android:id="@+id/value_enabled"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/value_name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/value_selection"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 </LinearLayout>
</RelativeLayout>

Listing 5-37. Activity Interacting with the Provider

//Note the package as this is a different application
package com.examples.accesspreferences;

public class MainActivity extends Activity implements OnCheckedChangeListener {

 public static final String SETTINGS_ACTION =
 "com.examples.sharepreferences.ACTION_SETTINGS";
 public static final Uri SETTINGS_CONTENT_URI =
 Uri.parse("content://com.examples.sharepreferences.settingsprovider/settings");
 public static class SettingsColumns {
 public static final String _ID = Settings.NameValueTable._ID;
 public static final String NAME = Settings.NameValueTable.NAME;
 public static final String VALUE = Settings.NameValueTable.VALUE;
 }

 TextView mEnabled, mName, mSelection;
 CheckBox mToggle;

 private ContentObserver mObserver = new ContentObserver(new Handler()) {
 public void onChange(boolean selfChange) {
 updatePreferences();
 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

447CHAPTER 5: Persisting Data

 mEnabled = (TextView) findViewById(R.id.value_enabled);
 mName = (TextView) findViewById(R.id.value_name);
 mSelection = (TextView) findViewById(R.id.value_selection);
 mToggle = (CheckBox) findViewById(R.id.checkbox_enable);
 mToggle.setOnCheckedChangeListener(this);
 }

 @Override
 protected void onResume() {
 super.onResume();
 //Get the latest provider data
 updatePreferences();
 //Register an observer for changes that will
 // happen while we are active
 getContentResolver().registerContentObserver(SETTINGS_CONTENT_URI,
 false, mObserver);
 }

 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 ContentValues cv = new ContentValues(2);
 cv.put(SettingsColumns.NAME, "preferenceEnabled");
 cv.put(SettingsColumns.VALUE, isChecked);

 //Update the provider, which will trigger our observer
 getContentResolver().update(SETTINGS_CONTENT_URI, cv, null, null);
 }

 public void onSettingsClick(View v) {
 try {
 Intent intent = new Intent(SETTINGS_ACTION);
 startActivity(intent);
 } catch (ActivityNotFoundException e) {
 Toast.makeText(this,
 "You do not have the Android Recipes Settings App installed.",
 Toast.LENGTH_SHORT).show();
 }
 }

 private void updatePreferences() {
 Cursor c = getContentResolver().query(SETTINGS_CONTENT_URI,
 new String[] {SettingsColumns.NAME, SettingsColumns.VALUE},
 null, null, null);
 if (c == null) {
 return;
 }

 while (c.moveToNext()) {
 String key = c.getString(0);
 if ("preferenceEnabled".equals(key)) {
 mEnabled.setText(String.format("Enabled Setting = %s",
 c.getString(1)));

448 CHAPTER 5: Persisting Data

 mToggle.setChecked(Boolean.parseBoolean(c.getString(1)));
 } else if ("preferenceName".equals(key)) {
 mName.setText(String.format("User Name Setting = %s",
 c.getString(1)));
 } else if ("preferenceSelection".equals(key)) {
 mSelection.setText(String.format("Selection Setting = %s",
 c.getString(1)));
 }
 }

 c.close();
 }
}

Because this is a separate application, it may not have access to the constants defined

in the first (unless you control both applications and use a library project or some other

method), so we have redefined them here for this example. If you were producing an

application with an external provider you would like other developers to use, it would be

prudent to also provide a JAR library that contains the constants necessary to access the

Uri and column data in the provider, similar to the API provided by ContactsContract and

CalendarContract.

In this example, the activity queries the provider for the current values of the settings each

time it returns to the foreground and displays them in a TextView. The results are returned

in a Cursor with two values in each row: the preference name and its value. The activity

also registers a ContentObserver so that if the values change while this activity is active, the

displayed values can be updated as well. When the user changes the value of the CheckBox

onscreen, this calls the provider’s update() method, which will trigger this observer to

update the display.

Finally, if desired, the user could launch the SettingsActivity from the external application

directly by clicking the Show Settings button. This calls startActivity() with an Intent

containing the custom action string for which SettingsActivity is set to filter.

5-11. Sharing Your Other Data

Problem
You would like your application to provide the files or other private data it maintains to

applications on the device.

Solution
(API Level 3)

Create a ContentProvider to act as an external interface for your application’s data.

ContentProvider exposes an arbitrary set of data to external requests through a database-

like interface of query(), insert(), update(), and delete(), though the implementation is

free to design how the data passes to the actual model from these methods.

449CHAPTER 5: Persisting Data

ContentProvider can be used to expose any type of application data, including the

application’s resources and assets, to external requests.

How It Works
Let’s take a look at a ContentProvider implementation that exposes two data sources: an

array of strings located in memory, and a series of image files stored in the application’s

assets directory. As before, we must declare our provider to the Android system by using a

<provider> tag in the manifest. See Listings 5-38 and 5-39.

Listing 5-38. Manifest Declaration for ContentProvider

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" ...>
 <application ...>
 <provider android:name=".ImageProvider"
 android:authorities="com.examples.share.imageprovider">
 </provider>
 </application>
</manifest>

Listing 5-39. Custom ContentProvider Exposing Assets

public class ImageProvider extends ContentProvider {

 public static final Uri CONTENT_URI =
 Uri.parse("content://com.examples.share.imageprovider");

 public static final String COLUMN_NAME = "nameString";
 public static final String COLUMN_IMAGE = "imageUri";

 private String[] mNames;

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 throw new UnsupportedOperationException("This ContentProvider is read-only");
 }

 @Override
 public String getType(Uri uri) {
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 throw new UnsupportedOperationException("This ContentProvider is read-only");
 }

450 CHAPTER 5: Persisting Data

 @Override
 public boolean onCreate() {
 mNames = new String[] {"John Doe", "Jane Doe", "Jill Doe"};
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 MatrixCursor cursor = new MatrixCursor(projection);
 for(int i = 0; i < mNames.length; i++) {
 //Insert only the columns they requested
 MatrixCursor.RowBuilder builder = cursor.newRow();
 for(String column : projection) {
 if(column.equals("_id")) {
 //Use the array index as a unique id
 builder.add(i);
 }
 if(column.equals(COLUMN_NAME)) {
 builder.add(mNames[i]);
 }
 if(column.equals(COLUMN_IMAGE)) {
 builder.add(Uri.withAppendedPath(CONTENT_URI, String.valueOf(i)));
 }
 }
 }
 return cursor;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 throw new UnsupportedOperationException("This ContentProvider is read-only");
 }

 @Override
 public AssetFileDescriptor openAssetFile(Uri uri, String mode) throws
 FileNotFoundException {
 int requested = Integer.parseInt(uri.getLastPathSegment());
 AssetFileDescriptor afd;
 AssetManager manager = getContext().getAssets();
 //Return the appropriate asset for the requested item
 try {
 switch(requested) {
 case 0:
 afd = manager.openFd("logo1.png");
 break;
 case 1:
 afd = manager.openFd("logo2.png");
 break;
 case 2:
 afd = manager.openFd("logo3.png");
 break;

451CHAPTER 5: Persisting Data

 default:
 afd = manager.openFd("logo1.png");
 }
 return afd;
 } catch (IOException e) {
 e.printStackTrace();
 return null;
 }
 }
}

As you may have guessed, the example exposes three logo image assets. The images we

have chosen for this example are shown in Figure 5-4.

Figure 5-4. Examples of logo1.png (left), logo2.png (center), and logo3.png (right) stored in assets

Because we are exposing read-only content in the assets directory, there is no need to

support the inherited methods insert(), update(), or delete(), so we have these methods

simply throw an UnsupportedOperationException.

When the provider is created, the string array that holds people’s names is created

and onCreate() returns true; this signals to the system that the provider was created

successfully. The provider exposes constants for its Uri and all readable column names.

These values will be used by external applications to make requests for data.

This provider supports only a query for all the data within it. To support conditional queries

for specific records or a subset of all the content, an application can process the values

passed in to query() for selection and selectionArgs. In this example, any call to query()

will build a cursor with all three elements contained within.

The cursor implementation used in this provider is a MatrixCursor, which is a cursor

designed to be built around data that is not held inside a database. The example iterates

through the list of columns requested (the projection) and builds each row according to

these columns it contains. Each row is created by calling MatrixCursor.newRow(), which also

returns a Builder instance that will be used to add the column data. Care should always

be taken to match the order that the column data is added to the order of the requested

projection. They should always match.

The value in the name column is the respective string in the local array, and the _id value,

which Android requires to utilize the returned cursor with most ListAdapters, is simply

returned as the array index. The information presented in the image column for each row is

actually a content Uri representing the image file for each row, created with the provider’s

content Uri as the base, with the array index appended to it.

452 CHAPTER 5: Persisting Data

When an external application actually goes to retrieve this content, through

ContentResolver.openInputStream(), a call will be made to openAssetFile(), which has been

overridden to return an AssetFileDescriptor pointing to one of the image files in the assets

directory. This implementation determines which image file to return by deconstructing the

content Uri once again and retrieving the appended index value from the end.

Usage Example

In Figure 5-5, we have an activity displaying a similar list as in the previous recipe. However,

now we are also pulling asset data to display for each selection.

Figure 5-5. Activity drawing resources from ContentProvider

453CHAPTER 5: Persisting Data

Let’s take a look at how this provider should be implemented and accessed in the context of

the Android application. See Listing 5-40.

Listing 5-40. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.share"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ShareActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider android:name=".ImageProvider"
 android:authorities="com.examples.share.imageprovider">
 </provider>
 </application>
</manifest>

To implement this provider, the manifest of the application that owns the content must

declare a <provider> tag pointing out the ContentProvider name and the authority to match

when requests are made. The authority value should match the base portion of the exposed

content Uri. The provider must be declared in the manifest so the system can instantiate

and run it, even when the owning application is not running. See Listings 5-41 and 5-42.

Listing 5-41. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="20dip"
 android:layout_gravity="center_horizontal"
 />
 <ImageView
 android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="50dip"
 android:layout_gravity="center_horizontal"
 />

454 CHAPTER 5: Persisting Data

 <ListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</LinearLayout>

Listing 5-42. Activity Reading from ImageProvider

public class ShareActivity extends FragmentActivity implements
 LoaderManager.LoaderCallbacks<Cursor>, AdapterView.OnItemClickListener {
 private static final int LOADER_LIST = 100;
 SimpleCursorAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getSupportLoaderManager().initLoader(LOADER_LIST, null, this);
 setContentView(R.layout.main);

 mAdapter = new SimpleCursorAdapter(this, android.R.layout.simple_list_item_1,
 null, new String[]{ImageProvider.COLUMN_NAME},
 new int[]{android.R.id.text1}, 0);

 ListView list = (ListView)findViewById(R.id.list);
 list.setOnItemClickListener(this);
 list.setAdapter(mAdapter);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 //Seek the cursor to the selection
 Cursor c = mAdapter.getCursor();
 c.moveToPosition(position);

 //Load the name column into the TextView
 TextView tv = (TextView)findViewById(R.id.name);
 tv.setText(c.getString(1));

 ImageView iv = (ImageView)findViewById(R.id.image);
 try {
 //Load the content from the image column into the ImageView
 InputStream in =
 getContentResolver().openInputStream(Uri.parse(c.getString(2)));
 Bitmap image = BitmapFactory.decodeStream(in);
 iv.setImageBitmap(image);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 }

455CHAPTER 5: Persisting Data

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String[] projection = new String[]{"_id",
 ImageProvider.COLUMN_NAME,
 ImageProvider.COLUMN_IMAGE};
 return new CursorLoader(this, ImageProvider.CONTENT_URI,
 projection, null, null, null);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 mAdapter.swapCursor(data);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }
}

Important This example requires the Support Library to provide access to the Loader

pattern in Android 1.6 and above. If you are targeting Android 3.0+ in your application, you

may replace FragmentActivity with Activity and getSupportLoaderManager() with

getLoaderManager().

In this example, a managed cursor is obtained from the custom ContentProvider,

referencing the exposed Uri and column names for the data. The data is then connected to

a ListView through a SimpleCursorAdapter to display only the name value.

When the user taps any of the items in the list, the cursor is moved to that position and

the respective name and image are displayed above. This is where the activity calls

ContentResolver.openInputStream() to access the asset images through the Uri that was

stored in the column field.

Figure 5-5 displays the result of running this application and selecting the last item in the list

(Jill Doe).

Note that we have not closed the connection to the Cursor explicitly. Since the Loader

created the Cursor, it is also the job of the Loader to manage its life cycle.

456 CHAPTER 5: Persisting Data

5-12. Integrating with System Documents

Problem
Your application creates or maintains content that you would like to expose to other

applications via the system’s document picker interface.

Solution
(API Level 19)

The DocumentsProvider is a specialized ContentProvider API that applications can use to

expose their contents to the common documents picker interface in Android 4.4 and later.

The advantage to using this framework is that it allows applications that manage access to

storage services to expose the files and documents they own by using a common interface

throughout the system. It also includes the ability for client applications to create and save

new documents inside these applications (we will look more at the client side of this API in

the next chapter).

A custom DocumentsProvider must identify all the files and directories it would like to expose

by using a unique document ID string. This value does not need to match any specific

format, but it must be unique and cannot change after it is reported to the system. The

framework will persist these values for permissions purposes, so even across reboots the

document IDs you provide (and later expect) must be consistent for any resource.

When subclassing DocumentsProvider, we will be implementing a different set of callbacks

than the basic CRUD methods we used in the bare ContentProvider. The system’s document

picker interface will trigger the following methods on the provider as the user explores:

	queryRoots(): First called when the picker UI is launched to request

basic information about the top-level “document” in your provider, as

well as some basic metadata such as the name and icon to display. Most

providers have only one root, but multiple roots can be returned if that

better supports the provider’s use case.

	queryChildDocuments(): Called when the provider is selected with the

root’s document ID in order to get a listing of the documents available

under this root. If you return directory entries as elements underneath

the root, the same method will be called again when one of those

subdirectories is selected.

	queryDocument(): Called when a document is selected to obtain

metadata about that specific instance. The data returned from this

message should mirror what was returned from queryChildDocuments(),

but for just the one element. This method is also called for each root to

obtain additional metadata of the top-level directory in the provider.

457CHAPTER 5: Persisting Data

	openDocument(): This is a request to open a FileDescriptor to the

document so that the client application may read or write the document

contents.

	openDocumentThumbnail(): If the metadata returned for a given

document has the FLAG_SUPPORTS_THUMBNAIL flag set, this method is

used to obtain a thumbnail to display in the picker UI for the document.

How It Works
We can modify our provider from the previous recipe to better integrate with the system’s

document picker UI, as seen in Figure 5-6.

Figure 5-6. Provider shown in list (left) with file options shown once selected (right)

Achieving this takes a few modifications. Listing 5-43 shows our ImageProvider modified to

subclass DocumentProvider instead.

Listing 5-43. ImageProvider as a DocumentsProvider

public class ImageProvider extends DocumentsProvider {
 private static final String TAG = "ImageProvider";

 /* Cached recent selection */
 private static String sLastDocumentId;

 private static final String DOCID_ROOT = "root:";
 private static final String DOCID_ICONS_DIR = DOCID_ROOT + "icons:";
 private static final String DOCID_BGS_DIR = DOCID_ROOT + "backgrounds:";

458 CHAPTER 5: Persisting Data

 /* Default projection for a root when none supplied */
 private static final String[] DEFAULT_ROOT_PROJECTION = {
 Root.COLUMN_ROOT_ID, Root.COLUMN_MIME_TYPES,
 Root.COLUMN_FLAGS, Root.COLUMN_ICON, Root.COLUMN_TITLE,
 Root.COLUMN_SUMMARY, Root.COLUMN_DOCUMENT_ID,
 Root.COLUMN_AVAILABLE_BYTES
 };
 /* Default projection for documents when none supplied */
 private static final String[] DEFAULT_DOCUMENT_PROJECTION = {
 Document.COLUMN_DOCUMENT_ID, Document.COLUMN_MIME_TYPE,
 Document.COLUMN_DISPLAY_NAME, Document.COLUMN_LAST_MODIFIED,
 Document.COLUMN_FLAGS, Document.COLUMN_SIZE
 };

 private ArrayMap<String, String> mIcons;
 private ArrayMap<String, String> mBackgrounds;

 @Override
 public boolean onCreate() {
 //Dummy data for our documents
 mIcons = new ArrayMap<String, String>();
 mIcons.put("logo1.png", "John Doe");
 mIcons.put("logo2.png", "Jane Doe");
 mIcons.put("logo3.png", "Jill Doe");
 mBackgrounds = new ArrayMap<String, String>();
 mBackgrounds.put("background.jpg", "Wavy Grass");

 //Dump asset images onto internal storage
 writeAssets(mIcons.keySet());
 writeAssets(mBackgrounds.keySet());
 return true;
 }

 /*
 * Helper method to stream some dummy files out to the
 * internal storage directory
 */
 private void writeAssets(Set<String> filenames) {
 for(String name : filenames) {
 try {
 Log.d("ImageProvider", "Writing "+name+" to storage");
 InputStream in = getContext().getAssets().open(name);
 FileOutputStream out = getContext().openFileOutput(name,

Context.MODE_PRIVATE);

 int size;
 byte[] buffer = new byte[1024];
 while ((size = in.read(buffer, 0, 1024)) >= 0) {
 out.write(buffer, 0, size);
 }

459CHAPTER 5: Persisting Data

 out.flush();
 out.close();
 } catch (IOException e) {
 Log.w(TAG, e);
 }
 }
 }

 /* Helper methods to construct documentId from a file name */
 private String getIconsDocumentId(String filename) {
 return DOCID_ICONS_DIR + filename;
 }
 private String getBackgroundsDocumentId(String filename) {
 return DOCID_BGS_DIR + filename;
 }

 /* Helper methods to determine document types */
 private boolean isRoot(String documentId) {
 return DOCID_ROOT.equals(documentId);
 }

 private boolean isIconsDir(String documentId) {
 return DOCID_ICONS_DIR.equals(documentId);
 }

 private boolean isBackgroundsDir(String documentId) {
 return DOCID_BGS_DIR.equals(documentId);
 }

 private boolean isIconDocument(String documentId) {
 return documentId.startsWith(DOCID_ICONS_DIR);
 }

 private boolean isBackgroundsDocument(String documentId) {
 return documentId.startsWith(DOCID_BGS_DIR);
 }

 /*
 * Helper method to extract file name from a documentId.
 * Returns empty string for the "root" document.
 */
 private String getFilename(String documentId) {
 int split = documentId.lastIndexOf(":");
 if (split < 0) {
 return "";
 }
 return documentId.substring(split+1);
 }

460 CHAPTER 5: Persisting Data

 /*
 * Called by the system to determine how many "providers" are
 * hosted here. It is most common to return only one, via a
 * Cursor that has only one result row.
 */
 @Override
 public Cursor queryRoots(String[] projection) throws FileNotFoundException {
 if (projection == null) {
 projection = DEFAULT_ROOT_PROJECTION;
 }
 MatrixCursor result = new MatrixCursor(projection);
 //Add the single root for this provider
 MatrixCursor.RowBuilder builder = result.newRow();

 builder.add(Root.COLUMN_ROOT_ID, "root");
 builder.add(Root.COLUMN_TITLE, "Android Recipes");
 builder.add(Root.COLUMN_SUMMARY, "Android Recipes Documents Provider");
 builder.add(Root.COLUMN_ICON, R.drawable.ic_launcher);

 builder.add(Root.COLUMN_DOCUMENT_ID, DOCID_ROOT);

 builder.add(Root.COLUMN_FLAGS,
 //Results will only come from the local filesystem
 Root.FLAG_LOCAL_ONLY
 //We support showing recently selected items
 | Root.FLAG_SUPPORTS_RECENTS);
 builder.add(Root.COLUMN_MIME_TYPES, "image/*");
 builder.add(Root.COLUMN_AVAILABLE_BYTES, 0);

 return result;
 }

 /*
 * Called by the system to determine the child items for a given
 * parent. Will be called for the root, and for each subdirectory
 * defined within.
 */
 @Override
 public Cursor queryChildDocuments(String parentDocumentId, String[] projection,
 String sortOrder) throws FileNotFoundException {
 if (projection == null) {
 projection = DEFAULT_DOCUMENT_PROJECTION;
 }
 MatrixCursor result = new MatrixCursor(projection);

 if (isIconsDir(parentDocumentId)) {
 //Add all files in the icons collection
 try {
 for(String key : mIcons.keySet()) {
 addImageRow(result, mIcons.get(key), getIconsDocumentId(key));
 }

461CHAPTER 5: Persisting Data

 } catch (IOException e) {
 return null;
 }
 } else if (isBackgroundsDir(parentDocumentId)) {
 //Add all files in the backgrounds collection
 try {
 for(String key : mBackgrounds.keySet()) {
 addImageRow(result, mBackgrounds.get(key), getBackgroundsDocumentId(key));
 }
 } catch (IOException e) {
 return null;
 }
 } else if (isRoot(parentDocumentId)) {
 //Add the top-level directories
 addIconsRow(result);
 addBackgroundsRow(result);
 }

 return result;
 }

 /*
 * Return the same information provided via queryChildDocuments(), but
 * just for the single documentId requested.
 */
 @Override
 public Cursor queryDocument(String documentId, String[] projection)
 throws FileNotFoundException {
 if (projection == null) {
 projection = DEFAULT_DOCUMENT_PROJECTION;
 }

 MatrixCursor result = new MatrixCursor(projection);

 try {
 String filename = getFilename(documentId);
 if (isRoot(documentId)) { //This is a query for root
 addRootRow(result);
 } else if (isIconsDir(documentId)) { //This is a query for icons
 addIconsRow(result);
 } else if (isBackgroundsDir(documentId)) { //This is a query for backgrounds
 addBackgroundsRow(result);
 } else if (isIconDocument(documentId)) {
 addImageRow(result, mIcons.get(filename),
 getIconsDocumentId(filename));
 } else if (isBackgroundsDocument(documentId)) {
 addImageRow(result, mBackgrounds.get(filename),
 getBackgroundsDocumentId(filename));
 }

462 CHAPTER 5: Persisting Data

 } catch (IOException e) {
 return null;
 }

 return result;
 }

 /*
 * Called to populate any recently used items from this
 * provider in the Recents picker UI.
 */
 @Override
 public Cursor queryRecentDocuments(String rootId, String[] projection)
 throws FileNotFoundException {
 if (projection == null) {
 projection = DEFAULT_DOCUMENT_PROJECTION;
 }

 MatrixCursor result = new MatrixCursor(projection);

 if (sLastDocumentId != null) {
 String filename = getFilename(sLastDocumentId);
 String recentTitle = "";
 if (isIconDocument(sLastDocumentId)) {
 recentTitle = mIcons.get(filename);
 } else if (isBackgroundsDocument(sLastDocumentId)) {
 recentTitle = mBackgrounds.get(filename);
 }

 try {
 addImageRow(result, recentTitle, sLastDocumentId);
 } catch (IOException e) {
 Log.w(TAG, e);
 }
 }
 Log.d(TAG, "Recents: "+result.getCount());
 //We'll return the last selected result to a recents query
 return result;
 }

 /*
 * Helper method to write the root into the supplied
 * Cursor
 */
 private void addRootRow(MatrixCursor cursor) {
 addDirRow(cursor, DOCID_ROOT, "Root");
 }

 private void addIconsRow(MatrixCursor cursor) {
 addDirRow(cursor, DOCID_ICONS_DIR, "Icons");
 }

463CHAPTER 5: Persisting Data

 private void addBackgroundsRow(MatrixCursor cursor) {
 addDirRow(cursor, DOCID_BGS_DIR, "Backgrounds");
 }

 /*
 * Helper method to write a specific subdirectory into
 * the supplied Cursor
 */
 private void addDirRow(MatrixCursor cursor, String documentId, String name) {
 final MatrixCursor.RowBuilder row = cursor.newRow();

 row.add(Document.COLUMN_DOCUMENT_ID, documentId);
 row.add(Document.COLUMN_DISPLAY_NAME, name);
 row.add(Document.COLUMN_SIZE, 0);
 row.add(Document.COLUMN_MIME_TYPE, Document.MIME_TYPE_DIR);

 long installed;
 try {
 installed = getContext().getPackageManager()
 .getPackageInfo(getContext().getPackageName(), 0)
 .firstInstallTime;
 } catch (NameNotFoundException e) {
 installed = 0;
 }
 row.add(Document.COLUMN_LAST_MODIFIED, installed);
 row.add(Document.COLUMN_FLAGS, 0);
 }

 /*
 * Helper method to write a specific image file into
 * the supplied Cursor
 */
 private void addImageRow(MatrixCursor cursor, String title, String documentId)
 throws IOException {
 final MatrixCursor.RowBuilder row = cursor.newRow();

 String filename = getFilename(documentId);
 AssetFileDescriptor afd = getContext().getAssets().openFd(filename);

 row.add(Document.COLUMN_DOCUMENT_ID, documentId);
 row.add(Document.COLUMN_DISPLAY_NAME, title);
 row.add(Document.COLUMN_SIZE, afd.getLength());
 row.add(Document.COLUMN_MIME_TYPE, "image/*");

 long installed;
 try {
 installed = getContext().getPackageManager()
 .getPackageInfo(getContext().getPackageName(), 0)
 .firstInstallTime;
 } catch (NameNotFoundException e) {
 installed = 0;
 }

464 CHAPTER 5: Persisting Data

 row.add(Document.COLUMN_LAST_MODIFIED, installed);
 row.add(Document.COLUMN_FLAGS, Document.FLAG_SUPPORTS_THUMBNAIL);
 }

 /*
 * Return a reference to an image asset the framework will use
 * in the items list for any document with the FLAG_SUPPORTS_THUMBNAIL
 * flag enabled. This method is safe to block while downloading content.
 */
 @Override
 public AssetFileDescriptor openDocumentThumbnail(String documentId, Point sizeHint,
 CancellationSignal signal) throws FileNotFoundException {
 //We will load the thumbnail from the version on storage
 String filename = getFilename(documentId);
 //Create a file reference to the image on internal storage
 final File file = new File(getContext().getFilesDir(), filename);
 //Return a file descriptor wrapping the file reference
 final ParcelFileDescriptor pfd =
 ParcelFileDescriptor.open(file, ParcelFileDescriptor.MODE_READ_ONLY);
 return new AssetFileDescriptor(pfd, 0, AssetFileDescriptor.UNKNOWN_LENGTH);
 }

 /*
 * Return a file descriptor to the document referenced by the supplied
 * documentId. The client will use this descriptor to read the contents
 * directly. This method is safe to block while downloading content.
 */
 @Override
 public ParcelFileDescriptor openDocument(String documentId, String mode,
 CancellationSignal signal) throws FileNotFoundException {
 //We will load the document itself from assets
 try {
 String filename = getFilename(documentId);
 //Create a file reference to the image on internal storage
 final File file = new File(getContext().getFilesDir(), filename);
 //Return a file descriptor wrapping the file reference
 final ParcelFileDescriptor pfd =
 ParcelFileDescriptor.open(file, ParcelFileDescriptor.MODE_READ_ONLY);

 //Save this as the last selected document
 sLastDocumentId = documentId;

 return pfd;
 } catch (IOException e) {
 Log.w(TAG, e);
 return null;
 }
 }
}

465CHAPTER 5: Persisting Data

In this example, we show how to serve some image files used from internal storage. Our

image data is static, and bundled in the assets directory of our APK for distribution. The files

need to be moved to the appropriate storage volume, so when the provider is created, we

read the image files out of assets and copy them to internal storage inside writeAssets().

Our provider will include two top-level directories, icons and backgrounds, each containing

image files.

We have created a simple structure of converting file names into document IDs. In our case,

root is the virtual top-level directory with our two subdirectories, and we create each ID as

a pseudo-path to that file by using colon separators. The methods getIconsDocumentId(),

getBackgroundsDocumentId(), and getFilename() are helpers to convert back and forth

between our published ID and the actual image file name.

Tip Document IDs will be embedded in a content Uri by the framework, so if you are converting

directory paths to IDs, you must use characters that are not otherwise considered a path separator

by the Uri class.

Inside queryRoots(), we return a MatrixCursor that includes the basic metadata of the

single provider root. Notice that the query methods of the provider should respect the

column projection passed in, and return only the data requested. We are using an updated

version of the add() method as well that takes the column name for each item. This version

is convenient, as it monitors the projection passed into the MatrixCursor constructor, and

silently ignores attempts to add columns not in the projection, thus eliminating the looping

we did before to add elements.

The title, summary, and icon columns deal with the provider display in the picker UI. We have

also defined the following:

	COLUMN_DOCUMENT_ID: Provides the ID we will be handed back later to

reference this top-level root element.

	COLUMN_MIME_TYPES: Reports the document types this root contains. We

have image files, so we are using image/*.

In addition, COLUMN_FLAGS reports additional features the root item may support. The options

are as follows:

	FLAG_LOCAL_ONLY: Results are on the device and don’t require network

requests.

	FLAG_SUPPORTS_CREATE: The root allows client applications to create a

new document inside this provider. We will discuss how to do this on the

client side in the next chapter.

	FLAG_SUPPORTS_RECENTS: Tells the framework we can participate

in the recent documents UI with results. This will result in calls to

queryRecentDocuments() to obtain this metadata.

	FLAG_SUPPORTS_SEARCH: Similar to recents, tells the framework we can

handle search queries via querySearchDocuments().

466 CHAPTER 5: Persisting Data

We have set the local and recents flags in our example. Once this method returns,

the framework will call queryDocument() with the document ID of the root to get more

information. Inside addRootRow() we populate the cursor with the necessary fields. For

COLUMN_MIME_TYPE, we use the constant MIME_TYPE_DIR to indicate this element is a directory

containing other documents. This same definition should be applied to any subdirectories

in the hierarchy you create for the provider. Also, since all the files we are providing have

existed since we installed the application, we provide the APK install date as the COLUMN_
LAST_MODIFIED value; for a more dynamic filesystem, this could just be the modified date of

the file on disk.

When the provider is selected by the user, we receive a call to queryChildDocuments() to

list all the files in the root. For us, this includes adding a row to the cursor for each directory

that will house images. The addIconsRow() and addBackgroundsRow() methods supply

similar metadata as roots for each subdirectory. We will see queryChildDocuments() again

for the subdirectories as well. When we see these IDs, it’s time to add a row to the cursor

for each logo image file we have in each bucket. The addImageRow() method constructs the

appropriate column data with similar elements to the previous iterations.

We want to allow each image to be represented by a thumbnail image in the picker UI, so

we set the FLAG_SUPPORTS_THUMBNAIL for COLUMN_FLAGS on each image row. This will trigger

openDocumentThumbnail() for each element as they are displayed in the picker. In this

method, we’ve shown how to open a FileDescriptor from internal storage and return it.

The sizeHint parameter should be used to ensure you don’t return a thumbnail that is too

large for display in the picker’s list. Our images are all small to begin with, so we haven’t

checked this parameter here. It is safe, if necessary, to block and download content inside

this method. For this case, a CancellationSignal is provided, which should be checked

regularly in case the framework cancels the load before it is finished.

When a document is finally selected, queryDocument() will be called again with the ID of the

logo image supplied. In this case, we must simply return the same results from addImageRow()

for the single document requested. This will trigger a call to openDocument(), where we must

return a valid ParcelFileDescriptor that the client can use to access the resource. Since our

content is the same as our thumbnail, the same logic is used to return the result.

The definition for our provider in the manifest also looks a bit different from before. Since the

provider will be queried directly by the framework, we must define some specific filters and

permissions (see Listing 5-44).

Listing 5-44. AndroidManifest.xml DocumentsProvider Snippet

<provider
 android:name="com.androidrecipes.sharedocuments.ImageProvider"
 android:authorities="com.androidrecipes.sharedocuments.images"
 android:grantUriPermissions="true"
 android:exported="true"
 android:permission="android.permission.MANAGE_DOCUMENTS">
 <!-- Unique filter the system will use to find published providers -->
 <intent-filter>
 <action android:name="android.content.action.DOCUMENTS_PROVIDER" />
 </intent-filter>
</provider>

467CHAPTER 5: Persisting Data

First, the provider must be exported so external applications can access it. This is usually

the default behavior with a provider that has an <intent-filter> attached, but it’s good to

be explicit here. The filter must include the DOCUMENTS_PROVIDER action, which is how the

framework will find installed providers it can access. Next, the provider must be protected

by the MANAGE_DOCUMENTS permission. This is a system-level permission that only system

applications can obtain, so this protects your provider from being exploited by other apps.

Finally, the grantUriPermissions attribute should be enabled. This allows the framework to

provide access permissions to client applications on a document-by-document basis, rather

than giving each client access to the whole provider.

Note This example application doesn’t have a user interface to launch, but with the application

installed, you can invoke the new provider by going to any system application that requires you to

pick an image; the Contacts application is a good choice. When creating a new contact, you can add

a photo, and selecting an existing image invokes the system picker UI.

Recent Documents

Remember in our example that we set the FLAG_SUPPORTS_RECENTS in the root metadata.

We also provided an implementation of queryRecentDocuments() to react to these inquiries.

There is no inherent limit to the number of recent documents any provider can return here,

but you will want to pick something that is relevant and contextual to the user. Here, we

return only the last selected logo image from our provider (something that we save on each

open request in a static variable). The metadata here is the same as any other documents

query, so the same addImageRow() method is invoked to populate the cursor.

With this in place, when we access the Recent section of our provider (as shown in

Figure 5-7), we can see the last image selection made.

468 CHAPTER 5: Persisting Data

Document Trees

(API Level 21)

If you would like to update your DocumentsProvider to support user selection of an entire

directory, you need to provide some additional overrides. Listing 5-45 shows just the

override excerpts that must be added to our ImageProvider.

Listing 5-45. Document Tree Support for ImageProvider

/*
 * Called by the system to determine how many "providers" are
 * hosted here. It is most common to return only one, via a
 * Cursor that has only one result row.
 */
@Override
public Cursor queryRoots(String[] projection) throws FileNotFoundException {
 if (projection == null) {
 projection = DEFAULT_ROOT_PROJECTION;
 }

 MatrixCursor result = new MatrixCursor(projection);
 //Add the single root for this provider
 MatrixCursor.RowBuilder builder = result.newRow();

Figure 5-7. Last select image shown in Recent UI

469CHAPTER 5: Persisting Data

 builder.add(Root.COLUMN_ROOT_ID, "root");
 builder.add(Root.COLUMN_TITLE, "Android Recipes");
 builder.add(Root.COLUMN_SUMMARY, "Android Recipes Documents Provider");
 builder.add(Root.COLUMN_ICON, R.drawable.ic_launcher);

 builder.add(Root.COLUMN_DOCUMENT_ID, DOCID_ROOT);

 builder.add(Root.COLUMN_FLAGS,
 //Results will only come from the local filesystem
 Root.FLAG_LOCAL_ONLY
 //We support showing recently selected items
 | Root.FLAG_SUPPORTS_RECENTS
 //We support doc tree selection (API 21+)
 | Root.FLAG_SUPPORTS_IS_CHILD);
 builder.add(Root.COLUMN_MIME_TYPES, "image/*");
 builder.add(Root.COLUMN_AVAILABLE_BYTES, 0);

 return result;
}

/*
 * This is method is required ONLY if you want to support document
 * tree selection (API 21+). Return whether a given document and
 * parent are related
 */
@Override
public boolean isChildDocument(String parentDocumentId, String documentId) {
 if (isRoot(parentDocumentId)) {
 //The subdirectories are children of root
 return isIconsDir(documentId)
 || isBackgroundsDir(documentId);
 }

 if (isIconsDir(parentDocumentId)) {
 //All icons are children of the icons directory
 return isIconDocument(documentId);
 }

 if (isBackgroundsDir(parentDocumentId)) {
 //All backgrounds are children of the backgrounds directory
 return isBackgroundsDocument(documentId);
 }

 //Otherwise, these ids don't know each other
 return false;
}

Our provider must implement the isChildDocument() method, allowing the framework to

determine which document IDs have a parent/child relationships when queries are made.

This method simply compares document IDs using our previous helper methods, returning

true when the document ID we are handed is contained within the given parent directory.

470 CHAPTER 5: Persisting Data

Figure 5-8. Document tree selection interface

Finally, we have to add Root.FLAG_SUPPORTS_IS_CHILD to the root definition to publish in the

initial query that this provider supports requests for a document tree in addition to requests

to a single document.

Figure 5-8 shows us the system-defined interface the user sees when a request is made to

select a document tree from any external application.

Notice the variation in this selection with the SELECT X button at the bottom. Tapping this

button will return a reference to the currently visible directory back to the calling application.

Summary
In this chapter, you investigated practical methods to persist data on Android devices. You

learned how to quickly create a preferences screen as well as how to use preferences and

a simple method for persisting basic data types. You saw how and where to place files, for

reference as well as storage. You even learned how to share your persisted data with other

applications. In the next chapter, we will investigate how to leverage the operating system’s

services to do background operations and to communicate between applications.

471

Chapter 6
Interacting with the System

The Android operating system provides a number of useful services that applications

can leverage. Many of these services are designed to allow your application to function

within the mobile system in ways beyond just interacting briefly with a user. Applications

can schedule themselves for alarms, run background services, and send messages to

each other—all of which allows an Android application to integrate to the fullest extent

with the mobile device. In addition, Android provides a set of standard interfaces that are

designed to expose all the data collected by its core applications to your software. Through

these interfaces, any application may integrate with, add to, and improve upon the core

functionality of the platform, thereby enhancing the experience for the user.

6-1. Notifying from the Background

Problem
Your application is running in the background, with no currently visible interface to the user,

but must notify the user of an important event that has occurred.

Solution
(API Level 4)

Use NotificationManager to post a status bar notification. Notifications provide an

unobtrusive way of indicating that you want the user’s attention. Perhaps new messages

have arrived, an update is available, or a long-running job is complete; notifications are

perfect for accomplishing these tasks.

How It Works
A notification can be posted to the NotificationManager from just about any system

component, such as a Service, BroadcastReceiver, or Activity. In Listings 6-1 and 6-2, we

will look at an activity that posts a series of different notification types when the user leaves

the activity and goes to the home screen.

472 CHAPTER 6: Interacting with the System

Listing 6-1. res/layout/activity_notification.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <RadioGroup
 android:id="@+id/options_group"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Rich Styles"/>
 <RadioButton
 android:id="@+id/option_basic"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Basic Notification"
 android:checked="true"/>
 <RadioButton
 android:id="@+id/option_bigtext"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="BigText Style"/>
 <RadioButton
 android:id="@+id/option_bigpicture"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="BigPicture Style"/>
 <RadioButton
 android:id="@+id/option_inbox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Inbox Style"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Secured Styles"/>
 <RadioButton
 android:id="@+id/option_private"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Public Version Lockscreen"/>

473CHAPTER 6: Interacting with the System

 <RadioButton
 android:id="@+id/option_secret"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Secret Lockscreen"/>
 <RadioButton
 android:id="@+id/option_headsup"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Heads-Up Notification"/>
 </RadioGroup>

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Post a Notification"
 android:onClick="onPostClick"/>

</LinearLayout>

Listing 6-2. Activity Firing a Notification

public class NotificationActivity extends Activity {

 private RadioGroup mOptionsGroup;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_notification);

 mOptionsGroup = (RadioGroup) findViewById(R.id.options_group);
 }

 public void onPostClick(View v) {
 final int noteId = mOptionsGroup.getCheckedRadioButtonId();
 final Notification note;
 switch (noteId) {
 case R.id.option_basic:
 case R.id.option_bigtext:
 case R.id.option_bigpicture:
 case R.id.option_inbox:
 note = buildStyledNotification(noteId);
 break;
 case R.id.option_private:
 case R.id.option_secret:
 case R.id.option_headsup:
 note = buildSecuredNotification(noteId);
 break;
 default:
 throw new IllegalArgumentException("Unknown Type");
 }

474 CHAPTER 6: Interacting with the System

 NotificationManager manager =
 (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
 manager.notify(noteId, note);
 }

 private Notification buildStyledNotification(int type) {
 Intent launchIntent =
 new Intent(this, NotificationActivity.class);
 PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0, launchIntent, 0);

 // Create notification with the time it was fired
 NotificationCompat.Builder builder = new NotificationCompat.Builder(
 NotificationActivity.this);

 builder.setSmallIcon(R.drawable.ic_launcher)
 .setTicker("Something Happened")
 .setWhen(System.currentTimeMillis())
 .setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_SOUND)
 .setContentTitle("We're Finished!")
 .setContentText("Click Here!")
 .setContentIntent(contentIntent);

 switch (type) {
 case R.id.option_basic:
 //Return the simple notification
 return builder.build();
 case R.id.option_bigtext:
 //Include two actions
 builder.addAction(android.R.drawable.ic_menu_call,
 "Call", contentIntent);
 builder.addAction(android.R.drawable.ic_menu_recent_history,
 "History", contentIntent);
 //Use the BigTextStyle when expanded
 NotificationCompat.BigTextStyle textStyle =
 new NotificationCompat.BigTextStyle(builder);
 textStyle.bigText(
 "Here is some additional text to be displayed when the

notification is "
 + "in expanded mode. I can fit so much more content into this

giant view!");

 return textStyle.build();
 case R.id.option_bigpicture:
 //Add one additional action
 builder.addAction(android.R.drawable.ic_menu_compass,
 "View Location", contentIntent);

475CHAPTER 6: Interacting with the System

 //Use the BigPictureStyle when expanded
 NotificationCompat.BigPictureStyle pictureStyle =
 new NotificationCompat.BigPictureStyle(builder);
 pictureStyle.bigPicture(BitmapFactory.decodeResource(getResources(),

R.drawable.dog));

 return pictureStyle.build();
 case R.id.option_inbox:
 //Use the InboxStyle when expanded
 NotificationCompat.InboxStyle inboxStyle =
 new NotificationCompat.InboxStyle(builder);
 inboxStyle.setSummaryText("4 New Tasks");
 inboxStyle.addLine("Make Dinner");
 inboxStyle.addLine("Call Mom");
 inboxStyle.addLine("Call Wife First");
 inboxStyle.addLine("Pick up Kids");

 return inboxStyle.build();
 default:
 throw new IllegalArgumentException("Unknown Type");
 }
 }

 //These properties can be overridden by the user's notification settings
 private Notification buildSecuredNotification(int type) {
 Intent launchIntent =
 new Intent(this, NotificationActivity.class);
 PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0, launchIntent, 0);

 //Construct the base notification
 NotificationCompat.Builder builder = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_launcher)
 .setContentTitle("Account Balance Update")
 .setContentText("Your account balance is -$250.00")
 .setStyle(new NotificationCompat.BigTextStyle()
 .bigText("Your account balance is -$250.00; pay us please "
 + "or we will be forced to take legal action!"))
 .setContentIntent(contentIntent);

 switch (type) {
 case R.id.option_private:
 //Provide a unique version for secured lock screens
 Notification publicNote = new Notification.Builder(this)
 .setSmallIcon(R.drawable.ic_launcher)
 .setContentTitle("Account Notification")
 .setContentText("An important message has arrived.")
 .setContentIntent(contentIntent)
 .build();

476 CHAPTER 6: Interacting with the System

 return builder.setPublicVersion(publicNote)
 .build();
 case R.id.option_secret:
 //Hide the notification from a secured lock screen completely
 return builder.setVisibility(Notification.VISIBILITY_SECRET)
 .build();
 case R.id.option_headsup:
 //Show a heads-up notification when posted
 return builder.setDefaults(Notification.DEFAULT_SOUND)
 .setPriority(Notification.PRIORITY_HIGH)
 .build();
 default:
 throw new IllegalArgumentException("Unknown Type");
 }
 }
}

A series of new notification elements are created using Notification.Builder when the

user leaves the activity. We will discuss the expanded types shortly, and just focus on the

basic type for now. An icon resource and title string may be provided, and these items will

display in the status bar at the time the notification occurs. In addition, we pass a time value

(in milliseconds) to display in the notification list as the event time. Here, we are setting

that value to the time the notification fired, but it may take on a different meaning in your

application.

Important We are using NotificationCompat.Builder in this example, which is part of the

Support Library and allows us to call the new APIs going back to Android 1.6 without branching our

code. If you are targeting only Android versions that natively support the notification features you

need, you can replace NotificationCompat.Builder with Notification.Builder within

the code.

Prior to creating the notification, we can fill it out with some other useful parameters, such

as more-detailed text to be displayed in the notifications list when the user pulls down the

status bar.

One of the parameters passed to the builder is a PendingIntent that points back to our

activity. This intent makes the notification interactive, allowing the user to tap it in the list and

launch the activity.

Note This intent will launch a new activity with each event. If you would rather an existing

instance of the activity respond to the launch, if one exists in the stack, be sure to include

intent flags and manifest parameters appropriately to accomplish this, such as

Intent.FLAG_ACTIVITY_CLEAR_TOP and android:launchMode="singleTop".

477CHAPTER 6: Interacting with the System

To enhance the notification beyond the visual animation in the status bar, the notification

defaults are modified to include that the system’s default notification sound be played when

the notification fires. Values such as Notification.DEFAULT_VIBRATION and Notification.
DEFAULT_LIGHTS may also be added.

Tip If you would like to customize the sound played with a notification, set the Notification.

sound parameter to a Uri that references a file or ContentProvider to read from.

We finally add a series of flags to the notification for further customization. This example

uses setAutoCancel() in the builder to enable Notification.FLAG_AUTO_CANCEL, which

cancels or removes the notification from the list as soon as the user selects it. Without

this flag, the notification remains in the list until it is manually dismissed or canceled

programmatically by calling NotificationManager.cancel() or NotificationManager.
cancelAll(). Another helpful flag to set with the builder is setOngoing(), which disables

any user ability to remove the notification. It can be cancelled only programmatically. This

is useful for notifying the user of background operations currently running, such as music

playing or location tracking underway.

Additionally, here are some other useful flags to apply that do not have methods inside the

builder. These flags can be set directly on the notification after it is constructed:

	FLAG_INSISTENT: Repeats the notification sounds until the user

responds.

	FLAG_NO_CLEAR: Does not allow the notification to be cleared with the

user’s Clear Notifications button, but only through a call to cancel().

Once the notification is prepared, it is posted to the user with

NotificationManager.notify(), which takes an ID parameter as well.

Each notification type in your application should have a unique ID. The

manager will allow only one notification with the same ID in the list at a

time, and new instances with the same ID will take the place of those

existing. In addition, the ID is required to cancel a specific notification

manually.

When we run this example, an activity displays, allowing the user to select the notification

type to post. Upon pressing the button, you can see the selected notification posted in the

status bar, even if you leave the activity and it is no longer visible (see Figure 6-1).

Figure 6-1. Notification that is occurring (left) and being displayed in the list (right)

478 CHAPTER 6: Interacting with the System

We will now dissect some of the richer notification features found in this example by the

platform level in which they were introduced.

Expanded Notification Styles

(API Level 16)

Starting with Android 4.1, notifications have the capability to display additional rich

information with interactivity directly in the notification view. These are known as notification

styles. Any notification that is currently at the top of the window shade is expanded by

default, and the user can expand any other notification with a two-finger gesture. Therefore,

expanded views don’t replace the traditional view; rather, they enhance the experience at

certain times.

Three default styles (implementations of Notification.Style) are provided by the platform:

	BigTextStyle: Displays an extended amount of text, such as the full

contents of a message or post

	BigPictureStyle: Displays a large, full-color image

	InboxStyle: Provides a list of items, similar to the inbox view from an

application such as Gmail

479CHAPTER 6: Interacting with the System

You are not limited to using these, however. Notification.Style is an interface that your

application can implement to display any custom expanded layout that may best fit your

needs.

In addition to styles, Android 4.1 added inline actions for an expanded notification. This

means that you can add multiple action items for the user to take directly from the window

shade view rather than just the single callback intent when the user clicks the whole

notification item. These items will show up on top of the expanded view, lined up at the

bottom. Listing 6-3 shows the code from the previous example to add a BigTextStyle

expanded notification collected together, and Figure 6-2 shows the result.

Listing 6-3. BigTextStyle Notification

//Create notification with the time it was fired
NotificationCompat.Builder builder =
 new NotificationCompat.Builder(NotificationActivity.this);

builder.setSmallIcon(R.drawable.icon)
 .setTicker("Something Happened")
 .setWhen(System.currentTimeMillis())
 .setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_SOUND)
 .setContentTitle("We're Finished!")
 .setContentText("Click Here!")
 .setContentIntent(contentIntent);

//Add some custom actions
builder.addAction(android.R.id.drawable.ic_menu_call, "Call Back", contentIntent);
builder.addAction(android.R.id.drawable.ic_menu_recent_history,
 "Call History", contentIntent);

//Apply an expanded style
NotificationCompat.BigTextStyle expandedStyle =
 new NotificationCompat.BigTextStyle(builder);
expandedStyle.bigText("Here is some additional text to be displayed when"
 + " the notification is in expanded mode. "
 + " I can fit so much more content into this giant view!");

Notification note = expandedStyle.build();

Figure 6-2. BigTextStyle in the window shade

480 CHAPTER 6: Interacting with the System

You can attach custom actions by using the addAction() method on the builder. You can see

here how the actions that are added lay out with respect to the overall view. In this example,

each action goes to the same place, but you can attach any PendingIntent to each action to

make them travel to different places in your application.

The only necessary modification to the previous example is that we wrap our existing

Builder object in the BigTextStyle and apply any specific customizations there. In this

case, the only additional piece of information is setting bigText() with the text to display

in expanded mode. Then the notification is created from the build() method on the style,

rather than the builder.

Let’s take a look at BigPictureStyle in Listing 6-4 and Figure 6-3.

Listing 6-4. BigPictureStyle Notification

 //Create notification with the time it was fired
 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(NotificationActivity.this);

 builder.setSmallIcon(R.drawable.icon)
 .setTicker("Something Happened")
 .setWhen(System.currentTimeMillis())
 .setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_SOUND)

Figure 6-3. BigPictureStyle in the window shade

481CHAPTER 6: Interacting with the System

 .setContentTitle("We're Finished!")
 .setContentText("Click Here!")
 .setContentIntent(contentIntent);

 //Add some custom actions
 builder.addAction(android.R.id.drawable.ic_menu_compass,
 "View Location", contentIntent);

 //Apply an expanded style
 NotificationCompat.BigPictureStyle expandedStyle =
 new NotificationCompat.BigPictureStyle(builder);
 expandedStyle.bigPicture(
 BitmapFactory.decodeResource(getResources(), R.drawable.icon));

 Notification note = expandedStyle.build();

This code is almost identical to BigTextStyle, except that here we use the bigPicture()

method to pass in the Bitmap that will be used as the full-color image. Finally, take a look at

InboxStyle in Listing 6-5 and Figure 6-4.

Figure 6-4. InboxStyle in the window shade

482 CHAPTER 6: Interacting with the System

Listing 6-5. InboxStyle Notification

//Create notification with the time it was fired
NotificationCompat.Builder builder =
 new NotificationCompat.Builder(NotificationActivity.this);

builder.setSmallIcon(R.drawable.icon)
 .setTicker("Something Happened")
 .setWhen(System.currentTimeMillis())
 .setAutoCancel(true)
 .setDefaults(Notification.DEFAULT_SOUND)
 .setContentTitle("We're Finished!")
 .setContentText("Click Here!")
 .setContentIntent(contentIntent);

//Apply an expanded style
NotificationCompat.InboxStyle expandedStyle =
 new NotificationCompat.InboxStyle(builder);
expandedStyle.setSummaryText("4 New Tasks");
expandedStyle.addLine("Make Dinner");
expandedStyle.addLine("Call Mom");
expandedStyle.addLine("Call Wife First");
expandedStyle.addLine("Pick up Kids");

Notification note = expandedStyle.build();

483CHAPTER 6: Interacting with the System

With Notification.InboxStyle, multiple items are added to the list by using the addLine()

method. We also topped off the example with a summary line noting the number of items

with setSummaryText(), a method that is available for use with all the previous styles as well.

As before, we’ve used the Support Library’s NotificationCompat class, which allows us

to call all these methods in an application running back to API Level 4. If your application

is targeting Android 4.1 as the minimum platform, you can replace this with the native

Notification.Builder.

One of the real powers of the Support Library is shown in this particular case. We are calling

methods that are not available until API Level 16, but the Support Library takes care of

version checking for us under the hood and simply ignores methods that a certain platform

doesn’t support; we don’t have to branch our code to use new APIs.

As a result, when this same code is used on a device running Android 4.0 or earlier, the

traditional notification will simply appear as if we hadn’t taken advantage of the new

features.

Notification Visibility and Privacy

(API Level 21)

As of Android 5.0, notifications are fully visible on the device lock screen without the need

to pull down the status bar. This is true even if the device is secured with a passcode.

To protect private information that may exist in a notification, you may supply additional

parameters to define what one can see from the lock screen.

Notifications have a visibility setting that governs their default behavior on a secured lock

screen. This means a lock screen with a passcode enabled. These features do nothing on a

lock screen that requires a simple slide gesture to unlock.

Figure 6-5 illustrates what a default notification will look like on a secured lock screen, before

we apply any custom visibility values.

Figure 6-5. Default notification on secured lock screen

484 CHAPTER 6: Interacting with the System

There are three options for notification visibility:

	VISIBILITY_PRIVATE: A redacted version of the notification, containing

only the application title and icon, will be visible until the device is

unlocked. This is the default visibility setting.

In this case, a public version of the notification may be supplied to display 	
until the device is unlocked.

	VISIBILITY_PUBLIC: The full notification will be visible, regardless of

whether the device is locked or unlocked.

	VISIBILITY_SECRET: The notification is completely hidden from the lock

screen. The user must unlock the device to see that it is even present.

Caution The user can override all of these visibility controls in the device’s notification settings.

For example, if the user chooses to have all notifications publicly visible, even notifications you set

as secret will appear on the lock screen.

Figure 6-6. Heads-up notification

485CHAPTER 6: Interacting with the System

Notifications support a priority setting in Android 4.1 and later. In Android 5.0, this allows

us to surface a notification with higher priority (such as an incoming call) in a heads-up

display mode. This mode will overlay the notification over any application content, without

waiting for the user to pull down the status bar, forcing the user to react to it immediately.

Notifications with their priority set to PRIORITY_HIGH or PRIORITY_MAX will be surfaced in

heads-up mode when possible. Figure 6-6 shows an example of a heads-up notification.

Listing 6-6 repeats the secured builder method from our example so we can examine these

parts in greater detail.

Listing 6-6. Secured Notification Features

private Notification buildSecuredNotification(int type) {
 Intent launchIntent =
 new Intent(this, NotificationActivity.class);
 PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0, launchIntent, 0);

 //Construct the base notification
 NotificationCompat.Builder builder = new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_launcher)
 .setContentTitle("Account Balance Update")
 .setContentText("Your account balance is -$250.00")

486 CHAPTER 6: Interacting with the System

 .setStyle(new NotificationCompat.BigTextStyle()
 .bigText("Your account balance is -$250.00; pay us please "
 + "or we will be forced to take legal action!"))
 .setContentIntent(contentIntent);

switch (type) {
 case R.id.option_private:
 //Provide a unique version for secured lock screens
 Notification publicNote = new Notification.Builder(this)
 .setSmallIcon(R.drawable.ic_launcher)
 .setContentTitle("Account Notification")
 .setContentText("An important message has arrived.")
 .setContentIntent(contentIntent)
 .build();

 return builder.setPublicVersion(publicNote)
 .build();
 case R.id.option_secret:
 //Hide the notification from a secured lock screen completely
 return builder.setVisibility(Notification.VISIBILITY_SECRET)
 .build();
 case R.id.option_headsup:
 //Show a heads-up notification when posted
 return builder.setDefaults(Notification.DEFAULT_SOUND)
 .setPriority(Notification.PRIORITY_HIGH)
 .build();
 default:
 throw new IllegalArgumentException("Unknown Type");
 }
}

For this block of options, we have created a base notification that is meant to be an alert

from the user’s bank containing a current account balance. This is sensitive information that

we should probably protect if the user secures the device.

The default behavior of the framework will hide the entire notification behind the redacted

view we saw in Figure 6-5, but perhaps we can be a bit smarter about this. When the

first user option is selected, we construct a second Notification instance and pass it to

setPublicVersion(). This version has a more benign message that is safe to display until the

device is unlocked. Figure 6-7 shows the public notification now displayed on the secured

lock screen.

Figure 6-7. Public version of private notification

487CHAPTER 6: Interacting with the System

Notice in the previous option we did not modify the notification’s visibility setting. This is

because the value we need to provide this behavior, VISIBILITY_PRIVATE, is the default

value. In the second user option, though, we want to hide the notification on the lock screen

completely until the device is unlocked. In this case, we simply set the visibility of the

notification to VISIBILITY_SECRET instead.

Finally, in cases where our notification is so important that the user should see it right

away, we can elevate its priority to PRIORITY_HIGH. This will cause the notification to post

immediately into the heads-up mode we saw in Figure 6-6.

Reminder On older platforms where these APIs are not supported, the framework will simply

ignore the values set in this section.

Figure 6-8. Notification settings warning

488 CHAPTER 6: Interacting with the System

NotificationListenerService

(API Level 18)

As of Android 4.3, a new service is available to applications that wish to monitor the status

of all the notifications on the device. Applications can extend NotificationListenerService

to receive updates whenever any application posts a new notification or when the user

clears an existing notification. In addition, the application can programmatically cancel any

specific notification, or clear all of them at once.

ENABLING NOTIFICATION ACCESS

Because this service provides your application global access to the active notifications list, permission must

first be granted. However, in this case, your application cannot declare this as a standard permission it would

like to obtain. Instead, the user must explicitly grant access from the Security section of the device’s Settings

application. There is a section for Notification Access, which will list all installed applications that have an

exported NotificationListenerService for the user to enable or disable this feature.

Figure 6-8 shows what the Notification Access section of Settings looks like on a Nexus device, along with the

prompt that a user will see after tapping your application item to enable access to this information.

It is up to your application to guide the user to Settings to enable this service to receive events; the framework

will not do it for you. You can take the user directly to the appropriate screen in Settings by firing an intent with

the android.settings.ACTION_NOTIFICATION_LISTENER_SETTINGS action string to start the activity.

As of Android 4.3, this string is not public in the SDK, so be aware that it may change in future versions.

489CHAPTER 6: Interacting with the System

Listing 6-7 shows a simple extension of NotificationListenerService.

Listing 6-7. NotificationListenerService Example

public class MonitorService extends NotificationListenerService {
 private static final String TAG = "RecipesMonitorService";

 @Override
 public void onNotificationPosted(StatusBarNotification sbn) {
 //Validate the notification came from this application
 if (!TextUtils.equals(sbn.getPackageName(), getPackageName())) {
 return;
 }

 Log.i(TAG, "Notification "+sbn.getId()+" Posted");
 }

 @Override
 public void onNotificationRemoved(StatusBarNotification sbn) {
 //Validate the notification came from this application
 if (!TextUtils.equals(sbn.getPackageName(), getPackageName())) {
 return;
 }
 //We are looking for the basic notification
 if (R.id.option_basic != sbn.getId()) {
 return;
 }

 //If the basic notification cancels, dismiss all of ours
 for (StatusBarNotification note : getActiveNotifications()) {
 if (TextUtils.equals(note.getPackageName(), getPackageName())) {
 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.LOLLIPOP) {
 cancelNotification(note.getPackageName(),
 note.getTag(),
 note.getId());
 } else {
 cancelNotification(note.getKey());
 }
 }
 }
 }

}

There are two abstract methods you must implement: onNotificationPosted()

and onNotificationRemoved(). These will be called by the framework when a new

notification comes in or another is dismissed, respectively. The content passed in is

a StatusBarNotification instance, which is just a basic wrapper around the original

notification with some additional metadata (for example, the package name of the

application that posted it and the ID or tag applied). The original notification is also still

accessible as a parameter.

490 CHAPTER 6: Interacting with the System

In this example, when a notification is added, we simply log the event if the notification

came from our application. If a notification is removed, we check whether it was the basic

style notification element and, if so, dismiss all the notifications posted from our application

that are still active. The getActiveNotifications() method is helpful in obtaining everything

currently visible to the user. We can verify which notifications came from us by comparing

the package names of each one. When the package matches, we call cancelNotification()

with the metadata from the notification element to remove it programmatically. You can

also call cancelAllNotifications() to clear the entire window shade without any regard for

where the active elements came from.

Listing 6-8 shows the AndroidManifest.xml snippet you will need to add.

Listing 6-8. NotificationListenerService Manifest Element

<service android:name=".MonitorService"
 android:permission="android.permission.BIND_NOTIFICATION_LISTENER_SERVICE">
 <intent-filter>
 <action android:name="android.service.notification.NotificationListenerService" />
 </intent-filter>
</service>

The two required elements here are the action string of the <intent-filter> and the

declared permission. The framework will look for both of these when determining which

NotificationListenerService elements it can bind to.

6-2. Creating Timed and Periodic Tasks

Problem
Your application needs to run an operation on a timer, such as updating the UI on a

scheduled basis.

Solution
(API Level 1)

Use the timed operations provided by Handler. With Handler, operations can efficiently be

scheduled to occur at a specific time or after a specified delay.

491CHAPTER 6: Interacting with the System

How It Works
Let’s look at an example activity that displays the current time in a TextView. See Listing 6-9.

Listing 6-9. Activity Updated with a Handler

public class TimingActivity extends Activity {

 TextView mClock;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mClock = new TextView(this);
 setContentView(mClock);
 }

 private Handler mHandler = new Handler();
 private Runnable timerTask = new Runnable() {
 @Override
 public void run() {
 Calendar now = Calendar.getInstance();
 mClock.setText(String.format("%02d:%02d:%02d",
 now.get(Calendar.HOUR),
 now.get(Calendar.MINUTE),
 now.get(Calendar.SECOND)));
 //Schedule the next update in one second
 mHandler.postDelayed(timerTask,1000);
 }
 };

 @Override
 public void onResume() {
 super.onResume();
 mHandler.post(timerTask);
 }

 @Override
 public void onPause() {
 super.onPause();
 mHandler.removeCallbacks(timerTask);
 }
}

Here we’ve wrapped up the operation of reading the current time and updating the UI into

a Runnable named timerTask, which will be triggered by the Handler that has also been

created. When the activity becomes visible, the task is executed as soon as possible with a

call to Handler.post(). After the TextView has been updated, the final operation

of timerTask is to invoke the Handler to schedule another execution 1 second

(1,000 milliseconds) from now by using Handler.postDelayed().

492 CHAPTER 6: Interacting with the System

As long as the activity remains uninterrupted, this cycle will continue, with the UI being

updated every second. As soon as the activity is paused (the user leaves or something else

grabs his or her attention), Handler.removeCallbacks() removes all pending operations and

ensures the task will not be called further until the activity becomes visible once more.

Tip In this example, we are safe to update the UI because the Handler was created on the main

thread. A Handler will always execute operations on the thread in which it was created, unless

a Looper from another thread is passed explicitly to its constructor. We will see how this can be

used for background queues in a later recipe, but it is also worth noting here that you can create

a Handler from a background thread that posts to the main thread by passing it the result of

Looper.getMainLooper(), which is a static reference to the Looper of the main UI thread.

6-3. Scheduling a Periodic Task

Problem
Your application needs to register to run a task periodically, such as checking a server for

updates or reminding the user to do something.

Solution
(API Level 1)

Utilize the AlarmManager to manage and execute your task. AlarmManager is useful for

scheduling future single or repeated operations that need to occur even if your application

is not running. AlarmManager is handed a PendingIntent to fire whenever an alarm is

scheduled. This intent can point to any system component, such as a BroadcastReceiver or

Service, that can be executed when the alarm triggers.

AlarmManager supports a type parameter to govern the conditions of how the alarm is

scheduled:

	ELAPSED_REALTIME: The alarm times are references to a value

(in milliseconds) since the last device boot.

	ELAPSED_REALTIME_WAKEUP: The alarm times are referenced to time

elapsed and will wake the device to trigger if it is asleep.

	RTC: The alarm times are referenced to UTC time.

	RTC_WAKEUP: The alarm times are referenced to UTC time and will wake

the device to trigger if it is asleep.

493CHAPTER 6: Interacting with the System

Note If you choose a wake-up alarm type, Android will wake the device from sleep but will not

keep the device awake for you. You must obtain a WakeLock from PowerManager while doing

your background work from a wake-up event. Otherwise, Android is likely to put the device back to

sleep quickly, which will halt what you may be doing.

It should be noted that this method is best suited to operations that need to occur even when

the application code may not be running. The AlarmManager requires too much overhead

to be useful for simple timing operations that may be needed while an application is in use.

These are better handled using the postAtTime() and postDelayed() methods of a Handler.

(API Level 21)

The JobScheduler system service in Android 5.0 and later is a more efficient solution for

scheduling background work. One-shot or periodic tasks can be scheduled with the service

for later execution. This method is preferred to straight alarms for many tasks because the

framework will attempt to do what it can to batch operations together, minimizing the impact on

device battery and network usage. This also means, however, that the default operation timing

is inexact. If very strict timing requirements are necessary, alarms may be a better choice.

We can schedule tasks by constructing a unique JobInfo object for each task, which contains

any extra metadata our application may need to accomplish the task. JobInfo also supports

criteria for the conditions under which the task should execute. The JobInfo.Builder

includes the following methods for applying the necessary criteria to your job request:

	setRequiredNetworkType(): Describes the network conditions that must

exist for your job to run. For example, the system will not trigger a job

with NETWORK_TYPE_UNMETERED set unless the device is connected to Wi-Fi.

The default indicates that no network access is necessary for this job.

	setRequiresCharging(): The device must be plugged into a charge

for this job to run. This can be helpful for jobs that are infrequent and

battery intensive.

	setRequiresDeviceIdle(): The device must be in idle mode for this

job to run. This can be loosely correlated to saying the device must be

inactive or asleep.

	setPersisted(): Controls whether the job should automatically be

scheduled on a device reboot. The default is false, meaning the

application would be responsible for scheduling a job manually on restart.

	setBackoffCriteria(): Controls how and when a failed job should be

rescheduled to run again. This can be used to minimize unnecessary retries

when a resource (such as network access) is temporarily unavailable.

	setPeriodic(): Indicates the job should be run regularly on the given

interval until it is explicitly cancelled.

494 CHAPTER 6: Interacting with the System

To execute the work, applications must provide a subclass of JobService that the framework

can bind to. The framework will invoke this service when the scheduled time of the task

occurs. Similar to AlarmManager, scheduled jobs will run even if the application process is

not currently running at the time. One advantage to this approach is that the framework

automatically handles obtaining wake locks for the scheduled jobs so work can continue

even when the device is idle.

How It Works
Let’s start with alarms and take a look at how AlarmManager can be used to trigger a service

on a regular basis. See Listings 6-10 through 6-12.

Listing 6-10. Service to Be Triggered

public class AlarmService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 //Perform an interesting operation, we'll just display the current time
 Calendar now = Calendar.getInstance();
 DateFormat formatter = SimpleDateFormat.getTimeInstance();
 Toast.makeText(this, formatter.format(now.getTime()), Toast.LENGTH_SHORT).show();

 return START_NOT_STICKY;
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

Listing 6-11. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/start"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Periodic Task" />
 <Button
 android:id="@+id/stop"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Cancel Periodic Task" />
</LinearLayout>

495CHAPTER 6: Interacting with the System

Listing 6-12. Activity to Register/Unregister Alarms

public class AlarmActivity extends Activity implements View.OnClickListener {

 private PendingIntent mAlarmIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Attach the listener to both buttons
 findViewById(R.id.start).setOnClickListener(this);
 findViewById(R.id.stop).setOnClickListener(this);
 //Create the launch sender
 Intent launchIntent = new Intent(this, AlarmService.class);
 mAlarmIntent = PendingIntent.getService(this, 0, launchIntent, 0);
 }

 @Override
 public void onClick(View v) {
 AlarmManager manager = (AlarmManager)getSystemService(Context.ALARM_SERVICE);
 long interval = 5*1000; //5 seconds

 switch(v.getId()) {
 case R.id.start:
 Toast.makeText(this, "Scheduled", Toast.LENGTH_SHORT).show();
 manager.setRepeating(AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime()+interval,
 interval,
 mAlarmIntent);
 break;
 case R.id.stop:
 Toast.makeText(this, "Canceled", Toast.LENGTH_SHORT).show();
 manager.cancel(mAlarmIntent);
 break;
 default:
 break;
 }
 }
}

In this example, we have provided a very basic service that will simply display the current

time as a Toast every time it is triggered. That service must be registered in the application’s

manifest with a <service> tag. Otherwise, AlarmManager—which is external to your

application—will not be aware of how to trigger it. The sample activity presents two buttons:

one to begin firing regular alarms, and the other to cancel them.

The operation to trigger is referenced by a PendingIntent, which will be used to both set and

cancel the alarms. We create an intent referencing the service directly, and then we wrap

that intent inside a PendingIntent obtained with getService().

496 CHAPTER 6: Interacting with the System

Reminder PendingIntent has the creator methods getActivity() and getBroadcast()

as well. Be sure to reference the correct application component you are triggering when creating

this piece.

When the Start button is pressed, the activity registers a repeating alarm by using

AlarmManager.setRepeating(). In addition to PendingIntent, this method takes some

parameters to determine when to trigger the alarms. The first parameter defines the alarm

type, in terms of the units of time to use and whether the alarm should occur when the

device is in sleep mode. In the example, we chose ELAPSED_REALTIME.

The remaining parameters (respectively) refer to the first time the alarm will trigger and the

interval on which it should repeat. Because the chosen alarm type is ELAPSED_REALTIME, the

start time must also be relative to elapsed time; SystemClock.elapsedRealtime() provides

the current time in this format.

The alarm in the example is registered to trigger 5 seconds after the button is pressed,

and then every 5 seconds after that. Every 5 seconds, a Toast will come onscreen with the

current time value, even if the application is no longer running or in front of the user. When

the user displays the activity and presses the Stop button, any pending alarms matching our

PendingIntent are immediately canceled and will stop the flow of Toasts.

Important Alarms do not persist through a device reboot. If a device is powered off and then back

on, any previously registered alarms must be rescheduled.

A More Precise Example

What if we wanted to schedule an alarm to occur at a specific time? Perhaps exactly at 9:00

AM? Setting AlarmManager with some slightly different parameters could accomplish this.

See Listing 6-13.

Listing 6-13. Precision Alarm

long firstTime;

//Get a Calendar (defaults to today)
//Set the time to 09:00:00
Calendar startTime = Calendar.getInstance();
startTime.set(Calendar.HOUR_OF_DAY, 9);
startTime.set(Calendar.MINUTE, 0);
startTime.set(Calendar.SECOND, 0);

//Get a Calendar at the current time
Calendar now = Calendar.getInstance();

497CHAPTER 6: Interacting with the System

if(now.before(startTime)) {
 //It's not 9AM yet, start today
 firstTime = startTime.getTimeInMillis();
} else {
 //Start 9AM tomorrow
 startTime.add(Calendar.DATE, 1);
 firstTime = startTime.getTimeInMillis();
}

//Set the alarm
if (Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT) {
 manager.set(AlarmManager.RTC,
 nextStartTime(),
 mAlarmIntent);
} else {
 manager.setExact(AlarmManager.RTC,
 nextStartTime(),
 mAlarmIntent);
}

This example uses an alarm that is referenced to real time. A determination is made whether

the next occurrence of 9:00 AM will be today or tomorrow, and that value is returned as the

trigger time for the alarm. Starting in Android 4.4, the AlarmManager defaults all alarms to be

inexact, meaning there is a small window within which they will trigger. Along with this new

behavior, the setExact() API method was added to allow developers to declare that the

following alarm cannot fall within an inexact window. Prior to 4.4, simply calling set() with

the appropriate start time was sufficient.

Tip After Android 4.4, repeating alarms cannot be scheduled for exact time intervals; they will

always be interpreted using an inexact window. Alarms that must repeat at exactly the same time

need to be rescheduled by the application after each trigger event.

Using Scheduled Jobs

(API Level 21)

Let’s take a look at a similar example that takes advantage of JobScheduler instead.

Listing 6-14 reveals a modified service to handle the work of showing the time as a job.

Listing 6-14. Worker as a JobService

public class WorkerService extends JobService {

 private static final int MSG_JOB = 1;

 //Simple queue handler for executing the jobs that are scheduled
 private Handler mJobProcessor = new Handler(new Handler.Callback() {
 @Override

498 CHAPTER 6: Interacting with the System

 public boolean handleMessage(Message msg) {
 JobParameters params = (JobParameters) msg.obj;
 Log.i("WorkerService", "Executing Job "+params.getJobId());
 //After completing our asynchronous work, we must trigger
 // jobFinished() to allow the next scheduled task to run.
 doWork();
 jobFinished(params, false);

 return true;
 }
 });

 @Override
 public boolean onStartJob(JobParameters jobParameters) {
 Log.d("WorkerService", "Start Job "+jobParameters.getJobId());
 //To simulate a long task, we delay execution by 7.5 seconds
 mJobProcessor.sendMessageDelayed(
 Message.obtain(mJobProcessor, MSG_JOB, jobParameters),
 7500
);

 /*
 * Return false if the job was synchronously completed here,
 * true if you need to do more background work. In the latter
 * case, you must call jobFinished() to notify the system of
 * completion.
 */
 return true;
 }

 @Override
 public boolean onStopJob(JobParameters jobParameters) {
 Log.w("WorkerService", "Stop Job "+jobParameters.getJobId());
 //When a request to stop comes in, we have to cancel any pending jobs
 mJobProcessor.removeMessages(MSG_JOB);

 /*
 * Return true to have the job rescheduled, false to drop it
 */
 return false;
 }

 private void doWork() {
 //Perform an interesting operation, we'll just display the current time
 Calendar now = Calendar.getInstance();
 DateFormat formatter = SimpleDateFormat.getTimeInstance();
 Toast.makeText(this, formatter.format(now.getTime()), Toast.LENGTH_SHORT).show();
 }
}

499CHAPTER 6: Interacting with the System

Notice that we must provide this service as an implementation of a JobService. This

provides the callbacks we need to interact with the JobScheduler. We have encapsulated the

operation of showing the date into a doWork() method. To simulate a slightly more complex

task, we delayed execution 7.5 seconds by posting it to a Handler as a Message.

The system will trigger a previously scheduled job via onStartJob(); this is the method

you must use to begin your job task. The return value of onStartJob() tells the framework

whether your job was simple enough to complete synchronously (that is, it's already done

when the method returns) or whether an asynchronous task was started. If you return false

in onStartJob(), the framework considers the task complete and you're done until the

framework triggers a new job.

However, we return true to indicate our task will take a bit longer. This means we are

responsible for notifying the framework when it does complete. JobScheduler will not trigger

any more of the same job until the current job is complete.

After the requested delay, handleMessage() triggers to process our doWork() method. At this

point, we have to call jobFinished() to indicate the task is finally complete. This method

requires the original JobParameters object to identify the job, so we pass this along in the

Message that is queued up. If something failed in our task, jobFinished() accepts a boolean

parameter to tell the framework to reschedule the job according to the criteria set in the

original JobInfo.

A JobService must also support cancellation of a pending job. If JobScheduler receives a

cancel request while it is waiting on a job in progress, onStopJob() will be triggered on the

service. The service is responsible for terminating the job as soon as this happens. In our

example, we simply have to clear any pending tasks in the Handler queue so they do not fire.

Tip If your task is synchronous, meaning you return false from onStartJob(), the framework

assumes no work is pending so cancellation requests have no meaning and onStopJob() will

never be called.

As you can see in Listing 6-15, we must define this service in the manifest. Additionally,

since we are required to expose this service to the framework, Android requires that our

service be protected by the BIND_JOB_SERVICE permission. This is a permission that only the

framework can hold, so it protects our service from access by any other applications. Failing

to supply this permission will result in an exception when attempting to schedule a job.

Listing 6-15. Partial AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android" ...>

 <application ...>

 <service android:name=".WorkerService"
 android:permission="android.permission.BIND_JOB_SERVICE" />

 </application>
</manifest>

500 CHAPTER 6: Interacting with the System

Now that our service is complete, we look to Listing 6-16 to wire our new service up to a

similar activity that we can use to manage scheduling the work as a job.

Listing 6-16. Activity to Schedule a Background Job

public class JobSchedulerActivity extends Activity implements View.OnClickListener {

 private static final int JOB_ID = 1;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Attach the listener to both buttons
 findViewById(R.id.start).setOnClickListener(this);
 findViewById(R.id.stop).setOnClickListener(this);
 }

 @Override
 public void onClick(View view) {
 JobScheduler scheduler = (JobScheduler) getSystemService(JOB_SCHEDULER_SERVICE);
 long interval = 5*1000; //5 seconds

 JobInfo info = new JobInfo.Builder(JOB_ID,
 new ComponentName(getPackageName(), WorkerService.class.getName()))
 .setPeriodic(interval)
 .build();

 switch (view.getId()) {
 case R.id.start:
 //Android will return the same Job ID anytime the same info
 // is passed to schedule(), it will not duplicate jobs
 int result = scheduler.schedule(info);
 if (result <= 0) {
 Toast.makeText(this, "Error Scheduling Job", Toast.LENGTH_SHORT).show();
 }
 break;
 case R.id.stop:
 //The Job ID must match what was passed to schedule, so keep it around
 scheduler.cancel(JOB_ID);
 break;
 default:
 break;
 }
 }
}

501CHAPTER 6: Interacting with the System

In this example, we represent the work to schedule as a JobInfo instance retrieved from

a JobInfo.Builder. At a minimum, the info must contain the job ID and the name of the

service that will execute the work. We also supply a periodic interval, telling the system to

schedule this job every 5 seconds.

When the Start button is pressed, the info object is passed to JobScheduler.schedule()

to begin triggering the periodic task. This will initiate the first job on our WorkerService

approximately 5 seconds after this event. When we want to stop the periodic task, the Stop

button triggers JobScheduler.cancel() with the matching job ID.

Note The behavior you should observe in this example is that the time will be shown

approximately every 12.5 seconds. This is because JobScheduler schedules the next periodic

task after the previous one completes. Since we delay the task 7.5 seconds in our service before

notifying completion, this extends the overall period.

6-4. Creating Sticky Operations

Problem
Your application needs to execute one or more background operations that will run to

completion even if the user suspends the application.

Solution
(API Level 3)

Create an IntentService to handle the work. IntentService is a wrapper around Android’s

base service implementation, the key component to doing work in the background without

interaction from the user. IntentService queues incoming work (expressed using intents),

processing each request in turn, and then stops itself when the queue is empty.

IntentService also handles creation of the worker thread needed to do the work in the

background, so it is not necessary to use AsyncTask or Java threads to ensure that the

operation is properly in the background.

This recipe provides an example of using IntentService to create a central manager of

background operations. In the example, the manager will be invoked externally with calls

to Context.startService(). The manager will queue up all requests received, and process

them individually with a call to onHandleIntent().

502 CHAPTER 6: Interacting with the System

How It Works
Let’s take a look at how to construct a simple IntentService implementation to handle a

series of background operations. See Listing 6-17.

Listing 6-17. IntentService Handling Operations

public class OperationsManager extends IntentService {

 public static final String ACTION_EVENT = "ACTION_EVENT";
 public static final String ACTION_WARNING = "ACTION_WARNING";
 public static final String ACTION_ERROR = "ACTION_ERROR";
 public static final String EXTRA_NAME = "eventName";

 private static final String LOGTAG = "EventLogger";

 private IntentFilter matcher;

 public OperationsManager() {
 super("OperationsManager");
 //Create the filter for matching incoming requests
 matcher = new IntentFilter();
 matcher.addAction(ACTION_EVENT);
 matcher.addAction(ACTION_WARNING);
 matcher.addAction(ACTION_ERROR);
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 //Check for a valid request
 if(!matcher.matchAction(intent.getAction())) {
 Toast.makeText(this, "OperationsManager: Invalid Request",
 Toast.LENGTH_SHORT).show();
 return;
 }

 //Handle each request directly in this method. Don't create more threads.
 if(TextUtils.equals(intent.getAction(), ACTION_EVENT)) {
 logEvent(intent.getStringExtra(EXTRA_NAME));
 }
 if(TextUtils.equals(intent.getAction(), ACTION_WARNING)) {
 logWarning(intent.getStringExtra(EXTRA_NAME));
 }
 if(TextUtils.equals(intent.getAction(), ACTION_ERROR)) {
 logError(intent.getStringExtra(EXTRA_NAME));
 }
 }

503CHAPTER 6: Interacting with the System

 private void logEvent(String name) {
 try {
 //Simulate a long network operation by sleeping
 Thread.sleep(5000);
 Log.i(LOGTAG, name);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 private void logWarning(String name) {
 try {
 //Simulate a long network operation by sleeping
 Thread.sleep(5000);
 Log.w(LOGTAG, name);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 private void logError(String name) {
 try {
 //Simulate a long network operation by sleeping
 Thread.sleep(5000);
 Log.e(LOGTAG, name);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

IntentService does not have a default constructor (one that takes no parameters), so a

custom implementation must implement a constructor that calls through to super with a

service name. This name is of little technical importance, as it is useful only for debugging;

Android uses the name provided to name the worker thread that it creates.

All requests are processed by the service through the onHandleIntent() method. This

method is called on the provided worker thread, so all work should be done directly here;

no new threads or operations should be created. When onHandleIntent() returns, this is the

signal to the IntentService to begin processing the next request in the queue.

This example provides three logging operations that can be requested using different action

strings on the request intents. For demonstration purposes, each operation writes the

provided message out to the device log by using a specific logging level (INFO, WARNING, or

ERROR). Note that the message itself is passed as an extra of the request intent. Use the data

and extra fields of each intent to hold any parameters for the operation, leaving the action

field to define the operation type.

The service in the example maintains an IntentFilter, which is used for convenience to

determine whether a valid request has been made. All of the valid actions are added to the

filter when the service is created, allowing us to call IntentFilter.matchAction() on any

incoming request to determine whether it includes an action we can process here.

504 CHAPTER 6: Interacting with the System

Listings 6-18 and 6-19 reveal an example including an activity calling in to this service to

perform work.

Listing 6-18. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.sticky">

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".ReportActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name=".OperationsManager"></service>
 </application>
</manifest>

Note Because IntentService is invoked as a service, it must be declared in the application

manifest with a <service> tag.

Listing 6-19. Activity Calling IntentService

public class ReportActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 logEvent("CREATE");
 }

 @Override
 public void onStart() {
 super.onStart();
 logEvent("START");
 }

 @Override
 public void onResume() {
 super.onResume();
 logEvent("RESUME");
 }

505CHAPTER 6: Interacting with the System

 @Override
 public void onPause() {
 super.onPause();
 logWarning("PAUSE");
 }

 @Override
 public void onStop() {
 super.onStop();
 logWarning("STOP");
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 logWarning("DESTROY");
 }

 private void logEvent(String event) {
 Intent intent = new Intent(this, OperationsManager.class);
 intent.setAction(OperationsManager.ACTION_EVENT);
 intent.putExtra(OperationsManager.EXTRA_NAME, event);

 startService(intent);
 }

 private void logWarning(String event) {
 Intent intent = new Intent(this, OperationsManager.class);
 intent.setAction(OperationsManager.ACTION_WARNING);
 intent.putExtra(OperationsManager.EXTRA_NAME, event);

 startService(intent);
 }
}

This activity isn’t much to look at, as all the interesting events are sent out through the

device log instead of to the user interface. Nevertheless, it helps illustrate the queue-

processing behavior of the service we created in the previous example. As the activity

becomes visible, it will call through all of its normal life-cycle methods, resulting in three

requests made of the logging service. As each request is processed, a line will output to the

log and the service will move on.

Tip These log statements are visible through the logcat tool provided with the SDK. The logcat

output from a device or emulator is visible from within most development environments (including

Eclipse) or from the command line by typing adb logcat.

506 CHAPTER 6: Interacting with the System

Notice also that when the service is finished with all three requests, a notification is logged

out that the service has been stopped. IntentServices are around in memory for only as

long as required to complete the job; this is a very useful feature for your services to have,

making them good citizens of the system.

Pressing either the HOME or BACK buttons will cause more of the life-cycle methods to

generate requests of the service, and the Pause/Stop/Destroy portion calls a separate

operation in the service, causing their messages to be logged as warnings; simply setting

the action string of the request intent to a different value controls this.

Notice that messages continue to be output to the log, even after the application is no

longer visible (or even if another application is opened instead). This is the power of the

Android service component at work. These operations are protected from the system until

they are complete, regardless of user behavior.

A Possible Drawback

In each of the operation methods, a 5-second delay has been placed to simulate the time

required for an actual request to be made of a remote API or some similar operation. When

running this example, it also helps to illustrate that IntentService handles all requests sent

to it in a serial fashion with a single worker thread. The example queues multiple requests in

succession from each life-cycle method; however, the result will still be a log message every

5 seconds, because IntentService does not start a new request until the current one is

complete (essentially, when onHandleIntent() returns).

If your application requires concurrency from sticky background tasks, you may need to

create a more customized service implementation that uses a pool of threads to execute

work. The beauty of Android being an open source project is that you can go directly to the

source code for IntentService and use it as a starting point for such an implementation,

minimizing the amount of time and custom code required.

6-5. Running Persistent Background Operations

Problem
Your application has a component that must be running in the background indefinitely,

performing a particular operation or monitoring certain events to occur.

Solution
(API Level 1)

Build the component into a service. Services are designed as background components that

an application may start and leave running for an indefinite amount of time. Services are also

given elevated status above other background processes in terms of protection from being

killed in low-memory conditions.

507CHAPTER 6: Interacting with the System

Services may be started and stopped explicitly for operations that do not require a direct

connection to another component (like an activity). However, if the application must interact

directly with the service, a binding interface is provided to pass data. In these instances,

the service may be started and stopped implicitly by the system as is required to fulfill its

requested bindings.

The key thing to remember with service implementations is to always be user-friendly. An

indefinite operation most likely should not be started unless the user explicitly requests it.

The overall application should probably contain an interface or setting that allows the user to

control enabling or disabling such a service.

How It Works
Listing 6-20 is an example of a persisted service that is used to track and log the user’s

location over a certain period.

Listing 6-20. Persistent Tracking Service

public class TrackerService extends Service implements LocationListener {

 private static final String LOGTAG = "TrackerService";

 private LocationManager manager;
 private ArrayList<Location> storedLocations;

 private boolean isTracking = false;

 /* Service Setup Methods */
 @Override
 public void onCreate() {
 manager = (LocationManager)getSystemService(LOCATION_SERVICE);
 storedLocations = new ArrayList<Location>();
 Log.i(LOGTAG, "Tracking Service Running...");
 }

 @Override
 public void onDestroy() {
 manager.removeUpdates(this);
 Log.i(LOGTAG, "Tracking Service Stopped...");
 }

 public void startTracking() {
 if(!manager.isProviderEnabled(LocationManager.GPS_PROVIDER)) {
 return;
 }
 Toast.makeText(this, "Starting Tracker", Toast.LENGTH_SHORT).show();
 manager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 30000, 0, this);

 isTracking = true;
 }

508 CHAPTER 6: Interacting with the System

 public void stopTracking() {
 Toast.makeText(this, "Stopping Tracker", Toast.LENGTH_SHORT).show();
 manager.removeUpdates(this);
 isTracking = false;
 }

 public boolean isTracking() {
 return isTracking;
 }

 /* Service Access Methods */
 public class TrackerBinder extends Binder {
 TrackerService getService() {
 return TrackerService.this;
 }
 }

 private final IBinder binder = new TrackerBinder();

 @Override
 public IBinder onBind(Intent intent) {
 return binder;
 }

 public int getLocationsCount() {
 return storedLocations.size();
 }

 public ArrayList<Location> getLocations() {
 return storedLocations;
 }

 /* LocationListener Methods */
 @Override
 public void onLocationChanged(Location location) {
 Log.i("TrackerService", "Adding new location");
 storedLocations.add(location);
 }

 @Override
 public void onProviderDisabled(String provider) { }

 @Override
 public void onProviderEnabled(String provider) { }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) { }
}

509CHAPTER 6: Interacting with the System

This service monitors and tracks the updates it receives from the LocationManager. When

the service is created, it prepares a blank list of Location items and waits to begin tracking.

An external component, such as an activity, can call startTracking() and stopTracking()

to enable and disable the flow of location updates to the service. In addition, methods are

exposed to access the list of locations that the service has logged.

Because this service requires direct interaction from an activity or other component, a

Binder interface is required. The Binder concept can get complex when a service has to

communicate across process boundaries, but for instances like this, where everything is

local to the same process, a very simple Binder is created with one method, getService(),

to return the service instance itself to the caller. We’ll look at this in more detail from the

activity’s perspective in a moment.

When tracking is enabled on the service, it registers for updates with LocationManager, and it

stores every update received in its locations list. Notice that requestLocationUpdates() was

called with a minimum time of 30 seconds. Because this service is expected to be running

for a long time, it is prudent to space out the updates to give the GPS (and consequently the

battery) a little rest.

Now let’s take a look at a simple activity that allows the user access into this service. See

Listings 6-21 through 6-23.

Listing 6-21. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.service">

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".ServiceActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name=".TrackerService"></service>
 </application>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
</manifest>

Reminder The service must be declared in the application manifest by using a <service>

tag so Android knows how and where to call it. Also, for this example, the permission android.

permission.ACCESS_FINE_LOCATION is required because we are working with the GPS.

510 CHAPTER 6: Interacting with the System

Listing 6-22. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/enable"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Tracking" />
 <Button
 android:id="@+id/disable"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop Tracking" />
 <TextView
 android:id="@+id/status"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Listing 6-23. Activity Interacting with Service

public class ServiceActivity extends Activity implements View.OnClickListener {

 Button enableButton, disableButton;
 TextView statusView;

 TrackerService trackerService;
 Intent serviceIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 enableButton = (Button)findViewById(R.id.enable);
 enableButton.setOnClickListener(this);
 disableButton = (Button)findViewById(R.id.disable);
 disableButton.setOnClickListener(this);
 statusView = (TextView)findViewById(R.id.status);

 serviceIntent = new Intent(this, TrackerService.class);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Starting the service makes it stick, regardless of bindings
 startService(serviceIntent);
 //Bind to the service
 bindService(serviceIntent, serviceConnection, Context.BIND_AUTO_CREATE);
 }

511CHAPTER 6: Interacting with the System

 @Override
 public void onPause() {
 super.onPause();
 if(!trackerService.isTracking()) {
 //Stopping the service lets it die once unbound
 stopService(serviceIntent);
 }
 //Unbind from the service
 unbindService(serviceConnection);
 }

 @Override
 public void onClick(View v) {
 switch(v.getId()) {
 case R.id.enable:
 trackerService.startTracking();
 break;
 case R.id.disable:
 trackerService.stopTracking();
 break;
 default:
 break;
 }
 updateStatus();
 }

 private void updateStatus() {
 if(trackerService.isTracking()) {
 statusView.setText(
 String.format("Tracking enabled. %d locations
 logged.",trackerService.getLocationsCount()));
 } else {
 statusView.setText("Tracking not currently enabled.");
 }
 }

 private ServiceConnection serviceConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className, IBinder service) {
 trackerService = ((TrackerService.TrackerBinder)service).getService();
 updateStatus();
 }

 public void onServiceDisconnected(ComponentName className) {
 trackerService = null;
 }
 };
}

Figure 6-9 displays the basic activity with two buttons for the user to enable and disable

location-tracking behavior, and a text display for the current service status.

Figure 6-9. ServiceActivity layout

512 CHAPTER 6: Interacting with the System

While the activity is visible, it is bound to the TrackerService. This is done with the help of

the ServiceConnection interface, which provides callback methods when the binding and

unbinding operations are complete. With the service bound to the activity, you can now

make direct calls on all the public methods exposed by the service.

However, bindings alone will not allow the service to run for the long term; accessing the

service solely through its Binder interface causes it to be created and destroyed automatically

along with the life cycle of this activity. In this case, we want the service to persist beyond

when this activity is in memory. In order to accomplish this, the service is explicitly started via

startService() before it is bound. There is no harm in sending start commands to a service

that is already running, so we can safely do this in onResume() as well.

The service will now continue running in memory, even after the activity unbinds itself. In

onPause(), the example always checks whether the user has activated tracking, and if not,

it stops the service first. This allows the service to die if it is not required for tracking, which

keeps the service from perpetually hanging out in memory if it has no real work to do.

Running this example and pressing the Start Tracking button will spin up the persisted

service and the LocationManager. The user may leave the application at this point, and the

service will remain running, all the while logging all incoming location updates from the GPS.

Upon returning to this application, the user can see that the service is still running, and the

current number of stored location points is displayed. Pressing Stop Tracking will end the

process and allow the service to die as soon as the user leaves the activity once more.

513CHAPTER 6: Interacting with the System

6-6. Launching Other Applications

Problem
Your application requires a specific function that another application on the device is already

programmed to do. Instead of overlapping functionality, you would like to launch the other

application for the job instead.

Solution
(API Level 1)

Use an implicit intent to tell the system what you are looking to do, and determine whether

any applications exist to meet the need. Most often, developers use intents in an explicit

fashion to start another activity or service, like so:

Intent intent = new Intent(this, NewActivity.class);
startActivity(intent);

By declaring the specific component we want to launch, the intent is very explicit in its

delivery. We also have the power to define an intent in terms of its action, category, data,

and type to define a more implicit requirement of what task we want to accomplish.

External applications are always launched within the same Android task as your application

when fired in this fashion, so once the operation is complete (or if the user backs out), the

user is returned to your application. This keeps the experience seamless, allowing multiple

applications to act as one from the user’s perspective.

How It Works
When defining intents in this fashion, it can be unclear what information you must include,

because there is no published standard and it is possible for two applications offering the

same service (reading a PDF file, for example) to define slightly different filters to listen for

incoming intents. You want to make sure to provide enough information for the system (or

the user) to pick the best application to handle the required task.

The core piece of information to define on almost any implicit intent is the action: a string

value that is passed either in the constructor or via Intent.setAction(). This value tells

Android what you want to do, whether it is to view a piece of content, send a message, select

a choice, and so on. From there, the fields provided are scenario specific, and often multiple

combinations can arrive at the same result. Let’s take a look at some useful examples.

Read a PDF File

Components to display PDF documents are not included in the core SDK, although almost

every consumer Android device on the market today ships with a PDF reader application,

and many more are available through Google Play. Because of this, it may not make sense

to go through the trouble of embedding PDF display capabilities in your application.

514 CHAPTER 6: Interacting with the System

Instead, Listing 6-24 illustrates how to find and launch another app to view the PDF.

Listing 6-24. Method to View PDF

private void viewPdf(Uri file) {
 Intent intent;
 intent = new Intent(Intent.ACTION_VIEW);
 intent.setDataAndType(file, "application/pdf");
 try {
 startActivity(intent);
 } catch (ActivityNotFoundException e) {
 //No application to view, ask to download one
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("No Application Found");
 builder.setMessage("We could not find an application to view PDFs."
 +" Would you like to download one from Android Market?");
 builder.setPositiveButton("Yes, Please",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 Intent marketIntent = new Intent(Intent.ACTION_VIEW);
 marketIntent.setData(
 Uri.parse("market://details?id=com.adobe.reader"));
 startActivity(marketIntent);
 }
 });
 builder.setNegativeButton("No, Thanks", null);
 builder.create().show();
 }
 }

This example will open any local PDF file on the device (internal or external storage) by using

the best application found. If no application is found on the device to view PDFs, a message

will encourage the user to go to Google Play and download one.

The intent we create for this is constructed with the generic Intent.ACTION_VIEW action

string, telling the system we want to view the data provided in the intent. The data file itself

and its MIME type are also set to tell the system what kind of data we want to view.

Tip Intent.setData() and Intent.setType() clear each other’s previous values when

used. If you need to set both simultaneously, use Intent.setDataAndType(), as in the example.

If startActivity() fails with an ActivityNotFoundException, it means that no application is

installed on the user’s device that can view PDFs. We want users to have the full experience,

so if this happens, a dialog box indicates the problem and asks whether the user would

like to go to Market and get a reader. If the user presses Yes, another implicit intent will

request that Google Play be opened directly to the application page for Adobe Reader, a free

application the user may download to view PDF files. We’ll discuss the Uri scheme used for

this intent in the next recipe.

515CHAPTER 6: Interacting with the System

Notice that the example method takes a Uri parameter to the local file. Here is an example

of how to retrieve a Uri for files located on internal storage:

String filename = NAME_OF YOUR_FILE;
File internalFile = getFileStreamPath(filename);
Uri internal = Uri.fromFile(internalFile);

The method getFileStreamPath() is called from a Context, so if this code is not in an

activity, you must have reference to a Context object to call on. Here’s how to create a Uri

for files located on external storage:

String filename = NAME_OF YOUR_FILE;
File externalFile = new File(Environment.getExternalStorageDirectory(), filename);
Uri external = Uri.fromFile(externalFile);

This same example will work for any other document type as well by simply changing the

MIME type attached to the intent.

Share with Friends

Another popular feature for developers to include in their applications is a method of sharing

the application content with others, either through e-mail, text messaging, or prominent

social networks. All Android devices include applications for e-mail and text messaging, and

most users who wish to share via a social network (for example, Facebook or Twitter) also

have those mobile applications on their devices.

As it turns out, this task can also be accomplished using an implicit intent because most

of these applications respond to the Intent.ACTION_SEND action string in some way. Listing

6-25 is an example of allowing a user to post to any medium with a single intent request.

Listing 6-25. Sharing Intent

private void shareContent(String update) {
 Intent intent = new Intent(Intent.ACTION_SEND);
 intent.setType("text/plain");
 intent.putExtra(Intent.EXTRA_TEXT, update);
 startActivity(Intent.createChooser(intent, "Share..."));
}

Here, we tell the system that we have a piece of text that we would like to send, passed in

as an extra. This is a very generic request, and we expect more than one application to be

able to handle it. By default, Android will present the user with a list of applications that the

user can select to open. In addition, some devices provide the user with a check box to set

a selection as a default so the list is never shown again.

We would prefer to have a little more control over this process because we also

expect multiple results every time. Therefore, instead of passing the intent directly to

startActivity(), we first pass it through Intent.createChooser(), which allows us to

customize the title and guarantee the selection list will always be displayed.

When the user selects a choice, that specific application will launch with the EXTRA_TEXT

prepopulated into the message entry box, ready for sharing!

516 CHAPTER 6: Interacting with the System

Use ShareActionProvider

(API Level 14)

Starting with Android 4.0, a new widget was introduced to assist applications in sharing

content by using a common mechanism called ShareActionProvider. It is designed to be

added to an item in the options menu to show up either on the action bar or in the overflow.

It also has an added feature for the users in that, by default, it ranks the share options it

provides by usage. Options that users click most frequently will always be at the top of the list.

Implementing ShareActionProvider in a menu is quite simple, and it requires only a few

more lines of code than creating the share intent itself. Listing 6-26 shows how to attach the

provider to a menu item.

Listing 6-26. res/menu/options.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/menu_share"
 android:showAsAction="ifRoom"
 android:title="Share"
 android:actionProviderClass="android.widget.ShareActionProvider"/>
</menu>

Note If you do not define your Menu in XML, you can still attach the ShareActionProvider by

calling setActionProvider() inside your Java code.

Listing 6-27 shows how to attach the share intent to the provider widget inside an activity.

Listing 6-27. Providing the Share Intent

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 //Inflate the menu
 getMenuInflater().inflate(R.menu.options, menu);

 //Find the item and set the share Intent
 MenuItem item = menu.findItem(R.id.menu_share);
 ShareActionProvider provider = (ShareActionProvider) item.getActionProvider();

 Intent intent = new Intent(Intent.ACTION_SEND);
 intent.setType("text/plain");
 intent.putExtra(Intent.EXTRA_TEXT, update);
 provider.setShareIntent(intent);

 return true;
}

And that’s it! The provider handles all the user interaction so your application doesn’t even

need to handle the user selection events for that MenuItem.

517CHAPTER 6: Interacting with the System

6-7. Launching System Applications

Problem
Your application requires a specific function that one of the system applications on the

device is already programmed to do. Instead of overlapping functionality, you would like to

launch the system application for the job instead.

Solution
(API Level 1)

Use an implicit intent to tell the system which application you are interested in. Each system

application subscribes to a custom Uri scheme that can be inserted as data into an implicit

intent to signify the specific application you need to launch.

External applications are always launched in the same task as your application when fired

in this fashion, so once the task is complete (or if the user backs out), the user is returned to

your application. This keeps the experience seamless, allowing multiple applications to act

as one from the user’s perspective.

How It Works
All of the following examples will construct intents that can be used to launch system

applications in various states. Once constructed, you should launch these applications by

passing the intent to startActivity().

Browser

The Browser application may be launched to display a web page or run a web search.

To display a web page, construct and launch the following intent:

Intent pageIntent = new Intent();
pageIntent.setAction(Intent.ACTION_VIEW);
pageIntent.setData(Uri.parse("http://WEB_ADDRESS_TO_VIEW"));

startActivity(pageIntent);

This replaces the Uri in the data field with the page you would like to view. To launch a web

search inside the Browser, construct and launch the following intent:

Intent searchIntent = new Intent();
searchIntent.setAction(Intent.ACTION_WEB_SEARCH);
searchIntent.putExtra(SearchManager.QUERY, STRING_TO_SEARCH);

startActivity(searchIntent);

This places the search query you want to execute as an extra in the intent.

518 CHAPTER 6: Interacting with the System

Phone Dialer

The Dialer application may be launched to place a call to a specific number by using the

following intent:

Intent dialIntent = new Intent();
dialIntent.setAction(Intent.ACTION_DIAL);
dialIntent.setData(Uri.Parse("tel:8885551234"));

startActivity(dialIntent);

This replaces the phone number in the data Uri with the number to call.

Note This action just brings up the Dialer; it does not place the call. Intent.ACTION_CALL

can be used to place the call directly, although Google discourages using this in most cases. Using

ACTION_CALL will also require that the android.permission.CALL_PHONE permission be

declared in the manifest.

Maps

The Maps application on the device can be launched to display a location or to provide

directions between two points. If you know the latitude and longitude of the location you

want to map, then create the following intent:

Intent mapIntent = new Intent();
mapIntent.setAction(Intent.ACTION_VIEW);
mapIntent.setData(Uri.parse("geo:latitude,longitude"));

startActivity(mapIntent);

This replaces the coordinates for latitude and longitude of your location. For example, the Uri

"geo:37.422,-122.084"

would map the location of Google’s headquarters. If you know the address of the location to

display, then create the following intent:

Intent mapIntent = new Intent();
mapIntent.setAction(Intent.ACTION_VIEW);
mapIntent.setData(Uri.parse("geo:0,0?q=ADDRESS"));

startActivity(mapIntent);

519CHAPTER 6: Interacting with the System

This inserts the address you would like to map. For example, the Uri

"geo:0,0?q=1600 Amphitheatre Parkway, Mountain View, CA 94043"

would map the address of Google’s headquarters.

Tip The Maps application will also accept a Uri that uses the + character to replace spaces in

the Address query. If you are having trouble encoding a string with spaces in it, try replacing them

with + instead.

If you would like to display directions between two locations, create the following intent:

Intent mapIntent = new Intent();
mapIntent.setAction(Intent.ACTION_VIEW);
mapIntent.setData(Uri.parse("http://maps.google.com/maps?saddr=lat,lng&daddr=lat,lng"));

startActivity(mapIntent);

This inserts the locations for the start and end addresses.

You also can include only one of the parameters if you want to open the Maps application

with one address being open-ended. For example, the Uri

"http://maps.google.com/maps?&daddr=37.422,-122.084"

would display the Maps application with the destination location prepopulated, but it would

allow users to enter their own start address.

E-mail

Any e-mail application on the device can be launched into compose mode by using the

following intent:

Intent mailIntent = new Intent();
mailIntent.setAction(Intent.ACTION_SEND);
mailIntent.setType("message/rfc822");
mailIntent.putExtra(Intent.EXTRA_EMAIL, new String[] {"recipient@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_CC, new String[] {"carbon@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_BCC, new String[] {"blind@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_SUBJECT, "Email Subject");
mailIntent.putExtra(Intent.EXTRA_TEXT, "Body Text");
mailIntent.putExtra(Intent.EXTRA_STREAM, URI_TO_FILE);

startActivity(mailIntent);

http://maps.google.com/maps?&daddr=37.422,-122.084

520 CHAPTER 6: Interacting with the System

In this scenario, the action and type fields are the only required pieces to bring up a blank

e-mail message. All the remaining extras prepopulate specific fields of the e-mail message.

Notice that EXTRA_EMAIL (which fills the To field), EXTRA_CC, and EXTRA_BCC are passed string

arrays, even if there is only one recipient to be placed there. File attachments may also

be specified in the intent by using EXTRA_STREAM. The value passed here should be a Uri

pointing to the local file to be attached.

If you need to attach more than one file to an e-mail, the requirements change slightly to the

following:

Intent mailIntent = new Intent();
mailIntent.setAction(Intent.ACTION_SEND_MULTIPLE);
mailIntent.setType("message/rfc822");
mailIntent.putExtra(Intent.EXTRA_EMAIL, new String[] {"recipient@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_CC, new String[] {"carbon@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_BCC, new String[] {"blind@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_SUBJECT, "Email Subject");
mailIntent.putExtra(Intent.EXTRA_TEXT, "Body Text");

ArrayList<Uri> files = new ArrayList<Uri>();
files.add(URI_TO_FIRST_FILE);
files.add(URI_TO_SECOND_FILE);
//...Repeat add() as often as necessary to add all the files you need
mailIntent.putParcelableArrayListExtra(Intent.EXTRA_STREAM, files);

startActivity(mailIntent);

Notice that the intent’s action string is now ACTION_SEND_MULTIPLE. All the primary fields

remain the same as before, except for the data that gets added as the EXTRA_STREAM. This

example creates a list of Uri elements pointing to the files you want to attach and adds them

by using putParcelableArrayListExtra().

It is not uncommon for users to have multiple applications on their devices that can handle

this content, so it is usually prudent to wrap either of these constructed intents with Intent.
createChooser() before passing it on to startActivity().

SMS (Messages)

The Messages application can be launched into compose mode for a new SMS message by

using the following Intent:

Intent smsIntent = new Intent();
smsIntent.setAction(Intent.ACTION_VIEW);
smsIntent.setType("vnd.android-dir/mms-sms");
smsIntent.putExtra("address", "8885551234");
smsIntent.putExtra("sms_body", "Body Text");

startActivity(smsIntent);

521CHAPTER 6: Interacting with the System

As with composing e-mail, you must set the action and type at a minimum to launch the

application with a blank message. Including the address and sms_body extras allows the

application to prepopulate the recipient (address) and body text (sms_body) of the message.

Neither of these keys has a constant defined in the Android framework, which means that

they are subject to change in the future. However, as of this writing, the keys behave as

expected on all versions of Android.

Contact Picker

An application may launch the default contact picker, enabling a selection from the user’s

Contacts database, by using the following intent:

static final int REQUEST_PICK = 100;

Intent pickIntent = new Intent();
pickIntent.setAction(Intent.ACTION_PICK);
pickIntent.setData(ContactsContract.Contacts.CONTENT_URI);

startActivityForResult(pickIntent, REQUEST_PICK);

This activity is also designed to return a Uri representing the selection the user made, so

you will want to launch this by using startActivityForResult().

Google Play

Google Play can be launched from within an application to display a specific application’s

details page or to run a search for specific keywords. To launch a specific application’s

page, use the following intent:

Intent marketIntent = new Intent();
marketIntent.setAction(Intent.ACTION_VIEW);
marketIntent.setData(Uri.parse("market://details?id=PACKAGE_NAME_HERE"));

startActivity(marketIntent);

This inserts the unique package name (such as com.adobe.reader) of the application you

want to display. If you would like to open Google Play with a search query, use this intent:

Intent marketIntent = new Intent();
marketIntent.setAction(Intent.ACTION_VIEW);
marketIntent.setData(Uri.parse("market://search?q=SEARCH_QUERY"));

startActivity(marketIntent);

522 CHAPTER 6: Interacting with the System

This will insert the query string you would like to search on. The search query itself can take

one of three main forms:

	q=<simple text string here>: In this case, the search will be a

keyword-style search of the market.

	q=pname:<package name here>: In this case, the package names will be

searched, and only exact matches will be returned.

	q=pub:<developer name here>: In this case, the developer name field will

be searched, and only exact matches will be returned.

6-8. Letting Other Applications Launch Your
Application

Problem
You’ve created an application that is absolutely the best at doing a specific task, and you

would like to expose an interface for other applications on the device to be able to run your

application.

Solution
(API Level 1)

Create an IntentFilter on the activity or service you would like to expose. Then publicly

document the actions, data types, and extras that are required to access it properly. Recall

that the action, category, and data/type of an intent can all be used as criteria to match

requests to your application. Any additional required or optional parameters should be

passed in as extras.

How It Works
Let’s say you have created an application that includes an activity to play a video and will

marquee the video’s title at the top of the screen during playback. You want to allow other

applications to play video using your application, so we need to define a useful intent

structure for applications to pass in the required data and then create an IntentFilter on

the activity in the application’s manifest to match.

This hypothetical activity requires two pieces of data to do its job:

The 	 Uri of a video, either local or remote

A string representing the video’s title	
If the application specializes in a certain type of video, we could define that a generic action

(such as ACTION_VIEW) be used and filter more specifically on the data type of the video

content we want to handle. Listing 6-28 is an example of how the activity would be defined

in the manifest to filter intents in this manner.

523CHAPTER 6: Interacting with the System

Listing 6-28. AndroidManifest.xml <activity> Element with Data Type Filter

<activity android:name=".PlayerActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="video/h264" />
 </intent-filter>
</activity>

This filter will match any intent with Uri data that is either explicitly declared as an H.264

video clip or is determined to be H.264 upon inspecting the Uri file. An external application

would then be able to call on this activity to play a video by using the following lines of code:

Uri videoFile = A_URI_OF_VIDEO_CONTENT;
Intent playIntent = new Intent(Intent.ACTION_VIEW);
playIntent.setDataAndType(videoFile, "video/h264");
playIntent.putExtra(Intent.EXTRA_TITLE, "My Video");
startActivity(playIntent);

In some cases, it may be more useful for an external application to directly reference this

player as the target, regardless of the type of video that application wants to pass in. In this

case, we would create a unique custom action string for intents to implement. The filter

attached to the activity in the manifest would then need to match only the custom action

string. See Listing 6-29.

Listing 6-29. AndroidManifest.xml <activity> Element with Custom Action Filter

<activity android:name=".PlayerActivity">
 <intent-filter>
 <action android:name="com.examples.myplayer.PLAY" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

An external application could call on this activity to play a video by using the following code:

Uri videoFile = A_URI_OF_VIDEO_CONTENT;
Intent playIntent = new Intent("com.examples.myplayer.PLAY");
playIntent.setData(videoFile);
playIntent.putExtra(Intent.EXTRA_TITLE, "My Video");
startActivity(playIntent);

524 CHAPTER 6: Interacting with the System

Processing a Successful Launch

Regardless of how the intent is matched to the activity, once it is launched, we want to

inspect the incoming intent for the two pieces of data the activity needs to complete its

intended purpose. See Listing 6-30.

Listing 6-30. Activity Inspecting Intent

public class PlayerActivity extends Activity {

 public static final String ACTION_PLAY = "com.examples.myplayer.PLAY";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Inspect the Intent that launched us
 Intent incoming = getIntent();
 //Get the video URI from the data field
 Uri videoUri = incoming.getData();
 //Get the optional title extra, if it exists
 String title;
 if(incoming.hasExtra(Intent.EXTRA_TITLE)) {
 title = incoming.getStringExtra(Intent.EXTRA_TITLE);
 } else {
 title = "";
 }

 /* Begin playing the video and displaying the title */
 }

 /* Remainder of the Activity Code */

}

When the activity is launched, the calling intent can be retrieved with Activity.getIntent().

Because the Uri for the video content is passed in the data field of the intent, it is unpacked

by calling Intent.getData(). The video’s title is an optional value for calling intents, so we

check the extras bundle to first see whether the caller decided to pass it in; if it exists, that

value is unpacked from the intent as well.

Notice that the PlayerActivity in this example did define the custom action string as

a constant, but it was not referenced in the sample intent we constructed to launch the

activity. Since this call is coming from an external application, it does not have access to the

shared public constants defined in this application.

For this reason, it is also a good idea to reuse the intent extra keys already in the SDK

whenever possible, as opposed to defining new constants. In this example, we chose the

standard Intent.EXTRA_TITLE to define the optional extra to be passed instead of creating a

custom key for this value.

525CHAPTER 6: Interacting with the System

6-9. Interacting with Contacts

Problem
Your application needs to interact directly with the ContentProvider exposed by Android to

the user’s contacts to add, view, change, or remove information from the database.

Solution
(API Level 5)

Use the interface exposed by ContactsContract to access the data. ContactsContract is a

vast ContentProvider API that attempts to aggregate the contact information stored in the

system from multiple user accounts into a single data store. The result is a maze of Uris,

tables, and columns, from which data may be accessed and modified.

The Contact structure is a hierarchy with three tiers: Contacts, RawContacts, and Data:

A 	 Contact conceptually represents a person, and it is an aggregation of

all RawContacts believed by Android to represent that same person.

	RawContacts represents a collection of data stored in the device from

a specific device account, such as the user’s e-mail address book or

Facebook account.

	Data elements are the specific pieces of information attached to

RawContacts, such as an e-mail address, phone number, or postal

address.

The complete API has too many combinations and options for us to cover them all here, so

consult the SDK documentation for all possibilities. We will investigate how to construct the

basic building blocks for performing queries and making changes to the Contacts data set.

How It Works
The Android Contacts API boils down to a complex database with multiple tables and joins.

Therefore, the methods for accessing the data are no different from those used to access

any other SQLite database from an application.

Listing/Viewing Contacts

Let’s look at an example activity that lists all contact entries in the database and that

displays more detail when an item is selected. See Listing 6-31.

Important In order to display information from the Contacts API in your application, you will need

to declare android.permission.READ_CONTACTS in the application manifest.

526 CHAPTER 6: Interacting with the System

Listing 6-31. Activity Displaying Contacts

public class ContactsActivity extends FragmentActivity {

 private static final int ROOT_ID = 100;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 FrameLayout rootView = new FrameLayout(this);
 rootView.setId(ROOT_ID);

 setContentView(rootView);

 //Create and add a new list fragment
 getSupportFragmentManager().beginTransaction()
 .add(ROOT_ID, ContactsFragment.newInstance())
 .commit();
 }

 public static class ContactsFragment extends ListFragment
 implements AdapterView.OnItemClickListener, LoaderManager.
LoaderCallbacks<Cursor> {

 public static ContactsFragment newInstance() {
 return new ContactsFragment();
 }

 private SimpleCursorAdapter mAdapter;

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Display all contacts in a ListView
 mAdapter = new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, null,
 new String[] { ContactsContract.Contacts.DISPLAY_NAME },
 new int[] { android.R.id.text1 },
 0);
 setListAdapter(mAdapter);
 // Listen for item selections
 getListView().setOnItemClickListener(this);

 getLoaderManager().initLoader(0, null, this);
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 // Return all contacts, ordered by name
 String[] projection = new String[] {
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME
 };

527CHAPTER 6: Interacting with the System

 return new CursorLoader(getActivity(),
 ContactsContract.Contacts.CONTENT_URI,
 projection, null, null,
 ContactsContract.Contacts.DISPLAY_NAME);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 mAdapter.swapCursor(data);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v,
 int position, long id) {
 final Cursor contacts = mAdapter.getCursor();
 if (contacts.moveToPosition(position)) {
 int selectedId = contacts.getInt(0); // _ID column
 // Gather email data from email table
 Cursor email = getActivity().getContentResolver()
 .query(ContactsContract.CommonDataKinds.Email.CONTENT_URI,
 new String[] {ContactsContract.CommonDataKinds.Email.DATA},
 ContactsContract.Data.CONTACT_ID
 + " = " + selectedId,
 null, null);
 // Gather phone data from phone table
 Cursor phone = getActivity().getContentResolver()
 .query(ContactsContract.CommonDataKinds.Phone.CONTENT_URI,
 new String[] {ContactsContract.CommonDataKinds.Phone.

NUMBER},
 ContactsContract.Data.CONTACT_ID
 + " = " + selectedId,
 null, null);
 // Gather addresses from address table
 Cursor address = getActivity().getContentResolver()
 .query(ContactsContract.CommonDataKinds.StructuredPostal.CONTENT_URI,
 new String[] {ContactsContract.CommonDataKinds
 .StructuredPostal.FORMATTED_ADDRESS},
 ContactsContract.Data.CONTACT_ID
 + " = " + selectedId,
 null, null);

 // Build the dialog message
 StringBuilder sb = new StringBuilder();
 sb.append(email.getCount() + " Emails\n");

528 CHAPTER 6: Interacting with the System

 if (email.moveToFirst()) {
 do {
 sb.append("Email: " + email.getString(0));
 sb.append('\n');
 } while (email.moveToNext());
 sb.append('\n');
 }
 sb.append(phone.getCount() + " Phone Numbers\n");
 if (phone.moveToFirst()) {
 do {
 sb.append("Phone: " + phone.getString(0));
 sb.append('\n');
 } while (phone.moveToNext());
 sb.append('\n');
 }
 sb.append(address.getCount() + " Addresses\n");
 if (address.moveToFirst()) {
 do {
 sb.append("Address:\n"
 + address.getString(0));
 } while (address.moveToNext());
 sb.append('\n');
 }

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());
 builder.setTitle(contacts.getString(1)); // Display name
 builder.setMessage(sb.toString());
 builder.setPositiveButton("OK", null);
 builder.create().show();

 // Finish temporary cursors
 email.close();
 phone.close();
 address.close();
 }
 }
 }
}

As you can see, referencing all the tables and columns in this API can result in very verbose

code. All of the references to Uri elements, tables, and columns in this example are inner

classes stemming off of ContactsContract. It is important to verify when interacting with

the Contacts API that you are referencing the proper classes, as any Contacts classes not

stemming from ContactsContract are deprecated and incompatible.

When the fragment containing the UI for the activity is created, we construct a simple query

on the core Contacts table through a CursorLoader referencing Contacts.CONTENT_URI,

requesting only the columns we need to wrap the cursor in a ListAdapter. The resulting

cursor is displayed in a list on the user interface. The example leverages the convenience

behavior of ListFragment to provide a ListView as the content view so that we do not have

to manage these components.

529CHAPTER 6: Interacting with the System

At this point, the user can scroll through all the contact entries on the device, and can tap

one to get more information. When a list item is selected, the ID value of that particular

contact is recorded and the application goes out to the other ContactsContract.Data tables

to gather more-detailed information. Notice that the information for this single contact is

spread across multiple tables (e-mails in an e-mail table, phone numbers in a phone table,

and so on), requiring multiple queries to obtain.

Each CommonDataKinds table has a unique CONTENT_URI for the query to reference, as well as

a unique set of column aliases for requesting the data. All of the rows in these data tables

are linked to the specific contact through the Data.CONTACT_ID, so each cursor asks to return

only rows where the values match.

With all the data collected for the selected contact, we iterate through the results to display

in a dialog box to the user. Because the data in these tables is aggregated from multiple

sources, it is not uncommon for all of these queries to return multiple results. With each

cursor, we display the number of results, and then append each value included. When all the

data is composed, the dialog box is created and shown to the user.

As a final step, all temporary and unmanaged cursors are closed as soon as they are no

longer required.

Running the Application

The first thing that you may notice when running this application on a device that has any

number of accounts set up is that the list seems insurmountably long, certainly much longer

than what shows up when running the Contacts application bundled with the device. The

Contacts API allows for the storage of grouped entries that may be hidden from the user and

are used for internal purposes. Gmail often uses this to store incoming e-mail addresses for

quick access, even if an address is not associated with a true contact.

In the next example, we will show how to filter this list, but for now marvel at the amount of

data truly stored in the Contacts table.

Changing/Adding Contacts

Now let’s look at an example activity that manipulates the data for a specific contact. See

Listing 6-32.

Important In order to interact with the Contacts API in your application, you must declare

android.permission.READ_CONTACTS and android.permission.WRITE_CONTACTS in the

application manifest.

530 CHAPTER 6: Interacting with the System

Listing 6-32. Activity Writing to Contacts API

public class ContactsEditActivity extends FragmentActivity {

 private static final String TEST_EMAIL = "tester@email.com";
 private static final int ROOT_ID = 100;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 FrameLayout rootView = new FrameLayout(this);
 rootView.setId(ROOT_ID);

 setContentView(rootView);

 //Create and add a new list fragment
 getSupportFragmentManager().beginTransaction()
 .add(ROOT_ID, ContactsEditFragment.newInstance())
 .commit();
 }

 public static class ContactsEditFragment extends ListFragment implements
 AdapterView.OnItemClickListener,
 DialogInterface.OnClickListener,
 LoaderManager.LoaderCallbacks<Cursor> {

 public static ContactsEditFragment newInstance() {
 return new ContactsEditFragment();
 }

 private SimpleCursorAdapter mAdapter;
 private Cursor mEmail;
 private int selectedContactId;

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Display all contacts in a ListView
 mAdapter = new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, null,
 new String[] { ContactsContract.Contacts.DISPLAY_NAME },
 new int[] { android.R.id.text1 },
 0);
 setListAdapter(mAdapter);
 // Listen for item selections
 getListView().setOnItemClickListener(this);

 getLoaderManager().initLoader(0, null, this);
 }

531CHAPTER 6: Interacting with the System

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 // Return all contacts, ordered by name
 String[] projection = new String[] { ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME };
 //List only contacts visible to the user
 return new CursorLoader(getActivity(),
 ContactsContract.Contacts.CONTENT_URI,
 projection, ContactsContract.Contacts.IN_VISIBLE_GROUP+" = 1",
 null,
 ContactsContract.Contacts.DISPLAY_NAME);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 mAdapter.swapCursor(data);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 final Cursor contacts = mAdapter.getCursor();
 if (contacts.moveToPosition(position)) {
 selectedContactId = contacts.getInt(0); // _ID column
 // Gather email data from email table
 String[] projection = new String[] {
 ContactsContract.Data._ID,
 ContactsContract.CommonDataKinds.Email.DATA };
 mEmail = getActivity().getContentResolver().query(
 ContactsContract.CommonDataKinds.Email.CONTENT_URI,
 projection,
 ContactsContract.Data.CONTACT_ID + " = " + selectedContactId,
 null,
 null);

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());
 builder.setTitle("Email Addresses");
 builder.setCursor(mEmail, this, ContactsContract.CommonDataKinds.Email.

DATA);
 builder.setPositiveButton("Add", this);
 builder.setNegativeButton("Cancel", null);
 builder.create().show();
 }
 }

532 CHAPTER 6: Interacting with the System

 @Override
 public void onClick(DialogInterface dialog, int which) {
 //Data must be associated with a RAW contact, retrieve the first raw ID
 Cursor raw = getActivity().getContentResolver().query(
 ContactsContract.RawContacts.CONTENT_URI,
 new String[] { ContactsContract.Contacts._ID },
 ContactsContract.Data.CONTACT_ID + " = " + selectedContactId, null,

null);
 if(!raw.moveToFirst()) {
 return;
 }

 int rawContactId = raw.getInt(0);
 ContentValues values = new ContentValues();
 switch(which) {
 case DialogInterface.BUTTON_POSITIVE:
 //User wants to add a new email
 values.put(ContactsContract.CommonDataKinds.Email.RAW_CONTACT_ID,

rawContactId);
 values.put(ContactsContract.Data.MIMETYPE, ContactsContract
 .CommonDataKinds.Email.CONTENT_ITEM_TYPE);
 values.put(ContactsContract.CommonDataKinds.Email.DATA, TEST_EMAIL);
 values.put(ContactsContract.CommonDataKinds.Email.TYPE,
 ContactsContract.CommonDataKinds.Email.TYPE_OTHER);
 getActivity().getContentResolver()
 .insert(ContactsContract.Data.CONTENT_URI, values);
 break;
 default:
 //User wants to edit selection
 values.put(ContactsContract.CommonDataKinds.Email.DATA, TEST_EMAIL);
 values.put(ContactsContract.CommonDataKinds.Email.TYPE,
 ContactsContract.CommonDataKinds.Email.TYPE_OTHER);
 getActivity().getContentResolver()
 .update(ContactsContract.Data.CONTENT_URI, values,
 ContactsContract.Data._ID+" = "+mEmail.getInt(0), null);
 break;
 }

 //Don't need the email cursor anymore
 mEmail.close();
 }
 }
}

In this example, we start out as before, performing a query for all entries in the Contacts

database. This time, we provide a single selection criterion:

ContactsContract.Contacts.IN_VISIBLE_GROUP+" = 1"

The effect of this line is to limit the returned entries to only those that are visible to the user

through the Contacts user interface. This will (drastically, in some cases) reduce the size of

the list displayed in the activity and will make it more closely match the list displayed in the

Contacts application.

533CHAPTER 6: Interacting with the System

When the user selects a contact from this list, a dialog box is displayed with a list of all the

e-mail entries attached to that contact. If a specific address is selected from the list, that

entry is edited; if the Add button is pressed, a new e-mail address entry is added. For the

purposes of simplifying the example, we do not provide an interface to enter a new e-mail

address. Instead, a constant value is inserted, either as a new record or as an update to the

selected one.

Data elements, such as e-mail addresses, can be associated only with a RawContact.

Therefore, when we want to add a new e-mail address, we must obtain the ID of one of the

RawContacts represented by the higher-level contact that the user selected. For the purposes

of the example, we aren’t terribly interested in which one, so we retrieve the ID of the first

RawContact that matches. This value is required only for doing an insert, because the update

references the distinct row ID of the e-mail record already present in the table.

The Uri provided in CommonDataKinds that was used as an alias to read this data cannot

be used to make updates and changes. Inserts and updates must be called directly on the

ContactsContract.Data Uri. What this means (besides referencing a different Uri in the

operation method) is that an extra piece of metadata, the MIMETYPE, must also be specified.

Without setting the MIMETYPE field for inserted data, subsequent queries made may not

recognize it as a contact’s e-mail address.

Aggregating at Work

Because this example updates records by adding or editing e-mail addresses with the

same value, it offers a unique opportunity to see Android’s aggregation operations in real

time. As you run this example application, you may notice that adding or editing contacts

to give them the same e-mail address often triggers Android to start thinking that previously

separate contacts are now the same people. Even in this sample application, as the

managed query attached to the core Contacts table updates, notice that certain contacts

will disappear as they become aggregated together.

Note Contact aggregation behavior is not implemented fully on the Android emulator. To see this

effect in full, you will need to run the code on a real device.

Maintaining a Reference

The Android Contacts API introduces one more concept that can be important, depending

on the scope of the application. Because of this aggregation process that occurs, the

distinct row ID that refers to a contact becomes quite volatile; a certain contact may receive

a new _ID when it is aggregated together with another one.

If your application requires a long-standing reference to a specific contact, it is

recommended that your application persist the ContactsContract.Contacts.LOOKUP_KEY

instead of the row ID. When querying for a contact by using this key, a special Uri is also

provided as the ContactsContract.Contacts.CONTENT_LOOKUP_URI. Using these values to

query records over the long term will protect your application from getting confused by the

automatic aggregation process.

534 CHAPTER 6: Interacting with the System

6-10. Reading Device Media and Documents

Problem
Your application needs to import a user-selected document item (such as a text file, audio,

video, or image) for display or playback.

Solution
(API Level 1)

Use an implicit intent targeted with Intent.ACTION_GET_CONTENT to bring up a picker interface

from a specific application. Firing this intent with a matching content type for the media of

interest (audio, video, or image are the most common) will present the user with a picker

interface to select an item, and the intent result will include a content Uri pointing to the

selection the user made.

(API Level 19)

Use an implicit intent targeted with Intent.ACTION_OPEN_DOCUMENT to bring up the system’s

document picker interface. This is a single common interface where all applications that

support the requested content type will list the items the user may select. The content that

populates this interface comes from applications that expose DocumentProvider for the

requested type. These provider elements can come from the system or other applications.

We will look at how to create one of your own later in this chapter.

Tip ACTION_GET_CONTENT can still be used with API Level 19+, and it will launch the standard

document picker into a compatibility mode that includes the newer integrated providers along with

the options to pick a single application’s picker interface.

How It Works
Let’s take a look at this technique used in the context of an example activity. See Listings

6-33 and 6-34.

Listing 6-33. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/imageButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Images" />

535CHAPTER 6: Interacting with the System

 <Button
 android:id="@+id/videoButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Video" />
 <Button
 android:id="@+id/audioButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Audio" />
</LinearLayout>

Listing 6-34. Activity to Pick Media

public class MediaActivity extends Activity implements View.OnClickListener {

 private static final int REQUEST_AUDIO = 1;
 private static final int REQUEST_VIDEO = 2;
 private static final int REQUEST_IMAGE = 3;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button images = (Button)findViewById(R.id.imageButton);
 images.setOnClickListener(this);
 Button videos = (Button)findViewById(R.id.videoButton);
 videos.setOnClickListener(this);
 Button audio = (Button)findViewById(R.id.audioButton);
 audio.setOnClickListener(this);

 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if(resultCode == Activity.RESULT_OK) {
 //Uri to user selection returned in the Intent
 Uri selectedContent = data.getData();

 if(requestCode == REQUEST_IMAGE) {
 //Pass an InputStream to BitmapFactory
 }
 if(requestCode == REQUEST_VIDEO) {
 //Pass the Uri or a FileDescriptor to MediaPlayer
 }
 if(requestCode == REQUEST_AUDIO) {
 //Pass the Uri or a FileDescriptor to MediaPlayer
 }
 }
 }

536 CHAPTER 6: Interacting with the System

 @Override
 public void onClick(View v) {
 Intent intent = new Intent();
 //Use the proper Intent action
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 intent.setAction(Intent.ACTION_OPEN_DOCUMENT);
 } else {
 intent.setAction(Intent.ACTION_GET_CONTENT);
 }
 //Only return files to which we can open a stream
 intent.addCategory(Intent.CATEGORY_OPENABLE);

 //Set correct MIME type and launch
 switch(v.getId()) {
 case R.id.imageButton:
 intent.setType("image/*");
 startActivityForResult(intent, REQUEST_IMAGE);
 return;
 case R.id.videoButton:
 intent.setType("video/*");
 startActivityForResult(intent, REQUEST_VIDEO);
 return;
 case R.id.audioButton:
 intent.setType("audio/*");
 startActivityForResult(intent, REQUEST_AUDIO);
 return;
 default:
 return;
 }
 }
}

This example has three buttons for the user to press, each targeting a specific type of media.

When the user presses any one of these buttons, an intent with the appropriate action for

the platform level is fired to the system. On devices running 4.4 and later, this will display

the system document picker. Previous devices will launch the proper picker activity from the

necessary application, showing a chooser if multiple applications can handle the content

type. We have also included CATEGORY_OPENABLE to this intent, which indicates to the system

that only items our application can open a stream to will be displayed in the picker.

If the user selects a valid item, a content Uri pointing to that item is returned in the result

intent with a status of RESULT_OK. If the user cancels or otherwise backs out of the picker, the

status will be RESULT_CANCELED and the intent’s data field will be null.

With the Uri of the media received, the application is now free to play or display the content

as deemed appropriate. Classes such as MediaPlayer and VideoView will take a Uri directly

to play media content, while most others will take either an InputStream or a FileDescriptor

reference. Both of these can be obtained from the Uri by using ContentResolver.
openInputStream() and ContentResolver.openFileDescriptor(), respectively.

537CHAPTER 6: Interacting with the System

SELECTING ENTIRE DIRECTORIES

On API Level 21+, requests can be made for the user to select a directory entry using the Intent.OPEN_
DOCUMENT_TREE action.

This will return a specialized Uri in the intent result that can be used to list the contents of a directory or create

a new document in that location. The following snippet will take the result from a directory selection and list its

contents.

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (data == null || data.getData() == null) return;

 final Uri result = data.getData();

 //Construct a Uri we can use to query the selected directory contents

 String subDocumentId = DocumentsContract.getTreeDocumentId(result);

 Uri subTree = DocumentsContract.buildChildDocumentsUriUsingTree(result, subDocumentId);

 //Query the directory and list its contents

 Cursor cursor = getContentResolver().query(subTree, null, null, null, null);

 if (cursor != null) {

 if (cursor.getCount() == 0) {

 //Directory is empty

 } else {

 StringBuilder sb = new StringBuilder();

 sb.append("Contents of Directory:\n");

 while (cursor.moveToNext()) {

 //Get the column containing the document name

 int index = cursor.getColumnIndex(DocumentsContract.Document.COLUMN_

DISPLAY_NAME);

 sb.append(cursor.getString(index));

 sb.append("\n");

 }

 //Spit the file list out to logcat

 Log.d("DirectoryList", sb.toString());

 }

 cursor.close();

 } else {

 //There was an error reading the directory contents

 }

}

538 CHAPTER 6: Interacting with the System

Using the DocumentsContract API, we can convert the user-selected directory Uri into one we can use to

query the associated DocumentsProvider directly via ContentResolver. The resulting Cursor will contain

all the metadata that provider has about each document in the selected directory.

6-11. Saving Device Media and Documents

Problem
Your application would like to create new documents or media and insert them into the

device’s global providers so that they are visible to all applications.

Solution
(API Level 1)

Utilize the ContentProvider interface exposed by MediaStore to perform inserts or media

content. In addition to the media content itself, this interface allows you to insert metadata to

tag each item, such as a title, description, or time created. The result of the ContentProvider

insert operation is a Uri that the application may use as a destination for the new media.

(API Level 19)

On Android 4.4+ devices, we can also trigger an implicit intent targeted with Intent.ACTION_
CREATE_DOCUMENT to save a new document in any of the device’s registered DocumentProvider

instances. This can be any type of document content, including (but not restricted to) media

files. However, it is not meant to supersede MediaStore, which is still the best method for

saving directly to the system’s core ContentProvider. If you instead need to involve the user

more directly in saving the content (including media), the document framework is a better

path here.

How It Works
Let’s take a look at an example of inserting an image or video clip into MediaStore. See

Listings 6-35 and 6-36.

Listing 6-35. res/layout/save.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <Button
 android:id="@+id/imageButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Images" />

539CHAPTER 6: Interacting with the System

 <Button
 android:id="@+id/videoButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Video" />
 <Button
 android:id="@+id/textButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Text Document" />

</LinearLayout>

Listing 6-36. Activity Saving Data in the MediaStore

public class StoreActivity extends Activity implements View.OnClickListener {

 private static final int REQUEST_CAPTURE = 100;
 private static final int REQUEST_DOCUMENT = 101;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.save);

 Button images = (Button) findViewById(R.id.imageButton);
 images.setOnClickListener(this);
 Button videos = (Button) findViewById(R.id.videoButton);
 videos.setOnClickListener(this);

 //We can only create new documents above API Level 19
 Button text = (Button) findViewById(R.id.textButton);
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 text.setOnClickListener(this);
 } else {
 text.setVisibility(View.GONE);
 }
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQUEST_CAPTURE && resultCode == Activity.RESULT_OK) {
 Toast.makeText(this, "All Done!", Toast.LENGTH_SHORT).show();
 }
 if (requestCode == REQUEST_DOCUMENT && resultCode == Activity.RESULT_OK) {
 //Once the user has selected where to save the new document,
 // we can write the contents into it
 Uri document = data.getData();
 writeDocument(document);
 }
 }

540 CHAPTER 6: Interacting with the System

 private void writeDocument(Uri document) {
 try {
 ParcelFileDescriptor pfd =
 getContentResolver().openFileDescriptor(document, "w");
 FileOutputStream out = new FileOutputStream(pfd.getFileDescriptor());
 //Construct some content for our file
 StringBuilder sb = new StringBuilder();
 sb.append("Android Recipes Log File:");
 sb.append("\n");
 sb.append("Last Written at: ");
 sb.append(DateFormat.getLongDateFormat(this).format(new Date()));

 out.write(sb.toString().getBytes());

 // Let the document provider know you're done by closing the stream.
 out.flush();
 out.close();
 // Close our file handle
 pfd.close();
 } catch (FileNotFoundException e) {
 Log.w("AndroidRecipes", e);
 } catch (IOException e) {
 Log.w("AndroidRecipes", e);
 }
 }

 @Override
 public void onClick(View v) {
 ContentValues values;
 Intent intent;
 Uri storeLocation;
 final long nowMillis = System.currentTimeMillis();

 switch(v.getId()) {
 case R.id.imageButton:
 //Create any metadata for image
 values = new ContentValues(5);
 values.put(MediaStore.Images.ImageColumns.DATE_TAKEN, nowMillis);
 values.put(MediaStore.Images.ImageColumns.DATE_ADDED, nowMillis / 1000);
 values.put(MediaStore.Images.ImageColumns.DATE_MODIFIED, nowMillis / 1000);
 values.put(MediaStore.Images.ImageColumns.DISPLAY_NAME,
 "Android Recipes Image Sample");
 values.put(MediaStore.Images.ImageColumns.TITLE,
 "Android Recipes Image Sample");

 //Insert metadata and retrieve Uri location for file
 storeLocation = getContentResolver()
 .insert(MediaStore.Images.Media.EXTERNAL_CONTENT_URI, values);
 //Start capture with new location as destination
 intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, storeLocation);
 startActivityForResult(intent, REQUEST_CAPTURE);
 return;

541CHAPTER 6: Interacting with the System

 case R.id.videoButton:
 //Create any metadata for video
 values = new ContentValues(7);
 values.put(MediaStore.Video.VideoColumns.DATE_TAKEN, nowMillis);
 values.put(MediaStore.Video.VideoColumns.DATE_ADDED, nowMillis / 1000);
 values.put(MediaStore.Video.VideoColumns.DATE_MODIFIED, nowMillis / 1000);
 values.put(MediaStore.Video.VideoColumns.DISPLAY_NAME, "Android Recipes Video

Sample");
 values.put(MediaStore.Video.VideoColumns.TITLE, "Android Recipes Video Sample");
 values.put(MediaStore.Video.VideoColumns.ARTIST, "Yours Truly");
 values.put(MediaStore.Video.VideoColumns.DESCRIPTION,
 "Sample Video Clip");

 //Insert metadata and retrieve Uri location for file
 storeLocation = getContentResolver()
 .insert(MediaStore.Video.Media.EXTERNAL_CONTENT_URI, values);
 //Start capture with new location as destination
 intent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, storeLocation);
 startActivityForResult(intent, REQUEST_CAPTURE);
 return;
 case R.id.textButton:
 //Create a new document
 intent = new Intent(Intent.ACTION_CREATE_DOCUMENT);
 intent.addCategory(Intent.CATEGORY_OPENABLE);

 //This is a text document
 intent.setType("text/plain");
 //Optional title to pre-set on document
 intent.putExtra(Intent.EXTRA_TITLE, "Android Recipes");
 startActivityForResult(intent, REQUEST_DOCUMENT);
 default:
 return;
 }
 }
}

Note Because this example interacts with the Camera hardware, you should run it on a real

device to get the full effect. Emulators will execute the code appropriately, but without real

hardware, the example is less interesting.

542 CHAPTER 6: Interacting with the System

In this example, when the user clicks the Image or Video button, metadata associated with

the media is inserted into a ContentValues instance. Some of the more common metadata

columns to both image and video are the following:

	TITLE: String value for the content title. Displayed in the Gallery

applications as the content name.

	DISPLAY_NAME: Name displayed in most selection interfaces such as the

system document picker.

	DATE_TAKEN: Integer value describing the date the media item was

captured. Note this value is in milliseconds.

	DATE_ADDED: Integer value describing when the media was added to

MediaStore. Note this value is in seconds, not milliseconds.

	DATE_MODIFIED: Integer value describing the last change to the media.

This is used to sort items in the system document picker. Note this value

is also in seconds.

The ContentValues are then inserted into the MediaStore by using the appropriate CONTENT_
URI reference. Notice that the metadata is inserted before the media item itself is actually

captured. The return value from a successful insert is a fully qualified Uri that the application

may use as the destination for the media content.

In the previous example, we are using the simplified methods from Chapter 4of capturing

audio and video by requesting that the system applications handle this process. Recall

from Chapter 4 that both the audio and video capture intent can be passed with an extra,

declaring the destination for the result. This is where we pass the Uri that was returned from

the insert.

Upon a successful return from the capture activity, there is nothing more for the application

to do. The external application has saved the captured image or video into the location

referenced by our MediaStore insert. This data is now visible to all applications, including the

system’s Gallery application.

Creating Documents

Notice the third button, labeled Text Document, is visible and enabled only if we are running

on a device with Android 4.4 or later. If the user clicks this button, we construct an intent

request using ACTION_CREATE_DOCUMENT to launch the system’s document interface. However,

in this case, the interface is launched, allowing the user to select where the new file should

be saved (that is, in which provider application) and what its title should be. Along with this

request, we set the MIME type to indicate the document type we want to create, which is

plain text in our example. Finally, we can suggest a title by passing EXTRA_TITLE along with

the intent, but the user is always given the right to change it later.

Once the user has selected where to save the new document, we are given a content

Uri in onActivityResult() and we can open a stream and write our document’s data to

storage. The writeDocument() method of the example opens a FileDescriptor from the

Uri and writes some basic text content into the new document. By closing the stream and

descriptor, we signal to the owning provider that the document update is complete.

543CHAPTER 6: Interacting with the System

Tip ACTION_CREATE_DOCUMENT is used to make a new document that you want to save. For

editing an existing document in place, use ACTION_OPEN_DOCUMENT from the previous example

to obtain a working Uri to an existing file. Keep in mind, however, that not all providers support

writing. You will need to check the permissions of the Uri you are given before attempting to edit a

document received in this way.

6-12. Reading Messaging Data

Problem
You need to query the ContentProvider of locally saved information on the device for sent

and received SMS/MMS messages.

Solution
(API Level 19)

Use the contract interface exposed via the Telephony framework. The inner classes of

Telephony define all the Uris and data columns used to read SMS messages, MMS

messages, and additional metadata.

Important You must request android.permission.READ_SMS in the manifest in order to gain

read access to the Telephony provider.

The Telephony provider exposes an interface for the following blocks of data:

	Telephony.Sms: Contains the message content and recipient/delivery

metadata for all SMS messages.

	Telephony.Mms: Contains the message content and recipient/delivery

metadata for all MMS messages.

	Telephony.MmsSms: Contains the combined messages for SMS and

MMS. Also includes custom Uris for requesting a list of conversations,

drafts, and searching messages.

	Telephony.Threads: Provides additional metadata about conversations,

such as the message count and read status of the conversation thread.

544 CHAPTER 6: Interacting with the System

Text-based SMS messages are relatively straightforward, with their entire content housed

within a few columns in the Telephony.Sms tables. Even if a message has multiple recipients,

those are broken up into multiple messages with the same text content. MMS messages,

however, are composed of multiple parts that are all stored separately in individual tables:

	Mms.Addr: Contains metadata about all the recipients involved in each

MMS message. Each message can have a unique group of recipients.

	Mms.Part: Contains the contents of each piece included in the MMS

message. The message text is stored as one part with any image,

video, or other attachments stored as additional pieces. A MIME string

designates the content type of each part.

Displaying a single SMS message can be done with a single query to the Telephony.Sms

content Uri. Displaying a single MMS message, however, requires iterating through all of

these subparts in Telephony.Mms to collect the data we need.

Tip SMS/MMS data will be present only on a device that has telephony hardware, so you will

likely want to add a <uses-feature android:name="android.hardware.telephony"/>

declaration to the manifest to filter out devices that don’t have the proper capabilities.

WRITING TO THE TELEPHONY PROVIDER

Writing message data and metadata into the Telephony provider has some special rules associated with it.

While any application can request the WRITE_SMS permission (and have it granted), only the application selected

by the user as the Default Messaging Application in Settings will be allowed to write data into the content provider.

Nondefault applications sending SMS messages by using the mechanisms we described in Chapter 3 will have

their message contents written into the provider automatically by the framework, but the default application (as

the sole application with provider access) will be responsible for writing its own content directly.

In order for a messaging application to be considered for selection as the default, the following criteria must

exist in the application’s manifest:

A broadcast receiver registered for the • android.provider.Telephony.SMS_DELIVER

action to receive new SMS messages.

A broadcast receiver registered for the • android.provider.Telephony.WAP_PUSH_
DELIVER action to receive new MMS messages.

An activity filtering for the • android.intent.action.SENDTO action to send new SMS/

MMS messages.

A service filtering for the • android.intent.action.RESPOND_VIA_MESSAGE action to

send quick response messages to incoming callers.

If you are writing a messaging application that must have write access to the provider, the same Uri and

column structure defined in the Telephony contract that we discuss in this recipe can be used to insert(),

update(), or delete() the provider contents as well.

545CHAPTER 6: Interacting with the System

How It Works
In this example, we will create a simple messaging application that reads conversation

data from the Telephony provider and displays it in a list. Let’s start with the code to query

and parse the data coming from the provider. In Listing 6-37, we’ve created a custom

AsyncTaskLoader implementation that allows us to query the provider on a background

thread and return the result easily to the UI.

Listing 6-37. Loader for Conversation Data

public class ConversationLoader extends AsyncTaskLoader<List<MessageItem>> {

 public static final String[] PROJECTION = new String[] {
 //Determine if message is SMS or MMS
 MmsSms.TYPE_DISCRIMINATOR_COLUMN,
 //Base item ID
 BaseColumns._ID,
 //Conversation (thread) ID
 Conversations.THREAD_ID,
 //Date values
 Sms.DATE,
 Sms.DATE_SENT,
 // For SMS only
 Sms.ADDRESS,
 Sms.BODY,
 Sms.TYPE,
 // For MMS only
 Mms.SUBJECT,
 Mms.MESSAGE_BOX
 };

 //Thread ID of the conversation we are loading
 private long mThreadId;
 //This device's number
 private String mDeviceNumber;

 public ConversationLoader(Context context) {
 this(context, -1);
 }

 public ConversationLoader(Context context, long threadId) {
 super(context);
 mThreadId = threadId;
 //Obtain the phone number of this device, if available
 TelephonyManager manager =
 (TelephonyManager) context.getSystemService(Context.TELEPHONY_SERVICE);
 mDeviceNumber = manager.getLine1Number();
 }

546 CHAPTER 6: Interacting with the System

 @Override
 protected void onStartLoading() {
 //Reload on every init request
 forceLoad();
 }

 @Override
 public List<MessageItem> loadInBackground() {
 Uri uri;
 String[] projection;
 if (mThreadId < 0) {
 //Load all conversations
 uri = MmsSms.CONTENT_CONVERSATIONS_URI;
 projection = null;
 } else {
 //Load just the requested thread
 uri = ContentUris.withAppendedId(MmsSms.CONTENT_CONVERSATIONS_URI, mThreadId);
 projection = PROJECTION;
 }

 Cursor cursor = getContext().getContentResolver().query(
 uri,
 projection,
 null,
 null,
 null);

 return MessageItem.parseMessages(getContext(), cursor, mDeviceNumber);
 }
}

AysncTaskLoader is fairly simple to customize. You just need to provide an implementation of

loadInBackground() to do the interesting work, and include some logic in onStartLoading()

to get the process running. In the framework, results are usually cached, and forceLoad()

is called only if the content has changed, but for simplicity we are loading data from the

provider on every request.

Our ConversationLoader will be used to obtain two message lists: a list of all conversations

present, and a list of all the messages for a selected conversation (or thread). So when

ConversationLoader is instantiated, the ID of the conversation thread is either passed in or

ignored to determine the output results. We also obtain the phone number of our device

from TelephonyManager for use later. This step is not integral to reading the provider, but will

help us clean up the display later.

Important When using TelephonyManager to get the device information, your application must

also declare android.permission.READ_PHONE_STATE in the manifest.

547CHAPTER 6: Interacting with the System

In both request modes, we are making a query of the MmsSms.CONTENT_CONVERSATIONS_URI

in the combined message table. This Uri is convenient for getting a conversation overview

because it will return a list of all the known conversation threads by returning the latest

message in each thread. This makes it easy to display the results directly to the user.

When listing all the conversations, we don’t need to provide a customized projection, which

will return all the columns. However, when looking at a specific thread, we pass in a specific

column subset to inspect. This is mainly so we can obtain the MmsSms.TYPE_DISCRIMINATOR_
COLUMN value, which tells us whether each message is SMS or MMS. This column is not

available for the main conversations list, and it also isn’t returned by default for a null

projection.

SORTING COMBINED RESULTS

You likely will want to sort the results by date for these queries. A common implementation is to use the

ordering clause in the provider query to sort the results returned. However, with a combined SMS/MMS query as

we have used here, this is not straightforward. The DATE and DATE_SENT fields of SMS messages present their

timestamps in elapsed milliseconds from epoch, while those same fields for MMS messages show timestamps

in elapsed seconds from epoch.

The simplest method for sorting combined results is to normalize the timestamps when parsing out into a model

(such as MessageItem), and then use the sorting features of Collections to sort the resulting object list.

After we have successfully queried the provider, we want to parse the contents into a

common model object that we can easily display in a list. To do this, we pass the result

Cursor to a factory method in a MessageItem class we’ve created, which you can see in

Listing 6-38.

Listing 6-38. MessageItem Model and Parsing

public class MessageItem {
 /* Message Type Identifiers */
 private static final String TYPE_SMS = "sms";
 private static final String TYPE_MMS = "mms";

 static final String[] MMS_PROJECTION = new String[] {
 //Base item ID
 BaseColumns._ID,
 //MIME Type of the content for this part
 Mms.Part.CONTENT_TYPE,
 //Text content of a text/plain part
 Mms.Part.TEXT,
 //Path to binary content of a nontext part
 Mms.Part._DATA
 };

 /* Message Id */
 public long id;
 /* Thread (Conversation) Id */

548 CHAPTER 6: Interacting with the System

 public long thread_id;
 /* Address string of message */
 public String address;
 /* Body string of message */
 public String body;
 /* Whether this message was sent or received on this device */
 public boolean incoming;
 /* MMS image attachment */
 public Uri attachment;

 /*
 * Construct a list of messages from the Cursor data
 * queried by the Loader
 */
 public static List<MessageItem> parseMessages(Context context, Cursor cursor,
 String myNumber) {

 List<MessageItem> messages = new ArrayList<MessageItem>();
 if (!cursor.moveToFirst()) {
 return messages;
 }
 //Parse each message based on the type identifiers
 do {
 String type = getMessageType(cursor);
 if (TYPE_SMS.equals(type)) {
 MessageItem item = parseSmsMessage(cursor);
 messages.add(item);
 } else if (TYPE_MMS.equals(type)) {
 MessageItem item = parseMmsMessage(context, cursor, myNumber);
 messages.add(item);
 } else {
 Log.w("TelephonyProvider", "Unknown Message Type");
 }
 } while (cursor.moveToNext());
 cursor.close();

 return messages;
 }

 /*
 * Read message type, if present in Cursor; otherwise
 * infer it from the column values present in the Cursor
 */
 private static String getMessageType(Cursor cursor) {
 int typeIndex = cursor.getColumnIndex(MmsSms.TYPE_DISCRIMINATOR_COLUMN);
 if (typeIndex < 0) {
 //Type column not in projection, use another discriminator
 String cType = cursor.getString(cursor.getColumnIndex(Mms.CONTENT_TYPE));
 //If a content type is present, this is an MMS message
 if (cType != null) {
 return TYPE_MMS;
 } else {

549CHAPTER 6: Interacting with the System

 return TYPE_SMS;
 }
 } else {
 return cursor.getString(typeIndex);
 }
 }

 /*
 * Parse out a MessageItem with contents from an SMS message
 */
 private static MessageItem parseSmsMessage(Cursor data) {
 MessageItem item = new MessageItem();
 item.id = data.getLong(data.getColumnIndexOrThrow(BaseColumns._ID));
 item.thread_id = data.getLong(data.getColumnIndexOrThrow(Conversations.THREAD_ID));

 item.address = data.getString(data.getColumnIndexOrThrow(Sms.ADDRESS));
 item.body = data.getString(data.getColumnIndexOrThrow(Sms.BODY));
 item.incoming = isIncomingMessage(data, true);
 return item;
 }

 /*
 * Parse out a MessageItem with contents from an MMS message
 */
 private static MessageItem parseMmsMessage(Context context, Cursor data, String myNumber) {
 MessageItem item = new MessageItem();
 item.id = data.getLong(data.getColumnIndexOrThrow(BaseColumns._ID));
 item.thread_id = data.getLong(data.getColumnIndexOrThrow(Conversations.THREAD_ID));

 item.incoming = isIncomingMessage(data, false);

 long _id = data.getLong(data.getColumnIndexOrThrow(BaseColumns._ID));

 //Query the address information for this message
 Uri addressUri = Uri.withAppendedPath(Mms.CONTENT_URI, _id + "/addr");
 Cursor addr = context.getContentResolver().query(
 addressUri,
 null,
 null,
 null,
 null);
 HashSet<String> recipients = new HashSet<String>();
 while (addr.moveToNext()) {
 String address = addr.getString(addr.getColumnIndex(Mms.Addr.ADDRESS));
 //Don't add our own number to the displayed list
 if (myNumber == null || !address.contains(myNumber)) {
 recipients.add(address);
 }
 }
 item.address = TextUtils.join(", ", recipients);
 addr.close();

550 CHAPTER 6: Interacting with the System

 //Query all the MMS parts associated with this message
 Uri messageUri = Uri.withAppendedPath(Mms.CONTENT_URI, _id + "/part");
 Cursor inner = context.getContentResolver().query(
 messageUri,
 MMS_PROJECTION,
 Mms.Part.MSG_ID + " = ?",
 new String[] {String.valueOf(data.getLong(data.getColumnIndex(Mms._ID)))},
 null);

 while(inner.moveToNext()) {
 String contentType = inner.getString(inner.getColumnIndex(Mms.Part.CONTENT_

TYPE));
 if (contentType == null) {
 continue;
 } else if (contentType.matches("image/.*")) {
 //Find any part that is an image attachment
 long partId = inner.getLong(inner.getColumnIndex(BaseColumns._ID));
 item.attachment = Uri.withAppendedPath(Mms.CONTENT_URI, "part/" + partId);
 } else if (contentType.matches("text/.*")) {
 //Find any part that is text data
 item.body = inner.getString(inner.getColumnIndex(Mms.Part.TEXT));
 }
 }

 inner.close();
 return item;
 }

 /*
 * Validate if the message is incoming or outgoing by the
 * type/box information listed in the provider
 */
 private static boolean isIncomingMessage(Cursor cursor, boolean isSms) {
 int boxId;
 if (isSms) {
 boxId = cursor.getInt(cursor.getColumnIndexOrThrow(Sms.TYPE));
 return (boxId == TextBasedSmsColumns.MESSAGE_TYPE_INBOX ||
 boxId == TextBasedSmsColumns.MESSAGE_TYPE_ALL) ?
 true : false;
 } else {
 boxId = cursor.getInt(cursor.getColumnIndexOrThrow(Mms.MESSAGE_BOX));
 return (boxId == Mms.MESSAGE_BOX_INBOX || boxId == Mms.MESSAGE_BOX_ALL) ?
 true : false;
 }
 }
}

The MessageItem itself is a standard placeholder object for the message identifiers, name,

text content, and image attachment (for MMS messages). Inside parseMessages(), we

iterate through the Cursor data and construct a new MessageItem from each row. SMS and

MMS are parsed differently, so we must first determine the message type. When the TYPE_
DISCRIMINATOR_COLUMN is present, this is simple and we just check the value. In other cases,

we can infer the type based on the column entries for each message.

551CHAPTER 6: Interacting with the System

Parsing an SMS message is straightforward, as we just need to read the ID, thread ID,

address, body, and incoming status as columns directly from the main Cursor. Parsing an

MMS message is slightly more involved because the message contents are segmented into

parts. We can read the ID, thread ID, and incoming status from the main Cursor, but the

address and content information need to be retrieved from additional tables.

First, we need to get the recipient information from the Mms.Addr table. MMS messages

can be sent to multiple recipients, and each one is represented by a row in this table with a

MSG_ID that matches the MMS message. We iterate through these elements and construct

a comma-separated list of the results to attach to the MessageItem. Notice also that we are

checking for our own number in this list to avoid having it added as well. Each message will

also have an Addr entry for the local device number, and we don’t want to display that in our

UI each time, so we are filtering it out.

Next we need to parse out the message contents. These values are stored in the Mms.
Part table, keyed by the MSG_ID again. MMS messages can have many types of content

associated with them (contact data, videos, images, and so forth), but we are interested in

displaying only the text or image data that may be present. As we iterate through the parts,

we validate the MIME string of the content type to find any text or image components to add

to our MessageItem. For image attachments, we simply store the Uri pointing to the content

rather than decoding the image and saving it here.

Note As of this writing, the SDK provides column constants for Mms.Addr and Mms.Part, but

there is no exposed content Uri. This will likely change in the future, but for now we have to

hard-code the paths off the base Mms.CONTENT_URI constant.

For both SMS and MMS messages, the status of whether the message is incoming or

outgoing can be determined by looking at the message’s box type. Messages that are

marked in the Inbox or have no designation are considered incoming messages, while all

other message box designations (Outbox, Sent, Drafts, and so forth) are considered outgoing.

Now that we have a parsed list of messages, let’s take a look at Listings 6-39 and 6-40 to

inspect the user interface implemented in this example.

Listing 6-39. Activity to Display SMS/MMS Messages

public class SmsActivity extends Activity
 implements OnItemClickListener, LoaderCallbacks<List<MessageItem>> {

 private MessagesAdapter mAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView list = new ListView(this);
 mAdapter = new MessagesAdapter(this);
 list.setAdapter(mAdapter);

552 CHAPTER 6: Interacting with the System

 final Intent intent = getIntent();

 if (!intent.hasExtra("threadId")) {
 //Items are clickable if we are not showing a conversation
 list.setOnItemClickListener(this);
 }
 //Load the messages data
 getLoaderManager().initLoader(0, getIntent().getExtras(), this);

 setContentView(list);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
 final MessageItem item = mAdapter.getItem(position);
 long threadId = item.thread_id;

 //Launch a new instance to show this conversation
 Intent intent = new Intent(this, SmsActivity.class);
 intent.putExtra("threadId", threadId);
 startActivity(intent);
 }

 @Override
 public Loader<List<MessageItem>> onCreateLoader(int id, Bundle args) {
 if (args != null && args.containsKey("threadId")) {
 return new ConversationLoader(this, args.getLong("threadId"));
 } else {
 return new ConversationLoader(this);
 }
 }

 @Override
 public void onLoadFinished(Loader<List<MessageItem>> loader, List<MessageItem> data) {
 mAdapter.clear();
 mAdapter.addAll(data);
 mAdapter.notifyDataSetChanged();
 }

 @Override
 public void onLoaderReset(Loader<List<MessageItem>> loader) {
 mAdapter.clear();
 mAdapter.notifyDataSetChanged();
 }

553CHAPTER 6: Interacting with the System

 private static class MessagesAdapter extends ArrayAdapter<MessageItem> {

 int cacheSize = 4 * 1024 * 1024; // 4MiB
 private LruCache<String, Bitmap> bitmapCache = new LruCache<String,

Bitmap>(cacheSize) {
 protected int sizeOf(String key, Bitmap value) {
 return value.getByteCount();
 }
 };

 public MessagesAdapter(Context context) {
 super(context, 0);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 if (convertView == null) {
 convertView = LayoutInflater.from(getContext())
 .inflate(R.layout.message_item, parent, false);
 }

 MessageItem item = getItem(position);

 TextView text1 = (TextView) convertView.findViewById(R.id.text1);
 TextView text2 = (TextView) convertView.findViewById(R.id.text2);
 ImageView image = (ImageView) convertView.findViewById(R.id.image);

 text1.setText(item.address);
 text2.setText(item.body);
 //Set text style based on incoming/outgoing status
 Typeface tf = item.incoming ?
 Typeface.defaultFromStyle(Typeface.ITALIC) : Typeface.DEFAULT;
 text2.setTypeface(tf);
 image.setImageBitmap(getAttachment(item));

 return convertView;
 }

 private Bitmap getAttachment(MessageItem item) {
 if (item.attachment == null) return null;

 final Uri imageUri = item.attachment;
 //Pull image thumbnail from cache if we have it
 Bitmap cached = bitmapCache.get(imageUri.toString());
 if (cached != null) {
 return cached;
 }

 //Decode the asset from the provider if we don't have it in cache
 try {
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inJustDecodeBounds = true;
 int cellHeight = getContext().getResources()
 .getDimensionPixelSize(R.dimen.message_height);

554 CHAPTER 6: Interacting with the System

 InputStream is = getContext().getContentResolver().
openInputStream(imageUri);

 BitmapFactory.decodeStream(is, null, options);

 options.inJustDecodeBounds = false;
 options.inSampleSize = options.outHeight / cellHeight;
 is = getContext().getContentResolver().openInputStream(imageUri);
 Bitmap bitmap = BitmapFactory.decodeStream(is, null, options);

 bitmapCache.put(imageUri.toString(), bitmap);
 return bitmap;
 } catch (Exception e) {
 return null;
 }
 }
 }
}

Listing 6-40. res/layout/message_item.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:minHeight="@dimen/message_height">
 <ImageView
 android:id="@+id/image"
 android:layout_width="@dimen/message_height"
 android:layout_height="@dimen/message_height"
 android:layout_alignParentRight="true"
 android:layout_centerVertical="true" />
 <TextView
 android:id="@+id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/image"
 android:layout_marginLeft="6dp"
 android:textStyle="bold" />
 <TextView
 android:id="@+id/text2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/text1"
 android:layout_toLeftOf="@id/image"
 android:layout_marginLeft="12dp" />

</RelativeLayout>

Our activity is used to display both types of message data. Upon creation, the activity

calls initLoader() to construct a new ConversationLoader to query the provider. The

arguments passed in are the extras received by the activity intent. When the application first

launches, there are no incoming intent extras, so a ConversationLoader is constructed to

555CHAPTER 6: Interacting with the System

load all conversation threads. Later, when the activity is launched with a specific thread ID,

ConversationLoader will query all messages in that conversation.

Once the loading is complete, the data is presented in a ListView using our custom

MessagesAdapter. This adapter inflates a custom item layout (from Listing 6-40) with two

text rows and space for an image. The MessageItem address information is loaded into the

top label, and the text content into the bottom label. If the message is MMS and an image

attachment is present, we attempt to return the image via getAttachment() and insert it into

the ImageView.

Loading these images from disk each time is expensive and a tad slow, so to improve

scrolling performance in the list, we have added an LruCache to store recently loaded

bitmaps in memory. The cache is set to 4MiB in size, so as to not overinflate the

application’s heap over time. Additionally, each image is downsampled when returned from

BitmapFactory (via BitmapFactory.Options.inSampleSize) to avoid loading an image that is

larger than the space available in the list row and wasting memory.

We now have a basic messaging application that presents a read-only window into the

SMS/MMS on our device. When launched, this application will list all the conversations by

showing the latest message for each thread. When a conversation is tapped, a new activity

will display, showing all the individual messages within that thread. Pressing the Back button

will return to the main list so the user can select another conversation to view.

6-13. Interacting with the Calendar

Problem
Your application needs to interact directly with the ContentProvider exposed by the Android

framework to add, view, change, or remove calendar events on the device.

Solution
(API Level 14)

Use the CalendarContract interface to read/write data to the system’s ContentProvider

for event data. CalendarContract exposes the API that is necessary to gain access to the

device’s calendars, events, attendees, and reminders. Much like ContactsContract, this

interface defines mostly the data that is necessary to perform queries. The methods used

will be the same as when working with any other system ContentProvider.

How It Works
Working with CalendarContract is very similar to working with ContactsContract; they both

provide identifiers for the Uri and column values you will need to construct queries through

the ContentResolver. Listing 6-41 illustrates an activity that obtains and displays a list of the

calendars present on the device.

556 CHAPTER 6: Interacting with the System

Listing 6-41. Activity Listing Calendars on the Device

public class CalendarListActivity extends ListActivity implements
 LoaderManager.LoaderCallbacks<Cursor>, AdapterView.OnItemClickListener {
 private static final int LOADER_LIST = 100;

 SimpleCursorAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getLoaderManager().initLoader(LOADER_LIST, null, this);

 // Display all calendars in a ListView
 mAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_2, null,
 new String[] {
 CalendarContract.Calendars.CALENDAR_DISPLAY_NAME,
 CalendarContract.Calendars.ACCOUNT_NAME },
 new int[] {
 android.R.id.text1, android.R.id.text2 }, 0);
 setListAdapter(mAdapter);
 // Listen for item selections
 getListView().setOnItemClickListener(this);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position,
 long id) {
 Cursor c = mAdapter.getCursor();
 if (c != null && c.moveToPosition(position)) {
 Intent intent = new Intent(this, CalendarDetailActivity.class);
 // Pass the _ID and TITLE of the selected calendar to the next
 // Activity
 intent.putExtra(Intent.EXTRA_UID, c.getInt(0));
 intent.putExtra(Intent.EXTRA_TITLE, c.getString(1));
 startActivity(intent);
 }
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 // Return all calendars, ordered by name
 String[] projection = new String[] { CalendarContract.Calendars._ID,
 CalendarContract.Calendars.CALENDAR_DISPLAY_NAME,
 CalendarContract.Calendars.ACCOUNT_NAME };

 return new CursorLoader(this, CalendarContract.Calendars.CONTENT_URI,
 projection, null, null,
 CalendarContract.Calendars.CALENDAR_DISPLAY_NAME);
 }

557CHAPTER 6: Interacting with the System

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 mAdapter.swapCursor(data);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }
}

In contrast to our contacts example, here we use Android’s Loader pattern to query the

data and load the resulting Cursor into the list. This pattern provides a lot of benefit over

managedCursor(), primarily in that all queries are automatically made on background

threads to keep the UI responsive. The Loader pattern also has built-in reuse, so multiple

clients wanting the same data can actually gain access to the same Loader through the

LoaderManager.

With Loaders, our activity receives a series of callback methods when new data is available.

Under the hood, CursorLoader also registers as a ContentObserver, so we will get a callback

with a new Cursor when the underlying data set changes without even having to request a

reload. But back to the calendar...

To obtain a list of the device calendars, we construct a query to the Calendars.CONTENT_URI

with the column names we are interested in (here, the record ID, calendar name, and owning

account name). When the query is complete, onLoadFinished() is called with a new Cursor

pointing to the result data, which we then pass to our list adapter. When the user taps on a

particular calendar item, a new activity is initialized to look at the specific events it contains.

We will see this in more detail in the next section.

Viewing/Modifying Calendar Events

Listing 6-42 shows the contents of the second activity in this example that displays a list of

all the events for the selected calendar.

Listing 6-42. Activity Listing and Modifying Calendar Events

public class CalendarDetailActivity extends ListActivity implements
 LoaderManager.LoaderCallbacks<Cursor>, AdapterView.OnItemClickListener,
 AdapterView.OnItemLongClickListener {
 private static final int LOADER_DETAIL = 101;

 SimpleCursorAdapter mAdapter;

 int mCalendarId;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mCalendarId = getIntent().getIntExtra(Intent.EXTRA_UID, -1);

558 CHAPTER 6: Interacting with the System

 String title = getIntent().getStringExtra(Intent.EXTRA_TITLE);
 setTitle(title);

 getLoaderManager().initLoader(LOADER_DETAIL, null, this);

 // Display all events in a ListView
 mAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_2, null,
 new String[] {
 CalendarContract.Events.TITLE,
 CalendarContract.Events.EVENT_LOCATION },
 new int[] {
 android.R.id.text1, android.R.id.text2 }, 0);
 setListAdapter(mAdapter);
 // Listen for item selections
 getListView().setOnItemClickListener(this);
 getListView().setOnItemLongClickListener(this);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add("Add Event")
 .setIcon(android.R.drawable.ic_menu_add)
 .setShowAsAction(MenuItem.SHOW_AS_ACTION_ALWAYS);

 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 showAddEventDialog();
 return true;
 }

 // Display a dialog to add a new event
 private void showAddEventDialog() {
 final EditText nameText = new EditText(this);
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("New Event");
 builder.setView(nameText);
 builder.setNegativeButton("Cancel", null);
 builder.setPositiveButton("Add Event",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 addEvent(nameText.getText().toString());
 }
 });
 builder.show();
 }

559CHAPTER 6: Interacting with the System

 // Add an event to the calendar with the specified name
 // and the current time as the start date
 private void addEvent(String eventName) {
 long start = System.currentTimeMillis();
 // End 1 hour from now
 long end = start + (3600 * 1000);

 ContentValues cv = new ContentValues(5);
 cv.put(CalendarContract.Events.CALENDAR_ID, mCalendarId);
 cv.put(CalendarContract.Events.TITLE, eventName);
 cv.put(CalendarContract.Events.DESCRIPTION,
 "Event created by Android Recipes");
 cv.put(CalendarContract.Events.EVENT_TIMEZONE,
 Time.getCurrentTimezone());
 cv.put(CalendarContract.Events.DTSTART, start);
 cv.put(CalendarContract.Events.DTEND, end);

 getContentResolver().insert(CalendarContract.Events.CONTENT_URI, cv);
 }

 // Remove the selected event from the calendar
 private void deleteEvent(int eventId) {
 String selection = CalendarContract.Events._ID + " = ?";
 String[] selectionArgs = { String.valueOf(eventId) };
 getContentResolver().delete(CalendarContract.Events.CONTENT_URI,
 selection, selectionArgs);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position,
 long id) {
 Cursor c = mAdapter.getCursor();
 if (c != null && c.moveToPosition(position)) {
 // Show a dialog with more detailed data about the event when
 // clicked
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 StringBuilder sb = new StringBuilder();

 sb.append("Location: "
 + c.getString(
 c.getColumnIndex(CalendarContract.Events.EVENT_LOCATION))
 + "\n\n");
 int startDateIndex = c.getColumnIndex(CalendarContract.Events.DTSTART);
 Date startDate = c.isNull(startDateIndex) ? null
 : new Date(Long.parseLong(c.getString(startDateIndex)));
 if (startDate != null) {
 sb.append("Starts At: " + sdf.format(startDate) + "\n\n");
 }
 int endDateIndex = c.getColumnIndex(CalendarContract.Events.DTEND);
 Date endDate = c.isNull(endDateIndex) ? null
 : new Date(Long.parseLong(c.getString(endDateIndex)));

560 CHAPTER 6: Interacting with the System

 if (endDate != null) {
 sb.append("Ends At: " + sdf.format(endDate) + "\n\n");
 }

 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle(
 c.getString(c.getColumnIndex(CalendarContract.Events.TITLE)));
 builder.setMessage(sb.toString());
 builder.setPositiveButton("OK", null);
 builder.show();
 }
 }

 @Override
 public boolean onItemLongClick(AdapterView<?> parent, View view,
 int position, long id) {
 Cursor c = mAdapter.getCursor();
 if (c != null && c.moveToPosition(position)) {
 // Allow the user to delete the event on a long-press
 final int eventId = c.getInt(
 c.getColumnIndex(CalendarContract.Events._ID));
 String eventName = c.getString(
 c.getColumnIndex(CalendarContract.Events.TITLE));
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Delete Event");
 builder.setMessage(String.format(
 "Are you sure you want to delete %s?",
 TextUtils.isEmpty(eventName) ? "this event" : eventName));
 builder.setNegativeButton("Cancel", null);
 builder.setPositiveButton("Delete Event",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 deleteEvent(eventId);
 }
 });
 builder.show();
 }

 return true;
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 // Return all calendars, ordered by name
 String[] projection = new String[] { CalendarContract.Events._ID,
 CalendarContract.Events.TITLE, CalendarContract.Events.DTSTART,
 CalendarContract.Events.DTEND,
 CalendarContract.Events.EVENT_LOCATION };
 String selection = CalendarContract.Events.CALENDAR_ID + " = ?";
 String[] selectionArgs = { String.valueOf(mCalendarId) };

561CHAPTER 6: Interacting with the System

 return new CursorLoader(this, CalendarContract.Events.CONTENT_URI,
 projection, selection, selectionArgs,
 CalendarContract.Events.DTSTART + " DESC");
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 mAdapter.swapCursor(data);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }
}

You can see that the code to query the list of events and display them is very similar; in this

case, you query the Events.CONTENT_URI with the ID of the selected calendar as a selection

parameter. After tapping an event, the user is presented with a simple dialog box with more

details about the event itself. In addition, though, this activity includes a few more methods

to create and delete events on this calendar.

To add a new event, an item is added to the options menu, which will show up in the

overhead action bar if the device has one visible. When pressed, a dialog box appears,

allowing the user to enter a name for this event. If the user elects to continue, a

ContentValues object is created with the bare necessities required to create a new event.

Because this event is nonrecurring, it must have both start and end times, as well as a valid

time zone. We must also supply the ID of the calendar we are looking at so the event is

properly attached. From there, the data is handed back to ContentResolver to be inserted

into the Events table.

To delete an event, the user may long-press a particular item in the list and then confirm

the deletion through a dialog box. In this case, all we need is the unique record ID of the

selected event to pass in a selection string to ContentResolver.

Did you notice in both of these cases that we didn’t write any code after the insert/delete to

refresh the Cursor or the CursorAdapter? That’s the power of the Loader pattern! Because

the CursorLoader is observing the data set, when a change occurred, it automatically

refreshed itself and handed a new Cursor to the adapter, which refreshes the display.

Note Loaders were introduced in Android 3.0 (API Level 11), but they are also part of the Support

Library. You can use them in your applications supporting all the way back to Android 1.6.

562 CHAPTER 6: Interacting with the System

6-14. Logging Code Execution

Problem
You need to place log statements into your code for debugging or testing purposes, and

they should be removed before shipping the code to production.

Solution
(API Level 1)

Leverage the BuildConfig.DEBUG flag to protect statements in the Log class so they print

only on debug builds of the application. It can be extremely convenient to keep logging

statements in your code for future testing and development, even after the application has

shipped to your users. But if those statements are unchecked, you might risk printing private

information to the console on a user’s device. By creating a simple wrapper class around Log

that monitors BuildConfig.DEBUG, you can leave log statements in place without fear of what

they will show in the field.

How It Works
Listing 6-43 illustrates a simple wrapper class around the default Android Log functionality.

Listing 6-43. Logger Wrapper

public class Logger {
 private static final String LOGTAG = "AndroidRecipes";

 private static String getLogString(String format, Object... args) {
 //Minor optimization, only call String.format if necessary
 if(args.length == 0) {
 return format;
 }

 return String.format(format, args);
 }

 /* The INFO, WARNING, ERROR log levels print always */

 public static void e(String format, Object... args) {
 Log.e(LOGTAG, getLogString(format, args));
 }

 public static void w(String format, Object... args) {
 Log.w(LOGTAG, getLogString(format, args));
 }

 public static void w(Throwable throwable) {
 Log.w(LOGTAG, throwable);
 }

563CHAPTER 6: Interacting with the System

 public static void i(String format, Object... args) {
 Log.i(LOGTAG, getLogString(format, args));
 }

 /* The DEBUG and VERBOSE log levels are protected by DEBUG flag */

 public static void d(String format, Object... args) {
 if(!BuildConfig.DEBUG) return;

 Log.d(LOGTAG, getLogString(format, args));
 }

 public static void v(String format, Object... args) {
 if(!BuildConfig.DEBUG) return;

 Log.v(LOGTAG, getLogString(format, args));
 }
}

This class provides a few simple optimizations around the framework’s version to make

logging a bit more civilized. First, it consolidates the log tag so your entire application prints

under one consistent tag heading in logcat. Second, it takes input in the form of a format

string so variables can be logged out cleanly without needing to break up the log string. The

one additional optimization to this is that String.format() can be slow, so we want to call

it only when there are actually parameters to format. Otherwise, we can just pass the raw

string along directly.

Finally, it protects two of the five main log levels with the BuildConfig.DEBUG flag, so that

log statements set to these levels print only in debug versions of the application. There are

many cases where we want log statements to be output in the production application as well

(such as error conditions), so it is prudent not to hide all the log levels behind the debug flag.

Listing 6-44 quickly shows how this wrapper can take the place of traditional logging.

Listing 6-44. Activity Using Logger

public class LoggerActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //This statement printed only in debug
 Logger.d("Activity Created");
 }

 @Override
 protected void onResume() {
 super.onResume();

564 CHAPTER 6: Interacting with the System

 //This statement printed only in debug
 Logger.d("Activity Resume at %d", System.currentTimeMillis());
 //This statement always printed
 Logger.i("It is now %d", System.currentTimeMillis());
 }

 @Override
 protected void onPause() {
 super.onPause();

 //This statement printed only in debug
 Logger.d("Activity Pause at %d", System.currentTimeMillis());
 //This always printed
 Logger.w("No, don't leave!");
 }
}

6-15. Creating a Background Worker

Problem
You need to create a long-running background thread that sits waiting for work to execute

and that can be terminated easily when it is no longer needed.

Solution
(API Level 1)

Let HandlerThread assist you in creating a background thread with a working Looper that

can be attached to a Handler for processing work inside its MessageQueue. One of the most

popular backgrounding methods in Android is AsyncTask, which is a fabulous class and

should be used in your applications. However, it has some drawbacks that may make other

implementations more efficient in certain cases. One of those drawbacks is that AsyncTask

execution is one-shot and finite. If you want to do the same task repeatedly or indefinitely

for the life cycle of a component such as an activity or service, AsyncTask can be a bit

heavyweight. Often, you will need to create multiple instances to accomplish that goal.

The advantage of HandlerThread in cases like this is we can create one worker object to

accept multiple tasks to handle in the background and it will process them serially through

the built-in queue that Looper maintains.

How It Works
Listing 6-45 contains an extension of HandlerThread used to do some simple manipulation

of image data. Because modifying images can take some time, we want to task this to a

background operation to keep the application UI responsive.

565CHAPTER 6: Interacting with the System

Listing 6-45. Background Worker Thread

public class ImageProcessor extends HandlerThread implements Handler.Callback {
 public static final int MSG_SCALE = 100;
 public static final int MSG_CROP = 101;

 private Context mContext;
 private Handler mReceiver, mCallback;

 public ImageProcessor(Context context) {
 this(context, null);
 }

 public ImageProcessor(Context context, Handler callback) {
 super("AndroidRecipesWorker");
 mCallback = callback;
 mContext = context.getApplicationContext();
 }

 @Override
 protected void onLooperPrepared() {
 mReceiver = new Handler(getLooper(), this);
 }

 @Override
 public boolean handleMessage(Message msg) {
 Bitmap source, result;
 //Retrieve arguments from the incoming message
 int scale = msg.arg1;
 switch (msg.what) {
 case MSG_SCALE:
 source = BitmapFactory.decodeResource(mContext.getResources(),
 R.drawable.ic_launcher);
 //Create a new, scaled-up image
 result = Bitmap.createScaledBitmap(source,
 source.getWidth() * scale, source.getHeight() * scale, true);
 break;
 case MSG_CROP:
 source = BitmapFactory.decodeResource(mContext.getResources(),
 R.drawable.ic_launcher);
 int newWidth = source.getWidth() / scale;
 //Create a new, horizontally cropped image
 result = Bitmap.createBitmap(source,
 (source.getWidth() - newWidth) / 2, 0,
 newWidth, source.getHeight());
 break;
 default:
 throw new IllegalArgumentException("Unknown Worker Request");
 }

566 CHAPTER 6: Interacting with the System

 // Return the image to the main thread
 if (mCallback != null) {
 mCallback.sendMessage(Message.obtain(null, 0, result));
 }
 return true;
 }

 //Add/Remove a callback handler
 public void setCallback(Handler callback) {
 mCallback = callback;
 }

 /* Methods to Queue Work */

 // Scale the icon to the specified value
 public void scaleIcon(int scale) {
 Message msg = Message.obtain(null, MSG_SCALE, scale, 0, null);
 mReceiver.sendMessage(msg);
 }

 //Crop the icon in the center and scale the result to the specified value
 public void cropIcon(int scale) {
 Message msg = Message.obtain(null, MSG_CROP, scale, 0, null);
 mReceiver.sendMessage(msg);
 }
}

The name HandlerThread may be a bit of a misnomer, as it does not actually contain a

Handler that you can use to process input. Instead it is a thread designed to work externally

with a Handler to create a background process. We have to still provide a customized

implementation of Handler to execute the work we want done. In this example, our custom

processor implements the Handler.Callback interface, which we pass into a new Handler

owned by the thread. We do this simply to avoid the need to subclass Handler, which would

have worked just as well. The receiver Handler is not created until the onLooperPrepared()

callback because we need to have the Looper object that HandlerThread creates to send

work to the background thread.

The external API we create to allow other objects to queue work all create a Message and

send it to the receiver Handler to be processed in handleMessage(), which inspects the

Message contents and creates the appropriate modified image. Any code that goes through

handleMessage() is running on our background thread.

Once the work is complete, we need to have a second Handler attached to the main thread

so we can send our results and modify the UI.

Reminder Any code that touches UI elements must be called from the main thread only. This

cannot be overstated.

567CHAPTER 6: Interacting with the System

This callback Handler receives a second Message containing the Bitmap result from the

image code. This is one of the great features about using the Message interface to pass

data between threads; each instance can take with it two integer arguments as well as

any arbitrary Object so no additional code is necessary to pass in parameters or access

your results. In our case, one integer is passed in as a parameter for the scale value of the

transformation, and the Object field is used to return the image as a Bitmap. To see how this

is used in practice, take a look at the sample application in Listings 6-46 and 6-47.

Listing 6-46. res/layout/main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Scale Icon"
 android:onClick="onScaleClick" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Crop Icon"
 android:onClick="onCropClick" />

 <ImageView
 android:id="@+id/image_result"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="center" />
</LinearLayout>

Listing 6-47. Activity Interacting with Worker

public class WorkerActivity extends Activity implements Handler.Callback {

 private ImageProcessor mWorker;
 private Handler mResponseHandler;

 private ImageView mResultView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mResultView = (ImageView) findViewById(R.id.image_result);
 //Handler to map background callbacks to this Activity
 mResponseHandler = new Handler(this);
 }

568 CHAPTER 6: Interacting with the System

 @Override
 protected void onResume() {
 super.onResume();
 //Start a new worker
 mWorker = new ImageProcessor(this, mResponseHandler);
 mWorker.start();
 }

 @Override
 protected void onPause() {
 super.onPause();
 //Terminate the worker
 mWorker.setCallback(null);
 mWorker.quit();
 mWorker = null;
 }

 /*
 * Callback method for background results.
 * This is called on the UI thread.
 */
 @Override
 public boolean handleMessage(Message msg) {
 Bitmap result = (Bitmap) msg.obj;
 mResultView.setImageBitmap(result);
 return true;
 }

 /* Action Methods to Post Background Work */

 public void onScaleClick(View v) {
 for(int i=1; i < 10; i++) {
 mWorker.scaleIcon(i);
 }
 }

 public void onCropClick(View v) {
 for(int i=1; i < 10; i++) {
 mWorker.cropIcon(i);
 }
 }
}

This sample makes use of our worker by creating a single running instance while the activity

is in the foreground and passing image requests to it when the user clicks the buttons. To

further illustrate the scale of this pattern, we queue up several requests with each button

click. The activity also implements Handler.Callback and owns a simple Handler (which is

running on the main thread) to receive result messages from the worker.

To start the processor, we just have to call start() on the HandlerThread, which sets up the

Looper and Handler, and it begins waiting for input. Terminating it is just as simple; calling

quit() stops the Looper and immediately drops any unprocessed messages. We also set the

569CHAPTER 6: Interacting with the System

callback to null just so that any work that may be in process currently doesn’t try to call the

activity after this point.

Run this application and you can see how the background work doesn’t slow the UI no

matter how fast or how often the buttons are pressed. Each request just gets added to the

queue and processed if possible before the user leaves the activity. The visible result is that

each created image will be displayed below the buttons as that request finishes.

6-16. Customizing the Task Stack

Problem
Your application allows external applications to launch certain activities directly, and you

need to implement the proper BACK vs. UP navigation patterns.

Solution
(API Level 4)

The NavUtils and TaskStackBuilder classes in the Support Library allow you to easily construct

and launch the appropriate navigation stacks from within your application. The functionality of

both these classes is actually native to the SDK in Android 4.1 and later, but for applications

that need to target earlier platform versions as well, the Support Library implementation

provides a compatible API that will still call the native methods whenever they are present.

BACK vs. UP

Android screen navigation provides for two specific user actions. The first is the action taken

when the user presses the BACK button. The second is the action taken when the user

presses the Home icon in the action bar, which is known as the UP action. For developers

who are new to the platforms, the distinction can often be confusing, especially since in

many cases both actions always perform the same function.

Conceptually, BACK should always navigate to the content screen that the user had been

viewing prior to the current screen. The UP action, on the other hand, should navigate to the

hierarchical parent screen of the current screen. For most applications where the user drills

down from the home screen to subsequent screens with more-specific content, BACK and

UP will go to the same place, and so their usefulness may be called into question.

Consider, though, an application with one or more activity elements that can be launched

directly by another, external application. Say, for example, an activity is designed to view

an image file. Or perhaps the application posts notification messages that allow the user to

go directly to a lower-level activity when an event occurs. In these cases, the BACK action

should take the user back to the application task he or she was using before jumping into

your application. But the UP action provides a way to move back up your application’s stack

if the user decides to continue using this application rather than going back to the original

task. In this instance, the entire stack of activity elements that your application normally has

constructed to get to this point may not exist, and that is where TaskStackBuilder and some

key attributes in your application’s manifest can help.

570 CHAPTER 6: Interacting with the System

How It Works
Let’s define two applications to illustrate how this recipe works. First, look at Listing 6-48,

which shows the <application> element of the manifest.

Listing 6-48. AndroidManifest.xml Application Tag

<application
 android:icon="@drawable/ic_launcher"
 android:label="TaskStack"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".RootActivity"
 android:label="@string/title_activity_root" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".ItemsListActivity"
 android:parentActivityName=".RootActivity">
 <!-- Parent definition for the support library -->
 <meta-data android:name="android.support.PARENT_ACTIVITY"
 android:value=".RootActivity" />
 </activity>
 <activity android:name=".DetailsActivity"
 android:parentActivityName=".ItemsListActivity">
 <!-- Parent definition for the support library -->
 <meta-data android:name="android.support.PARENT_ACTIVITY"
 android:value=".ItemsListActivity" />
 <!-- Supply a filter to allow external launches -->
 <intent-filter>
 <action android:name="com.examples.taskstack.ACTION_NEW_ARRIVAL" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
</application>

The first step in defining ancestral navigation is to define the parent-child relationship

hierarchy between each activity. In Android 4.1, the android:parentActivityName attribute

was introduced to create this link. To support the same functionality in older platforms, the

Support Library defines a <meta-data> value that can be attached to each activity to define

the parent. Our example defines both attributes for each lower-level activity to work with

both the native API and the Support Library.

We have also defined a custom <intent-filter> on the DetailsActivity, which will allow

an external application to launch this activity directly.

571CHAPTER 6: Interacting with the System

Note If you are supporting only Android 4.1 and later with your application, you can stop here.

All the remaining functionality to build the stack and navigate are built into Activity in these

versions, and the default behavior happens without any extra code. In this case, you would need to

implement only TaskStackBuilder if you want to somehow customize the task stack in certain

situations.

With our hierarchy defined, we can create the code for each activity. See Listings 6-49

through 6-51.

Listing 6-49. Root Activity

 public class RootActivity extends Activity implements View.OnClickListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Button listButton = new Button(this);
 listButton.setText("Show Family Members");
 listButton.setOnClickListener(this);

 setContentView(listButton,
 new ViewGroup.LayoutParams(LayoutParams.MATCH_PARENT,
 LayoutParams.WRAP_CONTENT));
 }

 @Override
 public void onClick(View v) {
 //Launch the next Activity
 Intent intent = new Intent(this, ItemsListActivity.class);
 startActivity(intent);
 }
}

Listing 6-50. Second-Level Activity

public class ItemsListActivity extends Activity implements OnItemClickListener {

 private static final String[] ITEMS = {"Mom", "Dad", "Sister", "Brother", "Cousin"};

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Enable ActionBar home button with up arrow
 getActionBar().setDisplayHomeAsUpEnabled(true);
 //Create and display a list of family members
 ListView list = new ListView(this);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, ITEMS);

572 CHAPTER 6: Interacting with the System

 list.setAdapter(adapter);
 list.setOnItemClickListener(this);

 setContentView(list);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 //Create an intent for the parent Activity
 Intent upIntent = NavUtils.getParentActivityIntent(this);
 //Check if we need to create the entire stack
 if (NavUtils.shouldUpRecreateTask(this, upIntent)) {
 //This stack doesn't exist yet, so it must be synthesized
 TaskStackBuilder.create(this)
 .addParentStack(this)
 .startActivities();
 } else {
 //Stack exists, so just navigate up
 NavUtils.navigateUpFromSameTask(this);
 }
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 //Launch the final Activity, passing in the selected item name
 Intent intent = new Intent(this, DetailsActivity.class);
 intent.putExtra(Intent.EXTRA_TEXT, ITEMS[position]);
 startActivity(intent);
 }
}

Listing 6-51. Third-Level Activity

public class DetailsActivity extends Activity {
 //Custom Action String for external Activity launches
 public static final String ACTION_NEW_ARRIVAL =
 "com.examples.taskstack.ACTION_NEW_ARRIVAL";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Enable ActionBar home button with up arrow
 getActionBar().setDisplayHomeAsUpEnabled(true);

573CHAPTER 6: Interacting with the System

 TextView text = new TextView(this);
 text.setGravity(Gravity.CENTER);
 String item = getIntent().getStringExtra(Intent.EXTRA_TEXT);
 text.setText(item);

 setContentView(text);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 //Create an intent for the parent Activity
 Intent upIntent = NavUtils.getParentActivityIntent(this);
 //Check if we need to create the entire stack
 if (NavUtils.shouldUpRecreateTask(this, upIntent)) {
 //This stack doesn't exist yet, so it must be synthesized
 TaskStackBuilder.create(this)
 .addParentStack(this)
 .startActivities();
 } else {
 //Stack exists, so just navigate up
 NavUtils.navigateUpFromSameTask(this);
 }
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }
}

This example application consists of three screens. The root screen just has a button

to launch the next activity. The second activity contains a ListView with several options

to select from. When any item in the list is selected, the third activity is launched, which

displays the selection made in the center of the view. As you might expect, the user can use

the BACK button to navigate back through this stack of screens. However, in this case, we

have also enabled the UP action to provide the same navigation.

There is some common code in the two lower-level activities that enables the UP navigation.

The first is a call to setDisplayHomeAsUpEnabled() on ActionBar. This enables the home icon

in the bar to be clickable and also to display with the default back arrow that indicates an UP

action is possible. Whenever this item is clicked by the user, onOptionsItemSelected() will

trigger and the item’s ID will be android.R.id.home, so we use this information to filter out

when the user taps requests to navigate UP.

When navigating UP, we have to determine whether the activity stack we need already exists

or we need to create it; the shouldUpRecreateTask() method does this for us. On platform

versions prior to Android 4.1, it does this by checking whether the target intent has a valid

action string that isn’t Intent.ACTION_MAIN. On Android 4.1 and later, it decides this by

checking the taskAffinity of the target intent against the rest of the application.

574 CHAPTER 6: Interacting with the System

If the task stack does not exist, primarily because this activity was launched directly rather

than being navigated to from within its own application, we must create it. TaskStackBuilder

contains a host of methods to allow the stack to be created in any way that fits your

application’s needs. We are using the convenience method addParentStack(), which

traverses all of the parentActivityName attributes (or PARENT_ACTIVITY on support platforms)

and every intent necessary to re-create the path from this activity to the root. With the stack

built, we just need to call startActivities() to have it build the stack and navigate to the

next level up.

If the stack already exists, we can call on NavUtils to take us up one level with

navigateUpFromSameTask(). This is really just a convenience method for navigateUpTo() that

constructs the target intent by calling getParentActivityIntent() for us.

Now we have an application that is properly compliant with the BACK/UP navigation pattern,

but how do we test it? Running this application as is will produce the same results for each

BACK and UP action.

Let’s construct a simple second application to launch our DetailsActivity to better illustrate

the navigation pattern. See Listings 6-52 through 6-54.

Listing 6-52. AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.taskstacklaunch"
 android:versionCode="1"
 android:versionName="1.0">

 <application android:label="TaskStackLaunch"
 android:icon="@drawable/ic_launcher"
 android:theme="@style/AppTheme">
 <activity
 android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Listing 6-53. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <Button
 android:id="@+id/button_nephew"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Add a New Nephew" />

575CHAPTER 6: Interacting with the System

 <Button
 android:id="@+id/button_niece"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Add a New Niece" />
 <Button
 android:id="@+id/button_twins"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Add Twin Nieces!" />
</LinearLayout>

Listing 6-54. Activity Launching into the Task Stack

public class MainActivity extends Activity implements View.OnClickListener {
 //Custom Action String for external Activity launches
 public static final String ACTION_NEW_ARRIVAL =
 "com.examples.taskstack.ACTION_NEW_ARRIVAL";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Attach the button listeners
 findViewById(R.id.button_nephew).setOnClickListener(this);
 findViewById(R.id.button_niece).setOnClickListener(this);
 findViewById(R.id.button_twins).setOnClickListener(this);
 }

 @Override
 public void onClick(View v) {
 String newArrival;
 switch(v.getId()) {
 case R.id.button_nephew:
 newArrival = "Baby Nephew";
 break;
 case R.id.button_niece:
 newArrival = "Baby Niece";
 break;
 case R.id.button_twins:
 newArrival = "Twin Nieces!";
 break;
 default:
 return;
 }

 Intent intent = new Intent(ACTION_NEW_ARRIVAL);
 intent.putExtra(Intent.EXTRA_TEXT, newArrival);
 startActivity(intent);
 }
}

Figure 6-10. BACK vs. UP navigation

576 CHAPTER 6: Interacting with the System

This application provides a few options for name values to pass in, and it then launches

our previous application’s DetailActivity directly. In this case, we see different behavior

exhibited between BACK and UP. Pressing the BACK button will take the user back to the

options selection screen, because that is the activity that launched it. But pressing the UP

action button will launch the user into the original application’s task stack, so it will go to

the screen with the ListView of items instead. From this point forward, the user’s task has

changed, so BACK button actions will now also traverse the original stack, thus matching

subsequent UP actions. Figure 6-10 illustrates this use case.

577CHAPTER 6: Interacting with the System

6-17. Implementing AppWidgets

Problem
Your application provides information that users need to quickly and consistently access.

You want to add an interactive component of your application to the user’s home screen.

Solution
(API Level 3)

Build an AppWidget that users can choose to install on the home screen as part of the

application. AppWidgets are core functions that make Android stand apart from other mobile

operating systems. The ability for users to customize their Home experience with quick

access to applications they use most is a strong draw for many.

An AppWidget is a view element that is designed to run in the Launcher application’s process

but is controlled from your application’s process. Because of this, special pieces of the

framework that are designed to support remote process connections must be used. In

particular, the view hierarchy of the widget must be provided wrapped in a RemoteViews

object, which has methods to update view elements by ID without needing to gain direct

access to them. RemoteViews supports only a subset of the layouts and widgets in the

framework. The following list shows what RemoteViews supports currently:

Layouts	
	 FrameLayout

	 GridLayout

	 LinearLayout

	 RelativeLayout

Widgets	
	 AdapterViewFlipper

	 AnalogClock

	 Button

	 Chronometer

	 GridView

	 ImageButton

	 ImageView

	 ListView

Table 6-1. Home Screen Grid Cell Sizes

Number of Cells Available Space

1 40dp

2 110dp

3 180dp

4 250dp

n (70 × n) – 30

578 CHAPTER 6: Interacting with the System

	 ProgressBar

	 StackView

	 TextView

	 ViewFlipper

The view for your AppWidget must be composed of these objects only, or the view will not

properly display.

Working in a remote process also means that most user interaction must be handled through

PendingIntent instances, rather than traditional listener interfaces. The PendingIntent

allows your application to freeze the intent action along with the Context that has permission

to execute it so the action can be freely handed off to another process and be run at the

specified time as if it had come directly from the originating application Context.

Sizing

Android Launcher screens on handsets are typically made from a 4×4 grid of spaces in

which you can fit your AppWidget. While tablets will have considerably greater space, this

should be the design metric to keep in mind when determining the minimum height or width

of your widget. Android 3.1 introduced the ability for a user to also resize an AppWidget after

it had been placed, but prior to that, a widget’s size was fixed to these values. Taken from

the Android documentation, Table 6-1 defines a good rule of thumb to use in determining

how many cells a given minimum size will occupy.

So, as an example, if your widget needed to be at least 200dp×48dp in size, it would require

three columns and one row in order to display on the Launcher.

How It Works
Let’s first take a look at constructing a simple AppWidget that can be updated from either the

widget itself or the associated activity. This example constructs a random number generator

(something I’m sure we all wish could be on our Launcher screen) that can be placed as an

AppWidget. Let’s start with the application’s manifest in Listing 6-55.

579CHAPTER 6: Interacting with the System

Listing 6-55. AndroidManifest.xml

<application android:label="@string/app_name"
 android:icon="@drawable/ic_launcher">
 <!-- Simple AppWidget Components -->
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <receiver android:name=".SimpleAppWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <!-- This data required to configure the AppWidget -->
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/simple_appwidget" />
 </receiver>

 <service android:name=".RandomService" />
</application>

The only required component here to produce the AppWidget is the <receiver> marked

SimpleAppWidget. This element must point to a subclass of AppWidgetProvider, which, as

you might expect, is a customized BroadcastReceiver. It must register in the manifest for the

APPWIDGET_UPDATE broadcast action. There are several other broadcasts that it processes,

but this is the only one that must be declared in the manifest. You must also attach a

<meta-data> element that points to an <appwidget-provider>, which will eventually be

inflated into AppWidgetProviderInfo. Let’s have a look at that element now in Listing 6-56.

Listing 6-56. res/xml/simple_appwidget.xml

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="180dp"
 android:minHeight="40dp"
 android:updatePeriodMillis="86400000"
 android:initialLayout="@layout/simple_widget_layout"/>

These attributes define the configuration for the AppWidget. Besides the size metrics,

updatePeriodMillis defines the period on which Android should automatically call an

update on this widget to refresh it. Be judicious with this value, and do not set it higher than

you need to. In many cases, it is more efficient to have other services or observers notifying

you of changes that require an AppWidget update. In fact, Android will not deliver updates to

an AppWidget more frequently than 30 seconds. We have set our AppWidget to update only

once per day. This example also defines an initialLayout attribute, which points to the

layout that should be used for the AppWidget.

580 CHAPTER 6: Interacting with the System

You can apply other useful attributes here as well:

	android:configure provides an activity that should be launched to

configure the AppWidget before it is added to the Launcher.

	android:icon references a resource to be displayed at the widget icon

on the system’s selection UI.

	android:previewImage references a resource to display a full-size

preview of the AppWidget in the system’s selection UI (API Level 11).

	android:resizeMode defines how the widget should be resizable on

platforms that support it: horizontally, vertically, or both (API Level 12).

Listings 6-57 and 6-58 reveal what the AppWidget layout looks like.

Listing 6-57. res/layout/simple_widget_layout.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/widget_background"
 android:orientation="horizontal"
 android:padding="10dp" >
 <LinearLayout
 android:id="@+id/container"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:layout_gravity="center_vertical"
 android:orientation="vertical">
 <TextView
 android:id="@+id/text_title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="Random Number" />
 <TextView
 android:id="@+id/text_number"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:textStyle="bold"
 android:textAppearance="?android:attr/textAppearanceLarge"/>
 </LinearLayout>

581CHAPTER 6: Interacting with the System

 <ImageButton
 android:id="@+id/button_refresh"
 android:layout_width="55dp"
 android:layout_height="55dp"
 android:layout_gravity="center_vertical"
 android:background="@null"
 android:src="@android:drawable/ic_menu_rotate" />

</LinearLayout>

Listing 6-58. res/drawable/widget_background.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <corners
 android:radius="10dp" />
 <solid
 android:color="#A333" />
 <stroke
 android:width="2dp"
 android:color="#333" />
</shape>

It is always good practice with an AppWidget, especially in later platform versions where they

can be resized, to define layouts that easily stretch and adapt to a changing container size.

In this case, we have defined the background for the widget as a semitransparent rounded

rectangle in XML, which could fill any size necessary. The children of the layout are also

defined by using weight, so they will fill excess space. This layout is made of two TextView

elements and an ImageButton. We have applied android:id attributes to all of these views

because there will be no other way to access them once wrapped in a RemoteViews instance

later. Listing 6-59 reveals our AppWidgetProvider mentioned earlier.

Listing 6-59. AppWidgetProvider Instance

public class SimpleAppWidget extends AppWidgetProvider {

 /*
 * This method is called to update the widgets created by this provider.
 * Normally, this will get called:
 * 1. Initially when the widget is created
 * 2. When the updatePeriodMillis defined in the AppWidgetProviderInfo expires
 * 3. Manually when updateAppWidget() is called on AppWidgetManager
 */
 @Override
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 //Start the background service to update the widget
 context.startService(new Intent(context, RandomService.class));
 }
}

582 CHAPTER 6: Interacting with the System

The only required method to implement here is onUpdate(), which will get called initially

when the user selects the widget to be added and subsequently when either the framework

or your application requests another update. In many cases, you can create the views

and update your AppWidget directly inside this method. Because AppWidgetProvider is a

BroadcastReceiver, it is not considered good practice to do long operations inside of it. If

you must do intensive work to set up your AppWidget, you should start a service instead and

perhaps a background thread as well to do the work, which is what we have done here.

For convenience, this method is passed an AppWidgetManager instance, which is necessary

for updating the AppWidget if you do so from this method. It is also possible to have multiple

AppWidgets loaded on a single Launcher screen. The array of IDs references each

individual AppWidget so you can update them all at once. Let’s have a look at that service

in Listing 6-60.

Listing 6-60. AppWidget Service

public class RandomService extends Service {
 /* Broadcast Action When Updates Complete */
 public static final String ACTION_RANDOM_NUMBER =
 "com.examples.appwidget.ACTION_RANDOM_NUMBER";

 /* Current Data Saved as a static value */
 private static int sRandomNumber;
 public static int getRandomNumber() {
 return sRandomNumber;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 //Update the random number data
 sRandomNumber = (int)(Math.random() * 100);

 //Create the AppWidget view
 RemoteViews views = new RemoteViews(getPackageName(),
 R.layout.simple_widget_layout);
 views.setTextViewText(R.id.text_number, String.valueOf(sRandomNumber));

 //Set an Intent for the refresh button to start this service again
 PendingIntent refreshIntent = PendingIntent.getService(this, 0,
 new Intent(this, RandomService.class), 0);
 views.setOnClickPendingIntent(R.id.button_refresh, refreshIntent);

 //Set an Intent so tapping the widget text will open the Activity
 PendingIntent appIntent = PendingIntent.getActivity(this, 0,
 new Intent(this, MainActivity.class), 0);
 views.setOnClickPendingIntent(R.id.container, appIntent);

 //Update the widget
 AppWidgetManager manager = AppWidgetManager.getInstance(this);
 ComponentName widget = new ComponentName(this, SimpleAppWidget.class);
 manager.updateAppWidget(widget, views);

583CHAPTER 6: Interacting with the System

 //Fire a broadcast to notify listeners
 Intent broadcast = new Intent(ACTION_RANDOM_NUMBER);
 sendBroadcast(broadcast);

 //This service should not continue to run
 stopSelf();
 return START_NOT_STICKY;
 }

 /*
 * We are not binding to this Service, so this method should
 * just return null.
 */
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

This RandomService performs two operations when started. First, it regenerates and

saves the random number data into a static field. Second, it constructs a new view

for our AppWidget. In this way, we can use this service to refresh our AppWidget on

demand. We must first create a RemoteViews instance, passing in our widget layout. We

use setTextViewText() to update a TextView in the layout with the new number, and

setOnClickPendingIntent() attaches click listeners. The first PendingIntent is attached to

the Refresh button on the AppWidget, and the intent that it is set to fire will restart this same

service. The second PendingIntent is attached to the main layout of the widget, allowing the

user to click anywhere inside it, and it fires an intent to launch the application’s main activity.

The final step with our RemoteViews initialized is to update the AppWidget. We do this by

obtaining the AppWidgetManager instance and calling updateAppWidget(). We do not have the

ID values for each AppWidget attached to the provider here, which is one method of updating

them. Instead, we can pass a ComponentName that references our AppWidgetProvider, and

this update will apply to all AppWidgets attached to that provider.

To finish up, we send a broadcast to any listeners that a new random number has been

generated and we stop the service. At this point, we have all the code in place for our

AppWidget to be live and working on a device. But let’s add one more component and

include an activity that interacts with the same data. See Listings 6-61 and 6-62.

Listing 6-61. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Generate New Number"
 android:onClick="onRandomClick" />

584 CHAPTER 6: Interacting with the System

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Current Random Number" />
 <TextView
 android:id="@+id/text_number"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:textSize="55dp"
 android:textStyle="bold" />

</LinearLayout>

Listing 6-62. Main Application Activity

public class MainActivity extends Activity {

 private TextView mCurrentNumber;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mCurrentNumber = (TextView) findViewById(R.id.text_number);
 }

 @Override
 protected void onResume() {
 super.onResume();
 updateNumberView();
 //Register a receiver to receive updates when the service finishes
 IntentFilter filter = new IntentFilter(RandomService.ACTION_RANDOM_NUMBER);
 registerReceiver(mReceiver, filter);
 }

 @Override
 protected void onPause() {
 super.onPause();
 //Unregister our receiver
 unregisterReceiver(mReceiver);
 }

 public void onRandomClick(View v) {
 //Call the service to update the number data
 startService(new Intent(this, RandomService.class));
 }

Figure 6-11. The Random Number Activity app (left) and AppWidget (right)

585CHAPTER 6: Interacting with the System

 private void updateNumberView() {
 //Update the view with the latest number
 mCurrentNumber.setText(String.valueOf(RandomService.getRandomNumber()));
 }

 private BroadcastReceiver mReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //Update the view with the new number
 updateNumberView();
 }
 };
}

This activity displays the current value of the random number provided by our RandomService.

It also responds to button clicks by starting the service to generate a new number. The nice

side effect is that this will also update our AppWidget so the two will stay in sync. We also

register a BroadcastReceiver to listen for the event when the service has finished generating

new data so that we can update the user interface here as well. Figure 6-11 shows the

application activity, and the corresponding AppWidget added to the home screen.

586 CHAPTER 6: Interacting with the System

Collection-Based AppWidgets

(API Level 12)

Starting in Android 3.0, the things an AppWidget can display got a boost when collection

views were added to the AppWidget framework. This allows applications to display

information in a list, grid, or stack. In Android 3.1, AppWidgets also received the ability to be

resized after being placed. Let’s take a look at an example of an AppWidget that allows the

user to see his or her media collection. Again, we’ll start with the manifest in Listing 6-63.

Listing 6-63. AndroidManifest.xml

<application android:label="@string/app_name"
 android:icon="@drawable/ic_launcher">
 <!-- Collection AppWidget Components -->
 <activity android:name=".ListWidgetConfigureActivity">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_CONFIGURE"/>
 </intent-filter>
 </activity>

 <receiver android:name=".ListAppWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/list_appwidget" />
 </receiver>

 <service android:name=".ListWidgetService"
 android:permission="android.permission.BIND_REMOTEVIEWS" />
 <service android:name=".MediaService" />
</application>

This example has a similar definition to the AppWidgetProvider, this time named

ListAppWidget. We have defined a service with the special permission BIND_REMOTEVIEWS.

You will see shortly that this is actually a RemoteViewsService, which the framework will use

to provide data for the AppWidget’s list, similar to how a ListAdapter works with ListView.

Finally, we have defined an activity that will be used to configure the AppWidget before the

user adds it. For this to take place, the activity must include an <intent-filter> for the

APPWIDGET_CONFIGURE action. The AppWidgetProviderInfo attached to our AppWidget is

defined in Listing 6-64.

Listing 6-64. res/xml/list_appwidget.xml

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="110dp"
 android:minHeight="110dp"
 android:updatePeriodMillis="86400000"
 android:initialLayout="@layout/list_widget_layout"
 android:configure="com.examples.appwidget.ListWidgetConfigureActivity"
 android:resizeMode="horizontal|vertical"/>

587CHAPTER 6: Interacting with the System

In addition to the standard attributes we discussed in the previous example, we have added

android:configure to point to our configuration activity, and android:resizeMode will enable

this AppWidget to be resized in both directions. Listings 6-65 through 6-67 show the layouts

we will use for both the AppWidget itself and for each row of the ListView.

Listing 6-65. res/layout/list_widget_layout.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:background="@drawable/list_widget_background">
 <TextView
 android:id="@+id/text_title"
 android:layout_width="match_parent"
 android:layout_height="45dp"
 android:gravity="center"
 android:textAppearance="?android:attr/textAppearanceMedium" />
 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <ListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 <TextView
 android:id="@+id/list_empty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:text="No Items Available" />
 </FrameLayout>
</LinearLayout>

Listing 6-66. res/drawable/list_widget_background.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <solid
 android:color="#A333" />
</shape>

Listing 6-67. res/layout/list_widget_item.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_widget_item"
 android:layout_width="match_parent"
 android:layout_height="?android:attr/listPreferredItemHeight"

588 CHAPTER 6: Interacting with the System

 android:paddingLeft="10dp"
 android:gravity="center_vertical"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/line1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <TextView
 android:id="@+id/line2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

The layout of the AppWidget is a simple ListView with a TextView above it for a title. We

have encapsulated the list into a FrameLayout so that we can also supply a sibling empty

view as well.

Tip Try as you might, you will be unsuccessful using most of the Android standard row layouts for

ListView in an AppWidget, such as android.R.id.simple_list_item_1. This is because

these elements typically contain views such as CheckedTextView that are not supported by

RemoteViews. You will have to create your own layout for each row.

Before we look at the AppWidgetProvider for this example, let’s first look at the configuration

activity. This is the first thing the user will see after dropping the AppWidget onto the home

screen, but before it is installed. The result from this activity will actually govern whether the

AppWidgetProvider gets called at all! See Listings 6-68 and 6-69.

Listing 6-68. res/layout/configure.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/text_title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Select Media Type:" />
 <RadioGroup
 android:id="@+id/group_mode"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/text_title"
 android:orientation="vertical">

589CHAPTER 6: Interacting with the System

 <RadioButton
 android:id="@+id/mode_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Images"/>
 <RadioButton
 android:id="@+id/mode_video"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Videos"/>
 </RadioGroup>

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Add Widget"
 android:onClick="onAddClick" />

</RelativeLayout>

Listing 6-69. Configuration Activity

public class ListWidgetConfigureActivity extends Activity {

 private int mAppWidgetId;
 private RadioGroup mModeGroup;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.configure);

 mModeGroup = (RadioGroup) findViewById(R.id.group_mode);

 mAppWidgetId = getIntent()
 .getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);

 setResult(RESULT_CANCELED);
 }

 public void onAddClick(View v) {
 SharedPreferences.Editor prefs =
 getSharedPreferences(String.valueOf(mAppWidgetId), MODE_PRIVATE)
 .edit();
 RemoteViews views = new RemoteViews(getPackageName(),
 R.layout.list_widget_layout);
 switch (mModeGroup.getCheckedRadioButtonId()) {
 case R.id.mode_image:
 prefs.putString(ListWidgetService.KEY_MODE,
 ListWidgetService.MODE_IMAGE).commit();

590 CHAPTER 6: Interacting with the System

 views.setTextViewText(R.id.text_title, "Image Collection");
 break;
 case R.id.mode_video:
 prefs.putString(ListWidgetService.KEY_MODE,
 ListWidgetService.MODE_VIDEO).commit();
 views.setTextViewText(R.id.text_title, "Video Collection");
 break;
 default:
 Toast.makeText(this, "Please Select a Media Type.",
 Toast.LENGTH_SHORT).show();
 return;
 }

 Intent intent = new Intent(this, ListWidgetService.class);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, mAppWidgetId);
 intent.setData(Uri.parse(intent.toUri(Intent.URI_INTENT_SCHEME)));

 //Attach the adapter to populate the data for the list in
 //the form of an Intent that points to our RemoveViewsService
 views.setRemoteAdapter(mAppWidgetId, R.id.list, intent);
 //Set the empty view for the list
 views.setEmptyView(R.id.list, R.id.list_empty);

 Intent viewIntent = new Intent(Intent.ACTION_VIEW);
 PendingIntent pendingIntent = PendingIntent.getActivity(this, 0, viewIntent, 0);
 views.setPendingIntentTemplate(R.id.list, pendingIntent);

 AppWidgetManager manager = AppWidgetManager.getInstance(this);
 manager.updateAppWidget(mAppWidgetId, views);

 Intent data = new Intent();
 data.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, mAppWidgetId);
 setResult(RESULT_OK, data);
 finish();
 }
}

The layout for this activity provides a single RadioGroup to choose between images and

videos, which will be the selected media type that the AppWidget displays in its list and on

an Add button. By convention, when we enter the activity, we immediately set the result to

RESULT_CANCELED. This is because if the user ever leaves this activity without going through

the process of hitting Add, we don’t want the AppWidget to show up on the screen. The

framework checks the result of this activity to decide whether to add the AppWidget. We are

also passed the ID of this AppWidget by the framework, which we save for later.

Once the user had made a selection and clicks Add, that selection is saved in a specific

SharedPreferences instance named by the AppWidget’s ID. We want to be able to allow

the application to handle multiple widgets, and we want their configuration values to be

separate, so we avoid using the default SharedPreferences to persist this data.

591CHAPTER 6: Interacting with the System

Note In Android 4.1, the ability to pass configuration data to the AppWidget as a Bundle of

options was introduced. However, to keep compatibility with previous versions, we can use the

SharedPreferences approach instead.

We also can begin to construct the RemoteViews for this AppWidget, setting the title based

on the user’s type selection. For a collection-based AppWidget, we must construct an intent

that will launch an instance of RemoteViewsService to act as the adapter for the collection

data, similar to a ListAdapter. This is attached to the RemoteViews with setRemoteAdapter(),

which also takes the ID of the ListView we want the adapter to connect with. We also use

setEmptyView() to attach the ID of our sibling TextView to display when the list is empty.

Each list item must have a PendingIntent attached to fire when the user clicks it. The

framework is aware that you may need to supply specific information for every item, so it

uses the pattern of a PendingIntent template that gets filled in by each item. Here we are

creating the base intent for each item to fill in as a simple ACTION_VIEW, and attaching it via

setPendingIntentTemplate(); the data and extras fields will be filled in later.

With all this in place, we call updateAppWidget() on the AppWidgetManager. In this case, we

called a version of this method that takes a single ID rather than a ComponentName because

we want to update only this specific AppWidget. We then set the result to RESULT_OK and

finish, allowing the framework to add the AppWidget to the screen. Let’s look briefly now at

the AppWidgetProvider, which is shown in Listing 6-70.

Listing 6-70. List AppWidgetProvider

public class ListAppWidget extends AppWidgetProvider {

 /*
 * This method is called to update the widgets created by this provider.
 * Because we supplied a configuration Activity, this method will not get called
 * for the initial adding of the widget, but will still be called:
 * 1. When the updatePeriodMillis defined in the AppWidgetProviderInfo expires
 */
 @Override
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 //Update each widget created by this provider
 for (int i=0; i < appWidgetIds.length; i++) {
 Intent intent = new Intent(context, ListWidgetService.class);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
 intent.setData(Uri.parse(intent.toUri(Intent.URI_INTENT_SCHEME)));

 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.list_widget_layout);
 //Set the title view based on the widget configuration
 SharedPreferences prefs =
 context.getSharedPreferences(String.valueOf(appWidgetIds[i]),
 Context.MODE_PRIVATE);

592 CHAPTER 6: Interacting with the System

 String mode = prefs.getString(ListWidgetService.KEY_MODE,
 ListWidgetService.MODE_IMAGE);
 if (ListWidgetService.MODE_VIDEO.equals(mode)) {
 views.setTextViewText(R.id.text_title, "Video Collection");
 } else {
 views.setTextViewText(R.id.text_title, "Image Collection");
 }

 //Attach the adapter to populate the data for the list in
 //the form of an Intent that points to our RemoveViewsService
 views.setRemoteAdapter(appWidgetIds[i], R.id.list, intent);

 //Set the empty view for the list
 views.setEmptyView(R.id.list, R.id.list_empty);

 //Set the template Intent for item clicks that each item will fill in
 Intent viewIntent = new Intent(Intent.ACTION_VIEW);
 PendingIntent pendingIntent = PendingIntent.getActivity(context, 0,
 viewIntent, 0);
 views.setPendingIntentTemplate(R.id.list, pendingIntent);

 appWidgetManager.updateAppWidget(appWidgetIds[i], views);
 }
 }

 /*
 * Called when the first widget is added to the provider
 */
 @Override
 public void onEnabled(Context context) {
 //Start the service to monitor the MediaStore
 context.startService(new Intent(context, MediaService.class));
 }

 /*
 * Called when all widgets have been removed from this provider
 */
 @Override
 public void onDisabled(Context context) {
 //Stop the service that is monitoring the MediaStore
 context.stopService(new Intent(context, MediaService.class));
 }

 /*
 * Called when one or more widgets attached to this provider are removed
 */

593CHAPTER 6: Interacting with the System

 @Override
 public void onDeleted(Context context, int[] appWidgetIds) {
 //Remove the SharedPreferences we created for each widget removed
 for (int i=0; i < appWidgetIds.length; i++) {
 context.getSharedPreferences(String.valueOf(appWidgetIds[i]),
 Context.MODE_PRIVATE)
 .edit()
 .clear()
 .commit();
 }

 }
}

The onUpdate() method of this provider is identical to the code found in the configuration

activity, except that the provider is reading the current values of the user configuration

settings rather than updating them. The code must be the same because we want to have

the same AppWidget result from a subsequent update.

This provider also overrides onEnabled() and onDisabled(). These methods are called when

the very first widget is added to the provider and after the very last widget is removed. The

provider is using them to start and stop a long-running service that we will look at in more

detail shortly, but its purpose is to monitor the MediaStore for changes so we can update our

AppWidget. Finally, the onDeleted() callback is called for each AppWidget that gets removed.

In our example, we use this to clear out the SharedPreferences we had created when the

AppWidget was added.

Now look at Listing 6-71, which defines our RemoteViewsService for serving data to the

AppWidget list.

Listing 6-71. RemoteViews Adapter

public class ListWidgetService extends RemoteViewsService {

 public static final String KEY_MODE = "mode";
 public static final String MODE_IMAGE = "image";
 public static final String MODE_VIDEO = "video";

 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return new ListRemoteViewsFactory(this, intent);
 }

 private class ListRemoteViewsFactory implements
 RemoteViewsService.RemoteViewsFactory {
 private Context mContext;
 private int mAppWidgetId;

 private Cursor mDataCursor;

594 CHAPTER 6: Interacting with the System

 public ListRemoteViewsFactory(Context context, Intent intent) {
 mContext = context.getApplicationContext();
 mAppWidgetId = intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 @Override
 public void onCreate() {
 //Load preferences to get settings user set while adding the widget
 SharedPreferences prefs =
 mContext.getSharedPreferences(String.valueOf(mAppWidgetId),
 MODE_PRIVATE);
 //Get the user's config setting, defaulting to image mode
 String mode = prefs.getString(KEY_MODE, MODE_IMAGE);
 //Set the media type to query based on the user configuration setting
 if (MODE_VIDEO.equals(mode)) {
 //Query for video items in the MediaStore
 String[] projection = {MediaStore.Video.Media.TITLE,
 MediaStore.Video.Media.DATE_TAKEN,
 MediaStore.Video.Media.DATA};
 mDataCursor = MediaStore.Images.Media.query(getContentResolver(),
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI, projection);
 } else {
 //Query for image items in the MediaStore
 String[] projection = {MediaStore.Images.Media.TITLE,
 MediaStore.Images.Media.DATE_TAKEN,
 MediaStore.Images.Media.DATA};
 mDataCursor = MediaStore.Images.Media.query(getContentResolver(),
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI, projection);
 }
 }

 /*
 * This method gets called after onCreate(), but also if an external call
 * to AppWidgetManager.notifyAppWidgetViewDataChanged() indicates that the
 * data for a widget should be refreshed.
 */
 @Override
 public void onDataSetChanged() {
 //Refresh the Cursor data
 mDataCursor.requery();
 }

 @Override
 public void onDestroy() {
 //Close the cursor when we no longer need it.
 mDataCursor.close();
 mDataCursor = null;
 }

595CHAPTER 6: Interacting with the System

 @Override
 public int getCount() {
 return mDataCursor.getCount();
 }

 /*
 * If your data comes from the network or otherwise may take a while to load,
 * you can return a loading view here. This view will be shown while
 * getViewAt() is blocked until it returns
 */
 @Override
 public RemoteViews getLoadingView() {
 return null;
 }
 /*
 * Return a view for each item in the collection. You can safely perform long
 * operations in this method. The loading view will be displayed until this
 * method returns.
 */
 @Override
 public RemoteViews getViewAt(int position) {
 mDataCursor.moveToPosition(position);

 RemoteViews views = new RemoteViews(getPackageName(),
 R.layout.list_widget_item);
 views.setTextViewText(R.id.line1, mDataCursor.getString(0));
 views.setTextViewText(R.id.line2, DateFormat.format("MM/dd/yyyy",
 mDataCursor.getLong(1)));

 SharedPreferences prefs = mContext
 .getSharedPreferences(String.valueOf(mAppWidgetId), MODE_PRIVATE);
 String mode = prefs.getString(KEY_MODE, MODE_IMAGE);
 String type;
 if (MODE_VIDEO.equals(mode)) {
 type = "video/*";
 } else {
 type = "image/*";
 }

 Uri data = Uri.fromFile(new File(mDataCursor.getString(2)));

 Intent intent = new Intent();
 intent.setDataAndType(data, type);
 views.setOnClickFillInIntent(R.id.list_widget_item, intent);

 return views;
 }

 @Override
 public int getViewTypeCount() {
 return 1;
 }

596 CHAPTER 6: Interacting with the System

 @Override
 public boolean hasStableIds() {
 return false;
 }

 @Override
 public long getItemId(int position) {
 return position;
 }
 }
}

The RemoteViewsFactory implementation that RemoteViewsService must return looks very

much like a ListAdapter. Many of the methods such as getCount() and getViewTypeCount()

perform the same functions as they do for local lists. When the RemoteViewsFactory is first

created, we check the setting value the user had selected during configuration, and we then

retrieve the appropriate Cursor from the system’s MediaStore content provider to display

either images or videos. When the factory is destroyed because it’s no longer needed, that is

our opportunity to close the Cursor. When an external stimulus tells AppWidgetManager that

the data need to be refreshed, onDataSetChanged() will be called. To refresh our data, all we

need to do is requery() the Cursor.

The getViewAt() method is where we obtain a view for each row in the list. This method

is safe to call long-running operations in (such as network I/O); the framework will display

whatever is returned from getLoadingView() instead until getViewAt() returns. In the

example, we update the RemoteViews version of our row layout with the title and a text

representation of the date for the given item. We must then fill in the PendingIntent template

that was set in our original update. We set the file path of the image or video and the

appropriate MIME type as the data field. Combined with ACTION_VIEW, this will open the file

in the device’s Gallery app (or any other application capable of handling the media) when the

item is clicked.

You may notice in this example we didn’t use explicit column names when retrieving the

Cursor data. This is primarily because the projections between the two types have different

names, so it is more efficient to access them by index. Finally, look at Listing 6-72, which

reveals the background service that was started and stopped by the AppWidgetProvider.

Listing 6-72. Update Monitoring Service

public class MediaService extends Service {

 private ContentObserver mMediaStoreObserver;

 @Override
 public void onCreate() {
 super.onCreate();
 //Create and register a new observer on the MediaStore when this service begins
 mMediaStoreObserver = new ContentObserver(new Handler()) {
 @Override
 public void onChange(boolean selfChange) {

597CHAPTER 6: Interacting with the System

 //Update all the widgets currently attached to our AppWidgetProvider
 AppWidgetManager manager =
 AppWidgetManager.getInstance(MediaService.this);
 ComponentName provider = new ComponentName(MediaService.this,
 ListAppWidget.class);
 int[] appWidgetIds = manager.getAppWidgetIds(provider);
 //This method triggers onDataSetChanged() in the RemoteViewsService
 manager.notifyAppWidgetViewDataChanged(appWidgetIds, R.id.list);
 }
 };
 //Register for Images and Video
 getContentResolver().registerContentObserver(
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI, true, mMediaStoreObserver);
 getContentResolver().registerContentObserver(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI, true, mMediaStoreObserver);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 //Unregister the observer when the Service stops
 getContentResolver().unregisterContentObserver(mMediaStoreObserver);
 }

 /*
 * We are not binding to this Service, so this method should
 * just return null.
 */
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

}

The purpose of this service is to register a ContentObserver with the MediaStore while

any AppWidgets are active. This way, when a photo or video is added or removed, we can

update the list of our widget to reflect that. Whenever the ContentObserver triggers, we will

call notifyAppWidgetViewDataChanged() on AppWidgetManager for every widget currently

attached. This will trigger the onDataSetChanged() callback in the RemoveViewsService to

refresh the lists. You can see the result of all this working together in Figures 6-12 and 6-13.

Figure 6-13. AppWidget added for both types (left) and after being resized (right)

Figure 6-12. Configuration activity prior to AppWidget being added

598 CHAPTER 6: Interacting with the System

599CHAPTER 6: Interacting with the System

You can see that by simply adding the resize attributes to the AppWidgetProviderInfo, the

size of the AppWidget can be modified by the user. Each list can be scrolled, and a tap on

any item will bring up the default viewing application to view the image or play the video.

6-18. Supporting Restricted Profiles

Problem
Your application targets an audience of various ages and abilities, and you need to provide

the control to modify the app’s behavior to suit each particular user.

Solution
(API Level 18)

UserManager provides some generic information about system-level features that may

be unavailable to the user profile, via getUserRestrictions(), if that profile is set up to

be restricted. Furthermore, applications can define custom feature sets that should be

configurable in a restricted environment, and then obtain the current settings of the device

from the UserManager by calling getApplicationRestrictions().

Each application can define a set of RestrictionEntry elements that the system will present

the device owner in user settings to configure the app for the restricted profile. Each element

defines the type of setting (Boolean, single selection, or multiselection) and the data that

should be visible in settings.

Android devices that support multiple user accounts provide the ability for the device owner

(which is defined as the first account set up on the device) to create additional users or

restricted profiles. Secondary users have their own applications, data spaces, and the same

ability as the owner to administer the device, with the exception of managing other user

accounts.

Restricted profiles were introduced in Android 4.3 as a way of providing restricted access to

the applications and data that are part of the owner’s account. These profiles do not have

their own application space or associated data. Instead, they are a set of controls an owner

can place to restrict which of their own applications can be used and which features of

those applications are accessible. The obvious use case for this is parental controls, but one

could also use restricted profiles to put a device temporarily into a kiosk mode, for example.

Tip Multiple user accounts are not typically enabled in emulator images, and are usually

supported on only tablet devices. These types of features are not common on handsets.

600 CHAPTER 6: Interacting with the System

How It Works
To illustrate an application that takes advantage of restricted user environments, we’ve

constructed a simple drawing application for children and young adults. We will use

application-level restrictions to remove and modify certain application features. Listing 6-73

contains the layout of the user interface.

Listing 6-73. res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <com.androidrecipes.restrictedprofiles.DrawingView
 android:id="@+id/drawing_surface"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

 <Button
 android:id="@+id/button_purchase"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="right"
 android:text="$$$$"
 android:onClick="onPurchaseClick"/>

 <SeekBar
 android:id="@+id/full_slider"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 android:max="45"/>
 <RadioGroup
 android:id="@+id/simple_selector"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 android:orientation="horizontal">
 <RadioButton
 android:id="@+id/option_small"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textColor="#555"
 android:text="Small" />
 <RadioButton
 android:id="@+id/option_medium"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textColor="#555"
 android:text="Medium" />

601CHAPTER 6: Interacting with the System

 <RadioButton
 android:id="@+id/option_large"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textColor="#555"
 android:text="Big" />
 <RadioButton
 android:id="@+id/option_xlarge"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textColor="#555"
 android:text="Really Big" />
 </RadioGroup>
</FrameLayout>

In this example, we have created a drawing surface on which the user can paint with a

finger (which is a custom view we will see shortly), a button that allows the user to purchase

upgraded content (in our case, better colors) from our fake store, and some UI at the bottom

of the screen to adjust the line width of the drawings (a slider and a set of radio buttons). We

will be using application restrictions to control the latter two features. See Listing 6-74 for

the activity element.

Listing 6-74. Restricted Profiles Activity

public class MainActivity extends Activity implements
 OnSeekBarChangeListener, OnCheckedChangeListener {

 private Button mPurchaseButton;
 private DrawingView mDrawingView;
 private SeekBar mFullSlider;
 private RadioGroup mSimpleSelector;

 /* Profile Restriction Values */
 private boolean mHasPurchases;
 private int mMinAge;
 /* Content Purchase Flags */
 private boolean mHasCanvasColors = false;
 private boolean mHasPaintColors = false;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mPurchaseButton = (Button) findViewById(R.id.button_purchase);
 mDrawingView = (DrawingView) findViewById(R.id.drawing_surface);
 mFullSlider = (SeekBar) findViewById(R.id.full_slider);
 mSimpleSelector = (RadioGroup) findViewById(R.id.simple_selector);

 mFullSlider.setOnSeekBarChangeListener(this);
 mSimpleSelector.setOnCheckedChangeListener(this);

602 CHAPTER 6: Interacting with the System

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
 UserManager manager = (UserManager) getSystemService(USER_SERVICE);
 //Check for system-level restrictions
 Bundle restrictions = manager.getUserRestrictions();
 if (restrictions != null && !restrictions.isEmpty()) {
 showSystemRestrictionsDialog(restrictions);
 }
 }
 }

 @Override
 protected void onStart() {
 super.onStart();
 /*
 * Restrictions may change while the app is in the background so we need
 * to check this each time we return
 */
 updateRestrictions();
 // Update UI based on restriction changes
 updateDisplay();
 }

 public void onPurchaseClick(View v) {
 AlertDialog.Builder builder =
 new AlertDialog.Builder(this);
 builder.setTitle("Content Upgrades")
 .setMessage(
 "Tap any of the following items to add them.")
 .setPositiveButton("Canvas Colors $2.99",
 mPurchaseListener)
 .setNeutralButton("Paint Colors $2.99",
 mPurchaseListener)
 .setNegativeButton("Both Items $4.99",
 mPurchaseListener).show();
 }

 private DialogInterface.OnClickListener mPurchaseListener =
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 switch (which) {
 case DialogInterface.BUTTON_POSITIVE:
 mHasCanvasColors = true;
 break;
 case DialogInterface.BUTTON_NEUTRAL:
 mHasPaintColors = true;
 break;
 case DialogInterface.BUTTON_NEGATIVE:
 mHasCanvasColors = true;
 mHasPaintColors = true;
 break;
 }

603CHAPTER 6: Interacting with the System

 Toast.makeText(getApplicationContext(), "Thank You For Your Purchase!",
 Toast.LENGTH_SHORT).show();
 updateDisplay();
 }
 };

 private void showSystemRestrictionsDialog(Bundle restrictions) {
 StringBuilder message = new StringBuilder();
 for (String key : restrictions.keySet()) {
 //Make sure the value of the restriction is true
 if (restrictions.getBoolean(key)) {
 message.append(RestrictionsReceiver.getNameForRestriction(key));
 message.append("\n");
 }
 }

 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("System Restrictions")
 .setMessage(message.toString())
 .setPositiveButton("OK", null)
 .show();
 }

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 float width;
 switch(checkedId) {
 default:
 case R.id.option_small:
 width = 4f;
 break;
 case R.id.option_medium:
 width = 12f;
 break;
 case R.id.option_large:
 width = 25f;
 break;
 case R.id.option_xlarge:
 width = 45f;
 break;
 }
 mDrawingView.setStrokeWidth(width);
 }

 @Override
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 mDrawingView.setStrokeWidth(progress);
 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) { }

604 CHAPTER 6: Interacting with the System

 @Override
 public void onStopTrackingTouch(SeekBar seekBar) { }

 private void updateDisplay() {
 //Show/hide purchase button
 mPurchaseButton.setVisibility(
 mHasPurchases ? View.VISIBLE : View.GONE);

 //Update age-restricted content
 mFullSlider.setVisibility(View.GONE);
 mSimpleSelector.setVisibility(View.GONE);
 switch (mMinAge) {
 case 18:
 //Full-range slider
 mFullSlider.setVisibility(View.VISIBLE);
 mFullSlider.setProgress(4);
 break;
 case 10:
 //Four options
 mSimpleSelector.setVisibility(View.VISIBLE);
 findViewById(R.id.option_medium).setVisibility(View.VISIBLE);
 findViewById(R.id.option_xlarge).setVisibility(View.VISIBLE);
 mSimpleSelector.check(R.id.option_medium);
 break;
 case 5:
 //Big/small option
 mSimpleSelector.setVisibility(View.VISIBLE);
 findViewById(R.id.option_medium).setVisibility(View.GONE);
 findViewById(R.id.option_xlarge).setVisibility(View.GONE);
 mSimpleSelector.check(R.id.option_small);
 break;
 case 3:
 default:
 //No selection
 break;
 }

 //Update display with purchases
 mDrawingView.setPaintColor(mHasPaintColors ? Color.BLUE : Color.GRAY);
 mDrawingView.setCanvasColor(mHasCanvasColors ? Color.GREEN : Color.BLACK);
 }

 private void updateRestrictions() {
 // Check for restrictions
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
 UserManager manager = (UserManager) getSystemService(USER_SERVICE);
 Bundle restrictions = manager
 .getApplicationRestrictions(getPackageName());
 if (restrictions != null) {
 // Read restriction settings
 mHasPurchases = restrictions.getBoolean(
 RestrictionsReceiver.RESTRICTION_PURCHASE, true);

605CHAPTER 6: Interacting with the System

 try {
 mMinAge = Integer.parseInt(restrictions.getString(
 RestrictionsReceiver.RESTRICTION_AGERANGE, "18"));
 } catch (NumberFormatException e) {
 mMinAge = 0;
 }
 } else {
 // We have no restrictions
 mHasPurchases = true;
 mMinAge = 18;
 }
 } else {
 // We are not on a system that supports restrictions
 mHasPurchases = true;
 mMinAge = 18;
 }
 }
}

System Feature Restrictions

When the activity is created, after verifying that we are running on a device with API Level

18 or later, we determine whether any system-level restrictions exist, by using UserManager.
getUserRestrictions(). This returns a Bundle that will be empty if there are no restrictions

(that is, when running as the device owner or another full user). However, if restrictions do

exist, we collect descriptions about them together and show a dialog box on the screen. A

unique key and a Boolean value in the Bundle describe each restriction. For each possible

key, if the value is true, that restriction applies; if the restriction does not apply, the value

may be false or the key may not appear in the Bundle at all. Here is a list of the possible

system restrictions:

	DISALLOW_CONFIG_BLUETOOTH: This profile cannot configure Bluetooth.

	DISALLOW_CONFIG_CREDENTIALS: This profile cannot configure system

user credentials.

	DISALLOW_CONFIG_WIFI: This profile cannot modify the Wi-Fi access point

configuration.

	DISALLOW_INSTALL_APPS: This profile cannot install new applications.

	DISALLOW_INSTALL_UNKNOWN_SOURCES: This profile cannot enable

Unknown Sources in device settings for installing applications.

	DISALLOW_MODIFY_ACCOUNTS: This profile cannot add or remove device

accounts.

	DISALLOW_REMOVE_USER: This profile cannot remove other users.

	DISALLOW_SHARE_LOCATION: This profile cannot toggle location-sharing

settings.

	DISALLOW_UNINSTALL_APPS: This profile cannot uninstall applications.

	DISALLOW_USB_FILE_TRANSFER: This profile cannot transfer files over USB.

606 CHAPTER 6: Interacting with the System

The descriptions we display are pulled from a helper utility inside RestrictionsReceiver,

which is a BroadcastReceiver that we have defined in Listing 6-75.

Listing 6-75. Restrictions Receiver

public class RestrictionsReceiver extends BroadcastReceiver {

 public static final String RESTRICTION_PURCHASE = "purchases";
 public static final String RESTRICTION_AGERANGE = "age_range";

 private static final String[] AGES = {"3+", "5+", "10+", "18+"};
 private static final String[] AGE_VALUES = {"3", "5", "10", "18"};

 @Override
 public void onReceive(Context context, Intent intent) {
 ArrayList<RestrictionEntry> restrictions = new ArrayList<RestrictionEntry>();

 RestrictionEntry purchase = new RestrictionEntry(RESTRICTION_PURCHASE, false);
 purchase.setTitle("Content Purchases");
 purchase.setDescription("Allow purchasing of content in the application.");
 restrictions.add(purchase);

 RestrictionEntry ages =
 new RestrictionEntry(RESTRICTION_AGERANGE, AGE_VALUES[0]);
 ages.setTitle("Age Level");
 ages.setDescription("Difficulty level for application content.");
 ages.setChoiceEntries(AGES);
 ages.setChoiceValues(AGE_VALUES);
 restrictions.add(ages);

 Bundle result = new Bundle();
 result.putParcelableArrayList(Intent.EXTRA_RESTRICTIONS_LIST, restrictions);

 setResultExtras(result);
 }

 /*
 * Utility to get readable strings from restriction keys
 */
 public static String getNameForRestriction(String key) {
 if (UserManager.DISALLOW_CONFIG_BLUETOOTH.equals(key)) {
 return "Unable to configure Bluetooth";
 }
 if (UserManager.DISALLOW_CONFIG_CREDENTIALS.equals(key)) {
 return "Unable to configure user credentials";
 }
 if (UserManager.DISALLOW_CONFIG_WIFI.equals(key)) {
 return "Unable to configure Wifi";
 }
 if (UserManager.DISALLOW_INSTALL_APPS.equals(key)) {
 return "Unable to install applications";
 }

607CHAPTER 6: Interacting with the System

 if (UserManager.DISALLOW_INSTALL_UNKNOWN_SOURCES.equals(key)) {
 return "Unable to enable unknown sources";
 }
 if (UserManager.DISALLOW_MODIFY_ACCOUNTS.equals(key)) {
 return "Unable to modify accounts";
 }
 if (UserManager.DISALLOW_REMOVE_USER.equals(key)) {
 return "Unable to remove users";
 }
 if (UserManager.DISALLOW_SHARE_LOCATION.equals(key)) {
 return "Unable to toggle location sharing";
 }
 if (UserManager.DISALLOW_UNINSTALL_APPS.equals(key)) {
 return "Unable to uninstall applications";
 }
 if (UserManager.DISALLOW_USB_FILE_TRANSFER.equals(key)) {
 return "Unable to transfer files";
 }

 return "Unknown Restriction: "+key;
 }
}

Application-Specific Restrictions

Beyond hosting our description utility method, the primary purpose of RestrictionsReceiver

is to define the set of custom restrictions we want to expose to the device owner explicitly

for this application. When looking for restrictions that are exposed, the framework will send

an ordered broadcast intent with the android.intent.action.GET_RESTRICTION_ENTRIES

action string. It is then the responsibility of any receiver that filters this action to construct a

list of RestrictionEntry elements and return that list in the result Bundle.

Tip If your restriction settings are too complex to boil down to a handful of selectable items, or if

you would simply prefer to better brand that experience, you may return an intent in the receiver’s

result Bundle with EXTRA_RESTRICTIONS_INTENT as the key. The intent should reference an

activity you would like the device settings to launch in order to set up restrictions for the application.

In this case, the key/value data for the restrictions should be returned via the activity’s result.

We have defined two restriction settings we want to expose: one to allow the user to make

purchases from within the application, and the other to modify the application experience

based on the age level of the user. The first setting is created as a Boolean type with the

default value of false (that is, this restriction’s value is false by default), and the second is

a single selection with options for ages from 3+ to 18+. Listing 6-76 shows the <receiver>

snippet that must be in the manifest for this receiver to be published correctly.

608 CHAPTER 6: Interacting with the System

Listing 6-76. Manifest Snippet for Restrictions Receiver

<receiver android:name=".RestrictionsReceiver">
 <intent-filter>
 <action android:name="android.intent.action.GET_RESTRICTION_ENTRIES"/>
 </intent-filter>
</receiver>

With this application installed, now these two settings will show up for the device owner to

configure when setting up a restricted user profile.

In Listing 6-74, we see that when the activity starts up, the current set of application

restrictions is checked by calling UserManager.getApplicationRestrictions() to get another

Bundle. This Bundle contains the list of key/value pairs for the settings we defined in our

receiver. We use the values in this Bundle to update the internal state of the activity, which

controls how the user interface is displayed. If we have no restrictions (for example, we are

the device owner), this method will return null.

Because this application is shared between the device owner and the restricted profile, we

have to assume that these setting values can change while the activity is in the background,

so for that reason these checks are done in onStart() rather than onCreate() or some other

one-shot initialization routine.

The Purchases setting controls whether the Money button in the top corner is visible. If

purchases are allowed, the user can tap this button and choose from our fake storefront to

get a new line color, background color, or both to spice up their drawing.

The Age Level setting controls what the user can do to update the line width. For very

young children, this setting will get in the way, so we keep a fixed line width and hide all the

controls. As the children move up in age, we want to give them some options, so a set of

radio buttons is provided with either two or four width selections. If the minimum age is set

all the way up to 18+, then we replace this UI with a full slider element for the user to choose

exactly the line width they want with single-pixel precision.

To finish off the example, Listing 6-77 reveals our custom finger-drawing view.

Listing 6-77. Finger-Drawing View

public class DrawingView extends View {

 private Paint mFingerPaint;
 private Path mPath;

 public DrawingView(Context context) {
 super(context);
 init();
 }

 public DrawingView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

609CHAPTER 6: Interacting with the System

 public DrawingView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 init();
 }

 private void init() {
 //Set up the paint brush
 mFingerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mFingerPaint.setStyle(Style.STROKE);
 mFingerPaint.setStrokeCap(Cap.ROUND);
 mFingerPaint.setStrokeJoin(Join.ROUND);
 //Default stroke width
 mFingerPaint.setStrokeWidth(8f);
 }

 public void setPaintColor(int color) {
 mFingerPaint.setColor(color);
 }

 public void setStrokeWidth(float width) {
 mFingerPaint.setStrokeWidth(width);
 }

 public void setCanvasColor(int color) {
 setBackgroundColor(color);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 switch (event.getActionMasked()) {
 case MotionEvent.ACTION_DOWN:
 mPath = new Path();
 //Start at the touch down
 mPath.moveTo(event.getX(), event.getY());
 //Re-draw
 invalidate();
 break;
 case MotionEvent.ACTION_MOVE:
 //Add all touch points between events
 for (int i=0; i < event.getHistorySize(); i++) {
 mPath.lineTo(event.getHistoricalX(i),
 event.getHistoricalY(i));
 }
 //Re-draw
 invalidate();
 break;
 default:
 break;
 }
 return true;
 }

Figure 6-14. Drawing app UI for unrestricted user

If we create a restricted profile on this device, part of the configuration settings will be to

enable our application for that profile, and then set the settings appropriately for the target

user. See Figure 6-15 for an example of these settings from a Nexus 7 device.

610 CHAPTER 6: Interacting with the System

 @Override
 protected void onDraw(Canvas canvas) {
 //Draw the background
 super.onDraw(canvas);
 //Draw the paint stroke
 if (mPath != null) {
 canvas.drawPath(mPath, mFingerPaint);
 }
 }
}

This is a basic View implementation that tracks all touch events and converts them into

a Path to be drawn. On each new touch gesture, the old Path is discarded and the initial

touch point is added to a new Path. On each subsequent move event, while the finger is

dragging, the Path is updated with a line that follows the trail of touch events and the view

is invalidated (which triggers onDraw() again). Since we are discarding the old contents on

each new gesture, the view draws only the current stroke, and the existing contents will clear

when the view is touched again.

Additionally, we have added external setters to update the stroke width and color

parameters from the selections made in the UI. These values are simply modifications of the

Paint that is used to draw the resulting line. Figure 6-14 shows the application running on

the device owner’s account, with all features running unrestricted.

Figure 6-15. Content settings for a restricted profile

Figure 6-16. Dialog box showing system restrictions (top), application UI in restricted mode (bottom)

611CHAPTER 6: Interacting with the System

Finally, with the restrictions set as shown in Figure 6-15, Figure 6-16 shows the same

application running under the restricted profile.

612 CHAPTER 6: Interacting with the System

First we see the dialog box displayed with any system-level restrictions, followed by the

main application UI. Notice in this case that the Purchase button is no longer visible and the

stroke width control has been replaced with simpler choices.

Summary
In this chapter, you learned ways for your application to interact directly with the Android

operating system. We discussed several methods of placing operations into the background

for various lengths of time. You learned how applications share responsibility, launching each

other to best accomplish the task at hand. Finally, we presented how the system exposes

the content gathered by its core application suite for your application’s use. In the next

chapter, we will look at how you can use the wide array of publicly available Java libraries to

further enhance your application.

613

Chapter 7
Graphics and Drawing

Android’s UI toolkit is squarely focused on flexibility, and the ability to create content that

flawlessly scales across all possible device types. We’ve already looked at how the view

system helps developers adapt to this requirement. In this chapter, we will discuss additional

techniques for enhancing your application’s user interface using Android’s extensible

graphics object, the drawable. You will see how we can leverage drawables to make flexible

and animated graphic elements that can be associated with any view. It’s all about doing

more work with fewer image resources in your application.

7-1. Creating Drawables as Backgrounds

Problem
Your application needs to create background images that can scale and fill any view space,

and you don’t want to waste time generating lots of image files.

Solution
(API Level 1)

Use Android’s most powerful implementation of the XML resources system: creating shape

drawables. When you are able to do so, creating these views as an XML resource makes

sense because they are inherently scalable, and they will fit themselves to the bounds of the

view when set as a background.

614 CHAPTER 7: Graphics and Drawing

When defining a drawable in XML by using the <shape> tag, the actual result is a

GradientDrawable object. You may define objects in the shape of a rectangle, oval, line, or

ring, although the rectangle is the most commonly used for backgrounds. In particular, when

working with the rectangle, the following parameters can be defined for the shape:

	Corner radius: Define the radius to use for rounding all four corners or

individual radii to round each corner differently.

	Gradient: Linear, radial, or sweep gradient that supports two or three

color values. Orientation may be any multiple of 45 degrees (0 is left to

right, 90 bottom to top, and so on).

	Solid color: Single color to fill the shape. This doesn’t play nice with the

gradient also defined.

	Stroke: Border around the shape. You may define both the width and

color of the stroke.

Size and padding	

How It Works
Creating static background images for views can be tricky, given that the image must often

be created in multiple sizes to display properly on all devices. This issue is compounded if it

is expected that the size of the view may dynamically change based on its contents.

To avoid this problem, we create an XML file in res/drawable to describe a shape that we

can apply as the android:background attribute of any view.

Gradient ListView Row

Our first example for this technique will be to create a gradient rectangle that is suitable to

be applied as the background of individual rows inside a ListView. The XML for this shape is

defined in Listing 7-1.

Listing 7-1. res/drawable/backgradient.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <gradient
 android:startColor="#EFEFEF"
 android:endColor="#989898"
 android:type="linear"
 android:angle="270"
 />
</shape>

Here we chose a linear gradient between two shades of gray, moving from top to bottom.

If we wanted to add a third color to the gradient, we would add an android:middleColor

attribute to the <gradient> tag.

Figure 7-1. Gradient drawable as a row background

615CHAPTER 7: Graphics and Drawing

Now this drawable can be referenced by any view or layout used to create the custom

items of your ListView. The drawable would be added as the background by including the

attribute android:background="@drawable/backgradient" to the view’s XML or by calling

View.setBackgroundResource(R.drawable.backgradient) in Java code.

Advanced tip The limit on colors in XML is three, but the constructor for GradientDrawable

takes an int[] parameter for colors, and you may pass as many as you like.

When we apply this drawable as the background to rows in a ListView, the result will be

similar to Figure 7-1.

Rounded View Group

Another popular use of XML drawables is to create a background for a layout that visually

groups a handful of widgets together. For style, rounded corners and a thin border are often

applied as well. This shape defined in XML would look like Listing 7-2.

Figure 7-2. Rounded rectangle with border as view background

616 CHAPTER 7: Graphics and Drawing

Listing 7-2. res/drawable/roundback.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <solid
 android:color="#FFF"
 />
 <corners
 android:radius="10dip"
 />
 <stroke
 android:width="5dip"
 android:color="#555"
 />
</shape>

In this case, we chose white for the fill color and gray for the border stroke. As mentioned

in the previous example, this drawable can be referenced by any view or layout as the

background by including the attribute android:background="@drawable/roundback" to the

view’s XML or by calling View.setBackgroundResource(R.drawable.roundback) in Java code.

When applied as the background to a view, the result is shown in Figure 7-2.

Figure 7-3. Source bitmaps for patterns

617CHAPTER 7: Graphics and Drawing

Drawable Patterns

The next category of drawables we are going to look at is patterns. Using XML, we can

define some rules around which a smaller image should be stepped and repeated to make a

pattern. This can be a great way to make full-screen background images that don’t require a

large Bitmap to be loaded into memory.

Applications can create a pattern by setting the tileMode attribute on a <bitmap> element to

one of the following values:

	clamp: The source bitmap will have the pixels along its edges replicated.

	repeat: The source bitmap will be stepped and repeated in both

directions.

	mirror: The source bitmap will be stepped and repeated, alternating

between normal and flipped images on each iteration.

Figure 7-3 illustrates two small square images that will become the source for our patterns.

Listings 7-3 and 7-4 show examples of how to define an XML pattern as a background.

Listing 7-3. res/drawable/pattern_checker.xml

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/checkers"
 android:tileMode="repeat" />

Listing 7-4. res/drawable/pattern_stripes.xml

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/stripes"
 android:tileMode="mirror" />

Tip Patterns can be made only with a bitmap that has intrinsic bounds, such as external images.

XML shapes cannot be used as the source for a pattern.

Figure 7-4. Background patterns

618 CHAPTER 7: Graphics and Drawing

Figure 7-4 reveals the result of applying each of these patterns as view backgrounds.

You can see that the checkerboard image is repeated unmodified, while the stripe pattern

image is reflected both horizontally and vertically as it is repeated across the screen,

creating the diamond effect you see in Figure 7-4.

Nine-Patch Images

The NinePatchDrawable is one of Android’s greatest strengths when it comes to designing

user interfaces that are flexible across devices. The nine-patch is a special image that is

designed to stretch in only certain areas by designating sections of the image that are

stretchable and areas that are not. In fact, the image type gets its name from the nine stretch

zones that are created when an image is mapped (more on this in a moment).

Let’s take a look at an example to better understand how this works. Figure 7-5 shows two

images; the image on the left is the original, and the image on the right has been converted

into a nine-patch.

Figure 7-5. Speech bubble source image, speech_background.png (left), and nine-patch conversion, speech_
background.9.png (right)

619CHAPTER 7: Graphics and Drawing

Notice the black markings on each side of the image on the right. A valid nine-patch image

file is simply a PNG image in which the outer 1 pixel contains only either black or transparent

pixels. The black pixels on each side define something about how the image will stretch and

wrap the content inside:

	Left side: Black pixels here define areas where the image should stretch

vertically. The pixels in these areas will be stepped and repeated to

accomplish the stretch. The example image in Figure 7-5 has one of

these areas.

	Top side: Black pixels here define areas where the image should stretch

horizontally. The pixels in these areas will be stepped and repeated to

accomplish the stretch. The example image in Figure 7-5 has two of

these areas.

	Right side: Black pixels here define the vertical content area, which is

the area where the view’s content will display. In effect, it is defining the

top and bottom padding values, but inherent to the background image.

	Bottom side: Black pixels here define the horizontal content area, which

is the area where the view’s content will display. In effect, it is defining

the left and right padding values, but inherent to the background image.

This must contain a single line of solid pixels defining the area.

This image was created using the draw9patch tool that is part of the Android SDK. To better

visualize how these markings affect the resulting image, let’s take a look at the image when

loaded into this tool. See Figure 7-6.

Figure 7-6. Speech bubble inside draw9patch

620 CHAPTER 7: Graphics and Drawing

You can now start to see where the nine-patch gets its name. The areas of the image that

are not highlighted will not be stretched. The highlighted areas of each image will stretch in a

single direction (either horizontal or vertical, based on their orientation), and the areas where

the highlights intersect will stretch in both directions. In an image with the minimum of one

stretchable zone in each direction, this would create nine individual mapped zones in the

image: four corners that aren’t modified, four middle areas that stretch once, and the single

center section that stretches twice.

There isn’t any special code required to create a NinePatchDrawable and use it as a

background; the image file just needs to be named with the special .9.png extension so

Android can package it correctly. Listing 7-5 shows how you might set this image as a

background, and Figure 7-7 reveals what this image looks like when set as the background

for a TextView.

Listing 7-5. res/layout/patch.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:gravity="center"
 android:text="This is a text speech bubble"
 android:background="@drawable/speech_background"/>
</RelativeLayout>

Figure 7-7. Speech bubble as TextView background

621CHAPTER 7: Graphics and Drawing

Note how the two 3-pixel-wide horizontal stretch zones evenly distributed the excess space

between them, centering the origin point of the speech bubble. If you would like to create an

offset between two stretch points, this can be done by varying their distance from the image

center or by varying their size. If one zone is 3 pixels wide and the other is only 1 pixel wide,

the wider zone will take up three times as much space when stretched.

7-2. Creating Custom State Drawables

Problem
You want to customize an element such as a Button or CheckBox that has multiple states

(default, pressed, selected, and so on).

Solution
(API Level 1)

Create a StateListDrawable to apply to the element. Whether you have defined your

drawable graphics yourself in XML, or you are using images, Android provides the means via

another XML element, the <selector>, to create a single reference to multiple images and

the conditions under which they should be visible.

622 CHAPTER 7: Graphics and Drawing

(API Level 21)

Use AnimatedStateListDrawable and StateListAnimator to provide animations along with

the state transitions defined for the attached view. You can also make use of RippleDrawable

at this API level to provide animated touch feedback on views as a growing ripple effect.

How It Works
Let’s take a look at an example state-list drawable and then discuss its parts:

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false"
 android:drawable="@drawable/disabled" />
 <item android:state_pressed="true"
 android:drawable="@drawable/selected" />
 <item android:state_focused="true"
 android:drawable="@drawable/selected" />
 <!-- Default State -->
 <item android:drawable="@drawable/default" />
</selector>

Note The <selector> is order specific. Android will return the drawable of the first state

it matches completely as it traverses the list. Bear this in mind when determining which state

attributes to apply to each item.

Each item in the list identifies the state(s) that must be in effect for the referenced drawable

to be the one chosen. Multiple state parameters can be added for one item if multiple state

values need to be matched. Android will traverse the list and pick the first state that matches

all criteria of the current view the drawable is attached to. For this reason, it is considered

good practice to put your normal, or default, state at the bottom of the list with no criteria

attached.

Here is a list of the most commonly useful state attributes. All of these are Boolean values:

	state_enabled: Value the view would return from isEnabled()

	state_pressed: View is pressed by the user on the touch screen

	state_focused: View has focus

	state_selected: View is selected by the user using keys or a D-pad

	state_checked: Value a checkable view would return from isChecked()

Now let’s look at how to apply these state-list drawables to different views.

623CHAPTER 7: Graphics and Drawing

Button and Other Clickable Widgets

Widgets such as Button are designed to have their background drawable change when the

view moves through the preceding states. As such, the android:background attribute in XML

or the View.setBackgroundDrawable() method are the proper methods for attaching the state

list. Listing 7-6 is an example with a file defined in res/drawable/ called button_states.xml.

Listing 7-6. res/drawable/background_button.xml

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false"
 android:drawable="@drawable/button_disabled" />
 <item android:state_pressed="true"
 android:drawable="@drawable/button_selected" />
 <item android:state_focused="true"
 android:drawable="@drawable/button_selected" />
 <!-- Default State -->
 <item android:drawable="@drawable/button_default" />
</selector>

The three @drawable resources listed here are images in the project that the selector is meant

to switch between. As we mentioned in the previous section, the last item will be returned as

the default if no other items include matching states to the current view; therefore, we do not

need to include a state to match on that item. Attaching this to a view defined in XML looks

like the following:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="My Button"
 android:background="@drawable/background_button" />

CheckBox and Other Checkable Widgets

Many of the widgets that implement the Checkable interface, such as CheckBox and other

subclasses of CompoundButton, have a slightly different mechanism for changing their

state. In these cases, the background is not associated with the state, and customizing

the drawable to represent the “checked” states is done through another attribute called

the button. In XML, this is the android:button attribute, and in code the CompoundButton.
setButtonDrawable() method should do the trick.

Listing 7-7 is an example with a file defined in res/drawable/ called background_checkable.xml.

Again, the @drawable resources listed are meant to reference images in the project to be

switched.

624 CHAPTER 7: Graphics and Drawing

Listing 7-7. res/drawable/background_checkable.xml

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false"
 android:drawable="@drawable/check_disabled" />
 <!-- Due to top-down rules, pressed will always win over checked -->
 <item android:state_pressed="true"
 android:drawable="@drawable/check_pressed" />
 <item android:state_checked="true"
 android:drawable="@drawable/check_checked" />
 <!-- Default State -->
 <item android:drawable="@drawable/check_default" />
</selector>

And here they are attached to a CheckBox in XML:

<CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:button="@drawable/background_checkable" />

Animated State Transitions

(API Level 21)

Let’s dress up our previous button example with some animated touch feedback. Listing 7-8

defines an updated background XML using a <ripple> element (which constructs a

RippleDrawable).

Listing 7-8. res/drawable-v21/background_button.xml

<?xml version="1.0" encoding="utf-8"?>
<ripple xmlns:android="http://schemas.android.com/apk/res/android"
 android:color="#0CC">
 <!-- Default drawable to display -->
 <item android:drawable="@drawable/button_default"/>

 <!-- Clipping mask for the ripple to match default -->
 <item
 android:id="@android:id/mask"
 android:drawable="@drawable/button_default"/>
</ripple>

RippleDrawable takes multiple child drawables as layers, and draws them all in order. We

have included two layers in this example. The first is a static drawable that references the

same default image as we had previously. This is what the user will see when the button is in

the default state.

By default, RippleDrawable draws an animated circular ripple that emanates from the touch

point when the containing view is pressed (this is also known as the ripple’s hotspot). That

circle is not clipped by the view’s bounds (or any other bounds) unless a mask is provided.

625CHAPTER 7: Graphics and Drawing

By adding the android:id/mask designation to the second <item> layer, we are telling the

framework this drawable represents the bounds we would like to use to clip the ripple effect.

The item itself is never drawn.

The color we wish to use for the ripple effect is applied using the android:color attribute

on the root element. The framework will divide the given color into a slightly transparent

version used to immediately highlight the view, and an opaque overlay that will animate.

The animation rate is dependent on the touch feedback: quickly for a tap event, slowly for a

long-press event.

Listing 7-9 adds an additional layer of feedback using a StateListAnimator. This animator

will cause the button to shrink in size slightly when the button is pressed.

Listing 7-9. res/animator/button_press.xml

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="true" android:state_pressed="true">
 <set android:ordering="together">
 <objectAnimator
 android:duration="@android:integer/config_shortAnimTime"
 android:propertyName="scaleX"
 android:valueTo="0.8"
 android:valueType="floatType" />
 <objectAnimator
 android:duration="@android:integer/config_shortAnimTime"
 android:propertyName="scaleY"
 android:valueTo="0.8"
 android:valueType="floatType" />
 </set>
 </item>
 <!-- Default State -->
 <item>
 <set android:ordering="together">
 <objectAnimator
 android:duration="@android:integer/config_shortAnimTime"
 android:propertyName="scaleX"
 android:valueTo="1.0"
 android:valueType="floatType" />
 <objectAnimator
 android:duration="@android:integer/config_shortAnimTime"
 android:propertyName="scaleY"
 android:valueTo="1.0"
 android:valueType="floatType" />
 </set>
 </item>
</selector>

626 CHAPTER 7: Graphics and Drawing

This XML structure uses the same <selector> we’ve already used, but in the res/animator

directory this represents a state-list collection of animator instances instead of drawables. In

this case, each state is a pair of ObjectAnimator instances meant to scale the view in both

major axes simultaneously. Applying this pair of state transitions to our button view now

looks like this:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="My Button"
 android:background="@drawable/background_button"
 android:stateListAnimator="@animator/button_press" />

We can also spice up our check box with an animated transition. In Listing 7-10, we have

updated the checkable drawable to an AnimatedStateListDrawable (via the <animated-
selector> XML tag) that sequences a series of keyframe images as a transition between the

default and checked states.

Listing 7-10. res/drawable-v21/background_checkable.xml

<?xml version="1.0" encoding="utf-8"?>
<animated-selector
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false"
 android:drawable="@drawable/check_disabled" />
 <item android:id="@+id/state_checked"
 android:state_checked="true"
 android:drawable="@drawable/check_checked" />
 <!-- Default State -->
 <item android:id="@+id/state_default"
 android:drawable="@drawable/check_default" />

 <!--
 These transitions support only AnimationDrawable, AnimatedVectorDrawable,
 or another Animatable as child elements.
 -->
 <transition android:fromId="@id/state_default" android:toId="@id/state_checked">
 <animation-list>
 <item android:duration="15" android:drawable="@drawable/check_default" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_01" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_02" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_03" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_04" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_05" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_06" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_07" />
 <item android:duration="15" android:drawable="@drawable/check_to_checked_08" />
 <item android:duration="15" android:drawable="@drawable/check_checked" />
 </animation-list>
 </transition>

</animated-selector>

627CHAPTER 7: Graphics and Drawing

The initial part of this file remains the same, with each item declaring the drawable that

should be used to associate with each view state. Notice, however, that we’ve given two of

these states unique IDs. This allows us to separately declare an animation that should be

used as the visual transition between those two states. This animation must be wrapped in a

<transition> element, and the following types are supported:

	AnimationDrawable (<animation-list> in XML): This is a keyframe

animation that sequences between each of the elements it contains.

	AnimatedVectorDrawable (<animated-vector> in XML): A morphing

animation applied to a vector path collection (discussed in more detail

later in this chapter).

Tip When a <transition> is applied, the android:drawable attached to the <item>

represents the final drawable to show after the animation is complete.

We have defined a single transition to move from the default state (via fromId) to the

checked state (via toId) using the provided keyframes. By default, the framework will

actually run this same transition in reverse when moving between the same states in the

opposite direction, so we get another transition for free! However, if it preferred to control

different state transitions (like the reverse) using a different animation, you can define as

many transitions within the XML as you like.

7-3. Applying Masks to Images

Problem
You need to apply one image or shape as a clipping mask to define the visible boundaries of

a second image in your application.

Solution
(API Level 1)

Using 2D graphics and a PorterDuffXferMode, you can apply any arbitrary mask (in the form

of another bitmap) to a bitmap image. The basic steps to this recipe are as follows:

1. Create a mutable Bitmap instance (blank), and a Canvas to draw into it.

2. Draw the mask pattern onto the Canvas first.

3. Apply a PorterDuffXferMode to the Paint.

4. Draw the source image on the Canvas using the transfer mode.

The key ingredient is the PorterDuffXferMode, which considers the current state of both

the source and destination objects during a paint operation. The destination is the existing

Canvas data, and the source is the graphic data being applied in the current operation.

Figure 7-8. Original source image

628 CHAPTER 7: Graphics and Drawing

There are many mode parameters that can be attached to this, which create varying effects

on the result, but for masking we are interested in using the PorterDuff.Mode.SRC_IN mode.

This mode will draw only at locations where the source and destination overlap, and the

pixels drawn will be from the source; in other words, the source is clipped by the bounds of

the destination.

The same effect can also be accomplished using the image as a BitmapShader to draw the

content into another element. In this way, we are treating the image pixels as the “color” to

be used to draw whatever shape or element we have that makes up the image mask. We will

explore both options in this recipe.

How It Works
Rounded Corner Bitmap

One extremely common use of image masking is to apply rounded corners to a bitmap

image before displaying it. For this example, Figure 7-8 is the original image we will be

masking.

To illustrate this, we have created a custom view that receives an image and draws it as a

rounded rectangle to the provided Canvas with a BitmapShader. This view also manages the

sizing math necessary to center the image inside the custom view.

Listings 7-11 and 7-12 show our custom view and its use inside an activity.

Listing 7-11. View Applying a Rounded Rectangle Mask to a Bitmap

public class RoundedCornerImageView extends View {

 private Bitmap mImage;
 private Paint mBitmapPaint;

 private RectF mBounds;
 private float mRadius = 25.0f;

629CHAPTER 7: Graphics and Drawing

 public RoundedCornerImageView(Context context) {
 super(context);
 init();
 }

 public RoundedCornerImageView(Context context,
 AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 public RoundedCornerImageView(Context context,
 AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 init();
 }

 private void init() {
 //Create image paint
 mBitmapPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 //Create rect for drawing bounds
 mBounds = new RectF();
 }

 @Override
 protected void onMeasure(int widthMeasureSpec,
 int heightMeasureSpec) {
 int height, width;
 height = width = 0;

 //Requested size is the image content size
 int imageHeight, imageWidth;
 if (mImage == null) {
 imageHeight = imageWidth = 0;
 } else {
 imageHeight = mImage.getHeight();
 imageWidth = mImage.getWidth();
 }
 //Get the best measurement and set it on the view
 width = getMeasurement(widthMeasureSpec, imageWidth);
 height = getMeasurement(heightMeasureSpec, imageHeight);

 setMeasuredDimension(width, height);
 }

 /*
 * Helper method to measure width and height
 */
 private int getMeasurement(int measureSpec, int contentSize) {
 int specSize = MeasureSpec.getSize(measureSpec);
 switch (MeasureSpec.getMode(measureSpec)) {

630 CHAPTER 7: Graphics and Drawing

 case MeasureSpec.AT_MOST:
 return Math.min(specSize, contentSize);
 case MeasureSpec.UNSPECIFIED:
 return contentSize;
 case MeasureSpec.EXACTLY:
 return specSize;
 default:
 return 0;
 }
 }

 @Override
 protected void onSizeChanged(int w, int h,
 int oldw, int oldh) {
 if (w != oldw || h != oldh) {
 //We want to center the image, so we offset our
 //values whenever the view changes size
 int imageWidth, imageHeight;
 if (mImage == null) {
 imageWidth = imageHeight = 0;
 } else {
 imageWidth = mImage.getWidth();
 imageHeight = mImage.getHeight();
 }
 int left = (w - imageWidth) / 2;
 int top = (h - imageHeight) / 2;
 //Set the bounds to offset the rounded rectangle
 mBounds.set(left, top, left+imageWidth,
 top+imageHeight);
 //Offset the shader to draw the Bitmap inside the rect
 // Without this, the bitmap will be at 0,0 in the view
 if (mBitmapPaint.getShader() != null) {
 Matrix m = new Matrix();
 m.setTranslate(left, top);
 mBitmapPaint.getShader().setLocalMatrix(m);
 }
 }
 }

 public void setImage(Bitmap bitmap) {
 if (mImage != bitmap) {
 mImage = bitmap;
 if (mImage != null) {
 BitmapShader shader = new BitmapShader(mImage,
 TileMode.CLAMP, TileMode.CLAMP);
 mBitmapPaint.setShader(shader);
 } else {
 mBitmapPaint.setShader(null);
 }
 requestLayout();
 }
 }

631CHAPTER 7: Graphics and Drawing

 @Override
 protected void onDraw(Canvas canvas) {
 //Let the view draw backgrounds, etc.
 super.onDraw(canvas);
 //Draw the image with the calculated values
 if (mBitmapPaint != null) {
 canvas.drawRoundRect(mBounds, mRadius, mRadius,
 mBitmapPaint);
 }
 }
}

Listing 7-12. Activity Displaying RoundedCornerImageView

public class ShaderActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 RoundedCornerImageView iv =
 new RoundedCornerImageView(this);
 Bitmap source = BitmapFactory.decodeResource(
 getResources(), R.drawable.dog);

 iv.setImage(source);
 setContentView(iv);
 }
}

Inside our custom view, when a new image is passed in via setImage(), we create a new

BitmapShader to wrap the image pixels and set it on the paintbrush we will use to draw.

Later, when the view is measured and laid out, we will get a call in onSizeChanged() when

the view has a size; at this point, we measure the bounds the image needs to have to be

centered inside the view. We must also offset the shader by using a Matrix. Otherwise, the

rounded rectangle mask will draw in the center, but our image will still be in the top-left

corner of the view.

Now, when the view is ready to draw, we can simply call drawRoundRect() on our Canvas

with the bounds we calculated and the paintbrush configured earlier. This draws a rounded

rectangle in the view, but uses the pixels from the bitmap to color, or shade, the shape. The

result of these efforts is shown in Figure 7-9.

Figure 7-9. Image with a rounded rectangle mask applied

Figure 7-10. Original source image (left) and arbitrary mask image to apply (right)

632 CHAPTER 7: Graphics and Drawing

Arbitrary Mask Image

Let’s look at an example that’s a little more interesting. Here we take two images: the source

image and an image representing the mask we want to apply (in this case, an upside-down

triangle). See Figure 7-10.

633CHAPTER 7: Graphics and Drawing

The chosen mask image does not have to conform to the style chosen here, with black

pixels for the mask and transparent everywhere else. However, it is the best choice to

guarantee that the system draws the mask exactly as you expect it to be.

We will first draw the triangle image on the Canvas, and this will serve as our mask for the

image. Then, applying the PorterDuff.Mode.SRC_IN transform as we paint the source image

into the same Canvas, the result will be the source image with rounded corners.

This is because the SRC_IN transfer mode tells the paint object to paint pixels only on the

Canvas locations where the source and destination (the triangle we already drew) overlap,

and the pixels that are drawn come from the source. Listing 7-13 is the simple activity code

to mask the image and display it in a view.

Listing 7-13. Activity Applying an Arbitrary Mask to a Bitmap

public class MaskActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ImageView iv = new ImageView(this);
 iv.setScaleType(ImageView.ScaleType.CENTER);

 //Create and load images (immutable, typically)
 Bitmap source = BitmapFactory.decodeResource(getResources(), R.drawable.dog);
 Bitmap mask = BitmapFactory.decodeResource(getResources(), R.drawable.triangle);

 //Create a *mutable* location, and a canvas to draw into it
 final Bitmap result =
 Bitmap.createBitmap(source.getWidth(), source.getHeight(), Config.

ARGB_8888);
 Canvas canvas = new Canvas(result);
 Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG);
 paint.setColor(Color.BLACK);

 canvas.drawBitmap(mask, 0, 0, paint);
 paint.setXfermode(new PorterDuffXfermode(Mode.SRC_IN));
 canvas.drawBitmap(source, 0, 0, paint);
 paint.setXfermode(null);

 iv.setImageBitmap(result);
 setContentView(iv);
 }
}

The result looks something like Figure 7-11.

Figure 7-11. Image with a mask applied

634 CHAPTER 7: Graphics and Drawing

View Outlines

(API Level 21)

On devices running Android 5.0 and later, the framework supports dynamic shadows to

indicate view elevation (via the elevation and translationZ properties). In order for this

feature to work, the framework must understand the visual boundaries of your view. In

simple cases, this can be handled internally, but if we apply an arbitrary mask, we must also

indicate where the shadowing should occur with a matching ViewOutlineProvider.

Listing 7-14 indicates a modified version of the image mask that also provides an

appropriate outline for shadows.

Listing 7-14. Mask Activity with View Outline

public class MaskActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ImageView iv = new ImageView(this);
 iv.setScaleType(ImageView.ScaleType.CENTER);

635CHAPTER 7: Graphics and Drawing

 //Create and load images (immutable, typically)
 Bitmap source = BitmapFactory.decodeResource(getResources(), R.drawable.dog);
 Bitmap mask = BitmapFactory.decodeResource(getResources(), R.drawable.triangle);

 //Create a *mutable* location, and a canvas to draw into it
 final Bitmap result =
 Bitmap.createBitmap(source.getWidth(), source.getHeight(), Config.

ARGB_8888);
 Canvas canvas = new Canvas(result);
 Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG);
 paint.setColor(Color.BLACK);

 canvas.drawBitmap(mask, 0, 0, paint);
 paint.setXfermode(new PorterDuffXfermode(Mode.SRC_IN));
 canvas.drawBitmap(source, 0, 0, paint);
 paint.setXfermode(null);

 iv.setImageBitmap(result);
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 //Elevate the view to make a visible shadow
 iv.setElevation(32f);
 //Draw an outline that matches the mask to provide the proper shadow
 iv.setOutlineProvider(new ViewOutlineProvider() {
 @Override
 public void getOutline(View view, Outline outline) {
 int x = (view.getWidth() - result.getWidth()) / 2;
 int y = (view.getHeight() - result.getHeight()) / 2;

 Path path = new Path();
 path.moveTo(x, y);
 path.lineTo(x+result.getWidth(), y);
 path.lineTo(x+result.getWidth()/2, y+result.getHeight());
 path.lineTo(x, y);
 path.close();

 outline.setConvexPath(path);
 }
 });
 }
 setContentView(iv);
 }
}

The ViewOutlineProvider has one required method, getOutline(). This method is called

anytime the outline needs to be updated because of a size or configuration change. For

efficiency, we are passed an Outline instance within which to fill the appropriate shape.

Since our triangle is an irregular outline shape, we must construct a Path that represents the

same triangle and apply it using setConvexPath().

Notice we have also set a static elevation value in the new example. This is so the

shadowing effects can be seen and verified, as in Figure 7-12.

Figure 7-12. Image mask with outline shadow

636 CHAPTER 7: Graphics and Drawing

If the outline is simple enough, Android can also use it as a clipping mask for the

view. To indicate that a view should use its outline as a clipping mask, simply call

setClipToOutline(true). Listing 7-15 uses this tactic to clip our image with a circular mask.

Note Android currently supports clipping with only rectangular, circular, and rounded rectangle

outlines. The triangle outline we just made, for example, cannot be used as a clip.

637CHAPTER 7: Graphics and Drawing

Listing 7-15. Activity Applying Circular Outline Clip to a View

public class OutlineActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ImageView iv = new ImageView(this);
 iv.setScaleType(ImageView.ScaleType.CENTER);

 //Elevate the view to make a visible shadow
 iv.setElevation(32f);

 iv.setImageResource(R.drawable.dog);

 //Tell the view to use its outline as a clipping mask
 iv.setClipToOutline(true);

 //Provide the circular view outline for clipping and shadows
 iv.setOutlineProvider(new ViewOutlineProvider() {
 @Override
 public void getOutline(View view, Outline outline) {
 ImageView iv = (ImageView) view;
 int radius = iv.getDrawable().getIntrinsicHeight() / 2;
 int centerX = (view.getRight() - view.getLeft()) / 2;
 int centerY = (view.getBottom() - view.getTop()) / 2;

 outline.setOval(centerX - radius,
 centerY - radius,
 centerX + radius,
 centerY + radius);
 }
 });

 setContentView(iv);
 }
}

This outline is much more straightforward, producing a centered circle mask surrounding the

centered image, as we can see in Figure 7-13.

Figure 7-13. Image with clipping outline

638 CHAPTER 7: Graphics and Drawing

7-4. Drawing Over View Content

Problem
You want to display content on top of what is currently visible, but without inserting or

otherwise modifying the existing view hierarchy.

Solution
(API Level 1)

Place your content into a PopupWindow, which is a new temporary window in which you can

place views that will be displayed on top of the current activity window. PopupWindow can

be shown anywhere onscreen, either by providing an explicit location or by providing an

existing view that the PopupWindow should be anchored to.

(API Level 18)

You may also use the newer ViewOverlay to draw content on top of your views. ViewOverlay

allows you to add any number of Drawable objects to a private layer managed by the parent

view. Those objects will be drawn on top of the corresponding view as long as their bounds

are within the bounds of the parent.

639CHAPTER 7: Graphics and Drawing

How It Works
In order to draw content on top of our view hierarchy, we first need to create the content

to display. Listing 7-16 constructs a simple group of views that will be the content of our

PopupWindow.

Listing 7-16. res/layout/popup.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="This is a PopupWindow" />
 <EditText
 android:layout_width="250dp"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Close" />
</LinearLayout>

When we display this content in a pop-up anchored to a view, by default the PopupWindow

will display just below the view, left-aligned. However, if there is not enough space below the

view to display the PopupWindow, it will be displayed above the anchor view instead. To make

the pop-up visually distinct in both cases, we can provide a custom background drawable

that switches on the android:state_above_anchor attribute. Listing 7-17 and Figure 7-14

illustrate the custom drawables we will be using for this example.

Listing 7-17. res/drawable/popup_background.xml

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android" >
 <item android:state_above_anchor="true"
 android:drawable="@drawable/speech_background_top" />
 <!-- Default State -->
 <item
 android:drawable="@drawable/speech_background_bottom" />
</selector>

Figure 7-14. Background nine-patch drawables

640 CHAPTER 7: Graphics and Drawing

You may recognize these background images from the speech bubble nine-patch example

in Recipe 7-1. We’ve slightly modified the stretch zones so that the extension point is always

on the same side.

Listings 7-18 and 7-19 illustrate an example activity and layout that construct and display

a PopupWindow in response to a button click. In this example, the PopupWindow will be shown

anchored to the button that was clicked.

Listing 7-18. res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Show PopupWindow"
 android:onClick="onShowWindowClick" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 android:text="Show PopupWindow"
 android:onClick="onShowWindowClick" />
</FrameLayout>

Listing 7-19. Activity Displaying a PopupWindow

public class MainActivity extends Activity
 implements View.OnTouchListener {
 private PopupWindow mOverlay;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

641CHAPTER 7: Graphics and Drawing

 //Inflate the popup content layout; we do not have access
 // to the parent view yet, so we pass null as the
 // container view parameter.
 View popupContent =
 getLayoutInflater().inflate(R.layout.popup, null);

 mOverlay = new PopupWindow();
 //Popup should wrap content view
 mOverlay.setWindowLayoutMode(
 WindowManager.LayoutParams.WRAP_CONTENT,
 WindowManager.LayoutParams.WRAP_CONTENT);
 //Set content and background
 mOverlay.setContentView(popupContent);
 mOverlay.setBackgroundDrawable(getResources()
 .getDrawable(R.drawable.popup_background));

 //Default behavior is not to allow any elements in
 // the PopupWindow to be interactive, but to enable
 // touch events to be delivered directly to the
 // PopupWindow. All outside touches will be delivered
 // to the main (Activity) window.
 mOverlay.setTouchInterceptor(this);

 //Call setFocusable() to enable elements in the
 // PopupWindow to take focus, which will also enable
 // the behavior of dismissing the PopupWindow on any
 // outside touch.
 mOverlay.setFocusable(true);

 //Call setOutsideTouchable() if you want to enable
 // outside touches to auto-dismiss the PopupWindow
 // but don't want elements inside the PopupWindow to
 // take focus
 mOverlay.setOutsideTouchable(true);
 }

 @Override
 protected void onPause() {
 super.onPause();
 //PopupWindow is like Dialog, it will leak
 // if left visible while the Activity finishes.
 mOverlay.dismiss();
 }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 //Handle direct touch events passed to the PopupWindow
 return true;
 }

Figure 7-15. Activity with PopupWindow shown

642 CHAPTER 7: Graphics and Drawing

 public void onShowWindowClick(View v) {
 if (mOverlay.isShowing()) {
 //Dismiss the pop-up
 mOverlay.dismiss();
 } else {
 //Show the PopupWindow anchored to the button we
 // pressed. It will be displayed below the button
 // if there's room, otherwise above.
 mOverlay.showAsDropDown(v);
 }
 }
}

In this example, we create a simple layout with two buttons, both set to trigger the same

action. When either button is clicked, the PopupWindow will be displayed anchored to that

view by using the showAsDropDown() method.

Reminder A PopupWindow can also be shown at a specific location by using its

showAtLocation() method instead. Similar to showAsDropDown(), this method takes a View

parameter, but it is used only to get window information.

The results of this example, when the button is pressed, can be seen in Figure 7-15.

643CHAPTER 7: Graphics and Drawing

When the activity is first created, the PopupWindow is initialized and the layout mode is set

to WRAP_CONTENT. We must do this in code, even though it was defined in our layout XML,

because the layout parameters in the XML are erased during manual inflation with a null

parent view container. We then supply the content view and custom background we created.

We will discuss the other flags set on the overlay shortly.

For now, if you were to try to run this application as is, you might notice that the PopupWindow

doesn’t display when the bottom button is tapped. This is because of the WRAP_CONTENT

layout mode we set. Remember that if no space is available below the anchor view, the

pop-up should display above it. However, that is determined by how big the pop-up is vs.

how much space is left in the main window. If we don’t give the window a defined size, it

will measure to whatever space remains and try to scrunch the content inside. In order to

fix this, we are going to add a dimens.xml file to the project and modify onCreate() for our

activity, as in Listings 7-20 and 7-21.

Listing 7-20. res/values/dimens.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="popupWidth">350dp</dimen>
 <dimen name="popupHeight">250dp</dimen>
</resources>

Listing 7-21. Modified onCreate() for Fixed Size

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //Inflate the popup content layout; we do not have access
 // to the parent view yet, so we pass null as the
 // container view parameter.
 View popupContent =
 getLayoutInflater().inflate(R.layout.popup, null);

 mOverlay = new PopupWindow();
 //Popup should wrap content view
 mOverlay.setWindowLayoutMode(
 WindowManager.LayoutParams.WRAP_CONTENT,
 WindowManager.LayoutParams.WRAP_CONTENT);
 mOverlay.setWidth(getResources()
 .getDimensionPixelSize(R.dimen.popupWidth));
 mOverlay.setHeight(getResources()
 .getDimensionPixelSize(R.dimen.popupHeight));
 //Set content and background
 mOverlay.setContentView(popupContent);
 mOverlay.setBackgroundDrawable(getResources()
 .getDrawable(R.drawable.popup_background));

Figure 7-16. Activity with PopupWindow anchored to each button

644 CHAPTER 7: Graphics and Drawing

 //Default behavior is not to allow any elements in
 // the PopupWindow to be interactive, but to enable
 // touch events to be delivered directly to the
 // PopupWindow. All outside touches will be delivered
 // to the main (Activity) window.
 mOverlay.setTouchInterceptor(this);

 //Call setFocusable() to enable elements in the
 // PopupWindow to take focus, which will also enable
 // the behavior of dismissing the PopupWindow on any
 // outside touch.
 mOverlay.setFocusable(true);

 //Call setOutsideTouchable() if you want to enable
 // outside touches to auto-dismiss the PopupWindow
 // but don't want elements inside the PopupWindow to
 // take focus
 mOverlay.setOutsideTouchable(true);
}

Now our overlay window has a defined size, which we’ve pulled from a dimension resource

to preserve pixel density independence across devices. When we run the example and click

the buttons, we can see the PopupWindow display below the top button and above the bottom

button, as shown in Figure 7-16.

645CHAPTER 7: Graphics and Drawing

Working with PopupWindow Behavior

PopupWindow has a number of useful flags we can set to govern its behavior and interaction

points. By default, the pop-up is touchable, meaning it can receive direct touch events. In

order to act on those events, we call setTouchInterceptor() to provide an OnTouchListener

as the destination for those touch events.

By default, the pop-up is not focusable, which means views inside it cannot receive focus

(as an EditText or a Button can). We have these widgets in our content view, so we have set

the focusable flag to true to enable the user to interact with these elements. The final flag is

setOutsideTouchable(), which we have also enabled. By default, this value is false, but we

can set it to true to send touch events outside the pop-up content area to the PopupWindow

rather than the main window underneath. Doing so enables the PopupWindow to dismiss itself

on any outside touch events. It is most common to use this flag when you do not want to

enable focus on the pop-up, but still want the dismiss behavior it provides.

There are a handful of constructors available to create a new PopupWindow. We used the

basic version without any parameters, but a few versions also take a Context parameter.

When passing a Context to the constructor, the framework creates a PopupWindow that has

a default system background included, whereas the version we used does not. We did

not need the system background because we supplied our own custom drawable. It is

interesting to note that, when either case occurs (either the framework or the application

supplies a background for the pop-up), the content view you give to PopupWindow is

actually wrapped in another private ViewGroup to manage that background instance. This is

important because that extra container also slightly modifies how the overlay behaves.

Based on the combination of choices made for flags and creation options of PopupWindow,

a number of user interaction behaviors will change. The behaviors we will explore are as

follows:

	Receive touch events: Events will be received and processed in the

OnTouchListener, supplied via setTouchInterceptor().

	Allow inside view interaction: Focusable widgets (for example, a Button)

inside the content view will be interactive and able to receive focus.

	Auto-dismiss on outside touches: Any touch event outside the content

view area will automatically dismiss the pop-up.

	Dismiss on the Back button: Tapping the device’s Back button will

dismiss the pop-up rather than finish the current activity.

	Allow outside touches to the main window: When a touch occurs

outside the content view area, it is delivered to the main activity window

rather than being consumed.

Table 7-1 outlines which of these actions will apply to a PopupWindow based on how it was

initialized prior to being shown. These values are not static; they can be modified after the

initial display takes place. If a flag is modified while the PopupWindow is visible, the change

will not take effect until the next time it is shown or its update() method is called.

Table 7-1. PopupWindow Behaviors

Created with Context or Background Standard PopupWindow

Action Default Focusable Outside Touch Default Focusable

1 X X X

2 X X

3 X X

4 X

5 X X X

646 CHAPTER 7: Graphics and Drawing

In addition to what we’ve already discussed, you can see from this information that if your

content overlay needs to process touch events, you will need to ensure that a Context or

background image is supplied.

Animating the PopupWindow

After playing with the previous example, you may have noticed that the PopupWindow has a

default animation associated with it when it is shown or dismissed. This can be customized

or removed, by passing a new resource via setAnimationStyle(). This method takes

a resource ID referencing a style that defines a pair of animations, one for the window

entrance and another for the window exit. Listing 7-22 illustrates the style resource we need

to create in order to customize the PopupWindow animation.

Listing 7-22. res/values/styles.xml

<resources>
 <!-- Define this element below any existing themes -->
 <style name="PopupAnimation">
 <item name="android:windowEnterAnimation">
 @android:anim/slide_in_left</item>
 <item name="android:windowExitAnimation">
 @android:anim/slide_out_right</item>
 </style>
</resources>

Tip It is not necessary to define your own animation styles to customize the transition. There

are a host of styles defined within android.R.style that the framework uses to transition

other standard window types such as dialog boxes or toasts. To use these animations, just pass

the associated ID such as android.R.style.Animation_Dialog or android.R.style.

Animation_Toast.

647CHAPTER 7: Graphics and Drawing

Each of these items can be a reference to animations you define in XML or animations

already available in the framework. Here, we have chosen to reference the slide-in and

slide-out animations already present in the framework. In Listing 7-23, we then modify our

example activity’s onCreate() to apply our custom animations. For brevity, we have also

removed the configuration flags.

Listing 7-23. Activity onCreate() Showing PopupWindow with Custom Animation

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //Inflate the popup content layout; we do not have access
 // to the parent view yet, so we pass null as the
 // container view parameter.
 View popupContent =
 getLayoutInflater().inflate(R.layout.popup, null);

 mOverlay = new PopupWindow();
 //Popup should wrap content view
 mOverlay.setWindowLayoutMode(
 WindowManager.LayoutParams.WRAP_CONTENT,
 WindowManager.LayoutParams.WRAP_CONTENT);
 mOverlay.setWidth(getResources()
 .getDimensionPixelSize(R.dimen.popupWidth));
 mOverlay.setHeight(getResources()
 .getDimensionPixelSize(R.dimen.popupHeight));
 //Set content and background
 mOverlay.setContentView(popupContent);
 mOverlay.setBackgroundDrawable(getResources()
 .getDrawable(R.drawable.popup_background));

 //Set a custom animation enter/exit pair, or 0 to
 // disable animations. You can also use animation
 // styles defined in the platform, such as
 // android.R.style.Animation_Toast
 mOverlay.setAnimationStyle(R.style.PopupAnimation);

 //Default behavior is not to allow any elements in
 // the PopupWindow to be interactive, but to enable
 // touch events to be delivered directly to the
 // PopupWindow. All outside touches will be delivered
 // to the main (Activity) window.
 mOverlay.setTouchInterceptor(this);
}

Tip You can also remove the animation completely by calling setAnimationStyle(0), or reset

the default animation with setAnimationStyle(-1).

Figure 7-17. res/drawable/flag_arrow.png

648 CHAPTER 7: Graphics and Drawing

Now when we run the application again, the custom slide animations are used to transition

the PopupWindow on and off screen.

Using ViewOverlay

(API Level 18)

Another simple way to draw content over your views is to use the more recent ViewOverlay

implementation. ViewOverlay, and its cousin ViewGroupOverlay, allows you to add any

number of drawable objects to be drawn on top of the view. Applications cannot create a

ViewOverlay directly, and instead obtain a ViewOverlay by calling getOverlay() on any view

in the hierarchy. Views are constrained to drawing within their bounds, so any content in an

overlay whose location extends outside the hosting view’s bounds will be clipped.

To illustrate this capability, we have created a simple application that draws markup content

on top of the main view in an activity. The view we are drawing on is purposefully generic

to point out that any View subclass (whether it displays text, HTML, an image, or some

custom content) can work with an overlay. The application will place either an arrow flag or

a resizable box over the interactive view at the location the user touches. The flag can be

moved or the box resized as long as the user holds a finger down and drags. Once the touch

is released, the marker is permanent on the view until it is tapped a second time, which will

remove the marker completely.

First, let’s have a look at the resources used via Listing 7-24 and Figure 7-17.

Listing 7-24. res/drawable/box.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <solid
 android:color="@android:color/transparent"/>
 <stroke
 android:width="3dp"
 android:color="#F00" />
</shape>

649CHAPTER 7: Graphics and Drawing

Listing 7-25 shows the layout used for the main activity. We have created a main view

containing some text (@+id/textview) that we will be drawing on, and a selector at the

bottom to determine which type of marker to place.

Listing 7-25. res/layout/activity_main.xml

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/textview"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:gravity="center"
 android:text="Android Recipes" />

 <RadioGroup
 android:id="@+id/container_options"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:background="#CCC">
 <RadioButton
 android:id="@+id/option_box"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Box" />
 <RadioButton
 android:id="@+id/option_arrow"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Arrow" />
 </RadioGroup>

</LinearLayout>

Finally, we have the activity in Listing 7-26. This activity finds the main view and sets an

OnTouchListener to monitor the touch events going through that view. This causes the

onTouch() method to be called for each touch event, which we then use to determine

whether the user has touched, dragged, or released a finger on the main view.

650 CHAPTER 7: Graphics and Drawing

Listing 7-26. Activity with Interactive ViewOverlay

public class MainActivity extends Activity implements View.OnTouchListener {

 private RadioGroup mOptions;

 private ArrayList<Drawable> mMarkers;
 private Drawable mTrackingMarker;
 private Point mTrackingPoint;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //Receive touch events for the view we want to draw on
 findViewById(R.id.textview).setOnTouchListener(this);

 mOptions =
 (RadioGroup)findViewById(R.id.container_options);

 mMarkers = new ArrayList<Drawable>();
 }

 /*
 * Touch events from the view we are monitoring
 * will be delivered here.
 */
 @Override
 public boolean onTouch(View v, MotionEvent event) {
 switch (mOptions.getCheckedRadioButtonId()) {
 case R.id.option_box:
 handleEvent(R.id.option_box, v, event);
 break;
 case R.id.option_arrow:
 handleEvent(R.id.option_arrow, v, event);
 break;
 default:
 return false;
 }
 return true;
 }

 /*
 * Process touch events when user has selected to draw a box
 */
 private void handleEvent(int optionId, View v,
 MotionEvent event) {
 int x = (int) event.getX();
 int y = (int) event.getY();
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 Drawable current = markerAt(x, y);

651CHAPTER 7: Graphics and Drawing

 if (current == null) {
 //Add a new marker on a new touch
 switch(optionId) {
 case R.id.option_box:
 mTrackingMarker = addBox(v, x, y);
 mTrackingPoint = new Point(x, y);
 break;
 case R.id.option_arrow:
 mTrackingMarker = addFlag(v, x, y);
 break;
 }
 } else {
 //Remove the existing marker
 removeMarker(v, current);
 }
 break;
 case MotionEvent.ACTION_MOVE:
 //Update the current marker as we move
 if (mTrackingMarker != null) {
 switch(optionId) {
 case R.id.option_box:
 resizeBox(v, mTrackingMarker,
 mTrackingPoint, x, y);
 break;
 case R.id.option_arrow:
 offsetFlag(v, mTrackingMarker,
 x, y);
 break;
 }

 }
 break;
 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_CANCEL:
 //Clear state when gesture is over
 mTrackingMarker = null;
 mTrackingPoint = null;
 break;
 }
 }

 /*
 * Add a new resizable box at the given coordinate
 */
 private Drawable addBox(View v, int x, int y) {
 Drawable box = getResources().getDrawable(R.drawable.box);

 //Start with a zero size box at the touch point
 Rect bounds = new Rect(x, y, x, y);
 box.setBounds(bounds);

652 CHAPTER 7: Graphics and Drawing

 //Add to the ViewOverlay
 mMarkers.add(box);
 v.getOverlay().add(box);

 return box;
 }

 /*
 * Update an existing box to resize based on the given
 * coordinate.
 */
 private void resizeBox(View v, Drawable target,
 Point trackingPoint, int x, int y) {
 Rect bounds = new Rect(target.getBounds());
 //If the new touch point is to the left of the tracking
 // point, grow left. Otherwise, grow to the right
 if (x < trackingPoint.x) {
 bounds.left = x;
 } else {
 bounds.right = x;
 }

 //If the new touch point is above the tracking point,
 // grow up. Otherwise, grow down
 if (y < trackingPoint.y) {
 bounds.top = y;
 } else {
 bounds.bottom = y;
 }

 //Update drawable bounds and redraw
 target.setBounds(bounds);
 v.invalidate();
 }

 /*
 * Add a new flag marker at the given coordinate
 */
 private Drawable addFlag(View v, int x, int y) {
 //Make a new marker drawable
 Drawable marker =
 getResources().getDrawable(R.drawable.flag_arrow);

 //Create bounds to match image size
 Rect bounds = new Rect(0, 0,
 marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());
 //Center marker bottom around coordinate
 bounds.offset(x - (bounds.width() /2),
 y - bounds.height());
 marker.setBounds(bounds);

653CHAPTER 7: Graphics and Drawing

 //Add to the overlay
 mMarkers.add(marker);
 v.getOverlay().add(marker);

 return marker;
 }

 /*
 * Update the position of an existing flag marker
 */
 private void offsetFlag(View v, Drawable marker,
 int x, int y) {
 Rect bounds = new Rect(marker.getBounds());
 //Move drawable bounds to align with the new coordinate
 bounds.offset(x - bounds.left - (bounds.width() / 2),
 y - bounds.top - bounds.height());
 //Update and redraw
 marker.setBounds(bounds);
 v.invalidate();
 }

 /*
 * Remove the requested marker item
 */
 private void removeMarker(View v, Drawable marker) {
 mMarkers.remove(marker);
 v.getOverlay().remove(marker);
 }

 /*
 * Find the first marker that contains the requested
 * coordinate, if one exists.
 */
 private Drawable markerAt(int x, int y) {
 //Return the first marker found containing the given point
 for (Drawable marker : mMarkers) {
 if (marker.getBounds().contains(x, y)) {
 return marker;
 }
 }

 return null;
 }
}

Inside onTouch(), the selection from the RadioGroup is checked to determine the marker

type. For the initial ACTION_DOWN, we call either addBox() or addFlag() to create a new

Drawable, set its size and location with setBounds(), and apply it to the main view’s

ViewOverlay. To add the marker to the overlay, we simply call add(). Since ViewOverlay

doesn’t provide any good method of tracking the items added, we also maintain a list of our

own, which will be useful in finding a marker based on touch later.

Figure 7-18. Activity with drawable content inside the ViewOverlay

654 CHAPTER 7: Graphics and Drawing

As the finger moves around in ACTION_MOVE, we either update the location of the flag, or

resize the box to fit between the initial touch point and our current touch location. In both

cases, this is accomplished by again updating the bounds Rect of the Drawable. Once the

finger is released, we clear the tracking state, and the marker is now in its permanent home.

Note Drawable elements get their size and location from the bounds Rect. Bitmap content that

comes from an image resource such as a PNG has an intrinsic height and width that we can use to

generate the size portion of the bounds, but content taken from XML has no intrinsic size and must

be explicitly set. Regardless, especially when used in a ViewOverlay, bounds are used to place

the content at the right location, so it is key to remember to call setBounds() at least once for

each element you add.

If a new touch comes down at the location of an existing marker (checked using the

markerAt() helper method), we simply delete the marker by removing it from the

ViewOverlay. Figure 7-18 shows the initial layout on the left, with some markers added to the

overlay on the right.

655CHAPTER 7: Graphics and Drawing

Caution Calling getOverlay() on a ViewGroup will return a ViewGroupOverlay instead,

which has additional add() and remove() methods to work with a view instead of a drawable.

Beware that this does not work the same way as described in this section. This cannot be used

to add a new view on top of the existing hierarchy; it can be used to elevate only an existing view

already inside that container to the overlay. It also has the consequence of removing that view from

its container when added to the overlay, which will modify the layout of the ViewGroup. If you want

to place views on top of the main window, use the PopupWindow technique described earlier in this

section.

7-5. High-Performance Drawing

Problem
Your application needs to render and draw a complex scene or animation to the screen,

often from a background thread.

Solution
(API Level 1)

Use SurfaceView or TextureView to render content from a background thread to the screen.

The general rule in developing Android user interfaces is to never modify any properties

associated with a View from any thread other than the main thread. These two classes are

the exception to this rule, and they are designed specifically to take draw commands from

a background thread and post them to the screen. You will also see in later chapters how

these two classes are used by the framework to render camera preview data and video

output. However, for now we are going to focus on doing our own drawing.

SurfaceView is rather unique in that it doesn’t really behave like a traditional View. When

one is instantiated, a secondary Window is actually created at the location of the View but

underneath the current Window, and the View component simply “punches a hole” in the

top-level Window by displaying transparently. The advantage to this approach is that it allows

us to do this high-performance drawing without any assistance from hardware acceleration.

However, it also means that SurfaceView is fairly static and does not respond well to being

animated or transformed in any way.

TextureView is available in Android 4.0 and later and in most cases can be a drop-in

replacement for SurfaceView. It behaves more like a traditional View in that it can be

animated and transformed while content is being drawn to it. However, it requires the

context it is running in to be hardware accelerated, which may cause compatibility issues in

some applications.

656 CHAPTER 7: Graphics and Drawing

How It Works
Let’s take a look at an example application where a background thread continuously renders

a series of objects to a SurfaceView. In this example, we create a display that animates the

motion of several icons continuously on the screen. See Listings 7-27 and 7-28.

Listing 7-27. res/layout/main.xml

<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <Button
 android:id="@+id/button_erase"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Erase" />
 <SurfaceView
 android:id="@+id/surface"
 android:layout_width="300dp"
 android:layout_height="300dp"
 android:layout_gravity="center" />

</FrameLayout>

Listing 7-28. Surface Drawing Activity

public class SurfaceActivity extends Activity implements
 View.OnClickListener, View.OnTouchListener, SurfaceHolder.Callback {

 private SurfaceView mSurface;
 private DrawingThread mThread;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Attach listener to button
 findViewById(R.id.button_erase).setOnClickListener(this);

 //Set up the surface with a touch listener and callback
 mSurface = (SurfaceView) findViewById(R.id.surface);
 mSurface.setOnTouchListener(this);
 mSurface.getHolder().addCallback(this);
 }

 @Override
 public void onClick(View v) {
 mThread.clearItems();
 }

657CHAPTER 7: Graphics and Drawing

 public boolean onTouch(View v, MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 mThread.addItem((int) event.getX(), (int) event.getY());
 }
 return true;
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 mThread = new DrawingThread(holder,
 BitmapFactory.decodeResource(getResources(), R.drawable.ic_launcher));
 mThread.start();
 }

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 mThread.updateSize(width, height);
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 mThread.quit();
 mThread = null;
 }

 private static class DrawingThread extends HandlerThread implements Handler.Callback {
 private static final int MSG_ADD = 100;
 private static final int MSG_MOVE = 101;
 private static final int MSG_CLEAR = 102;

 private int mDrawingWidth, mDrawingHeight;
 private boolean mRunning = false;

 private SurfaceHolder mDrawingSurface;
 private Paint mPaint;
 private Handler mReceiver;
 private Bitmap mIcon;
 private ArrayList<DrawingItem> mLocations;

 private class DrawingItem {
 //Current location marker
 int x, y;
 //Direction markers for motion
 boolean horizontal, vertical;

 public DrawingItem(int x, int y, boolean horizontal, boolean vertical) {
 this.x = x;
 this.y = y;
 this.horizontal = horizontal;
 this.vertical = vertical;
 }
 }

658 CHAPTER 7: Graphics and Drawing

 public DrawingThread(SurfaceHolder holder, Bitmap icon) {
 super("DrawingThread");
 mDrawingSurface = holder;
 mLocations = new ArrayList<DrawingItem>();
 mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mIcon = icon;
 }

 @Override
 protected void onLooperPrepared() {
 mReceiver = new Handler(getLooper(), this);
 //Start the rendering
 mRunning = true;
 mReceiver.sendEmptyMessage(MSG_MOVE);
 }

 @Override
 public boolean quit() {
 // Clear all messages before dying
 mRunning = false;
 mReceiver.removeCallbacksAndMessages(null);

 return super.quit();
 }

 @Override
 public boolean handleMessage(Message msg) {
 switch (msg.what) {
 case MSG_ADD:
 //Create a new item at the touch location, with a randomized start direction
 DrawingItem newItem = new DrawingItem(msg.arg1, msg.arg2,
 Math.round(Math.random()) == 0,
 Math.round(Math.random()) == 0);
 mLocations.add(newItem);
 break;
 case MSG_CLEAR:
 //Remove all objects
 mLocations.clear();
 break;
 case MSG_MOVE:
 if (!mRunning) return true;

 //Render a frame
 Canvas c = mDrawingSurface.lockCanvas();
 if (c == null) {
 break;
 }
 //Clear canvas first
 c.drawColor(Color.BLACK);

659CHAPTER 7: Graphics and Drawing

 //Draw each item
 for (DrawingItem item : mLocations) {
 //Update location
 item.x += (item.horizontal ? 5 : -5);
 if (item.x >= (mDrawingWidth - mIcon.getWidth())) item.horizontal = false;
 if (item.x <= 0) item.horizontal = true;
 item.y += (item.vertical ? 5 : -5);
 if (item.y >= (mDrawingHeight - mIcon.getHeight())) item.vertical = false;
 if (item.y <= 0) item.vertical = true;

 c.drawBitmap(mIcon, item.x, item.y, mPaint);
 }
 mDrawingSurface.unlockCanvasAndPost(c);
 break;
 }

 //Post the next frame
 if (mRunning) {
 mReceiver.sendEmptyMessage(MSG_MOVE);
 }
 return true;
 }

 public void updateSize(int width, int height) {
 mDrawingWidth = width;
 mDrawingHeight = height;
 }

 public void addItem(int x, int y) {
 //Pass the location into the Handler using Message arguments
 Message msg = Message.obtain(mReceiver, MSG_ADD, x, y);
 mReceiver.sendMessage(msg);
 }

 public void clearItems() {
 mReceiver.sendEmptyMessage(MSG_CLEAR);
 }
 }
}

This example constructs a simple background DrawingThread to render and draw content

to a SurfaceView. This thread is a subclass of HandlerThread, which is a convenient

framework helper for generating background workers that process incoming messages.

We talk in more detail about this pattern in Chapter 6, but for now suffice it to say that our

background thread operates by responding to messages sent to the Handler it owns inside

handleMessage(). SurfaceView is really two components: a Surface underneath the Window

and a clear View in the hierarchy. To draw, we really need access to the underlying Surface,

which is wrapped in a SurfaceHolder.

660 CHAPTER 7: Graphics and Drawing

The construction of the Surface doesn’t actually happen until the view gets attached to the

current window, so we can’t just grab it right away. Instead, SurfaceHolder has a callback

interface when the Surface is created, destroyed, or changed so that we can use it to

manage the life cycle of the components that depend on it (in this case the DrawingThread).

Here we wait for surfaceCreated() to construct a new DrawingThread and start rendering,

and in surfaceDestroyed() we need to stop rendering to the Surface as it is no longer valid.

The final callback, surfaceChanged(), is the only place where the dimensions of the Surface

are supplied, so we make sure to update our drawing code with those values whenever they

are available.

We have defined three commands for the thread to react to: add, clear, and move. The add

method will be triggered when the user taps on the SurfaceView by adding a drawing item to

the display list with its initial location set to the location of the touch. The clear method will

remove all items from the display list, which is triggered when the button is pressed.

Inside the move method, the thread renders each frame to the SurfaceView. Every drawing

operation should be prefaced with lockCanvas(), which provides a Canvas to apply drawing

calls. Then the thread iterates through each item in its display list, updates it to a new

position, and draws an icon to the Canvas at that location. It also checks whether any item

has hit a boundary of the Surface, so it can reverse direction in those cases. We must

preface each frame with drawColor() to clear the previous frame’s contents. Without this, as

the icons move, you would see a trail behind them of the icon’s previous locations. In some

applications, this may be desirable (such as a painting application where each event should

be added to the others), but not for our example. After all the drawing calls are made, the

application must call unlockCanvasAndPost() to render the data to the screen.

By continuously posting MSG_MOVE to itself, the DrawingThread runs through this process

indefinitely until the thread is quit by the application. An advantage to doing this processing

via HandlerThread is that the operations can be cancelled at any time with quit() and the

thread can die cleanly, rather than trying to interrupt the thread execution.

You can see the results of this application running in Figure 7-19. The user can tap on the

black box an indefinite number of times and watch the number of flying icons stack up.

Because the drawing code uses only one bitmap for all the icons, the number of items the

view can support is very high without running into any memory concerns.

Figure 7-19. SurfaceView drawing scene

661CHAPTER 7: Graphics and Drawing

TextureView

(API Level 14)

If your application is targeting Android 4.0 and later, you can also use TextureView, which

has a few additional properties that may make it ideal for your application; the most useful is

that it can be transformed. Have a look at Listings 7-29 and 7-30, where we have modified

the previous example to use TextureView.

Listing 7-29. res/layout/texture.xml

<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/button_transform"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Rotate" />

662 CHAPTER 7: Graphics and Drawing

 <TextureView
 android:id="@+id/surface"
 android:layout_width="300dp"
 android:layout_height="300dp"
 android:layout_gravity="center" />

</FrameLayout>

Listing 7-30. Texture Drawing Activity

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH)
public class TextureActivity extends Activity implements
 View.OnClickListener, View.OnTouchListener, TextureView.SurfaceTextureListener {

 private TextureView mSurface;
 private DrawingThread mThread;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.texture);
 //Attach listener to button
 findViewById(R.id.button_transform).setOnClickListener(this);

 //Set up the surface with a touch listener and callback
 mSurface = (TextureView) findViewById(R.id.surface);
 mSurface.setOnTouchListener(this);
 mSurface.setSurfaceTextureListener(this);
 }

 @Override
 public void onClick(View v) {
 //Rotate the entire drawing view
 mSurface.animate()
 .rotation(mSurface.getRotation() < 180.f ? 180.f : 0.f);
 }

 public boolean onTouch(View v, MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 mThread.addItem((int) event.getX(), (int) event.getY());
 }
 return true;
 }

 @Override
 public void onSurfaceTextureAvailable(SurfaceTexture surface, int width,
 int height) {
 mThread = new DrawingThread(new Surface(surface),
 BitmapFactory.decodeResource(getResources(), R.drawable.ic_launcher));
 mThread.updateSize(width, height);
 mThread.start();
 }

663CHAPTER 7: Graphics and Drawing

 @Override
 public void onSurfaceTextureSizeChanged(SurfaceTexture surface, int width,
 int height) {
 mThread.updateSize(width, height);
 }

 @Override
 public void onSurfaceTextureUpdated(SurfaceTexture surface) { }

 @Override
 public boolean onSurfaceTextureDestroyed(SurfaceTexture surface) {
 mThread.quit();
 mThread = null;

 //Return true to allow the framework to release the surface
 return true;
 }

 private static class DrawingThread extends HandlerThread implements Handler.Callback {
 private static final int MSG_ADD = 100;
 private static final int MSG_MOVE = 101;
 private static final int MSG_CLEAR = 102;

 private int mDrawingWidth, mDrawingHeight;
 private boolean mRunning = false;

 private Surface mDrawingSurface;
 private Rect mSurfaceRect;
 private Paint mPaint;

 private Handler mReceiver;
 private Bitmap mIcon;
 private ArrayList<DrawingItem> mLocations;

 private class DrawingItem {
 //Current location marker
 int x, y;
 //Direction markers for motion
 boolean horizontal, vertical;

 public DrawingItem(int x, int y, boolean horizontal, boolean vertical) {
 this.x = x;
 this.y = y;
 this.horizontal = horizontal;
 this.vertical = vertical;
 }
 }

664 CHAPTER 7: Graphics and Drawing

 public DrawingThread(Surface surface, Bitmap icon) {
 super("DrawingThread");
 mDrawingSurface = surface;
 mSurfaceRect = new Rect();
 mLocations = new ArrayList<DrawingItem>();
 mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mIcon = icon;
 }

 @Override
 protected void onLooperPrepared() {
 mReceiver = new Handler(getLooper(), this);
 //Start the rendering
 mRunning = true;
 mReceiver.sendEmptyMessage(MSG_MOVE);
 }

 @Override
 public boolean quit() {
 // Clear all messages before dying
 mRunning = false;
 mReceiver.removeCallbacksAndMessages(null);

 return super.quit();
 }

 @Override
 public boolean handleMessage(Message msg) {
 switch (msg.what) {
 case MSG_ADD:
 //Create a new item at the touch location, with a randomized start direction
 DrawingItem newItem = new DrawingItem(msg.arg1, msg.arg2,
 Math.round(Math.random()) == 0,
 Math.round(Math.random()) == 0);
 mLocations.add(newItem);
 break;
 case MSG_CLEAR:
 //Remove all objects
 mLocations.clear();
 break;
 case MSG_MOVE:
 //Do nothing if we are canceled
 if (!mRunning) return true;

 //Render a frame
 try {
 Canvas c = mDrawingSurface.lockCanvas(mSurfaceRect);

665CHAPTER 7: Graphics and Drawing

 //Clear canvas first
 c.drawColor(Color.BLACK);
 //Draw each item
 for (DrawingItem item : mLocations) {
 //Update location
 item.x += (item.horizontal ? 3 : -3);
 if (item.x >= (mDrawingWidth - mIcon.getWidth()))
 item.horizontal = false;
 if (item.x <= 0)
 item.horizontal = true;

 item.y += (item.vertical ? 3 : -3);
 if (item.y >= (mDrawingHeight - mIcon.getHeight()))
 item.vertical = false;
 if (item.y <= 0)
 item.vertical = true;

 c.drawBitmap(mIcon, item.x, item.y, mPaint);
 }

 mDrawingSurface.unlockCanvasAndPost(c);
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 }
 //Post the next frame
 if (mRunning) {
 mReceiver.sendEmptyMessage(MSG_MOVE);
 }

 return true;
 }

 public void updateSize(int width, int height) {
 mDrawingWidth = width;
 mDrawingHeight = height;
 mSurfaceRect.set(0, 0, mDrawingWidth, mDrawingHeight);
 }

 public void addItem(int x, int y) {
 //Pass the location into the Handler using Message arguments
 Message msg = Message.obtain(mReceiver, MSG_ADD, x, y);
 mReceiver.sendMessage(msg);
 }

 public void clearItems() {
 mReceiver.sendEmptyMessage(MSG_CLEAR);
 }
 }
}

Figure 7-20. TextureView drawing scene

666 CHAPTER 7: Graphics and Drawing

In this modified example, our layout has a TextureView instance. Similar to SurfaceView,

the underlying surface to draw on is not created until the view is attached to the Window,

so we must rely on a callback before accessing it. For TextureView, this callback is a

SurfaceTextureListener. For the most part, the functionality mirrors SurfaceHolder.
Callback with onSurfaceTextureAvailable(), onSurfaceTextureChanged(), and

onSurfaceTextureDestroyed(). However, there is one additional callback method we aren’t

currently using in this example called onSurfaceTextureUpdated(). This method will be called

anytime the SurfaceTexture renders a new frame.

The drawing surface that TextureView provides is slightly different, in that there is no

SurfaceHolder wrapping it to access. Instead, we can access a SurfaceTexture instance,

which we can wrap in a new Surface to do our drawing. This, in turn, requires one

small modification of our DrawingThread. SurfaceHolder has a convenience version

of lockCanvas() that takes no parameters and marks the entire Surface as dirty. When

working with Surface directly, this method does not exist, so we need to pass a Rect

into lockCanvas() that tells it which section of the Surface to return as a Canvas for new

rendering. Because we still want this to be the entire surface, we maintain the size of the

Rect in updateSize(), which will get called by the listener whenever the surface changes.

To showcase the ability to transform the SurfaceTexture live while it is rendering, we

have replaced the Erase button with a Rotate button. Clicking this button will cause the

TextureView to do a half-circle rotation animation each time. Clicking the button while the

current animation is running will cancel it and start a new rotation from the current point, so if

you click the button rapidly, you can get the view to rotate into some pretty odd angles. The

entire time the SurfaceTexture will continue to animate without skipping a beat. You can see

in Figure 7-20 the application with the TextureView rotated upside-down.

667CHAPTER 7: Graphics and Drawing

7-6. Extracting Image Color Palettes

Problem
You would like to dynamically theme your application’s interface using color schemes

extracted from the user’s image contents.

Solution
(API Level 7)

Use the Palette support package to analyze any image pixel data, and produce color

swatches for background and text designed to complement that image. Palette will attempt

to generate the following swatch color schemes for every image:

Vibrant	
Vibrant Dark	
Vibrant Light	
Muted	
Muted Dark	
Muted Light	

Depending on the image contents, not all six schemes may be available. Each scheme is

returned as a Palette.Swatch, and any of them may be null if the image sample does not

contain enough colors to produce a compatible scheme.

Note Palette is available only as a module in the Android Support Library, and is not part of the

core framework. Any application targeting API Level 7 or later can make use of Palette with the

Support Library included. For more information on including Support Library components in your

project, reference http://developer.android.com/tools/support-library/

index.html.

How It Works
To showcase this feature, we will create a list of image tiles where the background and title

of each tile will be themed by Palette. The result will look like Figure 7-21.

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html

Figure 7-21. List with Palette colors

668 CHAPTER 7: Graphics and Drawing

Listings 7-31 and 7-32 define the list’s item layout and adapter.

Listing 7-31. res/layout/item_list.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:padding="16dp">
 <ImageView
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="102dp"
 android:scaleType="centerCrop"/>
 <TextView
 android:id="@+id/text"
 android:layout_width="match_parent"
 android:layout_height="72dp"
 android:gravity="center"
 android:textAppearance="?android:textAppearanceLarge"/>
</LinearLayout>

669CHAPTER 7: Graphics and Drawing

Listing 7-32. Palette Colors in Adapter

public class ColorfulAdapter extends ArrayAdapter<String> {
 private static final int[] IMAGES = {
 R.drawable.bricks, R.drawable.flower,
 R.drawable.grass, R.drawable.stones,
 R.drawable.wood, R.drawable.dog
 };

 private static final String[] NAMES = {
 "Bricks", "Flower",
 "Grass", "Stones",
 "Wood", "Dog"
 };

 private SparseArray<Bitmap> mImages;
 private SparseArray<Palette.Swatch> mBackgroundColors;

 public ColorfulAdapter(Context context) {
 super(context, R.layout.item_list, NAMES);
 mImages = new SparseArray<Bitmap>(IMAGES.length);
 mBackgroundColors = new SparseArray<Palette.Swatch>(IMAGES.length);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 if (convertView == null) {
 convertView = LayoutInflater.from(getContext())
 .inflate(R.layout.item_list, parent, false);
 }

 View root = convertView.findViewById(R.id.root);
 ImageView image = (ImageView) convertView.findViewById(R.id.image);
 TextView text = (TextView) convertView.findViewById(R.id.text);

 int imageId = IMAGES[position];
 if (mImages.get(imageId) == null) {
 new ImageTask().execute(imageId);

 text.setTextColor(Color.BLACK);
 } else {
 image.setImageBitmap(mImages.get(imageId));

 Palette.Swatch colors = mBackgroundColors.get(imageId);
 if (colors != null) {
 root.setBackgroundColor(colors.getRgb());
 text.setTextColor(colors.getTitleTextColor());
 }
 }

670 CHAPTER 7: Graphics and Drawing

 text.setText(NAMES[position]);

 return convertView;
 }

 private class ImageResult {
 public int imageId;
 public Bitmap image;
 public Palette.Swatch colors;

 public ImageResult(int imageId, Bitmap image, Palette.Swatch colors) {
 this.imageId = imageId;
 this.image = image;
 this.colors = colors;
 }
 }

 private void updateImageItem(ImageResult result) {
 mImages.put(result.imageId, result.image);
 mBackgroundColors.put(result.imageId, result.colors);
 }

 private class ImageTask extends AsyncTask<Integer, Void, ImageResult> {

 @Override
 protected ImageResult doInBackground(Integer… params) {
 int imageId = params[0];
 //Make sure our image thumbnails aren't too large
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inSampleSize = 4;
 Bitmap image = BitmapFactory.decodeResource(getContext().getResources(),
 imageId, options);

 Palette colors = Palette.generate(image);
 Palette.Swatch selected = colors.getVibrantSwatch();
 if (selected == null) {
 selected = colors.getMutedSwatch();
 }

 return new ImageResult(imageId, image, selected);
 }

 @Override
 protected void onPostExecute(ImageResult result) {
 updateImageItem(result);
 notifyDataSetChanged();
 }
 }
}

671CHAPTER 7: Graphics and Drawing

The adapter handles all the heavy lifting in this example. We have six local images, with a

string title for each element that we will display inside a grid. Inside the adapter’s getView()

callback, we can see that the text color and background container color are both to be read

from a Palette.Swatch, which may or may not yet exist.

Because the process of loading our images from disk and analyzing them with Palette can

take some time, we want to do that in the background to avoid blocking the main thread for

too long; so we’ve wrapped this work in an AsyncTask to ensure it is done in the background.

The results from the background loading are stored in a pair of SparseArray instances.

Whenever the adapter encounters an item without a result, it triggers a new background task

to load the contents. Once the image is decoded by BitmapFactory, we can gather the color

scheme data using Palette.generate(), which will block while the image is analyzed.

Tip Palette also has a generateAsync() method that accepts a callback if you are not already

on a background thread when you generate the color schemes.

Once complete, we can access the color swatches using the various getter methods. We

attempt to get a vibrant swatch first with getVibrantSwatch(). However, if the image colors

weren’t compatible with a vibrant color scheme (that is, the method returns null), we

retrieve a muted swatch as a fallback. Each time a background task completes, the adapter

is notified to repopulate the views with notifyDataSetChanged().

Note The decoded image and the selected swatch are wrapped up in a holder object

(ImageResult) to facilitate returning multiple items from AsyncTask, which supports returning

only a single type.

Back in getView(), when an item successfully returns an existing swatch. we can obtain the

text color and background color with getTitleTextColor() and getRgb(), respectively. See

Listing 7-33, which attaches the adapter to a GridView inside an activity to complete the

example.

Listing 7-33. Colorful Palette Activity

public class ColorfulListActivity extends ActionBarActivity {

 private GridView mGridView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

672 CHAPTER 7: Graphics and Drawing

 mGridView = new GridView(this);
 mGridView.setNumColumns(2);
 mGridView.setAdapter(new ColorfulAdapter(this));

 setContentView(mGridView);
 }

}

Listing 7-34 shows up the necessary pieces that must exist in the build.gradle file to

compile this example.

Listing 7-34. Partial build.gradle

apply plugin: 'com.android.application'

android {
 compileSdkVersion 21
 ...

 defaultConfig {
 applicationId "com.androidrecipes.palette"
 ...
 }
 ...
}

dependencies {
 compile 'com.android.support:appcompat-v7:21.0.+'
 compile 'com.android.support:palette-v7:21.0.+'
}

In order to use the Palette library, it must be added as a dependency artifact. Additionally,

we have used ActionBarActivity to best support older API levels, and this requires that we

include AppCompat as a dependency as well.

7-7. Tinting Drawable Elements

Problem
You would like to avoid duplicating common assets that vary only by color by dynamically

coloring a baseline asset at runtime.

Solution
(API Level 1)

Use a color filter to apply a color mask to any Drawable instance. Drawable color filters are

typically fully opaque, but the framework also supports partial blending via PorterDuff.
XferMode. This method can be executed only from Java code.

Figure 7-22. Base icons before tinting (placed in res/drawable)

Figure 7-23. Activity with tinted drawables

673CHAPTER 7: Graphics and Drawing

(API Level 21)

Use the native tint functionality available on any Drawable instance via android:tint in XML

or setTint() from Java code. In this case, blending can be applied via android:tintMode or

setTintMode(); either of which takes a Porter-Duff constant to represent the transfer mode.

How It Works
In this example, we will take the four images found in Figure 7-22 and dynamically apply

colors to them to produce the output in Figure 7-23.

674 CHAPTER 7: Graphics and Drawing

Note For a Porter-Duff color blend to apply correctly, areas of the icons that should not be

modified need to be fully transparent, not solid white. The remaining pixels don’t need to be black,

but they must be fully opaque.

Listing 7-35 shows us the simple layout used to place these images into the activity.

Listing 7-35. res/layout/activity_filter.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 android:padding="8dp">

 <ImageView
 android:id="@+id/icon_marker"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/ic_marker"/>

 <ImageView
 android:id="@+id/icon_gear"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/ic_gear"/>

 <ImageView
 android:id="@+id/icon_check"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/ic_check"/>

 <ImageView
 android:id="@+id/icon_heart"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/ic_heart"/>
</LinearLayout>

The one thing to notice from this layout is that we are not applying any special filters here.

For this first technique, colors cannot be applied from XML. Listing 7-36 shows us an activity

with the code to tint the icons.

675CHAPTER 7: Graphics and Drawing

Listing 7-36. Color Filter Activity

public class ColorFilterActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_filter);

 applyIconFilters();
 }

 private void applyIconFilters() {

 ImageView iconView = (ImageView) findViewById(R.id.icon_marker);
 //Draw icon solid purple
 iconView.getDrawable().setColorFilter(0xFFAA00AA, PorterDuff.Mode.SRC_ATOP);

 iconView = (ImageView) findViewById(R.id.icon_gear);
 //Draw icon solid green
 iconView.getDrawable().setColorFilter(0xFF00AA00, PorterDuff.Mode.SRC_ATOP);

 iconView = (ImageView) findViewById(R.id.icon_check);
 //Draw icon solid blue
 iconView.getDrawable().setColorFilter(0xFF0000AA, PorterDuff.Mode.SRC_ATOP);

 iconView = (ImageView) findViewById(R.id.icon_heart);
 //Draw icon solid red
 iconView.getDrawable().setColorFilter(0xFFAA0000, PorterDuff.Mode.SRC_ATOP);
 }
}

Using the setColorFilter() method, any Drawable can be drawn with a tint. The simplest

version of this method (which we have used here) accepts the ARGB color value and a

PorterDuff.Mode for pixel transfer and blending. Our choice of SRC_ATOP ensures that the

chosen color will be drawn fully and the original image pixel ignored.

Tip If your base image has variations (for example, a gradient) that you would like to show

through, pick a filter color that is partially transparent and/or try a different PorterDuff.Mode

value, such as MULTIPLY.

There is another version of setColorFilter() that accepts a ColorFilter instance for

more-complex overlays. The LightingColorFilter, for example, is designed to simulate a

light-source effect.

676 CHAPTER 7: Graphics and Drawing

A NOTE ABOUT CONSTANT STATE

If you find yourself repeating the same image resource multiple times within the same activity (in a list, for

example), and attempt to set multiple tint values, you may find that all the drawables will show only the last

color you have set. This is because of something called shared constant state. It’s a fancy way of saying that

every drawable created from the same resource shares a common state object because they are, for the most

part, assumed to be immutable objects, and this saves memory resources.

However, it has a side effect that changing a property on one drawable’s state affects all the others as well. To

avoid this problem, anytime you make a change that affects the state of a single drawable, you should first call

its mutate() method. This makes a copy of the state object before making the change. The method can be

called inline with your modifier of choice, such as the following:

iconView.getDrawable().mutate().setColorFilter(...)

This will ensure that the color change you make doesn’t affect the other drawables created from the same

resource.

As a final note, drawables can generally be mutated only once, so it's not a good habit to use this as a copy or

clone mechanism. Unique instances should still be retrieved from resources, and simply mutated before they

are changed.

Native Tinting

(API Level 21)

Starting in Android 5.0, this same effect can be applied to drawables from XML by using

the android:tint attribute, or in code via setTint(). Underneath your code, the framework

is using the same technique you just saw, although slightly more efficiently since the

framework can now share states that have a common tint. Listings 7-37 through 7-40

redefine our icon assets as tinted drawables.

Listing 7-37. res/drawable/tinted_marker.xml

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/ic_marker"
 android:tint="#FFAA00AA" />

Listing 7-38. res/drawable/tinted_gear.xml

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/ic_gear"
 android:tint="#FF00AA00" />

677CHAPTER 7: Graphics and Drawing

Listing 7-39. res/drawable/tinted_check.xml

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/ic_check"
 android:tint="#FF0000AA" />

Listing 7-40. res/drawable/tinted_heart.xml

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/ic_heart"
 android:tint="#FFAA0000" />

Now when we insert these drawables into the activity layout, there is no further colorization

work to do. See Listings 7-41 and 7-42.

Listing 7-41. res/layout/activity_tinted.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="8dp">
 <ImageView
 android:id="@+id/icon_marker"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/tinted_marker" />
 <ImageView
 android:id="@+id/icon_gear"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/tinted_gear"/>
 <ImageView
 android:id="@+id/icon_check"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/tinted_check"/>
 <ImageView
 android:id="@+id/icon_heart"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/tinted_heart"/>
</LinearLayout>

678 CHAPTER 7: Graphics and Drawing

Listing 7-42. Simple Activity for Tinted Drawables

public class TintActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_tinted);
 }
}

The tinted images replace the originals inside the layout XML, and the Java code previously

used to apply filters is no longer there.

Tip You can still play with transfer modes in the native tint API. Using the android:tintMode

attribute, a Porter-Duff constant will pair with the tint color. Omitting the attribute is the same as

applying android:tintMode="src_in".

7-8. Using Scalable Vector Assets

Problem
You would like to reduce the number of resource files your application includes by using

scalable vector assets instead of static images.

Solution
(API Level 21)

Construct a VectorDrawable from your image asset’s path data. Android does not natively

support reading common vector file formats, such as SVG (primarily due to lacking CSS

support), but it does support the same path data syntax. This means that with some minor

conversion, you can create a single XML vector asset that is fully scalable across all screen

densities.

Note For more information on SVG path data syntax, refer to the W3C reference:

http://www.w3.org/TR/SVG11/paths.html.

Android also supports animated path manipulations using AnimatedVectorDrawable. This

class provides a holder for mapping ObjectAnimator instances to target paths within a

VectorDrawable.

http://www.w3.org/TR/SVG11/paths.html

Figure 7-24. SVG image exported from Adobe Illustrator

679CHAPTER 7: Graphics and Drawing

How It Works
In this example, we are going to take the SVG image shown in Figure 7-24, and convert it

into something we can display as a VectorDrawable.

SVG files are really just XML content, and Listing 7-43 shows the raw file data.

Listing 7-43. assets/example.svg

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/
svg11.dtd">
<svg version="1.1" id="Layer_2" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www
.w3.org/1999/xlink" x="0px" y="0px"
 width="163px" height="154px" viewBox="0 0 163 154" style="enable-background:new 0 0
163 154;" xml:space="preserve">

<style type="text/css">
 .st0{fill:#3355CC;stroke:#000000;stroke-width:0.25;stroke-miterlimit:10;}
</style>
<g>
 <circle class="st0" cx="81.5" cy="77" r="14.7"/>
 <path class="st0" d="M81.5,3c-11.2,0-19.2,9.1-19.2,20.3
 c0,8.3,6.7,15.4,13,18.6c-0.9-1.3-1.4-2.8-1.4-4.4c0-4.2,3.4-7.6,7.6-7.6
 c4.2,0,7.6,3.4,7.6,7.6c0,1.8-0.6,3.5-1.7,4.8c6.8-2.9,13.3-10.3,13.3-19
 C100.7,12.1,92.7,3,81.5,3z"/>
 <path class="st0" d="M29.2,24.7c-7.9,7.9-7.1,20,0.8,28
 c5.9,5.9,15.7,6.2,22.3,4c-1.5-0.3-3-1-4.2-2.1c-3-3-3-7.8,0-10.8
 c3-3,7.8-3,10.8,0c1.3,1.3,2,2.9,2.2,4.6c2.7-6.9,2.1-16.7-4-22.8
 C49.2,17.5,37.1,16.7,29.2,24.7z"/>
 <path class="st0" d="M7.5,77c0,11.2,9.1,19.2,20.3,19.2
 c8.3,0,15.4-6.7,18.6-13c-1.3,0.9-2.8,1.4-4.4,1.4c-4.2,0-7.6-3.4-7.6-7.6
 c0-4.2,3.4-7.6,7.6-7.6c1.8,0,3.5,0.6,4.8,1.7c-2.9-6.8-10.3-13.3-19-13.3
 C16.6,57.8,7.5,65.8,7.5,77z"/>
 <path class="st0" d="M29.2,129.3c7.9,7.9,20,7.1,28-0.8
 c5.9-5.9,6.2-15.7,4-22.3c-0.3,1.5-1,3-2.1,4.2c-3,3-7.8,3-10.8,0
 c-3-3-3-7.8,0-10.8c1.3-1.3,2.9-2,4.6-2.2c-6.9-2.7-16.7-2.1-22.8,4
 C22,109.3,21.2,121.4,29.2,129.3z"/>

680 CHAPTER 7: Graphics and Drawing

 <path class="st0" d="M81.5,151c11.2,0,19.2-9.1,19.2-20.3
 c0-8.3-6.7-15.4-13-18.6c0.9,1.3,1.4,2.8,1.4,4.4c0,4.2-3.4,7.6-7.6,7.6
 c-4.2,0-7.6-3.4-7.6-7.6c0-1.8,0.6-3.5,1.7-4.8c-6.8,2.9-13.3,10.3-13.3,19
 C62.3,141.9,70.3,151,81.5,151z"/>
 <path class="st0" d="M133.8,129.3c7.9-7.9,7.1-20-0.8-28
 c-5.9-5.9-15.7-6.2-22.3-4c1.5,0.3,3,1,4.2,2.1c3,3,3,7.8,0,10.8
 s-7.8,3-10.8,0c-1.3-1.3-2-2.9-2.2-4.6c-2.7,6.9-2.1,16.7,4,22.8
 C113.8,136.5,125.9,137.3,133.8,129.3z"/>
 <path class="st0" d="M155.5,77c0-11.2-9.1-19.2-20.3-19.2
 c-8.3,0-15.4,6.7-18.6,13c1.3-0.9,2.8-1.4,4.4-1.4c4.2,0,7.6,3.4,7.6,7.6
 c0,4.2-3.4,7.6-7.6,7.6c-1.8,0-3.5-0.6-4.8-1.7c2.9,6.8,10.3,13.3,19,13.3
 C146.4,96.2,155.5,88.2,155.5,77z"/>
 <path class="st0" d="M133.8,24.7c-7.9-7.9-20-7.1-28,0.8
 c-5.9,5.9-6.2,15.7-4,22.3c0.3-1.5,1-3,2.1-4.2c3-3,7.8-3,10.8,0
 c3,3,3,7.8,0,10.8c-1.3,1.3-2.9,2-4.6,2.2c6.9,2.7,16.7,2.1,22.8-4
 C141,44.7,141.8,32.6,133.8,24.7z"/>
</g>
</svg>

That may look like a lot of mess, especially if you aren’t familiar with SVG path syntax. The

good news is that almost all of it can be copied into an XML resource unchanged. Every

<path> element in the SVG will have a corresponding element inside VectorDrawable.

Android vectors don’t support SVG’s specialized types, such as <circle>, so we will have

to manually construct that as a new path. Android also doesn’t support CSS styling, so the

class attribute used to set the stroke/fill colors on each path will have to be translated into

Android attributes. Have a look at Listing 7-44 for the converted vector image.

Listing 7-44. res/drawable/svg_converted.xml

<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="163dp"
 android:height="154dp"
 android:viewportWidth="163"
 android:viewportHeight="154">
 <!-- This was the circle element from the SVG file -->
 <path
 android:fillColor="#3355CC"
 android:pathData="M66.8,77 a14.7,14.7 0 0,1 29.4,0 a14.7,14.7 0 0,1 -29.4,0z"/>

 <!-- The remaining paths are copied over verbatim -->
 <path
 android:fillColor="#3355CC"
 android:pathData="M81.5,3c-11.2,0-19.2,9.1-19.2,20.3
 c0,8.3,6.7,15.4,13,18.6c-0.9-1.3-1.4-2.8-1.4-4.4c0-4.2,3.4-7.6,7.6-7.6
 c4.2,0,7.6,3.4,7.6,7.6c0,1.8-0.6,3.5-1.7,4.8c6.8-2.9,13.3-10.3,13.3-19
 C100.7,12.1,92.7,3,81.5,3z"/>
 <path
 android:fillColor="#3355CC"
 android:pathData="M29.2,24.7c-7.9,7.9-7.1,20,0.8,28
 c5.9,5.9,15.7,6.2,22.3,4c-1.5-0.3-3-1-4.2-2.1c-3-3-3-7.8,0-10.8
 c3-3,7.8-3,10.8,0c1.3,1.3,2,2.9,2.2,4.6c2.7-6.9,2.1-16.7-4-22.8
 C49.2,17.5,37.1,16.7,29.2,24.7z"/>

681CHAPTER 7: Graphics and Drawing

 <path
 android:fillColor="#3355CC"
 android:pathData="M7.5,77c0,11.2,9.1,19.2,20.3,19.2
 c8.3,0,15.4-6.7,18.6-13c-1.3,0.9-2.8,1.4-4.4,1.4c-4.2,0-7.6-3.4-7.6-7.6
 c0-4.2,3.4-7.6,7.6-7.6c1.8,0,3.5,0.6,4.8,1.7c-2.9-6.8-10.3-13.3-19-13.3
 C16.6,57.8,7.5,65.8,7.5,77z"/>
 <path
 android:fillColor="#3355CC"
 android:pathData="M29.2,129.3c7.9,7.9,20,7.1,28-0.8
 c5.9-5.9,6.2-15.7,4-22.3c-0.3,1.5-1,3-2.1,4.2c-3,3-7.8,3-10.8,0
 c-3-3-3-7.8,0-10.8c1.3-1.3,2.9-2,4.6-2.2c-6.9-2.7-16.7-2.1-22.8,4
 C22,109.3,21.2,121.4,29.2,129.3z"/>
 <path
 android:fillColor="#3355CC"
 android:pathData="M81.5,151c11.2,0,19.2-9.1,19.2-20.3
 c0-8.3-6.7-15.4-13-18.6c0.9,1.3,1.4,2.8,1.4,4.4c0,4.2-3.4,7.6-7.6,7.6
 c-4.2,0-7.6-3.4-7.6-7.6c0-1.8,0.6-3.5,1.7-4.8c-6.8,2.9-13.3,10.3-13.3,19
 C62.3,141.9,70.3,151,81.5,151z"/>
 <path
 android:fillColor="#3355CC"
 android:pathData="M133.8,129.3c7.9-7.9,7.1-20-0.8-28
 c-5.9-5.9-15.7-6.2-22.3-4c1.5,0.3,3,1,4.2,2.1c3,3,3,7.8,0,10.8
 s-7.8,3-10.8,0c-1.3-1.3-2-2.9-2.2-4.6c-2.7,6.9-2.1,16.7,4,22.8
 C113.8,136.5,125.9,137.3,133.8,129.3z"/>
 <path
 android:fillColor="#3355CC"
 android:pathData="M155.5,77c0-11.2-9.1-19.2-20.3-19.2
 c-8.3,0-15.4,6.7-18.6,13c1.3-0.9,2.8-1.4,4.4-1.4c4.2,0,7.6,3.4,7.6,7.6
 c0,4.2-3.4,7.6-7.6,7.6c-1.8,0-3.5-0.6-4.8-1.7c2.9,6.8,10.3,13.3,19,13.3
 C146.4,96.2,155.5,88.2,155.5,77z"/>
 <path
 android:fillColor="#3355CC"
 android:pathData="M133.8,24.7c-7.9-7.9-20-7.1-28,0.8
 c-5.9,5.9-6.2,15.7-4,22.3c0.3-1.5,1-3,2.1-4.2c3-3,7.8-3,10.8,0
 c3,3,3,7.8,0,10.8c-1.3,1.3-2.9,2-4.6,2.2c6.9,2.7,16.7,2.1,22.8-4
 C141,44.7,141.8,32.6,133.8,24.7z"/>
</vector>

The root element for a VectorDrawable XML definition is <vector>. The width, height, and

viewbox attributes from the original <svg> element have been moved here as android:width,

android:height, android:viewportWidth, and android:viewportHeight to define the natural

size of the image.

The only CSS style parameter that matters here is fill color, which has been added as an

android:fillColor attribute on each path. Finally, all the path data is moved from the SVG

d attribute to android:pathData. The original <circle> element has been replaced by an

equivalent <path>, since that is the only vector type that Android supports.

682 CHAPTER 7: Graphics and Drawing

SVG PATH SYNTAX PRIMER

We did have to make one conversion by hand in the SVG example for the <circle>, so let’s dissect the

conversion to get a better understanding for SVG path syntax. In the original SVG file, we had the following

element:

<circle class="st0" cx="81.5" cy="77" r="14.7"/>

The following path in the Android vector replaced the circle:

android:pathData="M66.8,77 a14.7,14.7 0 0,1 29.4,0 a14.7,14.7 0 0,1 -29.4,0z"

The path is a series of drawing commands strung together. Each letter character signifies the beginning of a

new command, so we could look at the path like this instead:

M66.8,77

a14.7,14.7 0 0,1 29.4,0

a14.7,14.7 0 0,1 -29.4,0

z

The path contains three distinct commands:

• M: Moveto moves the pen to a specific point, noted by the trailing numbers separated as

x,y. Capital letters are an absolute position; lowercase indicates a distance relative to the

current pen location.

• a: Arc draws an arc from the current pen location to the specified point using the specified

radius.

• z: Closes the path. Not required, but will draw a line from the current position to the start

position if they are not the same.

The initial circle defines a center point (cx,cy) at (81.5,77), with a radius of 14.7. The new path begins on the

left of the circle (less one radius) at the same vertical point, so we begin with a move to (66.8,77). It then draws

an arc with the same radius to a new point 29.4 units to the right at the same vertical location; this draws the

top half of the circle. The same arc is repeated again, moving back left 29.4 units to draw the bottom half of the

circle. The numbers in the middle of both arcs (0 0,1) are flags to indicate that the arc should not be

pre-rotated, and that the arc should sweep in the clockwise direction both times. Finally the path is closed to

form a solid circle.

Vector Animation

In this example, we will morph an X shape into a checkmark using path animations. Both

elements are defined as vector paths using SVG syntax. Listing 7-45 defines the paths as

string resources.

683CHAPTER 7: Graphics and Drawing

Listing 7-45. res/values/strings.xml

<resources>
 <string name="path_cross">M24,0 l 0,48 M0,24 l 48,0</string>
 <string name="path_check">M9,36 l 20,0 M27,36 l 0,-36</string>
</resources>

These paths introduce a new command, called lineto with a lowercase l. This command

simply draws a line from the current position to the relative distance defined after the letter.

The “cross” path, for example, draws two straight lines: one vertical from 24,0 to 24,48, and

another horizontal from 0,24 to 48,24. Similarly, the “check” path draws two diagonal lines

to form its shape. These paths have been abstracted to a resource because they will need to

be referenced from multiple places in this example.

Listing 7-46 defines the VectorDrawable to form the initial X shape.

Listing 7-46. res/drawable/vector_cross.xml

<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:height="64dp"
 android:width="64dp"
 android:viewportHeight="48"
 android:viewportWidth="48">
 <group
 android:name="rotateContainer"
 android:pivotX="24.0"
 android:pivotY="24.0"
 android:rotation="45.0">
 <path
 android:name="cross"
 android:strokeColor="#A00"
 android:strokeWidth="4"
 android:pathData="@string/path_cross" />
 </group>
</vector>

This image uses the “cross” path, and then rotates it 45 degrees so it looks like an

X rather than a cross. Path elements themselves cannot be transformed via translation,

rotation, or scale. Instead, they must be wrapped in a <group>, which does support these

transformations for all paths it contains. Each element is also given a name, which we will

use to reference the individual components shortly.

As it stands, this could be placed into a view and drawn as a static image. To animate it,

however, we need to wrap this vector in an AnimatedVectorDrawable to pair it with animation

objects. See Listing 7-47.

684 CHAPTER 7: Graphics and Drawing

Listing 7-47. res/drawable/animated_check.xml

<?xml version="1.0" encoding="utf-8"?>
<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@drawable/vector_cross">

 <target
 android:name="cross"
 android:animation="@animator/check_animation"/>

 <target
 android:name="rotateContainer"
 android:animation="@animator/rotate_check_animation" />
</animated-vector>

The AnimatedVectorDrawable maps animation objects to targets inside the supplied vector

(passed as the android:drawable). The XML references each target element, whether path or

group, by its name and matches it with the animation we would like to apply. Listings 7-48

and 7-49 show the animation definitions.

Listing 7-48. res/animator/check_animation.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:ordering="sequentially">

 <!-- Forward path animation -->
 <objectAnimator
 android:duration="@android:integer/config_longAnimTime"
 android:propertyName="pathData"
 android:valueFrom="@string/path_cross"
 android:valueTo="@string/path_check"
 android:valueType="pathType" />

 <!-- Reverse path animation -->
 <objectAnimator
 android:duration="1000"
 android:propertyName="pathData"
 android:valueFrom="@string/path_check"
 android:valueTo="@string/path_cross"
 android:valueType="pathType"
 android:startOffset="@android:integer/config_longAnimTime"/>
</set>

685CHAPTER 7: Graphics and Drawing

Listing 7-49. res/animator/rotate_check_animation.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:ordering="sequentially">

 <objectAnimator
 android:duration="@android:integer/config_longAnimTime"
 android:propertyName="rotation"
 android:valueFrom="45"
 android:valueTo="405"/>
 <objectAnimator
 android:duration="1000"
 android:propertyName="rotation"
 android:valueFrom="405"
 android:valueTo="45"
 android:startOffset="@android:integer/config_longAnimTime"/>
</set>

The animation set applied to the target path contains two pathData animators. This allows

us to morph the path from one command set to another; in this case from the cross to

the check, and then back again. This is possible as long as the two paths have the same

number of data points—in other words, the same commands in the same order with the

same number of parameters.

The animators applied to the container group simply rotate the entire image one full circle

to give the animation slightly more visual appeal while the path morph is going on. Both

animations are reversed after a pause with a much longer duration to easily see exactly how

the framework transforms each path.

Note AnimatedVectorDrawable does not provide access from code to its animators. This

means you cannot attach a listener or internally restart the animation separate from the drawable it

is attached to.

To complete the example, we have Listings 7-50 and 7-51 to provide an activity and layout

into which we can place these new drawables.

Listing 7-50. res/layout/activity_vector.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".VectorActivity">

686 CHAPTER 7: Graphics and Drawing

 <ImageView
 android:id="@+id/image_static"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="2" />
 <ImageView
 android:id="@+id/image_animated"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:scaleType="center"/>
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Morph Drawable"
 android:onClick="onMorphClick"/>
</LinearLayout>

Listing 7-51. Activity Displaying Vector Drawables

public class VectorActivity extends Activity {

 private AnimatedVectorDrawable mAnimatedDrawable;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_vector);

 //Set the converted SVG vector as a static image
 ImageView imageView = (ImageView) findViewById(R.id.image_static);
 imageView.setImageResource(R.drawable.svg_converted);

 //Create the vector path morph animation
 imageView = (ImageView) findViewById(R.id.image_animated);

 mAnimatedDrawable = (AnimatedVectorDrawable) getResources()
 .getDrawable(R.drawable.animated_check);
 imageView.setImageDrawable(mAnimatedDrawable);
 }

 public void onMorphClick(View v) {
 mAnimatedDrawable.start();
 }
}

The layout contains two ImageView instances and a Button. Our converted SVG image is

placed statically into the top view, with the animated item in the bottom. Whenever the

user presses the button, our path morphing animation will run. You can see the results in

Figure 7-25.

Figure 7-25. Activity containing vector images

687CHAPTER 7: Graphics and Drawing

Summary
In chapter, we’ve explored ways to use drawables as a flexible background, to communicate

state changes, and as a scalable vector path. We looked at image-processing techniques

such as image masking and color palette extractions. Finally, you saw some more advanced

methods of direct drawing using overlays, surfaces, and textures. In the final chapter,

we will explore some high-performance techniques for heavy processing of code in your

applications using native (C/C++) code and RenderScript.

689

Chapter 8
Working with Android NDK

and RenderScript

Developers predominantly write Android applications in Java. However, in some situations

it’s desirable (or even necessary) to express at least part of the code in another language

(notably C or C++). This may come from a need to access resources only available in native

code (such as kernel drivers), or to obtain better performance from critical sections of code.

Google addresses these situations by providing the Android Native Development Kit (NDK)

and RenderScript.

Android NDK
The Android NDK complements the Android SDK by providing a toolset to use C/C++ for

implementing parts of your app in native code. The NDK provides headers and libraries for

building native activities, handling user input, using hardware sensors, and more. The NDK is

commonly used in the following scenarios:

Improving the performance of CPU-bound code for doing heavy 	
processing or computation. RenderScript (addressed later in this

chapter) also offers solutions for this.

Accessing system resources not directly exposed through the runtime 	
APIs. This might include specific device drivers or kernel resources.

Increasing cross-platform portability that comes with a C/C++ 	
development environment. Many game development engines/

frameworks utilize the NDK for this reason.

Native code is platform-specific, so the Android NDK must cross-compile your code for every

device architecture where your application will be deployed. The latest Android NDK (r10b as of

this writing) supports the following device architectures: armv5, armv7, x86, arm64-v8a, x86_64,

and mips64. These are also known as the application binary interface, or ABI, of the device.

690 CHAPTER 8: Working with Android NDK and RenderScript

BUILDING NDK CODE

The default method of building native code in your project is through the command line. The ndk-build

command will compile all your native sources into the appropriate number of platform-specific binaries.

When invoking builds from the command line, the build tools require two makefiles: Android.mk and

Application.mk.

• Android.mk: This file controls the modules the NDK needs to compile and link. It will

define the output file, source files, includes, and any additional linker or compiler flags the

build tools may need.

• Application.mk: This file is used mostly to describe top-level build properties. Its most

common use is to define which ABIs (one, several, or all) the build output should support.

Running ndk-build will place the output files into the libs/ directory of the project, separated by ABI:

libs/

 armeabi/

 libSomethingAwesome.so

 armeabi-v7a/

 libSomethingAwesome.so

 mips/

 libSomethingAwesome.so

 x86/

 libSomethingAwesome.so

Building NDK code is supported inside the ADT/Eclipse environment. In this case, the internal make script of

the IDE simply invokes ndk-build for you, so proper Android.mk and Application.mk files must still be

within the project.

Gradle integration for the NDK is currently under development. Very basic NDK components can now be added

directly to the DSL of an application’s build.gradle file, but the examples in this book are not fully supported

under Gradle yet. So if you are developing with Android Studio or using Gradle on a build server, directly

invoking ndk-build is likely still a better option for now.

The Android NDK will generate shared library files for each supported ABI that the final build

tools can package into the final APK. Generally, an application includes all these binaries into

the same APK to simplify distribution. However, if the native code in an application gets too

large, this might put the APK file over the size limits of your chosen distributor. Google Play,

for example, has a 50MB APK limit.

To reduce APK size, many developers will split their build into multiple APK files, one for each

supported ABI. Prominent app stores, such as Google Play, also support uploading multiple

APKs and will handle distributing the appropriate binary to the appropriate device for you.

691CHAPTER 8: Working with Android NDK and RenderScript

Using the Gradle build system, the split can be managed by providing a unique product

flavor for each ABI:

productFlavors {
 x86 {
 ndk {
 abiFilter "x86"
 }
 }
 arm {
 ndk {
 abiFilter "armeabi-v7a"
 }
 }
 mips {
 ndk {
 abiFilter "mips"
 }
 }
 }

Then exporting a unique APK for each ABI is as simple as building and exporting another

product flavor.

Note The Android NDK is not distributed through the SDK manager, and must be downloaded

separately. You can obtain the latest instructions for installing the NDK into your environment at

https://developer.android.com/tools/sdk/ndk/index.html.

8-1. Adding Native Bits with JNI

Problem
You have a small amount of native code that you want to execute within the larger context of

a Java application project.

Solution
Android supports the use of the Java Native Interface (JNI) APIs to bridge between your

Java code and native execution. With JNI, native shared libraries can be dynamically

loaded into the runtime to provide implementations of specific methods declared on the

application’s Java classes.

https://developer.android.com/tools/sdk/ndk/index.html

692 CHAPTER 8: Working with Android NDK and RenderScript

To add JNI to a project, you must accomplish the following steps:

1. Declare the methods that will be implemented in C/C++ in your Java

class with the native keyword.

2. Write and compile your native code into a shared library (.so file) that

can be dynamically loaded using the Android NDK.

3. Notify the runtime to load your native code by using calls to

System.loadLibrary() prior to invoking any native methods.

Following is a sample Java snippet to illustrate this implementation:

package com.androidrecipes.app;
public class NativeWrapper {

 //Declare any methods with a C/C++ implementation as native
 public static native void nativeMethod();

 static {
 //Tell the runtime to load your shared library, in this case "libnative_wrapper.so"
 System.loadLibrary("native_wrapper");
 }
}

In order for this to work, the application runtime must have a way of binding the native

method code to the invocations coming from Java. The JNI APIs provide two distinct

mechanisms for mapping native methods to Java:

Define your native method names by using the default JNI specification of 	
class-name mangling. In the previous example, the native method name

would be Java_com_androidrecipes_app_NativeWrapper_nativeMethod().

There is a JDK command-line tool, 	 javah, which will generate these for you.

Use an explicit method table to map Java methods to native method 	
signatures. In this case, the method names in your native code can be

anything you choose, but the entire thing must be coded by hand (that

is, no tools to generate the boilerplate code).

We will explore how to implement both of these options in the upcoming example.

Note Android’s libc implementation (known as bionic) is not binary compatible with other

common implementations such as glibc or uClibc. If you are porting native code from other

platforms, you must recompile it with the NDK to produce binaries that are appropriate for the

Android runtime.

693CHAPTER 8: Working with Android NDK and RenderScript

How It Works
In this example, we are using an API unique to the NDK called cpufeatures. This library

allows us to examine the CPU architecture information of the device, as well as determine

support for certain instruction sets (such as NEON or SSE3). We want to expose this

information to our activity code, written in Java, so we will need to implement some JNI

code to bind the two.

Note The available NDK APIs are documented in the Programmer’s Guide that can be found in the

docs/ directory of the NDK installation. The section “Stable APIs” lists each of the features, and the

minimum platform required, if applicable.

First, we must start with a Java class that we can use as the starting point for our JNI

bindings (see Listing 8-1). Whenever we want to invoke our native code from Java, it will be

done through this class.

Listing 8-1. Java Class with Native Methods Defined

package com.androidrecipes.ndkjni;

public class NativeLib {
 /**
 * Return the number of available cores on the device
 */
 public static native int getCpuCount();

 public static native String getCpuFamily();

 static {
 System.loadLibrary("features");
 }
}

Notice that each method we intend to implement in C/C++ is declared with the native

keyword. This tells the runtime it should find this method in a native shared library

somewhere. Second, we have to notify the runtime of which shared library contains our

code. In this case, we are telling the runtime to look for a file named libfeatures.so (to be

built later) in our application’s directory path.

Now we must create the native implementation of these two declared methods. Listings 8-2

and 8-3 show the native header file and implementation file that describe these methods by

using their JNI signatures.

694 CHAPTER 8: Working with Android NDK and RenderScript

Listing 8-2. src/main/jni/NativeLib.h

#include <jni.h>
/* Header for class com_androidrecipes_ndkjni_NativeLib */

#ifndef _Included_com_androidrecipes_ndkjni_NativeLib
#define _Included_com_androidrecipes_ndkjni_NativeLib
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_androidrecipes_ndkjni_NativeLib
 * Method: getCpuCount
 * Signature: ()I
 */
JNIEXPORT jint JNICALL Java_com_androidrecipes_ndkjni_NativeLib_getCpuCount
 (JNIEnv *, jclass);

/*
 * Class: com_androidrecipes_ndkjni_NativeLib
 * Method: getCpuFamily
 * Signature: ()Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_com_androidrecipes_ndkjni_NativeLib_getCpuFamily
 (JNIEnv *, jclass);

#ifdef __cplusplus
}
#endif
#endif

Listing 8-3. src/main/jni/NativeLib.c

#include "NativeLib.h"

#include <android/log.h>
#include <cpu-features.h>

JNIEXPORT jint JNICALL Java_com_androidrecipes_ndkjni_NativeLib_getCpuCount
 (JNIEnv *env, jclass clazz)
{
 return android_getCpuCount();
}

JNIEXPORT jstring JNICALL Java_com_androidrecipes_ndkjni_NativeLib_getCpuFamily
 (JNIEnv *env, jclass clazz)
{
 AndroidCpuFamily family = android_getCpuFamily();
 switch (family)
 {
 case ANDROID_CPU_FAMILY_ARM:
 return (*env)->NewStringUTF(env, "ARM (32-bit)");

695CHAPTER 8: Working with Android NDK and RenderScript

 case ANDROID_CPU_FAMILY_X86:
 return (*env)->NewStringUTF(env, "x86 (32-bit)");
 case ANDROID_CPU_FAMILY_MIPS:
 return (*env)->NewStringUTF(env, "MIPS (32-bit)");
 case ANDROID_CPU_FAMILY_ARM64:
 return (*env)->NewStringUTF(env, "ARM (64-bit)");
 case ANDROID_CPU_FAMILY_X86_64:
 return (*env)->NewStringUTF(env, "x86 (64-bit)");
 case ANDROID_CPU_FAMILY_MIPS64:
 return (*env)->NewStringUTF(env, "MIPS (64-bit)");
 case ANDROID_CPU_FAMILY_UNKNOWN:
 default:
 return (*env)->NewStringUTF(env, "Vaporware");
 }
}

 USING JAVAH

If you would prefer not to craft the native signatures yourself, one option is to use javah to do the work. This is

a command-line tool provided by the JDK that will inspect a given Java class for native methods, and produce

a header that includes each method signature inside. To have javah generate the header for our example,

execute the following commands:

$ cd <project_directory>/src/main

$ javah -jni -classpath <project_bin_directory> -d jni com.androidrecipes.ndkjni.NativeLib

We deconstruct this command into its parts to get a better idea of what happens:

• -jni: Tell the tool to generate a header file for our Java class.

• -classpath <project_bin_directory>: Reference the directory in your project

where the compiled Java class output sits. ADT/Eclipse uses bin/classes, and Android

Studio uses build/intermediates/classes/<build_type>.

• -d jni: Place the output in the jni/ directory (that is, src/main/jni).

• com.androidrecipes.ndkjni.NativeLib: The fully qualified class name of the Java

class to inspect.

This will produce a com_androidrecipes_ndkjni_NativeLib.h file with the same content seen in

Listing 8-2. The file name is not important, and it can be renamed to something easier to manage.

Notice the long method names used to uniquely identify each method inside the shared

library. Any typographical error in these method names will cause an UnsatisfiedLinkError

at runtime because the JNI APIs wouldn’t be able to find the appropriate native

implementation. Each method name is prefixed with Java, followed by the package name,

Java class name, and finally Java method name.

Each native method will also have matching parameters for each parameter the Java

method declared, with two additional items. The JNIEnv pointer is a reference to the JNI API

696 CHAPTER 8: Working with Android NDK and RenderScript

functions that can be invoked from the native code. The jclass is a reference to the owning

Java class this method is attached to. This is present because our Java methods were

defined as static. If they were instance methods in Java, this second parameter would be a

jobject instead, and would reference the owning object instance of the method call. Finally,

the return values of the methods have been converted (int -> jint and String -> jstring)

to JNI-friendly types.

Speaking of JNI APIs, you must also include the jni.h header file in your implementation. In

our example, and for anyone using javah, this will be done for you in the generated header.

This allows your native code to access the features provided for bridging between Java and

native code.

Note JNI programming is too large a topic to cover in this book. If you want to

become more familiar with programming using JNI, reference the Oracle JNI documentation:

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/.

The android_getCpuCount() and android_getCpuFamily() functions are defined by

cpufeatures, which we have access to by including cpu-features.h in our code. Our JNI

methods are just wrappers around these functions to pipe the results back into Java. The

CPU count will return the number of cores the device has available as an integer. This value

can be directly returned, as a jint is just a simple type of integer.

When returning the CPU family, this value is an enum that we must convert to a human-

friendly string. String values in C are quite different from Java; the former is a null-terminated

character array, while the latter is a full object with additional metadata besides just the

characters. Because of this, we cannot simply return a string literal from C to Java. We have

to call the NewStringUTF() transformation function provided by JNIEnv to allocate a new Java

string object (jstring) from the character data.

To build the native code, we have to construct an Android.mk and an Application.mk

makefile; these can be found in Listings 8-4 and 8-5.

Listing 8-4. src/main/jni/Android.mk

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := features
LOCAL_SRC_FILES := NativeLib.c
LOCAL_LDLIBS := -llog
LOCAL_STATIC_LIBRARIES := cpufeatures

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/cpufeatures)

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/

697CHAPTER 8: Working with Android NDK and RenderScript

Listing 8-5. src/main/jni/Application.mk

APP_ABI := all

The Android.mk file tells the NDK to compile our single NativeLib.c file into a module named

features (that is, a file named libfeatures.so). Notice how this name matches the name we

supplied to System.loadLibrary() earlier. The makefile also defines the imports required to

access the cpufeatures API provided by the NDK.

Note The cpufeatures library format is called an import module by the NDK documentation, and

it requires that the module be imported using the import-module macro, as well as the library

name declared under LOCAL_STATIC_LIBRARIES. The latter declaration notifies the build system

that the library must be built first, as it is a dependency of our NDK module.

The Application.mk file simply notifies the build that it should generate an output.so file for

each supported ABI architecture. Without this file (or passing APP_ABI on the command line),

the default build will output only a single .so file for ARMv5.

BUILDING THE NATIVE CODE

The native code must be built using ndk-build from the command line. Then the IDE build tools will copy the

built binaries into the final APK when run on a device. From the command line, execute the following steps:

$ cd <project_directory>/src/main

$ ndk-build

You should see output similar to the following:

[armeabi-v7a] Compile thumb : features <= NativeLib.c

[armeabi-v7a] Compile thumb : cpufeatures <= cpu-features.c

[armeabi-v7a] StaticLibrary : libcpufeatures.a

[armeabi-v7a] SharedLibrary : libfeatures.so

[armeabi-v7a] Install : libfeatures.so => libs/armeabi-v7a/libfeatures.so

[armeabi] Compile thumb : features <= NativeLib.c

[armeabi] Compile thumb : cpufeatures <= cpu-features.c

[armeabi] StaticLibrary : libcpufeatures.a

[armeabi] SharedLibrary : libfeatures.so

[armeabi] Install : libfeatures.so => libs/armeabi/libfeatures.so

[x86] Compile : features <= NativeLib.c

[x86] Compile : cpufeatures <= cpu-features.c

[x86] StaticLibrary : libcpufeatures.a

[x86] SharedLibrary : libfeatures.so

698 CHAPTER 8: Working with Android NDK and RenderScript

[x86] Install : libfeatures.so => libs/x86/libfeatures.so

[mips] Compile : features <= NativeLib.c

[mips] Compile : cpufeatures <= cpu-features.c

[mips] StaticLibrary : libcpufeatures.a

[mips] SharedLibrary : libfeatures.so

[mips] Install : libfeatures.so => libs/mips/libfeatures.so

All the native shared libraries should be in the src/main/libs directory of the project and ready for

consumption.

The final requirement to successfully include our native code is to modify the build.gradle

file of the project to tell Gradle where the prebuilt shared libraries are now located.

See Listing 8-6.

Listing 8-6. Partial build.gradle

android {
 ...

 //Disable building of JNI code, just copy in libs
 sourceSets.main {
 jni.srcDirs = []
 jniLibs.srcDir 'src/main/libs'
 }

 ...
}

With a working native library in place, we turn to Listings 8-7 and 8-8 to show us a simple

activity that displays this information for the current device in a view.

Listing 8-7. res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/text_info"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"/>
</FrameLayout>

699CHAPTER 8: Working with Android NDK and RenderScript

Listing 8-8. Activity Invoking JNI Library

public class MainActivity extends Activity {

 private TextView mInfoText;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mInfoText = (TextView) findViewById(R.id.text_info);

 getInfo();
 }

 private void getInfo() {
 String text = String.format("%s CPU with %d core(s)",
 NativeLib.getCpuFamily(),
 NativeLib.getCpuCount());
 mInfoText.setText(text);
 }
}

In our application code, we simply need to call our native methods as if they were any other

Java method. The Android runtime will do the work of invoking our native code and returning

to Java once the execution is complete. Run this example on your device and you will see a

text string defining your processor architecture and number of available cores!

Native Method Tables

As an alternate implementation to class-name mangling, we can use explicit method tables

to create references to native methods that are easier to read and maintain. In this case, as

you can see in Listing 8-9, we are going to leverage the JNI_OnLoad callback. This is invoked

when the library is loaded, and gives us a good initialization point for our method mappings.

Listing 8-9. src/main/jni/NativeLibAlternate.c

//JNI APIs, was included by our custom header before
#include <jni.h>

#include <android/log.h>
#include <cpu-features.h>

static jint native_getCpuCount(JNIEnv *env, jclass clazz)
{
 return android_getCpuCount();
}

700 CHAPTER 8: Working with Android NDK and RenderScript

static jstring native_getCpuFamily(JNIEnv *env, jclass clazz)
{
 AndroidCpuFamily family = android_getCpuFamily();
 switch (family)
 {
 case ANDROID_CPU_FAMILY_ARM:
 return (*env)->NewStringUTF(env, "ARM (32-bit)");
 case ANDROID_CPU_FAMILY_X86:
 return (*env)->NewStringUTF(env, "x86 (32-bit)");
 case ANDROID_CPU_FAMILY_MIPS:
 return (*env)->NewStringUTF(env, "MIPS (32-bit)");
 case ANDROID_CPU_FAMILY_ARM64:
 return (*env)->NewStringUTF(env, "ARM (64-bit)");
 case ANDROID_CPU_FAMILY_X86_64:
 return (*env)->NewStringUTF(env, "x86 (64-bit)");
 case ANDROID_CPU_FAMILY_MIPS64:
 return (*env)->NewStringUTF(env, "MIPS (64-bit)");
 case ANDROID_CPU_FAMILY_UNKNOWN:
 default:
 return (*env)->NewStringUTF(env, "Vaporware");
 }
}

//Construct a table mapping Java method signatures to native function pointers
static JNINativeMethod method_table[] = {
 { "getCpuCount", "()I", (void *) native_getCpuCount },
 { "getCpuFamily", "()Ljava/lang/String;", (void *) native_getCpuFamily }
};

//Use the OnLoad initializer to register the method table with the runtime
jint JNI_OnLoad(JavaVM* vm, void* reserved) {
 JNIEnv* env;
 if ((*vm)->GetEnv(vm, (void**)&env, JNI_VERSION_1_6) != JNI_OK) {
 return JNI_ERR;
 } else {
 jclass clazz = (*env)->FindClass(env,
 "com/androidrecipes/ndkjni/NativeLib");
 if (clazz) {
 jint ret = (*env)->RegisterNatives(env, clazz, method_table,
 sizeof(method_table) / sizeof(method_table[0]));
 if (ret == 0) {
 return JNI_VERSION_1_6;
 }
 }
 return JNI_ERR;
 }
}

701CHAPTER 8: Working with Android NDK and RenderScript

The gist of the boilerplate code in JNI_OnLoad is to find a reference to the Java class we

created (using reflection) and attach a method table to it using the RegisterNatives function

from the JNI environment. This method takes an array of JNINativeMethod structures, each

containing the following (in order):

Method name of the method on the Java class, as a string.	
Method signature of the method on the Java class. This is a string that 	
defines the parameters and return types the Java method takes, to

uniquely identify an overloaded method version.

A function pointer to the native function we created to handle the 	
invocation.

Note For more information on how to construct JNI method signature strings, reference the

Oracle JNI documentation: http://docs.oracle.com/javase/7/docs/technotes/guides/

jni/spec/types.html.

Notice that the native method parameters must still remain the same (they are still

required to have the proper parameters list, including the environment and class pointer).

However, now we can name the methods whatever we like because the method table is

responsible for doing the mapping. As before, typos in your method table will cause an

UnsatisfiedLinkError. However, unlike before, this will cause the code to fail when the

runtime class loader loads the NativeLib Java class into memory. This gives us the benefit

of failing slightly faster than waiting until a method is actually invoked.

8-2. Building a Purely Native Activity

Problem
Your application UI requires tighter integration with native code, and it would be simpler to

build the entire activity element with the NDK.

Solution
Use a NativeActivity implementation in your application. The NDK provides an import

library, titled android_native_app_glue, which provides bindings between the activity APIs

and a native implementation. This library provides life-cycle callbacks and handlers for

processing input events, such as touch or sensor input.

While your application does technically still have a Java-based activity running,

NativeActivity takes care of all the JNI binding and life-cycle forwarding so your code

can be pure C/C++ for that activity’s behavior, allowing you to take a deeper approach to

integrating NDK APIs.

In addition to life-cycle callbacks, android_native_app_glue provides event handlers for

dealing with input events. Touch events, key events, and sensor (for example, accelerometer)

events can all be processed from a queue directly in the native code. This process is slightly

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html

702 CHAPTER 8: Working with Android NDK and RenderScript

more complex than Java, because the native code is also responsible for polling and

dequeueing events as they come in for processing; this results in a bit more boilerplate code

than we would have with Java.

How It Works
In this example, we will construct an activity in native code that responds to touch events

by rendering a different color to the screen in OpenGL. As the user’s finger drags around the

view, the color will change based on the latest touch position. Even with such a simple goal,

we will see how much more code is required to accomplish this goal when we leave the Java

framework behind.

Note OpenGL programming topics are outside the scope of this book, and aren’t the focus of this

example. The OpenGL used in this example came directly from the Android NDK Sample for OpenGL.

This project will not contain any Java source code, for an activity or otherwise. Instead,

NativeActivity supports metadata in the application’s manifest to define the shared library

that should be loaded by the framework and “glued” into the activity life cycle. Listing 8-10

highlights the pieces we need to have in the AndroidManifest.xml file.

Listing 8-10. AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidrecipes.nativeactivity"
 android:versionCode="1"
 android:versionName="1.0" >

 <application
 android:hasCode="false"
 ... >
 <activity
 android:name="android.app.NativeActivity"
 android:configChanges="orientation"
 android:label="@string/app_name" >
 <!-- Where to find NativeActivity implementation -->
 <meta-data
 android:name="android.app.lib_name"
 android:value="native-activity" />

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

703CHAPTER 8: Working with Android NDK and RenderScript

The key elements in this manifest are the following:

Our activity element must be an 	 android.app.NativeActivity.

We can also subclass this and use a custom implementation, but the root 	
must be a NativeActivity.

A 	 <meta-data> element should exist with the name android.app.lib_
name and a value representing the shared library name.

This library name is the same as the name passed to 	 System.loadLibrary() in

the previous example. It should match a file named lib<name>.so in your APK.

In our case, the contract is that our code will be in 	 libnative-activity.so.

Optional: If you do not provide any additional Java code in your 	
application, you can set android:hasCode to false in the <application>

element.

This is simply a startup optimization if your app has no Java code to offer. 	
You cannot set this attribute if your package has any Java classes at all!

The bulk of our interesting code, then, will be found in the native implementation that we

eventually build into that shared library. Let’s have a look at that code in Listing 8-11.

Listing 8-11. src/main/jni/activity.c

#include <EGL/egl.h>
#include <GLES/gl.h>

#include <android/log.h>
#include <android/window.h>
#include <android_native_app_glue.h>

#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidRecipes", __VA_ARGS__))
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, "AndroidRecipes", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidRecipes", __VA_ARGS__))

//Data structure to hold that last known touch location
struct touch_state
{
 int32_t x;
 int32_t y;
};

//Data structure to hold the global state of the activity
struct driver
{
 struct android_app* app;
 struct touch_state state;

704 CHAPTER 8: Working with Android NDK and RenderScript

 EGLDisplay display;
 EGLSurface surface;
 EGLContext context;
 int32_t width;
 int32_t height;
};

/**
 * Helper function to render the next color frame in OpenGL
 */
static void render_frame(struct driver* driver)
{
 if (driver->display == NULL) {
 // No display.
 return;
 }

 float red = (float)driver->state.x / driver->width;
 float green = (float)driver->state.y / driver->height;
 float blue = 1 - (float)driver->state.x / driver->width;
 //Render the new color based on touch position
 glClearColor(red, green, blue, 1.0f);
 //Tell OpenGL to refresh the color buffer
 glClear(GL_COLOR_BUFFER_BIT);
 //Place the new frame onto the display buffer
 eglSwapBuffers(driver->display, driver->surface);
}

/**
 * Initialize an EGL context for the current display.
 */
static int engine_init_display(struct driver* driver) {
 // initialize OpenGL ES and EGL

 /*
 * Here specify the attributes of the desired configuration.
 * Below, we select an EGLConfig with at least 8 bits per color
 * component compatible with on-screen windows
 */
 const EGLint attribs[] = {
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_BLUE_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_RED_SIZE, 8,
 EGL_NONE
 };
 EGLint w, h, dummy, format;
 EGLint numConfigs;
 EGLConfig config;
 EGLSurface surface;
 EGLContext context;

705CHAPTER 8: Working with Android NDK and RenderScript

 EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);

 eglInitialize(display, 0, 0);

 /* Here, the application chooses the configuration it desires. In this
 * sample, we have a very simplified selection process, where we pick
 * the first EGLConfig that matches our criteria */
 eglChooseConfig(display, attribs, &config, 1, &numConfigs);

 /* EGL_NATIVE_VISUAL_ID is an attribute of the EGLConfig that is
 * guaranteed to be accepted by ANativeWindow_setBuffersGeometry().
 * As soon as we picked a EGLConfig, we can safely reconfigure the
 * ANativeWindow buffers to match, using EGL_NATIVE_VISUAL_ID. */
 eglGetConfigAttrib(display, config, EGL_NATIVE_VISUAL_ID, &format);

 ANativeWindow_setBuffersGeometry(driver->app->window, 0, 0, format);

 surface = eglCreateWindowSurface(display, config, driver->app->window, NULL);
 context = eglCreateContext(display, config, NULL, NULL);

 if (eglMakeCurrent(display, surface, surface, context) == EGL_FALSE) {
 LOGW("Unable to eglMakeCurrent");
 return -1;
 }

 eglQuerySurface(display, surface, EGL_WIDTH, &w);
 eglQuerySurface(display, surface, EGL_HEIGHT, &h);

 driver->display = display;
 driver->context = context;
 driver->surface = surface;
 driver->width = w;
 driver->height = h;

 // Initialize GL state.
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
 glEnable(GL_CULL_FACE);
 glShadeModel(GL_SMOOTH);
 glDisable(GL_DEPTH_TEST);

 return 0;
}

/**
 * Tear down the EGL context currently associated with the display.
 */
static void engine_term_display(struct driver* driver) {
 if (driver->display != EGL_NO_DISPLAY) {
 eglMakeCurrent(driver->display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
 if (driver->context != EGL_NO_CONTEXT) {
 eglDestroyContext(driver->display, driver->context);
 }

706 CHAPTER 8: Working with Android NDK and RenderScript

 if (driver->surface != EGL_NO_SURFACE) {
 eglDestroySurface(driver->display, driver->surface);
 }
 eglTerminate(driver->display);
 }

 driver->display = EGL_NO_DISPLAY;
 driver->context = EGL_NO_CONTEXT;
 driver->surface = EGL_NO_SURFACE;
}

/*
 * This event handler will receive lifecycle events for
 * the enclosing Activity instance.
 */
static void handle_cmd(struct android_app* app, int32_t cmd)
{
 struct driver* driver = (struct driver*)app->userData;
 switch (cmd)
 {
 case APP_CMD_SAVE_STATE:
 LOGI("Save state");
 // The system has asked us to save our current state. Do so.
 driver->app->savedState = malloc(sizeof(struct touch_state));
 ((struct touch_state)driver->app->savedState) = driver->state;
 driver->app->savedStateSize = sizeof(struct touch_state);
 break;

 case APP_CMD_INIT_WINDOW:
 LOGI("Init window");
 // The window is being shown, get it ready.
 if (driver->app->window != NULL) {
 engine_init_display(driver);
 render_frame(driver);
 }
 break;

 case APP_CMD_TERM_WINDOW:
 LOGI("Terminate window");
 // The window is being hidden or closed, clean it up.
 engine_term_display(driver);
 break;

 case APP_CMD_PAUSE:
 LOGI("Pausing");
 break;

 case APP_CMD_RESUME:
 LOGI("Resuming");
 break;

707CHAPTER 8: Working with Android NDK and RenderScript

 case APP_CMD_STOP:
 LOGI("Stopping");
 break;

 case APP_CMD_DESTROY:
 LOGI("Destroying");
 break;

 case APP_CMD_LOST_FOCUS:
 LOGI("Lost focus");
 break;

 case APP_CMD_GAINED_FOCUS:
 LOGI("Gained focus");
 break;
 }
}

/*
 * This event handler will be triggered to process input
 * events received by the polling loop in main.
 */
static int32_t handle_input(struct android_app* app, AInputEvent* event)
{
 struct driver* driver = (struct driver*)app->userData;
 //Save the latest touch event for use in rendering
 if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
 {
 driver->state.x = AMotionEvent_getX(event, 0);
 driver->state.y = AMotionEvent_getY(event, 0);
 return 1;
 }
 else if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_KEY)
 {
 LOGI("Received key event: %d", AKeyEvent_getKeyCode(event));
 if (AKeyEvent_getKeyCode(event) == AKEYCODE_BACK)
 {
 //Finish the Activity
 if (AKeyEvent_getAction(event) == AKEY_EVENT_ACTION_UP)
 {
 ANativeActivity_finish(app->activity);
 }
 }
 return 1;
 }
 return 0;
}

/*
 * This is the main entry point for the native code. This
 * code is called on a separate thread, created by the
 * native_app_glue APIs.
 */

708 CHAPTER 8: Working with Android NDK and RenderScript

void android_main(struct android_app* state)
{
 struct driver driver;

 app_dummy(); // prevent glue from being stripped

 memset(&driver, 0, sizeof(driver));
 //Hold a reference to our state driver in the app struct
 state->userData = &driver;
 //Define app event handlers
 state->onAppCmd = &handle_cmd;
 state->onInputEvent = &handle_input;

 driver.app = state;

 if (state->savedState != NULL) {
 // We are starting with a previous saved state; restore from it.
 driver.state = *(struct touch_state*)state->savedState;
 }

 while(1)
 {
 int ident;
 int fdesc;
 int events;
 struct android_poll_source* source;

 //Infinite loop to poll for incoming events in the message queue
 while ((ident = ALooper_pollAll(0, &fdesc, &events, (void**)&source)) >= 0)
 {
 //Each event will be processed in the handler function we attached
 if (source)
 source->process(state, source);

 //This will be set when the activity is being destroyed
 if (state->destroyRequested)
 return;
 }

 //On each loop, render the next frame...
 // OpenGL throttles this so the main loop will effectively
 // run at the framebuffer update rate (16.7ms in most cases)
 render_frame(&driver);
 }
}

With the native activity APIs, the android_main() function is the entry point into your code.

This function is called during the onCreate() phase of the activity, and it is created on a

separate thread. This means that whatever happens inside this method is not synchronized

with the rest of the life-cycle events in the activity.

709CHAPTER 8: Working with Android NDK and RenderScript

Your code should keep this method active unless the activity should be destroyed. In our

example, as is typical, we are using this method to infinitely loop, processing queued input

events and rendering display frames. We will look at each of these in more detail shortly.

Upon initialization, we are handed an android_app data structure. This structure will contain

any saved state if this activity creation is part of a configuration change (that is, rotation),

and provides hooks for us to attach callback functions for additional events.

The onAppCmd function pointer should reference a callback where life-cycle events can be

triggered, such as pause, resume, save instance state, and so forth. We have attached

the handle_cmd() function to receive these callback events. Callbacks to this function will

happen on the application’s main thread.

The OpenGL setup and teardown for this example is done in the engine_init_display()

and engine_term_display() functions. These methods are invoked when the life cycle

tells us that the activity window has been created (APP_CMD_INIT_WINDOW) or terminated

(APP_CMD_TERM_WINDOW).

We also make use of APP_CMD_SAVE_STATE, which is called during configuration change

events (just as we would see onSaveInstanceState in Java). In our case, we use this

event to persist the current touch state so we can reconstruct the same color after rotation.

This value will be available to the new activity in android_main() via the android_app

data structure.

The onInputEvent callback will be responsible for handling any processed events the main

loop pulls from the queue. This callback will fire each time the main loop dequeues an event

from an input source with ALoop_pollAll() and calls process() on that source. We have

defined handle_input() to manage these events. All event types that the framework delivers

will be dropped here, so we have to first distinguish which events are touch events (that is,

AINPUT_EVENT_TYPE_MOTION). For each event received, we simply save the x/y value into the

global state.

On each iteration through the main loop, render_frame() will be called, which will read

the latest x/y touch position and compute a color value. That color is rendered to the

display using the OpenGL command glClearColor(); the frame is actually displayed when

eglSwapBuffers() is called.

Tip The framework throttles buffer swap calls at the update rate of the GPU (usually 60fps), so

eglSwapBuffers() will block until a new buffer is available after a frame is fully rendered. This

effectively means that eglSwapBuffers() clocks our loop at 60fps without any additional timing.

Building our native code with the NDK requires an Android.mk and Application.mk file to

define the build modules. We can see those for this project in Listings 8-12 and 8-13.

710 CHAPTER 8: Working with Android NDK and RenderScript

Listing 8-12. src/main/jni/Android.mk

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := native-activity
LOCAL_SRC_FILES := activity.c
LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv1_CM
LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

Listing 8-13. src/main/jni/Application.mk

APP_ABI := all
APP_PLATFORM := android-19

The Android.mk file tells the NDK to compile our single activity.c file into a module named

native-activity (that is, a file named libnative-activity.so). Notice how this name matches

the name we supplied to the manifest earlier. The makefile also defines the imports required

to access the native_app_glue API provided by the NDK.

Note The native_app_glue library format is called an import module by the NDK

documentation, and it requires that the module be imported using the import-module macro, as

well as the library name declared under LOCAL_STATIC_LIBRARIES. The latter declaration notifies

the build system that the library must be built first, as it is a dependency of our NDK module.

The Application.mk file notifies the build that it should generate an output .so file for each

supported ABI architecture. Without this file (or passing APP_ABI on the command line), the

default build will output only a single .so file for ARMv5. The native_app_glue NDK APIs

were introduced in the NDK for Android 2.3+. We’ve added an APP_PLATFORM attribute to

be sure we compile against a platform version that has these APIs. Any value greater than

android-10 that your NDK versions supports is acceptable.

711CHAPTER 8: Working with Android NDK and RenderScript

BUILDING THE NATIVE CODE

The native code must be built using ndk-build from the command line. Then the IDE build tools will copy the

built binaries into the final APK when run on a device. From the command line, execute the following steps:

$ cd <project_directory>/src/main

$ ndk-build

You should see output similar to the following:

[armeabi-v7a] Compile thumb : native-activity <= activity.c

[armeabi-v7a] Compile thumb : android_native_app_glue <= android_native_app_glue.c

[armeabi-v7a] StaticLibrary : libandroid_native_app_glue.a

[armeabi-v7a] SharedLibrary : libnative-activity.so

[armeabi-v7a] Install : libnative-activity.so => libs/armeabi-v7a/libnative-activity.so

[armeabi] Compile thumb : native-activity <= activity.c

[armeabi] Compile thumb : android_native_app_glue <= android_native_app_glue.c

[armeabi] StaticLibrary : libandroid_native_app_glue.a

[armeabi] SharedLibrary : libnative-activity.so

[armeabi] Install : libnative-activity.so => libs/armeabi/libnative-activity.so

[x86] Compile : native-activity <= activity.c

[x86] Compile : android_native_app_glue <= android_native_app_glue.c

[x86] StaticLibrary : libandroid_native_app_glue.a

[x86] SharedLibrary : libnative-activity.so

[x86] Install : libnative-activity.so => libs/x86/libnative-activity.so

[mips] Compile : native-activity <= activity.c

[mips] Compile : android_native_app_glue <= android_native_app_glue.c

[mips] StaticLibrary : libandroid_native_app_glue.a

[mips] SharedLibrary : libnative-activity.so

[mips] Install : libnative-activity.so => libs/mips/libnative-activity.so

All the native shared libraries should be in the src/main/libs directory of the project and ready for

consumption.

The final requirement to successfully include our native code is to modify the build.gradle

file of the project to tell Gradle where the prebuilt shared libraries are now located.

See Listing 8-14.

712 CHAPTER 8: Working with Android NDK and RenderScript

Listing 8-14. Partial build.gradle

android {
 ...

 //Disable building of JNI code, just copy in libs
 sourceSets.main {
 jni.srcDirs = []
 jniLibs.srcDir 'src/main/libs'
 }

 ...
}

With working native libraries built into the project, you can now run the example and watch

the colors change as you drag your finger across the screen—all without a single line of

Java code!

RenderScript
Google released RenderScript to take high-performance computation algorithms on Android

to the next level. As device hardware capabilities advance, increased computing power on

both the CPU and GPU (and even special-purpose processors) open up new possibilities

in the types of processing we can do on-device as opposed to offloading heavy work to a

server. Multicore programming also drives up the complexity of your code’s threading model

and architecture.

RenderScript consists of three main components:

A C99-based scripting language that focuses on breaking algorithms 	
into individual “kernels” that can be easily parallelized.

Complier engine to reflect script kernels into Java classes that allow 	
developers to invoke their scripts directly from Java without use

of the NDK.

Runtime engine with a manufacturer-supplied driver that allows OEMs to 	
report what hardware capabilities their device has (primarily, number of

available cores) to process data.

RenderScript kernels are functions invoked across a large input data set, known as an

allocation. The RenderScript engine invokes a given kernel over every item in an input

allocation to produce a result in a second output allocation. As an example, if a kernel is

designed to process image data, the input allocation would be the original image bitmap

to process, and the output allocation would contain the processed image bitmap data. The

following is an example of what a kernel function looks like:

#pragma version(1)
#pragma rs java_package_name(com.example.renderscript)

float multiplier;

713CHAPTER 8: Working with Android NDK and RenderScript

void root(const uchar4 *in_element, uchar4 *out_element, uint32_t x, uint32_t y)
{
 //Process "in" and set the result in "out"
}

Each time this function is invoked, the in_element parameter points to the current element

inside the input allocation. The x and y parameters indicate the position the current element

has within the allocation data set. The job of the kernel function is to set the appropriate

value of out_element, which represents the corresponding element in the output allocation,

based on the algorithm you want to apply before returning. The types of these parameters

will depend on the type of allocation you expect; the uchar4 is a vector type commonly used

for an allocation of ARGB pixel data.

A script file can have only one kernel function, but you may add additional setup functions

or global fields that need to be set before the kernel is invoked. The RenderScript compiler

will reflect any functions or global fields added to the script into Java methods (the fields will

be reflected into setter methods). For example, the multiplier field in this script will become

set_multiplier() in the reflected Java class. You can use these to supply parameters to

your script or do additional setup before the kernel is invoked.

Using the RenderScript Support Package
RenderScript has been a public API only since Android 3.0 (API Level 11), but you may

have noticed that the Android team at Google is fond of backporting their frameworks to

allow developers to use them on older devices. The RenderScript support package allows

applications to use its features on devices going back to Android 2.2 (FroYo).

To accomplish this, the build tools include a set of precompiled NDK libraries into your

application’s APK to install onto devices that don’t natively support all the RenderScript

features available in the support package.

Note Currently the RenderScript support package includes NDK libraries for only ARMv7, x86,

and MIPS. There is no support for ARMv5 devices.

Using the RenderScript support package is a slightly different process than simply copying

in additional Java libraries or resources at compile time. The build tools include hooks to

copy the appropriate libraries after the build into the APK without needing to place them in

your application source tree. To inform the build tools that this step needs to take place, we

must add the following lines to the defaultConfig of our build.gradle file:

defaultConfig {

 targetSdkVersion 18
 renderscriptTargetApi 18
 renderscriptSupportMode true
}

714 CHAPTER 8: Working with Android NDK and RenderScript

The minimum target is API 18, and 18.1.0 is the minimum supported build tools version. Keep

in mind that this doesn’t mean the application must have its minimum SDK set to Android 4.3;

but it does mean your application should have its target SDK set to at least that level.

With these parameters in place, the build tools will handle all the rest of the work for you. The

only additional required step is to use the classes from the android.support.v8.renderscript

package in your app rather than the native versions.

Important You must import android.support.v8.renderscript.* instead of the

android.renderscript package in your Java code!

The remaining sections in this chapter that deal with RenderScript are structured to make

use of the RenderScript support package. However, in most cases you only need to change

the import statements included to move exclusively to the native versions instead.

8-3. Filtering Images with RenderScript

Problem
Your application needs a simple way to apply common filters to images.

Solution
RenderScript has a large collection of script intrinsics, or premade and encapsulated

RenderScript kernels designed to do common tasks. You can use these intrinsics to do

computation with RenderScript without even the need to write the script code! With each

new Android release, new intrinsics are added, creating a library of useful functions to draw

from. In this recipe, we are going to examine three of the most common intrinsics:

	ScriptInstrinsicBlur: Applies a Gaussian blur to each element in the

input allocation. The radius of the blur is configurable on the script.

	ScriptIntrinsicColorMatrix: Applies a color matrix filter to each

element in the input allocation. Similar to the ColorFilter applied to a

Drawable. Has an additional convenience method for setting grayscale.

	ScriptIntrinsicConvolve3x3: Applies a 3×3 convolve matrix to each

element in the input allocation. This matrix is commonly used to create

photo filter effects such as sharpen, emboss, and edge detect.

How It Works
Let’s explore an example application that uses RenderScript to apply filters to an image

resource. As we can see in Figure 8-1, this application will consist of a grid with six images.

Each instance will have a different image filter applied.

715CHAPTER 8: Working with Android NDK and RenderScript

In Listing 8-15, we find the layout for our activity that will construct this simple grid.

Listing 8-15. res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="*">
 <TableRow>
 <ImageView
 android:id="@+id/image_normal"
 android:layout_weight="1"
 android:layout_margin="5dp"
 android:scaleType="fitCenter" />
 <ImageView
 android:id="@+id/image_blurred"
 android:layout_weight="1"
 android:layout_margin="5dp"
 android:scaleType="fitCenter" />
 </TableRow>

Figure 8-1. RenderScript image filters (top to bottom, left to right): None, Grayscale, Edge Detect, Blur, Sharpen, Emboss)

716 CHAPTER 8: Working with Android NDK and RenderScript

 <TableRow>
 <ImageView
 android:id="@+id/image_greyscale"
 android:layout_weight="1"
 android:layout_margin="5dp"
 android:scaleType="fitCenter" />
 <ImageView
 android:id="@+id/image_sharpen"
 android:layout_weight="1"
 android:layout_margin="5dp"
 android:scaleType="fitCenter" />
 </TableRow>

 <TableRow>
 <ImageView
 android:id="@+id/image_edge"
 android:layout_weight="1"
 android:layout_margin="5dp"
 android:scaleType="fitCenter" />
 <ImageView
 android:id="@+id/image_emboss"
 android:layout_weight="1"
 android:layout_margin="5dp"
 android:scaleType="fitCenter" />
 </TableRow>

</TableLayout>

Each cell in this grid will be filled in with the same image, but with a different filter applied to

it. In the first cell, we will display the base image without any filtering. The next two cells will

be filtered using ScriptInstrinsicBlur and ScriptIntrinsicColorMatrix. The remaining

cells will be filtered using various matrices and a ScriptIntrinsicConvolve3x3.

In Listing 8-16, we find the activity code.

Listing 8-16. Image Filter Activity

import android.support.v8.renderscript.*;

public class MainActivity extends Activity {

 private enum ConvolutionFilter {
 SHARPEN, LIGHTEN, DARKEN, EDGE_DETECT, EMBOSS
 };

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 //Create the source data, and a destination for the filtered results
 Bitmap inBitmap = BitmapFactory.decodeResource(getResources(), R.drawable.dog);
 Bitmap outBitmap = inBitmap.copy(inBitmap.getConfig(), true);
 //Show the normal image
 setImageInView(outBitmap.copy(outBitmap.getConfig(), false), R.id.image_normal);

717CHAPTER 8: Working with Android NDK and RenderScript

 //Create the RenderScript context
 final RenderScript rs = RenderScript.create(this);
 //Create allocations for input and output data
 final Allocation input = Allocation.createFromBitmap(rs, inBitmap,
 Allocation.MipmapControl.MIPMAP_NONE,
 Allocation.USAGE_SCRIPT);
 final Allocation output = Allocation.createTyped(rs, input.getType());

 //Run blur script
 final ScriptIntrinsicBlur script = ScriptIntrinsicBlur
 .create(rs, Element.U8_4(rs));
 script.setRadius(4f);
 script.setInput(input);
 script.forEach(output);
 output.copyTo(outBitmap);
 setImageInView(outBitmap.copy(outBitmap.getConfig(), false), R.id.image_blurred);

 //Run grayscale script
 final ScriptIntrinsicColorMatrix scriptColor = ScriptIntrinsicColorMatrix
 .create(rs, Element.U8_4(rs));
 scriptColor.setGreyscale();
 scriptColor.forEach(input, output);
 output.copyTo(outBitmap);
 setImageInView(outBitmap.copy(outBitmap.getConfig(), false), R.id.image_greyscale);

 //Run sharpen script
 ScriptIntrinsicConvolve3x3 scriptC = ScriptIntrinsicConvolve3x3
 .create(rs, Element.U8_4(rs));
 scriptC.setCoefficients(getCoefficients(ConvolutionFilter.SHARPEN));
 scriptC.setInput(input);
 scriptC.forEach(output);
 output.copyTo(outBitmap);
 setImageInView(outBitmap.copy(outBitmap.getConfig(), false), R.id.image_sharpen);

 //Run edge detect script
 scriptC = ScriptIntrinsicConvolve3x3.create(rs, Element.U8_4(rs));
 scriptC.setCoefficients(getCoefficients(ConvolutionFilter.EDGE_DETECT));
 scriptC.setInput(input);
 scriptC.forEach(output);
 output.copyTo(outBitmap);
 setImageInView(outBitmap.copy(outBitmap.getConfig(), false), R.id.image_edge);

 //Run emboss script
 scriptC = ScriptIntrinsicConvolve3x3.create(rs, Element.U8_4(rs));
 scriptC.setCoefficients(getCoefficients(ConvolutionFilter.EMBOSS));
 scriptC.setInput(input);
 scriptC.forEach(output);
 output.copyTo(outBitmap);
 setImageInView(outBitmap.copy(outBitmap.getConfig(), false), R.id.image_emboss);

718 CHAPTER 8: Working with Android NDK and RenderScript

 //Tear down the RenderScript context
 rs.destroy();
 }

 private void setImageInView(Bitmap bm, int viewId) {
 ImageView normalImage = (ImageView) findViewById(viewId);
 normalImage.setImageBitmap(bm);
 }

 /*
 * Helper to obtain matrix coefficients for each type of
 * convolution image filter.
 */
 private float[] getCoefficients(ConvolutionFilter filter) {
 switch (filter) {
 case SHARPEN:
 return new float[] {
 0f, -1f, 0f,
 -1f, 5f, -1f,
 0f, -1f, 0f
 };
 case LIGHTEN:
 return new float[] {
 0f, 0f, 0f,
 0f, 1.5f, 0f,
 0f, 0f, 0f
 };
 case DARKEN:
 return new float[] {
 0f, 0f, 0f,
 0f, 0.5f, 0f,
 0f, 0f, 0f
 };
 case EDGE_DETECT:
 return new float[] {
 0f, 1f, 0f,
 1f, -4f, 1f,
 0f, 1f, 0f
 };
 case EMBOSS:
 return new float[] {
 -2f, -1f, 0f,
 -1f, 1f, 1f,
 0f, 1f, 2f
 };
 default:
 return null;
 }
 }
}

719CHAPTER 8: Working with Android NDK and RenderScript

Before we can filter the images, we must initialize a RenderScript context with

RenderScript.create(). We must also create two Allocation instances, one for the input

data and one for the output result. These are the buffers that each RenderScript kernel will

act on. There are convenience functions to create an Allocation from many common data

structures in the framework, and in this case we have elected to make one directly from our

input image Bitmap.

You can see that each script follows a similar pattern. We must first create the script

we want to run, initializing it with the data size to be used for the Allocation. We chose

Element.U8_4() because our bitmap has ARGB pixel data, so each element (that is, pixel) is

4 unsigned bytes in size. We then must set up any parameters the script needs, and execute

it by calling forEach(). Once the script execution is complete, we copy the results from the

output Allocation into a new Bitmap to display in the ImageView.

For our blur filter, the radius is the only configurable parameter. The intrinsic accepts a radius

value between 0 and 25. We use the color matrix filter to make a grayscale filter for our

image by calling setGreyscale() during its setup. If we were to provide a distinct matrix, it

would be passed using setColorMatrix() instead.

Tip ScriptIntrinsicColorMatrix is also equipped to do color conversions between YUV and

RGB color spaces.

Finally, we apply the remaining filters by obtaining a coefficients matrix for the given filter

and passing them to the script via setCoefficients(). The 3×3 matrices for these filters

are well known and easily obtainable on the Web. The values in the matrix define, as the

script moves over each pixel in the allocation, how the value of the output pixel should be

multiplied based on the current value of the input pixel and its neighbors. The value in the

center of the matrix represents the current pixel, and the surrounding values represent the

neighboring pixels.

For example, the darken filter decreases the value of the current pixel by half (0.5 multiplier),

but otherwise the surrounding pixels do not affect the result. The sharpen filter magnifies

the initial value five times, and then subtracts the value from the pixels above, below, and on

each side to achieve the effect.

Tip When playing around with convolution matrices, the sum of all the matrix values should equal

1 to preserve the original brightness of the image. If the sum is larger, the image will be brighter,

and if the sum is smaller, the image will be darker. The edge detect filter in the example has a net

sum of 0, which is why that image is very dark.

720 CHAPTER 8: Working with Android NDK and RenderScript

Figure 8-2. Image-processing example with unfiltered (left) image and ripple applied (right)

8-4. Manipulating Images with RenderScript

Problem
Your application needs to take advantage of the RenderScript power and performance, but a

script intrinsic hasn’t been written to accomplish the proper task.

Solution
We can construct our own script kernel implementation that the build tools will compile and

reflect into Java classes, which we will be able to invoke in the same manner as the intrinsics

found in the previous example.

How It Works
In this example, we are going to build a RenderScript kernel to apply a watery ripple effect to

an image, as you can see in Figure 8-2.

721CHAPTER 8: Working with Android NDK and RenderScript

The user will be able to control how the ripple effect looks by using three sliders for the

ripple amplitude, dampening, and frequency. Tapping the Enhance button will trigger

RenderScript to apply the filter with the selected parameters. Have a look at Listing 8-17 for

the kernel implementation.

Listing 8-17. src/main/rs/ripple.rs

#pragma version(1)
#pragma rs java_package_name(com.androidrecipes.imageprocessing)

float centerX;
float centerY;
float minRadius;

//Amplitude control of the wave peaks
float scalar;
//Wave Dampener, larger values damp out the ripples sooner
float damper;
//Sine frequency, larger values show more ripples
float frequency;

void root(const uchar4* v_in, uchar4* v_out, const void* usrData,
 uint32_t x, uint32_t y)
{
 //Compute distance from the center
 float dx = x - centerX;
 float dy = y - centerY;
 float radius = sqrt(dx*dx + dy*dy);

 if (radius < minRadius)
 {
 //Use the original pixel
 *v_out = *v_in;
 }
 else
 {
 float4 f4 = rsUnpackColor8888(*v_in);
 float shiftedRadius = radius - minRadius;

 //Determine sine function multiplier based on distance
 float multiplier = (scalar * exp(-shiftedRadius * damper)
 * -sin(shiftedRadius * frequency)) + 1;

 //Lighten or darken pixel, within min/max range defined
 float3 transformed = f4.rgb * multiplier;
 *v_out = rsPackColorTo8888(transformed);
 }
}

The root() function is the main kernel, which will execute over each pixel in the image

bitmap (our input allocation). The ripple effect will be applied by determining how far away

the input pixel is from the center point, and calculating whether it should be lightened or

722 CHAPTER 8: Working with Android NDK and RenderScript

Note The decaying sine wave function is y = e-ktsin(wt)., where t represents the distance

from center.

darkened based on a decaying sine wave function. This function causes the ripples to die

away as we get farther from the center point. We have also defined damper, scalar, and

frequency factors that can be set externally to control how the ripple output looks. The script

also supports controlling the center point of the ripple, and how far out from the center the

ripples should begin.

We use a function provided by RenderScript, rsUnpackColor8888(), to convert the input pixel

into an ARGB float vector so we can easily do math with other floats. Types like float4 and

float3 are vector types defined by RenderScript, meaning they represent a group of floats.

These types generally also include special accessor functions to get access to specific

portions of the data. For example, we use float4.rgb in this example to return a smaller

vector of just the RGB pixel data, masking out the alpha channel.

The sine wave function provides us with a multiplier between 0f and 2f, which we can apply

to the pixel to modify its brightness to get slightly closer to either black or white. With a

vector type, the multiplication is applied as a dot product, so each color value is multiplied

by the same factor. Before placing the modified pixel into the output allocation, we must

pack it back into the appropriate format using rsPackColorTo8888().

Tip If your algorithm requires analyzing neighboring data in the allocation, you can set the input

allocation as a script global as well. This allows you to read any item in the allocation you wish, via

rs_GetElementAt_type(), to do your computations.

The build tools will compile this script, and a new Java class will be generated in the project,

ScriptC_ripple. This class will give us access to all the globals we need to set, and a new

method, forEach_root(), to invoke the kernel processing. Listings 8-18 and 8-19 show us

how we can build this into an activity.

Listing 8-18. src/main/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="16dp">
 <ImageView
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="0dp"

723CHAPTER 8: Working with Android NDK and RenderScript

 android:layout_weight="1"
 android:scaleType="centerInside"/>
 <GridLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <Button
 android:id="@+id/button_enhance"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_columnSpan="2"
 android:text="Enhance"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="1"
 android:layout_column="1"
 android:layout_gravity="center_vertical"
 android:text="Amplitude"/>
 <SeekBar
 android:id="@+id/control_amplitude"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="1"
 android:layout_column="0"
 android:layout_gravity="fill_horizontal"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="2"
 android:layout_column="1"
 android:layout_gravity="center_vertical"
 android:text="Dampening"/>
 <SeekBar
 android:id="@+id/control_dampening"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="2"
 android:layout_column="0"
 android:layout_gravity="fill_horizontal"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="3"
 android:layout_column="1"
 android:layout_gravity="center_vertical"
 android:text="Frequency"/>
 <SeekBar
 android:id="@+id/control_frequency"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

724 CHAPTER 8: Working with Android NDK and RenderScript

 android:layout_row="3"
 android:layout_column="0"
 android:layout_gravity="fill_horizontal"/>
 </GridLayout>
</LinearLayout>

Listing 8-19. Image-Processing Activity

public class MainActivity extends Activity implements
 View.OnClickListener {

 private ImageView mImage;
 private SeekBar mAmplitude, mDampening, mFrequency;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mImage = (ImageView) findViewById(R.id.image);
 mAmplitude = (SeekBar) findViewById(R.id.control_amplitude);
 mDampening = (SeekBar) findViewById(R.id.control_dampening);
 mFrequency = (SeekBar) findViewById(R.id.control_frequency);

 /*
 * Settings Ranges:
 * A = 0.01 - 1.0
 * D = 0.0001 - 0.01
 * F = 0.01 - 0.5
 */

 mAmplitude.setProgress(40);
 mDampening.setProgress(20);

 mFrequency.setProgress(10);
 mFrequency.setMax(50);

 mImage.setImageResource(R.drawable.background);

 findViewById(R.id.button_enhance).setOnClickListener(this);
 }

 @Override
 public void onClick(View v) {
 drawRipples(mImage, R.drawable.background);
 }

 private void drawRipples(ImageView iv, int imID) {
 Bitmap bmIn = BitmapFactory.decodeResource(
 getResources(), imID);
 Bitmap bmOut = Bitmap.createBitmap(bmIn.getWidth(),
 bmIn.getHeight(), bmIn.getConfig());

725CHAPTER 8: Working with Android NDK and RenderScript

 //Initialize the RenderScript context
 RenderScript rs = RenderScript.create(this);
 //Create data allocations
 Allocation allocIn = Allocation.createFromBitmap(rs, bmIn,
 Allocation.MipmapControl.MIPMAP_NONE,
 Allocation.USAGE_SCRIPT);
 Allocation allocOut = Allocation.createTyped(rs,
 allocIn.getType());
 //Obtain script instance and initial parameters
 ScriptC_ripple script = new ScriptC_ripple(rs,
 getResources(), R.raw.ripple);

 //Set up ripple control values
 script.set_centerX(bmIn.getWidth() / 2);
 script.set_centerY(bmIn.getHeight() / 2);
 script.set_minRadius(0f);
 //Grab user controls from the UI
 float amplitude = Math.max(0.01f, mAmplitude.getProgress() / 100f);
 script.set_scalar(amplitude);
 float dampening = Math.max(0.0001f, mDampening.getProgress() / 10000f);
 script.set_damper(dampening);
 float frequency = Math.max(0.01f, mFrequency.getProgress() / 100f);
 script.set_frequency(frequency);

 //Run the script
 script.forEach_root(allocIn, allocOut);

 allocOut.copyTo(bmOut);
 iv.setImageBitmap(bmOut);
 //Tear down the RenderScript context
 rs.destroy();
 }

}

Here we’ve constructed a basic activity interface that includes a view to display the current

image and three sliders for the user to control the amplitude, dampening, and frequency of

our ripples filter. Inside the onClick() handler, we initialize a RenderScript context and create

two allocations for our script. The input allocation is constructed from our initial bitmap, and

the output allocation is a blank set that we will later convert back to an image. We’ve also

created a blank (and mutable) bitmap into which we will copy the output data.

Finally, we allocate a new ScriptC_ripple instance, to begin setting up the filter. All the

parameters we defined as script globals conveniently have setter methods on ScriptC_ripple.

The center point is configured to the middle of the image, and the sine wave control

parameters are pulled from the sliders in the user interface. With all the setup complete, we

invoke forEach_root() to iterate over the image allocation, applying the ripple filter.

726 CHAPTER 8: Working with Android NDK and RenderScript

Tip The RenderScript compiler generates the ScriptC Java code form the script files automatically.

If you cannot see these classes in the Java, you may need to quickly rebuild or resync the project to

get the RenderScript compiler to run again.

Now we have to get the data back from the output allocation and into something we can

use. We copy the contents into our blank mutable bitmap using Allocation.copyTo()

and display the result by placing it back into the ImageView. Once a script’s execution

is complete, it is also good to tear down the RenderScript context so resources can be

reclaimed.

Play around with the settings to see how they change the result. You might also think about

adding a user control for the center point and inner radius!

8-5. Faking Translucent Overlays with Blur

Problem
You want to provide the illusion that one view is overlaying another with a partially

transparent frosted or blurred effect.

Solution
We can call on ScriptIntrinsicBlur once again, along with some custom View and

Drawable code to create a blurred copy of a background image, and apply that copy to

provide the visual appearance of a partially transparent overlay. Rendering a live blurred

overlay in real time is computationally expensive, and the performance of the application will

suffer. So instead we are going to achieve the same effect by computing a blurred image

of our background content ahead of time and using drawing tricks to implement the same

effect while still keeping our application responsive.

How It Works
In this example, we have a ListView shown on top of a full-color background image. The

ListView is equipped with a custom header view that offsets the list content such that the

first item sits most of the way down the screen when scrolled to the top. As the list scrolls

up, we will demonstrate two techniques for creating a blurred overlay: the first will gradually

fade the image from clear to blurred, and the second will slide the blurred overlay up along

with the list until it is fully covered.

To visualize where we are headed with this, have a look at Figures 8-3 and 8-4.

727CHAPTER 8: Working with Android NDK and RenderScript

Figure 8-4. Sliding blur example: blurred overlay follows the list

Figure 8-3. Fading blur example: initially clear (left) and partially blurred as we scroll (right)

728 CHAPTER 8: Working with Android NDK and RenderScript

You can see in the fading blur example that the background initially starts completely clear.

As the list content scrolls up, the blur becomes more visible and is uniform to the entire view.

In the sliding blur example, the blurred overlay always follows the list item content; as more

of the list items are shown, the blur takes up more of the view. Let’s start by looking at the

resources in this application. See Listings 8-20 and 8-21.

Listing 8-20. res/layout/activity_blur.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <!-- Background Views for each blur type -->
 <com.androidrecipes.backgroundblur.BackgroundOverlayView
 android:id="@+id/background_slide"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerCrop" />
 <ImageView
 android:id="@+id/background_fade"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerCrop"
 android:visibility="gone" />

 <ListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:cacheColorHint="@android:color/transparent"
 android:scrollbars="none"/>
</FrameLayout>

Listing 8-21. res/menu/blur.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item android:id="@+id/menu_slide"
 android:title="Sliding Blur" />
 <item android:id="@+id/menu_fade"
 android:title="Fading Blur" />
</menu>

The layout for the application is simply a ListView on top of some image content. We

have two views behind the list, each representing one of the two types of blur; so only one

of these will be visible at any point in time. In this case, we are using the options menu

to switch between the two modes, so we have also created a simple two-option <menu>

element. Listing 8-22 shows our activity, where the RenderScript code will live.

729CHAPTER 8: Working with Android NDK and RenderScript

Listing 8-22. Blurred Overlay Activity

public class BlurActivity extends Activity implements
 AbsListView.OnScrollListener,
 AdapterView.OnItemClickListener {

 private static final String[] ITEMS = {
 "Item One", "Item Two", "Item Three", "Item Four", "Item Five",
 "Item Six", "Item Seven", "Item Eight", "Item Nine", "Item Ten",
 "Item Eleven", "Item Twelve", "Item Thirteen", "Item Fourteen", "Item Fifteen"};

 private BackgroundOverlayView mSlideBackground;
 private ImageView mFadeBackground;
 private ListView mListView;
 private View mHeader;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_blur);

 mSlideBackground = (BackgroundOverlayView) findViewById(R.id.background_slide);
 mFadeBackground = (ImageView) findViewById(R.id.background_fade);
 mListView = (ListView) findViewById(R.id.list);

 //Apply a clear header view to shift the start position of the list elements down
 mHeader = new HeaderView(this);
 mListView.addHeaderView(mHeader, null, false);
 mListView.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, ITEMS));

 mListView.setOnScrollListener(this);
 mListView.setOnItemClickListener(this);

 initializeImage();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.blur, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 //Based on the selection, show the appropriate background view
 switch(item.getItemId()) {
 case R.id.menu_slide:
 mSlideBackground.setVisibility(View.VISIBLE);
 mFadeBackground.setVisibility(View.GONE);
 return true;

730 CHAPTER 8: Working with Android NDK and RenderScript

 case R.id.menu_fade:
 mSlideBackground.setVisibility(View.GONE);
 mFadeBackground.setVisibility(View.VISIBLE);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }

 /*
 * The heart of our transparency tricks. We obtain a normal copy
 * and a pre-blurred copy of the background image.
 */
 private void initializeImage() {
 Bitmap inBitmap = BitmapFactory.decodeResource(getResources(), R.drawable.background);
 Bitmap outBitmap = inBitmap.copy(inBitmap.getConfig(), true);

 //Create the RenderScript context
 final RenderScript rs = RenderScript.create(this);
 //Create allocations for input and output data
 final Allocation input = Allocation.createFromBitmap(rs, inBitmap,
 Allocation.MipmapControl.MIPMAP_NONE,
 Allocation.USAGE_SCRIPT);
 final Allocation output = Allocation.createTyped(rs, input.getType());
 //Run a blur at the maximum supported radius (25f)
 final ScriptIntrinsicBlur script = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs));
 script.setRadius(25f);
 script.setInput(input);
 script.forEach(output);
 output.copyTo(outBitmap);

 //Tear down the RenderScript context
 rs.destroy();

 //Apply the two copies to our custom drawable for fading
 OverlayFadeDrawable drawable = new OverlayFadeDrawable(
 new BitmapDrawable(getResources(), inBitmap),
 new BitmapDrawable(getResources(), outBitmap));
 mFadeBackground.setImageDrawable(drawable);

 //Apply the two copies to our custom ImageView for sliding
 mSlideBackground.setImagePair(inBitmap, outBitmap);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 //On a click event, animated scroll the list back to the top
 mListView.smoothScrollToPosition(0);
 }

731CHAPTER 8: Working with Android NDK and RenderScript

 @Override
 public void onScroll(AbsListView view, int firstVisibleItem,
 int visibleItemCount, int totalItemCount) {
 //Make sure views have been measured first
 if (mHeader.getHeight() <= 0) return;

 //Adjust sliding effect clip point based on scroll position
 int topOffset;
 if (firstVisibleItem == 0) {
 //Header is still visible
 topOffset = mHeader.getTop() + mHeader.getHeight();
 } else {
 //Header has been detached, at this point we should be all the way up
 topOffset = 0;
 }
 mSlideBackground.setOverlayOffset(topOffset);

 //Adjust fading effect based on scroll position
 // Blur completely once 85% of the header is scrolled off
 float percent = Math.abs(mHeader.getTop()) / (mHeader.getHeight() * 0.85f);
 int level = Math.min((int)(percent * 10000), 10000);
 mFadeBackground.setImageLevel(level);
 }

 @Override
 public void onScrollStateChanged(AbsListView view,
 int scrollState) { }
}

When the activity is created, we apply a very simple list adapter with some static data

elements inside. We also apply a custom HeaderView as the header to our list; we see this

implementation in Listing 8-23, and this is what shifts the list items down in the initial view of

Figures 8-3 and 8-4.

Listing 8-23. Clear List Header View

public class HeaderView extends View {

 public HeaderView(Context context) {
 super(context);
 }

 public HeaderView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public HeaderView(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 }

 /*
 * Measure this view's height to always be 85% of the
 * measured height from the parent view (ListView)
 */

732 CHAPTER 8: Working with Android NDK and RenderScript

 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 View parent = (View) getParent();
 int parentHeight = parent.getMeasuredHeight();

 int height = Math.round(parentHeight * 0.85f);
 int width = MeasureSpec.getSize(widthMeasureSpec);

 setMeasuredDimension(width, height);
 }
}

There isn’t much to this; it is simply a view designed to measure out its height to be

85 percent of the height of its parent (which in our case is always the ListView). This allows

us to use HeaderView as a measured spacer, even though it contains no real content. This

approach is more flexible to device screen differences than hard-coding a fixed view height.

Back in Listing 8-22, inside initializeImage(), we use the ScriptIntrinsicBlur function

to create a blurred copy of our background image. As we discussed in the previous recipes

on image filters, the blur radius determines the level of distortion, and can be a value greater

than 0 and up to 25.

When RenderScript has completed the blur, we take the image pair (initial and blurred) and

send them two places. The first is to a custom OverlayFadeDrawable instance, which we will

use for our fade example. The second is a BackgroundOverlayView, which we will use for our

slide example. We will take a look at these items shortly.

The activity is responsible for monitoring list scrolling and reporting those changes to the

background views. The activity is registered as the OnScrollListener for the ListView, so as

the view scrolls, the onScroll() method is called regularly. Inside this method, we calculate

the offset position based on the header view, and feed that data into the two background

views. Finally, the activity is also set to receive click events on individual list items. When this

occurs, the list is scrolled back to the top with an animation.

To see how we draw the blur transitions, let’s first have a look at the Drawable in Listing 8-24.

Listing 8-24. Overlay Fade Drawable

public class OverlayFadeDrawable extends LayerDrawable {
 /*
 * Implementation of a Drawable container to hold our normal
 * and blurred images as layers
 */
 public OverlayFadeDrawable(Drawable base, Drawable overlay) {
 super(new Drawable[] {base, overlay});
 }

 /*
 * Force a redraw when the level value is externally changed
 */

733CHAPTER 8: Working with Android NDK and RenderScript

 @Override
 protected boolean onLevelChange(int level) {
 invalidateSelf();
 return true;
 }

 @Override
 public void draw(Canvas canvas) {
 final Drawable base = getDrawable(0);
 final Drawable overlay = getDrawable(1);
 //Get the level as a percentage of the maximum value
 final float percent = getLevel() / 10000f;
 int setAlpha = Math.round(percent * 0xFF);

 //Optimize for end-cases to avoid overdraw
 if (setAlpha == 255) {
 overlay.draw(canvas);
 return;
 }
 if (setAlpha == 0) {
 base.draw(canvas);
 return;
 }

 //Draw composite if in-between
 base.draw(canvas);

 overlay.setAlpha(setAlpha);
 overlay.draw(canvas);
 overlay.setAlpha(0xFF);
 }
}

You may recall from Chapter 2 that a Drawable is just an abstraction of something to be

displayed. We have chosen to extend the LayerDrawable in the framework, which is a

container of N elements that are drawn in order as layers by default. We won’t be leveraging

the default drawing behavior, but using LayerDrawable as our base allows the framework to

handle some of the other complex logic of invalidating each layer for us.

To update the state, we use the item’s level parameter. Recall that this Drawable was set on

an ImageView, and when the scroll position changed, we call setImageLevel() to update the

background. That level is passed directly into this instance, and with each call to draw(), the

level is inspected to determine how to blend the two images. We explicitly optimize for the

two cases where the alpha is at 0 percent or 100 percent to minimize pixel overdraw (once

either element is fully opaque, drawing the other is a waste). However, if the value is in the

middle, we will draw the initial image first, with the partially visible blurred copy drawn on

top. Now let’s have a look at the drawing tricks for the sliding blur in Listing 8-25.

734 CHAPTER 8: Working with Android NDK and RenderScript

Listing 8-25. Background Overlay View

public class BackgroundOverlayView extends ImageView {

 private Paint mPaint;
 private Bitmap mOverlayImage;
 private int mClipOffset;

 /*
 * Customization of ImageView to allow us to draw a
 * composite of two images, but still leverage all
 * the image-scaling features of the framework.
 */
 public BackgroundOverlayView(Context context) {
 super(context);
 init();
 }

 public BackgroundOverlayView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 public BackgroundOverlayView(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 init();
 }

 private void init() {
 mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 }

 /*
 * Set the normal and blurred image copies in our view
 */
 public void setImagePair(Bitmap base, Bitmap overlay) {
 mOverlayImage = overlay;

 /* Apply the normal image to the base ImageView, which
 * will allow it to apply our ScaleType for us and provide
 * a Matrix we can use to draw both images scaled accordingly
 * later on. This will also invalidate the view to trigger
 * a new draw.
 */
 setImageBitmap(base);
 }

 /*
 * Adjust the vertical point where the normal and blurred
 * copy should switch.
 */

735CHAPTER 8: Working with Android NDK and RenderScript

 public void setOverlayOffset(int overlayOffset) {
 mClipOffset = overlayOffset;
 invalidate();
 }

 @Override
 protected void onDraw(Canvas canvas) {
 //Draw base image first, clipped to the top section
 // We clip the base image to avoid unnecessary overdraw in
 // the bottom section of the view.
 canvas.save();
 canvas.clipRect(getLeft(), getTop(), getRight(), mClipOffset);
 super.onDraw(canvas);
 canvas.restore();

 //Obtain the matrix used to scale the base image, and apply it
 // to the blurred overlay image so the two match up
 final Matrix matrix = getImageMatrix();
 canvas.save();
 canvas.clipRect(getLeft(), mClipOffset, getRight(), getBottom());
 canvas.drawBitmap(mOverlayImage, matrix, mPaint);
 canvas.restore();
 }
}

This is an extension of ImageView that does some custom drawing. We are using ImageView

because it contains a lot of image-scaling logic that we want to leverage. In our layout,

we set the scaleType parameter to centerCrop so the view could take care of scaling and

placing our background nicely. Notice when the activity sets the images on this view, the

base image is passed directly to the base implementation as the main image. We do this for

two reasons: primarily so the framework can do the image-scaling math, but also so we can

easily draw the base image by just calling through to super.onDraw() later on.

With each scroll position change, the offset is passed into this view via setOverlayOffset(),

which also invalidates the view, forcing a new draw pass. In the drawing portion of the view,

we utilize that offset marker to create two clipping masks for the Canvas. The main purpose

of this is to draw only the portion of the blurred overlay that we want to show to match the

list position. However, we can use the same offset to clip off the base image drawing as well.

This is again to eliminate pixel overdraw in our view, which will make the app perform much

more smoothly. Even though the effect is that we are drawing a semitransparent overlay, we

never actually draw any pixel in this view more than once.

As a final reminder of what we’ve created, Figure 8-5 shows the application with the list

scrolled completely up and the blur overlay covering the complete view.

736 CHAPTER 8: Working with Android NDK and RenderScript

Summary
With the Android NDK, developers can add just the right amount of native C/C++ code

to their applications to complement the Java SDK. Whether that is a handful of functions

using JNI, or an entire activity class, the NDK offers the power necessary to make great

applications even better. With RenderScript, developers can unlock the true computing

power of the mobile device without wasting time dealing with the multicore and multithreaded

synchronization issues. This opens up opportunities for image processing and other

algorithmic computation to be done on the device, instead of offloaded to a remote server.

Figure 8-5. Blur overlay shown completely

737

A ■
Activity.getRequestedOrientation() method, 99

Activity.onResume() method, 215

Activity.setContentView() method, 16

Activity.setRequestedOrientation() method, 98

addAction() method, 480

addBackgroundsRow() method, 466

addIconsRow() method, 466

addImageRow() method, 466

addSection() method, 54

android_main() function, 708

Animated state transition

AnimatedStateListDrawable, 626

AnimatedVectorDrawable, 627

AnimationDrawable, 627

RippleDrawable, 624

single transition, 627

StateListAnimator, 625

Application binary interface (ABI), 689

Application restrictions

age level setting, 608

Bundle result, 606

content settings, 611

finger-drawing view, 608–610

purchases setting, 608

<receiver> snippet, 607–608

unrestricted user, 610

AppWidgets

AndroidManifest.xml, 578–579

application activity, 583–585

AppWidgetManager, 582

AppWidgetProvider, 579, 581

collection views

AndroidManifest.xml, 586

AppWidgetProvider, 588–589, 591

configuration activity, 587–590

getViewAt() method, 596

ListView, 587–588

RemoteViews, 591

SharedPreferences, 590

update monitoring service, 596–597

updateAppWidget(), 591

home screen, 577

initialLayout attribute, 579

layout, 580–581

onUpdate(), 582

random number activity, 585

RemoteViews, 577–578, 583

service, 582–583

sizing, 578

Audio player

local sound file, 355–356

MediaController activity, 356–361

MediaPlayer.create(), 356

B ■
Bluetooth

AndroidManifest.xml, 258

BluetoothAdapter, 264

connected mode, 264–265

definition, 257

enable() method, 264

exchange activity, 259

fetchUuidsWithSdp() and

getUuids(), 266

listen mode, 264

peer-to-peer connections, 257

res/layout/main.xml, 258

RFCOMM protocol interface, 257

search mode, 265

UUID value, 257

build() method, 480

Index

738 Index

C ■
Camera

image capture, 331

preview

activity, 338

Camera.open(), 340

Camera.PictureCallback, 344

Camera.release(), 340

Camera.setDisplayOrientation(),

341, 351

Camera.ShutterCallback, 344

Camera.startPreview(), 340

layout, 338

Parameters.

getSupportedPreviewSizes(), 340

setRotation(), 341

startPreview(), 344

surfaceChanged(), 340

surfaceCreated(), 340

SurfaceHolder callbacks, 340

SurfaceView, 338, 340

takePicture(), 344

video capture

activity, 336

MediaStore.ACTION_VIDEO_

CAPTURE, 337

MediaStore.EXTRA_OUTPUT, 335, 337

MediaStore.EXTRA_VIDEO_QUALITY,

335, 337

onActivityResult() callback method, 337

XML layout, 335

Camera.takePicture() method, 344

ColorPreferences

custom dialog box, 399

getColorStateList(), 402

getPersistedInt(), 402

getSummary(), 403

implementation, 400

notifyChanged(), 402

notifyDependencyChange(), 402

onDialogClosed(), 402

onGetDefaultValue(), 402

onPrepareDialogBuilder(), 402

onSetInitialValue(), 402

persistInt(), 402

PreferenceActivity, 403

PreferenceScreen, 399

res/xml/settings.xml, 403

Communications and networking

bluetooth (see Bluetooth)

ConnectivityManager

bandwidth checking, 269

connectivity failure, 268

ConnectivityManager.

getActiveNetworkInfo(), 267

routes, 267

wrapper method, 267–268

DownloadManager

ACCESS_ALL_DOWNLOADS, 215

ACTION_DOWNLOAD

_COMPLETE, 216

Activity.onResume() method, 215

advantage, 213

definition, 213

destination, 216

DownloadManager.enqueue(), 215

DownloadManager.

openDownloadedFile(), 216

DownloadManager.remove(), 217

DownloadManager.Request, 216

sample activity, 213

incoming SMS messages

abortBroadcast(), 253

AndroidManifest.xml, 251

BroadcastReceiver, 251

default applications, 253

SmsMessage.createFromPdu(), 252

text messages, 251

JSON (see JavaScript Object

Notation (JSON))

NFC

Android 4.1, 270

foreground push, 270

large image files, 274

NdefRecord, 273

outgoing SMS messages, 254

RESTful API (see Representational State

Transfer (REST))

USB device

BroadcastReceiver, 286

configuration, 279

control/transferring data, 278

device connections, 287–288

739Index

endpoint types, 279

host circuitry, 278

host querying devices, 279

UsbConstants, 286

USBManager, 278

UsbManager.getDeviceList(), 286

WebView (see WebView)

XML

characters() callback, 242

ListView, 244

OnItemClickListener, 244

parse responses, 240

RSS basic structure, 240

RSSHandler, 241, 243

SAX parser, 240

SAXParser.parse(), 244

XmlPullParser, 245

Compass sensor, 371

CompoundButton.setButtonDrawable()

method, 623

Create, read, update, and delete (CRUD), 409

Cursor.getColumnIndex() method, 439

D ■
Device hardware and media

camera (see Camera)

location (see Mapping location)

MediaMetadataRetriever

AsyncTask, 378

getFrameAtTime(), 378

layout and activity, 375

onPostExecute() method, 378

MediaPlayer

audio player, 355

RedirectTracerTask, 362

video player, 361

MediaRecorder

audio recording, 344

setOrientationHint() method, 351

video-capture activity, 347

SensorManager (see SensorManager)

sound effects, 363

speech-recognition, 352

user motion

ActivityRecognitionClient, 378–379

AndroidManfest.xml, 379

events, 378

layout and activity, 380

onConnected(), 385

onHandleIntent(), 388

onServiceConnected(), 389

partial build.gradle, 389

requestActivityUpdates(), 379

UserMotionService, 381–385

Document Object Model (DOM), 240

DownloadManager

ACCESS_ALL_DOWNLOADS, 215

ACTION_DOWNLOAD_COMPLETE, 216

Activity.onResume(), 215

advantages, 213

definition, 213

destination, 216

DownloadManager.enqueue(), 215

DownloadManager.

openDownloadedFile(), 216

DownloadManager.remove(), 217

DownloadManager.Request methods, 216

sample activity, 213

drawBitmap() method, 18

drawLine() method, 18

drawText() method, 18

E ■
Empty() method, 42

engine_init_display() function, 709

engine_term_display() functions, 709

Expanded view

BigPictureStyle, 480

BigTextStyle, 479

default styles, 478

InboxStyle, 481

External storage

CRUD, 411

Environment.

getExternalStorageDirectory(), 412

Environment.

getExternalStorageState(), 411

flush() method, 414

new directory creation, 413

SD card, 409

sync()method, 414

write() method, 414

740 Index

F ■
findPreference() method, 393

flush() method, 414

G ■
generateAsync() method, 671

getAnimatedFraction() method, 26

getAnimatedValue() method, 26

getBackgroundsDocumentId() method, 465

getFilename() method, 465

getIconsDocumentId() method, 465

getItem() method, 48

getOutline() method, 635

getPersistedXxx() method, 398

getSystemUiVisibility() method, 12

getViewAt() method, 596

getView() method, 47–48, 55

Graphics and drawing

image masking (see Image masking)

palette colors

adapter, 669

getVibrantSwatch(), 671

GridView, 671

layout, 668

list, 668

Palette.Swatch, 667

partial build.gradle, 672

SparseArray instances, 671

PopupWindow

activity and layout, 640

animation, 646

background nine-patch

drawables, 639

behavior, 645

display, 644

onCreate(), 643

res/layout/popup.xml, 639

WRAP_CONTENT, 643

shape drawable

corner radius, 614

gradient, 614

GradientDrawable object, 614

gradient rectangle, 614

NinePatchDrawable, 618, 639

patterns, 617

rounded view group, 615

size and padding, 614

solid color, 614

stroke, 614

StateListDrawable

AnimatedStateListDrawable, 622

animated state transitions

(see Animated state transition)

Boolean values, 622

button and clickable widgets, 623

CheckBox and checkable

widgets, 623

multiple state parameters, 622

SurfaceView

drawing scene, 661

HandlerThread, 660

lockCanvas(), 660

res/layout/main.xml, 656

surfaceChanged(), 660

surfaceCreated(), 660

surface drawing activity, 656

unlockCanvasAndPost(), 660

SVG (see Scalable vector assets (SVG))

TextureView, 655

application, 666

lockCanvas(), 666

onSurfaceTextureUpdated(), 666

res/layout/texture.xml, 661

SurfaceTexture, 666

texture drawing activity, 662

tinting drawable elements

color filter activity, 673, 675

native tinting, 676

PorterDuff.XferMode, 672

setColorFilter() method, 675

setTint(), 673

setTintMode(), 673

simple layout, 674

ViewOverlay

ACTION_DOWN, 653

ACTION_MOVE, 654

activity, 650

getOverlay(), 648

initial layout and markers, 654

main view, 649

res/drawable/box.xml, 648

Greenwich Mean Time (GMT), 115

741Index

H ■
handle_cmd() function, 709

I ■
Image masking

arbitrary mask image, 632

BitmapShade, 628

PorterDuffXferMode, 627

rounded corner bitmap

activity displaying, 631

drawRoundRect(), 631

onSizeChanged(), 631

original image, 628

rounded rectangle mask, 628

setImage(), 631

view outlines

circular outline clip, 637

elevation and translationZ

properties, 634

getOutline() method, 635

mask activity, 634

setClipToOutline(true), 636

shadowing effects, 635

inflate() method, 16

InfoWindowAdapter methods, 312

insert() method, 435

IntentService handling operations

activity calling IntentService, 504–505

AndroidManifest.xml, 504

disadvantage, 506

implementation, 502–503

IntentFilter, 503

IntentFilter.matchAction(), 503

onHandleIntent() method, 503

queues, 501

J, K ■
Java Native Interface (JNI)

android_getCpuCount() function, 696

android_getCpuFamily() function, 696

Android.mk, 696

Application.mk, 696–697

build.gradle file, 698

building native code, 697

cpufeatures, 693

explicit method tables, 699

implementation, 692

invoking activity, 699

javah, 695

jclass, 696

JNIEnv pointer, 695

jni.h, 696

jobject, 696

libfeatures.so, 693

mechanisms, 692

native header file, 693

NewStringUTF() function, 696

res/layout/activity_main.xml, 698

src/main/jni/NativeLib.c, 694

static, 696

UnsatisfiedLinkError, 695

JavaScript Object Notation (JSON)

accessor methods, 237

JSONObject.getInt(), 239

JSONObject.getString(), 239

JSONObjects and JSONArrays, 237

org.json parser classes, 237

parsed data, display, 239

string, 237

TextViews, 238

L ■
Layouts and views

Activity.setContentView() method, 16

AdapterView, 42

animation

AnimatorSet, 26

custom layouttransition, 30

LayoutTransition object, 28

LinearLayout, 29

ObjectAnimator, 24

ViewPropertyAnimator method, 23

custom views

drawing content, 18

measurement, 17

inflate() method, 16

ListView row

addSection() method, 54

ArrayAdapter, 44, 47

custom drawables, 44, 46

custom row layout, 45

getItemViewType(), 48

getView() method, 55

742 Index

getViewTypeCount(), 48

section header, 49

SectionItem data, 49–50

XML layout, 44

main.xml, 15

RecyclerView

activity display, 79

GridLayoutManager, 77, 82

LinearLayoutManager, 77, 82

RecyclerView.Adapter, 77

RecyclerView.ItemDecoration, 77

selectLayoutManager(), 82

SimpleItemAdapter class, 82

vertical and horizontal grid

collections, 79

vertical and horizontal list

collections, 78

situation–specific layouts

default portrait and tablet landscape

layout, 40

default configuration, 34–35

full tablet layout, 41

handset portrait and landscape

layout, 39

landscape configuration, 35–37

layout aliases, 34

portrait vs. landscape orientations, 32

resource qualifiers, 32

screen sizes, 33

single activity, 34

tablet configuration, 36–37

styles

activity layout, 2

android\:textAppearance attribute, 8

cleaner result, 6

definition, 1

parent, 5

<style> groups, 5

<style> tag, 4

TextImageButton, 56

theme

AndroidManifest.xml, 8, 11

custom theme, 9

definition, 1

material theme, 10

styles.xml, 10

system theme, 8

toggling UI elements

dark mode, 12

full-screen, 14

navigation controls, 13

screen real estate, 11

transformations

getChildStaticTransformation, 70

horizontal and vertical layout, 73

HorizontalScrollView, 74

PerspectiveScrollContentView, 76

pivot point, 72

setAlpha(), 72

transition animations

activity transition, 61

fragment transition, 63

native fragment, 65

onCreateAnimation() API method, 60

overridePendingTransition()

method, 60

ViewGroups, 15

loadView() method, 104

M ■
Mapping location

ACCESS_COARSE_LOCATION

permission, 295

ACCESS_FINE_LOCATION

permission, 295

AndroidManifest.xml file, 298

annotating maps

InfoWindowAdapter methods, 312

markers, 305–307, 311

OnMarkerClickListener, 312

Polyline shape, 305

ShapeAdapter, 313

XML layout, 306

API key, 297

build.gradle file, 294–295, 304

cached location, 301

CameraUpdate, 304

criteria, 289

geofence monitoring, 321

getLastLocation(), 294

high-accuracy, 290, 293

LocationClient.connect(), 294

LocationRequest, 293

lower-accuracy data, 290

Layouts and views (cont.)

743Index

MapView and MapFragment, 296, 299

moveCamera(), 304

onLocationChanged(), 294

requestLocationUpdates(), 294

setMyLocationEnabled(), 304

types, 304

updates monitoring, 291

user location, 300

XML layout, 300

MeasureSpec, 17

MediaMetadataRetriever

AsyncTask, 378

getFrameAtTime(), 378

layout and activity, 375

onPostExecute() method, 378

MediaPlayer

audio player

local sound file, 355–356

MediaController activity, 356–361

MediaPlayer.create(), 356

RedirectTracerTask, 362

video player, 361

MediaRecorder

audio recording, 344

setOrientationHint() method, 351

video-capture activity, 347

Multitouch handling events

getPointerCount(), 151

ImageView, 148–151

onSizeChanged(), 151

postScale(), 152

ScaleGestureDetector operates, 151–152

ScaleType, 151

transformations, 151

mutate() method, 676

N ■
Native Development Kit (NDK)

ABI, 689–690

accessing system resources, 689

APK, 690

building native code, 690

CPU-bound code, 689

cross-platform portability, 689

Gradle build system, 691

headers and libraries, 689

JNI (see Java Native Interface (JNI))

NativeActivity

android_app data structure, 709

android_main() function, 708

AndroidManifest.xml file, 702

Android.mk, 709–710

android_native_app_glue, 701

APP_CMD_SAVE_STATE, 709

APP_PLATFORM, 696

Application.mk, 709–710

build.gradle file, 711–712

eglSwapBuffers(), 709

engine_init_display() function, 709

engine_term_display() function, 709

glClearColor(), 709

handle_cmd() function, 709

native_app_glue, 710

onAppCmd function pointer, 709

onInputEvent, 709

render_frame(), 709

src/main/jni/activity.c, 703

Near field communication (NFC)

Android 4.1, 270

foreground push, 270

large image files, 274

NdefRecord, 273

Notification visibility

builder method, 485–486

heads-up notification, 485

lock screen, 483

public version, 486–487

VISIBILITY_PRIVATE, 484

VISIBILITY_PUBLIC, 484

VISIBILITY_SECRET, 484

O ■
onConfigurationChanged() method, 102, 104

onCreateAnimator() method, 67

onCreate() method, 97, 104

onCreateOptionsMenu() method, 120

onDialogClosed() method, 402

OnDragListener.onDrag() method, 162

onFling() method, 141

onHandleIntent() method, 503

onInterceptTouchEvent() method, 140

onItemCheckedStateChanged() method, 110

onMapClick() method, 318

onOptionsItemSelected() method, 93

744 Index

onPostExecute() method, 378

onScroll() method, 140, 732

onSensorChanged() method, 369

onTouchEvent() method, 140

onTouch() method, 649

onUpdate() method, 593

P ■
Persisting data

backing up data

API Level 8, 431

AsyncTask implementation, 427

BackupTask, 429

Context.getFilesDir(), 429

external storage, 427

openOrCreateDatabase(), 430

ContentProvider

activity accessing, 437

activity interaction, 446

AndroidManifest.xml, 437, 442,

445, 453

application settings, 439

ContentResolver.

openInputStream(), 455

Cursor.getColumnIndex() method, 439

database, 433

drawing resources, 452

exposing assets, 449

ImageProvider, 454

insert() method, 435

logo image, 451

manifest declaration, 433, 449

MatrixCursor, 442, 451

notifyObservers(), 442

openAssetFile(), 452

preferences activity, 444

query() method, 442

res/layout/main.xml, 445, 453

res/values/arrays.xml, 444

res/xml/preferences.xml, 443

SettingsActivity, 448

simple list creation, 436

SQLiteOpenHelper, 432

update() method, 442, 448

UriMatcher.match() method, 435

Uri query, 431

custom preferences

CheckBoxPreference, 398

ColorPreference (see ColorPreferences)

EditTextPreference/ListPreference, 398

getPersistedXxx() method, 398

getSummary(), 397

onBindView(), 397

onClick(), 397

onCreateView(), 397

onGetDefaultValue(), 398

onSetInitialValue(), 398

persistXxx() method, 398

SharedPreferences, 397

DocumentsProvider

add() method, 465

addBackgroundsRow(), 466

addIconsRow(), 466

addImageRow(), 466

addRootRow(), 466

advantage, 456

CancellationSignal, 466

COLUMN_DOCUMENT_ID, 465

COLUMN_FLAGS reports, 465

COLUMN_MIME_TYPES, 465

document picker, 457

document trees, 468–470

filters and permissions, 466, 467

getBackgroundsDocumentId(), 465

getFilename(), 465

getIconsDocumentId(), 465

ImageProvider, 457–464

MatrixCursor, 465

openDocument(), 457

openDocumentThumbnail(), 457, 466

queryChildDocuments(), 456, 466

queryDocument(), 456, 466

queryRoots(), 456

recent documents, 467–468

sizeHint parameter, 466

title, summary, and icon columns, 465

writeAssets(), 465

preference screen

addPreferencesFromResource(), 394

android\:dependency attribute, 395

android\:entryValues array, 394

android\:key attribute, 393

CheckBoxPreferences, 394

745Index

Enable More Settings, 394

findPreference() method, 393

ListPreference item, 394

loading defaults and accessing

preferences, 395

Name option, 394

PreferenceActivity, 391

PreferenceCategory, 394

PreferenceFragment, 396

PreferenceManager.

setDefaultValues(), 394

res/xml/settings.xml, 392

secondary screen, 392

SharedPreferences object, 393

XML Preference, 391

reading and writing files

assets, 409

external storage (see External storage)

external system directories, 414

FileInputStream and

FileOutputStream, 409

internal storage, 409

resource files

assets/data.csv, 416

assets directory, 416

parsing CSV file, 418

reading, asset file, 417

SharedPreferences, 404

Activity.getPreferences(), 406

creation, 407

entry form, 404

SharedPreferences.Editor.clear(), 404

XML and PreferenceActivity

framework, 404

SQLiteDatabase (see SQLiteDatabase)

persistXxx() methods, 398

play() method, 366

Protocol data unit (PDU), 252

Q ■
query() method, 442

R ■
Radio frequency communications

(RFCOMM) protocol, 257

RegisterNatives function, 701

remapCoordinateSystem() method, 374

remove() method, 655

RenderScript

allocation, 712

blur overlay

activity, 728

BackgroundOverlayView, 732, 734

fading blur, 727

HeaderView, 731

ImageView, 735

initializeImage(), 732

LayerDrawable, 733

ListView, 726

onScroll() method, 732

OverlayFadeDrawable, 732

res/layout/activity_blur.xml, 728

res/menu/blur.xml, 728

ScriptIntrinsicBlur function, 732

setImageLevel(), 733

setOverlayOffset(), 735

sliding blur, 727

super.onDraw(), 735

components, 712

filtering images

activity code, 716

Allocation, 719

grid, 714

RenderScript.create(), 719

ScriptInstrinsicBlur, 714, 716

ScriptIntrinsicColorMatrix, 714, 716

ScriptIntrinsicConvolve3x3, 714, 716

setCoefficients()., 719

setColorMatrix(), 719

setGreyscale(), 719

in_element parameter, 713

kernel implementation

Allocation.copyTo(), 726

damper, scalar and frequency

factors, 722

forEach_root(), 722, 725

image-processing activity, 724

onClick() handler, 725

root() function, 721

rsUnpackColor8888(), 722

ScriptC_ripple, 722, 725

src/main/res/layout/activity_main

.xml, 722

src/main/rs/ripple.rs, 721

watery ripple effect, 720

746 Index

out_element, 713

set_multiplier, 713

support package, 713

Representational State Transfer (REST)

HttpClient, 217

HttpResponseCache

RestTask

authorization, 232–236

GET request, 226–228

multipart POST

request, 230–232

POST request, 228–230

RestUtil helper class, 224–225

setFixedLengthStreamingMode(), 225

Ripple’s hotspot, 624

root() function, 721

S, T ■
Scalable vector assets (SVG)

adobe illustrator, 679

AnimatedVectorDrawable, 678

<circle>, 682

converted vector image, 680

CSS style parameter, 681

raw file data, 679

vector animation

activity and layout, 685

AnimatedVectorDrawable, 683

definitions, 684

initial X shape, 683

lineto, 683

pathData animators, 685

string resources, 682

ScriptIntrinsicBlur function, 732

SensorManager

accelerometer

onSensorChanged() method, 369

registerListener(), 369

TableLayout, 367

tilt monitoring activity, 368

batch mode, 370

compass orientation, 371

setAnimationStyle() method, 646

setBackgroundColor() method, 18

setBackgroundResource() method, 18

setColorFilter() method, 675

setDisplayHomeAsUpEnabled() method, 93

setSystemUiVisibility() method, 12

Short Message Service (SMS)

incoming messages

abortBroadcast(), 253

AndroidManifest.xml, 251

BroadcastReceiver, 251

default applications, 253

SmsMessage.createFromPdu(), 252

text messages, 251

outgoing messages, 254

showAsDropDown() method, 642

showAtLocation() method, 642

Simple API for XML (SAX), 240

SoundPool, 363

SpeechRecognizer, 352

SQLiteDatabase

ContentValues, 420

Cursor.requery(), 424

custom SQLiteOpenHelper, 419

date field, 420

definition, 419

ListAdapter.notifyDataSet

Changed(), 424

onCreate(), 420

onUpgrade(), 421

querying, 424

SimpleCursorAdapter, 424

SQLiteOpenHelper.

getReadableDatabase(), 420

SQLiteOpenHelper.

getWritableDatabase(), 420

text field, 420

view and manage database, 422

sync() method, 414

System applications

browser, 517

contact picker, 521

e-mail, 519–520

Google Play, 521–522

maps, 518–519

phone dialer, 518

program, 517

SMS, 520–521

startActivity(), 517

Uri scheme, 517

RenderScript (cont.)

747Index

System interaction

Android operating system, 471

applications

Custom Action Filter, 523

Data Type Filter, 523

hypothetical activity, 522

intent, 513

IntentFilter creation, 522

Intent.setAction(), 513

overlapping function, 513

PDF documents, 513–515

processing, 524

ShareActionProvider, 516

sharing information, 515

system (see System applications)

Uri file, 523

AppWidgets implementation

(see AppWidgets)

background worker

Bitmap and Message interface, 567–568

handleMessage(), 566

HandlerThread, 564–566

long-running background, 564

quit(), 568

calendar

CalendarContract interface, 555

device activity, 555–556

events, 555

Loader pattern, 557

view/modification, 557

contact structure

aggregation operations, 533

changing/adding, 529, 531–533

Data elements, 525

execution, 529

listing/viewing, 525, 527–529

maintainance, 533

RawContacts, 525

device media and document

ContentProvider

interface, 538

ContentValues instance, 542

creation, 542

display/playback, 534

image/video clip, 538–539, 541

Intent.ACTION_GET_CONTENT, 534

Intent.ACTION_OPEN

_DOCUMENT, 534

pick media, 535–536

res/layout/main.xml, 534

Uri, 536–537

IntentService operations

(see IntentService handling operations)

logging code execution

BuildConfig.DEBUG, 562

logger activity, 563

logger wrapper, 562

log statements, 562

messaging data

AsyncTaskLoader

implementation, 545–546

MessageItem class, 547–550

parsing, 551

sorting, 547

Telephony provider, 543–544

notification

activity, 471

expanded views (see Expanded views)

FLAG_INSISTENT, 477

FLAG_NO_CLEAR, 477

NotificationListenerService, 488–490

NotificationManager, 471

requriments, 471

settings, 488

system’s default

notification, 477

visibility and privacy (see Notification

visibility)

periodic tasks

activity, 500

AlarmManager, 492–493

ELAPSED_REALTIME, 496

getService(), 495

JobInfo object, 493

JobService, 497–498

onStartJob(), 499

Partial AndroidManifest.xml, 499

precision alarm, 496–497

register/unregister alarms, 495

requriments, 492

trigger service, 494

persistent background operations

activity interaction, 510–511

AndroidManifest.xml, 509

component, 506

LocationManager, 509

748 Index :

requestLocationUpdates(), 509

res/layout/main.xml, 510

ServiceActivity layout, 512

services implementation, 506–507

tracking service, 507–508

restriction profiles

activity element, 601–604

application (see Application restrictions)

features, 600–601

getApplicationRestrictions(), 599

RestrictionEntry elements, 599

system restrictions, 605–607

task stack customization

application tag, 570

BACK vs. UP navigation, 569, 576

DetailsActivity, 574–576

NavUtils and TaskStackBuilder

classes, 569

root activity, 571

second-level activity, 571–572

third-level activity, 572–573

timerTask, 490–491

U ■
Universally unique identifier (UUID), 257

update() method, 442, 448, 645

UriMatcher.match() method, 435

User interface (UI)

ActionBarActivity

AppCompat theme, 91

application view, 90

custom views, 93

toolbar, 94

activity managing touch intercept, 158

activity orientation lock, 97

BACK behavior

fragments, 123

onBackPressed(), 122–123

choiceMode attribute, 110

contextual actions

action mode, 104–105

custom ContextListItem

class, 106

OnMenuItemClickLIstener, 108

user selection, 104

utilizing activity, 108–109

customizing menu

action view, 116–117

activity overriding menu action, 118

android\:actionLayout resource, 117

collapseActionView(), 120

expandable action view, 121–122

getActionView() method, 120

getMenuInflater(), 120

onCreateOptionsMenu(), 120

onOptionsItemSelected(), 120

onPrepareOptionsMenu(), 120

options menu functionality, 116

physical and soft keys, 121

showAsAction attribute, 117

XML, 116

drag and drop views

ACTION_DRAG_ENDED event, 164

ACTION_DRAG_ENTERED event, 164

ACTION_DRAG_EXITED event, 164

activity, 165

ClipData object, 161

custom DragShadowBuilder, 168

DragEvent, 162

drag operation, 167

forwarding touches, 166

onDragListener, 162, 164

onDrawShadow() method, 169

onProvideShadowMetrics() method, 168

dynamic orientation lock

Activity.setRequestedOrientation(), 98

getConfiguration(), 100

screen orientation, 99

ToggleButton instance, 99

forwarding touch events

check box, 154–155

delegate activity, 154

dispatchTouchEvent(), 155

HorizontalScrollView, 157

implementation, 153

receiving event, 154–155

remote scroll activity, 156

handling complex touch events

action identifiers, 135

custom handling, 142

GestureDetector, 134, 136

implementation, 135

inInterceptTouchEvent(), 135

looping process, 141

System interaction (cont.)

749Index

onDown() method, 141

onFling() method, 141

onScroll() method, 140

onTouchEvent() method, 135, 140

PanGestureScrollView, 141

parent view, 135

ScaleGestureDetector, 134

SimpleOnGestureListener, 140

touch slop constants, 140

HOME button, 126

keyboard actions

custom enter key, 131

implementation, 133

input method (IME), 130

onEditorAction(), 133

manual handling rotation

<activity> element, 101

keyboardHidden parameter, 101

managing, 102

onRestoreInstanceState() method, 104

onSaveInstanceState() method, 104

orientation parameter, 101

resource-qualified directories, 104

screenSize parameter, 101

setContentView(), 104

simple activity, 102

MultiChoiceModeListener, 110

navigation drawer

ActionBarDrawerTloggle element, 169

ActionBarDrawerToggle instance, 174

android\:layout_gravity attributes, 171

closeDrawer(), 174

drawer activity, 175

DrawerLayout, 169–170

Gravity parameter, 175

integration, 171

invalidateOptionsMenu(), 175

onConfigurationChanged(), 174

onOptionsItemSelected(), 174

openDrawer() method, 169

syncState(), 174

toolbar, 177

onActionItemClicked(), 110

onCreateActionMode(), 110

onPageScrollStateChanged(), 161

SlidingTabLayout

application resources, 197

application theme, 198

color values, 197–198

createDefaultTabView(), 195

design patterns, 191

implementation, 195

material design, 195

package directory, 191

sliding tabs activity, 192

SlidingTabsBasic SDK sample

project, 191

text colors, 196–197

updateSelectedTitle(), 197

soft keyboard, 134

TextView changes

beforeTextChanged(), 127

character counter activity, 127

currency formatter, 128

onTextChanged(), 127

TextView.addTextChanged

Listener(), 127

user dialog display

AlertDialog, 110–111

application, 112

content selection, 112

convenience methods, 112

custom layout, 113, 115

getView(), 115

GMT offset value, 115

ListAdapter, 113

setMessage(), 112

setMultiChoiceItems, 112

setNegativeButton(), 112

setSingleChoiceItems(), 112

setView(), 112

ViewPager

application, 184

BaseAdapter and

ListAdapter, 180

FragmentPagerAdapter, 185

getCount(), 182

getItemPosition() method, 188

getPageWidth() method, 183–184

ImagePagerAdapter, 183

instantiateItem(), 182, 189

isViewFromObject(), 182

notifyDataSetChanged(), 190

OnPageChangeListener, 190

PagerAdapter, 180

setCurrentItem(), 190

750 Index

setOffscreenPageLimit() method, 182

setPageMargin() method, 190

XML file, 105

V ■
Video player, 361

ViewPropertyAnimator method, 23

View.setBackgroundDrawable() method, 623

W, X, Y, Z ■
WebChromeClient, 205

WebView

AsyncTask

definition, 210

doInBackground(), 212

onPostExecute(), 212

onPreExecute(), 212

onProgressUpdate(), 212

setImageUrl(), 211

setPlaceholderImage(), 211

task’s execute() method, 212

WebImageView, 210

definition, 199

JavaScript interface, 207

local assets, 202

properties, 200

stadium map, 200

URL, 200, 205

WebViewClient and

WebChromeClient, 205

WebViewClient, 205–206

write() method, 414

User interface (UI) (cont.)

Android Recipes

A Problem-Solution Approach for Android 5.0

Fourth Edition

Dave Smith

Android Recipes: A Problem-Solution Approach for Android 5.0

Copyright © 2015 by Dave Smith

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis
or material supplied speciically for the purpose of being entered and executed on a computer system, for exclusive
use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the
provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0476-4

ISBN-13 (electronic): 978-1-4842-0475-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he images of the Android Robot (01/Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google Inc. in the United States and other
countries. Apress Media LLC is not ailiated with Google Inc., and this book was written without endorsement
from Google Inc.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions
that may be made. he publisher makes no warranty, express or implied, with respect to the material contained
herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Paul Trebilcox-Ruiz
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,

James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science + Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com/9781484204764. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484204764
www.apress.com/source-code/

v

Contents

About the Author ..xxi

About the Technical Reviewer ..xxiii

Acknowledgments ...xxv

Introduction ...xxvii

Chapter 1: Layouts and Views ■ ... 1

1-1. Styling Common Components ... 1

Problem .. 1

Solution... 1

How It Works ... 2

1-2. Toggling System UI Elements .. 11

Problem .. 11

Solution... 11

How It Works ... 12

1-3. Creating and Displaying Views.. 15

Problem .. 15

Solution... 15

How It Works ... 15

vi Contents

1-4. Animating a View .. 22

Problem .. 22

Solution... 22

How It Works ... 23

1-5. Animating Layout Changes ... 28

Problem .. 28

Solution... 28

How It Works ... 29

1-6. Implementing Situation-Specific Layouts ... 32

Problem .. 32

Solution... 32

How It Works ... 32

1-7. Customizing AdapterView Empty Views .. 42

Problem .. 42

Solution... 42

How It Works ... 42

1-8. Customizing ListView Rows .. 44

Problem .. 44

Solution... 44

How It Works ... 44

1-9. Making ListView Section Headers .. 48

Problem .. 48

Solution... 48

How It Works ... 49

1-10. Creating Compound Controls .. 56

Problem .. 56

Solution... 56

How It Works ... 56

1-11. Customizing Transition Animations ... 60

Problem .. 60

Solution... 60

How It Works ... 61

viiContents

1-12. Creating View Transformations ... 70

Problem .. 70

Solution... 70

How It Works ... 70

1-13. Making Extensible Collection Views ... 77

Problem .. 77

Solution... 77

How It Works ... 78

Summary .. 88

Chapter 2: User Interaction Recipes ■ .. 89

2-1. Leveraging the Action Bar ... 89

Problem .. 89

Solution... 89

How It Works ... 90

2-2. Locking Activity Orientation .. 97

Problem .. 97

Solution... 97

How It Works ... 98

2-3. Performing Dynamic Orientation Locking ... 98

Problem .. 98

Solution... 98

How It Works ... 99

2-4. Manually Handling Rotation .. 101

Problem .. 101

Solution... 101

How It Works ... 101

2-5. Creating Contextual Actions .. 104

Problem .. 104

Solution... 104

How It Works ... 105

viii Contents

2-6. Displaying a User Dialog Box .. 110

Problem .. 110

Solution... 110

How It Works ... 110

2-7. Customizing Menus and Actions ... 116

Problem .. 116

Solution... 116

How It Works ... 116

2-8. Customizing BACK Behavior ... 122

Problem .. 122

Solution... 122

How It Works ... 123

2-9. Emulating the HOME Button.. 126

Problem .. 126

Solution... 126

How It Works ... 126

2-10. Monitoring TextView Changes ... 127

Problem .. 127

Solution... 127

How It Works ... 127

2-11. Customizing Keyboard Actions ... 130

Problem .. 130

Solution... 130

How It Works ... 131

2-12. Dismissing the Soft Keyboard ... 134

Problem .. 134

Solution... 134

How It Works ... 134

2-13. Handling Complex Touch Events ... 134

Problem .. 134

Solution... 134

How It Works ... 136

ixContents

2-14. Forwarding Touch Events .. 153

Problem .. 153

Solution... 153

How It Works ... 153

2-15. Blocking Touch Thieves ... 158

Problem .. 158

Solution... 158

How It Works ... 158

2-16. Making Drag-and-Drop Views ... 161

Problem .. 161

Solution... 161

How It Works ... 162

2-17. Building a Navigation Drawer ... 169

Problem .. 169

Solution... 169

How It Works ... 170

2-18. Swiping Between Views.. 180

Problem .. 180

Solution... 180

How It Works ... 180

2-19. Navigating with Tabs ... 191

Problem .. 191

Solution... 191

How It Works ... 191

Summary .. 198

Chapter 3: Communications and Networking ■ .. 199

3-1. Displaying Web Information .. 199

Problem .. 199

Solution... 199

How It Works ... 200

x Contents

3-2. Intercepting WebView Events ... 205

Problem .. 205

Solution... 205

How It Works ... 205

3-3. Accessing WebView with JavaScript .. 207

Problem .. 207

Solution... 207

How It Works ... 207

3-4. Downloading an Image File .. 210

Problem .. 210

Solution... 210

How It Works ... 210

3-5. Downloading Completely in the Background .. 213

Problem .. 213

Solution... 213

How It Works ... 213

3-6. Accessing a REST API ... 217

Problem .. 217

Solution... 217

How It Works ... 218

3-7. Parsing JSON .. 237

Problem .. 237

Solution... 237

How It Works ... 237

3-8. Parsing XML .. 240

Problem .. 240

Solution... 240

How It Works ... 240

xiContents

3-9. Receiving SMS .. 251

Problem .. 251

Solution... 251

How It Works ... 251

3-10. Sending an SMS Message .. 254

Problem .. 254

Solution... 254

How It Works ... 254

3-11. Communicating over Bluetooth... 257

Problem .. 257

Solution... 257

How It Works ... 257

3-12. Querying Network Reachability .. 266

Problem .. 266

Solution... 266

How It Works ... 267

3-13. Transferring Data with NFC ... 270

Problem .. 270

Solution... 270

How It Works ... 270

3-14. Connecting over USB .. 278

Problem .. 278

Solution... 278

How It Works ... 279

Summary .. 288

Chapter 4: Interacting with Device Hardware and Media ■ 289

4-1. Integrating Device Location .. 289

Problem .. 289

Solution... 289

How It Works ... 290

xii Contents

4-2. Mapping Locations .. 296

Problem .. 296

Solution... 296

How It Works ... 299

4-3. Annotating Maps ... 305

Problem .. 305

Solution... 305

How It Works ... 305

4-4. Monitoring Location Regions .. 321

Problem .. 321

Solution... 321

How It Works ... 322

4-5. Capturing Images and Video ... 331

Problem .. 331

Solution... 331

How It Works ... 331

4-6. Making a Custom Camera Overlay .. 337

Problem .. 337

Solution... 337

How It Works ... 338

4-7. Recording Audio .. 344

Problem .. 344

Solution... 344

How It Works ... 345

4-8. Capturing Custom Video.. 347

Problems .. 347

Solution... 347

How It Works ... 347

4-9. Adding Speech Recognition .. 352

Problem .. 352

Solution... 352

How It Works ... 352

xiiiContents

4-10. Playing Back Audio/Video ... 354

Problem .. 354

Solution... 354

How It Works ... 355

4-11. Playing Sound Effects ... 363

Problem .. 363

Solution... 363

How It Works ... 364

4-12. Creating a Tilt Monitor .. 366

Problem .. 366

Solution... 366

How It Works ... 367

4-13. Monitoring Compass Orientation .. 371

Problem .. 371

Solution... 371

How It Works ... 371

4-14. Retrieving Metadata from Media Content ... 375

Problem .. 375

Solution... 375

How It Works ... 375

4-15. Detecting User Motion .. 378

Problem .. 378

Solution... 378

How It Works ... 379

Summary .. 390

Chapter 5: Persisting Data ■ ... 391

5-1. Making a Preference Screen .. 391

Problem .. 391

Solution... 391

How It Works ... 392

xiv Contents

5-2. Displaying Custom Preferences .. 397

Problem .. 397

Solution... 397

How It Works ... 398

5-3. Persisting Simple Data.. 403

Problem .. 403

Solution... 404

How It Works ... 404

5-4. Reading and Writing Files ... 408

Problem .. 408

Solution... 408

How It Works ... 409

5-5. Using Files as Resources .. 416

Problem .. 416

Solution... 416

How It Works ... 416

5-6. Managing a Database ... 419

Problem .. 419

Solution... 419

How It Works ... 419

5-7. Querying a Database... 424

Problem .. 424

Solution... 425

How It Works ... 425

5-8. Backing Up Data ... 426

Problem .. 426

Solution... 427

How It Works ... 427

xvContents

5-9. Sharing Your Database .. 431

Problem .. 431

Solution... 431

How It Works ... 432

5-10. Sharing Your SharedPreferences .. 439

Problem .. 439

Solution... 439

How It Works ... 439

5-11. Sharing Your Other Data.. 448

Problem .. 448

Solution... 448

How It Works ... 449

5-12. Integrating with System Documents ... 456

Problem .. 456

Solution... 456

How It Works ... 457

Summary .. 470

Chapter 6: Interacting with the System ■ ... 471

6-1. Notifying from the Background ... 471

Problem .. 471

Solution... 471

How It Works ... 471

6-2. Creating Timed and Periodic Tasks ... 490

Problem .. 490

Solution... 490

How It Works ... 491

6-3. Scheduling a Periodic Task ... 492

Problem .. 492

Solution... 492

How It Works ... 494

xvi Contents

6-4. Creating Sticky Operations ... 501

Problem .. 501

Solution... 501

How It Works ... 502

6-5. Running Persistent Background Operations ... 506

Problem .. 506

Solution... 506

How It Works ... 507

6-6. Launching Other Applications ... 513

Problem .. 513

Solution... 513

How It Works ... 513

6-7. Launching System Applications .. 517

Problem .. 517

Solution... 517

How It Works ... 517

6-8. Letting Other Applications Launch Your Application ... 522

Problem .. 522

Solution... 522

How It Works ... 522

6-9. Interacting with Contacts .. 525

Problem .. 525

Solution... 525

How It Works ... 525

6-10. Reading Device Media and Documents .. 534

Problem .. 534

Solution... 534

How It Works ... 534

6-11. Saving Device Media and Documents .. 538

Problem .. 538

Solution... 538

How It Works ... 538

xviiContents

6-12. Reading Messaging Data .. 543

Problem .. 543

Solution... 543

How It Works ... 545

6-13. Interacting with the Calendar ... 555

Problem .. 555

Solution... 555

How It Works ... 555

6-14. Logging Code Execution ... 562

Problem .. 562

Solution... 562

How It Works ... 562

6-15. Creating a Background Worker ... 564

Problem .. 564

Solution... 564

How It Works ... 564

6-16. Customizing the Task Stack .. 569

Problem .. 569

Solution... 569

How It Works ... 570

6-17. Implementing AppWidgets .. 577

Problem .. 577

Solution... 577

How It Works ... 578

6-18. Supporting Restricted Profiles .. 599

Problem .. 599

Solution... 599

How It Works ... 600

Summary .. 612

xviii Contents

Chapter 7: Graphics and Drawing ■ .. 613

7-1. Creating Drawables as Backgrounds .. 613

Problem .. 613

Solution... 613

How It Works ... 614

7-2. Creating Custom State Drawables .. 621

Problem .. 621

Solution... 621

How It Works ... 622

7-3. Applying Masks to Images .. 627

Problem .. 627

Solution... 627

How It Works ... 628

7-4. Drawing Over View Content .. 638

Problem .. 638

Solution... 638

How It Works ... 639

7-5. High-Performance Drawing .. 655

Problem .. 655

Solution... 655

How It Works ... 656

7-6. Extracting Image Color Palettes .. 667

Problem .. 667

Solution... 667

How It Works ... 667

7-7. Tinting Drawable Elements ... 672

Problem .. 672

Solution... 672

How It Works ... 673

xixContents

7-8. Using Scalable Vector Assets .. 678

Problem .. 678

Solution... 678

How It Works ... 679

Summary .. 687

Chapter 8: Working with Android NDK and RenderScript ■ 689

Android NDK ... 689

8-1. Adding Native Bits with JNI... 691

Problem .. 691

Solution... 691

How It Works ... 693

8-2. Building a Purely Native Activity ... 701

Problem .. 701

Solution... 701

How It Works ... 702

RenderScript .. 712

Using the RenderScript Support Package .. 713

8-3. Filtering Images with RenderScript .. 714

Problem .. 714

Solution... 714

How It Works ... 714

8-4. Manipulating Images with RenderScript... 720

Problem .. 720

Solution... 720

How It Works ... 720

8-5. Faking Translucent Overlays with Blur .. 726

Problem .. 726

Solution... 726

How It Works ... 726

Summary .. 736

Index ... 737

xxi

About the Author

Dave Smith is a professional engineer developing hardware

and software for mobile and embedded platforms. Dave’s

engineering efforts are currently focused full-time on Android

development. Since 2009, Dave has worked on developing at

all levels of the Android platform, from writing user applications

using the software development kit, to building and customizing

the Android source code. Dave regularly communicates via his

development blog (http://blog.wiresareobsolete.com) and

Twitter stream @devunwired.

xxiii

About the Technical

Reviewer

Paul Trebilcox-Ruiz is an Android developer in Boulder,

Colorado, and active member in the local Boulder/Denver tech

scene. Since moving to Colorado, he has participated in and

won multiple hackathons, presented for GDG Denver and has

worked on multiple civic coding projects. He currently works

on the Android platform at SportsLabs, building and designing

applications for university athletics programs across the United

States.

Android Recipes is the first book that Paul has contributed to,

and an earlier edition of the book was the first Android book that

he purchased when learning the platform while obtaining his BS

in computer science from California State University, Fresno.

xxv

Acknowledgments

First and foremost, I would like to thank my wife, Lorie, for her eternal patience and support

during the long hours I spent compiling and constructing the materials for this book.

Second, I send a huge thank you to the editorial team that Apress brought together to work

with me and make the book the best it could possibly be; you guys are the ones who make

me look good. Without your time and effort, this project would not even exist.

	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Introduction
	Index

