
www.allitebooks.com

http://www.allitebooks.org

Android Studio Essentials

A fast-paced guide to get you up and running with
Android application development using Android Studio

Belén Cruz Zapata

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android Studio Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-720-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Belén Cruz Zapata

Reviewers
Karan Kedar Balkar

Rick Boyer

Ankit Garg

Antonio Hernández Niñirola

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Sriram Neelakantan

Technical Editors
Mrunal M. Chavan

Dennis John

Copy Editor
Vikrant Phadke

Project Coordinator
Judie Jose

Proofreaders
Simran Bhogal

Kevin McGowan

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Belén Cruz Zapata received her engineer's degree in computer science from
the University of Murcia, Spain, where she specialized in software technology
and intelligent and knowledge-based technology. She earned an MSc degree in
computer science and is now working on her PhD in the software engineering
research group at the University of Murcia.

During the academic year of 2013-2014, Belén collaborated with Université
Mohammed V-Soussi, Rabat, Morocco. Her research was focused on mobile
technologies in general but especially applied to medicine.

Belén is currently working as a mobile developer for Android and iOS in the
San Francisco Bay Area. She is the author of Testing and Securing Android Studio
Applications, Packt Publishing.

She maintains a blog at http://www.belencruz.com, where you can follow
her projects. You can also follow her on Twitter at @belen_cz.

I would like to thank Packt Publishing for offering me the opportunity
to write this book. I would particularly like to thank Richard
Brookes-Bland and Sriram Neelakantan for their valuable help.

I would also like to thank my mentors during the last few months,
Miguel R. and P. Salinas; my friends, especially Ana, Nerea, and
the Yupi group, for cheering me up; my family, especially my
parents and brother for supporting me; and finally, my significant
other for everything.

www.allitebooks.com

http://www.belencruz.com
http://www.allitebooks.org

About the Reviewers

Karan Kedar Balkar has been working as an independent Android application
developer for the last 4 years. Born and brought up in Mumbai, he holds a bachelor's
degree in computer engineering. He has written over 50 programming tutorials
on his personal blog (http://karanbalkar.com), covering popular technologies
and frameworks.

At present, Karan is a software engineer. He has been trained on various
technologies such as Java, Oracle, and .NET. Besides being passionate about
technology, he loves to write poems and travel to different places. He also likes
listening to music and enjoys playing the guitar.

Firstly, I would like to thank my parents for their constant support
and encouragement. I would also like to thank my friends, Srivatsan
Iyer, Ajit Pillai, and Prasaanth Neelakandan, for always inspiring
and motivating me.

I would like to express my deepest gratitude to Packt Publishing
for giving me a chance to be a part of the reviewing process.

Rick Boyer began programming when he was 11 and wrote his first paid program
before graduating from high school. Against his better judgment, programming
became his career, and he never looked back. With over 20 years of professional
software development experience in Windows, the Web, and several mobile
platforms, he started his own software consulting business called NightSky
Development. He's always had a passion for mobile computing and now focuses
on Android development. His hobbies include astronomy, computer games, and
gardening. You can contact him at about.me\RickBoyer.

www.allitebooks.com

http://karanbalkar.com
about.meRickBoyer
http://www.allitebooks.org

Ankit Garg is a mobile engineer with four and a half years of work experience and
is based at Mountain View, California. Currently, he works with AOL as an Android
engineer. He has worked on AOL Mail Mobile Web and other Android products.
He is passionate about mobile technology and user product experience.

Antonio Hernández Niñirola is a computer science engineer and mobile
application developer. He was born and raised in Murcia in the southeast of Spain.
He has developed several websites and mobile applications that have been published
in both Google Play Market and Apple Store.

As soon as Antonio got his first smartphone—a second-hand, first-generation
iPhone—he started programming small applications as a form of entertainment.
What started as a hobby became a passion and is now leading his career, both
professionally and academically.

After getting his BSc in computer science, he got a master's degree in technology
and informatics. Antonio went for further studies and is now a doctorate student
in the software engineering group of the Faculty of Computer Science of the
University of Murcia. His main research topic is the usability and security
assessment of mobile applications.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installing and Configuring Android Studio	 5

Preparing for installation	 5
Downloading Android Studio	 6

Installing Android Studio	 6
Running Android Studio for the first time	 7

Configuring the Android SDK	 8
Summary	 11

Chapter 2: Starting a Project	 13
Creating a new project	 14

Configuring the project	 14
Selecting the form factors	 15
Choosing the activity type	 16

Summary	 21
Chapter 3: Navigating a Project	 23

The project navigation panel	 24
The project structure	 26

The resources folder	 27
Gradle	 28

Project settings	 29
Summary	 30

Chapter 4: Using the Code Editor	 31
Customizing the editor settings	 32
Code completion	 34
Code generation	 37
Navigating code	 37
Useful shortcuts	 40
Summary	 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 5: Creating User Interfaces	 41
The graphical editor	 42
The text-based editor	 44
Creating a new layout	 44
Adding components	 45
Supporting multiple screens	 47
Changing the UI theme	 50
Handling events	 51
Summary	 54

Chapter 6: Tools	 55
The SDK Manager	 56
The AVD Manager	 57
The Navigation Editor	 62
Generating a Javadoc	 65
Version control systems	 66
Summary	 68

Chapter 7: Google Play Services	 69
How Google Play services work	 69
Services available	 70
Adding Google Play services to Android Studio	 71
Google Maps Android API v2	 74
Google+ Platform for Android	 76
Google Play In-App Billing v3	 77
Google Cloud Messaging	 77
Summary	 78

Chapter 8: Debugging	 79
Running and debugging	 79

Console	 80
Debugger	 81
LogCat	 83
Memory Monitor	 85

Android Device Monitor	 85
Threads	 86

Method profiling	 86
Heap	 88
Allocation Tracker	 89
Network Statistics	 90

Table of Contents

[iii]

File Explorer	 90
Emulator Control	 90
System Information	 90

Summary	 91
Chapter 9: Preparing for Release	 93

Understanding an APK file	 93
Steps to take before releasing your app	 95
Generating a signed APK	 96
Summary	 97

Appendix: Getting Help	 99
Getting help from Android Studio	 99
Android online documentation	 100
Updates	 102
Summary	 103

Index	 105

Preface
Mobile applications have seen a huge increase in popularity in the last few years, and
this interest is still growing among users. Mobile operating systems are available not
only for smartphones but also for tablets, thus increasing the possible market quota
for these applications.

Android has characteristics that make it pleasant to developers, such as its open
source nature and a certain level of community-driven development. Android has
always been contesting with iOS (the Apple mobile system) in everything, and with
Xcode, iOS presented itself as a more centralized development environment. The
new IDE, Android Studio, makes this centralization finally available for Android
developers, and makes this tool indispensable for a good Android developer.

This book shows users how to develop and build Android applications with this new
IDE. It is not only a "getting started" book but also a guide to advanced developers
to build their applications faster and more productively. This book will follow
a tutorial-like approach, from the basic features to the steps to build for release,
including practical examples.

What this book covers
Chapter 1, Installing and Configuring Android Studio, describes the installation and
basic configuration of Android Studio.

Chapter 2, Starting a Project, shows how to create a new project and the type of
activities we can select.

Chapter 3, Navigating a Project, explores the basic structure of a project in
Android Studio.

Chapter 4, Using the Code Editor, exposes the basic features of the code editor in order
to get the best out of it.

Preface

[2]

Chapter 5, Creating User Interfaces, focuses on the creation of the user interfaces using
both the graphical view and the text-based view.

Chapter 6, Tools, introduces the currently existing Google Play services and shows
how to integrate them with a project in Android Studio.

Chapter 7, Google Play Services, exposes some additional tools such as Android SDK
tools, Javadoc, and version control integration.

Chapter 8, Debugging, shows in detail how to debug an application in Android Studio
and the provided information when debugging.

Chapter 9, Preparing for Release, describes how to prepare your application for
its release.

Appendix, Getting Help, teaches you how to get help using Android Studio and
provides a list of online sites to learn more about the topics seen in this book.

What you need for this book
For this book, you need a Windows, Mac, or Linux system. You will also need to
have Java installed in your system.

Who this book is for
This book is not only a "getting started" book but also a guide for advanced
developers who have not used Android Studio to build their Android apps before.
This book is great for developers who want to learn the key features of Android
Studio and for developers who want to create their first app.

It's assumed that you are familiar with the object-oriented programming paradigm
and the Java programming language. It is also required to understand the main
characteristics of the Android mobile system.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The default installation directory is /Applications/Android\ Studio.app."

Preface

[3]

A block of code is set as follows:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if (savedInstanceState != null) {
 System.out.println("savedInstanceState = " +
savedInstanceState);
 }
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
" Select Blank Activity and click on Next."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Installing and Configuring
Android Studio

The new and official Google IDE, Android Studio, with all its varied features, is
ready to be explored. Would you like to make your own Android applications and
make these applications available to other users on Google Play Store? Can you do
this easily? How can you achieve this?

This chapter will show you how to prepare your new Android Studio installation, and
help you take your first steps in the new environment. We will begin by preparing the
system for the installation and downloading the required files. Then we will see the
welcome screen that prompts when running Android Studio for the first time, and
accordingly, we will configure the Android software development kit (SDK) properly
so that we have everything ready to create our first application.

These are the topics that we will cover in this chapter:

•	 Installing Android Studio
•	 Running Android Studio for the first time
•	 Configuring the Android SDK

Preparing for installation
A prerequisite to start working with Android Studio is to have Java installed on
your system. The system must also be able to find the Java installation. This can
be achieved by installing the Java Development Kit (JDK) on your system and
then setting an environment variable named JAVA_HOME, which points to the SDK
folder in your system. Check this environment variable to avoid issues during the
installation of Android Studio.

Installing and Configuring Android Studio

[6]

Downloading Android Studio
The Android Studio package can be downloaded from the Android developer tools
web page, at http://developer.android.com/sdk/index.html, by clicking on
the download button, as is shown in the next screenshot. This package is an EXE
file for Windows systems, a DMG file for Mac OS X systems, and a TGZ file for
Linux systems.

Installing Android Studio
In Windows, launch the EXE file. The default installation directory is \Users\<your_
user_name>\AppData\Local\Android\android-studio. The AppData directory is
usually a hidden directory.

In Mac OS X, open the DMG file and drop Android Studio into your Applications
folder. The default installation directory is /Applications/Android\ Studio.app.

In Linux systems, unzip the TGZ file and execute the studio.sh script located in the
android-studio/bin/ directory.

If you have any problem in the installation process or in the following steps, you can
get help on this and on other known issues by checking out Appendix, Getting Help.

http://developer.android.com/sdk/index.html

Chapter 1

[7]

Running Android Studio for the first time
Execute Android Studio and wait until it loads completely. This may take a few
minutes on the first time. The first time you execute Android Studio, you will be
prompted by a welcome screen. As shown in the following screenshot, the welcome
screen includes a section to open recent projects and the Quick Start section. The
Quick Start section provides options to start a new project, open a project, import
a project, and even perform more advanced actions such as checking out from a
version control system and modifying the configuration options.

Let's take a look at the various options available in the Quick Start section:

•	 Start a new Android Studio project: This creates a new Android project
from scratch.

•	 Open an existing Android Studio Project: This opens an existing project.
•	 Import an Android code sample: This imports a project containing Google

code samples from GitHub.
•	 Check out project from Version Control: This creates a new project by

importing existing sources from a version control system.

www.allitebooks.com

http://www.allitebooks.org

Installing and Configuring Android Studio

[8]

•	 Import Non-Android Studio project: This creates a new project by importing
existing sources from your system.

•	 Configure: This opens the configuration menu. The configuration menu has
the following options:

°° SDK Manager: This opens the Android SDK tool, which will be
explained in Chapter 6, Tools.

°° Settings: This opens the Android Studio preferences.
°° Plugins: This opens the plugins manager for Android Studio.
°° Import Settings: This imports the settings from a file (.jar).
°° Export Settings: This exports the settings to a file (.jar).
°° Project Defaults: This opens the project defaults settings menu.

Settings: This opens the template project's settings.
These settings are also reachable through the Android
Studio settings (by navigating to Configure | Settings).
Project Structure: This opens the project and
platform settings.
Run Configurations: This opens the run and debug settings.

•	 Docs and How-Tos: This opens the help menu, which contains the
following options:

°° Read Help: This opens the Android Studio help, an online version
°° Tips of the Day: This opens a dialog with the tip of the day
°° Default Keymap Reference: This opens an online PDF file

containing the default keymap
°° JetBrains TV: This opens a JetBrains website containing

video tutorials
°° Plugin Development: This opens a JetBrains website

containing information for plugin developers

Configuring the Android SDK
The essential feature that needs to be configured correctly is the Android SDK.
Although Android Studio automatically installs the latest Android SDK available,
you should have everything you need beforehand to create your first application.
It is important to check it and to learn how we can change it.

Chapter 1

[9]

In the Android Studio welcome screen, navigate to Configure | Project Defaults
| Project Structure. In SDK Location, you should have a selected Android SDK
location, as shown in the next screenshot. This selected SDK location is the default
location that will be used in our Android projects. However, we can change it later
for specific projects that require special settings.

If you don't have any Android SDK configured in Android Studio, then you have to
add it manually.

Installing and Configuring Android Studio

[10]

To accomplish this task, click on the ellipsis button to add an Android SDK, and then
select the home directory for the SDK. Check whether you have it in your system
by navigating to your Android Studio installation directory. You should find a
folder named sdk. It contains the Android SDK and its tools. The Android Studio
installation directory might be in a hidden folder, so click on the button highlighted
in the following screenshot to show hidden files and directories:

If you wish to use another Android SDK location that is different from the location
included with Android Studio, select this instead. For example, if you previously
used the Android Development Tools (ADT) plugin for Eclipse, you already have
an Android SDK installed in your system.

Chapter 1

[11]

Summary
We successfully prepared the system for Android Studio and installed our Android
Studio instance. We ran the Studio for the first time, and now we know the options
available on the welcome screen. Also, you learned how to configure your Android
SDK and install it manually in case you wish to use a different version. Completing
these tasks will leave our system with Android Studio running and configured to
create our first project.

In the next chapter, we will learn about the concept of a project and how it includes
everything the application requires, from classes to libraries. We will also create our
first project and discuss the different kinds of activities available in the wizard.

Starting a Project
Now that you have installed Android Studio, the next thing to do is to get familiar
with its features. You need to understand the necessary fields and form factors when
creating a project. Also, you may need to choose the activity type to create the main
activity. How can you achieve this using Android Studio?

In this chapter, we will discuss how to create a new project with the basic content
that is needed to start out. We will use the Android Studio wizard to create the
project and go through the project configuration fields. We will select one of the
different kinds of activities available in the wizard as our main activity.

These are the topics we'll be covering in this chapter:

•	 Creating a new project
•	 Selecting the parameters
•	 Choosing your main activity from different types of activities

Starting a Project

[14]

Creating a new project
To create a new project, click on the Start a new Android Studio project option
from the welcome screen. If you are not in the welcome screen, then navigate to
File | New Project. This opens the New Project wizard, as shown in the
following screenshot:

Configuring the project
The fields that will be shown in the New Project wizard are as follows:

•	 Application name: This is the name shown in Google Play and the name
that users see.

•	 Company Domain: This is the company or domain name that is used to
create the package name of your application.

Chapter 2

[15]

•	 Package name: This is the unique identifier of your application, usually in
the com.company_name.app_name or reverse_company_domain.app_name
form. This form reduces the risk of name conflicts with other applications.
A default package name is proposed based on the Company Domain and
Application name fields. You can change the package name by clicking
on Edit.

•	 Project location: This is the directory in your system in which the project
is saved.

Complete the information for your project and click on the Next button. This will
take you to the second screen. This screen allows you to select your platform and
the minimum SDK your project will support on different devices.

Selecting the form factors
Because of the way Android has expanded to different types of devices, you may
want to select one or more kinds of platforms and devices to be included in your
project. For each type of device, you can select a different minimum SDK. The
devices Android supports are as follows:

•	 Phone and Tablet: These are standard Android platforms used to create an
application for phones and/or tablets

•	 TV: This is an Android TV platform used to design applications for big
screens, such as those of television sets

•	 Wear: This is an Android Wear platform used to design applications for
wearable devices such as smart watches

•	 Glass: This is an Android Glass platform used to design applications for
Google Glass devices

To include any of these platforms in your project, you need to have them installed in
your system. A tool known as Android SDK Manager has to be used to install a new
platform. The Android SDK Manager tool will be explained in Chapter 6, Tools.

Once you've decided on your devices, you can choose the minimum SDK supported
by your application. Devices with an older SDK will not be able to install your
application. Try to reach a balance between supported devices and available features.
If your application does not require a specific feature published in the newest SDKs,
then you can select an older application programming interface (API). The latest
dashboards published by Google about platform distribution show that 99.5 percent
of devices use Android 2.3 or later versions. If you select Android 2.2, then the
percentage rises to 100 percent. You can check out these values by clicking on the
Help me choose link. The official Android dashboards are also available at http://
developer.android.com/about/dashboards/index.html.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

Starting a Project

[16]

Check the Phone and Tablet option and select API 15 as the minimum SDK. After
that, click on Next. This will take you to the next screen, where you can select the
activity type.

Choosing the activity type
Activities are the components associated with the screens with which users interact in
an application. Android applications are usually based on multiple activities. When
an application is launched, the activity indicated as the main activity is displayed. The
third screen allows you to create the main activity of your application. You can also
complete the creation of a new project without adding an activity.

Several types of activities that can be selected are as follows:

•	 Blank Activity: This creates a blank activity with an action bar. The action
bar includes a title and an options menu. Action bars can provide navigation
modes and user actions. You can read more about action bars at http://
developer.android.com/guide/topics/ui/actionbar.html. The
following screenshot shows Blank Activity:

•	 Blank Activity with Fragment: This creates a blank activity with an action bar
and a contained fragment. A fragment is a portion of the user interface in an
activity. Fragments can be reused in multiple activities, and multiple fragments
can be combined in a single activity. You can find out more about fragments
at https://developer.android.com/guide/components/fragments.html.
Here is a screenshot showing Blank Activity with Fragment:

http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/guide/topics/ui/actionbar.html
https://developer.android.com/guide/components/fragments.html

Chapter 2

[17]

•	 Fullscreen Activity: This template hides the system user interface (such as
the notification bar) in a fullscreen view. By default, the fullscreen mode is
alternated with an action bar that shows up when the user touches the device
screen. Fullscreen Activity is shown in the following screenshot:

•	 Google Maps Activity: This template creates a new activity with a Google
map. It is shown in the next screenshot:

www.allitebooks.com

http://www.allitebooks.org

Starting a Project

[18]

•	 Google Play Services Activity: This template creates a new activity
connected to the Google Play Services client. It is shown in the
following screenshot:

•	 Login activity: This template creates a view as a login screen, allowing the
users to log in or register with an e-mail and a password.

Chapter 2

[19]

•	 Master/Detail Flow: This template splits the screen into two sections: a
left-hand-side menu and the details of the selected item on the right-hand
side. On a smaller screen, just one section is displayed, but on a bigger
screen, both sections are displayed at the same time.

•	 Navigation Drawer Activity: This template creates a new activity with
a navigation drawer. A navigation drawer displays the main navigation
options in a panel that is brought onto the screen from a left-hand side panel.
You can read more about navigation drawers at https://developer.
android.com/design/patterns/navigation-drawer.html.

https://developer.android.com/design/patterns/navigation-drawer.html
https://developer.android.com/design/patterns/navigation-drawer.html

Starting a Project

[20]

•	 Settings Activity: This creates a preferences activity with a list of settings.

•	 Tabbed Activity: This creates a blank activity with an action bar similar to
the Blank Activity menu, but it also includes a navigational element. The
navigational element can be a tabbed user interface (fixed or scrollable tabs),
a horizontal swipe, or a spinner menu.

Select Blank Activity and click on Next. In the final screen, we can give a name to
the activity and its associated layout. Retain the default values and click on Finish.

Chapter 2

[21]

Summary
We used the Android Studio wizard to create our first project, and filled the
configuration fields. We also went through the different kinds of activities.

In the next chapter, we will go through the different elements of the structure of
Android Studio. We will see how to create new classes, add and access libraries,
and configure the project.

Navigating a Project
Now that you have created your first Android Studio project, you will understand
what is going on. Before you start programming, you need to familiarize yourself
with the navigation through the project. How is everything structured? Which
settings can you change in the project? How can you change these settings and
what do they mean?

This chapter is designed to introduce the structure of a project in Android Studio.
We will start by examining the project navigation panel. Then we will go through the
most important folders in our project—build, gen, and libs—and the folders under
src/main, and you will learn how to change the project settings.

These are the topics we'll be covering in this chapter:

•	 The navigation panel
•	 The project structure
•	 Changing project properties

Navigating a Project

[24]

The project navigation panel
Initially, no project or file is displayed in the main view of Android Studio, as you
can see in the next screenshot. As Android Studio suggests, press Alt + 1 to open the
project view. You can also open it by clicking on the Project button on the left edge
of the screen.

The Project view shows the list of open projects. These projects are displayed in a
hierarchical view.

We can change the type of view to Project, Packages, or Android from the
upper-left corner of the project explorer, as shown in the following screenshot.
The Project view shows the directory structure of the project. The Packages view
shows only the package structure. The Android view shows only the folders where
you, as a developer, will include or edit your application files. These folders are
related only to the Android application listed in a simplified structure: the java
classes folder, the res resources folder, the manifest file, and the Gradle scripts.

Chapter 3

[25]

In the upper-right corner of the screen, there are some actions and a drop-down
menu to configure the Project view. These actions are highlighted in the
following screenshot:

Right-click on the project name to open the context menu, or click on any element of
the project. From this menu, we can:

•	 Create and add new elements to the project
•	 Cut, copy, paste, or rename files in the project
•	 Find the elements in the project
•	 Analyze and reformat the code
•	 Build the project
•	 Compare files
•	 Open files in Explorer

Navigating a Project

[26]

The project structure
We can examine the project structure in the project navigation pane. The project
structure includes a folder with the name of our application. This folder contains
the application structure and files. The most important elements of the application
structure are in the app directory. These include:

•	 build/: This is a folder that contains the resources compiled after building
the application and the classes generated by the Android tools, such as the
R.java file, which contains references to the application resources.

•	 libs/: This is a folder that contains the libraries referenced from our code.
•	 src/androidTest/: This is a folder that contains the test classes of the Java

classes that need to be tested.
•	 src/main/: This is a folder that contains the sources of our application.

All the files we usually work with are in this folder. The main folder is
subdivided as follows:

°° java/: This is a folder that contains Java classes organized as
packages. Every class we create will be in our project package
namespace (com.example.myapplication). When we created our
first project, we also created its main activity, so the activity class
should be in this package. The following screenshot shows this
main activity class inside the project structure:

Chapter 3

[27]

°° res/: This is a folder that contains project resources such as the
XML files that specify layouts and menus, or image files.

°° AndroidManifest.xml: This is an essential file in an Android project,
which is generated automatically when we create the project. This
file declares the basic information needed by the Android system to
run the application: package name, version, activities, permissions,
intents, or required hardware.

•	 build.gradle: This file is the script used to build our application. We will
discuss how to configure options in this file in the Gradle subsection.

The resources folder
The resources are all non-code assets associated with our application. Elements such
as images or strings are externalized from the code as resources, making it easy to
update them without changing the code. Some examples of resources include colors,
images, graphics, layouts, strings, and styles. The resources are distributed in the
following folders:

•	 color/: This is a folder that contains the color state lists used in our
application. The color state lists define colors and color changes based
on the component states.

•	 drawable/: This is a folder that contains the images used in our application.
There are different drawable folders categorized into different screen densities.
When we created our first project, a default application icon was also created.
This icon, named ic_launcher.png, is already in these folders.

•	 layout/: This is a folder that contains the XML definitions of the views and
their elements.

•	 menu/: This is a folder that contains the XML definitions of the menus of
the application.

•	 values/: This is a folder that contains the XML files that define sets of name-
value pairs. These values can be colors, strings, or styles. There are different
values folders categorized into different screen options to adapt the interface
to them; for example, to enlarge the components or the fonts when the
application is running on a tablet.

Our basic project contains some basic resources. Therefore, all the folders discussed
here are not necessarily included by default.

www.allitebooks.com

http://www.allitebooks.org

Navigating a Project

[28]

Gradle
Applications in Android Studio are built using Gradle. Gradle is a build automation
tool that is independent of Android Studio but totally integrated with it. Gradle
uses an extensible and declarative domain-specific language (DSL) that is based
on Groovy. A Gradle build file consists of one or more projects, and each project
contains one or more tasks. A task represents a piece of work to be built. You can
learn more about Gradle at http://www.gradle.org/.

The configuration for the build process is declared in the Gradle build files included
in the Android projects. As explained previously, in the project structure, the build
configuration file of the Android application is defined in the /app/build.gradle
file. Some of the main options we can configure in this file are as follows:

•	 Variants: We can configure different versions of our application using
the same project, for example, to create demo and paid versions. The
variants depend on the build type (the buildTypes tag) and product flavor
configurations (the productFlavors tag). For example, two build types are
debug and release, and two product flavors are demo and paid.

•	 Dependencies: We can indicate the local or remote dependencies of our
project on other modules or libraries. These dependencies are declared under
the dependencies tag.

•	 Manifest entries: We can override some entries of the manifest Android
file in the build file, providing a dynamic configuration of the manifest file.
For example, we can override the values of the package name, the minimum
SDK, or the target SDK. These configurations are defined under the android/
defaultConfig tags.

•	 Signing: We can activate the application signing for the release version.
The build system uses a default certificate to sign the debug version of the
application. We can configure our key and certificate to sign the release
version as well. These configurations are defined under the android/
signingConfigs tags.

http://www.gradle.org/

Chapter 3

[29]

Project settings
You can navigate to the two dialogs that contain project settings using the following:
File | Settings and File | Project Structure. Both are also available in the toolbar.

Select your project from the project view and navigate to the Settings menu in File.
The left-hand-side panel of the Settings dialog displays a section named Project
Settings [MyApplication]. Some important options are as follows:

•	 Code Style: This configures the default code style scheme.
•	 Compiler: This configures the Android DX compiler used when building

our application.
•	 File Encodings: This changes the file's encoding. The default encoding is

UTF-8.
•	 Gradle: This gives Gradle's configuration.
•	 Language Injections: This adds or removes the available languages used in

the editor.
•	 Version Control: This configures the version control options. Version

control will be explained in more detail in Chapter 6, Tools.

In addition to these, there are further settings in the Project Structure dialog.
Navigate to File | Project Structure. The settings include the following:

•	 SDK Location: We can change the project SDK. In Chapter 1, Installing and
Configuring Android Studio, we selected an SDK as the default. In this screen,
we can change this SDK, just for the current project.

•	 Project: We can change the Gradle version or the plugin and library repository.
•	 Modules: According to IntelliJ IDEA (http://www.jetbrains.com/idea/

webhelp/module.html), the following is the definition of a module:
A module is a discrete unit of functionality which you can compile,
run, test and debug independently.

The Modules menu shows a list of existing modules with their facets. The
default module we have in our project is the app module. The settings tabs
correspond to the following Gradle build file configurations: Properties,
Signing, Flavors, Build Types, and Dependencies.

http://www.jetbrains.com/idea/webhelp/module.html
http://www.jetbrains.com/idea/webhelp/module.html

Navigating a Project

[30]

•	 Libraries: This menu shows a list of the libraries imported to the project.
We can also remove them or add new libraries. They will be added to the
libs/ folder.

Summary
We saw how projects are presented in Android Studio and which folders they
contain by default when created. We explored the reasons for having those folders
and examined the AndroidManifest.xml file and its purpose. We also went through
the project settings in the Preferences and Project Structure dialogs. By now, you
know how to manipulate and navigate through a project in Android Studio.

In the next chapter, we will discuss how to use the text editor. Proper knowledge
of the text editor is important in order to improve our programming efficiency.
Next, we will learn about the editor settings and how to autocomplete code, use
pregenerated blocks of code, and navigate through the code. You will also learn
about some useful shortcuts.

Using the Code Editor
Now that you have created your first project and learned how to navigate through
different folders, subfolders, and files, it's time to start programming. Have you
ever wanted to be able to program more efficiently? How can you speed up your
development process? Do you want to learn useful shortcuts too? For example, how
can you comment more than one line at once, find and replace strings, or move faster
through different parameters in a method call?

In this chapter, you will learn how to use and customize the code editor in order to
feel more comfortable when programming. It is worth learning the basic features
of the code editor in order to increase your productivity. You will learn about code
completion and code generation. Finally, you will learn some useful shortcuts and
hotkeys to speed up the development process.

These are the topics we'll be covering in this chapter:

•	 Customizing the code editor
•	 Code completion
•	 Code generation
•	 Finding related content
•	 Useful shortcuts

Using the Code Editor

[32]

Customizing the editor settings
To open the editor settings, navigate to File | Settings. In the IDE Settings section of
the left panel, select Editor. This displays the general settings of the editor in the right
panel. We recommend checking two of the options that are unchecked by default:

•	 Change font size (Zoom) with Ctrl+Mouse Wheel: Checking this option
allows us to change the font size of the editor using the mouse wheel, as we
do in other programs such as web browsers.

•	 Show quick doc on mouse move: Checking this option enables the display of
a brief document about the code in a small dialog when we move the mouse
over a piece of code and wait for 500 milliseconds. When we move the mouse
again, the dialog automatically disappears, but if we move the mouse into
the dialog, then we can examine the document in detail. This is very useful to
read what a method does and to identify its parameters without navigating
to it. The following screenshot displays this functionality:

Chapter 4

[33]

There are more settings, distributed among seven categories as follows:

•	 Smart Keys: This category configures actions to be done automatically while
typing, such as adding closing brackets, quotes, or tags, and indenting the
line when we press the Enter key.

•	 Appearance: This category configures the appearance of the editor. Here,
you can change the theme, customize the fonts and colors, and so on. We
recommend checking the next two options. They are unchecked by default:

°° Show line numbers: This shows the line numbers on the left edge
of the editor. It can be very useful when we are debugging or
examining the log.

°° Show method separators: This visually separates the methods of
a class.

•	 Colors & Fonts: This category changes fonts and colors. There are a lot of
options and elements to configure (keywords, numbers, warnings, errors,
comments, strings, and so on). We can save the configurations as schemes.

•	 Editor Tabs: This category configures the editor tabs. We advise you to select
the Mark modified tabs with asterisk option to easily detect modified and
unsaved files.

•	 Code Folding: This category collapses or expands code blocks. The code
folding option allows us to hide code blocks that we are not editing,
simplifying the code view. We can collapse or expand the blocks using the
icons from the editor, as shown in the following screenshot, or by using the
Folding menu from Code:

Using the Code Editor

[34]

•	 Code Completion: This category configures the code completion options.
We will examine code completion in detail in the next section.

•	 Auto Import: This category configures how the editor behaves when we
paste code that uses classes not imported into the current class. By default,
when we do this, a pop-up appears, and it tells us to add the import
command. If we check the Add unambiguous imports on the fly option,
the import command is added automatically, without our interaction.

Code completion
Code completion helps us write code quickly by automatically completing the code
using dynamic suggestion lists that are generated based on what we just typed.

The basic code completion is the list of suggestions that appears while we are typing,
as shown in the following screenshot. If the list is not displayed, press Ctrl and the
spacebar to open it.

Chapter 4

[35]

Keep typing, select a command from the list, and press Enter or double-click to add
it to your code. If the code you are writing is an expression and you want to insert
the expression in its negated form, then select the expression from the suggestion list,
and instead of pressing Enter or double-clicking it, press the exclamation mark key
(!). The expression will be added with negation.

Another type of code completion is smart type code completion. If you are typing a
command to call a method with a String parameter, then only the String objects will
be suggested. This smart completion occurs in the right-hand side of an assignment
statement, parameters of a method call, return statements, or variable initializers. To
open the smart suggestions list, press Ctrl + Shift along with the spacebar.

Using the Code Editor

[36]

To show the difference between these two types of suggestion lists, create two objects
of different classes, String and int, in your code. Then call a method with a String
parameter, for example, the i method of the Log class. When typing the String
parameter, note the difference between opening the basic suggestion list (Ctrl +
spacebar), which the next screenshot shows, and opening the smart type suggestion
list (Ctrl + Shift + spacebar), which the second screenshot shows.

In the first list, which is shown in the previous screenshot, both objects are suggested,
although the int object does not match the parameter class. In the second list, which
is shown in the following screenshot, only String objects are suggested:

One last utility of code completion is the completion of statements. Type a statement,
press Ctrl + Shift + Enter, and notice how the closing punctuation is automatically
added. If you press these keys after typing the if keyword, then the parentheses and
the brackets are added to complete the conditional statement. This shortcut can also
be used to complete method declarations. Start typing a method, and after typing the
opening parenthesis or the method parameters, press Ctrl + Shift + Enter. The closing
parenthesis and the brackets are added to complete the method specification.

Chapter 4

[37]

Code generation
To generate blocks of code in a class, navigate to Code | Generate or use the Alt
+ Insert shortcut. We can generate constructors, getters and setters methods, and
equals and toString methods. We can also override or delegate methods.

Another way of generating code is surrounding some of our code with statements
(if, if/else, while, for, try/catch, and so on). Select a code line and navigate to
Code | Surround With or press Ctrl + Alt + T.

The third option is inserting code templates. Navigate to Code | Insert Live
Templates or press Ctrl + J to open a dialog of the available templates. These
templates can insert code to iterate collections, arrays, lists, and so on; code to print
formatted strings; code to throw exceptions; or code to add static and final variables.
The left edge of the dialog shows the prefix for each template. If you type the prefix
in the editor and press the Tab key, the code template is added automatically.

Type inn at the end of the onCreate method of our main activity and press Tab.
A conditional block will appear. In this new block, type soutv and press Tab again.
The result is as follows:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if (savedInstanceState != null) {
 System.out.println("savedInstanceState = " +
savedInstanceState);
 }
}

Navigating code
The most direct way of navigating to declarations or type declarations is by pressing
Ctrl and clicking on the method name when it is displayed as a link. This option is
also accessible from the Declaration menu in Navigate.

www.allitebooks.com

http://www.allitebooks.org

Using the Code Editor

[38]

We can navigate through the hierarchy of methods from the left edge of the editor.
Next to the method declarations that belong to a hierarchy of methods, there is
an icon that indicates whether a method is implementing an interface method,
implementing an abstract class method, overriding a superclass method, or getting
implemented or overridden by other descendants. Click on these icons to navigate
to the methods in the hierarchy. This option is also available via Navigate | Super
Method or Navigate | Implementation(s). You can test it in the main activity of our
first project (MainActivity.java), as shown in the following screenshot:

Another useful utility related to code navigation is the use of custom regions. A
custom region is a piece of code that you want to group and name. For example, if
there is a class with many methods, we can create custom regions to distribute the
methods among them. A region has a name or description, and it can be collapsed
or expanded using code folding.

To create a custom region, we can use code generation. Select the fragment of code,
navigate to Code | Surround With, and select one of these two options:

•	 <editor-fold…> Comments
•	 region…endregion Comments

Both of these options create a region but use different styles.

When we are using custom regions, we can navigate to them using the Custom
Region menu in Navigate. The rest of the navigation options are accessible from the
Navigate menu. Some of these options are as follows:

•	 Class/File/Symbol: This finds a class, file, or symbol by its name.
•	 Line: This option goes to a line of code by its number.
•	 Last Edit Location: This navigates to the most recent change point.

Chapter 4

[39]

•	 Test: This navigates to the test of the current class.
•	 File Structure: This opens a dialog that shows the file structure. Open the file

structure of our main activity and observe how the structure is presented,
displaying the list of methods and the icons that indicate the type or visibility
of the element, as shown in the following screenshot:

•	 File Path: This opens a dialog that shows the complete path to the file
opened in the editor.

•	 Type Hierarchy: This opens a dialog that shows the type hierarchy of the
selected object.

•	 Method Hierarchy: This opens a dialog that shows the method hierarchy of
the selected method.

•	 Call Hierarchy: This opens a dialog that shows the call hierarchy of the
selected method.

•	 Next Highlighted Error: This navigates to the next error.
•	 Previous Highlighted Error: This navigates to the previous error.
•	 Next Method: This navigates to the next method.
•	 Previous Method: This navigates to the previous method.

Using the Code Editor

[40]

Useful shortcuts
You can find all the available shortcuts and change them through the Keymap option
in the IDE Settings section of Settings. Some useful shortcuts for Windows are
included in the following list:

Shortcut Description
Ctrl + W This selects expressions based on grammar. Press these keys

repeatedly to expand the selection. The opposite command is
Ctrl + Shift + W.

Ctrl + / This comments each line of the selected code. To block
comments, use Ctrl + Shift + /.

Ctrl + Alt + I This indents the selected code. This is useful when cleaning
up a block of code or method after you finish writing.

Ctrl + Alt + O This optimizes the imports, removing the unused imports and
reordering the rest of them.

Shift + Ctrl + Arrows This moves the selected code a line above or below.
Alt + Arrows This switches between the opened tabs of the editor.
Ctrl + F This finds a string in the active tab of the editor.
Ctrl + R This replaces a string in the active tab of the editor.
Ctrl + A This selects all of the code of the opened file.
Ctrl + D This copies the selected code and pastes it at the end of the

selection. If no code is selected, then the entire line is copied
and pasted in a new line.

Ctrl + Y This removes the entire line without leaving a blank line.
Ctrl + Shift + U This toggles the case.
Tab This moves to the next parameter.

Summary
By the end of this chapter, you should have learned some useful tricks and tips to
make the most of the code editor. You now know how to use code completion, code
generation, and some useful shortcuts to speed up different actions. We customized
our code editor and are now ready to start programming.

In the next chapter, we will start creating our first user interface using layouts. You
will learn how to create a layout using the graphical wizard, as well as by editing
the XML layout file using the text-based view. We will create our first application, a
classic Hello World example, using the text view component. You will learn how to
prepare the application for multiple screen sizes and adapt them for different device
orientations. Finally, you will learn about UI themes and how to handle events.

Creating User Interfaces
Now that we have created our first project and have become familiar with the code
editor and its functionalities, we will begin our application by creating our user
interface. Is there more than one way to create a user interface using Android Studio?
How can you add components to your user interface? Have you ever wondered how
to make your applications support different screen sizes and resolutions?

This chapter focuses on the creation of user interfaces using layouts. Layouts can be
created using a graphical view or a text-based view. You will learn how to use both
of them to create our layout. We will also code a Hello World application using
simple components. Since there are over 18,000 Android devices, you will learn
about fragmentation on different Android-based devices and will discuss how to
prepare our application for this issue. We will end this chapter with basic notions
of handling events on our application.

These are the topics we'll be covering in this chapter:

•	 Existing layout editors
•	 Creating a new layout
•	 Adding components
•	 Supporting different screens
•	 Changing the UI theme
•	 Handling events

Creating User Interfaces

[42]

The graphical editor
Open the main layout located at /src/main/res/layout/activity_main.xml
in our project. The graphical editor will be opened by default. Initially, this main
layout contains just a text view with a Hello world! message. To switch between the
graphical and the text editor, click on the Design and Text tabs at the bottom of the
screen, as shown in this screenshot:

Toolbar contains some options that can be used to change the layout style and
preview. The Toolbar options, which are shown in the following screenshot,
are explained throughout the chapter:

Chapter 5

[43]

Components Tree displays the components placed in the layout as a hierarchy.
Properties inspector shows the properties of the selected component from the layout
and allows us to change them. Components Palette lists the existing user interface
(UI) components to place in our layout. It organizes the components in different
categories. Let's look at the options available in Components Palette:

•	 Layouts: A layout is a container object used to distribute the components
on the screen. The root element of a UI is a layout object, but layouts can
also contain more layouts, creating a hierarchy of components structured
in layouts. The recommendation is to keep this layout hierarchy as simple
as possible. Our main layout has a relative layout as the root element.

•	 Widgets: This category contains options for text views, buttons, checkboxes,
switches, image views, progress bars, spinners, and web views. They are
the most commonly used components, and they are used in most layouts.

•	 Text Fields: These are editable fields that contain different categories of
inputs under which users can type text. The difference between the various
options is the type of text users can type.

•	 Containers: This category groups components that share some common
behavior. Radio groups, list views, scroll views, and tab hosts are some
of them.

•	 Date & Time: This category holds components related to date and time
in the form of calendars or clocks.

•	 Expert: The components in this category are not as common as the
components in the Widgets category, but it is worth taking a look at them.

•	 Custom: This category holds components that allow us to include our
custom components, which are usually other layouts from our project.

Creating User Interfaces

[44]

The text-based editor
Change the graphical editor to the text editor by clicking on the Text tab.

The Toolbar is the same as that on the graphical editor. The Preview window
displays the layout but it cannot be changed. To do that, you should use the Design
tab instead. The components are added to the layout using their XML declarations.
The properties are also configured using XML declarations. Like the graphical editor,
the text editor shows just the text view element inside the root layout.

Creating a new layout
When we created our main activity, the associated layout was also created. This is a
way of creating a layout when creating an activity.

To add an independent layout without creating a new activity, right-click on the
layouts folder (res/layout/) and navigate to New | Layout resource file. You can
also navigate to this menu option like this: File | New | Layout resource file. Type
the file name and the root element.

Once the layout is created, the associated activity can be changed from the editor
to another one. If the layout has no activity, any existing activity can be linked to it
from the editor. To accomplish this, search for the Associate with Activity option
in the toolbar of the layout editor, click on it, and select the Associate with other
Activity option. A dialog box that lists all the activities of your project will open,
and you can select one of them.

Chapter 5

[45]

Adding components
Our main layout is a relative layout and contains a text view saying Hello world!.
Now let's add a new component. The easiest way to do this is by using the graphical
editor, so open the Design tab. Select a component and drag it into the layout
preview; for example, navigate to the Person Name component in Text Fields and
place it below the text view.

In the Component Tree view, there is now a new editText object. Keep the text field
selected to examine its properties loaded in the Properties inspector. Let's change some
of them and observe the differences in the layout preview and in the component tree:

•	 layout:width: This option will adapt the width of the field to its content. Its
current value is wrap_content. Change it to match_parent to adapt it to the
parent layout width (the root relative layout).

•	 hint: Type Enter your name as the hint of the field. The hint is a text shown
when the field is empty to indicate the information that should be typed. As
the field has a default value, Name, the hint is not visible.

•	 id: This has @+id/editText as the current ID. This ID will be used from the
code to get access to this object and is the ID displayed in the component tree.
Change it to @+id/editText_name to distinguish it easily from other text
fields. Check whether the component ID has also changed in the Component
Tree window, as shown in the following screenshot:

•	 text: This deletes the value of this field. The hint value should now
be visible.

Creating User Interfaces

[46]

If we switch to the text editor, we can see the XML definition of the text field with the
properties we edited:

<EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="textPersonName"
 android:ems="10"
 android:id="@+id/editText_name"
 android:layout_below="@+id/textView_greeting"
 android:layout_alignLeft="@+id/textView_greeting"
 android:layout_marginTop="15dp"
 android:hint="Enter your name"
/>

From the text editor, the existing components and their properties can also be
changed. Modify the text view ID (the android:id property) from @+id/textView
to @+id/textView_greeting. Having a descriptive ID is important because it will be
used by our code. Descriptive variable names allow the code to be self-documenting.

Let's add another component using the text editor this time. Press the open tag key
and start typing Button. Let the list of suggestions appear and select a Button object.
Inside the Button tag, add the following properties:

<Button
 android:id="@+id/button_accept"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText_name"
 android:layout_centerHorizontal="true"
 android:text="Accept"
/>

Create the ID property with the value of @+id/button_accept. Let the width and
height adapt to the button content (the wrap_content value). Place the button below
the name text field using the android:layout_below property. We reference the
name text field by its ID (@+id/editText_name). Center the button horizontally in
the parent layout using the layout_centerHorizontal property. Set the text of the
button (Accept).

Chapter 5

[47]

The button is displayed in Preview. The next screenshot shows that if we switch to
the graphical editor, the button is displayed in it and also in Component Tree:

Supporting multiple screens
When creating Android applications, we have to take into account the existence of
multiple screen sizes and screen resolutions. It is important to check how our layouts
are displayed in different screen configurations. To accomplish this, Android Studio
provides a functionality to change the virtual device that renders the layout preview
when we are in the Design mode.

We can find this functionality in the toolbar and click on it to open the list of
available device definitions, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Creating User Interfaces

[48]

Try some of them. The difference between a tablet device and a device like those
from the Nexus line is very notable. We should adapt the views to all the screen
configurations that our application supports to ensure that they are displayed
optimally. Notice that there are device definitions for Android Wear (square and
round designs) and for Android TV.

The device definitions indicate the screen size, the resolution, and the screen density.
Android screen densities include ldpi, mdpi, tvdpi, hdpi, xhdpi, and even xxhdpi.
Let's see what their values are:

•	 ldpi: This is low-density dots per inch, and its value is about 120 dpi
•	 mdpi: This is medium-density dots per inch, and its value is about 160 dpi
•	 tvdpi: This is medium high density dots per inch, and its value is about

213 dpi
•	 hdpi: This is high-density dots per inch, and its value is about 240 dpi
•	 xhdpi: This is extra-high-density dots per inch, and its value is about 320 dpi
•	 xxhdpi: This is extra-extra-high-density dots per inch, and its value is

about 480 dpi

The latest dashboards published by Google show that most devices have high-density
screens (36.4 percent), followed by mdpi (19.6 percent) and xhdpi (19.3 percent).
Therefore, we can cover 75.3 percent of all devices by testing our application using
these three screen densities. If you want to cover a bigger percentage of devices, test
your application using xxhdpi screens (15.2 percent) as well so that the coverage
will be 90.5 percent of all devices. The official Android dashboards are available at
http://developer.android.com/about/dashboards.

Another issue to keep in mind is the device orientation. Do we want to support
landscape mode in our application? If the answer is yes, then we have to test our
layouts in landscape orientation. On the toolbar, click on the layout state option to
change the mode either from portrait to landscape or from landscape to portrait.

If our application supports landscape mode and the layout does not get displayed as
expected in this orientation, we might want to create a variation of the layout. Click on
the first icon of the toolbar, that is, the Configuration to render this layout with inside
the IDE option, and select the Create Landscape Variation option. A new layout will
be opened in the editor. This layout has been created in the resources folder, under
the layout-land directory, and it uses the same name as the portrait layout—/src/
main/res/layout-land/activity_main.xml. Now we can edit the new layout
variation such that it perfectly conforms to landscape mode.

http://developer.android.com/about/dashboards

Chapter 5

[49]

Similarly, we can create a variation of the layout for extra-large screens. Select
the Create layout-xlarge Variation option. The new layout will be created in the
layout-xlarge folder at /src/main/res/layout-xlarge/activity_main.xml.
Android divides into the actual screen sizes small, normal, large, and xlarge:

•	 Small: Screens classified in this category are at least 426 dp x 320 dp
•	 Normal: Screens classified in this category are at least 470 dp x 320 dp
•	 Large: Screens classified in this category are at least 640 dp x 480 dp
•	 Xlarge: Screens classified in this category are at least 960 dp x 720 dp

A dp is a density-independent pixel, equivalent to one physical pixel on a 160 dpi
screen. The last dashboards published by Google show that most devices have a
normal screen size (80.9 percent).

To display multiple device configurations at the same time, click on the Configuration
to render this layout with inside the IDE option in the toolbar and select the Preview
All Screen Sizes option, or click on the Preview Representative Sample option to
open only the most important screen sizes, as shown in the following screenshot. We
can also delete any of the samples by right-clicking on them and selecting the Delete
option from the menu. Another useful action of this menu is the Save screenshot
option. It allows us to take a screenshot of the layout preview.

If we create different layout variations, we can preview all of them by selecting the
Preview Layout Versions option.

Now that we have seen how to add different components and optimize our layout
for different screens, let's start working with themes.

Creating User Interfaces

[50]

Changing the UI theme
Layouts and widgets are created using the default UI theme of our project. We can
change the appearance of the elements of the UI by creating styles. Styles can be
grouped to create a theme, and a theme can be applied to an activity or to the whole
application. Some themes are provided by default, such as the Holo style. Styles and
themes are created as resources under the /src/res/values folder.

To continue our example, follow these steps:

1.	 Open the main layout using the graphical editor. The selected theme for our
layout is indicated as AppTheme in the toolbar. This theme was created
for our project and can be found in the styles file at /src/res/values/
styles.xml.

2.	 Open the styles file. You will notice that this theme is an extension of
another theme, Theme.AppCompat.Light.DarkActionBar.

3.	 To customize the theme, edit the styles file. Add the highlighted line in the
AppTheme definition to change the window background color:
<style name="AppTheme"
 parent="android:Theme.AppCompat.Light.DarkActionBar">
 <item name="android:windowBackground">
 @color/custom_theme_color</item>
</style>
<color name="custom_theme_color">#dddddd</color>

4.	 Save the file and switch to the layout tab. The background is now light gray.
This background color will be applied to all our layouts due to the fact that
we configured it in the theme and not just in the layout.

5.	 To change the layout theme completely, click on the theme option from
the toolbar in the graphical editor. The theme selector dialog is now
opened, displaying a list of the available themes, as shown in the
following screenshot:

Chapter 5

[51]

The themes created in our own project are listed in the Project Themes section. The
Manifest Themes section shows the theme configured in the application manifest file
(/src/main/AndroidManifest.xml). The All section lists all the available themes.

Handling events
The user interface would be useless if the rest of the application could not
interact with it. Events in Android are generated when the user interacts with our
application. All the UI widgets are children of the View class, and they share some
events handled by the following listeners:

•	 OnClickListener: This captures the event when the user clicks on the
view element

•	 OnCreateContextMenu: This captures the event when the user performs a
long click on the view element and we want to open a context menu

•	 OnDragListener: This captures the event when the user drags and drops the
event element

•	 OnFocusChange: This captures the event when the user navigates from one
element to another in the same view

Creating User Interfaces

[52]

•	 OnKeyListener: This captures the event when the user presses any key
while the view element has the focus

•	 OnLongClickListener: This captures the event when the user touches
the view element and holds it

•	 OnTouchListener: This captures the event when the user touches the
view element

In addition to these standard events and listeners, some UI widgets have more
specific events and listeners. Checkboxes can register a listener to capture when
its state changes (OnCheckedChangeListener), and spinners can register a listener
to capture when an item is clicked (OnItemClickListener).

The most common event to capture is when the user clicks on the view elements.
There is an easy way to handle this—using the view properties. Select the Accept
button in our layout and look for the onClick property. This property indicates
the name of the method that will be executed when the user presses the button.
This method has to be created in the activity associated with the current layout,
our main activity (MainActivity.java) in this case. Type onAcceptClick as the
value of this property.

Open the main activity to create the method definition. When a view is clicked, the
event callback method has to be public with a void return type. It receives the view
that has been clicked on as a parameter. This method will be executed every time the
user clicks on the button:

public void onAcceptClick(View v) {
 // Action when the button is pressed
}

From the main activity, we can interact with all the components of the interface, so
when the user presses the Accept button, our code can read the text from the name
field and change the greeting to include the name in it.

To get the reference to a view object, use the findViewById method inherited from
the Activity class. This method receives the ID of the component and returns
the View object corresponding to that ID. The returned view object has to be cast
to its specific class in order to use its methods, such as the getText method of the
EditText class, to get the name typed by the user:

public void onAcceptClick(View v) {
 TextView tv_greeting =
 (TextView) findViewById(R.id.textView_greeting);
 EditText et_name = (EditText) findViewById(R.id.editText_name);

 if(et_name.getText().length() > 0) {

Chapter 5

[53]

 tv_greeting.setText("Hello " + et_name.getText());
 }
}

In the first two lines of the method, the following references to the elements of
the layout are retrieved: the text view that contains the greeting, and the text field
where the user can type a name. The components are found by their IDs, the same
ID that we indicated in the properties of the element in the layout file. All the IDs of
resources are included in the R class. The R class is autogenerated in the build phase,
and therefore, we must not edit it. If this class is not autogenerated, then probably
some file of our resources contain an error.

The next line is a conditional statement used to check whether the user typed a
name. If they typed a name, the text will be replaced by a new greeting that contains
that name. In the coming chapters, we will learn how to execute our application in
an emulator, and we will be able to test this code.

If the event we want to handle is not the user's click, then we have to create and
add the listener by code to the onCreate method of the activity. There are two
ways to do this:

•	 Implementing the listener interface in the activity and then adding the
unimplemented methods. The methods required by the interface are the
methods used to receive the events.

•	 Creating a private anonymous implementation of the listener in the activity
file. The methods that receive the events are implemented in this object.

Finally, the listener implementation has to be assigned to the view element using
the setter methods, such as setOnClickListener, setOnCreateContextMenu,
setOnDragListener, setOnFocusChange, setOnKeyListener, and so forth. The
listener assignment is usually included in the onCreate method of the activity. If the
listener is implemented in the same activity, then the parameter indicated to the setter
method is its own activity using the this keyword, as shown in the following code:

Button b_accept = (Button) findViewById(R.id.button_accept);
b_accept.setOnClickListener(this);

The activity should then implement the listener and the onClick method required by
the listener interface:

public class MyActivity extends Activity
implements View.OnClickListener {
 @Override
 public void onClick(View view) {
 // Action when the button is pressed
 }

Creating User Interfaces

[54]

Summary
In this chapter, we saw how to create and edit the user interface layouts using both
the graphical and the text-based editors. We had our first small application finished,
and we upgraded it with some basic components. You should now be able to create
a simple layout and test it with different styles, screen sizes, and screen resolutions.
You also learned about the different available UI themes. Finally, you learned about
events and learned how to handle them using listeners.

In the next chapter, you will learn about the available Google Play services and how
to integrate them with your project using Android Studio. We will also see how to
install and integrate different libraries available with Google technology, such as
Google Maps, Google Plus, and more.

Tools
In the previous chapter, you learned about the useful services that Google provides,
which can be used by developers to improve their applications. Now you will learn
about the tools available in Android Studio that make your life easier. Have you
wondered how to manage Android platforms? Do you want to have your project
clearly documented? Are you working as a group of developers and need a version
control manager integrated with Android Studio?

This chapter describes the most important additional tools provided in Android
Studio: Android SDK tools, Javadoc, and version control integration. First, you
will learn about the software development kit (SDK) Manager available in
Android Studio from which you'll be able to examine, update, and install different
components for your project. Next, we will review the Android Virtual Device
(AVD) Manager, where we can edit the virtual devices in which we will be testing
our project. You will also learn how to have complete documentation using the
Javadoc tool, and how to have version control using the systems available in
Android Studio.

These are the topics we'll be covering in this chapter:

•	 SDK Manager
•	 AVD Manager
•	 Navigation Editor
•	 Javadoc
•	 Version control

Tools

[56]

The SDK Manager
The SDK Manager is an Android tool accessible from Android Studio to control our
Android SDK installation. From this tool, we can examine the Android platforms
installed in our system, update them, install new platforms, or install some other
components such as Google Play services or Android Support Library.

To open the SDK Manager from Android Studio, navigate to Tools | Android |
SDK Manager. You can also click on the shortcut from the toolbar. The SDK path
that was configured in Android Studio is displayed on the top of the manager.

The SDK Manager displays the list of available packages with the
following properties:

•	 Name: This is the name of the package or the container that aggregates
related packages.

•	 API: This is the API number in which the package was added.
•	 Rev.: This is the package revision or version.
•	 Status: This is the status of the package on your system. The status can be

Not installed, Installed, Update available, Not compatible, or Obsolete.

The packages can be filtered by their state using the checkboxes under the list, and
they can be sorted by the API level or by the repository they are downloaded in.
These options are also accessible from the Packages menu at the top.

By navigating to Tools | Manage Add-on Sites, we can examine the list of official
sites that provide the add-ons and extra packages. We can add our custom external
sites to the User Defined Sites tab.

Next to the name of the packages, there is a checkbox to select the packages we want
to install, update, or delete. As shown in the next screenshot, the packages that are
installed in our system and also have an update available are checked by default:

Chapter 6

[57]

If there is a new Android platform version that is not installed, its packages will also
be checked, as shown in the following screenshot:

The total number of selected packages to be installed or updated is indicated in
the text of the button at the bottom of the dialog. The button under it indicates the
total number of selected packages to be deleted. You can delete packages that are
deprecated or packages that you do not need anymore.

Check the packages that need to be updated, and also check the last Android
platform. In addition, you should check the minimum platform supported by our
application (Android 4.0.3, API15) to be able to test our application in a virtual
device using this version. Click on the Install button.

In the next dialog, we have to accept the package licenses. Check the Accept License
radio button and click on the Install button. The installation or update of the
packages will start showing its progress. First, the manager downloads the packages,
then it unzips them, and finally, it installs them.

Remember to check out the SDK Manager from time to time for updates.

The AVD Manager
The AVD Manager is an Android tool accessible from Android Studio to manage the
Android virtual devices that will be executed in the Android emulator.

To open the AVD Manager from Android Studio, navigate to Tools | Android
| AVD Manager. You can also click on the shortcut from the toolbar. The AVD
Manager displays the list of existing virtual devices. Since we have not created any
virtual device, the list will initially be empty. To create our first virtual device, click
on the Create Virtual Device button to open the configuration dialog.

www.allitebooks.com

http://www.allitebooks.org

Tools

[58]

The first step is to select the hardware configuration of the virtual device. The
hardware definitions are listed in the left-hand side of the window. Select one of
them, such as Nexus 5, to examine its details on the right-hand side, as shown in
the following screenshot. Hardware definitions can be classified into one of these
categories: Phone, Tablet, Wear, or TV.

We can also configure our own hardware device definitions from the AVD Manager.
We can create a new definition using the New Hardware Profile button. The Clone
Device... button creates a duplicate of an existing device.

Click on the New Hardware Profile button to examine the existing configuration
parameters. The most important parameters that define a device are:

•	 Device Name: This is the name of the device.
•	 Screensize: This is the screen size in inches. This value determines the size

category of the device. Type a value of 4.0 and notice how the Size value
(on the right-hand side) becomes normal. Now type a value of 7.0 and the
Size field changes its value to large. This parameter, along with the screen
resolution, also determines the Density category.

Chapter 6

[59]

•	 Resolution: This is the screen resolution in pixels. This value determines the
density category of the device. For a screen size of 4.0 inches, type a value
of 768 x 1280 and notice how the Density value becomes 400 dpi. Change
the screen size to 6.0 inches and the Density value changes to hdpi. Now
change the resolution to 480 x 800 and the Density value will be mdpi.

•	 RAM: This is the RAM memory size of the device.
•	 Input: This indicates whether the home, back, or menu buttons of the

device are available via software or hardware.
•	 Supported device states: This checks the allowed states.
•	 Cameras: This checks whether the device has a front camera or a

back camera.
•	 Sensors: These are the sensors available in the device. They are of the

following types: accelerometer, gyroscope, GPS, and proximity sensor.
•	 Default Skin: This selects additional hardware controls.

Create a new device with a screen size of 4.7 inches, a resolution of 800 x 1280, a
RAM value of 500 MiB, software buttons, and both portrait and landscape states
enabled. Name it My Device. Then click on the Finish button. The hardware
definition has been added to the list of configurations.

Click on the Next button to continue the creation of a new virtual device. The next
step is to select the virtual device system image and the target Android platform.
Each platform has its own architecture, so the system images that are installed on
your system will be listed along with the rest of the images that can be downloaded
(the Show downloadable system images box checked). Download and select one of
the images of the Lollipop release, and click on the Next button.

The last step is to verify the configuration of the virtual device. Enter the name of the
AVD in the AVD Name field. Give the virtual device a meaningful name to recognize
it easily, such as AVD_nexus5_api21. Click on the Show Advanced Settings button.
The settings that we can configure for the virtual device are the following:

•	 Emulation Options: The Store a snapshot for faster startup option saves the
state of the emulator in order to load data faster the next time. The Use Host
GPU option tries to accelerate the GPU hardware to run the emulator faster.

•	 Custom skin definition: Select this if additional hardware controls are
displayed in the emulator.

Tools

[60]

•	 Memory and Storage: Select the memory parameters of the virtual device.
Leave the default values as they are, but if a warning message is shown,
follow the instructions of that message. For example, select 1536M for the
RAM memory and 64 for the VM Heap field. The Internal Storage option
can also be configured, for example, 200 MiB. Select the size of SD Card, or
select a file to behave as the SD card.

•	 Device: Select one of the available device configurations. These
configurations are what we tested in the layout editor preview. Select the
Nexus 5 device to load its parameters in the dialog.

•	 Target: Select the device Android platform. We have to create one virtual
device with the minimum platform supported by our application, and
another virtual device with the target platform of our application. For the
first virtual device, select Android 4.4.2 API19 as the target platform.

•	 CPU/ABI: Select the device architecture. The value of this field is set when
we select the target platform. Each platform has its own architecture, so if
we don't have it installed, the following message will be shown: No system
images installed for this target. To solve this, open the SDK Manager and
search for one of the architectures of the target platform, which could be
ARM EABI v7a System Image or Intel x86 Atom System Image.

•	 Keyboard: Select this if a hardware keyboard is displayed in the
emulator. Check it.

•	 Skin: Select this if additional hardware controls are displayed in the
emulator. You can select the Skin with dynamic hardware controls option.

•	 Front Camera: Select this if the emulator has a front camera or a back camera.
The camera can be emulated or can be real (by the use of a webcam from the
computer). Select None for both cameras.

•	 Keyboard: Select this if a hardware keyboard is displayed in the emulator.
Check it.

•	 Network: Select the speed of the simulated network and the delay in
processing data across the network.

Chapter 6

[61]

The new virtual device is now listed in the AVD Manager. Select the recently created
virtual device to enable the remaining actions:

•	 Start: This runs the virtual device.
•	 Edit: This edits the virtual device configuration.
•	 Duplicate: This creates a new device configuration displaying the last step of

the creation process. You can change its configuration parameters and then
verify the new device.

•	 Wipe Data: This removes the user files from the virtual device.
•	 Show on Disk: This opens the virtual device directory in your system.
•	 View Details: This opens a dialog detailing the virtual device's characteristics.
•	 Delete: This deletes the virtual device.

Click on the Start button. The emulator will be opened, as shown in the next
screenshot. Wait until it is completely loaded, and then you will be able to try it.

Tools

[62]

In Android Studio, open the main layout with the graphical editor and click on the
list of devices. As the following screenshot shows, our custom device definition
appears, and we can select it to preview the layout:

The Navigation Editor
The Navigation Editor is a tool used to create and structure the layouts of the
application using a graphical viewer. To open this tool, navigate to Tools | Android
| Navigation Editor. This tool opens a file in XML format, named main.nvg.xml.
This file is stored in your project at /.navigation/app/raw/.

Since there is only one layout (and one activity) in our project, the navigation editor
only shows this main layout. If you select the layout, detailed information about it is
displayed on the panel on the right-hand side of the editor. If you double-click on the
layout, the XML layout file will be opened in a new tab.

We can create a new activity by right-clicking on the editor and selecting the New
Activity option. We can also add transitions from the controls of a layout by shift
clicking on a control and then dragging to the target activity.

Chapter 6

[63]

Open the main layout and create a new button with the Open Activity label:

<Button
 android:id="@+id/button_open"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button_accept"
 android:layout_centerHorizontal="true"
 android:text="Open Activity" />

Open the Navigation Editor and add a second activity. Now the Navigation Editor
displays both activities, as shown in this screenshot:

Tools

[64]

Now we can add the navigation between them. Shift-drag from the new button
of the main activity to the second activity. A blue line and a pink circle have been
added to represent the new navigation. Select the navigation relationship to see its
details on the right panel, as shown in the following screenshot. The right panel
shows the source of the activity, the destination activity, and the gesture that triggers
the navigation.

Now open our main activity class and notice the new code that has been added to
implement the recently created navigation. The onCreate method now contains the
following code:

findViewById(R.id.button_open).setOnClickListener(
new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 MainActivity.this.startActivity(
 new Intent(MainActivity.this, Activity2.class));
 }
});

This code sets the onClick method of the new button, from which the second
activity is launched.

Chapter 6

[65]

Generating a Javadoc
A Javadoc is a utility to document Java code in HTML format. The Javadoc
documentation is generated from comments and tags added to Java classes or
methods. The comments start with the /** string and end with */. Inside these
comments, tags can be added, such as @param to describe a method parameter,
 @throws to describe an exception that can be thrown by the method, or @version
to indicate the version of the class or method.

The use of a Javadoc is integrated in Android Studio. We can use code completion
when typing the Javadoc comments and the documentation will appear in the
pop-up tool tips of the code elements.

To generate a complete Javadoc, we have to write the Javadoc comments about
our classes and methods. Open the main activity of our project to add the Javadoc
comments to the onAcceptClick method we created in Chapter 5, Creating User
Interfaces. Place the caret on the line before the method declaration, type /**,
and press Enter. The Javadoc comments are automatically inserted containing the
available information from the method declaration: parameters and return type.
In this case, there is no return type.

The first line of the documentation comments is the method description. Then, it
explains each parameter and the return type. The method should now look like this:

/**
 * Method executed when the user clicks on the Accept button.
 * Change the greeting message to include the name introduced by the
user in the editText box.
 *
 * @param v View the user clicked
 */
public void onAcceptClick(View v) { ... }

Tools

[66]

This information about the method will now be displayed as its documentation in
the emerging dialogs. The following screenshot shows the dialog that should appear
over the method:

To generate the Javadoc documentation, navigate to Tools | Generate Javadoc....
A dialog showing the Javadoc options will be opened. We can choose the scope,
output directory, and visibility of the included elements, and create a hierarchy tree,
a navigation bar, and an index if needed.

Check Current File as the scope to generate only the documentation of our main
activity. Select an output directory from your system. Reduce the visibility to public
and click on the OK button. The Javadoc documentation in HTML format has been
created in the output directory. The index.html file is the start point. Navigate
through the documentation to open the MyActivity class. Notice that the onCreate
method, whose visibility is protected, does not appear, as we reduced the visibility
of the generated Javadoc to public elements.

Version control systems
Android Studio integrates some version control systems (VCS): GitHub, CVS, Git,
Mercurial, and Subversion. To enable version control integration, navigate to VCS |
Enable Version Control Integration and select the type of system. Now some more
options will be added to the VCS menu:

•	 To update the entire project, navigate to VCS | Update Project
•	 To commit all the changes of the project, navigate to VCS | Commit

Changes
•	 To clean up the project, navigate to VCS | Cleanup Project

Chapter 6

[67]

The first step is to do the checkout from the version control system. Go to VCS |
Checkout from Version Control, click on the add icon, and type the repository URL
or repository configuration.

The version control actions can also be applied to individual files. Right-click on any
file of the project and select the Subversion section. From the emerging menu, we
can add the file to the repository, add it to the ignore list, browse the changes, revert
the changes, or lock it.

A simpler way to control the file versions is by using the Local History option. Open
the main activity file in the editor and navigate to VCS | Local History | Show
History. The file history dialog will be opened. On the left-hand side of the dialog,
the available versions of the file are listed. Select an older version to compare it to the
current version of the file. The differences between the older version and the current
version are highlighted. A gray color is used to indicate a block of deleted code, a
blue color to highlight the text that has changed, and a green color to indicate the
new inserted text. From the top icons, we can revert the changes and configure the
white space visualization. The following screenshot shows the comparison between
two versions of our main activity. We can observe how the method we recently
added—the onAcceptClick method—is highlighted in green.

We can also examine the local history of a specific block of code. Close the dialog,
select some lines of code from the editor, and go to VCS | Local History | Show
History for Selection. The same history dialog will be opened, but this time, it
displays the versions of the selected code.

Tools

[68]

Summary
By the end of this chapter, you have the knowledge required to use the Android
SDK Manager tool to install, update, or examine available platforms for your project.
You can create a new AVD and edit it whenever necessary. You learned how to use
Navigation Editor, the new Android Studio tool. Creating complete documentation
of our project should no longer be a problem using Javadoc, and we should also be
able to work with a VCS integrated in Android Studio.

In the next chapter, we will keep on working with Android Studio integrated
features. You will be learning about the emulation of your project and how to debug
it. You will also learn about the debugger, the console, and the Logcat tool. Then you
will learn about more advanced debugging tools such as the Dalvik Debug Monitor
Server (DDMS). We will study this monitor server in depth and go through each of
its available utilities.

Google Play Services
Now that we have become familiar with the use of components on layouts, it is time
to start thinking about extra functionality. Google Play services give you features
such as Google Maps, Google+, and more, to attract users. What are all the features
available? How can you add these features to your application? What are the
Android version requirements to use Google Play services?

This chapter focuses on the creation, integration, and use of Google Play services
using Android Studio. You will learn what Google services are available. You will
also learn about the standard authorization API that provides a safe way to grant
and receive access tokens from Google Play services. Then you will learn about the
limitations of these services and also the benefits of using them.

These are the topics we'll be covering in this chapter:

•	 Existing Google services
•	 Adding Google Play services from the IDE
•	 Integrating Google Play services in your app
•	 Understanding automatic updates
•	 Using Google services in your app

How Google Play services work
When Google previewed Google Play services at Google I/O 2012, it said that the
platform "consists of a services component that runs on the device and a thin client library that
you package with your app" (https://developers.google.com/events/io/2012/).

https://developers.google.com/events/io/2012/

Google Play Services

[70]

This means that Google Play services work, thanks to two main components:

•	 Google Play Client library: The Google Play services client library includes
interfaces to each Google service used by your app. The library is included
when you pack your app, and it allows your users to authorize the app with
access to these services using their credentials. The client library is upgraded
from time to time by Google by adding new features and services. You may
upgrade the library in your app through an update to your app, although
this is not necessary if you are not including any of the new features.

•	 Google Play services APK: The Google Play services Android Package runs
as a background service in the Android operating system. Using the client
library, your app accesses this service, which carries out the actions during
runtime. The APK is not guaranteed to be installed on all devices. If the
device does not come installed with the APK, you can get it from the Google
Play store.

In this way, Google manages to separate the runtime of their services from the
implementation you do as a developer, so you do not need to upgrade your
application every time Google Play services are upgraded.

Although Google Play services are not included in the Android platform itself, they are
supported by most Android-based devices. Any Android device running Android 2.2
or newer is ready to install any application that uses Google Play services.

Services available
Google Play services let you easily add more features to attract users on a wide
range of devices, while using well-known features powered by Google. Using these
services, you can add new revenue sources, manage the distribution of the app,
access statistics, learn about your application's users' habits, and improve your
application with easy-to-implement Google features such as Maps or Google's social
network, Google+. The services are explained as follows:

•	 Games: Using the Google Play Game service, you can improve your gaming
with a more social experience.

•	 Location: By integrating the location APIs, you can make your application
location-aware.

•	 Maps: By integrating the Google Maps API, you can use the maps provided
by Google in your application and customize them.

•	 Google+: Using Google+ Platform for Android, you can authenticate the user
of your app. Once they are authenticated, you can also access their public
profile and social graph.

Chapter 7

[71]

•	 In-app Billing: Using Google Play In-app Billing makes it possible for you to
sell digital content from your apps. You can use this service to sell one-time
billing or temporal subscriptions to premium services and features.

•	 Cloud Messaging: Using Google Cloud Messaging (GCM) for Android,
you can exchange data between the app running in an Android-based
device and your server.

•	 Panorama: By integrating this service, you can enable the user to see a
360-degree panoramic picture.

•	 Analytics: By integrating this service, you can allow your application to send
information to Google Analytics.

•	 Drive: Using the Google Drive API, you can enable your application to access
your users' files stored in their Google Drive accounts.

•	 Wallet: By integrating Google Wallet, you can store objects such as gift cards
or loyalty programs in the cloud, and use them to pay in stores or online.

Adding Google Play services to
Android Studio
The first thing we need to know is what we need to add to our Android Studio.
We have just learned that the APK is available in the Google Play store and it is the
actual runtime of the services. We, as developers, only need this package in our
testing device while debugging our application. What we need to add to Android
Studio is the Google Play services client library.

This library has to be declared as a dependency to your application, so perform the
following steps:

1.	 Open the build.gradle file for your application module
(/app/build.gradle).

2.	 Type the following line inside the dependencies block:
dependencies {
 …
 compile 'com.google.android.gms:play-services:5.+'
}

The latest Google Play services version is 5.0 (July 2014). When new updates
of the library are published, you will need to update the version number in
the build.gradle file.

Google Play Services

[72]

3.	 Navigate to Tools | Android | Sync Project with Gradle Files to
synchronize your project with the new dependency on Google Play services.

4.	 Finally, add it to the manifest file of your application under the
application block:

<meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

You should have the library inside the build folder of your application
project, as shown in the following screenshot:

Another option is to download and install Google Play services in your system. This
library is distributed through the Android SDK Manager, which will be explained in
detail in Chapter 7, Google Play Services. Now perform the following steps:

1.	 Navigate to Tools | Android | SDK Manager. We can find Google Play
services in the packages list under the Extras folder.

Chapter 7

[73]

2.	 Select the Google Play services checkbox and click on the
Install 1 package… button:

Performing these actions will add the library project to the location of our
SDK installation folder, /sdk/extras/google/google_play_services/.
You can check the exact path by hovering the mouse over the Google Play
services row in the SDK manager and looking at the tool tip.

3.	 Navigate to the folder to examine its content. The samples folder contains
some sample projects, for example, projects of the Analytics (analytics/),
the authentication service (auth/), the Google Maps v2 service (maps/), the
Panorama service (panorama/), the Google+ service (plus/), and Google
Wallet (wallet/). The libproject/ folder contains the Google Play services
library project. The google-play-services.jar file is placed in this
folder at libproject/google-play-services_lib/libs/google-play-
services.jar.

Google Play Services

[74]

4.	 Add this JAR file to your project by dragging it into the libs/ folder.
5.	 Select the JAR file and right-click on it.
6.	 Select the Add as Library option.
7.	 Select the project library level in the Create Library dialog, select your

application module, and click on OK. You now have the google-play-
services.jar file available in your project libraries, under the libs/ folder,
and you will now be able to reference Google Play services from your code.

8.	 Finally, you will need to add the library to your Gradle's build file. To do
this, just edit the build.gradle file under MyApplication/, and add the
following line in the dependencies section:
compile files('libs/google-play-services.jar')

Google Maps Android API v2
Google Maps Android API allows users of your application to explore maps
available through a Google service. The new Maps version 2 offers more
functionalities such as 3D maps, indoor and satellite maps, efficient caching and
drawing using vector-based technology, and animated transitions through the map.

Let's import the sample project to examine its most important classes. Navigate to File
| Import Project, search for the sample project in your SDK installation folder, and
select the project root directory, /google_play_services/samples/maps/. Continue
by clicking on Next in the successive dialogs, and then click on the Finish button to
open the sample project in a new window. Now we have the Google Play services
project and the maps sample project loaded in a new window in Android Studio.

Open the BasicMapDemoActivity class under the maps project under src/main/
java/. The com.google.android.gms.maps package contains the Google Maps
Android API classes. The GoogleMap class is the main class of the API, and it is
the entry point for all the methods related to a map. You may change the theme
colors and the icons of your map to match your application style. You can also
customize your map by adding markers to it. To add a simple marker, you can use
the addMarker method of the GoogleMap class. Examine the onMapReady method in
BasicMapDemoActivity to see the following code:

mMap.addMarker(new MarkerOptions().position(new LatLng(0, 0)).
title("Marker"));

The addMarker method has a MarkerOptions object as a parameter. Using the
position method, we indicate the coordinates of the marker on the map, and using
the title method, we can add a custom string to show up on the marker.

Chapter 7

[75]

To add a map to a layout, we can use the MapView class, which extends the View class
and displays a map. However, the easiest way to place a map in an application is by
using a MapFragment object. A fragment represents a piece of the user interface or
behavior that can be embedded in an activity. A fragment is a reusable module.

The MapFragment class wraps a view of a map to handle the necessary life cycle
requirements of a component automatically. It extends the Fragment class, so it
can be added to a layout using the following XML code:

<fragment
 class="com.google.android.gms.maps.MapFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

To see an example of this code in use, open the layout associated with the
BasicMapDemoActivity class. This is the basic_demo.xml file found
under /res/layout/.

Finally, we need the code to obtain the GoogleMap object from the fragment. We can
find the Fragment map using the findFragmentById method, and then we can get
the map from the Fragment map using the getMap method:

SupportMapFragment mapFragment = ((SupportMapFragment)
getSupportFragmentManager().findFragmentById(R.Id.map);

You can see an example of this code in the BasicMapDemoActivity class in the
onCreate method.

The last important class to cover is the GoogleMapOptions class. It defines the
configuration for a map. You can also modify the initial state of a map by editing
the layout XML code. Here are some interesting options that are available:

•	 mapType: This specifies the type of map. Its value can be none, normal,
hybrid, satellite, or terrain.

•	 uiCompass: This defines whether compass controls are enabled or disabled.
•	 uiZoomControls: This defines whether zoom controls are enabled

or disabled.
•	 cameraTargetLat and cameraTargetLong: This specifies the initial

camera position.

Google Play Services

[76]

Google+ Platform for Android
Using Google+ Platform for Android lets a developer authenticate users using the
same credentials that they use on Google+. It also enables the use of their public
profile and social graph to welcome users by their name, display their pictures,
and connect with their friends.

Import the Google+ sample project to learn about the most important classes.
The Google+ sample project can be found in the Google Play services installation
folder, at /google_play_services/samples/plus/. The com.google.android.
gms.samples.plus package contains Google+ Platform for Android classes. The
following are the classes found in this package:

•	 PlusClient and PlusClient.Builder: PlusClient is the main class of the
API. It is the entry point for Google+ integration. PlusClient.Builder is a
builder used to configure the PlusClient object to communicate properly
with the Google+ APIs.

•	 PlusOneButton: This class implements a +1 button to recommend a URL
on Google+. Add it to a layout using the following code:
<com.google.android.gms.plus.PlusOneButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 plus:size="standard" />

The available sizes are small, medium, tall, and standard.
An example of code showing this functionality can be found in the sample
project in the PlusOneActivity class in the src/ folder. Its associated layout
can be found in the plus_one_activity.xml file at res/layout/.

•	 PlusShare: This includes the resources in posts shared on Google+. An
example code of sharing resources can be found in the ShareActivity class
in the src/ folder and its associated layout, share_activity.xml, in the
res/layout/ folder.

A PlusClient object should be instantiated in the onCreate method of your
activity class to call its asynchronous connect method, which will connect the client
to Google+ services. When the app is built using a PlusClient instance, it should
call the disconnect method, which terminates the connection, and should always
be called from the onStop method of the activity.

Chapter 7

[77]

Google Play In-App Billing v3
In-app Billing v3 allows you to sell virtual content from your apps. This virtual
content could be paid content with a one-time billing or a time concession through
subscriptions or fees. Using this service, you can allow users to pay for extra features
and access premium content.

Any app published in the Google Play store can implement the In-app Billing API,
since it only requires the same assets as publishing an app: a Google Play Developer
Console account and a Google Wallet Merchant account.

Using Google Play Developer Console, you can define your products, including
the type, identification code (SKU), price, description, and more. Once you have
your products defined, you can access this content from this application. When
the user wants to buy this content, the following purchase flow will occur between
your In-app Billing application and Google Play App:

1.	 Your app calls isBillingSupported() to Google Play to check whether the
In-app Billing version you are using is supported.

2.	 If the In-app Billing API version is supported, you may use getPurchases()
to get a list of the SKUs of the purchased items. This list will be returned in
a Bundle object.

3.	 You will probably want to inform your user of the in-app purchases
available. To do this, your app may send a getSkuDetails() request,
which will result in a list with the product's price, title, description,
and more information about the item being offered.

Google Cloud Messaging
Google Cloud Messaging (GCM) for Android allows communication between
your server and your application using asynchronous messages. You don't have to
worry about handling low-level aspects of this communication, such as queuing and
message construction. Using this service, you can easily implement a notification
system for your application.

You have two options when using GCM:

•	 The server can inform your app when there is new data available to be
fetched from the server, and then the application gets this data.

•	 The server can send the data directly in a message. The message payload
can be up to 4 KB. This allows your application to access the data at
once and act accordingly.

Google Play Services

[78]

In order to send or receive messages, you will need to get a registration ID. This
registration ID identifies the combination of the device and the application. To allow
your app to use the GCM service, you need to add the following line to the manifest
file of your project:

<uses-permission android:name="com.google.android.c2dm.permission.
RECEIVE"/>

The main class you will need to use is GoogleCloudMessaging. This class is available
in the com.google.android.gms.gcm package.

Summary
In this chapter, we discussed the available Google Play services. You learned how to
improve your application using Google Play services through its client library and
Android package. You should have successfully installed the Google Play services
client library in Android Studio using the SDK Manager, and should now be able
to build applications using the library features. You also learned some tips about
Google Maps v2, Google+ Platform for Android authentication, Google Play In-app
Billing, and GCM.

In the next chapter, you will learn about some useful tools available in Android
Studio. We will use the SDK Manager frequently to install different packages.
You will also learn about the AVD Manager for different virtual devices to test
your applications on. We will generate Javadoc documentation for our project
using the Javadoc utility, and you will learn about the version control systems
available in Android Studio.

Debugging
The debugging environment is one of the most important features of an IDE. Using
a debugging tool allows you to easily optimize your application and improve its
performance. Do you want to use a debug tool while programming in Android
Studio? Android Studio includes the Dalvik Debug Monitor Server (DDMS)
debugging tool.

In this chapter, you will start by learning about the run and debug options, and
how to emulate your application in one of the Android virtual devices you learned
to create in the previous chapter. You will learn about the Debugger, Console, and
LogCat tabs in depth. You will also learn how to use breakpoints when using the
debugger. We will end this chapter with information about each tab available in the
advanced debugger tool included in Android Studio DDMS.

These are the topics we'll be covering in this chapter:

•	 Debugging
•	 LogCat
•	 Device Monitor tools (DDMS)

Running and debugging
Android applications can be run from Android Studio in a real device using a USB
connection or in a virtual device using the emulator. Virtual devices make it possible
to test our applications on different types of hardware and software configurations.
In this chapter, we will use the emulator to run and debug our application because
of its simplicity and flexibility.

Debugging

[80]

To run an application directly, navigate to Run | Run 'app'. You can also click on the
Play icon from the toolbar. To debug an application, navigate to Run | Debug 'app'
or click on the Bug icon from the toolbar. When we select the Debug 'app' option, a
dialog to choose the device is opened. The first option is to choose a running device;
the available connected devices are listed, real, or virtual. The second option is to
launch a new instance of the emulator; the available virtual devices are listed. Check
the Launch emulator option, select the virtual device created in Chapter 6, Tools, and
then click on OK. The emulator will be launched. The next time we run or debug the
application, the emulator will be running, so we will choose the first option (Choose
a running device), as shown in the following screenshot:

While debugging, you will notice that, at the bottom of Android Studio, there are
three tabs contained in the Debug panel: Debugger, Console, and LogCat.

Console
Console displays the events that are taking place while the emulator is being
launched. Open it to examine the messages and check that the emulator and the
application are being correctly executed. The actions that should appear are:

•	 Waiting for device: This is the starting point when the emulator is
being launched.

•	 Uploading file: This event states that the application is packed and stored
in the device.

•	 Installing: This event states that the application is being installed in the
device. After the installation, a success message should be printed.

Chapter 8

[81]

•	 Launching application: This event takes place when the application starts
to execute.

•	 Waiting for process: This event takes place when the application is
running and the debug system is trying to connect to the application
process in the device.

After the success of the previous steps, the application will be visible in the emulator.
Test it by typing any name in the text input and clicking on the Accept button. The
greeting message should change.

Debugger
Debugger manages the breakpoints, controls the execution of the code, and shows
information about the variables. To add a breakpoint in our code, just click on the left
edge of a line of code. A red point will appear next to the line of code to indicate the
breakpoint. To delete the breakpoint, click on it. If you right-click on a breakpoint,
more options become available. We can disable it without deleting it, or we can set a
condition for the breakpoint.

Add a breakpoint in the conditional statement of the onAcceptClick method of our
main activity and debug the application again, as shown:

Enter your name in the application and click on the Accept button. When the
execution gets to the breakpoint, it pauses, and the Debugger tab is opened. Since
we added the breakpoint in the conditional statement before assigning the text, our
greeting message has not changed.

Debugging

[82]

From the Debugger tab, we can examine the method call hierarchy and the state of
the variables at that point of execution. The available variables are the parameter of
the v method, the TextView and EditText objects obtained by the findViewById
method, and the reference to the current activity (this). Expand the EditText
object named et_name, as shown in the following screenshot, and search for the
mText property:

This property should contain the name you typed before:

•	 To execute the next line of code without stepping into the method call,
navigate to Run | Step Over or use the keyboard shortcut indicated for
this option, usually the F8 key.

•	 To step into the method call, navigate to Run | Step Into or press F7.
•	 To resume the execution until the next breakpoint, provided there is

any breakpoint, navigate to Run | Resume Program or press F9.
•	 To stop the execution, navigate to Run | Stop or press Ctrl + F2.

These options, among others, are also available from the Debugger tab as
icon shortcuts.

Expand the tv_greeting object to check the value of its mText property. Now step
over the conditional statement and the call of the setText method. Notice how the
value of the mText property has changed, which is shown in the next screenshot.
Finally, resume the execution so the greeting message changes in the device screen.

Chapter 8

[83]

LogCat
LogCat is the Android logging system that displays all the log messages generated
by the Android system in the running device. Log messages have several levels
of significance. From the LogCat tab, we can filter log messages by these levels.
For example, if we select the information level as the filter, the messages from
information, warning, and error levels will be displayed. The levels are shown
in the following diagram:

Debugging

[84]

To print log messages from our code, we need to import the Log class. This class
has a method for each level: the v method for verbose, the d method for debug,
the i method for information, the w method for warning, and the e method for the
error level. These methods receive two string parameters. The first string parameter
usually identifies the source class of the message, and the second string parameter
identifies the message itself. To identify the source class, we recommend using a
constant, static string tag. However, in the next example, we directly use the string to
simplify the code. Add the following log messages to the onAcceptClick method of
our main activity:

if(et_name.getText().length() > 0) {
 Log.i("MainActivity", "Name read: " + et_name.getText());
 tv_greeting.setText("Hello " + et_name.getText());
}
else {
 Log.w("MainActivity", "No name typed, greeting didn't change");
}

We have a log message to inform us about the name obtained from the user input,
and a log message to print a warning if the user did not type any name. Remove any
breakpoint we previously created and then debug the application.

The LogCat tab has printed all the log messages generated by the device, so reading
the messages of our application can be complex. We need to filter the messages.
In the LogCat tab, there is an expandable list with the No Filters option selected.
Expand it and select the Edit Filter Configuration option. A dialog to create filters
is opened. Log messages can be filtered by their tag or their content using regular
expressions, by the name of the package that printed them, by the process ID (PID),
or by their level.

Create a new filter named MyApplication, filter it by Package Name writing com.
example.myapplication (our application package name), and click on OK. Now
the LogCat log has been filtered, and it is easier to read our messages. Now perform
the following steps:

1.	 Focus on the Emulator window, enter a name in the application, and click
on Accept. Observe how our log message is printed in the LogCat view.

2.	 Delete your name from the application and click on Accept. This time, a
warning message is printed. Notice the different colors used for each
type of message.

Chapter 8

[85]

Memory Monitor
Memory Monitor is available at the bottom-right corner of Android Studio. You can
also navigate to Tools | Android | Memory Monitor. Select the device or emulator
running your application, and select the process corresponding to your application.

The Memory Monitor tab shows the free and allocated memory of the selected
application over time, as shown in the following screenshot:

Android Device Monitor
The Dalvik Debug Monitor Server (DDMS) is a more advanced debugging tool
available in the SDK. The DDMS can be accessed from Android Studio through the
Android Device Monitor tool. This tool is able to monitor both a real device and
the emulator.

To open the DDMS perspective, navigate to Tools | Android | Android Device
Monitor. You can also click on the Android Device Monitor icon from the toolbar.
A new window will be opened with the DDMS perspective.

In the left part of the window, the list of connected devices is shown. Currently, just
our virtual device is listed. In the Devices section, the list of the processes running
on each device is also presented. We should be able to locate our application in the
processes of the device we launched before. From the toolbar of the Devices section,
we can stop a process using the Stop sign icon. We can also take a screen capture of
the virtual device by clicking on the Camera icon. Some of the other options will be
explained later.

In the right part of the window, detailed information about the device is provided.
This information is divided into seven tabs: Threads, Heap, Allocation Tracker,
Network Statistics, File Explorer, Emulator Control, and System Information.
LogCat, which has been also integrated in the DDMS perspective, is placed at the
bottom of the window.

Debugging

[86]

Threads
The Threads tab displays the list of threads that belong to the selected process.
Select our application process from the Devices section. The process is identified by
the package name, com.example.myapplication in this case. Click on the Update
Threads icon button from the toolbar of the Devices section and the threads will be
loaded in the content of the tab:

The first columns are the IDs of the threads. The Status column indicates the thread
state, utime indicates the total time spent by the thread executing the user code,
stime indicates the total time spent by the thread executing the system code, and
Name indicates the name of the thread. The threads that interest us are those that
spend time executing our user code.

This Threads tool is useful if we create threads in our application apart from the
main thread. We can check whether they are being executed at a certain point of
the application or whether their execution time is moderate or not.

Method profiling
Method profiling is a tool used to measure the performance of the method execution
in the selected process. The measured parameters are the number of calls and the
CPU time spent while executing. There are the following two types of spent time:

•	 Exclusive time: This is the time spent in the execution of a method.

Chapter 8

[87]

•	 Inclusive time: This is the total time spent in the execution of a method. This
measure includes the time spent by any called method inside the method.
These called methods are known as its children methods.

To collect the method profiling data, select our application process from the
Devices section, and click on the Start Method Profiling icon from the toolbar of the
Devices section, next to the Update Threads icon. Then perform some actions in the
application; for example, in our example application, type a name and click on the
Accept button in order to execute the onAcceptClick method of the main activity.
Stop the method profiling by clicking on the Stop Method Profiling icon.

When the method profiling is stopped, a new tab with the resultant trace is
opened in the DDMS perspective. On the top of this new tab, the method calls are
represented in a time graph; each row belongs to a thread. On the bottom of the
trace, the summary of the time spent in a method is represented in a table.

Order the methods by their name to search for our onAcceptClick method.
Click on it to expand the detailed information about its execution. Now notice
the following facts:

•	 The children methods called inside the onAcceptClick method are listed.
We can see the EditText.getText method, the Activity.findViewById
method, and the TextView.setText method, which we indeed directly call
inside the method, as shown in the next screenshot.

•	 The number of calls is detailed. For example, we can see that the Activity.
findViewById method is called twice: one call to find the TextView object,
and a second call to find the EditText object.

Debugging

[88]

•	 The Exclusive time columns have no values for the parent or children
methods due to their own definition of this type of measured time.

The following screenshot demonstrates the preceding points:

Method profiling is very useful to detect methods that spend too much time in their
execution and to subsequently optimize them. We can identify the most expensive
methods to avoid unnecessary calls to them.

Heap
The Heap tab displays the heap memory usage information and the statistics of the
selected process. Select the application process and click on the Update Heap icon
from the toolbar of the Devices section to enable it. The heap information is shown
after a garbage collector (GC) execution. To force it, click on the Cause GC button
or the Garbage icon from the toolbar of the Devices section.

Chapter 8

[89]

The first table displays the summary of the heap usage: the total size, the allocated
space, the free space, and the number of allocated objects. The Stats table gives the
following details of the objects allocated in the heap by type: the number of objects,
the total size of those objects, the size of the smallest and largest objects, the median
size, and the average size. Select one of the types to load the bottom bar graph. The
graph shows the count of the objects of a type by size, in bytes. If we right-click on
the graph, we can change its properties (title, color, font, labels, and so on) and save
it as an image in the PNG format.

Allocation Tracker
The Allocation Tracker tab displays the memory allocations of the selected process.
Select the application process and click on the Start Tracking button to start tracking
the memory information. Then click on the Get Allocations button to get the list of
allocated objects.

We can use the filter on the top of the tab to filter the objects allocated in our own
classes. Type our package name com.example.myapplication in the filter. For
each object, the table shows its allocation size, the thread, the object or class, and
the method in which the object was allocated. Click on any object to see more
information, for example, the line number that allocated it. Finally, click on the Stop
Tracking button.

Debugging

[90]

The allocation tracker is very useful to examine the objects that are being allocated
when doing certain interactions in our application, in order to improve memory usage.

Network Statistics
The Network Statistics tab displays how our application uses the network's
resources. To get the network statistics of any application that uses the network,
click on the Start button. The data transfers will begin to appear in the graph.

The network statistics are useful to optimize the network requests in our code and
control the data transferred at a certain point of the execution.

File Explorer
The File Explorer tab exposes the whole filesystem of the device. We can examine its
size, date, or the permissions of each element. Navigate to /data/app/ to search for
our com.example.myapplication.apk application package file.

Emulator Control
The Emulator Control tab allows us to emulate some special states or activities in the
virtual device. We can test our application in different environments and situations
to check whether it behaves as expected. If our application has features that depend
on the device's physical location, we can use mock locations. Some of these special
states are:

•	 Telephony Status: This allows you to choose the voice and data status and
its speed and latency

•	 Telephony Actions: This is used to simulate an incoming call or SMS
•	 Location Controls: This is used to set the geolocation of the device

System Information
The System Information tab presents the frame render time, total CPU load, and
total memory usage of the device as graphs. We can search for our application and
easily compare it with the rest of the processes running on the device.

We can change the properties of the graphs such as colors, font, and title, and we
can save them as images in the PNG format. To open these options, right-click on
the graph elements.

Chapter 8

[91]

Open the CPU load and save the graph while our application is running in the
foreground. Then close the application and update the CPU load by clicking on the
Update from Device button. Notice the difference between both graphs and notice
the growth of the idle percentage, as shown in the following screenshot:

Summary
Now you know the different launch options for your application as well as how to use
the console and the LogCat for debugging. We also saw how to debug an application
and interpret the data provided by the DDMS in each of the tabs available.

In the next chapter, we will prepare our application for its release using Android
Studio. First, you will learn the necessary steps to prepare the application before
building it in release mode. You will also learn how the applications are compressed
in APK files and how to generate your own APK file. Finally, you will learn how to
get your certificate as a developer and how to generate a signed APK file, making it
ready for release.

Preparing for Release
In the previous chapter, you learned enough to test and debug your application.
What do you need to do to prepare your application for its release? How can you
do this using Android Studio?

This chapter describes the necessary steps to prepare your application for release
using Android Studio. First of all, you will learn about application package (APK)
files—a variation of the JAR files in which Android applications are packed. You
will then learn how you need to change your application after fully testing it.
Finally, we will sign our APK file, leaving it ready to upload to Google Play.

These are the topics we'll be covering in this chapter:

•	 Preparing for release
•	 APK files
•	 Creating a certificate
•	 Generating a signed APK

Understanding an APK file
Android applications are packed in a file with the .apk extension. These files are just
compressed ZIP files, so their content can be easily explored. An APK file usually
contains the following:

•	 assets/: This is a folder that contains the asset files of the application.
This is the same assets folder that exists in our project.

•	 META-INF/: This is a folder that contains our certificates.
•	 lib/: This is a folder that contains compiled code, in case it is necessary

for a processor.

Preparing for Release

[94]

•	 res/: This is a folder that contains the application resources such as images,
strings, and so on.

•	 AndroidManifest.xml: This is the application manifest file.
•	 classes.dex: This is a file that contains the application's compiled code.
•	 resources.arsc: This is a file that contains some precompiled resources

such as binary XML files.

Having the APK file allows the application to be distributed and installed on the
Android operating system. Android applications can be distributed as you prefer:
through app markets such as Google Play, Amazon App Store, or Opera Mobile
Store; through your own website; or even via an e-mail to your users. If you choose
either of the two last options, take into account that Android, by default, blocks
installations from locations different from Google Play. You should inform your
users that they need to disable this restriction in their devices to be able to install
your application. They have to check the Unknown sources option by navigating
to Settings | Security in their Android devices.

Applications have to be signed with a private key when they are built. An
application can't be installed in a device or even in the emulator if it is not signed.
To build our application, there are two modes: debug and release. Both APK
versions contain the same folders and compiled files; the difference is in the key
used to sign them. Both modes are explained as follows:

•	 Debug: When we ran and tested our application in the previous chapters,
we were in debug mode, but we didn't have a key nor did we do anything
to sign our application. The Android SDK tools automatically create a debug
key, an alias, and their passwords to sign the APK. This process occurs when
we are running or debugging our application with Android Studio without
us realizing it. We can't publish an APK signed with the debug key created
by the SDK tools.

•	 Release: When we want to distribute our application, we have to build
a release version. Google Play requires the APK file to be signed with a
certificate, for which the developer keeps the private key. In this case, we
need our own private key, alias, and password, and need to provide them to
the build tools. The certificate identifies the developer of the application and
can be a self-signed certificate. It is not necessary for a certificate authority to
sign the certificate.

Keep the key store with your certificate in a secure place. To upgrade your
application, you have to use the same key in order to upload the new version. If you
lose the key store, you won't be able to update your application. You will have to
create a new application with a different package name.

Chapter 9

[95]

Steps to take before releasing your app
Before we generate the APK file, it is necessary to prepare our application to build
it in release mode. Perform the following steps:

1.	 Firstly, make sure you have completely tested your application. We
recommend testing your application in the following ways:

°° On a device using the minimum required platform
°° On a device using the target platform
°° On a device using the latest available platform
°° On a real device and not just the emulator
°° On a variety of screen resolutions and sizes
°° On a tablet if your application supports it
°° By switching to landscape mode if you can allow it, both in a mobile

device and in a tablet
°° On different network conditions, such as with no Internet

connectivity or low coverage
°° When the GPS or any location service is not activated on your

device (if your application uses GPS or any location service)
°° When the Back button is pressed

2.	 Secondly, we have to check the log messages that are printed from our
application. Printing some log messages can be considered a security
vulnerability. Logs generated by the Android system can be captured
and analyzed, so we should avoid showing critical information
about the application's internal working. You should also remove the
android:debuggable property from the application manifest file. You can
also set this property to false.

3.	 Thirdly, if your application communicates with a server, check whether the
configured URL is the production URL. It is possible that during the debug
phase, you referenced to a URL of a server in a prerelease environment.

4.	 Finally, set the correct value for the android:versionCode and
android:versionName properties from the application manifest file. The
version code is a number (integer) that represents the application version.
New versions should have greater version codes. This code is used to
determine whether an application installed on a device is of the latest
version, or if there is a newer version.

Preparing for Release

[96]

The version name is a string that represents the application version. Unlike the
version code, the version name is visible to the user and appears in the public
information about the application. It is just an informative version name to the user
and is not used for any internal purpose.

Specify a value of 1 for the version code and 1.0 for the version name. The manifest
tag should look like the following:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myapplication"
 android:versionCode="1"
 android:versionName="1.0" >

A new version of our application will have a value of 2 for the version code, and it
could have 1.1 for the version name:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myapplication"
 android:versionCode="2"
 android:versionName="1.1" >

Generating a signed APK
To generate the signed APK, navigate to Build | Generate Signed APK. Select the
app module and click on the Next button. In the dialog to generate the signed APK,
we are asked for a certificate. The APK is signed by this certificate, which indicates
that it belongs to us.

If this is our first application, we might not have any certificates. Click on the
Create new button to open the dialog to create a new key store. Now fill in the
following information:

•	 Key store path: This is the path in your system to create the key store.
The key store is a file with the .jks extension, for example, release_
keystore.jks.

•	 Password: This is the key store password. You have to confirm it.
•	 Alias: This is the alias for your certificate and is a pair of public and

private keys. Let's name it releasekey.
•	 Password: This is the certificate password. You have to confirm it.

Chapter 9

[97]

•	 Validity (years): This is the certificate that will be valid until the validity
date. A value of 25 years or more is recommended.

•	 Certificate: This is the personal information contained in the certificate. Type
your first and last name, organizational unit, organization, city or locality,
state or province, and country code; for example, AS as Organizational Unit,
packtpub as Organization, and ES as Country Code.

Click on OK. The dialog to create the signed APK is now loaded with the key store
data. The next time we create a signed APK, we will already have a certificate, so we
will select the Choose existing button. Click on the Next button. In the next step, select
the path to save the APK file, select the release build type, and click on Finish. When
the APK is completely generated, we will be informed by a message on the bottom bar
of Android Studio. We should have the APK file created in the selected path.

Now that you have the APK file ready for release, it is recommended that you test it
again in a device before distributing it.

Summary
You learned how to make an APK file and how to modify your application to make it
ready for release. You also learned how to sign your application using the developer
certificate. By the end of this chapter, you should have generated a signed APK
prepared for its release.

In Appendix, Getting Help, you will learn how to get help using Android Studio. We
will access the Android Studio online documentation and go through the help topics.
Finally, you will learn about keeping your Android Studio instance updated using
the inbuilt feature for it.

Getting Help
When developing applications in a new IDE, there will always be doubts on how
to perform a certain action. A successful IDE usually includes help wizards and
documentation that help you with different problems. Have you wondered how
to get help using Android Studio?

In this appendix, you will learn about Android Studio documentation and help
topics. You will also learn about the topics available in the official documentation.
They can be accessed online at the official Android website. Finally, you will learn
how to keep your Android Studio instance up to date using the update functionality.

The following topics will be covered in this appendix:

•	 Android Studio help
•	 Online documentation
•	 Android Studio updates

Getting help from Android Studio
Android Studio documentation is included in the IntelliJ IDEA web help. This
documentation is accessible from Android Studio by navigating to Help | Online
Documentation, or at http://tools.android.com/welcome-to-android-
studio. Another option is to navigate to Help | Help Topics to directly open the
documentation contents tree, or go to http://www.jetbrains.com/idea/webhelp/
intellij-idea.html. There are also some online video tutorials available. Navigate
to Help | JetBrains TV or refer to http://tv.jetbrains.net/.

To quickly find actions of Android Studio, we can navigate to Help | Find Action.
Type the action you are looking for, and the list of matching actions will be displayed.

http://tools.android.com/welcome-to-android-studio
http://tools.android.com/welcome-to-android-studio
http://www.jetbrains.com/idea/webhelp/intellij-idea.html
http://www.jetbrains.com/idea/webhelp/intellij-idea.html
http://tv.jetbrains.net/

Getting Help

[100]

Android Studio provides a tip of the day functionality. The tip of the day explains,
in a dialog, a trick about Android Studio. Every time you open Android Studio, this
dialog is shown. We can navigate through more tips using the Previous Tip and Next
Tip buttons. By deselecting the Show Tips on Startup checkbox, we can disable this
functionality. The tip dialog can be opened by navigating to Help | Tip of the Day.

Android online documentation
The official Android documentation provided by Google is available at http://
developer.android.com/. This documentation contains all the necessary guides
to learn not only how to program Android applications but also how to design for
Android and distribute and promote our applications. Since this website is quite
extensive, we are listing here some of the specific guides useful to increase the
knowledge you will gain in the chapters of this book:

•	 Chapter 1, Installing and Configuring Android Studio:
°° The Android Studio Overview page at http://developer.android.

com/tools/studio/index.html

°° The Android Studio Tips and Tricks page at http://developer.
android.com/sdk/installing/studio-tips.html

°° The Known issues page at http://tools.android.com/knownissues

•	 Chapter 2, Starting a Project:
°° The Launcher section of the Iconography page at http://developer.

android.com/design/style/iconography.html#launcher

°° The Using Code Templates page at http://developer.android.com/
tools/projects/templates.html

•	 Chapter 3, Navigating a Project:
°° The Managing Projects Overview page at http://developer.

android.com/tools/projects/

•	 Chapter 4, Using the Code Editor:
°° The Keyboard Commands section in the Android Studio Tips and Tricks at

http://developer.android.com/sdk/installing/studio-tips.
html#KeyCommands

http://developer.android.com/
http://developer.android.com/
http://developer.android.com/tools/studio/index.html
http://developer.android.com/tools/studio/index.html
http://developer.android.com/sdk/installing/studio-tips.html
http://developer.android.com/sdk/installing/studio-tips.html
http://tools.android.com/knownissues
http://developer.android.com/design/style/iconography.html#launcher
http://developer.android.com/design/style/iconography.html#launcher
http://developer.android.com/tools/projects/templates.html
http://developer.android.com/tools/projects/templates.html
http://developer.android.com/tools/projects/
http://developer.android.com/tools/projects/
http://developer.android.com/sdk/installing/studio-tips.html#KeyCommands
http://developer.android.com/sdk/installing/studio-tips.html#KeyCommands

Appendix

[101]

•	 Chapter 5, Creating User Interfaces:
°° The Layouts page at http://developer.android.com/guide/

topics/ui/declaring-layout.html

°° The Input Controls page at http://developer.android.com/guide/
topics/ui/controls.html

°° The Input Events page at http://developer.android.com/guide/
topics/ui/ui-events.html

°° The Supporting Multiple Screens page at http://developer.
android.com/guide/practices/screens_support.html

•	 Chapter 6, Tools:
°° The SDK Manager page at http://developer.android.com/tools/

help/sdk-manager.html

°° The Managing Virtual Devices page at http://developer.android.
com/tools/devices/

•	 Chapter 7, Google Play Services:
°° The Google Play Services page at http://developer.android.com/

google/play-services/

°° The PlusOneButton page at https://developer.android.com/
reference/com/google/android/gms/plus/PlusOneButton.html

•	 Chapter 8, Debugging:
°° The Using DDMS page at http://developer.android.com/tools/

debugging/ddms.html

°° The Reading and Writing Logs page at http://developer.android.
com/tools/debugging/debugging-log.html

°° The Profiling with Traceview and dmtracedump page at http://
developer.android.com/tools/debugging/debugging-tracing.
html

•	 Chapter 9, Preparing for Release:

°° The Publishing Overview page at http://developer.android.com/
tools/publishing/publishing_overview.html

http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/controls.html
http://developer.android.com/guide/topics/ui/controls.html
http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/debugging-log.html
http://developer.android.com/tools/debugging/debugging-log.html
http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/publishing/publishing_overview.html
http://developer.android.com/tools/publishing/publishing_overview.html

Getting Help

[102]

Updates
From the Help menu, we can check for updates of Android Studio. Navigate to
Help | Check for Update. If there is an update available for Android Studio that
we have not installed, the update information will be shown in a dialog when the
checking finishes. This dialog is shown in the next screenshot. We can see our current
version, the new version code, and its size. We can choose to ignore the update,
update it later (using the Remind Me Later button), review the online release notes
about the update (using the Release Notes button), or install the update (using the
Update and Restart button). Click on this last option to update Android Studio. The
update starts to download first, then Android Studio will restart and the update will
be installed.

If we already have the latest version of Android Studio, the following message
will be shown:

Click on the Updates link to open the Update Info dialog. If we want, we can
instruct Android Studio to automatically check for updates and the type of updates
to check for, for example, beta releases or stable releases.

We can examine the information about the recent Android Studio updates by
navigating to Help | What's New in Android Studio. This information is available
online at http://tools.android.com/recent. To get the current version of
Android Studio, or even the Java version in our system, navigate to Help | About.

http://tools.android.com/recent

Appendix

[103]

Summary
You learned how to use the Android Studio documentation in case you need help
with any action available in the IDE. You also learned about the update feature with
which you can always install the latest version of Android Studio. By the end of this
appendix, you should be able to search for help using the online documentation and
the help topics, and keep your Android Studio updated with the latest features at
your disposal.

Index
A
action bars

URL 16
activities

about 16
Blank Activity 16
Blank Activity with Fragment 16
Fullscreen Activity 17
Google Maps Activity 17
Google Play Services Activity 18
Login activity 18
Master/Detail Flow 19
Navigation Drawer Activity 19
Settings Activity 20
Tabbed Activity 20

allocation tracker 89, 90
Android

dashboards, URL 15, 48
developer tools, web page 6
devices 15
Google+ Platform for 76
multiple screens, supporting 47-49
screen sizes 49

Android Device Monitor tool
about 85
Allocation Tracker tab 89, 90
Emulator Control tab 90
File Explorer tab 90
Heap tab 88, 89
method profiling 86-88
Network Statistics tab 90
System Information tab 90, 91
threads tab 86

Android online documentation
URL 100, 101

Android Studio
configuring 8-10
documentation 99
downloading 6
Google Play services, adding 71-74
installation, preparing for 5
installing 6
Quick Start section 7
running 7

Android Virtual Device. See AVD Manager
APK file

about 93
AndroidManifest.xml file 94
assets/ folder 93
classes.dex file 94
lib/ folder 93
META-INF/ folder 93
res/ folder 94
resources.arsc file 94

application
about 94
debug 94
releasing 94
releasing, prerequisites 95, 96

application package. See APK file
application programming interface (API) 15
AVD Manager

about 55-62
New Hardware Profile button 58, 59
Show Advanced Settings button 59, 60

[106]

B
Blank Activity

with Fragment 16

C
code

generating 37
navigating 37-39

code completion
about 34-36
completion of statements 36

components
adding 45, 46

Components Palette 43
Components Tree 43
component tree view and layout preview,

differences
hint 45
id 45
layout:width 45
text 45

console
about 80
installing 80
Launching application 81
Uploading file 80
Waiting for device 80
Waiting for process 81

Containers, Components Palette 43
Custom, Components Palette 43
custom region

about 38
creating 38

D
Dalvik Debug Monitor Server

(DDMS) 79, 85
Date & Time, Components Palette 43
debugger 81, 82
debugging 79, 80
density-independent pixel (dp) 49
device orientation 48

devices, Android
Glass 15
Phone and Tablet 15
TV 15
Wear 15

domain-specific language (DSL) 28

E
editor settings

Appearance 33
Auto Import 34
Change font size (Zoom) with Ctrl+Mouse

Wheel 32
Code Completion 34
Code Folding 33
Colors & Fonts 33
customizing 32, 33
Editor Tabs 33
Show line numbers, Appearance 33
Show method separators, Appearance 33
Show quick doc on mouse move 32
Smart Keys 33

Emulator Control tab
about 90
Location Controls 90
Telephony Actions 90
Telephony Status 90

events
handling 51-53
OnClickListener 51
OnCreateContextMenu 51
OnDragListener 51
OnFocusChange 51
OnKeyListener 52
OnLongClickListener 52
OnTouchListener 52

Expert, Components Palette 43
extra-extra-high-density dots per inch

(xxhdpi) 48
extra-high-density dots per inch (xhdpi) 48

F
File Explorer tab 90
form factors

selecting 15

[107]

fragment
about 75
URL 16

Fullscreen Activity 17

G
Google Cloud Messaging (GCM) 77, 78
Google Maps Activity 17
Google Maps Android API v2 74, 75
Google+ Platform

for Android 76
Google Play

In-App Billing v3 77
Google Play services

Activity 18
adding, to Android Studio 71-74
Analytics 71
APK 70
available 70, 71
client library 70
Cloud Messaging 71
Drive 71
Games 70
Google+ 70
In-app Billing 71
Location 70
Maps 70
Panorama 71
Wallet 71
working 69, 70

Gradle
about 28
dependencies 28
manifest entries 28
signing 28
URL 28
variants 28

graphical editor 42

H
Heap tab 88, 89
high-density dots per inch (hdpi) 48
Holo style 50

J
Java Development Kit (JDK) 5
Javadoc

generating 65, 66

L
layout

new layout, creating 43, 44
LogCat 83, 84
Login activity 18
low-density dots per inch (ldpi) 48

M
Master/Detail Flow 19
medium-density dots per inch (mdpi) 48
medium high density dots per inch

(tvdpi) 48
Memory Monitor 85
method profiling 86-88
module

URL 29
multiple screens

supporting 47-49

N
Navigate menu, custom region

Call Hierarchy 39
Class/File/Symbol 38
File Path 39
File Structure 39
Last Edit Location 38
Line 38
Method Hierarchy 39
Next Highlighted Error 39
Next Method 39
Previous Highlighted Error 39
Previous Method 39
Test 39
Type Hierarchy 39

Navigation Drawer Activity
about 19
URL 19

[108]

Navigation Editor tool 62-64
navigation panel, project 24, 25
Network Statistics tab 90

O
OnClickListener event 51
OnCreateContextMenu event 51
OnDragListener event 51
OnFocusChange event 51
OnKeyListener event 52
OnLongClickListener event 52
OnTouchListener event 52

P
project

activity type, selecting 16-20
Application name 14
Company Domain 14
configuring 14
creating 14
form factors, selecting 15
navigation panel 24, 25
Package name 15
Project location 15
structure 26, 27

project, settings
about 29
Code Style 29
Compiler 29
File Encodings 29
Gradle 29
Language Injections 29
Version Control 29

project, structure
about 26
AndroidManifest.xml file, src/main/

folder 27
build/ folder 26
build.gradle file 27
Gradle 28
java/ folder, src/main/ folder 26
Libraries 30
libs/ folder 26
Modules 29

Project 29
res/ folder, src/main/ folder 27
resources folder 27
SDK Location 29
src/androidTest/ folder 26
src/main/ folder 26

Properties inspector 43

Q
Quick Start section 7, 8

R
relative layout 43
resources folder

color/ 27
drawable/ 27
layout/ 27
menu/ 27
values/ 27

S
SDK Manager

about 56, 57
API 56
Name 56
Rev 56
Status 56

Settings Activity 20
shortcuts

about 40
Alt + Arrows 40
Ctrl + / 40
Ctrl + A 40
Ctrl + Alt + I 40
Ctrl + Alt + O 40
Ctrl + D 40
Ctrl + F 40
Ctrl + R 40
Ctrl + Shift + U 40
Ctrl + W 40
Ctrl + Y 40
Shift + Ctrl + Arrows 40
Tab 40

[109]

signed APK
alias 96
certificate 97
certificate password 96
generating 96, 97
key store password 96
key store path 96
validity (years) 97

smart type code completion 35, 36
software development kit (SDK) 55
System Information tab 90, 91

T
Tabbed Activity 20
text-based editor 44
Text Fields, Components Palette 43
threads tab 86
toolbar 44

U
UI theme

changing 50
updates 102
user interface (UI) components

about 43
Containers 43
Custom 43
Date & Time 43
Expert 43
Layouts 43
Text Fields 43
Widgets 43

V
version control systems (VCS) 66, 67

W
Widgets, Components Palette 43

Thank you for buying
Android Studio Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Testing and Securing Android
Studio Applications
ISBN: 978-1-78398-880-8 Paperback: 162 pages

Debug and secure your Android applications with
Android Studio

1.	 Explore the foundations of security and learn
how to apply these measures to create secure
applications using Android Studio.

2.	 Create effective test cases, unit tests, and
functional tests to ensure your Android
applications function correctly.

3.	 Optimize the performance of your app by
debugging and using high-quality code.

Android Studio Application
Development
ISBN: 978-1-78328-527-3 Paperback: 110 pages

Create visually appealing applications using the new
IntelliJ IDE Android Studio

1.	 Familiarize yourself with Android Studio IDE.

2.	 Enhance the user interface for your app
using the graphical editor feature.

3.	 Explore the various features involved
in developing an android app and
implement them.

Please check www.PacktPub.com for information on our titles

Android Native Development Kit
Cookbook
ISBN: 978-1-84969-150-5 Paperback: 346 pages

A step-by-step tutorial with more than 60 concise
recipes on Android NDK development skills

1.	 Build, debug, and profile Android NDK apps.

2.	 Implement part of Android apps in native
C/C++ code.

3.	 Optimize code performance in assembly
with Android NDK.

Android 3.0 Application
Development Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of
Android development

1.	 Written for Android 3.0 but also applicable to
lower versions.

2.	 Quickly develop applications that take
advantage of the latest mobile technologies,
including web apps, sensors, and touch screens.

3.	 Discover tips and tricks for varied and
imaginative uses of the latest Android features.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing and Configuring Android Studio
	Preparing for installation
	Downloading Android Studio
	Installing Android Studio
	Running Android Studio for the first time

	Configuring the Android SDK
	Summary

	Chapter 2: Starting a Project
	Creating a new project
	Configuring the project
	Selecting the form factors
	Choosing the activity type

	Summary

	Chapter 3: Navigating a Project
	The project navigation panel
	The project structure
	The resources folder
	Gradle

	Project settings
	Summary

	Chapter 4: Using the Code Editor
	Customizing the editor settings
	Code completion
	Code generation
	Navigating code
	Useful shortcuts
	Summary

	Chapter 5: Creating User Interfaces
	The graphical editor
	The text-based editor
	Creating a new layout
	Adding components
	Supporting multiple screens
	Changing the UI theme
	Handling events
	Summary

	Chapter 6: Tools
	The SDK Manager
	The AVD Manager
	The Navigation Editor
	Generating a Javadoc
	Version control systems
	Summary

	Chapter 7: Google Play Services
	How Google Play services work
	Services available
	Adding Google Play services to
Android Studio
	Google Maps Android API v2
	Google+ Platform for Android
	Google Play In-App Billing v3
	Google Cloud Messaging
	Summary

	Chapter 8: Debugging
	Running and debugging
	Console
	Debugger
	LogCat
	Memory Monitor

	Android Device Monitor
	Threads
	Method profiling

	Heap
	Allocation Tracker
	Network Statistics
	File Explorer
	Emulator Control
	System Information

	Summary

	Chapter 9: Preparing for Release
	Understanding an APK file
	Steps to take before releasing your app
	Generating a signed APK
	Summary

	Appendix: Getting Help
	Getting help from Android Studio
	Android online documentation
	Updates
	Summary

	Index

