
www.allitebooks.com

http://www.allitebooks.org

Apache Spark Graph
Processing

Build, process, and analyze large-scale graphs
with Spark

Rindra Ramamonjison

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache Spark Graph Processing

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1040915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-180-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Rindra Ramamonjison

Reviewer
Thomas W. Dinsmore

Ryan Mccune

Francoise Provencher

Commissioning Editor
Amit Ghodke

Acquisition Editor
Larissa Pinto

Content Development Editor
Dharmesh Parmar

Technical Editor
Prajakta Mhatre

Copy Editor
Yesha Gangani

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Apache Spark is one of the most compelling technologies in the big data space and
for good reason. It allows data scientists and data engineers alike to work in their
language of choice (Java, Scala, Python, SQL, and R as of this writing) to make sense
of their data. As ReynoldXin noted, Apache Spark is the Swiss Army Knife of big
data analytics tools. It allows you to use one tool to do many things from real-time
streaming to advanced analytics. And in no small part, the versatility and power of
GraphX has helped Spark propel forward.

Apache Spark Graph Processing follows Rindra's journey into solving complex analytics
problems. As a PhD graduate in electrical engineering from the University of
British Columbia, he focused on applying learning and optimization algorithms to
achieve energy-efficient wireless networks. As he dove further into these problems,
he realized the ease of which he could solve graph-processing problems by using
Apache Spark GraphX. With a tutorial style and hands-on projects with interesting
datasets, this book is a reflection of his path from getting started with Apache Spark
GraphX to iterative graph parallel processing to learning graph structures.

This book is a great jump-start into GraphX, a practical guide for large-scale graph
processing, and a testament to the author's enthusiasm for the Spark community
(and the community as a whole).

Denny Lee

Technology Evangelist, Databricks

Advisor, WearHacks

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rindra Ramamonjison is a fourth year PhD student of electrical engineering at
the University of British Columbia, Vancouver. He received his master's degree from
Tokyo Institute of Technology. He has played various roles in many engineering
companies, within telecom and finance industries. His primary research interests are
machine learning, optimization, graph processing, and statistical signal processing.
Rindra is also the co-organizer of the Vancouver Spark Meetup.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Thomas W. Dinsmore is a consultant and author with more than 30 years of
service to enterprises around the world. He is an expert in business analytics, and
has working experience with the leading analytic tools, languages, and databases.
In his practice, Thomas helps organizations streamline analytics for improved
performance and time to value.

Previously, Thomas served with The Boston Consulting Group, IBM,
PriceWaterhouseCoopers and SAS, as well as several startups.

Thomas coauthored Modern Analytics Methodologies and Advanced Analytics
Methodologies, published in 2014 by FT Press. He is currently under contract to
publish a book on disruptive technologies in business analytics, scheduled for
publication in Q2 2016.

I would like to thank the entire editorial and production team at
Packt Publishing, who work tirelessly to bring quality books to
the public.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Getting Started with Spark and GraphX 1

Downloading and installing Spark 1.4.1 1
Experimenting with the Spark shell 3
Getting started with GraphX 5

Building a tiny social network 5
Loading the data 6
The property graph 6
Transforming RDDs to VertexRDD and EdgeRDD 7
Introducing graph operations 9

Building and submitting a standalone application 10
Writing and configuring a Spark program 10
Building the program with the Scala Build Tool 14
Deploying and running with spark-submit 15

Summary 16
Chapter 2: Building and Exploring Graphs 17

Network datasets 17
The communication network 18
Flavor networks 18
Social ego networks 19

Graph builders 19
The Graph factory method 19
edgeListFile 20
fromEdges 20
fromEdgeTuples 21

Building graphs 21
Building directed graphs 21
Building a bipartite graph 22
Building a weighted social ego network 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Computing the degrees of the network nodes 30
In-degree and out-degree of the Enron email network 30
Degrees in the bipartite food network 31
Degree histogram of the social ego networks 32

Summary 33
Chapter 3: Graph Analysis and Visualization 35

Network datasets 36
The graph visualization 36

Installing the GraphStream and BreezeViz libraries 36
Visualizing the graph data 37
Plotting the degree distribution 41

The analysis of network connectedness 43
Finding the connected components 45
Counting triangles and computing clustering coefficients 46

The network centrality and PageRank 49
How PageRank works 49
Ranking web pages 50

Scala Build Tool revisited 51
Organizing build definitions 51
Managing library dependencies 52

A preview of the steps 53
Running tasks with SBT commands 58

Summary 58
Chapter 4: Transforming and Shaping Up Graphs
to Your Needs 59

Transforming the vertex and edge attributes 59
mapVertices 60
mapEdges 61
mapTriplets 61

Modifying graph structures 61
The reverse operator 62
The subgraph operator 62
The mask operator 63
The groupEdges operator 63

Joining graph datasets 64
joinVertices 64
outerJoinVertices 64
Example – Hollywood movie graph 65

Table of Contents

[iii]

Data operations on VertexRDD and EdgeRDD 69
Mapping VertexRDD and EdgeRDD 69
Filtering VertexRDDs 70
Joining VertexRDDs 71
Joining EdgeRDDs 72
Reversing edge directions 72
Collecting neighboring information 74
Example – from food network to flavor pairing 74

Summary 78
Chapter 5: Creating Custom Graph Aggregation Operators 79

NCAA College Basketball datasets 79
The aggregateMessages operator 83

EdgeContext 83
Abstracting out the aggregation 85
Keeping things DRY 86
Coach wants more numbers 88
Calculating average points per game 90
Defense stats – D matters as in direction 91

Joining average stats into a graph 92
Performance optimization 95
The MapReduceTriplets operator 98
Summary 98

Chapter 6: Iterative Graph-Parallel Processing with Pregel 99
The Pregel computational model 99

Example – iterating towards the social equality 100
The Pregel API in GraphX 103
Community detection through label propagation 104
The Pregel implementation of PageRank 105
Summary 106

Chapter 7: Learning Graph Structures 107
Community clustering in graphs 107

Spectral clustering 108
Power iteration clustering 108

Applications – music fan community detection 110
Step 1 – load the data into a Spark graph property 111
Step 2 – extract the features of nodes 112
Step 3 – define a similarity measure between two nodes 114

Table of Contents

[iv]

Step 4 – create an affinity matrix 114
Step 5 – run k-means clustering on the affinity matrix 116
Exercise – collaborative clustering through playlists 120

Summary 120
Appendix: References 121

Chapter 2, Building and Exploring Graphs 121
Chapter 3, Graph Analysis and Visualization 122
Chapter 7, Learning Graph Structures 122

Index 123

Preface

[v]

Preface
This book is intended to present the GraphX library for Apache Spark and to teach
the fundamental techniques and recipes to process graph data at scale. It is intended
to be a self-study step-by-step guide for anyone new to Spark with an interest in or
need for large-scale graph processing.

Distinctive features
The focus of this book is on large-scale graph processing with Apache Spark. The
book teaches a variety of graph processing abstractions and algorithms and provides
concise and sufficient information about them. You can confidently learn all of it and
put it to use in different applications.

• Step-by-step guide: Each chapter teaches important techniques for
every stage of the pipeline, from loading and transforming graph data to
implementing graph-parallel operations and machine learning algorithms.

• Hands-on approach: We show how each technique works using the Scala
REPL with simple examples and by building standalone Spark applications.

• Detailed code: All the Scala code in the book is available for download from
the book webpage of Packt Publishing.

• Real-world examples: We apply these techniques on open datasets collected
from a broad variety of applications ranging from social networks to food
science and sports analytics.

Preface

[vi]

What this book covers
This book consists of seven chapters. The first three chapters help you to get
started quickly with Spark and GraphX. Then, the next two chapters teach the core
techniques and abstractions to manipulate and aggregate graph data. Finally, the
last two chapters of this book cover more advanced topics such as graph clustering,
implementing graph-parallel iterative algorithms with Pregel, and learning methods
from graph data.

Chapter 1, Getting Started with Spark and GraphX, begins with an introduction to the
Spark system, its libraries, and the Scala Build Tool. It explains how to install and
leverage Spark on the command line and in a standalone Scala program.

Chapter 2, Building and Exploring Graphs, presents the methods for building Spark
graphs using illustrative network datasets.

Chapter 3, Graph Analysis and Visualization, walks you through the process of
exploring, visualizing, and analyzing different network characteristics.

Chapter 4, Transforming and Shaping Up Graphs to Your Needs, teaches you how to
transform raw datasets into a usable form that is appropriate for later analysis.

Chapter 5, Creating Custom Graph Aggregation Operators, teaches you how to create
custom graph operations that are tailored to your specific needs with efficiency in
mind, using the powerful message-passing aggregation operator in Spark.

Chapter 6, Iterative Graph-Parallel Processing with Pregel, explains the inner workings
of the Pregel computational model and describes some use cases.

Chapter 7, Learning Graph Structures, introduces graph clustering, which is useful
for detecting communities in graphs and applies it to a social music database.

What you need for this book
To learn effectively from this book, it is helpful to have a beginner-level
programming experience with Scala. However, intermediate functional constructs or
Scala-specific syntax are highlighted and explained as they appear in the book. Prior
experience with Spark's core API or with the MapReduce framework is beneficial but
not required.

It is also beneficial to follow along with the examples, using a Windows or Unix
computer with a Java Development Kit environment. More details on the system
requirements are described in the first chapter.

Preface

[vii]

Who this book is for
This book is for data engineers, software developers, and data scientists who need
to process graph data at a large scale. This book is intended to be self-contained and
does not assume any prior experience with Spark. However, its focus is entirely on
graph processing.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: When we wish to
run a Scala code in the Spark shell, it will start with scala > prompt.

A block of code is set as follows:

val greeting = sc.parallelize("Hello Spark".toList)
greeting.collect foreach {
 c => println(c)
}

Any command-line input or output is written as follows:

> tar -xf spark-1.4.1-bin-hadoop2.6.tgz

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with Spark
and GraphX

Apache Spark is a cluster-computing platform for the processing of large distributed
datasets. Data processing in Spark is both fast and easy, thanks to its optimized
parallel computation engine and its flexible and unified API. The core abstraction in
Spark is based on the concept of Resilient Distributed Dataset (RDD). By extending
the MapReduce framework, Spark's Core API makes analytics jobs easier to write.
On top of the Core API, Spark offers an integrated set of high-level libraries that
can be used for specialized tasks such as graph processing or machine learning. In
particular, GraphX is the library to perform graph-parallel processing in Spark.

This chapter will introduce you to Spark and GraphX by building a social network
and exploring the links between people in the network. In addition, you will learn to
use the Scala Build Tool (SBT) to build and run a Spark program. By the end of this
chapter, you will know how to:

• Install Spark successfully on your computer
• Experiment with the Spark shell and review Spark's data abstractions
• Create a graph and explore the links using base RDD and graph operations
• Build and submit a standalone Spark application with SBT

Downloading and installing Spark 1.4.1
In the following section, we will go through the Spark installation process in
detail. Spark is built on Scala and runs on the Java Virtual Machine (JVM). Before
installing Spark, you should first have Java Development Kit 7 (JDK) installed on
your computer.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Spark and GraphX

[2]

Make sure you install JDK instead of Java Runtime Environment (JRE). You
can download it from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.html.

Next, download the latest release of Spark from the project website
https://spark.apache.org/downloads.html. Perform the following
three steps to get Spark installed on your computer:

1. Select the package type: Pre-built for Hadoop 2.6 and later and then Direct
Download. Make sure you choose a prebuilt version for Hadoop instead of
the source code.

2. Download the compressed TAR file called spark-1.4.1-bin-hadoop2.6.tgz
and place it into a directory on your computer.

3. Open the terminal and change to the previous directory. Using the
following commands, extract the TAR file, rename the Spark root folder
to spark-1.4.1, and then list the installed files and subdirectories:

tar -xf spark-1.4.1-bin-hadoop2.6.tgz
 mv spark-1.4.1-bin-hadoop2.6 spark-1.4.1
 cd spark-1.4.1
 ls

That's it! You now have Spark and its libraries installed on your computer. Note the
following files and directories in the spark-1.4.1 home folder:

• core: This directory contains the source code for the core components and
API of Spark

• bin: This directory contains the executable files that are used to submit and
deploy Spark applications or also to interact with Spark in a Spark shell

• graphx, mllib, sql, and streaming: These are Spark libraries that provide
a unified interface to do different types of data processing, namely graph
processing, machine learning, queries, and stream processing

• examples: This directory contains demos and examples of Spark applications

It is often convenient to create shortcuts to the Spark home folder and Spark example
folders. In Linux or Mac, open or create the ~/.bash_profile file in your home
folder and insert the following lines:

export SPARKHOME="/[Where you put Spark]/spark-1.4.1/"
export SPARKSCALAEX="ls ../spark-
1.4.1/examples/src/main/scala/org/apache/spark/examples/"

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://spark.apache.org/downloads.html

Chapter 1

[3]

Then, execute the following command for the previous shortcuts to take effect:

source ~/.bash_profile

As a result, you can quickly access these folders in the terminal or Spark shell. For
example, the example named LiveJournalPageRank.scala can be accessed with:

$SPARKSCALAEX/graphx/LiveJournalPageRank.scala

Experimenting with the Spark shell
The best way to learn Spark is through the Spark shell. There are two different
shells for Scala and Python. But since the GraphX library is the most complete in
Scala at the time this book was written, we are going to use the spark-shell, that
is, the Scala shell. Let's launch the Spark shell inside the $SPARKHOME/bin from the
command line:

$SPARKHOME/bin/spark-shell

If you set the current directory (cd) to $SPARKHOME, you can simply launch the
shell with:

cd $SPARKHOME

./bin/spark-shell

If you happen to get an error saying something like: Failed to
find Spark assembly in spark-1.4.1/assembly/target/
scala-2.10. You need to build Spark before running
this program, then it means that you have downloaded the Spark
source code instead of a prebuilt version of Spark. In that case, go
back to the project website and choose a prebuilt version of Spark.

If you were successful in launching the Spark shell, you should see the welcome
message like this:

 Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ '/ __/ '_/

 /___/ .__/_,_/_/ /_/_\ version 1.4.1

 /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java)

Getting Started with Spark and GraphX

[4]

For a sanity check, you can type in some Scala expressions or declarations and have
them evaluated. Let's type some commands into the shell now:

scala> sc

res1: org.apache.spark.SparkContext = org.apache.spark.
SparkContext@52e52233

scala> val myRDD = sc.parallelize(List(1,2,3,4,5))

myRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at
parallelize at <console>:12

scala> sc.textFile("README.md").filter(line => line contains "Spark").
count()

res2: Long = 21

Here is what you can tell about the preceding code. First, we displayed the Spark
context defined by the variable sc, which is automatically created when you launch
the Spark shell. The Spark context is the point of entry to the Spark API. Second,
we created an RDD named myRDD that was obtained by calling the parallelize
function for a list of five numbers. Finally, we loaded the README.md file into an
RDD, filtered the lines that contain the word "Spark", and finally invoked an action
on the filtered RDD to count the number of those lines.

It is expected that you are already familiar with the basic RDD
transformations and actions, such as map, reduce, and filter.
If that is not the case, I recommend that you learn them first,
perhaps by reading the programming guide at https://spark.
apache.org/docs/latest/programming-guide.html or an
introductory book such as Fast Data Processing with Spark by Packt
Publishing and Learning Spark by O'Reilly Media.

Don't panic if you did not fully grasp the mechanisms behind RDDs. The following
refresher, however, helps you to remember the important points. RDD is the core
data abstraction in Spark to represent a distributed collection of large datasets that
can be partitioned and processed in parallel across a cluster of machines. The Spark
API provides a uniform set of operations to transform and reduce the data within an
RDD. On top of these abstractions and operations, the GraphX library also offers a
flexible API that enables us to create graphs and operate on them easily.

Perhaps, when you ran the preceding commands in the Spark shell, you were
overwhelmed by the long list of logging statements that start with INFO. There is a
way to reduce the amount of information that Spark outputs in the shell.

https://spark.apache.org/docs/latest/programming-guide.html
https://spark.apache.org/docs/latest/programming-guide.html

Chapter 1

[5]

You can reduce the level of verbosity of the Spark shell as follows:
• First, go to the $SCALAHOME/conf folder
• Then, create a new file called log4j.properties
• Inside the conf folder, open the template file

log4j.properties.template and copy all its
content into log4j.properties

• Find and replace the line log4j.rootCategory=INFO,
console with either one of these two lines:
• log4j.rootCategory=WARN, console
• log4j.rootCategory=ERROR, console

• Finally, restart the Spark shell and you should now see fewer
logging messages in the shell outputs

Getting started with GraphX
Now that we have installed Spark and experimented with the Spark shell, let's
create our first graph in Spark by writing our code in the shell, and then building
upon that code to develop and run a standalone program. We have three learning
goals in this section:

1. First, you will learn how to construct and explore graphs using the Spark
Core and GraphX API through a concrete example.

2. Second, you will review some important Scala programming features that are
important to know when doing graph processing in Spark.

3. Third, you will learn how to develop and run a standalone Spark application.

Building a tiny social network
Let's create a tiny social network and explore the relationships among the different
people in the network. Again, the best way to learn Spark is inside the shell. Our
workflow is therefore to first experiment in the shell and then migrate our code later
into a standalone Spark application. Before launching the shell, make sure to change
the current directory to $SPARKHOME.

First, we need to import the GraphX and RDD module, as shown, so that we can
invoke its APIs with their shorter names:

scala> import org.apache.spark.graphx._

scala> import org.apache.spark.rdd.RDD

Getting Started with Spark and GraphX

[6]

As said previously, SparkContext is the main point of entry into a Spark program
and it is created automatically in the Spark shell. It also offers useful methods to
create RDDs from local collections, to load data from a local or Hadoop file system
into RDDs, and to save output data on disks.

Loading the data
In this example, we will work with two CSV files people.csv and links.csv,
which are contained in the directory $SPARKHOME/data/. Let's type the following
commands to load these files into Spark:

scala> val people = sc.textFile("./data/people.csv")

people: org.apache.spark.rdd.RDD[String] = ./data/people.csv
MappedRDD[81] at textFile at <console>:33

scala> val links = sc.textFile("./data/links.csv")

links: org.apache.spark.rdd.RDD[String] = ./data/links.csv MappedRDD[83]
at textFile at <console>:33

Loading the CSV files just gave us back two RDDs of strings. To create our graph,
we need to parse these strings into two suitable collections of vertices and edges.

It is important that your current directory inside the shell
is $SPARKHOME. Otherwise, you get an error later because
Spark cannot find the files.

The property graph
Before going further, let's introduce some key definitions and graph abstractions.
In Spark, a graph is represented by a property graph, which is defined in the Graph
class as:

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
 val edges: EdgeRDD[ED,VD]
}

Chapter 1

[7]

This means that the Graph class provides getters to access its vertices and
its edges. These are later abstracted by the RDD subclasses VertexRDD[VD] and
EdgeRDD[ED, VD]. Note that VD and ED here denote some Scala-type parameters
of the classes VertexRDD, EdgeRDD, and Graph. These types of parameters can be
primitive types, such as String, or also user-defined classes, such as the Person
class, in our example of a social graph. It is important to note that the property
graph in Spark is a directed multigraph. It means that the graph is permitted to have
multiple edges between any pair of vertices. Moreover, each edge is directed and
defines a unidirectional relationship. This is easy to grasp, for instance, in a Twitter
graph where a user can follow another one but the converse does not need to be
true. To model bidirectional links, such as a Facebook friendship, we need to define
two edges between the nodes, and these edges should point in opposite directions.
Additional properties about the relationship can be stored as an attribute of the edge.

A property graph is a graph with user-defined objects attached
to each vertex and edge. The classes of these objects describe the
properties of the graph. This is done in practice by parameterizing
the class Graph, VertexRDD, and EdgeRDD. Moreover, each edge
of the graph defines a unidirectional relationship but multiple edges
can exist between any pair of vertices.

Transforming RDDs to VertexRDD and EdgeRDD
Going back to our example, let's construct the graph in three steps, as follows:

1. We define a case class Person, which has name and age as class parameters.
Case classes are very useful when we need to do pattern matching on an
object Person later on:
case class Person(name: String, age: Int)

2. Next, we are going to parse each line of the CSV texts inside people and links
into new objects of type Person and Edge respectively, and collect the results
in RDD[(VertexId, Person)] and RDD[Edge[String]]:
val peopleRDD: RDD[(VertexId, Person)] = people map { line
=>

 val row = line split ','

 (row(0).toInt, Person(row(1), row(2).toInt))

}

Getting Started with Spark and GraphX

[8]

scala> type Connection = String

scala> val linksRDD: RDD[Edge[Connection]] = links map {line =>

 val row = line split ','

 Edge(row(0).toInt, row(1).toInt, row(2))

}

To paste or write code in multiple lines in the shell:
• Type the command :paste
• Paste or write the given code
• Evaluate the code by pressing the keys Cmd + D on Mac or

Ctrl + D in Windows
VertexId is simply a type alias for Long as defined in GraphX. In addition,
the Edge class is defined in org.apache.spark.graphx.Edge as:
class Edge(srcId: VertexId, dstId: VertexId, attr:
ED)

The class parameters srcId and dstId are the vertex IDs of the source
and destination, which are linked by the edge. In our social network
example, the link between two people is unidirectional and its property
is described in the attr of type Connection. Note that we defined
Connection as a type alias for String. For clarity, it often helps to give a
meaningful name to the type parameter of Edge.

3. Now, we can create our social graph and name it tinySocial using the
factory method Graph(…):

scala> val tinySocial: Graph[Person, Connection] =
Graph(peopleRDD, linksRDD)

tinySocial: org.apache.spark.graphx.Graph[Person,Connection] =
org.apache.spark.graphx.impl.GraphImpl@128cd92a

There are two things to note about this constructor. I told you earlier that
the member vertices and edges of the graph are instances of VertexRDD[VD]
and EdgeRDD[ED,VD]. However, we passed RDD[(VertexId, Person)] and
RDD[Edge[Connection]] into the above factory method Graph. How did that
work? It worked because VertexRDD[VD] and EdgeRDD[ED,VD] are subclasses of
RDD[(VertexId, Person)] and RDD[Edge[Connection]] respectively. In addition,
VertexRDD[VD] adds the constraint that VertexID occurs only once. Basically,
two people in our social network cannot have the same vertex ID. Furthermore,
VertexRDD[VD] and EdgeRDD[ED,VD] provide several other operations to transform
vertex and edge attributes. We will see more of these in later chapters.

Chapter 1

[9]

Introducing graph operations
Finally, we are going to look at the vertices and edges in the network by accessing
and collecting them:

scala> tinySocial.vertices.collect()

res: Array[(org.apache.spark.graphx.VertexId, Person)] =
Array((4,Person(Dave,25)), (6,Person(Faith,21)), (8,Person(Harvey,47)),
(2,Person(Bob,18)), (1,Person(Alice,20)), (3,Person(Charlie,30)),
(7,Person(George,34)), (9,Person(Ivy,21)), (5,Person(Eve,30)))

scala> tinySocial.edges.collect()

res: Array[org.apache.spark.graphx.Edge[Connection]] =
Array(Edge(1,2,friend), Edge(1,3,sister), Edge(2,4,brother),
Edge(3,2,boss), Edge(4,5,client), Edge(1,9,friend), Edge(6,7,cousin),
Edge(7,9,coworker), Edge(8,9,father))

We used the edges and vertices getters in the Graph class and used the RDD
action collect to put the result into a local collection.

Now, suppose we want to print only the professional connections that are listed in
the following profLinks list:

val profLinks: List[Connection] = List("Coworker", "Boss",
"Employee","Client", "Supplier")

A bad way to arrive at the desired result is to filter the edges corresponding
to professional connections, then loop through the filtered edges, extract the
corresponding vertices' names, and print the connections between the source
and destination vertices. We can write that method in the following code:

val profNetwork =
tinySocial.edges.filter{ case Edge(_,_,link) =>
profLinks.contains(link)}
for {
 Edge(src, dst, link) <- profNetwork.collect()
 srcName = (peopleRDD.filter{case (id, person) => id == src}
first)._2.name
 dstName = (peopleRDD.filter{case (id, person) => id == dst}
first)._2.name
} println(srcName + " is a " + link + " of " + dstName)

Charlie is a boss of Bob
Dave is a client of Eve
George is a coworker of Ivy

Getting Started with Spark and GraphX

[10]

There are two problems with the preceding code. First, it could be more concise
and expressive. Second, it is not efficient due to the filtering operations inside the
for loop.

Luckily, there is a better alternative. The GraphX library provides two different ways
to view data: either as a graph or as tables of edges, vertices, and triplets. For each
view, the library offers a rich set operations whose implementations are optimized
for execution. That means that we can often process a graph using a predefined
graph operation or algorithm, easily. For instance, we could simplify the previous
code and make it more efficient, as follows:

tinySocial.subgraph(profLinks contains _.attr).
 triplets.foreach(t => println(t.srcAttr.name + " is a " +
 t.attr + " of " + t.dstAttr.name))
 Charlie is a boss of Bob
 Dave is a client of Eve
 George is a coworker of Ivy

We simply used the subgraph operation to filter the professional links.
Then, we used the triplet view to access the attributes of the edges and
vertices simultaneously. In brief, the triplet operator returns an RDD of
EdgeTriplet[Person, Connection]. Note that EdgeTriplet is simply an alias for
the parameterized type of 3-tuple ((VertexId, Person), (VertexId, Person),
Connection) that contains all the information about the source node, the destination
node, and the edge property.

Building and submitting a standalone
application
Let's conclude this chapter by developing and running a standalone Spark
application for our social network example.

Writing and configuring a Spark program
Satisfied with our experiment in the shell, let's now write our first Spark program.
Open your favorite text editor and create a new file named simpleGraph.scala and
put it in the folder $SPARKHOME/exercises/chap1. A template for a Spark program
looks like the following code:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

Chapter 1

[11]

import org.apache.spark.rdd.RDD
import org.apache.spark.graphx._
object SimpleGraphApp {
 def main(args: Array[String]){

 // Configure the program
 val conf = new SparkConf()
 .setAppName("Tiny Social")
 .setMaster("local")
 .set("spark.driver.memory", "2G")
 val sc = new SparkContext(conf)

 // Load some data into RDDs
 val people = sc.textFile("./data/people.csv")
 val links = sc.textFile("./data/links.csv")

 // After that, we use the Spark API as in the shell
 // ...
 }
}

You can also see the entire code of our SimpleGraph.scala file in the example files,
which you can download from the Packt website.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Let's go over this code to understand what is required to create and configure a
Spark standalone program in Scala.

As a Scala program, our Spark application should be constructed within a
top-level Scala object, which must have a main function that has the signature:
def main(args: Array[String]): Unit. In other words, the main program
accepts an array of strings as a parameter and returns nothing. In our example,
the top-level object is SimpleGraphApp.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Getting Started with Spark and GraphX

[12]

At the beginning of simpleGraph.scala, we have put the following import
statements:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

The first two lines import the SparkContext class as well as some implicit
conversions defined in its companion object. It is not very important to know
what the implicit conversions are. Just make sure you import both SparkContext
and SparContext._

When we worked in the Spark shell, SparkContext and
SparContext._ were imported automatically for us.

The third line imports SparkConf, which is a wrapper class that contains the
configuration settings of a Spark application, such as its application name, the
memory size of each executor, and the address of the master or cluster manager.

Next, we have imported some RDD and GraphX-specific class constructors and
operators with these lines:

import org.apache.spark.rdd.RDD
import org.apache.spark.graphx._

The underscore after org.apache.spark.graphx makes sure that all public APIs in
GraphX get imported.

Within main, we had to first configure the Spark program. To do this, we created
an object called SparkConf and set the application settings through a chain of setter
methods on the SparkConf object. SparkConf provides specific setters for some
common properties, such as the application name or master. Alternatively, a generic
set method can be used to set multiple properties together by passing them as a
sequence of key-value pairs. The most common configuration parameters are listed
in the following table with their default values and usage. The extensive list can be
found at https://spark.apache.org/docs/latest/configuration.html:

Spark property name Usage and default value

spark.app.name This is the name of your application. This will appear in
the UI and in the log data.

https://spark.apache.org/docs/latest/configuration.html

Chapter 1

[13]

Spark property name Usage and default value

spark.master
This is the cluster manager to connect to, for example,
spark://host:port, mesos://host:port, yarn,
or local.

spark.executor.memory
This is the amount of memory to use per executor
process, in the same format as JVM memory strings (for
example, 512 M, 2 G). The default value is 1 G.

spark.driver.memory When you run Spark locally with spark.
master=local, your executor becomes the driver
and you need to set this parameter instead of spark.
executor.memory. The default value is 512 M.

spark.storage.
memoryFraction

This is the fraction of Java heap to use for Spark's
memory cache. The default is 0.6.

spark.serializer

This is the class used to serialize objects to be
sent over the network or to be cached in serialized
form. This is the subclass of the default class
org.apache.spark.serializer.JavaSerializer.

In our example, we initialized the program as follows:

val conf = new SparkConf()
 .setAppName("Tiny Social")
 .setMaster("local")
 .set("spark.driver.memory", "2G")
val sc = new SparkContext(conf)

Precisely, we set the name of our application to "Tiny Social" and the master to
be the local machine on which we submit the application. In addition, the driver
memory is set to 2 GB. Should we have set the master to be a cluster instead of local,
we can specify the memory per executor by setting spark.executor.memory instead
of spark.driver.memory.

In principle, the driver and executor have different roles and, in
general, they run on different processes except when we set the master
to be local. The driver is the process that compiles our program into
tasks, schedules these tasks to one of more executors, and maintains
the physical location of every RDD. Each executor is responsible for
executing the tasks, and storing and caching RDDs in memory.

Getting Started with Spark and GraphX

[14]

It is not mandatory to set the Spark application settings in the SparkConf object
inside your program. Alternatively, when submitting our application, we could
set these parameters as command-line options of the spark-submit tool. We will
cover that part in detail in the following sections. In this case, we will just create our
SparkContext object as:

val sc = new SparkContext(new SparkConf())

After configuring the program, the next task is to load the data that we want to
process by calling utility methods such as sc.textFile on the SparkContext
object sc:

val people = sc.textFile("./data/people.csv")
val links = sc.textFile("./data/links.csv")

Finally, the rest of the program consists of the same operations on RDDs and
graphs that we have used in the shell.

To avoid confusion when passing a relative file path to I/O actions
such as sc.textFile(), the convention used in this book is
that the current directory of the command line is always set to the
project root folder. For instance, if our Tiny Social app's root folder
is $SPARKHOME/exercises/chap1, then Spark will look for the
data to be loaded in $SPARKHOME/exercises/chap1/data. This
assumes that we have put the files in that data folder.

Building the program with the Scala Build Tool
After writing our entire program, we are going to build it using the Scala Build
Tool (SBT). If you do not have SBT installed on your computer yet, you need
to install it first. Detailed instructions on how to install SBT are available at
http://www.scala-sbt.org/0.13/tutorial/index.html for most operating
systems. While there are different ways to install SBT, I recommend using a
package manager instead of the manual installation. After the installation,
execute the following command to append the SBT installation folder to the
PATH environment variable:

$ export PATH=$PATH:/usr/local/bin/sbtl

Once we have SBT properly installed, we can use it to build our application with
all its dependencies inside a single JAR package file, also called uber jar. In fact,
when running a Spark application on several worker machines, an error will
occur if some machines do not have the right dependency JAR.

http://www.scala-sbt.org/0.13/tutorial/index.html

Chapter 1

[15]

By packaging an uber jar with SBT, the application code and its dependencies are
all distributed to the workers. Concretely, we need to create a build definition file
in which we set the project settings. Moreover, we must specify the dependencies
and the resolvers that help SBT find the packages that are needed by our program.
A resolver indicates the name and location of the repository that has the required
JAR file. Let's create a file called build.sbt in the project root folder $SPARKHOME/
exercises/chap1 and insert the following lines:

name := "Simple Project"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies ++= Seq(
 "org.apache.spark" %% "spark-core" % "1.4.1",
 "org.apache.spark" %% "spark-graphx" % "1.4.1"
)

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

By convention, the settings are defined by Scala expressions and they need to be
delimited by blank lines. Earlier, we set the project name, its version number, the
version of Scala, as well as the Spark library dependencies. To build the program,
we then enter the command:

$ sbt package

This will create a JAR file inside $SPARKHOME/exercises/chap1/target/
scala-2.10/simple-project_2.10-1.0.jar.

Deploying and running with spark-submit
Finally, we are going to invoke the spark-submit script in $SPARKHOME/bin/ to run
the program from the root directory $SPARKHOME/exercises/chap1 in the terminal:

$../../bin/spark-submit --class \

"SimpleGraphApp" \

./target/scala-2.10/simple-project_2.10-1.0.jar

Spark assembly has been built with Hive, including Datanucleus jars on
classpath

Charlie is a boss of Bob

Dave is a client of Eve

George is a coworker of Ivy

Getting Started with Spark and GraphX

[16]

The required options for the spark-submit command are the Scala application
object name and the JAR file that we previously built with SBT. In case we did not
set the master setting when creating the SparkConf object, we also would have to
specify the --master option in spark-submit.

You can list all the available options for the spark-submit script
with the command:
spark-submit --help

More details about how to submit a Spark application to a remote
cluster are available at http://spark.apache.org/docs/
latest/submitting-applications.html.

Summary
In this chapter, we took a whirlwind tour of graph processing in Spark. Specifically,
we installed the Java Development Kit, a prebuilt version of Spark and the SBT tool.
Furthermore, you were introduced to graph abstraction and operations in Spark by
creating a social network in the Spark shell and also in a standalone program.

In the next chapter, you will learn more about how to build and explore graphs
in Spark.

http://spark.apache.org/docs/latest/submitting-applications.html
http://spark.apache.org/docs/latest/submitting-applications.html

[17]

Building and Exploring
Graphs

This chapter aims to teach us how to represent various types of networks and
complex systems as property graphs in Spark and GraphX. Before we can describe
the behavior, and analyze the inner structure of these systems, we first need to
map their components to vertices or nodes, and map the interactions between
the individual components to edges or links. Building on what we learned in the
previous chapter, we will delve into the details on how graphs are stored and
represented in GraphX. In addition, this chapter introduces the language of graph
theory, and the basic characteristics of graphs. Throughout this chapter, we will use
real-world datasets that we will map to the different types of graphs. The examples
include e-mail communication networks, food flavor network, and social ego
networks. On completing this chapter, you will understand how to:

• Load data and build Spark graphs in many ways
• Use the join operator to mix external data into existing graphs
• Build bipartite graphs and multigraphs
• Explore graphs and compute their basic statistics

Network datasets
In the previous chapter, we constructed a small social network as a toy example.
From this chapter onwards, we are going to work with real-world datasets, drawn
from various applications. In fact, graphs are used to represent any complex system
as it describes the interactions between the components of the system. Despite the
diversity in form, size, nature, and granularity of different systems, graph theory
provides a common language, and a set of tools, for representing and analyzing
complex systems.

Building and Exploring Graphs

[18]

In brief, a graph consists of a set of vertices connected by a set of edges.
Each edge represents the relationship between a pair of connected
vertices. In this book, we will sometimes use the less technical terms
network nodes to refer to vertices, and links to refer to edges. Note that
Spark supports multigraphs, that is, it is permitted to have multiple
edges between any pair of nodes.

Let's get a preview of the networks that we are going to build in this chapter.

The communication network
The first type of communication network that we will encounter is an email
communication graph. A history of e-mails that are exchanged within an organization
can be mapped to a communication graph, so as to understand the informal structure
behind the organization. Such graphs can also be used to determine influential people
or the hubs of the organization that might not necessarily be the high-ranked ones.
The email communication network is a canonical example of a directed graph, as each
e-mail links a source node to the destination node. We will use the Enron Corpus,
which is a database of e-mails generated by 158 employees of the Enron Corporation.
It is one of the only mass collections of corporate e-mails that are open to public on the
web. The Enron Corpus is particularly interesting, as it captures all the communication
that occurred inside the company before the scandal that led to its bankruptcy. The
original dataset was released by William Cohen at CMU, which can be downloaded
from https://www.cs.cmu.edu/~./enron/. A detailed description of the complete
dataset was done by Klimmt and Yang, 2004. A cleaner version of the dataset,
which we use here, is provided by Leskovec et al., 2009, and can be obtained
from https://snap.stanford.edu/data/email-Enron.html.

Flavor networks
Another example that we will borrow from the culinary world is the ingredient-
compound network, introduced by Ahn et al., 2011. It is a bipartite graph in the
sense that the nodes are divided into two disjoint sets: the ingredient nodes and
the compound nodes. Each link connects an ingredient to a compound when
the chemical compound is present in the food ingredient. From the ingredient-
compound network, it is also possible to create what is called a flavor network.
Instead of connecting food ingredients to compounds, the flavor network links pairs
of ingredients whenever a pair of ingredients shares at least one chemical compound.

https://www.cs.cmu.edu/~./enron/
https://snap.stanford.edu/data/email-Enron.html

Chapter 2

[19]

We will build the ingredient-compound network in this chapter, and in
Chapter 4, Transforming and Shaping Up Graphs to Your Needs, we will construct the
flavor network from the ingredient-compound network. Analyzing such graphs
is fascinating because they help us understand more about food pairing and food
culture. The flavor network can also help food scientists or amateur cooks create
new recipes. The datasets that we will use consist of ingredient-compound data
and the recipes collected from http://www.epicurious.com/, allrecipes.com,
and http://www.menupan.com/. The datasets are available at http://yongyeol.
com/2011/12/15/paper-flavor-network.html.

Social ego networks
The last dataset that we will explore in this chapter is a collection of social ego
networks from Google+. The data was collected by (McAuley and Leskovec, 2012)
from the users who had manually shared their social circles using the share circle
feature. The dataset includes the user profiles, their circles, and their ego networks
and can be downloaded from Stanford's SNAP project website at http://snap.
stanford.edu/data/egonets-Gplus.html.

These datasets are not provided with the Spark installation. They
must first be downloaded from their source websites and copied
into the $SPARKHOME/data folder. When different sizes of the
datasets are available, we chose to use the smaller version of the
datasets to quickly demonstrate the concepts taught in this book.

Graph builders
In GraphX, there are four functions for building a property graph. Each of these
functions requires that the data from which the graph is constructed should be
structured in a specified manner.

The Graph factory method
The first one is the Graph factory method that we have already seen in the previous
chapter. It is defined in the apply method of the companion object called Graph,
which is as follows:

def apply[VD, ED](
 vertices: RDD[(VertexId, VD)],

http://www.epicurious.com/
allrecipes.com
http://www.menupan.com/
http://yongyeol.com/2011/12/15/paper-flavor-network.html
http://yongyeol.com/2011/12/15/paper-flavor-network.html
http://snap.stanford.edu/data/egonets-Gplus.html
http://snap.stanford.edu/data/egonets-Gplus.html

Building and Exploring Graphs

[20]

 edges: RDD[Edge[ED]],
 defaultVertexAttr: VD = null)
 : Graph[VD, ED]

As we have seen before, this function takes two RDD collections: RDD[(VertexId,
VD)] and RDD[Edge[ED]] as parameters for the vertices and edges respectively, to
construct a Graph[VD, ED] parameter. The defaultVertexAttr attribute is used
to assign the default attribute for the vertices that are present in the edge RDD but
not in the vertex RDD. The Graph factory method is convenient when the RDD
collections of edges and vertices are readily available.

edgeListFile
A more common situation is that your original dataset only represents the edges.
In this case, GraphX provides the following GraphLoader.edgeListFile function
that is defined in GraphLoader:

def edgeListFile(
 sc: SparkContext,
 path: String,
 canonicalOrientation: Boolean = false,
 minEdgePartitions: Int = 1)
 : Graph[Int, Int]

It takes as an argument a path to the file that contains a list of edges. Each line of
the file represents an edge of the graph with two integers in the form: sourceID
destinationID. When reading the list, it ignores any comment line starting with #.
Then, it constructs a graph from the specified edges with the corresponding vertices.

The minEdgePartitions argument is the minimum number of edge
partitions to generate. If the adjacency list is partitioned with more blocks than
minEdgePartitions, then more partitions will be created.

fromEdges
Similar to GraphLoader.edgeListFile, the third function named Graph.fromEdges
enables you to create a graph from an RDD[Edge[ED]] collection. Moreover, it
automatically creates the vertices using the VertexID parameters specified by the
edge RDD, as well as the defaultValue argument as a default vertex attribute:

def fromEdges[VD, ED](
 edges: RDD[Edge[ED]],
 defaultValue: VD)
: Graph[VD, ED]

Chapter 2

[21]

fromEdgeTuples
The last graph builder function is Graph.fromEdgeTuples, which creates a graph
from only an RDD of edge tuples, that is, a collection of the RDD[(VertexId,
VertexId)] type. It assigns the edges the attribute value 1 by default:

def fromEdgeTuples[VD](
 rawEdges: RDD[(VertexId, VertexId)],
 defaultValue: VD,
 uniqueEdges: Option[PartitionStrategy] = None)
: Graph[VD, Int]

Building graphs
Let's now open our Spark shell and build three types of graphs: a directed email
communication network, a bipartite graph of ingredient-compound connections,
and a multigraph using the previous graph builders.

Unless otherwise stated, we always assume that the Spark shell
is launched from the $SPARKHOME directory. It then becomes the
current directory for any relative file path used in this book.

Building directed graphs
The first graph that we will build is the Enron email communication network. If you
have restarted your Spark shell, you need to again import the GraphX library. First,
create a new folder called data inside $SPARKHOME and copy the dataset into it. This
file contains the adjacency list of the email communications between the employees.
Assuming that the current directory is $SPARKHOME, we can pass the file path to the
GraphLoader.edgeListFile method:

scala> import org.apache.spark.graphx._

import org.apache.spark.graphx._

scala> import org.apache.spark.rdd._

import org.apache.spark.rdd._

www.allitebooks.com

http://www.allitebooks.org

Building and Exploring Graphs

[22]

scala> val emailGraph = GraphLoader.edgeListFile(sc, "./data/emailEnron.
txt")

emailGraph: org.apache.spark.graphx.Graph[Int,Int] = org.apache.spark.
graphx.impl.GraphImpl@609db0e

Notice that the GraphLoader.edgeListFile method always returns a graph object,
whose vertex and edge attributes have a type Int. Their default values are 1. We can
check this by looking at the first five vertices and edges in the graph:

scala> emailGraph.vertices.take(5)

res: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((19021,1),
(28730,1), (23776,1), (31037,1), (34207,1))

scala> emailGraph.edges.take(5)

res: Array[org.apache.spark.graphx.Edge[Int]] = Array(Edge(0,1,1),
Edge(1,0,1), Edge(1,2,1), Edge(1,3,1), Edge(1,4,1))

The first node (19021,1) has the vertex ID 19021 and its attribute is indeed set to
1. Similarly, the first edge Edge(0,1,1) captures the communication between the
source 0 and destination 1.

In GraphX, all the edges must be directed. To express non-directed or bidirectional
graphs, we can link each connected pair in both directions. In our email network, we
can verify for instance that the 19021 node has both incoming and outgoing links.
First, we collect the destination nodes that node 19021 communicates to:

scala> emailGraph.edges.filter(_.srcId == 19021).map(_.dstId).collect()

res: Array[org.apache.spark.graphx.VertexId] = Array(696, 4232, 6811,
8315, 26007)

It turns out that these same nodes are also the source nodes for the incoming edges
to 19021:

scala> emailGraph.edges.filter(_.dstId == 19021).map(_.srcId).collect()

res: Array[org.apache.spark.graphx.VertexId] = Array(696, 4232, 6811,
8315, 26007)

Building a bipartite graph
In some applications, it is useful to represent a view of a system as a bipartite graph.
A bipartite graph is composed of two sets of nodes. The nodes within the same set
cannot be connected but only the pairs belonging to the different sets can be. An
example of such a graph is the food ingredient-compound network.

Chapter 2

[23]

Here, we will work with the files ingr_info.tsv, comp_info.tsv, and ingr_comp.
tsv, which should be copied into the $SPARKHOME/data folder. The first two files
contain the information about the food ingredients and compounds respectively.

Let's have a quick look at the first lines of these two files using the Source.fromFile
method of scala.io.Source. Our only requirement for this method is to simply
inspect the beginning of the text files:

scala> import scala.io.Source

import scala.io.Source

scala> Source.fromFile("./data/ingr_info.tsv").getLines().

 take(7).foreach(println)

id ingredient name category

0 magnolia_tripetala flower

1 calyptranthes_parriculata plant

2 chamaecyparis_pisifera_oil plant derivative

3 mackerel fish/seafood

4 mimusops_elengi_flower flower

5 hyssop herb

scala> Source.fromFile("./data/comp_info.tsv").getLines().

take(7).foreach(println)

id Compound name CAS number

0 jasmone 488-10-8

1 5-methylhexanoic_acid 628-46-6

2 l-glutamine 56-85-9

3 1-methyl-3-methoxy-4-isopropylbenzene 1076-56-8

4 methyl-3-phenylpropionate 103-25-3

5 3-mercapto-2-methylpentan-1-ol_(racemic) 227456-27-1

The third file contains the adjacency list between the ingredients and the compounds:

scala> Source.fromFile("./data/ingr_comp.tsv").getLines().

take(7).foreach(println)

ingredient id compound id

1392 906

1259 861

Building and Exploring Graphs

[24]

1079 673

22 906

103 906

1005 906

In practice, the datasets from which we build the graphs will not come in a form
that the graph builders in Spark expect them to be in. For example, in the food
network example, we have two problems with the datasets. First, we cannot simply
create a graph from the adjacency list because the indices of the ingredients and
compounds both start at zero and overlap with each other. Therefore, there is
no way to distinguish the two nodes if they happen to have the same vertex ID.
Second, we have two kinds of nodes--ingredients and compounds:

In order to create a bipartite graph, we first need to create
the case classes named Ingredient and Compound, and
use Scala's inheritance so that these two classes are the
children of a FNNode class.

scala> class FNNode(val name: String)

defined class FNNode

scala> case class Ingredient(override val name: String, category: String)
extends FNNode(name)

defined class Ingredient

scala> case class Compound(override val name: String, cas: String)
extends FNNode(name)

defined class Compound

After this, we need to load all the Compound and Ingredient objects into an
RDD[FNNode] collection. This part requires some data wrangling:

val ingredients: RDD[(VertexId, FNNode)] =
sc.textFile("./data/ingr_info.tsv").
 filter(! _.startsWith("#")).
 map {line =>
 val row = line split '\t'
 (row(0).toInt, Ingredient(row(1), row(2)))
 }
ingredients:
org.apache.spark.rdd.RDD[(org.apache.spark.graphx.VertexId,
FNNode)] = MappedRDD[32] at map at <console>:26

Chapter 2

[25]

In the preceding code, we first loaded the text in comp_info.tsv into an RDD of
String, and filtered out the comment lines starting with #. Then, we parsed the
tab-delimited lines into RDD of Ingredient vertices. Now, let's do a similar thing
with comp_info.tsv and create an RDD of Compound vertices:

val compounds: RDD[(VertexId, FNNode)] =
sc.textFile("./data/comp_info.tsv").
 filter(! _.startsWith("#")).
 map {line =>
 val row = line split '\t'
 (10000L + row(0).toInt, Compound(row(1), row(2)))
 }
compounds:
org.apache.spark.rdd.RDD[(org.apache.spark.graphx.VertexId,
FNNode)] = MappedRDD[28] at map at <console>:26

However, there is a critical thing that we did earlier. Since the index of each node
should be unique, we had to shift the range of the compound indices by 10000L, so
that there is no index that refers to an ingredient and a compound at the same time.

Next, we create an RDD[Edge[Int]] collection from the dataset named
ingr_comp.tsv:

val links: RDD[Edge[Int]] =
 sc.textFile("./data/ingr_comp.tsv").
 filter(! _.startsWith("#")).
 map {line =>
 val row = line split '\t'
 Edge(row(0).toInt, 10000L + row(1).toInt, 1)
 }

When parsing the lines of the adjacency list in ingr_comp.tsv, we also shift the
indices of compounds by 10000L. This quick fix works perfectly because we knew
in advance, from the dataset description, how many ingredients and compounds
there were in the dataset. Be more careful with real messy datasets! Next, as the
links between ingredients and compounds do not contain any weight or meaningful
attributes, we just parameterized the Edge class with the Int type, and set a default
value of 1 for the attribute of each link.

Finally, we concatenate the two sets of nodes into a single RDD, and pass it to the
Graph() factory method along with the RDD link:

scala> val nodes = ingredients ++ compounds

Building and Exploring Graphs

[26]

nodes: org.apache.spark.rdd.RDD[(org.apache.spark.graphx.VertexId,
FNNode)] = UnionRDD[61] at $plus$plus at <console>:30

scala> val foodNetwork = Graph(nodes, links)

foodNetwork: org.apache.spark.graphx.Graph[FNNode,Int] = org.apache.
spark.graphx.impl.GraphImpl@635933c1

So, let's explore the ingredient-compound graph:

scala> def showTriplet(t: EdgeTriplet[FNNode,Int]): String = "The
ingredient " ++ t.srcAttr.name ++ " contains " ++ t.dstAttr.name

showTriplet: (t: EdgeTriplet[FNNode,Int])String

scala> foodNetwork.triplets.take(5).

 foreach(showTriplet _ andThen println _)

The ingredient calyptranthes_parriculata contains citral_(neral)

The ingredient chamaecyparis_pisifera_oil contains undecanoic_acid

The ingredient hyssop contains myrtenyl_acetate

The ingredient hyssop contains 4-(2,6,6-trimethyl-cyclohexa-1,3-dienyl)
but-2-en-4-one

The ingredient buchu contains menthol

First, we defined a helper function called showTriplet that returns a String
description of an ingredient-compound triplet. Then, we took the first five triplets
and printed them out on the console. In the preceding example, we used Scala's
function composition in the showTriplet _ andThen println _ argument and
it passed to the foreach method.

Building a weighted social ego network
As a final example, let's build an ego network from the Google+ dataset that we
presented earlier in this chapter. An ego network is a graph representation of one
person's connections. Precisely, it focuses on a single node called the focal node and
only represents the links between that node and its neighbors. Although the entire
dataset from the SNAP website contains the ego networks of 133 Google+ users, we
are only going to build one person's ego network as an illustration. The files that we
are going to work with are placed in $SPARKHOME/data.

Chapter 2

[27]

Their description is given as follows:

• ego.edges: These are directed edges in the ego network. The ego node does
not appear in this list, but it is assumed that it follows every node ID that
appears in the file.

• ego.feat : This features for each of the nodes that appear in the edge file.
• ego.featnames: This is the name of each of the feature dimensions. The

feature is 1 if the user has this property in their profile, and 0 otherwise.

First, let's import the absolute value function and the SparseVector class from the
Breeze library, which we will be using:

import scala.math.abs
import breeze.linalg.SparseVector

Then, let's also define a type synonym called Feature for SparseVector[Int]:

type Feature = breeze.linalg.SparseVector[Int]

Using the following code, we can read the features inside the ego.feat file and
collect them in a map whose keys and values are of the Long and Feature types,
respectively:

val featureMap: Map[Long, Feature] =
 Source.fromFile("./data/ego.feat").
 getLines().
 map{line =>
 val row = line split ' '
 val key = abs(row.head.hashCode.toLong)
 val feat = SparseVector(row.tail.map(_.toInt))
 (key, feat)
 }.toMap

Building and Exploring Graphs

[28]

Let's step back and take a quick look inside the ego.feat file to understand what the
preceding chain of RDD transformations is doing, and why it is needed. Each line in
ego.feat has the following form:

The first number in each line corresponds to a node's ID in the ego network.
The remaining string of 0 and 1 numbers indicate which feature this particular node
has. For example, the first 1 after the node's ID corresponds to the gender:1 feature.
In fact, each feature is by the design of the description:value form. In practice, we
usually have a limited control over the format of the datasets that we are working
with. As in this example, there is always some data wrangling that we need to do.
First, each vertex in the ego network should have a vertex ID of the Long type.
However, the node IDs in the dataset, such as 114985346359714431656, exceed the
permitted range for Long.

Chapter 2

[29]

Therefore, we have to create new indices for the nodes. Second, we need to
parse the string of 0 and 1 in the data to create a feature vector that has a more
convenient form.

Luckily, these issues do have easy fixes. To convert the original node ID to a vertex
ID, we simply hash the string that corresponds to the node ID, as follows:

val key = abs(row.head.hashCode.toLong)

Then, we took advantage of the SparseVector representation in the Breeze library
to efficiently store the feature indices.

Next, we can read the ego.edges file to create an RDD[Edge[Int]] collection of the
links in the ego network. In contrast to our previous graph examples, we model the
ego network as a weighted graph. Precisely, the attribute of each link will correspond
to the number of common features that each connected pair has. This is done by the
following transformations:

val edges: RDD[Edge[Int]] =
 sc.textFile("./data/ego.edges").
 map {line =>
 val row = line split ' '
 val srcId = abs(row(0).hashCode.toLong)
 val dstId = abs(row(1).hashCode.toLong)
 val srcFeat = featureMap(srcId)
 val dstFeat = featureMap(dstId)
 val numCommonFeats = srcFeat dot dstFeat
 Edge(srcId, dstId, numCommonFeats)
 }

To find the number of common features between the source and
destination nodes, we just used the dot product operation of the
SparseVector class in Breeze. Again, we also had to compute new
vertex IDs using the hashCode attribute of the node IDs in the dataset.

Finally, we can now create an ego network using the Graph.fromEdges function.
This function takes as arguments the RDD[Edge[Int]] collection and the default
value for the vertices:

val egoNetwork: Graph[Int,Int] = Graph.fromEdges(edges, 1)

Building and Exploring Graphs

[30]

Then, we can check how many of the nodes in the ego node's connections have some
features in common with their adjacent nodes:

scala> egoNetwork.edges.filter(_.attr == 3).count()

res: Long = 1852

scala> egoNetwork.edges.filter(_.attr == 2).count()

res: Long = 9353

scala> egoNetwork.edges.filter(_.attr == 1).count()

res: Long = 107934

Computing the degrees of the network
nodes
We are now going to explore the three graphs, and introduce an important property
of a network node, which is the degree of the node.

The degree of a node represents the number of links it has to other nodes. In a
directed graph, we can make a distinction between the incoming degree of a node or
an in-degree, which is the number of its incoming links, and its outgoing degree or
out-degree, which is the number of nodes that it points to. In the following sections,
we will explore the degree distributions of the three example networks.

In-degree and out-degree of the Enron email
network
For the Enron email network, we can confirm that there are roughly ten times more
links than nodes:

scala> emailGraph.numEdges

res: Long = 367662

scala> emailGraph.numVertices

res: Long = 36692

Chapter 2

[31]

Indeed, the in-degree and out-degree of the employees are exactly the same in this
example as the email graph is bi-directed. This can be confirmed by looking at the
average degrees:

scala> emailGraph.inDegrees.map(_._2).sum / emailGraph.numVertices

res: Double = 10.020222391802028

scala> emailGraph.outDegrees.map(_._2).sum / emailGraph.numVertices

res: Double = 10.020222391802028

If we want to find the person that has e-mailed to the largest number of people,
we can define and use the following max function:

def max(a: (VertexId, Int), b: (VertexId, Int)): (VertexId, Int) = {
 if (a._2 > b._2) a else b
}

Let's see the output:

scala> emailGraph.outDegrees.reduce(max)

res: (org.apache.spark.graphx.VertexId, Int) = (5038,1383)

This person could be an executive or an employee, acting as a hub to the
organization. Similarly, we can define a min function to find people. Now, let's check
if there are some isolated groups of employees at Enron using the following code:

scala> emailGraph.outDegrees.filter(_._2 <= 1).count

res83: Long = 11211

It seems that there are many employees who receive e-mails from only one employee—
perhaps their bosses or from the human resources department.

Degrees in the bipartite food network
For the bipartite ingredient-compound graph, we can also explore which food has
the largest number of compounds, or which compound is the most prevalent in our
list of ingredients:

scala> foodNetwork.outDegrees.reduce(max)

res: (org.apache.spark.graphx.VertexId, Int) = (908,239)

scala> foodNetwork.vertices.filter(_._1 == 908).collect()

www.allitebooks.com

http://www.allitebooks.org

Building and Exploring Graphs

[32]

res: Array[(org.apache.spark.graphx.VertexId, FNNode)] =
Array((908,Ingredient(black_tea,plant derivative)))

scala> foodNetwork.inDegrees.reduce(max)

res: (org.apache.spark.graphx.VertexId, Int) = (10292,299)

scala> foodNetwork.vertices.filter(_._1 == 10292).collect()

res: Array[(org.apache.spark.graphx.VertexId, FNNode)] =
Array((10292,Compound(1-octanol,111-87-5)))

The answers to the earlier two questions turn out to be the black tea and the
compound 1-octanol.

Degree histogram of the social ego networks
Similarly, we can compute the degrees of the connections in the ego network. Let's
look at the maximum and minimum degrees in the network:

scala> egoNetwork.degrees.reduce(max)

res91: (org.apache.spark.graphx.VertexId, Int) = (1643293729,1084)

scala> egoNetwork.degrees.reduce(min)

res92: (org.apache.spark.graphx.VertexId, Int) = (550756674,1)

Suppose that we now want to have the histogram data of the degrees. Then, we can
write the following code to do just that:

egoNetwork.degrees.
 map(t => (t._2,t._1)).
 groupByKey.map(t => (t._1,t._2.size)).
 sortBy(_._1).collect()

res: Array[(Int, Int)] = Array((1,15), (2,19), (3,12), (4,17),
(5,11), (6,19), (7,14), (8,9), (9,8), (10,10), (11,1), (12,9),
(13,6), (14,7), (15,8), (16,6), (17,5), (18,5), (19,7), (20,6),
(21,8), (22,5), (23,8), (24,1), (25,2), (26,5), (27,8), (28,4),
(29,6), (30,7), (31,5), (32,10), (33,6), (34,10), (35,5), (36,9),
(37,7), (38,8), (39,5), (40,4), (41,3), (42,1), (43,3), (44,5),
(45,7), (46,6), (47,3), (48,6), (49,1), (50,9), (51,5),...

Chapter 2

[33]

Summary
In this chapter, we have learned about the different ways to build graphs in Spark by
working with concrete examples borrowed from online social networks, food science,
and e-mail communications. We have seen that constructing a graph requires some
data preparation and wrangling efforts. Nonetheless, GraphX offers various graph
builder functions from which we can choose, depending on the graph representation
that we need to create, and on the shape of the available datasets. Such usable
functionalities are the advantages of GraphX against other similar graph-processing
frameworks. Moreover, we looked at some basic statistics and properties of graphs,
which are rather useful in characterizing their structure and in understanding their
representation.

In the next chapter, we will go deeper into the analysis of graphs, using data
visualization tools and new graph-theoretical concepts and algorithms, such as
connectedness, triangle counting, and PageRank.

[35]

Graph Analysis and
Visualization

In this chapter, we will learn how to analyze the characteristics of graphs using
visualization tools and graph algorithms. For example, we will use some of
the algorithms available in GraphX to see how connected a graph is. In addition,
we will compute metrics that are commonly used, such as triangle counting and
clustering coefficients. Furthermore, we will learn through a concrete example
how the PageRank algorithm can be used to rank the importance of the nodes in
a network. Along the way, we will introduce new RDD operations that will prove
out to be useful here and in later chapters. Finally, this chapter offers practical tips
on building Spark applications that rely on the third-party libraries. After doing
the activities in this chapter, you will have learned the tools and concepts to:

• Visualize large-scale graph data
• Compute the connected components of a network
• Use the PageRank algorithm to rank the node importance in networks
• Build Spark applications that use third-party libraries using SBT

Graph Analysis and Visualization

[36]

Network datasets
We will be using the same datasets introduced in Chapter 2, Building and Exploring
Graphs, including the social ego network, email graph, and food-compound network.

The graph visualization
Spark and GraphX do not provide any built-in functionality for data visualization,
since their focus is on data processing. However, pictures are worth than thousands
of numbers when it comes to data analysis. In the following sections, we will build
a Spark application for visualizing and analyzing the connectedness of graphs. We
will rely on the third-party library called GraphStream for drawing networks, and
BreezeViz for plotting structural properties of graphs, such as degree distribution.
These libraries are not perfect and have limitations but they are relatively stable and
simple to use. So, we will use them for exploring the graph examples that are used
in this chapter.

Currently, there is still a lack of graph visualization engines and libraries
for drawing large-scale networks, without requiring a huge amount of
computing resources. For example, the popular network analysis software
SNAP currently relies on the GraphViz engine to draw networks, but it
can only draw small- to medium-sized networks. Gephi is another tool
for doing interactive network visualization. Although it has nice features,
such as a multilevel layout and a built-in 3D rendering engine, Gephi still
requires a high CPU and memory requirements. For drawing standards
plots, the new project Apache Zeppelin offers a web-based notebook
for interactive data analysis and visualization. It also provides a built-in
integration with Spark. Visit the official website for more information.

Installing the GraphStream and BreezeViz
libraries
Let's get going by installing the third-party libraries and their dependencies in the
$SPARKHOME /lib folder. GraphStream is an awesome Java library that enables the
visualization of dynamic networks, which can evolve with time. For our purpose,
we only need to display static networks so that we only need to download two JAR
files called gs-core-1.2.jar and gs-ui-1.2.jar for the core and UI libraries.
They can be downloaded from the following repositories:

• https://oss.sonatype.org/content/repositories/releases/org/
graphstream/gs-core/1.2/

https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-core/1.2/ https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-ui/1.2/
https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-core/1.2/ https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-ui/1.2/

Chapter 3

[37]

• https://oss.sonatype.org/content/repositories/releases/org/
graphstream/gs-ui/1.2/

Put these two JAR files in the lib folder, within the project root directory. Next,
download the breeze_2.10-0.9.jar and breeze-viz_2.10-0.9.jar libraries
from the following repositories:

• http://repo.spring.io/libs-release-remote/org/scalanlp/
breeze_2.10/0.9/

• http://repo1.maven.org/maven2/org/scalanlp/breeze-viz_2.10/0.9/

Since BreezeViz is a Scala library that depends on another Java library
called JfreeChart, you will also need to install jcommon-1.0.16.jar and
jfreechart-1.0.13.jar. These JAR files can be found in the following repositories:

• https://repository.jboss.org/nexus/content/repositories/
thirdparty-releases/jfree/jcommon/1.0.16/

• http://repo1.maven.org/maven2/jfree/jfreechart/1.0.13/

After you have downloaded all these four JAR files, copy them into the lib folder
within the project root directory. You are now ready to draw your first graph from
the Spark shell.

Visualizing the graph data
Open the terminal, with the current directory set to $SPARKHOME. Launch the
Spark shell. This time you will need to specify the third-party JAR files with the
--jars option:

$./bin/spark-shell --jars \
lib/breeze-viz_2.10-0.9.jar,\
lib/breeze_2.10-0.9.jar,\
lib/gs-core-1.2.jar,\
lib/gs-ui-1.2.jar,\
lib/jcommon-1.0.16.jar,\
lib/jfreechart-1.0.13.jar

Alternatively, you can save yourself some typing with the shorter command:

$./bin/spark-shell --jars \
$(find "." -name '*.jar' | xargs echo | tr ' ' ',')

Instead of specifying each JAR one at a time, the preceding command loads all
the JARs.

https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-core/1.2/ https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-ui/1.2/
https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-core/1.2/ https://oss.sonatype.org/content/repositories/releases/org/graphstream/gs-ui/1.2/
http://repo.spring.io/libs-release-remote/org/scalanlp/breeze_2.10/0.9/
http://repo.spring.io/libs-release-remote/org/scalanlp/breeze_2.10/0.9/
http://repo1.maven.org/maven2/org/scalanlp/breeze-viz_2.10/0.9/
https://repository.jboss.org/nexus/content/repositories/thirdparty-releases/jfree/jcommon/1.0.16/
https://repository.jboss.org/nexus/content/repositories/thirdparty-releases/jfree/jcommon/1.0.16/
http://repo1.maven.org/maven2/jfree/jfreechart/1.0.13/

Graph Analysis and Visualization

[38]

As a first example, we will visualize the social ego network that we have seen
in the previous chapter. First, we need to import the GraphStream classes with
the following:

scala> import org.graphstream.graph.{Graph => GraphStream}
import org.graphstream.graph.{Graph=>GraphStream}
scala> import org.graphstream.graph.implementations._
import org.graphstream.graph.implementations._

It is important that we rename org.graphstream.graph.Graph to GraphStream, to
avoid a namespace collision with the Graph class of GraphX.

Next, load the social ego network data using Graph.fromEdges, as we did in the
previous chapter. After that, we will create a SingleGraph object:

// Create a SingleGraph class for GraphStream visualization
val graph: SingleGraph = new SingleGraph("EgoSocial")

The SingleGraph object is a GraphStream abstraction that enables the manipulation
and visualization of graph data. Concretely, we can invoke the addNode and addEdge
methods of the SingleGraph object to add the network nodes and links. We can also
invoke the addAttribute method on either the graph, or each individual edge and
node to set their visual attributes. What's cool about the GraphStream API is that it
cleanly separates the graph structure and visualization using a CSS-like style sheet
to control the way the graph elements are displayed. It is much easier to see this in
action. So, let's create a file named stylesheet and put it in a new ./style/ folder.
Insert the following lines in the style sheet:

node {
 fill-color: #a1d99b;
 size: 20px;
 text-size: 12;
 text-alignment: at-right;
 text-padding: 2;
 text-background-color: #fff7bc;
}
edge {
 shape: cubic-curve;
 fill-color: #dd1c77;
 z-index: 0;
 text-background-mode: rounded-box;
 text-background-color: #fff7bc;
 text-alignment: above;
 text-padding: 2;
}

Chapter 3

[39]

The preceding style sheet describes the visual styles of the graph elements using
selectors nodes and edges, and specifying their visual attributes using key-value
pairs. In this example, we set the colors and shapes of the nodes, edges, and their text
attributes. An exhaustive reference for the style sheet attributes used in GraphStream
is available at http://graphstream-project.org/doc/Tutorials/Graph-
Visualisation_1.1/.

With the style sheet now ready, we can connect it to the SingleGraph object graph:

// Set up the visual attributes for graph visualization
graph.addAttribute("ui.stylesheet","url(file:.//style/stylesheet)")
graph.addAttribute("ui.quality")
graph.addAttribute("ui.antialias")

In the last two lines, we simply informed the rendering engine to favor quality
instead of speed. Next, we have to reload the graph that we built in the previous
chapter. To avoid repetitions, we omit the graph building part. After this, we now
load VertexRDD and EdgeRDD of the social network into the GraphStream graph
object, with the following code:

// Given the egoNetwork, load the graphX vertices into GraphStream
for ((id,_) <- egoNetwork.vertices.collect()) {
val node = graph.addNode(id.toString).asInstanceOf[SingleNode]
}
// Load the graphX edges into GraphStream edges
for (Edge(x,y,_) <- egoNetwork.edges.collect()) {
val edge = graph.addEdge(x.toString ++ y.toString,
x.toString, y.toString,
true).
 asInstanceOf[AbstractEdge]
}

To add a node, we simply pass its vertex ID as a string argument. For the edges,
we need to pass four arguments to the addEdge method. The first one is a string
identifier for each edge. Since this identifier is not available in the original dataset
or in the GraphX graph, we had to create one. Well, here the simplest solution was
to concatenate the vertex IDs of the nodes that each edge links to.

http://graphstream-project.org/doc/Tutorials/Graph-Visualisation_1.1/
http://graphstream-project.org/doc/Tutorials/Graph-Visualisation_1.1/

Graph Analysis and Visualization

[40]

In the preceding code, we had to use a subtle trick to avoid an
interoperability issue between our Scala code and the GraphStream
Java library. As described in the org.graphstream.graph.
implementations.AbstractGraph API of GraphStream, the
addNode and addEdge methods return the node and edge respectively.
However, as GraphStream is a third-party Java library, we had to force
the return types of addNode and addEdge using the asInstanceOf[T]
method with the T type being SingleNode and AbstractEdge,
respectively. So what would have happened if we omitted these explicit
type conversions? You would get a rather strange exception saying:

java.lang.ClassCastException:
org.graphstream.graph.implementations.SingleNode cannot
be cast to scala.runtime.Nothing$

Now what? The only thing to do here is to make the social ego network display it.
Just call the display method on graph:

graph.display()

Voila! You now will see the network drawn in a new window, as shown in
the following:

Chapter 3

[41]

If your graph is not displayed with the colors above, you
should check that the stylesheet's file path is correct when
setting the graph's attribute called ui.stylesheet.

Plotting the degree distribution
As shown by this visualization, each person in the ego network seems to be either
isolated or connected to a large group of mutual friends. We can further analyze
this fact by plotting the degree distribution of the network. To do this with the help
of the Spark shell is as easy as before. Make sure that you first import some classes
from JFreeChart and Breeze:

import org.jfree.chart.axis.ValueAxis
import breeze.linalg._
import breeze.plot._

We will then employ the degreeHistogram function that we built in Chapter 2,
Building and Exploring Graphs. For convenience, its definition is shown as follows:

def degreeHistogram(net: Graph[Int, Int]): Array[(Int, Int)] =
 net.degrees.map(t => (t._2,t._1)).
 groupByKey.map(t => (t._1,t._2.size)).
 sortBy(_._1).collect()

From the degree histogram, we can obtain the degree distribution, which is the
probability distribution of the node degrees over the whole network. For this,
we just normalize the node degrees by the total number of nodes, so that the
degree probabilities add up to one:

val nn = egoNetwork.numVertices
val egoDegreeDistribution = degreeHistogram(egoNetwork).map({case
(d,n) => (d,n.toDouble/nn)})

To display the degree distribution, we first create a Figure object called f and two
plot objects called p1 and p2. In the following code, p1 = f.subplot(2,1,0) and p2
= f.subplot(2,1,1) specify that f will have two subplots, and that p1 is displayed
above p2. Indeed, the first two arguments of the subplot are the number of rows and
columns of the figure, whereas the third argument denotes the subplot index, which
starts at 0:

val f = Figure()
val p1 = f.subplot(2,1,0)
val x = new DenseVector(egoDegreeDistribution map (_._1.toDouble))
val y = new DenseVector(egoDegreeDistribution map (_._2))

www.allitebooks.com

http://www.allitebooks.org

Graph Analysis and Visualization

[42]

p1.xlabel = "Degrees"
p1.ylabel = "Distribution"
p1 += plot(x, y)
p1.title = "Degree distribution of social ego network"
val p2 = f.subplot(2,1,1)
val egoDegrees = egoNetwork.degrees.map(_._2).collect()

p1.xlabel = "Degrees"
p1.ylabel = "Histogram of node degrees"
p2 += hist(egoDegrees, 10)

This code will then display the degree distribution and degree frequencies of the
ego network:

Chapter 3

[43]

The analysis of network connectedness
Next, we are going to visually explore and analyze the connectedness of the food
network. Reload the ingredient and compound datasets using the steps explained
in the previous chapter. After you are done, create a GraphStream graph object:

// Create a SingleGraph class for GraphStream visualization
val graph: SingleGraph = new SingleGraph("FoodNetwork")

Then, set the ui.stylesheet attribute of the graph. Since the food
network is a bipartite graph, it would be nice to display the nodes
with two different colors. We do that using a new style sheet. While
we are at it, let's also reduce the node size and hide the text
attributes:
node {
 size: 5px;
 text-mode: hidden;
 z-index: 1;
 fill-mode: dyn-plain;
 fill-color: "#e7298a", "#43a2ca";
}
edge {
 shape: line;
 fill-color: #fee6ce;
 arrow-size: 2px, 1px;
 z-index: 0;
}

The color value in the style sheet is set in hexadecimal using #.
You can choose your favorite colors from the awesome ColorBrewer
palettes available at http://colorbrewer2.org/.

Let's now load the nodes and edges from foodNetwork to the GraphStream
graph again, using the addNode and addEdge methods. This time, we are going to
dynamically set the color of the nodes, depending on whether it is an ingredient
or a compound:

// Load the graphX vertices into GraphStream nodes
for ((id:VertexId, fnn:FNNode) <- foodNetwork.vertices.collect())
{
val node = graph.addNode(id.toString).asInstanceOf[SingleNode]
node.addAttribute("name", fnn.name)
node.addAttribute("ui.label", fnn.name)
if (fnn.isInstanceOf[Compound])
 node.addAttribute("ui.color",1: java.lang.Double)

http://colorbrewer2.org/

Graph Analysis and Visualization

[44]

else if(fnn.isInstanceOf[Compound])
 node.addAttribute("ui.color",0: java.lang.Double)
}

You may ask yourself why we used isInstanceOf[T] to determine
the type of the nodes when loading the nodes with addNode. Why did
we not use Scala's awesome pattern matching feature? We could have
used it in a standalone Spark program, but it is not currently possible to
pattern match on case classes in the Spark shell. So, that is why we used
isInstanceOf[T].

Loading the nodes of the food network is almost the same as for the social ego
network. The only difference is setting different colors for the nodes. In a similar
fashion, load the edges into the GraphStream graph object:

// Load the graphX edges into GraphStream edges
for (Edge(x,y,_) <- foodNetwork.edges.collect()) {
 val edge = graph.addEdge(x.toString ++ y.toString,\
 x.toString, y.toString,
 true).
asInstanceOf[AbstractEdge]
}

To visualize the food network, call graph.display(). You will get something like this:

Chapter 3

[45]

From this picture, we can see that many ingredients share the same compounds,
whereas some compounds can only be found in some ingredients. Similar to the social
ego network, this network consists of some isolated nodes, and a giant component
of connected nodes. This leads to our next topic, which is the measure of the
connectedness of graphs.

Finding the connected components
In a network, two nodes are connected if there is a path between them on
the graph. A network is called connected if all the node pairs are connected.
Otherwise, a disconnected network has many components, each of which is
connected. To find the connected components of a graph is easy in GraphX
using the connectedComponents method.

Using the food network as an example, we can verify that it has exactly 27 components:
// Connected Components
scala> val cc = foodNetwork.connectedComponents()
cc: org.apache.spark.graphx.Graph[VertexId,Int]

// Number of components
scala> cc.vertices.map(_._2).collect.distinct.size
res: Int = 27

Given the type of cc above, we see it returns another graph with the same number
of vertices. The vertices belonging to the same component have the same attribute
whose value is the smallest vertex ID in that component. In other words, the attribute
of each node identifies its component. Let's see these component identifiers:
scala> cc.vertices.map(_._2).distinct.collect

res6: Array[org.apache.spark.graphx.VertexId] = Array(892, 0,
1344, 528, 468, 392, 960, 409, 557, 529, 585, 1105, 233, 181, 481,
1146, 970, 622, 1186, 514, 1150, 511, 47, 711, 1211, 1511, 363)

Now, suppose we want to list the components and its number of nodes in the
descending order. To do this, we can employ Spark's PairedRDD operations which
are groupBy and sortBy:
scala> cc.vertices.groupBy(_._2).

 map((p => (p._1,p._2.size))).

 sortBy(x => x._2, false).collect()

res: Array[(VertexId, Int)] = Array((0,2580), (528,8), (1344,3),
(392,3), (585,3), (481,3), (892,2), (960,2), (409,2), (557,2),
(529,2), (1105,2), (181,2), (970,2), (622,2), (1186,2), (1150,2),
(511,2), (47,2), (711,2), (1511,2), (363,2), (468,1), (233,1),
(1146,1), (514,1), (1211,1))

Graph Analysis and Visualization

[46]

The giant component has 2580 ingredient and compound nodes, among which the
node with the smallest vertex ID is 0. In general, we can define a function that takes
the graph of connected components, and returns the smallest vertex ID and number
of nodes in the largest component, as follows:

def largestComponent(cc: Graph[VertexId, Int]): (VertexId, Int) =
cc.vertices.map(x => (x._2,x._1)).
 groupBy(_._1).
 map(p => (p._1,p._2.size)).
 max()(Ordering.by(_._2))

In this function, we grouped the vertices of the components graph by the component
ID. Then, we mapped each component to a key-value pair where the key is the
component ID, and the value is the number of nodes of the component. Finally, we
use the reduction operator called max to return the key-value pair, corresponding to
the largest component. In the preceding example, we had to pass to the max method
two lists of arguments. The first one is always empty, whereas the second one is an
implicit and takes an ordering. To sort pairs on the second element, we had to pass
the right ordering to max as Ordering.by(_._2):

In addition to GraphX's graph-specific operations, Spark's RDD and
pair RDD operations can be very useful to certain tasks. This function
is a canonical example of a chain of data processing in Spark, which
is entirely done with Spark's RDD and pair RDD operations. For
more details, see the API documentation for Spark and GraphX at
http://spark.apache.org/docs/1.1.0/api/scala/index.
html#org.apache.spark.package.

Counting triangles and computing clustering
coefficients
In the following, we will use the Enron email dataset to illustrate the analysis
of a graph connectedness with counting triangle and the clustering coefficients.
A triangle is a connected subgraph of three nodes. Counting how many triangles
pass through each node helps to quantify the connectedness of graphs. In particular,
counting triangle is required to compute the clustering coefficients, which measure
the local density of the neighborhood of each node in the network.

http://spark.apache.org/docs/1.1.0/api/scala/index.html#org.apache.spark.package
http://spark.apache.org/docs/1.1.0/api/scala/index.html#org.apache.spark.package

Chapter 3

[47]

Currently, there is a restriction imposed by the triangle counting implementation
in Spark on the input graph. Specifically, the edges of the input graph should be
in a canonical direction; that is, the sourceId parameter must be less than the
destId parameter. For the email graph, this implies that there should be at most
one directed link between the two people. This restriction is not that severe since
we can still assume that each directed link in the email graph implies a bidirectional
communication between the two people. We can impose this constraint by filtering
out the edges for which the ID of the source is larger than that of the destination
node. In addition to this restriction, the input graph must also have been partitioned
with partitionBy. Thus, we can load the email graph as:

val emailGraph =
GraphLoader.edgeListFile(sc,"./data/emailEnron.txt").
subgraph(epred = t => t.srcId < t.dstId).
partitionBy(PartitionStrategy.RandomVertexCut)

Once the Enron email graph is loaded, we can compute the triangle counts:

scala> emailGraph.triangleCount()
res: Graph[Int,Int]
scala> val triangleCounts = emailGraph.triangleCount().vertices
triangleCounts:VertexRDD[Int]

Similar to connectedComponent, the triangleCount algorithm also returns a new
graph with the same number of nodes. However, the triangle count becomes the
vertex attribute.

How easy was that? Now, let's calculate the local clustering coefficients of the email
network. First, we define a function that calculates the local clustering coefficient of a
specific node. The clustering coefficient, at a given node, captures the network's local
density at that node. The more densely interconnected its neighborhood is, the closer
to 1 is its local clustering coefficient. It can be calculated by the following function:

def clusterCoeff(tup: (VertexId, (Int,Int))): (VertexId, Double) =
tup match {case (vid, (t, d)) =>
(vid, (2*t.toDouble/(d*(d-1))))
}

The argument of clusterCoeff is a tuple whose elements consist of the vertex
ID of the node at which we compute the local cluster coefficient, and of another
tuple, containing the triangle count and degree of the node. Then, it returns the
cluster coefficient with the vertex ID as a tuple. Actually, the local cluster coefficient
of a given node is an estimate of the probability that each pair of its neighbors is
connected. Therefore, the coefficient can be calculated as the ratio between the total
links between the node's neighbors, which is also equal to the number of triangles that
pass through the node, and the number of all possible pairs of neighboring nodes.

Graph Analysis and Visualization

[48]

With this, we can compute the cluster coefficients for all the nodes:

def clusterCoefficients(graph: Graph[Int,Int]):
RDD[(VertexId, Double)] = {
val gRDD: RDD[(VertexId, (Int, Int))] =
graph.triangleCount().vertices join graph.degrees
gRDD map clusterCoeff
}

This last function takes a graph as an input, and returns a pair of RDD collections,
whose elements contain the vertex identifiers and the corresponding local coefficients.

The formula for the local clustering coefficient at a given node is well-
defined only when its degree, that is the number of its neighbors, is larger
than one. If the node has a degree of one or zero, the clusterCoeff
function will return a NaN value for the clustering coefficient. Therefore,
we must first check if some nodes are isolated in the network when we
want to compute an average or global clustering coefficient for a network.
Not only must we filter out the leaves and isolated nodes but also, we
must adjust the formula of the global clustering coefficient to avoid a
biased assessment of the neighborhood clustering.

Let's now use the previous functions to compute the cluster coefficients for the
email graph:

scala> val coeffs = clusterCoefficients(emailGraph)
scala> coeffs.take(10)
res: Array[(VertexId, Double)] = Array((19021,0.9), (28730,1.0),
(23776,1.0), (31037,0.0), (34207,NaN), (29127,1.0), (9831,NaN),
(5354,0.0380952380952381), (32676,0.46153846153846156), (4926,1.0))

We see that for some nodes, the returned clustering coefficient has a NaN value.
In fact, this is the case for 25481 out of the 36692 nodes:

// Check the NaN values.

scala> coeffs.filter (x => !x._2.isNaN).count

res: Long = 25481

To remedy this fact, we need to filter out these nodes when averaging the
cluster coefficients:

// Calculate the adjusted global cluster coefficient
scala> val nonIsolatedNodes = coeffs.filter(x => !x._2.isNaN)
nonIsolatedNodes: RDD[(VertexId, Double)]
scala> val globalCoeff =
 nonIsolatedNodes.map(_._2).sum / nonIsolatedNodes.count globalCoeff:
Double = 0.7156424032347621

Chapter 3

[49]

The network centrality and PageRank
Previously, we have used the degree distribution and clustering coefficients of a
network to understand how connected a network is. In particular, we have learned
how to find the largest connected components and the nodes that have the highest
degree. Then, we visualized the networks and saw the nodes that have higher
chances to play the role of hubs in the network since many nodes are connected to
them. In some sense, the degree of a node can be interpreted as a centrality measure
that determines how important that node is relative to the rest of the network. In
this section, we are going to introduce a different centrality measure as well as the
PageRank algorithm, which is useful for ranking nodes in graphs.

There exist many other measures of centrality for graphs. For
example, betweenness centrality is useful for information flow
problems. Given a node, its betweenness is the number of shortest
paths from all vertices to all others that pass through this node.
In contrast to PageRank, betweenness centrality assigns a high
score to the nodes that are strategically connected on the shortest
paths, connecting the pairs of other nodes. Other measures are the
connected centrality and Katz centrality. There are no predefined
algorithms in GraphX to compute these measures. One of the
reasons is the greater complexity required for exactly computing
the betweenness centrality. Therefore, approximate algorithms
still need to be developed and will be an excellent open source
contribution for extending the current GraphX library.

How PageRank works
PageRank is the famous algorithm behind Google's incredibly successful web search
engine. In response to each search query, Google wants to display important web
pages first. In brief, PageRank assigns a probability score to each page. The higher
the score for a node, the more likely a user will land on that page in the long term.

To find the final PageRank scores, the algorithm simulates the behavior of a random
surfer by walking her through the web graph. At each step, the surfer can either
visit a page that it links to or jump to another random page (this is not necessarily
a neighboring page). This is done according to the transition probabilities that are
specified by the structure of the graph. For example, a web graph with one thousand
nodes will be associated to a 1000 by 1000 transition probability matrix. The element in
row i and column j of that matrix has a value of 1/k where the j page has k outgoing
links, and one of them is to the i page. Otherwise, it is zero. The PageRank algorithm
starts at a random node and, at each step, the PageRank scores are updated.

Graph Analysis and Visualization

[50]

A sketch implementation of this algorithm is shown as follows:

var PR = Array.fill(n)(1.0)
val oldPR = Array.fill(n)(1.0)
while(iter <= maxIter || max(abs(PR - oldPr)) > tol) {
 swap(oldPR, PR)
 for(i <- 0 until n) {
 PR[i] = d + (1 - d) * inNbrs[i].map(j => oldPR[j] /
 outDeg[j]).sum
 }
}

In the preceding code, alpha is the random reset probability with a default value
of 0.15. Next, inNbrs[i] is the set of neighbors, which link to i, and outDeg[j]
is the out-degree of the j vertex.

The first term in the update is due to the fact that the surfer can choose to skip the
neighbor and instead jump to a random page with a probability as d. The second
term updates the important score of each page, based on the previous scores of the
neighbors that link to the page. This process is repeated until the PageRank scores
converge to a fixed value, or until a maximum number of iterations are reached.

In GraphX, there are two implementations of the PageRank algorithm. The first
implementation uses the Pregel interface and runs PageRank for a fixed number
of iterations numIter. The second one uses the standalone Graph interface and
runs PageRank until the change in PageRank score is smaller than a specific
error tolerance tol.

These PageRank algorithms exploit data-parallelization over vertices.
In particular, the Pregel implementation relies on local message
passing for updating the PageRank scores. Another point to note
is that the PageRank scores that are returned are not normalized.
Thus, they do not represent a probability distribution. Moreover,
pages that have no incoming links will have a PageRank score of
alpha. Nonetheless, the top pages can be still be found by sorting the
vertices of the returned PageRank graph by their score attribute.

Ranking web pages
Here, we will use a new dataset for demonstrating PageRank. The first one
is a web graph of pages from the University of Notre Dame. Directed edges
represent hyperlinks between them. Using PageRank, we will rank and find
the most important pages.

Chapter 3

[51]

The dataset can be downloaded from http://snap.stanford.edu/data/web-
NotreDame.html, which was first used by (Albert, Jeong & Barabasi, 1999):

// Load web graph
val webGraph = GraphLoader.edgeListFile(sc,"./data/web-
NotreDame.txt")

// Run PageRank with an error tolerance of 0.0001
val ranks = webGraph.pageRank(0.001).vertices

// Find the top 10 pages of University of Notre Dame
val topPages = ranks.sortBy(_._2, false).take(10)

Scala Build Tool revisited
Previously, we have used the Scala console to interact with Spark. If we want to
build a standalone application instead, it becomes unwieldy to manually manage
the third-party library dependencies. Remember that first we had to download the
JAR files for GraphStream and BreezeViz, as well as those of the libraries that they
depend on. Then, we had to put them in the /lib folder and specify this list of JAR
files when we submitted the Spark application using the --jars option. This process
becomes extremely cumbersome when the application reuses many third-party
libraries, which may also depend on several libraries. Fortunately, we can automate
this process with SBT. Let's see how to manage the library dependencies, and how to
create an uber JAR or assembly JAR with SBT. If you already know how to do this,
feel free to skip this section and go ahead to the next chapter.

Organizing build definitions
SBT offers flexibility and power in defining builds and tracking library dependencies.
In addition, SBT makes the build process reproducible and interactive. Despite this
flexibility, learning all its features can be very discouraging to the unfamiliar user.
Instead, we will focus on the essentials.

First, SBT assumes the same directory structure as Maven for the Spark project's
source files, which is as follows:

src/
 main/
 resources/
<files to include in main jar here>
 scala/
<main Scala sources>
 test/

www.allitebooks.com

http://snap.stanford.edu/data/web-NotreDame.html
http://snap.stanford.edu/data/web-NotreDame.html
http://www.allitebooks.org

Graph Analysis and Visualization

[52]

 resources
<files to include in test jar here>
 scala/
<test Scala sources>

These paths are relative to the project's base directory. On the other hand,
build definitions can be put in different files, and can be organized recursively
within the project structure. Specifically, there are three places where we can
put build definitions:

• A multi-project .sbt build file is recommended in situations where
multiple related projects share common settings and dependencies
which can be defined in a single build.

• The bare .sbt build files are useful for simple projects. Each .sbt
build file defines a list of build and project settings.

• The .scala builds files are combined with the .sbt files to form the
complete build definition. Prior to SBT 0.13, this was the old way to
share common settings between the multiple projects.

In this book, we will work on simple projects, and the bare .sbt build files
will suffice. For details about the mentioned options, refer to the tutorial at
http://www.scala-sbt.org/0.13/tutorial/Basic-Def.html.

Managing library dependencies
We can manage library dependencies manually or automatically. In manual mode,
we will have to download all libraries in the dependency graph, and then manually
copy them in the lib folder. In automatic mode, SBT handles all the work for us by
leveraging Apache Ivy mechanisms behind the scenes. With this second method,
we need to define three important settings in an SBT build file:

• Dependencies: These are the libraries that our application depends on
• Resolvers: These are the repositories' locations where SBT will look for the

JAR files of these libraries
• SBT: These are the plugin settings

The third set of settings is needed if we want to extend the
build definitions using SBT plugins. For example, we will use
the sbt-assembly plugin to package a Spark application and
the JAR files, it depends on, into a single "uber JAR" file. For
this, we need to specify some extra settings such as the uber
JAR name as well as the options for creating the uber JAR.

http://www.scala-sbt.org/0.13/tutorial/Basic-Def.html

Chapter 3

[53]

Once we have declared these settings, SBT will take care of the rest for us.
Let's look at a concrete example to make sense of all this. We are going to
build a Spark application that loads and visualizes food ingredient networks.
Earlier in this chapter, we have used the Spark shell and manually managed the
dependencies. This time, we will create a standalone application and handle the
dependencies automatically.

A preview of the steps
As a preview, here are the steps that we will take to build the Spark application:

1. Create the plugins.sbt file inside the /project folder. Specify the
sbt-assembly plugin in that file.

2. Create a build.sbt file in the base directory, and declare the project settings.
3. Specify the library dependencies and resolvers.
4. Set up the sbt-assembly plugin.
5. Use the SBT commands to assemble the uber JAR.

Step 1 – Enable the sbt-assembly plugin
First, let's enable the sbt-assembly plugin. This plugin creates a single deployable
uber JAR that contains our built application, and all the libraries that we depend
on (except some that we will intentionally exclude from the build). So, let's create
the plugins.sbt file inside a new/project folder. The filename is not important,
but it has to be inside the /project folder. Then, add this line in the file:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

Step 2 – Create a build.sbt file
Now, create another .sbt file and put it in the base directory. Let's give it a
meaningful name, say, build.sbt file. As mentioned before, this single file
will suffice for our simple project. For more complex ones, it is okay to put
the definitions in the multiple .sbt files.

As we did in Chapter 1, Getting Started with Spark and GraphX, the first things we
define in build.sbt are the project settings, that is the project name, its version,
and the Scala version under which we will build the project. Add the following
lines in build.sbt:

name := "Simple Visualization"

version := "1.0"

scalaVersion := "2.10.4"

Graph Analysis and Visualization

[54]

The build.sbt file defines a sequence of build settings. Each element in the
sequence is a key-value pair of type Setting[T], where T is the expected value type.
Each line in build.sbt is then a Scala expression, which becomes one element in the
sequence called Seq[Setting[_]]. For instance, in the expression name:= "Simple
Visualization", the left-hand name is a key that has a type SettingKey[String].
Each key has a method called :=, which returns a Setting[T]. In our example,
the return type of the full expression name := "Simple Visualization" is thus
Setting[String]. In fact, this Scala expression is a syntactic sugar for the method
call name—:=("Simple Visualization").

Do not forget to add empty lines between each setting. Since SBT
uses a domain-specific language, the empty lines are mandatory to
delineate the build expressions. These blank lines will no longer be
needed after the release 0.13.7.

Step 3 – Declare library dependencies and resolvers
To manage the third-party libraries, we will need to attach these libraries to the
key called libraryDependencies in build.sbt. Since an application depends on
more than one library, the value type corresponding to libraryDependencies is
a sequence. Therefore, libraryDependencies accepts the append method += to
append a dependency, or the concatenate method ++= to add a list of dependencies.
However, it does not accept the operator :=.

Our application depends on Spark Core, GraphX, GraphStream, and Breeze libraries.
In build.sbt, we will attach a list of dependencies, which are as follows:

libraryDependencies ++= Seq(
 "org.apache.spark" %% "spark-core" % "1.1.0" % "provided",
 "org.apache.spark" %% "spark-graphx" % "1.1.0" % "provided",
 "org.graphstream" % "gs-core" % "1.2+",
 "org.graphstream" % "gs-ui" % "1.2+",
 "org.scalanlp" % "breeze-viz_2.10" % "0.9",
 "org.scalanlp" % "breeze_2.10" % "0.9"
)

Each sequence element in the right-hand side is a Scala expression that returns
a ModuleID object. Each ModuleID object is constructed like this—groupID %
artifactID % revision. The groupID, artifactID, and revision objects
are all String objects.

Chapter 3

[55]

In short, the % method creates the ModuleID objects from the passed strings,
then we attach those ModuleID objects to the setting key libraryDependencies.

Each dependency must correspond with the version of Scala that
you are using. For libraries that were built with SBT, such as spark-
core and spark-graphx, we can use the operator %% instead of %
as groupID %% artifactID % revision. This will use the right
JAR for the dependency, built with the same version of Scala that you
are using.
We can also add configuration information to the ModuleID like this:

groupID % artifactID % revision % configuration

For example, in "org.apache.spark" %% "spark-core" %
"1.1.0" % "provided", the configuration provided will inform
the plugin sbt-assembly to exclude JAR files when packaging the
uber JAR.

Sometimes, there are pathological cases where two libraries depend on the same
library with different versions, and SBT cannot resolve the dependency conflict.
For instance, if you try to package and run the application with the build.sbt
definition, you will get an error like this due to the unresolved dependencies:

[error] (*:assembly) deduplicate: different file contents found
in the following:
~/.ivy2/cache/org.jfree/jfreechart/jars/jfreechart-
1.0.14.jar:org/jfree/chart/ChartPanel.class
~/.ivy2/cache/jfree/jfreechart/jars/jfreechart-
1.0.13.jar:org/jfree/chart/ChartPanel.class

This error occurs because both the GraphStream and BreezeViz libraries depend
on the Java libraries JFreeChart and JCommon. However, BreezeViz is rarely
maintained and is stuck with the jfreechart-1.0.13 library. To fix this, we have
to exclude one of every duplicate JARs. To exclude specific JARs in the dependency
graph of a given library, we call one of the methods exclude and excludeAll on
the ModuleID object. In our case, we replace the "org.scalanlp" % "breeze-
viz_2.10" % "0.9" expression by:

("org.scalanlp" % "breeze-viz_2.10" % "0.9").
 exclude("jfree","jfreechart").
 exclude("jfree","jcommon")

The exclude method returns a new ModuleID object, but will not include the passed
libraries in the final build.

Graph Analysis and Visualization

[56]

After setting the dependencies, we have to tell SBT where it can download them.
This is similarly done by attaching a sequence of repositories to the resolvers key
as follows:

resolvers ++= Seq(
 "Akka Repository" at "http://repo.akka.io/releases/",
 "Sonatype OSS Snapshots" at
"https://oss.sonatype.org/content/repositories/snapshots",
 "Sonatype Releases" at
"http://oss.sonatype.org/content/repositories/releases")

Each repository is declared using the form called name at location, where the method
is invoked on the String objects. By default, SBT combines these declared resolvers
with the default ones, such as Maven Central or a local Ivy repository.

Step 4 – Set up the sbt-assembly plugin
Next, let's configure the settings of the sbt-assembly plugin. Put the following
in build.sbt:

jarName in assembly := "graph-Viz-assembly.jar"

This configures the name of the uber JAR or assembly JAR to graph-Viz-assembly.
jar.

We also need to exclude all the classes from the Scala language distribution. To do
this, we tell SBT to exclude all the JARs that either start with "scala-", or are part
of the Scala distribution:

assemblyOption in assembly := (assemblyOption in
assembly).value.copy(includeScala = false)

After this step, build.sbt will finally look like this:

name := "Simple Visualization"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies ++= Seq(
 "org.apache.spark" %% "spark-core" % "1.1.0" % "provided",
 "org.apache.spark" %% "spark-graphx" % "1.1.0" % "provided",
 "org.graphstream" % "gs-core" % "1.2+",

Chapter 3

[57]

 "org.graphstream" % "gs-ui" % "1.2+",
 ("org.scalanlp" % "breeze-viz_2.10" % "0.9").
exclude("jfree","jfreechart").exclude("jfree","jcommon"),
 "org.scalanlp" % "breeze_2.10" % "0.9"
)

resolvers ++= Seq(
 "Akka Repository" at "http://repo.akka.io/releases/",
 "Sonatype OSS Snapshots" at "https://oss.sonatype.org/content/
repositories/snapshots",
 "Sonatype Releases" at "http://oss.sonatype.org/content/
repositories/releases")

// Configure jar named used with the assembly plug-in
jarName in assembly := "graph-Viz-assembly.jar"

// Exclude Scala library (JARs that start with scala- and are
included in the binary Scala distribution)
assemblyOption in assembly := (assemblyOption in
assembly).value.copy(includeScala = false)

Step 5 – Create the uber JAR
All that needs to be done now is to run the command called sbt assembly in the
console to build the uber JAR. This must be done with the current directory set to
the project base directory:

sbt clean assembly

This will create the uber JAR within the target/scala-2.10/ folder. You can look
inside the built uber JAR to see all the classes that it contains, which are as follows:

jar tf target/scala-2.10/graph-Viz-assembly.jar

Finally, we can submit the built application with the spark-submit script by passing
the assembly JAR this time:

../../bin/spark-submit --class
com.github.giocode.graphxbook.SimpleGraphVizApp --master local
target/scala-2.10/graph-Viz-assembly.jar

Graph Analysis and Visualization

[58]

Running tasks with SBT commands
SBT provides different, useful commands for interacting with the build in the SBT
console. These are listed as follows:

• clean: This removes the files that were previously produced by the build,
such as generated sources, compiled classes, and task caches

• console: This starts the Scala shell with the project classes on the classpath
• compile: This command compiles the sources
• update: The execution of this command resolves and retrieves the

dependencies, if required
• package: This builds and produces a deployable JAR
• assembly: This builds a uber JAR using the sbt-assembly plugin

Summary
In this chapter, we learned about the different ways to visualize and analyze graphs
in Spark. We studied the connectedness of different networks by looking at their
degree distribution, finding their connected components, and by calculating their
cluster coefficients. In addition, we also learned how to visualize graph data using
GraphStream. After this, we showed how the PageRank algorithm can be used to
rank node importance in different networks. This chapter also showed us how to
use SBT to build a Spark program that relies on third-party libraries.

Throughout this chapter, we have also studied how the basic Spark RDD operations
can be used to transform, join, and filter collections of graph vertices and edges. In the
next chapter, we will learn about the graph-specific and higher-level operations that
are used to transform and manipulate the structure of graphs.

In the next chapter, we will learn about graph-specific operators that help change the
properties of graph elements or modify the graph structure.

[59]

Transforming and Shaping
Up Graphs to Your Needs

In this chapter, we will learn to transform graphs using different sets of operators. In
particular, we will cover graph-specific operators that either change the properties of
graph elements or modify the structure of graphs. In other words, all the operators
that we use here are methods that are invoked on a graph and return a new graph. In
addition, we will use join methods to combine graph data with other datasets. Using
real-world datasets, you will understand when and how to:

• Use property operators to modify vertex or edge properties
• Use structural operators to modify the shape of a graph
• Join additional RDD collections with a property graph

Transforming the vertex and edge
attributes
The map operator is a core method for transforming distributed datasets or RDDs in
Spark. Similarly, property graphs also have three map operators defined as follows:

class Graph[VD, ED] {
 def mapVertices[VD2](mapFun: (VertexId, VD) => VD2): Graph[VD2,
 ED]
 def mapEdges[ED2](mapFun: Edge[ED] => ED2): Graph[VD, ED2]
 def mapTriplets[ED2](mapFun: EdgeTriplet[VD, ED] => ED2):
 Graph[VD, ED2]
}

Transforming and Shaping Up Graphs to Your Needs

[60]

Each of these methods is called on a property graph with vertex attribute type VD
and edge attribute type ED. Each of them also takes a user-defined mapping function
mapFun that performs one of the following:

• For mapVertices, mapFun takes a pair of (VertexId, VD) as input and
returns a transformed vertex attribute of type VD2.

• For mapEdges, mapFun takes an Edge object as input and returns a
transformed edge attribute of type ED2.

• For mapTriplets, mapFun takes an EdgeTriplet object as input and returns
a transformed edge attribute of type ED2.

In each case, the graph structure remains intact, meaning these
map operators never change the links between the vertices or
their vertex indices. This is one key advantage of these operators
compared to the basic RDD map operator. Although the latter can
be used to achieve the same result, the former is also more efficient,
thanks to the GraphX system optimization. Therefore, these three
mapping operators should always be used if you just want to
transform a graph's attributes without modifying its structure.
The difference between mapEdges and mapTriplets is that, for
the latter, both the edge and source attributes are available in the
triplet input of mapFun to create a new edge attribute. In contrast,
the mapFun in mapEdges has access to only the edge attribute.

Now, let's see them in action through some simple examples.

mapVertices
Consider a social graph between people, where the vertex attribute has a type Person
and the edge attribute has a type Link. First, let's create these Scala types as follows:

case class Person(first: String, last: String, age: Int)
case class Link(relationship: String, duration: Float)

Suppose we build the graph from VertexRDD called people and an EdgeRDD
collection named links:

val inputGraph: Graph[Person, Link] = Graph(people, links)

If we want, we can transform the attributes of the people to contain only their name
using mapVertices:

val outputGraph: Graph[String, Link] =
inputGraph.mapVertices((_, person) => person.first + person.last)

Chapter 4

[61]

The new outputGraph now has a vertex attribute of type String instead of Person.
The links between the people remain unchanged.

mapEdges
Similarly, suppose we are interested only in the nature of relationships, not their
duration. This time, we can use mapEdges to change the edge attribute as follows:

val outputGraph: Graph[Person, String] =
inputGraph.mapEdges(link => link.relationship)

mapTriplets
Finally, suppose we want to keep track of the people's ages from when they first
met and add this information into the edge attribute. We can do that by using
mapTriplets:

val outputGraph: Graph[Person, (Int, Int)] =
inputGraph.mapTriplets(t => (t.srcAttr.age - t.attr.duration,
t.dstAttr.age - t.attr.duration))

If we want to change both the edge and vertex attributes of a graph, we can simply
chain mapEdges or mapTriplets with mapVertices since each of these methods
always returns a property graph.

Modifying graph structures
The GraphX library also comes with four useful methods for changing the structure
of graphs. Their method signatures are listed as follows:

class Graph[VD, ED] {
 def reverse: Graph[VD, ED]

 def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,
 vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

 def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]

 def groupEdges(merge: (ED, ED) => ED): Graph[VD,ED]
}

Transforming and Shaping Up Graphs to Your Needs

[62]

The reverse operator
As its name suggests, the reverse operator returns a new graph with all the edge
directions reversed. It does not modify any vertex or edge properties, or change
the number of edges. Moreover, its implementation does not produce any data
movement or duplication.

The subgraph operator
Next on the list is subgraph, which is useful for filtering graphs. It takes two predicate
functions as arguments that return Boolean values. The first predicate epred takes an
EdgeTriplet and returns true when the triplet satisfies the predicate. Similarly, the
vpred predicate takes a pair of (VertexId, VD) and returns true when the vertex
satisfies the predicate condition.

Using these predicates, subgraph returns the graph containing only the nodes that
satisfy the vertex predicate and keeps only the edges satisfying the edge predicate
between the remaining nodes. By default, the vertex or edge predicate functions are
set to return true when they are not provided. That means that we can pass only an
edge predicate, only a vertex predicate, or both. If only a vertex predicate is passed to
subgraph and two connected vertices are filtered out, then the edge connecting these
nodes will automatically be filtered out as well.

The subgraph operator is very handy for countless situations. For instance, it is
often the case, in practice, that the graphs have isolated nodes or edges with missing
vertex information. We can eliminate these graph elements using subgraph. Another
situation where subgraph is useful is when we want to remove hubs in the graph,
for example, nodes that are connected to too many nodes.

As a concrete example, let's use subgraph to answer the following question often
encountered in social networks: "Which people in my friends' list of friends are not
yet my friends?":

// Given a social network
type Name = String
class Person(name: Name, friends: List[Name])
val socialNetwork: Graph[Person, Int] = ...

// that I am part of
val me = Person(myName, myFriends)

// I want know my friends' friends that are not yet my friends
val potentialFriends = socialNetwork.subgraph(vpred =
(_, p: Person) => !(me.friends contains p.name))

Chapter 4

[63]

Note that we did not pass an edge predicate as an argument
to subgraph. Thus, Scala uses the default value for epred,
which is a function that always returns true. On the other
hand, we should pass vpred as a named parameter so that
Scala knows which predicate is passed or is missing.

The mask operator
The mask operator also filters a graph on which it is invoked. In contrast to
subgraph, mask does not take predicate functions as arguments. Instead, it takes
another graph. Then, the expression graph.mask(anotherGraph) constructs a
subgraph of graph by returning a graph that contains the vertices and edges that are
also found in anotherGraph. This can be used together with the subgraph operator
to filter a graph based on the properties in another related graph.

Consider the following situation where we want to find the connected components
of a graph but we want to remove vertices with missing attribute information in the
resulting graph. We can then run the connectedComponent algorithm we previously
saw and use subgraph and mask together to obtain the desired result. This is shown
in the following code:

// Run Connected Components
val ccGraph = graph.connectedComponents()

// Remove vertices with missing attribute values and the edges
connected to them
val validGraph = graph.subgraph(vpred =
(_, attr) => attr.info != "NA")

// Restrict the resulting components to the valid subgraph
val validCCGraph = ccGraph.mask(validGraph)

The groupEdges operator
Spark's property graphs are allowed to pair any of the connected nodes to have
multiple edges. The groupEdges operator is another structural operator that
merges duplicate edges between each pair of nodes into a single edge. To do that,
groupEdges requires one function argument named merge, which takes a pair of
edge attributes of type ED and combines them into a single attribute value of the
same type. As a result, the graph returned by groupEdges has the same type as the
original one. Later in this chapter, we will work on a detailed example in which we
will see groupEdges in action.

Transforming and Shaping Up Graphs to Your Needs

[64]

Joining graph datasets
In addition to the previous mapping and filtering operations, GraphX also provides
APIs for joining RDD datasets with graphs. This can be useful when we want to add
extra information to the vertex attributes of a graph or when we want to merge the
vertex attributes of two related graphs. These tasks can be accomplished using the
following join operators.

joinVertices
The following is the method signature for the first operator joinVertices:

def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD,
U) => VD): Graph[VD, ED]

It is invoked on a Graph[VD, ED] object and requires two inputs, which are passed
as curried parameters. First, joinVertices joins a graph's vertex attributes with
an input vertex RDD table of type RDD[(VertexId, U)]. Second, a user-defined
map function is also passed to joinVertices. This map function joins the original
and passed attributes of each vertex into a new attribute. The return type of this
new attribute must be the same as the original one. Moreover, vertices without a
matching value in the passed RDD retain their original value.

outerJoinVertices
The second join operator is outerJoinVertices, which is a more general method
than joinVertices. Its method signature is shown as follows:

def outerJoinVertices[U, VD2](table: RDD[(VertexId, U)])(map:
(VertexId, VD, Option[U]) => VD2): Graph[VD2, ED]

While outerJoinVertices also expects a vertex RDD and a user-defined map
function as parameters, the map function is allowed to change the vertex attribute
type. Furthermore, all vertices in the original graph are transformed even if they
are not present in the passed RDD table.

As a result of this, the map function takes an Option type parameter Option[U]
instead of simply U as in joinVertices.

Chapter 4

[65]

Example – Hollywood movie graph
An example will help illustrate these differences. For that, let's go to Hollywood and
build a small graph of movie actors and actresses:

scala> val actors: RDD[(VertexId, String)] = sc.parallelize(List(

 (1L, "George Clooney"),(2L, "Julia Stiles"),

 (3L, "Will Smith"), (4L, "Matt Damon"),

 (5L, "Salma Hayek")))

actors: RDD[(VertexId, String)]

Two people in the graph will be connected if they appeared in a movie together.
Each edge will contain the movie title. Let's load that information into an edge RDD
called movies:

scala> val movies: RDD[Edge[String]] = sc.parallelize(List(

 Edge(1L,4L,"Ocean's Eleven"),

 Edge(2L, 4L, "Bourne Ultimatum"),

 Edge(3L, 5L, "Wild Wild West"),

 Edge(1L, 5L, "From Dusk Till Dawn"),

 Edge(3L, 4L, "The Legend of Bagger Vance"))

)

movies: RDD[Edge[String]]

Now, we can build the movie graph and see what's inside:

scala> val movieGraph = Graph(actors, movies)

movieGraph: Graph[String,String]

scala> movieGraph.triplets.foreach(t => println(

t.srcAttr + " & " + t.dstAttr + " appeared in " + t.attr))

George Clooney & Matt Damon appeared in Ocean's Eleven

Julia Stiles & Matt Damon appeared in Bourne Ultimatum

George Clooney & Salma Hayek appeared in From Dusk Till Dawn

Will Smith & Matt Damon appeared in The Legend of Bagger Vance

Will Smith & Salma Hayek appeared in Wild Wild West

Transforming and Shaping Up Graphs to Your Needs

[66]

For now, our vertices contain only the name of each actor/actress:

scala> movieGraph.vertices.foreach(println)

(2,Julia Stiles)

(1,George Clooney)

(5,Salma Hayek)

(4,Matt Damon)

(3,Will Smith)

Suppose we have access to a dataset of actor biographies. For this example, let's
quickly load one such dataset into a vertex RDD:

scala> case class Biography(birthname: String, hometown: String)

defined class Biography

scala> val bio: RDD[(VertexId, Biography)] = sc.parallelize(List(

 (2, Biography("Julia O'Hara Stiles", "NY City, NY, USA")),

 (3, Biography("Willard Christopher Smith Jr.", "Philadelphia, PA,
USA")),

 (4, Biography("Matthew Paige Damon", "Boston, MA, USA")),

 (5, Biography("Salma Valgarma Hayek-Jimenez", "Coatzacoalcos, Veracruz,
Mexico")),

 (6, Biography("José Antonio Domínguez Banderas", "Málaga, Andalucía,
Spain")),

 (7, Biography("Paul William Walker IV", "Glendale, CA, USA"))

))

bio: RDD[(VertexId, Biography)]

We are going to use joinVertices to join this information to our movie graph.
To do that, let's create the user-defined function that appends the hometown
of an actor/actress to their name:

scala> def appendHometown(id: VertexId, name: String, bio: Biography):
String = name + ":"+ bio.hometown

appendHometown: (id: VertexId, name: String, bio: Biography)String

Remember for joinVertices, the mapping function should return a string because
that's the vertex attribute type of the original graph, for example String. Now, we
can join the biography to the vertex attributes of our Hollywood graph:

scala> val movieJoinedGraph =

movieGraph.joinVertices(bio)(appendHometown)

Chapter 4

[67]

movieJoinedGraph: Graph[String,String]

scala> movieJoinedGraph.vertices.foreach(println)

(1,George Clooney)

(5,Salma Hayek:Coatzacoalcos, Veracruz, Mexico)

(2,Julia Stiles:NY City, NY, USA)

(4,Matt Damon:Boston, MA, USA)

(3,Will Smith:Philadelphia, PA, USA)

Next, let's use outerJoinVertices to see the difference. This time, we will directly
pass an anonymous map function that joins the name and biography, and return this
pair as is:

scala> val movieOuterJoinedGraph =

movieGraph.outerJoinVertices(bio)((_,name, bio) => (name,bio))

movieOuterJoinedGraph: Graph[(String, Option[Biography]), String]

Notice how outerJoinVertices changed the vertex attribute type from a String to
a tuple (String, Option[Biography]). Now, let's print the vertices:

scala> movieOuterJoinedGraph.vertices.foreach(println)

(1,(George Clooney,None))

(4,(Matt Damon,Some(Biography(Matthew Paige Damon,Boston, MA, USA))))

(5,(Salma Hayek,Some(Biography(Salma Valgarma Hayek-
Jimenez,Coatzacoalcos, Veracruz, Mexico))))

(2,(Julia Stiles,Some(Biography(Julia O'Hara Stiles,NY City, NY, USA))))

(3,(Will Smith,Some(Biography(Willard Christopher Smith Jr.,Philadelphia,
PA, USA))))

As mentioned previously, even if there was not a biography of George Clooney in
the bio dataset passed to outerJoinVertices, its new attribute has been changed
to None, which is a valid instance of the optional type Option[Biography].

Sometimes, it can be convenient to extract the information outside of the optional
value. For this we can use the getOrElse method defined on Option[T] and
provide a default new attribute value for the vertices that are not present in the
passed vertex RDD:

scala> val movieOuterJoinedGraph = movieGraph.outerJoinVertices(bio)((_,
name, bio) =>

(name,bio.getOrElse(Biography("NA","NA"))))

Transforming and Shaping Up Graphs to Your Needs

[68]

movieOuterJoinedGraph: Graph[(String, Biography),String]

scala> movieOuterJoinedGraph.vertices.foreach(println)

(1,(George Clooney,Biography(NA,NA)))

(2,(Julia Stiles,Biography(Julia O'Hara Stiles,NY City, NY, USA)))

(5,(Salma Hayek,Biography(Salma Valgarma Hayek-Jimenez,Coatzacoalcos,
Veracruz, Mexico)))

(4,(Matt Damon,Biography(Matthew Paige Damon,Boston, MA, USA)))

(3,(Will Smith,Biography(Willard Christopher Smith Jr.,Philadelphia, PA,
USA)))

Alternatively, it is possible to create a new return type for the joined vertices.
For instance, we can create a type Actor to generate a new graph of type
Graph[Actor,String] as follows:

scala> case class Actor(name: String, birthname: String, hometown:
String)

defined class Actor

scala> val movieOuterJoinedGraph = movieGraph.outerJoinVertices(bio)((_,
name, b) => b match {

 case Some(bio) => Actor(name, bio.birthname, bio.hometown)

 case None => Actor(name, "", "")

 })

movieOuterJoinedGraph: Graph[Actor,String]

Listing the vertices of the new graph, we get the expected result:

scala> movieOuterJoinedGraph.vertices.foreach(println)

(4,Actor(Matt Damon,Matthew Paige Damon,Boston, MA, USA))

(1,Actor(George Clooney,,))

(5,Actor(Salma Hayek,Salma Valgarma Hayek-Jimenez,Coatzacoalcos,
Veracruz, Mexico))

(2,Actor(Julia Stiles,Julia O'Hara Stiles,NY City, NY, USA))

(3,Actor(Will Smith,Willard Christopher Smith Jr.,Philadelphia, PA, USA))

Notice that no new vertices will be created for Antonio Banderas or Paul
Walker despite their presence in the bio RDD because they do not belong to
the original graph.

Chapter 4

[69]

When calling outerJoinVertices mentioned previously, we
have passed the argument map function without type annotation.
This is optional as long as the definition of the map function
conforms to the expected input and output types.
Although it's possible for the RDD dataset passed to
joinVertices or outerJoinVertices to have more than one
value for a vertex, only one value will be used. Therefore, it is
recommended that the RDD is made to contain unique vertices.
For both joinVertices and outerJoinVertices, the vertices
in the output graphs will be the same. Only their vertex attributes
will be different. No new vertex will be created as their role is to
join information from the passed RDD into existing vertices.

Data operations on VertexRDD and
EdgeRDD
All of the operations we've seen previously are graph operations. They are invoked
on a graph and they return a new graph object. In this section, we will introduce
operations that transform VertexRDD and EdgeRDD collections. The types of these
collections are subtypes of RDD[(VertexID, VD)] and RDD[Edge[ED]] respectively.

Mapping VertexRDD and EdgeRDD
First, mapValues takes a map function as input, which transforms each vertex
attribute in the VertexRDD. Then, it returns a new VertexRDD object while preserving
the original vertex indices. The method mapValues is overloaded so that the map
function can take an input with a type VD or (VertexId, VD). The type of the new
vertex attributes can be different to VD:

def mapValues[VD2](map: VD => VD2): VertexRDD[VD2]
def mapValues[VD2](map: (VertexId, VD) => VD2): VertexRDD[VD2]

For illustration, let's take the biographies of the previous Hollywood stars in a
VertexRDD collection:

scala> val actorsBio = movieJoinedGraph.vertices

actorsBio: VertexRDD[String]

scala> actorsBio.foreach(println)

(4,Matt Damon:Boston, Massachusetts, USA)

(1,George Clooney)

Transforming and Shaping Up Graphs to Your Needs

[70]

(5,Salma Hayek:Coatzacoalcos, Veracruz, Mexico)

(3,Will Smith:Philadelphia, Pennsylvania, USA)

(2,Julia Stiles:New York City, New York, USA)

Now, we can use mapValues to extract their names into a new VertexRDD collection:

scala> actorsBio.mapValues(s => s.split(':')(0)).foreach(println)

(2,Julia Stiles)

(1,George Clooney)

(5,Salma Hayek)

(4,Matt Damon)

(3,Will Smith)

Using the overloaded mapValues method, we can include the vertex IDs in the input
of the map function and still get a similar result:

scala> actorsBio.mapValues((vid,s) => s.split(':')(0)).foreach(println)

(1,George Clooney)

(5,Salma Hayek)

(3,Will Smith)

(4,Matt Damon)

(2,Julia Stiles)

There is also one mapValues method for transforming EdgeRDDs:

def mapValues[ED2](f: Edge[ED] => ED2): EdgeRDD[ED2]

Similarly, mapValues changes only the edge attributes. It does not remove or add
edges, nor does it modify the direction of the edges.

Filtering VertexRDDs
Using the filter method, we can also filter VertexRDD collections. While not
changing the vertex indexing, filter removes the vertices that do not satisfy a
user-defined predicate, which is passed to filter. Contrary to mapValues, filter is
not overloaded so the type of the predicate must be (VertexId, VD) => Boolean.
This is summarized as follows:

def filter(pred: (VertexId, VD) => Boolean): VertexRDD[VD]

Chapter 4

[71]

In addition to filter, the diff operation also filters vertices inside a VertexRDD
collection. It takes another VertexRDD set as input and removes vertices from the
original set that are also in the input set:

def diff(other: VertexRDD[VD]): VertexRDD[VD]

GraphX does not provide a similar filter operation for EdgeRDD
collections because filtering edges can be directly and efficiently
achieved using the graph operation subgraph. See the
previous section on Modifying graph structures.

Joining VertexRDDs
The following join operators are optimized for VertexRDD collections:

def innerJoin[U, VD2](other: RDD[(VertexId, U)])(f: (VertexId, VD,
U) => VD2): VertexRDD[VD2]

def leftJoin[U, VD2](other: RDD[(VertexId, VD2)])(f: (VertexId,
VD, Option[U]) => VD2): VertexRDD[VD2]

The first operator is innerJoin, which takes VertexRDD and a user-defined function
f as inputs. Using this function, it joins the attributes of vertices that are present in
both the original and input VertexRDD sets. In other words, innerJoin returns the
intersection set of vertices and merges their attributes according to f.

So, given the vertex RDD from movieGraph, the result of innerJoin with the RDD
of biographies will not contain George Clooney, Paul Walker or José Antonio
Domínguez Banderas:

scala> val actors = movieGraph.vertices

actors: VertexRDD[String]

scala> actors.innerJoin(bio)((vid, name, b) => name + " is from " +
b.hometown).foreach(println)

(4,Matt Damon is from Boston, Massachusetts, USA)

(5,Salma Hayek is from Coatzacoalcos, Veracruz, Mexico)

(2,Julia Stiles is from New York City, New York, USA)

(3,Will Smith is from Philadelphia, Pennsylvania, USA)

Transforming and Shaping Up Graphs to Your Needs

[72]

The second operator leftJoin is similar to the operator outerJoinVertices
defined in Graph[VD,ED]. It also takes a user-defined function f of type (VertexId,
VD, Option[U]) => VD2) in addition to an input VertexRDD set. The resulting
VertexRDD will also contain the same vertices as the original VertexRDD. Since the
third input of the function f is Option[U], it should handle the case when a vertex
in the original VertexRDD set is not present in the input RDD. Using the previous
example, we would do something like:

scala> actors.leftJoin(bio)((vid, name, b) => b match {

 case Some(bio) => name + " is from " + bio.hometown

 case None => name + "\'s hometown is unknown"

}).foreach(println)

(4,Matt Damon is from Boston, Massachusetts, USA)

(1,George Clooney's hometown is unknown)

(5,Salma Hayek is from Coatzacoalcos, Veracruz, Mexico)

(2,Julia Stiles is from New York City, New York, USA)

(3,Will Smith is from Philadelphia, Pennsylvania, USA)

Joining EdgeRDDs
In GraphX, there exists a join operator innerJoin for joining two EdgeRDD:

def innerJoin[ED2, ED3](other: EdgeRDD[ED2])(f: (VertexId,
VertexId, ED, ED2) => ED3): EdgeRDD[ED3]

It is similar to the innerJoin method for VertexRDD, except that now its input
function has the type: f: (VertexId, VertexId, ED, ED2) => ED3. Moreover,
innerJoin uses the same partitioning strategy as the original EdgeRDD.

Reversing edge directions
Previously, we have seen the reverse operation that reverses all the edges of graph.
When we want to reverse only a subset of edges in a graph, the following reverse
method defined as EdgeRDD objects becomes useful:

def reverse: EdgeRDD[ED]

For instance, we know that graph properties must be directed in Spark. The only
way to model a non-directed graph is to add a reverse link for each edge. This can
easily be done using the reverse operator as follows. First, we extract the edges of
the movie graph into the EdgeRDD movie:

scala> val movies = movieGraph.edges

Chapter 4

[73]

movies: EdgeRDD[String,String]

scala> movies.foreach(println)

Edge(1,4,Ocean's Eleven)

Edge(3,5,Wild Wild West)

Edge(2,4,Bourne Ultimatum)

Edge(1,5,From Dusk Till Dawn)

Edge(3,4,The Legend of Bagger Vance)

Then, we create a new EdgeRDD collection with the links reversed. Then, we obtain
the bidirected graph using the union of these two EdgeRDD collections:

scala> val bidirectedGraph = Graph(actors, movies union

 movies.reverse)

We can see that this works by printing the new set of edges:

scala> bidirectedGraph.edges.foreach(println)

Edge(1,5,From Dusk Till Dawn)

Edge(3,4,The Legend of Bagger Vance)

Edge(3,5,Wild Wild West)

Edge(1,4,Ocean's Eleven)

Edge(2,4,Bourne Ultimatum)

Edge(4,1,Ocean's Eleven)

Edge(4,2,Bourne Ultimatum)

Edge(5,3,Wild Wild West)

Edge(4,3,The Legend of Bagger Vance)

Edge(5,1,From Dusk Till Dawn)

EdgeRDD[ED] is a subtype of RDD[Edge[ED]] and it organizes
the edges in to blocks partitioned using one of the partitioning
strategies defined in PartitionStrategy. The edge attributes
and adjacency structure are stored separately within each
partition so that the structure can be reused when only the edge
attributes are changed.
In Spark 1.0 and 1.1, the type signature of EdgeRDD has been
changed EdgeRDD[ED, VD] for optimization purposes. Since
Spark 1.2, the signature has switched back to the simpler
EdgeRDD[ED] type definition while implementing the caching
optimization in a different way.

Transforming and Shaping Up Graphs to Your Needs

[74]

Collecting neighboring information
When doing graph computations, we may want to use neighboring information, such
as the attributes of neighboring vertices. The two operators, collectNeighborIds
and collectNeighbors explicitly allow us to do that. collectNeighborIds
collects into a VertexRDD only the vertex IDs of each node's neighbors, whereas
collectNeighbors also collects their attributes:

def collectNeighborIds(edgeDirection: EdgeDirection):
VertexRDD[Array[VertexId]]
def collectNeighbors(edgeDirection: EdgeDirection):
VertexRDD[Array[(VertexId, VD)]]

These two methods are invoked on a property graph and are passed with
EdgeDirection as an input. An EdgeDirection attribute can take four
possible values:

• Edge.Direction.In: When this option is specified, each vertex collects only
the attributes of neighbors that have an incoming link to it

• Edge.Direction.Out: Each vertex collects only the attributes of neighbors
that it links to

• Edge.Direction.Either: Each vertex collects the attributes of all its
neighbors

• Edge.Direction.Both: Each vertex collects the attributes of the neighbors
with which it has both an incoming edge and outgoing one

For optimal performance, it is best to avoid using these two
operators and rewrite the computation using the more generic
and efficient aggregateMessages operator presented in the
next chapter. The efficiency gain can be substantial especially
when implementing an iterative graph-parallel algorithm. But for
simple graph transformations that are done only once, it is ok to
use collectNeighors and collectNeighborIds.

Example – from food network to flavor pairing
In Chapter 2, Building and Exploring Graphs, we presented the food ingredient dataset
and built a bipartite graph that connects each food ingredient to its compounds. In
the following, we will build another graph, which consists of only food ingredients.
A pair of food ingredients is connected in the new graph only if they share at least
one compound. We'll call this new graph the flavor network. We can later use this
graph to create new recipes by experimenting with new food pairings.

Chapter 4

[75]

Let's start with the bipartite food network that we built in Chapter 2, Building and
Exploring Graphs:

scala> val nodes = ingredients ++ compounds

scala> val foodNetwork = Graph(nodes, links)

foodNetwork: Graph[Node,Int]

To create the new flavor network, we need to know which ingredients share
some compounds. This can be done by first collecting the ingredient IDs for each
compound node in the foodNetwork graph. Concretely, we collect and group
ingredient IDs that have that same compound into an RDD collection of tuples
(compound id, Array[ingredient id]), as follows:

scala> val similarIngr: RDD[(VertexId, Array[VertexId])] =

foodNetwork.collectNeighborIds(EdgeDirection.In)

similarIngr: RDD[(VertexId, Array[VertexId])]

Next, we create a function pairIngredients that takes one such tuple of (compound
id, Array[ingredient id]) and creates an edge between every pair of ingredients
in the array:

def pairIngredients(ingPerComp: (VertexId, Array[VertexId])):
Seq[Edge[Int]] =
 for {
 x <- ingPerComp._2
 y <- ingPerComp._2
 if x != y
 } yield Edge(x,y,1)
pairIngredients:
(ingPerComp:(VertexId,Array[VertexId]))Seq[Edge[Int]]

Once we have that, we can create an EdgeRDD collection for every pair of ingredients
that share the same compounds from the food network, as follows:

scala> val flavorPairsRDD: RDD[Edge[Int]] = similarIngr flatMap
pairIngredients

flavorPairsRDD: RDD[Edge[Int]]

Finally, we can create the new flavor network:

scala> val flavorNetwork = Graph(ingredients, flavorPairsRDD).cache

flavorNetwork: Graph[Node,Int]

Transforming and Shaping Up Graphs to Your Needs

[76]

Let's print the first 20 triplets in flavorNetwork:

scala> flavorNetwork.triplets.take(20).foreach(println)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(9,Ingredient(peanut_butter,plant
derivative)),1)

((3,Ingredient(mackerel,fish/seafood)),(17,Ingredient(red_
bean,vegetable)),1)

((3,Ingredient(mackerel,fish/seafood)),(17,Ingredient(red_
bean,vegetable)),1)

((3,Ingredient(mackerel,fish/seafood)),(17,Ingredient(red_
bean,vegetable)),1)

((3,Ingredient(mackerel,fish/seafood)),(17,Ingredient(red_
bean,vegetable)),1)

((3,Ingredient(mackerel,fish/seafood)),(17,Ingredient(red_
bean,vegetable)),1)

((3,Ingredient(mackerel,fish/seafood)),(17,Ingredient(red_
bean,vegetable)),1)

((3,Ingredient(mackerel,fish/seafood)),(17,Ingredient(red_
bean,vegetable)),1)

Chapter 4

[77]

It seems mackerel, peanut butter and red beans have something in common. Before
we try a new recipe, let's slightly modify the network. Notice that duplicate edges
are possible when a pair of ingredients share more than one compound. Suppose
we want to group parallel edges between each pair of ingredients into a single edge,
which contains the number of shared compounds between the two ingredients. We
can do that using the groupEdges method:

val flavorWeightedNetwork =
flavorNetwork.partitionBy(PartitionStrategy.EdgePartition2D).
groupEdges((x,y) => x+y)
flavorWeightedNetwork: Graph[Node,Int]

groupEdges requires the graph to be repartitioned because
it assumes that identical edges will be co-located on the
same partition. Thus, you must call partitionBy prior to
grouping the edges.

Now, let's print the 20 pairs of ingredients that share the most compounds:

scala> flavorWeightedNetwork.triplets.

sortBy(t => t.attr, false).take(20).

foreach(t => println(t.srcAttr.name + " and " + t.dstAttr.name + " share
" + t.attr + " compounds."))

bantu_beer and beer share 227 compounds.

beer and bantu_beer share 227 compounds.

roasted_beef and grilled_beef share 207 compounds.

grilled_beef and roasted_beef share 207 compounds.

grilled_beef and fried_beef share 200 compounds.

fried_beef and grilled_beef share 200 compounds.

beef and roasted_beef share 199 compounds.

beef and grilled_beef share 199 compounds.

beef and raw_beef share 199 compounds.

beef and fried_beef share 199 compounds.

roasted_beef and beef share 199 compounds.

roasted_beef and raw_beef share 199 compounds.

roasted_beef and fried_beef share 199 compounds.

grilled_beef and beef share 199 compounds.

grilled_beef and raw_beef share 199 compounds.

raw_beef and beef share 199 compounds.

Transforming and Shaping Up Graphs to Your Needs

[78]

raw_beef and roasted_beef share 199 compounds.

raw_beef and grilled_beef share 199 compounds.

raw_beef and fried_beef share 199 compounds.

fried_beef and beef share 199 compounds.

It is not too surprising that roasted beef and grilled beef have lots of things in
common. While the example did not teach us much about culinary arts, it showed
that we could mix multiple operators to change a graph into a desired form.

Summary
To summarize, GraphX offers several methods and operators for transforming graph
elements and modifying its structure. We can use graph-specific operators, which
transform a graph into a new one. In addition, we can use special methods that
operate on VertexRDD and EdgeRDD collections. Moreover, we used join methods to
combine graph data with other datasets. You can use all these methods to wrangle
new graph datasets and put them in to a shape that suits your specific needs.

In the next chapter, you will learn how to create custom graph operators of
your own using generic optimized methods, such as aggregateMessages and
mapReduceTriplets.

[79]

Creating Custom Graph
Aggregation Operators

In the previous chapter, we have seen various operations for transforming the
elements of a graph and for modifying its structure. Here, we will learn to use
a generic and powerful operator named aggregateMessages that is useful for
aggregating the neighborhood information of all nodes in the graph. In fact,
many graph-processing algorithms rely on iteratively accessing the properties of
neighboring nodes and adjacent edges. One such example is the PageRank algorithm.

By applying aggregateMessages to the NCAA College Basketball datasets, you will
be able to:

• Understand the basic mechanisms and patterns of aggregateMessages
• Apply it to create custom graph aggregation operations
• Optimize the performance and efficiency of aggregateMessages

NCAA College Basketball datasets
We will again learn by doing in this chapter. This time, we will take the NCAA
College Basketball as an illustrative example. Specifically, we use two CSV datasets.
The first one teams.csv contains the list of all college teams that played in the
NCAA Division I competition. Each team is associated with a four-digit ID number.
The second dataset stats.csv contains the score and statistics of every game during
the 2014-2015 regular season. Using the techniques learned in Chapter 2, Building and
Exploring Graphs, let's parse and load these datasets and load them into RDDs:

1. We create a class GameStats that records the statistics of one team during a
specific basketball game:
case class GameStats(

Creating Custom Graph Aggregation Operators

[80]

 val score: Int,
 val fieldGoalMade: Int,
 val fieldGoalAttempt: Int,
 val threePointerMade: Int,
 val threePointerAttempt: Int,
 val threeThrowsMade: Int,
 val threeThrowsAttempt: Int,
 val offensiveRebound: Int,
 val defensiveRebound: Int,
 val assist: Int,
 val turnOver: Int,
 val steal: Int,
 val block: Int,
 val personalFoul: Int
)

2. We also add the following methods to GameStats in order to know how
efficient a team's offense was during a game:
// Field Goal percentage
def fgPercent: Double = 100.0 * fieldGoalMade /
fieldGoalAttempt

// Three Point percentage
def tpPercent: Double = 100.0 * threePointerMade /
threePointerAttempt

// Free throws percentage
def ftPercent: Double = 100.0 * threeThrowsMade /
threeThrowsAttempt
override def toString: String = "Score: " + score

3. We now create a couple of classes for the games' result:
abstract class GameResult(
 val season: Int,
 val day: Int,
 val loc: String
)

case class FullResult(
 override val season: Int,
 override val day: Int,
 override val loc: String,
 val winnerStats: GameStats,
 val loserStats: GameStats
) extends GameResult(season, day, loc)

Chapter 5

[81]

FullResult has the year and day of the season, the location where the game
was played, and the game statistics of both the winning and losing teams.

4. We will then create a statistics graph of the regular seasons. In this graph, the
nodes are the teams, whereas each edge corresponds to a specific game. To
create the graph, let's parse the CSV file teams.csv into the RDD teams:
val teams: RDD[(VertexId, String)] =
 sc.textFile("./data/teams.csv").
 filter(! _.startsWith("#")).
 map {line =>
 val row = line split ','
 (row(0).toInt, row(1))
 }

5. We can check the first few teams in this new RDD:
scala> teams.take(3).foreach{println}

(1101,Abilene Chr)

(1102,Air Force)

(1103,Akron)

6. We do the same thing to obtain an RDD of the game results, which will have
a type RDD[Edge[FullResult]]. We just parse stats.csv and record the
fields that we need— the ID of the winning team, the ID of the losing team,
and the game statistics of both teams:
val detailedStats: RDD[Edge[FullResult]] =
 sc.textFile("./data/stats.csv").
 filter(! _.startsWith("#")).
 map {line =>
 val row = line split ','
 Edge(row(2).toInt, row(4).toInt,
 FullResult(
 row(0).toInt, row(1).toInt,
 row(6),
 GameStats(
 score = row(3).toInt,
 fieldGoalMade = row(8).toInt,
 fieldGoalAttempt = row(9).toInt,
 threePointerMade = row(10).toInt,
 threePointerAttempt = row(11).toInt,
 threeThrowsMade = row(12).toInt,
 threeThrowsAttempt = row(13).toInt,
 offensiveRebound = row(14).toInt,
 defensiveRebound = row(15).toInt,
 assist = row(16).toInt,
 turnOver = row(17).toInt,

Creating Custom Graph Aggregation Operators

[82]

 steal = row(18).toInt,
 block = row(19).toInt,
 personalFoul = row(20).toInt
),
 GameStats(
 score = row(5).toInt,
 fieldGoalMade = row(21).toInt,
 fieldGoalAttempt = row(22).toInt,
 threePointerMade = row(23).toInt,
 threePointerAttempt = row(24).toInt,
 threeThrowsMade = row(25).toInt,
 threeThrowsAttempt = row(26).toInt,
 offensiveRebound = row(27).toInt,
 defensiveRebound = row(28).toInt,
 assist = row(20).toInt,
 turnOver = row(30).toInt,
 steal = row(31).toInt,
 block = row(32).toInt,
 personalFoul = row(33).toInt
)
)
)
 }

Let's check what we have got:

scala> detailedStats.take(3).foreach(println)

Edge(1165,1384,FullResult(2006,8,N,Score: 75-54))

Edge(1393,1126,FullResult(2006,8,H,Score: 68-37))

Edge(1107,1324,FullResult(2006,9,N,Score: 90-73))

7. We then create our graph of stats:
scala> val scoreGraph = Graph(teams, detailedStats)

For curiosity, let's see which team has won against the 2015 NCAA champions
Duke in the regular season. To do that, we filter the graph triplets whose destination
attribute is Duke. This is because when we created our stats graph, each edge is
directed from the winner node to the loser node. So, Duke has lost only four games
in the regular season:

scala> scoreGraph.triplets.filter(_.dstAttr == "Duke").foreach(println)

((1274,Miami FL),(1181,Duke),FullResult(2015,71,A,Score: 90-74))

((1301,NC State),(1181,Duke),FullResult(2015,69,H,Score: 87-75))

((1323,Notre Dame),(1181,Duke),FullResult(2015,86,H,Score: 77-73))

((1323,Notre Dame),(1181,Duke),FullResult(2015,130,N,Score: 74-64))

Chapter 5

[83]

The aggregateMessages operator
Once we have our graph ready, let's start our mission, which is aggregating the
stats data in scoreGraph. In GraphX, aggregateMessages is the operator for that
kind of job.

For example, let's find out the average field goals made per game by the winning
teams. In other words, the games that the teams lost will not be counted. To get the
average for each team, we first need to have the number of games won by the team
and the total field goals that the team made in those games:

// Aggregate the total field goals made by winning teams
type FGMsg = (Int, Int)
val winningFieldGoalMade: VertexRDD[FGMsg] = scoreGraph
aggregateMessages(
 // sendMsg
 triplet => triplet.sendToSrc(1,
 triplet.attr.winnerStats.fieldGoalMade)
 // mergeMsg
 ,(x, y) => (x._1 + y._1, x._2+ y._2)
)
// Aggregate the total field goals made by winning teams
type Msg = (Int, Int)
type Context = EdgeContext[String, FullResult, Msg]
val winningFieldGoalMade: VertexRDD[Msg] = scoreGraph
aggregateMessages(
 // sendMsg
 (ec: Context) => ec.sendToSrc(1,
 ec.attr.winnerStats.fieldGoalMade),

 // mergeMsg
 (x: Msg, y: Msg) => (x._1 + y._1, x._2+ y._2)
)

EdgeContext
There is a lot going on in the previous call to aggregateMessages. So, let's see it
working in slow motion. When we called aggregateMessages on the scoreGraph
method, we had to pass two functions as arguments.

The first function has a signature EdgeContext[VD, ED, Msg] => Unit. It takes an
EdgeContext parameter as input. It does not return anything but it can produce side
effects, such as sending a message to a node.

Creating Custom Graph Aggregation Operators

[84]

Ok, but what is that EdgeContext type? Similar to EdgeTriplet, EdgeContext
represents an edge along with its neighboring nodes. It can access both the edge
attribute, and the source and destination nodes' attributes. In addition, EdgeContext
has two methods to send messages along the edge to its source node or to its
destination node. These methods are sendToSrc and sendToDst respectively. Then,
the type of message that we want each triplet in the graph to send is defined by Msg.
Similar to VD and ED, we can define the concrete type that Msg takes.

In our example, we need to aggregate the number of games played and the number
of field goals made. Therefore, we define Msg as a pair of Int. Furthermore, each
edge context sends a message to only its source node, that is the winning team,
because we are interested in the total field goals made by the teams for only the
games that they won. The actual message sent to each winner node is a pair of
integers (1, ec.attr.winnerStats.fieldGoalMade). The first integer serves as a
counter for the games won by the source node, whereas the second one corresponds
to the number of field goals made by the winner. This latter integer is then extracted
from the edge attribute.

In addition to sendMsg, the second function that we need to pass to
aggregateMessages is a mergeMsg function with the signature (Msg, Msg) =>
Msg. As its name implies, mergeMsg is used to merge two messages received at each
node into a new one. Its output type must be the same, for example Msg. Using
these two functions, aggregateMessages returns the aggregated messages inside
VertexRDD[Msg].

Returning to our example, we set out to compute the average field goals per winning
game for all teams. To get this final result, we simply apply mapValues to the output
of aggregateMessages, as follows:

// Average field goals made per Game by winning teams
val avgWinningFieldGoalMade: VertexRDD[Double] =
 winningFieldGoalMade mapValues (
 (id: VertexId, x: Msg) => x match {
 case (count: Int, total: Int) => total.toDouble/count
})

Let's check the output:

scala> avgWinningFieldGoalMade.take(5).foreach(println)

(1260,24.71641791044776)

(1410,23.56578947368421)

(1426,26.239436619718308)

(1166,26.137614678899084)

(1434,25.34285714285714)

Chapter 5

[85]

The definitions of aggregateMessages and EdgeContext, as we explained
previously, are shown as follows:

class Graph[VD, ED] {
 def aggregateMessages[Msg: ClassTag](
 sendMsg: EdgeContext[VD, ED, Msg] => Unit,
 mergeMsg: (Msg, Msg) => Msg,
 tripletFields: TripletFields = TripletFields.All)
 : VertexRDD[Msg]
}

abstract class EdgeContext[VD, ED, A] {

 // Attribute associated with the edge:
 abstract def attr: ED

 // Vertex attribute of the edge's source vertex.
 abstract def srcAttr: VD

 // Vertex attribute of the edge's destination vertex.
 abstract def dstAttr: VD

 // Vertex id of the edge's source vertex.
 abstract def srcId: VertexId

 // Vertex id of the edge's destination vertex.
 abstract def dstId: VertexId

 // Sends a message to the destination vertex.
 abstract def sendToDst(msg: A): Unit

 // Sends a message to the source vertex.
 abstract def sendToSrc(msg: A): Unit
}

Abstracting out the aggregation
That was kinda cool! We can do the same to average the points per game scored by
winning teams:

// Aggregate the points scored by winning teams
val winnerTotalPoints: VertexRDD[(Int, Int)] =
scoreGraph.aggregateMessages(
 // sendMsg

Creating Custom Graph Aggregation Operators

[86]

 triplet => triplet.sendToSrc(1,
 triplet.attr.winnerStats.score),
 // mergeMsg
 (x, y) => (x._1 + y._1, x._2+ y._2)
)

// Average field goals made per Game by winning teams
var winnersPPG: VertexRDD[Double] =
 winnerTotalPoints mapValues (
 (id: VertexId, x: (Int, Int)) => x match {
 case (count: Int, total: Int) =>
 total.toDouble/count
 })

Let's check the output:

scala> winnersPPG.take(5).foreach(println)

(1260,71.19402985074628)

(1410,71.11842105263158)

(1426,76.30281690140845)

(1166,76.89449541284404)

(1434,74.28571428571429)

Now, the coach wants us to list the top five teams with the highest average
three-pointer made per winning game. By the way, he also wants to know
which teams are the most efficient in three-pointers.

Keeping things DRY
We can copy and modify the previous code but that would be repetitive. Instead,
let's abstract out the average aggregation operator so that it can work on any
statistics that the coach needs. Luckily, Scala's higher-order functions are there
to help in this task.

For each statistic that our coach wants, let's define a function that takes a team's
GameStats as input and returns the statistic that we are interested in. For now, we will
need the number of three-pointers made and the average three-pointer percentage:

 // Getting individual stats
 def threePointMade(stats: GameStats) =
 stats.threePointerMade
 def threePointPercent(stats: GameStats) = stats.tpPercent

Chapter 5

[87]

Then, we create a generic function that takes as inputs a stats graph and one of the
functions defined previously, which has a signature GameStats => Double:

// Generic function for stats averaging
def averageWinnerStat(graph: Graph[String, FullResult])(getStat:
GameStats => Double): VertexRDD[Double] = {
 type Msg = (Int, Double)
 val winningScore: VertexRDD[Msg] =
 graph.aggregateMessages[Msg](
 // sendMsg
 triplet => triplet.sendToSrc(1,
 getStat(triplet.attr.winnerStats)),
 // mergeMsg
 (x, y) => (x._1 + y._1, x._2+ y._2)
)
 winningScore mapValues (
 (id: VertexId, x: Msg) => x match {
 case (count: Int, total: Double) => total/count
 })
}

Then, we can use the average stats by passing the functions threePointMade and
threePointPercent to averageWinnerStat:

val winnersThreePointMade =
averageWinnerStat(scoreGraph)(threePointMade)
val winnersThreePointPercent =
averageWinnerStat(scoreGraph)(threePointPercent)

With little effort, we can tell the coach which five winning teams scored the highest
number of threes per game:

scala> winnersThreePointMade.sortBy(_._2,false).take(5).foreach(println)

(1440,11.274336283185841)

(1125,9.521929824561404)

(1407,9.008849557522124)

(1172,8.967441860465117)

(1248,8.915384615384616)

While we are at it, let's find out the five most efficient teams in three-pointers:

scala> winnersThreePointPercent.sortBy(_._2,false).take(5).
foreach(println)

(1101,46.90555728464225)

(1147,44.224282479431224)

Creating Custom Graph Aggregation Operators

[88]

(1294,43.754532434101534)

(1339,43.52308905887638)

(1176,43.080814169045105)

Interestingly, the teams that made the most three-pointers per winning game are
not always the ones who are the most efficient at it. But, they still won those games,
which is more important.

Coach wants more numbers
The coach seems unsatisfied with that argument and wants us to get the same
statistics but wants us to average them over all the games that each team has played.

Thus, we have to aggregate the information from all the nodes of our graph, and not
only at the destination nodes. To make our previous abstraction more flexible, let's
create the following types:

trait Teams
case class Winners extends Teams
case class Losers extends Teams
case class AllTeams extends Teams

We modify the previous higher-order function to have an extra argument Teams,
which will help us specify at which nodes we want to collect and aggregate the
required game stats. The new function becomes:

def averageStat(graph: Graph[String, FullResult])(getStat:
GameStats => Double, tms: Teams): VertexRDD[Double] = {
 type Msg = (Int, Double)
 val aggrStats: VertexRDD[Msg] = graph.aggregateMessages[Msg](
 // sendMsg
 tms match {
 case _ : Winners => t => t.sendToSrc((1,
 getStat(t.attr.winnerStats)))
 case _ : Losers => t => t.sendToDst((1,
 getStat(t.attr.loserStats)))
 case _ => t => {
 t.sendToSrc((1, getStat(t.attr.winnerStats)))
 t.sendToDst((1, getStat(t.attr.loserStats)))
 }
 }
 ,
 // mergeMsg
 (x, y) => (x._1 + y._1, x._2+ y._2)
)

 aggrStats mapValues (

Chapter 5

[89]

 (id: VertexId, x: Msg) => x match {
 case (count: Int, total: Double) => total/count
 })
 }

Compared to averageWinnerStat, aggregateStat allows us to choose whether we
want to aggregate the stats for winners only, for losers only, or for all teams. Since
the coach wants the overall stats averaged over all games played, we aggregate the
stats by passing the AllTeams() flag in aggregateStat. In this case, we simply
define the sendMsg argument in aggregateMessages so that the required stats
are sent to both the source (the winner) and to the destination (the loser) using
the EdgeContext class's sendToSrc and sendToDst functions respectively. This
mechanism is pretty straightforward. We just need to make sure we send the right
information to the right node. In this case, we send winnerStats to the winner and
loserStats to the loser.

Ok, you've got the idea now. So, let's apply it to please our coach. Here are the teams
with the overall highest three-pointers per page:

// Average Three Point Made Per Game for All Teams
val allThreePointMade = averageStat(scoreGraph)(threePointMade,
AllTeams())

Let's see the output:

scala> allThreePointMade.sortBy(_._2, false).take(5).foreach(println)

(1440,10.180811808118081)

(1125,9.098412698412698)

(1172,8.575657894736842)

(1184,8.428571428571429)

(1407,8.411149825783973)

Here are the five most efficient teams overall in three-pointers per game:

// Average Three Point Percent for All Teams
val allThreePointPercent =
averageStat(scoreGraph)(threePointPercent, AllTeams())

The output is:

scala> allThreePointPercent.sortBy(_._2,false).take(5).foreach(println)

(1429,38.8351815824302)

(1323,38.522819895594)

(1181,38.43052051444854)

(1294,38.41227053353959)

(1101,38.097896464168954)

Creating Custom Graph Aggregation Operators

[90]

Actually, there is only a 2 percent difference between the most efficient team and the
one in the fiftieth position. Most NCAA teams are therefore pretty efficient behind
the line. I bet the coach knew that already!

Calculating average points per game
We can also reuse the averageStat function to get the average points per game for
the winners. In particular, let's take a look at the two teams that won games with the
highest and lowest scores:

// Winning teams
val winnerAvgPPG = averageStat(scoreGraph)(score, Winners())

Let's check the output:

scala> winnerAvgPPG.max()(Ordering.by(_._2))

res36: (org.apache.spark.graphx.VertexId, Double) =
(1322,90.73333333333333)

scala> winnerAvgPPG.min()(Ordering.by(_._2))

res39: (org.apache.spark.graphx.VertexId, Double) = (1197,60.5)

Apparently, the most defensive team can win games by scoring only 60 points,
whereas the most offensive team can score an average of 90 points.

Next, let's average the points per game for all games played and look at the two
teams with the best and worst offense during the 2015 season:

// Average Points Per Game of All Teams
val allAvgPPG = averageStat(scoreGraph)(score, AllTeams())

The output is:

scala> allAvgPPG.max()(Ordering.by(_._2))

res42: (org.apache.spark.graphx.VertexId, Double) =
(1322,83.81481481481481)

scala> allAvgPPG.min()(Ordering.by(_._2))

res43: (org.apache.spark.graphx.VertexId, Double) =
(1212,51.111111111111114)

To no surprise, the best offensive team is the same as the one who scored most in
winning games. To win a game, 50 points is not enough of an average for a team.

Chapter 5

[91]

Defense stats – D matters as in direction
Previously, we obtained some statistics such as field goals or the three-point
percentages that a team achieves. What if instead we want to aggregate the average
points or rebounds that each team concedes to their opponents? To compute that,
we define a new higher-order function averageConcededStat. Compared to
averageStat, this function needs to send loserStats to the winning team and
winnerStats to the losing team. To make things more interesting, we are going
to make the team name part of the message Msg:

def averageConcededStat(graph: Graph[String, FullResult])(getStat:
GameStats => Double, rxs: Teams): VertexRDD[(String, Double)] = {
 type Msg = (Int, Double, String)
 val aggrStats: VertexRDD[Msg] = graph.aggregateMessages[Msg](
 // sendMsg
 rxs match {
 case _ : Winners => t => t.sendToSrc((1,
 getStat(t.attr.loserStats), t.srcAttr))
 case _ : Losers => t => t.sendToDst((1,
 getStat(t.attr.winnerStats), t.dstAttr))
 case _ => t => {
 t.sendToSrc((1,
 getStat(t.attr.loserStats),t.srcAttr))
 t.sendToDst((1,
 getStat(t.attr.winnerStats),t.dstAttr))
 }
 }
 ,
 // mergeMsg
 (x, y) => (x._1 + y._1, x._2+ y._2, x._3)
)

 aggrStats mapValues (
 (id: VertexId, x: Msg) => x match {
 case (count: Int, total: Double, name: String) =>
 (name, total/count)
 })
}

With that, we can calculate the average points conceded by the winning and losing
teams as follows:

val winnersAvgConcededPoints =
averageConcededStat(scoreGraph)(score, Winners())
val losersAvgConcededPoints =
averageConcededStat(scoreGraph)(score, Losers())

Creating Custom Graph Aggregation Operators

[92]

Let's check the output:

scala> losersAvgConcededPoints.min()(Ordering.by(_._2))

res: (VertexId, (String, Double)) = (1101,(Abilene
Chr,74.04761904761905))

scala> winnersAvgConcededPoints.min()(Ordering.by(_._2))

res: (org.apache.spark.graphx.VertexId, (String, Double)) =
(1101,(Abilene Chr,74.04761904761905))

scala> losersAvgConcededPoints.max()(Ordering.by(_._2))

res: (VertexId, (String, Double)) = (1464,(Youngstown
St,78.85714285714286))

scala> winnersAvgConcededPoints.max()(Ordering.by(_._2))

res: (VertexId, (String, Double)) = (1464,(Youngstown St,71.125))

The previous code tells us that Abilene Christian University is the most defensive
team. They concede the least points whether they win a game or not. On the other
hand, Youngstown has the worst defense.

Joining average stats into a graph
The previous example shows us how flexible the aggregateMessages operator
is. We can define the type Msg of the messages to be aggregated to fit our needs.
Moreover, we can select which nodes receive the messages. Finally, we can also
define how we want to merge the messages.

As a final example, let's aggregate many statistics about each team and join this
information into the nodes of the graph:

1. To start, we create its own class for the team stats:
// Average Stats of All Teams
case class TeamStat(
 wins: Int = 0 // Number of wins
 ,losses: Int = 0 // Number of losses
 ,ppg: Int = 0 // Points per game
 ,pcg: Int = 0 // Points conceded per game
 ,fgp: Double = 0 // Field goal percentage
 ,tpp: Double = 0 // Three point percentage
 ,ftp: Double = 0 // Free Throw percentage
){
 override def toString = wins + "-" + losses
}

Chapter 5

[93]

2. We collect the average stats for all teams using aggregateMessages. For that,
we define the type of the message to be an 8-element tuple that holds the
counter for games played, won, lost, and other statistics that will be stored
in TeamStat, as listed previously:
type Msg = (Int, Int, Int, Int, Int, Double, Double,
Double)

val aggrStats: VertexRDD[Msg] =
scoreGraph.aggregateMessages(
 // sendMsg
 t => {
 t.sendToSrc((1,
 1, 0,
 t.attr.winnerStats.score,
 t.attr.loserStats.score,
 t.attr.winnerStats.fgPercent,
 t.attr.winnerStats.tpPercent,
 t.attr.winnerStats.ftPercent
))
 t.sendToDst((1,
 0, 1,
 t.attr.loserStats.score,
 t.attr.winnerStats.score,
 t.attr.loserStats.fgPercent,
 t.attr.loserStats.tpPercent,
 t.attr.loserStats.ftPercent
))
 }
 ,
 // mergeMsg
 (x, y) => (x._1 + y._1, x._2 + y._2,
 x._3 + y._3, x._4 + y._4,
 x._5 + y._5, x._6 + y._6,
 x._7 + y._7, x._8 + y._8
)
)

3. Given the aggregate message aggrStats, we map them into a collection of
TeamStats:
val teamStats: VertexRDD[TeamStat] = aggrStats mapValues {
 (id: VertexId, m: Msg) => m match {
 case (count: Int,
 wins: Int,
 losses: Int,

Creating Custom Graph Aggregation Operators

[94]

 totPts: Int,
 totConcPts: Int,
 totFG: Double,
 totTP: Double,
 totFT: Double) => TeamStat(wins, losses,
 totPts/count,
 totConcPts/count,
 totFG/count,
 totTP/count,
 totFT/count)
 }
}

4. Let's join teamStats into the graph. For that, we first create a class Team
as a new type for the vertex attribute. Team will have the name and the
TeamStat option:
case class Team(name: String, stats: Option[TeamStat]) {
 override def toString = name + ": " + stats
}

5. We use the joinVertices operator, which we have seen in the
previous chapter:
// Joining the average stats to vertex attributes
def addTeamStat(id: VertexId, t: Team, stats: TeamStat) =
Team(t.name, Some(stats))

val statsGraph: Graph[Team, FullResult] =
 scoreGraph.mapVertices((_, name) => Team(name, None)).
 joinVertices(teamStats)(addTeamStat)

6. We can see that the join has worked well by printing the first three vertices in
the new graph statsGraph:
scala> statsGraph.vertices.take(3).foreach(println)

(1260,Loyola-Chicago: Some(17-13))

(1410,TX Pan American: Some(7-21))

(1426,UT Arlington: Some(15-15))

7. To conclude this task, let's find out the top 10 teams in the regular seasons.
To do so, we define an Ordering option for Option[TeamStat] as follows:
import scala.math.Ordering
object winsOrdering extends Ordering[Option[TeamStat]] {
 def compare(x: Option[TeamStat], y: Option[TeamStat]) =
 (x, y) match {
 case (None, None) => 0

Chapter 5

[95]

 case (Some(a), None) => 1
 case (None, Some(b)) => -1
 case (Some(a), Some(b)) => if (a.wins == b.wins)
 a.losses compare b.losses
 else a.wins compare b.wins
 }
}

8. Finally:
import scala.reflect.classTag
import scala.reflect.ClassTag
scala> statsGraph.vertices.sortBy(v =>
v._2.stats,false)(winsOrdering, classTag[Option[TeamStat]]).
 |
take(10).foreach(println)
(1246,Kentucky: Some(34-0))
(1437,Villanova: Some(32-2))
(1112,Arizona: Some(31-3))
(1458,Wisconsin: Some(31-3))
(1211,Gonzaga: Some(31-2))
(1320,Northern Iowa: Some(30-3))
(1323,Notre Dame: Some(29-5))
(1181,Duke: Some(29-4))
(1438,Virginia: Some(29-3))
(1268,Maryland: Some(27-6))

Note that the ClassTag parameter is required in sortBy
to make use of Scala's reflection. That is why we had the
previous imports.

Performance optimization
In addition to the sendMsg and mergeMsg methods, aggregateMessages can also
take an optional argument TripletFields, which indicates what data is accessed in
EdgeContext. The main reason for explicitly specifying such information is to help
optimize the performance of the aggregateMessages operation.

In fact, TripletFields represents a subset of the fields of _EdgeTriplet_ and it
enables GraphX to populate only those fields that are necessary.

Creating Custom Graph Aggregation Operators

[96]

The default value is TripletFields.All, which means that the sendMsg
function may access any of the fields in the EdgeContext class. Otherwise, the
TripletFields argument is used to tell GraphX that only part of EdgeContext will
be required so that an efficient join strategy can be used. All possible options for the
TripletFields are listed as follows:

• TripletFields.All: This option exposes all the fields (source, edge, and
destination)

• TripletFields.Dst: This one exposes the destination and edge fields but
not the source field

• TripletFields.EdgeOnly: This option exposes only the edge field but not
the source or destination field

• TripletFields.None: With this option none of the triplet fields are exposed
• TripletFields.Src: This one exposes the source and edge fields but not the

destination field

Using our previous example, if we are interested in computing the total number
of wins and losses for each team, we will not need to access any fields of the
EdgeContext class. In this case, we should use TripletFields.None to indicate so:

// Number of wins of the teams
val numWins: VertexRDD[Int] = scoreGraph.aggregateMessages(
 triplet => {
 triplet.sendToSrc(1) // No attribute is passed but an
 integer
 },
 (x, y) => x + y,
 TripletFields.None
)

// Number of losses of the teams
val numLosses: VertexRDD[Int] = scoreGraph.aggregateMessages(
 triplet => {
 triplet.sendToDst(1) // No attribute is passed but an
 integer
 },
 (x, y) => x + y,
 TripletFields.None
)

To see that this works, let's print the top five and bottom five teams:

scala> numWins.sortBy(_._2,false).take(5).foreach(println)

(1246,34)

Chapter 5

[97]

(1437,32)

(1112,31)

(1458,31)

(1211,31)

scala> numLosses.sortBy(_._2, false).take(5).foreach(println)

(1363,28)

(1146,27)

(1212,27)

(1197,27)

(1263,27)

Should you want the name of the top five teams, you need to access the srcAttr
attribute. In this case, we need to set tripletFields to TripletFields.Src.

Kentucky as the undefeated team in the regular season:

val numWinsOfTeams: VertexRDD[(String, Int)] = scoreGraph.
aggregateMessages(
 t => {
 t.sendToSrc(t.srcAttr, 1) // Pass source attribute
only
 },
 (x, y) => (x._1, x._2 + y._2),
 TripletFields.Src
)

Et voila!:

scala> numWinsOfTeams.sortBy(_._2._2, false).take(5).foreach(println)

(1246,(Kentucky,34))

(1437,(Villanova,32))

(1112,(Arizona,31))

(1458,(Wisconsin,31))

(1211,(Gonzaga,31))

scala> numWinsOfTeams.sortBy(_._2._2).take(5).foreach(println)

(1146,(Cent Arkansas,2))

(1197,(Florida A&M,2))

(1398,(Tennessee St,3))

(1263,(Maine,3))

(1420,(UMBC,4))

Creating Custom Graph Aggregation Operators

[98]

Kentucky has not lost any of its 34 games during the regular season. Too bad that
they could not make it into the championship final.

The MapReduceTriplets operator
Prior to Spark 1.2, there was no aggregateMessages method in Graph. Instead, the
now deprecated mapReduceTriplets was the primary aggregation operator. The
API for mapReduceTriplets is:

class Graph[VD, ED] {
 def mapReduceTriplets[Msg](
 map: EdgeTriplet[VD, ED] => Iterator[(VertexId, Msg)],
 reduce: (Msg, Msg) => Msg)
 : VertexRDD[Msg]
}

Compared to mapReduceTriplets, the new operator aggregateMessages is more
expressive as it employs the message passing mechanism instead of returning an
iterator of messages as mapReduceTriplets does. In addition, aggregateMessages
explicitly requires the user to specify the TripletFields object for performance
improvement as we explained previously. In addition to API improvements,
aggregateMessages is optimized for performance.

Since mapReduceTriplets is now deprecated, we will not discuss it further.
If you have to use it with earlier versions of Spark, you can refer to the Spark
programming guide.

Summary
AggregateMessages provides a functional abstraction for aggregating neighborhood
information in Spark graphs. This operator applies a user-defined sendMsg function
to each edge in the graph using EdgeContext. Each EdgeContext class accesses
the required information about the edge and passes that information to its source
node and/or destination node using the sendToSrc and/or sendToDst methods
respectively. After all messages have been received by the nodes, the mergeMsg
function is used to aggregate those messages at each node.

In the next chapter, we will introduce another operator called Pregel, which will be
useful for creating custom iterative graph-processing algorithms.

[99]

Iterative Graph-Parallel
Processing with Pregel

Graphs are a very useful abstraction for solving many practical computing
problems. For example, we can search through nearly five billion web pages today,
thanks to the PageRank graph algorithm. Apart from the web search, there are
other applications, such as social media, for which iterative graph processing is
needed. In this chapter, we will learn how to use Pregel, a computational model,
which is suitable for this task. Pregel was initially proposed by Google and has
also been adopted by Spark as a generic programming interface for iterative graph
computations. In this chapter, you will understand the Pregel model of computation.
In addition, our learning goal is to clarify both the interface and implementation of
the Pregel operator in Spark. After working through the concrete examples, you will
be able to formulate your own algorithms with the Pregel interface.

The Pregel computational model
A Pregel program is a sequence of iterations called supersteps, in each of which a
vertex can receive inbound messages that are sent by its neighbors in the previous
iteration, and modify its attribute and its edges. In addition, each vertex also sends
messages to its neighbors by the end of each superstep. By thinking as a vertex,
this abstraction makes it simple to reason about parallel graph processing. All we
need to think about is the type of message that each vertex should be receiving,
the processing that it should do on its inbound messages, and the message that
its neighbors need for the next superstep. Luckily, this message-passing approach
is flexible enough to express a large class of graph algorithms. More importantly,
a graph algorithm can make use of Spark's scalable architecture to process the
messages in bulk and in a synchronous manner. This synchronous model of
computation makes it easy to express most graph-parallel algorithms.

Iterative Graph-Parallel Processing with Pregel

[100]

Example – iterating towards the social
equality
Before presenting the Pregel API, let's illustrate these concepts with a hypothetical
example of a social network, in which each person is extremely altruistic. We will
assume that everyone knows how much money their friends have in the banks.
However, they need an algorithm that will attempt to equalize their wealth. This is
just an example (luckily or sadly, depending on your philosophy), but it will help
clarify how Pregel works. In essence, each person will compare their money with
their friends, and will send some of it to those who have less.

By using Pregel, they will equalize their wealth by sending money to each other
through a sequence of iterations. In this case, we can use Double as the message type
for our algorithm. In the beginning of each iteration, each person will first receive a
sum of money that was donated by their friends in the previous iteration. Based on
their knowledge of how much their friends now own, they will compare their new
wealth against their friends' situations. This means they need to find out who earn
less, and then calculate how much they should send to those friends. At the same time,
they also decide how much to keep in their account. As we described it, each Pregel
iteration consists of three consecutive tasks, and this is why it is called a superstep.

Hence, they first need a function called mergeMsg to combine the inbound money
transfers that they may receive from their well off friends:

def mergeMsg(fromA: Double, fromB: Double): Double = fromA + fromB

Second, they will also need a function, called vertex program, to calculate how much
money they have after receiving money in the previous superset:

def vprog(id: VertexId, balance: Double, credit: Double) = balance
+ credit

Finally, a function called sendMsg is also needed for sending money between friends:

def sendMsg(triplet: EdgeTriplet[VD, ED]): Iterator[(VertexId, A)]

As seen from the previous function signature, sendMsg takes an edge triplet as an
input instead of a vertex, so that we have access to both the source and destination
nodes. We figure out the correct implementation of sendMsg in the next section.

Let's further simplify our example by considering a triangle network between
three friends:

scala> val nodes: RDD[(Long,Double)] = sc.parallelize(Li
st((1,10.0),(2,3.0),(3,5.0)))

nodes: RDD[(Long, Double)]

Chapter 6

[101]

scala> val edges = sc.parallelize(List(Edge(1,2,1),Edge(2,1,1),Edge(1,3,1
),Edge(3,1,1),Edge(2,3,1),Edge(3,2,1)))

edges: Edge[Int]]

scala> val graph = Graph(nodes, edges)

graph: Graph[Double,Int]

scala> graph.vertices.foreach(println)

(1,10.0)

(2,3.0)

(3,5.0)

For simplicity, assume that each person will distribute five percent of her wealth to
each of its poor friends. She will not need to worry if a friend receives too much since
selfishness and greed are out of the equation here. So, here is our first attempt at
implementing the sendMsg function:

def sendMsg(t: EdgeTriplet[Double, Double]) =
 if (t.srcAttr <= t.dstAttr) Iterator.empty
 else Iterator((t.dstId,t.srcAttr * 0.05))

This seems reasonable. If a person is better off than her friends, she will offer
five percent of her money to that friend. Otherwise, she gives nothing. After ten
iterations, our new graph thus becomes:

val newGraph = graph.pregel(0.0,10)(vprog, sendMsg, mergeMsg)

Notice that Pregel takes two argument lists (for example,
graph.pregel(list1)(list2)). The first argument list
includes an initial message to send to all vertices in the beginning
of the algorithm as well as the maximum number of iterations. The
second argument list contains the three user-defined functions for
combining, receiving, and computing messages.

scala> newGraph.vertices.foreach(println)

(3,10.951096875000001)

(2,10.246937500000001)

(1,10.512346875)

Something is not right here. The group started with 18 dollars in total, and ended
up with more than 30 dollars. This cannot be true! So, what did we do wrong? To
uncover our mistake, let's see what happened after one iteration of Pregel:

val newGraph1 = graph.pregel(0.0,1)(vprog, sendMsg, mergeMsg)

Iterative Graph-Parallel Processing with Pregel

[102]

Let's see the output:

scala> newGraph1.vertices.foreach(println)

(1,10.0)

(2,3.75)

(3,5.5)

Again, their total wealth exceeds 18 dollars after one iteration. This is because when
a person sent an amount of money to their friend, that amount was not debited
from that person's account. We can fix this by sending messages to the person that
received the money as well as the one that sent it. So, if person A sends X dollars to
person B, we should send X dollars to B, and -X dollars to A:

def sendMsg(t: EdgeTriplet[Double, Double]) =
 if (t.srcAttr <= t.dstAttr) Iterator.empty
 else Iterator((t.dstId, t.srcAttr * 0.05),
 (t.srcId, - t.srcAttr * 0.05))

val afterOneIter = graph.pregel(0.0, 1)(vprog, sendMsg, mergeMsg)

Let's see the output:

scala> afterOneIter.vertices.foreach(println)

(1,9.0)

(2,3.75)

(3,5.25)

You can verify that things now work as expected. So, what if we increase the
maximum number of iterations? Let's see what happens then:

scala> afterTenIters.vertices.foreach(println)

(1,5.999611965064453)

(2,6.37018749852539)

(3,5.630200536410156)

scala> afterHundredIters.vertices.foreach(println)

(1,6.206716647163644)

(2,6.207038273723298)

(3,5.586245079113054)

Even with 100 iterations, we can see that the account balances do not converge to
the idealistic value of 6 dollars, but fluctuate around it. This is expected in our
simplistic example.

Chapter 6

[103]

The Pregel API in GraphX
Now, let's formalize the programming interface for the Pregel operator. Here is
its definition:

class GraphOps[VD, ED] {
 def pregel[A]
 (initialMsg: A,
 maxIter: Int = Int.MaxValue,
 activeDir: EdgeDirection = EdgeDirection.Out)
 (vprog: (VertexId, VD, A) => VD,
 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
 mergeMsg: (A, A) => A)
 : Graph[VD, ED]
}

The pregel method is invoked on a property graph, and returns a new graph with
the same type and structure. While the edges remain intact, the attributes of the
vertices may change from one superset to the next one. Pregel takes the following
two lists of arguments. The first list contains:

• An initial message with a user-defined type A—this message is received by
each vertex when the algorithm starts

• A maximum number of iterations
• The edge direction along which to send messages

A Pregel algorithm terminates when either there are no more
messages to be sent, or when a specified maximum number of
iterations is reached. When implementing an algorithm, it is
important to always limit the number of iterations, especially
when the algorithm is not guaranteed to converge.
If no active edge direction is specified, Pregel assumes that
messages are only sent for the outgoing edges of each vertex.
Moreover, if a vertex did not receive a message in the previous
superset, no message will be sent along its outgoing edge, at the
end of the current superset.

In addition, the second list of arguments must include the three functions:

vprog: (VertexId, VD, A) => VD: this vertex program updates the
attributes of all vertices who received messages from the previous
iteration
mergeMsg: (A, A) => A): this function merges the messages to be
received by each vertex.
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)]: this
function takes an edge triplet and creates the messages to be sent
to the source node and/or destination node.

Iterative Graph-Parallel Processing with Pregel

[104]

Community detection through label
propagation
In the following section, we are going to implement a community detection algorithm
using the Pregel interface. Label Propagation Algorithm (LPA) is a simple and fast
method for detecting communities within graphs. By construction, the communities
obtained by the label propagation process require each node to have at least as many
neighbors within its community as it has with each of the other communities.

Let's quickly describe how the LPA works. First, each node is initially given its vertex
ID as its label. At the subsequent iterations, each node determines its community, based
on the labels of its neighbors. Specifically, the node chooses to join the community
to which the maximum number of its neighbors belong to. If there is a tie, one of the
majority labels is picked randomly. As we propagate the labels in this way across the
graph, most labels will disappear, whereas the remaining ones define the communities.
Ideally, this iterative algorithm converges when no node in the network changes its
label. As a result, nodes having the same labels are grouped together as one community.

By implementing this algorithm in Pregel, we want to obtain a graph in which
the vertex attributes are the labels of the community affiliations. Hence, we'll first
initialize the LPA graph by setting the label of each vertex to its identifier:

val lpaGraph = graph.mapVertices { case (vid, _) => vid }

Next, we'll define the type of message to Map[Label, Long], which associates a
community label to the number of neighbors that have this label. The initial message
that will be sent to each node is simply an empty map:

type Label = VertexId
val initialMessage = Map[Label, Long]()

Following the Pregel programming model, we define a sendMsg function, which is
used by each node to inform its neighbors of its current label. For each triplet, the
source node will receive the destination node's label, and vice versa:

def sendMsg(e: EdgeTriplet[Label, ED]): Iterator[(VertexId,
Map[Label, Long])] =
 Iterator((e.srcId, Map(e.dstAttr -> 1L)), (e.dstId,
 Map(e.srcAttr -> 1L)))

After receiving the messages from its neighbors, a node determines its community
label as the one to which the majority of its neighbors currently belong to. Hence,
each node will use the following vertex program function to do so:

def vprog(vid: VertexId, attr: Long, message: Map[Label, Long]):
VertexId = if (message.isEmpty) attr else message.maxBy(_._2)._1

Chapter 6

[105]

The previous function returns, in each iteration, the label (that is, a VertexId attribute)
of the community to which the majority of its neighbors currently belong to.

We also need a mergeMsg function to combine all the messages, received by a node
from its neighbors into a single map. If both the messages contain the same label, we
simply sum up the corresponding number of neighbors for this label:

def mergeMsg(count1: Map[Label, Long], count2: Map[Label, Long])
 : Map[VertexId, Long] = {
 (count1.keySet ++ count2.keySet).map { i =>
 val count1Val = count1.getOrElse(i, 0L)
 val count2Val = count2.getOrElse(i, 0L)
 i -> (count1Val + count2Val)
 }.toMap
}

Finally, we can run the LPA algorithm as we did for equalizing the social wealth by
calling the pregel method on the graph:

lpaGraph.pregel(initialMessage, 50)(vprog, sendMsg, mergeMsg)

The main benefits of LPA are its simplicity and time efficiency. In
fact, the number of iterations to convergence has been observed to
be independent of the graph size whereas each iteration has a linear
time complexity. Despite its advantages, the label propagation
algorithm may not necessarily converge and it may also result in
uninteresting solutions, such as each node being identified as a
single community. Actually, the algorithm may oscillate for graphs
that are bipartite or have a nearly bipartite structure.

The Pregel implementation of PageRank
We have already seen that GraphX has a PageRank API. In the following, let us see
how this famous web search algorithmic can be easily implemented using Pregel.
Since we already explained in the previous chapter how PageRank works, we will
now simply explain its Pregel implementation:

First of all, we need to initialize the ranking graph with each edge attribute set to 1,
divided by the out-degree, and each vertex attribute to set 1.0:

val rankGraph: Graph[(Double, Double), Double] =
 // Associate the degree with each vertex
 graph.outerJoinVertices(graph.outDegrees) {
 (vid, vdata, deg) => deg.getOrElse(0)
 }.mapTriplets(e => 1.0 / e.srcAttr)
 .mapVertices((id, attr) => (0.0, 0.0))

Iterative Graph-Parallel Processing with Pregel

[106]

Following the Pregel abstraction, we define the three functions that are needed to
implement PageRank in GraphX. First, we define the vertex program as follows:

val resetProb = 0.15
def vProg(id: VertexId, attr: (Double, Double), msgSum: Double):
(Double, Double) = {
 val (oldPR, lastDelta) = attr
 val newPR = oldPR + (1.0 - resetProb) * msgSum
 (newPR, newPR - oldPR)
}

Next is the function that creates the messages:

val tol = 0.001
def sendMessage(edge: EdgeTriplet[(Double, Double), Double]) = {
 if (edge.srcAttr._2 > tol) {
 Iterator((edge.dstId, edge.srcAttr._2 * edge.attr))
 } else {
 Iterator.empty
 }
}

The third function called mergeMsg simply adds the rank:

def mergeMsg(a: Double, b: Double): Double = a + b

Then we will get the vertex ranking as follows:

rankGraph.pregel(initialMessage, activeDirection =
EdgeDirection.Out)
 (vProg, sendMsg, mergeMsg)
 .mapVertices((vid, attr) => attr._1)

Summary
In summary, Pregel is a generic and simplified interface for writing custom iterative,
and parallel algorithms on large graphs. In this chapter, we have seen how to
implement different iterative graph processing using this simple abstraction. In
the next chapter, we will see how to use Spark's MLlib and GraphX to solve some
machine learning problems with graph data.

[107]

Learning Graph Structures
In this chapter, we will show you how to learn interesting structures from graphs
in Spark. In principle, one learns and finds relationships from data by first selecting
the problem of interest. The most common learning problems are regression,
classification, ranking, and clustering. In this book, we will focus on clustering. In
particular, we will focus on graph data, and apply clustering to detect communities
within the graphs. Here is our roadmap for this chapter. First, we will introduce the
concepts of spectral clustering. Then, we will study a specific method, which allows
us to cluster graphs in Spark. Finally, we will apply these techniques to music and
song playlist datasets. This application will also serve as an opportunity to review the
tools and techniques that we covered in the previous chapters. We will bring them
together in this chapter.

Community clustering in graphs
Clustering is a learning problem in which given entities, such as objects or people,
are partitioned into subsets, according to a defined similarity measure. The entities
within the same cluster are very similar, and are different from all entities in other
clusters. Clustering is done with an unsupervised method. In other words, it operates
on unlabeled data, which are the attributes or features of the entities. Moreover,
clustering methods can be broadly classified into parametric versus non parametric
approaches. The parametric approaches impose a probability model on the data.
Some examples of the parametric methods are Gaussian Mixture Model (GMM)
and Latent Dirichlet Allocation (LDA). On the other hand, the non parametric
models infer the structure of the clusters from the data itself. Examples include
k-means and spectral clustering. All these cited methods are available in Spark's
MLlib library.

Learning Graph Structures

[108]

Before we continue, it is important to understand why clustering is related to graph
processing. There are two reasons for this. The first reason is that clustering is very
useful for detecting "communities" in graphs. These communities are essentially
clusters of nodes that share similar features. While two nodes are not explicitly
connected, clustering can reveal their similarities by learning from their attribute
data. For instance, online social and dating websites use such information to suggest
people you may know, or the partners you would be interested to meet. Conversely,
clustering can be helpful to uncover interesting structures in highly connected
networks. The second reason is that the clustering method that we will see here is
based on graph processing. In particular, we will focus our attention on the power
iteration clustering (PIC), which is a simple and fast spectral clustering method.

Spectral clustering
As mentioned previously, the aim of clustering is to divide the data points into
several clusters in such a way that the points in the same cluster are very similar, and
the points in different clusters are dissimilar to each other. A "similarity graph" is a
nice way to represent the similarities of the data points. Each point becomes a node in
the similarity graph, whereas each edge has, as its attribute, the "similarity measure"
of the connected nodes. As a result, the clustering problem reduces to find a partition
of a graph in such a way that the edges between the different groups have very low
weights, and the edges within a group have high weights. To do this, we use the
spectral clustering technique, which basically reduces the high-dimensional similarity
graph to a low-dimensional representation. To keep our discussion really simple, we
will avoid the math. However, the technical details can be learned by reading some
good tutorials, such as the one available at http://arxiv.org/abs/0711.0189.

Power iteration clustering
An efficient and scalable spectral clustering method is the power iteration clustering
(PIC) method. It is defined in the MLlib library, precisely in http://spark.apache.
org/docs/latest/mllib-clustering.html#power-iteration-clustering-
pic. It is implemented in Spark using GraphX's processing APIs, and the caching
optimizations. Here is the API for this PIC clustering method:

class PowerIterationClustering {

 // Run the PIC algorithm.
 def run(similarities: RDD[(Long, Long, Double)]):
 PowerIterationClusteringModel

 // Set the initialization mode. Either "random" or "degree"

http://arxiv.org/abs/0711.0189
http://spark.apache.org/docs/latest/mllib-clustering.html#power-iteration-clustering-pic
http://spark.apache.org/docs/latest/mllib-clustering.html#power-iteration-clustering-pic
http://spark.apache.org/docs/latest/mllib-clustering.html#power-iteration-clustering-pic

Chapter 7

[109]

 def setInitializationMode(mode: String):
 PowerIterationClustering.this.type

 // Set the number of clusters.
 def setK(k: Int): PowerIterationClustering.this.type

 // Set maximum number of iterations of the power iteration
 loop
 def setMaxIterations(maxIterations: Int):
 PowerIterationClustering.this.type
}

To apply the PIC clustering to graphs, we will need to follow these five steps:

1. First, load the data into a Spark graph property.
2. Second, extract the features of the nodes.
3. Third, define a similarity measure between the two nodes.
4. Next, create an affinity matrix, based on the initial graph using the

similarity measure.
5. Finally, run the k-means clustering on the affinity matrix.

Steps 1 and 2 can be done using the graph builder methods that we learned in
Chapter 2, Building and Exploring Graphs. Step 3 simply requires us to define a function
that determines how similar the two nodes are. The choice of similarity measure
depends on the nodes' features, and the problem at hand. Nonetheless, there exists
standard measures from which we can choose. For instance, if the node feature is
a binary vector, we can use the Jaccard similarity. On the other hand, a Gaussian
kernel function can be used when the node feature is a real vector. These are not
the only possibilities, and we can also define our own measure.

In Step 4, the affinity matrix similarities should be represented by an RDD of (i, j,
sim) tuples. The similarity sim must be a nonnegative number. For any edge (i j) with
a nonzero similarity, there should be either (i, j, sim), or (j, i, sim) in the input. Since
the affinity matrix must be symmetric, if only (i, j, sim) is available in the data, the
reciprocal (j, i, sim) is assumed, and vice versa. Moreover, tuples with i = j are
simply ignored.

The last step consists of two steps. First, we create PowerIterationClusteringModel
from the similarities matrix, and then we run a k-means clustering on it. Before
running the clustering model, we must also choose two parameters:

• The maximum number of iterations for the k-means clustering
• The maximum number of clusters, K

Learning Graph Structures

[110]

A sketch of the application of PIC is shown in the following code:

import org.apache.spark.mllib.clustering.PowerIterationClustering

// Define pairwise similarities based on initial graph
val similarities: RDD[(Long, Long, Double)] = ...

// Create the PIC clustering model
val pic = new PowerIteartionClustering()
 .setK(maxClusterNumber)
 .setMaxIterations(maxIterations)

// Run the PIC clustering model
val clusteringResult: RDD[Assignment] =
pic.run(similarities).assignments

clusteringResult.collect().foreach { a =>
 println(s"${a.id} -> ${a.cluster}")
}

The PIC method returns an RDD of assignment, which abstracts a tuple of VertexId,
and Int that corresponds to the node ID, and its cluster group.

Applications – music fan community
detection
We are now ready to apply the previous graph clustering method to the cluster
music songs, according to the tags attached to each song. Alternatively, a dataset
of the song playlists can also be used to cluster songs that are often played in many
lists. The datasets that we are going to work with can be downloaded from
http://www.cs.cornell.edu/~shuochen/lme/data_page.html. The datasets
consist of the following files:

• train.txt: This file contains the playlist data by using the integer ID to
represent songs

• tags.txt: This file includes the social tags by using the integer ID to
represent songs

• song_hash.txt: This file maps a song ID to its title and artist
• tag_hash.txt: This one maps a tag ID to its name

http://www.cs.cornell.edu/~shuochen/lme/data_page.html

Chapter 7

[111]

Each file has a particular format as explained here:

• Format of the playlist data: The first line of the data file consists of the IDs
(not the integer ID, but the IDs from other sources for identifying the songs)
for the songs, separated by a space. We will not need this first line here, and
thus it can be skipped. The second line consists of the number of appearances
of each song in the file, also separated by a space. Starting from the third
line are the playlists, with each song represented by its integer ID in this file
(from 0 to the total number of songs minus one). Note that in the playlist data
file, each line ends with a space.

• Format of the tag data: The tag data file has the same number of lines as the
total number of songs in the playlist data. Each line consists of the IDs of the
tags for a song, represented by integers, and separated by space. If a song
does not have a tag, its line is just a #. Note that for the tag file, there is no
space at the end of each line.

• Format of the song mapping file: Each line corresponds to one song, and has
the format called Integer_ID\tTitle\tArtist\n.

• Format of the tag mapping file: Each line corresponds to one song, and has
the format called Integer_ID, Name\n.

First, let's follow the previous five steps to cluster the songs by their tags.

Step 1 – load the data into a Spark graph
property
We define a class song. Each song has as its attributes a title, an artist name, and a set
of tags:

scala> case class Song(title: String, artist: String, tags: Set[String])
{

 override def toString: String = title + ", " + artist

 }

defined class Song

Now, we import the songs into RDD[(VertexId, Song)], and initialize each song
with an empty set of tags:

scala> var songs: RDD[(VertexId, Song)] =

 sc.textFile("./data/song_hash.txt").

 map {line =>

 val row = line split '\t'

Learning Graph Structures

[112]

 val vid = row(0).toLong

 val song = Song(row(1), row(2), Set.empty)

 (vid, song)

 }

songs: RDD[(VertexId, Song)]

Then, we can create a graph property, whose nodes are the songs. It will not add any
edges into the graph at first, and will simply pass an empty RDD to Graph.apply:

scala> val graphFromSongs: Graph[Song, Int] = {

 val zeroEdge: RDD[Edge[Int]] = sc.parallelize(Nil)

 Graph(songs, zeroEdge)

 }

graphFromSongs: Graph[Song,Int]

scala> graphFromSongs.vertices.take(5).foreach(println)

(1084,Song(Tequila Sunrise,Fiji,Set()))

(1410,Song(The Sweetest Taboo,Sade,Set()))

(3066,Song(Bow Chicka Wow Wow,Mike Posner,Set()))

(1894,Song(Love Your Love The Most,Eric Church,Set()))

(466,Song(Stupify,Disturbed,Set()))

Step 2 – extract the features of nodes
Now, let's join the tags from the dataset called tags.txt into the nodes. To do this,
we first need to create RDD[(VertexId, Set[String])], which we will then join
into graphFromSong:

scala> val tagIter: Iterator[(VertexId, Set[String])] =

 Source.fromFile("./data/tags.txt").getLines.zipWithIndex.

 map {

 x =>

 val tags = x._1 split ' '

 (x._2.toLong, tags.toSet)

 }

tagIter: Iterator[(VertexId, Set[String])] = non-empty iterator

scala> val tagRDD = sc.parallelize(tagIter.toSeq)

tagRDD: RDD[(VertexId, Set[String])]

Chapter 7

[113]

For now, we have only the mapping between the song ID and the set of tag IDs in
our tagRDD:

scala> tagRDD.take(3).foreach(println)

(0,Set(115, 173))

(1,Set(62, 88, 110, 90, 123, 155, 173, 14, 190, 214, 115, 27))

(2,Set(115, 173))

What we want is to extract the tag names from tag_hash.txt given the tag ID. We
can now call joinVertices on graphFromSongs, and pass the RDD of tags tagRDD
with a function that extracts the tags. Note that in the dataset called tags.txt, a #
tag assigned next to the song ID means that no tag is associated with that song. In
such a case, we simply return the initial song with an empty tag. Otherwise, we add
the set of tags into the song:

scala> val songsNtags = graphFromSongs.joinVertices(tagRDD){

 (id, s, ks) => ks.toList match {

 case List("#") => s

 case _ => {

 val tags: Map[Int, String] =

 Source.fromFile("./data/tag_hash.txt").getLines().

 map {

 line =>

 val row = line split ", "

 row(0).toInt -> row(1)

 }.toMap

 val songTags = ks.map(_.toInt) flatMap (tags get)

 Song(s.title, s.artist, songTags.toSet)

 }

 }

 }

songsNtags: Graph[Song,Int]

scala> songsNtags.vertices.take(3).foreach(println)

(1084,Tequila Sunrise, Fiji)

(1410,The Sweetest Taboo, Sade)

(3066,Bow Chicka Wow Wow, Mike Posner)

Learning Graph Structures

[114]

Step 3 – define a similarity measure between
two nodes
Since we want to cluster the songs by their social tags, a natural way to measure the
similarity between two songs is the Jaccard metric. Simply put, it is the ratio of the
number of common tags between two songs, and their total number of tags. If none
of the songs is tagged, we assume that their similarity score is zero:

def similarity(one: Song, other: Song):Double = {
 val numCommonTags = (one.tags intersect other.tags).size
 val numTotalTags = (one.tags union other.tags).size
 if (numTotalTags > 0)
 numCommonTags.toDouble / numTotalTags.toDouble
 else 0.0
}

Step 4 – create an affinity matrix
Now, we need to calculate the similarity between each pair of songs in our database.
If there are 1,000 songs, we will have to compute, and store, one million similarity
scores. What if we had 1,000,000 songs? Obviously, computing similarities between
every pair will be inefficient. Instead, we can restrict this to the songs that have a
relatively high similarity score. At the end of the day, we want to cluster songs that
are similar. Therefore, we will filter the nodes with the following function:

scala> def quiteSimilar(one: Song, other: Song, threshold: Double):
Boolean = {

 val commonTags = one.tags intersect other.tags

 val combinedTags = one.tags union other.tags

 commonTags.size > combinedTags.size * threshold

 }

quiteSimilar: (one: Song, other: Song, threshold: Double)Boolean

This next function helps to remove the duplicate songs in our graph data:

def differentSong(one: Song, other: Song): Boolean =
 one.title != other.title || one.artist != other.artist

With these two functions, we can now create RDD[Edge[Double]] that will contain a
similarity measure between the nodes that are quite similar:

// First, get the songs with tags
songs = songsNtags.vertices

// Then, compute the similarity between each pair of songs

Chapter 7

[115]

// with a similarity score larger than 0.7
val similarConnections: RDD[Edge[Double]] = {
 val ss = songs cartesian songs
 val similarSongs = ss filter {
 p => p._1._1 != p._2._1 &&
 similarByTags(p._1._2, p._2._2, 0.7) &&
 differentSong(p._1._2, p._2._2)
 }

 similarSongs map {
 p => {
 val jacIdx = similarity(p._1._2, p._2._2)
 Edge(p._1._1, p._2._1, jacIdx)
 }
 }
}

A simple check shows that we only need to store 1,506 similarity scores instead
of 10 million:

scala> similarConnections.count

res8: Long = 1506

scala> songs.count

res9: Long = 3168

scala> 3168 * 3168

res10: Int = 10036224

While we are at it, let's create our similarity graph:

scala> val similarByTagsGraph = Graph(songs, similarConnections)

Some of our songs have very few tags, so let's filter those out:

val similarHighTagsGraph = similarByTagsGraph.subgraph(vpred =
(id: VertexId, attr: Song) => attr.tags.size > 5)

Let's check the output:

scala> similarHighTagsGraph.vertices.count

res12: Long = 2144

scala> similarHighTagsGraph.edges.count

res13: Long = 126

Learning Graph Structures

[116]

Let's look closer into the graph:

scala> similarHighTagsGraph.triplets.take(6).foreach(t => println(t.
srcAttr + " ~~~ " + t.dstAttr + " => " + t.attr))

Fancy (w\/ T.I. & Swizz Beatz), Drake ~~~ Any Girl (w\/ Lloyd), Lloyd
Banks => 0.8571428571428571

Roll With It, Easton Corbin ~~~ You Lie, The Band Perry =>
0.7142857142857143

Any Girl (w\/ Lloyd), Lloyd Banks ~~~ Fancy (w\/ T.I. & Swizz Beatz),
Drake => 0.8571428571428571

Any Girl (w\/ Lloyd), Lloyd Banks ~~~ I'm Going In (w\/ Young Jeezy & Lil
Wayne), Drake => 0.7142857142857143

Everything Falls, Fee ~~~ Needful Hands, Jars Of Clay =>
0.7142857142857143

Bring The Rain, MercyMe ~~~ Needful Hands, Jars Of Clay => 0.75

So, we can see that Fancy by Drake is similar to Any Girl by Lloyd Banks. Of
course, they are rap songs.

Let's finally create the affinity matrix of type RDD[(Long, Long, Double)], which is
needed to run the PIC algorithm:

val similarities: RDD[(Long,Long,Double)] =
similarHighTagsGraph.triplets.map{t => (t.srcId, t.dstId, t.attr)}

Step 5 – run k-means clustering on the
affinity matrix
We can choose the number of clusters to be K = 7:

scala> val similarities: RDD[(Long,Long,Double)] = similarHighTagsGraph.
triplets.map{t => (t.srcId, t.dstId, t.attr)}

scala> val pic = new PowerIterationClustering().setK(15).
setMaxIterations(20)

pic: org.apache.spark.mllib.clustering.PowerIterationClustering

scala> val clusteringModel = pic.run(similarities)

clusteringModel: org.apache.spark.mllib.clustering.
PowerIterationClusteringModel

scala> clusteringModel.assignments.foreach { a =>

 | println(s"${a.id} -> ${a.cluster}")

 | }

327 -> 0

Chapter 7

[117]

715 -> 0

3063 -> 2

2879 -> 2

1623 -> 0

3003 -> 0

2539 -> 0

2283 -> 0

2163 -> 0

2979 -> 0

2615 -> 5

2147 -> 1

2667 -> 3

2531 -> 0

2149 -> 4

Extra Step: Looking into the clustering results

Well, we cannot really see anything through these numbers. So, let's explore the
clusters and see what common tags the songs within each cluster have.

First, let's use the results of the clustering to create a graph whose nodes contain the
actual song, as well as its clustering ID. To do this, we use the VertexRDD collection's
innerJoin method twice. First, we join the clustering assignment to the graph of
songs. Since innerJoin can alter the attribute type of the vertices, it does not matter
what the initial graph's vertex type is. For simplicity, we initialize each vertex
attribute to 0.0. The second application of innerJoin joins the VertexRDD collection
of songs into the result of the first application:

val clustering: RDD[(Long, Int)] =
clusteringModel.assignments.map(a => (a.id, a.cluster))

val graph: VertexRDD[Double] =
Graph.fromEdges[Double,Double](similarities.map(t =>
Edge(t._1,t._2,t._3)), 0.0).vertices

val clusteredSongs: VertexRDD[(Song, Int)] =
graph.innerJoin(clustering){ (id, _, cluster) => cluster
}.innerJoin(songs){ (id, cluster, s) => (s, cluster)}

As a result, we obtain a new VertexRDD collection clusteredSongs, which contains
both the songs and their cluster IDs:

scala> clusteredSongs.first

res25: (VertexId, (Song, Int)) = (2372,(Hold My Heart, Tenth Avenue
North,7))

Learning Graph Structures

[118]

We can put this into a property graph with the similarity scores:

scala> val clusterNScoreGraph = Graph(clusteredSongs, similarities.map(t
=> Edge(t._1,t._2,t._3)))

clusterNScoreGraph: Graph[(Song, Int),Double]

scala> clusterNScoreGraph.triplets.first

res37: EdgeTriplet[(Song, Int),Double] = ((38,(Fancy (w\/ T.I.
& Swizz Beatz), Drake,2)),(1976,(Any Girl (w\/ Lloyd), Lloyd
Banks,2)),0.8571428571428571)

Because not all the neighboring songs correspond to the same cluster, we can filter
out the edges between two songs that belong to two different clusters. In other
words, these songs have some similarity, but they do not really belong together:

scala> val clusteredSongGraph = clusterNScoreGraph.subgraph(epred = t =>
t.srcAttr._2 == t.dstAttr._2)

clusteredSongGraph: Graph[(Song, Int),Double]

scala> clusteredSongGraph.edges.count

res5: Long = 50

Next, we replace the attribute of the remaining edges by the set of common
tags between the songs that they connect. This can be easily done, thanks to the
mapTriplets method:

val clusteredTagsGraph = clusteredSongGraph.mapTriplets(t =>
t.srcAttr._1.tags intersect t.dstAttr._1.tags)

Let's see what we get:

scala> clusteredTagsGraph.triplets.take(3).foreach(println)

((482,(Roll With It, Easton Corbin,0)),(2866,(You Lie, The Band
Perry,0)),Set(new country, modern country, country, great song, my
favorite))

((1976,(Any Girl (w\/ Lloyd), Lloyd Banks,6)),(2470,(I'm Going In (w\/
Young Jeezy & Lil Wayne), Drake,6)),Set(rap, wdzh-fm, wjlb-fm, whtd-fm,
wkqi-fm))

((2364,(While I'm Waiting, John Waller,0)),(2372,(Hold My Heart,
Tenth Avenue North,0)),Set(worship, favorite, christian, contemporary
christian, christian rock))

Chapter 7

[119]

Now, if we want to approximately find the common tags in each cluster, we can
make use of the Pregel operator to do so. Remember that the Pregel implementation
in Spark allows the passing of the message only between neighboring nodes.
However, our clusteredTagsGraph has nodes that are not directly connected by
an edge, but still belong to the same cluster, maybe through other nodes. Thus, the
Pregel operator will not find the absolute intersection of tags in each cluster, but it
will still be helpful to see some patterns:

val commonTagsByCluster =
clusteredTagsGraph.pregel[Set[String]](initialMsg = Set.empty,
maxIterations = 10){
 (id, sc, m) => sc,
 t => Iterator((t.srcId, t.srcAttr._1.tags intersect
 t.dstAttr._1.tags),
 (t.dstId, t.srcAttr._1.tags intersect t.dstAttr._1.tags)),
 (s1, s2) => s1 intersect s2
}

Looking at the results, we can find some straightforward clustering. The cluster #1
consists of worship songs:

scala> commonTagsByCluster.triplets.filter(_.srcAttr._2 == 1).foreach(t
=> println(t.srcAttr._1 + " => " + t.attr))

Lead Me, Sanctus Real => Set(rock, worship, christian, contemporary
christian, christian rock, happy)

Needful Hands, Jars Of Clay => Set(rock, worship, christian, contemporary
christian, christian rock, favorites)

Revelation, Third Day => Set(rock, worship, christian, contemporary
christian, christian rock, favorites)

Give You Glory, Jeremy Camp => Set(rock, worship, christian, contemporary
christian, christian rock, favorites)

Revelation, Third Day => Set(rock, worship, christian, contemporary
christian, christian rock, favorites)

Cry Holy, Sonicflood => Set(rock, worship, christian, contemporary
christian, christian rock)

The cluster #2 is about country music and RnB songs:

scala> commonTagsByCluster.triplets.filter(_.srcAttr._2 == 2).foreach(t
=> println(t.srcAttr._1 + " => " + t.attr))

This Is Country Music, Brad Paisley => Set(beautiful, new country,
memories, country, great song, my favorite)

Bring It Back, Travis Porter => Set(wdzh-fm, hip hop, 2010s, wjlb-fm,
whtd-fm, energetic)

Anything Like Me, Brad Paisley => Set(beautiful, new country, memories,
country, great song, my favorite)

Learning Graph Structures

[120]

The Boys Of Fall, Kenny Chesney => Set(beautiful, new country, memories,
country, great song, my favorite)

Anything Like Me, Brad Paisley => Set(beautiful, new country, memories,
country, great song, my favorite)

Grove St. Party (w\/ Kebo Gotti), Waka Flocka Flame => Set(wdzh-fm, hip
hop, 2010s, wjlb-fm, whtd-fm, energetic, wkqi-fm)

The Boys Of Fall, Kenny Chesney => Set(beautiful, new country, memories,
country, great song, my favorite)

Make It Rain, Travis Porter => Set(wdzh-fm, hip hop, 2010s, wjlb-fm,
whtd-fm, energetic)

Grove St. Party (w\/ Kebo Gotti), Waka Flocka Flame => Set(wdzh-fm, hip
hop, 2010s, wjlb-fm, whtd-fm, energetic)

Love Faces, Trey Songz => Set(male vocalists, r&b, 2010s, wjlb-fm, rnb,
whtd-fm)

Words, Bobby V => Set(male vocalists, r&b, 2010s, wjlb-fm, rnb, whtd-fm)

Cupid, Lloyd => Set(male vocalists, r&b, 2010s, wjlb-fm, rnb, whtd-fm)

If you look at the other clusters, cluster #6 is hip hop. However, the last cluster #0
is less straightforward to tell. It is a mix and match of everything. Such a limitation
is simply due to the imperfection of the social tag data, and not due to the PIC
clustering method itself.

Exercise – collaborative clustering through
playlists
Clustering music songs by social tags is not very effective. Imagine yourself having
to tag every single song that you listen to. Instead of using explicit features, such as
tags, we can alternatively use shared playlists to infer about the clustering. A playlist
is a natural and more pervasive way to organize music. Now, the idea is that if two
songs repeatedly appear in many lists, they are more likely to be similar than two
other songs that do not belong to any cluster. I will leave the rest as an exercise. Just
follow the same 5 steps that we took previously.

Summary
In this chapter, we studied how to solve the clustering problem for large-scale graphs.
To do this, we introduced the Power Iteration Clustering method, and showed how
to apply it to the clustering of songs using social tags. Using the song clustering
example, we also reviewed the main graph building and processing techniques that
we learned throughout this book. You should now be well-acquainted with using
Spark's graph processing power to solve more interesting problems.

[121]

References

Chapter 2, Building and Exploring
Graphs
Ahn,Y.-Y.; Ahnert, S.; Bagrow, J. P.; and Barabási, A.-L. Flavor network and the
principles of food pairing, Nature, Scientific Reports 1, 196 (2011).

Klimmt, B. and Yang, Y. Introducing the Enron corpus. CEAS conference, 2004.

Leskovec, J.; Lang, K.; Dasgupta, A.; and Mahoney, M. Community Structure in Large
Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet
Mathematics 6(1) 29--123, 2009.

McAuley, J. and Leskovec, J. Learning to Discover Social Circles in Ego Networks. NIPS,
2012.

Page, L.; Brin, S.; Motwani, R., and Winograd, T. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report. Stanford InfoLab, 1999.

References

[122]

Chapter 3, Graph Analysis and
Visualization
Albert, R.; Jeong, H.; and Barabasi, A.-L. Diameter of the World-Wide Web. Nature,
1999.

Dutot, A.; Guinand, F.; Olivier, D.; and Pigné, Y. GraphStream: A tool for bridging the
gap between complex systems and dynamic graphs in Emergent Properties in Natural and
Artificial Complex Systems (EPNACS’07), Workshop of the 4th European Conference
on Complex Systems (ECCS’07), Dresden, Germany.

Suereth, J. and Farewell, M. SBT in Action: The simple Scala build tool, Manning
Publications, 2015.

Chapter 7, Learning Graph Structures
Lin, F. and Cohen W. W. (2010) Power Iteration Clustering, in Johannes Fürnkranz and
Thorsten Joachims, ed., ICML, Omnipress, pp. 655-662.

Luxburg, U. von. A Tutorial on Spectral Clustering. Statistics and Computing 17(4):
395-416, 2007.

[123]

Index
A
aggregateMessages operator

about 83
aggregation, abstracting 85
arguments, adding 88-90
average point per game, calculating 90
defense stats 91
DRY principle 86-88
EdgeContext parameter 83

analysis, of network connectedness
about 43, 44
clustering coefficients, computing 46-48
connected components, finding 45, 46
triangle, counting 46-48

Apache Zeppelin 36
average stats

joining, into graph 92-95

B
bipartite food network example 75-78
bipartite graph

building 22-26
BreezeViz

about 36
installing 36
URL, for downloading 36

C
clustering 107
ColorBrewer

URL 43
communication network 18

community clustering, in graphs
about 107
power iteration clustering (PIC) 108-110
spectral clustering 108

community detection
through label propagation 104, 105

compound nodes 18

D
degree distribution

plotting, of network 41, 42
degree histogram, of social ego networks

computing 32
degrees, in bipartite food network

computing 31
degrees of network nodes

computing 30
dependencies 52
directed graphs

building 21, 22

E
edge attributes

transforming 59, 60
EdgeContext parameter 83
edge directions

reversing 72
edgeListFile graph builder 20
EdgeRDD

data operations on 69
joining 72
mapping 69, 70

email communication graph 18

[124]

Enron Corpus
about 18
URL 18

F
files and directories, Spark 1.4.1 2
flavor network

about 18
references 19

fromEdges graph builder 20
fromEdgeTuples graph builder 21

G
Gaussian Mixture Model (GMM) 107
Gephi 36
graph

about 18, 99
average stats, joining into 92-95
building 21

graph builders
about 19
edgeListFile 20
fromEdges 20
fromEdgeTuples 21
Graph factory method 19, 20

graph data
visualizing 37-40

graph datasets, joining
about 64
joinVertices operator 64
outerJoinVertices operator 64

Graph factory method 19, 20
GraphStream

about 36
installing 36
URL 39

graph structures, modifying
about 61
groupEdges operator 63
mask operator 63
reverse operator 62
subgraph operator 62

graph visualization 36
GraphX

about 5
standalone application, building 10

standalone application, submitting 10
tiny social network, building 5

groupEdges operator 63

H
Hollywood movie graph example 65-68

I
in-degree, of Enron email network

computing 30, 31
ingredient nodes 18
installation

Spark 1.4.1 1-3

J
Java Development Kit 7 (JDK) 1
Java Runtime Environment (JRE) 1

URL, for downloading 2
Java virtual machine (JVM) 1
JfreeChart 37
joinVertices operator 64

L
Label propagation algorithm (LPA) 104
Latent Dirichlet Allocation (LDA) 107

M
mapEdges

transforming 61
MapReduceTriplets operator 98
mapTriplets

transforming 61
mapVertices

transforming 60
mask operator 63
music fan community detection application

about 110
affinity matrix, creating 114-116
collaborative clustering, by playlist 120
data, loading into Spark graph

property 111, 112
features of nodes, extracting 112, 113

[125]

k-means clustering, running on affinity
matrix 116-120

similarity measure, defining between two
nodes 114

N
NCAA College Basketball datasets 79-82
neighboring information

collecting 74
network centrality 49
network connectedness

analysis 43-45
network datasets

about 17, 36
communication network 18
flavor network 18
social ego networks 19

O
out-degree, of Enron email network

computing 30, 31
outerJoinVertices operator 64

P
PageRank

about 49
working 49, 50

performance optimization 95-98
power iteration clustering (PIC)

about 108-110
reference link 108

Pregel 99
Pregel API, in GraphX 103
Pregel computational model

about 99
iterating, towards social equality 100-102

Pregel implementation,
of PageRank 105, 106

property graph 6

R
Resilient Distributed Dataset (RDD) 1
resolvers 52
reverse operator 62

S
Scala Build Tool

about 51
build definitions, organizing 51
library dependencies, managing 52

Scala Build Tool (SBT)
about 1, 14, 52
tasks, running with commands 58
URL 14
used, for building program 14, 15

share circle feature 19
social ego networks

about 19
reference link 19

Spark
URL, for documentation 46
URL, for download 2

Spark 1.4.1
downloading 1-3
installing 1-3

Spark application, building steps
about 53
build.sbt file, creating 53
library dependencies, declaring 54, 55
resolvers, declaring 54, 55
sbt-assembly plugin, enabling 53
sbt-assembly plugin, setting up 56
uber JAR, creating 57

Spark program
configuring 10-12
spark.app.name property 12, 13
spark.driver.memory property 13
spark.executor.memory property 13
spark.serializer property 13
spark.storage.memoryFraction

property 13
URL 12
writing 10-12

Spark shell
experimenting with 3, 4

spark-submit
used, for deploying standalone

application 15, 16
used, for running standalone

application 15, 16

[126]

spectral clustering
about 108
reference link 108

standalone application
building 10
program, building with Scala

Build Tool 14, 15
Spark program, configuring 10-14
Spark program, writing 10-14
spark-submit, downloading 15
spark-submit, running 15
submitting 10

subgraph operator 62
superstep 100
supersteps 99

T
tasks

running, with SBT commands 58
tiny social network

building 5
data, loading 6

graph operations 9, 10
property graph 6, 7
RDDs, transforming to EdgeRDD 7, 8
RDDs, transforming to VertexRDD 7, 8

triplet view 10

V
vertex attributes

transforming 59, 60
vertex program 100
VertexRDD

data operations on 69
filtering 70
joining 71, 72
mapping 69, 70

W
web pages

ranking 50
weighted social ego network

building 26-29

Thank you for buying
Apache Spark Graph Processing

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Machine Learning with Spark
ISBN: 978-1-78328-851-9 Paperback: 338 pages

Create scalable machine learning applications to
power a modern data-driven business using Spark

1. A practical tutorial with real-world use cases
allowing you to develop your own machine
learning systems with Spark.

2. Combine various techniques and models into
an intelligent machine learning system.

3. Use Spark's powerful tools to load, analyze,
clean, and transform your data.

Fast Data Processing with Spark
ISBN: 978-1-78216-706-8 Paperback: 120 pages

High-speed distributed computing made easy
with Spark

1. Implement Spark's interactive shell to
prototype distributed applications.

2. Deploy Spark jobs to various clusters such as
Mesos, EC2, Chef, YARN, EMR, and so on.

3. Use Shark's SQL query-like syntax with Spark.

Please check www.PacktPub.com for information on our titles

Mastering Apache Maven 3
ISBN: 978-1-78398-386-5 Paperback: 298 pages

Enhance developer productivity and address exact
enterprise build requirements by extending Maven

1. Develop and manage large, complex projects
with confidence.

2. Extend the default behavior of Maven with
custom plugins, lifecycles, and archetypes.

3. Explore the internals of Maven to arm yourself
with knowledge to troubleshoot build issues.

Apache Karaf Cookbook
ISBN: 978-1-78398-508-1 Paperback: 260 pages

Over 60 recipes to help you get the most out of your
Apache Karaf deployments

1. Leverage Apache Karaf to apply OSGi's
powerful features to frameworks such as
Apache ActiveMQ, Camel, Cassandra, CXF,
and Hadoop.

2. Set up Apache Karaf for high availability.

3. A thorough guide with example-based recipes
to help you get a deeper understanding of
Apache Karaf's capabilities.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Spark and GraphX
	Downloading and installing Spark 1.4.1
	Experimenting with the Spark shell
	Getting started with GraphX
	Building a tiny social network
	Loading the data
	The property graph
	Transforming RDDs to VertexRDD and EdgeRDD
	Introducing graph operations

	Building and submitting a standalone application
	Writing and configuring a Spark program
	Building the program with the Scala Build Tool
	Deploying and running with spark-submit

	Summary

	Chapter 2: Building and Exploring Graphs
	Network datasets
	The communication network
	Flavor networks
	Social ego networks

	Graph builders
	The Graph factory method
	edgeListFile
	fromEdges
	fromEdgeTuples

	Building graphs
	Building directed graphs
	Building a bipartite graph
	Building a weighted social ego network

	Computing the degrees of the network nodes
	In-degree and out-degree of the Enron email network
	Degrees in the bipartite food network
	Degree histogram of the social ego networks

	Summary

	Chapter 3: Graph Analysis and Visualization
	Network datasets
	The graph visualization
	Installing the GraphStream and BreezeViz libraries
	Visualizing the graph data
	Plotting the degree distribution

	The analysis of network connectedness
	Finding the connected components
	Counting triangles and computing clustering coefficients

	The network centrality and PageRank
	How PageRank works
	Ranking web pages

	Scala Build Tool revisited
	Organizing build definitions
	Managing library dependencies
	A preview of the steps
	Running tasks with SBT commands

	Summary

	Chapter 4: Transforming and Shaping Up Graphs to Your Needs
	Transforming the vertex and edge attributes
	mapVertices
	mapEdges
	mapTriplets

	Modifying graph structures
	The reverse operator
	The subgraph operator
	The mask operator
	The groupEdges operator

	Joining graph datasets
	joinVertices
	outerJoinVertices
	Example – Hollywood movie graph

	Data operations on VertexRDD and EdgeRDD
	Mapping VertexRDD and EdgeRDD
	Filtering VertexRDDs
	Joining VertexRDDs
	Joining EdgeRDDs
	Reversing edge directions
	Collecting neighboring information
	Example – from food network to flavor pairing

	Summary

	Chapter 5: Creating Custom Graph Aggregation Operators
	NCAA College Basketball datasets
	The aggregateMessages operator
	EdgeContext
	Abstracting out the aggregation
	Keeping things DRY
	Coach wants more numbers
	Calculating average points per game
	Defense stats – D matters as in direction

	Joining average stats into a graph
	Performance optimization
	The MapReduceTriplets operator
	Summary

	Chapter 6: Iterative Graph-Parallel Processing with Pregel
	The Pregel computational model
	Example – iterating towards the social equality

	The Pregel API in GraphX
	Community detection through label propagation
	The Pregel implementation of PageRank
	Summary

	Chapter 7: Learning Graph Structures
	Community clustering in graphs
	Spectral clustering
	Power iteration clustering

	Applications – music fan community detection
	Step 1 – load the data into a Spark graph property
	Step 2 – extract the features of nodes
	Step 3 – define a similarity measure between two nodes
	Step 4 – create an affinity matrix
	Step 5 – run k-means clustering on the
affinity matrix
	Exercise – collaborative clustering through playlists

	Summary

	References
	Chapter 2, Building and Exploring Graphs
	Chapter 3, Graph Analysis and Visualization
	Chapter 7, Learning Graph Structures

	Index

