
www.allitebooks.com

http://www.allitebooks.org

Applied Architecture Patterns
on the Microsoft Platform
Second Edition

Work with various Microsoft technologies using
Applied Architecture Patterns

Andre Dovgal
Gregor Noriskin
Dmitri Olechko

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Applied Architecture Patterns on the Microsoft Platform
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010

Second edition: July 2014

Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-912-0

www.packtpub.com

Cover image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits
Authors

Andre Dovgal

Gregor Noriskin

Dmitri Olechko

Ewan Fairweather

Rama Ramani

Richard Seroter

Mike Sexton

Stephen W. Thomas

Reviewers
Sriram Cherukumilli

Robert Gaut

Moustafa Refaat

Andrei Sinelnikov

Smitha Sundareswaran

Commissioning Editor
Joanne Fitzpatrick

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Sharvari Tawde

Technical Editors
Ankita Jha

Dennis John

Copy Editors
Sarang Chari

Mradula Hegde

Dipti Kapadia

Insiya Morbiwala

Karuna Narayanan

Stuti Srivastava

Project Coordinators
Judie Jose

Swati Kumari

Proofreaders
Stephen Copestake

Paul Hindle

Joanna McMahon

Indexers
Hemangini Bari

Mariammal Chettiyar

Mehreen Deshmukh

Rekha Nair

Tejal Soni

Priya Subramani

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Andre Dovgal has worked for several international organizations in the course of
his 30-year career. Some of his most exceptional accomplishments include building
customized solutions for the financial industry, algorithms for artificial intelligence
systems, e-business systems for real-estate agents, and IT integration services in the
areas of law enforcement and justice. He possesses certifications in different areas of
computer science, project management, and finance. He has authored more than
30 publications on IT, computer science, finance, history, and philosophy.

Since the mid 2000s, Andre has been focusing on integration and workflow
technologies (BizTalk, SQL Server, and later WF and SharePoint). His current
experience includes the latest versions of the BizTalk ESB and SQL Server platforms
with all components, such as SSIS and SSRS, and .NET 4.5 pillars (WCF, WF,
and WPF).

I would like to thank my coauthors and colleagues for the
knowledge they shared with me and the incredible experience
they brought to this work. I would like to thank my wife, Elvira,
for the inspiration that she has been giving me for this and many
other projects.

www.allitebooks.com

http://www.allitebooks.org

Gregor Noriskin is a polyglot programmer, software architect, and software
development leader. Over the past two decades, he has written a lot of code;
designed enterprise, web, and commercial software systems; and led software
engineering teams. He has worked with large and small companies on five
continents in multiple roles, industries, and domains. He spent nearly a decade at
Microsoft, where he worked as Performance Program Manager for the Common
Language Runtime and Technical Assistant to the CTO.

I would like to thank my wife, Deirdre, for her ongoing support,
and my children, Elle and Aeden, for giving up some of their
playtime with me while I was working on this book. I would also
like to thank my ex-colleagues at Metalogix for having answered
technical SharePoint questions and enlightening me about some of
the nuances and idiosyncrasies of the various SharePoint APIs and
features. I would particularly like to thank my colleagues Matthew
McKinnon, who helped me by technically reviewing the book, and
Jay Dave. Lastly, I would like to thank, with much gratitude, respect,
and humility, the many brilliant people I have worked with over
the years, and who have taught me so much of what I know about
software development, the .NET Framework, and SharePoint.

Dmitri Olechko has over 15 years' experience in software project architecture
and development using Microsoft products, including Visual Studio .NET, SQL
Server, WCF services, SSRS, SSIS, SharePoint, WPF, Workflow Foundation, BizTalk,
ASP.NET, and MVC/jQuery.

He has been part of a number of commercial projects for large corporations
and government organizations, including Future Concepts, Government of
Saskatchewan, The Los Angeles Police Department, Green Dot Corp, and
Comcast among others.

Apart from this, he has a keen interest in areas such as dispatching and logistics
algorithms, parallel processing, Big Data management, and cloud-based software.

His real-life experiences have enriched him and have given him the confidence to
evaluate various business scenarios and find the best-suited product for them.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sriram Cherukumilli is a developer/architect with experience in architecture,
design, and development across all application tiers with emphasis on enterprise
SOA and real-time backend systems. He works at Argo Data Resources on Windows
Workflow Foundation 4.5-based workflow management applications, which abstract
developer and platform-specific details to present business-friendly orchestrations
running extensible workflows across the company's different verticals. Sriram
holds a Bachelor of Science degree in Engineering and a Master of Science degree in
Information Technology.

Robert Gaut is a father, husband, martial arts practitioner, musician, photographer,
and application developer. He began his life as a programmer in 1979, writing games
on a Texas Instruments TI-99/4A computer. After attending college and receiving a
degree in music, he went back to programming as an instructor at a technical college.
Since then, he has built a career as a software architect focusing on web-based
technologies and has helped build several successful start-up companies.

Moustafa Refaat has over 15 years' experience in developing software solutions,
leading the architecture, design, coding, and refactoring of many large projects.

He has worked for the City of Vaughan and organizations such as TransCanada
Pipelines, Tim Hortons, VMS, Deloitte DMGF, Newfoundland and Labrador, and
First Canadian Title Insurance. Moustafa has designed and implemented many
systems based on SQL Server and BizTalk. His experience spans the financial,
insurance, health, banking, retail, oil and gas, marketing, and telecommunications
services automation industries.

He is a published author with books on programming and BizTalk. He also acted
as a referee for the IEEE Software magazine. Moustafa runs his own software and
consulting company, Genetic Thought Software Inc.

www.allitebooks.com

http://www.allitebooks.org

Andrei Sinelnikov is an Information Technology professional, with over 14 years
of experience in the design, development, and implementation of the Windows n-tier
applications using the TOGAF, RUP, Agile, SCRUM, and Waterfall methodologies.
He has also worked on the latest Microsoft technologies and SQL programming. He
holds a Master's degree in Computer Science and a variety of Microsoft certifications
in the Server, Database, and Developer stack.

He has worked on a variety of projects that apply Microsoft technology in the
enterprise environments of various industries and government sectors, such as
education, banking, insurance, law enforcement, municipal affairs, provincial
government, and healthcare.

Municipal Infrastructure Management System, architected by Andrei, was chosen as
a finalist in the 2010 Microsoft IMPACT Award in the Custom Development Solution
of the Year and Small Business Specialist of the Year categories.

Smitha Sundareswaran has her PhD from Pennsylvania State University.
Her current research focuses on distributed systems of scale, specifically cloud
computing. She is very passionate about security systems and has done research in
security in social networks, web applications, and cloud computing. She has led
over 15 software development research projects as a program manager with over
20 refereed publications.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Solution Decision Framework	 7

The need for a decision framework	 8
Sources of input	 9

Organizational direction	 9
Functional requirements and use cases	 10
Nonfunctional requirements	 10
Derived (architectural) requirements	 11

Deciding upon your architecture strategy	 12
Technology evaluation dimensions	 13

Organizational context	 14
Solution design aspects	 16
Solution implementation aspects	 21
Solution operation aspects	 24

Applying the framework	 26
Summary	 27

Chapter 2: The .NET Framework Primer	 29
An evaluation framework for .NET Framework APIs	 30

Evaluation framework dimensions	 30
Evaluation framework ratings	 31

The .NET Framework	 34
The Base Class Library	 34

The System namespace	 35
The System.Text namespace	 36
The System.IO namespace	 36
The System.Net namespace	 37
The System.Collections namespace	 37
The System.Collections.Generic namespace	 39
The System.Collections.Concurrent namespace	 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The System.Linq namespace	 41
The System.Xml namespace	 43
The System.Xml.Linq namespace	 44
The System.Security.Cryptography namespace	 45
The System.Threading namespace	 46
The System.Threading.Tasks namespace	 46
The System.ServiceProcess namespace	 47
The System.ComponentModel.Composition namespace	 48
The System.ComponentModel.DataAnnotations namespace	 49

ADO.NET	 50
The System.Data namespace	 50
The System.Data.Entity namespace	 51
The System.Data.Linq namespace	 52
The System.Data.Services namespace	 52

Windows Forms	 53
The System.Windows.Forms namespace	 53

Windows Presentation Foundation	 54
The System.Windows namespace	 54

ASP.NET	 55
The System.Web.Forms namespace	 56
The System.Web.Mvc namespace	 56
The System.Web.WebPages namespace	 57
The System.Web.Services namespace	 58
The Microsoft.AspNet.SignalR namespace	 58

Windows Communication Foundation	 59
The System.ServiceModel namespace	 59

Windows Workflow Foundation	 60
The System.Activities namespace	 60

Summary	 61
Chapter 3: The SQL Server Primer	 63

What is included in SQL Server 2012?	 64
SQL Server editions	 64
SQL Server components and tools	 64
SQL Server 2012 abilities	 66

High availability	 66
Manageability	 67
Programmability and maintainability	 67
Scalability	 69
Performance	 69
Security	 69
Data quality	 70

Building the payroll processor application	 70
Use case	 70
Key requirements	 72

Functional requirements – first draft	 72
Requirements analysis	 72

Table of Contents

[iii]

Functional requirements – second draft	 74
Nonfunctional requirements	 75

The database design	 77
The input dataset design	 79
The application prototype design	 79

The ABC client design	 80
The XYZ client design	 81

Lessons learned	 85
New features of SQL Server 2014	 86
Summary	 87

Chapter 4: The SSIS Primer	 89
What's new in SSIS 2012	 90
Building the payroll processor application	 91

Adding more details to the RPP use case	 91
Requirements analysis	 91
SSIS package design	 92
Lessons learned	 97

What's new in SSIS 2014	 98
Summary	 98

Chapter 5: The BizTalk Server Primer	 99
Using BizTalk in an integration architecture	 100
BizTalk essentials	 101
New features of BizTalk Server 2013	 103
BizTalk Server editions	 104
BizTalk Server abilities	 105

High availability	 105
Reliability	 105
Manageability	 106
Programmability	 106
Scalability	 106
Performance	 107
Security	 107

Building the BizTalk application	 107
The use case of a web hosting company	 107
Requirements analysis	 108
BizTalk Server installation and setup	 109
Implementing the BizTalk solution	 113
Lessons learned	 118

Summary	 119

Table of Contents

[iv]

Chapter 6: The SharePoint Server Primer	 121
The SharePoint editions	 122
The SharePoint platform	 123

The SharePoint server topology	 123
The SharePoint server roles	 124

The Web Server role	 124
The Application Server role	 125
The Database Server role	 126

Administration and management	 126
Core concepts and capabilities of SharePoint	 127

SharePoint web applications	 127
SharePoint content database	 128
SharePoint site collections	 128
SharePoint sites	 129
SharePoint lists	 130
SharePoint columns	 130
SharePoint content types	 131
SharePoint views	 131
SharePoint document libraries	 132
SharePoint web parts	 132
Apps for SharePoint	 133
SharePoint workflows	 134
SharePoint forms	 135
SharePoint service applications	 135
SharePoint Search	 136

SharePoint extensibility	 136
SharePoint APIs	 137

SharePoint Server Object Model	 137
SharePoint web services	 137
SharePoint .NET Client-side Object Model	 138
SharePoint Silverlight Client Object Model	 138
SharePoint JavaScript Object Model	 139

SharePoint development tools	 139
SharePoint Designer	 139
Office Developer Tools for Visual Studio	 140
"Napa" Office 365 Development Tools	 141

Summary	 141

Table of Contents

[v]

Chapter 7: Other Microsoft Technologies	 143
Operating systems	 143

Windows Server	 144
Virtualization	 145

Desktop operating systems	 146
The Windows Phone OS	 146

The Microsoft Office software	 147
Microsoft Exchange Server 2013	 149

Software development tools	 150
Cloud computing	 153

Windows Azure	 155
Summary	 157

Chapter 8: Integration Patterns and Antipatterns	 159
Integration styles and challenges	 159
Point-to-point integration	 162
The federated request pattern	 164

Working with the use case – purchasing power calculation	 164
Key requirements	 165

The federated request pattern description	 165
Candidate architecture for federated requests #1 – BizTalk	 167

Solution design aspects	 167
Solution implementation aspects	 168
Solution operations aspects	 168
Organizational aspects	 168
Solution evaluation	 169

Candidate architecture for federated requests #2 – .NET Service (WCF)	 169
Solution design aspects	 169
Solution implementation aspects	 170
Solution operations aspects	 170
Organizational aspects	 170
Solution evaluation	 170

Architecture selection	 171
Building the solution	 172

Lessons learned	 177
The message broker pattern	 177

Message broker versus point-to-point integration	 178
The guaranteed delivery problem	 180

Working with the use case – health care industry	 181
Summarized key requirements	 182
Additional facts	 182

Table of Contents

[vi]

Pattern for guaranteed delivery	 183
Candidate architectures	 184
Candidate architecture for guaranteed delivery #1 – Windows
Azure Service Bus	 184

Solution design aspects	 184
Solution implementation aspects	 185
Solution operations aspects	 185
Organizational aspects	 186
Solution evaluation	 186

Candidate architecture for guaranteed delivery #2 – BizTalk Server	 186
Solution design aspects	 186
Solution implementation aspects	 187
Solution operations aspects	 188
Organizational aspects	 188
Solution evaluation	 188

Candidate architecture for guaranteed delivery #3 – SQL
Server Service Broker	 189

Solution design aspects	 190
Solution implementation aspects	 190
Solution operations aspects	 191
Organizational aspects	 191
Solution evaluation	 192

Architecture selection	 192
Building the solution	 193

Setting up the development foundation	 193
Building the canonical solution artifacts	 194
Building the FDA subscriber solution artifacts	 199
Configuring the data publisher and FDA subscriber 	 205
Building the website database subscriber solution artifacts	 210
Configuring the website database subscriber	 214
Lessons learned	 216

The Publish/Subscribe pattern	 217
Moving to Enterprise Service Bus	 218
Summary	 219

Chapter 9: Web Services and Beyond	 221
Service-oriented architecture	 223
Enterprise Service Bus	 224

Use case – a commodity trading firm	 224
Key requirements	 225

Additional facts	 226
Pattern description	 227
Candidate architecture – BizTalk ESB	 229

Solution design aspects	 229
Solution implementation aspects	 232

Table of Contents

[vii]

Solution operations aspects	 233
Organizational aspects	 233
Solution evaluation	 233

Architecture selection	 234
Building the solution	 234

BizTalk ESB Toolkit installation and setup	 235
Solution setup	 235
Deploying and using a monolithic solution	 236
PO status codes	 240
Item inventory check status codes 	 240
Current behavior of the system	 241
Utilizing the ESB Toolkit	 241
Using existing transformations within an ESB Itinerary	 241
Using the itinerary service broker pattern	 245

Lessons learned	 252
RESTful services	 252

Use case – shopping cart	 253
Key requirements	 254
Additional facts	 254
Pattern description	 254
Candidate architecture – RESTful WCF Services	 256

Solution design aspects	 256
Solution implementation aspects	 256
Solution operations aspects	 256
Organizational aspects	 257
Solution evaluation	 257

Building the solution	 257
Solution components	 257
Solution setup	 258
WCF RESTful service description	 259

Lessons learned	 264
Future of RESTful services	 265

Summary	 266
Chapter 10: Data Exchange Patterns	 267

File transfer	 269
A shared database	 272
Data replication and synchronization	 275

The SQL Server replication	 277
Data synchronization using Sync Framework	 277
Data synchronization using messaging	 278

Data migration	 279

Table of Contents

[viii]

The extract, transform, and load pattern for centralized
data aggregation	 279

Use case – master patient index	 281
Pattern description	 282

Extraction	 282
Transformation	 283
Loading	 284

Key requirements	 285
Candidate architecture #1 – SQL Server	 286

Solution design aspects	 286
Solution implementation aspects	 286
Solution operations aspects	 286
Organizational aspects	 286
Solution evaluation	 287

Candidate architecture #2 – SSIS	 287
Solution design aspects	 287
Solution implementation aspects	 288
Solution operations aspects	 288
Organizational aspects	 288
Solution evaluation	 289

Candidate architecture #3 – BizTalk	 289
Solution design aspects	 289
Solution implementation aspects	 289
Solution operations aspects	 290
Organizational aspects	 290
Solution evaluation	 290

Architecture selection	 290
Building the solution	 291

Data structures	 292
Lessons learned	 297

Multiple master synchronization	 298
Use case – master data management for WWW	 298

Key requirements	 299
Additional facts	 300

Pattern description	 300
Candidate architecture	 300

Solution design aspects	 301
Solution operations aspects	 302
Organizational aspects	 302
Solution evaluation	 302

Architecture selection	 303
Building the solution	 304

Fetching relational data	 306
Master data services	 306

Table of Contents

[ix]

Unstructured data	 316
Setting up a search	 320
Lessons learned	 322

Data sharing and federation	 322
Use case – real-time data retrieval from highly sensitive data sources 	 322
Data warehouse challenges	 323
Another approach – data federation	 325
Pattern description	 326
Key requirements	 327
Candidate architecture #1 – BizTalk Server	 328

Solution design aspects	 328
Solution implementation aspects	 328
Solution operations aspects	 328
Organizational aspects	 329
Solution evaluation	 329

Candidate Architecture #2 – .NET	 329
Solution design aspects	 329
Solution implementation aspects	 329
Solution operations aspects	 330
Organizational aspects	 330
Solution evaluation	 330

Architecture selection	 330
Lessons learned	 331

Summary	 332
Chapter 11: Workflow Patterns	 333

Fully automated workflows	 334
Use case – a single dashboard view	 334

Key requirements	 335
Additional facts	 336
The Scatter-Gather pattern	 336

Factors affecting implementation details	 338
Candidate architecture #1 – BizTalk Server	 340

Solution design aspects	 340
Solution implementation aspects	 341
Solution operations aspects	 341
Organizational aspects	 342
Solution evaluation	 342

Candidate architecture #2 – .NET WF service	 342
Solution design aspects	 343
Solution implementation aspects	 344
Solution operations aspects	 344
Organizational aspects	 344
Solution evaluation	 344

Architecture selection	 345

Table of Contents

[x]

Building the solution	 346
Setup	 346
Building the service aggregator workflow service	 348
Consuming the service aggregator workflow service with ASP.NET	 354

Lessons learned	 356
Human workflows	 357

Use case – repair/resubmit with human workflow	 357
Key requirements	 358
Additional facts	 358
Pattern description	 359

Candidate architecture #1 – BizTalk Server	 360
Solution design aspects	 361
Solution implementation aspects	 361
Solution operations aspects	 361
Organizational aspects	 362
Solution evaluation	 362

Candidate architecture #2 – .NET workflow and SharePoint	 362
Solution design aspects	 362
Solution implementation aspects	 363
Solution operations aspects	 363
Organizational aspects	 363
Solution evaluation	 363

Architecture selection	 364
Building the solution	 365

Setup	 365
Building the core workflow	 367
Testing the workflow	 382

Lessons learned	 382
Summary	 382

Chapter 12: Presentation Layer Patterns	 383
Building presentation layers	 385

Desktop applications	 385
Windows Forms	 386
Windows Presentation Foundation	 386
Microsoft Office VBA applications	 387
InfoPath	 387

Web applications	 387
ASP.NET	 388
Silverlight	 388
Scripting with JavaScript and jQuery	 389

Mobile development	 389
MVC, MVP, and MVVM	 390

The model-view controller pattern	 391

Table of Contents

[xi]

The model-view-presenter pattern	 392
Model-View-View Model	 393

Working with a use case – a user interface for the shopping cart	 394
Key requirements	 394
Candidate architecture #1 – Silverlight	 395

Solution design aspects	 395
Solution implementation aspects	 395
Solution operations aspects	 395
Organizational aspects	 395
Solution evaluation	 396

Candidate architecture #2 – ASP.NET MVC	 396
Solution design aspects	 396
Solution implementation aspects	 396
Solution operations aspects	 396
Organizational aspects	 397
Solution evaluation	 397

Architecture selection	 397
The framework description	 397
User interface development	 398

The ASP.NET MVC project	 400
Lessons learned	 400

Working with a use case – a desktop time billing application	 401
Key requirements	 401
Candidate architecture for the desktop accounting
application #1 – intranet with Silverlight	 402

Solution design aspects	 402
Solution implementation aspects	 402
Solution operations aspects	 403
Organizational aspects	 403
Solution evaluation	 403

Candidate architecture for the desktop accounting
application #2 – Desktop WPF app	 403

Solution design aspects	 404
Solution implementation aspects	 404
Solution operations aspects	 404
Organizational aspects	 404
Solution evaluation	 405

Architecture selection	 405
Pattern implementation description	 406
User interface development	 407
Lessons learned	 412

Summary	 412

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[xii]

Chapter 13: Conclusion	 413
Patterns for software-intensive systems	 413
Where to go next	 414

Index	 415

Preface
Once a small company established in 1975, Microsoft is one of the leading software
companies in the world today. Over decades, Microsoft has been bringing new
technologies to all of us. Some Microsoft products did not have a long life, whereas
others became leading software products, supporting a vast number of solutions in
the world for many years. Today, Microsoft delivers operating systems for servers,
desktops, tablets, and phones. It has dozens of server products, such as SharePoint,
BizTalk, Exchange, or SQL Server. It supports a powerful development framework,
.NET, as well as development and testing tools. Its Visual Studio is one of the best
Integrated Development Environments, and its Team Foundation Server covers all
aspects of application lifecycle management. Most of us use applications from the
Microsoft Office Suite, and many businesses have deployed Microsoft Dynamics
solutions. To make a long story short, the world of Microsoft is huge.

How does an architect, especially a solutions architect, find his way in this world?
Typically, architects want to use experience of other architects in the form of patterns
and best practices. This book will help you navigate through the ocean of Microsoft
technologies and provide guidance to select proper technologies for chosen patterns.
We shall look at the patterns from an architect's point of view, focusing on major
groups such as data exchange patterns or integration patterns.

This book has significantly changed since its first edition. First of all, it covers
the changes that have happened since 2010; for example, new versions of all
products, including major changes to the foundational software such as .NET and
SQL Server. In addition to this, the second edition discusses .NET and SharePoint,
which were not covered before. We also have added some related patterns, including
presentation layer patterns.

Preface

[2]

What this book covers
Chapter 1, Solution Decision Framework, provides an approach to evaluating
technologies that is used for different patterns described in the book.

Chapter 2, The .NET Framework Primer, presents an overview of the latest .NET
version, and an assessment of the most notable namespaces in .NET based on
their maturity, productivity, performance, and availability.

Chapter 3, The SQL Server Primer, discusses the capabilities of SQL Server and
presents a typical use case.

Chapter 4, The SSIS Primer, discusses the capabilities of SQL Server Integration
Services as an ETL tool and presents a typical use case.

Chapter 5, The BizTalk Server Primer, provides an introduction to the major
architectural integration styles, discusses BizTalk essentials, and shows how
BizTalk fits in to an integration use case.

Chapter 6, The SharePoint Server Primer, talks about SharePoint Server capabilities
as a platform and presents major concepts and notions related to this.

Chapter 7, Other Microsoft Technologies, provides an overview of many Microsoft
products that are last but not least; these include operating systems, Microsoft Office
and Exchange, software development tools, and cloud computing.

Chapter 8, Integration Patterns and Antipatterns, presents an introduction to the major
architectural integration patterns such as federated request and Publish/Subscribe,
discusses the problem of guaranteed delivery, and presents use cases corresponding
to different patterns.

Chapter 9, Web Services and Beyond, discuses web services, Service-Oriented
Architecture, and Enterprise Service Bus.

Chapter 10, Data Exchange Patterns, continues the discussion on integration patterns
started in the preceding two chapters. It talks about data synchronization and
migration, ETL, multiple master synchronization, data sharing, and data federation.
Most complex patterns are presented with use cases and solutions.

Chapter 11, Workflow Patterns, discusses two major types of workflows: fully
automated workflows and human workflows.

Preface

[3]

Chapter 12, Presentation Layer Patterns, presents the variety of Microsoft technologies
for building user interfaces and discusses the most popular architectural patterns,
such as MVC, MVP, and MVVM.

Chapter 13, Conclusion, wraps up the book discussions and recaps the
decision-making process.

What you need for this book
In order to work with the code examples that accompany this book, you need to
have the following software:

Windows OS:

•	 Windows Server 2012
•	 Windows 7 or newer

MS Servers:

•	 SQL Server 2012 (including SSIS) or newer
•	 BizTalk Server 2013 (including the ESB toolkit)
•	 SharePoint Server 2013

Development tools:

•	 Visual Studio 2012 or newer
•	 MS SQL Server Data Tools—BI for Visual Studio 2012

Miscellaneous:

•	 .NET 4.5 or newer
•	 AppFabric 1.1

Who this book is for
This book is not a tutorial on Microsoft technologies, nor does it provide
code that you can copy-and-paste to your solution to make everything start
working miraculously.

This book is intended to be a tool for architects who need to make a decision about
the software to use for their solutions. They will also appreciate the presented
solution decision framework. The book is also suitable for other IT professionals who
want to get an introduction to major Microsoft products and their potential usage.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The System namespace is both the root namespace for the .NET Framework and
contains the basic building blocks of the .NET Framework."

A block of code is set as follows:

private static int CreateAndEnumerateList(int maxValue)
{
 var list = new System.Collections.ArrayList(maxValue);
 foreach (var val in Enumerable.Range(0, maxValue))
 {
 list.Add(val);
 }
 var total = 0;
 foreach (int val in list) //implicit type conversion
 {
 total += val;
 }
 return total;
}

Any command-line input or output is written as follows:

EsbImportUtil.exe /f:"<Path to folder with Itinerary>\ SmcOneWaySimple.
xml" /c:deployed

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In order
to complete the package to process all input files, we need to go back to the Control
Flow tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Solution Decision Framework
The notion of software architecture has been around for about 50 years; however,
only in the 1990s did it become a part of the computer industry dictionary. Since
then, it has undergone some evolution, influenced by other areas of software
development and project management. In the Software Architecture and Design
chapter of the Microsoft Application Architecture Guide, 2nd Edition document (2009),
software application architecture is defined as follows:

"Software application architecture is the process of defining a structured solution
that meets all of the technical and operational requirements, while optimizing
common quality attributes such as performance, security, and manageability".

Today, the notion of software architecture is typically applied to two major
areas of the industry: project development and product development. Project
development is characterized by the fact that every project has a beginning and
an end, which always has a time frame. At the beginning of the project, there is
normally a requirements-gathering process, and the solution that is delivered at
the end of the project has to satisfy those requirements. Some requirements describe
the business functionality of the solution. Other requirements can specify its
availability, extensibility, resilience, security, and many other nonfunctional aspects.

In product development, businesses focus on developing products according to the
initial set of requirements or upgrading them according to the subsequent sets of
requirements. In a typical process, the software development life cycle (SDLC) has
several stages. The stages start from generating an idea of the new product, business
analysis, and market research about the coding, testing, delivering to the market,
and maintenance. Delivering a new version of a software product can be considered
a project itself; however, the entire product development process is cyclic typically,
and it does not have a visible end. There are many SDLC methodologies from
Waterfall to a whole spectrum of Agile ones; the focus of the architect's role in
them is very different from one to another.

Solution Decision Framework

[8]

In this chapter, we'll consider an architect's approach to a typical software project.
We'll discuss the need for an architectural decision framework and sources of
information that influence an architect's decisions. We'll talk about evaluating
technologies and how organizational context, solution design, implementation,
as well as operations have their impact on such an evaluation.

The need for a decision framework
Architects who work on solutions are called solutions architects, and solution
architecture will be the main focus of this book. A solutions architect is by no means
required to be very technical; however, he/she should possess other capabilities
such as understanding organizational dynamics, providing leadership, and quite
often, fulfilling the role of a translator between the business and technical teams.
Regardless of their involvement in the solution delivery, they always need to make
decisions about the technologies that will be used.

Here is where frameworks become very helpful. Frameworks truly give architects a
structure to build their decisions on. Without such a structure, there are always gaps;
some good decisions would be missed and some simple solutions will be overlooked.

The decision framework that we propose in this book is based on the
following principles:

•	 Gather as much information about the current status or the existing
solution: For product development, if a new version is to be developed,
it consists of the knowledge of the existing product. For project development,
this will be the knowledge of how the same or similar problems are being
solved in the organization. Gather as many requirements as possible
(see the next section, Sources of input, to get more ideas about requirements
gathering). Gather as much context information as possible: existing
infrastructure, business purpose for the solution, laws and regulations
that might apply in the industry, standards, and so on.

•	 Align your decisions with the organizational direction: The next section
discusses this principle in detail.

•	 Look for critical and problem areas: The 80/20 principle suggests that
80 percent of time is spent on 20 percent of problems. Try to identify
these problems at the beginning of the architectural work. See whether
the problems can be solved using some best practices and patterns.

•	 Apply best practices and patterns: True innovations seldom happen in
the world of software architecture; most of the solutions have been thought
of by hundreds and thousands of other architects, and reinventing the wheel
is not necessary.

Chapter 1

[9]

•	 Capture and evaluate alternatives: Experts are often biased by their previous
experience, which blinds them and does not let them consider alternatives. If
a few architects with different experiences (for example, in Java and in .NET)
got together in a room, each one would have his/her own strong preferences.
The architecture work can then get into "analysis paralysis". To avoid this,
capture all alternatives, but evaluate them unbiasedly.

•	 Simplify: Simple solutions are the most elegant and, surprisingly, the most
effective. Don't use the pattern just because it's cool; don't add a feature if it
is not requested; don't use a technology that is not designed for the problem.
Use Occam's razor as it removes the burden of proof.

Sources of input
There are several major sources of input that an architect must consider
before making a decision. Four of them are crucial to the solution delivery:
organizational direction, functional requirements, nonfunctional requirements,
and derived requirements.

Organizational direction
Software development teams often forget that any solution they build is
required only because of the business needs. They don't necessarily understand
(and unfortunately, often don't want to understand) the details of these needs.
Business people also usually don't want to learn the technicalities of the software
solution. Nothing is wrong with that. However, since technical and business people
speak different languages, there should be a role of a translator between the two
groups. And this is, not surprisingly, the role of the solutions architect.

Every solution starts with a challenge. A business creates these challenges—this is
the nature of business, this is its driving force, this is the imminent requirement for
the business to survive. The solutions are typically executed as projects, with a start
date and an end date, which is limited in time. However, most businesses also do not
exist as short temporary activities; they plan their existence and strategies for a long
period of time.

Business strategies and long-term plans provide the context for time-framed
solutions that have to be delivered in order to solve a specific problem or a set of
problems. For organizations with mature IT departments, Enterprise Architecture
(EA) frameworks help architects manage this context. Usually, the organizational
considerations are outlined in the EA policies and principles.

www.allitebooks.com

http://www.allitebooks.org

Solution Decision Framework

[10]

Functional requirements and use cases
The next input for the decision-making process is functional requirements. Functional
requirements describe the intended behavior of the system. Functional requirements
typically come from the business and there are many methods for requirement
solicitation, from questionnaires and surveys, to workshops and stakeholder
interviews. The requirements can originate in the marketing department or come from
existing end users of the product. They can describe the feature baseline necessary
for the product to survive competition or can be "nice to haves" produced by the
dreamer/owner of the business. The process of gathering, validating, and prioritizing
requirements might be quite long and can end up with different artifacts.

When building a solution, architects should pay attention to the priorities assigned
to the requirements. Usually, it is impossible to satisfy them all in the first releases
of the solution, and the choice of technologies should be flexible enough to extend
the solution in the future.

One of the most convenient ways to capture functional requirements is to build
use cases. Use cases define a focused specification of interaction between actors
and the system. Actors can be end users, roles, or other systems. Usually, use cases
are written in a language that is relevant to the domain, and they can be easily
understood by non-technical people. A common way to summarize use cases
in a structured way is using the UML notation.

Use cases are also used in the validation of proposed architectures. By applying
the proposed architecture to the use cases, architects can identify the gaps in the
future solution.

Functional requirements analysis should be aligned with the design of major
architectural blocks of the solution. Each requirement must be implemented in one of
the solution components. Breaking down functional requirements across components
or tiers provides us with a good way to validate the proposed solution architecture.

Nonfunctional requirements
Nonfunctional requirements (NFRs) are often ignored, maybe not completely,
but to a significant degree. However, they are as important to the architecture as
functional requirements. Moreover, some architects argue that NFRs play a more
significant role in the architecture than their functional counterpart. Wikipedia
even suggests the following:

"The plan for implementing functional requirements is detailed in the system
design. The plan for implementing non-functional requirements is detailed in
the system architecture."

Chapter 1

[11]

We may argue this statement, but NFRs, without a doubt, touch very deep areas
of the technology.

There are many different categories of nonfunctional requirements. There is no
exact list of these categories; different sources would give you different names,
but the major ones would be the following:

•	 Availability
•	 Performance
•	 Reliability
•	 Recoverability
•	 Capacity
•	 Security
•	 Interoperability
•	 Maintainability
•	 Auditability
•	 Usability
•	 Scalability
•	 Expandability

When we discuss the criteria for choosing technologies later in this book, we shall
pay very close attention to the NFRs. They will become the major criteria for coming
up with a proper solution design.

To summarize the difference between functional and nonfunctional requirements,
one can say that functional requirements answer the "what?" questions, and
nonfunctional requirements answer the "how?" questions.

Derived (architectural) requirements
Working on the solution architecture, architects might come up with a requirement
that was not explicitly stated either as a functional or as a nonfunctional requirement.
Architects derive these requirements from initial inputs. The derived requirements
have to be validated with the stakeholders and added to the set of functional or
nonfunctional requirements.

Solution Decision Framework

[12]

For example, a functional requirement might state that the system must have
real-time monitoring capabilities with an ability to inform the administrator
about reaching certain configurable thresholds. To conform to this requirement,
a couple more requirements should be added, which are as follows:

•	 The system must be integrated with a communication channel: e-mail,
SMS, or a similar channel

•	 The system must have a mechanism (XML files and a database with a UI)
to change the configuration

Requirements could be simply forgotten during the requirement-gathering
process. For example, a Publish/Subscribe system should have a way to manage
subscriptions and subscribers, which sometimes become an epiphany later during
the design process.

Gathering requirements is an iterative process. Once the architects start working with
the requirements, more requirements can be derived. They should be given back to
the business stakeholders for validation. The more complete set of requirements the
designers get, the less expensive the system development will be. It is well known
that a requirement implemented at the end of the solution development costs much
more than if it was suggested at the beginning of the process.

Deciding upon your architecture strategy
Once the core requirements are set forth, architects can start working on the building
blocks for the solution. The building blocks are like high-level patterns; they specify
what major components the system might have. For example, for a middle-tier
monitoring solution, building blocks might consist of a message-logging system, a
reporting system, a notification system, a dashboard, a data maintenance system,
and others. The next step should be to look into a lower level of the architecture;
each building block requires patterns to be used. Message logging can be done with
the usage of the filesystem, a database, SNMP sending log data into another system,
or something else. Before the patterns are selected, evaluated, and thoroughly
considered, jumping into a product selection would be a grave mistake. It could
cause selecting a tool that might not be fit for the task, a tool that is an overkill,
or a tool that requires an enormous amount of configuration effort. Sometimes,
building a proof of concept might be required to evaluate the patterns implemented
by a technology candidate.

Chapter 1

[13]

There are many books that have been written on generic patterns, especially patterns
of the enterprise application architecture. The most respected series is the series with
the Martin Fowler signature. We would recommend Patterns of Enterprise Application
Architecture, Addison-Wesley Professional, Martin Fowler, and Enterprise Integration
Patterns, Addison-Wesley Professional, Gregor Hohpe, Bobby Woolf, as the most relevant
to discussions in our book.

Technology evaluation dimensions
In the process of evaluating technologies, we will build criteria in the following
four dimensions:

•	 Organizational context: Solutions built to function in an organization
should be aligned with business needs and directions. Organizational
context is usually provided by the enterprise architecture that builds
general IT principles and strategies for the organization.

•	 Solution design: These criteria are relevant to the process of designing
the system. The design is typically the step that starts after the core
architecture is completed. In the Agile development, the design starts
sooner, but the architecture keeps the backlog of unfinished business
(the so-called architectural debt) that is being worked on over time.

•	 Solution implementation (development, testing, and deployment):
These criteria focus on the next stages of solution delivery from the
completed design to the deployment in production. Product development
might not have a production deployment stage per se; rather, it would have
a need to create installation programs and packaging.

•	 Operations: Surprisingly, this is the area that is neglected the most while
the architecture is developed. This is because it is all about the business value
that the solution is supposed to provide and was built for. A very typical
example is giving low priority to buying (or developing) administration
tools. We have seen organizations that buy sophisticated and very expensive
monitoring tools but don't provide proper training to their staff, and the tools
end up simply not being used. As the most ridiculous example, I remember
an organization providing SaaS services that allowed intruders to use a back
door to their FTP server for eight months simply because they did not use
proper monitoring tools.

Solution Decision Framework

[14]

Organizational context
Organizational context provides us with a big picture. Every organization has its set
of principles, implicit or explicit, and the task of the solutions architect is to build
systems aligned with these principles. The following table lists some major principles
that are typically developed by the organization enterprise architecture team:

Principle Description

Consider process
improvement before
applying technology
solutions

Although it may sound important, this principle is often
not considered. Sometimes, architects (or businesses) rush
into building a solution without looking into a possibility to
completely avoid it. We put it as the first consideration,
just as a warning sign.

The solution should
satisfy business
continuity needs

Some businesses are more critical than others. A bank, for
example, should function even if a flood hits its data center.
Disaster recovery is a major part of any solution.

Use vendor-supported
versions of products

All Microsoft products (or those of any vendor) have to be
supported. Microsoft typically provides at least 10 years of
support for its products (including 5 years of mainstream
support or 2 years after the successor product is released,
whichever is longer).

Automate processes that
can be easily automated

Take advantage of information systems; however, think of
eliminating unnecessary tasks instead of automating them.

Design for scalability to
meet business growth

This is one of the essential points of alignment between
business and IT. However, look into possibilities of building
flexible solutions instead of large but rigid ones.

Implement adaptable
infrastructure

Infrastructure must be adaptable to change; minor business
changes should not result in complete platform replacement
but should rather result in changing some components of
the system.

Design and reuse
common enterprise
solutions

In the modern enterprise, especially in service-oriented
architecture (SOA) environments, enterprise solutions
should produce reusable components.

Consider configuration
before customization

Changing the configuration takes less technical skills as
compared to customizing the solution. It also produces
the result much quicker.

Do not modify packaged
solutions

Packaged solutions maintained by a vendor should not
be modified. Times of hacking into third-party packages
are gone.

Chapter 1

[15]

Principle Description

Adopt industry and open
standards

From the initial assessment and inception phase of the
project, you should consider industry and open standards.
This will save you from re-inventing the wheel and will
bring huge advantages in the long run.

Adopt a proven
technology for critical
needs

Many enterprises approach technologies from a conservative
standpoint. Some, for example, suggest that you should
never use the first couple of versions of any product.
Whether you want to go with extremes depends on the
organization's risk tolerance.

Consider componentized
architectures

Multi-tier architecture enables separating concerns in
different tiers, allowing faster development and better
maintenance. A service-oriented architecture paradigm
emphasizes loose coupling.

Build loosely-coupled
applications

Tightly-coupled applications might seem easier to develop,
but—even when it is true—architects should consider all
phases of the solution cycle, including maintenance and
support.

Employ service-oriented
architecture

Service-oriented architecture is not just a technological
paradigm; it requires support from the business.
Technologically, SOA services mirror real-world
business activities that comprise business processes of
the organization. Employing SOA is never simply a
technological decision; it affects the entire business.

Design for integration
and availability

Every solution might require integration with other
solutions. Every solution should provide availability
according to the organization's SLAs.

Adhere to enterprise
security principles and
guidelines

Security, being one of the most important nonfunctional
requirements, has to be consistent across the enterprise.

Control technical
diversity

Supporting alternative technologies requires significant
costs, and eliminating similar components also increases
maintainability. However, limiting diversity also sacrifices
some desirable characteristics, which may not be ideal
for everybody.

Ease of use Just following the Occam's razor principle, simplify.
Remember, at the end of the day, all systems are
developed for end users; some of them might have
very little computer knowledge.

Solution Decision Framework

[16]

Principle Description

Architecture should
comply with main data
principles (data is an
asset, data is shared, and
data is easily accessible)

These three main data principles emphasize the value
of data in the enterprise decision-making process.

Architecture should
suggest and maintain
common vocabulary
and data definitions

In a complex system with participants from business to
technical people, it is critical for experts with different
areas of expertise to have a common language.

Solution design aspects
In this section, we look at the characteristics relevant to the overarching design
of a solution. The list is certainly not exhaustive, but it provides a good basis for
building a second dimension of the framework.

Areas of
consideration

Description

Manageability •	 Does the system have an ability to collect performance counters
and health information for monitoring? (See more about this
consideration in the Solution operations aspects section).

•	 How does the system react to unexpected exception cases? Even
if the system graciously processes an unexpected error and does
not crash, it might significantly affect the user experience. Are
these exceptions logged at a system level or raised to the user?

•	 How will the support team troubleshoot and fix problems?
What tools are provided for this within the system?

Performance
metrics

Good performance metrics are reliable, consistent, and repeatable.
Each system might suggest its own performance metrics, but the most
common are the following:

•	 Average/max response times
•	 Latency
•	 Expected throughput (transactions per second)
•	 Average/max number of simultaneous connections (users)

Chapter 1

[17]

Areas of
consideration

Description

Reliability •	 What is the expected mean time between service failures?
This metric can be obtained during testing, but the business
should also provide some expectations.

•	 How important is it for the system to be able to deal with
internal failures and still deliver the defined services (resilience)?
For some industries, such as healthcare or finance, the answer
would be "critical". Systems in these industries are not supposed
to be interrupted by major disasters, such as a flood or a fire in
the data center.

•	 Should the failure of a component be transparent to the user?
If not, then what level of user impact would be acceptable
(for example, whether the session state can be lost)? In the old
days, a user often received some cryptic messages in case of an
error, such as "The system has encountered an error #070234.
Please call technical support". This is not acceptable anymore;
even 404 errors on the Web are becoming more user-friendly.

•	 What's the expected production availability? The following
 is a table of the availability "nines" and corresponding
downtown times:

•	 What is the acceptable duration of a planned outage?
Is it also important to know what the planned outage windows
are, whether they should be scheduled every week or every
month, and what maintenance windows are required for
each operation (service upgrade, backup, license renewal,
or certificate installation)?

•	 What are the assurances of a reliable delivery (at least once,
at most once, exactly once, and in order)?

Solution Decision Framework

[18]

Areas of
consideration

Description

Recoverability •	 Does the system support a disaster recovery (DR) plan? The
DR plan is typically developed during the architecture stage. It
should include the DR infrastructure description, service-level
agreements (SLAs), and failure procedures. The system might
seamlessly switch to the DR site in the case of a major failure or
might require manual operations.

•	 What are the system capabilities of the backup and restore?
•	 What is the acceptable duration of an unplanned outage?

Some data losses in case of an unplanned outage are
inevitable, and architects should also consider manual
data recovery procedures.

Capacity •	 What are the data retention requirements, that is, how much
historical data should be available? The answer to this question
depends on the organizational policies and on the industry
regulations as well.

•	 What are the data archiving requirements, that is, when can
the data be archived? Some industry regulations, for example,
auditing, might affect the answer to this question.

•	 What are the data growth requirements?
•	 What are the requirements for using large individual datasets?

Continuity •	 Is there a possibility of data loss, and how much is the
loss? Very often, businesses would answer with a "no" to
this question, which creates a lot of grief among architects.
However, the proper question should sound: "In the case of
a data loss, how much data can be restored manually?"

Chapter 1

[19]

Areas of
consideration

Description

Security •	 What are the laws and regulations in the industry with regards
to security? Organization security policies should be aligned
with those in the industry.

•	 What are the organization internal security policies? What are
the minimal and the optimal sets of security controls required
by the organization? The security controls might require
zoning, message- or transport-level encryption, data injection
prevention (such as SQL or XML injection), data sanitizing,
IP filtering, strong password policies, and others.

•	 What are the roles defined in the system? Each role should
have a clear list of actions that it can perform. This list defines
authorization procedures.

•	 What are the login requirements, and particularly, what are
the password requirements?

•	 What are encryption requirements? Are there any certificates?
In case of integration with other internal or external
systems, is mutual certification required? What are the
certificate-maintenance policies, for example, how often
should the certificates be updated?

•	 What are the authentication and authorization approaches
for different components of the system?

Auditability •	 What are the regulations in the industry that are affecting
the audit? Which data should be available for the audit?
Which data should be aggregated?

•	 What data entities and fields should be audited?
•	 What additional data fields should be added for the audit

(for example, timestamps)?
Maintainability •	 What architecture, design, and development standards must

be followed or exclusions created for? Maintaining the code
is a tough task, especially maintaining bad code. Proper
documentation, comments inside the code, and especially
following standards helps a lot.

•	 Which system components might require rapid changes? Those
components should be independent from other components;
their replacement should affect the rest of the system minimally.

www.allitebooks.com

http://www.allitebooks.org

Solution Decision Framework

[20]

Areas of
consideration

Description

Usability •	 Can the system in its entirety support single sign-on (SSO)?
Single sign-on today becomes a feature expected by most of the
users and a mandatory requirement by many organizations.

•	 How current must the data be when presented to the user?
When a data update happens, should the end user see the
changes immediately?

•	 Are there requirements for multi-lingual capabilities?
Are they possible in the future?

•	 What are the accessibility requirements?
•	 What is the user help approach? User help information can

be delivered in many ways: on the Web, by system messages,
embedded in the application, or even via a telephone by the
support team.

•	 Can the system support the consistency of user messages
across all presentation layers? For example, how does the
system handle messages delivered by the Web and the mobile
application presentation layers? They cannot be the same
because of the mobile application limitations; how should they
be synchronized?

Interoperability •	 What products or systems will the target system be integrated
with in the future?

•	 Are there any industry messaging standards? In the world of
web services, many standards have emerged. The most common
interoperability set of standards is the WS-I set of standards.

Scalability •	 What is the expected data growth?
•	 What is the expected user base growth?
•	 What is the new business functionality that is anticipated in

the future?
•	 Can the system be scaled vertically (by increasing the capacity

of single servers) and horizontally (by adding more servers)?
•	 What are the system load balancing capabilities?

Chapter 1

[21]

Areas of
consideration

Description

Portability •	 Are there any requirements to support the system on different
platforms? This question becomes very important today,
especially in the world of mobile and online applications.
Several major mobile platforms as well as several browsers
are competing in the market.

Data quality •	 What are the data quality requirements (deduplication or
format standardization)?

Error handling •	 Failures within the system should be captured in a predictable
way—even unpredictable failures.

•	 Failures within connected systems or system components
should be handled consistently.

•	 "Technical" error messages should not be exposed to users.
•	 What are the logging and monitoring requirements?

Capturing errors is essential for the analysis and improving
the system quality.

Solution implementation aspects
Should design, coding, and other standards be automatically enforced through tooling,
or is this a more manual process? Should the source control system be centralized and
integrated in a continuous integration model? Should the programming languages be
enforced by an organizational policy or be chosen by developers? All these questions
belong to the realm of solution delivery. If architects select a technology that cannot be
delivered on time or with given skillsets, the entire solution will suffer.

Solution delivery also very much depends on the project management approach.
In a modern Agile world, delivery technologies should be chosen to allow for rapid
changes, quick prototyping, quick integration of different components, efficient
unit testing, and bug fixing. Agile projects are not easier or cheaper than Waterfall
projects. In fact, they guarantee rapid and quality delivery but at a cost. For
example, it is well known that Agile projects need more skilled (and therefore,
more expensive) developers. Some estimate the number of required senior
developers is up to 50 percent of the team.

Solution Decision Framework

[22]

The following table presents some considerations that affect the technology selection:

Areas of
consideration

Description

Are skilled
developers available
in the given
timeframe?

•	 As mentioned previously, rapid quality delivery requires
a bigger number of skilled resources. If the technology
selected is brand new, it would not be easy to acquire all
necessary resources.

What are the
available strategies
for resourcing?

•	 There are several strategies for resourcing in addition
to in-house development: outsourcing (hiring another
organization for the development and testing), co-sourcing
(hiring another organization to help deliver the solution),
in-house development using contract resources, and any
mixture of the above.

Based on
the delivery
methodology, what
environments have
to be supported for
the delivery?

Typically, there are several environments that are required
to deliver a complex solution to the production stage.
Some of them are as follows:

•	 Sandbox environment: This is the environment where
developers and architects can go wild. Anything can be
tried, anything can be tested, the environment can be
crashed every hour—and it should definitely be isolated
from any other environment.

•	 Development environment: Usually, every developer
maintains his/her own development environment, on the
local computer or virtualized. Development environments
are connected to a source control system and often in a
more sophisticated continuous integration system.

•	 Testing environments: Depending on the complexity
of the system, many testing environments can exist: for
functional testing, for system integration testing, for user
acceptance testing, or for performance testing.

•	 Staging or preproduction environment: The purpose of
this environment is to give the new components a final run.
Performance or resilience testing can also be done in this
environment. Ideally, it mimics a production environment.

•	 Production and disaster recovery environments: These are
target environments.

•	 Training environment: This environment typically mimics
the entire production environment or its components on a
smaller scale. For example, the training environment does
not require supporting all performance characteristics but
requires supporting all system functionalities.

Chapter 1

[23]

Areas of
consideration

Description

Is environment
virtualization
considered?

•	 Virtualization is becoming more and more common.
Today, this is a common approach in literally all medium
and large organizations.

Is cloud
development
considered?

•	 Cloud development (supported by Microsoft Azure)
might be considered if the organization does not want
to deal with complex hardware and infrastructure, for
example, when it does not have a strong IT department.
Cloud development also gives you the advantage of quick
deployment, since creating environments in Azure is often
faster than procuring them within the organization.

What sets of
development and
testing tools are
available?

•	 What programming languages are considered?
•	 What third-party libraries and APIs are available?
•	 What open source resources are available? Open source

licensing models should be carefully evaluated before you
consider using tools for commercial development.

•	 What unit testing tools are available?
•	 What plugins or rapid development tools are available?

Does development
require integration
with third-party
(vendors, partners,
and clients)?

•	 Will third-party systems test/stage environments
be required for development?

•	 Are these systems documented, and is this
documentation available?

•	 Is there a need for cooperation with third-party
development or support teams?

In case of service-
oriented architecture,
what are the
service versioning
procedures?

•	 Can a service be upgraded to a new version seamlessly
without breaking operations?

•	 Can several versions of the same service operate
simultaneously?

•	 How do service consumers distinguish between the
versions of the same service?

What is the
service retirement
procedure?

•	 Can a service be retired seamlessly without
breaking operations?

•	 How does it affect service consumers?
What service
discovery
mechanism is
provided?

•	 Is a service registry available within the
proposed technology?

•	 Is an automated discovery available?
•	 Is a standard discovery mechanism available,

such as UDDI?

Solution Decision Framework

[24]

Solution operation aspects
Even after we have satisfied our design and implementation needs, we absolutely
must consider the operational aspects of the proposed solution. Although the project
delivery team inevitably moves on to other work after a successful deployment,
the actual solution might remain in a production state for years. If we have a grand
architecture that is constructed cleanly but is an absolute nightmare to maintain,
then we should consider the project failed. There are many examples of solutions
like this. Consider, for instance, a system that provides sophisticated calculations,
requires high-end computers for this purpose, but has a small number of servers.
If an architect suggests that the organization should utilize Microsoft System Center
for monitoring, it would create a nightmare for the operations team. The System
Center is a very large tool, even formal training for the team would take a week or
two, and the learning curve would be very steep. And at the end of the day, maybe
only 5 percent of the System Center capabilities will be utilized.

Operational concerns directly affect the solution design. These factors, often gathered
through nonfunctional requirements, have a noticeable effect on the architecture of
the entire system.

Areas of consideration Description
Performance indicators
provide essential
information about the
system behavior. Can
they be captured and
monitored?

•	 What exactly are the metrics that can be monitored
(the throughput, latency, or number of simultaneous
users)?

•	 What are the delivery mechanisms (file, database,
or SNMP)?

•	 Can the data be exported in a third-party monitoring
system (Microsoft SCOM, VMware Hyperic,
or Splunk)?

Can the hardware and
virtual machine health
status be captured and
monitored?

•	 What exactly are the metrics that can be monitored
(the CPU usage, memory usage, CPU temperature,
or disk I/O)?

•	 What are the delivery mechanisms (file, database,
or SNMP)?

•	 Can the data be exported in a third-party
monitoring system (Microsoft SCOM,
VMware Hyperic, or Splunk)?

Chapter 1

[25]

Areas of consideration Description
In the case of a
service-oriented
architecture, can the
service behavior be
captured and monitored?

•	 What exactly are the metrics that can be monitored
(# of requests for a given time interval, # of policy
violations, # of routing failures, minimum, maximum,
and average frontend response times, minimum,
maximum, and average backend response times,
and the percentage of service availability)?

•	 What are the delivery mechanisms (file, database,
or SNMP)?

•	 Can the data be exported in a third-party monitoring
system (Microsoft SCOM, VMware Hyperic,
or Splunk)?

What kind of
performance and
health reports should
be provided?

•	 Daily, weekly, or monthly?
•	 Aggregated by server, by application, by service,

or by operation?

What kind of notification
system should be
provided?

•	 What is the delivery mechanism (e-mail or SMS) used?
•	 Is it integrated with a communication system such as

Microsoft Exchange?
Are any dashboard and
alerts required?

•	 Does the real-time monitor (dashboard) require data
aggregation?

•	 What kind of metric thresholds should be configurable?
What are the backup and
restore procedures?

•	 What maintenance window (if any) is required for
the backup?

•	 Do the backup or restore procedures require
integration with third-party tools?

What are the software
upgrade procedures?

•	 What maintenance window (if any) is required for
the version upgrade?

•	 How does the upgrade affect the disaster recovery
environment?

•	 What are the procedures of license changes?
Do they require any maintenance window?

What are the certificate
maintenance procedures?

•	 How often are the certificates updated; every year,
every three years, or never?

•	 Does the certificate update require service interruption?

Solution Decision Framework

[26]

Applying the framework
So what do we do with all this information? In each of the "pattern chapters" of
this book, you will find us using this framework to evaluate the use case at hand
and proposing viable candidate architectures. We will have multiple candidate
architectures for each use case and, based on which underlying product is the
best fit, go down the path of explaining this specific solution.

So, how do we determine the best fit? As we evaluate each candidate architecture,
we'll be considering the preceding questions and determining whether the product
that underlies our solution meets the majority of the criteria for the use case.
Using the next representation, we'll grade each candidate architecture in the four
technology evaluation dimensions. The architecture that is the most compatible
with the use case objectives will win.

In the next chapters, we will use the icons presented in the following table to indicate
the overall evaluation of the technologies:

Icon Description

This icon will indicate that the technology
has more pros than cons with regard to a
specific dimension, such as organizational,
design, implementation, or operations

This icon will indicate that the technology
does not fit with regard to a specific
dimension

Chapter 1

[27]

Summary
A common methodology to evaluate solution requirements against product
capabilities will go a long way towards producing consistent, reliable results.
Instead of being biased towards one product for every solution, or simply being
unaware of a better match in another software offering, we can select the best
software depending on its key capabilities for our client's solution.

In the next set of chapters, we'll introduce you to these core Microsoft application
platform technologies and give you a taste as to what they are good at. While these
primers are no more than cursory introductions to the products, they should give
you the background necessary to understand their ideal usage scenarios, strengths,
and weaknesses.

Later in this book, when we discuss different Microsoft applications and
technologies, we shall build a taxonomy of Microsoft products, which will
help architects navigate in the ocean of software tools.

The .NET Framework Primer
The .NET Framework (.NET) is the most popular technology for developing
applications for the Microsoft Platform. .NET has been in existence for over a
decade and, with the recent release of Version 4.5.1, is in its eighth major release.
It is unarguably one of the most comprehensive development platforms in
existence today.

The .NET Framework consists of a runtime environment called the Common
Language Runtime (CLR), a standard library called the Base Class Library (BCL),
and a complex hierarchy of higher-level libraries for developing applications that
target Microsoft's mobile, desktop, video game console, server, cloud operating
systems, products, and services. Third-party versions of the .NET Framework
also exist for non-Microsoft platforms, including OS X, iOS, Linux, and Android
(http://xamarin.com).

The CLR provides a virtual execution environment for all .NET applications;
this includes a common type system, self-tuning memory management,
optimized just-in-time compilation, exception handling, security, and debugging
capabilities. As the name of the CLR implies, .NET applications can be written in
one or more of nearly 40 programming languages (refer to the Wikipedia page at
http://en.wikipedia.org/wiki/List_of_CLI_languages), though some may
require additional runtime components, including the Dynamic Language Runtime.
Volumes could be, and have been, written about the internals of the CLR and each
of the aforementioned programming languages, so these topics will not be covered
in any detail in this chapter.

A few lines of code (see the DotNetStats code sample) reveal that Version 4.5.1 of
the .NET Framework includes some 261 assemblies that contain 627 namespaces;
11,627 classes; 2,297 value types; 1,012 interfaces; 1,929 enumerated types; 439,341
methods; and 113,075 properties. The aforementioned totals do not include private
or internal types or members and are based on the .NET 4.5.1 Release Candidate.

www.allitebooks.com

http://xamarin.com
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://www.allitebooks.org

The .NET Framework Primer

[30]

Deciding which of these many APIs within the .NET Framework to use in an
application or system can be a daunting task. The reason is not only the size of the
Framework but also because the Framework often provides multiple mechanisms
to deliver the same capability, with each mechanism having different strengths,
weaknesses, and idiosyncrasies. There are a lot of well-written, comprehensive
publications and materials that exhaustively enumerate and explain the use of every
assembly, type, and method in the .NET Framework (and its sometimes-fuzzy
periphery). There are also very detailed tomes dedicated to some of the more complex
.NET APIs, for example, ASP.NET MVC, Windows Communication Foundation,
and Windows Presentation Foundation. The intent of this chapter is not to attempt
to replicate them, but to give software architects and developers a framework to
evaluate and select the APIs from .NET that are appropriate for the applications
that they are developing.

An evaluation framework for .NET
Framework APIs
Understanding the .NET Framework in its entirety, including keeping track of
the APIs that are available in various versions (for example, 3.5, 4, 4.5, 4.5.1, and
so on, and platforms such as Windows 8, Windows Phone 8, and Silverlight 5) is
a near impossible undertaking. What software developers and architects need is
a high-level framework to logically partition the .NET Framework and identify the
APIs that should be used to address a given requirement or category of requirements.

API boundaries in the .NET Framework can be a little fuzzy. Some logical APIs
span multiple assemblies and namespaces. Some are nicely contained within a neat
hierarchy within a single root namespace. To confuse matters even further, single
assemblies might contain portions of multiple APIs. The most practical way to
distinguish an API is to use the API's root namespace or the namespace that contains
the majority of the API's implementation. We will point out the cases where an API
spans multiple namespaces or there are peculiarities in the namespaces of an API.

Evaluation framework dimensions
The dimensions for the .NET Framework API evaluation framework are as follows:

•	 Maturity: This dimension indicates how long the API has been available,
how long it has been part of the .NET Framework, and what the API's
expected longevity is. It is also a measure of how relevant the API is or
an indication that an API has been subsumed by newer and better APIs.

Chapter 2

[31]

•	 Productivity: This dimension is an indication of how the use of the API will
impact developer productivity. This dimension is measured by how easy
the API is to learn and use, how well known the API is within the developer
community, how simple or complex it is to use, the richness of the tool
support (primarily in Visual Studio), and how abstract the API is, that is,
whether it is declarative or imperative.

•	 Performance: This dimension indicates whether the API was designed
with performance, resource utilization, user interface responsiveness,
or scalability in mind; alternatively, it indicates whether convenience,
ease of use, or code pithiness were the primary design criteria, which
often comes at the expense of the former.

•	 Availability: This dimension indicates whether the API is available only on
limited versions of the .NET Framework and Microsoft operating systems,
or whether it is available everywhere that managed code is executed,
including third-party implementations on non-Microsoft operating
systems, for example, Mono on Linux.

Evaluation framework ratings
Each dimension of the API evaluation framework is given a four-level rating.
Let's take a look at the ratings for each of the dimensions.

The following table describes the ratings for Maturity:

Rating Glyph Description
Emerging This refers to a new API that was either

added to the .NET Framework in the last
release or is a candidate for addition in
an upcoming release that has not gained
widespread adoption yet. This also includes
APIs that are not officially part of the .NET
Framework.

New and
promising

This is an API that has been in the .NET
Framework for a couple of releases; it is
already being used by the community in
production systems, but it has yet to hit the
mainstream. This rating may also include
Microsoft APIs that are not officially part of
.NET, but show a great deal of promise, or
are being used extensively in production.

The .NET Framework Primer

[32]

Rating Glyph Description
Tried and
tested

This is an API that has been in the .NET
Framework for multiple releases, has
attained very broad adoption, has been
refined and improved with each release,
and is probably not going to be subsumed
by a new API or deprecated in a later
version of the Framework.

Showing
its age

The API is no longer relevant or has
been subsumed by a superior API, entirely
deprecated in recent versions of .NET, or
metamorphosed\merged into a new API.

The following table describes the ratings for Productivity:

Rating Glyph Description
Decrease This is a complex API that is difficult to

learn and use and not widely understood
within the .NET developer community.
Typically, these APIs are imperative, that
is, they expose the underlying plumbing
that needs to be understood to correctly
use the API, and there is little or no tooling
provided in Visual Studio. Using this API
results in lowered developer productivity.

No or little
impact

This API is fairly well known and used by
the .NET developer community, but its use
will have little effect on productivity, either
because of its complexity, steep learning
curve, and lack of tool support, or because
there is simply no alternative API.

Increase This API is well known and used by the
.NET developer community, is easy to
learn and use, has good tool support, and is
typically declarative; that is, the API allows
the developer to express the behavior they
want without requiring an understanding
of the underlying plumbing, and in
minimal lines of code too.

Chapter 2

[33]

Rating Glyph Description
Significant
increase

This API is very well known and used
in the .NET developer community, is
very easy to learn, has excellent tool
support, and is declarative and pithy.
Its use will significantly improve
developer productivity.

The following table describes the ratings for Performance and Scalability:

Rating Glyph Description
Decrease The API was designed for developer

productivity or convenience and will
more than likely result in the slower
execution of code and the increased
usage of system resources (when
compared to the use of other .NET
APIs that provide the same or similar
capabilities). Do not use this API if
performance is a concern.

No or little
impact

The API strikes a good balance
between performance and developer
productivity. Using it should not
significantly impact the performance
or scalability of your application. If
performance is a concern, you can use
the API, but do so with caution and
make sure you measure its impact.

Increase The API has been optimized for
performance or scalability, and it
generally results in faster, more scalable
code that uses fewer system resources.
It is safe to use in performance-sensitive
code paths if best practices are followed.

Significant
increase

The API was designed and written
from the ground up with performance
and scalability in mind. The use of
this API will result in a significant
improvement of performance and
scalability over other APIs.

The .NET Framework Primer

[34]

The following table describes the ratings for Availability:

Rating Glyph Description
Rare The API is available in limited versions

of the .NET Framework and on limited
operating systems. Avoid this API if
you are writing code that needs to be
portable across all platforms.

Limited This API is available on most versions
of the .NET Framework and Microsoft
operating systems. It is generally safe
to use, unless you are targeting very
old versions of .NET or Microsoft
operating systems.

Microsoft
only

This API is available on all versions of
the .NET Framework and all Microsoft
operating systems. It is safe to use
if you are on the Microsoft platform
and are not targeting third-party CLI
implementations, such as Mono.

Universal The API is available on all versions
of .NET, including those from third
parties, and it is available on all
operating systems, including non-
Microsoft operating systems. It is
always safe to use this API.

The .NET Framework
The rest of this chapter will highlight some of the more commonly used APIs within
the .NET Framework and rate each of these APIs using the Evaluation framework
described previously.

The Base Class Library
The Base Class Library (BCL) is the heart of the .NET Framework. It contains base
types, collections, and APIs to work with events and attributes; console, file, and
network I/O; and text, XML, threads, application domains, security, debugging,
tracing, serialization, interoperation with native COM and Win32 APIs, and the other
core capabilities that most .NET applications need. The BCL is contained within the
mscorlib.dll, System.dll, and System.Core.dll assemblies.

Chapter 2

[35]

The mscorlib.dll assembly is loaded during the CLR Bootstrap (not by the CLR
Loader), contains all nonoptional APIs and types, and is universally available in every
.NET process, such as Silverlight, Windows Phone, and ASP.NET. Optional BCL APIs
and types are available in System.dll and System.Core.dll, which are loaded on
demand by the CLR Loader, as with all other managed assemblies. It would be a
rare exception, however, when a .NET application does not use either of these two
aforementioned assemblies since they contain some very useful APIs. When creating
any project type in Visual Studio, these assemblies will be referenced by default.

For the purpose of this framework, we will treat all of the BCL as a logical unit
and not differentiate the nonoptional APIs (that is, the ones contained within
mscorlib.dll), from the optional ones. Despite being a significant subset of the
.NET Framework, the BCL contains a significant number of namespaces and
APIs. The next sections describe a partial list of some of the more notable
namespaces/APIs within the BCL, with an evaluation for each.

The System namespace
The System namespace is both the root namespace for the .NET Framework and
contains the basic building blocks of the .NET Framework, including System.
Object, the mother of all types in .NET. It contains "built-in" types, such as System.
Boolean, System.Int32, System.Int64, and System.String, and arrays of these
types. It also contains interfaces, classes, and value types / structs that are used
throughout the rest of the framework. The direct contents of the System namespace
have been stable since the very early days of .NET; are very well known to
developers; are highly optimized for performance and resource utilization;
and are available on all platforms, though pruned-down a little in some cases.

The following table shows the evaluation of the System namespace:

Maturity Productivity Performance Availability

The .NET Framework Primer

[36]

The System.Text namespace
The System.Text namespace contains APIs for converting one text encoding to
another, primarily to and from Unicode—the encoding used in .NET strings.

System.Text also contains the StringBuilder class, which—unlike System.
String—is mutable. Almost every time you modify a string value in .NET, it results
in at least one new string being created. This leaves a lot of garbage around for the
Garbage Collector to clean up. Using StringBuilder instead can, therefore, result
in significant performance gain and a reduction in memory usage, particularly in
string-processing-heavy workloads. The StringBuilder class should be used when
strings are being concatenated or manipulated, and particularly when single strings
are being modified in each iteration of one of more loops.

The System.Text API is very stable, very well known, was designed with
performance in mind, and is available with all versions of .NET, on all platforms.
The use of StringBuilder when creating strings is probably the most well-known
.NET best practice.

The following table shows the evaluation of the System.Text namespace:

Maturity Productivity Performance Availability

The System.IO namespace
System.IO contains APIs to read and write to and from streams, and perform
operations on files and directories in the filesystem. It is the only game in town
for doing low-level I/O operations (unless you want to resort to COM Interop or
Platform Invoke). The majority of the APIs in this namespace are as old as the .NET
Framework, and they are very stable, highly optimized, and very well understood.
System.IO is also available in all of the versions of .NET, on all Microsoft platforms,
and in all CLI implementations.

Chapter 2

[37]

The following table shows the evaluation of the System.IO namespace:

Maturity Productivity Performance Availability

The System.Net namespace
The System.Net namespace contains APIs for communicating between network
clients and servers. It includes support for several, relatively low-level protocols,
including DNS, HTTP, FTP, SMTP, and MIME. It also includes a managed
implementation of the Windows Socket API and APIs to perform peer-to-peer
networking. Though System.Net has been part of .NET since its first release,
newer APIs are available, including ASP.NET Web APIs and WCF, which hide
many of the details of their communication with other devices over the network.
Unless you need to do relatively low-level network operations, implement a custom,
high-performance protocol, or do not control both client and server, you should
consider using a higher-level API such as WCF.

The following table shows the evaluation of the System.Net namespace:

Maturity Productivity Performance Availability

The System.Collections namespace
The System.Collections namespace contains nongeneric, non-thread-safe
collections, for example, ArrayList, Hashtable, Queue, and Stack. These collections
only contain objects, so the use of these collections requires implicit or explicit casting
when removing or reading items, which requires relatively expensive type checking.

The .NET Framework Primer

[38]

They have been around since the beginning of .NET, so they are very well known,
stable, and have been optimized for performance, but they have been entirely
subsumed by System.Collections.Generic, and more recently by System.
Collections.Concurrent and System.Collections.Immutable, for cases
where thread-safety is required.

The following code, from the PerformanceMeasurement sample, demonstrates the
performance differences between generic and nongeneric collections. When comparing
the performance (average elapsed CPU "ticks") of the methods mentioned in the
following code, we see that the CreateAndEnumerateGenericList method performs
two to three times faster than CreateAndEnumerateList and uses less memory:

private static int CreateAndEnumerateList(int maxValue)
{
 var list = new System.Collections.ArrayList(maxValue);
 foreach (var val in Enumerable.Range(0, maxValue))
 {
 list.Add(val);
 }
 var total = 0;
 foreach (int val in list) //implicit type conversion
 {
 total += val;
 }
 return total;
}

private static int CreateAndEnumerateGenericList(int maxValue)
{
 var list = new List<int>(maxValue);
 foreach (var val in Enumerable.Range(0, maxValue))
 {
 list.Add(val);
 }
 var total = 0;
 foreach (var val in list) //no type conversion required
 {
 total += val;
 }
 return total;
}

Chapter 2

[39]

Unlike their generic counterparts in System.Collections.Generic, all of which
implement the IEnumerable<T> interface, the collections in System.Collections do
not work directly with Language Integrated Query (LINQ). Therefore, unless you
are targeting the .NET Framework with a language that does not support parametric
polymorphism (generics) and does not provide its own collections, you should avoid
using System.Collections and use System.Collections.Generic instead.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

The following table shows the evaluation of the System.Collections namespace:

Maturity Productivity Performance Availability

The System.Collections.Generic namespace
The System.Collections.Generic namespace contains collections that are
customized at the time of JIT compilation for the type that they are going to contain.
Also in this namespace is the IEnumerable<T> interface; generic collections
implement it and it is the interface that most LINQ methods operate on.

As was demonstrated earlier, these generic collections are more efficient than
their nongeneric counterparts. The only thing to be aware of when using generic
collections, in general, is that they result in an increase in overall code size, since
the JIT has to compile a unique version of the code for each combination of types
that are passed as arguments to the generic type or method. This is very rarely an
issue in light of the other gains associated with using generics.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

The .NET Framework Primer

[40]

The collections contained within the System.Collections.Generic namespace are
not thread-safe; if they are going to be accessed from multiple threads, the developer
has to explicitly use synchronization primitives, for example, a monitor (used in the
C# lock statement) or an instance of the ReaderWriterLockSlim class to ensure
that the contents of the collections remain in a coherent state. As of Version 4.0,
.NET includes the System.Collections.Concurrent API, which contains
inherently thread-safe collections.

The collections in the System.Collections.Generic API are as mature,
stable, and well understood as their nongeneric counterparts, but they provide
significant performance benefits. They should be your default choice for collections
if thread-safety is not an issue. This API is available with .NET 2.0 and above and
on all platforms.

The following table shows the evaluation of the System.Collections.Generic
namespace:

Maturity Productivity Performance Availability

The System.Collections.Concurrent namespace
Multithreaded, task- and data-parallel programming has become very common in
this age of multicore and many-core, but it still remains one of the more difficult,
error-prone areas of software development. Microsoft has gone to great lengths
to make the writing of multithreaded code easier, including adding Task Parallel
Library (TPL) and Parallel LINQ (PLINQ) to .NET. To make the data parallelism
part that much easier, it has also added a library of inherently thread-safe, generic
collections and the building blocks to build your own. These collections are
contained within the System.Collections.Concurrent namespace and include a
lock-free, concurrent Queue and Stack and a number of other concurrent collection
types that use lightweight locking internally.

Though this API was only added in .NET 4.0, it is already being used fairly
extensively in new applications because of its obvious benefits in multithreaded
code. Despite their novelty, using these APIs will save developers a lot of
potential headaches and time related to debugging multithreaded Heisenbugs
(http://en.wikipedia.org/wiki/Heisenbug).

http://en.wikipedia.org/wiki/Heisenbug

Chapter 2

[41]

Also, if used correctly, these collections will result in a significant performance
gain when compared to using System.Collections.Generic collections with a
thread synchronization primitive from System.Threading, for example, Monitor
or ReaderWriterLockSlim.

The following table shows the evaluation of the System.Collections.Concurrent
namespace:

Maturity Productivity Performance Availability

Another approach to thread-safety, borrowed from functional
programming, is to use read-only or immutable collections.
Read-only collections have been available for a while in the
System.Collections.ObjectModel namespace, but Microsoft
has recently introduced modifiable immutable collections to .NET
in the System.Collections.Immutable namespace.
The term "modifiable immutable collections" may seem to be a
contradiction, but it is not; these collections can be modified, but
those modifications are always local to the current thread and are,
therefore, inherently thread-safe. From each thread's perspective,
they have their own snapshot of the collection that they can safely
operate on. Programming with immutable types turns out to
be very useful in multithreaded programming, as the emerging
functional programming fad has demonstrated.
Immutable collections are currently a release candidate (RC) and
available via NuGet, but will probably be formally included in
an upcoming release of .NET.

The System.Linq namespace
The System.Linq namespace contains the LINQ API. LINQ, introduced in
.NET 3.5, brings some very useful features from functional programming to
historical object-oriented languages (such as VB.NET and C#), and also adds
novel query capabilities to all .NET languages. This includes multiple, handy
extension methods that implement the IEnumerable<T> and IQueryable<T>
interfaces, lambda expressions, and a generalized expression-processing mechanism
that allows query expressions to be transformed into technology-specific queries at
runtime, for example, T-SQL.

The .NET Framework Primer

[42]

Using LINQ results in very pithy code, but developers should be aware that the
convenience of using LINQ usually comes at a significant performance cost.

A demonstration of the potential performance impact of using LINQ has been
included in the PerformanceMeasurement sample. This sample includes a number
of tests that measure the performance of various approaches to iterating over a
collection of collections using LINQ, a foreach loop, an incremented for loop,
and a decremented for loop. Running the sample shows that the decremented for
loop (which is the fastest) is about five times faster than the LINQ implementation.
Though you may get slightly different numbers, they should still reveal the
potential performance cost of using LINQ, so carefully consider this before using it
in performance-sensitive code paths! There are some cases where using LINQ will
result in faster code, but this is an exception rather than the rule.

When doing performance measurement, remember that, if a
debugger is attached to a .NET process, even a Release build, the
JIT compiler will not emit optimized code. Nonoptimized code
will yield very different results. As an experiment, try running
the Release build of the PerformanceMeasurement sample in
Visual Studio with the F5 key (Start Debugging) and then with
F7 (Start without Debugging), and notice the difference in the
results produced.

The System.Linq namespace also includes the PLINQ API, which provides
extension methods to perform concurrent operations over collections that implement
IEnumerable<T>. PLINQ is implemented using the Task Parallel Library (TPL).
This API is a very powerful tool to improve the performance of code using
parallelization, but its mere use does not guarantee performance improvement; the
naïve use of PLINQ or naïve data partitioning can significantly worsen performance.

LINQ is now an integral part of the .NET Framework and is used in many
.NET, third-party, and custom APIs. It is mature and stable, and its use is almost
ubiquitous in the .NET developer community, though a deep knowledge of its inner
workings is rare. It is also available on most versions of .NET and on all platforms.

Chapter 2

[43]

The following table shows the evaluation of the System.Linq namespace:

Maturity Productivity Performance Availability

The System.Xml namespace
When the first version of the .NET Framework was released into the wild in 2002,
XML was already the lingua franca of the Internet, so support for the human-
readable markup language was woven deeply into the very fabric of .NET. The
System.Xml namespace contains APIs that have been around since the original
release, though they have been highly optimized over the many releases of .NET,
and new capabilities have been added continually.

The popularity of XML has been slowly waning for some time. It used to be that
developers were prepared to pay the relatively high cost of serialization to a human-
readable format. It is now generally the volume of data that makes it practically
unreadable by humans, rather than that data's formatting. That said, XML is going
to be with us for a while; so if your application is XML heavy, then System.Xml
contains the APIs that you need.

Though System.Xml is relatively well understood in the .NET developer community,
provides highly performance optimized APIs, and is available everywhere, it is more
imperative than declarative and does not shield the developer from the complexities
and subtleties of XML, XSD, XSLT (a Turing-complete language in its own right),
XPath, and the DOM. These subtleties can result in buggy code and reduced
developer productivity. If developer performance is not a major concern, and
developer productivity is key, then System.Xml.Linq provides XML APIs for you.

The .NET Framework Primer

[44]

The following table shows the evaluation of the System.Xml namespace:

Maturity Productivity Performance Availability

The System.Xml.Linq namespace
The System.Xml.Linq namespace contains the LINQ to XML API. This relatively
new API, added in .NET 3.5, gives developers the power and expressiveness of LINQ
when working with XML. This includes novel types and methods to create, query,
manipulate, and transform XML. LINQ to XML also enables a very pithy syntax to
Visual Basic to work with XML; the VB compiler now natively understands literal
XML. Unfortunately, similar additions were not made to C#, perhaps because angle
brackets were already being used for generics, though using System.Xml.Linq still
results in significantly reduced code when compared to an equivalent implementation
that just uses System.Xml APIs.

The following code snippet shows how simple is it to create a new XML document
using the LINQ to XML API:

XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-16", "true"),
 new XElement("ParentNode",
 new XElement("ChildNode",
 new XAttribute("name", "child1"),
 new XElement("decription", "Child Node 1")),
 new XElement("ChildNode",
 new XAttribute("name", "child2"),
 new XElement("decription", "Child Node 2")),
 new XComment("Child Node 2 is special.")
));

This generates the following XML code when written to a string or file:

<?xml version="1.0" encoding="utf-16"?>
<ParentNode>
 <ChildNode name="child1">

Chapter 2

[45]

 <decription>Child Node 1</decription>
 </ChildNode>
 <ChildNode name="child2">
 <decription>Child Node 2</decription>
 </ChildNode>
 <!--Child Node 2 is special.-->
</ParentNode>

Creating the same document with System.Xml.XmlDocument would require twice
the number of lines of code! It is also interesting to note that the LINQ to XML code
is faster than the System.Xml equivalent.

Also, see the preceding code in the XmlApiComparison sample. Note how the
structure of the code recapitulates the structure of the resulting XML document.

LINQ to XML is a relatively new API, but it has been very widely adopted and
has proven itself in many real-world applications. It should significantly improve
developer productivity because of its simplified syntax; though it may have a small
negative impact on performance in some cases, this is well worth the other gains.

The following table shows the evaluation of the System.Xml.Linq namespace:

Maturity Productivity Performance Availability

The System.Security.Cryptography namespace
It is almost a golden rule that one should strongly resist the temptation to write
custom thread synchronization primitives or cryptography; one is bound to get
it subtly wrong, and it generally leads to catastrophe. The System.Security.
Cryptography namespace contains the Cryptographic Services API; if you need to
do cryptographic operations, including hash, encrypt or decrypt data, or generate
strong random numbers in your application, then you should definitely use this API.

System.Security.Cryptography is mature and stable, is relatively well known
in the developer community, has been optimized for performance, and is available
on all versions of .NET on all platforms. If you are targeting .NET for Windows
Store Apps, then a subset of the API is available in the Windows.Security.
Cryptography namespace.

The .NET Framework Primer

[46]

The following table shows the evaluation of the System.Security.Cryptography
namespace:

Maturity Productivity Performance Availability

The System.Threading namespace
System.Threading is one of the most "dangerous" namespaces in the
.NET Framework, and it contains everything you need to add concurrency
(and hopefully performance and scalability) to your application or break it in
completely mind-boggling ways. It contains classes to create your own threads,
queue work to run on/in the thread pool, and synchronize activity across threads.

Multithreaded programming can be hard to get exactly right, and Microsoft
has gone to great lengths to provide a number of abstractions to make data- and
task-parallel programming easier and safer. So, unless you need fine-grained
control of concurrency in your application, you should consider avoiding creating
and managing your own threads directly using the APIs in the System.Threading
root namespace; instead, make use of the Task Parallel Library, PLINQ, and
System.Collections.Concurrent APIs.

The following table shows the evaluation of the System.Threading namespace:

Maturity Productivity Performance Availability

The System.Threading.Tasks namespace
The System.Threading.Tasks namespace contains the TPL API. It was introduced
in .NET 4.0 and provides APIs that significantly simplify the tasks associated with
writing multithreaded applications by hiding most of the messy details of task- and
data-parallel programming.

Chapter 2

[47]

The TPL API, which queues work for the thread pool under the covers, dynamically
optimizes its concurrency based on the capabilities of the processor that the code
is running on and automatically partitions data based on the number of threads
available to operate on it. TPL is also extensible, so you can customize the scheduling
and partitioning if you need to.

This new API will save developers a lot of headaches writing, debugging,
and maintaining multithreaded code and, if used appropriately, it will result
in significant performance gain. It is available in .NET 4.0 and above on all
platforms, including Mono.

The following table shows the evaluation of the System.Threading.Tasks
namespace:

Maturity Productivity Performance Availability

The System.ServiceProcess namespace
The .NET Framework offers a myriad of ways to host your code: a console
application, a rich client application, Silverlight, Windows Process Activation
Service (WAS), Internet Information Server (IIS), AppFabric (Windows Azure
and Windows Server), or a Windows Service. If your application is long-running,
its lifetime is tightly linked to its host operating system, it doesn't need the
sophisticated services provided by a host such as IIS, and it doesn't need to
interact with the desktop, then a good place to host it is in a Windows Service; the
System.ServiceProcess namespace contains all of the APIs you need to do so.

The System.ServiceProcess API has been in .NET since the very beginning, so
it is mature, stable, and very well known in the developer community. The API
is relatively simple, so its use should result in improved developer productivity.
Windows Services are a good place to host performance-critical code, but it is
entirely the developer's responsibility to ensure that their service delivers the
performance that they need. The System.ServiceProcess namespace is available
in all versions of .NET on most platforms that include Mono but not Silverlight,
Windows Phone, or .NET for Windows Store Apps.

The .NET Framework Primer

[48]

The following table shows the evaluation of the System.ServiceProcess namespace:

Maturity Productivity Performance Availability

The System.ComponentModel.Composition
namespace
The System.ComponentModel.Composition namespace contains the Microsoft
Extensibility Framework (MEF), which provides lightweight dependency injection
for .NET applications. MEF, which was first introduced in .NET 4.0, was originally
limited to an attribute-based programming model. However, as of .NET 4.5, you can
either use the simple Import and Export attributes to inject instances based on type,
contract, or both, or you can use an explicit API to inject types based on whatever
criteria you choose.

Historically, MEF lacked some of the features of more mature dependency injection
or Inversion of Control (IoC) containers, such as Castle Windsor, Ninject, or Unity;
however, with the release of .NET 4.5, MEF has played some catch-up. Though
MEF is a relatively new API, it has proven that it is ready to be used in real-world
applications; since the .NET 4.5 release, it should be considered a mature API.

MEF adoption has been relatively limited to date, but many developers are
familiar with similar dependency injection APIs and will understand MEF
immediately. MEF has a negligible performance impact in most cases, and it
improves developer productivity since it simplifies code and enforces Separation
of Concerns (SoC). MEF is available in .NET 4.0 and above and on most platforms,
including Mono. For .NET for Windows Store Apps applications, an explicit
import of the Microsoft.Composition (NuGet) package is required to use MEF,
and the API is located in the System.Composition namespace rather than
System.ComponentModel.Composition.

Chapter 2

[49]

The following table shows the evaluation of the System.ComponentModel.
Composition namespace:

Maturity Productivity Performance Availability

The System.ComponentModel.DataAnnotations
namespace
The System.ComponentModel.DataAnnotations namespace, which was introduced
in .NET 3.5, provides a primarily attribute-based API for adding metadata to types.
One of its primary uses is to express validation criteria for properties that can be
evaluated by consumers of that type at runtime. The API includes attributes to
indicate required values, valid value ranges, string lengths, regular expressions,
and even credit card and phone numbers. It also includes APIs to evaluate the
validity of types that are decorated with these attributes.

ASP.NET, WPF, Silverlight, and Entity Framework use these data annotations
in their validation controls and logic. You can also use DataAnnotations in your
own framework, but you will have to wire up the validation yourself even though
this is relatively simple.

This is a relatively mature, stable API, and many developers are familiar with its
use. This API makes for very clean code and improved developer productivity since
developers do not need to write or maintain complex validation logic for every type
or use case. The use of this API should have a negligible impact on performance.
The DataAnnotations API is available in .NET 3.5 and above on all platforms,
including Mono.

The following table shows the evaluation of the System.ComponentModel.
DataAnnotations namespace:

Maturity Productivity Performance Availability

www.allitebooks.com

http://www.allitebooks.org

The .NET Framework Primer

[50]

ADO.NET
Most computer programs are meaningless without appropriate data to operate over.
Accessing this data in an efficient way has become one of the greatest challenges
modern developers face as the datasets have grown in size, from megabytes, to
gigabytes, to terabytes, and now petabytes, in the most extreme cases, for example,
Google's search database is around a petabyte. Though relational databases no
longer hold the scalability high ground, a significant percentage of the world's data
still resides in them and will probably continue to do so for the foreseeable future.
ADO.NET contains a number of APIs to work with relational data and data provider
APIs to access Microsoft SQL Server, Oracle Database, OLEDB, ODBC, and SQL
Server Compact Edition.

The System.Data namespace
Sometimes referred to as "classic ADO.NET", the System.Data namespace contains
APIs to access data in relational databases. It is primarily an imperative API and
exposes many of the underlying relational database concepts, including tables,
columns, rows, relationships, T-SQL, and stored procedures.

Classic ADO.NET is very stable, is very well known in the developer community,
has been highly optimized for performance, and is available in all versions of .NET
on all platforms. The API does, however, require that a developer write custom code
to transform relational data to and from objects; this can be very time-consuming
and error-prone, and the resulting code can be brittle in the face of changes to the
underlying relational schema. Therefore, it is costly to maintain. Classic ADO.NET still
has it uses, particularly if high performance is a requirement, but in the vast majority of
cases, developers should strongly consider using the Entity Framework API instead.

The following table shows the evaluation of the System.Data namespace:

Maturity Productivity Performance Availability

Chapter 2

[51]

The System.Data.Entity namespace
The System.Data.Entity namespace contains the ADO.NET Entity
Framework (EF) API. For many years, .NET developers had to write (or borrow)
an application-specific data access layer (DAL) for their applications using "classic"
ADO.NET and were forced to think about tables, relationships, T-SQL, and the
relational algebra, while the rest of their application was composed of object-oriented
types written in C# or VB.NET. Entity Framework is an API that hides all of the
relational algebra from developers and allows them to think in terms of objects
and LINQ queries.

Though third-party Object-Relational (O/R) mapping technologies have been
around since the early days of .NET, Entity Framework was only released in
Version 3.5 SP1 of the .NET Framework and has only achieved community
acceptance and broad adoption fairly recently. Frameworks such as ASP.NET
MVC use Entity Framework as their default data access technology as it is very
convenient to store model data.

Entity Framework is now relatively mature, stable, and provides relatively high
performance. It provides excellent tooling and makes creating new databases
or using existing ones very simple, though low-level access is always available
to mappings if required. EF is available in .NET 3.5 SP1 and above and on all
platforms, including Mono.

As of Version 6.0, Entity Framework has been made open source.
It will ship out-of-band with the .NET Framework and will be
available as a NuGet package. This change has necessitated a
number of namespace changes.

The following table shows the evaluation of the System.Data.Entity namespace:

Maturity Productivity Performance Availability

The .NET Framework Primer

[52]

The System.Data.Linq namespace
The System.Data.Linq namespace contains the LINQ to SQL API. This API,
was introduced in .NET 3.5, provides an alternate O/R mapping API to EF. Despite
being very slightly older than Entity Framework (by only a single service pack) and
becoming quite popular in the developer community, it has been almost entirely
eclipsed by Entity Framework. Though not officially deprecated by Microsoft, no
significant enhancements have been made to the API in recent releases of .NET.
Despite how popular it has become, it is best avoided for new applications, given its
uncertain future. Microsoft is making significant investments in Entity Framework,
and it is now a far more mature and feature-rich API than LINQ to SQL; EF is clearly
the better choice.

The following table shows the evaluation of the System.Data.Linq namespace:

Maturity Productivity Performance Availability

The System.Data.Services namespace
The System.Data.Services namespace contains the Windows Communication
Foundation (WCF) Data Services API, which provides APIs to create, query, and
consume data using the RESTful Open Data (OData) protocol. The OData protocol,
which was originally designed by Microsoft, has become an OASIS standard
protocol for data exchange on the Web. More can be read about the OData protocol
at http://www.odata.org.

The WCF Data Services API, which used to be called ADO.NET Data Services,
has been part of .NET since Version 3.5. Despite its standardization and growing
adoption, particularly in the public sector, a deep knowledge of this API is relatively
rare in the developer community. OData, and its .NET implementation, trade off
performance for openness and accessibility, so don't expect lightning performance
from this protocol and API. The OData client APIs are available on all recent
versions of .NET and all Microsoft platforms. The server APIs are available on fewer
Microsoft platforms, and neither client nor server is available for third-party CLI
implementations; that said, a number of third-party, CLI-compliant OData Client
APIs do exist.

http://www.odata.org

Chapter 2

[53]

If you simply want to expose your data via a RESTful API, and don't need OData,
the ASP.NET Web API is probably a better choice.

The following table shows the evaluation of the System.Data.Services namespace:

Maturity Productivity Performance Availability

Windows Forms
Windows Forms (WinForms) was the original API for developing the user interface
(UI) of Windows desktop applications with the .NET Framework. It was released in
the first version of .NET and every version since then.

The System.Windows.Forms namespace
The WinForms API is contained within the System.Windows.Forms namespace.
Though WinForms is a managed API, it is actually a fairly thin façade over
earlier, unmanaged APIs, primarily Win32 and User32, and any advanced use of
WinForms requires a good understanding of these underlying APIs. The advanced
customizations of WinForms controls often require the use of the System.Drawing
API, which is also just a managed shim over the unmanaged GDI+ API.

Many new applications are still developed using WinForms, despite its age
and the alternative .NET user interface APIs that are available. It is a very
well understood API, is very stable, and has been optimized for performance
(though it is not GPU-accelerated like WPF or WinRT). There are a significant
number of vendors who produce feature-rich, high-quality, third-party WinForms
controls, and WinForms is available in every version of .NET and on most platforms,
including Mono.

WinForms is clearly showing its age, particularly when its capabilities are
compared to those of WPF and WinRT, but it is still a viable API for applications that
exclusively target the desktop and where a sophisticated modern UI is not necessary.

The .NET Framework Primer

[54]

The following table shows the evaluation of the System.Windows.Forms namespace:

Maturity Productivity Performance Availability

Windows Presentation Foundation
Windows Presentation Foundation (WPF) is an API, introduced in .NET 3.0,
for developing rich user interfaces for .NET applications, with no dependencies
on legacy Windows APIs and with support for GPU-accelerated 3D rendering,
animation, and media playback. If you want to play a video on a clickable button
control on the surface of an animated, 3D rotating cube and the only C# code you
want to write is the button click event handler, then WPF is the API for the job.
See the WPFSample code for a demonstration.

The System.Windows namespace
The System.Windows namespace contains the Windows Presentation Foundation
API. WPF includes many of the "standard" controls that are in WinForms, for
example, Button, Label, CheckBox, ComboBox, and so on. However, it also includes
APIs to create, animate, and render 3D graphics; render multimedia; draw bitmap
and vector graphics; and perform animation. WPF addresses many of the limitations
of Windows Forms, but this power comes at a price. WPF introduces a number of
novel concepts that developers will need to master, including a new, declarative
UI markup called Extensible Application Markup Language (XAML), new event
handling, data binding and control theming mechanisms, and a variant of the
Model-view-controller (MVC) pattern called Model View ViewModel (MVVM);
that said, the use of this pattern is optional but highly recommended.

WPF has significantly more moving parts than WinForms, if you ignore the
underlying native Windows APIs that WinForm abstracts. Microsoft, though, has
gone to some lengths to make the WPF development experience easier for both UI
designers and developers. Developers using WPF can choose to design and develop
user interfaces using XAML, any of the .NET languages, or most often a combination
of the two. Visual Studio and Expression Blend provide rich WYSIWYG designers
to create WPF controls and interfaces and hide the complexities of the underlying
XAML. Direct tweaking of the XAML is sometimes required for precise adjustments.

Chapter 2

[55]

WPF is now a mature, stable API that has been highly optimized for performance—all
of its APIs are GPU accelerated. Though it is probably not as well known as WinForms,
it has become relatively well known within the developer community, particularly
because Silverlight, which is Microsoft's platform for developing rich web and mobile
applications, uses a subset of WPF. Many of the third-party control vendors who
produce WinForm controls now also produce equivalent WPF controls. The tools for
creating WPF applications, predominantly Visual Studio and Expression Blend, are
particularly good, and there are also a number of good third-party and open source
tools to work with XAML.

The introduction of WinRT and the increasingly powerful capabilities of
web browser technologies, including HTML5, CSS3, JavaScript, WebGL, and
GPU-acceleration, raise valid questions about the long-term future of WPF and
Silverlight. Microsoft seems to be continuing to promote the use of WPF, and even
WinRT supports a variant of the XAML markup language, so it should remain a
viable API for a while.

The following table shows the evaluation of the System.Windows namespace:

Maturity Productivity Performance Availability

ASP.NET
The .NET Framework was originally designed to be Microsoft's first web development
platform, and it included APIs to build both web applications and web services. These
APIs were, and still are, part of the ASP.NET web development framework that lives
in the System.Web namespace. ASP.NET has come a very long way since the first
release of .NET, and it is the second most widely used and popular web framework
in the world today (see http://trends.builtwith.com/framework).

The ASP.NET platform provides a number of complimentary APIs that can be
used to develop web applications, including Web Forms, web services, MVC,
web pages, Web API, and SignalR.

http://trends.builtwith.com/framework

The .NET Framework Primer

[56]

The System.Web.Forms namespace
The System.Web.Forms namespace contains the ASP.NET Web Forms API. The
original goal of the design of this API, which has been in .NET since its very first
release, was to give developers a familiar, symmetrical (across client and server)
WYSIWYG web programming model. Web Forms is a predominantly server-side
technology that used relatively expensive HTTP "post-backs", and more recently,
less-expensive AJAX calls to communicate with the browser and the now-infamous
View State to maintain state across round trips. Web Forms has evolved along with
the Web and has been significantly optimized; despite its popularity, however, it
is beginning to show its age. Modern web developers mostly prefer fine-grained
control, clean abstraction, and high performance from their web frameworks rather
than WYSIWYG web development and a symmetrical programming model.

Web Forms is a very well-known, stable, and mature API, with a substantial,
third-party control ecosystem and excellent WYSIWYG design tools, so developers
can be very productive with it. Web Forms is a good choice if you need to quickly
create relatively-simple web applications, but if you are designing an application for
web scale and performance that provides a high-fidelity experience on all devices,
then Web Forms is probably not the best choice, and you should consider one of the
other ASP.NET APIs.

The following table shows the evaluation of the System.Web.Forms namespace:

Maturity Productivity Performance Availability

The System.Web.Mvc namespace
The System.Web.Mvc namespace contains the ASP.NET MVC API. The model-
view-controller pattern is possibly the most ubiquitous software design pattern
in use today, and it is very appropriate for developing maintainable and testable
web applications. ASP.NET MVC is a strict MVC web application development
framework for .NET that favors convention over code. This API will feel very
familiar to Ruby on Rails developers, which is also based on the MVC pattern and
uses conventions rather than code to improve developer productivity and reduce
the complexity of the code.

Chapter 2

[57]

ASP.NET MVC is a mature, stable API, and is relatively well understood.

ASP.NET has also recently been made open source, though it is expected that
Microsoft will continue to enhance and optimize it, given its emerging popularity.

The following table shows the evaluation of the System.Web.Mvc namespace:

Maturity Productivity Performance Availability

The System.Web.WebPages namespace
The System.Web.WebPages namespace contains the relatively new ASP.NET Web
Pages API. The Web Pages API provides a simplified programming model that
mixes markup and code in a single file using the Razor syntax. This API will feel
familiar to developers who have worked with PHP, but it leverages the power of the
ASP.NET platform and Razor syntax. The WebPages API is available on all platforms
that support ASP.NET, including Mono.

The following table shows the evaluation of the System.Web.WebPages namespace:

Maturity Productivity Performance Availability

As of Version 4.5, the System.Json namespace is included in .NET.
This namespace includes APIs to convert to and from the JSON
format and query JSON documents with LINQ.

The .NET Framework Primer

[58]

The System.Web.Services namespace
The System.Web.Services namespace contains the original ASP.NET Web Services
API. Despite being an important API in the first few versions of .NET (.NET was sold
as the first web services platform, after all), and despite the fact that you can still add
new ASMX services to an ASP.NET project in Visual Studio 2013, this API is well
beyond its "use by" date, and it has been entirely subsumed by WCF; its use should
generally be avoided (other than to make simple AJAX services for Web Forms
applications, perhaps). If you need to create sophisticated, SOAP-based web services,
then you should use WCF, and if you need to create lightweight REST services, then
you should use the ASP.NET Web API.

The following table shows the evaluation of the System.Web.Services namespace:

Maturity Productivity Performance Availability

The Microsoft.AspNet.SignalR namespace
Though technically not part of the .NET Framework yet, SignalR is a promising new
technology that is part of ASP.NET and deserves a mention here. SignalR is an ASP.
NET API for real-time communication between web servers and clients. The API
provides a robust implementation of long polling and other newer technologies to
send web notifications, including WebSockets.

The following table shows the evaluation of the Microsoft.AspNet.SignalR
namespace:

Maturity Productivity Performance Availability

Chapter 2

[59]

Windows Communication Foundation
One of the major selling points of the first release of .NET was that the platform
had support for web services baked in, in the form of ASP.NET Web Services.
Web Services have come a very long way since SOAP was invented in 1998
and the first release of .NET, and WCF has subsumed the limited capabilities
of ASP.NET Web Services with a far richer platform. WCF has also subsumed the
original .NET Remoting (System.Runtime.Remoting), MSMQ (System.Messaging),
and Enterprise Services (System.EnterpriseServices) APIs.

The System.ServiceModel namespace
The root namespace for WCF is System.ServiceModel. This API includes support
for most of the WS-* web services standards and non-HTTP or XML-based services,
including MSMQ and TCP services that use binary or Message Transmission
Optimization Mechanism (MTOM) message encoding.

Address, Binding, and Contract (ABC) of WCF are very well understood by the
majority of the developer community, though deep technical knowledge of WCF's
inner workings is rarer. The use of attributes to declare service and data contracts
and a configuration-over-code approach makes the WCF API highly declarative,
and creating sophisticated services that use advanced WS-* capabilities is relatively
easy. WCF is very stable and can be used to create high-performance distributed
applications. WCF is available on all recent versions of .NET, though not all
platforms include the server components of WCF. Partial support for WCF is also
available on third-party CLI implementations, such as Mono.

REST-based web services, that serve relatively simple XML or JSON, have become
very popular, and though WCF fairly recently added support for REST, these
capabilities have now evolved into the ASP.NET Web API.

You can read a lot more about WCF in a later chapter of this book.

The following table shows the evaluation of the System.ServiceModel namespace:

Maturity Productivity Performance Availability

The .NET Framework Primer

[60]

Windows Workflow Foundation
Windows Workflow Foundation (WF) is a workflow framework that was
introduced in .NET 3.0, and that brings the power and flexibility of declarative
workflow or business process design and execution to .NET applications.

The System.Activities namespace
The System.Activities namespace contains the Windows Workflow Foundation
API. WF includes a workflow runtime, a hosting API, a number of basic workflow
activities, APIs to create custom activities, and a workflow designer control, which
was originally a WinForms control but is now a WPF control as of .NET 4.0. WF also
uses a variant of the same XAML markup, which WPF and WinRT use, to represent
workflows; that said, an excellent designer, hosted by default in Visual Studio,
should mean that you never have to directly modify the XAML.

The adoption of the first few versions of the WF API was limited, but WF was
completely rewritten for .NET 4.0, and many of the shortcomings of the original
version were entirely addressed. WF is now a mature, stable, best-of-breed workflow
API, with a proven track record. The previous implementation of WF is still available
in current versions of the .NET Framework, for migration and interoperation
purposes, and is in the System.Workflow namespace.

WF is used by SharePoint Server, Windows Server AppFabric, Windows Azure
AppFabric, Office 365, Visual Studio Team Foundation Server (MSBuild), and a
number of other Microsoft products and services. Windows Server AppFabric and
Windows Azure AppFabric enable a new class of scalable SOA server and cloud
application called a Workflow Service, which is a combination of the capabilities
of WCF and WF. WF has a relatively small but strong following within the .NET
developer community. There are also a number of third-party and open source WF
activity libraries and tools available.

Though applications composed using workflows typically have poorer performance
than those that are implemented entirely in code, the flexibility and significantly
increased developer productivity (particularly when it comes to modifying existing
processes) that workflows give you are often worth the performance price. That said,
Microsoft has made significant investments in optimizing the performance of WF,
and it should be more than adequate for most enterprise application scenarios.

Chapter 2

[61]

Though versions of WF are available on other CLI platforms, the availability
of WF 4.x is limited to Microsoft platforms and .NET 4.0 and higher. The evaluation
of the System.Workflow namespace shown in the following table is for the most
recent version of WF (the use of versions of WF prior to 4.0 is not recommended
for new applications):

Maturity Productivity Performance Availability

Summary
There is more to the .NET Framework than has been articulated in this primer;
it includes many useful APIs that have not even been mentioned here, for example,
System.Media, System.Speech, and the Windows Identity Framework. There
are also a number of very powerful APIs developed by Microsoft (and Microsoft
Research) that are not (yet) officially part of the .NET Framework; for example,
Reactive Extensions, Microsoft Solver Foundation, Windows Azure APIs,
and the new .NET for Windows Store Apps APIs are worth looking into.

In the next chapter, we will provide an overview of the many capabilities
and features of Microsoft SQL Server—Microsoft's Relational Database
Management System.

The SQL Server Primer
In 1970, when E. F. Codd came up with his seminal work A Relational Model of Data
for Large Shared Data Banks, his approach sounded like a purely theoretical one.
Computers were not powerful enough to implement the relational database concepts
in a manner that would suffice the needs of the consumers. However, in a few years,
different corporations, such as IBM and Oracle, started building relational database
management systems, and in a few more years, Oracle (known as Relational
Software at that time) came up with the first RDBMS in 1979.

Microsoft jumped on to the bandwagon significantly later, after 10 more years had
passed, partnering with Sybase, and developed their original version of SQL Server.
In the beginning of 1990s, Microsoft negotiated exclusive rights to the SQL Server
versions written for Windows; in 1998, they came up with SQL Server v7, which was
the first version written in-house.

Over the years, Microsoft SQL Server has undergone a significant transformation
from being simply a database management system to a full-blown development
platform with a rich set of capabilities. Started as a relational database management
system, SQL Server now has full-text, spatial, and XML support as well as the
ability to store unstructured data, such as documents and images, on the filesystem.
Assuming that almost all significant projects would require data in some format, one
may argue that SQL Server should always be on an architect's list of development
tools, besides .NET.

SQL Server also plays an important role as a foundational piece of software for many
other Microsoft server products. BizTalk, SharePoint, Team Foundation Server,
Dynamics CRM, and others use SQL Server as a reliable data engine.

Hundreds of books have been written on Microsoft SQL Server, but we are not going
to regurgitate that information. In this chapter, we'll prove that SQL Server is indeed
a powerful development platform. We'll discuss its capabilities, which will help us as
architects to take proper decisions in the future.

The SQL Server Primer

[64]

What is included in SQL Server 2012?
SQL Server 2012 is the latest released commercial version; however, SQL Server 2014
Community Technology Preview 2 (CTP2) was also available at the time of writing
this book. We shall base our discussion and examples on SQL Server 2012, but we'll
provide a brief overview of the new capabilities available in SQL Server 2014 at the
end of the chapter.

SQL Server editions
Each time Microsoft comes up with a new version of SQL Server, there are several
editions of it with different capabilities and often confusing licensing models.
SQL Server 2012 is definitely not an exception. There are three principal editions
(Enterprise, Business Intelligence, and Standard), one specialized web edition, and
two breadth editions (Developer and Express). All the editions come in 64-bit and
32-bit flavors.

The Developer edition of SQL Server traditionally has all the functionalities of the
Enterprise edition but is licensed for development and testing only.

SQL Server components and tools
The following table provides a brief description of the different SQL Server
components and tools:

Components Description
Database
Engine

Database Engine is the core service used to store, process, and secure data.
It provides features such as replication and full-text searches, and tools
to manage relational and XML data. It also has the Data Quality Services,
introduced in the 2012 version. SQL Server Service Broker, also a part of
Database Engine, did not become very popular since its introduction in SQL
Server 2005 and was not updated much in the 2012 version.

Analysis
Services

SQL Server Analysis Services (SSAS) is a server-based platform used
to develop and manage online analytical processing (OLAP) and data
mining applications.

Reporting
Services

SQL Server Reporting Services (SSRS) is a server-based platform used to
develop and manage interactive, tabular, graphical, or free-form reports
from relational or XML-based data sources. SSRS also provides the ability
to develop ad hoc reports.

Chapter 3

[65]

Components Description
Integration
Services

SQL Server Integration Services (SSIS) is a server-based platform
used to develop and manage data integration and workflow applications.
One of the main uses of SSIS is the development of the extract, transform,
load (ETL) applications in order to support data warehousing and data
migration. From our standpoint, the significance of SSIS (especially for
integration solutions) is such that we have devoted a separate chapter
to SSIS.

Master Data
Services

Master Data Services (MDS) plays a significant role in data integration
projects and is also used to synchronize, validate, and sanitize data as well
as to remove duplicates. Therefore, MDS reduces redundancies across all
data processing applications.

The SQL Server tools are described in the following table:

Tools Description
SQL Server
Management
Studio

SQL Server Management Studio (sometimes abbreviated as SSMS) is an
integrated environment used to develop, manage, access, and configure
components of SQL Server. Database development can be done using
Visual Studio. However, note that SQL Server Management Studio
provides a variety of other features, especially to access, configure,
and manage databases.

SQL Server
Configuration
Manager

SQL Server Configuration Manager is a tool that provides basic
configuration management for the SQL Server services. It is also used
to configure network protocols and to manage the network connectivity
configurations for client computers.

SQL Server
Profiler

SQL Server Profiler is a tool that captures the SQL Server events in a trace
file. Later, the trace file, via a graphical user interface, is used for analysis
and troubleshooting. Using SQL Server Profiler, one can monitor an
instance of Database Engine; in particular, one can analyze the SQL
Server code, monitor performance, or audit security.

Database
Engine
Tuning
Advisor

Database Engine Tuning Advisor is a tool that, via a graphical user
interface or the dta command prompt utility, examines how queries
are processed and helps to create optimal sets of indexes, indexed views,
and partitions.

Data Quality
Services
Client

Data Quality Services, introduced in SQL Server 2012, comprises a server
and a client part. They provide the ability to perform data cleansing
operations as well as to centrally monitor various activities performed
during these operations.

The SQL Server Primer

[66]

Tools Description
SQL Server
Data Tools

SQL Server Data Tools (SSDT), introduced in SQL Server 2012, provides
an integrated development environment to build Analysis Services,
Reporting Services, and Integration Services. SSDT is also a feature of
Visual Studio (starting with VS 2010), used to develop database projects.

Connectivity
Components

These consist of components, responsible for communication between
clients and servers, and network libraries for DB-Library, ODBC,
and OLE DB.

SQL Server 2012 abilities
As discussed in Chapter 1, Solution Decision Framework, solutions architecture deals a
lot with "abilities": availability, reliability, manageability, and many others, coming
primarily from nonfunctional requirements. Well, it's certainly arguable—for a
developer, availability may sound completely nonfunctional, but a service center
operator will most likely have a different point of view. Architects should keep this
in mind and address different user groups in different ways.

Let's see how SQL Server 2012 addresses some of those abilities.

High availability
Traditionally, high availability in SQL Server had been achieved by database
mirroring and log shipping. The downside of database mirroring was the necessity
to deal with databases individually if the solution required several databases.

SQL Server 2012 introduced the AlwaysOn availability groups that provide all the
benefits of database mirroring and a number of new ones, for example, multiple
database failover, built-in compression and encryption, flexible failover policy,
PowerShell automation, dashboards, automatic page repairs, several failover
modes, active secondary replicas, and many others.

An availability group is a container that defines a set of user
databases—availability databases—to failover as a single unit and a
set of availability replicas to host copies of each availability database.

AlwaysOn availability groups will eventually replace database mirroring in the
future versions of SQL Server.

Chapter 3

[67]

Manageability
SQL Server Management Studio is the principal tool that enables the database
management capabilities of SQL Server. Originally released with SQL Server
2005 almost 10 years ago, Management Studio became an essential component of
the everyday life of database administrators. Today, many solutions rely on this
component instead of building a specialized database management solution.

In SQL Server 2012, a few small changes have been made to the dynamic
management views, Transact-SQL debugging and IntelliSense, startup procedures,
and the usage of PowerShell. A detailed description of the SQL Server PowerShell
components, tasks, and cmdlets can be found at http://technet.microsoft.com/
en-us/library/hh245198.aspx.

A cmdlet (command-let) is a single-feature command in PowerShell.
One can recognize cmdlets by their name format—a verb and a noun
separated by a dash. Invoke-Sqlcmd or Encode-Sqlname are
examples of the SQL Server PowerShell cmdlets.

Database Recovery Advisor is a new feature of SQL Server that simplifies the
restoration of databases, improves user experience, and, in general, makes the
entire process more manageable.

Programmability and maintainability
Since the days of Edgar F. Codd, SQL has been the main language for relational
database development. In 1986, it became an ANSI standard and has been evolving
since then. Note that the pronunciation of SQL in the name of the language and that
in SQL Server are different. The language is pronounced as "es-que-el," which is
declared by the standard, but in SQL Server, the same word is pronounced as "sequel."

Microsoft's version of SQL is called Transact-SQL (T-SQL) and it is not fully
ANSI-compliant. Architects have to be aware of this fact if solutions require that
you generate SQL statements automatically to further process SQL Server.

Sometimes, .NET developers, with a lot of object-oriented development experience,
find it difficult to start coding in SQL. Database development uses a different
paradigm and requires that you look at the task from a different perspective.
However, development in T-SQL is no less powerful or productive as development
in C# or VB.NET.

http://technet.microsoft.com/en-us/library/hh245198.aspx
http://technet.microsoft.com/en-us/library/hh245198.aspx

The SQL Server Primer

[68]

Over the years, there has been some deviation from the original relational database
development paradigm and some convergence between the SQL and .NET languages,
for example, the ability to use XML data or the TRY-CATCH blocks in SQL. In SQL
Server 2012, the THROW statement has been finally added to the TRY-CATCH blocks.

In SQL Server 2005, Microsoft introduced SQL Common Language Runtime
(CLR)—a component that integrates a SQL Server solution with .NET. This
technology allows you to perform limited development in SQL Server using the
.NET languages such as C# or VB.NET. For this development, SQL Server 2012
requires .NET Version 4.0 and not Version 4.5.

The new FileTables feature of SQL Server 2012 built on top of the file streams
enables the integration of application storage and data management components.
It provides SQL Server services (including full-text search and semantic search)
over unstructured data along with easy policy management and administration.
FileTables are special tables in SQL Server that hold files and documents and are
accessible from Windows applications as they are stored in the filesystem.

Significant enhancements were made to the capability of text search. Statistical
Semantic Search is a new feature of SQL Server 2012 that enables you to find key
phrases in a document, identify similar or related documents, and identify the key
words or phrases that make these documents related. Full-text search was updated
in the part of the word breakers and stemmers, and a property search was added.

We are familiar with the properties of Microsoft Office
documents. For example, Author, Title, or Company are
valid properties of Word documents.

Spatial features have been significantly updated in SQL Server 2012. New subtypes,
methods, and aggregates have been introduced. One of the changes that we,
as architects, have been waiting a while for is a significant improvement of
performance characteristics.

Another improvement is related to pagination. In the previous versions, if a
developer wanted to apply pagination to large result sets, they had to be creative.
In SQL Server 2012, pagination can be implemented using OFFSET and FETCH.

Chapter 3

[69]

Scalability
In terms of scaling out, SQL Server 2012 supports up to 15,000 partitions versus
1,000 in the previous versions.

In terms of scaling up, it enables scalability up to 320 logical processors and 4 TB
of memory with Windows Server 2012. It also allows SQL Server virtual machines
to use up to 64 virtual processors and 1 TB of memory.

Performance
Performance considerations have always been the key in SQL Server solution
development. Performance analysis and the consequent optimization can be
achieved by means of SQL Server Management Studio and Resource Governor.

The new, powerful columnstore index feature optimizes the way data columns
are stored within pages. Instead of being split between pages, when a columnstore
index is selected, the data from one column is stored on the same page. According
to Microsoft, this improves the data warehouse query performance by hundreds to
thousands of times in some cases.

Another important new feature is the selective XML index. XML indexes based on
the entire content of XML data were hard to use in the previous versions of SQL
Server because of the huge size of the index tables and the resultant performance
degradation. A selective XML index allows developers to index the XML data using
XPath definitions relative to the queries performed on the XML data. This minimizes
the size of the index and improves the database performance significantly.

Security
Microsoft has been constantly improving the security of SQL Server at all levels,
from data encryption to the policy-based management.

SQL Server 2012 did not bring dramatic changes with regard to security; rather, there
were small improvements in most security-related areas, that is, new permissions
and new role management, audit enhancements, hashing algorithms, certificate keys,
service master key and database master key encryption, and certificates. You can find
the details in the presentation at http://technet.microsoft.com/en-us/video/
whats-new-in-sql-server-2012-database-engine-management-and-security.

http://technet.microsoft.com/en-us/video/whats-new-in-sql-server-2012-database-engine-management-and-security
http://technet.microsoft.com/en-us/video/whats-new-in-sql-server-2012-database-engine-management-and-security

The SQL Server Primer

[70]

Data quality
In data warehousing, a lot of time and effort is spent building transformations that
take raw, "dirty" data from different sources and transform it into a more appropriate
format. What if the data comes from many different sources and data cleansing has
to be applied to each ETL package?

One of the new, powerful features introduced in SQL Server 2012 is Data Quality
Services (DQS). DQS assists data administrators to build a knowledge base that can
be used later for data cleansing. The knowledge base helps to define validation and
correction rules. Once defined, the rules can be used against the database.

Building the payroll processor
application
Over the next few pages, we shall present some essential aspects of SQL Server
development. We'll see how we can work with different data sources, structure
them, and present them through the report engine. We'll see how we can display
the data using the web user interface.

Let's analyze the following use case and see how we can use SQL Server to
implement our solution.

Use case
Reliable Payroll Pro Inc. (RPP) is a payroll processor for a large number of
small- to medium-sized companies. The core business workflow may be described
in the following steps:

1.	 Collect the employee and payroll data from the client.
2.	 Process data to produce the following:

°° Tax forms and checks
°° Payroll checks and direct deposit requests
°° Client reports

3.	 Send tax forms and payments to the respective government agencies.
4.	 Send payroll checks to the employees and submit direct deposits.
5.	 Bill the client for the following:

°° Payments issued on the client's behalf
°° RPP services

Chapter 3

[71]

Recently, RPP started experiencing a significant growth in its client base due
to economic downturn, of all things. Many medium-sized businesses found that
hiring a professional services company for payroll management is much cheaper
than keeping extra full-time accountants in-house.

To keep up with the demand and restrain itself from hiring more employees,
RPP is looking for a solution to automate major tasks in its business workflow.
The most challenging task is data collection. RPP's clients come from a variety
of industries and use different accounting systems. Most of them have no IT
departments and would be unwilling to participate in any significant data
integration projects. In other words, it is up to RPP to decide how they want
to handle the various data formats they receive.

RPP does its business in several US states and plans to expand further. This presents
another challenge, as different states, counties, and municipalities require you to file
a variety of tax forms. The solution should be able to produce these forms as output.
It also needs to be flexible enough, so that new forms can be added with relative
ease to the system.

RPP also wants to automate as many of their tasks as possible. It wants to be able
to set up schedules for the delivery of data files, forms, and reports to its employees,
clients, financial institutions, and government agencies.

RPP is also looking to have a web portal for its clients. It should deliver customized
reports to its clients, both on schedule and on demand.

Yet another requirement, as with any financial system, is auditing. RPP is required
by law to keep all of its data in order to be able to present the source of any
transaction it issues on behalf of its clients.

It is also worth mentioning that RPP has no IT department of its own or IT project
experience. It has to rely on hired consultants to build the system, maintain it, and
develop any future upgrades or additions.

As banks and government agencies are increasingly exchanging data in the digital
form, rather than on paper, RPP is looking for a system that would allow exporting
the data in a variety of formats. Ultimately, the company would want to train its
employees to create new data formats as a system output on an "as needed" basis.

Last but not least, RPP is keen to keep up with present and future technologies.
It wants to make sure that the system will be easy to expand and accommodate
new technologies, without restructuring the core platform.

The SQL Server Primer

[72]

Key requirements
If we try to translate the previously mentioned scenario into a language
that is appropriate for an IT solution, we will end up with two lists of
requirements—functional and nonfunctional. Let's start with the functional
requirements to examine what our solution should be able to do.

Functional requirements – first draft
The first draft of the functional requirements is a result of a few workshops
with business stakeholders. The requirements are stated as follows:

1.	 Ability to import client payroll data of various formats and store it
in the system.

2.	 Ability to process client payroll data and produce payroll checks.
3.	 Ability to process client payroll data and produce tax forms.
4.	 Ability to process client payroll data and produce reports for clients.
5.	 Ability to process client payroll data and RPP employees' data

(hours of work for each client) as well as generate bills to clients.
6.	 Ability to export data out of the system in various formats as required.
7.	 Ability to present reports to the clients through a secure web interface.
8.	 Ability to deliver data output and reports on schedule.
9.	 To store unmodified source data for audit purposes.

These functional requirements are somewhat simplified even for the first draft.
Typically, the stakeholders would provide more details, but our focus now is on
the process.

Requirements analysis
What is the story emerging here? We need to import data in many different formats
and process it. We shouldn't create a separate data processing program for each
client's data format; we want to make the data processing generic. We also need
reports. Our system should consist of the following major components:

•	 The data conversion component: This will import the client's data
and convert it into the tables designed to suit RPP purposes. Can the
component be implemented using the BizTalk Server? Or, will a number
of SSIS packages suffice? Let's decide later. At the moment, we are just
gathering requirements.

Chapter 3

[73]

•	 The data processing component: This component will process the converted
data to perform a number of functions. It will implement the required
business rules, that is, calculate taxes and other deductions for each
employee. It will fill up tax forms, print checks, and prepare data for
reports. We can code it in C# or VB.NET; again, let's decide later.

•	 The reporting component: We need to produce reports; therefore, we need
a reporting engine. This component should come with a web interface since
RPP wants to expose the UI to its clients.

•	 The user interface: The system needs a user interface for RPP employees;
they should be able to execute system functions. Since RPP wants to keep
up with modern technology, our first choice would be a web interface.
Desktop interfaces are being phased out, aren't they?

Did we cover everything? No, we are missing data output, which is mentioned in
the functional requirements as well. We'll add this function to the data processing
component. It will fill up tax forms, process them, and generate data output.

What about data storage? In the Microsoft world, our choices are limited. It simply
cannot be a filesystem; our data requires some structure. Can you use MS Access or
FoxPro? FoxPro is well on its way to retirement. Access does not have the tools and
capabilities required for data conversion and for seamless integration with many
different data sources. So, the choice is simple: SQL Server.

Let's look into data conversion. If we decide to use BizTalk, RPP will also need
BizTalk programmers for data conversion. Also, they will need programmers to
design reports. Hopefully, we can find consultants who can do all of this. RPP will
need to get licenses for BizTalk and SQL Server. Or, maybe just SQL Server if we
stick with SSIS packages for data integration.

Great! We have a picture emerging now. It looks like we can cover all the functional
requirements with a solution such as this. It will surely be robust and scalable, as we
will use the latest technologies. We just need to find the right resources for the job.
Oh and there's a minor detail. We need to put a project plan together, come up with
the cost estimate, and sell it to RPP. This shouldn't be a problem, we think.

Somehow, we haven't decided which reporting technology we will use, as yet.
Ok, let's look at that now. We can use SAP reporting tools (also known as Crystal
Reports, of course), or we can use SSRS. SSRS comes with SQL Server, so the total
cost of licensing is lower. However, Crystal Reports have been in the market way
longer. We think that this is a mature technology that has more features. It also
has a web reporting engine. However, Crystal Reports will require developers
with specific knowledge. Therefore, SSRS is our choice. For our needs, it has just
enough capabilities.

The SQL Server Primer

[74]

See how easy it is to put a solution together if one knows enough about the
technologies that can do the job. Should the system interface be ASP.NET
WebForms or ASP.NET MVC?

Wait a second. We were just about to start the requirements analysis, and somehow,
we ended up designing a solution and throwing technologies around. Let's roll back
a little and look at our functional requirements list one more time.

What strikes the eye is that points 2 to 5 start with "Ability to process client data."
Maybe we can consolidate these? Let's make a single list of the outcomes of that
data processing. These are checks, tax forms, reports to clients, and bills to clients.

What do we need to produce these? We shall generate some data. Namely, payroll
and deductions data and RPP's own services data (employee work hours). We also
want to print this data on paper. This will produce checks, tax forms, and reports
to clients. Can checks and tax forms also be printed as reports? Surely they can.
Can client bills be reports? Just as well. So, we can say that the system will generate
data according to the business rules and produce reports.

Our requirements list just got shorter. Let's rewrite it.

Functional requirements – second draft
To gather more specific requirements, we decided to conduct targeted interviews
with business stakeholders rather than conduct workshops. The requirements thus
observed are as follows:

1.	 Ability to import client payroll data of various formats and store it in
the system.

2.	 Ability to process data (client payroll data and RPP data) and generate data
according to business rules.

3.	 Ability to produce reports. The reports will include payroll checks, tax forms,
and reports for clients as well as bills to clients.

4.	 Ability to export data out of the system in various formats as required.
5.	 Ability to present reports to the clients through a secure web interface.
6.	 Ability to deliver data output and reports on schedule.
7.	 To store unmodified source data for audit purposes.

Well, it looks so much simpler now.

Let's look at points 1 and 6. If we import client data and store it in the system,
can we keep the unmodified version for audit? Yes, we can. We don't have to
convert the data to the output format immediately. As a best practice, we are going
to have an area where the source data will be kept in the raw (initial) format.

Chapter 3

[75]

When we think about data processing requirements, we find that we don't need
to verify or sanitize the source data. The requirements don't say that RPP must
check whether the data is correct and fix errors. It is the RPP clients' responsibility
to supply accurate information about their employees. RPP will use this data as a
source and generate a different set of data as an output, according to the business
rules. Then, it will use the output dataset as the basis for reports.

Let's try to depict this system workflow in the following diagram:

You may notice that we have combined Reports and Data files output in the same
box. Well, the system performs the same operation to produce both. It presents
data, that's it. No data modification takes place to either produce reports or
generate the data file.

Nonfunctional requirements
We started analyzing the functional requirements by keeping SQL Server in mind.

Now, let's look at the following system that uses the NFRs that we discussed in
Chapter 1, Solution Decision Framework. This is a good way to make sure that we
are not building for more than we were asked to do.

•	 Availability: Does the system need to be available 24/7/365? Actually, the
answer is "No." Maybe some parts of the system, such as the client-facing
reports. It is reasonable to say, however, that the system should be available
during business hours. It can also tolerate some downtime for maintenance
and troubleshooting.

•	 Performance: Most of the functionality in the system is to perform batch
processing, not transaction processing. End users will most likely deal with
the reports generated by the system. Since the reports will use the data that
is already processed, it is more important to make sure that all the batch
processing and report generation is done before the user needs to access them.

The SQL Server Primer

[76]

•	 Reliability: There are no special considerations for reliability outside of the
general consensus that the system should do what it is supposed to do. One
important point to make though is that, like all financial systems, it should
generate alerts whenever things don't work as planned.

•	 Recoverability: As with all data processing systems, the recoverability of
the system is the ability to restore the system to the previous known state
and to rerun the transactions made after that. With SQL Server, there are
plenty of tools for a database administrator to ensure that system is backed
up regularly, perhaps offsite, to plan for disaster recovery scenarios. An
excellent description of backing up the SQL Server database is provided
on Microsoft's site at http://technet.microsoft.com/en-us/library/
ms187048.aspx.

•	 Capacity: As described before, SQL Server has a lot of space to grow.
For our scenario, RPP will hardly outgrow its potential. It is a question of
planning hardware requirements, which will satisfy a reasonable period
of the business growth.

•	 Security: Security is paramount in the systems that operate with personal
and financial data. Among other security features of SQL Server, we should
specifically consider the column-based encryption of sensitive data. It allows
you to store data securely encrypted in the database without compromising
on database performance.

•	 Interoperability: We will consider this when we discuss processing data
input. We don't have any special requirements concerning interoperability
with other systems.

•	 Maintainability: SQL Server provides a lot of tools for system monitoring
and maintenance. The rule of thumb that we will use is "the fewer bicycles
we invent, the easier it will be to maintain them."

•	 Auditability: There is a special requirement for auditability in this
use case. We will follow the following rules to ensure that the system
is properly audited:

°° No modifications to the source data are made by the system
°° Any output data can be traced back to its source easily
°° Any operation that produced output data from the source can

be rerun to produce the same result

•	 Usability: There is a requirement that RPP employees should be able to
create ad hoc reports with little technical training. We will try to address it.

•	 Scalability: We have the requirement that the system should allow
business expansion. For this, it is very much a question of capacity that
we discussed before.

http://technet.microsoft.com/en-us/library/ms187048.aspx
http://technet.microsoft.com/en-us/library/ms187048.aspx

Chapter 3

[77]

The database design
We can start thinking about how to implement the basic blocks now. Let's start
with the source dataset. Earlier, we said that we wanted to convert the client's data
into a single format. We also said that we needed to keep the raw data for auditing
purposes. Why do we need to convert the data? Well, the program that will process
the data to produce the output dataset needs a single format of the data to work
with. Does that really require data from different clients to be stored in the same set
of tables? Probably not. Remember that we are not modifying the source data; we are
just reading it. Also, RPP can reasonably expect the client to supply the data that has
all the necessary pieces in it.

Maybe, instead of converting the client's raw data, we can have a different way of
looking at it? In SQL Server, it's called a view. SQL views enable you to select data
and transform it at the same time. We can create views on top of the client data
tables. Then, our processing component will select data from various clients' formats
as if it were in the same table. This approach has its pros and cons. It is quite elegant
and enables rapid design. On the other hand, it will cause the database to grow very
fast, with the addition of new clients. In the future, when we may have more clients,
it would be advantageous to split the database.

Let's continue with this thought in mind and, for the moment, pretend that we don't
care about the various input client data formats. In fact, we don't know much about
them from the requirements to even care. We'll design the database for the job and
get back to populating it later on.

Based on the requirements and IRS tax forms, we will need the following entities:

•	 Client: This will keep a track of the RPP clients and store the data necessary
to file taxes, for example, the address, the Employee Identification Number,
and so on.

•	 ClientEmployee: We will store the client's employee data here, including
tax-related information.

•	 ClientPayPeriod: This entity will keep a track of the client pay periods. Our
system will use it to know when to process the next payroll for each client.

•	 ClientEmployeeEarning: This entity will store an employee's gross earnings
in the pay period.

•	 ClientEmployeeDeduction: This is where the system will store the results
of the taxes and other deductions from the employee's earnings. It will also
serve as the basis for payments to tax agencies or other sources of deductions.

•	 ClientEmployeePayment: This entity will keep a track of the payments paid
to employees.

The SQL Server Primer

[78]

There are also a few reference tables that we need to create in order to ensure
the proper normalization of the database. The final design is presented in the
following screenshot:

RPP solution – DB tables design

Chapter 3

[79]

The input dataset design
Now, let's design our ideal dataset that we will need for a client's payroll processing.
We make an assumption that RPP will have its client's data already populated in the
Client table.

We also require the pay period data, that is, the start and end dates of the period.

For each of the employees, we need the following data:

•	 First and last name
•	 Employment type (full-time, part-time, or contractual)
•	 Date of birth
•	 Social Security Number
•	 Income base (for tax calculations)
•	 Pay period earnings

The application prototype design
Let's imagine that we have a table containing all of the input data. We can implement
this table in SQL Server, as shown in the following screenshot:

RPP solution – input dataset design

The SQL Server Primer

[80]

We will process this table by performing the following steps:

1.	 Insert into or update the ClientEmployee table. We will use the SSN field to
identify whether the employee record is already in the table.

2.	 Insert into the ClientEmployeeEarning table.

For the purpose of the SELECT statement, SQL views behave pretty much like tables.
Therefore, instead of creating a table, we can use a view to get the data from various
sources. We are going to consider data sources from two different clients of RPP,
ABC and XYZ.

The ABC client design
This client of RPP sends the data in a simple Excel spreadsheet, as presented in the
following table:

FirstName LastName SSN DOB DateHired YearlySalary SalaryPaidYTD

Michael Smith 123123123 1/1/1977 2/10/2012 $ 50,000.00 $ 41,666.67

Angela Johnson 321321321 5/3/1980 11/19/2012 $ 58,500.00 $ 48,750.00

Robert Hastings 999888777 12/11/1976 1/15/2011 $ 35,300.00 $ 29,416.67

We also know that all of the ABC client employees work full-time. The ABC client
pays them weekly, and their last pay period was from 10/19/2013 to 10/25/2013.
We can conclude that we are processing the next pay period from 10/26/2013 to
11/1/2013. There is sufficient data to populate our input dataset.

We will create a SQL Server table-valued function to return the data about the client
and the next pay period. This function will select the last pay period for the client
from the rppClientPayPeriod table and calculate the next pay period based on the
pay period type associated with the client.

The following code snippet presents this function:

CREATE FUNCTION dbo.ufnClientNextPayPeriod
 (@ClientName nvarchar(250))
RETURNS TABLE
AS
RETURN (
SELECT TOP 1 C.ClientID, NextPeriodStart = DateAdd(d,1,PP.PeriodEnd),
NextPeriodEnd = CASE PT.[PayPeriodType]
 WHEN 'Weekly' THEN DateAdd(d,7,PP.PeriodEnd)
 WHEN 'Bi-weekly' THEN DateAdd(d,14,PP.PeriodEnd)

Chapter 3

[81]

 WHEN 'Monthly' THEN DateAdd(MONTH,1,PP.PeriodEnd)
END
FROM [dbo].[rppClient] C
INNER JOIN [dbo].[rppClientPayPeriod] PP ON C.ClientID=PP.ClientID
INNER JOIN [dbo].[rppPayPeriodType] PT ON PT.PayPeriodTypeID=C.
PayPeriodTypeID
WHERE C.ClientName=@ClientName

ORDER BY PP.PeriodEnd DESC)

Since the source of the data is an Excel spreadsheet, we can use the OLEDB
provider to extract data from it by the OPENROWSET query. We can combine the
data from the client's spreadsheet with the data returned by the SQL Server
function we have just created:

CREATE VIEW ABCClientDataInput
AS
SELECT ufn.ClientID, ufn.NextPeriodStart,
ufn.NextPeriodEnd, excel.FirstName,
excel.LastName, excel.SSN,CAST(excel.DOB as date) as DOB,
excel.YearlySalary, (excel.YearlySalary/(365/7)) as PayPeriodWages
 FROM OPENROWSET('Microsoft.ACE.OLEDB.12.0',
 'Excel 12.0;Database=C:\Project\RPP\Data\ABC\ABC-Client-Employees.
xlsx',
 'SELECT * FROM [Employees$]') excel
 INNER JOIN dbo.ufnClientNextPayPeriod('ABC Client') ufn ON 1=1

The result set, as shown in the following table, is exactly what we need for the data
source. Since this is a rather simple SELECT statement, the reader may note that we
made it a SQL view to use for further payroll processing.

The XYZ client design
Input data from the XYZ client's spreadsheet can be retrieved in a similar fashion,
as illustrated in the following code snippet:

CREATE VIEW XYZClientDataInput
 AS
SELECT ufn.ClientID, ufn.NextPeriodStart, ufn.NextPeriodEnd,
C.[First Name] as FirstName, C.[Last Name] as LastName, C.SSN,

The SQL Server Primer

[82]

CAST(C.DateOfBirth as date) as DOB,
SUM(C.HourlyRate * T.[Hours]) * 26 as YearlySalary,
SUM(C.HourlyRate * T.[Hours]) as PayPeriodWages
FROM
(select * FROM OPENROWSET('Microsoft.ACE.OLEDB.12.0',
'Excel 12.0;Database=C:\Project\RPP\Data\XYZ\XYZcontractors.xlsx',
'SELECT * FROM [Contractors$]')) C
INNER JOIN
(select * FROM OPENROWSET('Microsoft.ACE.OLEDB.12.0',
'Excel 12.0;Database=C:\Project\RPP\Data\XYZ\XYZcontractors.xlsx',
'SELECT * FROM [Timesheets$]')) T
ON C.[Contractor Number]=T.[Contractor Number]
INNER JOIN dbo.ufnClientNextPayPeriod('XYZ Client') ufn ON 1=1
GROUP BY ufn.ClientID, ufn.NextPeriodStart, ufn.NextPeriodEnd,
C.[Contractor Number], C.[First Name], C.[Last Name],
C.SSN, CAST(C.DateOfBirth as date)

The data structure for the XYZ client's payroll is completely different. It has two
worksheets; one worksheet has the list of contractors and their hourly pay rate,
and the other worksheet has the hours worked during the pay period. However,
we came up with a view that retrieves the data of the same structure as the first
one. Now, we can combine the worksheets into a single view as follows:

 CREATE VIEW ClientDataInput
 AS
 SELECT * FROM ABCClientDataInput
 UNION ALL
 SELECT * FROM XYZClientDataInput

If we select data from the ClientDataInput view, we may get all the data for both
the clients. In fact, this is not what we shall necessarily need in the future, because
we will process them individually. It is, however, good to check whether the data
sources are fully compatible.

We can now proceed to the next step in our simple workflow diagram, that is,
Data Processing. We need to use this data input to populate the tables we have
designed for the database. As mentioned before, there are two steps: updating the
ClientEmployee table and populating the ClientEmployeeEarning table for the
next pay period. Even before that, we need to generate the current pay period's
record. We'll do all of this with a few SQL queries.

Chapter 3

[83]

We are going to continue our example using the ABC client. Since we already have a
function to calculate the client's next pay period, we'll use it here, as shown:

INSERT INTO [dbo].[rppClientPayPeriod]
 ([PeriodStart], [PeriodEnd], [ClientID])
SELECT [NextPeriodStart], [NextPeriodEnd], [ClientID]
 FROM dbo.ufnClientNextPayPeriod('ABC Client')

We can now proceed with updating the ClientEmployee table and creating the
pay period records in ClientEmployeeEarning. We'll use a SQL cursor for all the
records that we select from the client-specific view:

DECLARE ClientEmployeeCursor CURSOR FORWARD_ONLY READ_ONLY
 FOR
SELECT DISTINCT FirstName, LastName, SSN, CAST(PayPeriodWages as
money)
 FROM ABCClientDataInput
-- Process client's employee payroll
OPEN ClientEmployeeCursor
FETCH NEXT FROM ClientEmployeeCursor
INTO @FirstName, @LastName, @SSN, @PayPeriodWages

WHILE @@FETCH_STATUS = 0
BEGIN
 DECLARE @ClientEmployeeID INT
 -- Insert or update client employee record
 IF EXISTS(SELECT 1 FROM rppClientEmployee
 WHERE ClientID = @ClientID AND SSN = @SSN)
 BEGIN
 UPDATE [dbo].[rppClientEmployee]
 SET [FirstName] = @FirstName,[LastName] = @LastName
 WHERE ClientID = @ClientID AND SSN = @SSN
 SELECT @ClientEmployeeID = ClientEmployeeID FROM
rppClientEmployee
 WHERE ClientID = @ClientID AND SSN = @SSN
 END
 ELSE
 BEGIN
 INSERT INTO [dbo].[rppClientEmployee]
 ([ClientID],[EmploymentTypeID],[FirstName],[LastName],[SSN])
 VALUES

The SQL Server Primer

[84]

 (@ClientID,@EmploymentTypeID,@FirstName,@LastName,@SSN)
 SELECT @ClientEmployeeID = SCOPE_IDENTITY()
 END
 -- Insert employee wages
 INSERT INTO [dbo].[rppClientEmployeeEarning]
 ([ClientEmployeeID]
 ,[ClientPayPeriodID]
 ,[WageTypeID]
 ,[Amount])
 VALUES
 (@ClientEmployeeID
 ,@ClientPayPeriodID
 ,@WageTypeID
 ,@PayPeriodWages)

 FETCH NEXT FROM ClientEmployeeCursor
 INTO @FirstName, @LastName, @SSN, @PayPeriodWages
END

We are getting close. The next step in payroll processing is to calculate the taxes. We
will assume that there are two tax levels: federal and state taxes. They are represented
by the agency records in the Agency table, Internal Revenue Service and State Tax
Service. We assume that the federal tax rate is 20% and the state tax rate is 7%.

We need to process each employee's earnings record and create records in the
ClientEmployeeDeduction table (for taxes) and ClientEmployeePayment (for the
remainder of the earnings after taxes). The following code will need to be incorporated
in the SQL cursor fetch block after the ClientEmployeeEarning record is created:

INSERT INTO [dbo].[rppClientEmployeeDeduction]
([AgencyID],[PaymentTypeID],[ClientEmployeeEarningID],[Amount])
VALUES
(@IRSAgencyID,1,@ClientEmployeeEarningID,@PayPeriodWages * 0.2)

 INSERT INTO [dbo].[rppClientEmployeeDeduction]
([AgencyID],[PaymentTypeID],[ClientEmployeeEarningID],[Amount])
VALUES
(@StateAgencyID,1,@ClientEmployeeEarningID,@PayPeriodWages * 0.07)

INSERT INTO [dbo].[rppClientEmployeePayment]
([PaymentTypeID],[ClientEmployeeEarningID],[Amount])
VALUES
(1,@ClientEmployeeEarningID,@PayPeriodWages * 0.73)

Chapter 3

[85]

Now, we have all the data to proceed with the payments. To make sure that this
payroll processing is executed on schedule, we'll create a SQL Agent job. The job
will be scheduled to run each Friday at 2:00 P.M. The assumption is that by this
scheduled time RPP employees will receive the payroll spreadsheet from their
clients and save them in a specially designated folder where SQL Server can
access and process it.

The last step in the system is to make the actual payments. We will print checks
to the client's employees and tax agencies as SSRS reports.

SSRS allows us to fulfill another important requirement—provide reports to
customers. More than that, SSRS has a ready-made web interface. By providing
access to customer-specific reports over the Internet, RPP may save a lot of
development effort.

In fact, SSRS has the ability to save the report as a spreadsheet, comma-separated,
or XML data. This covers the requirement to be able to generate data files. In fact,
there is not much extra development required once the reports are developed for
the specific format.

Lessons learned
With this example, we were trying to point out that SQL Server in itself is a
development platform for complex integrated systems. The tools and services that
are provided with SQL Server should be diligently considered by solution architects.

Just to reiterate the important points of when we have used SQL Server:

•	 To retrieve data from multiple non-SQL data sources by using the
OPENROWSET() function.

•	 To create a single structured view of various data sources by using the
SQL views.

•	 To run data processing and report generation on schedule using the SQL
Server Agent scheduled job.

•	 To create a web-based, client-facing reporting interface without writing any
web application code. This was done using the SSRS reporting web portal.

•	 To extract data files of various data formats using the SSRS reporting
web portal.

The SQL Server Primer

[86]

New features of SQL Server 2014
To conclude this chapter, let's take a look at what the Community Technology
Preview 2 (CTP 2) of SQL Server 2014 presents us with. The commercial release
of SQL Server 2014 will most likely happen in early 2014.

So far, the following new features of SQL Server 2014 have been revealed:

•	 Enhanced In-Memory OLTP that gains significant performance by moving
the most-used tables into memory. According to Microsoft, the performance
gains will average 10 times and can even reach 30 times. This is achieved via
a new engine with a code name Hekaton.

•	 In SQL Server 2012, Resource Governor allowed you to adjust the amount
of CPU and memory resources, but with SQL Server 2014 IO Resource
Governor, we can manage and limit the I/O utilization. That enables more
effective I/O management across multiple databases.

•	 Improved resilience with Windows Server 2012 R2 using Cluster
Shared Volumes.

•	 The Buffer Pool Extension (BPE) feature that enables caching frequently
used data on Solid State Disks (SSDs). BPE deals only with "clean" data,
so there is no risk of data loss.

•	 Enhancements of the AlwaysOn Availability Groups; now, they support
up to eight secondary replicas (versus four in SQL Server 2012).

•	 Updatable clustered columnstore indexes for faster retrieval.
•	 BI enhancements, that is, Power Query and Power Map.
•	 Azure support enhancements, that is, simplified backup and

disaster recovery.

Just before this book was published, Microsoft released SQL Server 2014. All
the features that we listed in this section are present in the release. The initial
benchmarking that we performed showed that the performance characteristics
are even better than what we have seen with the CTP. It is also worth mentioning
that SQL Server 2014 supports up to 640 logical processors and 4 TB of memory
in a physical environment. It can also scale up to 64 virtual processors and 1 TB
of memory when running on a virtual machine.

Chapter 3

[87]

Summary
MS SQL Server is a robust and powerful technology that also works as the basis
for many other Microsoft products. Having a long history, SQL Server is a leading
database management system today, with the ability to support different data
formats; it is a powerful and secure tool.

In the next chapter, we will discuss a tool that comes as a part of the SQL Server
offering, SQL Server Integration Services (SSIS). SSIS plays a significant role in
integration technologies, particularly supporting the Extract, Transform, Load
(ETL) pattern.

The SSIS Primer
When the ancestor of SQL Server Integration Services (SSIS)—Data
Transformation Services (DTS)—was initially released with SQL Server 7.0,
database administrators were extremely pleased. DTS not only replaced old data
transformation and loading tools, but also added new features that significantly
simplified their lives. However, only in SQL Server 2000 did DTS become a modern
Extract, transform, load (ETL) tool, which set up a foundation for SQL Server
Integration Services.

SSIS was originally released with SQL Server 2005 with the intention of replacing DTS.
SSIS 2005 was a full-featured data integration engine and development environment
to build high-performance solutions. After several more versions, SSIS became a
development platform to build quality data integration, migration, and transformation
solutions. Typical scenarios for the usage of SSIS include the following:

•	 ETL tasks to support data warehousing
•	 Data migration as part of legacy system migration tasks
•	 The integration of different data sources
•	 The merging of data from heterogeneous data sources
•	 Data cleansing

SSIS includes capabilities such as the accessing of data in different formats,
the extraction of data from different databases, and the sending of e-mails in
response to events. It also enables the building of packages with its graphical user
interface without a single line of code or creating sophisticated custom packages
programmatically.

We consider SSIS to be one of the most important tools in the SQL Server offering.
It is almost impossible to imagine a large, enterprise-wide project that does not
use SSIS. That's why we have devoted a separate chapter to it. In this chapter,
you will read about the features of SSIS 2012 and 2014; you will consider a use
case that requires moving data, and learn how SSIS fits into the picture.

The SSIS Primer

[90]

What's new in SSIS 2012
Every new version of SQL Server and its components, including SSIS, present a
significant number of changes. The number of improvements in SSIS 2012 is too
big to even be listed in this book. Therefore, the following list only mentions the
most significant among these:

•	 In this release, SSIS has new features related to the integration with external
data sources. Among them, integration with Hadoop is probably the most
interesting one. Hadoop is an open source Apache project with a distributed
filesystem. SSIS supports data transfer between SQL Server databases and
the Hadoop filesystem, and it also can transfer data between Hadoop and
other data sources.

•	 SSIS 2012 has introduced the project deployment model. In this model,
parameters are used to assign values to package properties, and they create
a project together with the packages. A project is deployed to the SSISDB
catalog on an instance of SQL Server. One can validate projects and packages
before execution. Package execution takes place on the database engine.

•	 Related to the project deployment model is the concept of server
environments. Environments are created to specify the runtime values for
packages in the project. These values are mapped to the project parameters.

•	 The SSISDB catalog is a feature of SSIS 2012 used to store SSIS solutions
and much more; it provides an integrated environment for SSIS project
deployment, maintenance, execution, and monitoring.

•	 During package execution, events are captured automatically and stored
in the catalog. They can be analyzed later, which improves package
troubleshooting.

•	 In this release, SSIS provides an improved developer experience, for
example, an updated user interface, visual improvements to the data flow,
new functions and scripting features, and much more.

•	 Connection managers can be created at the project level. Now, they can be
shared between the packages in the project.

•	 The SSIS team did not forget about architectural "abilities". The data quality
capability is now enhanced with the DQS Cleansing transformation.
Performance is improved by reducing the memory usage for the Merge
and Merge Join transformations.

Chapter 4

[91]

Building the payroll processor
application
We will be working with the use case from the previous chapter, the solution for
Reliable Payroll Pro Inc.—also known as RPP. Refer to Chapter 3, The SQL Server
Primer, for the full details of this use case.

To briefly refresh your memory, we were building a system to process payroll
data from the various sources and clients of RPP. We built a solution using the
capabilities of MS SQL Server alone. We created SQL scheduled tasks that are
running T-SQL scripts to import data from Excel spreadsheets into the RPP
database and process it as required.

Adding more details to the RPP use case
Let's imagine that we have an additional requirement in our use case. We made
a tacit assumption that our scripts would work because the input data filenames
would be the same each and every time. Now, it appears that this is not how RPP
wants it to happen. For RPP, saving the datafiles into a location where SQL Server
can find them is a manual task. RPP employees receive files from the clients by
e-mail, or they download them from an FTP site or bring them on CDs. They are
instructed to save them into client-specific folders on the network that SQL Server
can access. However, RPP management feels that renaming the files is too much of a
task for the employees. Additionally, some of the clients may need to process several
payment files for one payroll.

Therefore, RPP has requested that the system be intelligent enough to find all of the
data files in the client-specific data source folder. It need not know the filename so
long as this file is the last one that was dropped into that folder.

Requirements analysis
We have to get back to the architectural drawing board now. The programming
language we used for the data processing scripts is T-SQL—the language of SQL
Server queries. This language has been specifically designed to manage all of the
possible data manipulation tasks imaginable. However, it was never meant to
substitute the application programming languages, such as C# or Visual Basic.
For example, it does not have the means to manage the filesystem.

The SSIS Primer

[92]

To deal with the new requirement, we need to find a way of bringing this ability
into the system. Still, we don't want to change the architecture completely because
of it. That would mean starting the project from scratch because of something that
appeared when we were almost done. We should look inside SQL Server for the
tools that would work for the task.

Luckily, SSIS packages provide just the capability to add custom logic to the data
manipulation tasks developed as T-SQL scripts. Let's see how we can build an SSIS
package to satisfy the RPP requirement.

SSIS package design
To develop SSIS packages for SQL Server 2012, SQL Server Data Tools for Business
Intelligence Studio (SSDT BI) must be installed. The SSDT BI installation package
can be downloaded from the Microsoft website at http://www.microsoft.com/en-
us/download/confirmation.aspx?id=36843.

At the time of this writing, SSDT BI is only available in the 32-bit
version. When installing SSDT BI on the 64-bit SQL Server, choose
New Server Instance during installation.
Also, there is presently no support for BI projects in Visual Studio 2013.

We will create a new SSIS package in the SSDT BI 2012 environment. In fact, SSDT
BI uses the familiar Visual Studio 2012 environment, with several extra project
templates specific to SSIS, SSRS, and SQL Server BI projects. When creating a new
SSIS package project, navigate to Business Intelligence | Integration Services and
select Integration Services Project template.

First off, we need to create a new Flat File connection manager (we will import data
from comma-separated *.csv files in this example). Let's select any existing file in
the ABC directory under /RPP/Data/ in the RPP project sample, as shown in the
following screenshot:

http://www.microsoft.com/en-us/download/confirmation.aspx?id=36843
http://www.microsoft.com/en-us/download/confirmation.aspx?id=36843

Chapter 4

[93]

We will also create two variables. The first one called ABClientDataPath will
have the static value pointing to the directory with the data files for the ABC client.
It is set to C:\Project\RPP\Data\ABC.

The other one called ABCClientProcessingFilePath will hold the value for the
.csv file that we are currently processing.

SSIS allows the creation of system and user-defined variables. System variables
are defined by Integration Services and user variables are defined by developers.
You can create as many user-defined variables as you need.

We will add a Foreach Loop container to the control flow and call it ABC Input Files
Foreach Loop container. We will set the value of Folder to the location of the ABC
client's input files and the value of Files to *.csv.

The SSIS Primer

[94]

The adding of the Foreach Loop container to process each data source file is
presented in the following screenshot:

We will assign the output value parameter to the ABCClientProcessingFilePath
variable.

Next, we will need to create a data flow task to transfer the data from the input file
to the Client table in the SQL Server database. This is done on the Data Flow tab
in the SSIS Package Designer. We will create a Flat File data source and SQL Server
destination with data mapping between them.

Chapter 4

[95]

We will build an expression for the Flat File data source connection string and assign
it the value of the ABCClientProcessingFilePath variable, which we used in the
Foreach Loop to iterate through the files in the input directory, as shown in the
following screenshot:

The SSIS Primer

[96]

Now, we need to create a mapping between the columns in the source file and the
destination SQL table, as illustrated in the following screenshot:

We built the Data Flow task. In order to complete the package to process all input
files, we need to go back to the Control Flow tab and drag the Data Flow task inside
the Foreach Loop container.

Chapter 4

[97]

This is shown in the following screenshot—our package is now ready for execution:

Lessons learned
The most important lesson that we should have learned is to have confidence in
SQL Server Integration Services. Certainly, the task that we had was way easier
than real-life integration or data migration tasks. With this confidence, we can
approach solutions that require the moving around of thousands of SQL Server
tables, transformation from dozens of different sources, and the loading of data
warehouses of petabytes of data.

The SSIS Primer

[98]

What's new in SSIS 2014
Well, in terms of the new functionality, not much. However, the 2012 release is
significant enough to be the base for future, small improvements.

Performance improvements in SQL Server 2014 affect SSIS as well. Enhanced,
in-memory OLTP (Hekaton); improved resiliency; and updatable, clustered
columnstore indexes all have an impact on processing SSIS packages.

Integration with non-Microsoft sources will continue, and one of the most important
initiatives is working with Hadoop, and releasing solutions based on Microsoft
Hadoop for Windows, now called MS HDInsight Server.

And finally, there is a promise to include SSIS and other BI templates in
Visual Studio 2013.

Summary
SSIS is a highly reliable, proven tool for data integration. It can be used in different
ETL scenarios, such as during data migration from a legacy database to a new one
or when building a data feed for a data warehouse. Over the years, SSIS has been
improved, new features have been added, and the development interface has
become a truly enjoyable one.

We will talk more about SSIS in Chapter 10, Data Exchange Patterns. In the next
chapter, we will present another integration tool, Microsoft BizTalk Server. Where
SSIS is a valuable tool for data integration solutions, BizTalk is more helpful when
there is a need for application integration. Read more about integration architecture
in the next few chapters.

The BizTalk Server Primer
Among the Microsoft servers today, BizTalk Server is one of the most complex
products. In its 13-year history, it went from being a clumsy tool that was made
to support XML messages to an enterprise-quality integration server with a variety
of features and a large technical community around it.

In the year 2000, when the first version of BizTalk was launched, EDI was dominating
the market. XML messaging was in its infancy, but seemed very promising. Many
technology corporations were looking into it, and Microsoft was no exception.

The original version, and even the following version of BizTalk, was totally
different from the BizTalk we know today. They were built using some code from
other servers, had very poor orchestration abilities, and did not provide much
functionality. They supported EDI, HTTP, MSMQ, SMTP—and that was pretty
much it. The 2002 version was also influenced by the concept of web services.

BizTalk 2004 was a completely new product. The code base was changed, and the
product was rewritten from scratch. Orchestrations and message transformation
abilities became similar to what we can see in BizTalk now, content-based routing
was introduced, and security features were improved (http://msdn.microsoft.
com/en-us/library/dd547397(v=bts.10).aspx). BizTalk started looking like an
enterprise-level server.

The next versions, originally released every second year, added more and more
critical functionalities to BizTalk. With every release, developers got more tools and
richer development environments; they built a community of BizTalk lovers and
developed a large number of tools. Some of these tools would become a part of the
official BizTalk package.

http://msdn.microsoft.com/en-us/library/dd547397(v=bts.10).aspx
http://msdn.microsoft.com/en-us/library/dd547397(v=bts.10).aspx

The BizTalk Server Primer

[100]

With every version, Microsoft has expanded support for integration with a popular
line of business applications, such as SAP, JD Edwards, and Microsoft Dynamics CRM.
BizTalk works with EDI, HL7, HIPAA, SWIFT, and other standards. RFID support was
introduced in 2007. Third parties have been developing different adapters, and there
are several hundreds of BizTalk adapters available on the market.

Initiated as a tool for Enterprise Application Integration, today BizTalk can implement
an ESB. It has Business Activity Monitoring (BAM) capabilities, web services, and
WCF support. In this chapter, we'll touch on some of its major features, introduce
BizTalk essentials, and talk about the new improvements made in BizTalk 2013. We'll
discuss BizTalk Server editions and see how BizTalk capabilities support general,
nonfunctional requirements. Finally, step by step, we will build a BizTalk application
to cover a simple use case and introduce you to the BizTalk development process.

Using BizTalk in an integration
architecture
Generally speaking, BizTalk is for system integration. However, the notion of
integration itself is a complex subject. With a variety of computer technologies,
platforms, data formats, and standards, integration opens a door into the endless
world of solutions. Let's discuss the high-level taxonomy of the integration domain.

Within the spectrum of integration solutions, two major paradigms emerged by early
2000: EII and EAI. Enterprise Information Integration (EII) provides a unified view
of enterprise data. The data can be moved into a data warehouse or presented to end
users via a federated search in disparate sources. Enterprise Application Integration
(EAI) provides message exchange between applications in order to have them work
together. In reality, there is always a mixture of these in large systems. Later in the
book, we will talk about integration patterns and approaches in detail.

Another term, Business-to-Business (B2B), is also popular. However, using
the notion of an extended enterprise, we shall consider B2B as an extended EAI.
In the modern world, with multinational enterprises, there is no significant
difference between the two.

In enterprises, there are more integration needs than data and application
integration. Business processes and workflows can be integrated as well.
The notion of business services found its technological counterpart in the new
paradigm: service-oriented architecture (SOA). SOA has brought a new dimension
to the integration world; problems that were traditionally solved by EAI and EII
can also be solved today using SOA.

Chapter 5

[101]

Integration approaches vary. File transfers, data replication, point-to-point solutions,
direct calls to different APIs, web services, and enterprise service buses all serve
integration purposes. Which are the most appropriate ones that use BizTalk?

BizTalk is a complex tool. One can use it for literally anything, from data replication
to advanced integration with heterogeneous data sources. However, the majority
of BizTalk use cases traditionally belonged to the domain of EAI. BizTalk is a
messaging tool; it routes messages to different applications and can send messages
back, providing feedback from these applications. However, in the last several years,
the SOA paradigm has emerged, supported by Web service technologies. Although it
had support for web services and WCF, BizTalk was missing a significant SOA tool:
an enterprise service bus. The concept of ESB finally reached the BizTalk community
in the mid 2000s, and the first ESB toolkit was developed as an open source product
on CodePlex. Only in BizTalk 2010 did ESB become a part of the official release,
that made BizTalk SOA solutions a reality.

BizTalk essentials
Let's briefly describe several important notations that we will use in this
book—consider this little section as an introduction to the BizTalk terminology.
They are as follows:

•	 Message Box: There are many books written on the topic of messages.
We shall not discuss its details; let's assume that, intuitively, we understand
what a message is. BizTalk operates with messages; they are the basic units
of information that floats between connected applications. Once a message
enters BizTalk, it is persisted in the Message Box, which consists of one or
more SQL Server databases. This is essential for businesses that require
highly reliable solutions. Also, persisting messages help with debugging,
tracing, monitoring, and working with long transactions. Does it come with
a price? Definitely. As architects, we have to realize that BizTalk is optimized
for throughput rather than low latency; when we work on an integration
solution, we have to assess that.

•	 Publish/Subscribe: The moving of messages to and from the Message
Box is based on the Publish/Subscribe pattern. (An excellent introduction
to integration patterns is given in the book Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions, Gregor Hohpe and
Bobby Wolf, Addison Wesley). Different BizTalk components have the ability
to publish a message or insert it in the Message Box. Subscribers specify the
criteria to be used to retrieve messages from the Message Box.

The BizTalk Server Primer

[102]

•	 Orchestrations: Orchestrations are executable components of BizTalk
solutions that can subscribe and publish messages through the Message
Box as well as create new messages. Orchestrations run workflows to support
business processes. BizTalk Orchestration Designer is an intuitive visual tool
that automates complex messaging patterns and system workflows.

•	 Transformations: In system integration, it never happens that incoming and
outgoing data have the same format. Even in similar systems—such as record
management systems, for example—the data is always presented in different
formats. One system may have one field that combines a first name and a
last name; another system may have two separate fields; a third system may
have a first name, a second name, a last name, and a name suffix; and so on.
Therefore, data transformation became a mandatory and very important task
in system integration. In BizTalk, maps are used to transform XML messages,
and BizTalk Mapper is the tool used to create and edit these maps.

•	 Adapters: BizTalk adapters extend the functionality of BizTalk Server,
enabling connectivity to other applications. Adapters usually implement
a commonly recognized standard, such as SMTP, POP3, FTP, or MSMQ.
The BizTalk edition includes a number of so-called, "native" adapters, such
as WCF adapters. There are hundreds of third-party adapters on the market;
in addition to this, developers can also create their own adapters using
the BizTalk Adapter Framework (http://msdn.microsoft.com/en-US/
library/bb798080(v=bts.80).aspx).

•	 Accelerators: The BizTalk accelerator is an industry-specific solution
that comes with data schemas that follow industry standards, tools,
and procedures.

•	 Business Rules Engine (BRE): This provides a central repository to
manage business rules.

•	 Business Activity Monitoring: The Business Activity Monitoring component
of BizTalk provides a framework to track the activities of a particular
business process. For example, for a sales system, it can provide information
about how many purchase orders were completed during a given hour and
what types of products were ordered. It can be used to monitor financial
transactions in a banking system or to track claims in an insurance system.
Sounds good, right? However, the complexity of BAM scares many business
people away, and it is very common that, since it is a desirable feature during
the envisioning phase, BAM gets completely abandoned in production.

http://msdn.microsoft.com/en-US/library/bb798080(v=bts.80).aspx
http://msdn.microsoft.com/en-US/library/bb798080(v=bts.80).aspx

Chapter 5

[103]

Architects who are considering using BAM for their solutions should
pay special attention to the operational requirements. Also, all reports
and procedures have to be developed and "sold" to the IT and business,
ideally even before the final deployment. When the business sees the
advantages of BAM from the early days of the system's life, it becomes
a strong supporter.

•	 Business Process Management: Today, BizTalk orchestrations can be used to
implement very complex business processes. These processes can consume
data from different sources via different adapters. If we add BAM to this
picture, we can consider BizTalk as a tool for Business Process Management
solutions. This is certainly true, but we should be very careful when
implementing BizTalk in different workflows. Let's not forget that BizTalk
is primarily a messaging tool and that the workflows are only to support
message processing.

New features of BizTalk Server 2013
BizTalk Server 2013 works with the latest technologies and standards. They are
listed as follows:

•	 Windows Server 2012, Microsoft Visual Studio 2012, Microsoft SQL Server
2012, Microsoft System Center 2012, and the latest version of Microsoft Office

•	 .NET Framework 4.5
•	 SAP 7.2 and 7.3, Oracle Database 11.2, Oracle E-Business Suite 12.1,

and Oracle Siebel 8.1
•	 Health Level Seven (HL7) 2.5.1 and 2.6
•	 Society for Worldwide Interbank Financial Telecommunication (SWIFT) 2012

Message Pack
•	 X12 5030 and EDIFACT D05B

BizTalk Server 2013 has a new SFTP adapter to transfer messages to and from
a secure FTP server using the SSH protocol. It has updated SharePoint Services.
If you are using SharePoint 2013, SharePoint Online, or SharePoint 2010, it is
recommended that you use the new client-side object model.

One of the great and long-awaited features is the REST support that is now included
out of the box in BizTalk . BizTalk Server 2013 includes a WCF-WebHttp adapter that
you can use to both invoke a REST endpoint as well as expose BizTalk artifacts as
RESTful resources.

The BizTalk Server Primer

[104]

Another significant improvement has been made in the area of integration with
BizTalk Azure (http://azure.microsoft.com/en-us/services/biztalk-
services/). BizTalk Server 2013 provides new adapters, such as the SB-Messaging
adapter, WCF-BasicHttpRelay adapter, and the WCF-NetTCPRelay adapter,
for Azure integration.

The integrated ESB Toolkit that is included as part of the BizTalk core offering
has a much easier installation and configuration.

The development and maintenance experience is simplified. BizTalk Server
Administration Console now includes a Dependency Tracking panel that
provides the ability to track dependent BizTalk artifacts.

One very important change is the introduction of the per core license model of
BizTalk Server 2013. All previous versions of BizTalk were licensed per processor.
The introduction to Per Core Licensing can be downloaded from the Microsoft
site at http://www.microsoft.com/licensing/about-licensing/briefs/
licensing-by-cores.aspx.

BizTalk Server editions
BizTalk Server 2013 comes in the following four editions:

•	 Enterprise edition: This has been designed for customers with
enterprise-level requirements for high volume, reliability, and availability.
It allows an unlimited number of applications and supports failover for
multiple Message Boxes.

•	 Standard edition: This has been designed for customers with moderate
volume and deployment scale requirements. It allows five applications
and uses a single Message Box. Both the Enterprise and Standard
editions support complete EAI, B2B, and Business Process Management
functionalities. They include industry accelerators for RosettaNet, HIPAA,
HL7, and SWIFT.

•	 Branch edition: This has been designed for customers with hub and spoke
deployment scenarios, including RFID. It allows only one application.

•	 Developer edition: This traditionally has all of the functionalities of the
Enterprise edition, but it has been licensed for development and testing only.

http://azure.microsoft.com/en-us/services/biztalk-services/
http://azure.microsoft.com/en-us/services/biztalk-services/
http://www.microsoft.com/licensing/about-licensing/briefs/licensing-by-cores.aspx
http://www.microsoft.com/licensing/about-licensing/briefs/licensing-by-cores.aspx

Chapter 5

[105]

BizTalk Server abilities
As we mentioned previously, BizTalk Enterprise edition was designed for customers
with enterprise-level requirements for high volume, reliability, and availability.
While addressing all of these nonfunctional "abilities" of BizTalk, we primarily
consider the Enterprise edition.

High availability
BizTalk Server lets you separate hosts and run multiple host instances to provide
high availability. In large implementations, it is considered best practice to separate
the receiving of messages, processing of orchestrations, and sending of messages into
three separate groups of hosts. BizTalk automatically distributes the workload across
multiple computers through host instances. However, the hosts running receive
handlers for the HTTP and SOAP adapters require a load balancing mechanism to
provide high availability; hosts running receive handlers for FTP, MSMQ, POP3,
SQL, and SAP require a clustering mechanism to provide high availability.

A high availability configuration for the BizTalk databases typically consists of two
or more SQL Server databases in an active/passive server cluster configuration.

Master secret server is used by BizTalk to obtain the encryption key. If it fails, each
BizTalk Server will continue to use a cached-in memory copy of the master secret.
However, if the SSO service has been restarted on that BizTalk Server, the latter will
need to contact the master secret server. To provide high availability for the master
secret server, Windows clustering can be used.

Reliability
As mentioned before, every message in BizTalk is persisted in the Message Box.
In addition to this, every message is immutable. In other words, once the message
is in the Message Box, it does not change and does not disappear until it is consumed
by all subscribers. This provides extremely high resiliency even in complex scenarios,
such as long-running or distributed transactions.

The BizTalk Server Primer

[106]

Manageability
Most administration and operation tasks are performed in the BizTalk Server
Administration Console. The Administration Console has a graphical user
interface. Additionally, there is the BTSTask command-line tool that is used for
all administration tasks and can be run from a command line and used in batches.
Extensive monitoring can be developed using BAM, and additional administrative
tasks can be programmed with the use of WMI Object Model.

However, the Administrative Console is not very rich in features; coding additional
tasks requires significant effort.

The BizTalk community realized the lack of proper tools a long time ago, and several
products to administer BizTalk have been developed. The most popular and most
stable and rich-in-features product is BizTalk360 (http://www.biztalk360.com).

Programmability
BizTalk is not your usual Microsoft product. If you install Microsoft Exchange
or Microsoft Office, Windows or Visual Studio, you will be able to immediately
perform some tasks right after the installation. When you install BizTalk, it does
nothing. The BizTalk solution has to be designed and programmed. In fact, BizTalk
is a development tool, pretty much like SQL Server, one would say. Therefore,
programmability in BizTalk is one of the main abilities, and every new release has
some significant improvements in this area.

However, that said, we should always remember that BizTalk is a tool for
developers. In its early years, one could gauge that BizTalk—if not yet, but very
soon—would be a tool that even nontechnical people could use. There were even
promises that eventually a business analyst would be able to magically sketch a
solution via a mighty user interface and no coding would be involved. Well, these
dreams did not come true. However, the product today is certainly one of the most
powerful Microsoft development tools, the caliber of SQL Server and Visual Studio.

Scalability
Scalability can be achieved by adding more hosts and host instances to the
group as well as more servers. Additional servers pull work items off the queues
independently. The more the number of servers in the group, the more work can be
performed. There is no limit to the number of servers that can be added to a BizTalk
Enterprise edition. However, there are two things to keep in mind. The first one is
sequencing. If you want to process messages in a sequence, you need to implement
special means. The second one is licensing. More servers require more licenses;
even if there is no technical limit, the budget restrictions will limit your solution.

http://www.biztalk360.com

Chapter 5

[107]

Performance
We mentioned earlier that BizTalk is optimized for throughput rather than for low
latency. In general, the latency of BizTalk is higher than the latency of its competitors
that don't persist messages. However, for the majority of industries, including financial
and health care, BizTalk is a proven integration tool. BizTalk generally relies on the
performance of SQL Server, and there are multiple ways to optimize the performance
of both products. Unfortunately, there are no simple solutions; improving the
performance is routine work that requires some skills and experience. Microsoft has
great recommendations for performance and capacity planning at http://msdn.
microsoft.com/en-us/library/aa577523(v=bts.80).aspx.

Security
There are several ways to increase message security in a BizTalk solution. One is to
authenticate senders either by a certificate or using Windows Integrated Security.
Another approach is to authorize the receiver of the message. Messages can be also
encrypted. Needless to say that access control can be achieved by means of Windows
or SQL Server.

Using SQL Server as its underlying engine, BizTalk relies on its Transparent
Data Encryption (TDE) feature. Using TDE is necessary to comply with
industry standards such as PCI (find more about this at https://www.
pcisecuritystandards.org/security_standards/index.php).

Building the BizTalk application
We will now proceed to see how a BizTalk application can be utilized in the business
scenario. The use case given in the next section highlights the primary functionality
of BizTalk—the interoperability of several subsystems within the enterprise.

The use case of a web hosting company
All Things Internet (ATI) is a domain registrar company that decided to start
offering e-mail hosting (MS Exchange) and website hosting services to its
customers. ATI had put a significant effort into building the infrastructure for the
provisioning of these services. They have been built and tested by separate teams of
subcontractors and are scheduled to be launched soon. Together with the existing
systems, ATI will have the following business applications on board:

•	 A Domain name registration (DNR) service
•	 Customer subscription management

http://msdn.microsoft.com/en-us/library/aa577523(v=bts.80).aspx
http://msdn.microsoft.com/en-us/library/aa577523(v=bts.80).aspx
https://www.pcisecuritystandards.org/security_standards/index.php
https://www.pcisecuritystandards.org/security_standards/index.php

The BizTalk Server Primer

[108]

•	 Customer billing
•	 An MS Exchange server cluster and MS Exchange provisioning application
•	 A web hosting server cluster and web hosting provisioning application

ATI is looking to build a system that will manage new customer provisioning. Such
a system needs to send provisioning requests to various provisioning applications
based on the level of service the customer has subscribed to. In essence, it will
become a dispatcher that routes orders to the departments that will serve them.

ATI is optimistic about its business prospects and wants to make sure it has the
ability to expand its services further in the future. In particular, it is considering
adding SharePoint site services and cloud-based storage from third-party providers.
The system that handles the provisioning should be capable of adding these, and
possibly other services in the future, without breaking existing workflows.

Requirements analysis
First of all, we want to mention that, for this use case analysis, we are not concerned
with the actual functionality of the provisioning systems. In fact, it is to our
advantage not to take it into consideration. From a high-level architectural point
of view, all of these subsystems just send and receive messages. The object of our
analysis is the system that delivers these messages to and from those subsystems to
ensure the smooth operation of the business as a whole.

If we look at all of the various operations in the provisioning of the new customer
for ATI, we may notice one thing that they have in common. Each of them takes a
relatively long time to execute. DNS registration takes anything from a few minutes
to several hours to propagate across DNS servers. The provisioning of the MS
Exchange server and web hosting typically involves the allocation of storage space,
among a lot of other things that also take a significant amount of time. In short, for
all of the business transactions that constitute the provisioning of a new customer,
we cannot expect an immediate response. So, performance for our case is really not
a significant consideration.

What is important, then? The primary consideration in this scenario is reliability.
No doubt, the provisioning of new customers is mission-critical for any business.
Failure to start the service that the customer has subscribed for will very likely
impact the company image negatively and possibly deter future customers from
signing up in the first place.

Chapter 5

[109]

Similarly, the ability to be alerted is important if failures are still occurring.
No system is bulletproof, and things go wrong sometimes. However, a quick
reaction and the ability to respond and recover is what distinguishes an outstanding
service provider and makes it look good in its customer's eyes.

By abstracting ourselves from the technical details of the implementation, in this
manner, we will see that BizTalk Server is the primary candidate for this solution.
It is a specialized server built for the reliable dispatch and delivery of messages.
It has a lot of built-in adapters that cover most of the mainstream data storage and
delivery technologies. It has the ability to configure alerts and notifications that the
customer service and support can be built around.

Also important for this use case, as for a number of real-life scenarios, is the fact that
the BizTalk Server solution architecture is easy to upgrade in line with business needs.
In contrast with many other technologies, a new consultant who is working with
BizTalk solution a few years into its production lifetime does not need to understand
the details of the implementation. For our use case scenario, if ATI implements a
BizTalk solution and then decides to add SharePoint Services to its customer offering,
the existing system will not be significantly impacted. The addition of a new subsystem
will require the configuration of a new location, message types, and ports, whereas the
existing system functionality will likely stay untouched.

BizTalk Server installation and setup
Setting up BizTalk Server might be a challenge. The following steps provide detailed
instructions to install and set up BizTalk Server 2013 on Windows Server 2012.
For more information, read the description of the BizTalk Server 2013 installation
on MSDN (http://msdn.microsoft.com/en-us/library/jj248688(v=bts.80).
aspx). However, we would like to briefly repeat the steps and focus on some
major ones.

Excellent, step-by-step instructions to install and configure Microsoft
BizTalk 2013 with the ESB Toolkit are presented in Sandro Pereira's
blog at http://sandroaspbiztalkblog.wordpress.
com/2013/05/05/biztalk-2013-installation-and-
configuration-important-considerations-before-set-
up-the-server-part-1/.

1.	 Install all Windows updates. It is also a good idea to check for updates after
installing each major component (such as SQL Server or BizTalk).
You need to be an administrator to install and configure BizTalk Server.

http://msdn.microsoft.com/en-us/library/jj248688(v=bts.80).aspx
http://msdn.microsoft.com/en-us/library/jj248688(v=bts.80).aspx
http://sandroaspbiztalkblog.wordpress.com/2013/05/05/biztalk-2013-installation-and-configuration-important-considerations-before-set-up-the-server-part-1/
http://sandroaspbiztalkblog.wordpress.com/2013/05/05/biztalk-2013-installation-and-configuration-important-considerations-before-set-up-the-server-part-1/
http://sandroaspbiztalkblog.wordpress.com/2013/05/05/biztalk-2013-installation-and-configuration-important-considerations-before-set-up-the-server-part-1/
http://sandroaspbiztalkblog.wordpress.com/2013/05/05/biztalk-2013-installation-and-configuration-important-considerations-before-set-up-the-server-part-1/

The BizTalk Server Primer

[110]

2.	 The computer name has to be 15 characters or shorter. Otherwise, the
BizTalk configuration will not work properly. Change the computer name,
if necessary, from the Server Manager Dashboard.

3.	 BizTalk 2013 does not fully support IPv6 yet. For our purposes, let's disable
IPv6 as shown the following screenshot:

4.	 You may decide to configure Windows Firewall as described on MSDN
after the installation. However, if you need BizTalk for development and
aren't using it in the production environment, you can simply disable
Windows Firewall.

5.	 Install IIS 8 by navigating to Manage | Add Roles and Features.
Include the following features:

°° .NET Framework 3.5 features
°° The SMTP server (if you want to use alerts)
°° Windows Identity Foundation 3.5 (if you want to use the

SharePoint adapter)

Chapter 5

[111]

6.	 Include the following role services:
°° Common HTTP features: Default Document, Directory Browsing,

HTTP Errors, Static Content
°° Health and Diagnostics: HTTP Logging, Logging Tools, ODBC

Logging, Request Monitor, and Tracking
°° Performance: Static Content Compression and Dynamic Content

Compression
°° Security: Request Filtering, Basic Authentication, Digest

Authentication, and Windows Authentication
°° Application Development (all): Select all of the options
°° Management Tools: IIS Management Console and IIS 6 Management

Compatibility (all)

7.	 Installing BAM is optional. The BAM portal runs only in 32-bit mode.
For 64-bit environments, you need to set IIS to 32-bit mode. In order to do
this, run IIS Manager and enable 32-bit applications in Advanced Settings
for the default application pool, as shown in the following screenshot:

The BizTalk Server Primer

[112]

8.	 Setting up SMTP is optional if you want to set up BAM alerts, and WIF
is optional if you want to use the SharePoint adapter. We do not require
either for our purposes.

9.	 If you want to use BAM, you will need to install Microsoft Office Excel 2013.
Remember that BizTalk supports only the 32-bit version of Office. You will
need to select VBA when installing Excel.

10.	 If you are installing Visual Studio, you need to perform the following
two steps:

1.	 BizTalk 2013 is currently not compatible with Visual Studio 2013.
Microsoft is planning to publish an upgrade in 2014. If the upgrade
is not available by the time this book is published, install Visual
Studio 2012 with BizTalk 2013.

2.	 Microsoft SQL Server Express is incompatible with BizTalk.
To avoid problems, remove the following features from Windows
Program and Features after installing Visual Studio: Microsoft SQL
Server 2012 Express LocalDb and Microsoft SQL Server Compact 4.0
SP1 x4 ENU.

11.	 Install SQL Server 2012 and Select the following features:
°° Database Engine Services such as SQL Server Replication,

Full-text, and Semantic Extractions for Search
°° Analysis Services
°° Reporting Services: Native
°° SQL Server Data Tools
°° Client Tools Connectivity
°° Integration Services
°° The Basic and Complete options of Management Tools

12.	 Install BizTalk 2013 and select all components.
13.	 Configure BizTalk using Basic Configuration.
14.	 Install Microsoft BizTalk Adapter Pack and add the adapters to the

BizTalk Administration Console. Perform the complete installation
of all of the adapters.

Chapter 5

[113]

15.	 If you plan to install BizTalk ESB Toolkit, install UDDI services, add all
components, and configure a UDDI service from the BizTalk Configuration
tool. Use Basic Configuration.

16.	 Run Windows Updates, just in case.

Implementing the BizTalk solution
For this use case implementation, we will use three SQL databases:

•	 Customers: This database will be used as the source of incoming messages.
The incoming messages will be modelled by new records in the Customer
table with IsProvisioned = 0.

•	 DNR: This database will be used as the destination for the Domain name
registration (DNR) service and Hosting service. Customer domains
will be provisioned by inserting new records into the Domain table.
Web hosting for customers will be provisioned by inserting new records
into the Hosting table.

•	 Billing: This database will be used as the destination for the Billing
service. Customer billing records will be added to the Customer table.

In order to develop BizTalk 2013 projects in Visual Studio 2012,
the reader needs to install WCF LOB Adapter SDK 2013 on
the development server with BizTalk Server 2013 and Visual
Studio 2012 installed. The download is available from Microsoft
Download Center at http://www.microsoft.com/en-us/
download/details.aspx?id=39630.

Perform the following steps to walk through the creation of a BizTalk project for
this use case:

1.	 Restore the Customers, DNR, and Billing databases from the backup files
on the code bundle included with this book.

2.	 For each of the restored databases, add a current Windows user login to the
database logins. Specify Default Schema = 'dbo'.

3.	 Open Visual Studio 2012 and navigate to New | Biz Talk Projects | Empty
BizTalk Server Project. Enter ATI as the name of the project.

4.	 Right-click on the ATI project in Solution Explorer, then navigate to
Add | Add Generated Items.

http://www.microsoft.com/en-us/download/details.aspx?id=39630
http://www.microsoft.com/en-us/download/details.aspx?id=39630

The BizTalk Server Primer

[114]

5.	 In the Add Generated Item Wizard screen, select Consume Adapter Service:

6.	 Within the Consume Adapter Service window (as shown in the preceding
screenshot), perform the following steps:

1.	 Select sqlBinding from the Select a binding dropdown.
2.	 In the Configure a URI box, enter mssql://localhost//Customers.

Change localhost to the named instance of SQL Server if necessary.
3.	 Click on the Configure button to the right of the Configure a

URI box. Change the value of Client Credential Type from
None to Windows.

Chapter 5

[115]

4.	 Click on the Connect button. If a connection to SQL Server is
successful, the Select a Category window will be populated with
SQL object types.

5.	 In the Select a Category window, expand Views. Click on dbo.
NewCustomerView.

6.	 In the Available Categories and Operations window, click on the
Select operation. Then, click on the Add button.

7.	 Click on OK.

7.	 Repeat steps 4 to 6 for the following database objects:
°° The Customer table of the Billing database: Select the Insert

operation from the Available Categories and Operations list
°° The Domain table of the DNR database: Select the Insert operation

from the Available Categories and Operations list

8.	 Right-click on the ATI project in the Solution Explorer view and navigate to
Add | Add New Item. Select BizTalk Orchestration from the list of BizTalk
templates. Enter New Customer Provisioning Orchestration as the
orchestration name.

9.	 In the Orchestration View pane, right-click on the Port Types folder and
select New One-Way Port Type.

10.	 Click on PortType_1. In the Properties pane, change the value of Identifier
to PortType_Incoming. Expand the PortType_Incoming node.

11.	 Expand Operation_1. Click on the Request_1 node. In the Properties pane,
click on the Message Type dropdown. Expand the Schemas node. Click on
ATI.newViewOperation_dbo_NewCustomerView.Select.

12.	 In the Orchestration Editor window, right-click on the Port Surface pane
and select New Port from the pop-up menu. The Port_1 icon will appear
in the pane.

13.	 Click on the Port_1 icon. Then, in the Properties view, perform the
following steps:

1.	 Change the value of Identifier to NewCustomerPort.
2.	 Click on the Port Type dropdown. Select PortType_Incoming.

The BizTalk Server Primer

[116]

14.	 Repeat steps 8 to 13 to add Port Types to Orchestration for the following
schema objects:

°° ATI.TableOperation_dbo_Customer.Insert

°° ATI.TableOperation_dbo_Domain.Insert

15.	 In the Orchestration View pane, right-click on the Messages folder. Select
New Message.

16.	 Change the identifier for Message_1 to Msg_CustNotification. Change the
value of Message Type to ATI.newViewOperation_dbo_NewCustomerView.
Select.

17.	 Repeat steps 15 and 16 to create the following two message types:
°° Identifier: Msg_InsBilling and Message Type: ATI.

TableOperation_dbo_Customer.Insert

°° Identifier: Msg_NewDomain and Message Type: ATI.
TableOperation_dbo_Domain.Insert

18.	 Drag-and-drop the Receive component from the Toolbox pane to the center
of the orchestration.

19.	 Click on the Receive_1 icon. In the Properties pane, change the value of
Operation to NewCustomerPort.Operation_Get_New_Customers.Request.
Change the value of Message to Msg_CustNotification and the value of
Name to NewCust_Notification.

20.	 In the toolbox, double-click on Transform Component. The Transform
Component icon will appear under the Receive component.

21.	 Double-click on the Transform Component icon to open Transform
Configuration window. Then, perform the following steps:

1.	 In the Transform pane, click on Source. In the Source Transform
grid, select Variable Name = Msg_CustNotification.

2.	 In the Transform pane, click on Destination. In the Destination
Transform grid, select Variable Name = Msg_InsBilling.

3.	 Check the When I click OK, launch the Biztalk Mapper option.

Chapter 5

[117]

22.	 In BizTalk Mapper, create links between the Source Columns
(in the left-hand pane) and ns3:Customer (in the right-hand pane) nodes.

23.	 Drag-and-drop the Send component from the toolbox into the Orchestration
window. Repeat steps 18 to 22 to create the following two operations:

°° The operation Insert Billing.Configure with the
ATI.TableOperation_dbo_Customer.Insert message type

°° The operation Insert Domain.Configure with the
ATI.TableOperation_dbo_Domain.Insert message type

The BizTalk Server Primer

[118]

24.	 The orchestration should now look as shown in the following screenshot:

Lessons learned
We have defined, analyzed, and implemented a simple use case scenario for the
BizTalk implementation. From this example, it is easy to see how a BizTalk solution
can be expanded to handle very large and complex business scenarios—involving
multiple systems, both in-house and third party—using various technologies.
BizTalk's primary role is to serve as a messaging hub that orchestrates the
communication between various systems and ensures reliable delivery.

Chapter 5

[119]

Summary
In the world of software system integration, MS BizTalk Server plays a significant
role. It provides reliable delivery and is the ultimate tool for Enterprise Application
Integration scenarios delivered using Microsoft technologies.

In the next chapter, we will present another complex tool that has become the
ultimate solution for many enterprise scenarios, such as content and document
management, enterprise collaboration, and even for building social networks:
Microsoft SharePoint Server.

The SharePoint
Server Primer

Perhaps you have read the parable about the three blind men and the elephant
(http://en.wikipedia.org/wiki/Blind_men_and_an_elephant). This story is
very apropos when describing Microsoft SharePoint Server (SharePoint) and its
many capabilities. If you ask three software architects what SharePoint is, they will
each give you a different answer, depending on the specific features and capabilities
of SharePoint that they have used. It is very rare indeed that you will meet an
architect or developer who has experience with all of the capabilities of SharePoint.
The first architect might claim that SharePoint is an enterprise content management,
document management, or even a business process management product. The
second will insist that SharePoint is a collaboration and social networking product.
And the last will say that it is an Intranet-In-A-Box. And they would all be partially
correct; SharePoint is all of the mentioned features (and much more), but it is not
a product; it is a business application platform, and it is both wide and deep.
SharePoint should be viewed as a toolbox for developing very powerful business
applications, often with little or no requirement to write any custom code
(though rich APIs are available when you need deeper customization).

Choosing whether to use SharePoint in a system or application and then choosing
which of SharePoint's myriad capabilities to use in that system can be challenging.
It is the goal of this primer to give architects and developers enough information
to get the most out of SharePoint, while avoiding some of the possible pitfalls
and antipatterns.

The latest version of SharePoint is SharePoint 2013, and this primer focuses on the
features and capabilities of this most recent version. Most of the topics are highly
applicable to SharePoint 2010, though less so to SharePoint 2007 and its predecessors.

http://en.wikipedia.org/wiki/Blind_men_and_an_elephant

The SharePoint Server Primer

[122]

The SharePoint editions
SharePoint comes in a number of editions, including Foundation, Standard,
Enterprise and Online:

•	 Foundation edition: This edition (formally known as Windows SharePoint
Services) offers only the core capabilities of SharePoint and is available
as a free download from Microsoft (http://www.microsoft.com/en-
us/download/details.aspx?id=35488). SharePoint Foundation's only
licensing requirement is that each user has a valid Windows Client Access
License (CAL).

•	 Standard edition: This includes all of the capabilities of Foundation and
adds many capabilities targeted at small- to medium-sized organizations
and departments, including additional site templates, and collaboration,
enterprise content management, and Search capabilities.

•	 Enterprise edition: This includes all of the capabilities and services
that the SharePoint platform has to offer and is targeted at larger
organizations. These additional capabilities include the Office services,
that is, Access, Excel, InfoPath, Visio Services, as well as Power View
and PerformancePoint Services.

The Standard and Enterprise editions of SharePoint have different
licensing requirements depending on whether the farm is being
used to host intranet, extranet, or Internet sites. For SharePoint
2013, a server license is always required for each server running
the SharePoint software, and internal users require either a
Standard or Enterprise SharePoint CAL, depending on the
SharePoint capabilities that they are using. External users do not
require a CAL and are licensed under the server license. Microsoft
has a document that describes the new SharePoint 2013 licensing
model at http://download.microsoft.com/download/3/
D/4/3D42BDC2-6725-4B29-B75A-A5B04179958B/
Licensing_Microsoft_SharePoint_Server_2013.pdf.

•	 Online edition: This is one of the hosted services (along with Exchange and
Lync) available in Microsoft's Office 365 (O365) cloud platform. Microsoft
provides multiple subscription plans that provide either the Standard edition
or Enterprise edition capabilities, on either single- or multi-tenant/shared
servers. Online edition is licensed per user, as is all of O365.

http://www.microsoft.com/en-us/download/details.aspx?id=35488
http://www.microsoft.com/en-us/download/details.aspx?id=35488
http://download.microsoft.com/download/3/D/4/3D42BDC2-6725-4B29-B75A-A5B04179958B/Licensing_Microsoft_SharePoint_Server_2013.pdf
http://download.microsoft.com/download/3/D/4/3D42BDC2-6725-4B29-B75A-A5B04179958B/Licensing_Microsoft_SharePoint_Server_2013.pdf
http://download.microsoft.com/download/3/D/4/3D42BDC2-6725-4B29-B75A-A5B04179958B/Licensing_Microsoft_SharePoint_Server_2013.pdf

Chapter 6

[123]

The specific edition of SharePoint that your application or organization will
need will depend on the specific capabilities that you require; a detailed feature
comparison of the SharePoint 2013 editions and their capabilities is available at
http://technet.microsoft.com/en-us/library/sharepoint-online-service-
description.aspx.

The SharePoint platform
At its very core, SharePoint is a distributed, multi-tiered, Microsoft Internet
Information Server (IIS) application, comprising unmanaged, COM-based ISAPI
extensions (OWSSRV.DLL being the most important) and APIs; .NET Framework-
based APIs hosted in ASP.NET, XML, HTML, CSS, JavaScript, and image files stored
in the Windows filesystem; and configuration and content stored in Microsoft SQL
Server. Though much of SharePoint's core capabilities are implemented in native/
unmanaged COM objects, and though calls to those COM objects are allowed (either
directly or through HTTP RPC calls to the ISAPI extensions), all of those capabilities
are also exposed by the .NET Framework-based "wrapper" APIs, which include
SOAP and REST web services.

SharePoint is a very complex system, and its architecture has many layers of
abstraction above IIS, COM, ASP.NET, and SQL Server. Luckily, understanding
COM is not necessary for understanding SharePoint, but having a good knowledge
of IIS and ASP.NET will certainly help in gaining a deep understanding of
SharePoint. Most of the metadata, configuration, and user content (including
documents) associated with SharePoint are stored in Microsoft SQL Server, but direct
manipulation of raw SharePoint data is almost never required, nor is it encouraged.

The rest of this chapter will discuss the levels of abstraction within SharePoint that
a developer or architect will need to understand in order to design and develop
solutions for and with SharePoint.

The SharePoint server topology
A typical SharePoint installation consists of a single SharePoint farm. All servers in
the farm operate, and are managed, as a single logical system, and most SharePoint
services are farm-bound (though some can operate across farms). An entire farm
can be installed on a single physical or virtual server, or can be installed on many
servers, each in one or more SharePoint Server roles (not to be confused with
Windows Server roles).

http://technet.microsoft.com/en-us/library/sharepoint-online-service-description.aspx
http://technet.microsoft.com/en-us/library/sharepoint-online-service-description.aspx

The SharePoint Server Primer

[124]

For an Enterprise-scale SharePoint 2013 farm, Microsoft recommends the use of 32
physical servers hosting 59 virtual servers! See http://go.microsoft.com/fwlink/
p/?LinkId=271929. SharePoint also supports multi-farm installations if high-
scalability is the principal requirement of the installation, or if strict departmental
isolation is required, because of significant differences in policy or security
requirements. See http://go.microsoft.com/fwlink/p/?LinkId=267619.

The exact topology and number of servers that will be needed for a system
or organization will depend on the required performance, scalability, and
capabilities (and your hardware and software budget). Microsoft provides
good guidance on how to design an appropriate farm topology for an organization
or system. See http://go.microsoft.com/fwlink/p/?LinkId=257304 and
http://go.microsoft.com/fwlink/p/?LinkId=286978.

The SharePoint server roles
There are three primary server roles within a SharePoint farm: the Web
 Server role (referred to as a Web Front End explained in next section server),
the Application Server role, and the Database Server role. A server role simply
describes the specific SharePoint services that are running on the server and that
are being actively used as part of the overall SharePoint installation; the SharePoint
components and services installed by default for the Web Server and Application
Server roles are identical. A physical or virtual server may be in more than one role
and, in the case of a single-server installation, will be in all three roles. The hardware
and software requirements for each server role for SharePoint 2013 can be found at
http://technet.microsoft.com/en-us/library/cc262485.aspx.

The Web Server role
The Web Server role, or Web Front End (WFE) server, describes a physical or virtual
server in a SharePoint farm that is primarily directly handling HTTP(S) requests
made by users, typically using a web browser, or from external client applications
using SOAP or REST web services. A server in a Web Server role is typically
configured with exactly the same base services and components as a server in the
Application Server role, but is then configured to only actively run those services
associated with the Web Server role. In SharePoint 2013, both roles are installed by
simply selecting Complete as the value of Server Type in the installation wizard.

http://go.microsoft.com/fwlink/p/?LinkId=271929
http://go.microsoft.com/fwlink/p/?LinkId=271929
http://go.microsoft.com/fwlink/p/?LinkId=267619
http://go.microsoft.com/fwlink/p/?LinkId=257304
http://go.microsoft.com/fwlink/p/?LinkId=286978
http://technet.microsoft.com/en-us/library/cc262485.aspx

Chapter 6

[125]

Adding WFE servers is one of the primary scale-out strategies for increasing the
number of simultaneous user requests the SharePoint farm can accommodate with
a user-acceptable response time for every response. See http://www.nngroup.
com/articles/response-times-3-important-limits/ for the currently accepted
definition of "user-acceptable response time". WFE servers are essentially "stateless"
web servers, and scale-out can be achieved by load-balancing requests across all the
servers using hardware or software load balancing, for example, Windows Server
Network Load Balancing (NLB).

By default, IIS has HTTP Keep-Alive response headers enabled, which
will cause the HTTP connection between the client browser or application
and IIS on the WFE server to remain open across multiple HTTP requests.
Although this setting does reduce the response time of each of the
HTTP requests made over a single connection, it also guarantees server
affinity while the connection is kept alive, and therefore reduces the
efficiency of a per-request, round-robin load-balancing strategy. Also
note that disabling HTTP Keep-Alive response headers in IIS will render
Integrated Windows Authentication with NTLM inoperable.

The Application Server role
The SharePoint Application Server role describes a physical or virtual server
in a SharePoint farm that is primarily hosting one or more SharePoint service
applications. In SharePoint 2013, there are 17 service applications, which include
the Search, Access, Business Data, Excel, Visio Graphics, and App Management
Service applications, to name just a few. You can see a full list of all of the service
applications at http://go.microsoft.com/fwlink/p/?LinkId=259425.

Typically, unless SharePoint is installed on a single server, users should not be
making direct HTTP(S) requests to a server in the Application Server role, and
the SharePoint (Foundation) Web Application service should be disabled. If a
service application is started on multiple physical or virtual application servers
in a SharePoint farm, SharePoint will automatically load-balance between them
using Application Discovery and Load Balancer (or simply, Topology) services.

The Search Application Server role is a subset of the Application Server role that is
dedicated to running SharePoint Search-specific services. In large-scale deployments,
there can be two Search Application Server roles: one focused on indexing and
query processing, and the second on crawling, administration, analytics, and content
processing. Because of the importance of Search in SharePoint, and the often-high
computational costs associated with Search, it is often necessary to put the Search
services and components on dedicated application and database servers.

http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://go.microsoft.com/fwlink/p/?LinkId=259425

The SharePoint Server Primer

[126]

The SharePoint Application Server role should not be confused with
the Windows (Server) Application Server role, which is required to
be installed on servers configured for both the SharePoint WFE and
application roles.

The Database Server role
The SharePoint Database Server role describes a physical or virtual server in a
SharePoint farm that is running Microsoft SQL Server, often in a SQL cluster,
and is hosting one or more of the many databases created and used by SharePoint.

If a farm is using all of the services in SharePoint 2013, there will be as many as
24 databases or more hosted in SQL Server. In large-scale SharePoint installations,
there will be servers in the Database Server role dedicated to storing only
Search-related data, and others dedicated to storing content and other service
data. Microsoft provides a diagram detailing all of the SharePoint databases at
http://go.microsoft.com/fwlink/p/?LinkId=257370.

SharePoint does not provide any special scale-out capabilities for
servers in the Database Server role other than those provided by SQL
Server itself (see http://msdn.microsoft.com/en-us/library/
aa479364.aspx).

Administration and management
Administration and management of a SharePoint farm is done using the SharePoint
Central Administration website, Windows PowerShell for SharePoint cmdlets, or
through custom applications written using the SharePoint Server Object Model.
Site-level administration is done within the SharePoint user interface. There are
also a number of very good third-party tools that ease the administration and
management of SharePoint.

Know your limits
It is always good to know what the documented limits for a technology
or product are before including it in the design of a system. Fortunately,
Microsoft provides a detailed document of the software boundaries
and limits for SharePoint 2013 at http://technet.microsoft.
com/en-us/library/cc262787.aspx. Having a good knowledge
of these limits will help you to avoid a number of common SharePoint
antipatterns, for example, deeply-nested site/subsite hierarchies.

http://go.microsoft.com/fwlink/p/?LinkId=257370
http://msdn.microsoft.com/en-us/library/aa479364.aspx
http://msdn.microsoft.com/en-us/library/aa479364.aspx
http://technet.microsoft.com/en-us/library/cc262787.aspx
http://technet.microsoft.com/en-us/library/cc262787.aspx

Chapter 6

[127]

Core concepts and capabilities of
SharePoint
As mentioned before, SharePoint should be viewed as a platform rather than a
product, and as such, offers an architect an extensive toolbox of capabilities and
services that can be used as or in a solution. Understanding those capabilities and
services, and how they can be composed, is key to getting the most out of SharePoint.
The following section describes many, though not all, of the core concepts and
capabilities of the SharePoint platform. This section also indicates the specific
SharePoint APIs that are available for programmatically accessing each entity or
capability. The broader SharePoint APIs are described in a later section.

SharePoint web applications
A SharePoint web application is the logical root container in the SharePoint Content
Hierarchy. A web application provides logical service, feature, policy, user, and
content isolation. Site collections and their sites and lists and all their items and
documents are contained within a SharePoint web application.

A web application is not just a logical abstraction, however; it also represents a
number of identical IIS web applications running on all WFE servers in the farm.
IIS web applications provide configuration, content, security and lifetime isolation,
by running each application in a dedicated or shared application pool (which is just
a .NET application domain under the covers). These ASP.NET applications are the
host environments for the SharePoint runtime components associated with handling
HTTP(S) user and web service requests for content contained within the SharePoint
web application.

SharePoint web applications are created and administered in the SharePoint Central
Administration web interface, and the associated IIS applications are created or
modified on each WFE server in the farm automatically.

In the SharePoint Server Object Model (SOM), the web application is represented
by the SPWebApplication class in the Microsoft.SharePoint.Administration
namespace. The web application is not exposed in the SharePoint .NET SharePoint
Client-side Object Model (CSOM) or SharePoint JavaScript Object Model
(JSOM) APIs.

The SharePoint Server Primer

[128]

SharePoint content database
SharePoint web applications are associated with one or more SharePoint
content databases, which are SQL Server databases used to store one or more site
collections and all of the content associated with them. A content database can only
be associated with a single web application, though multiple site collections can be
stored in a single content database.

In the SOM, the content database is represented by the SPContentDatabase class in
the Microsoft.SharePoint.Administration namespace. The content database is
not exposed in the CSOM or JSOM APIs.

Though a user with appropriate permissions can access and modify a
SharePoint content database directly, it is not advisable; the intrinsic
databases should not be considered valid extensibility points for
SharePoint. The SharePoint SQL schema is highly normalized and
abstract, and it is easy to break it in such a way that all your data
becomes inaccessible. Modifying the database schema directly is also
unsupported by Microsoft (http://support.microsoft.com/
kb/841057), and any changes you make might be overwritten by a
service pack or update. It is best to treat the database as a black box
and access it through one of the many SharePoint APIs.

SharePoint site collections
Every SharePoint web application has one or more site collections contained within
it. A site collection represents a root SharePoint site and all of its content, which
almost always includes a hierarchy of nested subsites. Site collections are accessed
via a distinct URL, which can be either a unique subpath of the web application root
URL, for example, http://www.acme.com/sites/finance, or in 2013, can be a
distinct hostname, for example, http://finance.acme.com/.

Typically, all of the sites in a site collection represent a logical grouping of content
along organizational or functional lines, for example, a business unit or cross-cutting
business function. Subsites inherit the configuration, capabilities, and branding of
the root site in the site collection by default, which allows the entire site collection to
be managed as a single logical entity. A site collection is stored in one of the content
databases associated with the site collection's parent web application.

In SOM, the site collection is represented by the SPSite class in the Microsoft.
SharePoint namespace. The site collection is not exposed in the CSOM or JSOM
APIs (though the root site of the site collection is).

Chapter 6

[129]

Warning!
The naming in the SOM can get a little confusing, primarily
because the class names do not always have an immediately
intuitive relationship with the SharePoint logical entity that they
represent. For example, SPSite encapsulates functionalities related
to the site collection, while SPWeb encapsulates the functionalities
related to a site. There is also SPSiteCollection, which is
actually an IEnumerable<SPSite> collection containing all
of the site collections in a web application!

SharePoint sites
A SharePoint site is the primary container (available to non-administrator users)
for partitioning content and functionality within SharePoint. A site can typically be
created by any user with appropriate permissions using the regular SharePoint web
interface. When creating a new site, a title and a URL name are required; the latter
is used to produce the canonical URL used to access the site. You can also configure
alternate URLs for the site using the alternate access mappings feature.

A site is created from a site template, which defines the site's initial structure,
functionality, and appearance, and also the templates available for creating subsites.
In SharePoint 2013, a new site collection is created with either the 2013 experience
version or the 2010 experience version, and this governs which version of the
templates will be available when creating new sites in that site collection. A site
collection created with the 2010 experience version can be upgraded to the 2013
version at a later time, though not all of the 2010 templates have a 2013 equivalent.
Unless you are upgrading from SharePoint 2010, it is recommended that you use the
2013 experience version templates.

There are three categories of the SharePoint 2013 experience version site templates:
Collaboration, Enterprise, and Publishing. The Collaboration category includes
templates for blogs and team, community, and project sites. The Enterprise category
includes templates for document, eDiscovery, records, business intelligence, and
enterprise search centers. The Publishing category includes templates for publishing
portals, sites, and enterprise wikis. SharePoint also supports creating and using
custom site templates. You can read about all of the site templates available in
SharePoint 2013, and their capabilities at http://technet.microsoft.com/en-us/
library/cc262410.aspx.

http://technet.microsoft.com/en-us/library/cc262410.aspx
http://technet.microsoft.com/en-us/library/cc262410.aspx

The SharePoint Server Primer

[130]

In SOM, the site is represented by the SPWeb class in the Microsoft.SharePoint
namespace. In CSOM, the site is represented by the Site class in the Microsoft.
SharePoint.Client namespace, and in the JSOM is represented by the SP.Site
object in sp.js.

SharePoint lists
The SharePoint list is the workhorse of the SharePoint platform, and most
SharePoint capabilities and features use the list in some way. If there is one
SharePoint concept (and its implementation) that every SharePoint developer
or architect must master, it's list. A list is a table (similar to a SQL table or Excel
worksheet), with typed and named columns (or fields), and rows (or list items),
which contain the actual list data. A user can create a custom list or use one of the
built-in list templates, for example, announcements, contacts, events, tasks, and so
on. Whether an appropriately permissioned user creates a custom list, or uses one
of the aforementioned templates to create one, they can customize or modify the list
at any time, typically by adding columns, content types, or views.

SharePoint lists can also be configured to contain data that is
external to SharePoint, using external content types and Business
Connectivity Services (BCS). BCS is a very powerful way to
seamlessly integrate line-of-business data into SharePoint. You can
read more about BCS at http://technet.microsoft.com/en-
us/library/ee661740.aspx.

In SOM, the list and list items are represented by the SPList and SPListItem classes
in the Microsoft.SharePoint namespace. In CSOM, they are represented by the
List and ListItem classes in the Microsoft.SharePoint.Client namespace, and
in the JSOM are represented by the SP.List and SP.ListItem objects in sp.js.

SharePoint columns
Columns are first-class SharePoint entities; they are named, typed, and scoped to
a site and its subsites, or a specific list. A number of column types are available,
including the choice type, which allows the user to provide a list of possible values
for the column, and the managed metadata type, which requires that the value come
from a specific taxonomy or set of tags. A user can create both site- and list-scoped
columns through the SharePoint user interface. Site columns are stored in the site
column gallery, though adding a site column to a list copies the column to the list. A
user needs to explicitly propagate changes made to a site column to all lists that are
using that column.

Chapter 6

[131]

In SOM, the column is represented by the SPField class in the Microsoft.
SharePoint namespace. In CSOM, it is represented by the Field class in the
Microsoft.SharePoint.Client namespace, and in JSOM is represented by
the SP.Field object in sp.js.

SharePoint content types
Lists can also be configured to allow the management of content types. Content
types can be thought of as a named collection of site columns, but there is far more
to them than that; content types can also include a document template, forms,
workflows, information management policy, and other resources. Content types are
essentially a mechanism for encapsulating related data, policy, and behavior. Some
examples of built-in content types are announcement, contact, event, and task
(note the relationship to the list templates mentioned previously).

Content types are scoped to the site they are created in and that site's subsites,
and are stored in the site content type gallery. Content types, such as site columns,
also support a weak form of inheritance; a new content type is always based on
an existing content type. That base type can be one of the built-in content types,
for example, document or item, or another in-scope custom content type. Like site
columns, propagation of changes from a base content type to derived content types
is not automatic; a user has to explicitly choose to propagate the changes. A list may
be configured to contain multiple content types, though there is always a default
content type associated with the list.

In SOM, the content type is represented by the SPContentType class in the
Microsoft.SharePoint namespace. In CSOM, it is represented by the ContentType
class in the Microsoft.SharePoint.Client namespace, and in the JSOM is
represented by the SP.ContentType object in sp.js.

SharePoint views
A list can also have multiple user-specific or public views that define how the list
items in that list will be displayed in the browser. Views allow for the inclusion of
specific columns and also allow custom sorting, filtering, grouping, summing, and
layout. When a list is created, a default public view is automatically created for the
list, and possibly multiple other views, based on the template that was used to create
it. Multiple new views can be created and any public view can be set as the default
view for the list by a user with appropriate permissions.

The SharePoint Server Primer

[132]

In SOM, the view is represented by the SPView class in the Microsoft.SharePoint
namespace. In CSOM, it is represented by the View class in the Microsoft.
SharePoint.Client namespace, and in JSOM the view is represented by the
SP.View object in sp.js.

SharePoint document libraries
A document library is a specialized SharePoint list that is customized for storing
documents and files. Each item in the library is a document, though the item can
also have additional columns. All lists support attachments and major versioning,
but document libraries also support check-in/out, property promotion/demotion,
minor versioning, WebDAV accessibility, and a number of other document-centric
capabilities. Libraries also enable the "New Folder" command by default so that files
can be easily arranged into folder hierarchies.

In SOM, the document library is represented by the SPDocumentLibrary class,
which derives from SPList. The documents in the library are just ListItem
instances, and the actual file is represented by the SPFile class, an instance of which
is returned by the ListItem.File property accessor. Folders are represented by
the SPFolder class. In CSOM and JSOM, there is no special class or object for the
document library, and an instance is treated as a List class instance or SP.List
object instance respectively. A folder is represented by the Folder class in CSOM
and by the SP.Folder object in JSOM.

SharePoint web parts
Web Parts are a server-side ASP.NET technology for creating web pages whose
layout and behavior are user-modifiable within the browser. Web Parts can be
dynamically placed in Web Part zones, which are contained within a Web Part page.
This ability to dynamically compose Web Parts can be used for either single-user
personalization or customization of a page or portion thereof for all users. You can
read more about ASP.NET Web Parts at http://msdn.microsoft.com/en-us/
library/hhy9ewf1.aspx.

SharePoint uses primarily ASP.NET Web Parts for the composition of its web user
interface to give administrators and users the highest degree of flexibility in how
the SharePoint UI looks and behaves. Web Parts are embedded in SharePoint pages
and are most often used to display list data, but because Web Parts are server-side
controls, they can be configured to have access to all of the capabilities of SharePoint
through the server object model (though it is always best to follow the principle of
least privilege).

http://msdn.microsoft.com/en-us/library/hhy9ewf1.aspx
http://msdn.microsoft.com/en-us/library/hhy9ewf1.aspx

Chapter 6

[133]

Because almost every SharePoint UI element is either a Web Part or part of one,
SharePoint has a large number of built-in Web Parts. The exact Web Parts that a site
will have available will depend on the edition of SharePoint installed/licensed and
the site template that was used to create the site. There are also a large number of
free and paid-for, third-party Web Parts for SharePoint. Web Parts are stored in the
Web Part gallery of the site and are scoped to the site they are installed in and its
subsites, though they can be deployed to an entire site collection or farm.

Web Parts also provide developers with a powerful and convenient mechanism
for extending SharePoint's user interface and experience. Custom Web Parts are
typically developed with Visual Studio, which includes multiple project and item
templates for designing, coding, and packaging custom Web Parts for SharePoint,
including Web Parts based on Silverlight. You can read more about creating custom
Web Parts for SharePoint 2013 at http://msdn.microsoft.com/en-us/library/
ee231579.aspx.

ASP.NET Web Parts are represented by the WebPart class in the System.Web.
UI.WebControls.WebParts namespace. In CSOM, it is represented by the WebPart
class, and in JSOM it is represented by the SP.WebPart object.

There is a second API for developing SharePoint Web Parts; the
confusingly named SharePoint Web Parts API. This API, which is in
the System.SharePoint.WebPartPages namespace, is actually
based on the ASP.NET Web Parts API. However, unlike Web Parts
created with the ASP.NET Web Parts API, SharePoint Web Parts
cannot be run outside of the context of SharePoint. There are very
few cases where this API will be required.

Apps for SharePoint
In SharePoint 2013, Microsoft has added the new Apps for SharePoint
(SharePoint Apps) capability to the platform. SharePoint Apps introduces a
new, predominantly cloud-based, development model, which enables extending
SharePoint using standard-based web technologies, for example, HTML5, CSS,
and JavaScript, and a new execution model where Apps generally run outside of
SharePoint and access SharePoint capabilities using one of the web-based client APIs
(see the SharePoint APIs section later in this chapter). SharePoint 2013 also introduces
a new mechanism for publishing and sharing these Apps; Apps can be published to
on-premises app catalogs hosted in SharePoint 2013, or to Microsoft's Office Store.
You can read more about Apps for SharePoint at http://msdn.microsoft.com/en-
us/library/office/fp161507(v=office.15).aspx.

http://msdn.microsoft.com/en-us/library/ee231579.aspx
http://msdn.microsoft.com/en-us/library/ee231579.aspx
http://msdn.microsoft.com/en-us/library/office/fp161507(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/office/fp161507(v=office.15).aspx

The SharePoint Server Primer

[134]

SharePoint workflows
A SharePoint workflow is an automated, often human-driven, business process
executed in, and managed by, SharePoint. SharePoint workflows primarily operate
over lists, libraries, list items, documents, folders, and forms, but can also respond to
SharePoint events, send e-mails, interact with other SharePoint service applications
or external services, and even start other workflows. There are three types of
SharePoint workflows: site workflows are site features and are scoped to a site
and its subsites; reusable workflows are associated with a content type and can be
associated with multiple lists within a site; list workflows are only associated with
a specific list and its contents. Workflows can be added to lists, list items, folders,
and content types. Workflows can be started manually, or automatically based on an
event, for example, the event of a new list item being added to the list.

An example of a commonly used SharePoint workflow is the Approval workflow,
which notifies approvers that a document is ready for approval and then notifies the
author once the document is approved or rejected. SharePoint 2013 has a number
of other built-in workflows, including Collect Feedback, Collect Signatures,
Three-State, and Publishing Approval. Custom workflows can be created in either
SharePoint Designer or Visual Studio. Both tools support visual editing of the
workflow flowchart, but only Visual Studio supports adding custom activities and
code to workflows. Both tools also support the creation of custom workflow forms,
though InfoPath may also be required depending on the SharePoint edition that the
workflow will be deployed to. Visio can also be used to edit or modify workflow
flowcharts, but SharePoint Designer is required to deploy them to SharePoint.

SharePoint workflow is based on Windows Workflow Foundation (WF), which
is the workflow API in the .NET Framework. Prior to SharePoint 2013, workflows
were implemented using WF 3.x (3.0 or 3.5), and workflows ran in the SharePoint
web application process. SharePoint 2013 has added a new workflow model called
Windows Azure Workflows based on the new WF 4.0 API, which is ostensibly a
complete rewrite. In the 2013 workflow model, the workflows run in the Workflow
Manager process, which is external to SharePoint, and uses Windows Azure Service
Bus to communicate with SharePoint. You can read about the SharePoint 2013
workflow model at http://msdn.microsoft.com/en-us/library/jj163181.
SharePoint 2013 supports both workflow models and provides a mechanism to
interoperate between them.

SOM provides programmatic access to SharePoint workflows through the new
Microsoft.SharePoint.WorkflowServices API and the older Microsoft.
SharePoint.Workflow API. Since the new API is compatible with both WF
3.x and 4.x workflows, it should be the API of choice for all new development.
Workflows are also accessible in CSOM using the Microsoft.SharePoint.Client.
WorkflowServices API, and in JSOM in the SP.WorkflowService.js API.

http://msdn.microsoft.com/en-us/library/jj163181

Chapter 6

[135]

SharePoint forms
Forms are used to edit and display data that typically resides in SharePoint lists.
There are perhaps too many options for creating forms in SharePoint 2013, including
list forms, custom ASP.NET Web Forms, Access, Excel, HTML/CSS/JavaScript,
InfoPath, and Silverlight forms.

It is also not always immediately evident which of these should or is being used for
any given form. As an example, the default list forms use the ListFormWebPart class
embedded in ASPX pages to render a list item as a simple form for displaying or
editing. But you can customize them with InfoPath, which adds new default forms
based on InfoPath documents (.xsn) that are seamlessly rendered in the browser
(in a different Web Part). Alternatively, you can add your own custom forms in
SharePoint Designer, which uses a Data View (Web Part) and a combination of XSLT,
HTML, JavaScript, and possibly CSS. It can get quite confusing.

In January 2014, Microsoft announced that they will be retiring the InfoPath client
and InfoPath Forms Services in SharePoint and are working on a replacement forms
technology (see http://blogs.office.com/2014/01/31/update-on-infopath-
and-sharepoint-forms/). As of this writing though, they have not announced what
that technology will be, so for the moment InfoPath (Version 2013 for SharePoint
2013) is the most deeply-integrated, feature-rich, and flexible option for creating
forms in SharePoint and, therefore, it is the obvious choice when considering a
SharePoint forms technology.

The APIs you will use to access and manipulate forms will somewhat depend on
which technology you choose. However, a form associated with a list is typically
represented by the SPForm class in SOM. In CSOM, it is represented by the Form
class, and, in JSOM it is represented by the SP.Form object.

SharePoint service applications
SharePoint service applications are shared services that are available to all sites
within a SharePoint farm, and in some cases, across multiple farms. SharePoint
provides a number of out-of-the-box service applications with each edition of
SharePoint; for example, Business Connectivity Services (BCS) is a service
application that is available in all editions of SharePoint, while the Access, Excel,
and Visio Services are only available in the Enterprise edition. SharePoint Enterprise
search is also implemented as a service application.

Service applications are yet another extensibility point for SharePoint, though they
are also one of the most complex to implement, and are poorly documented. SOM
includes all of the necessary APIs to create custom service applications that reside in
the Microsoft.SharePoint.Administration namespace.

http://blogs.office.com/2014/01/31/update-on-infopath-and-sharepoint-forms/
http://blogs.office.com/2014/01/31/update-on-infopath-and-sharepoint-forms/

The SharePoint Server Primer

[136]

SharePoint Search
Perhaps the most important capability of SharePoint is the ability it gives
users to search data and documents stored within it, and also to search external
line-of-business data, or data that resides in external data sources, all within a single
web-based user interface. All editions of SharePoint include some Search capabilities,
though they are very limited in SharePoint Foundation. The Standard and Enterprise
editions of SharePoint include full SharePoint Search, which is a platform in its own
right. SharePoint Search has been designed for massive scalability, and is also highly
extensible. You can read about the SharePoint 2013 Search platform at http://msdn.
microsoft.com/en-us/library/office/jj163300.aspx. Search APIs are available
in SOM, CSOM, and JSOM, and through REST web services.

SharePoint extensibility
If the built-in templates, content types, Web Parts, pages, features, service application
and so on, are not adequate for your organization or system, then the SharePoint
platform offers many extensibility points and APIs that you can use to develop your
own. In SharePoint 2013, there are two primary models for extending the platform:
the SharePoint Solutions model and the new SharePoint (Cloud) Apps model.
The major difference between these models is that SharePoint solutions run in a
SharePoint process and leverage SOM, while SharePoint Apps run in a separate,
isolated process, which can be hosted in SharePoint, in Azure, or wherever the
architect wants, and use one of the SharePoint client APIs; for example, CSOM,
JSOM, or REST.

The SharePoint Apps model is very convenient for building small SharePoint
applications and widgets, but any significant customizations of SharePoint
will require a SharePoint solution, including building custom site or list templates,
complex workflows, administration tools, branding, service applications, and so on.
The SharePoint solutions model can also be used to create sandbox solutions, which
run in a SharePoint process but are isolated from the SharePoint web application
process. You can read more about the differences between the models at
http://msdn.microsoft.com/library/office/jj163114.aspx.

http://msdn.microsoft.com/en-us/library/office/jj163300.aspx
http://msdn.microsoft.com/en-us/library/office/jj163300.aspx
http://msdn.microsoft.com/library/office/jj163114.aspx

Chapter 6

[137]

SharePoint APIs
SharePoint offers multiple APIs for extending the capabilities of the platform.
Each of these APIs has different use cases and limitations. Choosing the appropriate
API for a given use case can sometimes be challenging and, in many cases, a
custom SharePoint solution or application will require the use of more than one.
There is a good paper on choosing the appropriate API(s) for a specific SharePoint
customization on MSDN at http://msdn.microsoft.com/en-us/library/
jj164060.aspx, but the following few paragraphs give a summary of the APIs,
their common use cases, and limitations.

SharePoint Server Object Model
The SharePoint Server Object Model (SOM), which predominantly resides in the
Microsoft.SharePoint namespace and identically named assembly, provides
the broadest and deepest programmatic access to SharePoint. It can be used to
create custom ASP.NET pages and user controls, web services, Web Parts, complex
workflows, central admin extensions, and extensions that have pretty much complete
access to every aspect of the SharePoint platform. The SOM API has one major
restriction though; it only works if the code that references the SOM assemblies is
executing on a WFE or Application Server. The capabilities of SOM are also governed
by the edition of SharePoint that you are using, for example, if you have SharePoint
Foundation 2013 installed, SOM exposes far fewer types and methods than if you
have SharePoint Server 2013 installed.

SOM can also be used in conjunction with LINQ to SharePoint,
which transforms LINQ queries on lists into Collaborative
Application Markup Language (CAML) queries. Removing the
necessity to learn CAML, which is a fairly complex XML-based
query language, is justification enough to use LINQ to SharePoint.

SharePoint web services
SharePoint 2013 exposes its data and functionality through a number of web service
APIs. These include WCF-based RESTful OData services and WCF Data Services
(previously ADO.NET Data Services Framework), which give you strongly-typed
queries over list data. SharePoint also supports WebDAV-based access to SharePoint
documents over HTTP/S, which also happens to be the service that is used to open a
SharePoint site or document library in Windows Explorer.

http://msdn.microsoft.com/en-us/library/jj164060.aspx
http://msdn.microsoft.com/en-us/library/jj164060.aspx

The SharePoint Server Primer

[138]

The legacy SOAP-based SharePoint ASP.NET Web Services,
for example, Lists.asmx or Sites.asmx, and direct Remote
Procedure Calls (RPCs), which are HTTP Posts to the OWSSVR.dll
ISAPI extension, are still supported in SharePoint 2013, but have
been deprecated. Their use should be avoided.

SharePoint .NET Client-side Object Model
The Client-side Object Model (CSOM) can be used to develop .NET desktop,
server, web, and cloud applications that integrate with SharePoint. CSOM exposes
the capabilities of SharePoint that typically can be done through the SharePoint
web user interface but excludes those capabilities available in the SharePoint central
administration site. Under the covers, CSOM uses the RESTful OData web service,
as do all the other client object models.

CSOM was originally introduced for SharePoint 2010, but had very limited
capabilities; the SharePoint 2013 version of the API exposes significantly more of
SharePoint's capabilities. CSOM is available from Microsoft in the SharePoint Server
2013 Client Components SDK or as part of the SharePoint 2013 installation. The
2010 version is available in the SharePoint Foundation 2010 Client Object Model
Redistributable, which can be found at http://www.microsoft.com/en-ca/
download/details.aspx?id=21786.

CSOM is designed in such a way that the developer has to explicitly
load data into the object model from the server. To reduce the
overhead of communicating with the server, load operations can be
executed in a batch, and LINQ expressions can be used to specify
specific properties to load. Though this does improve performance,
it is not always clear what data will be retrieved when load
operations are executed.

SharePoint Silverlight Client Object Model
Though the future of Silverlight is uncertain, Microsoft has provided a version of
CSOM tailored to this technology. It is almost identical to the .NET CSOM, though
it is optimized for keeping the user interface responsive. The Silverlight Client Object
Model assemblies are also available from Microsoft in the SharePoint Server 2013
Client Components SDK or as part of the SharePoint 2013 installation.

Chapter 6

[139]

A version of the Silverlight Client Object Model also exists for
Windows Phone. It includes additional phone-specific APIs but only
supports the core SharePoint feature set. This version of the API is
available as part of the SharePoint 2013 installation.

SharePoint JavaScript Object Model
For those developers who are developing client or server (for example, Node.js)
applications where .NET is not a choice, and a JavaScript runtime is available,
Microsoft also provides JavaScript Object Model (JSOM). The capabilities of JSOM
are equivalent to those of CSOM. JSOM is available as part of the SharePoint 2010
and 2013 installations.

SharePoint development tools
Though you can do a great deal with SharePoint using just a web browser—gain
access to the site settings and SharePoint central admin (and appropriate permissions
of course)—if you need to make significant customizations, you will need a more
powerful tool. Microsoft provides excellent tools for power users, designers and
developers to extend and customize all aspects of SharePoint.

SharePoint Designer
SharePoint Designer is a free, lightweight development tool, targeted primarily at
SharePoint power users, designers, and developers, to customize SharePoint sites
and create SharePoint applications without the need to write .NET code (though a
good working knowledge of HTML, CSS, and JavaScript is definitely required for
customizing the SharePoint user interface).

A user can customize almost every aspect of a SharePoint site collection or site,
including creating new, or modifying existing lists, columns, content types, master
pages, site groups, and so on. One of the more useful capabilities that SharePoint
Designer provides is the ability to create and modify custom SharePoint workflows.
SharePoint Designer also integrates with Visio, to design workflows, and Infopath,
for designing complex SharePoint forms.

The version of SharePoint Designer is tightly coupled to the version of SharePoint
that is being customized, that is, SharePoint 2010 requires SharePoint Designer 2010
and SharePoint 2013 requires SharePoint Designer 2013. SharePoint Designer 2013 is
available from Microsoft as a free download at http://www.microsoft.com/en-ca/
download/details.aspx?id=35491.

The SharePoint Server Primer

[140]

In versions of SharePoint Designer prior to 2013, WYSIWYG editing
of pages was supported, but in the latest release, this functionality has
been removed. Microsoft claims that this is because the underlying
technology that provided the WYSIWYG editing capabilities in
previous versions has not kept up with advances in web technologies
such as HTML5 and CSS3. Microsoft recommends that designers use
Visual Studio or another third-party web development tool to develop
or modify web pages.

Office Developer Tools for Visual Studio
Visual Studio is the primary tool for developing advanced SharePoint solutions.
It includes SharePoint-specific project templates and features, which give developers
the ability to rapidly customize or build extensions for every aspect of SharePoint.

These capabilities have been added to Visual Studio by installing the Microsoft
Office Developer Tools for Visual Studio, which also adds templates and features for
developing Microsoft Office solutions, including Office add-ins and the new apps for
Office (2013) solutions. The Microsoft Office Developer Tools for Visual Studio are
only available in the Professional, Premium and Ultimate editions of VS. Depending
on the version of VS that is installed, this add-in may be available as part of the VS
installation package or as a separate download.

In order to create new projects from the SharePoint solution templates,
the target SharePoint version will need to be installed on the
workstation; this is not true for the app for the SharePoint template,
though a valid SharePoint site is required for debugging.

Examples of the SharePoint project templates that are included in Visual Studio 2013
are App for SharePoint 2013, Silverlight Web Part, and Empty Project for both
SharePoint 2010 and 2013. These project templates include capabilities for packaging
related files into SharePoint Features and then packaging one or more features into a
SharePoint Package (WSP file), which can be directly deployed to and installed on a
SharePoint farm.

Microsoft has created an MSDN Dev Center dedicated to developing for SharePoint
2013 (and earlier versions) at http://msdn.microsoft.com/en-US/office/
dn448478.

Chapter 6

[141]

Visual Studio 2012 and Visual Studio 2013 include the ability to create
LightSwitch apps for SharePoint. LightSwitch provides a simplified
programming model and environment, hosted with Visual Studio,
for rapidly developing business applications. These apps can be
hosted directly in SharePoint and Office 365, though integration
with SharePoint is through the Client-side Object Model.

"Napa" Office 365 Development Tools
"Napa" Office 365 Development Tools (Napa) is a new online service for
developing Office and SharePoint Apps for O365 inside a browser-based
development environment. Napa specifically targets applications developed
from the apps for SharePoint and apps for Office. You can read more about Napa
and its capabilities at http://msdn.microsoft.com/library/jj220038.aspx.

Summary
It is impossible to do the SharePoint platform justice in the few pages dedicated
to this primer. The SharePoint platform is massive, and there are a number of
SharePoint capabilities and services that are not mentioned here but that are worth
looking into, for example, the new social computing features in SharePoint 2013.
It is probably not necessary or practical to attempt to master all of SharePoint's
intricacies, but hopefully, this chapter has given you some starting points that will
guide the rest of your discovery of this powerful business application platform.

In the next chapter, we shall provide an overview of some other major Microsoft
technologies that mostly affect administration, office automation, and infrastructure.
We'll talk about operating systems, Microsoft Office and Exchange, and Azure.

Other Microsoft Technologies
In the previous chapters, we considered several Microsoft technologies that would
be essential for our discussion of architectural patterns. We talked about .NET, SQL
Server, SSIS, BizTalk, and SharePoint. However, there are many more applications
and technologies within the Microsoft domain. In this chapter, we would like to
provide a brief overview of some important ones.

In this chapter, we shall talk about technologies that require more configuration than
development. We'll discuss the MS operating systems, enterprise packages such as
MS Office and Exchange, and technologies that support their development; finally,
we'll bring cloud computing into the picture.

Operating systems
The architect's journey starts with the selection of operating systems. This step,
although sometimes neglected, specifies the foundation for the entire solution.
As we discussed in Chapter 1, Solution Decision Framework, there are two ways
to approach the challenge: via product development or via project development.

When an organization develops a product for future distribution to customers, it is
mandatory to understand what platform the customers are going to use, whether
they would be using personal computers or tablets, whether they would prefer
Windows or Linux, or whether the solution should be based in the cloud or on the
corporate network. Microsoft offers a variety of approaches covering the entire
spectrum of software development, from mobile applications with data stored in the
cloud to systems serving the needs of corporations that support several data centers.

Other Microsoft Technologies

[144]

As we said earlier, we would be focusing on project development. Project constraints
are heavily influenced by an organization's history. If the company has been in
business for decades, it has a lot of legacy even in the smallest IT department. It
starts with the operating systems in use. One of the toughest decisions architects
need to make is about switching from one operating system to another or adding a
new operating system to the mix. Solution maintenance and support should be the
first challenges to consider. Even if the mixed solution looks less expensive at first
glance, in reality, it could be very costly. Imagine, for example, that a corporation
that runs its software completely on the Windows platform decides to switch from
MS Exchange to a free Linux-based e-mail server. What looks free on the surface,
becomes quite expensive if one considers the cost of maintaining a new server,
training an employee to support Linux or hiring one who would be able to do it,
changing backup and restore procedures, maintaining patches and upgrades in
two different ways, and so on.

Microsoft Windows operating systems bring a lot of functionalities and "abilities"
to solutions. Let's take a look at some of them in the upcoming sections.

Windows Server
The latest release of the Windows Server family consists of four editions: Windows
Server 2012 R2 Datacenter, Windows Server 2012 R2 Standard, Windows Server 2012
R2 Essentials, and Windows Server 2012 R2 Foundation.

The Datacenter and Standard editions provide the same features, and they are the most
feature-rich editions in the Windows Server family. The two editions are differentiated
by virtualization rights only. A Standard edition license enables two virtual operating
system environments (OSEs) on up to two processors; a Datacenter edition license
enables an unlimited number of virtual OSEs on up to two processors.

An operating system environment is an instance of an operating
system, including any application configured to run on it.

The Datacenter and Standard editions have a full-blown set of essential services:
Active Directory, Web Server (IIS), Remote access, DHCP and DNS, virtualization,
print services, and much more.

The Essentials and the Foundation editions target small businesses; they have a
limited number of features and have a 25-user and 15-user limit, respectively.
The Foundation edition is available through OEM only.

Chapter 7

[145]

Virtualization
Microsoft Hyper-V technologies come in two flavors: a free standalone Hyper-V Server
2012 R2 and a Hyper-V role in Windows Server 2012 R2. Hyper-V became an integral
part of the operating system technology starting from Windows Server 2008 and has
been constantly improving since then. However, until the latest version, Hyper-V was
behind the virtualization products of Microsoft's main competitor—VMware. VMware
got a significant market share over the years; today, many organizations, even though
they are "Microsoft shops," use VMware as their virtualization solution. Organizations
new to virtualization are more likely to select Hyper-V over VMware products.

Let's take a look at the main benefits of virtualization:

•	 It uses hardware better. Using virtualization, organizations can move from
a typical 15 percent server utilization to 55 to 60 percent when they get a true
increase in efficiency. However, according to Gartner, even for the companies
that adopted virtualization, only about 25 percent of available processing
power is utilized.

•	 With better use of hardware, it reduces IT operational costs. It reduces the
total number of servers and power consumption.

•	 It simplifies administration work, not only because of reducing the number
of machines, but also because of the simplified administrative procedures,
for example, to create backups and to clone. It is also easier to isolate virtual
machines and encapsulate processes and applications.

•	 Cloud computing benefits from using virtualization for severs in the cloud.
It significantly simplifies the delivery of services.

•	 It simplifies the support of heterogeneous models and legacy applications.
•	 It improves development and deployment processes by isolating

applications. Systems can be fixed instantaneously after severe crashes by
simply copying virtual images. In more complex cases, snapshots can be
taken at different points of system execution, and the system can be rolled
back to these snapshots if needed.

•	 It improves development and deployment processes by isolating
environments, that is, development, testing, integration, preproduction,
and others. It enables the creation of preconfigured test environments,
focusing on different issues. Being isolated, these environments help
identify specific problems.

Other Microsoft Technologies

[146]

Desktop operating systems
Microsoft desktop operating systems have a long history. The latest OS, Windows
8 (currently 8.1), was designed having tablets and touch PCs in mind. Its user
experience was shocking for most of the average users... same as it was when
switching from Windows 3.1 to Windows 95. Moving from Windows 7 to Windows
8 was a paradigm change, and most users are still going to experience a certain level
of inconvenience.

However, for a business, and especially for a large business, there are many reasons
other than user experience to upgrade an operating system or to stay with a
current one. There are inevitable expenses related to OS upgrade: licenses, training,
data migration, and so on. Most corporations are conservative when it comes to
performing a system upgrade; some of them have even invented rules that suggest
migrating to every second version of Windows (presumably, being more stable).
In addition to this, a better user experience often requires hardware changes, for
example, getting monitors with a better resolution. Despite promises of software
vendors, there are always inevitable challenges in running old software on new
platforms. On a corporate scale, moving to the next version is always expensive.

Today, most corporations have not accepted Windows 8 yet. Well, some of them are
still moving to Windows 7 from Windows XP. Corporate strategy issues have always
been major constraints in solutions architecture.

The Windows Phone OS
In the highly competitive market of smartphones, Windows Phone (as well as its
predecessor, Windows Mobile) doesn't have a large share. In a complex solution that
requires the usage of smartphones, it is important to provide the ability to support
several platforms through the development of either native or browser-based
applications.

In this book, we will not focus on the native applications for Windows Phone but
rather on generic solutions.

Chapter 7

[147]

The Microsoft Office software
What kind of software does a business office need? Most businesses deal
with documents; they create, modify, and print them. They also perform some
calculations, starting from simply recording expenses to maintaining more
sophisticated spreadsheets full of stock exchange information. Businesses often
require to keep track of inventory, likely in the form of a database with a user
interface. Oh, they send e-mails, tons of e-mails. They send e-mails to their customers
and business partners, and they exchange documents within the organization.
The employees spend a lot of time in meetings, so they need some software to
track and schedule meetings. In these meetings, they do presentations.

If you make a list of essential office software, you will inevitably list a document
processor, spreadsheet/tables software, a simple database-management system,
e-mail client... sounds familiar? That's what Microsoft Office provides.

Microsoft Office 2013 consists of the following core applications:

•	 Word: A document processor
•	 Excel: A spreadsheet program
•	 PowerPoint: A presentation tool
•	 Outlook: A personal information manager; it consists of an e-mail client,

calendar, task manager, and address book
•	 OneNote: A free-form note-taking program
•	 Lync: Formerly Communicator, an instant messaging client used with

Microsoft Lync Server
•	 Access: A database-management system
•	 Publisher: An entry-level desktop publishing application
•	 Project: A project-management tool
•	 Visio: A diagramming tool
•	 InfoPath: A form editor, typically used as a frontend for SharePoint

Other Microsoft Technologies

[148]

In 1990, Microsoft Office was released as a set of three nonrelated applications:
Word, Excel, and PowerPoint. Many other tools have been added and removed
from the Office suite during its more than 20-year history. Original applications
were completely rewritten; today, the suite presents a set of cohesive tools.

Microsoft Office applications are closely related to SharePoint (see Chapter 6,
The SharePoint Server Primer). The SharePoint offering includes Excel Services,
InfoPath Forms Services, and Project Server, among other tools.

In late 2000s, Microsoft launched SkyDrive—a cloud-based storage that was renamed
to OneDrive in 2014. In 2008, Office Web Apps (Word, Excel, PowerPoint, and
OneNote) were released, enabling file editing in the cloud and providing a limited
functionality of the familiar desktop applications. Recent versions of the products
allow simultaneous editing and synchronization of the desktop and web documents.

In 2011, Microsoft launched a cloud version of the Office, called Office 365.
In February 2013, Office 365 was updated to match the Office 2013 applications.
For a monthly fee, Microsoft provides a cloud solution to your organization.
Some of them are as follows:

•	 Exchange Online Service: This removes the operational burden of managing
the server on-premises; in addition to this, Office 365 enables the Exchange
Online Archiving Service, also available for organizations using Exchange
2013 or Exchange 2010 (with SP2 or later)

•	 Exchange Online Protection Service: This enables e-mail filtering for the
cloud-based or on-premises solutions

•	 SharePoint Online Service: This provides solutions to build team-focused
or project-focused sites as well as full-blown organization-wide portals

•	 Lync Online Service: This provides solutions for collaboration, such as
instant messaging, audio and video conferencing, and information sharing

•	 Office Web Apps Service: This allows us to work with web-based versions
of Word, Excel, PowerPoint, and OneNote

•	 Office Application Service: This provides the latest versions of the core
Office applications to be run on the desktop; the files are synchronized to
the cloud

•	 Project Online Service: This enables team members with an Internet
connection to collaborate on their project literally from anywhere

•	 Yammer Service: This provides a private enterprise social network
to organizations

Chapter 7

[149]

Office 365 comes in many different plans, typically in the form of a monthly
subscription based on the number of users. The plans are different for small
and midsize businesses, large enterprises, government organizations, and
educational institutions.

One of the huge benefits of using Office 365 is that you can cancel your subscription
any time, but your work will not get lost. All files are available via OneDrive.

Without a doubt, Microsoft Office is a very popular suite of office applications.
According to Microsoft, over 1 billion people use Office. Partially, it is a result of the
popularity of Windows in homes and organizations. Microsoft Office is developed
primarily for Windows and has a consistent user experience. Architects should
remember this when it comes to integrating the solution with office software.

When this book was almost complete, Microsoft launched Office
applications for iOS. This quiet event may actually have very
significant consequences. In the next few years, we may see an
increasing amount of office workers using iPads instead of laptops.

Visual Basic for Applications—the MS Office programming language—enables
customization of Office applications and their integration with other tools.
In addition, .NET provides a number of namespaces to support interoperability
with the Office.

Microsoft Exchange Server 2013
We already mentioned Microsoft Exchange a few times, but it certainly deserves
more attention.

There is no organization in the modern world that does not use e-mail. We rely
on e-mail probably more than on any other communication tool in business.
This is the main reason why we, as architects, should pay attention to the e-mail
capabilities of our solutions.

Compared to many other e-mail servers, MS Exchange Server—whether it is
deployed on-premises or as part of the Office 365 in-cloud solution—provides
more nonfunctional "abilities". Some of them are listed as follows:

•	 MS Exchange has an internal component called Active Manager that is
responsible for failure monitoring and corrective actions through failover
within a database availability group.

Other Microsoft Technologies

[150]

Database availability group (DAG) is a group of up to 16 Exchange
2013 Mailbox Servers that host a set of replicated databases.

•	 Introduced in Exchange 2010, automatic recovery from storage failures
has been improved in Exchange 2013 by adding more supported cases.

•	 Architectural changes made in Exchange 2013 have significantly
improved site resilience.

Software development tools
In many software-related projects, with any project-management methodology,
whether it's Waterfall or Agile, there is a development phase sooner or later. For
architects, the development is an exciting moment; seeing the software emerging
from architectural blueprints is similar to seeing a house being built. Selecting the
right development tool and the right development process is essential for architects.
Even if the architect does not have enough power to make the choice, they should
have enough influence and respect to suggest the right approach.

One may say that the choice of development tools is limited for the solution based
on the Microsoft platform, and the decision is obvious. This is true only at first
glance. Yes, Visual Studio is the key development tool used for literally any
development on the Microsoft platform. However, it comes in several different
editions, from free Express editions to the heavily priced Ultimate edition. After
the installation, Visual Studio can be customized, and tons of plugins are available
for download. Which ones should be used for the development process, and what
should this development process be?

Let's take a closer look at the editions of Visual Studio and other related tools,
and see why architects are interested in all this.

Visual Studio 2013 is the latest release that became available in October 2013.
Since the first version released in mid 1990s, Microsoft has been releasing new
versions approximately every 2 years.

Visual Studio 2013 has several editions: Professional, Premium, Ultimate, and Test
Professional, as well as several Express editions. Among paid editions, Visual Studio
Professional is an entry point for developers; it provides enough tools to perform
rapid development, whether it is for a web, desktop, or cloud application.

Chapter 7

[151]

However, if you decide to take it up a notch, you should consider the Premium
edition. Why? Let me ask you a question: as an architect, how do you know that
the developers have implemented the design matching your architecture? Well, you
don't, unless you perform design review and code review sessions. In addition, code
reviews show the code quality of the solution, which you and your team certainly
strive to achieve.

The Visual Studio Premium edition provides a whole spectrum of tools that improve
the code quality and help conduct code reviews; you can assess the code coverage
with unit tests, view code metrics that show unnecessary complexity of the code,
profile the code to find out performance or memory-usage issues, and run code
analysis to identify security holes. The Premium edition has a range of test tools
that were previously available in the Ultimate edition; starting from VS 2012,
developers can suspend and resume their work, and it also has better support
for Agile development.

The Visual Studio Ultimate edition is quite pricey, but it is the only one that
provides an ability to build architecture diagrams to validate the built code against.
In addition, it has web load- and performance-testing tools (which are not available
even in the Test Professional edition), IntelliTrace, and other features.

IntelliTrace provides a picture of the application, showing events that
occurred in the past and the context of these events. This reduces the
number of restarts compared to traditional debugging and enables
debugging of errors that are otherwise nonreproducible.

The Test Professional edition targets testers rather than developers; all of its features
are available in the Premium edition.

Free Express editions of Visual Studio 2013 target specific development: Web,
desktop, or phone. Microsoft released these editions primarily for learners and
nonprofessionals; however, some small businesses use them for actual development to
save money. Limitations of the Express editions usually stop development teams from
using them on larger projects that require significant collaboration and quality control.

Finally, Microsoft provides an ability to develop in the cloud. Visual Studio Online
(formerly, Team Foundation Service) enables developers to host projects in the
Microsoft cloud for a monthly fee.

Other Microsoft Technologies

[152]

Since the dawn of programming, there has been a need for developer collaboration.
Two major factors drove this need: working on larger projects and developing better
quality code. Software development lifecycles (SDLCs) have been formalized;
hundreds of books have been written on different development methodologies,
and many tools have been developed to support these methodologies.

In the collaborative team-development environment, Visual Studio comes
hand in hand with Team Foundation Server (TFS). TFS 2013 covers the entire
software-development process and can be used with Visual Studio, Eclipse,
or other development environments.

As an on-premises tool, TFS 2013 runs on SQL Server and provides source
code management and application-lifecycle management; additionally, it can
support automated builds and automated testing. Its online version is included
in the Visual Studio Online offering.

It is difficult to imagine any development without a source-control system
(also called a revision-control system). Source control systems such as TFS are used
as source code repositories, but any document or any piece of information can be
also stored there. It will not only store and back up this information, it will also allow
us to share it between different team members, provides version control, reuses the
information for different projects, and supports the entire change management.

One of the new features in TFS 2013 is providing an option of using Git—a
distributed version-control system that became extremely popular in the last
few years. Any Git-compatible client can now connect to TFS.

There are dozens of source-control tools on the market, and TFS is not the only choice
even for .NET developers. However, TFS 2013 comes with many other features that
make it the ultimate choice for those developing on the Microsoft platform.

One of the most important features of TFS is the ability to support the SDLS,
whether it is built on Agile or on more traditional principles. There are three process
templates that come with TFS 2013: Microsoft Visual Studio Scrum 2013, MSF for
Agile Software Development 2013, and MSF for CMMI Software Improvement 2013.
With Team Foundation Build, a component of TFS, you can automatically compile
applications, run associated tests, perform code analysis, release continuous builds,
and publish build reports. The authors of this book have seen a team that published
the build results to an LED display in the office hallway for all company projects. We
could imagine that, in a highly competitive environment, one would even be able to
display the name of the developer whose code broke the build.

Chapter 7

[153]

Cloud computing
The history of cloud computing goes back to the 1950s, when mainframe resources in
Academia and large corporations became available via terminal computers used for
communication rather than for their internal processing capacities. They were given
the name thin terminals for this reason.

Thin terminals enabled two very important features: sharing resources of the
central computers and minimizing expenses on the client side. These two features
became the main drivers of the cloud computing that started evolving in 2000s.
Some companies, called Application Service Providers (ASPs), began offering
software-based services over the Internet in several ways.

Imagine a small business that required lead management or accounting software
to support their sales. Acquiring such applications might not be costly, but this was
not even an issue. The challenge that these businesses faced was in running an IT
department just to support a few applications. For a small company, outsourcing
their IT work helped build their competitive advantage. Being able to access
applications via the Internet was a definite bonus. Not only did it allow people to
work from home and eliminated the need for an office, but it also allowed them to
get results anywhere. Now, sales people could access and share documents, work
on presentations, and exchange their lead information on the road.

Several factors have a visible impact on the evolution of cloud computing. First of all,
it was the speed of communication. Accessing a server in the cloud with a speed of
300 bps, as it was in the early days of the Internet, and even with a speed of 56 Kbps,
as it was in the early 1990s, would not produce any decent results. Only when the
communication rates started using Mbps as their units did accessing cloud services
became achievable.

The second factor that influenced cloud computing was the decreasing cost of client
computers. Computers, especially personal computers, became affordable. Now, a
small business could buy a computer for each sales person who could use them on
the road instead of having just one or two PCs in the office.

The third important factor was the power of the Internet systems, particularly, the
Web. The simplicity of HTTP resulted in the general adoption of the Web and services
that could be delivered via it. We certainly use other protocols, for example, to deliver
videos and audios, but HTTP remains one of the most utilized delivery tools. SOAP
Web services, RESTful applications, all use HTTP as the underlying protocol.

In essence, cloud computing simply means delivering services over the Internet.
The services can provide access to different resources, from applications to
data centers.

Other Microsoft Technologies

[154]

The services can be delivered in different formats. They are as follows:

•	 Software as a Service (SaaS): This is the successor to the original ASP model.
Software applications that run in the cloud are accessible remotely via the
Internet (and most likely, via a web browser). The organizations that use the
service don't need to support it and have an IT department for this purpose.
They just sign up (usually, in the form of a subscription) and can start using
it immediately. The service provider is responsible for software and data
maintenance. If the client organization grows, the cloud solution supports
the growth by simply adding more subscriptions. Well, building a scalable
SaaS solution is a challenge that the provider's architects face—to the benefit
of the client.

•	 Platform as a Service (PaaS): If you want to develop and maintain your
own application in the cloud but don't want to buy and manage underlying
hardware, operating systems, and database management systems, the
PaaS approach is for you. Service providers provision hardware and a
solution stack such as LAMP (Linux, Apache, MySQL, Perl/PHP) or
WISA (Windows, IIS, SQL Server, ASP.NET).

•	 Infrastructure as a Service (IaaS): If you don't want to invest in your own
infrastructure but prefer to rent it, you may want to consider IaaS. You don't
need to have an office space for the servers and data storage, and you can
get as much infrastructure as you want. Later, you may decide to increase or
reduce your needs, and you can get out of the contract at any time. You also
have access to your cloud network via the Internet, anytime, anywhere.

You may have noticed while reading this chapter that placing solutions in the cloud
is becoming a more common trend. Shifting the responsibility (and the headache!)
to the cloud provider seems to have become an attractive option. The only caveat
is the provider has to be trusted. Even if the provider claims 99.5 or 99.9 percent
availability, will they guarantee it? Will the data be completely safe? Once in a while,
we see power outages and other disasters that affect cloud providers.

Well, if you have your data and systems on-premises, there is no guarantee
that your data center will have no power outages. You simply believe that your
disaster-recovery process is more mature than that of the cloud provider.

When choosing a cloud solution, there is another aspect to consider—legal.
One of the critical concerns is the privacy and security of the data. For example,
in financial institutions, maintaining customer data may become tricky. The data
may be required to be deleted immediately or after a certain period of time when the
customer is no longer with the business. Even more, federal, provincial, or state laws
may require to keep the customer data within the country borders. How can you do
it if large cloud providers tend to be multinational corporations?

Chapter 7

[155]

These concerns should be addressed in the very beginning of the project. It is the
responsibility of the solutions architect to make the right recommendation.

Windows Azure
The windowsazure.com site states the following:

"Azure is an open and flexible cloud platform that enables you to quickly build,
deploy, and manage applications across a global network of Microsoft-managed
datacenters. You can build applications using any language, tool, or framework.
And you can integrate your public cloud applications with your existing
IT environment."

Windows Azure provides all kinds of cloud services and seems to be far from its final
state. The services, approach, terminology, even the entire paradigm have rapidly
evolved over the last few years. Some links from the main Azure-management screen
point to community resources that are quickly getting outdated. Some information on
the Windows Azure website is incorrect or contradictory. However, without a doubt,
Azure has become one of the significant players on the cloud market.

Windows Azure provides a number of services at IaaS, PaaS, and SaaS levels.
They are as follows:

•	 You can simply set up and get access to Windows or Linux virtual machines
using a variety of preconfigured templates. There is a choice of Windows
Servers from 2008 R2 SP1 to 2012 R2, and a Linux family of servers such as
Ubuntu, CentOS, SUSE, or Oracle Linux. In addition to this, you can choose
SharePoint, SQL Server, or BizTalk Server, as well as Oracle Database or
WebLogic Server.

•	 You can build a website using a number of tools and applications: ASP.NET,
PHP, Lemoon, WordPress, MediaWiki, and many more. The list of tools is
constantly updated. The website will be hosted in a Microsoft data center
that will provide quite competitive SLAs.

•	 You can set up storage for your structured or unstructured data. You will
be able to access your data from your virtual machines, from your cloud
applications, or from your applications on-premises. Azure provides a few
services and an API to help with them. You can also download utilities for
your storage.

•	 Windows Azure provides services to work with Big Data. The concept of Big
Data assumes that the amount of data is so big that it cannot be managed
by usual means. In order to manage Big Data, Windows Azure provides the
HDInsight service based on Hadoop, an open source Apache framework.

windowsazure.com

Other Microsoft Technologies

[156]

•	 Visual Studio Online mentioned earlier in this chapter comes as a part of
Azure offering. This enables end-to-end cloud development using familiar
programming languages.

•	 Windows Azure Active Directory provides access management for your
cloud solution. It can be synchronized with your on-premises identities if
you chose to use the hybrid solution, mixing your on-premises applications
with your cloud services.

•	 Windows Azure BizTalk Services became available to the general public
in November 2013. You certainly can run a BizTalk instance on a virtual
machine, but using BizTalk Service takes the managing overhead from you.
If you run BizTalk Server on a virtual machine, you are still responsible for
configuring your server for high availability, for example.

•	 At the time of writing this book, Windows Azure Service Bus provided
cloud-based messaging solutions for three patterns: message queues,
Publish/Subscribe, and two-way synchronous messages. Service Bus provides
a number of connectivity options, including WCF and RESTful services.

•	 Windows Azure Media Services enable the creation, management, and
delivery of media to a variety of devices on different platforms, from
Xbox to iOS.

With cloud computing, we should add one more "ability" to our nonfunctional
requirements. This is elasticity, an ability to grow and shrink as necessary. For a
traditional on-premises model, we usually talked about scalability and ability to
grow. This was a requirement desirable for many businesses. When the business
slowed down, the IT assets were already capitalized, and there was no big advantage
in removing them. The cloud model makes these expenses operational, and
minimizing these expenses became a desirable option.

We have mentioned that Windows Azure is rapidly changing. New services are
being built; the old ones are being updated. By the time this book is published,
this chapter may become obsolete. However, we can make some recommendations
based on our experience in dealing with new technologies over the last 3 decades.

If you are architecting a solution for a large corporation, stay conservative. Large
corporations don't change quickly, and applying new technologies usually cannot
be done in an agile manner. You can get stuck with technologies that were very
promising for some time and then disappeared forever. It might take years to replace
the technology with something new. When it comes to using the cloud, thoroughly
calculate the total cost of ownership and compare it with the total cost of ownership
(TCO) of the on-premises solution. Don't forget that barriers to exit can be a source
of significant expenses.

Chapter 7

[157]

When building a solution for a small business that does not have an IT department,
the cloud model should be always considered. However, the barriers to exit still
exist; therefore, calculate your TCO before jumping into new technologies.

The cloud approach is not very new, and some patterns have already emerged.
When choosing a long-lasting solution, rely on the proven patterns.

Summary
We cannot discuss all Microsoft technologies in this small chapter, but we would like
to mention some of them. For example, developing in .NET often requires the use of
Enterprise Library—a set of reusable application blocks. Enterprise Library simplifies
coding for logging, exception handling, data access, and many other areas. AppFabric
that supports hosting WF workflows in the form of WCF services and caching data in
memory is another tool that we would consider in .NET development.

There are small applications, such as Microsoft Streets and Trips, and much larger
suites, such as Microsoft Dynamics. Keeping an eye on the evolution of these
packages and on new Microsoft offerings is the responsibility of solution architects.

Microsoft also offers a variety of software packages to maintain and support
corporate infrastructure. System Center is a group of server applications aimed
at helping system administrators manage corporate infrastructure. From a set of
disconnected products, it has evolved into an elaborate suite of administrative
tools. Host Integration Server enables integration with IBM host systems. Forefront
Protection Suite is a set of security software products designed to protect corporate
networks, servers, and workstations.

Some of these products we may consider later in this book when we talk about
specific patterns.

This is the last chapter that provides a technology overview and primers. In the next
chapter, we shall start talking about actual architectural patterns and antipatterns.
Our first patterns will be the patterns of integration.

Integration Patterns and
Antipatterns

The purpose of any system integration is to bind two or more different systems
together to work as a whole. You can find system integration tasks in any area
of business or technology. In this chapter, we'll discuss integration by means of
software technologies.

The history of software-intensive system integration is almost as old as the history
of computer systems themselves. Even in the early days of computers, people
experienced a need to connect systems developed on different hardware platforms,
operating systems, and systems that used different data formats and ran in different
locations. Early methods of integration were as simple as taking printouts from one
computer to another and entering the data manually. Today, we have integration
tools and processes as big as the Internet itself.

In this chapter, we shall provide an introduction to software-intensive system
integration from an architect's point of view. We shall discuss different architectural
styles and talk about the difference between data integration and application
integration. The patterns presented in this chapter belong to application integration.
We'll continue with more integration patterns in the next two chapters.

Integration styles and challenges
Connecting different systems is just one part of an integration task. Any type of
connection is done for a purpose, and the main purpose of integrating systems is
to get them to work together as a part of a single process. In a sense, all integration
tasks are based on process integration. To get two or more systems to work together,
one also needs to enable the flow of information from one system to another.

Integration Patterns and Antipatterns

[160]

Integration can be data-focused when the data that belongs to one system is made
available to another system. It can be done by moving the data or providing shared
access to the data. This type of integration is usually called data integration. Another
term that is often used in this regard is Enterprise Information Integration (EII).
We are going to discuss data integration in Chapter 10, Data Exchange Patterns.

If the information is sent from one system to another in order to initiate an action by
the means of another application, this is usually called application integration or
Enterprise Application Integration (EAI). EAI and EII are the two major integration
styles. We have to admit that all this terminology is somewhat vague, and the
boundary between data integration and application integration is blurred. Often, a
significant amount of data to be processed is sent from one system to another and
presented in a different format, which can also initiate some new actions.

Evolution of system integration goes hand in hand with the evolution of programming.
First, computer programs were monolithic and ran in the memory area allocated for
that purpose on a single computer. Integration with other programs could be only
done by means of file exchange, which sometimes was semiautomatic.

File exchange, or data export/import, can be considered to be one
of the first data integration patterns.

Future improvements in software and hardware caused programs to be created
in a more modular way with the ability to run components at different locations.
Different standards, such as CORBA or Microsoft COM, were designed to support
interoperability. However, the standards, even for products designed on the same
platform, can help only to a certain extent. Software vendors don't necessarily want
to follow rules.

With the advance of the Internet and the means of connecting literally anything to
anything, new integration solutions emerged. Sometimes we take our ability to access
our bank accounts from mobile phones, or to purchase online from shops overseas,
for granted. However, building these solutions is usually a process full of challenges;
most of the challenges are faced while integrating independently-built components.
The following are the main challenges of integration architecture:

•	 First off, we need to establish connectivity. Can two integration participants
even talk to each other? What hardware, what networks can we use? Do
we want to use wireless technologies or not? Can we? Answering all these
questions is the initial step towards building the integration architecture.

Chapter 8

[161]

•	 On the lines of the previous questions, the question of protocols arises. In
the modern world, especially when we start building a system from scratch,
we would think about web services, SOAP, or RESTful services. However,
in many cases, integration has to be performed between already existing
applications; quite often, these applications have been around for a while.
It means that these applications often do not understand new standards.
Take, for example, the financial industry. Financial networks have existed
for decades, and some standards, such as ISO 8583, have not significantly
changed in the last 10 to 15 years; applications that use them are not going
away in the nearest future.

•	 The most common task of integration systems is data transformation. Why?
Because all systems are different—and some are even more different than
others. The data formats used by one system have to be understood by the
other system. There are two ways to deal with this challenge. One way is to
change the data format of one application to the data format of the other,
but this has to be done for each pair of applications in the system. Another
way is to transform data into a standard format. The latter approach is more
common in modern systems; we'll talk about it later in this chapter.

•	 With the evolution of standard protocols and data formats, the challenges of
integrating different operating systems or different database management
systems are not as significant as they were 10 years ago. But still, once in a
while, you may face the need to convert small endian data into big endian
data; this kind of challenge will never go away.

•	 However, when some challenges become easier to solve, other challenges
become more complex and more important. And one of those is the challenge
of establishing proper security to the integrated system. Imagine that you
need to securely connect your house to your neighbor's house across the
street. You want to make sure that the entire system is secure. You build a
tunnel under the road, you put sophisticated locks on your doors, and you
reinforce your windows just to find out that your neighbor never locks his
back door. The same thing happens with systems; for example, if an online
application is prone to SQL injection attacks, it can damage your database.

•	 If the integration solution is developed in order to connect applications
already existing in production that do not require modification, it can
be developed in isolation and later added to the mix. However, if the
applications are also developed at the same time, testing becomes a
significant challenge. The testing process will include a phase of the
system integration testing, where each component is a moving target.

Integration Patterns and Antipatterns

[162]

To deal with these and other challenges, architects have established certain patterns
to be implemented in integration solutions. One of the most famous books on this
topic is Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions, Gregor Hohpe and Bobby Wolf, Addison Wesley. It very well describes design
patterns for integration solutions, but does not provide a proper level of detail for
architectural patterns. In this chapter, we shall focus on architectural patterns that
we use for building solution architecture.

If you want to compare architectural patterns and design patterns,
you can think of architecture as a skeleton of a system—its core.
Architectural patterns are intended to provide "abilities" that we
discussed in Chapter 1, Solution Decision Framework. System design
describes implementation of its architecture, and design patterns are
intended to provide building guidance at the lower levels.

Point-to-point integration
Point-to-point integration is a very common solution that you can find in literally
every organization.

Point-to-point is an overloaded term that is used in many areas, such as
communication, networking, and messaging. In system integration, by point-to-point
architecture we usually mean direct connection between applications. The calling
application should know the exact address of the application it invokes and the
parameters to pass. All this information is usually configured or even hard-coded.
The applications can be located on the same computer or in datacenters on
different continents.

In a small corporation that uses a few applications that require integration,
such as a payroll application, a lead management system, a customer relation
management system, and a few others, this approach seems to be the simplest one.
These rarely change their interfaces, and new applications are not acquired often.
Therefore, connecting an application to another one using a native API is the most
logical choice.

Decades ago, this approach was popular also because of its efficiency, as it did not
require any intermediary software in order to provide address translation, which
might not even exist. However, as time went on, some problems emerged.

Chapter 8

[163]

First of all, many applications were physically moved to a different location.
They were moved to another computer or another network; alternatively, their
names were simply changed. In any case, their addresses changed. It meant that all
calling applications had to change their code or at least configuration parameters.
Imagine a government database that provides information to hundreds of clients.
If the access point changes, all client applications have to incorporate the changes.
This has to be coordinated and tested before the changes are put in production.

Secondly, all client applications have to comply with the data formats used by data
providers. Changing a data provider in a point-to-point architecture requires each
application to make changes to use new data formats. Replacing a data provider
with another one is usually a big undertaking by itself, and this certainly adds to
the overall complexity.

In addition to this, if the number of providers increases, the architecture becomes
very cumbersome. The number of connections increases exponentially, and the
system maintenance becomes a nightmare.

The point-to-point pattern becomes an antipattern.

In the next chapter, we will discuss building web services and service-oriented
architecture (SOA). SOA and its most common implementation, Enterprise Service
Bus (ESB), has become a popular alternative to point-to-point solutions. SOA is
often built using web services. However, don't assume that just using web services
will automatically move your solution away from the point-to-point architecture.
If the web services are called directly using the URI from WSDL, the solution is
still point-to-point.

And one last thing, the book on enterprise integration patterns, mentioned earlier,
presents the point-to-point channel pattern. This design pattern is something
different. It ensures that only one receiver consumes any given message. The channel
can have multiple receivers that can consume multiple messages concurrently,
but only one of them can successfully consume a particular message. This design
pattern is suggested not as a direct connection between applications, but rather as
an alternative to multicasting or broadcasting at the messaging level. Confusing?
Welcome to the world of integration.

Integration Patterns and Antipatterns

[164]

The federated request pattern
Most point-to-point systems work using a simple request-response pattern.
The calling application (let's call it a sender) sends a message to another application
(let's call it a receiver) and expects a response. The response can simply return a code
that indicates success or failure. It can also return a complex set of data. However, in
either case, the sender gets back the result of actions performed by the receiver.

Let's consider a system that connects several applications and requires some logic in
order to properly send the message. Take, for example, a traffic document processing
system that works with two types of documents: traffic tickets and collision reports.
Once a police officer creates a traffic ticket on his or her laptop, it has to be sent to
the police department and the court. The collision report, on the other hand, has
to be sent to the police department and the state department of transportation. In
some cases, the documents have to be sent to the state department of licensing.
Which application has to make this decision? If we use a point-to-point approach,
the decision becomes the sender's responsibility. The sender application has to
implement all routing logic, and it becomes quite heavy. What if the responses from
the message receiving applications also have to be routed? In this approach, they
have to be sent back to the sender (even if the sender does not need that response),
who will make another decision.

A common architectural solution to this problem is building a component in the
middle that takes the responsibility for these decisions. All senders send messages
to this component, and it routes the messages based on the business rules. It also
processes responses from receivers and decides what to do with that information:
whether to send it straight back to the sender or perform some workflow in order
to gather more information for instance.

One of the very popular workflows in this type of systems is the response
aggregation workflow that we shall discuss in the next section.

Working with the use case – purchasing
power calculation
Instant Stock Trades Inc. (IST) is a stock broker that provides its clients with the
online ordering system. Until recently, its clients were only able to trade stocks
within the limits of their deposits on an IST account. IST management decided that
they should allow their clients to increase the limits of their purchasing power.

Chapter 8

[165]

They came up with the following simple policies:

•	 Clients can sign an agreement with IST to leverage their other assets,
such as bank account balances and stock holdings, for the purpose of
placing stock trade orders with IST

•	 IST will approve the limit of the client's purchasing power as the sum
of 80 percent of the balance in their bank account and 50 percent of the
current market value of their stock holdings

To provide clients with real-time trade order approval, IST has signed an agreement
with several major banks and investment brokers. The agreement allows IST to
retrieve their clients' financial information. Now, IST needs to implement a solution
that would retrieve clients' financial data from several sources and calculate the
purchasing power based on the aggregate value of various client assets.

The existing online trading system has been custom-built by IST as a .NET and SQL
Server solution. The management does not want to replace this solution or redesign it
in the near future. It will consider minimal changes in the trading system to determine
how the client's purchasing power is calculated. It, however, makes it clear that any
problem with this new system should not affect its regular business. In other words,
if the purchasing power solution is unavailable for any reason, it should not affect the
client's ability to place orders within the limits of their deposit on the IST account.

Key requirements
While analyzing the use case, we can identify the following key requirements:

•	 The proposed solution shall be a standalone system.
•	 The proposed solution is not a mission-critical business system. Catastrophic

failure of the system should not lead to interruptions in business.
•	 The solution will need to interface with multiple external systems. Failure to

connect to one source of data shall not lead to the system response failure.

The federated request pattern description
To discuss this pattern more, let's review the terminology mentioned in the
following list:

•	 In application integration, the data that is sent between connected systems is
sent for a reason; the data is supposed to initiate some action. In messaging
systems, messages typically conform to some standard that describes
message parts. Messages usually have a header, which describes the data
being transmitted and provides some information to the messaging system
and the body.

Integration Patterns and Antipatterns

[166]

•	 The application that sends messages is called a sender, and the one
that receives messages is called a receiver. In a system with a complex
workflow, a receiver may become a sender; and these terms then stop
being straightforward.

•	 Another approach to describing the participants in the messaging system is
defining information consumers and providers. An application that provides
information, for example, an e-commerce catalog, is called an information
provider. An application that uses this information, a browser-based
application in this example, is called an information consumer.

•	 However, with the introduction of the service-oriented approach,
particularly with the usage of web services, we started talking about service
consumers and providers. And that's where we have to be very careful; a
service consumer can play the role of an information provider. Consider,
for example, a payroll application that sends employee information to
the application that prints checks. The payroll application that provides
information about employees is an information provider. On the other hand,
it sends requests for services of the check printing application, and therefore
it is a service consumer.

•	 The message hub is an application that is connected to all other applications
as a hub, connected to spokes. All message traffic runs through the hub.

In our use case, we consider the federated request pattern. In its simplest form,
the pattern is executed in the following steps:

1.	 The sender (consumer) sends a request to several recipients through the
message hub.

2.	 The message hub decides where the request has to be passed based on certain
criteria. The criteria can be very simple, for example, specified in the message
header. They can be quite complicated as well, to the point where the hub
has to analyze the message body in order to make the routing decision.

3.	 The recipients receive the request and process it. Each recipient works
as a service (and information) provider. Typically, all of them may have
information that the consumer is interested in.

4.	 The recipients send their responses back to the hub along with
success/failure codes.

5.	 The hub aggregates all responses into a single response and sends it
back to the sender.

Chapter 8

[167]

The steps are presented on the following diagram:

Candidate architecture for federated
requests #1 – BizTalk
BizTalk is our first choice since that's what it is designed for—being a hub in the
hub-and-spoke architecture. Let's see how it fits into the picture of our use case.

Solution design aspects
BizTalk is an enterprise class product designed for scalability and reliable delivery.
It acts as a hub (or rather as a message broker that we'll discuss a little later on)
in complex integration architectures, and it perfectly fits the solution from the
design perspective.

Extensibility and loose coupling are also important to this solution. We may have
new or changed endpoints in the future and want to be able to isolate those changes.

BizTalk orchestration also can perform simple workflows, and direct the traffic based
on a set of criteria. It also works well when the endpoints are static, which is our
case: we want to connect to the exiting external systems that would seldom change.

We have a need to talk to existing databases and potential web services. BizTalk has
a series of adapters that make connectivity to many protocols a code-generation and
configuration task, instead of a custom coding or scripting task.

Integration Patterns and Antipatterns

[168]

We can leverage BizTalk mapping capabilities to deal with different data formats.

Using BizTalk would save some effort on designing for scalability and high
availability. In a typical financial project, reliable delivery is critical as well.
If BizTalk cannot reach its providers, it would be able to perform retries and
alert the system administrator if the number of retries is exhausted.

However, we should note that, despite the fact that we are building the solution for
a financial institution, high reliability is not crucial. The system is not supposed to
perform financial transactions; it is planned to be informational only.

Solution implementation aspects
Instant Stock Traders Inc. is not currently a BizTalk shop, so they will need to
both acquire and train resources to effectively build their upcoming solution. Their
existing developers, who are already familiar with Microsoft's .NET Framework, can
learn how to construct BizTalk solutions in a fairly short amount of time. The tools
to build BizTalk artifacts are hosted within Visual Studio, and BizTalk projects can
reside alongside other .NET project types.

Because the BizTalk-based messaging solution has a design paradigm (for example,
Publish/Subscribe and distributed components to chain together) different from that
of a typical custom .NET solution, understanding the toolset alone will not ensure
delivery success. If the organization decides to bring in a product such as BizTalk
Server, it will be vital for them to engage an outside expert to act as a solutions
architect and leverage their existing BizTalk experience while building this solution.

Solution operations aspects
BizTalk is a complex tool that requires significant training for the system
administrator. It is based on SQL Server, may require third-party adapters, and
installing and supporting it would be a challenge for the organization that has no
previous BizTalk experience. BizTalk Server Administration Console has limited
capabilities, and many organizations purchase additional third-party tools, such as
BizTalk 360.

Organizational aspects
BizTalk Server would be a new technology to the organization; therefore, there is
some risk involved. It becomes necessary to purchase licenses, train developers and
system administrators, provision environments, and hire experts. With a fairly low
use of BizTalk, this may become too expensive.

Chapter 8

[169]

This also indicates a significant upfront cost. If the organization had solid long-term
plans in using BizTalk and extending the system to perform financial transactions,
this investment would be feasible. In the current scenario, there are no significant
advantages investing in BizTalk.

Solution evaluation
As before, we shall evaluate the solution using four different dimensions: design,
implementation, operations, and organizational aspects. For each dimension, we
shall give a "thumbs up" or "thumbs down," as shown in the following table

Design Implementation Operations Organization

Candidate architecture for federated requests
#2 – .NET Service (WCF)
Since the organization has valuable experience in developing .NET applications,
our second choice would be to develop the message hub as a WCF service.
This service will provide connectivity to the external systems as well as the
aggregation of the responses.

Solution design aspects
Currently, the organization expects about 10,000 requests per day. In future,
the number of customers is expected to increase by 10 percent every five years.
This will require designing for scalability and availability.

The solution will require building a web farm using several IIS servers. The number
of servers can be increased if needed. The availability will be achieved by using native
load balancing for the IIS server farm with Application Request Routing (ARR).

Integration Patterns and Antipatterns

[170]

Solution implementation aspects
Development of the solution will be done using Visual Studio, which is familiar
and should be no challenge for the organization's development team. The service
will be built using WCF, which allows developers to add more security measures in
future. Initially, security will be implemented at the transport level using TLS (SSL).
Later, WS-* standards can be applied to the service.

Solution operations aspects
The solution is based on a lightweight WCF service that does not require a lot of
server resources. Instant Stock Traders Inc. anticipates that the number of requests
to this service will increase by 10 percent in five years, proportionately with the
increase in the number of customers.

Maintenance of the solution does not create a challenge since IST is a Microsoft shop
and has enough skilled resources with the ability to modify and improve the code.

Scalability of the solution is achieved by building the web farm from several IIS
servers, callable horizontally by adding more servers. Windows provides native
load balancing to the IIS that increases the solution availability.

Organizational aspects
Instant Stock Traders Inc. already has an experienced team of developers with a
lot of .NET knowledge. Building the solution on .NET will not require additional
learning and can be started immediately.

Also, at this point, the organization does not have clear plans about building future
integration solutions. They believe that service-oriented architecture is the paradigm
to be used in their future architectures, but are not sure what technology they would
use to implement it. If they develop .NET WCF services, they can reuse them with
any Microsoft technology in future without much modification.

Solution evaluation
The following table shows all thumbs up! This is definitely our choice!

Design Implementation Operations Organization

Chapter 8

[171]

Architecture selection
In the following table, we shall compare the architectures of two candidates, their
risks, and benefits

BizTalk Server WCF Service
Benefits

•	 This perfectly fits the solution
from the design perspective

•	 This is designed for scalability
and supports future needs

Risks
•	 This has additional licensing and

training costs
•	 There is no in-house expertise

with BizTalk
•	 Solutions that are too heavy

will require inadequate effort to
support and maintain

Benefits
•	 The in-house staff develops,

maintains, and supports the solution
•	 This is an extensible solution that can

satisfy future needs
•	 This provides adequate scalability and

extensibility for the organization needs

Risks
•	 This may require modifications for

future integration solutions

Even if BizTalk is a perfect tool for hub-and-spoke architecture, for this solution
it will be too heavy. The organization will have to spend far too much money and
expend too much energy to build such a lightweight solution. Even though it is
extensible, the BizTalk solution would require significant up-front costs that do not
seem feasible since the organization does not have solid plans for future system
development.

The .NET WCF solution, on the other hand, does not require significant
up-front costs, and the organization also has enough skilled resources to start the
development immediately. The WCF solution is also scalable for the organization's
needs. In case IST decides on future integration architecture, the WCF services can
fit most of the solutions without significant modifications.

Our choice is .NET WCF services.

Integration Patterns and Antipatterns

[172]

Building the solution
We will start solution implementation by creating three SQL Server databases.
Two of them, Bank and InvestFund, will represent sources of financial data.
The third database, StockTrader, will represent Instant Stock Trades' online
trading system, which is the client of the solution we build.

We will now walk through creating a WCF Service Application project for this
use case.

1.	 Restore the Bank, InvestFund, and StockTrader databases from the backup
files in the code samples.

2.	 For each of the restored databases, add the current Windows user login to
the database logins. Specify Default Schema = 'dbo'.

3.	 Open Visual Studio 2012 and navigate to New | Templates | Visual C# |
WCF | WCF Service Application. Enter Chapter8_WCF for the name of
the project, as shown in the following screenshot:

Chapter 8

[173]

4.	 Open the Server Explorer pane. Right-click on Data Connections and select
New from the menu. Select or enter your development SQL Server instance
name. Select Bank in the Select or enter database name dropdown, as shown
in the following screenshot:

5.	 Repeat step 4 for the InvestFund and StockTrader databases.

Integration Patterns and Antipatterns

[174]

6.	 Right-click on the Chapter8_WCF project in the Solution Explorer
window. Navigate to Add | New Item | Data | LINQ to SQL Classes.
Enter Bank.dbml in the Name box, as shown in the following screenshot:

7.	 Open the Bank.dbml file. In the Server Explorer window, expand Data
Connections | BankConnectionString | Tables. Drag the Account table
into the data model designer surface. Drag the Customer table into the data
model designer surface, as shown in the following screenshot:

Chapter 8

[175]

8.	 Repeat steps 6 and 7 for the InvestFund and StockTrader databases.
Add all tables from these databases to their respective data models.

9.	 The notable point about the service method implementation is the two try{}
catch{} blocks in the code. They represent attempts to connect to various
data sources. If either of those connections fail, service will still return the
result that is meaningful for the use case scenario, as shown:

public decimal GetClientPurchasingPower(string LastName)
 {
 decimal ClientPurchasingPower = 0.0M;
 //Try to retrieve bank account balance
 try
 {
 decimal BankAccountsSummaryBalance = 0.0M;
 using (BankDataContext bankContext = new
BankDataContext())
 {
 List<Account> accounts = (from a in bankContext.
Accounts
 join c in bankContext.
Customers
 on a.CustomerID equals
c.CustomerID
 where c.LastName == LastName
 select a).ToList();

 foreach (Account account in accounts)
 {
 BankAccountsSummaryBalance += (account.Balance ==
null) ? 0 : (decimal)account.Balance;
 }
 ClientPurchasingPower += BankAccountsSummaryBalance *
0.8M;
 }
 }
 catch
 {
 //Error handling here
 }
 //Try to retrieve stock holdings balance
 try
 {
 decimal InvestFundSummaryBalance = 0.0M;

Integration Patterns and Antipatterns

[176]

 using (InvestFundDataContext investContext = new
InvestFundDataContext())
 {
 List<Holding> holdings = (from h in investContext.
Holdings
 join c in investContext.Clients
 on h.ClientID equals c.ClientID
 where c.LastName == LastName
 select h).ToList();
 foreach (Holding holding in holdings)
 {
 InvestFundSummaryBalance += (holding.Shares == null ||
 holding.PurchasePrice == null) ? 0 : (decimal)holding.
Shares * (decimal)holding.PurchasePrice;
 }
 ClientPurchasingPower += InvestFundSummaryBalance * 0.5M;
 }
 }
 catch
 {
 //Error handling here
 }
 return ClientPurchasingPower;
}

The important aspect of this implementation is the robustness of service. We have
ensured that service always returns the response, even in situations when one or
more data sources are unavailable for any reason.

In our simple solution, we have achieved this by creating independent code blocks
that connect to the two data sources, represented in the solution by SQL databases.
Readers may note that, in real life, implementing this approach should be enhanced
by the following:

•	 Most likely, remote data sources from third parties will be represented
by web services (SOAP, WCF, or REST) rather than direct access to SQL
databases. Direct access to SQL databases should only be allowed to the
services and applications hosted in-house for security purposes.

•	 Implementation of code that connects to different data sources in parallel
threads. This will reduce overall service response time to the slowest
response using any of the underlying data sources.

Chapter 8

[177]

•	 Implementation of error logging and alerts when any of the underlying
data sources fail to respond.

•	 Enhancing the interface. In addition to returning the business data
(that is, the client's purchasing power as a numeric value), it should also
return the response code that indicates whether the attempt to connect to
all data sources was successful.

Lessons learned
In this example, we have introduced the notion of using data aggregation in the
request/response scenario. A WCF service was chosen to act as a message hub
since we did not want to invest in the heavy BizTalk solution. This scenario will
be elaborated later in this book, providing true integration between external data
sources. We will also show how this solution can improve its security capabilities
that are currently limited to the Transport Layer Security (TLS).

The message broker pattern
In the request-response example, we have built a WCF service that acts as a hub in
the hub-and-spoke architecture, which connects different integration participants.
The workflow we presented is quite simplistic; the only action it performs is
aggregating the results of requests that are sent to providers.

In a more sophisticated solution, more actions can be required. The most typical
ones are message validation, message transformation, and message routing
(they are explained in the following list). Message hubs that perform these actions
are called message brokers.

•	 Message validation: This is performed using a set of validation rules. Placing
message validation in the middle tier enables having a centralized set of
rules that are consistent across the entire system. Message validation can be
centralized as a service called by other processes in the message broker.

•	 Message transformation: This is one of the most essential functions of the
message broker, since data in different systems are typically presented in
different formats. In order to perform message transformation consistently,
message brokers usually support canonical schemas. Transformations are
performed to or from the canonical schema. Schema mappings are performed
at the design stage, and the maps are stored with the message broker.

•	 Message routing: This is performed to direct messages to the appropriate
recipients. The routing algorithm can analyze the message header as well as
the message body.

Integration Patterns and Antipatterns

[178]

Message broker versus point-to-point
integration
Many companies that increase in size due to organic or acquisition growth find
themselves in a position where the new enterprise consists of a large number of
disparate systems that are responsible for managing their various products. Many
times, this causes inefficiency in the organization as sales representatives/agents must
log in to multiple systems in order to get the answers to their questions. This increases
time and effort and the likelihood of mistakes. Over time, they may discover that this is
inefficient, so they may decide to implement a point-to-point integration. For example,
one can create a consolidated web application GUI that calls system A, B, or C, as
appropriate. One of the challenges for this is that, as new GUI applications are added,
each of them needs to perform this connectivity between the systems. In the majority of
cases, the environment will be heterogeneous; even if they do manage to make all the
applications work together, any change could stop it from working. For example, what
happens if one of the systems is down, or if a system is upgraded or replaced? These
two scenarios are illustrated in the following diagram:

Chapter 8

[179]

They can consider integrating the frontend application to all required backend
systems, but this would dramatically increase the complexity of the application;
moreover, if any other systems need to connect to the same systems, this logic
would need to be duplicated and maintained.

Rewriting all of a business's applications on a common platform is unrealistic and
impractical from a financial point of view. Therefore, the message broker pattern
is an approach that is commonly implemented. This provides a communication
infrastructure, adapter connectivity, and common command set. Companies that
implement message broker can use a universal connector between their various
systems. A key requirement of a message broker is that it must be flexible and
must be able to respond to change quickly, such as the addition of a new system
or an upgrade of a system. While the features of GUI systems may differ, the logic
necessary to connect each of the backend systems is common and is encapsulated in
the message broker. Therefore, it can be reused by each GUI application. This enables
applications to represent a unified view of their organization to their users, for
example, sales agents, end customers, management, and so on.

By leveraging the message broker architecture, the organization will be able to
provide an integration architecture that provides a common communication and
messaging infrastructure to support communication between all systems across
the enterprise. Let's revisit our previous diagram and demonstrate in the following
diagram how a message broker can be used:

Integration Patterns and Antipatterns

[180]

Here, we have two applications that are communicating with the message broker;
the complexity of the integration that is required to connect to systems A, B, and C is
handled by the message broker. The message broker is now responsible for routing
messages to the appropriate systems and handling any necessary transport or
transformation issues. This avoids the prohibitive costs of performing point-to-point
(otherwise known as "spaghetti") integration. It also avoids the need for users to log
on to multiple systems, thereby increasing productivity. The message broker acts as
an intermediary across all enterprise applications.

The workflows of the message broker are implemented by
orchestrations. Orchestrations represent the entire process that
is required to successfully deliver messages between integration
participants. Orchestrations arrange the sequence on message
validations, message transformations, and routing. They may
implement ordered delivery, use asynchronous processes, and
rely on a set of services internal to the message broker. All modern
integration tools, including BizTalk, provide means to use the
standard Business Process Execution Language (BPEL).

By standardizing this approach and developing this integration capability,
organizations are able to reduce the time invested to include new applications
and offer new innovative composite services to their customers. This enables them
to quickly react to changes driven either from customer demand or internal mergers,
acquisitions, or reorgs.

When organizations move away from point-to-point architectures, they want to
find a close fit for the message broker architecture. A more sophisticated solution
will require an Enterprise Service Bus, which we shall discuss in Chapter 9, Web
Services and Beyond.

In the Microsoft world, BizTalk is the major tool for implementing message brokers.
The way in which it can be used is shown in the next use case.

The guaranteed delivery problem
Exchanging information between different applications in order to integrate business
processes is a common task for any enterprise. However, the requirements given by
different organizations reflect different needs. Let's discuss one aspect of reliability.
The question that seems very important is how much data can you afford to lose?
Well, our initial reaction is, None! However, after some thinking, we realize that
this is not necessarily true. Take an e-commerce system, for example. What if the
customers don't receive all items in the catalog due to some network problems?
Will the business be ruined?

Chapter 8

[181]

No, especially if the catalog has hundreds or thousands of items. Certainly,
if the catalog search system returns just 50 percent of all items, then that would
create a problem. However, if it returns 99 percent of items, the majority of the
users will be satisfied.

However, there are industries that cannot afford losing even one percent of
information. Financial institutions or health care organizations, for instance,
have a much lower tolerance for data loss. For these organizations, we need to
build systems with guaranteed delivery. Whether they truly need it or not is a
different question, but the perception exists and the organizations are willing to
spend enough money to achieve it.

Working with the use case – health care
industry
LarHans Pharmaceuticals is a multinational health sciences company with a special
focus on the human immune system. Because of the nature of their work, the
company is subject to regulations set by governmental agencies around the world
(for example, the Food and Drug Administration in the United States or the National
Institute for Health and Clinical Excellence in Great Britain). As a result, LarHans
Pharmaceuticals has strict guidelines that it adheres to, regarding product safety and
alerting the public about changes in a product's safety profile.

When there is a product recall or change to the product's label, the LarHans team
must immediately communicate with at least the following three distinct locations:

•	 Federal agencies: A notice of product recall or label change must be
distributed to governmental bodies within a very short period of time. This
interval may differ by country, but companies face harsh fines if they delay
the communication of this information.

•	 Internal sales teams: The LarHans sales force must be notified in a timely
fashion to make sure they provide physicians with the latest and most
accurate information regarding product safety.

•	 Public website news feed: LarHans conveys product changes to the
consumer population through their public-facing website.

Today, when such an event occurs, the LarHans organization fills out a series of
paper forms to fax to each governmental body, crafts and sends out e-mail messages
to various sales organizations, and creates a work order with the website ownership
team. This process has proved to be arduous, and LarHans has nearly missed several
filing deadlines because of the frantic coordination of resources and document
preparation.

Integration Patterns and Antipatterns

[182]

Moving forward, LarHans Pharmaceuticals wants to establish an automated process,
which allows a single label change or product recall event to trigger notifications
to all interested parties. Each of the three communication targets outlined before
has some sort of technology interface that can be leveraged by this solution. Each
governmental body has either a secure web service interface or the FTP drop spot
that can receive these safety notifications. The directors of the company sales teams
are willing to create e-mail templates that get populated by an automated solution
instead of hand-crafting these customized notices. Finally, the team that runs the
public website is willing to open a channel to the news feed database so that entries
can be added without requiring website administrator interaction.

Because of the sensitivity and impact of this solution, the LarHans team has placed
high importance on the quality of service and guaranteed delivery. They want
to make sure they do not lose or skip notices to government agencies, or open
themselves up to fines or penalties for failure to notify the public.

LarHans Pharmaceuticals is primarily a Microsoft shop with existing investments
in SQL Server, SharePoint Server, BizTalk Server, and .NET development. While
LarHans has entered early adopter programs for some Microsoft applications,
they typically wait until a service pack is released prior to deploying new software
in the environment.

We have summarized this discussion in the key requirements given in the
next section.

Summarized key requirements
The following are the key requirements for a new software solution:

•	 Automated distribution of the same message to multiple interested parties
•	 Guaranteed delivery of messages or, at a minimum, notice of failed delivery
•	 Flexibility to support future data recipients without reengineering

the process

Additional facts
There are some additional details gathered after the initial use case was shared
with the technical team. These include the following facts:

•	 This is a low-volume solution that puts a higher priority on reliable
delivery than raw throughput or load.

Chapter 8

[183]

•	 The solution must initially address the three known types of notification
targets (government agencies, sales team, and public websites), but there
may be future internal and external parties interested in acting upon product
recall or label change events.

•	 There are multiple sales teams, and not all teams receive e-mails for all
events. Product recalls or label changes may be specific to a particular
country (or set of countries), so we need the flexibility to notify only the
teams that are directly impacted.

•	 Similarly, not all governmental agencies need all notifications. Based on the
scale of the recall or label change (and at whose request that change was
made), only some agencies require notifications.

•	 While there is an industry-standard data format for these notifications,
not all countries currently accept data in this format. This means that a
transformation strategy is needed.

•	 If a transmission to a governmental agency fails, the LarHans team must
proactively be notified so that they can perform manual publications within
the legally required time window.

Pattern for guaranteed delivery
The guaranteed delivery scenario comes as a result of resiliency and reliability
requirements when losing data is considered unacceptable. Guaranteed delivery
can come in many flavors; a particular message may be required to be delivered
exactly once or, for idempotent systems, at least once.

Idempotence is a feature of an operation; it means that the
operation can be applied many times without changing the
result beyond the initial application.

A set of messages may be required to be delivered in order; this would have
an additional impact on the scenario.

Regardless of this, an implementation of the guaranteed delivery requires
two things:

•	 Data persistence, which is the ability to store data in a persistent form.
The data should be stored in such a way that it is resilient to external impact.
For example, in case of a power outage, the data should not be damaged and
the system should have the ability to recover it.

•	 An ability to resubmit the data in case of failed delivery.

Integration Patterns and Antipatterns

[184]

The simplest way to satisfy both criteria is to keep data at the source and resubmit
them in case of a failure. However, there are a couple of problems that make this
solution less than ideal. First, if the source system needs to get a confirmation from
the destination about successful message delivery, which requires a full message
round trip, this affects performance. Secondly, in a complex integration scenario,
we want the system to have minimum dependence on each other. Sometimes,
especially when the systems are built by independent organizations, having them
loosely coupled is the only way to integrate them.

This offers suggestions us about the pattern when the data persistence happens in
the middle tier that separates data or service providers and consumers. This middle
tier is also responsible for resubmitting data in case of failure.

Candidate architectures
There are three ways in which we decided to tackle this problem. Each possible
solution brings with it some benefits and risks, which we can see in the next sections.

Candidate architecture for guaranteed
delivery #1 – Windows Azure Service Bus
Although going with a Windows Azure solution may be a bit aggressive for a more
traditional IT shop, there are strategic benefits to seriously considering a guaranteed
delivery solution hosted in the cloud.

Solution design aspects
While not dealing with an enormous load, the solution does require us to deal
with a varied usage profile and bursts of changes. A cloud-based infrastructure is
an asset when we have an inconsistent load and wish to design a solution that scales
up or down based on our needs. Likewise, our clients need to pay only for their data
usage instead of setting up hardware that is sized for the peaks, but remains idle
during the valleys.

One of the unique aspects of the Windows Azure candidate proposal is the
ability to decentralize the attachment of listeners from the router administrator.
NetEventRelayBinding, special to Windows Azure Service Bus, provides a way
to do a one-way multicast to multiple applications that listen on a single endpoint.
Each listener attaches itself to the endpoint by starting up their listener service and
providing proper authentication to Windows Azure Service Bus.

Chapter 8

[185]

This technique provides a very loosely coupled routing infrastructure where
data consumers can be rapidly provisioned and decommissioned without the
intervention of a central administrator. The downside of this mechanism is that
it becomes difficult to perform impact analysis and have a central console that
manages the data flow.

So how do we achieve reliable delivery and automatic retries in the cloud? Windows
Azure Service Bus has the concept of buffers, which act as temporary queues with
limited lifetime and message storage. However, these buffers are not meant to be a
durable store that sits between cloud routers and service listeners. Instead, we need
to build reliability into our listener service, which fronts the backend systems. This
means you can use a durable queue or repository that can store messages in the
event that the target system is unavailable or overloaded.

Service Bus is a lightweight router and thus does not have a rich set of services for
data quality or error handling. However, it can leverage Access Control Service to
cleanly and efficiently allow both internal and external parties to authenticate to our
service. Exception handling and auditing will need to be managed at the individual
service layer.

Solution implementation aspects
Windows Azure solutions are built using a mix of Visual Studio components and
Azure administration interfaces. Developers who are comfortable building WCF
projects in Visual Studio can easily extend their toolbox to new Azure WCF bindings
and configuration options.

Solution operations aspects
A cloud-based solution means that we have fewer physical infrastructure concerns
and can confidently predict the ability of the shared cloud platform to perform under
load. This will also help us successfully maintain failover in the event of a node
malfunction.

The tooling for Azure administrators is still relatively immature, so solution
administrators will have to establish their own best practices and governance to
monitor the active router and perform effective troubleshooting.

Integration Patterns and Antipatterns

[186]

Organizational aspects
LarHans Pharmaceuticals prefers to invest in existing products and minimize their
exposure to fully custom-built solutions. While components of the Windows Azure
solution would require custom code, the core routing infrastructure, security, and
usage patterns are already well-defined and ready to use.

The organization can use their existing .NET resources to build Windows Azure
projects, and they can be confident that such a solution can be very rapidly provisioned
and deployed. However, there is clearly a risk involved in going with a new offering,
and LarHans would have to examine the strategic value in moving to the cloud and
decide whether it is worth accepting newfound operational and solution risks.

Solution evaluation
The following table presents the results of our assessment. When it is obvious that
implementation and operations get the "thumbs up", questions may arise with regard
to the design. On one hand, the design seems to be quite simple; Azure will take
care of many things. However, Azure by itself does not solve our main concern—
reliability. In order to provide it, we need to perform additional development that
does not look obvious.

Design Implementation Operations Organization

Candidate architecture for guaranteed
delivery #2 – BizTalk Server
A loosely coupled service bus such as BizTalk Server can offer unique
quality-of-service capabilities that closely match the needs of this customer.

Solution design aspects
A BizTalk solution offers us a few key benefits during the design of this solution.
First and foremost, we get an enterprise-scale infrastructure built around
reliable delivery. When we send a product recall message to the Food and Drug
Administration (FDA) in the United States, we can configure our solution to retry
the message in the case of failure, and we can proactively alert an administrator if a
defined set of retries is exhausted.

Chapter 8

[187]

The BizTalk architecture assures us that messages get queued in the case of
downstream unavailability. If this customer can tolerate a solution where a message
may get missed (for example, a stock ticker message where another will be coming
along later), then nondurable solutions could be a fit. However, for "can't miss"
solutions that demand delivery guarantees, BizTalk is the leading choice.

We have a need to talk to existing web services, databases, and e-mail systems.
BizTalk has a series of adapters that make connectivity to these protocols a code
generation and configuration task, instead of a custom coding or scripting task.
Each message target may accept a different data format for product recalls and
label changes, so here we would want to leverage BizTalk's mapping capability
to transform data at the point of delivery.

Extensibility and loose coupling is also important to this solution. We may have
new or changed endpoints in the future, and we may want to be able to isolate those
changes. BizTalk's Publish/Subscribe architecture means that a single publisher
can stay decoupled from all the independent consumers of a message. There will
be zero impact on other subscribers if an existing subscriber needs to be modified
(for example, URI address change or an alteration to the endpoint's message format)
or a completely new subscriber is added. If this solution needs a very fluid, dynamic
set of subscribers that change with regularity, then the Azure cloud offering might
be a prime choice. However, if you have a static set of endpoints and find central
management and impact analysis to be critical, then BizTalk is the right fit.

Finally, we see that our customer has a very time-sensitive transmission schedule,
so failures need to be captured and handled in a consistent, actionable manner. Our
BizTalk solution could actually subscribe on any exceptions thrown by the delivery
service and initiate an additional process, or it can simply notify a group or a
person where the manual delivery of a message may be needed to beat the required
deadlines. BizTalk has a number of options for handling exceptions and, after a
reasonable number of automated attempts (through configurable retry intervals),
alternative options (for example, fax) are required.

Solution implementation aspects
The LarHans IT organization has enough skills in working with BizTalk Server,
so they have a pool of available developers who can design and implement this
solution. These developers currently store their BizTalk artifacts in an open source
Subversion source control repository. While BizTalk Server is not installed on all
developer workstations, the organization invests in project-specific virtual machines
that are accessed by developers through remote access.

Integration Patterns and Antipatterns

[188]

Solution operations aspects
The time-sensitive nature of the data being distributed by this solution means that a
robust and rich monitoring environment is needed. Also, we need to have confidence
in the infrastructure such that it supports this new application on top of all the
existing solutions deployed in the BizTalk environment. Our solution has a small
load requirement, but the project stakeholders want to make sure that bursts of data
from other applications do not block the server from processing our mission-critical
messages. BizTalk provides built-in load balancing, and we can even segment our
solution into its own processing space to help ensure that it maintains a high priority
for processing.

BizTalk Server comes with a dashboard for monitoring and interacting with failed
messages. This allows us to proactively resume failed transmissions or delete them
if the data ends up being submitted manually to its targets.

Organizational aspects
The BizTalk-based proposal can serve as a long-term solution that meets the needs
of LarHans Pharmaceuticals for years to come. It has built-in extensibility points
that allow us to add, change, or remove endpoints, without impacting the rest of the
solution. This solution leverages the existing organizational investment in BizTalk
and the developers who are trained in the tool. It also complies with their preference
of configuring applications, instead of building them, and helps them rely on the
solution to transition a critical manual process to an automated one.

Solution evaluation
The following table shows the solution evaluation which shows all "thumbs up"!

Design Implementation Operations Organization

Chapter 8

[189]

Candidate architecture for guaranteed
delivery #3 – SQL Server Service Broker
The third scenario requires a shift of perspective for most database professionals,
as we tend to think of Publish/Subscribe scenarios as replication issues. Here we
are pushing data to diverse routes. These routes are controlled by folks outside
the control of LarHans Pharmaceuticals. It is difficult enough to maintain
route definitions when the enterprise controls the start and end points. The loss
of end-point control and the diversity of potential protocols and message formats
will create administrative issues that we will need to account for in any application.

SQL Server Service Broker (SSSB) is, at first glance, a potentially useful matching
technology nonetheless. We are faced with a situation where specific data must be
sent with guaranteed delivery in a specific format to a specific service. That is a sweet
spot for the Service Broker.

SSSB provides native support for messaging and queuing operations. With SSSB,
you can build asynchronous, loosely-coupled applications. However, unlike
traditional message queues, the queue is handled through the databases involved,
and messages can be coordinated, grouped, and prioritized. It requires no additional
software. An understanding of Transact-SQL (T-SQL) and its basic services is all that
you need for SSSB.

Transact-SQL (T-SQL) is a Microsoft version of the SQL language
that is designed for Microsoft SQL Server. You can read more
about T-SQL and SQL Server in Chapter 3, The SQL Server Primer.

Using asynchronous processing can yield big performance gains, particularly when
you can prioritize messages. Consider the classic order-entry example that is so often
used in books such as this one. When an order is placed, certain systems must get
data immediately to confirm an order. For example, you need to commit data that
concerns the customer, the product ordered, and the number of units purchased. On
the other hand, the accounts-receivables system and the order-fulfillment system
do not need this data to confirm the order. You can send the data that those systems
need asynchronously, using SSSB, and even prioritize the messages based on the
order priority (rush orders first, for example). In short, you do the minimum work
you need to do to—accept the order and complete the rest at your leisure.

Integration Patterns and Antipatterns

[190]

Solution design aspects
It is rare that one has an out-of-the-box solution in any SQL Server-based
technology. This pattern is particularly illustrative of that fact. We require
setting up the following:

•	 User interfaces to allow input of data (for example, input of details
around product recalls).

•	 Some form of notification to relevant sales staff (for example, SQL Mail
to predefined relevant teams stored in tables).

•	 Service Broker conversations with multiple end points, each of which
requires different data, in different formats, and potentially different
languages. These would include the following:

°° Transmissions to regulatory agencies
°° External publication to the consumer and medical communities

All of this would require a fairly complex and custom solution and is not something
easily achieved in SQL Server tooling.

Solution implementation aspects
One of the key requirements of this application will be to handle Call Your Attorney
(CYA) situations. Failure to notify can give rise to expensive regulatory and, at least
in the United States, tort liabilities. We need to track precisely when, where, and
how each message was sent and when (or whether) it was delivered. Moreover, if
the message is not delivered within the predetermined time frame, it must allow
for human intervention. For example, we may want to account for a central FTP
server being unavailable to receive messages for some time period. Beyond that time
period, we may want someone to call the regulatory agency in question or fall back
on alternative methods of delivery.

A second key consideration will be the long-term evolution of data that must be sent.
We are dealing with multiple regulatory authorities in multiple countries, each of
which will have their own required format for the data. Of course, each will want
the data in their own national language. As a part of this solution, therefore, we
will need a user interface and database schema that will provide the flexibility for
performing the following tasks:

•	 Capturing the data that is required at present
•	 Sending the data in an appropriate format

Chapter 8

[191]

•	 Allowing edits to that format; hopefully, with minimal IT involvement
•	 Storing that data in a way that allows someone to reconstruct what was sent,

the format used, and when it was sent

Using SSSB presents advantages for these requirements. First, both physical and
logical access to this data is always under the control of the enterprise. It is also very
easy to relate the data that we leverage in this application with the data stored in
other enterprise databases. For example, recall data can be linked to quality control,
order fulfillment, and manufacturing systems to make it easier to obtain a complete
view of the recall process or to respond to any request for further information sent
in by regulatory agencies. We can even place this ability in the hands of power users
using PowerPivot technologies available in Microsoft Office.

The LarHans team has extensive SQL Server development experience and can build
this solution, but they are relatively new to SQL Server Service Broker and typically
do not construct SQL solutions that communicate with nondatabase endpoints.

Solution operations aspects
For this application, IT can never be a bottleneck for getting data out the door. It
is not only regulatory and liability issues that dictate this requirement, sufficient
though they may be. Real harm, even death, can come to real people from ingesting
potentially defective medications. As architects, we should be very well aware of the
real-world consequences our designs may impose on people.

Once in operation, this application must allow business users to get appropriate
data, at the appropriate place, in a correct format, and in a timely manner. Formats,
data, and potentially even the definition of "timely" can change rapidly over time
and according to a given situation. The application must be flexible enough to
handle such requirements and allow for easy updates to formats, business rules,
and the data stored in the application to meet these requirements. So, in addition to
the creation of an SSSB application, we would also need to provide user frontends
to handle these requirements or an IT staff person whose primary role would be to
create and send these messages via SSSB.

Organizational aspects
As noted earlier, LarHans Pharmaceuticals prefers to invest in existing products and
minimize their exposure to completely custom-built solutions. An SSSB solution will
require significant investment in the custom code or a DBA dedicated primarily to
operating this system.

Integration Patterns and Antipatterns

[192]

Solution evaluation
As you can see in the following table, this would not be our preferred solution:

Design Implementation Operations Organization

Architecture selection
Let's look at how these candidate architecture technologies stack up while evaluating
the risks and benefits of each, with the help of the following tables:

Windows Azure Service Bus
Benefits

•	 This provides rapid provisioning
of endpoint listeners

•	 No new hardware is needed to
host message routing function

•	 Internet-based hosts allow for
secure access for internal and
external endpoints

Risks
•	 No durable component to store

failed messages
•	 No centralized management of

data subscribers
•	 This requires endpoints to be able

to integrate with Service Bus

BizTalk Server
Benefits

•	 It has a reliable messaging
engine that can ensure delivery
of critical data

•	 It has a diverse set of adapters that
can natively communicate with all
the protocols your client demands

•	 It has a loosely coupled
infrastructure that allows us to
add/remove/change endpoints in
a nondisruptive fashion

•	 It leverages existing organizational
investment in BizTalk

Risks
•	 BizTalk Server does not have an

out-of-the-box business dashboard
for monitoring and resubmitting
failed messages. The monitoring
tools are very technical.

•	 This requires additional modules
or code.

Chapter 8

[193]

SQL Server
Benefits

•	 There is reliable delivery of data
between database systems

•	 The in-house staff develops and
maintains the solution

Risks
•	 This requires significant coding

effort to communicate with
diverse endpoints

•	 The solution would have to be
made up of multiple components
woven together

•	 Nontrivial efforts to modify or
create new endpoints

In evaluating these options against the problem scenario, BizTalk Server is the most
appropriate choice. BizTalk provides us with a quality-of-service guarantee through
persistent storage, automatic retries, and flexible exception handling mechanisms.
We also have a static set of endpoints, so the powerful, distributed Azure model is
not needed here.

Building the solution
For this solution demonstration, we will publish two of the desired endpoints: the
FDA web service endpoint and the LarHans website database endpoint. This gives
us a chance to evaluate BizTalk's capabilities to communicate with standard web
services as well as database platforms.

One key aspect of our solution architecture is to keep our design as loosely
coupled as possible. In our case, this means embracing canonical formats while
performing routing operations instead of polluting our message processing rules
with endpoint-specific formats. Also, we want our endpoints to be as distinct and
separate from each other as possible so that changes to one endpoint have little to
no impact on existing message consumers.

Setting up the development foundation
Perform the following steps to set up the development foundation:

1.	 We start off by creating a new database named Chapter9 on a SQL Server
2012 instance.

Integration Patterns and Antipatterns

[194]

2.	 After the database is created, execute the Chapter9.sql database script in
the Begin folder under <Installation Directory>\Chapter9\, and install
the tables in your new database. This is the database that holds the public
website's company news feed entries.

3.	 Now open the Chapter9.sln Visual Studio solution located in the Begin
folder under <Installation Directory>\Chapter9\. In this solution,
you will find a single WCF service that represents the destination endpoint
of the FDA.

4.	 Build the solution and add this to IIS as a new web application named
Chapter9.FDA.SafetySubmissionService. Testing this service via the WCF
Test Client application should yield a result that consists of a tracking number
and timestamp. The directory structure is shown in the following screenshot:

Building the canonical solution artifacts
Now that our foundational database and services are in place, we are ready to
develop the canonical solution components that are independent of any particular
downstream system. Perform the following steps to do so:

1.	 Launch Visual Studio 2012 and open the Chapter9.sln solution under
<Installation Directory>\Chapter9\Begin. You will find a single WCF
service already in place.

2.	 The first BizTalk project is needed to hold enterprise canonical schemas.

Chapter 8

[195]

The canonical schema is an intermediary schema that utilizes a
common data model.

Specifically, these are the standard schemas that represent a product recall
notice, a label change, and a government agency response. Regardless of the
data formats required by various subscribers, our core messaging solution
only routes canonical formats.

3.	 Right-click on the solution in Visual Studio and choose Add | New Project.
Choose the BizTalk Projects category and select Empty BizTalk Server
Project. Name the project Chapter9.LarHans.SafetySchemas, as shown in
the following screenshot:

4.	 Immediately after creating the BizTalk project, right-click on the project,
select Properties, highlight the Signing tab, and set a strong name key. If you
do not have an existing strong name key to reference, select New... from the
Choosing a strong name key drop-down box. In the Create Strong Name
Key dialog box, set the parameters for your new key. Finally, switch to the
Deployment tab and set the value of Application Name to Chapter9.

Integration Patterns and Antipatterns

[196]

5.	 Now, right-click on the BizTalk project again and choose Add | New
Item. Under the Schema Files category, select Schema and name it
ProductRecall_XML.xsd, as shown in the following screenshot:

6.	 Click on the topmost node in the schema named <Schema> and look in
the Visual Studio Properties window for the Target Namespace property.
Change this value to http://Chapter9.LarHans.SafetySchemas. Use this
value as the target namespace for all canonical schemas in this project.

7.	 Define the schema so that it looks like the following screenshot. Note that
all elements are of a string data type, and the Lot and Incident nodes are
marked with an unbounded maximum occurrence in the Visual Studio
Properties window. This is because our recall notice may impact multiple
lots of the product, and we can have any number of reported incidents
associated with a recall.

Chapter 8

[197]

8.	 Next, right-click on the BizTalk project and add another schema named
ProductLabelChange_XML.xsd. Rename its target namespace to the same
value designated in step 6. This schema should look like the following
screenshot. Note that all elements are of the string type, and there are no
changes to the default node properties.

9.	 Now we need a schema to hold the acknowledgements that we receive from
each government agency. Right-click on the BizTalk project and add an XML
schema named AgencySubmissionAcknowledgement_XML.xsd. Once again,
alter its target namespace as per the value we identified earlier. This schema
has a simple structure that looks like the following screenshot:

10.	 We want to have the option to filter our subscriptions for product recalls and
label changes based on some of the values in the messages. Specifically, a
particular subscriber may only wish to receive notifications for a particular
product or for those affecting a specific country. To perform content-based
routing in BizTalk solutions, we need to promote message nodes via property
schemas. Right-click on the BizTalk project and add a new Property Schema
named SafetyRouting_PropSchema.xsd.

Integration Patterns and Antipatterns

[198]

11.	 This schema has two nodes for the country and product as shown in the
following screenshot:

12.	 We now need to get our product recall and label change schemas
to point to this property schema so that we can perform content-based
routing on each message type. Open the ProductRecall_XML.xsd
schema, right-click on the root <Schema> node, and navigate to select
Promotions | Show Promotions. On the Property Fields tab, choose
Add a Property Schema by pointing to our previously built property
schema. Then, create the relationship between the Country and Product
nodes, and their corresponding property schema nodes, as shown in
the following screenshot:

Chapter 8

[199]

13.	 Save the schema and then repeat this same process on the
ProductLabelChange_XML.xsd schema. At this point, you should
have a BizTalk project with four complete schemas in it, as shown in
the following screenshot:

Building the FDA subscriber solution artifacts
With our canonical objects in place, we can now define subscriber-specific artifacts.
Each subscriber will have its own BizTalk project to hold any schemas and maps
associated with that particular endpoint. Why not bunch them together in a single
project? We want a clear separation of concern and to allow the isolation of change.
If one subscriber changes their endpoint schema, why should it impact all the
other unchanged endpoints as well? By separating the projects, we establish a very
modular solution with a clear extension pattern.

1.	 In Visual Studio, right-click on the solution and choose to add a new project.
Select the Empty BizTalk Project type and name the project Chapter9.
LarHans.FDA.SafetySubscriber. Upon project creation, right-click on the
project, select Properties, and set a strong name key and Application Name
to Chapter9.

2.	 This project will hold the artifacts needed to communicate with the FDA
service. Right-click on the project and navigate to Add | Add Generated
Items. Select the Consume WCF Service menu option, as shown in the
following screenshot:

Integration Patterns and Antipatterns

[200]

3.	 The BizTalk WCF Service Consuming Wizard launches; when prompted,
choose Metadata Exchange Endpoint as the service source.

4.	 For the metadata URL, use the URL of the service you installed into IIS during
the earlier solution setup (for example, http://localhost/Chapter9.FDA.
SafetySubmissionService/SafetySubmission.svc), as shown:

5.	 Keep the default namespace on the next wizard page and click on the
Import button.

6.	 This wizard creates a host of artifacts in our BizTalk project, including
an orchestration, multiple schemas, and two send port binding files,
as shown in the following screenshot:

Chapter 8

[201]

7.	 Now we need to add the following three maps to this project:
°° The canonical product recall format to the FDA input format
°° The canonical label change format to the FDA input format
°° The FDA acknowledgement format to the canonical government

agency response format

8.	 Right-click on the BizTalk project and choose to add a reference. Point to
the SafetySchemas project so that we can access the canonical schemas
defined there.

9.	 Then, right-click on the BizTalk project and navigate to Add | New Item.
Select the Map type and name it ProductRecall_To_FDASafetyIssue.btm.

10.	 On the left-hand side of the map, click on the Open Source Schema link,
go to the References folder, and open the SafetySchemas project.
Find and select the ProductRecall message.

11.	 Click on the Open Destination Schema button on the right-hand
side of the map, and navigate directly to the Schemas node to pick
the SafetySubmission_chapter8_FDA_Contract type. Select the
PostSafetyIssue type from the pop-up box. The map should now
look similar to the one shown in the following screenshot:

Integration Patterns and Antipatterns

[202]

12.	 Create the mapping as follows:

Source Destination Comments
Product ProductName

ImpactedLots/Lot LotNumbers/string

Hazard Hazard

Incidents/Incident/
Date

Incidents/Incident/
Description

Incidents/string Use the Concatenate
functoid to combine
source nodes

ConsumerContact ConsumerContact

isLabelChange =
false

Hard code Value
property

isProductRecall =
true

Hard code Value
property

Manufacturer =
LarHans

Hard code Value
property

13.	 The mapping visualization is presented in the following screenshot:

Chapter 8

[203]

14.	 It is a good practice to test the map when you complete it, so create an
instance file of the source schema (by right-clicking on the ProductRecall
schema in the SafetySchemas project and choosing Generate Instance), and
set it as an input to this map via the Properties window. Then, right-click
on the map and select Test Map. Your output should show all the relevant
source data values in the destination schema.

15.	 Next, we need the map from the label change to the FDA safety issue.
Right-click on the BizTalk project and navigate to Add | New Item. Select
the Map type and name the map LabelChange_To_FDASafetyIssue.btm.

16.	 For the source schema, navigate to the References node and select the
ProductLabelChange type in the SafetySchemas project.

17.	 The destination schema should be the same SafetySubmission_chapter8_
FDA_Contract type as before. Select the PostSafetyIssue type from the
pop-up box.

18.	 Create the mapping as follows:

Source Destination Comments
Product ProductName

ContactDetails ConsumerContact

ChangeDetails/Change
Type

ChangeType

ChangeDetails/
ReasonForChange

DriverForChange

ChangeDetails/
ContentChanged

ChangeMadeDescription

isLabelChange = true Hard coded Value
property

isProductRecall = false Hard coded Value
property

Manufacturer = LarHans Hard coded Value
property

Integration Patterns and Antipatterns

[204]

19.	 The mapping visualization is presented in the following screenshot:

20.	 Create an instance of the LabelChange message and confirm that the map
functions as expected.

21.	 Our final map for this subscriber is for the acknowledgement message.
Add a new item to the BizTalk project, choose the Map type, and name it
FDAResponse_To_AgencySubmissionAcknowledgement.btm.

22.	 Select the SafetySubmission_chapter8_FDA_Contract type for Schema
Source and choose the PostSafetyIssueResponse option from the pop-up
window. For the destinations schema, navigate to the References node and
choose the AgencySubmissionAcknowledgement schema, as shown in the
next screenshot.

23.	 Create the mapping as follows:

Source Destination Comments
AckID AckIdentifier

Timestamp Timestamp

Agency = FDA Hard coded Value property
Country = USA Hard coded Value property

Chapter 8

[205]

24.	 Build all the projects currently in the Visual Studio solution.
25.	 Right-click on Chapter9.LarHans.SafetySchemas and select Deploy.

This will load this project's assembly into the GAC and register the relevant
artifacts with BizTalk Server.

26.	 Once that operation succeeds, right-click and deploy the Chapter9.
LarHans.FDA.SafetySubscriber project.

27.	 Open the BizTalk Administration Console and navigate to the Chapter9
application. You can confirm the deployment by opening a node such as
Maps to confirm that our recently built maps appear.

Configuring the data publisher and FDA subscriber
Now that we have the schemas and maps necessary for exchanging information
with the FDA, we can construct the actual endpoint that transmits data. Before we
can build the endpoints that consume the data, we have to set up the publisher that
pulls data to the BizTalk Server. To do this, we configure a BizTalk receive port and
location that publish the product recall and label change messages in the bus. In this
scenario, we are picking up the canonical message via a BizTalk FILE adapter. Note
that we could very well use any adapter to send messages into BizTalk Message Bus.

1.	 Within BizTalk Administration Console, navigate to the Chapter9
application, and create a new, one-way receive port named Chapter9.
LarHans.ReceiveProductRecall.

2.	 Add a receive location named Chapter9.LarHans.ReceiveProductRecall.
FILE to our new receive port.

Integration Patterns and Antipatterns

[206]

3.	 Select the FILE adapter and set the value of Receive Pipeline to the
XMLReceive pipeline. Choose to configure the FILE adapter and set the
polling location to <Installation Directory>\Chapter9\Filedrop\
PickupRecall.

4.	 Create another one-way receive port named Chapter9.LarHans.
ReceiveProductLabelChange with a FILE receive location named
Chapter9.LarHans.ReceiveProductLabelChange.FILE. That
receive location should also use the XMLReceive pipeline and point to
<Installation Directory>\Chapter9\Filedrop\PickupLabelChange.

5.	 Note that there are no maps here as we receive the canonical format and
do not want to translate to subscriber formats until the latest point possible
(send ports).

Now that our publisher is built, we can move on and create the FDA subscriber.
We do this by building BizTalk send ports and pointing them to our destination
web service.

1.	 We can create the FDA send port manually; however, when we referenced the
WCF service in our Visual Studio project, the BizTalk wizard autogenerated
the binding files for the send port. Right-click on the BizTalk application in
Administration Console and choose Import followed by Bindings.

2.	 Navigate to the Chapter9.LarHans.FDA.SafetySubscriber project and
choose the SafetySubmission_Custom.BindingInfo.xml file.

3.	 When the import is complete, you can go to the Send Ports folder in
Administration Console and see your new send port pointing to our
WCF service, as shown in the following screenshot:

Chapter 8

[207]

4.	 Remember that this single send port accepts data for either recalls or label
changes. So, we need to apply both maps here so that, regardless of which
message comes in, the correct message goes out. Go to the Outbound Maps
tab and select both the maps that result in a FDASafetyIssue format, as
shown in the following screenshot:

Integration Patterns and Antipatterns

[208]

5.	 Next, we have to add Inbound Map so that the acknowledgement that comes
back from the FDA maps to our canonical format, as shown in the following
screenshot. Recall that "inbound" in this context refers to messages coming
back into BizTalk from this send port (that is, the response value from the
service call):

Chapter 8

[209]

6.	 Finally, we have to create our subscriptions so that this port picks up the
correct messages from the BizTalk Message Box. Specifically, we want an OR
condition where the value of BTS.MessageType is equal to either http://
Chapter9.LarHans.SafetySchemas#ProductRecall or http://Chapter9.
LarHans.SafetySchemas#ProductLabelChange. However, as this is a
United States agency, we want to make sure to send notices that relate only
to US recalls or label changes. So, here we add a filter based on the country as
well, as shown in the following screenshot:

Integration Patterns and Antipatterns

[210]

7.	 All that is left is to create a send port that listens for the synchronous
acknowledgement back from the FDA service and publishes the canonical
format to disk. Create a new one-way, static send port named Chapter9.
LarHans.SendAgencyAck.FILE. Set the file adapter's destination location to
<Installation Directory>\Chapter9\Filedrop\DropOffAck\ and use a
filter subscription of BTS.MessageType = http://Chapter9.LarHans.Safe
tySchemas#AgencySubmissionAcknowledgement.

8.	 Start both the receive locations and send ports.
9.	 Drop a product recall and a label change message to their respective

pickup folders.
10.	 If everything is configured correctly, then the FDA service should be

called twice, and you should see two files sent to your acknowledgements
folder. The content of the files would be similar to the one shown in the
following screenshot:

Building the website database subscriber solution
artifacts
With our first subscriber working, we can now build the pieces necessary to share
data with our second subscriber—the LarHans website database. Perform the
following steps to do so:

1.	 Return to Visual Studio, right-click on the solution, and add a new Empty
BizTalk Project named Chapter9.LarHans.WebsiteDb.SafetySubscriber.

2.	 Right-click on the project and choose Properties to set its strong name key
and Application Name parameters.

Chapter 8

[211]

3.	 Right-click on the new project and navigate to Add | Add Generated
Items. Select the Consume Adapter Service menu option, as shown in
the following screenshot:

4.	 When the Consume Adapter Service window opens, choose sqlBinding
from the bindings menu. Note that the following screenshot shows only a
portion of the large wizard window that pops up:

5.	 Click on the Configure button next to the Configure a URI textbox.
6.	 Select Windows as the Client Credential type on the Security tab.

Integration Patterns and Antipatterns

[212]

7.	 On the URI Properties tab, set the value of Initial Catalog to Chapter9
and the Server to ".", as shown in the following screenshot:

8.	 Click on OK to exit the URI configuration window, and click on the
Connect button on the Consume Adapter Service Wizard page to establish
a connection to our database.

9.	 We are adding records to a table; thus, after choosing RecallNews under the
Tables node, select the Insert operation, and add it to the list of operations
to generate.

10.	 After clicking on OK, the wizard generates the artifacts necessary for BizTalk
to communicate with this database table. The BizTalk project in Visual Studio
should now have schemas and a send the port binding file, as shown in the
following screenshot:

Chapter 8

[213]

11.	 A single map is needed from the canonical product recall schema to the
database specific format. Right-click on the BizTalk project and navigate to
Add | New Item. Choose the Map type and name the map ProductRecall_
To_InsertRecallNews.btm.

12.	 Add a reference to the SafetySchemas project so that we can point to our
canonical product recall schema.

13.	 Once the reference is in place, set the map's source schema to the
ProductRecall type found in the References node.

14.	 Set the value of Destination Schema equal to the TableOperation.dbo.
RecallNews type and choose Insert from the pop-up window.

15.	 Create the mapping as follows:

Source Destination Comments
RecallID ItemID

Product Product

Hazard HazardDescription

ConsumerContact ConsumerContact

DatePosted Date and time functoid
Lots Scripting functoid leveraging

Inline XSLT

16.	 The Lots destination field holds all of the possible lots listed in the recall,
so we need a way to mash up all the source node values. As mentioned in
the preceding table, a scripting functoid was leveraged. The Inline XSLT
used is as follows:
<Lots xmlns="http://schemas.microsoft.com/Sql/2008/05/Types/
Tables/dbo">
<xsl:for-each select=" /*[local-name()='ProductRecall' and
namespace-uri()='http://Chapter9.LarHans.SafetySchemas']
/*[local-name()='ImpactedLots' and namespace-uri()=''] /*[local-
name()='Lot' and namespace-uri()=''] ">
[<xsl:value-of select="." />]
</xsl:for-each>
</Lots>

Integration Patterns and Antipatterns

[214]

17.	 The completed map looks like the following screenshot:

18.	 This BizTalk project can now be deployed to the BizTalk Server by
right-clicking on the project and choosing Deploy.

19.	 Confirm that the deployment was successful by locating our new
assembly and components in the Chapter9 application found in the
BizTalk Administration Console.

Configuring the website database subscriber
Our final activity is to configure the necessary messaging components to distribute
product recall messages to the LarHans website database. Because of the way
we have architected our solution, we can achieve this simply by adding a single
new send port to the application. There is no need to change anything about our
publisher, and there is no impact on our existing FDA service subscriber. Perform
the following steps to configure the website database subscriber:

1.	 While the Consume Adapter Service did produce a binding file (much as
when we consumed a WCF service), we do not want to use it. The binding
file generated was for a two-way send port, but we are not interested in the
result of the database insert operation. So, create a new, one-way static send
port named Chapter9.LarHans.WebsiteDb.SendRecall.Sql.

2.	 Choose the WCF-Custom adapter type and click on Configure.

Chapter 8

[215]

3.	 Switch immediately to the Binding tab and choose sqlBinding.
4.	 Move back to the General tab and enter an address value of

mssql://.//Chapter9?.
5.	 For the SOAP Action header, use the following XML configuration:

<BtsActionMapping xmlns:xsi="http://www.w3.org/2001/ XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Operation Name="Insert" Action="TableOp/Insert/dbo/RecallNews" />
</BtsActionMapping>

This is shown in the following screenshot:

Integration Patterns and Antipatterns

[216]

6.	 Click on OK to save the adapter configuration settings.
7.	 Next, we need to set the single outbound map that takes the canonical

product recall format and transforms it to the data structure expected by
the database adapter. View the send port's Outbound Maps tab and set
the map to ProductRecall_To_InsertRecallNews.

8.	 Now go to the Filters tab so that we can set the subscription for this
send port. The filter should look for any BTS.MessageType equal to
http:// Chapter9.LarHans.SafetySchemas#ProductRecall.

9.	 After saving and starting the send port, drop a new product recall message
into BizTalk, and you should observe both an acknowledgement file on the
disk (from the FDA subscriber) and a database record (from the website
database subscriber), as shown in the following screenshot:

10.	 If you publish a product recall message that targets a country besides the
United States, you'll find that the FDA subscriber does not pick it up, but
the website database subscriber does. This is because our FDA subscriber
is only interested in recalls targeted at the United States, while the website
subscriber is grabbing any recall message that it encounters.

Lessons learned
In this pattern, we looked at a customer who needed the rights to send a single event
to a varied list of subscribers. There was no need for tight coupling of the sender and
receiver(s), so the injection of a service broker in the middle was a sensible way to
leverage asynchronous routing between endpoints.

Chapter 8

[217]

By clearly isolating our subscription endpoints, we were able to make the addition,
modification, or deletion of endpoints a straightforward task. The Publish/Subscribe
pattern is a powerful way to transmit data, and the use of canonical message formats
and BizTalk Server gave us enterprise-grade quality-of-service attributes that were
demanded by this scenario.

The Publish/Subscribe pattern
It is also worth mentioning that message brokers quite often implement
Publish/Subscribe patterns. The Publish/Subscribe model together with
using a persistent message storage improves reliability of the solution.

In the Publish/Subscribe pattern, message senders do not send messages directly
to recipients. They send their messages to a message broker who performs message
routing based on subscriptions. Let's introduce some important notions for the
Publish/Subscribe pattern:

•	 Publisher: This is a participant in the Publish/Subscribe architecture,
 that sends messages to the message broker.

•	 Subscriber: This is a participant in the Publish/Subscribe architecture,
 that retrieves messages from the message broker based on the subscriptions.
The message retrieval can use polling, when the subscriber periodically
inquires about the messages, as well as pushing, when the message broker
sends messages to the subscriber based on its own schedule.

•	 Subscription: This is a filter that is used by the message broker to match
messages to subscribers. Subscriptions are predefined and configurable;
they can describe filtering based on the message header as well as the
message body.

The Publish/Subscribe model usually requires a persistent data storage to keep the
messages that cannot be delivered instantaneously. It also requires additional tools
to create and manage subscriber and subscription data, typically in a database.

Note that BizTalk itself is implemented using the Publish/Subscribe mechanism
along with the Message Bus for persisting messages. However, this is done at the
lower level and does not limit BizTalk to the use of the Publish/Subscribe model.
Even more, using BizTalk to implement Publish/Subscribe architecture happens
much more rarely than one can think.

Integration Patterns and Antipatterns

[218]

Moving to Enterprise Service Bus
With the paradigm of service-oriented architecture that we shall explore later in
the book, the Messages Broker pattern started showing some disadvantages.

First off, Message Brokers have been always implemented as a monolithic application
that performs all required functionalities of a hub in the hub-and-spoke architecture.
They implement routing, validation, and transformation, as well as error handling,
logging, and all other message processing activities. This made the message broker a
single point of failure in the solutions.

In early 2000s, the notion of Enterprise Service Bus (ESB) emerged, which used
the bus paradigm instead of the hub. Bus architecture relies on distributed services
that can be added and removed seamlessly, making it more dynamic. Significant
componentization makes ESB more reliable than message hubs.

The notion of ESB has been changing constantly since its appearance on the
market. It is still an evolving notion, and its definitions vary. We'll try to compare
ESB with Message Broker based on a generally accepted view with the help of the
following table:

Message Broker ESB
Architecture topology Hub-and-spoke Bus
Componentization A monolithic solution

adopted to minimize the
number of connections in the
point-to-point architecture.

A dynamic set of components
in the form of services.

Scalability This is scalable horizontally
by implementing load
balancing—limited.
This is scalable vertically
by increasing the server
capabilities.

This is scalable horizontally
by adding more services
or even by connecting to
another bus.
This is scalable vertically
by increasing the server
capabilities.

Connectivity This uses adapters in order
to provide connectivity to
different participants.

This uses services and
generally complies with
messaging standards.

Expandability Static solution with
participants required to be
directly connected to the hub.

Dynamic solution based on
the set of services that can be
rearranged.

Discoverability Participants have to know
the data formats and the
endpoints.

Services and contracts are
discoverable.

Chapter 8

[219]

Generally, ESB provides a more dynamic and therefore manageable solution by
using a componentized architecture rather than a monolithic one.

Summary
In this chapter, we talked about integration architecture, specifically about
application integration. We discussed point-to-point antipattern, request/response
with workflow, guaranteed delivery, and message broker patterns. For guaranteed
delivery and the request/response with aggregation patterns, we compared different
candidate technologies from several perspectives. We have chosen the leading
technology and provided working examples.

We introduced the notion of the ESB.

In the next chapter, we'll talk about web services and RESTful services. We shall
also see how ESB can provide the basis for service-oriented architecture.

Web Services and Beyond
Anecdotal evidence has it that the first time web services, in the context of
XML-structured messages, were mentioned by Bill Gates was at the Microsoft
Professional Development Conference in Orlando, Florida, on July 12, 2000.
By that time, many organizations, including Microsoft, Sun, and IBM, had been
working on XML Schema and SOAP specifications. Don Box, in his article named
Brief History of SOAP, (http://www.xml.com/pub/a/ws/2001/04/04/soap.html)
presents an excellent overview of issues, more political than technical, surrounding
that development.

The invention of XML was critical to web services development. Electronic
Data Interchange (EDI), which dominated the market at that time, presented a
quite complex data exchange format. Also, despite the fact that it was published
as a standard, EDI was influenced by virtually every software vendor that used it.
XML looked much simpler and more generic.

The concept of web services is fluid. There are many things that are called web
services. XML is not necessarily the only format to be used with web services;
for example, JSON is gaining more and more popularity. RESTful services are
also often considered web services by some authors.

To start this chapter, we shall discuss XML web services.

The World Wide Web Consortium (W3C) defines web services in the
following manner:

"A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards."

http://www.xml.com/pub/a/ws/2001/04/04/soap.html

Web Services and Beyond

[222]

WSDL originally stood for Web Services Definition Language. In Version 2.0, the
meaning of the acronym was changed to the Web Services Description Language.
WSDL is XML based, and most WSDL documents are automatically generated.
The documents are machine- and human-readable.

SOAP originally stood for Simple Object Access Protocol. Later, the long name was
dropped, and only the short acronym was left in Version 1.2. SOAP is typically built
on top of HTTP; however, this is not mandatory. A SOAP message has a relatively
simple structure consisting of an optional <Header> and a mandatory <Body>
element inside the root element <Envelope>. In case of an exception, SOAP returns
the <Fault> element in the response.

Microsoft was promoting the concept of XML web services built with the ASP.NET
framework. Since the file extension for services was .asmx, Microsoft called them
ASMX Web services. After a few beta releases, ASP.NET was finally launched in
January 2002.

In the beginning of the web services history, their automatic discoverability
seemed to be extremely important. In order to support it, the Universal Description,
Discovery, and Integration (UDDI) approach was proposed. UDDI registries were
considered an essential part of any web services infrastructure. Web services seemed
to show the way to complete web automation—the idea that started the entire
Semantic Web initiative.

Today, the value of UDDIs is questionable; and in many cases, the existence of
a registry that provides automatic discovery is not required. After Windows 7,
Microsoft stopped shipping UDDI SDK with Microsoft Windows. Future releases
of the SDK will be included with Microsoft BizTalk Server (see http://msdn.
microsoft.com/en-us/library/windows/desktop/aa966237(v=bts.10).aspx).

Meanwhile, standard bodies such as W3C and OASIS were restlessly working
on new standards. The web services domain was not an exception. A lot of new
standards, especially around security, were proposed. The set of web service-related
standards, the so-called WS-* standards, was published over the years.

Almost immediately, these standards found their way into .NET. Microsoft
developed Web Services Enhancements (WSE), a set of classes to implement some
of the WS-* specifications. WSE provided extensions to SOAP utilizing WS-Security,
WS-Addressing, WS-SecureConversation, and others.

In 2006, Microsoft released .NET v3.0 that included Windows Communication
Foundation (WCF). WCF superseded WSE; today, it is the main Microsoft approach
to building web services.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa966237(v=bts.10).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa966237(v=bts.10).aspx

Chapter 9

[223]

Service-oriented architecture
Service orientation is a design paradigm that became popular in the last decade
and continues to be appreciated by different organizations worldwide. Its popularity
resulted in numerous discussions, articles, and books. As an introduction to the
topic, we would recommend books written by Thomas Erl, particularly SOA Design
Patterns and SOA Principles of Service Design both by Prentice Hall.

Service-oriented architecture (SOA) is an architectural style based on the concept
of a service. Since there is no industry-standard describing services, let's talk about
features and principles that make service a service. The following describes the
features and principles:

•	 Service granularity refers to the size and scope of the functionality. Roughly,
a service exposes functionality to cover one business unit of work. During
every SOA design, building services of the right granularity is a challenge.
If you think of balancing between science, art, and craft, achieving the right
granularity is more craft or art than science.

•	 Related to service granularity is service encapsulation. A service
encapsulates solution logic providing an interface to its operations.

•	 Service autonomy requires that service contracts express a well-defined
functional boundary. Services exercise a high level of control over their
environment. Service autonomy refers to the service's independence from its
environment during the entire life cycle: from designing to retiring the service.

•	 One of the most important features of services and of the entire
service-orientation paradigm is loose coupling. Loosely coupled
components of a system have very little or no knowledge of each other.
Information about services is provided through their contracts, which
increases independence of the components and interoperability.

•	 Another reason to build service-oriented architecture is service reusability.
If properly designed, the same service can be used again and again in
different solutions. Designing reusable services is not as simple as it might
seem. The service has to be expandable, has to encapsulate solution logic that
covers related business units of work, and still not be too coarsely granular.

•	 A service should not expose too much functionality, especially when it is not
really required for invocation of the service. The design principle that suggests
building services as black boxes and hiding the details from service consumers
other than what's required for their invocation is called service abstraction.

•	 Location transparency means the ability of consumers to use a service
without knowing its exact location. This is usually achieved by using a
registry (with or without UDDI).

Building a system as a set of services helps several architectural challenges such as
scalability and extensibility.

Web Services and Beyond

[224]

Enterprise Service Bus
Probably the most dominant architectural pattern used to implement the middle-tier
for service-oriented architectures is the Enterprise Service Bus (ESB). This pattern
works particularly well when the number of service consumers is limited and their
behavior is predictable. A typical example would be building an ESB for services
within one enterprise, where the service providers and consumers are well known,
predictable, and are limited in number.

On the next few pages we'll present and analyze a use case of a trading firm, which
will require building an Enterprise Service Bus.

Use case – a commodity trading firm
Sam MacColl Commodities is a rapidly expanding commodity trading firm, which
is a leader in the production of sustainable and ethical palm oil. Through rapid
expansion and acquisition over the last 10 years, they have grown to be the largest
palm oil plantation and milling operator in Papua New Guinea. Their core activity
is the cultivation and processing of palm oil raw products into various derivatives
for sale to domestic and international markets. The primary derivative they trade in
is Crude Palm Oil (CPO), which accounts for 70 percent of their yield. Their total
output of CPO is approximately 500,000 tones.

Sam MacColl Commodities prides itself on being an environment-friendly and efficient
company; they only participate in sustainable production. Through strict adherence
to international standards, they have also been able to increase the quality of their
products. They were recently recognized for the low fatty acid levels of their palm oil.

Three years ago, the company floated on the Alternative Investment Market in
the UK, and with these funds, they were able to accelerate their acquisitions and
growth. By increasing size and through appropriate diversification, Sam MacColl
Commodities were able to become the single supplier of choice for a number of large
multinational corporation customers. Coordinating the order and delivery of large
amounts of commodities across the supply chain has been very challenging. Many
of the individual units have their own individual supply chain systems. In one case,
a huge order could not be fulfilled because the commodity had already been sold by
the subsidiary unit to another customer. Sam MacColl Commodities were threatened
with legal action in this case.

Managing the credit limit of a large pool of customers has been another challenge.
Previously, the individual sales reps in each subsidiary unit would approve
transactions and seek unit-director-level approval above a certain amount. Scaling
this to a large organization is challenging, and recently, there have been a number
of large transactions for which Sam MacColl Commodities did not receive payment.

Chapter 9

[225]

This results in costly legal action and is extremely damaging to immediate cash flow
and the firm's operations.

The company management realizes that they need to improve the quality of their
customer experience to continue their long-term growth strategy. They understand
the need to consolidate onto a single set of processes and systems to avoid the direct
and indirect costs associated with the issues that we have highlighted. By addressing
these challenges, they will be able to establish deep customer loyalty, which in turn,
creates a barrier to the entry of others and reduces their exposure to price sensitivity,
which is notorious in the commodities industry.

The company has brought in a new IT Director who has a lot of real-world experience
building enterprise systems. His first priority is to ensure that all Customer PO
Requests can be fulfilled with the existing inventory before an acknowledgement
is sent to the customer. His second priority is to establish a credit limit system. He
intends to gradually migrate individual business units to this system.

Sam MacColl Commodities has grown through normal organic growth and
acquisition as a company and therefore has a fairly homogenous set of core
technologies. They are primarily a Microsoft "shop" utilizing ASP.NET for their
web platform. They have numerous .NET developers on staff. Their primary
database platform is SQL Server. They run a mixture of consolidated and dedicated
environments depending on the business and technical requirements of the
application. Some of their line-of-business applications require, or run best on, Oracle.
Therefore, they also have a specialist Oracle support center. Because of the rapid
growth of the organization and the margins that it provides, software purchases are
often done in a best-of-breed manner instead of building or buying technology that
cohesively integrates.

Sam MacColl Commodities need to streamline their system development and
come up with a generic architecture to support future growth. Let's consider the
requirements and additional facts for building such a system in the next sections.

Key requirements
The following are the key requirements for a new software solution:

•	 Providing an expandable, scalable, robust solution using the concepts of SOA
•	 Providing transport and transformation capabilities to connect to and

consume multiple sources of data
•	 Implementing a loosely coupled design, which can adapt over time

Web Services and Beyond

[226]

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following:

•	 The project will need to demonstrate the Purchase Order request/response
and credit checking capabilities in an individual subsidiary unit of the
company first.

•	 Over time, the management would like to include additional functionality
into the system and have a single primary processor of transactional data.
Therefore, the system must be able to scale to support up to 1 million
business transactions per day (24-hour period).

•	 Sam MacColl Commodities is looking for a flexible solution that can talk
to a variety of systems.

•	 Along with immediate functionality for customer service needs, the company
would also like to understand how the system can be extended in the future
to service additional customer and business needs that are identified.

•	 Reliability and speed are equally important here. Customers expect a
response within 20 seconds for a real-time order, as prices are volatile
and they want to lock these in. A faster system will increase customer
satisfaction but only if reliability is not compromised.

•	 Sam MacColl Commodities is facing a challenge. Every time they add a new
application, a number of connections between them increases. They realize
that, after a while, the integration topology will become too convoluted and
not easily maintainable. The following diagram depicts the addition of one
application (Customer Interactive Portal) to already existing applications:

Chapter 9

[227]

Pattern description
Hub and spoke solutions, which were popular in enterprise application integration
(EAI) systems, did not fit in SOA. From early 2000, a notion of ESB emerged. The
term was initially used by the Gartner Group to define a new type of the emerging
integration middleware. As SOA was more and more replacing traditional EAI, ESBs
were replacing rigid hub and spoke architectures.

In 2005, competing with several other vendors, Microsoft was trying to position
BizTalk as their ESB solution. However, BizTalk lacked certain features that ESB
required, and soon after that, several independent groups started working on ESB
packages on the Microsoft platform. One of the teams produced ESB Guidance—a
solution on top of BizTalk. The solution was originally available on CodePlex, a
Microsoft open source project hosting site. Later, it was included in the general
distribution under the name BizTalk ESB Toolkit. In BizTalk Server 2013, it is a
part of the official distribution kit.

The following are the features of ESB that make it different from hub and
spoke architectures:

•	 One of the prominent features is service orientation. Enterprise Service
Bus is supposed to expose services for consumption. The services are often
exposed in the form of web services; however, protocol transformations are
supported by all major ESBs.

•	 The services should support SOA principles and are expected to be loosely
coupled, autonomous, and reusable.

•	 One of the key abilities of ESB is runtime dynamic routing, which may
take the form of content-based, context-based, or itinerary-based routing.

•	 Dynamic message transformation is not new to ESB; it is an essential
part of most messaging middle-tiers. However, in ESB, it takes a new
twist—dynamic transformation is encapsulated as a service.

•	 ESB is a bus of services. To support dynamic routing, translation,
and other runtime features, several services may be executed: routing
service, message transformation service, logging service, exception service
(in case of exceptions), and others.

•	 ESB can host services that support common tasks for the enterprise.
For example, it can be a service that supports a common dictionary for the
enterprise. The dictionary can be used to consistently present information
on the presentation layer for all enterprise applications. It can be a service
specific to the business, for example, in a financial institution, it can be a
currency rate convertor.

•	 To support SOA, ESB has to be expandable. Services should be added or
updated seamlessly, ideally, without interruption of production cycles.

Web Services and Beyond

[228]

If Sam MacColl Commodities continue to use the point-to-point approach, it would
dramatically increase the complexity of the application. If any other system needs to
connect to the same systems, that logic would need to be duplicated and maintained.

With an ESB implementation, Sam MacColl Commodities will be able to provide an
integration architecture for a common communication and messaging infrastructure
across the enterprise. Let's revisit our previous example and demonstrate how an
ESB can be used.

In the preceding diagram, we have two GUI applications communicating with
ESB; the complexity of the integration that is required to connect to Systems A, B,
and C is handled by ESB. The Bus is now responsible for message routing, data
transformation, exception handling during message processing, and possibly many
more common features. The Bus acts as an intermediary across an enterprise's
applications, enabling them to be connected in a loosely coupled fashion.

What Sam MacColl Commodities is looking to do is a close fit for the Enterprise
Service Bus architecture. They have what are typically independent business
applications built on top of heterogeneous systems. By establishing a common
integration solution between them, they can achieve a business objective—
establishing customer brand loyalty and demonstrating superior customer service
during a period of growth, which in the long term will reduce their price sensitivity
and will be a key source of competitive advantage. A key point of what they need is
the ability to automate proper due diligence when confirming and fulfilling customer
purchase orders so as not to dishearten customers.

Chapter 9

[229]

Candidate architecture – BizTalk ESB
Microsoft BizTalk Server 2013 comes with the ESB Toolkit Version 2.2.

Solution design aspects
One of the key requirements of this solution is the ability to quickly and reliably
process and provide pseudo-real-time responses to purchase orders. The ESB
needs to determine where to route the message and what transformations to apply
to it. The ESB Toolkit resolvers extend the native BizTalk capabilities and make
connectivity more dynamic. We will be dealing with lots of individual orders and
a large number of backend systems. We need to assume that many of these factors
can change over time; therefore, the chosen solution must provide enough flexibility
and expandability.

The services that the ESB Toolkit provides should be used as appropriate for specific
customer implementation. The Toolkit contains the following services:

Service Description Uses in the solution
Itinerary services Accept external messages

and submit them for
processing.

Composes the appropriate
business logic depending
upon the message received.
Provides flexibility in the
coupling of components.
Itineraries are updateable
without recompile.

UDDI service Provides the capability to
query UDDI repositories
dynamically from other
ESB services including
Itinerary services.

Dynamically updates the
endpoint information for
new and existing systems
as they are brought online
in the Sam MacColl
Commodities environment.
This will remove
unnecessary configuration
relating to other systems in
LOB applications.

Exception handling service Accepts standard fault
messages, adds additional
metadata, and provides
a central portal for
investigation and root
cause resolution.

Provides a single unified
framework and portal for
the company to manage
exception data.

Web Services and Beyond

[230]

Service Description Uses in the solution
Transformation service Provides the ability to

execute BizTalk maps
without using the
underlying BizTalk
messaging infrastructure
(without the overhead of
Message Box persistence).

Exposes transformations
that BizTalk provides via
an endpoint that LOB
applications can call
independently of other
BizTalk services.

Resolver service Looks up ESB endpoints
(using UDDI, Business
Rules Engine, and others,
including custom resolvers)
and provides all details of
those endpoints.

Enables flexibility and
determination of the route
of a message within Sam
MacColl Commodities at
runtime. This is particularly
useful when deploying a
new version or onboarding
new systems.

BizTalk Operations service Provides runtime details
about BizTalk hosts and
deployed artifacts.

Provides uptime stats
or dashboards to the
business based on the
information provided.

The following diagram illustrates how these services work together:

Chapter 9

[231]

The message is received On-Ramp and is processed by a set of services performing
specific tasks, such as transformation or resolving itinerary. At the end of the process,
the message is sent Off-Ramp, which is a dynamic BizTalk send port, and then to its
final destination to a service provider, as shown in the following diagram:

BizTalk Server is built to provide efficient, Publish/Subscribe (pub-sub) messaging
capabilities. By building on top of this platform, the ESB Toolkit inherits this.
Benchmarking on average hardware has shown that BizTalk Server can scale 1000 to
2000 tps (transactions per second), which results in 86 to 172 million messages in a
24-hour period. Given that Sam MacColl Commodities requires 1 million messages
per day, we are confident that BizTalk Server provides a sufficient margin of safety
even with the overhead that the ESB Toolkit components will introduce.

We also need the ability to connect to a wide variety of sources in order to produce
event streams. BizTalk Server has a well-understood adapter model where developers
are free to use out-of-the-box adapters for transport or LOB system connectivity.
BizTalk's wide variety of out-of-the-box and available-to-buy adapters mean that the
majority of connectivity in the company's system should be possible without writing
their own custom code or adapters. The fact that the company can leverage the
existing .NET capability if they do need to build adapters is a huge plus for them.

Web Services and Beyond

[232]

The loose coupling of BizTalk and the ESB Toolkit enables a clean separation of
artifacts and minimizes dependencies. The itinerary model also allows new and
updated business processes to be deployed rapidly, and for many BizTalk customers,
this capability has been a long time coming.

Solution implementation aspects
The ESB Toolkit is built on top of and leverages existing BizTalk functionality.
It provides extensibility at all key points. The existing .NET skills that the
organization has are applicable as .NET or web service knowledge is applied
at all extension points.

Despite the fact that the Toolkit is built on top of BizTalk Server, there is a learning
curve. The ESB way of doing things is a paradigm shift for many developers.
Traditional BizTalk development uses the Message Broker architecture that is more
static in nature. Building an ESB requires a more dynamic approach with itineraries
resolved during the process, sometimes based on the content of the message.
Developers learning the ESB Toolkit should leverage the Microsoft-provided
documentation and samples, as well as ad hoc Internet searches to return relevant
answers to problems.

Sam MacColl Commodities already has a small team of developers who have
developed BizTalk Server applications, so they can build on and expand the
capability of this team by choosing the ESB Toolkit. BizTalk developers are familiar
with messaging concepts, so they will find it easier to learn how to build solutions
using the ESB services, when compared to someone with no integration experience.
Over time, they will be able to effectively determine which ESB services to use and
where. As with BizTalk, developers can install the ESB Toolkit and operate it locally
on their existing BizTalk development installations before deploying the finished
product to a more robust environment. As everything in an ESB Toolkit solution
is contained within .NET projects, they can manage their code using the existing
source-control repository that BizTalk uses.

Chapter 9

[233]

Solution operations aspects
This is an area where the BizTalk Server product is well established. There are no
concerns over its ability to handle load and gracefully manage the required amounts
of data. The story around high availability and support tooling is very strong. The
ESB Toolkit's Exception Management portal provides the capability to determine
how the engine is running. The portal interface can be extended and customized to
display information specific to Sam MacColl Commodities.

Organizational aspects
The company is looking for something that can fulfill the immediate need while
serving as a viable long-term solution. BizTalk is an established product; the ESB
Toolkit has been released for a while now and has been successfully adopted by a
number of customers. We can only expect it to improve as it matures further in the
marketplace. It leverages existing developer skill sets. The licensing costs for BizTalk
are non-trivial, but are not an adoption blocker for the organization. The extensibility
that BizTalk and the ESB Toolkit provides enables creating a well-thought-out
Enterprise Service Bus deployment, which can grow to meet future requirements.
Building this functionality themselves would require a lot of architectural and
development time and would pose a significant challenge for the organization.

Solution evaluation
Despite some implementation concerns, BizTalk seems to be a good technology
for our solution.

Design Implementation Operations Organization

Web Services and Beyond

[234]

Architecture selection
In the first edition of this book, the authors considered two candidate architectures
for the Enterprise Service Bus: BizTalk ESB and WCF/WF with AppFabric. It is
obvious now that Microsoft considers BizTalk ESB as its flagship technology for
building Enterprise Service Buses on premises. The ESB Toolkit 2.2 is included in the
BizTalk Server 2013 installation kit and is officially supported. Over several years,
the BizTalk ESB Toolkit has experienced several significant improvements to truly
deliver an SOA solution.

The other option of building the ESB by means of Microsoft technologies would be
to build it by hand. We would have to use SQL Server as a database for messages
in progress, WF (to provide workflows), and WCF (to build all necessary services).
We would have to build all services that a typical ESB requires, including itinerary
services, exception handling, and transformation services. The BizTalk ESB Toolkit
already has them all. In addition to that, the Toolkit includes the ESB Management
Portal, which is definitely a nice additional component.

Enterprise Service Bus is a complex architecture. Developing it from scratch would
take quite a long time, and the cost of development could skyrocket. Therefore,
using the BizTalk ESB Toolkit for the solution is really our only choice.

Building the solution
In this solution, we will be implementing a single message flow. Our system will
be loosely coupled and will use WCF-BasicHttp and WCF-WSHttp as the transport
adapters of choice.

We will use the WCFTestClient tool to initiate PO Requests, which will then be
processed by the ESB. Our ESB will query the inventory server and customer server
to determine whether the items requested are in stock and the customer meets
the required credit limit. The credit limit is fixed across all customers and will
be implemented within BizTalk. Based on the information received, BizTalk will
approve/reject the initial case appropriately.

In order to install the solution, we need to install the ESB first. For the purposes of
our examples, we will make the installation on a single machine. We would assume
that, initially, the machine does not house anything other than the operating system.

Chapter 9

[235]

BizTalk ESB Toolkit installation and setup
We discussed the BizTalk Server installation in Chapter 5, The BizTalk Server Primer.
The ESB Toolkit comes as part of the BizTalk installation kit. Perform the following
steps to install and set up the BizTalk ESB Toolkit:

1.	 Select all components, install the ESB Toolkit.
2.	 To configure the Toolkit, run the ESB Configuration Tool as an administrator.

You can use default values for most of the settings.
3.	 Sometimes BizTalk Itinerary Designer is not installed properly, and

you cannot see it in Visual Studio. If this happens, from the Visual Studio
command prompt, run devenv.exe /setup. It forces Visual Studio to merge
the resource metadata from all available VS Packages, including the one with
the Itinerary Designer.

4.	 Install the BizTalk ESB Toolkit sample applications as described on
the Microsoft site at http://msdn.microsoft.com/en-us/library/
ee236708(v=bts.10).aspx.

Solution setup
Download the solution from the Packt Publishing website. It is located in the
SMCSupplyChain folder.

The central part of our solution is ESB Server. The first thing that we will do is
define the message schemas that will be used to represent the following types:

•	 PORequest

•	 POResponse

•	 InventoryCheckRequest

•	 InventoryCheckResponse

These schemas have already been defined for you. They can be found in the
SMCSupplyChain folder. Open the SMCSupplyChain.sln solution file and you
will see the SMCSupplyChain.Schemas subproject. Within this, you will see
schemas representing each of the types in the previous list.

http://msdn.microsoft.com/en-us/library/ee236708(v=bts.10).aspx
http://msdn.microsoft.com/en-us/library/ee236708(v=bts.10).aspx

Web Services and Beyond

[236]

Deploying and using a monolithic solution
We will now walk through and examine a monolithic implementation of this broker
scenario. We will deploy this and use the BizTalk WCF Service Publishing Wizard
to expose a monolithic implementation of this process as a WCF Service that we can
consume. Once we have done this, we will demonstrate how the ESB Toolkit can use
the same artifacts in an agile manner through Itinerary. From the SMCSupplyChain
solution, open the SMCSupplyChain.Orchestrations project, and then open the
PurchaseOrderBroker.odx orchestration.

Your screen should now look like the following screenshot:

Chapter 9

[237]

This is an example of a monolithic implementation of this use case. In particular,
please note the following and examine these in Visual Studio:

1.	 The Decision Shape Check_CreditLimit has a conditional branch
CreditLimitApproved, which uses the following static condition:
poRequest.TotalDue<=500

2.	 Map usage is embedded into Construct/Transform shapes within the
Orchestrations. See the Construct_InventoryCheckRequest, Construct_
POResponseMessage, and Construct_POResponseMessage shapes.

3.	 The logical port Port_Inventory_Check_Request contains the operation
name for the WCF Service. Note that this is the Identifier property of the
port; the value in this case is GetInventoryData.

4.	 Now, let's deploy the required WCF Service contained in the
SMCSupplyChain.InventoryCheckService project and then the
BizTalk assemblies.

5.	 Right-click on the SMCSupplyChain.InventoryCheckService project in
Visual Studio and select Publish. In the Publish WCF Service box that
appears, click on the ellipsis button, as shown in the following screenshot:

Web Services and Beyond

[238]

6.	 Select the local IIS and create a new virtual directory called
SMCSupplyChain.InventoryCheckService.

7.	 Follow the remaining steps of the wizard. Check whether the target
location is configured as http://localhost/SMCSupplyChain.
InventoryCheckService, and then click on Publish.

We will now publish the BizTalk application and configure it using the
following steps:

1.	 Right-click on the SMCSupplyChain solution and click on Deploy Solution.
Check that no error messages appear and that the deployment is successful.

2.	 Open the BizTalk Administration Console, and verify that the solution is
deployed in the SMCSupplyChain application.

3.	 To create the port required, import the InventoryCheckService_
Customer.BindingInfo.xml binding file, which is contained within the
SMCSupplyChain.Orchestrations folder. This will create a WCF-Custom
send port called WcfSendPOrt_InventoryCheckService_WSHttpBinding_
IInventoryCheckService_Custom.

4.	 We now need to expose our PurchaseOrderBroker.odx orchestration as
a WCF Service. Go back to your Visual Studio with the SMCSupplyChain
solution open. Navigate to Tools | BizTalk WCF Service Publishing
Wizard from the Tools drop-down menu.

5.	 On the first Welcome to the BizTalk WCF Service Publishing Wizard
screen, click on Next.

6.	 On the next screen, select the following options:
°° Service endpoint
°° Adapter Name [Transport type] (set its value as WCF-WSHttp)
°° Enable metadata endpoint
°° Create BizTalk receive locations in the following location:
°° BizTalk application name (set its value as SMCSupplyChain)

7.	 On the next screen, select Publish BizTalk orchestrations as WCF
service and click on Next.

8.	 Now select the SMCSupplyChain.Orchestrations.dll file from the
build output location for the SMCSupplyChain.Orchestrations project.
Click on Next.

Chapter 9

[239]

9.	 Leave the default settings on the next screen (Orchestrations and Ports).
10.	 On the next screen, WCF Service Properties, leave the default target

namespace http://tempuri.org.
11.	 On the next screen, WCF Service Location, leave the default location

http://localhost/SMCSupplyChain.Orchestrations. Mark Allow
anonymous access to WCF Service as true, and click on Next.

12.	 On the final WCF Service Summary screen, click on Create. Verify that
there were no errors.

13.	 In the BizTalk Administration Console, open up the SMCSupplyChain
application and its Receive Locations section. You should see a new
receive location that has been created.

14.	 Select the Orchestrations section, right-click on SMCSupplyChain.
Orchestrations.Broker and select Properties. Then click on Bindings
and configure the Host. For Receive Ports, specify the item generated by
the Publishing Wizard; for Send Ports, specify the WCF-Custom Send Port
created by the binding file that was imported. Click on OK. Right-click on the
SMCSupplyChain application and click on Start.

You will need to check that the SMCSupplyChain.Orchestrations
Virtual Directory that was generated, runs in an application pool
whose identity (service account) is a member of the BizTalk Isolated
Host Users Group.

15.	 We will now test this using the WCF Test Client. Open the WCFTestClient.
exe located under <Program Files Location>\Microsoft Visual Studio
11.0\Common7\IDE.

16.	 Right-click on the root node My Service Projects and select Add Service.
Enter the endpoint address that points to the receive location you exposed
as a WCF Service. Click on OK to generate the proxy classes that the test
client will use.

17.	 Expand the exposed service contract and double-click on the
POProcessing operation.

Web Services and Beyond

[240]

18.	 Enter the details for the Request as follows:

Field Value
PurchaseOrderID 2

CustomerID 2

TotalDue 499

Details Length=1 Note: This
will allow you to enter
one product detail. Use
values below:

ProductID 1

Quantity 1

ItemPrice 1

PO status codes
The following status codes apply to the overall PO:

Code Meaning
200 Approved
400 Rejected

Item inventory check status codes
The following status codes apply to the overall status of each Detail, that is,
each item:

Code Meaning
200 Approved
400 Not in stock
600 Not checked

600 is implemented for the scenario where the total due exceeds the permitted
credit limit. In this case, the inventory status for each item is not checked. When
implementing systems, it is best practice to avoid unnecessary expensive service
calls by using this technique.

Chapter 9

[241]

Current behavior of the system
The following details describe the current behavior of the system:

•	 The maximum value of TotalDue is statically defined in the
PurchaseOrderBroker orchestration as 500. Any TotalDue value greater
than or equal to 500 will return a response code of 400, and each Detail,
that is, item in that PO, will have a Status of 600.

•	 If PurchaseOrderID is an even number and the value of TotalDue
is less than or equal to 499, then the PO Status will be 200, and each
item will be 200. This logic is implemented in the SMCSupplyChain.
InventoryCheckService project.

Experiment by submitting the same request but changing the following:

•	 PurchaseOrderID: Change its value to 3. The PO status should be 400
and each individual item Status should be 400, that is, Not in stock.

•	 PurchaseOrderID: Change its value to 2 and change the value of
TotalDue to 501. The PO status should be 400, and each individual item
Status should be 600, that is, Not Checked, due to TotalDue exceeding the
statically defined credit limit.

The rudimentary logic for the Inventory Service is implemented in the
SMCSupplyChain.InventoryCheckService project.

Utilizing the ESB Toolkit
So far we have seen one way to implement this solution and will now look at
how the ESB Toolkit can make this solution more agile.

Using existing transformations within an
ESB Itinerary
We will now extend this and use some of the existing BizTalk artifacts that were
developed to meet this solution and demonstrate how the maps that we previously
created can be utilized as an itinerary. To keep things simple, the itinerary will
be implemented using file drops to facilitate easier testing. We will begin by
implementing one of the transformations step by step, then expand and use another
itinerary, which replicates the functionality of the orchestration. This itinerary is
transport-independent, so it can be utilized from a different On-Ramp and Off-Ramp.

Web Services and Beyond

[242]

The purpose of this section is to show you how the ESB Toolkit can be leveraged to
use existing components. Let's start by performing the following steps:

1.	 From the <BizTalkESB>\SMCSupplyChain\ folder, copy the filedrops
folder and all subfolders to the root of C:\. This structure will be used to
receive and send files for the itinerary examples. If access to this location
is not permissible on your system, adjust the location in the following
instructions appropriately.

2.	 In the BizTalk Administration Console, open up the SMCSupplyChain
application. Right-click on References, and add a reference to the Microsoft.
Practices.ESB application.

3.	 Open the Receive Ports section. Right-click and create a new one-way Receive
port named SMCOnRamp.OneWay; this will be the On-Ramp that BizTalk uses.

4.	 Within the SMCOnRamp.OneWay Receive Port Properties window,
click on the Receive Location tab and select New.

5.	 Enter the name SMCOnRamp.File and specify the transport type as FILE.
Click on Configure, set the Receive Folder location to be C:\filedrops\
SMCIn, and leave the default File mask of *.xml.

6.	 Select the appropriate value for Receive handler (default is
BizTalkServerApplication). Select the value of Receive pipeline as
ItinerarySelectReceiveXml, as shown in the following screenshot:

Chapter 9

[243]

7.	 Click on the ellipsis button to configure the ItinerarySelectReceiveXML
pipeline. You should set the value of ItineraryFactKey to Resolver.
Itinerary and of ResolverConnectionString to ITINERARY:\\
name=SMCOneWaySimple. This means that the resolver will look up
the value of the SMCOneWaySimple itinerary from the Itinerary store
(which is a configured SQL Server database).

Note that there are other resolvers that can use the Business Rules
Engine or UDDI v3 to resolve the itinerary. In this case, we decided
to specify this explicitly. As the itinerary resides in the database,
we can change this at any time.

8.	 We now need to create a Dynamic Send Port within our application, which
can subscribe to the messages that will be published by this Receive Port.
Note that the ESB terminology for this is Off-Ramp. Expand Send Ports
in the SMCSupplyChain application, and create a Dynamic One-Way port
called SMCOffRampDynamicOneWay. Set the value of Send Pipeline to
ItinerarySendPassthrough.

9.	 Click on Filters for this port and configure the following filters:
°° Microsoft.Practices.ESB.Itinerary.Schemas.ServiceName ==

SMCOffRampDynamicOneWay

°° Microsoft.Practices.ESB.Itinerary.Schemas.
IsRequestResponse == false

°° Microsoft.Practices.ESB.Itinerary.Schemas.ServiceState
== Pending

°° Microsoft.Practices.ESB.Itinerary.Schemas.ServiceType ==
Messaging

The BTS.ReceivePortName property can be used in the filter expression
to match an Off-Ramp with a particular On-Ramp. Typically, I do not
include this, as it keeps the Off-Ramp generic and reusable across different
itineraries. Note that the GlobalBank ESB sample application also provides
generic reusable On-Ramp and Off-Ramp.

Web Services and Beyond

[244]

10.	 Now we will examine the itinerary SMCOneWaySimple, which we
specified we would use in our On-Ramp. Open up the SMCSupplyChain.
ItineraryLibrary project that is contained within the solution. Open
SMCOneWaySimple.Itinerary to open the Itinerary Designer window, which
was introduced in ESB Toolkit 2.0. Your screen should look like the following:

The itinerary broadly consists of the following:

°° On-Ramp: RcvPOFileDrop receives the message.
°° Messaging Extender: TransformPOInventoryRequest executes

during the receive pipeline stage (the container object specifies the
BizTalk processing stage: either receive pipeline, orchestration,
or send pipeline) and invokes the previously defined map to
transform the PORequest to an InventoryCheckRequest.

°° Off-Ramp Extender: SetOffRampLocation uses a static
resolver to specify the output location of C:\filedrops\
SMCOut\%MessageID%.xml.

°° Off-Ramp: SendToFileOut specifies the Dynamic Send port that we
created earlier (our Off-Ramp). The previous resolver shape provides
the transport type and location configuration in its static resolver.

11.	 First, export the itinerary by clicking on the Itinerary Designer surface
and selecting Export Model. Save this in a convenient location as
SMCOneWaySimple.xml, and verify that it exports successfully.

12.	 We will now deploy this by opening a command prompt and changing to the
directory C:\Program Files\Microsoft BizTalk ESB Toolkit 2.2\Bin.

13.	 We will use the tool ESBImportUtil, which is provided to deploy itineraries.
The ESBImportUtil is located in the Bin subfolder of the Microsoft
BizTalk ESB Toolkit folder. Run the following command:
EsbImportUtil.exe /f:"<Path to folder with Itinerary>\
SmcOneWaySimple.xml" /c:deployed

Chapter 9

[245]

14.	 Verify that you get the message The Itinerary <Itinerary location
xml> was imported successfully to database ….

15.	 Now check whether the receive locations, send ports, and required hosts
have been started.

16.	 Open the PORequest_output.xml file from the SampleMessages folder;
once you have done this, copy it to C:\Filedrops\SMCIn.

17.	 Navigate to C:\filedrops\SMCOut, and verify that the folder contains a
new message whose format is of type POResponse.

Congratulations! You've now successfully deployed and used your first itinerary.
Note that the deployment of the itinerary was able to occur while BizTalk was still
running. This means that your itineraries can change on the fly with zero downtime,
which is one of the biggest benefits of ESB Toolkit for BizTalk Server.

Using the itinerary service broker pattern
In this next example, we will show a way to use an itinerary to implement similar
broker functionality to the PurchaseOrderBroker orchestration that we used
earlier by leveraging the ESB Toolkit. First, let us take a step back and recap on the
functionality that we implemented in the PurchaseOrderBroker orchestration to
meet our requirements:

1.	 Receive a PORequest message.
2.	 Evaluate the TotalDue promoted property.
3.	 If the value of TotalDue is greater than 500, a map is called to construct

a POResponse message with a status code that indicates that the order has
not been approved. This response is sent to the appropriate location.

4.	 If the value of TotalDue is less than or equal to 500, the following steps
are taken:

1.	 An InventoryCheckRequest is constructed by using a BizTalk map.
2.	 A call is made to the Inventory WCF Service GetInventoryData

operation.
3.	 From the InventoryCheckResponse, which contains details of

all the items requested in the original PORequest, a map is called
to construct the appropriate POResponse.

4.	 Send POResponse to the appropriate location.

Web Services and Beyond

[246]

The BizTalk Orchestration engine is robust and proven. BizTalk is primarily
targeted at and designed for integration scenarios; therefore, each orchestration
represents a tight coupling of components; it encapsulates a set of functionalities
from transformations to external system calls. Changing the order of invocation
of transformations we implemented in the PurchaseOrderBroker orchestration
would require recompilation and redeployment, which is not acceptable for some
systems. Pub-sub messaging is configuration based, so it can be changed without
recompilation and redeployment, but implementing the mentioned logic in pub-sub
would be challenging and would lose view of the message flow that orchestration
provides. What we would really like is the functionality of orchestration, with the
flexibility and ease of configuration.

In Version 1.0 of the ESB Toolkit, itineraries were a sequential set of steps modeled
in an XML file. When the value of Export Mode is set to Default for an itinerary,
it is created compatible to Version 1.0. If this mode is changed to Strict, a number
of items change in the XML output of the itinerary. This includes the addition of
a number of attributes in the file that correspond to itinerary designer properties,
specifically, a Stage attribute, which corresponds to the Container itinerary designer
property; a PropertyBag; and a businessName attribute, which corresponds to the
Name designer property. Each Service also contains an id and a nextId value, as
shown in the following screenshot. This reflects internal changes that were made
from ESB 2.0; the runtime now processes the itineraries as a linked list.

The Itinerary Broker Service allows you to take advantage of this and implement
rudimentary routing scenarios without an orchestration. It is represented as two
shapes in the toolbox: the Itinerary Broker Service and the Itinerary Broker Outport.
The Itinerary Broker Service shape can be used with the Context Resolver, which
enables us to access the BizTalk internal and schema-promoted properties of the
message. Recall that in our scenario TotalDue is a promoted property. We've already
demonstrated transformation from within an itinerary, coupled with the access to the
message context and the ability to route on it; this looks promising.

In order to call the WCF Service, we will require a two-way Off-Ramp, which we will
implement as a BizTalk Dynamic Solicit-Response Port:

1.	 In the BizTalk Administration Console open the SMCSupplyChain
application. Right-click on Send Ports, select New, and then Dynamic
Solicit-Response Send Port.

Chapter 9

[247]

2.	 In the Send Port Properties window, set values for properties, as follows:
°° Name: SMCOffRampDynamicTwoWay
°° Send Pipeline: ItinerarySendPassthrough
°° Receive Pipeline: ItineraryForwarderSendReceive

3.	 Click on Filters for this port and configure the following filters;
these deliberately use the same context properties as the Off-Ramp
we created earlier:

°° Microsoft.Practices.ESB.Itinerary.Schemas.ServiceName ==
SMCOffRampDynamicTwoWay

°° Microsoft.Practices.ESB.Itinerary.Schemas.
IsRequestResponse == true

°° Microsoft.Practices.ESB.Itinerary.Schemas.ServiceState
== Pending

°° Microsoft.Practices.ESB.Itinerary.Schemas.ServiceType ==
Messaging

4.	 Now we will examine the itinerary SMCOneWayBroker, which we
specified we would use in our On-Ramp. Open the SMCSupplyChain.
ItineraryLibrary project that is contained within the solution.
Open SMCOneWayBroker.Itinerary; your screen should look like
the following screenshot:

Web Services and Beyond

[248]

5.	 The first part of the itinerary broadly consists of the following points, the
function of which is provided alongside each point:

°° On-Ramp: RcvPOFileDrop receives the message.
°° Messaging Extender: PromoteProperties executes a map that maps

itself, for example, PORequest to PORequest. This was implemented
as a workaround to make the promoted property TotalDue accessible
to the Context Resolver used by the BrokerService.

°° Messaging Broker Extender: The Broker Service evaluates the
value of TotalDue, a promoted property within PORequest. This is
implemented using two filters, SmallPO and LargePO. Filters are
added using the Itinerary Broker Outport toolbox shape. SmallPO
matches less than or equal to 500; LargePO matches TotalDue greater
than 500. The first filter that evaluates true will be executed in the
same way as a Switch statement in C#.

6.	 If the LargePO filter evaluates true, the following will occur in order to
return a rejected POResponse:

°° Messaging Extender: TransformPORequest_POResponse executes
a map that generates the appropriate POResponse indicating that it
has been rejected

°° Messaging Extender: SetOffRampTransport_Broker uses a
static resolver to specify the output location of C:\filedrops\
SMCBroker\%MessageID%.xml

°° Off-Ramp Extender: OffRampExtender_SMCBroker is a required
component to invoke Off_Ramp

°° Off-Ramp: OffRamp_SMCBroker specifies the one-way Dynamic
Send port that we created earlier (our Off-Ramp)

7.	 If the SmallPO filter evaluates true, the following will occur in order to check
the inventory and return an appropriate POResponse:

°° Messaging Extender: TransformPOInventoryRequest executes a
map that generates an InventoryRequest based on the details of the
inbound PORequest

°° Messaging Extender: SetOffRampTransport uses a static resolver to
configure the WCF properties

Chapter 9

[249]

°° Off-Ramp Extender: OffRampExtender is a required component in
strict mode to invoke Off_Ramp

°° Off-Ramp: OffRamp_Two_Way_WCF_Inventory specifies the
two-way Dynamic Send port we created earlier and uses this to
call the Inventory WCF Service

°° Messaging Extender: Transform_InventoryResponse_POResponse
executes a map to generate the appropriate POResponse

°° Messaging Extender: SetOffRampTransport_SMCOut uses a
static resolver to specify the output location of C:\filedrops\
SMCOut\%MessageID%.xml

°° Off-Ramp Extender: OffRampExtender_SMCOut is a required
component in strict mode to invoke Off_Ramp

°° Off-Ramp: OffRamp_SMCOut reuses the one-way Dynamic Send
port that was used for the LargePO filter to send the POResponse to
the folder specified in the resolver configuration previously

As described, this itinerary uses the Itinerary Broker Service to implement the
functionality of the PurchaseOrderBroker orchestration. Before running this
sample, we will first examine some of the configuration properties and common
"gotchas" required to make this type of scenario work, which are as follows:

•	 To configure the Filter for the Itinerary Broker Service, one Itinerary
Broker Outport per filter is required. To access the context properties
you should configure the Expression value to be: //Property[@
name='TotalDue']<=500.

•	 When changing the value of Export Mode from Default to Strict, ensure
that you have an Off-Ramp Extender before any Off-Ramp. Strict mode
requires this.

•	 Static Resolver is configured to call the WCF Inventory Service as follows:
°° Transport Name: WCF-WSHTTP
°° Target Namespace: http://tempuri.org/

IInventoryCheckService/

°° Action: GetInventoryData (this specifies the operation from the
Service Contract we wish to execute)

°° Transport Location: <Path to the .SVC file> (path not included
for brevity purposes)

Web Services and Beyond

[250]

•	 The Is Request Response property of the SMCOneWayBroker itinerary
is set to true. Even though we are using a one-way receive location, by
setting this, the runtime promotes the TransmitWorkID property to the
Message Context. This is used by the Itinerary Cache component, which is
contained within the ItinerarySendPassthrough pipeline as specified on
our SMCDynamicTwoWay Off-Ramp. This enables the appropriate itinerary
instance to be matched to the response.

•	 The ItineraryForwarderSendReceive is used in our SMCDynamicTwoWay
Off-Ramp. When a message is received through a two-way receive port, an
instance subscription is created. This consists of the EpmRRCorrelationToken
promoted property and a RouteDirectToTP promoted property.
The Forwarder component contained within this pipeline sets the
RouteDirectToTP property to false in the message content, thus ensuring
that the itinerary can process the message; this is required in our scenario
because we use a two-way Off-Ramp. Once the itinerary is completed, it will
set the property to true; if we had used a two-way On-Ramp, the response
would, therefore, have been returned.

Now, we will test our itinerary and ESB tracing functionality to examine what is
happening under the covers:

1.	 Open the SMCSupplyChain.ItineraryLibary project that is contained
within the solution. Open SMCOneWayBroker.Itinerary.

2.	 Export the itinerary by clicking on the Itinerary Designer surface
and selecting Export Model. Save this in a convenient location as
SMCOneWayBroker.xml and verify that it exports successfully.

3.	 We will now deploy this by opening a command prompt and changing to
the directory C:\Program Files (x86)\Microsoft BizTalk ESB Toolkit
2.2\Bin.

4.	 We will use the tool ESBImportUtil that is provided to deploy itineraries.
Run the following command:
EsbImportUtil.exe /f:"<Path to folder with Itinerary>\
SmcOneWayBroker.xml" /c:deployed

5.	 Verify that you get the message The Itinerary <Itinerary location
xml> was imported successfully to database ….

6.	 Now check whether the receive locations, send ports, and required hosts
have been started.

7.	 Now, we will enable tracing for the ESB Toolkit. Open your BTSNTSvc.exe.
config file that is located by default under C:\Program Files (x86)\
Microsoft BizTalk Server 2013\.

Chapter 9

[251]

8.	 Add the following section to your <Configuration> block to configure a
listener for the ESB Toolkit Version 2.2, which will write to the event log:
<system.diagnostics>
<sources>
 <source name ="BizTalk ESB Toolkit 2.2" />
</sources>
<switches>
 <add name="BizTalkESBToolkit20" value="4"/>
</switches>
<trace autoflush="true" indentsize="4">
 <listeners>
 <add name="myListener"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="BizTalk ESB Toolkit 2.2" />
 </listeners>
</trace>
</system.diagnostics>

9.	 From the BizTalk Administration Console, open the SMCSupplyChain
application, expand Receive Locations, right-click on SMCOnRamp.File,
and select Properties.

10.	 Click on the configuration ellipsis button for the ItinerarySelectReceiveXML
pipeline. Set the ResolverConnectionString value to ITINERARY:\\
name=SMCOneWayBroker.

11.	 We will now demonstrate how the Itinerary Broker Service filter functionality
works. First, copy the PORequest_small.xml file, which contains a TotalDue
value less than 500, from the SampleMessages directory, and then copy it to
C:\Filedrops\SMCIn.

12.	 Within the C:\Filedrops\SMCOut directory should be a new PORequest
with a Status code of 200 for approved.

13.	 Copy the PORequest_large.xml file, where TotalDue is greater than 500,
from the SampleMessages directory to C:\filedrops\SMCIn.

14.	 Within the C:\Filedrops\SMCOut directory should be a new PORequest
with a Status code of 400 for rejection.

15.	 Open the Event Viewer Application Log and you will see events with the
source BizTalk ESB Toolkit Version 2.2. Each particular event is referenced
by a service ID and it corresponds with the SMCOffRampDynamicOneWay
Off-Ramp that is defined in our itinerary.

Using the combination of ESB tracing and the exported XML file enables you to
determine which route your itinerary took and where it stopped if a failure occurred.

Web Services and Beyond

[252]

Lessons learned
We walked through how to implement a supply chain scenario using either an
inflexible monolithic approach or an ESB-based approach by leveraging the ESB
Toolkit 2.2 for the BizTalk Server 2013. In particular, we demonstrated the Itinerary
Broker Service functionality, which enables routing and can remove the need for
orchestrations in some simplistic scenarios. We demonstrated the reuse of previously
generated artifacts within different ESB itineraries. We deployed the itineraries easily
without recompilation or redeployment of the solution code.

We have scratched the surface here on the ESB Toolkit functionality. It provides
many additional capabilities including the abilities to use orchestrations within
itineraries, resolve itineraries based on Business Rules Engine (BRE) policies,
a complex exception-handling framework and management portal.

XML web services that required using WSDL and SOAP could be quite complex,
and in the mid-2000s, RESTful services became very popular as a simpler alternative.
We shall discuss the REST architecture in the next half of this chapter.

RESTful services
Representational State Transfer (REST) was originally introduced in the
dissertation of Roy Thomas Fielding in the year 2000. The most important
principles of REST are as follows:

•	 REST builds on client-server architecture: REST clients send requests to
services that provide responses. In other words, services always serve clients,
and not the other way around.

•	 REST uses HTTP methods explicitly: In a sense, REST mimics CRUD
operations: POST for creating data, GET for reading data, PUT for updating
data, and DELETE for deleting data. The usage of other HTTP methods, such
as HEAD or TRACE, is not that well-defined in REST. Generally, they should be
used as defined in HTTP.

•	 REST is a stateless architectural style: Statelessness means that no client
context is stored on the server between requests. All context, parameters,
and data needed for the server to generate the response are included
in the request. This significantly improves scalability and simplifies the
architecture.

Chapter 9

[253]

•	 REST has a uniform interface: Each resource is referenced via a global
identifier (for example, URI). This is probably the main difference between
RESTful and web services. REST suggests Resource-Oriented Architecture,
while SOAP web services focus on operations.

It is important to understand that REST is a set of principles (or best practices)
and not a standard. A service that uses REST is called a RESTful service.

Use case – shopping cart
Happy Biking Inc. is a retail organization that has several dozen stores all over North
America. However, their business is still local in nature: each store works with the
local market only. They have a set of warehouses that are used by a few stores in the
same area. The company has decided to expand their business and start delivering
bikes to individual customers in the region using small trucks. They want to start
selling from their web page, which is currently serving only informational purposes.

At the moment, they think of simply taking orders on the Web and performing
further phone calls to the customers to collect payments. In other words, the initial
web page has to support just the catalog and the shopping cart.

Happy Biking does not have software developers on staff. Usually, the company
prefers to buy existing products, as they did for their accounting software, the
CRM, and inventory management tools. But when it comes to the web presence,
the company decides to do some custom work. The shopping cart is no exception;
its look and feel has to be customized.

Happy Biking decided to hire a software development company focusing on
delivering solutions in e-business. The developers are very experienced with
Microsoft technologies and the .NET platform in particular. The customer has
no doubt that the development will be done on time and with high quality.
Their only concern is that they have to maintain the solution and expand it
when there is a business need.

Starting to sell from their website is the primary goal for the company today.
Let's look at the key requirements for this challenge.

Web Services and Beyond

[254]

Key requirements
Since Happy Biking Inc. does not have developers and their IT department is very
small, the solution should be easily maintainable. It has to solve the purposes of an
online store, that is, have the following set of features:

•	 An ability to present the list and details of the products to customers on
the website

•	 An ability to select products to buy
•	 A shopping cart that would enable adding, removing, and changing

some parameters of customer orders
•	 A simple database maintenance solution

This solution would start as a pilot with a limited number of capabilities. In the
future, it will connect to a payment system and possibly to an accounting system.
However, the company has no plans of making significant investments in IT in the
foreseeable future.

Additional facts
The management of Happy Biking suggests that if their experience with the online
shopping cart is successful, they would like to expand the system by adding a few
new features:

•	 Connecting the shopping cart to a payment system
•	 Integrating it with the accounting system
•	 Making data management easy for a non-technical employee

Pattern description
REST deals with resources and applies actions to them. Web pages, images,
shopping cards—all of them are resources. Resources can be reached by their
unified resource identifiers (URIs). For example, http://www.thesitename.com/
shoppingcart/3421 can be the URI of a shopping cart.

Reaching resources by their URIs is done using the GET method of HTTP. On web
pages, this would be presented as a link. The GET call should be used for queries only
and never change the server state.

Chapter 9

[255]

Note that the response for the GET method is not specified in REST. The client has to
know what the server will send as a response. Responses can be in XML, in JSON,
or in any other format. The server also sends status codes defined in the HTTP
standards.

Deleting a resource also refers to it using its URI. For example, deleting item 3421
from the shopping cart can be addressed with the DELETE method as follows:

DELETE shoppingcart/3421

The server can reply with the status codes as follows:

200 OK
202 Accepted
204 No content

Code 202 means that the resource is marked for deletion, and codes 200 and 204
mean that the resource is actually deleted.

POST and PUT methods are in fact a little tricky. They don't map directly to CRUD
operations, which is understandable because REST and CRUD serve different
purposes. REST is designed for sending actions over the Web, and CRUD is designed
for direct data operations.

Creating a new resource on the server is done using the POST method of HTTP.
For example, adding a new item to the shopping cart can be presented as follows:

POST /item
<item>
 <name>bicycle</name>
 <units>3</units>
 <price>$1000</price>
</item>

The server replies with a standard HTTP response and a status code 201,
which means created.

Updating a resource is also done using the PUT HTTP method. For example,
changing the number of units to 3 in the shopping cart can be done, for example,
with the following line of code:

PUT shoppingcart/3421/units=3

Web Services and Beyond

[256]

Candidate architecture – RESTful WCF
Services
WCF had the ability to expose and consume RESTful services since it was first
released as a part of .NET 3.0. Building RESTful services in .NET 3.0 was not easy,
but .NET 3.5 simplified the process by adding a few new classes in the framework.
Today, in .NET 4.5, building RESTful services is as easy as building traditional SOAP
web services. And in fact, this is the native implementation of the REST style, and we
shall not consider another candidate.

For this solution, our database will be managed by SQL Server. For working with the
data, SQL Server Management Studio will be used.

Solution design aspects
Building a shopping cart requires developing a few operations that perfectly
correspond with HTTP methods:

•	 Adding a new item to the shopping cart requires the POST method
•	 Viewing items in the shopping cart requires the GET method
•	 Deleting items from the shopping cart requires the DELETE method
•	 Updating an item should be done with the PUT method

Designing the services will be a straightforward task.

Solution implementation aspects
The software company that Happy Biking hired has a staff of .NET developers and
has experience developing complex solutions on the .NET platform. .NET WCF
provides a general approach to WCF services, and developing RESTful services
would not be a challenge for that company.

Solution operations aspects
The suggested design separates the functionality at the level of service operations.
This enables IT to identify problems easily. SQL Server Management Studio is a
perfect tool for maintaining the database. There is some learning curve for the IT
department, but the operations are straightforward and database maintenance
should not present a risk.

Chapter 9

[257]

Organizational aspects
The organization takes a slight risk by adding a developed solution to
their business instead of buying an off-the-shelf package. Hiring the team of
professional developers mitigates the risk and guarantees that the solution will
be maintainable. The design separates different methods that make the entire
solution easy to upgrade.

However, since the organization does not have developers in their IT team,
they may need to outsource future development as well.

Solution evaluation
We have some concerns with regard to the organizational aspects of the solution.
Other than that, it's all thumbs up, as shown in the following table:

Design Implementation Operations Organization

Building the solution
We will build the solution with a simple user interface, focusing mostly on the REST
service. We shall consider a more sophisticated interface later in this book.

Solution components
The solution will contain a RESTful service that accesses an SQL Server database.
In order to run it, one needs to have IIS and SQL Server 2012 installed. We will
build the RESTful service that will be running on IIS. We will also build a simple
test program.

Web Services and Beyond

[258]

The following diagram depicts the main components of our solution:

For this example, we assume that IIS and SQL Server 2012 are installed on the
same computer.

Solution setup
After the installation is done, let us now proceed to the setup:

1.	 Copy the example files for this chapter in a separate folder.
2.	 Open SQL Server Management Studio and run the following scripts from the

setup folder in order to create the HappyBikes database and the Items table:
create_database.sql
create_items.sql

3.	 Add test items by running the following script:
add_test_items.sql

4.	 Run Visual Studio 2013.

Chapter 9

[259]

5.	 Open the RESTService solution and go to the RESTService folder
in the folder samples. You will see two projects already developed for
you: the RESTService project and the TestUI project as shown in the
following screenshot:

6.	 Right-click on the RESTService project. Select Publish… and publish it on
the local IIS. Use localhost for the Server.

7.	 Right-click on the TestUI project. Select Publish… and publish it on the
local IIS. Use localhost for the Server.

WCF RESTful service description
Follow the steps in this subsection in order to explore the WCF RESTful service:

1.	 For our example, we are using the Item class to store and change information
about items in the store catalog. Double-click on the Item.cs file of the
RESTService project to see the class as shown in the following code snippet:
namespace RESTService
{
 [DataContract (Name = "Item")]
 public class Item
 {
 [DataMember(Name = "itemID")]
 public string itemID {get; set; }
 [DataMember(Name = "stateMSG")]
 public string stateMSG { get; set; }
 [DataMember(Name = "name")]
 public string name {get; set; }

Web Services and Beyond

[260]

 [DataMember(Name = "description")]
 public string description { get; set; }
 [DataMember(Name = "id")]
 public int id {get; set; }
 [DataMember(Name = "quantity")]
 public int quantity { get; set; }
 [DataMember(Name = "price")]
 public double price { get; set; }
 }
}

2.	 Double-click on the IRESTService.cs file in the RESTService project.
Let's analyze the service contract. The service contract is specified by
the public interface IRESTService. Each operation contract describes
one REST operation.

3.	 The first operation returns the list of items. It utilizes the GET method
of HTTP, as shown in the following code snippet:
[OperationContract]
 [WebGet(
 ResponseFormat = WebMessageFormat.Xml,
 BodyStyle = WebMessageBodyStyle.Bare,
 UriTemplate = "/list")]
 List<Item> getItemsList();

The WebGet attribute defines the operation as the GET operation. It does not
require the Method parameter always defaulting to the GET method.
The response format is defined as XML in our example. Another possible
choice would be JSON.
When invoked, the method returns a list of items.

4.	 Let's run the Test UI. Right-click on the TestUI project in the Solution
Explorer and select Set as StartUp Project.

5.	 Run the application by pressing on the green arrow on the toolbar in Visual
Studio. If the Standard toolbar is selected, this green arrow is shown along
with the name of the default browser (Internet Explorer in our case), as
shown in the following screenshot:

Chapter 9

[261]

6.	 Click on the List button on the page. The result screen will show the items
currently in the database as shown in the following screenshot:

7.	 Let's find out what raw XML is returned by the method. In order to do
that, right-click on the RESTService.svc file of the RESTService project.
Click on Browse with… and select a browser. Click on the Browse button,
and you will get a screen similar to the following screenshot:

Web Services and Beyond

[262]

8.	 In the address bar of the browser, add /listItems to the end of the service
address in order to invoke the GET method as described in the operation
contract. Hit the Enter key. The result will be the raw XML returned by the
method, as shown in the following screenshot:

9.	 Let's explore other operations in the IRESTService.cs file of the
RESTService project.

10.	 To add an item, we'll be using the POST method of HTTP. The operation
contract is defined in the IRESTService.cs, as shown in the following
code snippet:
 [OperationContract]
 [WebInvoke(
 RequestFormat = WebMessageFormat.Xml,
 ResponseFormat = WebMessageFormat.Xml,
 BodyStyle = WebMessageBodyStyle.Bare,
 UriTemplate = "/addItem")]
 Item AddItem();

11.	 The Method parameter is not specified and refers to POST by default.
12.	 The [WebInvoke] attribute uses the Method parameter that defaults to

POST. For all other methods, that is, PUT and DELETE, the values have to be
specified. Notice that the request format is specified as XML, which means
that the details of the added item have to be passed as an XML in the request
message body. Another option to specify the request format is JSON.

Chapter 9

[263]

13.	 The XML passed in the message body may look like the following
code snippet:
<Item>
 <id>0</id>
 <description>Awesome bike<description>
 <itemID>123</itemID>
 <name>2013 Fuji Sportif 1.1 Size Sm-Md 52 cm</name>
 <price>1099.99</price>
 <quantity>124</quantity>
<Item>

14.	 To delete an item, we'll be using the DELETE method of HTTP.
The [OperationContract] attribute is defined in IRESTService.cs,
as shown in the following code snippet:
 [OperationContract]
 [WebInvoke(Method = "DELETE",
 ResponseFormat = WebMessageFormat.Xml,
 BodyStyle = WebMessageBodyStyle.Bare,
 UriTemplate = "delete/{id}")]
 string DeleteItem(string id);

15.	 Notice that the Method parameter in the [WebInvoke] attribute is DELETE.
The value of UriTemplate is delete/{id}. It means that the URL
will look like http://service_uri/delete/{id}, for example,
http://localhost:60214/RESTService.svc/delete/1.

16.	 To update an item, we'll be using the PUT method of HTTP.
The [OperationContract] attribute is defined in the IRESTService.cs file,
as shown in the following code snippet:
 [OperationContract]
 [WebInvoke(Method = "PUT",
 RequestFormat = WebMessageFormat.Xml,
 ResponseFormat = WebMessageFormat.Xml,
 BodyStyle = WebMessageBodyStyle.Bare,
 UriTemplate = "/updateItem")]
 Item AddItem();

17.	 And finally, let's look at the Web.config file. In order to make the WCF
Service work as a RESTful service, one needs to specify webHttpBinding for
the service endpoint as well as webHttp for the endpoint behavior, as shown
in the following code snippet:

 <system.serviceModel>
 <services>

Web Services and Beyond

[264]

 <service behaviorConfiguration="ServiceBehaviour"
name="RESTService.RESTService">
 <endpoint address="" behaviorConfiguration="web"
binding="webHttpBinding"
 contract="RESTService.IRESTService" />
 </service>
 </services>

 <behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehaviour">
 <!-- To avoid disclosing metadata information, set the value
below to false and remove the metadata endpoint above before
deployment -->
 <serviceMetadata httpGetEnabled="true"/>
 <!-- To receive exception details in faults for debugging
purposes, set the value below to true. Set to false before
deployment to avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="false"/>
 </behavior>
 </serviceBehaviors>
 <endpointBehaviors>
 <behavior name="web">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <serviceHostingEnvironment multipleSiteBindingsEnabled="true" />
 </system.serviceModel>

Lessons learned
In this example, we learned how to build RESTful services using Visual Studio 2013.
RESTful services are a lightweight alternative to web services and may be chosen if
services do not require sophisticated server logic. RESTful services are based on the
HTTP protocol, which makes them ideal for using on the Web.

Chapter 9

[265]

A comparison of RESTful services and SOAP web services is presented in the
following table:

RESTful services SOAP web services
Architectural
pattern

Resource-oriented
architecture.

Service-oriented
architecture.

Methods Typically addresses create/
delete/update methods
applied to resources.

Any method can be
addressed by service
operations.

Interface Uses generic HTTP
methods: GET, DELETE,
PUT, and POST.

The interface has to be
defined every time.

Standards Uses standards at the
higher level: HTTP and
URI. REST itself is not a
standard. No mandatory
standard for GET
responses; however, the
usage of XML or JSON is
recommended.

Uses SOAP, WSDL,
and UDDI. Using XML
is standard de facto.
Also WS-* standards
can be applied.

Performance Less overheads. SOAP requires more data
to be sent.

Communication This is stateless. Can be stateless or stateful.
Security Uses transport-level

security (SSL/TLS).
Can use both transport-
level and message-level
security (WS-*).

Future of RESTful services
WCF is a unified programming model for building communication in systems.
It supports many protocols and communication patterns. It is also the framework
of choice for building service-oriented applications. It allows building secure,
reliable, and transaction-oriented solutions. One can use WCF to build SOAP Web
services as well as RESTful services.

Web Services and Beyond

[266]

Another framework, ASP.NET Web API, makes it easy to build HTTP services and
has become an ideal platform for building RESTful services. The following table
provides a comparison between the two frameworks:

WCF ASP.NET Web API
Services built on the WCF platform can
support multiple protocols, such as
HTTP, TCP, or UDP.

Supports HTTP only.

Services built on the WCF platform can
support multiple encodings, such as
Text, MTOM, or Binary.

ASP.NET Web API supports a variety of
media types with XML and JSON being the
most popular.

Supports WS-* standards and
higher-level protocols.

Supports only basic protocol and formats.

Supports request-reply, one-way, and
duplex message exchange patterns.

HTTP is request-response in nature.
Additional patterns can be supported
using SignalR.

Ships with .NET. Also ships with .NET but is open source.

Microsoft suggests that "support for REST in ASP.NET Web API is more complete
and all future REST feature improvements will be made in ASP.NET Web API."

We shall present an example of an ASP.NET Web API application in
Chapter 12, Presentation Layer Patterns.

Summary
In this chapter, we introduced web services and their evolution to WCF services.
We talked about the main principles of Service-oriented Architecture and its most
popular implementation—Enterprise Service Bus. We touched on RESTful services
and provided examples of those.

In the next chapter, we will move to Enterprise Information Integration and discuss
Data Exchange patterns.

Data Exchange Patterns
We started our discussion of integration patterns in the preceding two chapters.
We considered several architectural patterns to support Enterprise Application
Integration. In this chapter, we'll discuss architectural patterns for Enterprise
Information Integration (EII).

The purpose of EII is to make data originated in one system available in other
systems. The reasons for it may be as follows:

•	 To process original data with a different set of tools to achieve a new
result; for example, taking data from HR and accounting systems to
print paychecks.

•	 To create a copy of the original data in order to offload the system while
performing noncritical operations. A typical example would be creating
daily reports for a system with a heavy load, such as a banking system.

•	 To combine data originated in several systems to query or to analyze
aggregated data. The data sources can be heterogeneous and distributed
over several locations.

•	 To retrieve data from different sources in order to present a combined view.
•	 To migrate data from a legacy system in a newly developed or acquired

system. This type of data migration is often performed once, and the original
data is retired.

•	 To support backup and disaster recovery requirements.

Heterogeneous data sources present an additional challenge of data transformation
into one agreed-upon data format for presentation or further processing. One of
the tasks of an architect is to suggest a data format that can become a canonical
data model.

Data Exchange Patterns

[268]

A canonical data model in an integration solution is the data model
that describes the standard view of the data in the solution. The
canonical data model can exist just in the solution, or it can reflect the
entire enterprise view of the data. The latter enables consistent use
of data across the enterprise. For the canonical data model pattern
in integration design, please refer to the book Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging Solutions,
Gregor Hohpe and Bobby Wolf, Addison Wesley.

Typically canonical data models are represented by canonical schemas in the
middle-tier of the solutions. In order to promote loose coupling of the solution
components, data transformations are developed between schemas of individual
components and canonical schemas.

However, structural inconsistencies between the data are not the only (and probably
not the major) challenge of heterogeneous systems. A more significant challenge is
semantic inconsistencies.

Imagine the integration of customer data belonging to different financial systems
of a large bank. Over many years of business, the systems have been grown
inconsistently; the data has been entered and reentered many times. Loan origination
systems, a core banking system, a customer relationship management system, all
may have data related to the same customers. And what's more important, the data
is not necessarily exactly the same. A customer might call himself Bob or Robert, and
his name would be recorded in different systems in different ways. The customer
may have changed his address several times but forgotten to update all systems
(or he would not even care, assuming that keeping data in a consistent way would
be the bank's business). A teller or a financial advisor could make a typo, misspell
words, or make another mistake.

In any case, when it comes to integrating data and presenting it in a consistent view,
semantic transformations have to be performed. We'll talk about the challenges
of sematic transformation later in this chapter.

And last, but not least, data validation and data cleansing are part of EII. Addresses
and postal codes can be validated against the postal services database; social security
numbers or bank account numbers should conform to a specific pattern; and some
data is mandatory and some dependent on other data. There are many techniques
of data validation and data cleansing that could be performed against the entire
database or on the fly, every time the data is on the move.

Chapter 10

[269]

In this chapter, we shall consider different patterns of data exchange, whether
it involves data replication, migration, or integration. We'll go over some
contradicting approaches in data integration and discuss why and when each
of them should be used.

File transfer
In an ideal world, organizations have enough time, resources, and desire to perform
proper planning. They consider the business growth and constraints, and can predict
what software applications and systems they will buy in the next five years.

In the real world, organizations may grow by doing mergers and acquisitions,
change software vendors, and do no proper planning until it's too late. And this
is how it has always been.

Originally, business applications did not allow any integration. Accounting
packages, HR software, and CRM applications worked independently. But after a
while, the need to be able to use data in another application started looking more
and more important.

As an example, let's consider a program that is used to send faxes. The program
would have an ability to work with different fax modems, potentially perform fax
broadcasting, and would certainly need some sort of address book. It may need to
process different types of documents and even be able to embed recipients' names
and titles into them. Each of those tasks is a major challenge, and the company
cannot focus on all of them. If they become, for example, experts in fax processing,
they will need to focus on it to stay ahead of the competition. They may want,
for example, to deal with more fax modems. In the mid-1990s, when faxing was
considered a major way of communication, there were thousands of different fax
modems in the world, and the data transmission standards were far from complete.
Just to cover the majority of the fax modems, the companies during those days
would have needed to spend more effort on the faxing components of the software
and less on everything else.

At the same time, other companies may find their niche in building address
books, which started simply as digital copies of their paper ancestors. Later, more
information and features were added to the address book application, turning them
into contact management programs. Eventually, contact managers gave birth to very
powerful customer relationship management systems.

Data Exchange Patterns

[270]

But long before it happened, companies realized the need for focusing on
specific features building their competitive advantage and integrating with other
applications. The very first method of integrating data was exporting it from one
application as a file and importing it into another application.

In order to understand each other's data, applications have to use a common data
format. Some of the formats that originated back in the 1980s and 1970s are still
around. Comma-separated values (CSV), for example, are still around and used
by many programs. CSV files don't really imply any semantics; the content of them
is completely up to the designers. The semantics of the data are usually driven by
the industry; as a result, many industry-specific data formats have emerged. HL7
in healthcare, ISO 8583 in the financial industry, GJXDM in law enforcement and
justice, and many others specify details of the data transferred. Some of them have
become more than just data formats, adding business semantics or extensibility rules.

Once data is extracted and stored in the form of a file, it often cannot be immediately
consumed by another program. In many cases, it does not even have to be. That
made the file transfer approach quite useful. If the decision about when the file
has to be delivered can be made by a human, the delivery can be also controlled
by a human. An operator can move the file to another destination using any copy
program or can even copy the file on a floppy disk and courier it to another office.

The following diagram presents a file transfer with a man in the middle when the file
is delivered manually. In olden days, this method was so popular that it even got a
name—netwalk.

File transfer with a man in the middle

Chapter 10

[271]

The approach has become so popular that, even with the advance of computer
technologies and the invention of the Internet, organizations continued exchanging
data in the form of files.

To facilitate the process, many file transfer standards have been invented.
File transfer protocols, such as FTP, rsync, FTPS, and many others, had only one
goal—to transfer files. The file transfer pattern started losing the man in the middle
and became fully automated, as shown in the following diagram:

Automated file transfer

With the automation, the following problems arose:

•	 The main usage of the pattern has been exchanging information between
disconnected systems, for example, sending daily database updates.
Consider, for instance, a multiple listing service (MLS) that holds information
about property listings. Such a system is updated every day by real estate
brokers, and all brokers and realtors are interested in getting the updates.
Because the entire database is significant, only the updates are downloaded
by interested parties. The updates are usually combined into one file at the
end of the day, but brokers and realtors don't know when exactly this file will
be ready each day—MLS operates independently. The file is often created
under the same name all the time and placed on the FTP site for download.
To make sure that they download the new and not the old file, brokers and
relators have to synchronize their effort with the MLS. It can be achieved by
several means, for example, providing an indication of the file creation time
or suggesting a time window for the new file to be created.

•	 Another architectural challenge that you may not find significant, but
nevertheless has to be dealt with, is the decision about which party has to
remove the file after it is downloaded. If the file is not overwritten, as in the
previous case, the file storage area will have to be cleaned up periodically.
Ideally, the process has to be automated, and which side takes responsibility
for that depends on factors such as availability, security, and data retention.

Data Exchange Patterns

[272]

•	 When the file is moved from one party to another party, what happens
if there are processing or network errors? If the errors are related to the
network and the file cannot be retrieved properly, an alternative method
of communication between parties has to be established. If the errors are
related to the quality of the data, the feedback has to be given to the party
from where data originated. It can be though just one-way communication
with no ability to send feedback. In that case, an alternative mechanism
should be used as well, that can simply be a phone call to the other
party administrator.

•	 Providing proper security is also a challenge. Remember that not only the
traffic has to be secured, which is usually done by means of a secure protocol
such as FTPS, but the file holding area should be secured as well. This can be
achieved by IP filtering, for example.

The file transfer pattern is one of the simplest, and it can be very useful when it
comes to exchanging data between two applications. However, overuse of it in the
environment where much more data has to be exchanged results in the point-to-point
anti pattern (Chapter 8, Integration Patterns and Antipatterns).

A shared database
In the previous pattern, we assumed that the data moves in one direction;
one application prepares the data and another uses it. What if the data traffic
is more complex?

Consider an organization that does a lot of sales. Dozens of people in the sales
department are on the phone every day following leads that can come from
different locations. They can exchange the leads or even follow up with someone
else's leads of complete sales started by another person. The organization uses
many different applications:

•	 A lead management application: This application keeps all information
about leads and ongoing sales from the opportunity to the completed sale
stage. The lead management server can be accessed remotely when an
employee is on the move.

•	 A customer relationship management application: This is used for
maintaining all information about customers, from their name and
address to their product preferences and communication notes.

Chapter 10

[273]

•	 A Bookkeeping and accounting application: This is where all money
transactions are recorded.

•	 A marketing application: This builds marketing campaigns based on the
historic information and distributes materials to all potential customers.

All of these applications use and update customer information. Different people
from different departments (sales, marketing, or accounting) use them. At the end
of each day, the applications need to exchange updated customer information. If we
use the File Transfer pattern to do that, first of all, we'll have too many files to fly
around. Secondly, what is the proper sequence of the file exchange? We don't want
to overwrite changes made by one program by the older data coming from another
program. Each program has to perform a proper update of customer information,
and the entire procedure does not look very simple.

On top of that, there are structural and semantic inconsistencies of data. Every
time the data is transferred, it has to be formatted in order to be used by another
application. But formatting may not be enough to solve semantic inconsistencies
between the applications. In the worst-case scenario, the inconsistencies may be
so large that we would talk about semantic dissonance. In the case of semantic
dissonance, the meaning of the same objects is different in different systems. A
customer from a sales point of view is a person who would potentially buy the
product. From a marketing point of view, the customer may be the entire family,
all members of which have to be targeted at the same time.

An alternative solution for this conundrum is using the Shared Database pattern
as illustrated in the following diagram:

A shared database accessible from all applications

Data Exchange Patterns

[274]

The shared database should be easily accessed by any application at any time.
All conflicts that arise as a result of simultaneous access should be resolved
seamlessly. In other words, we are looking into using a client-server approach.
On a Microsoft platform, a natural choice would be MS SQL Server. All other
Microsoft database applications, such as Visual FoxPro or Access, would not
easily support our requirements.

In order to let applications access the database, some interface should be provided.
The history of such APIs cannot be called uneventful. Over a couple of decades,
Microsoft has developed DB-Library, DAO, RDO, ODBC, OLE DB, ADO, and so on,
which were more or less performing a decent job of interfacing with databases.

The Open Database Connectivity (ODBC) specification was released by Microsoft in
September 1992. In essence, ODBC is a 50+ function call level API that usually builds
another layer of abstraction. Additional level of abstraction would certainly decrease
the performance of any solution. However, for SQL Server, Microsoft has developed
a native ODBC driver that replaced SQL Server API—DB-Library. The performance
did not suffer but rather was improved.

ODBC got momentum in the database developers' community, and the number of
ODBC drivers increased over years. Microsoft, however, almost abandoned the API,
recommending OLE DB instead, only to return to ODBC recently. SQL Server 2012 is
the last one to include SQL Server provider for OLE DB. All OLE DB approaches are
recommended to be converted to other solutions.

Today, ODBC is in its Version 3.8, introduced with the release of Windows 7
and improved with the release of Windows 8.

Another popular API, ActiveX Data Object (ADO), was released in October 1996.
With the introduction of .NET, the conceptual model of ADO was presented by
ADO.NET. Its major classes include SqlConnection, SqlCommand, DataReader,
DataSet, and DataTable (along with server controls for ASP.NET applications).
We provided a brief overview of ADO.NET in Chapter 2, The .NET Framework Primer.

•	 With the advance of ADO.NET, another approach that was quite popular
before in-database development tools, such as FoxPro, for instance, came
to life. This approach, called Language Integrated Query (LINQ), extends
programming languages by the addition of query expressions very similar
to SQL. The resulting source code looks consistent and significantly improves
its maintainability.

•	 The Shared Database pattern, most certainly, has enough technological
support, and does not present a large challenge from a developer's point of
view. However, for architects, using the pattern sometimes is not easy at all.

Chapter 10

[275]

•	 The challenges are pretty much the same as with other data exchange patterns:
structural and semantic differences. With the Shared Database pattern they
got a new twist—architects had to design a view of the data that covers all
views of all connected applications. Even if the software vendors are willing
to cooperate and align their schemas to the shared database schema and even
if they are willing to develop data transformations, some problems may still
appear. Imagine, for example, software applications designed in different
countries. In some countries, there is a notion of the first, second, and last
names. Some countries use first name, father's name, and last name instead.
Some other countries may consider more than two names for an individual,
and some would insist on having a middle name (which is not a second name,
by the way). Creating a data schema that satisfies all these applications could
turn into a nightmare task for an architect.

•	 If the software applications cannot be changed, using this pattern is quite
questionable. However, if applications can be modified, if building a shared
database schema is possible, and if transformations don't present a huge
challenge; in other words, if using the pattern is feasible, it's certainly a
viable solution.

•	 A disadvantage of this pattern is that the shared database represents a single
point of failure. That's why, while using this pattern, architects must pay
additional attention to high availability and disaster recovery. As we have
discussed in Chapter 3, The SQL Server Primer, Microsoft has a long history
of perfecting these capabilities of SQL Server.

Data replication and synchronization
Keeping data in one place so that all applications can access it may work just fine
if the data load is not high. When the number of applications increases, it would be
a natural decision to separate them in such a way that they don't access the data
source simultaneously.

One of the solutions is to create an exact copy of the data source, a replica.
The process of creating a replica is called replication.

Consider, for example, a database that is constantly being updated. It could be a
financial database with information about customer accounts and transactions. It
could be an inventory database that reflects the status of merchandise in several
stores. Every hour the organizations need to perform analysis to understand the
trends, they need to run reports, or to perform other tasks on data, which could be
quite resource-consuming. If these operations are performed on the live database,
they may interrupt regular access to the database by other applications.

Data Exchange Patterns

[276]

If a replica (secondary database) is created every hour, the reports or data analysis
tasks can be run off it, which will not increase the load to the main database.

Another typical example of data replication can be seen in remote applications.
Consider a sales person who travels with his/her laptop and does not always have
the means to connect to the company database. When the connection is established,
the main database (or its relevant part) is copied on the sales person's laptop,
reflecting the changes since the last connection.

The replication pattern has a couple of challenges.

First, we have to add a data replicating application to the mix. This will increase the
load on the database, which means that we want to do it in the most efficient manner.

We may also want to keep the database copies almost identical. The more often
we perform operations on the secondary database, the more often we want to do
replication. This becomes especially important if the replication also serves the need
of database backup.

It's important to understand that replication is a constant process that does not
require stopping operations on the main database. Replication should be performed
without significantly decreasing the performance or data availability.

Replication can be performed synchronously, when replicas (in theory, more than
one) are updated all at once as a part of one atomic transaction. This, without a
doubt, requires much more resources to keep up the performance and transaction
response times. For the purposes of maintaining a copy of the main data to perform
additional operations on it once in a while, asynchronous replication is usually
performed. If the asynchronous replication method is chosen, only the main database
is updated with the original transaction; replicas are updated after that. For systems
with disconnected databases, only the asynchronous method would work.

The replication pattern has a very limited usage when the entire data or its subset
has to be duplicated. It cannot be used as a Swiss Army knife for all integration
purposes. Doing so, especially in service-oriented architecture, creates very
tight coupling between integration participants and all of a sudden turns into
an antipattern. An excellent analysis of the replication antipattern in the SOA
environment was performed in the Data Replication as an Enterprise SOA Antipattern
article by Tom Fuller and Shawn Morgan (http://msdn.microsoft.com/en-us/
library/bb245678.aspx).

http://msdn.microsoft.com/en-us/library/bb245678.aspx
http://msdn.microsoft.com/en-us/library/bb245678.aspx

Chapter 10

[277]

The SQL Server replication
SQL Server 2012 has the following three different types of replication:

•	 Transactional replication: During transactional replication, each transaction
performed on the main database is copied to the secondary database. There is
a certain measurable latency that can be decreased with proper optimization.

•	 Snapshot replication: This is most appropriate when the data changes
infrequently and it is acceptable to have non-synchronized database copies
for a period of time.

•	 Merge replication: This enables autonomous changes to different databases.
At the end of the process, all databases are synchronized.

Starting from SQL Server 2005, another similar feature was added to
the Microsoft offering, targeting specifically disaster recovery scenarios.
Database mirroring, such as replication, supports a copy of the main
database. However, the secondary copy of the database is not available
during the mirroring process, which enables higher performance.
The secondary copy becomes available only when disaster recovery
procedures kick in. During mirroring, unlike during replication, not only
the data but database schema changes as well are being copied to the
secondary database.

Data synchronization using Sync Framework
If the solution allows using two SQL Server databases similar in nature, then
SQL Server replication is a good choice for data synchronization. However, if the
databases are heterogeneous, their nature is quite different, or the data exchange
requires data transformation, then we should consider approaches other than SQL
Server replication.

Note that the current replication feature enabling the publishing of
data from Oracle to SQL Server or from SQL Server to non-SQL Server
subscribers will be removed in future versions of SQL Server. Microsoft
recommends avoiding this feature in new development work and is
planning to modify applications that currently use this feature.

Data Exchange Patterns

[278]

Developers would appreciate that Microsoft has also come up with Sync
Framework—a comprehensive platform for synchronizing data in a variety
of scenarios. In addition to simply performing database replication, it also
allows the following:

•	 Synchronizing a database with a database in the Azure cloud
•	 Performing bulk changes using a table-valued parameter feature of SQL

Server to apply multiple updates, inserts, or deletes by using a single
stored procedure call

•	 Controlling data to be synchronized with parameter-based filters

Sync Framework, in fact, allows much more than just database replication.
It can also provide synchronization of files and folders as well as web feeds
such as RSS or Atom.

However, the future of the Microsoft Sync framework is unknown at the moment.
Version 2.1 was released as RTM in 2010. Later, in October 2010, Version 4.0 CTP
was announced, skipping Version 3. In 2011, the Sync Framework Toolkit was
launched, and it provides all features enabled in the Sync Framework October CTP.
There has not been much activity related to the framework since then.

Data synchronization using messaging
Every message is data. So, why not use messages for data replication, especially
when the usage of regular data replication tools is limited?

Once upon a time, one of the authors of this book was consulting an organization
that had two DB/2 databases that required replication. The organization realized
that buying DB/2 native replication tools would be much more expensive than
building a solution using Microsoft BizTalk.

In fact, Microsoft BizTalk can work as a perfect tool for data replication and
synchronization, especially when you can leverage BizTalk features, such as different
adapters or the ability to build data transformation or an orchestration in the middle.

However, you should realize that implementing data synchronization using BizTalk
requires development, which can be quite expensive and time-consuming. Therefore,
for SQL Server databases developing a solution using native SQL Server replication
would be our preferred method.

Chapter 10

[279]

Data migration
A special case of data exchange—data migration—became quite popular with the
passing of a few decades of IT history. Software and hardware became old and
needed replacement. However, over the course of business, a lot of important data
had been gathered and processed. This data had to be moved from legacy systems to
new systems.

When more systems became outdated, data migration became a common operation,
in the last decade. Merges and acquisitions also played a significant role when
merged companies running different software wanted to create a consistent
approach to their information.

It is important to note that the main difference between data migration and data
integration is that data migration procedures are performed once and the data in the
old system is retired. This does not mean though that the data migration will not be
repeated in future. If the data migration is simply the result of replacing the aging
hardware, the same procedures may be repeated in four to five years.

Data migration between complex systems can be a real challenge. Data migration
projects may take 6 to 12 months and require an extensive analysis of legacy as well
as new systems, very thorough design, complex programming, and many test runs.
An additional challenge that many organizations have is that the migration process
should not significantly affect the system in production. Assuming that systems in
production constantly update their data, most organizations decide to interrupt the
work of legacy systems at least for a few hours in order to migrate the data.

With a significant amount of data, manual data migration can become a tedious and
very time-consuming process. Special tools were developed, and one of the major
techniques became extract, transform, and load (ETL). The ETL pattern was already
used in data warehousing, and we look at it in more detail later in this chapter.

The extract, transform, and load pattern
for centralized data aggregation
The extract, transform, and load (ETL) pattern proved very useful in different
architectural solutions. In data warehousing, it is used even more often than in
data migration.

Data Exchange Patterns

[280]

A data warehouse is a large data store constructed from several
data sources and is intended to be used for reporting and analysis
purposes. Data warehouses are constantly updated by feeding data
from the data sources.
A part of a data warehouse that focuses on a specific area of interest is
called a data mart.

First systems using data aggregation in a single source were developed in the
early 1970s. For example, AC Nielsen, a global marketing research firm, used
what they called "data mart" around that time to provide aggregated information
for their customers.

The data warehouses as we know them today became a reality only in the late 1980s.
The term data warehouse was originally used in the 1988 article An architecture for a
business and information system by B.A. Devlin and P.T. Murphy.

Data warehouses are built primarily for reporting and analytical purposes.
Applications and technologies used for analyzing data in order to make better
businesses is called business intelligence (BI). First BI systems evolved from
decision-making systems in the 1980s. In Microsoft offerings, BI tools are delivered
on the SQL Server Analysis Services (SSAS) platform. The OLAP Services were
released as a part of SQL Server 7; with the addition of data mining tools, Analysis
Services were released in the 2000. Reporting tools in the Microsoft BI offering are
represented by SQL Server Reporting Services (SSRS).

There are the following obvious benefits of aggregating data in a data warehouse
from different sources:

•	 Enabling data analysis operations that would be nonfeasible otherwise,
by bringing data together from different sources

•	 Creating reports on aggregated data
•	 Being able to log transaction history even if the source system does not

maintain it
•	 Improving the overall data quality by performing data validation and

data cleansing
•	 Presenting business information at a higher level required by

decision makers

Creating a full-blown data warehouse is not necessarily a right solution.
Often, building a centralized aggregated database requires gathering some,
but most vital, information.

Chapter 10

[281]

Use case – master patient index
Valley Health Services Authority operates on the territory of the Diagon Valley.
There are seven hospitals, a health agency, and a medical lab providing health
care to the people in the Valley.

Every time a patient comes to a medical facility, his/her information is entered or
updated in the system. Initially, all patient data was kept in the form of paper files,
but eventually everything was digitized. Now, all facilities run software to keep
track of the patients' history. However, each facility has its own software, and the
information is not centralized.

Over decades of operation, each facility collected gigabytes of patient data, but
most of them never performed data cleansing consistently. As a result, some patient
information has errors, and some is missing. Many patients moved and never
updated their records, especially if they visited hospitals or clinics once, for example,
in need of emergency care.

Needless to say, even if all information were entered correctly all the time, there is
still room for inconsistencies. For example, Margaret Smith could've called herself
Peggy when she was 20 years old, but later decided to use her full name, Margaret.
She could also have got married and changed her last name to Brown. Therefore,
there could be records of that patient that use the name of Peggy Smith as well as
Margaret Brown.

In addition to the data inconsistency, another major concern of the Valley Health
Services Authority is that the patient data is decentralized. When a new patient
is admitted by a hospital, it would be extremely beneficial to know the patient's
medical history that is recorded in other facilities. Today, there is no way to retrieve
this information in a quick, preferably nonmanual manner.

An added complexity to the problem is that there is no single reliable method to
identify patients. The Valley requires patients to have a Patient Health Number
(PHN) but, in reality, there is no 100 percent guarantee that every patient would
have one. First of all, the process of getting the PHN is a few months long, and even
if a person who moved to the Valley applied for the PHN immediately, she still may
be admitted to the hospital before getting the number. Secondly, the patient could be
brought to emergency care without having the PHN on her, or even unconscious.

For similar reasons, any other government-issued identifier would not be
100 percent reliable.

Data Exchange Patterns

[282]

In order to maintain consistent patient data, including their demographics and
medical history, the Valley Health Authority decided to build a master patient index
(MPI). The MPI will consist of major patient information that will be constantly
updated by new data from all medical facilities. Initially, the MPI will consist of
minimal information, such as the patient's demographic and abstracts of medical
history, including brief descriptions of visits to medical facilities. The MPI will be
available to all doctors in the Valley and later will have capabilities to be updated by
general practitioners as well.

To start the initial phase, building the MPI database, an ETL process has to be
established. One of many challenges that the Health Authority faces is figuring out
what technology they want to use. Currently, they have a very strong skillset in
Microsoft SQL Server, but the ETL process is something new to them. They are also
not familiar with the BI offering from Microsoft, with SSIS in particular.

The architects' team is challenged to design the proper approach and select the
technology for its implementation.

Pattern description
The extract, transform, and load (ETL) pattern, as its name suggests, consists of three
major steps. Each of them is described in the next sections

Extraction
The first step assumes the extraction of data from a source system in order to be used
later in the data warehouse. Data extraction is unique for each data source and often
considered the most complex step in ETL. Source systems, as in our use case, could
exist for many years, and unfortunately, could be poorly documented. Many old
systems don't have a convenient API, and extraction can be done only by exporting a
file. Data formats in these systems are not flexible and not configurable.

The extraction process has to be aligned with the usage of the source system. It is
common that the extraction occurs only once a day when the source system is not
busy, for example, at night. However, there are also systems that require much more
frequent updates of the central database. At any rate, extraction is a periodic process
that has to be scheduled to run automatically.

In the ETL for data migration, extraction can be run manually, since it
is performed once (or a very limited number of times). In the ETL for
data warehouses, extraction has to run automatically, since it is has to
be performed periodically, sometimes several times in one hour.

Chapter 10

[283]

The data can be extracted completely every time. If the amount of data is not
significant, this does not pose a problem. The extracted data can overwrite the old
data or can be filtered in order to bring just recent changes during the process of
data load. The extraction can be also incremental, when only the latest changes are
extracted. With legacy systems and simplified extraction mechanisms, such as data
export, only full extraction is possible.

A very common approach to incremental extraction is having timestamps of each
record in the source system and using them to identify new records. Unfortunately,
many legacy systems don't have timestamps and don't allow adding them.

After the data is extracted, it has to be transferred to the centralized system for
performing transformation and load. Data transfer can be triggered by the end
of the extraction operation or scheduled for a specific time of the day.

As we mentioned before, the data in the source systems is often gathered over
decades in an inconsistent manner. The extracted data has to be validated, which
can be performed either before the transformation or as a part of the transformation
process. Other tasks, such as data cleansing or data deduplication should be
also done after the extraction. The decision whether these tasks are a part of the
transformation or supposed to be executed separately primarily depends on the
ETL tools and detailed procedures. For example, if the target database has an ability
to work with the up-to-date postal database, validating addresses separately at
each data source would not make much sense. On the other hand, if the extraction
procedure allows performing some initial data cleansing such as truncating leading
spaces, using it would be advantageous and may even improve the performance of
subsequent operations.

Transformation
Any data transformation requires some initial mapping. The mapping process is
an activity that often needs more time than developing the transformation itself.
It involves specialists with enough business as well as technical knowledge and,
for large data schemas, may require weeks.

As mentioned before, the major challenges in transformation (and data mapping)
are structural and semantic inconsistencies.

The transformation stage usually consists of separate steps, especially if it includes
data cleansing and data deduplication. Modern ETL tools, including SSIS, enable
building ETL packages as a set of components. The components can even be
executed in parallel. Componentizing the data transformation process improves
the overall clarity and makes the implementation achievable with fewer errors.
Tools such as SSIS help in visualizing the components and their sequence.

Data Exchange Patterns

[284]

Data manipulations during the transformation can be quite extensive. Some of the
data manipulations include the following:

•	 Changing data fields to conform to a specific pattern, for example,
999-999-9999 for phones, or X9X 9X9 for postal codes

•	 Dealing with inconsistencies, such as removing leading and trailing spaces,
unifying different characters used for field separation, or bringing all names
to a standard form

•	 Validating data against reference tables
•	 Using fuzzy matching algorithms to match incoming data against

stored data
•	 Removing duplicate records
•	 Translating free-form values to enumerations, for example, "White" and

"Caucasian" to a single numeric value
•	 Dividing fields into a few, for example, dividing a string with the first,

middle, and last names into three fields
•	 Combining fields together
•	 Building a calculated value, for example, creating a sale amount out of

quantity and price
•	 Building new records as a result of aggregating several other records,

for example, total number of transactions per month
•	 Building pivot tables
•	 Transposing columns into rows and the other way around

Loading
This is the last stage in the ETL process. Once the data is validated, cleaned,
and transformed to the target schema, it can be loaded in the target database
(data warehouse). Data loading requirements differ for different organizations.
The schedule of data loading is not necessarily the same as the schedules for data
extractions. Extracted data can be kept in a staging area and updated several times
before transformation. However, it is common that data transformation and loading
are aligned, and often the latter is simply triggered by the former.

During all of the ETL stages, some additional tasks are performed. The most
important are logging and exception processing. Very often, the data cannot be
processed automatically, but may re-enter the system after some manual correction.

Chapter 10

[285]

Key requirements
The analysis of the use case of the master patient index for the Diagon Valley Health
Authority brings up several requirements. some of which are as follows:

•	 The MPI system must receive admission, discharge, and transfer information
on a daily basis from all participating systems

•	 Data extraction has to be performed with the least impact on the performance
of the source systems

•	 The system should have the ability to add a significant number of new
sources in the future, such as general practitioners' databases

•	 The matching procedures must support exact patient match as well as
fuzzy matching

•	 Matching fields may include the following:
°° First name
°° Middle name
°° Last name
°° Date of birth
°° Sex
°° Patient health number (PHN)
°° Address
°° Daytime phone number
°° Evening phone number
°° Social security number

•	 In the case of achieving a fuzzy match, the operator's (human)
decision is final

•	 The matching procedure should allow for some data validation and
cleansing, for example, validating phone numbers against a proper
template and excluding numbers that belong to first responders

•	 The aggregated information has to be securely stored
•	 In the first stage, we want to build a prototype of the future ETL process

that gives us a foundation for architecture selection

Data Exchange Patterns

[286]

Candidate architecture #1 – SQL Server
Building a data-intensive solution, potentially a data warehouse, on the Microsoft
platform, gives us the natural suggestion of using SQL Server for storing data.
Let's discuss what it would take to use SQL Server engine and the power of T-SQL
in order to develop ETL.

Solution design aspects
SQL Server capabilities make it an excellent candidate for a highly reliable solution.
In an environment with 24/7 operations and a large number of transactions, the high
availability feature of SQL Server and its disaster recovery capabilities would make it
a definite winner. However, for an ETL solution that will be run on a daily basis, this
does not give any advantage.

The usage of T-SQL provides excellent performance. But at the first stages
of the project with less than a dozen data sources and with data processed once
a day, performance is not critical. If it ever becomes an issue, SQL Server could
be the solution.

Solution implementation aspects
The organization has a very strong skillset in SQL Server. Performing the
development would not be any problem for them.

The T-SQL solution requires coding everything by hand. Some capabilities, such
as logging, would require an additional design and implementation effort. Using
heterogeneous sources can become a real challenge. And finally, implementing the
data flow can become a challenge, for example, when managing the state between
steps is needed.

Solution operations aspects
The organization has a very strong skillset in maintaining other SQL Server solutions.
Adding another SQL Server solution would not create an operational concern.

Organizational aspects
As the organization already has experience with SQL Server, no additional training
is required.

Since the ETL solution is totally new to the organization, and its nature is different
from all other solutions, the implementation should be better separated from other
SQL Server installations. Additional licenses will be required.

Chapter 10

[287]

Solution evaluation
As you see, there are pros and cons: the operations and organization evaluation gives
us a thumbs up, but the design and development evaluation gives us a thumbs down
as shown in the following diagram:

Design Implementation Operations Organization

Candidate architecture #2 – SSIS
SSIS is designed for ETL. Let's see how it fits into our solution.

Solution design aspects
Since all data required for processing is brought over into the SSIS memory space,
performance may become an issue for complex operations. Certain operations, such
as the ones requiring data merge or lookup, would work faster in the T-SQL solution.
However, at the first stages of our MPI project, performance is not an issue. In fact,
with SSIS, it can become an issue only when the amounts of data start approaching
terabytes. If that happens, at the future stages we can create a mixed solution, where
some specific cases would be processed by SQL Server itself instead of SSIS.

SSIS is designed specifically for ETL purposes. Many operations can be easily done
in SSIS compared to other tools. A visual approach to the design and implementation
is a significant advantage of SSIS.

SSIS provides logging capabilities, which is an advantage of this approach as well.

SSIS allows accessing heterogeneous data sources, including SQL Server, Oracle,
Teradata, DB2, ODBC, or text files. It can integrate data from business workflows
in ERP or CRM applications.

Data Exchange Patterns

[288]

Solution implementation aspects
Currently, the organization does not have a lot of skills in SSIS, but has a lot of
experience in developing and maintaining SQL Server solutions. As the target data
will be stored in a SQL Server database, building the schema for it should not be a
challenge for the Valley Health Authority IT team. On the other hand, SSIS has an
easy-to-learn interface; with the deep knowledge of data intensive solutions, the SSIS
learning curve for the team should be insignificant.

Additional tasks, especially nondatabase-related tasks, can be coded using C# or
Visual Basic. Using Execute SQL Task in SSIS, one can also run T-SQL code. In order
to understand the SSIS Object Model, please refer to the following description from
Microsoft at http://technet.microsoft.com/en-us/library/ms136025.aspx.

Solution operations aspects
Currently, the organization does not have SSIS solutions, but maintains many SQL
Server databases. Since SSIS is not a complex tool and the target MPI database is
stored in SQL Server, maintaining the SSIS solution should not create a problem for
the IT team.

Organizational aspects
Some investment in SSIS training is required since the organization does not
currently have SSIS skills. However, with extensive SQL Server knowledge, the
learning curve should not be steep.

In the future, the Health Authority plans to extend the solution by adding many
more data sources. Since there is not much knowledge of the technologies used to
maintain these data sources, SSIS is an excellent choice, as it provides very good
coverage of different data sources. The ability to extent the code by using C# or
T-SQL is also a plus point.

SSIS does not require licenses other than SQL Server licenses. Compared to the
previous candidate architecture, the number of licenses would be the same.

http://technet.microsoft.com/en-us/library/ms136025.aspx

Chapter 10

[289]

Solution evaluation
All thumbs up as shown in the following table:

Design Implementation Operations Organization

Candidate architecture #3 – BizTalk
Even if BizTalk is primarily an EAI tool rather than an EII tool, with heterogeneous
data sources, it is a very strong candidate.

Solution design aspects
BizTalk is a reliable technology that is based on the foundation of SQL Server.
It has several capabilities that help easily achieve high availability and design
for high volume. It has a data persistence mechanism that prevents data from
disappearing. However, as it was with the pure SQL Server approach, for an ETL
solution that will be run on a daily basis and can be repeated if needed, this does
not give any advantage.

A significant advantage of BizTalk is its large library of adapters. Data can be read
from literally any source. With the high possibility of expanding the solution in the
future, this certainly is a pro.

Solution implementation aspects
BizTalk has native mapping and transformation capabilities that will reduce the
development time.

The visual interface helps with implementation, but the learning curve for the team
will still be steep. BizTalk is a complex tool and learning it from scratch would take
some significant time.

Data Exchange Patterns

[290]

Solution operations aspects
Currently, the organization does not have any BizTalk experience. Its maintenance
will require some learning, not only BizTalk itself, but potential maintenance tools
as well, such as BizTalk 360.

Organizational aspects
Implementing BizTalk will require buying licenses on top of SQL Server licenses,
which will be more expensive compared to the previous approaches.

Solution evaluation
Well, it's certainly not a winner, as shown in the following table:

Design Implementation Operations Organization

Architecture selection
The benefits and risks of all solutions are presented in the following table:

Solution Benefits/risks
SQL Server Benefits

•	 Highly reliable solution, designed for
scalability

•	 Existing in-house staff to develop, to
maintain, and to support the solution

Risks
•	 Significant amount of code to be

developed
•	 Use of heterogeneous sources is

challenging

Chapter 10

[291]

Solution Benefits/risks
SSIS Benefits

•	 Perfectly fits the solution from the
design perspective

•	 Extensible solution; will satisfy
future needs

•	 Enables easy integration with
heterogeneous data sources

Risks
•	 No in-house expertise with SSIS

BizTalk Server Benefits
•	 Reliable and extensible technology
•	 Enables easy integration with

heterogeneous data sources

Risks
•	 No in-house expertise with BizTalk
•	 Additional licensing and training costs

With a lot of heterogeneous data sources, both BizTalk and SSIS look like
strong candidates. Both are extensible solutions and require a learning curve.
However, SSIS does not require an additional license, it is designed for ETL,
and therefore it is our choice.

Building the solution
For the first phase of the ultimate integration solution, we will build an SSIS package
that extracts information from a mixed data source. The data will be imported from
an Excel file and a text file and merged together. The files contain new records, and
are updated on a daily basis. The resultant merged information is loaded into the
target MPI database.

Data Exchange Patterns

[292]

Data structures
The files and the database are presented in the sample folder for the book.

The Excel file has the following structure:

•	 Name

•	 Gender

•	 Race

•	 Street Address

•	 City

•	 State

•	 ZIP

•	 SSN

•	 HRN

•	 DOB

•	 Comments

The text file is a CSV (comma-separated) file with the following fields:

•	 HRN

•	 First Name

•	 Last Name

•	 MI

•	 Date of Birth

•	 Gender

•	 Race

•	 Social Security Number

•	 Street Address

•	 City

•	 State

•	 ZIP

Chapter 10

[293]

Notice that some data is presented in different ways in these two files. For example,
the Excel file has two name fields (first and last) and the text file has three name
fields (first, last, and middle initial). Before merging the data, such fields have to be
transformed into a consistent format.

The resultant MPI patients data table has a structure similar to the one shown in the
following screenshot:

In order to create the database and its tables (Patients, States, and Cities) run the
following SQL scripts from the book samples:

•	 create_database.sql

•	 create_patients.sql

•	 create_states.sql

•	 create_cities.sql

In order to achieve loading data into the target table, the following SSIS operations
have to be performed.

1.	 Build the data flow for the Excel data source using the following steps:
1.	 Use the Excel Connection Manager to specify the data source,

including the filename, Excel sheet name, and columns. You can
also specify the output in the event there is an error.

2.	 Create the full name as a concatenation of the First Name and the
Last Name fields.

3.	 Create the output address field as a combination of the Street
Address, City, State, and ZIP fields.

Data Exchange Patterns

[294]

4.	 Sort the data by the HRN (Health Record Number) and Name fields.
Now the data flow will look like the following:

2.	 Build the data flow for the text data source using the following steps:
1.	 Use the Flat File Connection Manager to specify the data source,

including the filename, Excel sheet name, and columns. You can
also specify the output in case of an error.

2.	 Replace empty fields with NULL values.
3.	 Create the full name as a concatenation of the First Name, MI,

and the Last Name fields.
4.	 Sort the data by the HRN (Health Record Number) and Name fields.

Now the data flow will look like the following:

Chapter 10

[295]

3.	 Now we have our two sources (flat file and Excel file) ready to be merged.
In the next step we'll merge records from two sources, as shown in the
following screenshot:

Data Exchange Patterns

[296]

4.	 After merging the sources, we need to perform data validation. In order to
validate states and cities, we shall use the Lookup shape, as shown in the
following diagram:

5.	 Double-click on any Lookup shape in the data flow, and the Lookup
Transformation Editor will pop up, as shown in the following screenshot:

Chapter 10

[297]

6.	 Use the Transformation Editor to match a field in the input record to
reference data. In case of a match, the data output will be different from
when the match is not achieved.

In addition to Lookup Transformation, SSIS provides the Fuzzy
Lookup Transformation shape. Lookup Transformation retrieves
only matches or nonmatches; Fuzzy Lookup retrieves records that
are similar and not necessarily exact matches.

7.	 When all lookups are performed, we direct correct data to the destination
file and erroneous data to the logfile, as shown in the following diagram:

Lessons learned
We have built an ETL solution for the initial phase of a very complex data integration
project. We used SSIS to bring the data into the future data warehouse.

In the next pattern, we consider a slightly different approach. We will bring
together, from several sources, only the key elements of the data—the master data.
The data will be brought in a centralized hub. We will use the data to search across
the entire enterprise.

Data Exchange Patterns

[298]

Multiple master synchronization
It is a rare business that has one and only one version of truth for all of the data that
it maintains. Instead, businesses rely on a hodgepodge of diverse systems, all of
which will identify the critical nouns of a business differently, and will often contain
radically different versions of the definition of those nouns.

For example, in one system, one of our authors might be labeled "Mike", in another
"Michael", and in a third "That funny-smelling, old guy." When one attempts to
manage and reconcile these discrepancies, one is presented with the same issue
Humpty Dumpty presented to Alice in Through the Looking-Glass.

"When I use a word," Humpty Dumpty said in a rather scornful tone, "it means just
what I choose it to mean—neither more nor less."

When trying to integrate and resolve these issues, you are potentially dealing
with dozens of Humpty Dumpties, all of whom have attached different, nuanced
meanings to the nouns they track. In this section, we will review a use case for a
fictitious company, World Wide Widgets, and evaluate and review portions of a
potential solution.

The resolution of these issues will be complex and involve multiple, diverse
technologies, even within the Microsoft stack. Here, we will provide a glimpse
into the large world of master data management and the multiple methods for
arriving at a single version of truth within a large diverse organization.

Use case – master data management for
WWW
World Wide Widgets (WWW) developed and patented multiple types of widgets
for use in the brake and acceleration systems of automobiles and light trucks.
They currently manufacture these system components in factories in North
America, South East Asia, and Europe for sale to several auto manufacturers. Each
manufacturer has insisted on slightly different designs of these components. WWW
has sold the Widge-O-Stop brake system and the Widge-O-Go acceleration system,
with modifications to the Toy O D'oh car company.

It was recently announced that Toy O D'oh will recall all 2009 and 2010 models
for faulty brakes and gas pedals. Each of these systems uses WWW's patented
Widge-O units. Regulatory authorities in Asia, North America, and Europe have
all announced investigations and the legal department has warned management to
expect long and protracted litigation around these issues.

Chapter 10

[299]

You have been assigned the task of designing and building a system that will gather
and characterize all of the company's records on the development of this system as
well as the sales and marketing of this system to Toy O D'oh. You must get all of the
records, including unstructured and semi-structured data.

Key requirements
The system must correctly identify staff over time and correctly assign to them
the roles they were in during particular times. This was a quite a long-term effort.
People left or joined the company, were promoted or changed roles, or changed
names because of marriage or divorce. The project itself went through many code
names. The trade name "Widge-O" was coined by the marketing department.
The engineers, patent lawyers, and others involved in the research development
and patents used numerous other terms.

Third-party consultants were also used as part of the development efforts. These
include safety testing labs, software developers, and outside law firms for patent
and regulatory work, all of whom should have left (but perhaps did not) copies of
their work product with WWW. Your system should identify gaps if they exist.

The company requires each staff person to maintain documents and work products
on their local hard drives for seven years. Some staff have found this to be an
onerous requirement, so they have moved data onto other media. They will make
that media available to you for searching and indexing.

Structured data that must be searched can be found in both Oracle systems
and SQL Server systems. You must identify employees involved with Widge-O.
Data concerning these assignments can be found in the Oracle HR system.
Data concerning safety testing can be found in SQL Server-based systems.

One of the biggest issues with any forensics type of project is the human factor.
Here, the lawyers are involved, and you must expect that everyone will be running
for cover. They will be deleting documents and e-mails, moving material to USB
devices and engaging in every imaginable effort to Confound Your Assessment
(CYA). Additionally, employees are not attempting to cover up or hide data,
but they may inadvertently improperly store data.

During the normal course of events, data and documents are altered over
time. Versioning and the explanations for changes can be key evidence in law.
You will need to track versions, dates, and revisions of data as part of any solution.

Data Exchange Patterns

[300]

Additional facts
Given the risks and issues that would arise should this project fail, including legal
liabilities and damage to the business's good name, we can assume that we will have
more than adequate staffing and technical capabilities for this project. Moreover,
this is an engineering company that understands the need for good design and
competent software development, so they hire superior talent for both development
and operations.

Pattern description
Like most enterprises, WWW has multiple databases, each of which controls data
for its specific area or business purpose, each of which is master of its own domain.
Like most enterprises, WWW has no minimal tools in place to monitor and resolve
differences between these data sources. For the purposes of this litigation, these
differences must be identified and brought to the attention of the business so that
they can be resolved or explained.

In master data management (MDM) situations such as this one, we gather the key
data, often called the key nouns of an organization, identify data disparities, and
reconcile those disparities. For example, a key noun for any organization would be
"customers". The same customer might be identified as "Mike" in one system and
"Michael" in another or may have different mailing addresses and phone numbers
in those systems because of a move. One would reconcile these disparities in any
MDM system using appropriate business rules so that the company can properly
service the customer and have an accurate picture of its customer base. One rule
might be "the most recently reported address is deemed to be the correct address",
for example.

MDM, in this situation, serves the key role of gathering evidence for analysis by
the legal team.

WWW needs to gather all of its data concerning its interactions with Toy O D'oh,
identify any discrepancies, and then reconcile those discrepancies or feed them
into a human workflow so that they can be investigated.

Candidate architecture
There are the following tools that we need to handle the issues presented:

•	 We must extract existing data from multiple relational systems and load it
into a clean environment where we will track data access and changes.

Chapter 10

[301]

•	 We must manage the definitions of key business nouns across multiple
environments.

•	 We must track metadata concerning various documents, spreadsheets,
and other objects.

•	 We must use unstructured and semi-structured data as a source for data
mining and data analysis tasks by storing metadata concerning these objects
in SQL Server.

•	 We must search through and index semi-structured and un-structured data
across the enterprise. This will include every server, every laptop, and all of
the miscellaneous storage devices.

These needs cannot be met with any single product or technology in the Microsoft
catalog. Rather, we will need to incorporate several technologies into our solution
to gather, index, store, and present data to end users.

Solution design aspects
In the following list, we will review all of the technologies that we can bring to bear
on the problem at hand:

•	 SSIS: We have already discussed the use of SSIS before. Here we have classic
ETL issues—the very issues SSIS was designed to deal with—as well as
extracting data from "nontraditional" sources, such as documents, e-mails,
and spreadsheets. SSIS does not typically come up on an architect's radar
when faced with these data sources. Nevertheless, SSIS is an excellent tool to
extract metadata and other information from these objects, as we saw in the
previous pattern.

•	 Master Data Services: The key functionality of Master Data Services that we
will illustrate here is the creation of a master data hub—a single source for all
master data regardless of source system. We will ensure data consistency by
treating each master data change as a transaction and logging the date and
time, and the user making the change.

•	 Search Server 2010 Express: We must search and index documents across
the enterprise. These documents can be in numerous formats. The Express
edition is limited to a standalone installation but, generally, provides all
functionality as the full version. It provides the functionality we seek here
and has the advantage of being free.

Data Exchange Patterns

[302]

Solution operations aspects
WWW already has SQL Server in place. At most, we are simply leveraging
the functionality of the latest release of SQL Server. While Search Server Express
may be a new technology for this enterprise, it has an easy, light, and intuitive
administrative interface and should not provide any significant issues for WWW
operations staff.

Organizational aspects
Simply put, this project must get done and must get done correctly. The risks to the
very existence of the company should they lose any litigation, along with the adverse
publicity arising from taking the blame for product failures, is simply too great. The
organization will get the resources needed to be successful. In this case, that should
be a simple task. For the most part, we are extending products already in use with a
staff very familiar with the Microsoft stack.

Solution evaluation
Unlike other scenarios that we have discussed throughout this book, here we have
no single magic bullet technology that can solve all of our issues. Instead, we will
need to deploy multiple technologies that can meet the wide-ranging requirements
presented here.

Results of our assessment is as shown in the following table (all thumbs up):

Design Implementation Operations Organization

Chapter 10

[303]

Architecture selection
Let's consider the components that make up this candidate architecture:

Components Benefits/risks
SQL Server, Master Data
Services, and SSIS

Benefits
•	 Easily deployed as an extensible

ETL tool
•	 Designed to handle batch processing

of large files, exactly the task at hand.
•	 No additional licensing costs—comes

with SQL Server
•	 Can be built and maintained by

current staff
•	 Can build business rules to resolve

data conflicts

Risks
•	 Need to build a sophisticated error

handling system
•	 Does not handle unstructured

data well
Search Server Benefits

•	 Indexes unstructured data
•	 Can review administrative shares

(such as C$) on desktops

Risks
•	 Not clear whether staff has the skills

to support the product
•	 Still possible for users to "hide" relevant

documents on portable devices

Data Exchange Patterns

[304]

This is an extraordinarily complex data management task as it touches on all of the
data held by the organization in every possible format in which the organization
holds it. You must get data in both the organizations' "approved" formats as well
as in any format that might be held by a key staff person that they obtained from
outside sources (such as through Internet research). In this case, the combination
of a SQL Server-based solution along with Search Server will serve this organization.

Building the solution
We will need to deal with both structured data stored in relational databases and
unstructured data stored in filesystems of various sorts (for example, marketing
documents and engineering design drawings). We will manage conflicts between
the relational systems using Master Data Services, ETL using SSIS, and filesystem
indexing using Search Server and SSIS.

The Electronic Discovery Reference Model (http://edrm.net/) refers to the
following six phases of handling data:

1.	 Information management
2.	 Identification
3.	 Preservation and collection
4.	 Processing, review, and analysis
5.	 Production
6.	 Presentation

The six phases are presented in the following diagram:

http://edrm.net/

Chapter 10

[305]

Our tasks focus on steps 1 through 3 while providing a firm foundation for steps 4
through 6, which can be handled using SharePoint, SQL Server Reporting Services,
and Power Pivot.

In order to execute these tasks, we will need to have two data constructs, one for
the document and other source metadata, and a second to hold relational data
for analysis. While we could use two schemas for this purpose, we have elected
to go with two separate databases. First, this will optimize performance for what
is expected to be two very different reporting criteria. Second, it will minimize
confusion for both users and system operators. Third, it will allow us to secure the
data properly, particularly if we need to extend the metadata system to include
comments or other attorney work product that should not be distributed outside
the organization.

From a high-level logical view, our system will look like the following diagram:

Data Exchange Patterns

[306]

Fetching relational data
First, we will need to know the who, what, when, where, and how of the
development and production of the Widge-O. The "who" can be ascertained from
the HR system. Here, we will use the HR schema provided to us in the Oracle
10g Express Edition as it is already populated with data. We have written out the
Employees and Department tables to comma-separated files. We have created two
parallel data flows, each of which pulls data from a comma-delimited ASCII file,
converts the data to an appropriate datatype, and loads the data into the correct
tables in the HR schema of the metadata database we previously created, as shown
in the following screenshot:

Master data services
To install MDS, follow the instructions given on the Microsoft Developer Network
at http://msdn.microsoft.com/en-us/library/ee633752.aspx.

Once you have completed the installation and configuration, your next step will be to
create a model around the key "nouns" or entities you will be tracking. MDS creates
a hierarchy around each noun and its properties. This is a hierarchical structure that
organizes the data. In our scenario, one key entity that needs to be tracked would be
the Widge-O product line. We might, therefore, use the following model:

•	 WidgeO Litigation
•	 Auto products

http://msdn.microsoft.com/en-us/library/ee633752.aspx

Chapter 10

[307]

•	 Brake products
•	 Widge-O Stop
•	 Acceleration products
•	 Widge-O Go

We will need to create an application; we'll do so using the following steps.
Make sure the WWW service allows Windows authentication.

1.	 Open the MDS configuration manager and select Web Configuration
from the left-hand side panel.

2.	 Choose Default Web Site and select Create Application to bring up
the Create Web Application dialog. Fill in the configuration fields and
select OK, as shown in the following screenshot:

Data Exchange Patterns

[308]

3.	 Next, you will need to select a database for the application. Click on the Select
button that appears under the Database group box to bring up the Connect to
Database dialog. Make the appropriate selections for your database's security
context and select OK, as shown in the following screenshot:

Chapter 10

[309]

4.	 Your configuration manager should now appear similar to the
following screenshot:

Data Exchange Patterns

[310]

5.	 On the Web Configuration screen, select Apply. You should see the success
dialog box. Select the Launch Application in browser checkbox to begin the
actual work, as shown in the following screenshot:

Chapter 10

[311]

6.	 This will bring you to the default management page in your browser,
as shown in the following screenshot:

Data Exchange Patterns

[312]

7.	 It will quickly become apparent that navigation through the MDS interface
is not particularly intuitive. A cheat sheet is available at http://msdn.
microsoft.com/ en-us/library/ee633735(SQL.105).aspx. Open the
System Administration link. We need to create a new model as described
previously, so click on Models, and then click on the icon with the + symbol,
as shown in the following screenshot:

8.	 Enter WidgeO Litigation in the textbox, leave the defaults, and click
on the Save icon.

9.	 We will now need to add entities to our model. You can think of entities
as levels in the hierarchy or as dimensions in a snowflake schema. Select
the Manage menu item then select Entities.

http://msdn.microsoft.com/ en-us/library/ee633735(SQL.105).aspx
http://msdn.microsoft.com/ en-us/library/ee633735(SQL.105).aspx

Chapter 10

[313]

10.	 Once again, select the green + icon, add Auto products, and select No from
the Enable explicit hierarchies and collections drop-down list, as shown in
the following screenshot:

11.	 Save the entity and repeat the process for Brake products, Widge-O Stop,
Acceleration products, and Widge-O Go.

Data Exchange Patterns

[314]

12.	 Entities have attributes that are well... attributes. They are similar to
attributes in an XML file or the fields in a table. Once you have completed
the creation of the entities, you should see the Manage screen, looking like
the following screenshot:

13.	 When you select one of the entities, a number of icons will appear, as you can
see displayed in the previous screenshot. We will limit our attribute creation
to the Widge-O Go and Widge-O Stop leaf levels.

14.	 Highlight Widge-O Go and click on the Pencil icon. You will be taken to the
edit entity page. Note that there are already two attributes, name and code.
We will add version and data source to the attributes.

15.	 Click on the green + symbol. The Add Attribute page will appear.
16.	 Type data source in the Name field and accept the remaining defaults.
17.	 Repeat the process for version, and then repeat these steps for the

Widge-O Stop.

Chapter 10

[315]

18.	 Click back through the Save icons to reach the Entity Maintenance page and
save your work.

19.	 Next, we will need to relate the entities through domain-level attributes.
So, for the Brake Product entity, add a Widge-O Stop domain attribute
and tie it with the Brake Product entity.

20.	 For the acceleration products entities, add a Widge-O Go domain attribute
and tie it to the acceleration products. For the auto products entities, add a
brake products and acceleration products domain attribute and tie it to
auto products, as shown in the following screenshot:

21.	 In order to complete our hierarchy, add a domain-based attribute Products
to the WidgeO Litigation entity and point it towards the WidgeO
Litigation entity in the Entity drop-down list.

22.	 Navigate back to the main menu. You can use the breadcrumbs path
appearing next to the SQL Server graphics in the upper-left corner of the
page. You will need to make sure that the correct model appears in the
model menu, and then select Version 1 from the Versions drop-down list.

Data Exchange Patterns

[316]

23.	 Now (finally) we'll create our hierarchy. Select System Administration
from the home page and then manage derived hierarchies from the menu.
The derived hierarchy is derived from relating domain attributes.

24.	 Select WidgeO Litigation from the drop-down list, and click on the
green + icon. Name the hierarchy WidgO ToyOdoh l Litigation and
click on Save. The hierarchy editing page will appear.

25.	 Simply drag the auto products line from the left-hand side to the right-hand
side, and the hierarchy is created. We have now completed our hierarchical
structure to use to manage relational data concerning the product lines.

Next, we will need to create the infrastructure required to manage unstructured and
semi-structured data, such as the material contained in Word files, e-mail, PDF files,
or spreadsheets.

Unstructured data
A significant portion of a company's data is not held in structured relational
databases. Instead, it is held in multiple, unstructured, or semi-structured formats.
Think of how much day-to-day activity you, dear reader, carry out using relational
databases and how much is carried out with e-mail. Indeed, you might even consider
code and comments to fit the definition of semi-structured data.

Here the litigation teams need all of the documents concerning the Widge-O lines
of products. "All" does not mean "most"—so every document, marketing graphic,
engineering design, and sales spreadsheet must be found and indexed.

For the purposes of this exercise, we want to capture the metadata concerning
all relevant documents. We will create a single directory to crawl. In the real
world, you would need to crawl the administrative partitions and associated
directories of each computer on the network (for example, \\computer1\ C$,
\\computer1\D$, and \\ComputerN\C$) searching for any file with a relevant
extension (for example, .docx, .xlsx, .pdf).

1.	 Create a directory labeled WidgeO, and then open your SSIS project for this
chapter. For the purposes of illustrating this effort, simply load it with a
random assortment of files you now have on your system. Create a variable
named path with a string datatype, and then drag a Foreach container onto
the package, as shown in the following screenshot:

Chapter 10

[317]

2.	 Open the Foreach loop container and select the Collection dialog from the
left-hand side. We will be using a Foreach file enumerator. Browse the
WidgeO directory you created earlier, as shown in the following screenshot:

Data Exchange Patterns

[318]

3.	 Next, select the variable mapping and select the User::path variable
we created earlier. This should be mapped to the 0 index. Click on OK,
as shown in the following screenshot:

4.	 Click on OK to accept your work. The Foreach loop will loop through each
file in this directory. We will create a script to fetch the metadata and load the
results into our database.

5.	 In order to handle that task, create additional string variables: createDate to
track the date of creation, DocName for the document name, and lastModDate
to track the last modification date. You can create other variables to track
other properties as you choose.

6.	 Drag a script task into the Foreach container and label it getDocData.
You can create some artificial data for the purposes of this exercise by
copying random files into the widgeO directory.

7.	 Open the execute script object. We need to map the variables correctly.
The path variable should be entered as read only, while the DocName,
createDate, and LastModDate variables are mapped as read-write.
Select the values from the drop-down lists.

Chapter 10

[319]

8.	 There are many ways we can get this data from the DTS variables collection
into the database. Here, we will choose to build an insert statement string
and pass it to an execute SQL task. To that end, create a variable insertSQL
and add it as a read-write variable. We will then simply concatenate the
string to create the insert statement.

9.	 You will need to add a using System.IO line, and then the following code
in the Main() method, as shown in the following code snippet:
public void Main()
{
string path = Dts.Variables["path"].Value.ToString(); //remember
that the variable name is case sensitive.
//for test
//MessageBox.Show(path, "path", MessageBoxButtons.OK);
System.IO.FileInfo fileInfo = new FileInfo(path);
Dts.Variables["CreateDate"].Value = fileInfo.CreationTime.
ToString();
Dts.Variables["lastModDate"].Value = fileInfo.LastWriteTime.
ToString();
Dts.Variables["DocName"].Value = fileInfo.Name.ToString();
//MessageBox.Show(Dts.Variables["DocName"].Value. ToString(),
"DocName", MessageBoxButtons.OK);
//build the sql
string SQL = "INSERT INTO Documents.DocumentTrace (DocName,DocPath
,CreateDate,LastModifedDate,CreatedBy, ComputerID) VALUES (" + "'
"; SQL = SQL + Dts.Variables["DocName"].Value + "' " + ", " + "' "
+ path + "' " +", ";
SQL = SQL + "' " + Dts.Variables["CreateDate"].Value + "' , " + "'
" + Dts.Variables["lastModDate"].Value + "' ,";
SQL = SQL + "133, 1)";
//MessageBox.Show(SQL, "SQL", MessageBoxButtons.OK);
Dts.Variables["insertSQL"].Value = SQL;
Dts.TaskResult = (int)ScriptResults.Success;
}

Note that we did not include any error handling as a best practice for this
example shell.

Data Exchange Patterns

[320]

10.	 Once your code is complete, drag and execute the SQL task into the Foreach
loop. We will use the same connection as the one we used earlier in the
chapter. Select Variable from the SQL Source Type drop-down list, and select
User::insertSQL as the Source Variable, as shown in the following screenshot:

11.	 We have previously populated some of the tables with data using SQL
inserts included in the source code. This statement will insert the data into
the DocumentTrace tables so that we have the correct metadata for the
relevant documents. You can now run the code and test it by selecting the
DocumentTrace table.

Setting up a search
As is the case with most companies, the "working knowledge" at WWW is often not
contained in formal, relational data structures. Instead, it is in documents, e-mails,
spreadsheets, and a host of other types of files that are used in every company for
day-to-day interaction and collaboration.

Chapter 10

[321]

You will need to work with a system that has SharePoint installed. Download and
install Search Server 2010 Express from Microsoft using the install wizards. We will
only work with crawling data on the local machine hosting SharePoint, as most of
our corporate masters would take a dim view of us crawling production networks
and colleagues' computers as a training exercise. We will also focus on Search Server
Express, as it allows you to familiarize yourself with the basic tasks associated with
indexing and searching for unstructured data without incurring any licensing costs.
Free is good.

Perform the following steps to set up a search:

1.	 Once you have Search Server installed, open the Search Administration page
and then select Content Sources and Add a Content Source:

Data Exchange Patterns

[322]

2.	 Name the crawled local files and select the File Shares. For Start Address,
enter the absolute path for the machine you are working with, along with
the directory you wish to crawl (for example, \\MyMachine\SomeShare).
Select Crawl the folder and all subfolders of each start address, and, if you
wish, create a schedule for both the full and incremental crawls. Check Start
full crawl of this content source, click on OK, and away you go. You will be
brought back to the Manage Content Sources page where you will see the
status of your crawl.

Once the crawl is complete, you can check the results in the crawl log. You can also
enter a search term in the SharePoint site and see the results. For our particular
scenario, this makes the content available quickly and easily to the lawyers and
others who will need to work with it.

Lessons learned
Here, we have scratched the surface of the myriad issues surrounding master data
management and the use of unstructured data in enterprise data management
systems. There are, of course, additional tools and methods that we simply do not
have the space to cover. Here we have used the basic tools of Master Data Services
and SSIS to handle some of the tasks associated with this problem.

Data sharing and federation
Data warehouses have a long history. From the 1970s to the 1990s, more data
warehousing tools and methods were developed and, by the 2000s, data warehouses
were a real success. A lot of books and articles were written; many organizations
invested a lot of money in data warehouses and solutions from Oracle, Microsoft,
and other software vendors.

Some organizations believed that data warehouses were the only solution for
a complex data integration problem. However, some of them faced challenges.
Let's look at a use case that will show us some typical challenges and concerns.

Use case – real-time data retrieval from highly
sensitive data sources
The Republic of Prudonia as any other country has law enforcement and justice
organizations. The crime level in this county is very low, and the government
once even suggested converting all police forces to forestry workers, but it never
happened. As of 2014, Prudonia has 15 police departments, courts, and a gaol. Each
police department has dozens of sworn officers, investigators, and other personnel.

Chapter 10

[323]

With the addition of courts and gaol employees, there are more than a thousand
people who use law enforcement databases on a daily basis.

Each police department, as well as the courts and the gaol, has its own record
management system. Some of them, especially small ones, started transferring paper
files into computer databases just recently, but now each and every employee has
access to the digitized data. Police officers even have laptops or tablets with satellite
connectivity to access the databases from any place in the country.

In addition to that, the country has some centralized information that belongs to state
departments, but this information is minimal.

As all law enforcement systems in the country grew inconsistently, they use different
software that are not totally integrated. Some information, for example, driver
license information, comes from the State Department of Licensing and is available to
anyone in the law enforcement. But the country does not have a centralized system
with criminal records or other related information. If a police officer stops a car for
speeding, the only criminal information that they can get comes from the databases
of their own department.

Police officers certainly appreciate the fact that they can find out whether the driver
license of the stopped person is valid. They can also find out whether the car is
stolen; this information also comes from one of the state databases. However, if the
person has criminal records in another police department, the police officer would
not be able to know it.

Prudonian law enforcement and justice organizations realized the deficiency of the
system a long time ago. Even with the launching of the first record management
systems, some of the IT professionals suggested making that effort consistent across
the entire country. But since all police departments had their own agendas, the
suggestion was never heeded.

Now the need for integration of the criminal records is obvious, and data exchange
sounds like a reasonable solution.

Data warehouse challenges
First, the IT consultants recommended creating a data warehouse and feeding it
with the data from record management systems on a daily basis. With the known
advantages and the successful history of data warehouses, the technology choice
sounded very feasible. Each police officer would be given an application running
on their laptop that would enable real-time search in the data warehouse. Now, if
a suspect were stopped on the street, the officer could get everything that has been
known about the suspect in the entire country.

Data Exchange Patterns

[324]

But as usual, the human factor was much more critical than technologies.

The first obstacle appeared when business analysts and subject matter experts from
different police departments started meeting to work on data mapping. In order to
understand each other's data better, the organizations were asked to present examples
of actual data. But the actual data contained sensitive information, and sharing this
data required a written permission from chiefs of the involved departments. Getting
the papers signed took a few weeks, and the entire process stopped.

When some department chiefs were puzzled by the request to share data with other
organizations, they realized that, in the proposed solution, they would have to give
away their data in order for this data to be aggregated in the data warehouse. Most
of them did not appreciate the idea.

Working in law enforcement has its consequences. Seeing criminal problems every
day is a challenging experience. Many law enforcement officers have seen many
people whom they would never trust. Not only criminals, but many other people,
including fellow officers, sometimes lost their trust. After a couple of decades
working there, some of them created a habit of being suspicious, even paranoid,
at least in the very beginning.

And when they heard that now they were supposed to give their data away for
someone else to manage it on a daily basis, that idea was not much supported.
Even if they still would have control of the original data, the data was very
precious to be also stored somewhere else.

Some police chiefs decided to look closer at the solution. And since they were
already prejudiced against the approach, they started finding more concerns that
were not thought of initially.

One of the concerns was the fact that the data warehouse was planned to be updated
everyday. ETL processes usually take time and interfere with the sources systems;
therefore, the updates are usually done as infrequently as possible. For Prudonia,
with a relatively low crime rate, the systems were not enormously busy, and the
number of daily transactions was not huge, but still doing the updates as frequent
as every 5 minutes, as some of the police departments suggested, was not possible.

Really, combining real-time updates with the data warehousing approach was
not feasible.

Chapter 10

[325]

Another concern brought up by the participants was the fact that the data warehouse
solution would be too much for their needs. Their immediate requirements specify
real-time search functionality only. They never requested any aggregated reports
or business analysis. Certainly, having analytical tools sounded nice in the very
beginning, but the effort was considered too extensive when the approach came
under scrutiny.

The whole solution now looked too heavy and, with the trust problems, did not look
feasible at all.

Another approach – data federation
Let's take a look at the following diagram of the data warehouse, originally proposed
by IT experts:

The workflow on this diagram has two big steps. First, all information from data
sources is uploaded to the data warehouse where it is aggregated. Secondly, a user
issues a search request and gets back a response with the aggregated result.

Data Exchange Patterns

[326]

What if we retrieve the data from the source systems and aggregate it every
time a search request is issued? In that case, we replace the data warehouse with
a middle-tier system that retrieves the data from the source systems and aggregates
it, as shown in the following diagram:

The proposed approach is called data federation.

Pattern description
A federated database is a set of distributed databases that can be accessed through a
level of abstraction. The data can be accessed through a unified interface every time
the request is sent. Aggregated data does not have to be stored longer than for the
time of the transaction.

Another term used equally with the federated database,
is virtual database.

Chapter 10

[327]

The pattern has the following features:

•	 The data sources can be (and usually are) heterogeneous and distributed.
Each source's system has to provide an interface that does not have to
be unified. It is critical though that the data retrieval time from each
individual data source is insignificant. With legacy systems, to improve
this characteristic, a staging area can be added to the slow source system.
This mixed model is sometimes called the Embassy Model.

•	 The data is owned and controlled by the source systems. The retrieval
mechanism at the source system can implement business rules deciding what
data should be returned and when. It can implement an appropriate privacy
approach, returning more confidential data, only to requests with higher
privileges. Some data can be completely hidden if necessary.

•	 The data in the middle tier is not persisted. The data is aggregated on the
fly and never stored. Data encryption may be somewhat a challenge as with
any aggregation.

•	 The data sources can be (and are better) accessed asynchronously.
This significantly improves the performance of the overall system. Some
requirements may state that retrieving just some data would be still valuable.
In that case, the timeout for accessing the data sources can be minimized.

•	 Data traffic should be encrypted. The level of encryption is dictated by the
industry. Transport-level encryption, such as SSL/TLS, is mandatory.

•	 The middle tier should imply a canonical data schema that is exposed to the
clients. Depending on the requirements, the canonical schema may represent
the union as well as the intersection of the data. Data transformation
operations in the middle tier can be as complex as the ones we discussed
while talking about data warehouses.

Key requirements
The project is interdepartmental, which means that the implementation of it
will be done by either a government IT department or by a group created under
the state CIO.

The IT department does not have a lot of history and, most likely, will hire external
contractors for design and development.

Data Exchange Patterns

[328]

The pilot project has to be developed fast, in six to eight months. The demonstration
of the pilot project should convince all organizations to participate in the project.

The largest organizational problem is establishing trust between integration
participants. The technology selection will barely affect this challenge.

Candidate architecture #1 – BizTalk Server
Every data request-response is an individual message. Therefore, BizTalk Server,
the middle tier that deals with messages, is our first candidate.

Solution design aspects
BizTalk Server has several advantages that make it a strong candidate for this
solution from the design perspective:

•	 BizTalk perfectly works with heterogeneous data sources. The number of
included and third-party adapters is large, which enables working with
different, even legacy data sources.

•	 BizTalk is a reliable technology that is based on the foundation of SQL
Server. It has several capabilities that help easily achieve high availability;
it is designed for high volume.

Note that data persistence in BizTalk is quite a disadvantage in
this case since the data owners don't want the sensitive data to be
persisted anywhere in the middle tier.

Solution implementation aspects
The visual interface helps with implementation, but the learning curve for the team
will still be steep. BizTalk is a complex tool and learning it from scratch would take a
significant time.

However, BizTalk has native mapping and transformation capabilities, which will
reduce the development time.

Solution operations aspects
BizTalk is not an easy tool to deal with. It requires some training and potentially
buying third-party maintenance tools.

Chapter 10

[329]

Organizational aspects
BizTalk solutions are built on top of SQL Server, which means buying additional
licenses. In order to provide high availability, for example, by means of clustering,
even more additional licenses are required.

Solution evaluation
If the organization were a BizTalk shop with a lot of experience with BizTalk,
using BizTalk could have been advantageous. However, high licensing costs and a
steep learning curve make it less attractive. The following table shows the results of
our assessment:

Design Implementation Operations Organization

Candidate Architecture #2 – .NET
Another approach that we would consider is developing the middle tier from
scratch using .NET and C#. An external development team should be hired since
the IT department does not have enough resources.

Solution design aspects
Designing a high-availability, high-performance solution from scratch can be a
challenge. However, in the .NET community, many patterns and best practices have
been established to help with these tasks. Data extraction from sources would be a
real challenge since all data connections have to be developed (no adapters as in the
BizTalk case).

Solution implementation aspects
With a proper design and a highly skilled team, writing the code does not
sound extremely difficult. However, this is a time-consuming task and very
likely expensive.

Data Exchange Patterns

[330]

Solution operations aspects
Running the application and performing its maintenance and support would require
building additional tools.

Organizational aspects
In order to develop the solution, the IT department has to hire external contractors.
It may also need to invest in the Visual Studio licenses.

However, solving the biggest challenge of the solution—trust concerns—might be
easier with the solution whose development is under control.

Solution evaluation
The most challenging part of the work is the solution design. Performance, security,
and reliability don't come as a part of a package. However, writing .NET code has
the advantage of having complete control of the solution, which is important when
the integration participants have very limited trust in each other. Have a look at the
following table:

Design Implementation Operations Organization

Architecture selection
Making a decision in this case is a very difficult process. All candidate architectures
have probably more disadvantages than advantages.

However, since there are many unknowns, complex organizational dynamics, and
the need to have more control over the solution, we recommend developing the
solution as a .NET application.

Chapter 10

[331]

The components are described in the following table:

Component Benefits/Risks
BizTalk Benefits

•	 Has an extensive library of adapters
and enables integration with
heterogeneous data sources

•	 Reliable and extensible technology
•	 Has a native mapping and

transformation capability

Risks
•	 No previous expertise
•	 Needs significant investment of time

and resources
•	 Persists data in the middle tier

.NET development Benefits
•	 With a proper design, business logic

can be easily implemented
•	 Total control over the solution
•	 Does not persist data in the middle tier

Risks
•	 Designing high-availability,

high-performance solutions
can be a challenge

Download the code of the WCF service that works as a middle tier and provides
some basic security and two data sources, to see the sample implementation.
The code can be downloaded from the Packt site at www.packtpub.com.

Lessons learned
•	 In a very complex, organizational situation, when integration participants

feel a lack of trust in each other, data warehouses are not the ideal solution
for data aggregation. Using data federation for data-sharing tasks is
preferred when there is no actual need of persisting data in the middle tier.

www.packtpub.com

Data Exchange Patterns

[332]

Summary
In this chapter, we talked about many facets of information integration
architecture. We discussed file transfer, shared databases, data migration, and data
synchronization. We looked into the ETL pattern and data federation. We have
chosen leading technologies and provided working examples for some patterns.

With this chapter, we completed the discussion on integration patterns. In the next
chapter, we'll talk about workflows, both with and without human intervention.

Workflow Patterns
In business process automation and system integration, often you may hear about
workflows. However, if you asked several professionals what workflows are, you
will get a number of different answers. And this is no surprise since the concept
of workflow is decades old and is used in many industries. In software-intensive
systems, workflows can be as simple as steps to complete and approve a document
or as complex as tasks involved in managing a long-running process between
different departments or organizations.

Nevertheless, there are some commonalities in all these approaches to workflow
systems, which are described as follows:

•	 Workflows are composed of a series of steps. Each step represents a task or
an activity that has to be performed under some circumstances.

•	 The steps can be performed in parallel or in sequence.
•	 Execution of a specific step may depend on the input to that step.
•	 Action in each step may use some rules specific to that step.
•	 These rules can determine which step should be executed next.
•	 Each step may produce an output. The output may be used as an input

for other steps.
•	 Workflows can be stateful as well as stateless.

In this chapter, we'll consider two different types of workflows: fully automated
workflows and workflows that require human intervention.

Workflow Patterns

[334]

Fully automated workflows
The idea of automatic execution of software components is as old as computer
programming itself. In a sense, every computer program executes a workflow
running its modules step-by-step. However, this execution does not require
additional tools and methods.

In system integration, every time one system passes the control to another system,
there is a chance of building a general workflow system. Steps executed in this
workflow can be run completely independent of human intervention. The decision
about executing a certain step can be made based on configuration, business rules,
and the output of previous steps.

Let's take another look at data federation discussed in the previous chapter. We shall
focus on the required workflow rather than data exchange.

Use case – a single dashboard view
Sam MacColl Financial is a financial services organization based in Perth, Scotland.
They focus on providing quality individual and corporate financial services with
a special attention to individual retirement planning. They employ over 3,000
employees in Scotland. The majority of their branches are in Scotland, but they
are slowly expanding into England and parts of Ireland and Wales.

The company's focus on long-term buy-and-hold investments has meant that their
retirement and investment products fared comparatively well in the subprime
downturn due to limited exposure. This means that they have grown rapidly over
the last 18 months and anticipate further growth. They found that many customers
take multiple products from the Sam MacColl portfolio; they want to encourage this
as it increases "stickiness".

They have had online banking available for checking and savings account products
since their inception, but they now want to add their other products to enable
self-service. Users increasingly expect an available, self-service portal that provides
a consolidated view across all products. Their current Internet Bank application
is coded in ASP and calls ASMX Web services from the application tier to access
savings and checking account information. The current portal does not provide a
summary view for checking, savings, and retirement account information as users
have to log in to a separate portal to access this information.

Chapter 11

[335]

Recently, customer complaints have risen, and the company wants to take action
to provide the best possible customer experience. They want to expand and
provide a consistent dashboard for their checking, savings, and retirement account
information. They would like a platform that provides extensibility; specifically,
the ability to add new products and accounts to the dashboard with minimal code
changes. A flexible solution will enable the company to provide a better portal,
which in turn, will enable customers to get a fast and real-time view of their
financial products, thereby improving customer satisfaction.

Sam MacColl's major systems run on the Windows platform and have a web service
facade to which they can connect. As part of this project, they will be upgrading
these to WCF. They do have a sizeable number of .NET developers and own some of
Microsoft's major server platforms such as SharePoint Server and Exchange Server.
The downstream systems that hold financial information are standardized on SQL
Server backend databases and have the same security model; for example, they
restrict each customer to have access only to their own data and provide internal
employees with minimum possible information necessary to perform their job.

Sam MacColl has adopted a buy versus build strategy, where they prefer using
existing, well-tested frameworks and products with extensibility points instead
of custom-building their own solutions from the ground up. They try to structure
their solutions in a very loosely coupled manner using a common, open standard
wherever possible to minimize development effort and the ongoing supportability
burden that comes from maintaining custom code. This is relevant in this use case
as it is expected that the Internet Bank application will need to expand and add
additional systems integration as the number of self-service products increases. As a
first step, the Sam MacColl architecture team has asked to see a critical comparison
of different architectures against their requirements. In the recommended approach,
they would like to see a proof of concept, which demonstrates a sample dashboard
with an end-to-end implementation.

Key requirements
The following are the key requirements for a new software solution:

•	 A single dashboard view for all financial service products that the
customers have.

•	 An online banking application that is easier to maintain and requires less
custom code.

Workflow Patterns

[336]

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. The requirements derived from this include the following:

•	 The frontend does not have to know where the information comes from; it
should only contact a single point.

•	 All calls should be made in a service-oriented fashion.
•	 The system needs to be able to scale to more than one million users over

a 24-hour period, which equates to approximately 12 users per second.
•	 During peak usage, which occurs at the beginning of a day and during the

evening, the maximum number of users is 25 per second.
•	 The response time is critical for the dashboard page as this is the page used

by 90 percent of customers every day. They would like 95 percent of users
to receive a response within three seconds and 99 percent of them to receive
a response within five seconds.

•	 The bank would like to have a consistent workflow platform that supports
synchronous, asynchronous, short, and long-running workflows.

•	 The system must provide tracking and monitoring capabilities.
•	 The system must provide exception management at every stage.
•	 Initially, the system must not only address the dashboard requirement,

but also must provide the capabilities necessary to add additional services
to the Internet Bank, including the following services:

°° Handling transactional workflows: This is a requirement for Sam
MacColl Financial to implement workflows that require guaranteed
once-only delivery (for example, payment workflows).

°° Long-running asynchronous workflows: The bank is considering
implementing an end-to-end mortgage application; in future, many
of the transactions required in these types of processes can be long
running and may require human intervention or approval. The
system should be able to support these capabilities.

°° Real-time updates: The system must be capable of providing
real-time updates if payments are implemented on the system.

The Scatter-Gather pattern
In this scenario, we need to receive a single inbound request. Then, based on the
content in that request call, several backend services gather information about the
customer and then correlate the responses, aggregate them, and finally send them in
a single response message. The web application will then display their personalized
information to them.

Chapter 11

[337]

The logical choice is to use an aggregator, which is responsible for the collection
of requests, performing transformations (if they are required), and returning the
response. All of this also needs to be done in the shortest possible time, as users
are not willing to wait more than three to five seconds for this type of information.
This pattern is commonly referred to as the Scatter-Gather pattern.

In the Scatter-Gather pattern, information is broadcast to multiple recipients
and then the responses are reaggregated into a single message. An aggregator
component is responsible for receiving the initial request message, broadcasting in
an appropriate format to all the target systems, and finally, combining the results
of these individual but related messages and returning them as a single response so
that they can be processed as a whole. Typically, in this pattern, the aggregator is
implemented as a separate tier, so it can abstract the logic necessary to maintain the
overall message flow and handle any exceptions from any of the systems queried.

This pattern is particularly successful if you follow service-oriented concepts and
require a loosely coupled, scalable aggregator that can be reused by different
applications across your organization. As the calling application only calls a single
method on the aggregator, the source of the information and how it is extracted is
abstracted from that tier. This enables additional targets or sources of information to
be added with no update required on the client side. The following diagram depicts
a high-level representation of what this could look like for Sam MacColl Financial.
As is evident from the diagram, separating the aggregator from the consumer of
the aggregator (the Internet Bank application) creates a layer of abstraction between
them and the endpoints, if properly designed. It also means that the consumers
need not worry about implementing any logic that is specific to the interface that the
backend systems provide. The aggregator in this example makes calls to the three
target systems in parallel:

Workflow Patterns

[338]

Factors affecting implementation details
As we have discussed so far in this chapter, there are many key factors that need to
be taken into consideration while implementing this pattern. Here, we are going to
outline the ones that we consider important, while evaluating solutions for this type
of problem with customers. The factors that we consider important are as follows:

•	 Completeness: This determines when we are ready to publish the
aggregated response message. Whether returning of partial data is useful
or not is perhaps the most important factor to consider while implementing
this pattern. This will depend on the scenario and the client's requirements.
For example, in a price-comparison engine that queries hundreds of sources,
partial data is likely to be valuable and relevant. In cases where results from
multiple sources need to be merged to one coherent response, partial data
may not be useful.

•	 Aggregation strategy: The strategy you use depends primarily on the
completeness criteria and SLAs that the aggregator needs to meet. The two
most common scenarios we have seen are Timeout, where the aggregator
waits for a specified duration of time for responses and then either returns
the response or an exception to the client, and Wait for all, which is used
when an incomplete order is not meaningful. Typically, it is important that
the aggregator knows the expected number of responses and has appropriate
exception handling capabilities. An exception to this is where the aggregation
concludes based on some external event; for example, the end of a trading day
may conclude the aggregation of the value of all stock trades in that period.

•	 Aggregation algorithm: Typically, there will be a requirement to sort or
condense the data in some way. Factors that affect this include the size of the
aggregated response that is to be returned and whether the user is interested
in all of the responses or a small subset of the responses. One extreme would
be if there is a single best answer; for example, in an auction site, the seller
may only be interested in the highest confirmed bid. If a larger amount of
data is being returned, it may need to be sorted by one or more criteria;
hotel booking websites are a good example of this. Factors for consideration
include price, facilities, and distance from local amenities. Whether the data
should be condensed depends on the type of data being returned—numeric
data is best suited for this. For example, while analyzing sales data, it is
often the volume and average order value that is of interest. If you decide
to condense the data and only return a subset, you should consider whether
you wish to archive the complete selected data for later evaluation.

Chapter 11

[339]

•	 Exception handling and appropriate timeout: Implementation of this factor
depends on the aggregation strategy algorithm and completeness criteria
for your system. Even in a wait for all aggregation strategy, it is unlikely
that waiting indefinitely is the desired behavior, especially in a synchronous
request-response scenario. A timeout and exception handler should be
implemented so that the aggregator can handle all possible scenarios,
including one of the endpoints being unavailable; for example, due to
system outage. If an exception occurs, it must return an appropriate response
message to the client, and you should also log this in the appropriate log.

•	 Monitoring and tracing: This is distinct from exception handling; it provides
the ability to monitor and trace the aggregator. If implemented correctly, this
can be used in a number of ways, such as providing average processing times
for the aggregator over a 24-hour period, or enabling system administrators
to determine the progress of in-process operations. This can be provided by
the following platforms: Microsoft AppFabric for Windows Server provides
monitoring capabilities, so does BizTalk Server, which enhances this further
with the option of implementing Business Activity Monitoring (BAM).

•	 Type of response to return (the data format): How you represent the data
to consumers is an important consideration. Using WCF ensures that you
make appropriate use of message contracts, data contracts, and the bindings
it provides so that you get the right trade-off among performance, client-side
operations that are available on the dataset, and interoperability.

•	 Number of calls versus expected usage: Returning smaller datasets typically
places less load on the backend systems that are queried, requires a smaller
payload size, less CPU overhead, and can provide better performance as
measured by response time. However, if implementing this approach requires
that each user now make multiple calls to the aggregator component's
operations, this may actually place more overhead on the system and provide
a poorer perceived performance. Consider the scenario where someone logs
in to their online bank, views their summary page of all account balances,
and then looks at the detailed statement of one account, for example, their
credit card account. There are two succinct operations that are performed
here. Whether all this information should be returned by the aggregator in a
single response or it could require two calls, is an important design decision
to make. Typically, this depends on the normal usage of the system and the
customer requirements. Sometimes, historical usage or trending data shows
that a majority of logged-in customers will examine only the dashboard view
and then log out. In that case, by only returning the condensed summary data,
you will be able to minimize the load on the backend systems and improve
response time.

Workflow Patterns

[340]

•	 Correlation: This is handled implicitly in the platform; for example, if you
are calling synchronous two-way services using a request-response port in
BizTalk, you will need to define this yourself based on the Message ID or
some other unique value.

•	 Processing (parallel or sequential): Unless sequential processing is a typical
requirement, an aggregator should perform all backend calls in parallel to
minimize the processing time and latency.

•	 Durability of data: You should determine whether the data is transient or
transactional. Normally, in the Scatter-Gather pattern, the data is transient;
for example, if the user does not receive a response, they will simply retry.
This pattern is intended to service, primarily, read requests from multiple
systems. If you are performing a transaction such as a payment, you might
want to consider implementing this as a separate component and requiring the
client to call this. The Internet Bank system, mentioned previously, opted to
take this approach. They implemented a single orchestration as their Scatter-
Gather aggregator, and then had separate messaging components if any stock
trade or funds transfer was initialized. If transactional processing semantics
are required, you should determine whether the platform supports this; for
example, the BizTalk orchestration engine that guarantees no loss of messages.

Candidate architecture #1 – BizTalk Server
BizTalk is Microsoft's Enterprise Integration tool and has a robust messaging and
workflow (orchestration) engine. MacColl bank is already, largely a Microsoft-based
technology firm. BizTalk provides full and complete integration with Microsoft and
other heterogeneous technology through its adapter framework. For the purpose
of this analysis, the assumption will be that BizTalk is not already in use within
the organization.

We can take a look at the decision framework as it relates to BizTalk to see whether a
BizTalk-based solution is a fit for this use case.

Solution design aspects
The system needs to be capable of processing one million messages over a 24-hour
period. The peak load represents 25 messages per second. While dealing with
requirements like this, it is always good to have a margin of safety in terms of
throughput ceiling. Therefore, this system will require a robust and proven host,
which can scale to meet these throughput requirements and beyond. To implement
this pattern, we would require the BizTalk Orchestration Engine, which can easily
be used for service aggregation and provide support for correlation. BizTalk also has
the ability to expose an orchestration through a SOAP or WCF endpoint.

Chapter 11

[341]

Each call to the backend services could be implemented in an inline fashion using a
.NET helper class to instantiate a WCF channel factory or call the service and retrieve
the response. The more traditional approach is to use the logical request or response
ports that BizTalk server provides to do this. Making the calls in an inline fashion
may be beneficial in this scenario, as it reduces the number of persistence points
required and also the round trips via MessageBox.

From a performance perspective, recent benchmarks by the Microsoft BizTalk
Customer Advisory Team demonstrated that BizTalk can scale to process tens
of millions of messages per day using well-tuned middle-tier hardware.
Specifically, for two-way calls they have obtained over 60 messages per second
for a Scatter-Gather pattern that made five backend calls. These tests were
performed on mid-tier Enterprise hardware, which is available to the customer.
This gives us a sufficient margin of safety as it is more than double our peak
requirements. BizTalk Server also provides a comprehensive monitoring
infrastructure with out-of-the-box built-in capabilities and the Business
Activity Monitoring framework, which can be used to provide a customized,
business-centric monitoring solution.

Solution implementation aspects
Sam MacColl Financial is predominantly a Microsoft technology-based organization.
The assumption here is that they do not already have BizTalk running; therefore,
if the decision was made to use this particular product, they would also have to
bear the additional infrastructure and solution support necessary to support a
system like this.

Given that they have already made extensive use of other Microsoft technologies,
they have some of the platform skills required. However, BizTalk is quite a
complicated product to understand and maintain; therefore, they would need to
invest in training some key staff to establish one or more subject matter experts
(SMEs) within their architect, development, and operations teams. Given that they
currently do not have the in-house expertise and the amount of money that would be
required for training, unless they have planned broader needs and uses of BizTalk, it
would be a negative factor in this use case.

Solution operations aspects
As stated, Sam MacColl Financial does not have an existing BizTalk implementation.
Therefore, they would need to invest in training their operational team, putting
processes in place to support BizTalk as well as the necessary infrastructure.
Supporting BizTalk requires a rather unique set of skills.

Solution operations are a negative factor in using BizTalk for this use case.

Workflow Patterns

[342]

Organizational aspects
Sam MacColl Financial does not already have an existing BizTalk platform that they
can leverage, and they do not have the experience in running and maintaining this
system. Therefore, this is a negative factor in using BizTalk for this use case.

Solution evaluation
As our evaluation shows, this solution has a lot of weaknesses in implementation
and operations. There are also some negative organizational aspects, as shown in
the following table:

Design Implementation Operations Organization

Candidate architecture #2 – .NET WF service
Microsoft AppFabric for Windows Server provides a rich host for Windows
Communication Foundation (WCF) and Windows Workflow Foundation (WF)
applications. The AppFabric host provides supporting services, tools, and diagnostics
to make hosting and managing services simpler. The WF service would leverage
the existing capabilities that Sam MacColl has in .NET. WCF is something they are
already planning to use for their backend services; WF is capable of providing the
durable workflow tier that they need in order to implement the aggregator.

The aggregator could be implemented as a workflow service. In .NET 4, workflow
services have been expanded to provide more features and easier integration with
WCF endpoints. WCF supports several out-of-the-box bindings, and additional
bindings are available through several sources, including the BizTalk Adapter Pack.
Standardizing on WCF would, therefore, allow them to communicate with their
existing backend services (which will move to a WCF interface), and it will also add
connectivity to other systems that they want to aggregate in the future.

Chapter 11

[343]

Adding additional services would be done in a visual drag-and-drop design
environment, minimizing the development time. Any required message
transformation could be done in custom activities. The Parallel Actions shape
provides the capabilities to call systems in a synchronous manner, and a timeout can
be implemented within the shape to enforce SLAs for maximum client-wait duration.
In addition to this, persistence is provided in the .NET Framework through the SQL
Workflow Instance Store. This allows durability requirements to be met if required
at a later date, for example, if transactional data such as payments is to be processed
by AppFabric.

Now, we will look at the decision framework and evaluate the workflow service as
an implementation fit for this use case.

Solution design aspects
As stated previously, the throughput requirements equate to a peak load of
25 messages per second. Implementing this pattern would require a single
aggregator workflow service that must fulfill the following tasks:

•	 Expose a request-response endpoint to the client
•	 Call the backend systems and aggregate the responses
•	 Perform any necessary translation
•	 Implement timeouts to ensure that client SLAs were met
•	 Send the aggregated responses back to the original client

The backend services that need to be integrated are WCF based; by adding service
references to these endpoints, the logic is automatically encapsulated into a WF
activity, which can be used within the aggregator workflow. Adding service
references is a straightforward process and means that if additional WCF endpoints
need to be added, it can be done quickly and easily. WF also provides the ability to
write code-based activities that can also be used to encapsulate any specific code,
such as code transformation. Any code-based activities can be defined in a separate
assembly, which allows this functionality to be reused across different workflows
and applications.

By utilizing AppFabric as a host, one can take advantage of the scale-out capabilities
that it provides. This would enable Sam MacColl Financial to scale-out their
aggregator tier if it became necessary due to throughput requirements.

Workflow Patterns

[344]

Solution implementation aspects
Sam MacColl Financial develops complex solutions on .NET, and they will be
moving their backend services to WCF as a part of their new Internet Bank project.
They already have a large installed base of Windows Server 2008 R2 and have
gradually, over the last six months, begun rolling out Windows Server 2012.
AppFabric, available as a free download, is an extension on top of IIS/WAS, and the
development team already has extensive experience in developing web solutions on
the .NET platform.

Workflow services will reduce the coding effort required to build this application as
the aggregator can be implemented without a lot of custom code. This will speed up
development and reduce testing time compared to what it would be if they were to
fully customize all this logic and hosting capability in C#.

Solution operations aspects
Sam MacColl Financial already has an existing Windows Server infrastructure on
which they can deploy AppFabric. Supporting workflow systems are paradigm
shifts for many operations staff, so training will be required.

Organizational aspects
As stated, Sam MacColl Financial already has an existing Windows infrastructure
that can support AppFabric and .NET workflow services development. While this is
a new technology and will require some training, it is not expected that this will be a
significant burden. Therefore, this solution represents a good fit for the organization.

Solution evaluation
This approach looks much better. There are some operational concerns, but
otherwise it looks great, as shown in the following table:

Design Implementation Operations Organization

Chapter 11

[345]

Architecture selection
Let's look at how these candidate architecture technologies stack up against each
other. We can break down the primary benefits and risks of each choice in the
following manner:

Technology Benefits/risks
BizTalk Server Benefits

•	 This has many out-of-the-box adapters, which means
connecting to the majority of systems is only a
configuration task

•	 This provides durability throughout with the Message
Box

•	 This is an enterprise-class hosting infrastructure

Risks
•	 There are perceived large server footprints
•	 There are significant upfront costs

.NET workflow service Benefits
•	 This is a lightweight, high throughput feature, and a

rich host for .NET 4.5 Windows Workflow
•	 This has debugging, monitoring, and exception

handling capabilities of AppFabric
•	 This provides load-balancing capabilities
•	 This has implicit and explicit correlation capabilities
•	 This provides persistence through a workflow

persistence provider

Risks
•	 This is a perceived large server footprint
•	 There are significant upfront costs

There are a number of key benefits of .NET 4.5 workflow services in this scenario. It
meets all the requirements with no additional upfront cost over and above Windows
license fees. BizTalk provides a lot of additional features, which are not necessarily
required in this scenario, where the priority is on processing transient data. These
include BAM, the Business Rules Engine, and the host of adapters it provides. These
are valuable features, but at present, this scenario does not require them.

Workflow Patterns

[346]

Therefore, in evaluating these options against the problem scenario, the .NET WF
service is the most appropriate choice. Although both BizTalk Server and a .NET
WF service meet the necessary solution and design aspects, the organization already
has the infrastructure necessary to support the latter scenario with no additional
licensing costs. As they have no firm plans to use BizTalk and do not require any of
the additional functionality, such as BAM or complex mapping, the latter solution
becomes the prominent and chosen candidate.

Building the solution
For this solution demonstration, we will implement three WCF backend services that
represent the checking, payment, and retirement account systems; these services will
have data contracts, but will be "stubbed out". We will then implement a workflow
service, which will be our aggregator, and also a sample ASP.NET page which
will represent our web tier. A key aspect of this solution architecture is to follow
service-oriented principles and keep our design as loosely coupled as possible.
Within the organization, passing data by a data contract is acceptable; if we were
interfacing with external systems, we would implement message transformation.
The components of the solution are listed as follows:

•	 Internet Bank: the ASP.NET page
•	 Aggregator: the .NET workflow
•	 Checking Account: the WCF service
•	 Savings Account: the WCF service
•	 Retirement Account: the WCF service

You can see the main components of the solution depicted on the diagram in the
The Scatter-Gather pattern section.

Implementing this solution demonstration will allow us to evaluate .NET capabilities
to implement the Scatter-Gather pattern. For simplicity purposes, we will not
implement a timeout in this workflow.

Setup
Initial setup is needed to simulate the backend services. For demo purposes, the
backend checking, saving, and retirement account services will be implemented as
separate projects, each containing a single WCF service contract with an arbitrary
operation implementation to return an object representing the account. A separate
data contracts project has been used to define the Customer and Account classes
that we will use to exchange data between different parts of the application. The
DataContract attribute of these classes allows WCF to serialize the objects and
pass them efficiently between different tiers.

Chapter 11

[347]

It is good practice to deploy common data contracts and types to separate assemblies
so that they can be reused within different applications in an organization.

This project also contains an empty aggregator project, which will host our workflow
service, and a web tier project, which will host our ASP.NET page. In this solution
demonstration, you will deploy the backend WCF services that have been provided
and then implement a workflow service that serves as our aggregator. Finally, we
will create an ASP.NET page that will consume our aggregator service. Perform the
following steps:

1.	 First, let's begin with the setup. Before starting, you will need to ensure you
have the following software on your machine:

°° Visual Studio 2012
°° The Microsoft .NET 4.5 framework
°° AppFabric 1.1 for Windows Server. For the detailed description

of AppFabric installation, refer to http://msdn.microsoft.com/en-
us/library/hh334245(v=azure.10).aspx

2.	 Launch Visual Studio and open the SammMaccolBank.sln solution from the
book sample code. You will see the following projects:

3.	 Build and publish each of the following projects:
°° SamMaccollBank.CheckingAccountService

°° SamMaccollBank.RetirementAccountService

°° SamMaccollBank.SavingAccountService

4.	 The setup is now complete.

For testing, you can use the WCF Test Client located under Program Files\
Microsoft Visual Studio 11.0\Common7\IDE (or Program Files (x86)\
Microsoft Visual Studio 11.0\Common7\IDE for 64-bit systems).

http://msdn.microsoft.com/en-us/library/hh334245(v=azure.10).aspx
http://msdn.microsoft.com/en-us/library/hh334245(v=azure.10).aspx

Workflow Patterns

[348]

Building the service aggregator workflow service
So, you have successfully deployed the backend WCF services and utilized the WCF
Test Client tool to test and verify the functionality of each of these. We will now
implement the service aggregator workflow service.

Setting up the project
Perform the following steps to set up the project:

1.	 Launch Visual Studio 2012 and open the SamMaccollBank.sln solution from
<Installation Directory>\SamMaccollBank\.

2.	 Right-click on References for the SamMaccollBank.Aggregator project, and
add a reference to SamMaccollBank.DataContracts. This will allow you to
use the data contracts defined within this project while exchanging data with
the backend WCF services.

3.	 Now, you need to add a service reference to each of our backend WCF
services. Right-click on the SamMaccollBank.Aggregator project and
select Add Service Reference. The address should be http://localhost/
CheckingAccountService/CheckingAccount.svc, and the namespace
should be CheckingAccountService. Click on OK to add the reference.

Repeat the previous process, adding service references for the retirement and savings
account services using the following details:

Service Address Namespace
Retirement

Savings

http://localhost/
retirementaccountservice/
retirementaccount.svc

http://localhost/
SavingAccountService/
SavingAccount.svc

RetirementAccountService

SavingAccountService

Implementing the AccountAggregator workflow
Perform the following steps to implement the AccountAggregator workflow:

1.	 Once you have added these service references, and you have rebuilt the
project, open the AccountAggregator.xamlx workflow. In the toolbox,
you should see three new custom activities, which have been generated
and can be used to call the backend services.

Chapter 11

[349]

2.	 Now we shall implement the required logic for the AccountAggregator.
xamlx workflow. Within the workflow, click on the Imports tab and enter
the SamMaccollBank.DataContracts namespace.

3.	 Now drag-and-drop a Sequence shape onto the empty workflow space.
Change the display name from Sequence to AccountAggregatorScope.

4.	 Our service will receive an object of the Customer type and will return a
sorted dictionary of the <String, Account> type. Because all objects are
modeled using our common base class Account, we will use a single instance
of the System.Collections.Generic.SortedDictionary class to return
the aggregated account information to the consumer of the service. To create
these two objects, click on AccountAggregatorScope, then click on the
Variables tab, and create the following two objects. Note that to create both
of these objects, you will need to select Browse for type… while selecting the
variable type.

Name Variable Type Scope Default
current
Customer

Customer
(Browse for
SamMaccollBank.
DataContracts to
select)

AccountAggregat
orScope

account
Dictionary

Dictionary <String,
Account>

(Type in Dictionary
in the Type Name to
select the System.
Collections.Generic.
Dictionary class)

AccountAggregat
orScope

New
Dictionary
(Of
String,
Account)

5.	 We will also need variables for the request and response messages to the
three backend services that the account aggregator is consuming. The types
were already created for us when we added the service reference. By clicking
on Browse for type …, you can see the following:

°° SamMaccollBank.Aggregator.CheckingAccountService

°° SamMaccollBank.Aggregator.RetirementAccountService

°° SamMaccollBank.Aggregator.SavingAccountService

For each of these, there is a request message type, which is of the
<OperationName>Request format and a response message type with
the <OperationName>Response format.

Workflow Patterns

[350]

6.	 As we have a project reference and access to the data contracts assembly,
our generated classes use these types. This enables us to pass the
currentCustomer object to each of the backend service-request operations
as an input variable. This is one of the advantages of having a shared data
contracts assembly. We can also create some variables of the Account type
to represent the responses. Now create the following variables by clicking
on AccountAggregatorScope:

Name Variable Type Scope
checkingResponse Account AccountAggregatorScope

savingResponse Account AccountAggregatorScope

retirementResponse Account AccountAggregatorScope

7.	 Now add a Parallel shape to AccountAggregatorScope and change its
display name to Aggregate Call.

8.	 Within the Aggregate Call shape, add three sequence shapes, which should
be side by side. From left to right, name them Checking Account, Saving
Account, and Retirement Account, respectively.

9.	 Within the Checking Account shape, add a GetCheckingAccount activity
from the toolbox.

10.	 You now need to define the input parameters. Click on the
GetCheckingAccount activity you just added. In the Properties window,
you will see a couple of parameters that need to be configured, including
Customer, which allows you to specify the input object for this parameter.
GetCheckingAccountResult allows you to specify where the result of
this service operation call will be stored. We will use the variables that we
defined earlier. Configure them as shown in the following table:

Name Variable Type
Customer currentCustomer

GetCheckingAccountResults checkingResponse

Chapter 11

[351]

11.	 This should look like the following screenshot:

12.	 Below the GetCheckingAccount activity, add an InvokeMethod activity
and name it Add Checking to Dictionary. Assign the accountDictionary
value to the TargetObject property. Assign the Add value to the
MethodName property. To configure Parameters, click on the ellipsis
button. Add the parameters as shown in the following table:

Direction Type Value
In String checking

In Account checkingResponse

13.	 Within the Saving Account shape, add a GetSavingAccount activity
from the toolbox.

14.	 You now need to define the input parameters. Click on the
GetSavingAccount activity you just added. In the Properties window, you
will see a couple of parameters that need to be configured. Customer allows
you to specify the input object for this parameter. GetSavingAccountResult
allows you to specify where the result of this service operation call will be
stored. We will use the variables that we defined earlier. Configure them as
shown in the table:

Name Variable Type
Customer currentCustomer

GetSavingAccountResult savingResponse

Workflow Patterns

[352]

15.	 Below the GetSavingAccount activity, add an InvokeMethod activity and
name it Add Saving to Dictionary. Assign the accountDictionary value
to the TargetObject property. Assign the Add value to the MethodName
property. To configure the Parameters click on the ellipsis button. Add the
parameters as shown in the next table:

Direction Type
In String

In Account

16.	 Within the Retirement Account shape, add a GetRetirementAccount
activity from the toolbox.

17.	 You now need to define the input parameters. Click on the
GetRetirementAccount activity you just added. In the Properties window,
you will see a couple of parameters that need to be configured including
Customer, which allows you to specify the input object for this parameter.
GetRetirementAccountResult allows you to specify where the result of
this service operation call will be stored. We will use the variables that we
defined earlier. Configure them as shown in the following table:

Name Variable Type
Customer currentCustomer

GetRetirementAccountResults retirementResponse

18.	 Below the GetRetirementAccount activity, add an InvokeMethod
activity and name it Add Retirement to Dictionary. Assign the
accountDictionary value to the TargetObject property. Assign the
Add value to the MethodName property. To configure Parameters, click
on the ellipsis button. Add the parameters as shown in the following table:

Direction Type
In String
In Account

19.	 Now drag-and-drop a ReceiveAndSendReply activity at the top
of your workflow just inside the AccountAggregatorScope.
This will add a new Sequence activity, which contains a Receive
and a SendReplyToReceive activity.

Chapter 11

[353]

20.	 Create a new variable called handle with the following property:

Name Variable Type Scope
handle CorrelationHandle AccountAggregatorScope

savingResponse Account AccountAggregatorScope

retirementResponse Account AccountAggregatorScope

21.	 Drag the Receive and SendReplyToReceive activities above the Sequence
activity (but still within AccountAggregatorScope). Now, delete the empty
Sequence activity.

22.	 Drag the SendReplyToReceive activity to the bottom of the workflow,
and place it just outside the Aggregate Call parallel activity.

23.	 Click on the Receive activity and change DisplayName to Receive
Customer Request. Set the following properties, which represent the
WCF service, operation, and parameter information for consumers of this
workflow service. You should follow sensible naming conventions as you
would while defining properties for code-based WCF services.

Property Value

ServiceContractName http://tempuri.org/IAccountAggregator

OperationName GetCustomerAccount

24.	 To define the parameter information that the consumer will see, click
on the ellipsis button of the Content property of the Receive Customer
Request activity. Then, click on the Parameters radio button and set the
following parameter:

Name Type Assign to
Customer SamMaccollBank.DataContracts.Customer currentCustomer

25.	 On the Receive Customer Request activity, you also need to make sure
that the CanCreateInstance property is checked true. If this is not selected,
the Receive activity will not be able to instantiate the workflow service. Then,
click on the ellipsis button for the CorrelationInitializers property. Make
sure that the initializer is set to the handle variable that we defined earlier.

Workflow Patterns

[354]

26.	 Click on the SendReplyToReceive activity, and click on the ellipsis button
of the Content property. Here, select the Message radio button and define
the following properties. This defines the return type that consumers of the
workflow service will receive for the operation we defined with the earlier
Receive activity.

Property Value
Message Data accountDictionary

Message Type System.Collections.Generic.Dictionary<System.
String,SamMaccollBank.DataContracts.Account>

Your workflow is now complete.

Consuming the service aggregator workflow
service with ASP.NET
We will now finish the implementation of the ASP.NET page using the following
steps, which will take entry of customer details, consume our service, and then
from the returned Dictionary object, will display those results to the end user:

1.	 You should now open the SamMaccollBank.WebTier project. This contains
a stub implementation of the page we will implement.

2.	 Right-click on Default.aspx and select View in Browser. You should see
a page similar to the following screenshot:

Chapter 11

[355]

3.	 The page has implemented a number of <asp:TextBox>, <asp:Button>,
and <asp:Label> objects. The <asp:> tag prefix indicates that there is either
a local script or server-based dynamic content that needs to be processed;
for example, the user will see the output of this dynamic ASP.NET call in
their browser as standard HTML. You can see this by right-clicking on the
Default.aspx page and selecting View Markup.

4.	 The getAccountInfo button has an OnClick() method call with
getCustomer_Click specified. If you right-click on the Default.aspx page
and select View Code, you can see the empty implementation of this method.
If you view the page in the browser again and click on the Get Account
Details button, you will see that nothing changes.

5.	 Add a reference in this project to SamMaccollBank.DataContracts. This will
allow us to access the Customer and Account objects that we will need.

6.	 Also, add a service reference to the Account aggregator workflow service
you just deployed and tested. The following are the settings:

Property Value
Address http://localhost/aggregator/accountaggregator.xamlx

Namespace AccountAggregator

7.	 In the Default.aspx.cs file, add the following using statement:
Using SamMaccollBank.DataContracts;

8.	 In the Default.aspx.cs file, add the following implementation of
getCustomer_Click:
public void getCustomer_Click(object sender, EventArgs e)
{
//Create the customer object
Customer customer = new Customer();
//Get the values from the text boxes and assign them to the
customer object properties
customer.FirstName = FirstName.Text;
customer.LastName = LastName.Text;
customer.CustomerID = CustomerID.Text;
customer.Address1 = Address1.Text;
customer.Address2 = Address2.Text;
customer.City = City.Text;
customer.State = State.Text;
customer.Zip = ZIP.Text;
//Create the client using the classes generated by our Service
Reference

Workflow Patterns

[356]

AccountAggregator.AccountAggregatorClientsvcClient = new
AccountAggregator.AccountAggregatorClient();
AccountAggregator.GetCustomerAccounts request = new
AccountAggregator.GetCustomerAccounts();
request.customer = customer;
//Create dictionary object to store results
Dictionary<string, DataContracts.Account>accountDictionary =
svcClient.GetCustomerAccounts(request);
//Update Text boxes for each of the accounts
CheckingBalance.Text = accountDictionary["checking"].
CurrentBalance;
CheckingID.Text = accountDictionary["checking"].AccountID;
RetirementID.Text = accountDictionary["retirement"].AccountID;
RetirementBalance.Text = accountDictionary["retirement"].
CurrentBalance;
SavingBalance.Text = accountDictionary["saving"].CurrentBalance;
SavingID.Text = accountDictionary["saving"].AccountID;
}

9.	 Right-click again on Default.aspx and select View in Browser. Enter the
customer details as was done previously and then click on the Get Account
Details button. The account will be found and the account values will be
populated.

Lessons learned
This solution, using Microsoft AppFabric 1.1 for Windows Server, WCF, and WF
from .NET 4.5, demonstrated how workflow services can be used to orchestrate
communication between backend service endpoints with minimal code. There
was no need to tightly couple any of the components, and any of them could be
reused by other applications. By utilizing well-defined data contracts, we can follow
service-oriented practices and deploy loosely coupled applications. The Scatter-
Gather pattern is a powerful pattern to implement if you want to provide a
dashboard view for users from multiple sources. As well as for financial services,
this can also be used to provide a single view about an individual across corporate
systems: payroll, vacation, and so on. AppFabric is a very powerful host, and with
some of its additional features such as persistence, it is something you should
consider for use within your organization.

Chapter 11

[357]

Human workflows
Some workflows cannot be fully automated and require people to participate.
People can perform certain tasks, can initiate an automated step, or can assign
a task to another person. Workflows with human intervention, or human workflows,
have some specific features rarely or never found in fully automated workflows,
which are described as follows:

•	 Automated steps are usually executed in a predictable timeframe.
The workflow can have a timeout assigned to specific steps. Steps
executed by humans have unpredictable latency.

•	 Some steps may require escalation if they cannot be completed.
For example, if a person cannot execute a workflow task in a given
time, it can be reassigned to another person.

•	 In some businesses, there is a possibility of long-running workflows.
For example, insurance claim systems can run workflows for years
waiting for human responses from certain steps.

•	 Execution of some steps may be triggered by humans and may not
necessarily follow business rules.

Use case – repair/resubmit with human
workflow
Bowl For Buddies is a nonprofit organization that sets up bowling parties to raise
money for charity. As part of this effort, people raise money by going around
houses and asking for donations. The donations are based on the number of pins
the participants knock down during the bowling party (for example, $0.05 for
each pin knocked down). During the house visit, donors give an e-mail address to
which a donation request can be sent after the bowling event is over. In this e-mail,
the donors receive the amount they need to pay and a link to the secure payment
processor. Once the payment is made, Bowl For Buddies is notified.

Currently, much of this process is done manually. Data is collected on paper forms
and entered into an Excel spreadsheet. Once the bowling event is over, a volunteer
calculates the amount owed by each person and sends them an e-mail requesting
payment. The existing Excel solution is being replaced by an internal SharePoint 2010
implementation.

Workflow Patterns

[358]

Bowl For Buddies currently has a co-located website that runs on an ISP-supported
Windows instance. Eventually, they want to be able to collect donations on the
website. This will be a separate system similar to the way payments are currently
collected and tracked. In terms of collection, donations through the website should
follow the same process as donations though the house-to-house method.

The end-to-end payment collection process needs an overhaul. Bowl For Buddies
is looking at developing e-mail and payment services to add automation to the
collection process. As part of this process, they would like to develop a defined set
of guidelines for the payment collection process with a goal of automating whatever
is possible. The solution will need to work with the SharePoint 2010 site and should
allow easy modification later to work with the website.

Bowl For Buddies does not have a large IT department or IT budget. The website
they currently have is ASPX based and the e-mail and payment services they are
building will be done through WCF services. They are willing to make investments
in areas that aid in the donation collection process and that can be expanded to other
branches if the company expands.

Key requirements
The following are the key requirements for a new software solution:

•	 Automate the process for processing donation pledges
•	 Include proactive notifications to staff for delinquent payments or data errors
•	 Work with an organization's future strategy around SharePoint

and .NET solutions

Additional facts
We've identified some additional solution aspects that may help us decide on the
right solution:

•	 SharePoint 2010 is used to maintain lists of customers, including their e-mail
addresses and donation amounts.

•	 When an e-mail is invalid or returned, or a donor does not pay within a set
period of time, a person will call to verify the intent of the donor.

Chapter 11

[359]

•	 When the website is able to accept donations, it will use SQL Server to store
user information.

•	 A general process for donation collection will include sending the user an
e-mail, evaluating the results of sending the e-mail, waiting for payment,
notifying manually if data needs to be corrected, updating the data for
resubmission, and updating the system once payment is received.

Pattern description
Workflows are a series of steps that are related to each other. These steps may
require interaction with outside resources. Typically, these resources are other
systems, and the interaction can complete in an automated fashion without any
human intervention. In some cases, the workflows require human intervention to
fix and correct data, or the workflows are totally related to human processes such
as a document approval process. When a workflow is related to human activity,
it is known as a human workflow.

Human workflows can interact with people in several ways. Some of these include
SharePoint, e-mail, text messaging, instant messenger, and web forms. What makes
human workflows different from nonhuman workflows is the variability introduced
by the human factor. People can be slow while they respond, out of town, unwell, or
have other factors that prevent them from interacting with the workflow as expected.
This adds a degree of uncertainty to all human workflows and ensures that they are
typically long running.

Using automated workflows to model a business process allows for that process
to be applied in the exact same way, time and again. This is difficult in a manual,
people-driven progression of data collection and processing. In addition to
repeatability, using a central environment to process these workflows provides a
way to monitor many types of workflows. This allows you to analyze the collective
results of all the workflows and increase efficiency by removing bottlenecks or
streamlining unnecessary steps.

Modeling the Bowl For Buddies payment process in a workflow will help them
apply the same business activity over and over in the same manner. This workflow
can be exposed as a service to allow many different outside entities to interact with
it. The service layer hosting the e-mail and notification service will provide the
abstraction from specific destination systems.

Workflow Patterns

[360]

The logical architecture of the solution is as follows:

Candidate architecture #1 – BizTalk Server
BizTalk is Microsoft's enterprise integration tool, which could be used to help Bowl
For Buddies coordinate the payment collection process. The previous releases of
BizTalk Server had basic built-in human workflow support. This was not widely
adopted nor used in the marketplace, and hence is no longer part of the latest version
of the product.

Even without the specific human workflow components, BizTalk does have a robust
orchestration engine that can be easily used to model a business process such as the
payment collection process. BizTalk has built-in adapters for SharePoint and SQL,
which makes it an ideal candidate for consideration.

The next sections provide a detailed review of BizTalk's role in this scenario.

Chapter 11

[361]

Solution design aspects
A BizTalk orchestration can model the payment collection process. BizTalk can
expose this orchestration to outside consumers through a WCF service adapter,
SQL Server adapter, or SharePoint adapter. Any or all of these adapters can be
used to activate a new instance of the payment collection process.

Once started, the orchestration makes external calls to the e-mail service to send
the e-mail to the donor. If an invalid response is received, the notification service
will be used to update SharePoint and wait for corrected data to be sent back to
the long-running orchestration. If the response from the e-mail transmission is
successful, the orchestration will wait for the response for payment service and
update SharePoint with the results. If the payment result is not received, the
process will wait for updated information from SharePoint and try again.

The SharePoint adapter will be used to read and write information to SharePoint.
When the SQL Server-based solution is added later, the SQL Server Adapter can
easily be added. BizTalk's extensive routing ability will be used as needed to route
messages between SQL Server, SharePoint, and external services.

Solution implementation aspects
Bowl For Buddies does not have a large IT staff. Using a full-blown enterprise
integration tool such as BizTalk Server might be a large undertaking for a small
IT organization. In addition, learning to develop BizTalk-based solutions requires
additional training and effort. This is probably something Bowl For Buddies cannot
undertake given the small staff.

Solution operations aspects
Bowl For Buddies does not have BizTalk running nor do they have servers for
BizTalk to run on. In addition to BizTalk, they would require SQL Server. Both of
these carry heavy licensing costs and require extensive operation monitoring in order
to have a successful implementation. Also, monitoring BizTalk requires training on
how to handle suspended messages and how to reprocess them. This is something
likely to be outside the scope of what the existing IT staff can handle.

Workflow Patterns

[362]

Organizational aspects
Bowl For Buddies is not a large organization. Using an enterprise server tool such
as BizTalk would not be a good fit for them. Even though they have expansion plans
that could add additional offices, the need for BizTalk in areas other than payment
collection is unknown.

Solution evaluation
Well, this does not look like an acceptable solution. All thumbs down except for the
design, as shown in the following table:

Design Implementation Operations Organization

Candidate architecture #2 – .NET workflow
and SharePoint
The solution would leverage .NET 4.5 technologies to support this use case. We
would use a .NET workflow service to expose endpoints to a SharePoint workflow.
In order to meet the scenario and enable reuse outside a pure SharePoint-hosted
process workflow, putting core logic inside a service-exposed .NET workflow allows
for reuse by other systems.

Solution design aspects
SharePoint 2010 has a built-in workflow engine. This uses .NET 3.5 workflow
technologies to provide out-of-the-box workflow templates for common scenarios
and to support extensive customization. This could provide a complete solution
if the solution would be totally contained in SharePoint. Given the addition of a
future web-based solution, moving the core workflow logic out of SharePoint is
a better alternative.

Moving the business process out of SharePoint allows for the use of .NET 4.5 and
Microsoft AppFabric 1.1 for Windows Server to host the solution. This provides a
single point of tracking and monitoring with new features of the .NET 4.5 workflow.

Chapter 11

[363]

Our solution would use a simple SharePoint workflow to call into a .NET workflow
service. The .NET workflow would be a workflow service—a workflow exposed
as a WCF service. This workflow would have the payment collection process
modeled to include sending an e-mail, waiting for a payment response, and sending
notifications. Custom service calls would be needed for interaction with external
systems for e-mail, payment processing, and notifications.

Solution implementation aspects
Bowl For Buddies does not have a tight timeline. The adoption of workflow
technology and workflow services through WCF will speed up the delivery process,
reducing the amount of testing needed versus a custom-coded solution.

Solution operations aspects
Using .NET 4.5 and AppFabric provides a lot of features out of the box, including
logging, monitoring, and troubleshooting support. This is done through a plugin into
IIS; something that many IT resources know well. As Bowl For Buddies already has
an ASPX-based website, its IT staff is already accustomed to this interface.

Organizational aspects
Adoption of .NET 4.5 and Microsoft AppFabric for Windows Server will not require
significant investment in software licenses as these technologies are all included
with the price of Microsoft Windows. The existing intranet-based server that runs
the SharePoint site could be used for this solution. Adoption of this technology is
a low-risk endeavor, given the fact that it is built into the Windows framework.

Solution evaluation
As shown in the following table, we have all thumbs up! This is definitely our choice.

Design Implementation Operations Organization

Workflow Patterns

[364]

Architecture selection
Let's look at how these candidate architecture technologies stack up against each
other. We can break down the primary benefits and risks of each choice as follows:

Technology Benefits/risks
BizTalk Server Benefits

•	 This has out-of-the-box adapters for SQL Server and
SharePoint

•	 This has robust enterprise-class hosting infrastructure
for processes exposed as WCF services

•	 This has a built-in admin tool and a variety of third-
party tools with extensive monitoring information

Risks
•	 This has additional licensing costs
•	 There is a large learning curve for development,

monitoring, and operations
•	 This needs large infrastructure requirements

The .NET workflow
and SharePoint

Benefits
•	 There is a robust hosting environment
•	 There are easy configuration-based tracing and

monitoring options, including detailed message bodies
•	 This has low cost of ownership
•	 This leverages existing hardware

Risks
•	 New technology could face some breaking issues
•	 Large learning curve for development, monitoring,

and operations

A key benefit of using .NET 4.5 and Microsoft AppFabric for Windows Server is its
lightweight solution without extensive additional software expenditures. This release
of the .NET framework has significant changes compared to past .NET releases, and
it supports AppFabric as a rich hosting environment. While this new technology
introduces a certain level of risk in the solution, this is acceptable, given the overall
benefits gained from this technology. While BizTalk can do exactly what is needed for
this scenario, it would be overkill. Given the small size of Bowl For Buddies and the
lack of need for BizTalk in other areas of the company, it is not a right fit in this case.

For this scenario, the .NET workflow with SharePoint is the best choice.

Chapter 11

[365]

Building the solution
This solution has two key areas: a .NET workflow solution and a SharePoint solution.
An ideal layout of the physical architecture is shown in the following diagram:

While it is possible to run all the applications on a single server, separation of the
application server running workflow services and SharePoint components is ideal.

SharePoint 2010 runs with a .NET 3.5 workflow, and workflow services use .NET 4.5.
While these can co-exist on the same server, the solution is cleaner when separated.

Setup
Our sample is broken down into two sections. The first section walks through the
creation and testing of the .NET workflow to process payments. The second section
creates a SharePoint customer list. SharePoint is not needed for the first section,
and a testing tool is provided to test the workflow. To run an end-to-end solution,
SharePoint 2010 needs to be installed.

This solution has several parts. The key areas are as follows:

•	 Various existing services for sending e-mail, processing credit card
payments, and updating the SharePoint list

•	 An AppFabric-hosted workflow—called from the SharePoint workflow
or the test application—to manage the flow of payment processing and
data correction

•	 A SharePoint site to host the Bowl For Buddies list of customers
•	 A SharePoint workflow triggered from additions and changes to the

customer list

Workflow Patterns

[366]

Some initial setup is required. These steps assume that SharePoint 2010, InfoPath
2010, and AppFabric are all installed on the same server. Even if you are just running
the workflow section, you are required to complete the following steps because the
solution is built around the website names used in them.

Prepare your environment by performing the following steps:

1.	 When installed, SharePoint 2010 takes over both port 80 and the default
website as an ASP.NET 2.0-based site. Create a new website inside the IIS
running on port 1234. This will host the external services and core workflow.
Ensure the default application pool is running .NET 4.5. Name the website
HumanWorkflow and point it to the C:\HumanWorkflow folder, as shown in
the following screenshot:

2.	 Launch Visual Studio and open HumanWorkflow.sln in the <Installation
Directory>\HumanWorkflow folder. When prompted to create the virtual
directories, click on OK.

3.	 Once the virtual directories are created, the HumanWorkflow.Notification
service must run in an application pool with access to the SharePoint site.
For this demo, create an application pool that runs .NET 4.5, as an
administrator, and name it WF4-SPAccess. Change the application
pool for this service to use the one we have just created.

Chapter 11

[367]

4.	 Depending on the operating system, you may need to create event
log sources used by this code. Add the following sources inside the
server's application log: ProcessPayments, EmailService, and
NotificationService.

The following projects are included in the HumanWorkflow solution:

•	 HumanWorkflow.CoreWorkflow: This is the main project that will contain
the process payments workflow called by external systems.

•	 HumanWorkflow.EmailSvc: This service is used to simulate sending
an e-mail. Pass in an e-mail address that starts with an "F" to test the
failure logic.

•	 HumanWorkflow.Notification: This service is used to update SharePoint
on the status of a record. For this demo, this defaults to writing to the event
log. See the service comments on how to switch this to write to SharePoint.

•	 HumanWorkflow.Tester: This is a Windows form to test the workflow
without SharePoint.

•	 HumanWorkflow.HelperDocs: This is a folder with helper text files used
for creating the SharePoint workflow and SharePoint list.

Building the core workflow
First off, the Process Payments .NET workflow will be built and deployed to
AppFabric. This workflow will receive a payment request message that starts the
process. The first step is to call an e-mail service to notify the donor. If the response
is successful, the process moves to the payment service. If the process returns an
error, a notification is sent, and the workflow waits to receive updated information.
Once the updated information is received (note that only e-mail address update is
shown in the demo), the e-mail is sent again. Once moved to the Receive Payment
Notice flow, the workflow waits to receive payment information. This must be done
using the supplied testing application, and the user ID must match with that of the
submitted record. Once the payment is received, a success notification is made.
If payment errors occur, the process sends a notification and waits for the updated
user information.

In this section, the following tasks will be accomplished:

•	 Adding a new workflow service to an existing project
•	 Building request-response contracts for SharePoint integration
•	 Building a flowchart workflow logic for the process payment procedure

Workflow Patterns

[368]

•	 Calling several external services and evaluating the response
•	 Setting up content correlation for payment and the updated data to

be sent back to the same running workflow instance
•	 Deploying the solution to AppFabric

Checking the environment
This solution starts with a workflow service project already created and includes
existing service references for e-mail (called Send Email) and notification
(called Send Notification) external services. The project has been set up to
run on port 1234 at http://localhost:1234/HumanWorkflow.CoreWorkflow/
ProcessPayment. This solution also includes a helper custom activity for writing
information to the event log. This will be used for some basic process-flow tracking.
The tracking features of AppFabric can be used for this, but for simplicity, the event
log will work for this demo. Perform the following steps:

1.	 Launch Visual Studio 2012 and open HumanWorkflow.sln in the
<Installation Directory>\HumanWorkflow folder.

2.	 A project named HumanWorkflow.CoreWorkflow already exists.
3.	 Right-click on Project and select Properties. Select the Web tab. Ensure the

Use Local IIS Web Server radio button is selected. Click on Create Virtual
Directory to ensure the directory exists in IIS.

Implementing the top-level workflow
Perform the following steps to implement the top-level workflow:

1.	 Right-click on the project and select Add New Item. Select the workflow
templates under Visual C#, and add a new WCF Workflow Service called
ProcessPayment.xamlx.

2.	 Click on the top-level Sequential Service option and click on the Variables
tab at the bottom-left corner of the screen. Delete the data variable (this is
created by default and not used).

3.	 Add variables to the workflow as per the following table:

Name Type
ListHandle CorrelationHandle this is the correlation

variable used to receive payment confirmation
and updated user data if needed, located under
System.ServiceModel.Activities)

listID Int32

Chapter 11

[369]

Name Type
listName String

listEmail String

listBowlingScore Double

listDonationAmount Double

listTotalDonation Double

4.	 Click on the ReceiveRequest activity. Click on the ellipsis next to the
Content property.

5.	 Select the Parameters radio button and enter parameters as per the
following table:

Name Type Assign to
ID Int32 listID

Name String listName

BowlingScore Double listBowlingScore

DonationAmount Double listDonationAmount

EmailAddress String listEmail

6.	 With ReceiveRequest selected, click on the CorrelationInitializes property
(if the Properties window is not visible, press the F4 key). Select Add
initialize. Add ListHandle. Select Query correlation initializer from the
drop-down list. In the XPath Queries drop-down list, select ID: Int32. Click
on OK. This will set up a correlation value that can be used by other receive
activities to get information back into this same workflow instance.

7.	 With ReceiveRequest selected, ensure the CanCreateInstances checkbox is
checked. This is located under the properties of the activity. Press the F4 key
if they are not visible.

8.	 Click on the SendResponse activity. Click on the ellipsis next to the
Content property. Select the Parameters radio button and enter the
following parameters:

°° Name: Result
°° Type: Boolean
°° Value: True

9.	 With SendResponse selected, ensure the PersistBeforeSend checkbox is
checked. This is located under Properties.

Workflow Patterns

[370]

10.	 Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow in the toolbox. Place it between the
ReceiveRequest and SendResponse activities. Set the value of TextEventLog
property to Received GETDATA Message. If this activity is not available,
build the solution, and it should be seen in the toolbox.

11.	 Drag an Assign shape from the Primitives section of the toolbox, and place it
under the EventLogHelper activity. Set the To value to listTotalDonation.
Set the Value to listDonationAmount * listBowlingScore. IntelliSense
should recognize these values.

Implementing the flowchart workflow logic
Perform the following steps to implement the flowchart logic:

1.	 Drag a flowchart shape from the Flowchart section of the toolbox.
Place it under SendResponse. The workflow should look like the
following screenshot:

2.	 Double-click on the Flowchart activity to drill down to the flowchart surface.

Chapter 11

[371]

3.	 The end result of the next few steps will be a flowchart for the payment
collection process. The final result will look like the following screenshot:

4.	 Click on the top-level flowchart, and click on the Variables tab at the bottom
left. Add variables as shown in the following table. These will be within the
flowchart scope:

Name Type
EmailResult String

paymentReceived Boolean

errorMessage String

5.	 Drag a Sequence activity from the Control Flow section of the toolbox onto
the flowchart surface under the Start arrow. Rename this to Send Email.
This activity will call the external e-mail service to send the user an e-mail.
The result of this call will determine the next step in the flow.

Workflow Patterns

[372]

6.	 Draw a line from the Start shape to the Send Email sequence activity.
7.	 Under the Send Email activity, add a FlowSwitch activity from the

Flowchart section of the toolbox. Select the type to be String while adding
the shape to the surface. Set the Expression property to Email Result. The
name on the activity shape displays Switch.

8.	 Draw a line from the Send Email sequence activity to the Switch activity.
9.	 Drag a Sequence activity from the Control Flow section of the toolbox onto

the flowchart surface, which is to the left of the Switch activity. Rename this
to Receive Payment Notice. This activity will wait for a payment message
from an external source for a fixed amount of time. Sending the payment
notice can be done using the provided Tester Windows forms tool located
under the tester project.

10.	 Draw a line from the left-hand side of the Switch activity to the Receive
Payment Notice sequence. Uncheck the IsDefaultCase checkbox in the
properties. Set the value of Case to SUCCESS.

11.	 Drag a Sequence activity from the Control Flow section of the toolbox onto
the flowchart surface to the bottom right from the Switch activity. Rename this
to Send Email Error Notification. This activity will send error message
information back out of the workflow—in this case, back to SharePoint.

12.	 Draw a line from the bottom of the Switch activity to the Send Email
Error Notification sequence. Uncheck the IsDefaultCase checkbox in the
properties. Set the Case value to TIMEOUT.

13.	 Draw a line from the right-hand side of the Switch activity to the Send Email
Error Notification sequence. Uncheck the IsDefaultCase checkbox. Set the
Case value to EMAILERROR.

14.	 Drag a Sequence activity from the Control Flow section of the toolbox onto
the flowchart surface under the Send Email Error Notification sequence
activity. Rename this to Receive Updated Data. This activity will wait for
updated user data from the external data provider—in this case, SharePoint.

15.	 Draw a line from the bottom of the Send Email Error Notification sequence
activity to the Receive Updated Data sequence.

16.	 Draw a line from the right-hand side of the Receive Updated Data sequence
activity to the Send Email sequence activity.

17.	 Moving to the left-side of the flowchart, under the Receive Payment Notice
activity, add a FlowDecision activity from the Flowchart section of the
toolbox. Set the Condition property to paymentReceived. The name on the
activity shape displays Decision.

18.	 Draw a line from the bottom of the Receive Payment Notice sequence
activity to the top of the Decision activity.

Chapter 11

[373]

19.	 Drag a Sequence activity from the Control Flow section of the toolbox onto
the flowchart surface, under the Decision activity. Rename this to Send
Success Notification. This activity will update the external data provider
with a success message—in this case, SharePoint.

20.	 Draw a line from the left-hand side of the Decision activity to the top of the
Send Success Notification sequence activity. This represents the true result.

21.	 Draw a line from the right-hand side of the Decision activity to the left-hand
side of the Receive Updated Data sequence activity. This represents the false
result. Note how once an activity is defined for an event, such as Receive
Updated Response, it is easy to reuse that logic.

22.	 Now the basic flow of the flowchart is complete. The solution should now
build with no errors. Verify this by right-clicking on the project and selecting
Build. The next steps will add logic to the five sequence shapes that were
added to the flowchart.

23.	 On the main flowchart surface, double-click on the Send Email activity.
This set of activities will compose the request and response messages to the
external e-mail service, evaluate the response message, and generate error
messages if needed.

Implementing the Send Email activity
Perform the following steps to implement the Send Email activity:

1.	 Click on the top-level Send Email sequence activity, and click on the
Variables tab on the bottom-left corner. Add the following variables:

Name Type Default
emailRequest EmailRequest NewHumanWorkflow.

CoreWorkflow.SendE-
mail.E-mailRequest()

emailResponse EmailResponse nil
emailCount Int32 nil
emailResultLocal String nil

2.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the
sequence. Set the TextEventLog property to Started Send Email.

3.	 Drag an Assign shape from the Primitives section of the toolbox, and
place it under the EventLogHelper activity. Set the To value to emailCount.
Set the Value as emailCount + 1.

Workflow Patterns

[374]

4.	 Drag an Assign shape from the Primitives section of the toolbox, and place
it under the previous Assign activity. Set the To value to emailRequest.
AmountDue. Set the Value to listTotalDonation.

5.	 Drag an Assign shape from the Primitives section of the toolbox, and place
it under the previous Assign activity. Set the To value to emailRequest.
EmailAddress. Set the Value to listEmail.

6.	 Drag an Assign shape from the Primitives section of the toolbox, and place
it under the previous Assign activity. Set the To value to emailRequest.ID.
Set the Value to listID.

7.	 Drag the Send Email service reference from the toolbox, and place it under
the last Assign activity. If this is not present in the toolbox, rebuild the
solution. Set the values of Email to emailRequest and of SendEmailResult
to emailResponse. So far, the Send Email process should look like the
following screenshot:

Chapter 11

[375]

8.	 Drag an If activity from the Control Flow section of the toolbar under the
Send Email activity. Set the Condition property to emailResponse.Response.

9.	 Drag an Assign shape from the Primitives section of the toolbox, and place it
inside the Then side of the If activity. Set the To value to emailResultLocal.
Set the Value to SUCCESS.

10.	 Drag an If activity from the Control Flow section of the toolbar,
and place it inside the Else side of the If activity. Set the Condition
property to emailCount =< 3.

11.	 Drag a Sequence activity from the Control Flow section of the toolbox into the
Then side of the If activity. Set the DisplayName property to Email Error.

12.	 Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Email Error sequential activity. Set the To value to errorMessage.
Set the Value to "The email process returned an error sending the
message".

13.	 Drag an Assign shape from the Primitives section of the toolbox, and place it
below the previous Assign activity. Set the To value to emailResultLocal.
Set the Value to "EMAILERROR".

14.	 Drag a Sequence activity from the Control Flow section of the toolbox into
the Then side of the If activity. Set the DisplayName property to Timeout.

15.	 Drag an Assign shape from the Primitives section of the toolbox, and place it
inside the Timeout sequential activity. Set the To value to errorMessage. Set
the Value to "The e-mail process has hit more than 3 errors".

16.	 Drag an Assign shape from the Primitives section of the toolbox, and place it
below the previous Assign activity. Set the To value to emailResultLocal.
Set the Value to "TIMEOUT".

Workflow Patterns

[376]

17.	 Drag an Assign shape from the Primitives section of the toolbox, and place
it outside of the If activities as the last activity of the workflow. Set the To
value to emailResult. Set the Value to emailResultLocal. The process
should look like the following screenshot:

Implementing the Receive Payment Notice activity
Perform the following steps to implement the Receive Payment Notice activity:

1.	 Return to the main flowchart surface by using the breadcrumbs on the top of
the workflow surface. Double-click on the Receive Payment Notice activity.
This set of activities will wait for a response from the payment service,
evaluate the response message, and generate an error message based on the
response or a timeout. This set of activities is reached only if "SUCCESS" is
returned from the Send Email sequence.

Chapter 11

[377]

2.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to "Started Receive Payment Notice".

3.	 Drag a Parallel activity from the Control Flow section of the toolbox right
under the EventLogHelper activity.

4.	 With the Parallel activity selected, click on the Variables tab on the bottom-left
corner of the screen. Add the following variable at the Parallel scope:

°° Name: hitDelay

°° Type: Boolean

°° Default: False

5.	 With the Parallel activity selected, set the value of CompletionCondition to
hitDelay. This will allow the parallel shape to complete even when all the
branches have not finished.

6.	 Drag a Sequence activity from the Control Flow section of the toolbox
onto the flowchart surface inside the Parallel activity. Set the value of
DisplayName to NotPaidTimeout.

7.	 Drag ReceiveAndSendReply from the Messaging section of the toolbox
and place it to the right of the last sequence activity inside the parallel
activity. This will add a new sequence activity to the flow. Set the value of
DisplayName of the new right Sequence activity to PaymentReceived.

8.	 Working in the NotPaidTimeout sequence, drag a Delay activity from
the Primitives section of the toolbox. Set the Duration property to New
TimeSpan(0, 2, 0). This will set in a delay of two minutes. While in real
life this would be longer, we do not want to have to wait for a few days to
run the demo.

9.	 Drag an Assign shape from the Primitives section of the toolbox, and
place it below the Delay activity. Set the To value to paymentReceived.
Set the Value to False.

10.	 Drag an Assign shape from the Primitives section of the toolbox, and place
it below the previous Assign activity. Set the To value to errorMessage. Set
the Value to No payment was received in the set amount of time.

11.	 Drag an Assign shape from the Primitives section of the toolbox and place
it below the previous Assign activity. Set the To value as hitDelay. Set the
Value to True. This will cause the parallel activity to complete rather than
wait for the payment response.

Workflow Patterns

[378]

12.	 Working in the PaymentReceived sequence activity, click on the Receive
activity. Rename Operation to GetPaymentConfirmation. Under Content,
click on View parameter.... Select the Parameters radio button and enter the
following parameters:

Name Type Assign to
paymentID Int32 nil
paymentResult Boolean paymentReceived

13.	 With Receive selected, click on the CorrelatesWith property. Set this to
ListHandle. Click on CorrelatesOn. Select paymentID from the dropdown
and click on OK. This will set the receive activity to follow the correlation
based on the ID of the donor record.

14.	 Click on the SendReplyToReceive activity. Under Content, click on Define...
and select the Parameters radio button. Enter the following parameters:

°° Name: Result, type: Boolean, value: True

15.	 With SendReplyToReceive selected, ensure the PersistBeforeSend checkbox
is checked.

16.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it between the receive and send
activities. Set the TextEventLog property to Received Payment Message.

17.	 Drag an If activity from the Control Flow section of the toolbar, and place
it under the SendReplyToReceive activity. Set the Condition property to
paymentReceived.

18.	 Drag an Assign shape from the Primitives section of the toolbox, and place it
inside the Then side of the If activity. Set the To value to errorMessage. Set
the Value to Payment Received.

19.	 Drag an Assign shape from the Primitives section of the toolbox, and place
it inside the Else side of the If activity. Set the To value to errorMessage. Set
the Value to The Payment System returned an error in the payment.

20.	 Drag an Assign shape from the Primitives section of the toolbox, and
place it below the previous If activity; ensure it is outside the If block.
Set the To value equal to hitDelay. Set Value to True. This will cause
the parallel activity to complete rather than wait for the delay.

Chapter 11

[379]

21.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it outside the parallel shape.
Set the TextEventLog property to the errorMessage variable.

Implementing the Send Success Notification activity
Perform the following steps to implement the Send Success Notification activity:

1.	 Navigate to the main flowchart surface; double-click on the
SendSuccessNotification activity.

2.	 With the Send Success Notification sequence activity selected, click on the
Variables tab on the bottom-left corner of the screen. Add the following
variables:

°° Name: notificationRequest, type: NotificationRequest
(under the Send Notification reference type), type: New
HumanWorkflow.CoreWorkflow.SendNotification.
NotificationRequest()

°° Name: notificationResponse, type: NotificationResponse
(under the Send Notification reference type)

3.	 Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to Started Send Success Notice.

4.	 Drag an Assign shape from the Primitives section of the toolbox, and
place it below the TextEventLog activity. Set the To value equal to
notificationRequest.ID. Set the Value to listID.

5.	 Drag an Assign shape from the Primitives section of the toolbox,
and place it below the previous Assign activity. Set the To value to
notificationRequest.NotificationType. Set the Value to SUCCESS.

6.	 Drag the custom activity called SendNotification, located under
HumanWorkflow.CoreWorkflow.SendNotification. Place it under the
Assign activity. Set the Notification property to notificationRequest. Set
the SendNotificationResponse property to notificationResponse.

7.	 Navigate back to the main flowchart surface; double-click on the SendEmail
Error Notification activity.

Workflow Patterns

[380]

Implementing the Send Email Error Notification activity
Perform the following steps to implement the Send Email Error Notification activity:

1.	 With the Send Email Error Notification sequence activity selected, click on
the Variables tab on the bottom-left corner of the screen. Add the following
variables at the Parallel scope:

°° Name: notificationRequest, type: NotificationRequest
(under the SendNotificationreference type), default:
NewHumanWorkflow.CoreWorkflow.SendNotification.
NotificationRequest()

°° Name: notificationResponse, type: NotificationResponse
(under the SendNotification reference type)

2.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the
sequence. Set the TextEventLog property to Started Send Email Error
Notification.

3.	 Drag an Assign shape from the Primitives section of the toolbox, and place it
below the TextEventLog activity. Set the To value to notificationRequest.
ErrorMessage. Set the Value to errorMessage.

4.	 Drag an Assign shape from the Primitives section of the toolbox, and
place it below the previous Assign activity. Set the To value equal to
notificationRequest.ID. Set the Value to listID.

5.	 Drag an Assign shape from the Primitives section of the toolbox, and
place it below the previous Assign activity. Set the To value equal to
notificationRequest.NotificationType. Set the Value to ERROR.

6.	 Drag the custom activity called SendNotification located under
HumanWorkflow.CoreWorkflow.SendNotification. Place it under the
Assign activity. Set the Notification property to notificationRequest.
Set the SendNotificationResponse property to notificationResponse.

7.	 Navigate back to the main flowchart surface; double-click on the Receive
Updated Data activity.

Chapter 11

[381]

Implementing the Receive Updated Data activity
Perform the following steps to implement the Receive Updated Data activity:

1.	 Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to Started Receive Updated Data.

2.	 Drag ReceiveAndSendReply from the Messaging section of the toolbox,
and place it under the EventLogHelper activity. This will add a new
sequence activity to the flow. Set DisplayName of the new Sequence
activity to Update Data.

3.	 Working in the Update Data sequence activity, click on the Receive activity.
Rename Operation to GetUpdatedData. Under Content, click on View
parameter.... Select the Parameters radio button and enter the following
parameters:

°° Name: ID, type: Int32, assign to: listID
°° Name: Email, type: String, assign to: listEmail

4.	 With Receive selected, click on the CorrelatesWith property. Set this
to ListHandle. Click on CorrelatesOn. Select ID from the dropdown.
Click on OK. This will set up this Receive activity to follow the correlation
based on the ID of the donor record.

5.	 Click on the SendReplyToReceive activity. Under Content,
click on Define.... Select the Parameters radio button and enter the
following parameters:

°° Name: Result, type: Boolean, value: True

6.	 With SendReplyToReceive selected, ensure the PersistBeforeSend checkbox
is checked.

7.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it between the receive and
send activities. Set the TextEventLog property to Received
GETUPDATEDDATA Message.

8.	 Save the workflow. Right-click on the project and select Build.
The workflow service will now be available to be called from within IIS.

Workflow Patterns

[382]

Testing the workflow
1.	 The preceding tasks can be tested using the supplied Tester.exe application

included in the HumanWorkflow solution.
2.	 In order to build the SharePoint 2010 solution to test the workflow, please

follow the instructions included in the BuildSharePointSolution.doc file.

Lessons learned
In this pattern, we looked at how to build an AppFabric hosted workflow service for
a human workflow. Using a workflow external to SharePoint allows for reuse of the
business process by other systems. Using Microsoft AppFabric for Windows Server
gives us a single processing environment that reduces the complexity of monitoring
and administration.

Summary
In this chapter, we considered workflows with and without human intervention.
We looked again in the case of federated data search and focused on its workflow.
We compared different technologies that Microsoft offers in this domain.

One of the main conclusions we can make is that BizTalk is not positioned to be
the core software for workflow systems despite its excellent orchestration engine.
Its main capabilities lie in the area of message exchange, data transformation, and
an easy connectivity to a myriad of systems through its extensive set of adapters.
Using it just to support workflows is like using a sledgehammer to crack a nut.

In the next chapter, we move the focus of our discussion to the presentation layer
of multilayered software systems.

Presentation Layer Patterns
The evolution of user-oriented devices has been happening so fast that we could call
it a revolution. Some of the authors of this book remember piles of punch cards and
magnetic tapes, yet today we discuss video cameras embedded into contact lenses.
Despite the rapid changes, some ideas are so fundamental that they seem to have
been around forever. For example, one of the most influential factors in this area was
the invention of the computer mouse by Douglas Engelbart in the 1960s, along with
the hypertext and rectangle-like screen presentations called windows.

In this chapter, we will discuss the technologies that support interaction with the
end user; this is commonly called the presentation layer. We will talk about web and
desktop applications; Silverlight, ASP.NET, and WPF; and we'll focus on three major
patterns: MVC, MVP, and MVVM.

The term "presentation layer" may be a little deceiving, since in information
technology, it is used in two different senses. First, the presentation layer is the sixth
layer in the Open Systems Interconnection (OSI) model, which presents data from
network layers to the application layer and vice versa. Second, the presentation layer
is the layer that interacts with users in the multilayered application model. The latter
is used in this chapter.

Presentation Layer Patterns

[384]

A typical, somewhat simplified, multilayered approach to the application
architecture is depicted in the following the diagram:

It is important to notice that the presentation layer is not an equivalent of the
User Interface (UI). In addition to UI components, presentation layers may also
have data validation rules, business rules, and other presentation logic. Having
major business logic coded in the presentation layer is generally an antipattern;
however, some business logic (for example, navigation rules) often resides there
for performance reasons.

User interfaces and related presentation layers are implemented by a broad
spectrum of technologies, targeting applications from Xbox to mobile. In this chapter,
we will focus on a relatively small class of business applications that can usually be
architected using the multilayered paradigm.

Chapter 12

[385]

Building presentation layers
Enterprise systems that require more or less elaborate presentation layers often
present challenges to the architects. To understand these challenges, let's take a look
at typical implementations. Architects usually consider three main approaches:
desktop applications, web applications, and mobile applications. This separation
reflects the history of end user technologies. Desktop applications provided much
richer functionality compared to the first web applications; browser-based clients
could not satisfy most business needs. However, with the advance of the Internet,
web applications also changed and browser-based clients became common,
delivering intranet solutions for enterprise users. The variety of mobile devices
caused a burst of new technologies that created some chaos in the developers'
minds for a little while. Even today, if the software vendor does not want to deliver
a browser-based mobile application, they still have to develop a few "native"
applications (usually one for each major brand).

This taxonomy is based on tradition rather than on technical features. However,
it gives us a basis for discussion.

Desktop applications
Applications that interact with end users via personal computer desktops are
historically the first class of applications with a graphical user interface.

Originally, this major class of applications, which provided graphical UI and
interaction with end users, was developed in one of the available programming
languages to communicate with the backend on the same computer or on the same
network. These applications have been providing rich functionality, and therefore,
are often called rich client applications.

Before the active use of the multilayered (initially, three-layered) paradigm in
software architecture, the functionality of the presentation layer did not necessarily
just support interactions with end users. Many applications (for example, the ones
built on MS Access) supported very tight connection of the user interface with the
database. Modules responsible for presenting the user interface also sometimes
implemented business logic.

After separating system functionality into several layers, the presentation layer still
continued to carry a lot. With the introduction of web clients, which could initially
implement a very minimal set of features, the notion of thick clients versus thin
clients was suggested.

Presentation Layer Patterns

[386]

Rich client applications are also called fat clients or thick clients,
and the term was introduced as a comparison to thin clients, or
web applications. Thin clients had very little overhead, being
completely browser-based.

Today, Microsoft has a variety of technologies supporting rich clients (you can read
our evaluation of some of these APIs in Chapter 2, The .NET Framework Primer).

Windows Forms
Windows Forms (WinForms) is the original API used to develop the user interface of
Windows desktop applications with the .NET framework. A form is a visual surface
to display information to end users. Controls are added to the forms and respond to
user actions. A large number of controls have been introduced since WinForms was
released in the very first version of .NET. Typical controls include textboxes, buttons,
radio buttons, drop-down boxes, and others.

Today, WinForms is clearly showing its age, particularly when its capabilities are
compared to those of WPF and WinRT, but it is still a viable API for applications that
exclusively target the desktop and where a sophisticated modern UI is not necessary.

In .NET 4.5, Microsoft positions WinForms as a tool for
developing smart clients. A Smart client is a client application
that can synchronize local data to a remote server but does not
require an Internet connection for the majority of its functions.
In our taxonomy described in this chapter, smart clients could be
positioned between desktop and web applications.

Windows Presentation Foundation
Windows Presentation Foundation (WPF) is an API, introduced in .NET 3.0, to
develop rich user interfaces for .NET applications, with no dependencies on legacy
Windows APIs and with support for GPU-accelerated 3D rendering, animation, and
media playback. Today, WPF is a mature, stable API optimized for performance.

WPF has significantly more features than WinForms, enabling easy animation,
template-driven UI design, and different object embedding. In WPF Version 4.5
(in .NET 4.5), a powerful Ribbon control was introduced that allowed building an
MS Office-like interface.

However, most importantly, WPF clearly supports the usage of architectural
patterns, which we'll discuss in this chapter.

Chapter 12

[387]

Designing the UI in WPF can be done using one of the existing visual tools, but any
UI is always presented in eXtensible Application Markup Language (XAML)—a
declarative XML-based language. XAML code to some extent can be reused in
Silverlight (http://msdn.microsoft.com/en-us/library/cc903925(VS.95).aspx).

WPF is getting constant improvements that provide a far simpler upgrade path to
WinRT compared to Windows Forms.

Microsoft Office VBA applications
From the very beginning of its existence, Microsoft Office applications provided
some abilities for programming. Excel macros, WordBASIC, all such development
tools were eventually organized in the form of Visual Basic for Applications (VBA).
The presentation layer in this class of applications is the host MS Office application
itself. Adding VBA code typically does not extend the UI features but rather adds
some business logic.

VBA was not designed as a full-blown development tool. It lacks certain significant
features, for example, proper security. For that reason, VBA applications usually don't
have enterprise quality and are intended to be used by a limited group of users.

However, VBA is the perfect tool for its purposes. One can significantly extend the
capabilities of the MS Office presentation using VBA.

InfoPath
InfoPath initially was a part of Microsoft Office and provided an ability to build and
control forms. Probably the main use of InfoPath is providing a presentation layer for
SharePoint. In 2014, Microsoft discontinued InfoPath, but the roadmap for SharePoint
forms is not clear. Very possibly, that will be replaced with other Office applications.

Web applications
With the evolution of the Internet and particularly the World Wide Web, another
type of client emerged as an alternative to desktop applications. The applications
were hosted in a browser and used comparatively primitive methods to present
the user interface.

The advance of the communication tools resulted in developing the ability to
host data and business layers remotely and in the ability to support constant
communication between clients and servers. Web applications went through a series
of improvements. Their capabilities became comparable to desktop applications and
enabled full-blown browser-based applications on internal enterprise networks.

http://msdn.microsoft.com/en-us/library/cc903925(VS.95).aspx

Presentation Layer Patterns

[388]

ASP.NET
ASP.NET applications are server-side applications that can be run on Microsoft
Internet Information Server (IIS). Code for ASP.NET can be developed using
Microsoft languages, such as Visual Basic or C#, or other languages, such as
Python or Ruby.

ASP.NET has several programming models targeting the presentation layer
development, available as templates for developers in Visual Studio 2013.
Some of them are as follows:

•	 ASP.NET Web Forms: This provides developers with a rich set of controls,
and it is somewhat similar to Windows Forms. ASP.NET has been developed
in parallel with .NET and currently is in Version 4.5. The ASP.NET Web
Forms API consists of the System.Web.Forms namespace, as we described in
Chapter 2, The .NET Framework Primer.

•	 ASP.NET MVC: This is designed to facilitate pattern-based development,
and we will talk about it in detail later in this chapter. The API consists of
the System.Web.Mvc namespace as described in Chapter 2 as well.

•	 Single Page application template: This is intended to create applications
that use HTML 5 and JavaScript. It supports AJAX for asynchronous data
exchange with the server.

•	 Facebook template: This was introduced in Visual Studio 2013 in order to
build Facebook applications.

Silverlight
Silverlight applications are developed as a combination of .NET code and XAML.
Silverlight applications are client-side applications, and therefore, are independent
of the web server. They can be independent or integrated into ASP.NET websites.
Silverlight uses a small subset of .NET that has to be downloaded and installed
on the client.

Silverlight was initially named WPF/E and was a subset of WPF targeting
web applications. However, they have many differences, and the original
intention of massive code sharing does not seem to be feasible, at least for
most projects.

Chapter 12

[389]

Scripting with JavaScript and jQuery
JavaScript is an open standard that is commonly used in web development to add
functionality to applications. Visual Studio has a JavaScript debugging feature that
enables stepping through the client-side as well as the server-side code. As well as
Silverlight, JavaScript code can be included in ASP.NET applications.

In the last two years, Microsoft has been promoting TypeScript, an open
source programming language that was developed to help enable the building
of large-scale JavaScript applications. It is a strict superset of the JavaScript
language. For more information about TypeScript, please visit the site
http://www.typescriptlang.org/.

While JavaScript is a client-side scripting language, jQuery is an open source toolkit
built on JavaScript. Microsoft made a significant contribution to the jQuery project.

In 2005, a new approach emerged, based on a set of technologies such as
Asynchronous JavaScript, CSS, DOM, and XML. The approach was called
Ajax—short for Asynchronous JavaScript + XML. Ajax quickly gained popularity as
a group of techniques that provides asynchronous data interchange with the server.

Mobile development
From Windows CE and Pocket PC, Microsoft mobile development had a long path
to the modern Windows Phone. Its latest release, Version 8.1, was launched in
April 2014, and it was a major improvement over the previous version. The version
number was kept as 8.1 to align with the desktop version.

Also, with the advance of hardware and increasing popularity of tablet devices,
Windows RT was introduced as the OS for tablets.

Mobile development in the last 15 years has been very active and the terminology
has changed several times. Let's list a few major incarnations:

•	 Windows Phone OS: This is a successor to Windows Mobile and is designed
to work on smartphones.

•	 Windows RT (WinRT) OS: This is an edition of Windows 8 designed for
mobile devices that use the 32-bit ARM architecture.

•	 Microsoft Design Language: Formerly known as "Metro," this is the main
design language for Windows 8, Windows Phone, and Xbox One.

•	 Windows Store: This is an application store with the primary role to
distribute "Metro-style" applications.

http://www.typescriptlang.org/

Presentation Layer Patterns

[390]

•	 Windows Phone Store: This is a distribution vehicle for Windows
Phone applications.
As of the end of 2013, developers need one account for both Windows
Store and Windows Phone Store;; however, these two marketplaces
are still separate.

•	 Windows Phone Store Application model: This is a new application
model based on Windows RT. This model is a direct result of the effort
that Microsoft has been making in order to achieve convergence with
desktop applications.

•	 Windows Phone Silverlight 8 Application model: This is the application
model that was used until the release of 8.1. You can continue using this
application model for Windows Phone 8.1 development.

•	 Windows Phone Silverlight 8.1 Application: This is the newest major
version despite the minor increase in the version number.

•	 Windows Phone 8.1 SDK: This enables development using any of the
three models mentioned in the preceding points on this list.

MVC, MVP, and MVVM
With the advance of the multilayered approach and object-orientation in computer
programming, new best practices emerged. One of them was formulated as the
Separation of Concerns design principle. The principle suggests that computer
application code should be separated into distinct sections, each addressing a
separate concern. In fact, Separation of Concerns is an old principle that forced
the modularity of programs even in the very old days of software development.
However, with the advance of the OO design, this principle caused the development
of several patterns.

We should note that architectural patterns that we discuss in this
chapter are not strictly presentation layer patterns. They suggest
architecture that covers other layers as well. However, the main
reason these patterns were developed is the need to properly
structure the presentation layer.

In this chapter, we will talk about the most popular patterns that found their way
into Microsoft tools and technologies. We will talk about the MVC pattern, the
central pattern for the ASP.NET MVC framework; about the MVP pattern, which
is often used with Windows Forms; and about the MVVM pattern, which got its
popularity with the introduction of WPF.

Chapter 12

[391]

The model-view controller pattern
The first architectural pattern that was suggested to separate the concerns of
designing application with a UI was the model-view-controller (MVC) pattern.
This pattern was introduced in 1978 in the Smalltalk community. (The Smalltalk
community is actually responsible for introducing a number of patterns and for
productive discussions on this very topic).

The MVC pattern gives us an answer to the question "How do we structure code for a
program with UI?" The pattern divides the code into the following three components:

•	 Model: This component represents the business model/data. Model does not
know about View or Controller. Model can be as simple as a database with a
simple data access object. For more complex projects, it can include an ORM
layer, a file set, or other components.

•	 View: This component handles the user interface or the output with which
the user interacts. It can also include validation code or other parts of the
presentation layer. In fact, separating this component (layer) from others
was the main intention of the pattern.

•	 Controller: This component changes the model as a result of the events
in View. Controller can work with multiple views, and it determines
which view to display.

Component communication in the MVC pattern is depicted in the following diagram:

Presentation Layer Patterns

[392]

The implementations of MVC can be quite different. Often, there is only one
view per controller; notifications can be implemented using pull or push models.
Communication between components typically uses the Observer design pattern
(http://en.wikipedia.org/wiki/Observer_pattern).

The model-view-presenter pattern
The model-view-presenter (MVP) pattern was originally introduced in an article by
Mike Patel, in 1996 (MVP: Model-View-Presenter. The Taligent Programming Model for
C++ and Java).

The MVP pattern also separates View from Model, which has the same meaning
as in the MVC pattern. The separation is done with the component called Presenter,
as illustrated in the following screenshot:

Presenter is quite different from Controller. First off, Presenter has a two-way
communication with View. Presenter truly separates View and Model. Secondly,
Presenter (a single instance) deals with only one View.

Most commonly, this pattern is used with Windows Forms.

http://en.wikipedia.org/wiki/Observer_pattern

Chapter 12

[393]

Model-View-View Model
The Model-View-ViewModel (MVVM) pattern was introduced in .NET 3.0
with WPF and Silverlight. Today, the pattern is used with other technologies.
For example, a JavaScript implementation of it is knockout.js.

The MVVM pattern is based on the Presentation Model pattern introduced by Martin
Fowler in 2004 (http://martinfowler.com/eaaDev/PresentationModel.html).
The MVVM pattern was introduced to leverage the core features of WPF
and Silverlight (WPF/E).

Model and View in MVVM have the same meaning as in the previous patterns.
The third component is called ViewModel, shown in the following diagram:

It may look somewhat similar to the MVP pattern but, unlike Presenter in the MVP
pattern, ViewModel in the MVVM pattern does not need a reference to View. View
binds to the properties in ViewModel using the internal binding mechanism of WPF.
In terms of WPF, ViewModel is set as the DataContext of View. It is also possible to
handle several View instances with one ViewModel instance.

http://martinfowler.com/eaaDev/PresentationModel.html

Presentation Layer Patterns

[394]

Working with a use case – a user
interface for the shopping cart
We are going to use the example that we have developed in Chapter 9, Web Services
and Beyond. Just to refresh your memory, we will briefly describe the use case.
Then we will focus on the UI development for the solution.

As you remember, we built a shopping cart for Happy Biking Inc., a company
that sells bikes, parts, and related equipment all over North America. The company
decided to hire a software development team to build the shopping cart service that
would be connected to a payment system, and later to the internal inventory system
and other applications.

In Chapter 9, Web Services and Beyond, we built RESTful services to support the
shopping cart but, on the client side, we connected it only to the test user interface.
Now, we need to develop a proper user interface. Let's discuss the key requirements.

Key requirements
The key requirements were as follows:

•	 Happy Biking decide to extend its market reach to Internet users. Therefore,
they want to build an online system that will be accessible via Internet
browsers, which limits the client development to browser-based applications.

•	 At this moment, the company does not have the intention of building
mobile applications, considering it a much lower priority.

•	 Since the company does not have its own developers and has hired a software
development company, the development should be performed relatively
quickly and in an organized manner. To achieve that, the development team
needs to use an existing framework for the UI development.

•	 The solution should work on all major browsers, which means that it
has to be coded in the most generic way. No usage of browser-specific
tools is allowed.

•	 The shopping cart is only one task in a whole bunch of enhancements
that the company wants to make to their online system. They envisage
a large multipurpose website that serves end users efficiently and in a
consistent manner.

Chapter 12

[395]

Candidate architecture #1 – Silverlight
The rich set of features available for the user interface makes Silverlight very
attractive to organizations.

Solution design aspects
Designing a user interface in Silverlight is certainly fun, but the overall design may
suffer a little. First, Silverlight needs a subset of .NET to be downloaded and run on
the client, which limits the capabilities of the solution. Too many dependencies on
the client software limit the target user base. Second, expanding the solution will be
limited to using Silverlight or will require significant redesign.

An advantage of Silverlight would be the ability to use the MVVM pattern, which
helps structuring the implementation.

Solution implementation aspects
Thanks to the toolset (Blend for Visual Studio 2013), the implementation is simpler
than for other solutions. However, without enough experience, the implementation
could be slow; the learning curve for Silverlight is quite steep.

Solution operations aspects
Solution operations would have additional problems since the solution depends on
the client software. The performance may also suffer.

Organizational aspects
The biggest problem that the organization sees is that there is no clear roadmap
for Silverlight. Since Silverlight Version 1 was released in 2007, Microsoft has
released a new version of Silverlight every year. Now the product has not been
discontinued, but the latest release was in 2011. Another concern is the inability to
run on several platforms.

Presentation Layer Patterns

[396]

Solution evaluation
The following table shows the solution evaluation:

Design Implementation Operations Organization

Candidate architecture #2 – ASP.NET MVC
From the variety of different ASP.NET templates, we should consider the MVC
template as the most advanced one. The Single Page Application template would
be a nice choice if the company did not plan to expand the features of their website.
Web Forms is probably too old as a technology and has the possibility of being
discontinued. It also does not force any pattern to be used for rapid development.

Solution design aspects
ASP.NET design has a few advantages over Silverlight. First, the resulting code can
be run on any browser, including mobile browsers. Secondly, it can be enhanced with
JavaScript and the usage of jQuery. And finally, it enforces the use of the MVC pattern
that is well understood, presumably better than MVVM, because of its history.

Solution implementation aspects
The implementation of the ASP.NET MVC project may look a little difficult, but it
is significantly simplified in Visual Studio. The initial default project covers many
implementation aspects. It may look complex for a small solution but certainly pays
off in the big run.

However, compared to Silverlight, the development and testing would certainly
have more challenges. Given the complexity of the final solution, we would give
the implementation aspects a "thumbs down".

Solution operations aspects
Generally, the solution does not rely on complex components. On the server side, it
relies on Microsoft IIS, which has been a proven web server solution for many years.
On the client side, it relies on the code that can be very clean if the design pattern
is followed properly. Constant improvements to the ASP.NET MVC model help
developers build cleaner and more maintainable code.

Chapter 12

[397]

Organizational aspects
The ASP.NET solution can be expanded and seamlessly merged with other websites.
Since it can be used on any browser, it is a definite win when it comes to discussions
on the end user base.

Solution evaluation
As shown in the following table, we have three out of four thumbs up! This is
definitely our choice:

Design Implementation Operations Organization

Architecture selection
Selection between these technologies does not seem to be a problem. If we consider
all aspects, the ASP.NET MVC is a much better choice compared to Silverlight.
However, if we analyze the details, we would notice that the biggest advantage
is given by the fact that the ASP.NET client can run on any browser and does not
depend on the downloadable runtime component. If the end user profile were more
predictable, for example, an employee on the internal network, Silverlight would
look much more attractive. For intranets, Silverlight definitely has more advantages.

The framework description
In order to perform rapid development and satisfy key requirements, the
development team has chosen ASP.NET MVC as a framework for developing the
user interface.

The ASP.NET MVC framework was released in 2009 as Version 1 and reached
Version 5 in 2013. Over several years, it has passed through a series of
improvements, and currently runs on .NET 4.5 and 4.5.1 and Visual Studio 2013.

Presentation Layer Patterns

[398]

User interface development
Let us consider the following steps to develop the user interface:

1.	 Copy the example files for Chapter 9, Web Services and Beyond, into a
separate folder.

2.	 Run Visual Studio 2013 and open the RESTService solution.
3.	 We have already created the ASP.NET MVC project for you. In order

to explore it, you may double-click on the Shopping MVC UI project.
It will expand, showing its components.

4.	 However, let's take a look at how you would create a new ASP.NET MVC
project and what steps are involved.

5.	 Click on File in the main menu, then New, and then Project.
6.	 Under the language of development (in our case Visual C#) select Web,

and then ASP.NET Web Application.

Notice that, if you have selected Visual Studio 2012, under the
Web item, you would be able to choose from a bunch of different
ASP.NET templates. In Visual Studio 2013, the selection happens
in the next step.

7.	 Select the MVC template. You can add references to Web Forms or WEB API as
well. You can also add a unit test project, as shown in the following screenshot:

Chapter 12

[399]

8.	 In ASP.NET MVC 5, there is a new Change Authentication mechanism.
Click on the button, and you will have a choice of the following:

°° No Authentication: This is the minimal selection. There will be no
support for login or registration in the resultant template.

°° Individual User Account (default): This selection will force the
application to use the ASP.NET identity that lets users create a
username and password or use authentication via Facebook,
Google, Microsoft, or Twitter.

°° Organizational Accounts: This option should be selected if you want
to use Windows Identity Foundation for Windows Active Directory
(AD) or Azure AD.

°° Windows Authentication: This option is intended for intranet sites.

For our case, we need to choose the Individual User Account option.

9.	 'The following screenshot shows the Shopping MVC UI project that we have
already created as an ASP.NET MVC application:

Presentation Layer Patterns

[400]

10.	 The project is a typical MVC project with a few pages already in the template.
We simply changed the look and feel of the default pages and connected the
interface to the services we have developed before.

11.	 Right-click on the Shopping MVC UI project and select Set as a
StartUp Project.

12.	 Run the application.

The ASP.NET MVC project
For a default ASP.NET MVC project, Visual Studio creates several default folders
that we saw previously. This helps developers separate Models, Views, and
Controllers, as well as giving some structure to additional files. The default
folders are described in the following list:

•	 Controllers: This folder contains controller classes. The classes are written
in C# or another programming language. The framework requires that
all controller filenames end with "the word Controller", for example,
PurchaseOrderController.cs.

•	 Models: This folder contains classes that represent models.
•	 Views: This folder stores the HTML files that are required for the user

interface. The Views folder contains subfolders—one per controller. If you
want to create views shared between controllers (for example, master view
and layout pages), you should place them in a separated Shared subfolder.

•	 App_Data: This folder is used for storing application data, for example, the
database used in the project.

•	 Content: This folder is used for static files, such as CSS files.
•	 Images: This folder is used for images. In previous versions of ASP.NET, the

images were stored under the Content folder (often in a separate subfolder).
•	 Scripts: This folder stores JavaScript files.

Lessons learned
In this example, we considered the development of components of the online retail
system, starting with the shopping cart. We compared the Silverlight and ASP.NET
technologies and came to the conclusion that deployment restrictions that Silverlight
has could make it a good choice for intranets. For the Internet application, we have
chosen ASP.NET MVC.

Having an initial project template based on a well-known pattern without a doubt
helps streamline the design and development of the solution.

Chapter 12

[401]

Working with a use case – a desktop time
billing application
Accents Software Inc. is a company that develops accounting and CRM
software for small- and medium-size organizations. Today, they have several
thousand clients with almost fifty thousand end users. They realized that many
of their clients provide professional services to other organizations, and therefore,
have specific needs.

The company decides to enhance their offer with another software package, Bill
Your Time. The main purpose of this new application is to perform time tracking
of clients' employees and to effectively schedule the tasks that they work on.

All Accents Software's programs are built on the Microsoft platform. Their
accounting software can be configured to use Microsoft SQL Server as well as
Microsoft Access databases for the backend. It is multiuser software; typically,
users work on their workstations connected to the central database. The MS Access
solution is not used much; it also has certain security problems, and it is scheduled to
be discontinued this year.

All Accents Software applications are desktop apps developed using Windows
Forms. The major language of development always has been C#, but some original
applications were developed in Visual Basic (even before .NET) and later migrated
to VB.NET.

Accents Software is also planning to improve its offerings by redesigning the user
interface for existing applications. For new applications, they want to achieve a high
level of user interface configuration. Ideally, the interface should be template-driven,
and the templates should be reusable for many Accents' applications.

Key requirements
The key requirements are as follows:

•	 The Bill Your Time application should be able to use the databases from
the XYZ accounting software. Since the support for MS Access will be
discontinued, all new applications should be configured to access MS SQL
Server databases.

•	 Accents Software clients use different editions of SQL Server, including SQL
Server Express.

Presentation Layer Patterns

[402]

•	 The user interface should be configurable to fit the needs and preferences of
end users. The configuration should be template-driven, as Accents Software
wants to distribute new templates for a fee.

•	 Accents Software applications should have a roadmap targeting a consistent
user interface and shared databases.

Candidate architecture for the desktop
accounting application #1 – intranet with
Silverlight
Developing an intranet application is a very attractive decision. There are many
advantages of intranet applications: convenient and well-known navigation
techniques, an ability to build the same solution for internal and external users, easy
integration at the presentation level, and many more. Silverlight also adds rich user
interface capabilities, and we decided to make it our candidate number one.

Solution design aspects
Designing a Silverlight UI for an intranet application has a lot of advantages.
Using Silverlight, developers can build a feature-rich user interface. The MVVM
pattern streamlines the development. Using XAML gives the ability to build a very
configurable user interface.

At first glance, it seems that the intranet solution mitigates the challenge that we
would have building an Internet application. One may say that intranet users are
predictable and manageable. This might be true if Accents Software developed a
product for one large enterprise. However, this is not our case.

Since the end users of the new product belong to many different organizations,
their environment and their habits are unknown. We don't know all their browsers;
we cannot control any of their settings. Therefore, the intranet approach really does
not give us any advantage. The end users in our use case are as unpredictable as
Internet users.

In addition, connecting to the database from Silverlight is not trivial, and would
need an additional layer, for example, in the form of web services.

Solution implementation aspects
A great toolset (Blend for Visual Studio 2013) makes development relatively
simple. It makes development easier even if we take a very steep learning curve
into consideration.

Chapter 12

[403]

Solution operations aspects
For the product development, most operational problems show up during support.
Supporting a browser-based solution that can be run in different environments is a
difficult task. An additional concern is adding a web server into the architecture. This
is a new component that can be different in different organizations. Accent Software
deals with each customer individually, and adding a component of that sort might
create deployment and support nightmares. Remember that Accents Software's
customers are small- and medium-sized organizations that often don't have their
own IT department.

Organizational aspects
As we mentioned earlier in this chapter, the biggest organizational problem in
our opinion is the fact that there is no clear roadmap for Silverlight. It is not clear
whether or when Microsoft will launch its next version.

Solution evaluation
Despite the rich set of Silverlight features and the temptation to move to an intranet
solution, this does not seem to be our preferred solution, and the evaluation shown
in the following table illustrates the fact:

Design Implementation Operations Organization

Candidate architecture for the desktop
accounting application #2 – Desktop WPF app
What if we want to keep the richness of Silverlight but don't want to run an intranet
application? The answer is WPF. In fact, in terms of functionality, WPF is even richer
than Silverlight because it is not limited to being a subset of .NET.

Presentation Layer Patterns

[404]

Solution design aspects
First, WPF gives us the ability to design an application with an extremely
sophisticated UI and even supports our requirement to make the UI template-driven.
Secondly, WPF (like Silverlight) supports MVVM, which makes designing the
application easier and the development more disciplined.

In fact, WPF seems to be the right choice to support our roadmap. It is an essential
part of .NET and has been evolved with it. It is not too old (like, for example,
Windows Forms). And it seems to have all necessary capabilities for developing
consistent user interfaces for all Accents Software applications.

Solution implementation aspects
WPF has a steep learning curve, and certainly it suggests the new development
paradigm. However, once learned, WPF becomes a powerful tool in the developers'
hands. A lot of features and effects (including the template-driven interface) can be
coded easily once the developers build enough skills.

Solution operations aspects
WPF can access the database management system directly. It does not need an
additional layer (as is the case with Silverlight). It also does not need IIS, an
additional component that would make the entire architecture a little more complex.

Being a desktop application, it is more manageable compared to a web application
(that might behave differently under different browsers).

There are also such means of application deployment as ClickOnce, which enables
web-style deployment for non-web applications. It takes away a lot of the hassle in a
typical deployment process.

Organizational aspects
WPF, being a part of .NET, has a clear roadmap, and it will be supported and
enhanced by Microsoft for many years. It has a rich feature set that will allow
Accents Software to migrate all of their applications to the new platform, while
keeping a consistent look and feel.

Chapter 12

[405]

Solution evaluation
The evaluation is all thumbs up, as shown in the following table:

Design Implementation Operations Organization

Architecture selection
Comparing the risks and benefits of the Silverlight solution with the WPF solution,
we see that the latter is definitely a winner, as shown in the following table:

Solution Benefits/risks
Intranet solution with Silverlight Benefits

•	 Feature-rich user interface
•	 Usage of MVVM pattern
•	 Great toolset

Risks
•	 Too many potential end user

environments. More complicated
support

•	 Architecture seems to be more
complex (additional layer to
communicate with database and a
web server)

•	 Steep learning curve
•	 No clear roadmap

Desktop solution with WPF Benefits
•	 Very feature-rich user interface
•	 Usage of MVVM pattern
•	 Simpler architecture
•	 Clear roadmap

Risks
•	 Steep learning curve

Presentation Layer Patterns

[406]

Pattern implementation description
Let's discuss the major features of the MVVM implementation in WPF in
the following list:

•	 Data binding is a process that establishes a connection between View and
ViewModel. Data binding can be established in one of three directions: one
way, two ways, or one way to source.

•	 Binding can be also established as a one time activity, updating View only
when the data context of ViewModel changes.

•	 The communication between View and ViewModel is done using the
INotifyPropertyChanged interface.

•	 The View is coded in XAML. Ideally code behind does not exist—other than
the default created by Visual Studio (it never happens, though).

•	 Model, as in MVC or MVP, is the least formalized component. It can be data
from a database or a totally different object. For example, one UI control can
change its appearance based on the behavior of another control. In this case,
the second control plays the role of Model.

•	 In our example, the MVVM pattern can be presented as the following:

Chapter 12

[407]

User interface development
Building a full-blown WPF application is a long but very exciting journey. In this
chapter, we will present a complete solution for one screen: the Client Management
screen of the Bill Your Time application. We will focus on the most important
aspects of building a WPF application using the MVVM pattern.

You may notice that we use Visual Basic.NET in the following example and not
C# as before. Really, it does not make any difference!

1.	 In Visual Studio 2013, open the BillYourTime.sln solution. In the Solution
Explorer screen you will see one project, BillYourTime, as shown in the
following screenshot:

2.	 Click on the Start arrow or press the F5 key and run the project.
3.	 Navigate to View | Clients from the menu or click on the Clients

button ().

Presentation Layer Patterns

[408]

4.	 On the main screen, you will see two parts. The left-hand part represents
a list of clients. Click on any client, and you will see the details on the
right-hand part, as shown:

5.	 Let's look into the code and see what is involved in this presentation. We will
explore different components of the MVVM pattern and their relationship.

6.	 First off, let's open the XAML of the main screen (formMain.xaml) and
explore the code representing a control. For this exercise, let's look at the
Address textbox:
<TextBox Grid.Column="1" Name="_c_txbAddress" Height="Auto"
HorizontalAlignment="Stretch" TextWrapping="Wrap"
IsEnabled="False" Foreground="Black">
 <TextBox.Text>
 <MultiBinding Converter="{StaticResource
cnvAddressConverter}">
 <Binding Mode="OneWay" Path="Street1" />
 <Binding Mode="OneWay" Path="City1" />
 <Binding Mode="OneWay" Path="State1" />
 <Binding Mode="OneWay" Path="Country1" />
 <Binding Mode="OneWay" Path="ZIP1" />
 </MultiBinding>
 </TextBox.Text>
</TextBox>

Chapter 12

[409]

Notice a couple of things. First of all, this is multibinding, which means
that one UI control is bound to several data fields. Second, every time the
binding runs, it activates the cnvAddressConverter function, which
creates the presentation properly. This is not necessary but, in many
cases, it gives developers the freedom to change the default binding.

7.	 The textbox (part of View) is linked to ViewModel by means of binding.
All controls on the right-hand side of the screen (grouped in the grid
grdClientProperties container) are (re)bound to the dataset every time a
new line is selected on the left-hand side of the screen. The binding is done
with literally one line of code, which is as follows:
grdClientProperties.DataContext = currentClientDataRow

8.	 Every time the user selects a line in the client list, the value of
currentClientDataRow changes. currentClientDataRow is a data row
view defined as the following:
Friend currentClientDataRow As DataRowView

When the application goes through its initialization cycles or when the data
changes, the data row view is updated from the underlying dataset.

9.	 Therefore, in order to go on displaying all details of the client record,
only the following steps are needed:

1.	 Load the dataset.
2.	 Create a view from a dataset table. You can create several views

from one table. Each view can, for example, present different subsets
of the dataset table using different filtering.

3.	 Design the UI, binding each control to one or more fields in
the view.

4.	 During runtime, change the data context of the control container.
This will change the binding for each field in the container.

5.	 Enjoy the new view!

Presentation Layer Patterns

[410]

10.	 Let's take a look at another example of mighty binding. On the same client
properties screen (on the right-hand side of the main window), click on the
Admin tab , as shown in the following screenshot:

11.	 Click on the Partner combo box, and you will see the list of people coming
from the Employee table of the database.

12.	 If you look in the code of the combo box, you will see the binding again,
as shown:

<ComboBox Grid.Row="0" Grid.Column="1" Name="_c_cmbPartner"
Text="{Binding Path=EmployeeID1, Mode=OneWay,
Converter={StaticResource cnvEmployeeNameConverter}}"
>
<ComboBox.ItemsSource>
 <Binding Source="{StaticResource collEmployees}" />
</ComboBox.ItemsSource>
</ComboBox>

In this case, the entire source of the combo box is bound to the Employees
data view.

Chapter 12

[411]

Let's see how the notification in the MVVM model works using the following
example:

1.	 Select one of the clients from the list on the left-hand side of the screen,
as shown:

2.	 In the client properties window on the right-hand side, click on the
Inactive checkbox in the Admin tab, as shown:

3.	 You will notice that the Inactive icon immediately appeared next to the
client name in the list on the left-hand side of the screen, as depicted in the
following screenshot:

Presentation Layer Patterns

[412]

4.	 The trick is in the fact that both client information on the right-hand side of
the screen and the record in the client list on the left-hand side of the screen
are bound to the same ViewModel. (Notice, that you can bind the checkbox
values as well as the icon). Changing View would affect ViewModel, which
will affect another View instance as well. The first View instance has to be
bound in two ways, which are as follows:

<CheckBox Grid.Row="0" Name="_c_chbInactive" Content="Inactive"
IsChecked="{Binding Path=InActive, Mode=TwoWay}"

Lessons learned
We compared solution implementations using Silverlight and WPF. Despite the fact
that they both use MVVM pattern and .NET (Silverlight uses a subset of .NET),
the constraints for these two technologies are quite different.

We have briefly looked into the MVVM pattern implementation in WPF. We learned
that, if we simply follow the pattern, we can achieve very powerful effects.

Summary
In this chapter, we looked into different presentation layer technologies on the
Microsoft platform: desktop, web, and mobile development. We compared major
patterns for the presentation layer development, such as MVC, MVP, and MVVM.
In the next chapter, we'll wrap up our discussion of patterns. There are certainly more
architectural patterns than we have talked about in this book. We hope that this book
will give you some ideas and useful approaches for your own scenarios and use cases.

Conclusion
In this book, we presented several technologies on the Microsoft platform, discussed
their capabilities, and tried to position them so that they can be used in different
solutions. Although we mostly focused on middle-tier architecture and integration,
we also touched on some other layers, including the presentation layer. Among
the Microsoft products that we discussed, the major focus was on SQL Server,
SharePoint, and BizTalk.

Because most of the solutions include some coding, we provided an overview of
capabilities of the .NET platform. Currently in Version 4.5, .NET is a very powerful
tool that can solve major problems. In our solution discussion, we assessed
architectures using .NET where applicable.

Microsoft provides architects and developers with a variety of tools and
technologies. Using them in solutions requires knowledge of patterns and best
practices, which have originated and solidified through the delivery of many
hundreds of projects. Many books have been written on this topic; however, most
of the books discussed design patterns. This book focuses on patterns for architects,
specifically, solution architects.

Patterns for software-intensive systems
The notion of patterns is centuries, if not millenniums, old. Patterns existed in different
industries, in architecture, and even in folklore. The entire discussion of patterns in
software that started in the late 1980s was influenced by the books of Christopher
Alexander, a famous architect who worked on many buildings in several countries.

The first book on software design patterns, Design Patterns: Elements of Reusable
Object-Oriented Software was published in 1994 by Addison-Wesley Professional,
authored by E. Gamma, R. Helm, R. Johnson, and J. Vlissides (often referred to as
the Gang of Four). Since then, the discussions of patterns never stopped. Authors
presented patterns for user interfaces, databases, and so on.

Conclusion

[414]

One of the most significant attempts to describe patterns and to build pattern
catalogs is the Martin Fowler signature series of books. The books in these series
present patterns of enterprise application architecture, integration patterns, service
design patterns, and others. If you are serious about patterns, you should have one
or two books from this series on your desk (https://www.informit.com/imprint/
series_detail.aspx?ser=2629220&sorttype=3&dir=1&page=1).

We would also like to mention the significant efforts of Thomas Erl, who collected
and presented dozens of patterns for service-oriented architecture in his book.

In the Microsoft world, there is a tremendous ongoing effort by the Microsoft
patterns & practices team, which has made a lot of recommendations related to
specific products (http://msdn.microsoft.com/en-us/library/ff921345.aspx).

Where to go next
This book is not a tutorial on the Microsoft technologies, nor does it provide
some code that you can copy and paste to your solution, and everything will
start working miraculously.

We rather hope that this book will provoke some thoughts and encourage you,
as architects, to consider a few things while designing your solutions:

•	 Look into the requirements: This is your final target; this is what you
want to achieve. Pay additional attention to nonfunctional requirements.

•	 Consider different technologies for your solution: See how much
configuration and development each of the technology requires.

•	 Apply the framework that we discussed in our book: Remember to always
consider all aspects of the solution when you perform technical evaluation.
Take into account design, implementation, and operational aspects as well
as the organizational context.

•	 Try applying weight to your criteria: If there is no clear winner in the
evaluation, try applying weight to your criteria. For example, when your
organizational context presents nonnegotiable constraints, it really does not
matter that the performance of one solution is slightly better than another.

Writing this book was a valuable exercise for us. We hope that reading it will be a
valuable experience for you.

https://www.informit.com/imprint/series_detail.aspx?ser=2629220&sorttype=3&dir=1&page=1
https://www.informit.com/imprint/series_detail.aspx?ser=2629220&sorttype=3&dir=1&page=1
http://msdn.microsoft.com/en-us/library/ff921345.aspx

Index
Symbols
.NET, for data sharing

organizational aspects 330
solution design aspects 329
solution evaluation 330
solution implementation aspects 329
solution operations aspects 330

.NET Framework (.NET)
about 29, 34
ADO.NET 50
Base Class Library (BCL) 34, 35
Windows Communication Foundation 59
Windows Forms (WinForms) 53
Windows Workflow Foundation (WF) 60

.NET Framework APIs
evaluation framework 30, 31

.NET/SharePoint workflow,
for human workflows

organizational aspects 363
solution design aspects 362
solution evaluation 363
solution implementation aspects 363
solution operations aspects 363

.NET WCF Service
about 169
organizational aspects 170
solution design aspects 169
solution evaluation 170
solution implementation aspects 170
solution operations aspects 170

.NET WF service, for fully automated
workflows

architecture selection 345, 346
organizational aspects 344
solution design aspects 343

solution evaluation 344
solution implementation aspects 344
solution operations aspects 344

A
ABC client design 80, 81
ABCClientProcessingFilePath

variable 93, 95
ABClientDataPath variable 93
abilities, SQL Server 2012

data quality 70
high availability 66
maintainability 67, 68
manageability 67
performance 69
programmability 67, 68
scalability 69
security 69

accelerators, BizTalk 102
Active Manager 149
ActiveX Data Object (ADO) 274
actors 10
adapters, BizTalk 102
Address, Binding, and Contract (ABC), of

WCF 59
ADO.NET Data Services Framework. See

WCF Data Services
ADO.NET, .NET Framework

about 50
System.Data.Entity namespace 51
System.Data.Linq namespace 52
System.Data namespace 50
System.Data.Services namespace 52

Ajax 389
All Things Internet. See ATI

[416]

AlwaysOn Availability Groups 66, 86
Analysis Services 64
App_Data folder 400
App for SharePoint 2013 template 140
application integration 160
application prototype design,

payroll processor application
ABC client design 80, 81
about 79
XYZ client design 81-85

Application Request Routing (ARR) 169
Application Server role, SharePoint

about 125
Search Application Server role 125

Application Service Providers (ASPs) 153
Approval workflow 134
Apps, for SharePoint 133
architectural debt 13
architecture strategy, solution

decision framework
deciding 12, 13

ASMX Web services 222
ASP.NET

about 55, 388
Microsoft.AspNet.SignalR namespace 58
System.Web.Forms namespace 56
System.Web.Mvc namespace 56
System.Web.Services namespace 58
System.Web.WebPages namespace 57

ASP.NET MVC 51, 388
ASP.NET MVC, for building shopping cart

organizational aspects 397
solution design aspects 396
solution evaluation 397
solution implementation aspects 396
solution operations aspects 396

ASP.NET, templates
ASP.NET MVC 388
ASP.NET Web Forms 388
Facebook template 388
Single Page application template 388

ASP.NET Web API 266
ASP.NET Web Forms 388
ASP.NET Web Parts

about 133
URL 132

ATI
about 107
business applications 107
use case 108

availability group 66
availability ratings, .NET Framework APIs

limited 34
Microsoft only 34
rare 34
universal 34

B
Base Class Library (BCL)

about 29, 34, 35
System.Collections.Concurrent

namespace 40
System.Collections.Generic

namespace 39, 40
System.Collections namespace 37, 39
System.ComponentModel.Composition

namespace 48
System.ComponentModel.DataAnnotations

namespace 49
System.IO namespace 36
System.Linq namespace 41, 42
System namespace 35
System.Net namespace 37
System.Security.Cryptography

namespace 45
System.ServiceProcess namespace 47
System.Text namespace 36
System.Threading namespace 46
System.Threading.Tasks namespace 46, 47
System.Xml.Linq namespace 44, 45
System.Xml namespace 43

Big Data concept 155
Billing database 113
Bill Your Time 401, 407
BizTalk360

URL 106
BizTalk Adapter Framework

URL 102
BizTalk application

BizTalk solution, implementing 113-118
building 107
overview 118

[417]

requirements analysis 108, 109
use case 107

BizTalk Azure
URL 104

BizTalk ESB Toolkit sample applications
URL 235

BizTalk essentials
accelerators 102
adapters 102
Business Activity Monitoring (BAM) 102
Business Process Management 103
Business Rules Engine (BRE) 102
Message Box 101
Orchestrations 102
Publish/Subscribe pattern 101
transformations 102

BizTalk Itinerary Designer 235
BizTalk Operations service 230
BizTalk Orchestration Engine 246, 340
BizTalk Server

about 99, 167, 186, 231
features 103, 104
history 99, 100
installation and setup 109-112
reference link, for installation 109
URL 109, 222
using, in integration architecture 100, 101

BizTalk Server abilities
about 105
high availability 105
manageability 106
performance 107
programmability 106
reliability 105
scalability 106
security 107

BizTalk Server editions
Branch edition 104
Developer edition 104
Enterprise edition 104
Standard edition 104

BizTalk Server, for data sharing
organizational aspects 329
solution design aspects 328
solution evaluation 329
solution implementation aspects 328
solution operations aspects 328

BizTalk Server, for ETL pattern
organizational aspects 290
solution design aspects 289
solution evaluation 290
solution implementation aspects 289
solution operations aspects 290

BizTalk Server, for federated
request pattern

organizational aspects 168
solution design aspects 167
solution evaluation 169
solution implementation aspects 168
solution operations aspects 168

BizTalk Server, for fully automated
workflows

organizational aspects 342
solution design aspects 340
solution evaluation 342
solution implementation aspects 341
solution operations aspects 341

BizTalk Server, for human workflows
organizational aspects 362
solution design aspects 361
solution evaluation 362
solution implementation aspects 361
solution operations aspects 361

BizTalk Server, for guaranteed delivery
organizational aspects 188
solution design aspects 186, 187
solution evaluation 188
solution implementation aspects 187
solution operations aspects 188

BizTalk solution
implementing 113-118
implementing, Billing database used 113
implementing, Customers database

used 113
implementing, DNR database used 113

BizTalk WCF Service Publishing
Wizard 236

Bookkeeping and accounting
application 273

Branch edition, BizTalk
Server 2013 104

BTS.ReceivePortName property 243
BTSTask command-line tool 106
Buffer Pool Extension (BPE) 86

[418]

buffers 185
Business Activity Monitoring

(BAM) 100, 102, 339
business application platform 121
Business Connectivity Services

(BCS) 130, 135
business intelligence (BI) 280
Business Process Execution Language

(BPEL) 180
Business Process Management, BizTalk 103
Business Rules Engine (BRE),

BizTalk 102, 252
Business-to-Business (B2B) 100
buy versus build strategy 335

C
Call Your Attorney (CYA) 190
candidate architecture, federated

request pattern
.NET WCF Service 169
BizTalk 167

candidate architecture, guaranteed delivery
BizTalk Server 186
SSSB 189
Windows Azure Service Bus 184

candidate architecture, multiple master
synchronization

organizational aspects 302
solution design aspects 301
solution evaluation 302
solution operations aspects 302

canonical data model 268
canonical solution artifacts

building 194-198
Castle Windsor 48
choice type, SharePoint columns 130
Client Access License (CAL) 122
Client-side Object Model (CSOM) 138
CLI languages

URL 29
cloud computing

about 153-155
evolution, factors 153
history 153
main drivers 153

services 154
Windows Azure 155-157

CLR Bootstrap 35
CLR Loader 35
Cluster Shared Volumes 86
cmdlet 67
Collaboration category, site templates 129
Collaborative Application Markup

Language (CAML) 137
Collect Feedback workflow 134
Collect Signatures workflow 134
columns, SharePoint

about 130
choice type 130
managed metadata type 130

columnstore indexes 86
command-let. See cmdlet
Comma-separated values (CSV) 270
Common HTTP features 111
Common Language Runtime (CLR) 29, 68
Community Technology Preview 2

(CTP2) 64
components requisites, payroll

processor application
data conversion component 72
data processing component 73
reporting component 73
user interface 73

components, SQL Server
Analysis Services 64
Database Engine 64
Integration Services 65
Master Data Services 65
Reporting Services 64

Confound Your Assessment (CYA) 299
content database, SharePoint 128
Content folder 400
content types, SharePoint 131
contracts 223
Controllers folder 400
controls 386
Cryptographic Services API 45
Crystal Reports 73
customer relationship management

application 272

[419]

Customers database 113
custom list 130
custom Web Parts, SharePoint

URL 133

D
data access layer (DAL) 51
data aggregation

benefits 280
Database availability group (DAG) 150
database design, payroll processor

application 77
Database Engine 64
Database Engine Tuning Advisor 65
database mirroring 277
Database Recovery Advisor 67
Database Server role, SharePoint 126
DataContext 393
data federation

about 325, 326
features 327
pattern description 326, 327

Data Flow task 96
data integration

about 160
differentiating, with data migration 279

data mart 280
data migration

about 279
differentiating, with data integration 279

Data Processing 82
data publisher

configuring 205-210
Data Quality Services. See DQS
data replication

about 275, 276
challenges 276
SQL Server replication 277

data sharing
.NET 329
about 322
architecture selection 330, 331
BizTalk 328
key requisites 327
real-time data retrieval use case 322, 323

data synchronization
about 275, 276
performing, messages used 278
performing, Sync Framework used 277, 278

Data Transformation Services (DTS) 89
data warehouse

about 280, 322
challenges 323, 324

DB-Library 274
derived (architectural) requirements,

solution decision framework 11
desktop applications

about 385
desktop time billing application 401
InfoPath 387
Microsoft Office VBA applications 387
Windows Forms 386
Windows Presentation Foundation

(WPF) 386
desktop operating systems

about 146
using 146

desktop time billing application
about 401
architecture selection 405
building, with Silverlight 402
building, with WPF 403
key requisites 401
pattern implementation description 406
user interface, developing 407-412

Developer edition, BizTalk Server 2013 104
development foundation

setting up 193, 194
development tools, SharePoint

about 139
Napa 141
SharePoint Designer 139
Visual Studio 140

DNR database 113
document library, SharePoint 132
Domain name registration (DNR)

service 107, 113
DQS 70
DQS Client 65
DQS Cleansing transformation 90

[420]

E
EDI 221
editions, SQL Server 64
Electronic Data Interchange. See EDI
Electronic Discovery Reference Model

about 304
URL 304

Embassy Model 327
Empty Project template 140
enhancements, SQL Server 2014 86
Enterprise Application

Integration (EAI) 100, 160
Enterprise category, site templates 129
Enterprise edition, BizTalk Server 2013 104
Enterprise edition, SharePoint 122
Enterprise Information Integration (EII)

about 100, 267
purpose 267

Enterprise Service Bus. See ESB
entities, payroll processor application

Client 77
ClientEmployee 77
ClientEmployeeDeduction 77
ClientEmployeeEarning 77
ClientEmployeePayment 77
ClientPayPeriod 77

Entity Framework (EF) 51
environments, for solution implementation

development environment 22
production/disaster recovery

environment 22
sandbox environment 22
staging/preproduction environment 22
testing environment 22
training environment 22

ESB
about 163, 218, 224
and message broker, comparing 218
architecture selection 234
BizTalk ESB 229
BizTalk ESB Toolkit, installing 235
commodity trading firm use case 224, 225
facts 226
key requisites 225
moving to 218

pattern description 227, 228
solution, building 234

ESB Toolkit
about 229
organizational aspects 233
services 229
services, working 231
solution design aspects 229
solution evaluation 233
solution implementation aspects 232
solution operations aspects 233

ETL pattern
about 89, 279, 280
architecture selection 290, 291
BizTalk 289
key requisites 285
master patient index use case 281
solution, building 291
SQL Server 286
SSIS 287

ETL pattern, steps
extraction 282, 283
loading 284
transformation 283, 284

evaluation framework dimensions,
for .NET Framework APIs

availability 31, 34
maturity 30-32
performance 31, 33
productivity 31, 32

Exception handling service 229
Exchange Online Protection Service,

Office 365 148
Exchange Online Service, Office 365 148
extensibility, SharePoint

SharePoint (Cloud) Apps model 136
SharePoint Solutions model 136

Extensible Application Markup
Language (XAML) 54, 387

extract, transform, and load pattern.
See ETL pattern

F
Facebook template 388
fat clients. See rich client applications

[421]

FDA subscriber
configuring 205-210
solution artifacts, building 199-205

federated request pattern
about 164, 165
executing 166
solution, building 172-176
use case 164

FileTables feature 68
file transfer

about 269, 270
problems 271, 272

Foreach Loop container 93
form 386
forms, SharePoint 135
Foundation edition, SharePoint 122
FTP 271
FTPS 271
fully automated workflows

.NET WF service 342
about 334
BizTalk 340
facts 336
key requisites 335
Scatter-Gather pattern 336, 337
single dashboard view use case 334, 335
solution, building 346

fully automated workflows, considerations
aggregation algorithm 338
aggregation strategy 338
appropriate timeout 339
completeness 338
correlation 340
data durability 340
exception handling 339
monitoring 339
number of calls versus expected usage 339
parallel processing 340
response type 339
sequential processing 340
tracing 339

functional programming 41
functional requirements, solution

decision framework 10
functional requisites, payroll processor

application 72-75

G
guaranteed delivery

implementation 183, 184
issue 180, 181
pattern 183
use case 181

H
Hadoop 90
HDInsight service 155
health care industry 181, 182
Heisenbugs

URL 40
Hekaton 86, 98
high availability, BizTalk Server 105
Hosting service 113
human workflows

.NET/SharePoint workflow 362
about 357
architecture selection 364
BizTalk 360
facts 358
key requisites 358
pattern description 359
repair/resubmit use case 357
solution, building 365

I
Idempotence 183
Images folder 400
immutable collections 41
InfoPath 387
information consumer 166
information provider 166
Infrastructure as a Service (IaaS) 154
In-Memory OLTP 86
input dataset design, payroll processor

application 79
Instant Stock Trades Inc.. See IST
integration architecture

BizTalk Server, using in 100, 101
challenges 160-162
styles 159, 160

[422]

Integration Services 65
IntelliTrace 151
Internet Bank

additional services, adding 336
Internet Information Server (IIS) 47
Inversion of Control (IoC) containers 48
IO Resource Governor 86
IST

about 164
policies 164

itinerary
Messaging Extender 244
Off-Ramp 244
Off-Ramp Extender 244
On-Ramp 244

Itinerary Broker Outport 246
Itinerary Broker Service 246
Itinerary services 229

J
JavaScript 389
JavaScript Object Model (JSOM) 139
jQuery 389

K
key requisites, payroll processor application

about 72
functional 72-75
nonfunctional 75, 76
requirements analysis 72-74

knockout.js 393

L
Language Integrated Query (LINQ) 39, 274
lead management application 272
licensing 106
LINQ to SQL API 52
LINQ to XML API 44
list, SharePoint

about 130
custom list 130

list templates 130
list workflows, SharePoint 134

location transparency 223
loose coupling 223
Lync Online Service, Office 365 148

M
manageability, BizTalk Server 106
managed metadata type, SharePoint

columns 130
mapping

creating 202
marketing application 273
master data management (MDM) 300
Master Data Services (MDS)

about 65
benefits 303
risks 303

master patient index (MPI) 282
master secret server 105
maturity ratings, .NET Framework APIs

emerging 31
new and promising 31
showing its age 32
tried and tested 32

Merge Join transformation 90
merge replication 277
Merge transformation 90
Message Box, BizTalk 101
message broker

about 177
and ESB, comparing 218
message routing 177
message transformation 177
message validation 177
pattern 177
versus point-to-point integration 178-180

message hub 166
message routing 177
messages

about 165
used, for performing data

synchronization 278
message transformation 177
Message Transmission Optimization

Mechanism (MTOM) 59

[423]

message validation 177
Microsoft.AspNet.SignalR namespace 58
Microsoft Design Language 389
Microsoft Exchange Server 2013

about 149
nonfunctional abilities 149

Microsoft Extensibility Framework
(MEF) 48

Microsoft Internet Information Server
(IIS) application 123

Microsoft Office 2013 applications
Access 147
Excel 147
InfoPath 147
Lync 147
OneNote 147
Outlook 147
PowerPoint 147
Project 147
Publisher 147
Visio 147
Word 147

Microsoft Office software
about 147
Exchange Server 2013 149
Office 365 148, 149
Office 2013 applications 147, 148

Microsoft Office VBA applications 387
Microsoft SharePoint Server. See

SharePoint
mobile development 389, 390
Models folder 400
model-view controller pattern. See

MVC pattern
model-view-presenter pattern. See

MVP pattern
Model-View-ViewModel pattern. See

MVVM pattern
modifiable immutable collections 41
monitor 40
mscorlib.dll assembly 35
MS HDInsight Server 98
multiple master synchronization

about 298
architecture selection 303, 304
candidate architecture 300
facts 300

key requisites 299
master data management for

WWW use case 298
pattern description 300
solution, building 304, 305

MVC pattern 54, 391, 392
MVC pattern, components

Controller 391
Model 391
View 391

MVP pattern 392
MVVM pattern 54, 393

N
Napa

about 141
URL 141

NetEventRelayBinding 184
netwalk 270
Ninject 48
nonfunctional requirements (NFRs),

solution decision framework
about 10
categories 11

nonfunctional requisites, payroll
processor application

auditability 76
availability 75
capacity 76
interoperability 76
maintainability 76
performance 75
recoverability 76
reliability 76
scalability 76
security 76
usability 76

NuGet 41

O
Object-Relational (O/R) mapping

technologies 51
Observer design pattern

about 392
reference link 392

[424]

OData protocol
about 52
URL 52

Office 365 (O365)
about 122
benefits 149

Office 365 applications
Exchange Online Protection Service 148
Exchange Online Service 148
Lync Online Service 148
Office Application Service 148
Office Web Apps Service 148
Project Online Service 148
SharePoint Online Service 148
Yammer Service 148

Office Application Service, Office 365 148
Office Web Apps Service 148
OneDrive 148
online analytical processing (OLAP) 64
Online edition, SharePoint 122
Open Database Connectivity (ODBC) 274
Open Data protocol. See OData protocol
OPENROWSET() function 85
Open Systems Interconnection (OSI)

model 383
operating system environments (OSEs) 144
operating systems

about 143, 144
desktop operating systems 146
Windows Phone OS 146
Windows Server 144

operations 223
Orchestrations, BizTalk 102
organizational direction, solution

decision framework 9

P
Parallel Actions 343
Parallel LINQ (PLINQ) 40
Patient Health Number (PHN) 281
payroll processor application

application prototype design 79, 80
building 70, 91
database design 77
details, adding to RPP use case 91
functional requisites 72-75

input dataset design 79
key requisites 72
lessons learned 97
nonfunctional requisites 75, 76
overview 85
requirements analysis 91, 92
SSIS package design 92-96
use case 70, 71

PCI security standards
URL 107

Per Core Licensing introduction
URL 104

performance and capacity planning
URL 107

performance and scalability ratings,
.NET Framework APIs

decrease 33
increase 33
no or little impact 33
significant increase 33

performance, BizTalk Server 107
Platform as a Service (PaaS) 154
point-to-point channel pattern 163
point-to-point integration

about 162, 163
versus message broker 178-180

polling 217
Power Map 86
Power Query 86
presentation layer

about 383, 384
building 385
desktop applications 385
mobile development 389, 390
web applications 387

Presenter 392
principles, REST 252, 253
product development 7
productivity ratings, .NET Framework APIs

decrease 32
increase 32
no or little impact 32
significant increase 33

programmability, BizTalk Server 106
project development 7
Project Online Service, Office 365 148

[425]

publisher 217
Publishing Approval workflow 134
Publishing category, site templates 129
Publish/Subscribe pattern

about 217
publisher 217
subscriber 217
subscription 217

Publish/Subscribe pattern, BizTalk 101
PurchaseOrderBroker orchestration

implementing 245, 246
pushing 217

R
Razor syntax 57
receiver 164, 166
release candidate (RC) 41
reliability, BizTalk Server 105
Reliable Payroll Pro Inc.. See RPP
Remote Procedure Calls (RPCs) 138
replication. See data replication
Reporting Services 64
Representational State Transfer. See REST
Resolver service 230
REST

about 252
principles 252, 253

RESTful services
about 253
facts 254
future 265
key requisites 254
pattern description 254, 255
RESTful WCF Services 256
shopping cart use case 253
solution, building 257
versus, SOAP web services 265

RESTful WCF Services
organizational aspects 257
solution design aspects 256
solution evaluation 257
solution implementation aspects 256
solution operations aspects 256

reusable workflows, SharePoint 134
revision-control system. See source

control systems

Ribbon control 386
rich client applications 385
RPP

about 71
details, adding to 91
requirements analysis 91, 92

rsync 271

S
sandbox solutions 136
scalability, BizTalk Server 106
Scatter-Gather pattern 336, 337
Scripts folder 400
Search Server

benefits 303
risks 303

security, BizTalk Server 107
selective XML index feature 69
semantic dissonance 273
semantic inconsistencies 268
sender 164, 166
Separation of Concerns (SoC) 48, 390
sequencing 106
service abstraction 223
service aggregator workflow service

AccountAggregator workflow,
implementing 348-353

implementing, with ASP.NET 354-356
project, setting up 348

service applications, SharePoint 135
service autonomy 223
service encapsulation 223
service granularity 223
service orientation 223
service-oriented architecture. See SOA
service reusability 223
services, cloud computing

Infrastructure as a Service (IaaS) 154
Platform as a Service (PaaS) 154
Software as a Service (SaaS) 154

services, ESB Toolkit
about 229
BizTalk Operations service 230
Exception handling service 229
Itinerary services 229
Resolver service 230

[426]

Transformation service 230
UDDI service 229

shared application pool 127
shared database

about 272-275
disadvantage 275

SharePoint
about 121
administration 126
capabilities 127
columns 130
content database 128
content types 131
core concepts 127
document library 132
extensibility 136
forms 135
lists 130
management 126
service applications 135
site collections 128
sites 129
views 131
web application 127
Web Parts 132
workflows 134

SharePoint 2013
about 121
reference link, for editions 123
URL, for requisites 124

SharePoint 2013 experience
version site templates

Collaboration category 129
Enterprise category 129
Publishing category 129

SharePoint 2013 Search platform
URL 136

SharePoint 2013 workflow model
URL 134

SharePoint APIs
about 137
SharePoint JavaScript Object Model 139
SharePoint .NET Client-side

Object Model 138
SharePoint Server Object Model 137
SharePoint Silverlight Client

Object Model 138

SharePoint web services 137
SharePoint Apps 133
SharePoint Client-side Object Model

(CSOM) 127
SharePoint (Cloud) Apps model 136
SharePoint databases

URL 126
SharePoint Designer 134, 139
SharePoint Designer 2013

URL 139
SharePoint editions

Enterprise edition 122
Foundation edition 122
Online edition 122
Standard edition 122

SharePoint JavaScript Object
Model 127, 139

SharePoint .NET Client-side Object Model
about 138
URL 138

SharePoint Online Service, Office 365 148
SharePoint Package 140
SharePoint platform

about 123
SharePoint server roles 124
SharePoint server topology 123

SharePoint project templates,
Visual Studio 2013

App for SharePoint 2013 140
Empty Project 140
Silverlight Web Part 140

SharePoint Search 136
SharePoint Server Object Model (SOM)

127, 137
SharePoint server roles

about 124
Application Server role 125
Database Server role 126
Web Server role 124

SharePoint server topology 123, 124
SharePoint service applications

URL 125
SharePoint Silverlight Client Object

Model 138
SharePoint Solutions model 136
SharePoint web application 127
SharePoint web services

[427]

about 137
WCF-based RESTful OData services 137
WCF Data Services 137

shopping cart
about 394
architecture selection 397
building, with ASP.NET MVC 396
building, with Silverlight 395
framework description 397
key requisites 394
user interface, developing 398-400

SignalR 58
Silverlight 388
Silverlight, for building desktop time

billing application
benefits 405
organizational aspects 403
risks 405
solution design aspects 402
solution evaluation 403
solution implementation aspects 402
solution operations aspects 403

Silverlight, for building shopping cart
organizational aspects 395
solution design aspects 395
solution evaluation 396
solution implementation aspects 395
solution operations aspects 395

Silverlight Web Part template 140
Single Page application template 388
single sign-on (SSO) 20
site collections, SharePoint 128
sites, SharePoint 129
site workflows, SharePoint 134
SkyDrive. See OneDrive
Smart client 386
snapshot replication 277
SOA

about 100, 163, 223
location transparency 223
loose coupling 223
service abstraction 223
service autonomy 223
service encapsulation 223
service granularity 223
service reusability 223

SOAP 222
software application architecture

about 7
product development 7
project development 7

Software as a Service (SaaS) 154
software development life cycle

(SDLC) 7, 152
software development tools

about 150
Visual Studio 150

software-intensive systems
patterns 413, 414

software solution
key requisites 182

Solid State Disks (SSDs) 86
solution architects 8
solution decision framework

about 8
applying 26
architecture strategy, deciding 12
principles 8, 9
sources of input 9

solution, ESB
BizTalk ESB Toolkit installation 235
current behavior, of system 241
deploying 236
downloading 235
ESB Toolkit, utilizing 241
item inventory check status codes 240
itinerary service broker pattern,

implementing 245-251
message schemas 235
monolithic solution, implementing 236-239
PO status codes 240
setting up 235
transformations, utilizing within

ESB itinerary 241-245
solution, ETL pattern

building 291
data structures 292-297

solution, federated request pattern
building 172-176

solution, fully automated workflows
building 346
service aggregator workflow service,

building 348

[428]

setup 346, 347
solution, guaranteed delivery

building 193
canonical solution artifacts,

building 194-198
data publisher, configuring 205-210
development foundation, setting

up 193, 194
FDA subscriber, configuring 205-210
FDA subscriber solution artifacts,

building 199-205
website database subscriber,

configuring 214, 216
website database subscriber solution

artifacts, building 210-214
solution, human workflows

core workflow, building 367, 368
environment, checking 368
flowchart workflow logic,

implementing 370-372
Receive Payment Notice activity,

implementing 376-378
Receive Updated Data activity,

implementing 381
Send Email activity, implementing 373, 375
Send Email Error Notification activity,

implementing 380
Send Success Notification activity,

implementing 379
setup 365, 366
top-level workflow,

implementing 368-370
workflow, testing 382

solution, multiple master synchronization
building 304, 305
Master Data Services (MDS),

installing 306-316
relational data, fetching 306
search, setting up 320-322
unstructured data 316-320

solution, RESTful services
building 257
components 257
setting up 258, 259
WCF RESTful service, exploring 259-263

solutions
designing, aspects 414

source control systems 152
sources of input, solution decision

framework
derived (architectural) requirements 11
functional requirements 10
nonfunctional requirements (NFRs) 10
organizational direction 9

SQL Server
benefits 290, 303
components 64, 65
editions 64
organizational aspects 286
risks 290, 303
solution design aspects 286
solution evaluation 287
solution implementation aspects 286
solution operations aspects 286
tools 65

SQL Server 2012
abilities 66-70
about 64
installing 112

SQL Server 2014
enhancements 86

SQL Server Analysis Services
(SSAS) 64, 280

SQL Server Configuration Manager 65
SQL Server Data Tools for Business

Intelligence Studio. See SSDT BI
SQL Server Data Tools (SSDT) 66
SQL Server Integration Services. See SSIS
SQL Server Management Studio 65
SQL Server Profiler 65
SQL Server replication

about 277
merge replication 277
snapshot replication 277
transactional replication 277

SQL Server Reporting Services
(SSRS) 64, 280

SQL Server Service Broker. See SSSB
SSDT BI

about 92
URL, for installation package 92

[429]

SSIS
about 65, 89, 287
benefits 291, 303
organizational aspects 288
risks 291, 303
solution design aspects 287
solution evaluation 289
solution implementation aspects 288
solution operations aspects 288
using, scenarios 89

SSIS 2012
improvements 90

SSIS 2014
improvements 98

SSISDB catalog 90
SSIS package

creating 92-96
SSSB

about 189
advantages 191
benefits 193
organizational aspects 191
risks 193
solution design aspects 190
solution evaluation 192
solution implementation aspects 190, 191
solution operations aspects 191

Standard edition, BizTalk Server 2013 104
Standard edition, SharePoint 122
Statistical Semantic Search 68
subject matter experts (SMEs) 341
subscriber 217
subscription 217
Sync Framework

about 278
purpose 278
used, for performing data

synchronization 277, 278
System.Activities namespace 60
System.Collections.Concurrent

namespace 40
System.Collections.Generic

namespace 39, 40
System.Collections namespace 37-39
System.ComponentModel.Composition

namespace 48

System.ComponentModel.DataAnnotations
namespace 49

System.Core.dll assembly 35
System.Data.Entity namespace 51
System.Data.Linq namespace 52
System.Data namespace 50
System.Data.Services namespace 52
System.dll assembly 35
System.IO namespace 36
System.Linq namespace 41, 42
System namespace 35
System.Net namespace 37
System.Security.Cryptography

namespace 45
System.ServiceModel namespace 59
System.ServiceProcess namespace 47
System.Text namespace 36
System.Threading namespace 46
System.Threading.Tasks namespace 46, 47
System.Web.Forms namespace 56
System.Web.Mvc namespace 56
System.Web.Services namespace 58
System.Web.WebPages namespace 57
System.Windows.Forms namespace 53
System.Windows namespace 54
System.Xml.Linq namespace 44, 45
System.Xml namespace 43

T
Task Parallel Library (TPL) 40 42
Team Foundation Server (TFS)

about 152
features 152

technology evaluation dimensions
organizational context 13-15
solution design aspects 13-21
solution implementation aspects 13, 21-23
solution operation aspects 13, 24, 25

thick clients. See rich client applications
thin terminals

about 153
features 153

Three-State workflow 134
THROW statement 68
Timeout 338
tools, SQL Server

[430]

Connectivity Components 66
Database Engine Tuning Advisor 65
Data Quality Services Client 65
SQL Server Configuration Manager 65
SQL Server Data Tools (SSDT) 66
SQL Server Management Studio 65
SQL Server Profiler 65

total cost of ownership (TCO) 156
transactional replication 277
Transact-SQL (T-SQL) 67, 189
transformations, BizTalk 102
Transformation service 230
Transparent Data Encryption (TDE)

feature 107
Transport Layer Security (TLS) 177
TRY-CATCH blocks 68
T-SQL 91
TypeScript

about 389
URL 389

U
UDDI service 229
unified resource identifiers (URIs) 254
Unity 48
Universal Description, Discovery,

and Integration (UDDI) 222
use case, federated request pattern

IST 164
key requisites 165

use case, guaranteed delivery
health care industry 181, 182
observations 182, 183

use case, payroll processor application
RPP 71

use cases 10
use case, web hosting company

ATI 107
user interface, desktop time billing

application
developing 407-412

user interface, shopping cart
ASP.NET MVC project 400
developing 398, 399, 400

user interface (UI) 53, 384

V
view 77
ViewModel 393
Views folder 400
views, SharePoint 131
virtual database 326
virtualization, Windows Server

about 145
benefits 145

Visual Studio
about 140
capabilities 140
SharePoint project templates 140

Visual Studio 2013 editions
Free Express editions 151
Premium 151
Professional 150
Test Professional 151
Ultimate 151

Visual Studio, BizTalk 2013
installing 112

Visual Studio Free Express editions 151
Visual Studio Online 151, 156
Visual Studio Premium edition 151
Visual Studio Professional 150
Visual Studio, software development tools

about 150
editions 150, 151

Visual Studio Test Professional edition 151
Visual Studio Ultimate edition 151

W
Wait for all 338
WCF

about 265, 342
versus, ASP.NET Web API 266

WCF-based RESTful OData services 137
WCF Data Services API 52, 137
WCF LOB Adapter SDK 2013

URL 113
WCF RESTful service

exploring 259-263
WCF Service Application project

creating 172

[431]

web applications
about 387
ASP.NET 388
scripting, with JavaScript 389
scripting, with jQuery 389
shopping cart 394
Silverlight 388

Web Front End (WFE) server
about 124
scale-out strategies 125

Web Pages API 57
Web Part page 132
Web Parts, SharePoint 132, 133
Web Part zones 132
Web Server role, SharePoint 124
Web service 221
Web Services Definition

Language. See WSDL
Web Services Enhancements (WSE) 222
website database subscriber

configuring 214-216
solution artifacts, building 210-214

windows 383
Windows Azure

about 155
services, providing 155, 156
URL 155

Windows Azure Active Directory 156
Windows Azure BizTalk Services 156
Windows Azure Media Services 156
Windows Azure Service Bus

about 156, 184
benefits 192
organizational aspects 186
risks 192
solution design aspects 184, 185
solution evaluation 186
solution implementation aspects 185
solution operations aspects 185

Windows Azure services
Active Directory 156
BizTalk Services 156
HDInsight service 155
Media Services 156
Service Bus 156
Visual Studio Online 156

Windows Azure Workflows 134
Windows Communication

Foundation, .NET Framework
about 59
System.ServiceModel namespace 59

Windows Forms API 386
Windows Forms (WinForms),

.NET Framework
about 53
System.Windows.Forms namespace 53

Windows Integrated Security 107
Windows Phone 389
Windows Phone 8.1 SDK 390
Windows Phone OS 146, 389
Windows Phone Silverlight 8.1

Application 390
Windows Phone Silverlight 8 Application

model 390
Windows Phone Store 390
Windows Phone Store Application

model 390
Windows Presentation Foundation

(WPF) 386
Windows Presentation Foundation

(WPF), .NET Framework
about 54
System.Windows namespace 55

Windows Process Activation Service
(WAS) 47

Windows RT (WinRT) OS 389
Windows Server Network Load

Balancing (NLB) 125
Windows Store 389
Windows Workflow Foundation

(WF) 134 342
Windows Workflow Foundation (WF),

.NET Framework
about 60
System.Activities namespace 60

WinForms. See Windows Forms API
WMI Object Model 106
workflows 333
Workflow Service 60
workflows, SharePoint

about 134
Approval workflow 134

[432]

Collect Feedback 134
Collect Signatures 134
custom workflows 134
list workflows 134
Publishing Approval 134
reusable workflows 134
site workflows 134
Three-State 134

workflows, types
fully automated workflows 333
human workflows 333

World Wide Web Consortium (W3C) 221
World Wide Widgets (WWW) 298
WPF, for building desktop time

billing application
benefits 405
organizational aspects 404
risks 405
solution design aspects 404
solution evaluation 405
solution implementation aspects 404
solution operations aspects 404

WS-Addressing 222
WSDL 222
WS-SecureConversation 222
WS-Security 222
WS-* standards 222

X
Xamarin

URL 29
XYZ client design 81-85

Y
Yammer Service, Office 365 148

Thank you for buying
Applied Architecture Patterns on the

Microsoft Platform
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

What's New in SQL Server 2012
ISBN: 978-1-84968-734-8 Paperback: 238 pages

Unleash the new features of SQL Server 2012

1.	 Upgrade your skills to the latest version
of SQL Server.

2.	 Discover the new dimensional model in
Analysis Services.

3.	 Utilize data alerts and render reports to
the latest versions of Excel and Word.

Oracle Application Integration
Architecture (AIA) Foundation
Pack 11gR1: Essentials
ISBN: 978-1-84968-480-4 Paperback: 274 pages

Develop and deploy your Enterprise Integration
Solutions using Oracle AIA

1.	 Full of illustrations, diagrams, and tips
with clear step-by-step instructions and
real-time examples to develop full-fledged
integration processes.

2.	 Each chapter drives the reader right from
architecture to implementation.

3.	 Understand the important concept of Enterprise
Business Objects that play a crucial role in
AIA installation and models.

Please check www.PacktPub.com for information on our titles

Microsoft BizTalk Server 2010
Patterns
ISBN: 978-1-84968-460-6 Paperback: 396 pages

Create effective, scalable solutions with Microsoft
BizTalk Server 2010

1.	 Provides a unified example from the beginning
to end of a real-world solution.

2.	 A starter guide expecting little or no previous
BizTalk experience, but offering advanced
concepts and techniques.

3.	 Provides in-depth background and
introduction to the platform and technology.

BizTalk Server 2010 Cookbook
ISBN: 978-1-84968-434-7 Paperback: 368 pages

Over 50 recipes for developers and administrators
looking to deliver well-built BizTalk solutions
and environments

1.	 Enhance your implementation skills
with practically proven patterns.

2.	 Written by a BizTalk expert and MVP,
Steef-Jan Wiggers, the book is filled
with practical advice.

3.	 Learn best practices for deploying BizTalk
2010 solutions.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Solution Decision Framework
	The need for a decision framework
	Sources of input
	Organizational direction
	Functional requirements and use cases
	Non-functional requirements
	Derived (architectural) requirements

	Deciding upon your architecture strategy
	Technology evaluation dimensions
	Organizational context
	Solution design aspects
	Solution implementation aspects
	Solution operation aspects

	Applying the framework
	Summary

	Chapter 2: The .NET Framework Primer
	An evaluation framework for .NET Framework APIs
	Evaluation framework dimensions
	Evaluation framework ratings

	The .NET Framework
	The Base Class Library
	The System namespace
	The System.Text namespace
	The System.IO namespace
	The System.Net namespace
	The System.Collections namespace
	The System.Collections.Generic namespace
	The System.Collections.Concurrent namespace
	The System.Linq namespace
	The System.Xml namespace
	The System.Xml.Linq namespace
	The System.Security.Cryptography namespace
	The System.Threading namespace
	The System.Threading.Tasks namespace
	The System.ServiceProcess namespace
	The System.ComponentModel.Composition namespace
	The System.ComponentModel.DataAnnotations namespace

	ADO.NET
	The System.Data namespace
	The System.Data.Entity namespace
	The System.Data.Linq namespace
	The System.Data.Services namespace

	Windows Forms
	The System.Windows.Forms namespace

	Windows Presentation Foundation
	The System.Windows namespace

	ASP.NET
	The System.Web.Forms namespace
	The System.Web.Mvc namespace
	The System.Web.WebPages namespace
	The System.Web.Services namespace
	The Microsoft.AspNet.SignalR namespace

	Windows Communication Foundation
	The System.ServiceModel namespace

	Windows Workflow Foundation
	The System.Activities namespace

	Summary

	Chapter 3: The SQL Server Primer
	What is included in SQL Server 2012?
	SQL Server editions
	SQL Server components and tools
	SQL Server 2012 abilities
	High availability
	Manageability
	Programmability and maintainability
	Scalability
	Performance
	Security
	Data quality

	Building the payroll processor application
	Use case
	Key requirements
	Functional requirements – first draft
	Requirements analysis
	Functional requirements – second draft
	Nonfunctional requirements

	The database design
	The Input dataset design
	The application prototype design
	The ABC client design
	The XYZ client design

	Lessons learned

	New features of SQL Server 2014
	Summary

	Chapter 4: The SSIS Primer
	What's new in SSIS 2012
	Building the payroll processor application
	Adding more details to the RPP use case
	Requirements analysis
	SSIS package design
	Lessons learned

	What's new in SSIS 2014
	Summary

	Chapter 5: The BizTalk Server Primer
	Using BizTalk in an integration architecture
	BizTalk essentials
	New features of BizTalk Server 2013
	BizTalk Server editions
	BizTalk Server abilities
	High availability
	Reliability
	Manageability
	Programmability
	Scalability
	Performance
	Security

	Building the BizTalk application
	The use case of a web hosting company
	Requirements analysis
	BizTalk Server installation and setup
	Implementing the BizTalk solution
	Lessons learned

	Summary

	Chapter 6: The SharePoint Server Primer
	The SharePoint editions
	The SharePoint platform
	The SharePoint server topology
	The SharePoint server roles
	The Web Server role
	The Application Server role
	The Database Server role

	Administration and management
	Core concepts and capabilities of SharePoint
	SharePoint web applications
	SharePoint content database
	SharePoint site collections
	SharePoint sites
	SharePoint lists
	SharePoint columns
	SharePoint content types
	SharePoint views
	SharePoint document libraries
	SharePoint web parts
	Apps for SharePoint
	SharePoint workflows
	SharePoint forms
	SharePoint service applications
	SharePoint Search

	SharePoint extensibility
	SharePoint APIs
	SharePoint Server Object Model
	SharePoint web services
	SharePoint .NET Client-side Object Model
	SharePoint Silverlight Client Object Model
	SharePoint JavaScript Object Model

	SharePoint development tools
	SharePoint Designer
	Office Developer Tools for Visual Studio
	"Napa" Office 365 Development Tools

	Summary

	Chapter 7: Other Microsoft Technologies
	Operating systems
	Windows Server
	Virtualization

	Desktop operating systems
	The Windows Phone OS

	The Microsoft Office software
	Microsoft Exchange Server 2013

	Software development tools
	Cloud computing
	Windows Azure

	Summary

	Chapter 8: Integration Patterns and Antipatterns
	Integration styles and challenges
	Point-to-point integration
	The federated request pattern
	Working with the use case – purchasing power calculation
	Key requirements

	The federated request pattern description
	Candidate architecture for federated
requests #1 – BizTalk
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture for federated requests #2 – .NET Service (WCF)
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Lessons learned

	The message broker pattern
	Message broker versus point-to-point integration

	The guaranteed delivery problem
	Working with the use case – health care industry
	Summarized key requirements
	Additional facts

	Pattern for guaranteed delivery
	Candidate architectures
	Candidate architecture for guaranteed delivery #1 – Windows Azure Service Bus
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture for guaranteed delivery #2 – BizTalk Server
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture for guaranteed delivery #3 – SQL Server Service Broker
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setting up the development foundation
	Building the canonical solution artifacts
	Building the FDA subscriber solution artifacts
	Configuring the data publisher and FDA subscriber
	Building the website database subscriber solution artifacts
	Configuring the website database subscriber
	Lessons learned

	The publish/subscribe pattern
	Moving to Enterprise Service Bus
	Summary

	Chapter 9: Web Services and Beyond
	Service-oriented architecture
	Enterprise Service Bus
	Use case – a commodity trading firm
	Key requirements
	Additional facts

	Pattern description
	Candidate architecture – BizTalk ESB
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	BizTalk ESB Toolkit installation and setup
	Solution setup
	Deploying and using a monolithic solution
	PO status codes
	Item inventory check status codes
	Current behavior of the system
	Utilizing the ESB Toolkit
	Using existing transformations within an
ESB Itinerary
	Using the itinerary service broker pattern

	Lessons learned

	RESTful services
	Use case – shopping cart
	Key requirements
	Additional facts
	Pattern description
	Candidate architecture – RESTful WCF Services
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Building the solution
	Solution components
	Solution setup
	WCF RESTful service description

	Lessons learned
	Future of RESTful services

	Summary

	Chapter 10: Data Exchange Patterns
	File transfer
	A shared database
	Data replication and synchronization
	The SQL Server replication
	Data synchronization using Sync Framework
	Data synchronization using messaging

	Data migration
	The extract, transform, and load pattern for centralized data aggregation
	Use case – master patient index
	Pattern description
	Extraction
	Transformation
	Loading

	Key requirements
	Candidate architecture #1 – SQL Server
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2 – SSIS
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #3 – BizTalk
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Data structures
	Lessons learned

	Multiple master synchronization
	Use case – master data management for WWW
	Key requirements
	Additional facts

	Pattern description
	Candidate architecture
	Solution design aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Fetching relational data
	Master data services
	Unstructured data
	Setting up a search
	Lessons learned

	Data sharing and federation
	Use case – real-time data retrieval from highly sensitive data sources
	Data warehouse challenges
	Another approach – data federation
	Pattern description
	Key requirements
	Candidate architecture #1 – BizTalk Server
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate Architecture #2 – .NET
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Lessons learned

	Summary

	Chapter 11: Workflow Patterns
	Fully automated workflows
	Use case – a single dashboard view
	Key requirements
	Additional facts
	The Scatter-Gather pattern

	Factors affecting implementation details
	Candidate architecture #1 – BizTalk Server
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2 – .NET WF service
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setup
	Building the service aggregator workflow service
	Consuming the service aggregator workflow service with ASP.NET

	Lessons learned

	Human workflows
	Use case – repair/resubmit with human workflow
	Key requirements
	Additional facts
	Pattern description

	Candidate architecture #1 – BizTalk Server
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2 – .NET workflow and SharePoint
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setup
	Building the core workflow
	Testing the workflow

	Lessons learned

	Summary

	Chapter 12: Presentation Layer Patterns
	Building presentation layers
	Desktop applications
	Windows Forms
	Windows Presentation Foundation
	Microsoft Office VBA applications
	InfoPath

	Web applications
	ASP.NET
	Silverlight
	Scripting with JavaScript and jQuery

	Mobile development

	MVC, MVP, and MVVM
	The model-view controller pattern
	The model-view-presenter pattern
	Model-View-View Model

	Working with a use case – a user interface for the shopping cart
	Key requirements
	Candidate architecture #1 – Silverlight
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2 – ASP.NET MVC
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	The framework description
	User interface development
	The ASP.NET MVC project

	Lessons learned

	Working with a use case – a desktop time billing application
	Key requirements
	Candidate architecture for the desktop accounting application #1 – intranet with Silverlight
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture for the desktop accounting application #2 – Desktop WPF app
	Solution design aspects
	Solution implementation aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Pattern implementation description
	User interface development
	Lessons learned

	Summary

	Chapter 13: Conclusion
	Patterns for software-intensive systems
	Where to go next

	Index

