Professional Expertise Distilled

Applied Architecture Patterns
on the Microsoft Platform

Foreword by Ofer Ashkenazi,
Senior Technical Product Manager, Microsoft

Richard Seroter Stephen W. Thomas Rama Ramani PAC KT enTerprIse 8

Ewan Fairweather Mike Sexton
PUBLISHING

http://www.allitebooks.org

Applied Architecture Patterns
on the Microsoft Platform

An in-depth, scenario-driven approach to architecting
systems using Microsoft technologies

Richard Seroter
Ewan Fairweather
Stephen W. Thomas
Mike Sexton

Rama Ramani

enterprise &8

PUBLISHING

BIRMINGHAM - MUMBAI

vww allitebooks.cond

http://www.allitebooks.org

Applied Architecture Patterns on the Microsoft Platform

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010
Production Reference: 1020910

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849680-54-7

www . packtpub. com

Cover Image by Sandeep Babu (sandyjbegmail . com)

vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Richard Seroter

Ewan Fairweather
Stephen W. Thomas
Mike Sexton

Rama Ramani

Reviewer
Yossi Dahan

Acquisition Editor
James Lumsden

Development Editor
Swapna Verlekar

Technical Editors
Neha Damle

Alina Lewis

Copy Editor
Sanchari Mukherjee

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Shubhanjan Chatterjee

Proofreaders
Aaron Nash

Chris Smith

Graphics
Nilesh Mohite

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

vww allitebooks.cond

http://www.allitebooks.org

Foreword

To understand is to perceive patterns.
-Isaiah Berlin

Architecting a good software solution is in many ways very much like the art of
cooking a great meal. Just like a chef needs to have a broad knowledge of various
ingredients that go into a meal, an architect needs to have a broad understanding of
potential technologies and tools that he would need for a software solution. Just like
a good chef masters the techniques of combining his raw ingredients into a delicious
course, a good architect should know when and how to use and blend various
software components to come up with elegant and efficient solutions. Just like a
chef's work is confined by physical conditions and customer requirements, so is the
work of a software architect. Both need the right kind of discipline and structure to
cope with external constraints. So knowledge, experience, discipline, and structure
are critical, but as any good chef or architect will tell you, the art of cooking or
architecting requires something extra, and that is creativity. To put it simply in the
words of the author John Updike:

Any activity becomes creative when the doer cares about doing it right,
or better.

The book you are holding is a good example of the outcome of such creativity. I
personally know the authors to be very experienced and knowledgeable on the
topics they write —yet, it is a way they have chosen to distill their experience and
know-how that make this book a very valuable resource for any software architect.
Artfully transforming use-cases and requirements into recognizable patterns while
discussing alternative architectures for implementing these patterns, this book
provides you with an effective framework to handle the complexities of modern
distributed applications.

vww allitebooks.cond

http://www.allitebooks.org

Unlike cooking, where the basic raw ingredients do not change as much or as

often over time, dealing with software architecture involves constant and frequent
changes. New paradigms and methodologies for developing and delivering

software solutions are constantly evolving. Innovative new technologies, some with
overlapping capabilities, are introduced at an increasing pace into an already crowded
marketplace. Making sense out of this dynamic and sometimes confusing domain,
even when focusing only on Microsoft technologies, is quite a challenge. A great

team of contributors was assembled to tackle the job. Together, they have produced
an appealing guide by discussing a collection of common architectural patterns in
software development and their implementation using Microsoft technologies.

This may seem like a book of "recipes" devised by a team of highly qualified "software
chefs", but this is where again the analogy falls short: in the world of software, things
are a more complex. In many cases, you'll find that you need to treat these recipes as
the basis to build on. You will need to step into the role of the "chef" and start "cooking"
your own solution by combining patterns or adjusting the suggested solutions to fit
into your project's specific needs. Happy "software cooking"!

Ofer Ashkenazi
Senior Technical Product Manager
Microsoft

vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Richard Seroter is a solutions architect for an industry-leading biotechnology
company, a Microsoft MVP for BizTalk Server, and a Microsoft Connected
Technology Advisor. He has spent the majority of his career consulting customers as
they plan and implement their enterprise software solutions. Richard first worked
for two global IT consulting firms, which gave him exposure to a diverse range of
industries, technologies, and business challenges. Richard then joined Microsoft

as a SOA/BPM technology specialist where his sole objective was to educate and
collaborate with customers as they considered, designed, and architected BizTalk
solutions. One of those customers liked him enough to bring him onboard, full

time, as an architect after they committed to using BizTalk Server as their enterprise
service bus. Once the BizTalk environment was successfully established, Richard
transitioned into a solutions architect role where he now helps identify enterprise
best practices and applies good architectural principles to a wide set of IT initiatives.

Richard is the author of the book SOA Patterns with BizTalk Server 2009 (Packt
Publishing), released in April 2009. Richard maintains a semi-popular blog of his
exploits, pitfalls, and musings with BizTalk Server and enterprise architecture at
http://seroter.wordpress.com.

I want to thank my gifted co-authors and technical reviewer who
brought an insightful amount of experience and knowledge to

this project. I also have to thank my wonderful co-workers whose
architectural brilliance constantly inspires and challenges me.
Finally, thanks to my family for their support on this project. My
dog, Watson, unexpectedly offered to proofread my chapters, and I
eagerly accepted his invitation. Thanks buddy. But this book is for
my son Noah who makes me want to be a better man.

vww allitebooks.cond

http://www.allitebooks.org

Ewan Fairweather has worked for Microsoft for six years. He currently works as a
program manager in the Business Platform Division on the Customer Advisory Team
(CAT) working on large scale integration and OLTP SQL applications. Prior to this,
Ewan spent three years working for Microsoft UK, in the Premier Field Engineering
team where he worked with enterprise customers, helping them maintain and
optimize their BizTalk applications. This included working in a dedicated capacity

on some of the world's largest BizTalk deployments, predominantly within financial
services. Ewan co-authored the successful Professional BizTalk Server 2006 (Wrox, 2007)
and has written many white papers for Microsoft including the Microsoft BizTalk
Server Performance Optimization Guide, which is available on the Microsoft Developers
Network (MSDN) website. Prior to joining Microsoft, Ewan worked as a Cisco
Certified Academy Instructor (CCAI) for a regional training organization, delivering
advanced routing and networking courses. Ewan holds a bachelor's degree in
computing with management from the University of Leeds. Apart from work, Ewan's
hobbies include reading and going to the gym. He has also recently found a fond
interest for Jiu Jitsu. Ewan maintains his blog at http://blogs.msdn. com/ewanf .

Mum, Dad thanks for always believing in me, Shona and Kieran, and
giving us the strength to do whatever we set our minds on.

Stephen W. Thomas is an independent consultant specializing in BizTalk Server
and other Microsoft Server technologies including Workflow and AppFabric. He has
been working with BizTalk for over eight years. For the past six years, Stephen has
been recognized as a Microsoft Most Valuable Professional (MVP) in BizTalk Server.
In addition to being an MVP, Stephen is a Microsoft Connected Technology Advisor.

Stephen has done consulting work for numerous clients including many in the
Fortune 500. Stephen runs the BizTalk community site http://www.BizTalkGurus.
com. The site offers a community forum, over 50 BizTalk samples, various how-

to videos, and Stephen's blog. Stephen has presented at several Microsoft TechEd
events, multiple SOA Conferences, and various user groups.

I would like to thank my loving wife, Angel, who has supported me
over the many months of working on this book and to the new little
BizTalkGuru scheduled to arrive in February 2011. I would also like
to remember my furry babies Kendall and Jordan who lost out on
valuable play time as I was working on sample code.

vww allitebooks.cond

http://www.allitebooks.org

Stunningly handsome, yet surprisingly humble, Mike Sexton spent the first

ten years of his career as a public defender in New York. Upon learning the
discrepancies between his salary and the salary of newly minted college graduates
working in IT, he had an epiphany and immediately learned how to program
database applications. He has designed and built database applications for 12 years
in both SQL Server and Oracle-based systems; he has published in SQL Server
Magazine and blogs on a semi-regular basis. He currently works for Avanade,

the premier integrator of Microsoft technologies in the enterprise. Mike's role as a
database architect has him traveling the USA, bestowing his database wisdom on the
less fortunate. Mike can be found with a gorgeous blonde on his arm, living the high
life in Colorado.

I would like to thank my wife of 25 years for not giving in to the
numerous temptations to murder me that I have provided over the
years. I would also like to thank the management of Avanade for
their patience and support while writing this book.

Rama Ramani has built experience, over the last decade, in enterprise server
products across databases, RFID middleware, and application server caching
technologies. The roles have ranged from systems programming, feature PM in
product teams, and now as part of the Customer Advisory Team working with some
of the largest customer deployments. He has a bachelors degree in computer science
from the University of Madras and a masters degree in computer science from the
University of Florida.

In this free time, he likes to read books or watch motivational videos on leadership
and entrepreneurship.

I would like to acknowledge my co-authors for their excellent
teamwork in getting this book to fruition. I would like to thank my
wife for letting me spend some of the weekends and evenings alone,
working on the book. Finally, I would like to thank my parents, who
have been a great source of inspiration and for providing me with
excellent education.

vww allitebooks.cond

http://www.allitebooks.org

About the Reviewer

Yossi Dahan has been involved in professional software development for 13 years.
Starting with the development of e-commerce systems for companies worldwide, he
soon faced challenges involved in creating systems with complex business processes
and both in-house and third party integration requirements. Drawn by these
challenges, Yossi has decided to focus in these areas and so, since 2000, has been
working almost exclusively on projects with significant BPM and EALI aspects.

In 2005, Yossi had founded Sabra Ltd in the UK. Created specifically to help
organizations build better business processes and integration solutions, Sabra has
worked with enterprises of all sizes, all over the UK, helping them architect, design,
and build BPM and EAI solutions using Microsoft technologies.

Sabra also works to build in-house capabilities for its customers' training and
mentoring teams; on design, development, and operations of complex systems,
arming them with its experience gained through many projects, well-proven
patterns, and best practices picked up in their field.

I'd like to thank the authors for asking me to review this book, I was
flattered by their trust in me on this product of their hard work, and
for the opportunity to learn so much in the process; this exercise
has certainly been (as book writing/reviewing often is) thought
provoking.

Of course I thank Iva, my wife, for dealing with long evenings of
solitude while I worked on the chapters of this book and for putting
up with my constant whining about missing my deadlines.

Last, I'd like to thank Packt, and in particular, Shubhanjan
Chatterjee, for all the help during the whole process and for
accepting my excuses for not meeting my deadlines.

vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Solution Decision Framework 9
The need for a decision framework 10
Sources of input to the framework 1"
Functional requirements 11
Non-functional requirements 12
Derived requirements 12
Organization direction 13
Deciding upon your architecture strategy 13
Framework dimensions 14
Solution design aspects 14
Solution delivery aspects 20
Solution operation aspects 22
Organizational aspects 24
Applying the framework 26
Summary 27
Chapter 2: Windows Communication Foundation and
Windows Workflow 4.0 Primer 29
What does this technology do? 30
Highlights of the latest release 32
Windows Communication Foundation enhancements 33
Windows Workflow Foundation enhancements 33
Enhancements to both technologies 34
Typical use cases 35
Windows Communication Foundation use cases 35
Windows Workflow Foundation use cases 35
Example solution 36

Summary 40

Table of Contents

Chapter 3: Windows Server AppFabric Primer 41
What does this technology do? 42
Windows Server AppFabric core components 43

Application-server hosting and monitoring 43
Control 44
Scripting 44
Hosting 44
Monitoring 44
Persistence 44

Distributed cache 45
Named cache 49
Region 49
Expiration 49
Eviction 49
Local cache 50
High availability 51
Cache notifications 51

Typical use cases 52

Windows Server AppFabric hosting and monitoring 52

Windows Server AppFabric cache 53
Typical scenarios 53

Example solution 54

AppFabric hosting and monitoring 54

AppFabric caching 56
Setup 56
Steps 56

Summary 63

Chapter 4: BizTalk Server Primer 65
Heterogeneous systems 65
What does BizTalk Server do? 66

Can't we just use Web Services or WCF? 66
Typical BizTalk use cases 68
Enterprise Application Integration (EAI) 68
Business-to-Business (B2B) 70
Business Process Automation (BPA) 70
Enterprise Service Bus (ESB) 71
BizTalk architecture 7
BizTalk message flow 71
Key BizTalk server terminology 74
BizTalk group 74
Hosts 75
Host instance 75
BizTalk databases 76
Enterprise Single Sign-On 77

Lii]

Table of Contents

Adapters 77
Message 78
Pipeline 78
Maps 79
Orchestration 81
Highlights of the BizTalk 2010 release 81
Example solution 82
Summary 95
Chapter 5: SQL Server and Data Integration Tools Primer 97
What does this technology do? 98
SQL Server Integration Services (SSIS) 98
SQL Server Service Broker (SSSB) 98
The Microsoft Sync Framework 99
Master Data Services 99
A very basic and completely insufficient introduction to data
integration with SQL Server 100
SSIS 100
SSSB 101
Sync Framework 102
SQL Server 2008 enhancements 103
SSIS enhancements 104
SSSB enhancements 104
Sync Framework enhancements 105
Typical use cases 105
Example solution 105
Writing an RSS feed to SQL Server 106
Distribution via Sync Framework 110
SQL Server Service Broker 112
Summary 115
Chapter 6: Windows Azure Platform Primer 117
What does this technology do? 120
Windows Azure 120
Usage 120
Architecture 121
Fabric controller 121
Compute 122
Storage 123
Provisioning model 124
Diagnostics and monitoring 126
How do | get started? 127
SQL Azure 127
Usage 128
Architecture 129

[iii]

Table of Contents

Provisioning model 130
Data access and usage patterns 131
SQL Azure—what is supported and what is not 132
How do | get started? 133
Windows Azure Platform AppFabric 135
Usage 135
Architecture 135
Provisioning model 137
Project "Dallas" 138
Example solution 138
Scenario 138
Setup 138
Steps 139
Summary 147
Chapter 7: Simple Workflow 149
Use case 149
Key requirements 150
Additional facts 151
Pattern description 152
Factors affecting implementation details 153
Candidate architectures 156
Candidate architecture #1-BizTalk Server 156
Solution design aspects 156
Solution delivery aspects 157
Solution operations aspects 157
Organizational aspects 157
Solution evaluation 157
Candidate architecture #2-Windows Server AppFabric 158
Solution design aspects 158
Solution delivery aspects 159
Solution operations aspects 159
Organizational aspects 159
Solution evaluation 160
Architecture selection 160
Building the solution 161
Setup 162
Building the service aggregator workflow service 167
Testing the service aggregator workflow service 178
Consuming the service aggregator workflow service with ASP.NET 181
Summary 185

[iv]

Table of Contents

Chapter 8: Content-based Routing 187
Use case 187
Key requirements 188
Additional facts 188
Pattern description 189
Candidate architectures 189
Candidate architecture #1-BizTalk Server 189
Solution design aspects 190
Solution delivery aspects 191
Solution operation aspects 191
Organizational aspects 191
Solution evaluation 192
Candidate architecture #2—SQL Server 2008 R2 192
Solution design aspects 192
Solution delivery aspects 193
Solution operation aspects 193
Organizational aspects 193
Solution evaluation 193
Candidate architecture #3—WCF and Windows Server AppFabric 194
Solution design aspects 194
Solution delivery aspects 194
Solution operation aspects 195
Organizational aspects 195
Solution evaluation 195
Architecture selection 196
Building the solution 197
Setup 197
Building the workflow 198
Adding a router service 210
Summary 214
Chapter 9: Publish-Subscribe 215
Use case 215
Key requirements 216
Additional facts 217
Pattern description 217
Candidate architectures 218
Candidate architecture #1—Azure Platform AppFabric Service Bus 218
Solution design aspects 218
Solution delivery aspects 219
Solution operations aspects 219
Organizational aspects 220
Solution evaluation 220
Candidate architecture #2—-BizTalk Server 220
Solution design aspects 220

[v]

Table of Contents

Solution delivery aspects 221
Solution operations aspects 222
Organizational aspects 222
Solution evaluation 222
Candidate architecture #3-SQL Service Broker 223
Solution design aspects 223
Solution delivery aspects 224
Solution operations aspects 225
Organizational aspects 225
Solution evaluation 225
Architecture selection 226
Building the solution 227
Setup 227
Building the canonical solution artifacts 228
Building the FDA subscriber solution artifacts 232
Configuring the data publisher and FDA subscriber 237
Building the website database subscriber solution artifacts 241
Configuring the website database subscriber 245
Summary 248
Chapter 10: Repair/Resubmit with Human Workflow 249
Use case 249
Key requirements 250
Additional facts 250
Pattern description 251
Candidate architectures 252
Candidate architecture #1-BizTalk Server 252
Solution design aspects 252
Solution delivery aspects 253
Solution operation aspects 253
Organizational aspects 253
Solution evaluation 253
Candidate architecture #2-Windows Server AppFabric 253
Solution design aspects 254
Solution delivery aspects 254
Solution operation aspects 254
Organizational aspects 254
Solution evaluation 255
Architecture selection 255
Building the solution 256
Setup 256
Building the core workflow 258
Testing the workflow without SharePoint 274
Building the SharePoint site and SharePoint workflow 275
Creating the SharePoint site and customer list 276

[vi]

Table of Contents

Create the SharePoint workflow 279
Testing the solution using SharePoint 287
Summary 288
Chapter 11: Remote Message Broadcasting 289
Use case 289
Key requirements 290
Additional facts 290
Pattern description 291
Candidate architectures 292
Candidate architecture #1-.NET-based polling 292
Solution design aspects 292
Solution delivery aspects 293
Solution operation aspects 293
Organizational aspects 293
Solution evaluation 293
Candidate architecture #2—-BizTalk Server 294
Solution design aspects 294
Solution delivery aspects 294
Solution operation aspects 295
Organizational aspects 295
Solution evaluation 295
Candidate architecture #3-Windows Azure Platform AppFabric 295
Solution design aspects 296
Solution delivery aspects 296
Solution operation aspects 296
Organizational aspects 297
Solution evaluation 297
Architecture selection 297
Building the solution 299
Signing up for an Azure AppFabric account 300
Create the WCF services to listen on the Service Bus 302
Summary 307
Chapter 12: Debatching Bulk Data 309
Use case 310
Key requirements 311
Additional facts 31
Candidate architectures 312
Candidate architecture #1-SSIS 312
Solution design aspects 312
Solution delivery aspects 313
Solution operations aspects 313
Organizational aspects 314
Solution evaluation 314
Candidate architecture #2—-BizTalk Server 314

[vii]

Table of Contents

Solution design aspects 315
Solution delivery aspects 315
Solution operations aspects 315
Organizational aspects 316
Solution evaluation 316
Architecture selection 316
Building the solution 317
Encryption 318
Target system 320
Debatching with SSIS and SQL Server 321
Debatching with SQL 322
Debatch with SSIS 329
Summary 331
Chapter 13: Complex Event Processing 333
Use case 333
Key requirements 334
Additional facts 334
Pattern description 335
Candidate architectures 336
Candidate architecture #1-StreamlInsight 336
Solution design aspects 336
Solution delivery aspects 337
Solution operations aspects 337
Organizational aspects 338
Solution evaluation 338
Candidate architecture #2—-BizTalk Server 338
Solution design aspects 338
Solution delivery aspects 339
Solution operations aspects 339
Organizational aspects 340
Solution evaluation 340
Architecture selection 340
Building the solution 341
Setup 343
Creating an adapter 343
Summary 356
Chapter 14: Cross-Organizational Supply Chain 357
Use case 357
Key requirements 359
Additional facts 359
Pattern description 359
Candidate architectures 362
Candidate architecture #1-BizTalk (with ESB Toolkit) 362

[viii]

Table of Contents

Solution design aspects 362
Solution delivery aspects 365
Solution operations aspects 365
Organizational aspects 366
Solution evaluation 366
Candidate architecture #2-Windows Server AppFabric 366
Solution design aspects 366
Solution delivery aspects 367
Solution operations aspects 367
Organizational aspects 368
Solution evaluation 368
Architecture selection 368
Building the solution 369
Setup 370
Deploying and using a monolithic solution 371
PO status codes 377
Iltem inventory check status codes 378
Current behaviors of the system 378
Utilizing the ESB Toolkit 379
Using existing transformations within an ESB lItinerary 379
Using the itinerary service broker pattern to implement messaging-based routing
with ESB 384
Summary 391
Chapter 15: Multiple Master Synchronization 393
Use Case 394
Key requirements 394
Additional facts 395
Pattern description 395
Candidate architecture 396
Solution design aspects 396
SSIS 396
Master Data Services 397
Search Server Express 397
Solution operations aspects 397
Organizational aspects 397
Solution evaluation 397
Architecture selection 398
Building the solution 398
Fetching relational data 400
Master Data Services 401
Unstructured data 408
Search 413
Summary 415

[ix]

vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 16: Rapid Flexible Scalability 417
Use case 418
Candidate architectures 419

Candidate architecture #1-Windows Azure / SQL Azure 419
Solution design aspects 419
Solution operations aspects 420
Organizational aspects 420
Solution evaluation 420

Candidate architecture #2—Hyper-V 421
Solution design aspects 421
Solution operations aspects 421
Organizational aspects 421
Solution evaluation 422

Architecture selection 422
Building the solution 423

Integrating SSIS with SQL Azure 425
Summary 428

Chapter 17: Low-Latency Request-Reply 429

Use case 429
Key requirements 431
Additional facts 431

Pattern description 431

Candidate architectures 432
Candidate architecture #1-BizTalk Server 433

Solution design aspects 433
Solution delivery aspects 433
Solution operation aspects 434
Organizational aspects 434
Solution evaluation 434

Candidate architecture #2—Windows Server AppFabric 434
Solution design aspects 435
Solution delivery aspects 435
Solution operation aspects 436
Organizational aspects 436
Solution evaluation 436

Candidate architecture #3—Windows Azure platform 436
Solution design aspects 437
Solution delivery aspects 437
Solution operation aspects 437
Organizational aspects 438
Solution evaluation 438

Architecture selection 438
Architecture selection 439

Building the solution 440
Setup 440

[x]

Table of Contents

Building the vendor-specific and aggregate workflows 441
Testing the solution 456
Summary 457
Chapter 18: Handling Large Session and Reference Data 459
Use case 459
Key requirements 460
Additional facts 460
Pattern description 461
Candidate architecture 462
Candidate architecture #1-Windows Server AppFabric Cache 462
Solution design aspects 464
Solution delivery aspects 466
Solution operations aspects 466
Organizational aspects 467
Architecture selection 467
Building the solution 468
Setup 469
Integrating with Windows Server AppFabric cache 471
Summary 480
Chapter 19: Website Load Burst and Failover 481
Use case 481
Key requirements 482
Additional facts 482
Pattern description 483
Chosen architecture 485
Solution design aspects 486
Solution delivery aspects 487
Solution operation aspects 487
Organizational aspects 487
Solution evaluation 488
Building the solution 488
Setup 489
Adding the WCF portion to Cloud Service 490
Adding the ASP.NET portion to Cloud Service 491
Testing and deploying the Windows Azure Cloud Service 493
Summary 497
Chapter 20: Wrap Up 499
What did we find? 500
Where to go next 500

Index 501

[xi]

Preface

Back in May 2009, I had a lengthy chat with Ewan Fairweather who was a technical
reviewer on my first book. We talked about the host of products that Microsoft had
either released or planned to release, and how it seemed increasingly difficult for an
architect to keep up with such a constant stream of new offerings. It's one thing to
read a press release or a whitepaper and get the marketing spin on a product, but
it's something else to truly grasp their ideal use cases and challenges. Ewan and I
agreed that it would be a useful exercise to try to craft around a dozen enterprise IT
use cases and evaluate which Microsoft product is truly the best fit for each scenario.
Thus, a book idea was born.

To make an educated choice on which product should form the foundation of your
solution architecture, you need to have an accurate picture of the strengths and
weaknesses of the product, as well as see it in action. In this book, we will give you
a solid overview of the core technologies in the Microsoft application platform,
evaluate a range of business problems, and use a consistent decision-making process
to choose the right technology to implement a solution and actually build the
solution using the ideal product.

I started down a path of creating a fancy flowchart which, based on a distinct set

of choices, could direct you to a proper Microsoft application platform technology.
However, decisions about the core technology of a solution cannot be driven from

a single fork of a flowchart. How do you realistically eliminate a product from
consideration by asking a single question such as "is batch processing needed?"
Decision point? There are a myriad of additional factors to consider prior to
eliminating BizTalk Server or embracing SQL Server Integration Services for batch
processing, for instance. Instead of a single, rigid decision matrix or single flowchart,
we chose to create a decision framework that takes into account the essential areas of
interest when comparing a product against the needs of your project.

Preface

In the first part of the book, we do a short dive into the core technologies demonstrated
in the book. These "primers" provide a background about WCF/WEF, Windows Server
AppFabric, BizTalk Server, SQL Server, and the Windows Azure platform. Each
primer will tell you a bit about what a product is for and how to use it. You should
then have enough working knowledge to thoroughly digest the rest of the book.

The rest of the chapters follow a specific structure. Each chapter starts with the
description of a fictional, but realistic, customer use case. We then offer some
background on the customer and find out about the problem they wish to solve.
Following the use case, you will find an evaluation of the type of pattern that best
fits the customer's requirements. We then consider and evaluate multiple solutions
against our decision framework. After the best choice is made, the remainder of the
chapter describes the actual construction of a solution.

I have put together a great team of authors that bring a diverse set of experiences
with the Microsoft platform stack. We started our effort with extensive discussions
about common problems we come across on projects and which topics might be of
most interest to our readers. We ended this first phase of evaluation with dozens of
pattern candidates, and through prioritization, bartering, and a little pleading, we
finally narrowed it down to the thirteen you find here. There are clearly many many
more "common" problems that we all encounter each day, but we hoped to identify
ones where the product choices weren't always clear.

The biggest challenge with a book like this is balancing the inherent bias that we
technologists have towards products that we are most familiar with. It is apt then,
that this is the same problem that architects and developers regularly have on their
own projects. For example, if you are a SQL Server specialist, then most problems
look like they can be solved with a SQL Server-based solution. Much like good
project teams where multiple viewpoints can help create the appropriate solution
architecture, our authors constantly challenged each other to ensure that expertise in
one area did not cloud our judgment in another.

What this book covers

Chapter 1, Solution Decision Framework, outlines where to locate solution requirements
and how to consistently evaluate key dimensions of a solution prior to selecting an
underlying technology.

Chapter 2, Windows Communication Foundation and Windows Workflow 4.0 Primer,
provides a background about WCF/WF technologies and typical scenarios to use
WCF and Windows Workflow.

Chapter 3, Windows Server AppFabric Primer, explains the capabilities of Windows
Server AppFabric and its components.

[2]

Preface

Chapter 4, BizTalk Server Primer, describes what BizTalk Server is, when to use it, and
how to build a simple solution.

Chapter 5, SQL Server and Data Integration Tools Primer, contains a broad overview of
the SQL Server products that address data integration and data management.

Chapter 6, Windows Azure Platform Primer, has an introduction into Microsoft cloud
technologies including Windows Azure, SQL Azure and Windows Azure
Platform AppFabric.

Chapter 7, Simple Workflow, covers a use case that involves aggregating data from
multiple sources and presenting a unified response.

Chapter 8, Content-Based Routing, looks at how to effectively transmit data to
multiple systems that perform similar functions.

Chapter 9, Publish-Subscribe, addresses a scenario where a message must be reliably
sent to multiple endpoints.

Chapter 10, Repair/Resubmit with Human Workflow, builds a process for easy human
interaction with failed messages inside a system.

Chapter 11, Remote Message Broadcasting, demonstrates a scenario where traditional
polling solution is augmented to support real-time updates.

Chapter 12, Debatching Bulk Data, explains how to take giant sets of data and insert
them into databases for analysis.

Chapter 13, Complex Event Processing, addresses website click stream analysis and
creating actionable business events.

Chapter 14, Cross-Organizational Supply Chain, demonstrates how to build a supply
chain solution to integrate systems in a purchase order scenario.

Chapter 15, Multiple Master Synchronization, covers methods for arriving at a single
version of truth from multiple, often conflicting master data sources.

Chapter 16, Rapid Flexible Scalability, looks at creating temporary environments that
can be easily created and contracted as needed.

[31]

Preface

Chapter 17, Low Latency Request-Reply, contains a retail scenario where high
performing query services are established.

Chapter 18, Handling Large Session and Reference Data, discusses usage of distributed
caching to scale large workloads in web applications.

Chapter 19, Website Load Burst and Failover, looks at leveraging the Windows Azure
platform's elastic resources and high service level for building a low cost solution.

Chapter 20, Wrap Up, is a brief summary of the key points addressed in the book.

What you need for this book

The following software products are used in this book:

e BizTalk Server 2010 and ESB Toolkit 2.1

e .NET Framework 4.0 (which includes Windows Communication Foundation
and Windows Workflow Foundation)

e SQL Server 2008 R2

e Streamlnsight 1.0

e Windows Server AppFabric
e Windows Azure Platform

e Visual Studio 2010

Who this book is for

This book is for the busy architect, developer, or manager who needs to advance
their knowledge of the Microsoft application platform space. If you last evaluated
the Microsoft platform offerings in 2009, then you are woefully out-of-date. Don't
worry, it happens to the best of us. I'd like to hope that flipping through this book
will increase your confidence when trying to figure out a consistent way to choose
which Microsoft product to use.

If you are a developer looking to transfer your skills into architecture, then this book
can help you take a big-picture approach to pattern detection in use cases and apply
a broad range of evaluation criteria to product selection. Alternately, you may just
want to get a short primer on the latest Microsoft technology.

[4]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Data is stored in the custom region
Juneé6 UserReviews of the ReviewsCache'.

A block of code is set as follows:

SyncOrchestrator orchestrator = new SyncOrchestrator() ;
orchestrator.LocalProvider = source;
orchestrator.RemoteProvider = destination;

orchestrator.Direction = SyncDirectionOrder.UploadAndDownload;
//bidirectional sync
orchestrator.Synchronize () ;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

SEND ON CONVERSATION @RecvRegDlgHandle
MESSAGE TYPE [//SOAbook/SampleQueue/ReplyMessagel]
(@ReplyMsg) ;

END CONVERSATION @RecvRegDlgHandle;
END

SELECT @ReplyMsg AS SentReplyMsg;
COMMIT TRANSACTION;
GO

Any command-line input or output is written as follows:
sn -k biztalk.snk

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:
"Right-click on the BizTalk project and select Properties".

% Warnings or important notes appear in a box like this.
.

a1

~Q Tips and tricks appear like this.

[51]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www . packtpub.com Or
e-mail suggestepacktpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book

purchased from your account at http: //www. PacktPub.com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub. com/support.

[6]

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we

can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[71

vww allitebooks.cond

http://www.allitebooks.org

Solution Decision Framework

Decisions, decisions, decisions. Each and every day, architects and developers
make choices, which range from where to store configuration data to whether their
solution calls for real-time messaging or batch processing. Each selection brings
with it a host of side effects that impact the solution's maintainability, security,
performance, speed of development, and more.

Two significant aspects of any architecture decision are: what should be done

and how should you do it. The focus of this chapter is to provide advice on the
latter by outlining a thought process for making sound decisions. Do you need to
deploy your servers globally or in one location? Should the solution employ an
asynchronous communication pattern for data processing? These are just examples
of solution aspects that result from an architectural analysis of the requirements.
This chapter contains a framework to help you determine which architecture quality
attributes you should evaluate for your solution. We will leverage this framework
in subsequent chapters as we evaluate business problems and choose the Microsoft
technology that best matches the requirements of the solution.

In this chapter you will learn the following;:

e The value of having a consistent, reusable decision framework
e Where to find the input information for your decisions

e How to organize your architectural assessment of the requirements

Solution Decision Framework

The need for a decision framework

There is no substitute for the hands-on experience of designing and building software
solutions. The key is how you take what you have learned in each situation and apply
these principles and lessons to subsequent projects. Recording and maturing a reusable
set of decision criteria goes a long way towards establishing personal confidence in
our architectural decisions. Each project should not be a blank slate. Rather, we should
be leveraging our experiences and the experiences of others and reuse them so that
we can surface key issues, prioritize our feature set, and establish which trade-offs we
will need to make early on. While we cannot know every detail or requirement before
starting to craft a solution, we must still make critical decisions that have significant
impact on the direction of the solution architecture. This is all the more a reason to
make consistent, well thought-out decisions.

There is nothing magical about a decision framework. In our case, the
recommendation is to do the following:

e Gather all the facts that you can. See the next section (Sources of Input to the
Framework) for ideas on where to obtain the data points necessary to make
informed decisions.

e Look for the hard architectural decisions. What is the big picture? What are
the critical aspects that we need to tackle right away? An example of this is
determining whether or not your strategy is to copy data between systems,
do real-time lookups, or leverage a shared data source. Broad data-sharing
patterns shape how you build your system and this is an example of a
weighty decision that impacts how we lay out the rest of the solution.

e Capture and evaluate alternatives. It has been said that "if you only have
one solution to a problem, then you are not thinking hard enough". Every
significant decision point should have multiple possible alternatives that
reflect the interests of the project or organization as a whole.

e Weigh the strategic importance of feature requests. All desired solution
capabilities are not created equal. If I work in an environment where we have
limited in-house development resources and place a premium on system
maintainability, then I will value products with standard support tools over
products that have a more robust, but custom feature set. Amplify what the
solution must do and avoid being distracted by "nice to have" capabilities.

The list of solution criteria we have in this chapter is by no means exhaustive.
Instead, it is meant to provide a baseline for you to customize with your own
experiences and organizational priorities. Following a framework strategy of "gather
information, inspect for impact, assess alternatives, and weigh importance" will help
you become successful regardless of how big or small your specific list of solution
criteria is.

[10]

Chapter 1

Sources of input to the framework

Where do we get the data points necessary to make informed architectural
decisions? There are four key sources that will shape our understanding of the
business problem: functional requirements, non-functional requirements, derived
requirements, and organizational direction.

Functional requirements

The functional requirements of a solution dictate what the resulting system should
be able to do and include scenarios that summarize the user's expected experience
with the system. Functional requirements could address the type of data entities

the system interacts with, how the system behaves when a user needs to invoke

a particular calculation, or the order of steps to complete a business process.
Functional requirements are typically gathered by a business analyst and are

crucial in determining how a system should be architected. A software solution is
worthless if it is architected beautifully but does not meet the business need. Staying
focused on our client needs will ensure that we build a practical and architecturally
responsible solution.

In order to ensure that our functional requirements help and do not hurt our effort to
architect a solution, we must remain diligent and not allow system requirements to
masquerade as business requirements. For instance, if we see a business requirement
that says that customer profile information from System A should be copied via file
transfer every night to System B, then that should raise a red flag. That business
requirement is dictating system design and does not answer what the business need
actually is. The proper business requirement would be "The system shall enable users
of System B to view up-to-date customer information originating from System A".

As architects, we can choose multiple implementation solutions (for example: shared
database, data transfer, real time lookups) that can both satisfy that requirement and
fit into the overall design patterns we have laid out for the project. While there may
be relevant reasons for technical requirements (for example, security constraints) to
get included as functional requirements, often these technical requirements are better
stated as non-functional requirements.

[11]

Solution Decision Framework

Non-functional requirements

Wikipedia describes non-functional requirements in this way:

A non-functional requirement is a requirement that specifies criteria that can be
used to judge the operation of a system, rather than specific behaviors. This should be
contrasted with functional requirements that define specific behavior or functions.

http://en.wikipedia.org/wiki/Non-functional requirements as on 10/2009.

So unlike functional requirements, which dictate system behavior, non-functional
requirements stay focused on how the system needs to operate. There are multiple
dimensions to look at when evaluating system operations including maintainability,
security, compliance, availability, and exception management. A business or system
analyst typically uses a pre-defined list of questions to interview stakeholders and
identify non-functional requirements. Questions such as "How many users will the
system support?", "What is the sensitivity of the data stored by the system?", "What
are the regular hours of operation for the system?", "What is the acceptable latency of
a user request?"’, and "What are the disaster recovery expectations?", will all provide
insight into how to best architect our solution. It should be noted, however, that it

is often the responsibility of the analyst to translate the sometimes technical, non-
functional requirements into more business-relevant questions. For instance, I would
not ask my client to spell out their explicit disaster recovery needs (for example
recovery point objective, recovery time objective, site configurations), but rather, I
would focus on questions addressing business continuity and backup procedures
and extract the disaster recovery needs from their answers.

Derived requirements

We sometimes forget about the requirements that are not explicitly stated but can

be uncovered through the functional and non-functional requirements. Derived
requirements are implied requirements and do not come directly from our users. These
are the things that go unstated (or even forgotten about), yet still belong in the registry
of requirements for the solution. For instance, we may receive functional requirements
that state a need to capture key data points and progress indicators during each stage
of a long-running workflow process. While no reporting interface was requested by the
users, we realize after reading this requirement that the users will need some way to
visualize the progress of a given workflow and thus we see a derived requirement for
areport. Or we have a business requirement dictating that the solution run on mobile
devices but no indication of the required phone platforms, so we may derive the
platform requirement based on the types of phones issued by our company. Once we
identify the derived requirements, we can assess them with appropriate stakeholders
and use them as yet another input to our decision making.

[12]

Chapter 1

Organization direction

Last, but not least, we need to take broader organizational goals into account when
capturing solution attributes that drive architecture. Project architecture decisions
should not be made in a vacuum. While I may be able to flip a coin to decide between
two perfectly viable ways to expose a web service interface for a given project, I should
always be considering enterprise standards and practices when making my selections.

For instance, you may work for a company which has a strict "build instead of buy"
strategy for software because of the high caliber of on-staff developers and a consistent
need to deeply customize any commercial product. If that is the case, may have a

soft requirement to choose the framework technology over the more rigid

commercial product.

Solution decisions also must take into account the short term and long term
investments of an organization. Am I basing my solution on a technology that is
under consideration for deprecation? Do we have the staff on hand with expertise
in a particular product? These are valid considerations that can sway us from a
seemingly ideal technology to an alternate choice.

Deciding upon your architecture strategy

Once the core requirements are set forth, we as architects can begin to craft the major
patterns that make up the solution architecture. It would be a grave mistake to jump
directly from requirements gathering to a product selection. You would never say
"BizTalk is the choice for all our solutions", unless you were clinically insane or ate
paint chips as a child. Likewise, it would be foolish to jump immediately to a custom
solution unless you had evaluated and eliminated packaged applications as a viable
choice. Your architecture strategy should be driven by a full assessment of the
architecture quality attributes required by your solution.

Turning requirements into patterns is beyond the scope of this book. That said, there
are key aspects you need to decide upon before choosing a particular product for
implementation. These areas of focus may include:

¢ How is data shared? In real time or via batch processing? Is data copied
between systems or should we use a shared database?

e Does the system do most work synchronously or asynchronously?

e How do users interact with the system? Via services, mobile devices,
command line?

[13]

Solution Decision Framework

e Isacentralized workflow needed to span the applications that comprise the
system, or is distributed logic with queue-based transport the best choice?

e Should the application be deployed in one location, multiple locations,
or in the cloud?

¢ Does the solution require a single security domain or is identity
federation needed?

e What types of service level agreements (SLAs) are expected by the client and
can I capture relevant measurement data?

The framework described next can help you capture the data points necessary to
answer these questions and choose the right product to solve your business problem.

Framework dimensions

Our evaluation criteria have been segmented into four central categories:

1. Solution design: This area focuses on dimensions that shape the broad
design patterns that make up our solution.

2. Solution development: This topic addresses what it will take to construct the
solution.

3. Solution operations: Here we highlight factors that influence how the
solution will be maintained after it has been built.

4. Organizational considerations: These are facets of the solution that take
enterprise standards and organization direction into account.

Each category contains a set of criteria along with a description of what those criteria
help identify.

Solution design aspects

In this section, we look at characteristics relevant to the overarching design of a
solution. Once again, this list isn't exhaustive but it should provide you with a
framework for thinking and steer you towards a particular

implementation technology.

These data integration considerations touch upon a variety of needs in data sharing
scenarios including how you receive data, how much of it you process, and what
quality assurances are necessary.

[14]

Chapter 1

Data integration considerations

Software criteria Description

Supports high volumes of data Can a heavy throughput of data reliably flow
through the software? While this characteristic
is often dependent on other criteria mentioned
below (for example: load balancing, latency),
it should be a known aspect of any software
solution. "High volume" may also be a subjective
description. In some organizations, a high
volume of data is thousands of records per day,
whereas other organizations expect thousands of
records per minute.

Handles large individual data sets The raw size of a data set can greatly influence
which software solution you select. Some
products are tuned to process small data
blocks: while others hungrily tackle megabytes,
gigabytes, and terabytes of data all at once. If a
particular software package is a perfect match
for a solution except for its inability to process
thousands of records at once, then maybe we can
revisit the data processing requirements and bite
off smaller chunks of data.

Offers guaranteed, at-least-once Reliable delivery is frequently a requirement of

delivery messaging solutions, but sometimes, this is a
nice-to-have instead of must-have. If a particular
piece of data does not reach a destination, can
it be sent again from the source? For instance,
few request/response query operations
require guaranteed delivery since transmission
failures can be instantly retried. Asynchronous
operations are more directly associated with
guaranteed delivery. Also, guaranteeing
once-only delivery is something that has to be
explicitly designed for. While some tools do
support this, this is also where we can architect
an idempotent interface where we can send
data over and over again, without negatively
impacting the data context.

Able to access a wide variety of data A thorough analysis of the data requirements

repositories will surface the range of data sources that our
solution needs to leverage. Our chosen software
platform should be able to easily interact with
the full spectrum of data sources that make up
our solution architecture.

[15]

Solution Decision Framework

Data integration considerations

Software criteria Description

Able to access a wide variety of target Much like the preceding criteria, we need to
system APIs uncover which systems we need to interact with
and determine whether a given software product
is capable of consuming the interface offered
by the dependent system. This could be a web
service interface, native interface, or a protocol
interface such as MSMQ.

Works with batches of data We looked at large data sets and this criterion
is an extension of that. Regardless of the batch
size, we need to know if a particular software
platform can easily unpack a collection of
data records and process them individually.
Sometimes, records are batched out of
convenience to reduce network traffic and
sometimes they are batched because the records
are all part of a related transaction. Ideally,
our software platform can treat a batch of data
differently depending on this distinction.

Accepts real-time data input The timeliness of data processing is a
foundational aspect of most solutions. If we are
building an application that demands a real-time
(that is, not batch) interface, then we have clear
choices as to which type of product to leverage.

Offers data quality features (de- When sharing data between systems, we may

duplication, format standardization) = need to apply a series of data quality rules that
cleanse and improve the integrity of the data.
This could involve removing incomplete data,
eliminating duplicate records, enriching the data
with information from external sources, and
standardizing data field formats such as
phone number.

Security is often one of those things that we cannot compromise during application
design. We may have to comply not only with organizational standards, but those of
regulatory bodies. Here are some criteria that touch on user profiles, data in transit,
and data at rest.

[16]

Chapter 1

Security considerations

Software criteria

Description

Enables enterprise-wide and cross-
organization users to access the
application

Includes Single Sign-On capabilities

Offers range of authentication
mechanisms to invoke operations

Provides authorization controls to
invoke operations

Provides authentication and
authorization options for
securing administrative aspects of
application

Has compartmentalized
components with independent
security boundaries

It is important to know if the product can
support enterprise directories for authentication
and authorization so that we can establish
reusable security groups and wide access.

If your solution demands access to systems

and repositories that span security domains,
then having an SSO product available will be a
lifesaver. A strong SSO product will enable you
to securely map credentials from one domain
to another and seamlessly access cross-domain
resources.

This applies to items at an API level or even
access to the application itself. If we need to
be able to authenticate users against a default
Windows domain, or also need alternate ways
to prove identity (for example: certificates,
HTTP basic authentication) then we have to
choose a product with this capability baked in.

Ideally, there is at least a coarse set of knobs
that we can fiddle with in a software package,
which allow us to restrict capabilities by the role
of the user. Some software packages may allow
granular access only through customization.

Depending on the scope of your solution, you
may need to provision administrative functions
to distinct sets of users. For instance, you might
have one set of users who can administer the
entire application, while others can only modify
specific settings. If your solution demands this,
you will need to consider this capability in the
available software packages.

One way to reduce the attack surface of a
solution is to partition not only the application
tiers, but also the modules within a given tier. A
component that requires elevated permissions
could be isolated on one server while other
components running with least privilege can
execute on additional servers.

[17]

Mw.al | itebooks.cogl

http://www.allitebooks.org

Solution Decision Framework

Security considerations

Software criteria Description
Enables secure storage of When we extract volatile data values from
configuration or reference values code and store them in external configuration

repositories, we make our code easier to
maintain. However, these pieces of data may
contain sensitive information such as passwords
and connection strings. Whether embedded in
the code or stored in a configuration repository,
this data should be encrypted or isolated from

prying eyes.

The project's need for exception handling can often be evaluated late in a delivery
cycle, which is unfortunate. This is one of those areas to ask our clients about early
on and get an understanding of the business need when system, data, or logical
errors arise. Based on the expected types and volume of errors, we may lean one way
or another on which product to leverage.

Error handling considerations

Software criteria Description
Failures within the system are Even the best of us write code that fails. What we
captured in predictable way hope to have is a software platform that enables a

graceful handling of exceptions occurring in native
components, custom components or infrastructure.
If the product relies on a database to operate,

what happens if the database temporarily goes
offline? Or, what if you deploy custom code to the
application and an uncaught exception flows up to
the application? Knowing how a product handles
failure goes a long way in understanding how to
build for exceptions and prepare future solution

administrators.
There are limited single points of We all hope to build solutions that do not have any
failure one component that can bring the entire system

down. When we look at underlying platform
products, we need to understand where things can
go wrong and which components can or cannot
survive a failure.

Failures in dependent systems are ~ When we built systems that rely on other systems,

handled consistently we must prepare for the event when those
dependent systems become unavailable. How does
a particular software product resolve downstream
failures?

[18]

Chapter 1

Error handling considerations

Software criteria

Description

Includes facilities to monitor the
system and configure alerts

If a product does not offer a management
dashboard itself, hopefully it should minimally
provide an instrumentation layer that enterprise
monitoring tools can tap into so as to actively track
the health of the application.

There are always a few uncategorized design aspects that touch upon how a
solution can be designed to be maintainable and best leverage existing enterprise
investments. Here we have a few items that address loose coupling of components,
how operations can execute, and establishing transactions across system boundaries.

General design considerations

Software criteria

Description

Includes a modular set of components
with a clear separation of concerns

Has functional flexibility and can be
built for change

Leverages asynchronous model for
processing

Software products are at their best when they
have clearly defined modules that work both
independently and seamlessly with each other.
When looking at your solution requirements,
you may see aspects that are a perfect match
for components of one product while other
aspects are ideal for another. If those products
are built well, then leveraging the best of each
should be possible. Having modular components
also means that changes can be made to one
component without being forced to deploy or
test all of the other ones.

Sometimes a solution satisfies a very fixed need
with static business rules and firm interfaces.
However, that scenario appears to be an
exception rather than a rule. If our solution
requirements outline a very dynamic business
space where interfaces may undergo change or
business logic is susceptible to update, then we
need a software product that can accommodate
such demands.

Asynchronous processing allows us to execute
operations without forcing the initiator to wait
for a response. This is valuable for long-running
processes, activities that can be handled at a
later time, or broadcasting data to an unknown
number of interested parties.

[19]

Solution Decision Framework

General design considerations

Software criteria Description

Is capable of enlisting both local and ~ If our solution requirements call for us to

distributed transactions synchronize the update to multiple repositories
then we have to make sure our software is
capable of participating in transactions that
potentially span application boundaries.

Solution delivery aspects

The big picture solution aspects cannot be the sole factor in choosing a particular
implementation technology. We must also seriously consider how well the
technology aids in the rapid and successful implementation of our architecture
blueprint. A product that looks perfect from a design perspective may introduce an
unnecessary burden on the implementation team.

First off, we should look at our development resources and consider if the
technology at hand is something that existing .NET or SQL Server developers can
quickly adopt, and what sort of physical environments are needed to perform
development. While BizTalk Server is a mature product, it can still be difficult to
find top-notch talent in the open market. For new products like Windows Server
AppFabric and Windows Azure, there is an obvious gap in the marketplace until
these offerings become more commonplace and skills can be developed. Consider
whether you need, product expertise or have the internal skill set available to grow
the expertise in house.

Resource considerations

Software criteria Description

Skilled developers can be acquired for This criterion relates to both in-house developers

this technology and contract developers. Do we have the
resources within the organization and are they
even available to work on this solution? If the
answer to either question is no, then how easily
can we get external expertise?

If a new technology for the Many of the products in Microsoft's application
organization, the skill can be picked platform have similar development paradigms.
up by existing developers Someone with expertise in the .NET

Framework could quickly understand the
development process for products like Windows
Communication Foundation or StreamInsight.

[20]

Chapter 1

Resource considerations

Software criteria

Description

Solution components can be run on a
standard developer workstation

Most software can be installed on a typical
developer computer but we should know early
on if we require centralized server software,
virtual machines, or 64-bit hardware.

Once we evaluate the compatibility of products with our resource demands, we
can look at how well a technology helps us actually build the solution we want.
This includes topics such as the richness of the development toolset, maturity of the
community ecosystem, and the existence of solid test and automation capabilities.

Construction considerations

Software criteria

Description

Robust set of tools / IDEs available to
construct the solution

Rich ecosystem of plug-ins,
community code, tutorials and blogs
to help developers

Written in an expressive language
that accomplishes tasks in limited
lines of code

Integrates with a variety of source
control systems

Allows developers to build and
execute thorough unit tests

Can be set up to run in an automated
build environment

New technologies typically have development
and administrative tooling that is fairly basic. It
seems that the priority of the software vendor

is on the underlying component maturity and
tooling is not a primary concern on the initial
release. That said, the proposed solution may
not require significant coding and thus advanced
tooling is ideal, but not required.

When building solutions on a given product
we always hope to follow best practices and
leverage lessons learned by others. This is
where established, mature technologies have
advantages over newer, less investigated ones.

Ideally, developers do not have to spend a
majority of time writing excessive lines of code to
complete simple tasks.

A software solution can be comprised of code,
configuration files, scripts, images, and a host

of other artifacts. We should understand how to
collect all of the solution artifacts and centrally
manage them in a durable source control system.

The cost of testing and bug fixes goes up as

a project progresses towards completion. A
software product should enable straightforward
unit testing of each component.

A solution may be made up of a number

of software packages and components, so
automating the regular solution built during
construction can free up resources to focus on
more strategic tasks.

[21]

Solution Decision Framework

Solution operation aspects

Even after we have satisfied our design and implementation needs, we absolutely
must consider the operational aspects of the proposed solution. Although the project
delivery team inevitably moves on to other work after a successful deployment, the
actual solution may remain in a production state for years on end. If we have a grand
architecture that was constructed cleanly, but is an absolute nightmare to maintain,
then we have not delivered a successful project. In fact, many of these operational
concerns actually directly affect our original solution design. These factors, which are
often gathered through the non-functional requirements, have a noticeable effect on
the architecture of the system.

Performance considerations address various topics ranging from application
business process performance to data volume and latency.

Performance considerations

Software criteria Description
Key Performance Indicators (KPIs) KPIs could relate to the business capabilities
can be captured and monitored built into the application or KPIs could refer to

the performance of the application itself. If the
business client wants to monitor the efficiencies
of their processes, then we will want to choose
a product that lets us easily capture and modify
key business metrics.

Can produce sub-second latency for Latency requirements will factor into the overall

both simple and complex request/ design of the solution, but this also relates to the

reply operations operations of the solution. Can performance be
tuned in the production infrastructure?

Predictable behavior during both Many integration solutions have to deal with

standard and non-standard volumes spikes in data processing load at both regular

of data and unexpected intervals. If this is possible in

your environment, then you want to make sure
that the software can gracefully handle floods of
data without crashing.

The availability needs of the client have direct impacts on which product we should
choose. How mission-critical is the application? Can we afford for the system to be
down for a significant amount of time? What is the consequence if we lose some data
when recovering the application? Honest answers to these questions, which typically
mean fighting the urge to over-inflate the importance of a given application, will
help us direct appropriate attention to availability attributes.

[22]

Chapter 1

Availability considerations

Software criteria

Description

Natively includes load balancing
capabilities

Can systematically fail over to other
active servers

Includes data backup routines

Support zero message loss in the
product or through storage mirroring

You may not need the software to contain its
own load balancing mechanism if you have
existing infrastructure to distribute work among
machines. However, if you are dealing with

a high volume environment with many long
running processes, you may benefit from a
technology that efficiently leverages the available
resources across software nodes.

This also is a factor in solution design. While

it may be quite useful to leverage a software
platform that automatically switches execution
to additional nodes when a given node fails, we
may also want to define a stateless design. If we
limit the state that each node must maintain,
then we limit points of failure and can embrace
automatic node switching.

We may have to back up application data
persisted in the software or back up the artifacts
and metadata that comprise the software
solution.

If a software product stores application data
(even while in transit), then there may be a
business requirement to avoid any data loss in
the event of system failure. Accomplishing this
can be challenging, so we need to determine the
real need and see if the software platform can
accommodate this.

The day-in-the-life maintenance of an application is not the most exciting thing to
mull over during project planning, but paying attention to this aspect is the greatest
gift you can give to a system administrator. What are some of the general things you
can do to make the maintenance of this application as straightforward as possible?
We must consider the tools we provide, the way we have separated our components,
and the means for making incremental changes to the application over time.

[23]

Solution Decision Framework

General operation considerations

Software criteria Description
Rich set of support tools and Strong administrative tools could be
interfaces graphical in nature or through a well-defined

programmatic interface. We may not want to
teach administrators a brand new tool, but
rather leverage existing skill sets or enterprise
configuration tools. This would factor in to our
product choice.

Clear strategy for versioning system If a product is built with a clear separation

components of concerns, it will be easier to make isolated
changes. That said, if a solution is expected to
undergo regular changes then we have to fully
grasp the ways to consistently deploy new
versions.

Defined extensibility points Extensibility can be built both into the software
itself and into the system built on top of the
software.

Built-in instrumentation and tracing Many organizations have existing application
monitoring tools and it is important to find out
if a particular software package can feed its data
and system events into such tools.

Organizational aspects

You would think that after you took your project's design, development, and
operations into account you have done proper due-diligence prior to architecting a
solution. However, a good solutions architect always keeps an eye on organization
strategy to make sure that what they are proposing for an isolated solution is in line
with the broad vision of the company.

Here are a few things to consider when switching perspective from a project-centric
viewpoint to an enterprise one.

[24]

Chapter 1

Organization considerations

Software criteria Description
Is sufficient for both temporary Sometimes we build solutions that are meant
solutions and long-lived solutions to temporarily solve a given problem. Maybe

the organization is planning a massive system
upgrade but needs an intermediate solution to

a particular pain point. Conversely, we may be
designing a solution that is expected to remain
in operation for 4 to 6 years. If we look at the
planned lifespan of the solution, this can help us
decide which product offers the lowest total cost
of ownership over that duration.

Includes support from Microsoft for Product support is a critical component of

solutions implemented with product enterprise systems. When you build a solution
on top of a packaged application, you often get
more vendor support than when you build a
solution on a base framework.

Leverages existing software These existing investments could be in

investments within the organization employees or other software packages. Does the
product use an underlying database technology
already deployed at the organization? Or, is it an
additional module of a product already in heavy

use?
Limited impact on budget as This relates to the prior criteria. The cost of
introduction of this technology can be software that underlies a solution is frequently
built upon existing environments a factor in product selection and ideally we can
share existing infrastructure.
Complies with "buy vs. build" If you have an expert staff of developers on
strategy of the organization site and frequently find yourself customizing

packaged products, then your organization
may prefer building solutions vs. restricting
themselves to packaged products. On the other
hand, if an organization prefers to fit their needs
into the capabilities of package applications

so as to reduce ownership cost and accelerate
development, then a heavier evaluation
weighting should go to products with fixed
boundaries and limited customization options.

[25]

Solution Decision Framework

Organization considerations

Software criteria Description
Matches the risk tolerance of the Some companies love being early adopters
organization of technology and getting the chance to take

advantage of the latest products and capabilities.
For such companies, the risks of deploying new
technologies are outweighed by the business
benefits those technologies offer. However, other
companies have a "service pack 1" mentality
where only mature products are introduced into
the organization landscape.

Provides sufficient speed to market We cannot make a blanket statement that

for new solutions building solutions with "Product X" is faster than
building with "Product Y." This all depends on
the solution. That said, we want to evaluate our
candidate software choices by looking at which
software allows us to build (and change!) a given
solution as quickly as possible.

Applying the framework

So what do we do with all this information? In each of the "pattern chapters" of

this book you will find us using this framework to evaluate the use case at hand

and proposing viable candidate architectures. We will have multiple candidate
architectures for each scenario and based on which underlying product is the best fit,
go down the path of explaining that specific solution.

So how do we determine the best fit? As we evaluate each candidate architecture,
we'll be considering the preceding questions and determining if the product that
underlies our solution meets the majority of the criteria for the use case. Using

the next representation, we'll grade each candidate architecture in the four major
decision framework categories. The architecture that is most compatible with the use
case objectives will win.

Design Delivery Operations Organization

[26]

Chapter 1

Summary

A common methodology for evaluating solution requirements against product
capabilities will go a long way towards producing consistent, reliable results. Instead
of being biased towards one product for every solution, or simply being unaware

of a better match in another software offering, we can select the best software
depending on its key capabilities for our client's solution.

In the next set of chapters, we'll introduce you to these core Microsoft application
platform technologies and give you a taste as to what they are good at. While these
primers are no more than cursory introductions to products, they should give you
the background necessary to understand their ideal usage scenarios, strengths,
and weaknesses.

[27]

vww allitebooks.cond

http://www.allitebooks.org

Windows Communication
Foundation and Windows
Workflow 4.0 Primer

Windows Communication Foundation (WCF) and Windows Workflow
Foundation (WF) were first introduced with the release of the .NET Framework

3.0 in November 2006. The goal of WCF was to introduce a framework that aids in
building distributed applications that leverages web services, MSMQ interfaces, and
remoting with a consistent, service-oriented, communication platform. This platform
abstracts the communication details (including transport, encoding, encryption, and
authentication) from implementation logic. Because of this abstraction, we can often
modify service behavior through configuration changes without impacting existing
logic or compiled code. WCF controls WS-* implementation, distributed transactions,
security, and serialization in a manageable fashion, and in a way that is relatively
consistent across service platforms. With Windows Workflow, the concept of
designer-based workflow was brought to the mass developer audience. This allowed
for a drag-and-drop based coding experience within the confines of the well known
Visual Studio designer.

The developer adoption of WCF as a replacement for traditional web services was
widespread while, in contrast, WF lacked a robust hosting environment and failed
to impress in terms of out-of-the-box features. With the release 3.5 and 3.5 SP1 of the
NET framework, new features like workflow services (exposing Workflows as WCF
services), basic correlation, and persistence were added and brought more attention
specifically to workflow. This also increased the number of possible use cases,

but still lacked a real attention-grabbing feature or a scalable hosting environment.

Windows Communication Foundation and Windows Workflow 4.0 Primer

Many questions about the advantages of Workflow have disappeared with the
recent release of the NET 4.0 framework. Streamlined, model-driven workflow
development is now at the reach of the mass developer market, reducing the need
for complex custom-coded solutions for workflow scenarios. Now is the time to take
a first look at Workflow or re-evaluate this platform, as considerable improvements
have been made to increase both functionality and usability. Windows Workflow is
now mainstream.

In this chapter, we will discuss the following topics:

e The basics of Windows Communication Foundation and Windows
Workflow Foundation

e What is new with WCF and Workflow in the .NET 4.0 release
e The typical scenarios to use WCF and Workflow
e A Windows Workflow exposed as a WCF Service

What does this technology do?

While the common goal of WCF and WF was to provide a starting framework for
developers working on custom solutions, the specific implementation scenarios for
each are very different.

Distributed systems have distinct problems. Distributed, by definition means spread-
out; in a programming sense distributed means spread-out but also cross system
and even cross platform. Distributed systems are different from typical standalone
applications in that they need to interact with other systems in order to function.
This brings new challenges including: how these systems communicate, how security
is enforced, and what happens if the system is down, just to name a few. The goal

of Windows Communication Foundation is to simplify this process. WCF is just
that, a foundation for communication, typically for distributed systems. The goal is
to provide a configuration-based approach for systems to communicate with each
other under a common framework, which once learned, will allow a developer to
streamline communication in order to focus on the implementation logic. WCF
provides a framework for developers to leverage specific framework elements inside
a service configuration file and keep their accomplish common tasks like security
and data transport. This is made possible by leveraging the framework built into the
NET 3.0 and higher framework. Using the framework greatly reduces the amount
of custom coding needed for common tasks, while providing the ability to extend

on the framework when needed to cover additional scenarios. As later .NET releases
have been made, more features have become available in the framework thus,
extending the reach of WCF.

[30]

Chapter 2

While the power of WCF is increasing and basic scenario implementation is being
simplified, the basic fundamentals of WCF remain the same since it was first
released. The basics of WCF configuration are the ABCs:

1. Address: When a WCF service is running, this is the destination it will listen
on for inbound requests. This location is created and monitored by the host
process that is running the WCF Service. Typically this is IIS or a
custom-built windows service.

2. Binding: Binding represents how the service will talk with outside systems
in terms of transport, security, protocol, and other options. Inside the
bindings, behaviors are defined that govern what will happen to the data
once it is received. This could involve how to serialize the data, how to
decrypt or encrypt it, or perform any other logic that is needed once the
information is received into the service. While this is configuration-based to
enable these features, the code to do it is not. In the bindings, we reference
either framework assemblies or custom-written .NET code. The binding just
outlines what code to use at runtime.

3. Contract: The contract outlines the exchange pattern and specifically, what
data the service will exchange. It lists the available operations of the service
and outlines the type of exchange.

These are the three cornerstones of WCEFE. They highlight how to interact with the
outside world and are independent of the implementation logic of the service. Once
this is mastered, the pattern is consistent for any WCF-based interface.

Windows Workflow Foundation (WF) was introduced at the same time as WCF. The
purpose of WF was to solve a very different problem than WCF. WF is designed to
easily enable workflow-based applications inside Windows. Workflows are typically
thought of as a sequential control flow model with one task after another followed
in order. WF can support the sequential task model as well as more complex state
machine (pre-.NET 4.0) and a Flowchart (.NET 4.0) control models. The State
Machine Workflow contains event-based flow control, based on the state of the
workflow allowing moving from one execution block to another and back again. The
Flow Chart Workflow is used to define a static, non-sequential process flow.

Modeling applications as a workflow using a supplied framework has several
advantages. They are outlined in the following list:

e Designer-based problem solving: The designer inside Visual Studio
provides a common platform for workflow development. This allows
virtually anyone who knows WF to be able to read and understand any
workflow process. As the model is graphical, the learning curve is easier in
order to accomplish otherwise complex tasks.

[31]

Windows Communication Foundation and Windows Workflow 4.0 Primer

e Consistent approach to solving a problem: Once a specific workflow or
custom activity is written, it can be leveraged again if the implementation is
the same. What makes this different from a custom-coded solution is that the
developer needs to know very little about the solution in order to understand
its use as workflow is a UI-based model.

o Leverage the framework: Using workflow and the supplied activities lowers
the amount of custom code, reduces the time to market, and streamlines the
testing process as much of the code is build into the .NET Framework.

e Workflow services: Workflows can be exposed as WCF Services. This
combines the power and flexibility of WCF with the features of WF.

While it is always possible to custom code any solution coded in Windows Workflow,
these advantages should outweigh those of a custom C# or VB.NET solution.

In the past, the existence of a supportable, scalable host for workflow was an issue.
With .NET 4.0, significant enhancements have been made to the Windows Application
Server Role to enable scalable WCF and workflow hosting. This is known as Windows
Server AppFabric and will be covered in more detail in Chapter 3, Windows Server
AppFabric Primer.

David Chappell's Whitepaper is a good resource for more information on
% Windows Workflow. It can be found here:
= http://www.davidchappell.com/TheWorkflowWay--Chappell.
pdf

Highlights of the latest release

With significant investments made in the area of workflow, the following impressive
changes outlined were drastically needed to increase adoption. If you have looked at
Workflow in the past, the .NET 4.0 Workflow release bears little resemblance to past
releases. With dramatic change comes the obvious pitfall of backward compatibility.

[32]

Chapter 2

Windows Communication Foundation
enhancements

The following enhancements are made to WCF in the .NET 4.0 release:

Easier configuration: Developers do not like to spend time learning and
setting up configuration. In WCF 4.0, default values can be set allowing
services to be run without any service-specific confirmation files.

Content-based routing service: WCF now has the ability to route inbound
requests though information in the SOAP header or actual data inside the
message, based on an XPath expression. In addition to this basic routing,
error handling has the ability to send requests to alternative destinations in
the event of a communication issue.

Enhanced MSMQ channel: The MSMQ channel supports peek-and-lock
functionality allowing a WCF process to lock a message, read it, and place
it back onto the queue in the event that it cannot be processed. This is
important when working with some workflow scenarios.

WS-Discovery: Support for ad hoc discovery through a UDP multi-cast
channel on a local subnet or proxy-managed discovery on a large network.

Greater REST support: Support for HTTP caching and HTTP error handling.

Windows Workflow Foundation
enhancements

The following enhancements are made to WF in the .NET 4.0 release:

Workflow service improvements: Workflow services are workflows exposed
as a WCEF service. These services are typically long running and durable in
nature. Workflow services have undergone major improvement in the NET
4.0 release. Improvements have been made in the following areas:

° New messaging activities to send and receive messages into
and out of workflows, all leveraging WCF under the covers.

° Transaction support allowing transactions to flow into
workflows.

° Correlation of messages in long-running workflow and
between workflows, now supports both protocol-based and
content-based routing.

° Add Service Reference now generates a typed custom
workflow activity allowing for a drag-and-drop designer
experience for calling external services.

[33]

Windows Communication Foundation and Windows Workflow 4.0 Primer

Declarative Model: Workflows, including workflow services, can now be
completely written in Extensible Application Markup Language (XAML).
XAML can then either be compiled into a typed assembly or executed

as XAML.

Flowchart flow style: A new style of workflow has been introduced called
the Flowchart. This allows for a non-sequential, flow-control
design experience.

Simplified persistence: Workflow state can be persisted to a SQL store of
choice, allowing for instance management and durable delays. Workflows
can be stopped, started, suspended, resumed, or terminated while leveraging
the durable delay workflows, which can react to time-based events.

Enhanced library: Past releases of Workflow saw only a handful of out-of-
the-box activities. With the .NET 4.0 release, developers now have a rich set
of activities to leverage. Some of the new highlights include activities for
transactions, data access, flow control (such as Do-While, For-Each), parallel
execution, persistence, and error handling (including Try-catch).

Removed state machine support: Support for building state machines has
not been carried over to the initial .NET 4.0 release of Workflow. This is being
considered for a later release and in the meantime, the Flowchart workflow
should be used to model this behavior.

Overall designer experience: The workflow authoring experience inside
Visual Studio has improved greatly with support for IntelliSense — the
addition of workflow Variables, Arguments and Imports tab, enhanced
bread crumb support, and overall performance improvements.

Enhancements to both technologies
The following enhancements are made to WCF and WF in the .NET 4.0 release:

Event Tracing for Windows (ETW) events: Event Tracing for Windows

is known as ETW. It is a highly efficient, kernel-level, windows operating
tracing APL It can be turned on and off (early) giving developers the ability
to troubleshoot WCF and WF issues with greater ease. Workflow and WCF
now support tracing using ETW.

Performance Counter improvements: The use of performance counts in the
past .NET releases came at the cost of system performance. Improvements
have been made in this area to limit the impact of collecting data via
performance counters.

[34]

Chapter 2

Typical use cases

Windows Communication Foundation and Windows Workflow Foundation follow
different use case scenarios, but both share the fact that they are frameworks. Both
WCF and Workflow are used as part of a custom-built solution. While some third-
party vendors leverage and re-host these technologies, the use cases outlined here
assume that these technologies are going to be used as the foundation of a new
application. Use cases fit into one of these three categories: WCF, WF,

and WF Services.

Windows Communication Foundation
use cases

Windows Communication Foundation is striving to become the implementation
framework of choice for distributed service-based scenarios. Examples include a
company implementing a company-wide Service-Oriented Architecture (SOA)

to offer enterprise services for tasks such as tax calculations, shipping quotes, or
inventory checks. Using WCF is about approaching different distributed scenarios in
a standardized way, increasing supportability, maintainability, and reducing time

to market.

The WCEF-based solution offers complete flexibility in the communication patterns
used on all services, given the configuration-based approach. This would allow the
same service implementation to be used on a client desktop —with no encryption,
inside the network with encryption, or over the internet — totally secured, all with
no changes to the service code. This is drastically different from a traditional ASMX
service that relies heavily on IIS or an application written for .NET Remoting. While
WCF Services are commonly hosted inside IIS, this is not a requirement.

Windows Workflow Foundation use cases

Windows Workflow Foundation provides a foundation for building workflow-based
processes through a rich, designer experience. With a robust designer experience, it
provides a model-driven approach towards workflow development. While nearly
anything built inside the workflow could be custom coded in raw .NET, the goal is
to make the experience simpler, repeatable, and quicker than using raw .NET. The
designer experience is typically hosted inside Visual Studio, but it can be hosted
inside custom applications as well, allowing Independent Software Vendors (ISVs)
the ability to build on top of the workflow foundation.

[35]

Windows Communication Foundation and Windows Workflow 4.0 Primer

Workflow processes are usually long running processes that interact with different
internal or external systems and sometimes require human intervention to approve or
reject specific steps in the process. Some typical workflow processes include a new hire
process, outlining a document review process, and aggregating external service calls
into a single process. These three workflows could be built using Windows Workflow
and then hosted inside a custom .NET application, SharePoint, or simply a console
application. This abstracts the core workflow logic from the hosting application. As
Workflow is a foundation, other applications can build on top of it to leverage the
existing workflow functionality. New features in the Windows Application Server Role
known as AppFabric will add another hosting option for workflows, providing greater
insight into the running mechanics of the workflows themselves.

Example solution

To get you up and running with workflow services, let's set up a simple example.
This will be a Windows Workflow that is exposed as a WCF service. This example
will use Visual Studio to host the workflow and expose WCF endpoints. The service
will accept a simple string and return an updated string.
1. Create the new project inside Visual Studio 2010.

° Go to File | New Project.

° Select Workflow on the tab on the right under Visual C#.

° Select the WCF Workflow Service Application project type.
Name it to IntroToWFService.
° Click on OK.

[36]

Chapter 2

© Start Page - Microsoft Visual Studio (Administrator)

File Edit View Team Data Tools Architecture Test Analyze Window Help
e A= e N TR S R e e

New Project

21x

Pl Start Page

1) - - e e

=10l x]

[> Ix

Recent Templates | .NET Framework 4

x| sortby: [Defaut

Installed Templates

= Search Installed Templates O

o Type: Visual C#
!z B visual C# qﬂf Activity Designer Library Visual C# vpe:
= A WCF Workflow Service Application
Windows e
Web - Activity Library Visual C#
e Office
i} Cloud Service =R Workflow Console Appiication Visual C#
Reporting ;1
N SharePoint cﬂ.i, WICF Warkflow Service Application Visual C#
= Sitverlight
5u Test
wer
Workflow

Recent Other Languages

Other Project Types
Database

Modeling Projects
Test Projects

Per user extensions are currently not allowed to load. Enable loading of per user extensions

Mame: | ntroTowFservice

= Browse...

[V Create directory for solution
I~ Add to source control

£ Solutio

Location: | C:\workFlowsamples\

Solution name: | ntroTowFservice

[¥ Close ¢
[V show pegeo

W% TeamE

This will create a blank project and solution. Servicel.xamlx is the base
workflow service file created with the project.

Create local variables to store the inbound text and set the outbound text of
the service.

° Click on the Sequence shape to ensure it is the active window.

° (Click on the Variables tab on the bottom left.

° Add a variable named InternalInputText of type String to
store the original inbound text.

° Add a variable named InternalOutputText of type String
to create the response string to be returned from the service.

MName Variable type SCcope

handle CorrelationHandle Sequential Service

data Int32 Sequential Service Enter 3 VB expression
InternalInputText String Sequential Service Enter 3 VB expression
IntemalOutputText string Sequential Service Enter 3 VB expression
Create Variahe

Variables

[37]

M.al | itebooks.cogl

http://www.allitebooks.org

Windows Communication Foundation and Windows Workflow 4.0 Primer

3. Define the Request and Response Contract because this is how this service
talks to the outside world.

o

On the ReceiveRequest shape, Click on View Message.

[e]

Select Parameters.

o

Add a new parameter named InputText as type String and
assign it to InternalInputText.

Content Definition 2=l
| 1|4
Name Type Assign To
InputText String InternallnputText
Adld new parameter
e

° (lick on OK.

° Do the same for Sendresponse but name the parameter to
outputText and set it to a value of InternalOutputText.

4. Set the output text. This step will create the output variable the service
will return.

° Drag an Assign shape from the Primitives section of the
toolbox onto the surface between the ReceiveRequest and the
SendResponse shapes.

In the To box, set the value to InternalOutputText.

° In the Enter the VB expression box type the following: "vou
said” & InternalInputText as shown in the screenshot.

LB Assign

InternalCutputText = "You said " & Intern:

Value (InArgument)
["You said " & InternallnputText

OK | Cancel

[38]

Chapter 2

5. Build, run, and test the project.

° Press F5 to build and run the project in debug mode; Visual
Studio will show the Directory Listing of the project running
on port 1110.

° Click on Servicel.xamlx when the page loads to view the
service details.

°© Open WefTestClient . exe located at: C: \Program Files\
Microsoft Visual Studio 10.0\Common7\IDE\.

° Right-click on My Service Projects and add the newly
started service. The default address should be http://
localhost:1110/Servicel.xamlx. This is the address the
workflow service is listening on and a request should be
sent to.

° Double-click on GetDate().

° Set the Value field to: Test Message.

° Click on Invoke.

° This should return the response: "You said Test Message”.

Figh WCF Test Client I [9]
File Tools Help
E|--i Sj My Service Projects GetData |

Eﬁ http:/Aocalhost:1110/Service 1 2ambc
E|0'J |Service (BasicHttpBinding_|Service) Request
. =g GetDatal)
|z Config File

MName | Value | Type
Input Text Test Message System . String

Temrri ™ Start & new proxy Invoke |

MName | Value | Type |
{retum) "You said Test Message" System . String
Formatted IXML I

Service invocation completed.

The above sample is an example of a simple workflow service. Once the framework
is in place for receiving and sending the request and response data, the internal
implementation can be easily changed by dragging new shapes into the surface. This
can allow the implementation logic to be changed without impacting the

exposed contract.

[39]

Windows Communication Foundation and Windows Workflow 4.0 Primer

Summary

In this chapter, we took a look at the ABCs of WCF along with some basics of WCF
and Workflow. We briefly reviewed the new features in WCF and Workflow that
are available in the .NET 4.0 release. Lastly, we saw a workflow service in action in a
simple request-response scenario. Further chapters will explore the hosting of WCF
and workflow solutions, and dive deeper into the best use scenarios of

these frameworks.

[40]

Windows Server AppFabric
Primer

An application server hosts business logic (applications or services) in a multitier
architecture and provides a rich set of capabilities for building robust, high-
performing solutions. From an end-user standpoint, an application server needs
to satisfy a set of criteria such as offering a highly available hosting environment
for web and desktop applications, enabling durable storage through technologies
such as message queues or databases, and providing enterprise monitoring

and management infrastructure. In addition, the platform should provide an
easy development and deployment framework so that the application server is
compelling enough for a user.

Today, Windows Server provides several rich capabilities, some of which have already
been mentioned above. Recently, Microsoft strengthened the Windows application
server offering by making available a set of key enhancements which will provide
unified hosting and monitoring for WCF and WF applications. In addition to this
capability (known during its pre-release cycle as Dublin), the new application server
will provide a distributed cache, originally codenamed Velocity. The distributed cache
feature provides a performance benefit (latency and throughput) to applications by
caching different .NET types and reducing the load on the data tier. Collectively,

these new capabilities for Windows Server platform are known as

Windows Server AppFabric.

With the introduction of Windows Server 2008, Microsoft introduced a new feature
called Server Manager. Server Manager enables easy setup and configuration of a
Windows Server 2008 machine through quick provisioning for the target purpose —
be it that of a domain controller, a Web Server, DNS Server, an Application Server,
or any of its other out-of-the-box roles. The idea of role-based server configuration
is nothing more than just simplifying the setup of a server to perform complex tasks
by aligning Windows' features together into understandable groupings. The new
enhancements to Windows Server will be packaged as an update to the Windows
application server Role.

Windows Server AppFabric Primer

This primer will focus on Windows Server AppFabric and the enhancements being
made to the Windows application server role as part of the .NET 4.0 release.

What does this technology do?

In addition to being an operating system platform, Windows Server provides
features such as Microsoft Message Queuing (MSMQ), Microsoft Distributed
Transaction Coordinator (MSDTC), and Internet Information Services (IIS) for
hosting ASP.NET applications and performance counters that monitor infrastructure;
all of which make it easy to host web, desktop services and applications. The WCF
framework is slowly becoming the de facto technology for distributed applications.
Windows Workflow Foundation (WF), as a technology, enables automating long
running processes, which could involve human and software interaction. Both WCF
and WF have undergone improvements in the 4.0 release of the .NET Framework.

At its core, Windows Server is Microsoft's application server. Windows Server runs
applications like IIS, custom .NET components, and Web Services. When adding
the existing application server role inside Windows Server, the NET Framework

is added with the option to also install IIS. The intent of this role is to run custom
applications containing .NET, WCF, WF, and WPF (Windows Presentation
Foundation) code, run distributed services, interact with queues, and perform

other typically distributed tasks across multiple servers. The initial server role on a
Windows Server machine is somewhat limited. Prior to this release, it only provides
basic hosting for WCF services inside IIS with limited tracking, monitoring, and
management functionality. WF applications receive even less attention. To run a
WEF application, the user must define their own host, which may run inside IIS or

as a part of a custom Windows service. Enabling the basic application server role's
tracking options requires extensive knowledge of WCF and WF configuration files.
In addition, the tracking models are different from WCF and WF, making knowledge
of both essential in running complex systems.

With the .NET Framework 4.0 release, significant enhancements have been made
to the framework to support enhanced tracking, monitoring, and management.
To capitalize on these enhancements, Microsoft has built tooling and components
to a Windows application role known as AppFabric. These enhancements include
updates to the following core areas, as they relate to WCF and WF applications:

e Administration
e Scripting

e Hosting

¢ Monitoring

e Persistence

[42]

Chapter 3

While these enhancements are targeted toward .NET 4.0-based applications, .NET 3.0
and 3.5 WCF and WF applications can run in this host as well albeit with
some limitations.

Windows Server AppFabric core
components

This section is split into two key topics — Application-server hosting and monitoring,
and distributed cache.

Application-server hosting and monitoring

Windows Server AppFabric is a set of integrated technologies that makes it easier
to build, scale, and manage web and composite applications that run on IIS. As
outlined before, this adds key features in five areas. The following diagram gives a
visual view of these outlined enhancements:

Management Tools
| IS Manager Modules |
| PowerShell |
Services Workflows
Persistence Hosting Monitoring Caching

Windows Server AppFabric

.NET Framework

IIS/WAS

Windows Server

Details on each of these are further outlined.

[43]

Windows Server AppFabric Primer

Control

Windows Server AppFabric adds plug-ins into IIS to allow for control of WCF and
WEF applications in the same way as one controls websites today. With these controls,
the following tasks are now easily exposed:

e Importing and exporting an application
e Stopping and restarting an application
e Turning the tracking on and off

e Setting up custom tracking profiles

Scripting
Windows Server AppFabric allows PowerShell integration of all commands seen in

the Ul This is perfect for scripting of deployment and for ISVs that want to place
commands into existing applications.

Hosting

Windows Server AppFabric added a scalable, supportable hosting environment to
the Windows application server role. This host can serve as a container for WCF and
WF applications written in .NET 4.0.

Monitoring

Monitoring has a greatly enhanced user experience and allows easy access to tracked
data. This feature allows for various levels of out-of-the-box tracking on WCF and
WEF applications as well as creation of custom tracking profiles.

Persistence

Along with the basic hosting environment are some other enterprise-ready
features made possible from a shared data store like SQL Server Express. With this
persistence store, we have the foundation for scalability, high availability, instance
re-start, and basic routing.

[44]

Chapter 3

Distributed cache

With the advent of applications built for cloud scale, more data is accessed and
consumed by applications. Further, usage of various smart mobile devices running
these applications has surfaced bottlenecks in the mid-tier and/or database-tier.

One popular solution to this problem is the usage of distributed caching
technologies, which provide a centralized store, elastic scale-out capabilities, and
high availability with low response times even with increasing workloads. Windows
Server AppFabric Cache is Microsoft's entry into the distributed cache market. It is
an explicit, scalable, distributed, and in-memory application cache that can improve
performance and scaling of .NET applications.

After installing and configuring the cache feature into a set of machines, the
combined memory across all servers is made available as a unified cache. The set
of servers now constitutes a cache cluster and can be used by application servers

or web servers running on different machines to read or store items in the cache
cluster. These application and web servers may also be referred to as cache-enabled
applications or simply cache clients. These cache clients use a set of key-value pair
based APIs to store and retrieve items from the cache. The stored value must either
be a serializable .NET type or a byte array. The serialization happens at the cache-
client side using the NetDataContractSerializer object, and the data is then sent
over the wire and stored in the cache servers.

Internally, the cache cluster design uses a partitioned hashing algorithm by which
various cached items are partitioned based on the "key" and stored on separate cache
servers. The mapping information between the key and the actual cache servers
containing the "value" is maintained in a routing table that is available to the cache
client at connection time. When an item needs to be retrieved, cache clients hash the
key value, look up the routing table, and contact the particular cache server. High
Availability (HA) is provided as a configuration knob, where a secondary replica
will be stored in another cache server. This is used for failover scenarios when the
cache server holding the primary replica may go down. In a HA configuration, when
an update is made to the primary cache server, the update must also be propagated
synchronously to the secondary cache server, thereby increasing the latency.
Depending on the data criticality in the workload, HA can be enabled selectively.

For example, one common problem when managing session state in ASP.NET is
protection against state-server machine failures. Given that this session data does not
need persistence but needs to be highly available, it can be stored in the cache cluster
with HA enabled. Additionally, as the session data is now in a central cache cluster,
users can connect to any web server (cache client) and have access to the session
data. Thus, this avoids any sticky routing issues (a requirement to connect to the
same web server where the session state is maintained).

[45]

Windows Server AppFabric Primer

One key benefit when using the distributed cache is being able to scale across several
cache server nodes. Underneath, the distributed cache has a fabric layer used for data
partitioning, rebalancing when nodes go down or are added, and replication in HA
configuration. This layer is shared with the SQL Azure infrastructure, which scales
to several nodes in the cloud.

The distributed cache feature has the following three sub-features:

e Caching services
e Cache client
e Cache administration
While installing the features, the cache client and cache service are a part of

Runtime Features while the cache administration-based PowerShell V2 is a part of
Administration Tools.

The caching service requires Microsoft .NET framework 4.0. The cache client can be
compiled using Microsoft .NET framework 4.0 or 3.5 SP1.

| Windows Server AppFabric Setup Wizard - l = ihJ
-m -
-Ef Feature Selection
Customer Experience To remove one or more installed features, clear their check boxes. To uninstall the product, clear all
the check boxes.
Add or Remove)
Features: Description:
_ AppFabric Caching Service and
(| .
Confirmation = Runtime Features related components to prepare this
Hosting Services host as a AppFabric Cache Server.
Farees You can create a new cluster or
9 join this host to an existing cluster

Results Cache Client of AppFabric Cache Servers.

= Administration Tools

Hosting Administration i

u
Help < Previous Cancel

For example, on server machines A, B, and C, one could install and configure

the cache service making them each individually a cache host. Here, the term
cache host refers to the cache host Windows service. This process runs under the
NetworkService account. This selection will install the AppFabric Caching Service
and the required set of DLLs on the machine.

[46]

Chapter 3

From a terminology standpoint, AppFabric Caching Service is referred to as the
cache host and the servers A, B, and C are the cache servers. Cache servers can be
physical machines or run on virtualized environments. Together, all these cache
servers form a distributed cache cluster. The memory from all these cache servers
will constitute the total memory available to cache-enabled applications. In order
to make sure that the cluster is healthy, typical cluster management functionality
can be performed by special cache hosts called lead hosts. These nodes, in addition
to servicing data requests, also do a quorum heartbeat functionality — they check
the health of their neighbors (normal cache hosts) and report back to the cluster
manager, which is a component that runs on one of the cache servers.

The configuration information for the cluster can be maintained in SQL Server or in
an XML file stored in a shared folder. When using SQL Server as the configuration
store, the responsibility of lead hosts for cluster management is done by SQL Server.
In such a configuration, SQL Server will manage the quorum and the cache hosts can
focus on servicing the data requests. The concept of lead hosts is only required when
an XML file is used as a configuration store.

An IT pro can use the administration tool to manage the cluster. This mode installs

a set of PowerShell commandlets to start, stop, and configure the cache cluster. The
cluster uses domain-based security for authentication. By default, security is enabled
at transport-level with encryption on, which will affect performance.

-
3 Administrator: powershell.exe -noexit -command "Im...liﬂld—hj

get-connand -nodule diztributedcacheadnini

[47]

vww allitebooks.cond

http://www.allitebooks.org

Windows Server AppFabric Primer

Applications accessing the cache cluster have to install the cache client sub-feature,
reference the DLL(s), and rebuild the application. In addition, the client application
needs to make some changes to app.config or web.config, by providing the list of
cache servers and in the case of web applications, also change the ASP.NET

session provider.

<configurations>

<!--configSections must be the FIRST element-->
<configSectionss>

<!-- required to read the <dataCacheClient> element -->

<section name="dataCacheClient"

type="Microsoft.ApplicationServer.Caching.
DataCacheClientSection,
Microsoft.ApplicationServer.Caching.Core, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"
allowLocation="true"
allowDefinition="Everywhere"/>
</configSections>
<dataCacheClient requestTimeout="15000" channelOpenTimeout="3000"

maxConnectionsToServer="1">

<localCache isEnabled="true" sync="TimeoutBased" ttlValue="300"
objectCount="10000"/>

<clientNotification pollInterval="300" maxQueueLength="10000"/>

<hosts>
<host name="CacheServerl" cachePort="22233"/>
<host name="CacheServer2" cachePort="22233"/>

</hosts>

<securityProperties mode="Transport"
protectionLevel="EncryptAndSign"/>

<transportProperties connectionBufferSize="131072"
maxBufferPoolSize="268435456" maxBufferSize="8388608"
maxOutputDelay="2" channelInitializationTimeout="60000"
receiveTimeout="600000"/>

</dataCacheClients>
</configurations
cache cluster
cache host cache host cache host
2 (Windows service) | | (Windows service) | | (Windows service)

cache-enabled T T T
application server ! ! !
(cache client) i | |

cache server cache server cache server

T T A T A T
o =
cluster configuration
PowerShell-based storage location
cache administration tool

[48]

Chapter 3

Here are a set of caching concepts and constructs that are important to understand:

Named cache

A named cache is a logical container, which an application can use to store objects.
A named cache will span across all the machines in the cluster. The data units for
each named cache are managed as partitions, which are then distributed across all
the cache servers in the cluster. There is a "default" named cache. Named caches
can only be created and configured from the admin tool. There are a set of explicit
configurable policy settings that can be defined for named caches.

Region

A region is a container within a named cache that can be used by applications.
Regions allow usage of bulk API, so that applications can get several objects as part
of a single API call. Thus, this construct can be used for the "co-location" of related
objects. For example, on a blog's discussion website there may be a need to show the
topic objects and the related user-comments objects on a page load. There can be a
region that is created for each day and the related objects stored within it. When the
web page loads, it can invoke a single bulk API and get all the objects, improving the
page-load response time. Also, objects within a region can be tagged and enumerated
using these tags. For example, various blog articles can be tagged based on their user
rating and the application can invoke all the "5 star" tagged articles.

Expiration

Objects in a named cache can have a lifetime expiry after which they can be deleted
from the cache. Expiry is a configuration setting that can be maintained at a named
cache. In addition, applications can also explicitly specify the expiry interval when
storing objects.

Eviction

Eviction happens when there is memory pressure on the cache node, and this is done
using the least recently used (LRU) scheme. Thresholds, or watermarks, are enforced
to make sure that memory usage is buttoned-up across all cache hosts in the cluster.
Initially, the expired objects are removed when a low watermark is reached. If the
memory consumption still increases, and exceeds the high watermark threshold,
objects are removed until the consumption goes back down to the low watermark. In
cases when the available memory goes very low (less than 10%), the cache servers have
a throttling behavior to reject writes until the memory gets back to normal state.

[49]

Windows Server AppFabric Primer

Local cache

Local cache is a feature that allows objects to be stored at the client side as a part of
the application memory space. This is useful when there is a lot of repeated access

of the same items. When storing in local cache, objects don't have to undergo the
serialization and deserialization penalty. Local cache can be enabled by configuration
or by code.

<!-- local cache enabled -->
<localCache isEnabled="true" sync="TimeoutBased" ttlValue="300"
objectCount="10000"/>

//configure client with local cache enabled

int objectcount = 1000;

TimeSpan timeout = new TimeSpan(0, 0, 60);

DataCacheLocalCacheProperties localCacheSettings = new
DataCachelLocalCacheProperties (objectcount, timeout,
DataCacheLocalCacheInvalidationPolicy.NotificationBased) ;

long queuelength = 1000;

TimeSpan pollingInterval = new TimeSpan (0,0, 60);

DataCacheNotificationProperties notifySettings = new
DataCacheNotificationProperties (queuelength, pollingInterval) ;

DataCacheFactoryConfiguration dcfc = new
DataCacheFactoryConfiguration() ;

dcfc.LocalCacheProperties = localCacheSettings;

dcfc.NotificationProperties = notifySettings;

dcf = new DataCacheFactory (dcfc) ;

If local cache is enabled before retrieving cached objects from a cache host, the cache
client application first checks whether the object exists locally. If it exists, the object
is returned immediately to the application. If not, the object is fetched from the cache
host and then stored in a deserialized form in the local cache.

There are two types of invalidation for local cache: timeout-based invalidation and
notification-based invalidation. When the local cache is configured for timeout-
based invalidation, the object is removed after the time interval expires. In case of
notification-based invalidation, the application has a thread that polls the cache
servers for any changes. If a particular item has changed, the local cache copy is
invalidated. So the next access of the key will go to the cache tier to get the updated
item value, which will then be be stored in local cache. The polling interval for
synchronization can be configured.

The following figure illustrates cache clustering across cache hosts:

[50]

Chapter 3

cache cluster

cache host

P
(Windows service)] (

cache host cache host
(Windows service) (Windows service)

(

cache (default))

cache "Inventory"

cache "Catalog"

region
"Sports"

region
IlAr.tSll

High availability

This is one of the policy settings that can be enabled at a named cache level. By
default, this is turned off. This allows two copies of data to be stored in different
cache servers, thus helping in failover scenarios. As the named cache data units
(partitions) are striped across all the cache servers in the cluster, in HA mode,
duplicate replicas are also striped to ensure that the primary and secondary are

on different cache servers. It is important to note that there is no notion of a single
secondary cache server and all cache servers will be primary for certain data and
secondary replicas for others. In a virtualized environment, it is important to ensure
that the various VMs are not on the same physical machine in a HA configuration.

AppFabric Cache is an explicit in-memory cache. Configuring in HA

mode protects cached objects when a single server goes down, but in case
of multiple servers going down, there may be data loss. The cache is not

durable and hence, the application has to explicitly persist it in a durable

store such as SQL Server.

Cache notifications

Notifications are a mechanism by which cache applications can register for key-value
pair changes in the cache cluster. For example, in a social networking application,
once a user logs in, the friend list, status, latest news feed, photo albums, and the like
may need to be refreshed immediately. In order to implement this, a set of services
may register for the login event in Users named cache and populate the other
named caches with relevant data from the backend.

[51]

Windows Server AppFabric Primer

To receive asynchronous cache notifications, add a cache notification callback to your
application. When you add the callback, you define the types of cache operations
that trigger a cache notification and the method in your application that will be
called when the specified operations occur. Here are a set of things that need to be
implemented in code to handle notifications:

private DataCacheNotificationDescriptor ndItemUpdateOps;

ndItemUpdateOps =
cacheAccess.reviewscache.AddCacheLevelCallback (
DataCacheOperations.AddItem | DataCacheOperations.Replaceltem,
handleCallBack) ;

public void handleCallBack (string CacheName, string RegionName,
string Key, DataCacheItemVersion version, DataCacheOperations ops,
DataCacheNotificationDescriptor nd)

{

// Logic to handle after receiving the call back.

}

Typical use cases

These are a few scenarios for each technology that demonstrate its best fit in
a solution.

Windows Server AppFabric hosting and
monitoring

The hosting and monitoring enhancements will cover a wide range of use cases with
most uses not utilizing all the features. By far, the most common use case is that this
is a robust, scalable, and supportable host for WCF and WF applications.

In addition to the host itself, we also have a management tool for supporting the
host. This would be a part of any hosting solution. Monitoring can be configured at
different levels based on requirements. In addition, custom monitoring of specific
data elements inside the solutions can be configured and persisted to a database.

Some examples include hosting a .NET 4.0 Workflow service for signing up a new
customer to a website, tracking the number of orders that get processed through the
system per day, and viewing the number of applications in a workflow process that
are in a specific state.

Features are added to the particular solution as requirements of the solution expand.

[52]

Chapter 3

Windows Server AppFabric cache

The data access patterns can be broadly classified as reference (read only), activity
(single user read-write), or resource (multiple users read and write) data.

For example, the Books catalog on Amazon's website or your network list in
LinkedIn is reference data. Such data does not change often and will be used by
several clients accessing the website. Explicitly caching the data allows the system to
respond faster and alleviates the load on the backend database server.

Activity data is tracking a single user's session activities: for example, a shopping
cart for Walmart online, or a vehicle insurance computation from Progressive Direct.
The web application in this scenario needs to respond really fast to the user changes
as well as track the activities maintaining the session state. The user session might
timeout and reconnect; refreshing the activities from the previous session enables a
"stateless" web server to suddenly present user state.

Resource data scenarios are shared across a set of users where read, write, and
updates are allowed. Imagine a travel portal such as Orbitz, which sells airplane
tickets, where the tickets resource is shared and the system constantly makes changes
to the resource, based on transactional activities in the system.

Windows Server AppFabric cache is a distributed, explicit cache that allows
applications to store data in a dedicated chunk of memory. The objects continue
to stay in memory and are not impacted upon by the usage of other applications.
A caching tier such as this can also be used to store intermediate results based on
computations and can be used directly from the application tier.

Typical scenarios

The following scenarios outline some uses of Windows Server AppFabric caching:

e ASP.NET session state management

e Caching large reference data sets for application objects reducing stress on
backend databases or web services

e Intermediate results repository for high-end computations used by
distributed applications

e Improving application latency by allowing it to scale for large numbers
of users

In order to leverage caching, .NET applications require code changes and
recompilation. In case of ASP.NET applications that need to use the cache for session
state management, just modifying web . config may be enough. It is recommended to
maintain cache-cluster host information and local cache settings in configuration to
ease deployment.

[53]

Windows Server AppFabric Primer

Example solution

Let us look at a couple of quick solutions that demonstrate the capabilities of
Windows Server AppFabric.

AppFabric hosting and monitoring

AppFabric is an excellent host for NET 4 Workflow services providing simple
hosting and monitoring. In Chapter 2, Windows Communication Foundation and
Windows Workflow 4.0 Primer, a simple Workflow Service was created. Now, we'll
take that service and host it inside IIS and monitor it using the new

monitoring features.

1. Open the AppliedArchitecture.Chapter3.Monitoring.sln project from
the <Installation Directorys>\Chapter3\Begin folder. This is the same
solution used in the previous chapter.

2. Set the workflow project to use IIS for hosting by selecting the project,
right-click on Chapter3.IntroToWFService, and select Properties.

3. Select the Web tab. Under Servers, select the Use Local IIS Web server.
Leave the default address and click on Create Virtual Directory as shown
in the next screenshot:

— : -
Web™ " Start URL
Package/Publish Web ~ Don't open a page. Waitfor a request from an external application.
Package Publish SQL Servers
Silverlight Applications v Apply server settings to all users (store in project file)
] " UseVisual Studio Development Server

Build Events

[l g
Resources £ coecficport l___:—
Settings Virtual path: I
Reference Paths R

=/ Ena Ie
Signing

% Use Local IIS Web server

Code Analysis Project Url: Ihtn::fﬂocalhostfchapteriIntroTo\“a’FSer\rice Create Virtual Directory |

—

Save the project and build it inside Visual Studio.

Open IIS Manger. Find the project under the virtual directory that was
previously created. Notice the three new administrator icons available
under AppFabric.

[54]

Chapter 3

9 /Chapter3.IntroToWFService Home

Filter: - Go ~ g Show All |Group by
AppFabric
o '
<-‘3'_.-'_*. =
AppFabric Endpoints Services
Dashboard

6. OpenwctTestClient.exe located at: C: \Program Files\Microsoft Visual
Studio 10.0\Common7\IDE\.

7. Right-click on My Service Projects and add the newly deployed
service. The default address should be http://localhost/Chapter3.
IntroToWFService/Servicel.xamlx. This is the address the workflow
service is listening on and where a request should be sent to.

8. Run a few messages though the system. Click on the AppFabric Dashboard
inside IIS Manger. This is the main dashboard page for AppFabric
monitoring and tracking. This outlines Persisted WF Instances, WCF Call
History, and WF Instance History over a configurable interval. As this
service was a Workflow Service, items will show up under the WCF Call
History and WF Instance History. Note that no additional configuration was
needed in order to get this working —it just worked.

9 AppFabric Dashboard

Use this feature to monitor MET 4 WCF and WF services with monitering and/or persistence enabled.

View: |All ~| ¥ Time Period: | Last 24 hours -

Persisted WF Instances
Live Summary

:’b Applications: 1 2]

Active or Idle Instances Suspended Instances Suspended Instances
Grouped by Service (top 5): Grouped by Service (top 5): Grouped by Exception (top 5
None found. ’l None found. None found.
d

WCF Call History [@
) Last 24 hours —
Completed Calls Errors Service Exceptions
Grouped by Service (top 5): Grouped by comman types: Grouped by Service (top 5):

Cl Mone found.
WF Instance History @i =
4T Last 24 hours :
Instance Activations Instances with Failures Instances with Failures
Greuped by Service (top 5): Grouped by Service (top 5): Group by Outcome:

3 Mone found.

[55]

Windows Server AppFabric Primer

AppFabric caching

Consider a library application where users can browse for books using the author
or title, read or update book reviews, look at new book releases, and then check
out a particular book they like. The book database catalog has more than 100,000
entries and at any time, the system can have 100 concurrent users using the system
across all locations. From a terminal in any of the library locations, users can use
the application to review the information in the entire library's internal network.
Each user will browse through an application running on the local terminal that
communicates with a central WCF service, which will handle all the distributed
cache interactions. The central service will be running on a Windows Server box in
the library's data center.

Just to simplify the solution, we will use a Windows Forms application
= interacting directly with the cache service via the cache utilities class.

Setup

A project solution AppliedArchitecture.Chapter3.CachingPrimer has been
created in the <Installation Directorys\Chapter3\Begin folder. This solution
contains two Windows Form applications that use the distributed cache.

Before beginning the lab, you must have Windows Server AppFabric Cache service
and the client and admin feature installed and configured on your machine. The pre-
requisites for configuring the cache features are .NET 4 RTM and PowerShell v2. In
a development environment, both Windows 7 and Vista OS platform are supported.
For production deployment, the cache servers need to be on either the Windows
Server 2008 SP2 or Windows Server 2008 R2 OS platform.

Steps

1. If you don't have the product set up already, install Windows Server
AppFabric from the following location. You can install the standalone

cache feature or check the download section from this link: http: //www.
microsoft.com/downloads/en/results.aspx?freetext=Windows+Server

+AppFabricanddisplaylang=enandstype=s_basic.

2. Start the Cache Administration Windows PowerShell tool and run the
Start-cachecluster commandlet.

[56]

Chapter 3

Using the same administration tool, create the following named

caches — CatalogbDataCache and ReviewsCache by first using the new-cache
ReviewsCache -NotificationsEnabled true commandlet and then the
new-cache CatalogDataCache commandlet.

Launch Visual Studio.NET 2010 and open AppliedArchitecture.
Chapter3.CachingPrimer.sln from the <Installation Directorys\
Chapter18\Begin folder. You should see two Windows Form applications.

WinForm application 1 has the browse logic to see user review comments
and can also let users add review comments for a particular book.

WinForm application 2 registers for cache-level notifications and displays an
output whenever a user adds a particular comment.

Add a reference to the Microsoft.ApplicationServer.Caching.Client
and Microsoft .ApplicationServer.Caching.Core DLLs.

Modify the app.config file to add the AppFabric dataCacheClient
related sections.

[571]

Windows Server AppFabric Primer

9.

10.

11.

Add a new .NET class cacheUtils.cs to contain all the cache-specific
interaction and at the beginning, add the following set of using statements:
using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using Microsoft.ApplicationServer.Caching;

Declare the following set of variables:

// channel factory that uses net.tcp binding
private static DataCacheFactory dcf;

// handle to named caches

public DataCache catalogcache, reviewscache;

public bool useCache = false;

private static readonly string CATALOG CACHE = "CatalogDataCache";
private static readonly string REVIEWS CACHE = "ReviewsCache";
private static int bookId;

private static readonly string REGION NAME = "June6_ UserReviews";

In the setup () method, add the code to set up the channel for
communicating with the cache servers and for creating the region within the
Reviews named cache.

public void Setup()
{
try
{
if (decf == null)

{

// Instantiation will setup connections to all cache servers
specified in <hosts> section in app.config

dcf = new DataCacheFactory () ;
}
catalogcache = dcf.GetCache (CATALOG CACHE) ;
reviewscache = dcf.GetCache (REVIEWS CACHE) ;
LoadBookData () ;
CreateRegion (REGION_ NAME) ;
useCache = true;

}

catch (DataCacheException dcexp)

{

useCache = false;

[58]

Chapter 3

}

public void CreateRegion(string regionName)
{

try

{

bool created = reviewscache.CreateRegion (regionName) ;

}
catch (DataCacheException dce)
{
}
}

12. Add two internal classes for storing books and user comments.

[Serializable]
class BookInfo
private string BookName;
private string ISBN;
private string AuthorName;
public BookInfo(string bname, string isbn, string authors)
BookName = bname;
ISBN = isbn;
AuthorName = authors;

}

public string GetDesc ()

{

return BookName + " " + ISBN + " " 4+ AuthorName;

}

public string GetShortDesc ()

{

return ISBN;

}

[Serializable]
class UserReviews
private string UserName;

private string Comment;

[59]

Windows Server AppFabric Primer

private string ISBN;

public UserReviews (string user, string comment, string isbn)

{

UserName = user;
Comment = comment;
ISBN = isbn;

}

public string GetShortDesc ()

{

return Comment + " - " + UserName;

}

13. Add the method to load some test data. This can be replaced by reading a set
of database tables that represent the catalog data.
14. Add the methods to retrieve and store user comments.

public ArrayList GetUserComments (string ISBN)

{

try

{

ArrayList output = new ArrayList();
List<DataCacheTag> tags = new List<DataCacheTags>() ;
tags.Add (new DataCacheTag (ISBN)) ;
IEnumerable<KeyValuePair<string, object>> comments =
reviewscache.GetObjectsByAnyTag (tags, REGION NAME) ;

foreach (KeyValuePair<string, object> comment in comments)

{

output .Add((UserReviews) comment.Value);

return output;

}

catch (DataCacheException dce)

{

return null;

}

public void StoreUserComment (string ISBN, string user, string
comment)

try

[60]

Chapter 3

UserReviews review = new UserReviews (user, comment, ISBN) ;
List<DataCacheTag> tags = new List<DataCacheTags> () ;
tags.Add (new DataCacheTag (ISBN)) ;
string key = user + Guid.NewGuid () .ToString() ;
reviewscache.Put (key, review, tags, REGION NAME) ;

}

catch (DataCacheException dce)

{

}

}

15. In Form2.cs, add the logic to register for notifications.

static CacheUtils cacheAccess;
private DataCacheNotificationDescriptor ndItemUpdateOps;
private static readonly string REVIEWS CACHE = "ReviewsCache";
private static readonly string REGION NAME = "June6 UserReviews";
public Form2 ()
{

InitializeComponent () ;

cacheAccess = new CacheUtils() ;

}

private void Form2 Load(object sender, EventArgs e)

{

cacheAccess.Setup () ;

NotifyFromReviewsCache () ;

}

public void NotifyFromReviewsCache ()

{

// ndItemUpdateOps =
cacheAccess.reviewscache.AddRegionLevelCallback (REGION NAME,
DataCacheOperations.AddItem, handleCallBack) ;

ndItemUpdateOps =
cacheAccess.reviewscache.AddCacheLevelCallback (
DataCacheOperations.AddItem | DataCacheOperations.
ReplaceItem, handleCallBack) ;

}

public void handleCallBack (string CacheName, string RegionName,
string Key, DataCachelItemVersion version, DataCacheOperations
ops,

[61]

Windows Server AppFabric Primer

DataCacheNotificationDescriptor nd)
if (CacheName.Equals (REVIEWS CACHE))

if (listBoxl.InvokeRequired)

{

string notification = String.Format ("Review comment added at
{0}. To view, use KEY as {1}",
DateTime.Now.ToShortTimeString (), Key);

listBoxl.Invoke (new MethodInvoker (delegate {
listBoxl.Items.Add (notification); }));

}

16. In Form1.cs, add the logic to load the listbox and then add the logic in the
button-click events to invoke GetUserComments and StoreUserComment.
Also within the 1oad () method, instantiate Form2 . cs and invoke the show ()
method on that instance.

17. Build and run the application.

18. Enter a set of user comments and then click to store the comments. This data
is stored in the custom region June6_UserReviews of the ReviewsCache.

ISBN Lt

d read - avid_read
¢ s

Comment good read AddComments

User avid_reader

[62]

Chapter 3

19. You can monitor the cache statistics from the admin tool.

Summary

With Windows Server AppFabric, now customers have richer features to leverage
WCF, WF, and distributed cache features as part of their solution. Some of the
challenges around hosting and monitoring of such custom applications are now
made easier by hosting in the application server. The distributed cache feature
provides a centralized store, elastic scale-out capabilities, highly available with low
response times even with increasing workloads. As we look towards the future,
this provides a good foothold to enhance the capabilities of the

Windows application server.

[63]

BizTalk Server Primer

This chapter is intended to provide people who specialize in technologies like SQL
Server or perhaps, general NET development with an understanding of what BizTalk
is, how it works, and also gives you an idea of how to write your first application.

If you have worked with BizTalk Server for many years, written pipeline
components, developed custom adapters on the old and new framework, then before
delving into the later chapters please flick over and briefly look at the roadmap
information to ensure there is nothing new that you've missed.

Heterogeneous systems

Every IT department of any reasonable size that I have seen has used systems from
at least two separate vendors. In this heterogeneous world, there are a number of
challenges that I consistently see customers facing;:

e Incompatible data formats:

° X12 850, EDIFACT ORDRSP, IDOC 850 are all used to
represent purchase orders, but they look very different and
represent content in different ways

¢ Incompatible system metadata:
° SAP Repository, Siebel, SQL schema, developer's diagrams

° Metadata is scattered around systems with no consistent
story for discovery and representation

BizTalk Server Primer

e Incompatible wire formats:

[e]

Transport and application specific protocols: HTTP, SFTP,
HTTPS, MSMQ, IBM MQSeries, SAP —IDoc, RFC, BAPI, and
SAP DB

¢ Incompatible message exchange protocols:

° SWIFT versus FIX, X12 versus EDIFACT, EDIINT, RNIF,
BTF 2.0

° All have different reliability protocols that need to
be supported

e Weak process visibility:

o

How do I see what is going on?

What does BizTalk Server do?

Most Microsoft products provide some feature/functionality in the mindset of
internal Microsoft people and customers alike. Microsoft Exchange Server owns
e-mail, SQL Server owns the data tier, and IIS is Microsoft's web hosting solution.
BizTalk Server is Microsoft's premium enterprise integration solution. In few
words, it provides the ability to connect these disparate heterogeneous systems
(entities) together. To provide full system integration, which goes beyond just data
connectivity, adapters provide wire-level connectivity, and message transformation
used for data. A robust Orchestration engine enables complex events and process
workloads to be handled. BizTalk also provides the ability to expose and consume
services, monitor the end-to-end process flow (providing visibility into the process),
and since 2006, the 2006 R2 release has introduced RFID connectivity. Entities may
be a device (in the case of RFID), a system within the same department, organization,
or a service that a partner firm has exposed.

Can't we just use Web Services or WCF?

This is perhaps the most common question I hear. WCF is Microsoft's unified
programming model for building service-oriented applications. It is fully
interoperable with a number of different web service protocols as defined by the
WS-* specifications. This means that it is interoperable with line-of-business (LOB)
systems from vendors who adhere to the standards. This removes a large number of
barriers to implementing a service-oriented approach within an organization. This
can be used to provide intra and inter-organizational connectivity. However, there
are still a number of challenges and factors that need to be considered. Following are
the key factors I consider when working with customers:

[66]

Chapter 4

Wire formats: The number and complexity of different applications that you
need to connect to is a key factor. BizTalk provides extensive connectivity
with 25 out-of-the-box adapters and has more available in the adapter pack
and from third-party vendors. A majority of these are now built on top of the
WCF LOB Adapter SDK, so they can be utilized from any .NET application.
This means that either BizTalk Server could be used, or the WCF Adapters
could be used outside of BizTalk Server within a LOB system, in another host
such as AppFabric, or within your own custom application host.

Data formats: There is still no such thing as a common XML purchase order
format across all systems. Therefore message transformation is required.
This is often the most challenging requirement; different LOB vendor
systems tend to have a different way of modeling and storing organizational
metadata such as customer information and PO format. It is very rare to

find a common XML message format that is used across all systems within
an organization. In addition to this, LOB systems are subject to upgrade,
change of version, and so on, all of which can impact the model they use.
This is compounded by the fact that an organization may decide to change
the attributes of metadata that have modeled the LOB app. If a tight coupling
is built between each LOB system, it is important to consider the work that
needs to be done, should a change on either system occur. In particular, you
should pay attention to schema and model changes and consider the amount
of development work that this will require.

BizTalk Server provides a Mapper, which can be used to handle flat files and
XML-based formats. In the EAI scenario, this can be used to map between
the LOB system models that are used. BizTalk is specifically designed to
deal with existing interface transports and data models. By leveraging this,
you can minimize the change that needs to be performed to the LOB system.
In many cases, due to its powerful transformation capabilities BizTalk can
interact with existing APIs that are exposed with no change required to the
end system.

Process management: WCF provides separation of contract (functionality)
and data transport (binding). This provides wire connectivity, but a service
host is still needed to manage the durability, provide tooling, scale out, and
so on. BizTalk provides this and other building blocks that can be utilized in
your application.

[67]

BizTalk Server Primer

Long running transactions pose another problem. Certain updates to
organizational information may occur over a period of time, for instance to
change a customer's bank address; the change may be initiated but it may

be in a pending state until appropriate copies of documentation have been
received by e-mail post. In this scenario, if the change does not complete for
any reason, it's important that all the systems involved be able to rollback to
a consistent state. BizTalk provides a compensation capability, which enables
this to be performed across many disparate systems.

In summary, in order to meet business requirements, solutions need to provide
version control, the ability to roll out different versions with little or no downtime,
deal with long running services, and have robust instrumentation and tooling.
BizTalk provides a rich host that has these capabilities. It is important to consider
how this will be implemented if you decide to perform your own integrations or
utilize another host such as Windows Server AppFabric.

Typical BizTalk use cases

BizTalk Server is typically used to solve problems in four main areas: EAI, B2B, BPA,
and ESB.

Enterprise Application Integration (EAI)

The modern enterprise is often littered with the spaghetti of proprietary interfaces,
which cannot natively communicate with each other due to incompatible platforms,
data formats, and security policies. This can pose challenges for normal business
activity. For example, when a new employee starts, a record for them needs to be
created in the HR system and an order for a laptop may need to be placed in the
ERP system. An account may need to be created for them in the CRM system with
their appropriate level of access. To avoid doing this manually, one could write a
small application that has all the built-in logic necessary to connect to these disparate
systems. Or perhaps, the HR system has an extension module that allows you to use
some programming language to build the logic in there. Over time, however, as the
system scales, a durable host needs to be developed to run this custom integration
code. Tight coupling between systems means that any changes will often break the
custom integration layer in several systems and require changes in them. A former
manager of mine used to say that "the devil is in the detail" with integration work.
Unfortunately, this custom point-to-point approach often results in a scene like the
next diagram; managing these proprietary interfaces can inhibit an organization
from seeking a service-oriented approach towards system integration.

[68]

Chapter 4

Spaghetti of Proprietary Interfaces

To avoid this problem many organizations use BizTalk as an Integration Broker. This
provides the following features:

Durable infrastructure with a scalable model.

Insight into the message flow and business process through BizTalk
Tracking and Business Activity Monitoring.

Centralized management and administration of integration endpoints and
in-flight instances.

Loose coupling of applications, which means no physical dependencies
between applications.

The following diagram shows BizTalk in an integration broker role. This is the classic
usage of BizTalk and something that has been firmly established in the 10 years since
the first version was shipped.

Integration Broker (EAI)

=

CRM "

Business
Partner

BizTalk Server\ 1

E-Commerce

[69]

BizTalk Server Primer

Business-to-Business (B2B)

The second scenario is to use BizTalk as a business-to-business broker to manage

all communication across organizational boundaries. BizTalk supports Internet-
friendly adapters and can also communicate with legacy and non-Internet friendly
system endpoints. It also supports channel and message-based security. BizTalk
Server provides native support for EDI and a host of accelerators targeted at specific
industry verticals, including a SWIFT (Society for Worldwide Interbank Financial
Telecommunication) —accelerator for financial services. This significantly decreases
the time required to implement durable and robust B2B communication.

Business to Business (B2B)

Trading
Partner 2

Trading
Partner 1

Trading
Partner 3

E-Commerce

BizTalk Server

Business Process Automation (BPA)

BizTalk's capabilities can be leveraged to automate current manual processes in
organizations. Typically, scenarios that are repetitive have strongly defined rules and
those that involve multiple systems are strong cases. One of my first BizTalk Server
customers was a financial services organization that received several millions pieces
of paper per day. When some financial products mature, there is an option to re-
invest (often the default choice) or transfer the funds. In this case, the customer was
able to leverage BizTalk to automate the processing of such paper-based applications.
A scanning solution translated the paper input into a common XML schema, which
was then processed by BizTalk. Human approval was only required in case of an
exception or if that particular option selected required it. Therefore by using BizTalk,
the customer was able to automate a previously manual, laborious process.

[70]

Chapter 4

Enterprise Service Bus (ESB)

The final way that people consider BizTalk is as a centralized service bus for the
organization, as depicted in the following graphic. By exposing on-ramps to a variety
of destinations, which are determined when the message is received, it enables BizTalk
to act as a durable message bus that is responsible for coordinating communication
across your organization. With BizTalk Server 2010, Microsoft released the ESB Toolkit
2.1 which builds on top of the core BizTalk platform to minimize the time needed to
implement this scenario.

ESB

| BizTalk Server |

E-Commerce

0

Business Partner

BizTalk architecture

We'll now examine the BizTalk architecture and look at how all the components
relate to each other.

BizTalk message flow

The next diagram illustrates a standard message flow through the main components
of BizTalk. The BizTalk messaging system has three distinct parts: receive port,
MessageBox, and send port.

[71]

BizTalk Server Primer

Messages are received via a receive port. A receive port can contain one or more
receive locations, which provide the ability to have multiple transport entry points

into the application. For example, some customers choose to have a WCF-Custom
receive location but they also have a file receive location for manual re-submission

of messages. A receive location is a combination of an adapter and specific pipeline
configuration. Certain artifacts can be configured at the receive location level, for
example the pipeline used and the adapter configuration. Others, such as the map used
and enabling failed message routing need to be configured at the port level.

Incoming messages are received from the adapter, and can be transformed via
pipelines and maps. If message tracking is turned on, the message is also published
to the tracking database.

Once the message arrives at the MessageBox, the Messaging Engine performs
subscription evaluation and delivers it to subscribers whose subscriptions match.
Subscription matching is done using predicates based on internal message (context)
properties and properties that BizTalk provides. Subscribers can either be instances
of orchestrations, where complex workflow is needed, or send ports where message
transformation and delivery need to be performed. BizTalk fully supports publish-
subscription so the same message can go to one or more orchestration and/or

send ports. Messages may be delivered to orchestrations for further processing. In
messaging scenarios, a message may be delivered to a send port or group. At the
send side, the message is again transformed (via pipelines and/or maps), and sent to
the final destination via an adapter.

3
Management
DB

LOB
Message Message
s fTtmmomm-m-------- foococonosoooocon Freos=reemsee==oog ™
- . Host : Host

y TR g4 Hest | HMost |

1 Receive Port n | | Orchestration | | i1 Send Port !

|| [Adepter (TP] 11 L [semdport | |

(@—' o b 1! | Adapter (File) | |
EPM b B HE©C)

|| Receive Pipeline | |1 Vo Lo '| EPM :

0 i Vo 0 ¢ 0 Send Pipeline :

@ ; : ptie |

| - o -

1| | Maps B P ' ! :

. Lle—e ! : Map | !

| Message ngent 1| | essage Agont !

Chapter 4

A message is received from an entity endpoint. This is handled by a
receive port, through one of its receive locations. Once the message has
been received by an adapter the End Point Manager (EPM) component
provides any necessary preprocessing. Message manipulation (debatching,
decrypting, and so on) is handled by one or more pipeline components
before transformations are applied using the BizTalk Mapper.

BizTalk Server 2010 contains over 25 adapters out of the box. In
addition to this, the BizTalk Adapter Pack is available, which
+ provides connectivity for complex applications that require an
% application-specific context to connect to them. This includes SAP,
e Siebel, SQL Server, Oracle eBusiness Suite, and Database.

http://www.microsoft.com/biztalk/en/us/adapter-
pack.aspx

Once a message has been processed by the adapter, pipeline, and map,

it needs to be routed to the appropriate subscribers, which can be one or
more BizTalk Orchestrations or send ports. The Message Agent (MA) is the
component responsible for this. It publishes the message to the MessageBox
database, which is the centralized queue of BizTalk. The Message Agent is
an abstraction layer between the other BizTalk host (BTSNTSVC. EXE) sub-
services and is responsible for evaluating subscribers to the message. The
abstraction of the MA enables BizTalk to have more than one MessageBox
and hence support scaling out of this tier.

"Once only" delivery is provided to the MessageBox for transactional systems
and "at least once" delivery for non-transactional systems. The Distributed
Transaction Coordinator (DTC) is used to enforce this. For transactional
systems such as MQSeries, their appropriate resource manager will be
enlisted in the transaction. For non-transactional adapters, the transaction
will occur only between BizTalk and the SQL Resource Manager that hosts
the MessageBox. All non-transactional BizTalk adapters are written so that
the delete operation on the original endpoint occurs after the message has
been published to the MesssageBox.

BizTalk enforces loose coupling between inbound messages and subscribers,
as part of its publish/subscribe design. On insertion, the Message Agent
calls a number of stored procedures to update promoted properties (used
for routing), evaluate subscriptions based on the context of the message, and
finally make the insertion into the MessageBox spool. If there are multiple
subscribers the message is still stored only once to ensure scalability of the
system. As part of this operation, a reference is added to the host queue table
ready for processing by the subscriber, hosted in the host instance.

[73]

BizTalk Server Primer

5.

Each host instance polls the database at regular intervals to look for new
work in the queue. In this case, the subscriber is an Orchestration; therefore
the MA would have placed a reference for the inbound message into the
Orchestration host's queue. The MA is responsible for performing this
dequeuing operation and calls a stored procedure bts_DequeueMesssages_<
HostInstanceName> to perform this. This call will retrieve as many messages
as possible up to a configurable limit — the batch size, which by default is 20.
The MA hands over the message to an internal queue hosted in the BizTalk
process space, from which (in this case) the XLANG/S service will retrieve
the message for processing.

Once it has finished processing, the MA will publish the message back into
the MessageBox using the same process as in step 1 (because there could once
more be multiple subscribers). The MA is required to publish a new message
to the spool as messages within BizTalk are immutable; for example, they
cannot be changed once they are published, and a reference to this message
will be added to the send port host's queue.

The send host will now de-queue the MessageBox, which again enforces
the loose coupling and hands it over to the EPM which will apply any post
processing through maps, pipelines, and finally initiate the send adapter to
deliver the message over the wire.

The EPM hands over the message to the send adapter, which delivers the
message to the final endpoint, in this case a file uNC path.

Key BizTalk server terminology

In this section, we will define and describe some of the key terminology that you will
need to be familiar with if using BizTalk Server.

BizTalk group

A BizTalk group is a set of BizTalk runtime machines that share a common BizTalk
Management Database. This enables centralized configuration and administration.
The BizTalk Group metadata is stored in a database that is called the BizTalk
Management Database. This information includes: servers that are members of the
group, database location, host configuration, deployed applications, and artifacts.

[74]

Chapter 4

Hosts

A BizTalk host is an abstract logical container for BizTalk Server resources including
orchestrations and send/receive adapter handlers. Hosts act as the deployment
target for processing resources, and provide resource and security partitioning.
Hosts are either in-process, which means they run within the BizTalk process, or
isolated, which means they run in a process external to BizTalk such as IIS.

Host instance

Host instances are the physical incarnation of hosts that get physically deployed on a
particular machine. A host instance is a physical instance of a logical host on a single
machine. We can create an instance of a host on any BizTalk server in the group,

but cannot have more than one instance of the same host on any one machine. The
following diagram illustrates the relationship between hosts and host instances:

Receive Locations Orchestrations Send Ports Receive Locations

}) })

Logical Tracking
Host

Logical Receive Logical Processing
Host Host

—

Instances of each
host created on
each BizTalk Server

Logical Send Host

Physical BizTalk
Server

1. A host can contain mixed artifacts (ports and orchestrations).

2. Not all hosts must have instances on all servers. For example, if you have
three BizTalk Servers a host could be present as an instance on none, one,
two, or all three of these servers.

3. Typically, a host instance is created on at least two servers for high
availability reasons so that if a server fails, processing will continue.

4. Enterprise Edition of BizTalk is required to have multiple BizTalk Servers
in a Group.

[75]

BizTalk Server Primer

BizTalk databases

BizTalk relies on a number of databases to provide data storage, queuing, and
configuration management. Here is a summary of the main ones:

BizTalkMgmtDb: Centralized configuration store for BizTalk used by all
servers in the group.

BizTalkMsgBoxDb: Heart of BizTalk Server, provides state management and
queuing to support the loose coupling model. It is not directly exposed to the
programmer.

BizTalkDTADDb: Provides BizTalk Tracking, which provides information on
service instances (instances of Send Ports or Orchestrations) and is targeted
towards the IT Pro for troubleshooting.

BizTalkRuleEngineDb: This is the policy store for the highly scalable
BizTalk Rules Engine that is based on the Rete algorithm.

ssopB: This is the metadata store that enables BizTalk to provide Windows

to third-party authentication. It is also used to store endpoint information so
that adapters that require security details (for example, the Oracle adapter) as
part of their connection configuration do not compromise the security of

the endpoint.

BAMPrimaryImport: OLTP store that is used by Business Activity Monitoring
(BAM). BAM provides a robust, scalable framework that can be used to
instrument an application end-to-end.

BAMArchive: To ensure optimal performance of the BAM Primary Import
database, this archive is provided to store information that fits outside the
"live" operational window. Taking this approach ensures that there is a
smaller dataset for the most recent data and, hence when querying this,
users get optimal results.

[76]

Chapter 4

SSO
Master
Secret
Server

Biztalk Host Instances:
BTSNTSVE.exe
BTSNTSVE.exe

Enterprise Single Sign-on:
ENTSSO.exe

Biztalk Host Instances:
BTSNTSVE.exe
BTSNTSVE.exe

™ }00=

) .) SQL Server:
Enterprise Single Sign-on: BiztalkMgmtDb

ENTSSO.exe BiztalkMsgBoxDb

I
o
o BiztalkDTADb
BiztalkRuleEngineDb
Biztalk Host Instances: SS0oDB
R BTSNTSVE.exe BAMPrimarylmport
il BTSNTSVE.exe BAMArchive
Enterprise Single Sign-on:
ENTSSO.exe
Biztalk Host Instances:
o BTSNTSVE.exe
= BTSNTSVE.exe

Enterprise Single Sign-on:
ENTSSO.exe

°

Enterprise Single Sign-On

Enterprise Single Sign-On provides a way to map a Windows user ID to non-
Windows user credentials. It is also used to store credentials and configuration
information that receive locations and send ports use; this is done to ensure that this
sensitive information is stored in a secure manner.

Adapters
Adapters provide wire connectivity to and from BizTalk. All other components have
no knowledge of the endpoint they are dealing with, which makes BizTalk truly
loosely coupled. There are three classes of adapters:

1. Transport adapters (for example, HTTP, POP3, and so on)

2. Line-of-business adapters (for example, SAP, Siebel, and so on)

3. Data adapters (for example, SQL, DB2, Oracle, and so on)

[771]

BizTalk Server Primer

Message

Messages are the payload that BizTalk Server processes. BizTalk can process XML
documents and flat file structures among other formats such as PDF. Messages contain
at least one part, which is body; they are immutable and shared, which means that
once a message has been published and written to the MessageBox, it cannot be
altered. This enables the efficient delivery of messages to multiple subscribers.

The message is defined internally by an XSD schema file. Messages have a

set of properties associated with them. If a message is an XML or a flat file

message, the schema will specify a type, which is typically comprised of the

XML namespace and the root node name, for example, http://MyCompany .
Invoice#ApplicationInvoice. This uniquely identifies the message type to BizTalk
Server in the same way that the class name and namespace does in C#.

It is possible to have two schemas with the same root node and
target namespace by defining the schema collection used by the XML
Disassembler pipeline component. However, in my opinion it is a
% best practice to have a unique namespace for each document-type
=" and follow a consistent naming and versioning practice.

For more information, see Chapter 8, Versioning Patterns from the
book "SOA Patterns with BizTalk Server 2009", Richard Seroter.

A message always has a set of context name/value properties associated with it.
This includes details such as the inbound receive port that the message was received
through. These properties are attached to the message throughout its processing in
BizTalk and are used by the Messaging Engine to evaluate subscriptions. To enable
custom property routing, developers can promote their own properties by defining
a property schema and marking a particular node as promoted in the XSD schema.
Custom code can also be used in the pipeline or Orchestration processing can be
made to do this.

Pipeline

Used to normalize data into and out of BizTalk, pipelines provide the ability to
perform pre and post processing. The typical usage scenario for pipelines is to
normalize the inbound payload into an XML message that BizTalk can process. On
the outbound side, the XML message is typically transformed into the desired output
of the outbound endpoint. Although XML is the preferred payload for BizTalk, it can
also manipulate flat files and process binary data. An individual pipeline comprises
one or more components such as: decode/encode, decrypt/encrypt, validate, resolve
party, and so on. A streaming model is used to provide a flat memory footprint

and an integrated pipeline designer is provided in Visual Studio as shown in the
following screenshot.

[78]

Chapter 4

Maps

Maps define one-way transformations between two schemas. An integrated

designer is provided in Visual Studio and makes it easier to perform these common
transformations than if you were to write your own XSLT. BizTalk Server also
provides a set of reusable components called functoids and an extensible framework
to encode your own complex functionality. The following image shows mapping an
Inbound Sales Order information to a destination schema.

inventory... = =5 >-§< {m} =2 '—J C} “355"3" #° Options = "5 PORespo...
Bl [«Schema: <Schema> &f 5
B | 5] GetlnventoryDataRespanse POResponse [£| 5
= E_] GetlnvertoryDataResult i PurchaseCOrderlD @
&5 PurchaseOrderlD — === i e Status &
) Status i . T " - Detais &= =
= = = —> Detail &5/ =
e ——FroductD
i s = Quantity ¢
Status é
M 4« » b\ Page 1/

[79]

BizTalk Server Primer

BizTalk Server 2010 introduces the long awaited, Intelligent Mapper, which includes
many developer productivity updates for those working with large complex maps
including the following;:

¢ Relevance view: Collapses any non-relevant parts of the schema

¢ Auto scrolling of elements: Automatically highlights the attributes or
elements affected by the selected functoid

e Suggestive match: Identifies candidates in the destination schema that could
be mapped to the current selected element or attribute

In addition, Map Debugging capabilities were added in BizTalk Server 2009; together
these improvements significantly reduce the time needed to develop large
complex maps.

) For more information and an overview of the features that the BizTalk
% 2010 Intelligent Mapper provides see:
'

http://msdn.microsoft.com/en-us/library/
aa547076 (v=BTS.70) .aspx

Performance of maps

The BizTalk runtime still makes use of the INET Framework 1.1 System.Xml.
Xsl.XslTransform class, which was deprecated when the System.Xml.Xsl.
XslCompiledTransform class was introduced. The xs1CompiledTransform

class provides significant performance benefits over the Xs1Transform because it
implements a compile-once cache and re-use model. This means that if the same
transformation is performed many times, which is common in an integration
scenario, the compilation only occurs once. A colleague in my team made this
discovery and has provided two excellent blog articles along with sample code
that works with existing maps. If you are implementing complex mapping you can
consider using this technique to improve the performance.

The following articles provide further details:
XslCompiledTransform Blog part 1

http://blogs.msdn.com/b/paclos/archive/2010/01/29/

how-to-boost-message-transformations-using-the-
%‘\ xslcompiledtransform-class.aspx

XslCompiledTransform Blog part 2

http://blogs.msdn.com/paoclos/archive/2010/04/08/

how-to-boost-message-transformations-using-the-

xslcompiledtransform-class-extended.aspx

[80]

Chapter 4

Orchestration

Orchestration is the workflow engine that BizTalk provides. It is the original
precursor to Windows Workflow Foundation. Interaction with the world is achieved
through messages. It provides support for durable, long-running workflows, and
uses template shapes to visually represent different activities. The designer provides
various shapes: receive, send, parallel, begin, end, decide, loop, construct, transform,
and scope. It also provides a transaction model, which can model typical atomic
DTC-style transactions and long running transactions (for example, a mortgage
application process), which cannot use typical locking semantics and involve several
systems. An example of this would be ordering an item from a website; the item is
typically ordered, payment may be taken and a confirmation e-mail is sent before the
item is dispatched. In this scenario, it would not be feasible to hold all systems in a
typical ACID-style transaction until the item was dispatched. This would result in a
punitive wait for the user and is likely to result in a timeout, locking, or blocking on
one or more systems. Therefore if the customer was to cancel the order, a number of
actions would need to be taken to ensure that all systems were in a consistent state
and the user didn't for example, receive the goods and not be charged for them, or be
charged and not receive the goods. Compensation is a robust mechanism provided
by BizTalk to enable previously completed work to be rolled back.

The Orchestration engine is version-aware. This is particularly useful for long
running business processes that have been modeled. This allows for side-by-side
execution with automatic message routing to the correct version of the process. The
hosting environment is durable and is tolerant of machine failure, because a DTC
transaction is used by a BizTalk Orchestration host every time it makes an immutable
change. This means that its state can be resumed on another instance of that host.
Orchestrations and Pipelines are automatically instrumented using BizTalk Tracking
for basic execution.

Highlights of the BizTalk 2010 release

Some of the key improvements and investments that have been made are as follows:

¢ Platform realignment and support for the latest generation of Microsoft
technology including: Visual Studio 2010, SQL Server 2008 R2, Windows
Server 2008 R2, SharePoint 2010, and .NET Framework 4.0

e Intelligent Mapper
e Improved Trading Partner Management (TPM)

¢ Performance dashboard exposes properties, previously only accessible
through registry keys

[81]

BizTalk Server Primer

e Support for Backup Compression and Transparent Data Encryption
SQL features

¢ A new System Center Pack
e Updated adapters for Oracle, SAP, SQL 2008 R2, and SharePoint 2010
e Improved FTP adapter and new FIPS adapter

Example solution

In this section, we will walk through creating our very first BizTalk application.

On a machine with the BizTalk Development Tools and Visual Studio 2008 installed,
open Visual Studio and select BizTalk Project | Empty BizTalk Server Project. The
Solution Name should be AppliedArchitecture.Chapter4.BizTalk. The project
name should be SimpleBizTalkSolution.

| .NET Framemork 4 | sortby: [Default e stalled Templates 0 |
Installed Templates
@ Empty BizTalk Server Project BizTalk Projects Type: BigTalk Projects
Visual Basic An empty project for creating a BizTalk Server
Visual C# application.
Visual C++ @ BizTalk Server BPEL Import Project BizTalk Projects
Visual F# P
BizTalk Projects AP piaTalk EsB Itinerary Designer BizTalk Projects
Other Project Types
Datsbase
Modeling Projects
Test Projects
Mame: |AppliedArmihecmre.Chapber4.BizTaIk
Location: |c:\ewan\dav\dﬂaph&r4 ;' Browee. ..
Solution name: |AppliedArmihecmre.Chapber4.BizTaIk [Create directory for solution
I™ add to source control
_— L
If you are using BizTalk Server 2009 and get "Creating project
project name"... "project creation failed" as an error message, there
% is a solution at:
A http://blogs.msdn.com/biztalkert/
archive/2009/08/21/visual-studio-2008-fails-to-
L create-open-biztalk-projects.aspx d

[82]

Chapter 4

We will create a Customer schema, by adding a new item to the project and selecting
Schema; name it Customer.xsd.

For a full overview of best practices for schema design, please read

the book "SOA Patterns with BizTalk Server 2009", Chapter 5 Schema and
= Endpoint Patterns, (Packt Publishing, 2009) by Richard Seroter.

Open the BizTalk editor by selecting the schema. You will notice that the schema's
target namespace has been populated as follows (if you used the naming structure
we provided):

targetNamespace= http://AppliedArchitecture.Chapter4.BizTalk.
SimpleBizTalkSolution.Customer

We store the following details about our customer: Customer ID, name, address, age,
and occupation. Firstly, let's delete the default root node. Right-click on the root node
and select Delete, then right-click on Schema and select Insert Schema Node | Child
Record. Name the child record Customer and leave the default properties for

this record.

Insert Schema Mode » | 3y Child Record
Promote * | 2o Child Field Attribute
i‘ﬁ Child Field Element

|

.+

Refresh XSD

Collapse Schema Node S

* Properties

Now we need to insert individual elements that define this customer. Insert a Child
Field Element called customer1D; this will be used to uniquely identify the message
to BizTalk later. Leave the default datatype of xs:string.

[83]

BizTalk Server Primer

Now, insert the following child-field elements under Customer record. Use the
datatypes specified in the following table:

Element name Datatype

Name Xs:string
AddressLinel xs:string
AddressLine2 xs:string

City xs:string

State xs:string

Country xs:string

Age xs:positiveInteger
Occupation xs:string

By default, elements are of string type; change Age to positiveInteger by
selecting the Data Type property in the properties box drop-down list.

Properties - 1)J
Age Element Field
ap
| 1277 R o
B Advanc e
wszMCName -
Base Data Type xsnegativelnteger
Derived By x:NMTOKEN
Fina x=NMTOKENS
Fixed xsinonMegativelnteger
Form wnonPositivelnteger
Nillable ws:normalizedString
B BixTall xsipositivelnteger E
Codalist ws:QName
Notes ws:short
B Gener wsistring -
Data Type xsistring o],
Default Value

Field Type

Instance AFath “llocal-name{}='Koot’ and n

Your schema should now look like the following screenshot:

[84]

Chapter 4

=15 <Schemax

=+ =] Customer <%l version="1.0" encoding="utf-16" 7>
1= - «xs:schema xming na0="hitps-//Simple Biz Talk Solution.CustomerProperty Schema”

Name xming b="http://schemas microsoft .com/Biz Talk/2003"
AddressLinel xmins="http://Applied Architecture Chapterd_Biz Talk SimpleBiz Talk Solution Customer”

15 AddresslineZ xmins xs="http-//www._w3.0org/2001/XMLSchema" >
— wxs:annotation
- axs:appinfo>
- dbimports>
Oceupation _Incatlnn=",\u.ﬂmrﬂ'pmpeﬂys:l'ﬂnaxsd" il
</bimpors>
</xs:appinfo>
</xsannotation
~ axsielement name ="Customer”:
- axscomplexType >
- <xs:sequence minCccurs="1" maxOccurs="1">
s element name="CustomeriD" type="xsstring" />
s element name="MName" type="xsstring" />
s element name="AddressLine 1" type="xs:string" />
s element name="AddressLine2" type="xs:string" />
<xs element name="City" type="xs:stril
<xs:element name="State" type:
<5 element name="Country” typ
o element name="Age" type="xs-posit
s element name="0Occupation’ type="xs:string" />
</xssequence =
</xs:complexType:
</xs:element >
«fusschemas

targetMNamespace ="hittp//Applied Architecture Chapterd. Biz Talk.SimpleBiz Talk Solution Customer”

<bnamespace prefic="ns0" uri="hitps-//SimpleBiz Talk Sclution CustomerProperty Schema"

We are now going to add a Property schema, which will be used to separately store
a promoted property in the context of the message within the MessageBox. BizTalk
separates these two schemas so that we do not need to load the whole message into
process space just to make a routing decision. To add a new item to the solution,
select the type Property Schema and call it CustomerPropertySchema.xsd. Rename

the default Property1 to CustomerID.

[85]

BizTalk Server Primer

Open your original customer schema now, right-click on CustomerID, and select
Promote | Show Promotions. In the Promote Properties window that now appears,
select the Property Fields tab, then click on the folder icon and select the customer
property schema you just created. Now verify that the Property fields list has
ns0:CustomerID selected. You have now done the mapping between your CustomerID
in the original schema and the corresponding value in the Property schema.

Promate Propertes et}
=] Distinguished Fields | Propesty Fields
" Property schemas fat
t¥ CustomnesiD il (X
) Name
2 Prefo M.
] AddressLined refo Harmedpade Locaticn
3 AddressLine? gl hitps/SimpleBaTalkSe.. \customerpropertysche
i3 City
3 Stete
3 Country
&) Age P v Fields fis
3 Oecupstion roperty felds it
Property MHode Path
nsltCustornesdD *llocal-name(l= Customes’ an..
fdd >
Chear &I
oK Cancel

Now that we have a schema to represent our customer, let's imagine that we want
to send our customer message to a backend system, which will then respond with
the message (a contrived scenario I know, but it will suffice for our purposes). To
implement this, we will use an Orchestration.

This scenario can be implemented in a messaging-only fashion and avoid

a round trip to the MessageBox. The purpose of this is to demonstrate
Ve
how the Orchestration Designer functions and how it can be used.

Right-click on the project and select Add | New Item then select BizTalk
Orchestration and call it CustomerRouting.odx. This will display the Orchestration
Designer surface. The first step you need to take is to define an Orchestration
message. Click on Orchestration View, right-click Messages, and add a

message called CustomerMsg. In the Message Type property dialog, select the
SimpleBizTalkSolution.Customer schema you defined earlier.

[86]

Chapter 4

Orchestration View -~ 1
B CustomerRouting

----- @ Orchestration Properties

----- 1 Orchestration Parameters

----- [Variables

----- 1 Correlation Sets

----- [_Role Links
ujiJSglutign Explorer Orchestration View | g Team Explor
Properties ~ 1

CustomerMsg Message

Description

Identifier CustomerMsg
SimpleBizTalkSolution, Custamer
Object Type Message

Report To Analyst True

The Orchestration Designer provides a toolbox of shapes that can be used within
your Orchestration. For now, we will just use receive and send shapes. I would
like you to drag the following shapes, in this order, onto the surface and give them
the names in brackets. First a receive shape (Receive Initial Customer), thena
send shape (Send_Initial_ Customer), then a receive shape (Receive_ Response
Customer), and finally a send shape (Send_Response_Customer). This should
look like the following screenshot. For each shape, click on it and in the properties
window that appears, set Message to CustomerMsg.

Tookbox

AU TPCOBAN I A@E N IE

Pointer
Group

Send

Receive

Port

Role Link

Transform

Message Assignment
Construct Message
Call Orchestration
Start Orchestration
Call Rules

Expression

Decide

Delay

Listen

Parallel Actions

Loop
Scope

Throw Exception

Hoe e - I R

ARl CustomerRouting.odx® X
© BizTak Orchestrations &

Orchestration \ Object Type

Specifies the rchestration object type.

AppliedArchitecture.Chapterd.BizTalk - Microsoft Visual Studio (Administrater)

Eile Edit View Project Buld Debug Team BiZTak Data Tools Architecture Test Analyze Window Help

- L1-E1| b [pebug ~| |y cPu

~| | [[029620a527F3960daccesbeadace7 -| | S 20 (i 2 55) B

Solution Explorer

» Portsurface <l 10| 9 2]

- - Solution *AppliedArchitecture. Chapter4.BizTalk (1 praject)

hapterd.BizTalk.

=10l x|

=
1 =] Properties
=i References
Receive_nitial_ [biztalk.snk

& Customer.xsd
[
Send_Initisl_Cu

Properties
7]

@ Z| CustomerPropertySchema.xsd
§] CustomerRouting.odx

=t ‘CustomerRouting Orchestration Properties
Receive_ Respo
i B =
0] El
I—"ﬁi Description
Send_Response: Tl Module Exportable
Namespace
Ob ype
0 Report To Analyst

N tanscton Type

False
simpleBizTaksolution
Orchestration Properties
True

None

[87]

BizTalk Server Primer

The next screenshot illustrates how the property window looks for the Receive
Initial_ Customer shape.

Properties > 31 X
Receive_Initial_Customer Receive -
A
[2]84
=
Activate True
Description

Filter Expression

Initializing Correlation Sets

Message CustomerMsg

MName Receive Initial_Customer
Operaticn @

Report To Analyst True

You have now created the send and receive shapes within the Orchestration. For
our scenario, we are going to use four file-drop locations, so we need to create
four logical one-way ports within the Orchestration Design surface. The actual
messaging ports that are used will be defined later.

. Itis a good practice to separate a logical port configuration in
% Orchestration from the physical messaging port. By following this,
= you will enable your solution to run in multiple environments and
avoid hard-coded dependencies.

You now need to right-click on the port surface and select New Configured Port.
The Port Configuration Wizard will start; click Next on the first screen. On the
subsequent screen, enter the name Receive Initial Customer and click Next.
On the Select a Port Type screen, select Create a New Port Type, and enter a port
type name of OneWayCustomerPortType. Select communication pattern One-Way
as we will not be using Request-Response in this use case. For Access Restrictions
select Internal - limited to this project. On your real projects, you should consider
carefully whether you want to use Private - limited to this Orchestration, Internal
(project limited) or Public (no limit; can be shared across projects). Finally on the
Port Binding screen for Port Direction of Communication (and as this is a receive
port), select I'll always be receiving messages on this port.

[88]

Chapter 4

As port types don't encapsulate "direction", having a port type that
refers to receive or send is usually incorrect. Therefore, we have used
the naming convention <Type | Port Type> and we will reuse the same
%j%“ port type for all our logical ports. This is a useful technique and avoids
’ cluttering of projects with unnecessary port types. The Type Modifier
property can be set to Internal, Public, or Private, which determines
which other projects/solutions can reference the port type and use it.

For port binding, we will leave the default Specify later. Specify now configures the
endpoint properties as part of the project and is not the best practice. Direct binding
is used for sending only to the MessageBox. Click Next, and then Finish on the final
screen. You should change the operation_1 default identifier name on the port to
match the receive shape name Receive_Initial_ Customer. Finally, because this

is the

first receive shape in the Orchestration, change the Activate property to True.

You have now created the first receive port; join this to the Receive Initial
Customer receive shape by dragging and dropping the receive port operation you
just created to the Receive Initial_Customer receive shape on the designer
surface as shown.

Port Surface «

Receive_Initial_Cust...

Send_Response_... /" -
Request [+

Send_Initial_Cu...

O]

Receive_Resp...

ri] @
@ &

Send_Respons...

Repeat the wizard a second time to create the first send shape. Join this to the first
send port by dragging and dropping on the designer. Use the following values:

Name: Send Initial Customer

Use an existing port type

Port Type Name: SimpleBizTalkSolution.OneWayCustomerPortType
Port Direction of communications: I'll always be sending...

Port Binding: Specify later

[89]

BizTalk Server Primer

Repeat the wizard for a third time to create the second receive port. Use the
following values:

Name: Receive Response Customer

Use an existing port type

Port Type Name: SimpleBizTalkSolution.OneWayCustomerPortType
Port direction of communications: I'll always be receiving...

Port Binding: Specify later

Repeat the wizard a fourth time to create the second send port. Use the
following values:

Name: Ssend_Response Customer

Use an existing port type

Port Type Name: SimpleBizTalkSolution.OneWayCustomerPortType
Port Direction of communications: I'll always be sending...

Port Binding: Specify later

Join the logical ports you just created with the relevant send and receive shapes.
Your Orchestration designer surface should now look something like the
following screenshot:

Customer Routing.odx® CustomerPropertySchemaxsd | Customesxsd | SimpleBizTalkSolution® | Start Page | Sous
L8
Port Surface &
Recenve_Imitial Cust.., :
Recence_Initial_C... N =8
Request l——— Receive_Initial_...
4 s
Send_Iniiral_Custo... _ﬂ_____———' 5
—ZTF: Send_Initial_Cu...
Operation_1 _____d_————*_ﬂ__ — ot
Request J—
=
L =%
,..-f Recewve Resp..
Receve Response_.., e
Operation_1 d__;d——r"f;
e "
Request B ¥)
/;—*"lf) Send_Respons ...
-
Send_Responie_Cu... ____,-—"" I
= @
Operation_1 (_,.’-“’
Request B

[90]

Chapter 4

So we now have an Orchestration that receives a message, sends it out somewhere,
waits for a response, and delivers the response. In order to make this work fully, we
will use a feature that Orchestration provides, called correlation. This feature enables
BizTalk to match the response with the appropriate instance of an Orchestration,
which will ensure that the correct Customer message gets routed back to the right
instance of this Orchestration.

Open the Orchestration View tab and right-click on Correlation Set and

select New Correlation Set. Change the default name from Correlation_1 to
CustomerCorrelation. From the Correlation Type drop-down list select Create
New Correlation Type. A correlation type defines the information that BizTalk
will use to correlate the message. In the Correlation Type property window

that appears, click on the ellipsis (...) button. You will see a list of the Context
properties available. As we defined a Property schema earlier, you should also see
SimpleBizTalkSolution and under it, a CustomerID element. Select this and click
on Add, then click OK. In the description box type CustomerID_ CorrelationType
and type the same value in Identifier.

For any given correlation set, we generally need to initialize it on the Send

From Orchestration and then follow it on the receive action. Under the covers,

the initialization creates an instance subscription in the BizTalk MessageBox,

which enables BizTalk to successfully correlate the response message to the right
instance of your Orchestration. This capability enables BizTalk to have multiple
instances of the Orchestration process and multiple responses coming in, and it

will be able to route each response instance to the relevant process instance. To

do this, on the first send port property window (in Initializing Correlation Sets)
select CustomerCorrelation from the drop-down box. When the CustomerMsg

is sent from this send port, a correlation set will be initialized using the value of
CustomerID that was in the original message; as long as our customer IDs are unique
we will always correlate to the correct instance. On the second receive shape, set the
Following Correlation Sets property to CustomerCorrelation.

We will now deploy the solution from Visual Studio and configure it in the BizTalk
Administration Console. First, you will need to create a Strong Name Key file; this
is required for all assemblies that are added to the Global Assembly Cache (GAC).
The GAC is for NET what the registry was for COM+; for example, a machine
central store. Open a Visual Studio command prompt and navigate using the cd
command to the root directory of your solution. Then run the following command:

sn -k biztalk.snk

[91]

BizTalk Server Primer

Right-click on the BizTalk project and select Properties. From the window that
appears, select the Signing tab. Check the box marked Sign the assembly. Then,
from the drop-down box select browse and select the biztalk. snk file you just
created. Then select the Deployment tab, ensure that the configuration database and
server are correct, and enter the application name as SimpleBizTalkSolution. Now
right-click on the project and select Deploy. A message should appear confirming
that the deployment succeeded.

Open the BizTalk Administration Console, expand the node for your BizTalk Server
group (it should reference your management database) and select Applications. If
you set the application name correctly, you should see a SimpleBizTalkSolution
node. Right-click on this and select Configure as illustrated in the next screenshot:

B, BizTalk Server Administration Console =[]

File Action View Help

e=|7|H
[&l schemas |
L@k Maps
|| Pipelines
ER Resources | tome Start...
[iz'] Microsoft. Practices.ESE 5
(1] Microsoft, Practices. JMS & Role Links
(i3] Testapplication Configure. ..
= [:12] SMCSupplyChain 3% Send Port Groups
L3 Orchestrations 2l Send Ports
|| Role Links
|5+ Send Port Groups =
[Zl Send Ports &l Receive Locations
|2:| Receive Ports)

[El Receive Locations
[Z2] Polices [&] Schemas

Actions

E_:' SimpleBizTalkSolution rolkSalution N

Import 13

Export 3
Receive Ports

Add »

Policies Delete

Refresh

2] Schemas Lgr Maps Properties...
i taps [l Pipeiines -
[l Pipelines P View »
Resources Ly Resources E Help
=

Start... Selected Item -
I=h St“”ﬁ'" Refresh

¥ s Configure...
J 2 Import 3 H tep
[R Export 3 —
=R add 3

Delete
=] Refresh

Properties. ..

Ly Parties Help

= g Platform Setongs -
< | oL |

This will now bring up a configure application screen, which allows you to configure
all BizTalk created artifacts. Under Orchestrations select CustomerRouting and
select for host BizTalkServerApplication. You will now need to configure both the
receive and send ports.

[92]

Chapter 4

For Receive Initial Customer from the drop-down list select New Receive

Port. On the screen that appears give it the name Receive Initial Customer.
Then select Receive Locations and select New. For the name value enter Receive
Initial_Customer and then select File for the type. For the receive pipeline, and as
we are receiving an XML message, select XMLReceive. Click the Configure button
to configure the file drop location. For the receive folder, configure the following
location (but leave everything else as default) and click on OK:

C:\TempStuff\filedrops\receive initial

The user running the default host instance will be used by the file adapter
& send and receive handlers to access these locations. Therefore, you should
A~ . .
ensure that this account has access to the paths that you specify here.

Repeat the same process for Receive_Response_Customer using Receive_
Response_Customer as receive port and receive location names, XMLReceive
pipeline and c:\TempStuff\filedrops\receive response.

For the Outbound logical ports, next to Send_Initial_ Customer, select New Send
Port. Name the send port send_Initial_ Customer. Select type as File, and leave the
pipeline as PassThruTransmit (as no processing is required after the Orchestration).
Click on Configure and set the destination folder to:

C:\TempStuff\filedrops\send initial

Repeat the same process for Send_Response_Customer using that as the send port
name and set the outbound folder to:

C:\TempStuff\filedrops\send response

Your application is now configured; click on OK, right-click the application, and
select Start. We now need to generate a test message to test it. Open up your BizTalk
solution in Visual Studio and select your Customer.xsd schema. In the properties
pane, you will see Output Instance Filename. The BizTalk schema editor has a very
useful function; it will generate an output message for a defined schema so you can
determine whether it fits your criteria. Configure the output location (as shown next)
then right-click on the schema in Visual Studio and select Generate Instance:

C:\TempStuff\filedrops\customer.xml

[93]

BizTalk Server Primer

If you browse the previous location, you should see an output file. Open and inspect
it. Now drop it into the Receive_Initial subfolder. It should disappear almost
instantly. If you open the BizTalk administration console and refresh the Group Hub
page (which is displayed by clicking on the BizTalk Group node of the console) you
should see an output similar to the following screenshot:

The Group Hub page is the dashboard that BizTalk provides to show the current
status of service instances within BizTalk. These can be instances of Orchestrations
or send ports. As shown in the previous screenshot, I have one running service
instance. The following sub-points define the state of the instance:

1. If you open the folder in C:\TempStuff\filedrops\send_initial or
whichever location you chose for the Ssend_Initial Customer send port,
you will notice that you have an XML file in the folder, which is named as
GuID. Open it and check if it contains the same contents as the original file.
The name of the file in my output folder is: {E8FCBFC9-E200-48E3-8A35-
F6E8A13B3B40} .xml.

2. Examine the configuration of the Send_Initial_Customer send port by
right-clicking it in the BizTalk Administration console:
Applications | SimpleBizTalkSolution | Send Ports.

3. You will see that the URL specified, $MessageID$, is a macro that generates
a GUID; if you click on Configure, the file adapter exposes the file name
property, which can be modified if you need to adjust it. This can be useful if
your backend system only accepts a file with a certain name. Set the URL to:

C:\TempStuff\filedrops\send initial\%MessageID%.xml

[94]

Chapter 4

4. Go to the send_Initial folder in your file drop location and cut the
message. Place it into the Receive_Response folder. The message should
disappear and reappear in the send_Response folder, which is the output
location specified in your send port configuration.

If you refresh the Group Hub page in the BizTalk Administration Console, you
should see that there are no service instances running in your system. What has
happened under the covers is that the message conforms to the Customer schema
type (as specified by the namespace) and the XML receive pipeline promotes the
CustomerID element. The CustomerID element matches the instance subscription
that was created when the correlation set was initialized. Therefore, BizTalk knows
to return this message to the in-flight orchestration instance. When the message
was sent from the first orchestration send port, the correlation set was initialized.
This created an instance subscription in the MessageBox, based on the customerID
value as defined in the Correlation type. The Message Agent was able to match this
instance subscription with the inbound message. Hence, the received message was
delivered to the orchestration and it was able to complete its processing.

It's important to note that if 10 orchestrations were waiting on a message with
CustomerID value 10, the first message that returned to the MessageBox would be
delivered to all 10 dehydrated service instances. The next nine responses would
generate a Routing Failure Report, which is BizTalk's internal fault message, used
when no subscriber is found. This example illustrates why it is critical that all
correlation sets be unique.

Summary

In this chapter, we defined and examined the core use cases for BizTalk, we looked at
the core components and tools that BizTalk provides, and we highlighted just a few
aspects of BizTalk that make it a compelling tool to use. Please note that we have not
even scratched the surface of what BizTalk can do. BizTalk Server provides a scalable
messaging engine, robust pub-sub capabilities, and connectivity through over 20 out-
of-the-box (plus many more third-party) adapters. Orchestration enables complex
workflows to be modeled and the Engine provides persistence and failover to

ensure you meet your availability requirements. By building on top of these durable
capabilities, many of the world's largest companies have been able to accelerate their
development. As such, BizTalk is used by many of the world's largest companies to
run mission-critical systems. I have personally worked with customers who have
used BizTalk for inter-bank payment and compliance systems, which can affect
market liquidity if they fail.

[95]

BizTalk Server Primer

I hope that this chapter gave you some insight into the power of BizTalk, and how
it can be used in a service-oriented fashion. In order to assist your evaluation of
BizTalk, we have provided a Decision Framework, which shows the methodology
that we ourselves have developed and used over time to determine the right
technology for a business problem. This will be used to evaluate BizTalk Server
against the architectural patterns we present in the rest of this book. For the patterns
that BizTalk fits into, we will build sample solutions using best practices that we
have used in the real world to architect reusable and maintainable solutions.

[96]

SQL Server and Data
Integration Tools Primer

Way back in the Permian epoch of database technologies, circa 2000 CE to 2005 CE,
data integration in the Microsoft stack was accomplished through DTS and MSMQ.
Like in the real Permian epoch, huge bugs roamed the landscape, ready to devour
the lives of the poor database professional stuck in the La Brea tar pits of system
integration support and master data management.

Those of us who look back on those days and shudder were truly grateful for the
introduction of SQL Server Integration Services (SSIS) and SQL Server Service
Broker (SSSB) with SQL Server 2005. SQL Server 2008 now supports multiple
tools for data integration and master data management, including the

following functionalities:

e SSIS new functionality
e SSSB
e Master Data Services

e The Sync Framework, for databases that are only occasionally connected
with your networks

With SSIS, SSSB, Master Data Services, and the Sync Framework, database
professionals can actually see their children grow up and have an occasional dinner
with their loved ones —wonder of wonders! Management will be well pleased as they
will no longer need to pay the expenses associated with additional data integration or
ETL tools. There could also be less need for support and development of integration
for occasionally connected systems, message queuing, and messaging applications
because when they purchase SQL Server and Visual Studio 2008/2010 they get the
licenses for these powerful tools as well.

SQL Server and Data Integration Tools Primer

What does this technology do?

SQL Server is comprised of multiple components that we will briefly review.

SQL Server Integration Services (SSIS)

SSIS is generally thought of as a tool for extraction, transformation, and loading (ETL)
tasks associated with Business Intelligence (BI) or other reporting applications. Indeed,
the classic use of SSIS is for bulk data transfers and large batch data maintenance jobs
typically found in the BI world. Most developers consider it "just" an ETL tool.

In fact, SSIS is an extremely powerful tool that you should consider for use in any
situation that requires you to move data from one point to another or integrate data
across multiple platforms, in or out of the Microsoft stack. SSIS is easily extended
with managed code and scales easily to handle everything from a few rows of data to
very large data transfers. In addition to data transfers, SSIS can also handle the most
common database maintenance tasks with objects available out of the box, and less
common tasks through a simple "Execute SQL Task" object that can execute a SQL
script or stored procedure on any OLE DB-compliant database. You can even use it
to perform maintenance tasks on Oracle or DB2 systems.

The only data integration or data transfer task where SSIS is not a fit would be low
latency or very low-volume data transfers. While SSIS can handle these tasks, a
better fit might be SQL Server Service Broker.

SQL Server Service Broker (SSSB)

SSSB provides native support for messaging and queuing operations. With SSSB
you can build asynchronous, loosely-coupled applications. Unlike traditional
message queues, however, the queue is handled through the databases involved and
messages can be coordinated, grouped, and prioritized. It requires no additional
software. An understanding of Transact-SQL (T-SQL) and its basic services is all
that you need for SSSB.

Using asynchronous processing can yield big performance gains, particularly when
you can prioritize messages. Consider the classic order-entry example that is so often
used in books like this one. When an order is placed, certain systems must get data
immediately to confirm an order. For example, you need to commit data concerning
the customer, the product ordered, and the number of units purchased. On the

other hand, the accounts-receivables system and the order-fulfillment system do not
need this data to confirm the order. You can send the data that those systems need
asynchronously, using SSSB, and even prioritize the messages based on the order
priority (rush orders first, for example). In short, you do the minimum work you
need to do to—accept the order and complete the rest at your leisure.

[98]

Chapter 5

The Microsoft Sync Framework

One might normally think of synchronization through the Sync Framework as
something to use with small amounts of data and non-critical applications. The most
common use of the platform and SDK has been to synchronize handheld devices and
MP3 players with data on a personal computer. With the release of SQL Server 2008
and its change tracking utility, Microsoft was able to extend the Sync Framework

to databases.

The old-school method of tracking data changes usually involved combinations
of timestamps, additional tables and fields, triggers, cleanup processes, and hours
of administrative, programming, and break-fix time. There was almost always an
adverse impact on system performance, including the resulting I/O overhead
needed to write, read, and update the tracking data.

SQL Server 2008 handles these issues for you with the change data capture and
change tracking features.

The Sync Framework now allows you to develop applications that will synchronize
data across any ADO.NET-enabled database. These databases can also synchronize
information with any other source supported by the Sync Framework, such as web
services, file systems, and custom data stores.

For integration of applications and data that is only occasionally connected, or
connected on some ad hoc basis, the Sync Framework should be seriously considered.

Master Data Services

Master Data Services allows you to easily coordinate data across disparate sources

so that all systems, and more importantly, all employees can operate from a single
version of truth. With the release of SQL Server 2008 R2, Microsoft provided us

a tool for dealing with a problem that has been around for a long time; different
systems have different data about the same key business entity. The problem arises
from a number of sources, including human error in data entry and our own failure
as database architects to set up systems to reconcile data discrepancies. The author's
personal experience of poor customer service can often be linked to bad, or even non-
existent, master data management.

This can be more than a customer service issue; it can also be a human safety issue.
Consider the health care industry in the United States. Health care providers seem
to have a very large number of small, isolated applications that handle medical
specialties; however, these applications are not designed to be integrated with each
other. If one department creates a Patient record concerning key patient data,
there is no guarantee that the data will appear in other "stove piped"

specialty applications.

[99]

SQL Server and Data Integration Tools Primer

Doctors could therefore, miss key data which might influence their treatment
decisions, and might even threaten a patient's life because they did not have the data
they needed to make the correct decision.

Master Data Services uses a hub and spoke model around key business nouns and
their attributes (for example, the noun "customer" and attribute "delivery address"). A
central service captures this data and coordinates the resolution of any discrepancies,
first using a set of business rules and then relying on human interaction for
unanticipated problems or to resolve conflicts in the rules. The resolved data is then
sent down the spoke to various systems that require the resolved data.

A very basic and completely insufficient
introduction to data integration with
SQL Server

There are lots of cool features in SQL Server 2008. Complete books and hundreds of
blogs, articles, TechNet, and MSDN pages have been written on each of these subjects.
These below sections on SQL Server's suite of tools are focused on data integration
problems, with occasional forays into the author's pet peeves around data security. We
will, therefore, limit the discussion to key integration technologies and my apologies in
advance for merely scratching the surface of these rich and robust environments.

SSIS

SSIS has no core technologies as such; its core is SQL Server itself. One should

think of SSIS as a collection of objects that create a powerful visual environment for
performing a multitude of tasks associated with master data management, database
maintenance, data integration, and ETL projects.

You create SSIS projects in Business Intelligence Development Studio in Microsoft
Visual Studio. SSIS packages are developed initially with a graphical interface, which
handles the more mundane (and boring) tasks associated with project development.
The graphical environment is so rich that other developers will frequently accuse
SSIS developers of just "drawing pretty pictures". A word of caution: this is a fast
way to get yourself punched out by an SSIS developer.

The basic unit of work in SSIS is a package. A package contains tasks, each of which
does a distinct unit of work. Here, for example, we have a package with a script task
and a data-flow task, each of which fetches an RSS feed and writes it into

different destinations.

[100]

Chapter 5

Start Page | Testlxsd | Test.XM)- getRSSfeed.dtsx [Design] - %

ju Control Flow |}! DataFlow |('1| Event Handlers |Jj Package Explorer | 3 Execution Results

P
= write RSS feed to flat fle

Tllustrate two methods of capturing
RSS feeds. First writes XML to a file;
Second to a database

LT Load RSS to SQL Server

_J__ Connection Managers

4l Rssconnection
4{ 50ABookConnection

The details of the package are stored as XML. Indeed, a more adventurous reader
can use the View Code function and directly edit the XML. Those of us who at least
attempt to have a life stick to the GUL

When you install SQL Server you also install the SSIS service that needs to be
running for your package to work on a given machine. The service will monitor and
control the deployment and execution of packages. Each package can be considered a
script (we use that term as an analogy only), which is executed by the service.

SSSB

SSSB uses a post-office analogy as its model. A user inputs data that must be stored
or otherwise handled on multiple systems. The user's application for SSSB purposes,
called the initiator, initiates a conversation with a target service, builds a message
containing the data required to process a task, and sends that message to the target.

[101]

SQL Server and Data Integration Tools Primer

Letter exchanges in a post-office analogy were asynchronous operations. For
example my cousin Susan, might initiate the correspondence and write to me or I
could initiate the correspondence and write to her or we could both initiate separate
lines of correspondence, each answering the other in turns.

To put this in SSSB terms, Susan could be the initiator —placing her letter in the queue
(the postal system) with me as the target in New Jersey. I could then reply by sending
a response message to the initiator, Susan. Both Susan and I could simultaneously be
the initiator and target of multiple exchange of letters and be involved in multiple,
simultaneous, and asynchronous "conversations" working their way through the
postal service message queue as shown in the following diagram:

In the SSSB exchange of correspondence, messages are XML-based and are placed in
electronic queues, thereby creating a simple asynchronous communication between
two systems. Like Susan and me, each system could be both the initiator and the
target in any one conversation.

Sync Framework

The Sync Framework is a comprehensive platform that allows for collaboration
and coordination across multiple applications or systems. You can use the Sync
Framework with any ADO.NET-enabled database system.

The first step is to configure the relevant database. This involves a simple ALTER
DATABASE statement, followed by an ALTER TABLE statement to set change tracking
on for the database and tables, respectively. SQL Server will store metadata
concerning the relevant databases and tables, allowing the system to track changes
and coordinate synchronization without the need to do full transfers of entire tables
or databases. Only new or changed data is synchronized.

[102]

Chapter 5

When a synchronization session begins, the source begins the session with a
destination. This can be triggered by many events, the most common being the
source system detecting that it is connected to the destination system, similar to
when your mobile device detects that it is connected to your computer and can
synchronize things such as your calendar or your contacts. The metadata is used by
the source to send change versions and sources to the destination. Local versions

at the destination are then compared to the source system. Business rules are used
to resolve conflicts or defer them (for example, from human intervention). The
destination system requests the data and applies it, then updates the metadata.

Source Destination

SQL Server 2008 enhancements

The following enhancements are made to SQL Server 2008:

1. The MERGE function. The MERGE function has long been a staple of ETL
development for Oracle. It is nice to see Microsoft eliminate the need for
writing workaround upsert statements that handle both updates
and insertions.

[103]

SQL Server and Data Integration Tools Primer

New and significantly more powerful encryption functions.

Data-access auditing, a powerful tool that audits who is accessing what
data and when. For certain highly regulated industries, like health care
and financial services, this functionality will significantly ease the database
administration overhead.

Filtered indexes, a very useful tool, if one has to select from a field with a
significant amount of null values.

Parallel query processing on partitioned objects.

The ability to associate query plans with actual queries; cuts down on the
often significant overhead associated with the creation of a query plan.

Security enhancements, including easier data access auditing and transparent
data encryption.

Parallel data warehouse, an integrated SQL Server and storage device with
storage optimized for use with SQL Server.

SSIS enhancements

The following enhancements are made to SSIS:

Ll S

Ability to create script tasks that use C#.
Improved performance of bulk load operations.
The ability to capture changed data.

Views of datatype mapping to help prevent annoying datatype
mismatch errors.

Support for time zone offsets that eliminate the need for messy workarounds.

SSSB enhancements

The following enhancements are made to SSSB:

1.
2.
3.

Support for conversation priorities.
New diagnostic utilities.

Additional object counters to check performance and error states.

[104]

Chapter 5

Sync Framework enhancements

The Sync Framework version 2.0 was released to leverage the power of change
tracking. Almost all of this API's interaction with databases is new with this release.

Typical use cases

The typical use case for each of these tools is rather simple: data is here, it needs to
be moved there. The rest is just details. While the classic uses of these technologies
are ETL, master data management, and asynchronous processing, they should also
be considered for any application that needs to move and transform data in places
where simple log shipping or replication will not meet the need or does not provide
all the functionality required (for example, diverse data sources).

While each of these tools can be extended to most data-movement scenarios, there
are times when one is served better with other tools. The classic case of the need
for an Enterprise Service Bus (ESB) application or the need to move data through

a workflow, would be good examples of business needs where other technologies
might be better suited. There are also industry-specific applications offered by
Microsoft that may better fit a need. For example, Microsoft Amalga is designed to
handle message queues for the health care industry's HL7 standard formatted data.

Example solution

We can take a look at an example of this technology in action, through a demo
application that has some real-world implications beyond "Hello World!". There

are numerous RSS feeds available, which expose a wealth of data. In this case, we
have chosen a sample feed from Microsoft because it allows us to demonstrate some
versatility of SSIS, as well as how data from varying sources can be distributed
throughout an enterprise. We take this feed, shred the XML, and write the resulting
data to SQL Server. We will then use the Sync Framework to distribute the

resulting data.

These feeds also allow us to demonstrate some of the best practices that you should
implement with SSIS. They include the following:

e Using the configuration collection of SSIS to store key metadata (for example,
the path to the RSS feed)

e Some logging and error-handling best practices

[105]

SQL Server and Data Integration Tools Primer

We should note a few things. SSIS defaults to the .NET framework version 2.0,
which contained some powerful tools for handling XML. In order to serialize an
RSS feed, however, it would be easiest to use the ServiceModel class, available in
.NET version 3.5. Your projects will need to be reconfigured to use this version and
references added to your script objects.

Writing an RSS feed to SQL Server

Here, we will use SSIS to capture data from an RSS feed, load it into a database, then
distribute it around the enterprise using the Sync Framework.

Open Visual Studio and create a SQL Server Integration Services project. Rename
the package getRSSFeed.dtsx to a similar, arbitrary name. Note that you must use
the dtsx extension. Drag a data flow task into the control flow panel. Open the data
flow and drag a script task into the data flow. Next, drag a data conversion task into
the flow and connect it to the script task. Finally, drag an OLE DB destination into
the flow and connect it to the data conversion task. Define the RSS feed you wish

to use as your data source with an HTTP connection manager. Here we used the
Microsoft MVP RSS feed. When complete, the data flow should look something like
the following screenshot:

Start Page | Testlaxsd | Test.XM|-~ getRSSfeed.dtsx [Design] - X
3™ control Flow |4 DataFlow |{5] EventHanders | s Package Explorer | 4 Execution Results
Data Flow Task: Ui Load RSS to SQL Server -

— ;
-_D’ get RSS data %

r

" ¥ Convert ASCi to
B¢ Unicode

—

QOLEDB
Destination

_A Connection Managers

(4] Rssconnection
A S0ABookConnection

[106]

Chapter 5

The script task in a data flow is slightly different for those of you who are
accustomed to using script tasks in the main package. Here, we start with a pre-
execute event and use the Connectors collection for our data source.

private XmlReader EcoIndicatorData = null;
private System.ServiceModel.Syndication.SyndicationFeed RSS Data =
null;
private string RSS URL = string.Empty;
public override void PreExecute ()
{
base.PreExecute() ;
RSS URL = Connections.RSSConnection.ConnectionString;

}

As we use this script as a data source, we then execute the CreateNewOutputRows ()
method and add rows to the output buffer, defined in the Script Transformation
Editor interface.

Access Microsoft Visual Studie 2008 Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2008 or Microsoft Visual C# 2008, and
configure component properties.

Script Specify column properties of the script component.
Inputs and Qutputs

Connection Managers
Inputs and cutputs:

=3 OQutput 0 E Common Properties
-4 Output Columns ComparisenFlags
3 o Descrinti
. escription
H 5 Title ErrorOrTr tion0
L Link rrorQrTruncation
ErrorRowDisposition RD_NotUsed
D 26
IdentificationString | output column "descriptio
LineagelD 26

MappedColumnID 0

MName description

SortKeyPosition 0

SpecialFlags 1]

TruncationRowDisp RD_NotUsed
B Data Type Properties

CodePage 1252
DataType string [DT_5TR]
Length 50
Precision 0
Scale 0

Add Output] l Add Coelumn]

D
ove Output l Remove Column l
[QK] l Cancel] l Help

[107]

SQL Server and Data Integration Tools Primer

The method itself is a simple loop through the RSS data, writing out the elements we
want to load to the database.

public override void CreateNewOutputRows ()

try
EcoIndicatorData = XmlReader.Create (RSS_URL) ;

RSS Data = SyndicationFeed.Load (EcoIndicatorData) ;
if (RSS Data != null)

{

foreach (var item in RSS Data.Items)

{
OutputOBuffer.AddRow () ;
OutputOBuffer.Title = item.Title.Text;
OutputOBuffer.description = item.Summary.Text;
OutputOBuffer.Link = item.Links[0] .Uri.AbsoluteUri;

catch (Exception ex) ({
LogErrorToEventViewer (ex) ;
throw (ex) ;

}

The result of this exercise holds the data as ASCII strings. The relevant table,
however, will hold the nvarchar datatype. We therefore need to convert the
datatypes in a data conversion task.

[108]

Chapter 5

Configure the properties used to convert the data type of an input column te a different data type. Depending on the data type to which the column

is converted, set the length, precision, scale, and code page of the column,

Available Input Columns
|

MName

| description
] Title

Link

Output Alias Data Type Length Precisicn Scale Code Page
i description uni_description Unicode string [DT_WSTR] 50
Title uni_Title Unicode string [DT_WSTR] 50
Link uni_Link Unicode string [DT_WSTR] 50
] [T | v
’ Configure Error Qutput... l [OK] l Cancel I ’ Help l

Configure the properties used to insert data into a relational database using an OLE DB provider.

Conne
Mappings
Error Qutput

n Manager

Specify an OLE DB connection manager, a data source, or a data source view, and select the data access mode. If using
the 5QL command access mode, specify the 5QL command either by typing the query er by using Query Builder, For

fast-load data access, set the table update options,

OLE DB connection manager:

I SOABookConnection

Data access mode:

[Tabl.e or view - fast load

Name of the table or the view:

=1 [dbo].[MicrosofthyPfeed)

Keep identity

Keep nulls

Rows per batch:

Maximum insert commit size:

Preview...

[] Table lock
Check constraints
10

10

ok ||

Cancel

[109]

SQL Server and Data Integration Tools Primer

Within this task, source and destination fields are mapped in a visual environment.

Configure the properties used to insert data into a relational database using an OLE DB provider,

Connection Manager
Mappings
Error Output
Available Input Col...
Available Destinatio...
¢ description Name
Link
Title
uni_description g _ﬂ__ﬂ—ff 4| title
uni_Link f_ﬂ__ﬂ——*‘f
uni_Title —
Input Column Destination Column
 uni_Title | title
uni_description descriptionText
uni_Link Link
[oK l l Cancel] l Help]

In this case, the Unicode data we created in the transformation step is mapped to the
relevant field in the database.

Distribution via Sync Framework

Now that the data is in the database, we will need to distribute it around the
enterprise —in this case, using the Sync Framework. You will first need to download
and install the framework from Microsoft, available at:

http://www.microsoft.com/downloads/details.aspx?FamilyID=89adbble-
53ff-41b5-bal7-8e43a2e66254&displaylang=en

Drag a script task into the package and open it. We used C# in this exercise, but you
can use VB scripts as well. You will need to place certain additional references into
the script, as shown in the following code snippet:

using Microsoft.Synchronization;

using Microsoft.Synchronization.Data;

using Microsoft.Synchronization.Data.SglServer;
using Microsoft.SglServer;

[110]

Chapter 5

using System.Data.SglClient;
using System.Data.Common;

The next steps will be to create database connections and add them to
SqlSyncProvider objects. sourceConnString is a string that contains the
connection data for the database where you stored the RSS feed in the prior section
and destinationConnString is a string holding the connection information for
the database where this feed will be sent. You should set these values for your
environment.

SglConnection sourceConn = new SglConnection (sourceConnString) ;
SglConnection destinationConn = new
SglConnection (destinationConnString) ;
//set up the source provider
SglSyncProvider sourceSglProv = new SglSyncProvider () ;
sourceSglProv.ScopeName = "MicrosoftMvPfeed";
sourceSglProv.Connection = sourceConn;

The scope of the synchronization is then set, the provider is added to a dictionary and
used to create a RelationalSyncProvider object that will control the synchronization
between two databases. We would follow the exact same steps for the destination, as it
will also be a SQL Server database. Different steps would be followed if the destination
was a CE database or some other ADO.NET-enabled destination.

//provide scope to the source connection

DbSyncScopeDescription sourceDesc = new
DbSyncScopeDescription ("MicrosoftMVPfeed") ;

SglSyncScopeProvisioning sourceProvision = new

SglSyncScopeProvisioning () ;
sourceDesc.Tables.Add (SglSyncDescriptionBuilder.
GetDescriptionForTable ("MicrosoftMVPfeed", (System.Data.
SglcClient.SglConnection) sourceSglProv.Connection)) ;

sourceProvision.PopulateFromScopeDescription (sourceDesc) ;
//do not recreate table

sourceProvision.SetCreateTableDefault (DbSyncCreationOption.Skip) ;
//all is provided

sourceProvision.Apply ((System.Data.SglClient.SglConnection)
sourceSglProv.Connection) ;

//add to the provider collection
providersCollection.Add ("Source", sourceSglProv) ;
RelationalSyncProvider source = providersCollection["Source"];

[111]

SQL Server and Data Integration Tools Primer

Once the setup is done, the actual synchronization occurs with a few simple lines
of code. We set up an orchestrator, set a few simple properties —such as the source,
destination, and direction —and then execute the synchronization.

//actually do the sync
SyncOrchestrator orchestrator = new SyncOrchestrator() ;
orchestrator.LocalProvider = source;
orchestrator.RemoteProvider = destination;
orchestrator.Direction = SyncDirectionOrder.UploadAndDownload;
//bidirectional sync
orchestrator.Synchronize () ;

So we now have a single, easily created C# script. In a single package execution, we
fetch the RSS feed and send it out to other servers throughout the enterprise.

SQL Server Service Broker

While synchronization is powerful, it does have certain shortcomings. For example,
the source and target tables must be exactly the same for the process to work and
there is no way to prioritize what data should be moved first. Often, we will have

to synchronize data across systems that have different uses and therefore use
significantly different schemas. Also, there often are prioritization rules that must be
followed (for example, rush orders versus standard orders). This is where we should
be looking at SSSB.

SSSB provides for asynchronous processing of messages. A conversation is initiated
by the sending database. A receiving database takes the call, receives the incoming
data, validates the data, and acknowledges the receipt. It may then continue the
conversation by sending data back.

Open SQL Server Management Studio and connect to your development database
server. We have created a simple database to illustrate SSSB called soa_Book.

We start by setting up the database and objects in the database to handle the
conversation as follows. First, we enable the service broker with a simple ALTER
DATABASE statement.

USE master;

GO

ALTER DATABASE SOA Book
SET ENABLE BROKER;

GO

[112]

Chapter 5

We must create message types, contracts, and queues that the service will rely on to
actually converse and then create the service. This is done for both the sending and
receiving ends of the conversation. Our conversation will consist of well-formed XML.
We could validate against a schema as well. You would use the following statement:

USE SOA Book;
GO

CREATE MESSAGE TYPE
[//SOAbook/SampleQueue/RequestMessage]
VALIDATION = WELL FORMED XML;

CREATE MESSAGE TYPE
[//SOAbook/SampleQueue/ReplyMessage]
VALIDATION = WELL_ FORMED XML;

GO

CREATE CONTRACT [//SOAbook/SampleQueue/SampleContract]
([//S0OnAbook/SampleQueue/RequestMessage]
SENT BY INITIATOR,
[//SOAbook/SampleQueue/ReplyMessage]
SENT BY TARGET
) ;

GO

CREATE QUEUE SampleTargetQueue;

CREATE SERVICE
[//SOAbook/SampleQueue/TargetService]
ON QUEUE SampleTargetQueue
([//SOnAbook/SampleQueue/SampleContract]) ;

GO

CREATE QUEUE SampleInitiatorQueue;

CREATE SERVICE
[//SOAbook/SampleQueue/InitiatorService]
ON QUEUE SampleInitiatorQueue;

GO

Once the objects are set up, we use them for our dialog. We create a dialog from an
initiator to a target on a particular contract and send a message of a particular type,
all within a transaction.

/*

Send the message

*/

DECLARE @InitDlgHandle UNIQUEIDENTIFIER;

DECLARE @RequestMsg NVARCHAR (100) ;

BEGIN TRANSACTION;

[113]

SQL Server and Data Integration Tools Primer

BEGIN DIALOG @InitDlgHandle
FROM SERVICE [//SOAbook/SampleQueue/InitiatorService]
TO SERVICE N'//SOAbook/SampleQueue/TargetService'
ON CONTRACT [//SOAbook/SampleQueue/SampleContract]
WITH ENCRYPTION = OFF;

SELECT @RequestMsg =
N'<RequestMsg>Do not meddle in the affairs of wizards, for they are
subtle and quick to anger.</RequestMsg>';

SEND ON CONVERSATION @InitDlgHandle
MESSAGE TYPE [//SOAbook/SampleQueue/RequestMessage] (@RequestMsg) ;

SELECT @RequestMsg AS SentRequestMsg, @InitDlgHandle as 'Dialog ID'

COMMIT TRANSACTION;
GO

On the receiving end, we receive the message, and in the following sample, send a
second message back. We begin with a WAITFOR statement as the receiver does not
know when the message will arrive, similar to how a human receiver of a letter does
not precisely know when it will arrive via the postal service. Once we receive the
message, we open the letter with a SELECT statement and send a reply.

DECLARE @RecvRegDlgHandle UNIQUEIDENTIFIER;
DECLARE @RecvRegMsg NVARCHAR (100) ;
DECLARE @RecvRegMsgName sysname;

BEGIN TRANSACTION;

WAITFOR (
RECEIVE
@RecvRegDlgHandle = conversation handle,
@RecvRegMsg = message body,
@RecvRegMsgName = message_ type name
FROM SampleTargetQueue
), TIMEOUT 1000;

SELECT @RecvRegMsg AS ReceivedRequestMsg;
SELECT @RecvRegDlgHandle, @RecvRegMsg, @RecvRegMsgName

IF @RecvRegMsgName = N'//SOAbook/SampleQueue/RequestMessage’
BEGIN
DECLARE @ReplyMsg NVARCHAR (100) ;

SELECT @ReplyMsg = N'<ReplyMsg>And he piled on the whales white hump
all the pain and hate felt by his race from Adam down</ReplyMsg>';

[114]

Chapter 5

SEND ON CONVERSATION @RecvRegDlgHandle
MESSAGE TYPE [//SOAbook/SampleQueue/ReplyMessage]
(@ReplyMsg) ;

END CONVERSATION @RecvRegDlgHandle;

END

SELECT @ReplyMsg AS SentReplyMsg;

COMMIT TRANSACTION;
GO

The statement SELECT @ReplyMsg AS SentReplyMsg simply confirms the successful
completion of the conversation.

The initiator must now listen for the reply and take appropriate actions. In this case,
it simply ends the conversation. Here again, the initiator will not know when the
reply will be delivered or what its content will be, so we follow steps similar to the
receiver. We wait for a reply, open it, and then review it once it is received.

DECLARE @RecvReplyMsg NVARCHAR (100) ;
DECLARE @RecvReplyDlgHandle UNIQUEIDENTIFIER;

BEGIN TRANSACTION;

WAITFOR (
RECEIVE TOP (1)
@RecvReplyDlgHandle = conversation handle,
@RecvReplyMsg = message body
FROM dbo.SampleInitiatorQueue
), TIMEOUT 1000;

END CONVERSATION @RecvReplyDlgHandle;
SELECT @RecvReplyMsg AS ReceivedReplyMsg;
COMMIT TRANSACTION;

GO

As you can see, SSSB uses a modified set of SQL statements that should be familiar to
almost all database developers.

Summary

Here, we have three powerful tools for data movement (SSIS, Sync, and SSSB) that
can handle data movement, master data management, and data governance needs of
a variety of organizations and in a variety of business circumstances. The tools can be
used in a variety of combinations to get data where it needs to be.

[115]

Windows Azure Platform
Primer

With the advent of the Internet, it became possible to access services from just a
browser without requiring several hours of setup and configuration time before using
a technology. This fast bootstrapping usage of elastic, pay-per-use, internet-accessible
services (known as cloud computing), is impacting not just end-consumers, but also
businesses of all sizes. Microsoft is trying to cause a disruptive shift in the
cloud-computing market and lead the next wave of innovation.

6-12-18 is not a random typo that made it into the book, but these are three numbers
discussed by Microsoft executive Oliver Sharp when discussing the deployment
patterns of enterprise customers. Six represents the percentage of data-center
utilization that typically appears in data-center utilization surveys — utilization peaks
at around ten percent. Twelve, is the twelve million square feet server facilities that
Microsoft had bought at the time when Oliver made the note. Finally, eighteen is the
number of days it took for the existing server capacity to max-out when the traffic
increased on a key Microsoft site during the dawn of the web era. This meant that
they had to buy and provision new servers every 18 days and the IT manager had to
manage this process along with all the capacity, power, and cooling issues associated
with it. The net of this is that people are paying significantly more than they need to
for infrastructure.

The cost of this excess capacity represents a huge initial Capital Expenditure
(CAPEX) and ongoing Operational Expenditure (OPEX) for capacity that
organizations are not using. By paying for only what you use, you can effectively
offset a huge amount of both OPEX and CAPEX. In effect, increasing computer
power becomes a proportional tax/cost on your increased income. This represents
a complete paradigm shift to the way things are done today.

Windows Azure Platform Primer

There are many different definitions and applications of cloud. Much of this
technology has been developed at Microsoft as a result of the journey and lessons
learned from developing and running complex cloud systems such as Bing, Hotmail,
and Xbox LIVE.

In fact, many customers are already building "private" clouds using virtualization
technology, management tools, and techniques that they have developed over time
to run their large distributed systems.

This kind of usage has helped vendors understand customer requirements in areas
such as security, scaling, high availability, and offline scenarios. In the last three to
five years, the first generation of these generic platform resources based on over a
decade of learning have been moved to the cloud — Amazon Web Services, Google
App Engine, and Windows Azure platform.

For the purposes of this chapter, we will define the following three cloud requirements.
The cloud must fulfill the following tasks:

e Protect and secure my data
e Manage my distributed computing environment at the lowest possible cost

e Provide an agile computing environment which can change quickly to
respond to business environment changes and scale incrementally

Throughout each solution implementation, the common requirement is to be
successful in an ever changing, geographically dispersed world; cloud resources need
to be elastic in nature — it needs to make computing resources commoditized and
simple to use. The ultimate vision is for cloud computing to transform in the same
way that utility electricity replaced on-premise power generation. They should be easy
to use, with a shorter setup and maintenance time. This removes the requirement for
companies to purchase infrastructure upfront assuming that they would need these
resources at some point down the road. With the cloud, they simply leverage the cloud
computing resources and throttle usage as and when required. For example, if you are
a beginner working on an innovative idea, you don't have to immediately invest in
procuring hardware resources, software licenses, and staffing IT operations; instead,
you can start focusing on your innovation by leveraging things in the cloud. This

is huge! Finally, these resources should be accessible from almost anywhere and be
enterprise-ready. IT administrators must be able to button-down security provisioning
for a set of user accounts as well as restrict usage, if necessary, from "public" clouds.
One of the core advantages of cloud-based systems is that users do not have to roll out
the updates themselves, they simply utilize the service which is upgraded seamlessly;
this is a key advantage for many companies that spend significant amounts rolling out
new versions of traditional thick-client, on-premise software.

[118]

Chapter 6

Microsoft's approach to cloud computing has been a Software plus Services strategy.
This model allows a combination of on-premise resources and on-cloud resources
with a seamless usage of development tools. This approach makes sense from a
customer standpoint, where they can leverage existing hardware and software
infrastructure in addition to developer skills and tools. So, there is a seamless,
integrated approach with the choice and decision controlled by the customer.

The following are three key pivots to this strategy, which is central across all the
Microsoft offerings:

1. Provide the ability to store and access data in the cloud.
2. Enable services that run in the cloud to be accessed.
3. Run custom code —compute power —in the cloud.

The Windows Azure platform supports all these requirements. The components it
provides are as follows:

1. Windows Azure: The underlying Windows cloud-based operating system
environment which provides compute and data storage capabilities.

2. Windows Azure AppFabric: Provides the Service Bus and Access Control
components which enable complex, hybrid, service-based applications to be
hosted in the cloud or connected (relayed) through the cloud.

3. SQL Azure: Extends SQL Server capabilities to the cloud. It is a cloud-based
relational database — the database resource in the cloud —which provides
TDS and T-SQL-based access and programmability, enabling customers
to take leverage and run their existing applications in the cloud.

The following diagram illustrates these components:

B WindowsAxure

SOAP v ﬁCI q
our Clou
i <«—» | REST | Application /wa)\
Existing Software Applications - Windows Azure Platform I

Microsoft
WVisuaI Studio
End Users

[\ Deveopers|—| ——

PHP and 3rd Party Languages

Microsoft*

h?."' SQL Azure

£ WindowsAxure platform
AppFabric

In this chapter, we provide an overview of the platform with a simple solution and
walkthrough instructions to host the solution in the Windows Azure platform.

[119]

Windows Azure Platform Primer

What does this technology do?

In this section, we will drill down deeper into three key aspects of the Windows
Azure platform —Windows Azure, SQL Azure, and Windows Azure AppFabric.

Windows Azure

Windows Azure is the operating system in the cloud. It supports hosting a piece of
application code in disparate Microsoft data centers, while automatically making it
highly available, scalable, on-demand, and accessible from a set of clients over the
Internet. This application does not have to be web-centric as it could be any piece

of code that can be hosted in Windows Azure — for example, it can be a piece of
unmanaged code that uses a computation-intensive algorithm and operates without
an HTTP face. The platform allows non-Microsoft languages and supports popular
standards, languages, and protocols such as SOAP, REST, XML, and PHP.

Usage

Windows Azure provides a familiar development and deployment environment to
build and scale-out applications. Essentially, the platform builds on a set of three key
tenets which are applicable to all of the cloud technologies — easier manageability,
elastic scalability, and developer agility.

When an administrator uses Windows Azure, only a set of logical entities are
exposed —no direct access to the actual virtual machines or complicated, physical
deployment topology is required. The administrator controls a set of application
behaviors. For instance, the administrator can control the deployment topology by
indicating the locality of application access such as the entire US, North Central, or
South Central. In addition, the administrator can create an affinity group which can
call out the dependency of this service/application with other deployed applications.
From here on, the application will be automatically provisioned for use and
deployed in the data center.

Elastic scaling is exposed in Windows Azure via configuration knobs. When an
application is deployed, the number of "entry points" or the amount of background
computation can be specified. This will be used to automatically provision a number
of virtual machine nodes for the application to run. This knob can be tweaked
anytime to increase or decrease scaling, based on the scaling requirements.

[120]

Chapter 6

One important differentiator from competing offerings is the developer experience

on top of this platform. Visual Studio developers can easily build solutions using
existing knowledge instead of having to adopt a new development paradigm. For
example, developers can use the Visual Studio cloud project template and build new
cloud services using popular programming languages and patterns. The new cloud
deployment and application packaging model are natural extensions that are easy to
adopt. The cloud application can use either the Windows Azure storage or SQL Azure.

Architecture

Windows Azure architecture can be broken down into the following three main layers:

e Fabric controller.
e Compute.

e Storage.
Fabric B2 Windows'Azure
Controller Fabric
Automates load R .
balancing and | | E @ E = = Fabric Agent
computes @ @
resource scaling | (F @ G H & T &
I

[|

Compute
Load Balancer

Blobs 12Ples queues

Web Role Worker Role ‘--‘

Instance Instance

A o § o

Virtual Machine | | Virtual Machine

Storage

Fabric controller

When applications are deployed across Microsoft data centers, the fabric controller is
the layer that provisions the application, detects failures, and automatically spins up
new instances. It also manages updates to maintain zero downtime for your application
code. When an application is deployed, in addition to the code, metadata or application
configuration (also known as service model) is included in the deployment package.
The fabric uses this information to deploy the application on a set of nodes (compute
resources), sets up the network settings, configures the load balancer, and maintain the
life cycle of the application. The usage of the fabric controller is part of the Windows
Azure technology and is not directly exposed to the end-user.

[121]

Windows Azure Platform Primer

Compute

The compute layer represents the set of processing resources exposed as configurable
roles to run portions of the applications. All of the machines in the Microsoft data
center are configured to host a set of virtual machines using a Hyper-V environment
running a customized 64 bit Windows Server 2008 OS. As Microsoft releases future
versions of Windows Server, these VMs will be upgraded, giving customers the
benefit of new OS capabilities without having to perform upgrade cycles themselves.
A service or application hosted in Windows Azure can be configured to consist of
one or more web roles and worker roles.

Web role

A web role is used to host any frontend of an application requiring the Ul to

accept and respond to user HTTP requests. Typically, one can expose an ASP.NET,
ASP.NET MVC, WCEF service, or even PHP applications as a web role. When an
application is configured to have a set of web roles, then the fabric controller deploys
the application on a set of virtual machines that have IIS installed on them.

Worker role

Typically, applications also require "headless" background processing to perform
computations or interactions with backend systems. Such a model is exposed
through the worker role. For example, consider an airline website that searches

for tickets. The frontend exposed as a web role will accept the user criteria. Then a
service might need to match the user request with the airline tickets' inventory and
price, and generate a set of valid responses. This service logic could be configured

to run as a worker role. Windows Azure-hosted services may be comprised of one
or both types of roles and can run multiple instances of each type. One could host a
generic WCF service, a TCP server, an FTP service, or maybe even an Apache service
in a worker role.

Virtual machine instances that are running these roles can communicate among
themselves synchronously or use the asynchronous model through the Windows
Azure storage services. For example, a web application hosted in a web role can
directly call into a calendar service, hosted in a worker role. If the web application
wants to queue messages then it can write to the Windows Azure storage (more
on this topic in the next section) and another worker-role instance can read-off the
queue and perform background processing.

Role instances can be added or removed based on demand, and allow applications to
quickly and economically scale-up or down when the need arises.

[122]

Chapter 6

. More compute roles are being planned to be available in the future. One
% popular one is the VM role that will provide administrators with more
s control to install, configure, and manage the virtual machine running
the applications.

Storage

There are three durable storage options that can be used by a Windows Azure-hosted
application or by a set of desktop applications accessing the storage in the cloud. For
example, a web application may need to store images in a photo album or queue
some transient requests for processing a user request. Applications can leverage this
highly available and scalable storage that is replicated across a set of windows server
machines in Microsoft data centers.

Windows Azure storage services includes blob services for storing text and binary
data, table services for semi-structured storage that can be queried, and queue
services for reliable and persistent messaging between services.

Blobs

Blob storage is comparable to the typical hard disk storage available on machines.

It can be used to store any kind of data such as images, documents, media, and the
like. Each blob object is replicated and three copies are maintained to make it highly
available and to guarantee persistence across data crashes. The storage is highly
optimized to store several pieces of a large file and supports uploading and reading
the required portions. There are two different types of blobs —block and page. A
block blob is used for storing streaming content like video files, while page blob

is useful for random reads and writes.

Table

Table storage is a misnomer — it does not represent a database table nor does it
replace SQL Azure functionality. It merely represents a C# hashtable or list-like
construct that can be used to store semi-structured data without enforcing a schema.
An application can store any key-value pair in the table service.

[123]

Windows Azure Platform Primer

Queue

Queues are typically used as a light-weight messaging system between different
compute roles. They provide a reliable mechanism to do asynchronous processing
and build loosely coupled systems. When a user inputs data, a web role can store
data in a queue and instantly return to the caller for a snappy user experience.
Another worker role that typically runs for a longer duration of time, can read-off
the queue and perform additional processing such as writing or looking-up against
a set of tables in SQL Azure, for example. If the worker role instance were to crash
for some reason, the queue storage has ways to guarantee durability; whereby,

the message will re-appear in the queue for another worker role instance to start
processing again.

Drive

Windows Azure Drive is a type of storage that lets applications use NTFS API

to access and store data in the cloud. This type of storage is useful for applications
that use data from a directory structure. An administrator can create and mount a
drive for usage by an application. The drive guarantees durability across hardware
and application failures. Underneath, the drive implementation actually uses the
Windows Azure page blob, which performs well for random reads and writes.

Provisioning model

In order to provision an application on Windows Azure, you will need to create a
Windows Azure account and buy a subscription from http://www.microsoft.
com/windowsazure/account/. While signing up, the Windows Azure platform has
a set of subscription offers which vary depending on several factors — the number
of compute hours, the number of transactions, network bandwidth, duration

of commitment, and so on. Once you sign up for the suitable selection using

your Windows Live ID, the subscription can be managed from https://mocp.
microsoftonline.com/Site/Manage.aspx. Once the system activates the account,
details will be sent to the e-mail address linked with your Windows Live ID.

You can then visit the portal https://windows.azure.com/Cloud/Provisioning/
Default.aspx to get started. Using this portal, you can create a new service which
allows two options — to create a storage account or a hosted service. When creating
a storage account, you are essentially provisioning a globally accessible endpoint,
registered as a URL to access the supported storage options —queues, tables, or
blobs. For example, after this process, you will see a set of endpoints similar to

the following ones:

http://appliedarchstorage.blob.core.windows.net/
http://appliedarchstorage.queue.core.windows.net/

http://appliedarchstorage.table.core.windows.net/

[124]

Chapter 6

For each storage account, there are a set of access keys for security purposes. When
an application needs to use a particular storage account, it needs to specify the
correct access key before it is published from Visual Studio. These settings can be
specified in the Properties tab for the web and worker role from Visual Studio.

Another unique feature is the availability of a Content Delivery Network (CDN)
option for the storage account. Windows Azure CDN has several locations around
the world to cache the storage closer to the end-users accessing it. For example,

if the storage is set up in a US data center and enabled to use CDN, then a user
from Australia could access a cached version from a CDN location closer to their
geographic location, giving a better performance and end-user experience.

When one chooses the hosted service option (the other option while creating a
new service), a compute node (64 bit virtual machine) is provisioned to run your
application. The provisioning process is similar when one must choose a globally
unique public name, accessible as a URL for the service. At the end of this step, a
cloud-host environment is set up to run your application.

During this process for setting up a storage account or a hosted service,
administrators can also define an affinity group which decides the closest Microsoft
data center where the resource must be physically located. This is especially useful
when there is a need to co-locate the compute and storage for better performance.
In such cases, one would create an affinity group with a friendly name such as
"US_Region" and tie it to a physical location such as North Central US or South
Central US. While creating a service or storage account, it can be associated with
the affinity group "US_Region", and thus be co-located. Modifying the mapping

of the friendly name to the physical location will affect all the associated services.
In scenarios where there is no need to use affinity groups, the actual physical
location can be directly specified while creating the service.

[125]

Windows Azure Platform Primer

Diagnostics and monitoring

A key aspect of any application deployment is to get diagnostics and monitoring
data for analysis. With Windows Azure Diagnostics, it is possible to collect
diagnostic data for performance-tuning analysis, capacity planning, and general
resource-usage monitoring, in addition to common tasks such as debugging and
troubleshooting. The diagnostics can be enabled within your service code or from
outside of it. As part of diagnostics, it is possible to collect data from the following
sources for web and worker roles — Windows Azure logs, IIS 7.0 logs, Windows
diagnostic infrastructure logs, failed request logs, Windows event logs, performance
counters, crash dumps, and custom error logs. The DiagnosticMonitor class
provides a set of APIs to configure your required set of data sources and this can

be used from within your code, as well as hosted and run on Windows Azure. With
the new release, the platform supports a TraceListener, which allows applications
to write to the standard Event Tracing for Windows (ETW) or use Trace Debug
statements as part of the application code.

DiagnosticMonitorConfiguration diagConfig =
DiagnosticMonitor.GetDefaultInitialConfiguration() ;

// Add performance counter monitoring for % processor time
// Run typeperf.exe /g to query the counter list
PerformanceCounterConfiguration procTimeConfig = new

PerformanceCounterConfiguration() ;
procTimeConfig.CounterSpecifier = @"\Processor (*)\% Processor Time";
procTimeConfig.SampleRate = System.TimeSpan.FromSeconds (1.0) ;
diagConfig.PerformanceCounters.DataSources.Add (procTimeConfig) ;

// Start the diagnostic monitor with this custom configuration
DiagnosticMonitor.Start ("DiagnosticsConnectionString", diagConfig) ;
// Capture complete crash dumps
Microsoft.WindowsAzure.Diagnostics.CrashDumps.EnableCollection (true) ;

When you need to set this up from outside the actual code running,

the diagnostics can also be enabled from a remote location by using the
DeploymentDiagnosticsManager and RoleInstanceDiagnosticManager classes.
For certain data sources, modifying the configuration file before deploying the
solution will take effect. This diagnostic data can then be transferred to the storage
account as part of a scheduled job or on-demand for analysis. There is also a
monitoring agent that can be used to gather the collected diagnostic data. This data
can then be transferred for analysis of the application behavior and to enforce action.

[126]

Chapter 6

For example, by gathering data from a "Photos R Us" application, you can understand
that the application actually needs an additional worker role to optimize the
performance. The action to increase the worker roles can be done using the portal or
programmatically, using the Service Management API. The action can be done using a
custom script or a PowerShell commandlet to auto scale the application. All the Service
Management APIs are based on Representational State Order (REST) and expose all
functionality other than creation, deletion of accounts, and billing data.

How do | get started?

The Windows Azure SDK presents a set of APlIs, tools, samples, and Visual Studio
project templates to help bootstrap the development experience. It also offers a
development experience that simulates the cloud infrastructure (fabric and storage
services) on a developer machine. Using the project templates and the development
fabric, it is easy to understand the various APIs and deployment model without
procuring or getting an online account.

After you have ramped up on the development fabric, you can visit http: //www.
microsoft.com/windowsazure/account/ and follow the instructions from the
Provisioning Model section for moving the solution to the cloud. The sample lab
exercise at the end of this chapter has a walkthrough of steps to get a solution up and
running on Windows Azure.

SQL Azure

SQL Azure Database is a cloud database service from Microsoft. SQL Azure offers a
scalable and secure cloud-based relational database built on SQL Server technology.
SQL Azure provides the familiar T-SQL programming model and TDS connectivity
support, which from a development perspective, provides the ability to seamlessly
use these databases in the cloud even though the data sits in Microsoft-owned data
centers. These key factors allow an organization to take advantage of their existing
SQL Server skills and capabilities while leveraging new usage paradigms.

[127]

Windows Azure Platform Primer

Usage

SQL Azure is built on three key tenets: manageability, scalability, and developer
agility. We will quickly examine each of these.

SQL Azure provides the high availability of an enterprise data center for only a
fraction of the associated costs. The logical administration is an abstract ion of the
physical; the latter being handled by Microsoft. This means that regular database
administration, logins, users, and roles must be administered by the DBA, but all
physical deployment details are handled by Microsoft. At present, to deploy a new
application on-premise typically requires coordination among multiple groups in
order to purchase servers, provision them, open ports on the firewall, and numerous
other tasks. SQL Azure enables customers to provision new servers and databases
within minutes, which means that you no longer have to worry about hardware
acquisition and setup. This reduces costs by allowing companies to provision just
what they need upfront. The data that you store on SQL Azure is automatically made
redundant, including automatic failover capabilities in the event of a disaster.

Scalability is a key advantage of the cloud model; SQL Azure can meet the needs

of small departmental and large global applications alike. The "pay as you grow"
pricing model enables extra capacity to be spun up for seasonal demand or as

the usage steadily increases. Because SQL Azure runs in global data centers, new
markets can be reached immediately without the typical management and operations
costs. SQL Azure provides the ability to implement multitenancy, which may be of
interest to ISVs providing hosted solutions.

The third point we will address is developer agility. By building SQL Azure on the
T-SQL language, Microsoft allows developers to use their existing knowledge and
skills, and quickly leverage the cloud as an alternative to an on-premise database.
SQL Azure supports Tabular Data Stream (TDS), which is a protocol used for
communication between a client and an on-premise SQL Server. Therefore, a desktop
client application can connect to SQL Azure Database in the same way it connects

to an on-premise SQL Server instance. This means that your code that was built
using ADO.NET, ODBC, or any other technology you chose to work with, can be
easily migrated to the cloud. Secure Sockets Layer (SSL) is required when a client
application connects to the SQL Azure Database TDS endpoint to ensure security.

[128]

Chapter 6

SQL Azure provides a relational database experience in the cloud, which is familiar
to developers and administrators. Building on existing, proven, scalable, on-premise
technology has minimized the deployment burden. The units of deployment in

SQL Azure are servers and databases which are familiar concepts to DBAs

and administrators.

Architecture

SQL Azure provides the following four main layers of abstraction.

1.

Client layer: This is the layer responsible for communicating with SQL
Azure, and can reside on-premise or be hosted in Windows Azure. We will
discuss deployment options later in this chapter.

Services layer: This layer is responsible for several critical functions
including billing, metering, and provisioning new servers to meet client
demand. The final responsibility is for routing connections between the
application and physical servers where the data resides. This layer hides the
complexity of numerous physical servers.

Platform layer: This layer addresses the physical servers and services required
to provide the services of SQL Azure. This consists of many instances of SQL
Server, which are managed and controlled by the SQL Azure fabric to enable
automatic failover, health monitoring of servers, data replication, and more
necessary supporting operational services. Essentially, this layer is responsible
for the management of the SQL Azure software stack.

Infrastructure layer: Responsibility lies here for the management and
operational support of the physical hardware infrastructure that provides the
SQL Azure computing power.

[129]

Windows Azure Platform Primer

These layers are illustrated in the following diagram:

Client Layer
(At customer premesis or
Windows Azure Platform) ? HTTP/REST
SQL Server
PHP Applications ADO'NEI—
Data Services
and Tools
[ODBC [ADO.NET]

l Tabular Data Stream (TDS)]
T TDS+Secure Sockets Layer (SSL)

Services Layer

Provisioning Provisioning Provisioning
Billing and Billing and Billing and
Metering Metering Metering
Connection Connection Connection
Routing Routing Routing

Platform Layer

SQL SQL SQL
Server Server Server
SQL Azure SQL Azure SQL Azure
Fabric g Fabric il Fabric
Management Management Management
Services Services Services

’ Infrastructure Layer ‘

Provisioning model

SQL Azure possesses a logical hierarchy to enable you to manage your data effectively.
Before using the service, you must register for a Windows Azure platform account at
http://www.microsoft.com/windowsazure/of fers. Each account can be associated
with multiple SQL Azure Servers, each of which can contain multiple databases; this
mirrors the on-premise options that enable one company to have multiple SQL Server
instances across multiple servers, each containing multiple databases.

The SQL Azure Server is a logical container and an administration point for a group
of databases. This allows you to specify logins, similar to those in SQL instances. Each
server is given a fully-qualified domain name (FQDN), which can be accessed across
the Internet. The geographic hosting region is also chosen at this level. The SQL Azure
Server is similar in many ways to the on-premise product that provides a familiar
security model based on logins and each server has a master database.

[130]

Chapter 6

As with a traditional SQL Server instance, a SQL Azure Server may include multiple
databases. They can be created by either the cREATE TABLE T-SQL statement or
through the online portal. SQL Azure implements identical security principals

as the on-premise product, based on SQL Server logins, database users, and role
permissions. This enables DBAs to use familiar concepts and proven security models
to protect access to their organization's cloud data. These principals can be modified
by running appropriate T-SQL statements or using the functionality that the SQL
Azure portal provides.

SQL Azure can store terabytes of information. Currently each individual database is
limited to 50 GB in size. Therefore, a scale-out technique such as Data sharding can be
used to scale your application data across multiple independent SQL Azure servers.

Data access and usage patterns

There are two broad approaches for SQL Azure that I have seen with regard to
deployment. The first approach is to deploy only the database-tier within the cloud
and then have the application-tier access the data in the cloud from a remote location
over the Internet. The second approach is to host both the application and the
data-tier within Windows Azure. The second approach enables you to minimize
the network latency between application-tier and data-tier. The first approach
enables an organization's desktop-based application to be migrated to SQL Azure
with minimal disruption. This strategy may be also be useful for services which
are primarily used by workers who constantly require remote access to the system.
For example, consider an expense report system for travelling sales people,

which would allow access to the system's data over the Internet even if the client
application was sitting on the employee's computer desktop. The second approach
enables web applications written in PHP, ASP.NET, or Silverlight to be hosted in
Windows Azure, and utilizes the underlying SQL Azure service with minimum
possible latency.

[131]

Windows Azure Platform Primer

The following diagram illustrates this model:

Scenario A Scenario B
| |
[| [1
Application Web-based Client
Code

Web Browser,
ADO.NET, ODBC, or PHP ADO.NET Data Services Client,
Silverlight, etc.

Client Premises
TDS + SSL HTTP or HTTPS

hﬁf—ﬁ
< Internet }
— —

£ Windows'Azure

TDS + SSL Application
Code

ADO.NET, ODBC, or PHP

TDS + SSL
4

Microsoft®

u‘?:‘ SQL Azure

Windows Azure Platform

SQL Azure—what is supported and what is not
Not all of the features from SQL Server 2008 R2 are currently supported in SQL Azure.

Features included at the time of writing are as follows:

e Tables, indexes, and views.

e Stored procedures.

o Triggers.

¢ Constraints.

e Table variables, session temp tables (#t).

e OLTP.

e T-SQL DML statements.

e T-SQL DDL statements that do not attempt to modify physical resources.

e T-SQL statements that do not attempt to modify physical resources. For
example, file placement on physical drives.

e SQL 2008 datatypes that were not deprecated.

[132]

Chapter 6

Features that are not present in this version are as follows:

e Distributed transactions

e Distributed query

¢ Common Language Runtime (CLR)

e Service broker, analysis services, and reporting services

e Spatial

e Physical server or catalog DDL and views

¢ Any statements or options that manage physical resource usage; for example,
T-SQL commands and resource governor

e Server options or trace flags

e Datatypes that were deprecated in SQL 2008 release

How do | get started?

Log into the SQL Azure Portal with your Windows Azure platform account
https://sql.azure.com Then create a test database using the instructions
provided on the portal. In this example, I have completed these steps already and
the database name I have used is sQLAzurePrimer. I will walk you through how to
connect to the server using SQL Management Studio and then how to run an existing
T-SQL CREATE TABLE command in a database that we have created.

To get started, we will use SQL Server Management Studio. Open the application
and change the authentication mode to SQL Server Authentication. Object Explorer
does not function correctly when pointing to the SQL Azure endpoint; so first click
on Cancel on the initial connection screen. Click on New Query to connect from this
connection screen. Then enter the cloud server name which was specified at creation
time. You will need to select Connection Properties and explicitly enter the name of
the database that you wish to connect to; for example, in this case SQLAzurePrimer.

T
ﬁ) Microsoft*
~ SQL Server2008R2

Servertype: IDatabase Engine j
Server name: Isuf‘ldi?zd 7 database windows net j
Authentication: ISQL Server Authentication j

Login: |ewan j

Password: IM‘I

[~ Remember password
Connect I Cancel | Help QOptions =>

[133]

Windows Azure Platform Primer

You should now be connected to your SQL Azure Server. To create a table you can
use traditional T-SQL syntax as shown in the following screenshot. One important
caveat is that any table you create on SQL Azure must have a clustered index.

5QLQuery2.sql - f..airweather (164))* - X
[Juse SglAzurePrimer |
[CRELTE TABLE Customer | i
[ID] [int] IDENTITY (1, 1 70T NULL,

[Name] [nwvarchar] (60 T
[AddressLinel] [nvarchar] (60
[AddressLine?] [nvarchar](
[City] [nwvarchar] (30 T
[PostalCode] [nvarchar] (15
[ModifiedDate] [datetime] NOT &

JLL CONSTRARINT [DF_Address_ModifiedDate] DEFAULT (GET

GO

[create clustered index [Customer_ID] on Customer (ID

insert into customer values (" 'Building 35 Microsoft', 'Redmond Campus', 'Redmond’', '
select = from customer
L -—drop table customer|
< T r
[Resuts |1y Messages
ID Name Addressline1 Addressline2 City PostalCode ModfiedDate
1 Ewan Fairwesther Building 35 Microsoft ~ Redmond Campus ~ Redmond 98052 2009-11-22 00:00:00.000

As shown in the previous screenshot, SQL Azure provides familiar management
tools (SQL Management Studio) and traditional T-SQL programming language to
enable you to quickly create and migrate existing on-premise applications and take
advantage of the scalability that the cloud provides.

[134]

Chapter 6

Windows Azure Platform AppFabric

Azure AppFabric includes the Service Bus and Access Control components of
Windows Azure platform which enable complex, hybrid, service-based applications
to be hosted in the cloud or connected through the cloud.

Usage

When you want two applications running on different machines (deployed across
tirewalls, security domains, and maybe even across enterprises) to communicate, there
are interesting challenges to make this happen. With the advent of cloud applications,
our applications can also span deployments on-premise and across the cloud.
Typically, to access services outside an enterprise deployment, you might choose to
either open a firewall port or use a VPN. Both these infrastructure-related options have
cumbersome challenges for configuration and for ongoing maintenance. The problem
also tends to compound when there are several such applications that require firewall
or VPN changes.

The second problem is authorizing users for certain applications based on their
identity claims. This is simplified in an enterprise using the same Active Directory
(AD), but becomes very challenging when this is across enterprises where each one
has its own identity systems, possibly on different platforms.

Windows Azure Platform AppFabric is a set of services that make it simpler to
securely interoperate applications and services running on different networks
that use different authorization systems. This is done by exposing the on-premise
services through a cloud endpoint that acts as a secure communication relay.
This web-based service helps solve both network infrastructure complexities and
authorization of users across different claims systems.

Architecture
There are two following key pieces to the Windows Azure AppFabric:

1. Service Bus.

2. Access Control Service.

Windows Server AppFabric consists of hosting and caching

capabilities for on-premise applications, while Windows Azure
’ AppFabric provides cloud Service Bus and Access Control Services.

[135]

Windows Azure Platform Primer

Service Bus

The Azure Platform AppFabric Service Bus provides secure connectivity between
loosely-coupled services and applications, enabling them to navigate firewalls or

network boundaries.
Windows
Azure Platform

Service Bus

Text

XML
Graphics
Binary Data
Streaming

Exchange messages between loosely
coupled, composite applications.

Firewall

=[5

Application #2

v

) Direct Connection facilitated
Application #1 by .NET Services if that is best
connection mechanism.

Consider a customer who has deployed a three-tier solution in the Windows Azure
Platform where web-tier logic is hosted in ASP.NET, business logic is hosted as WCF
services, and relational data is in a SQL Azure database. All of these architecture
components are deployed and run in the Microsoft data center. In most cases, there
is context, business logic, and data communication that needs to flow between the
customer's on-premise systems and the Windows Azure Platform. In addition,
clients (mobile and desktop) running within on-premise deployment also may need
to receive events or process data from the cloud. In order to wire all this together
there is a lot of custom effort required. The Azure AppFabric Service Bus provides an
easy mechanism that customers can leverage to solve this problem.

The Service Bus exposes a cloud-based communication fabric, which ensures that
different systems spanning on-premise applications and the cloud can plug-in and
communicate in a secure manner. It abstracts the various listeners and services into
a unified namespace asset which makes it easy for services to be accessed using

an Internet-accessible URL irrespective of the location. The global hierarchical
namespaces are DNS and transport-independent entities.

The Service Bus can be used to fulfill the following tasks:

e Connect disparate applications across firewalls

e Connect Windows Azure applications and SQL Azure databases with
existing applications and databases

e Bridge on and off-premise applications

e Create composite applications

[136]

Chapter 6

Access Control Service

The Access Control Service helps build federated authorization into your
applications and services that extend beyond organizational boundaries.

Windows
Azure Platform

&
S
&
S
Q@*
Callers
Data Application Application or Users

In the same scenario as above, consider providing application and service access to a
set of partners. Each partner-identity system could be different and possibly running
on a different platform. There might be a need to provide access to each partner for a
set of applications or services.

The Access Control Service help solve the problem by allowing user accounts to
federate the customer's existing identity management system whether based on the
Active Directory service or other standard directory systems, and integrate with
the authorization model defined for your application or service in the cloud. It
exposes a simple declarative model of rules and claims that enable applications

to respond as if the user accounts were managed locally.

The service is a flexible, standards-based service that supports web protocols such
as REST. It also supports multiple credentials, including X.509 certificates. It is a
developer-friendly programming model based on the Microsoft NET Framework
and Windows Communication Foundation.

Provisioning model

You can provision the Azure AppFabric account and access more information from
https://appfabric.azure.com/.

You can then create a services namespace that represents the namespace for

the Service Bus and Access Control. For example, Contoso Corp might have a
services namespace called contoso-prod and the following Service Bus connection
String: sb://contoso-prod.servicebus.windows.net.

[137]

Windows Azure Platform Primer

Project "Dallas”

Microsoft Codename "Dallas" is a new information marketplace allowing
developers and information workers to easily discover, purchase, and manage
premium data subscriptions in the Windows Azure Platform. Additionally, Dallas
APIs allow developers and information workers to consume this premium content
with virtually any platform, application, or business workflow.

You can get more details on this portal from http://www.microsoft.com/
windowsazure/dallas/.

Example solution

A simple example solution of Azure components may go a long way in helping you
grasp the benefits of using the Microsoft cloud to host your application.

Scenario

Consider a training company that delivers tutorials for students using the web.

The training company is moving to the Windows Azure Platform in order to scale
the solution for a larger customer base across the globe. The frontend application

is built using ASP.NET and leverages SQL Azure to store the tutorial sessions and
results. All the tutorials and quizzes can be taken by students via a web browser. In
this lab, we will build a small portion of the lab and focus on the building blocks of
hosting the solution on Windows Azure.

Setup

A project solution AppliedArchitecture.Chapteré6.WinAzure has been created in
<Installation Directorys\Chapteré6\WindowAzure\Begin folder. You will start
building the solution using the following set of instructions. A completed solution is
also provided in the End folder.

Before beginning the lab, you must have the latest Windows
. Azure SDK installed on your development machine. Please
% visit http://www.microsoft.com/windowsazure/
L windowsazuresdk/ to download the required tools and SDK for
your environment. Also, make sure all the system requirements
and instructions to install any latest hot-fixes have been followed.

These labs have been developed using Visual Studio 2010 and the Windows Azure
Tools for Microsoft Visual Studio 1.2 (June 2010).

[138]

Chapter 6

As part of the installation, you should get the Windows Azure Cloud Services
project template, the development fabric, and the development storage fabric

on your machine. The development fabric simulates the cloud environment by
simulating a hosting environment for the web and worker roles part of the project.
From the task bar, you can start or shut down the development fabric.

If you need to host the solution on Windows Azure then you need to register on the
Windows Azure portal and have an account setup. For this lab, this is not a necessity
and you can run it on the local development fabric until step 13 as follows:

Steps

1. Launch Visual Studio.NET 2010 and create a new project. Choose the
Windows Azure Cloud Service project template installed under Cloud.

New Project l P _ S
Recent Templates [.NET Framework 4 A | Sort by: [Default Search Installed Tem O |
Installed Templates T Visual C#

.) ‘ t§ Windows Azure Cloud Service Visual C# ype: Hisuat’s
4 Visual G A project for creating a scalable
Windows application or service that runs on
Web Windows Azure.
Office 3
Cloud
Reporting
SharePoint
Silverlight
Test
WCF -
Online Templates
Marne: AppliedArchitecture.Chaptert. WinAzure
Location: C\ChapterG'Begin - Browse... |
Solution name: AppliedArchitecture.Chapter. WinAzure || Create directory for selution
[Add to source control

[139]

Windows Azure Platform Primer

2. You will then see a pop up that asks for the various .NET roles that are a
part of your project. For this lab, we will use one ASP.NET web role and
one worker role. Make the selections as shown in the following screenshot

and hit OK.
New Cloud Service Project l B
NET Frameawork 4 roles: Cloud Service Solution:
~ | Visual Basic 'Eﬂ WebRolel
' Visual C# (3 ASB.NET Web Role
%ﬂ ASP.NET Web Role cﬁ D1 WorkerRolel
Application with a Web user interface L 46§ worker Role
%ﬂ ASP.NET MVC 2 Web Role
I (o) Application with a Web user interface usi.. E] I

'? WCF Service Web Role
_{ﬁ Web Role for WCF Services E|

cih | Worker Role
L@ Background processing application

':ﬂ CGI Web Role
Web Role that hosts a FastCGI Application

~ | Visual F#

[0K | [Cancel |

3. You will see three projects as part of your solution— the first project is
used to generate the deployment package. It contains the configuration
and definition that will be used by development fabric and Windows
Azure to correctly deploy the solution. The other two projects are for
the two roles (web role and worker role).

4. Open the designer for default.aspx and create a page as shown in
the next screenshot:

[140]

Chapter 6

MY ASP.NET APPLICATION bedlomys

| MainContent (Custom).
WELCOME TO TUTORIALS ONLINE

1. What is the square root of 817 I
2. What is Sin 90 + Cos 07 I
3. If x + 3y = 10 and x - y = 2, what is the value of 'x?l

Submit
ScriptManager - Unnamedl

asp:UpdatePanel#UpdatePanell

Score:

Timer - Timerl

5. OpenDefault.aspx.cs and at the beginning, add the following set
of using statements:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.ServiceRuntime;

using Microsoft.WindowsAzure.StorageClient;

6. In the same file, add the following code:

static string connectionString;

private CloudStorageAccount csa;

private CloudQueueClient gclient;

protected void Page Load(object sender, EventArgs e)

{

connectionString =
RoleEnvironment .GetConfigurationSettingValue (
"DiagnosticsConnectionString") ;

// create a handle to the cloud storage or the developer
fabric based on the connectionString

csa = CloudStorageAccount.Parse (connectionString) ;
//get a handle to using the queue storage
gclient = csa.CreateCloudQueueClient () ;

}

protected void Buttonl Click(object sender, EventArgs e)

{

// create a queue for user answers and add the response as a
message

[141]

Windows Azure Platform Primer

CloudQueue g = gclient.GetQueueReference ("userquizinput") ;
bool g exists = g.CreateIfNotExist () ;
string quizanswers = "Ql:" + TextBoxl.Text

+ ":Q2:" + TextBox2.Text

+ ":Q03:" 4+ TextBox3.Text;

q.AddMessage (new CloudQueueMessage (quizanswers)) ;
Labell.Text = "";

}

protected void Timerl Tick (object sender, EventArgs e)

{

//Check if the worker role processed results are available in
the user output queue

CloudQueue g = gclient.GetQueueReference ("userquizoutput") ;
bool g exists = g.CreateIfNotExist () ;
CloudQueueMessage msg = g.GetMessage() ;
if (msg != null)
{
g.DeleteMessage (msg) ;
Labell.Text = "Score: " + msg.AsString + " / 3";

}

7. Now click on the WorkerRolel project and open WorkerRole.cs. At
the beginning add the following set of using statements:
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.ServiceRuntime;
using Microsoft.WindowsAzure.StorageClient;
public Hashtable evalHT = new Hashtable (4) ;

8. Modify the onstart () method to set up the contents for the hashtable.

evalHT.Add ("Q1", "9");
evalHT.Add ("Q2", "2");
evalHT.Add ("Q3", "4");

9. Inthe Run () method, add the following code:

public override void Run ()

{

string connectionString =
RoleEnvironment .GetConfigurationSettingValue (
"DiagnosticsConnectionString") ;

[142]

Chapter 6

CloudStorageAccount csa =
CloudStorageAccount . Parse (connectionString) ;

CloudQueueClient gclient = csa.CreateCloudQueueClient () ;

// queue where the user responses are stored

CloudQueue g in = gclient.GetQueueReference ("userquizinput") ;
g_in.CreateIfNotExist () ;

// queue to store the user results after evaluation

CloudQueue g out =
gclient.GetQueueReference ("userquizoutput") ;

g _out.CreateIfNotExist () ;

// will upload the user responses as a blob since the queue
messages are deleted after processing

CloudBlobClient beclient = csa.CreateCloudBlobClient () ;

CloudBlobContainer container =
bclient.GetContainerReference ("quizcontainer") ;

container.CreatelfNotExist () ;

CloudBlob blob =
container.GetBlobReference ("userresults.txt") ;

while (true)

{
CloudQueueMessage msg = ¢ in.GetMessage () ;
if (msg != null)

{

// process the results. Eval method will use a HashTable
which has the questions

// and the right answers.
string results = Eval (msg.AsString) ;
if (results != null)
{
g_out.AddMessage (new CloudQueueMessage (results)) ;

blob.UploadText (String.Format ("Received {0} at {1}",
msg.AsString, DateTime.Now.ToLongTimeString())) ;

g _in.DeleteMessage (msg) ;

}

Thread.Sleep(1000) ;

}

10. Add the logic in Eval () method to handle the user response and compute
the score.

[143]

Windows Azure Platform Primer

11. Build the project.

12. From the first project, if you double-click on the webrRolel and WorkerRolel
under Roles | Settings you will see that useDevelopmentStorage is set to

True. First, we will test the application on the development fabric.

13. Run the application and enter values in the browser window. To confirm
that the application is writing to the storage, click on the Visual Studio
Server Explorer and browse the Windows Azure Storage node. Under
the (Development) node, there should be the container that was created

in this lab. If you click on it, you should then see the userresults. txt file

that was created.

Server Explorer 1
20| % %
| Data Connections
. O4 Servers
- g4 SharePoint Connections
j‘ Windows Azure Compute
4) Windows Azure Storage
a |J (Development)
a Ty Blobs
=, quizcontainer

14. Next, let's create storage on Windows Azure and run the solution. In this

case, the application will run on your development machine and store the
results in the cloud database. Note that if you don't have a Windows Azure

account, you should skip the next set of steps.

15. Create the storage account from https://windows.azure.com/Cloud/

Provisioning/Default.aspx. Prior to this, you should have signed up for a
Windows Azure account. Create a new project or choose an existing one. Then
click on Create a new service. Choose the option to create a storage account. In

the end, your account will look something like the following screenshot:

[144]

Chapter 6

e e R T —
Ll = trps o amre o ious ingHiese. s Otterllhs shecfb-cA88 Sl gl . o Prefecticd Bl - ack BB B -
X B Windowilive . Bing B = . Whatuties Profls Ml Bhotes G 2 2 e
L Favorter | (s @ SuggenedStes =) Get More Add-one =
8 e Sanice B v [v 0 mm v Fages Saeys Teohw G
Windows Azure Platform wisdows azure sgLanwe apphabrc Marketplace " P
Binng | e 1
% Windows Azure oo @
Q INAaows Azure 0
——
o b Serviee | Summary | Bccount Help and Resources
QL Azurs Rama’s training online | Create a Service
AppFabric Starage Account
Marketplace
Storage Account Name
Select a pu e for your $10rage account This name will be used for all the sterage account endpoints, This name
mus be g
appiedarchstorage blsb.care.windews net
the
jane @ Irternet | Protected Mode Off v RN -

16. Copy the storage account name and the key. You will need to modify the
diagnostics connection string setting in Visual Studio using these values.
Refer to the instructions from step 12 onwards to modify it.

17. Build and run the application. To confirm that the application is writing to
the Windows Azure storage, click on Server Explorer and now look under
the cloud storage account. Refer to the instructions from step 13.

18. We then modify the solution to host it on Windows Azure. Go to https://
windows.azure.com/Cloud/Provisioning/Default.aspx, click on your
project and then click on Create a new service. Choose Hosting service and
give a friendly name to your service, with the publically accessible URL.

[145]

Windows Azure Platform Primer

19.

20.

21.

22.

23.

Now, you are ready to publish the solution to Windows Azure. Before doing
this, you will need to associate your solution with a certificate and upload
the certificate to the portal. This is done to ensure that the right security is in
place to access your online account. If you don't have a certificate already,
this is how it needs to be created. Right-click on the AppliedArchitecture.
Chapteré6.WinAzure project and select Publish. From Credentials, select
Add. This will bring a pop up which will look like the following screenshot:

Cloud Service Management Authentication |i|i-j

Set up your credentials to authorize Visual 5tudio to manage and deploy to your
Windows Azure account.

Help me set up my credentials

1. Create or select an existing certificate for authentication:

P

2. Copy the full path of the certificate to the clipboard, browse to the API Certificates
page of the Developer Portal and upload the certificate.

3. Copy the subscription ID for your account from the Developer Portal:

Example: 8ff7 debb-fc26-4956-9eac-22928c1205d2

MName these credentials:
WindowsAzureAccountl

Online privacy staterent Cancel

From the first drop down shown in the previous screenshot click on Create,
which creates a new certificate on your machine.

Next, click on Copy the full path of the certificate and then click on
Developer Portal, which will open a browser window. You might need
to run the browser in administrator mode.

From the developer portal, choose your project name, the correct hosted
service that was created, and then choose the Account tab on the top. Click
on Manage My API certificates. You should see an option to upload the
certificate file from local storage. Click on Browse and paste the certificate
path that was copied in the earlier step. Upload the certificate to the portal.
Then from the Account page, copy the Subscription ID to the clipboard.

Go back to the Visual Studio window and paste the subscription ID in step
three as shown in the previous screenshot and continue with the publish
process. At the end of this process, your window should look similar to
the next screenshot:

[146]

Chapter 6

Publish Cloud Service [

_) Create Service Package Only

@ Deploy your Cloud Service to Windows Azure

Hosted Service: Tutorial online - Staging)
Credentials:
Testcertificate -]

Hosted Service Slot to deploy to:

[Tutorial online - Staging v]

Storage Account to deploy through:

[TrainingStorageAccount -]

Prompt before deleting an existing deployment

Deployment Label:
AppliedArchitecture.Chapters, WinAzure - 6/19/2010 11:52:34 AM

Online privacy statement 0K | [Cancel

24. This will ensure that the solution gets to the staging area on your Windows
Azure portal. Test the staging link and see if it works fine. You can then
promote the solution from staging to production and access the friendly
URL from a browser. You should see something like the following output:

My ASP.NET APPLICATION

Home About

WELCOME TO TUTORIALS ONLINE
1. What is the square root of 817 9
2. What is Sin 90 + Cos 07 2

3.1fx + 3y = 10 and x - y = 2, what is the value of 'x'? 4

Score:3 /3

Summary

At the time of writing, it was four years since Ray Ozzie first outlined the
"services transformation" occurring within our industry how it would impact
users, developers, and IT. Ray outlined how software-plus-services would enable
customers to protect existing on-premise investments while transitioning to more
cloud-oriented architectures where it made sense.

[147]

Windows Azure Platform Primer

Since then, Microsoft has had great success with Xbox LIVE and launched a suite

of online business productivity messaging and collaboration solutions. It has also
released a public version of Office Web Apps. Now with the Windows Azure Platform,
it enables customers to take existing applications on the Microsoft stack on-premise
and deploy portions of them onto the cloud.

When deciding on the suitability of Windows Azure platform for your problem
domain, we encourage you to make use of the book's decision framework and
benefits explained in this chapter. Here is a brief summary of some of the factors you
should consider:

e DPotential cost savings (CAPEX and OPEX). For a short to medium term, cost
saving varies from customer to customer, depending on whether they have
spare capacity or not. Over the long term the majority of customers can save
both.

e Supportability of preferred development platform in the cloud. For example,
MySQL is not supported, but PHP is.

e Visual Studio usage within current environment. If the customer already uses
this, then they will benefit from the integrated .NET, Windows Azure, and
Visual Studio templates which are provided as a web download.

[148]

Simple Workflow

We have provided an overview of each of the core technologies that this book will
focus on. We will now evaluate the possible technology solutions for our first pattern
using the decision framework we defined in Chapter 1, Solution Decision Framework.

Use case

Sam Maccoll Financial is a financial services organization based in Perth, Scotland.
They are focused on providing quality individuals and corporate financial services
with a special focus on individual retirement planning. They employ over 3,000
employees in Scotland. The majority of their branches are in Scotland, but they are
slowly expanding into England and parts of Ireland and Wales.

The company's focus on long term buy-and-hold investments has meant that their
retirement and investment products fared comparatively well in the sub-prime
downturn due to limited exposure. This has meant that they have grown rapidly
over the last 18 months and anticipate further growth. They found that many
customers take multiple products from the Sam Maccoll portfolio; they want to
encourage this as it increases "stickiness".

They have had online banking available for checking and savings account products
since their inception, but they now want to add their other products to enable self-
service. Users increasingly expect an available, self-service portal that provides

a consolidated view across all products. Their current Internet Bank application

is coded in ASP and calls ASMX web services from the application tier to access
savings and checking account information. The current portal does not provide a
summary view for checking, savings, and retirement account information as users
have to log into a separate portal to access this information.

Simple Workflow

Recently, customer complaints have risen and the company wants to take actions

to provide the best possible customer experience. They want to expand and

provide a consistent dashboard for their checking, savings, and retirement account
information. They would like a platform that provides extensibility; specifically,

this requirement is the ability to add new products and accounts to the dashboard
with minimal code changes. A flexible solution will enable the company to provide a
better portal, which in turn will enable customers to get a fast and real-time view of
their financial products, thereby improving customer satisfaction.

Sam Maccoll's major systems run on the Windows platform and have a web service
facade to which they can connect. As a part of this project, they will be upgrading
these to WCF. They do have a sizeable number of .NET developers and own some of
Microsoft's major server platforms like SharePoint server and Exchange Server. The
downstream systems that hold financial information are standardized on SQL Server
backend databases and have the same identical security model; for example, restrict
each customer to have access only to their own data and provide internal employees
with minimum possible information necessary to perform their job.

Sam Maccoll has adopted a "buy versus build" strategy where they prefer using
existing, well-tested frameworks and products with extensibility points instead of
custom-building their own solutions from the ground up. They try to build their
solutions in a very loosely coupled way, using a common open standard wherever
possible to minimize development effort and the ongoing supportability burden that
comes from maintaining custom code. This is relevant in this case as it is expected that
the Internet Bank will need to expand and add additional systems integration as the
number of self-service products increases. As a first step, the Sam Maccoll architecture
team has asked to see a critical comparison of different architectures against their
requirements. In the recommended approach, they would like to see a proof of
concept, which demonstrates a sample dashboard with an end-to-end implementation.

Key requirements

The following are key requirements for a new software solution:
e A single dashboard view for all financial service products that
customers have.

¢ An online banking application that is easier to maintain and requires less
custom code.

[150]

Chapter 7

Additional facts

There are some additional details gathered after the initial use case was shared with
the technical team. The requirements derived from this include:

1.

The frontend does not have to know where the information comes from; it
should only contact a single point.

All calls should be made in a service-oriented fashion.

The system needs to be able to scale to more than one million users over a 24
hour period, which equates to approximately 12 users per second.

During peak usage, which occurs at the beginning of a day and during the
evening, the maximum number of users is 25 per second.

Response time is critical for the dashboard page as this is the page used by
90 percent of customers every day. They would like 95 percent of users to
receive a response within three seconds and 99 percent to receive a response
within five seconds.

The bank would like to have a consistent workflow platform that supports
synchronous, asynchronous, short, and long running workflows.

The system must provide tracking and monitoring capabilities.
The system must provide exception management at every stage.

Initially, the system must address the dashboard requirement, but must
provide the capabilities necessary to add additional services to the Internet
Bank including the following services:

o

Handling transactional workflows. This is a requirement for
Maccoll Bank to implement workflows requiring guaranteed
once-only delivery (for example, payment workflows).

Long-running asynchronous workflows. The bank is
considering implementing an end-to-end mortgage
application; in the future, many of the transactions required
in this type of process can be long running and may require
human intervention/approval. The system should be able to
support these capabilities.

The system must be capable of providing real-time updates if
payments are implemented on the system.

[151]

Simple Workflow

Pattern description

In this scenario, we need to receive a single inbound request and then, based on the
content in that request call, several backend services gather information about the
customer and then correlate the responses, aggregate them, and finally send them in
a single response message. The web application will then display their personalized
information to them. The logical choice is to use an aggregator, which is responsible
for the collection of requests, performing transformations (if they are required),

and returning the response. All of this also needs to be done in the shortest possible
time, as users are not willing to wait more than three to five seconds for this type of
information. This pattern is commonly referred to as a Scatter-Gather pattern.

In the Scatter-Gather pattern, information is broadcast to multiple recipients then the
responses are re-aggregated back into a single message. An aggregator component is
responsible for receiving the initial request message, broadcasting in an appropriate
format to all the target systems, and finally, combining the results of these individual
but related messages and returning them as a single response so they can be
processed as a whole. Typically in this pattern, the aggregator is implemented as a
separate tier so it can abstract the logic necessary to maintain the overall message
flow and handle any exceptions from any of the systems queried.

This pattern is particularly successful if you follow service-oriented concepts and
require a loosely-coupled, scalable aggregator which can be reused by different
applications across your organization. As the calling application only calls a single
method on the aggregator, the source of the information and how it is extracted is
abstracted from that tier. This enables additional targets or sources of information to
be added with no update required on the client side. The following image depicts a
high-level representation of what this could look like for Maccoll bank. As is evident
from the diagram, separating the aggregator from the consumer of the aggregator
(the Internet Bank) creates a layer of abstraction between them and the endpoints,

if properly designed. It also means that the consumer need not worry about
implementing any logic that is specific to the interface that the backend systems
provide. The aggregator in this example makes calls to the three target systems

in parallel.

[152]

Chapter 7

Get
Account Seni Checking
Info E erc_et Account
Request ndpoin
Get Savings Account o
Info P
User > >)
Logs In Service Savings
& — Endpoint
_ et g,
- T Ae, Ire,
Display |nternet Bank Return Aggregator COup; /,)75"71
dashboard Aggregated)
Response

Service
Endpoint

TN
Q=
© Retirement
Account

Factors affecting implementation details

As we have alluded to so far in this chapter, there are many key factors that need
to be taken into consideration when implementing this pattern. Here I am going to
outline the ones that I consider when evaluating solutions for this type of problem
with customers. The factors that I consider are as follows:

1.

Completeness: This determines when are we ready to publish the
aggregated response message. Whether returning of partial data is useful

or not is perhaps the most important factor to consider when implementing
this pattern. This will depend on the scenario and the client's requirements.
For example, in a price-comparison engine that queries hundreds of sources,
partial data is likely to be valuable and relevant. In cases where results from
multiple sources need to be merged to one coherent response, partial data
may not be useful.

Aggregation strategy: The strategy you use depends primarily on the
completeness criteria and SLAs that the aggregator needs to meet. The two
most common scenarios I have seen are: Timeout, where the aggregator

waits for a specified length of time for responses and then either returns the
response or an exception to the client: and Wait for all, which is used when
an incomplete order is not meaningful. Typically, it is important that the
aggregator knows the expected number of responses and has appropriate
exception handling capabilities. An exception to this is where the aggregation
concludes based on some external event; for example, the end of a trading day
may conclude the aggregation of the value of all stock trades in that period.

[153]

Simple Workflow

3.

Aggregation algorithm: Typically, there will be a requirement to sort or
condense the data in some way. Factors affecting this include the size of the
aggregated response that is to be returned and whether the user is interested
in all of the responses or a small subset of the responses. One extreme would
be if there is a single best answer; for example, in an auction site the seller
may only be interested in the highest confirmed bid. If a larger amount of
data is being returned, it may need to be sorted by one or more criteria;
hotels are a good example of this. Factors for consideration include price,
facilities, and distance from local amenities. Whether the data should be
condensed depends on the type of data being returned, numeric data is best
suited for this; for example, when analyzing sales data it is often the volume
and average order value that is of interest. If you decide to condense the data
and only return a subset, you should consider whether you wish to archive
the complete selected data for later evaluation.

Exception handling and appropriate timeout: How this is implemented
depends on the aggregation strategy algorithm and completeness criteria

for your system. Even in a "wait for all" aggregation strategy, it is unlikely
that waiting indefinitely is the desired behavior, especially in a synchronous
request-response scenario. A timeout and exception handlers should be
implemented so that the aggregator can handle all possible scenarios
including one of the endpoints being unavailable; for example, due to
system outage. If an exception occurs, it must return an appropriate response
message to the client and you should also log this in the appropriate log.

Monitoring and tracing: This is distinct from exception handling, providing
the ability to monitor and trace the aggregator. If implemented correctly, this
can be used in a number of ways, such as providing average processing times
for the aggregator over a 24 hour period, or to enable system administrators
to determine the progress of in-process operations. This can be provided by
the following platforms — Windows Server AppFabric provides monitoring
capabilities, so does BizTalk Server, which enhances this further with the
option of implementing Business Activity Monitoring (BAM).

Type of response to return (data format): How you represent the data to
consumers is an important consideration. Using WCF ensures that you make
appropriate use of message contracts, data contracts, and the bindings it
provides so that you get the right trade-off between performance, client-side
operations that are available on the data set, and interoperability.

[154]

Chapter 7

10.

Number of calls versus expected usage: Returning smaller data sets typically
places less load on the backend systems that are queried, requires smaller
payload size, less CPU overhead, and can provide better performance

as measured by response time. However, if implementing this approach
requires that each user now needs to make multiple calls to the aggregator
component's operations, this may actually place more overhead on the
system and provide a poorer perceived performance. Consider the scenario
where someone logs into their online bank, views their summary page of all
account balances, and then looks at the detailed statement of one account,

for example, their credit card account. There are two succinct operations that
are performed here. Whether all this information should be returned by the
aggregator in a single response or requires two calls, is an important design
decision to make. Typically, this depends on the normal usage of the system
and the customer requirements. In this case, I would typically ask you to see
historical usage or trending data if it was available. One large Internet Bank
that I worked with had a majority of their logged-in customers who would
examine only the dashboard view and then log out. By only returning the
condensed summary data, we were able to minimize the load on the backend
systems and improve response time.

Correlation: This is handled implicitly in the platform; for example, if you
are calling synchronous two-way services using a request-response port in
BizTalk, you will need to define this yourself based on Message ID or some
other unique value.

Processing — parallel or sequential: Unless sequential processing is a typical
requirement, an aggregator should perform all the back end calls in parallel
to minimize processing time and latency.

Durability of in-flight data: You should determine whether the data is
transient or transactional. Normally in a Scatter-Gather pattern, data is
transient; for example, if the user does not receive a response they will simply
retry. This pattern is intended to service, primarily, read requests from
multiple systems. If you are performing a transaction such as a payment,

you might want to consider implementing this as a separate component and
requiring the client to call this. The Internet Bank I mentioned previously
opted to take this approach. They implemented a single orchestration as their
Scatter-Gather aggregator, and then had separate messaging components if
any stock trade or funds transfer was initialized. If transactional processing
semantics are required, you should determine whether the platform supports
this; for example, the BizTalk orchestration engine which guarantees no loss
of messages.

[155]

Simple Workflow

Candidate architectures

We have two viable choices when looking to implement a Scatter-Gather pattern
using an aggregator. One of them is the new Windows Server AppFabric release and
the other is the BizTalk orchestration engine.

Candidate architecture #1-BizTalk Server

BizTalk is Microsoft's Enterprise Integration tool and has a robust messaging and
workflow (orchestration) engine. Maccoll Bank is already, largely a Microsoft-based
technology firm. BizTalk provides full and complete integration with Microsoft and
other heterogeneous technology through its adapter framework. For the purpose of
this analysis, the assumption will be that BizTalk is not already in use within

the organization.

We can take a look at the decision framework as it relates to BizTalk to see if a
BizTalk-based solution is a fit for this use case.

Solution design aspects

The system needs to be capable of processing one million messages over a 24 hour
period. The peak load represents 25 messages per second. When dealing with
requirements like this, it is always good to have a margin of safety in terms of
throughput ceiling. Therefore, this system will require a robust and proven host,
which can scale to meet these throughput requirements and beyond. To implement
this pattern, we would require use of the BizTalk orchestration Engine, which can
easily be used for service aggregation and provide support for correlation. BizTalk
also has the ability to expose an orchestration through a SOAP or WCF endpoint.
Each call to the backend services could be implemented in an inline fashion using a
.NET helper class to instantiate a WCF channel factory or call the service and retrieve
the response. The more traditional approach is to use the logical request/response
ports that BizTalk server provides to do this. Making the calls in an inline fashion
may be beneficial in this scenario as it reduces the number of persistence points
required, and also the round trips via the MessageBox.

From a performance perspective, recent benchmarks by the BizTalk Customer Advisory
Team demonstrated that BizTalk can scale to process tens of millions of messages per
day well-tuned mid-tier hardware. Specifically, for two-way calls they have obtained
over 60 messages per second, for a Scatter-Gather pattern that made five backend
calls. These tests were performed on mid-tier Enterprise hardware, which is available
to the customer. This gives us sufficient margin of safety as it is more than double
our peak requirements. BizTalk Server also provides a comprehensive monitoring
infrastructure with out-of-the-box built-in capabilities and the Business Activity
Monitoring framework, which can be used to provide a customized business-centric
monitoring solution.

[156]

Chapter 7

Solution delivery aspects

Sam Maccoll Financial is predominantly a Microsoft technology based organization.
The assumption here is that they do not already have BizTalk running, therefore if the
decision was made to use this particular product, they would also have to bear the
additional infrastructure and solution support necessary to support a system like this.

Given that they have already made extensive use of other Microsoft technologies,
they have some of the platform skills required. However, BizTalk is quite a
complicated product to understand and maintain, therefore they would need to
invest in training some key staff to establish one or more subject matter experts
(SMESs) within their architect, development, and operations teams. Given that they
currently do not have the in-house expertise and the amount of money that would be
required for training, unless they have planned broader needs and uses of BizTalk, it
would be a negative factor in this use case.

Solution operations aspects

As stated, Sam Maccoll Financial does not have an existing BizTalk implementation.
Therefore, they would need to invest in training their operational team, putting
processes in place to support BizTalk as well as the necessary infrastructure.
Supporting BizTalk requires a rather unique set of skills.

Solution operations are a negative factor in using BizTalk for this use case.

Organizational aspects

Sam Maccoll Financial does not already have an existing BizTalk platform that they
can leverage and they do not have the experience in running and maintaining this
system. Therefore this is a negative factor in using BizTalk for this use case.

Solution evaluation

Design Delivery Operations Organization

[157]

Simple Workflow

Candidate architecture #2-Windows Server
AppFabric

Windows Server AppFabric provides a rich host for WCF and WF applications. The
AppFabric host provides supporting services, tools, and diagnostics to make hosting
and managing services simpler. An AppFabric solution would leverage the existing
capabilities that Sam Maccoll has in .NET. WCF is something they are already
planning to use for their backend services; WF is capable of providing the durable
workflow tier that they need in order to implement the aggregator.

The aggregator could be implemented as a workflow service. In .NET 4.0, workflow
services have been expanded to provide more features and easier integration with
WCF endpoints. WCF supports several out-of-the-box bindings and additional
bindings are available through several sources, including the BizTalk adapter pack.
Standardizing on WCF would therefore allow them to communicate with their existing
backend services (which will move to a WCF interface) and also add connectivity to
other systems that they want to aggregate in the future. Adding additional services
would be done in a visual drag-and-drop design environment, minimizing the
development time. Any required message transformation could be done in custom
activities. The Parallel Actions shape provides the capabilities to call systems in

a synchronous manner and a timeout can be implemented within the shape to
enforce SLAs for maximum client-wait duration. In addition to this, persistence is
provided in the .NET 4.0 Framework through the SQL Workflow Instance Store. This
allows durability requirements to be met if required at a later date, for example, if
transactional data such as payments is to be processed by AppFabric.

Now, we will look at the decision framework and evaluate AppFabric as an
implementation fit for this use case.

Solution design aspects
As stated previously, the throughput requirements equate to a peak load of 25
messages per second. Implementing this pattern would require a single aggregator
workflow service that must fulfill the following tasks:

e Expose a request-response endpoint to the client

e (Call the backend systems, aggregate the responses

e Perform any necessary translation

e Implement timeouts to ensure that client SLAs were met

¢ Send the aggregated responses back to the original client

[158]

Chapter 7

The backend services that need to be integrated are WCF-based; by adding service
references to these endpoints the logic is automatically encapsulated into a WF
activity, which can be used within the aggregator workflow. Adding service
references is a straightforward process and means that if additional WCF endpoints
need to be added, it can be done quickly and easily. WF also provides the ability

to write code-based activities that can also be used to encapsulate any specific

code, such as code transformation. Any code-based activities can be defined in a
separate assembly, which would allow this functionality to be reused across different
workflows and applications.

By utilizing AppFabric as a host, one can take advantage of the scale-out capabilities
that it provides. This would enable Sam Maccoll Financial to scale-out their
aggregator tier if it became necessary due to the throughput requirements.

Solution delivery aspects

Sam Maccoll Financial develops complex solutions on .NET and they will be moving
their backend services to WCF as a part of their new Internet Bank project. They
already have a large installed base of Windows Server 2008 and have gradually, over
the last six months, begun rolling out Windows Server 2008 R2. AppFabric, available
as a free download, is an extension on top of IIS/WAS and the development team
already has extensive experience in developing web solutions on the .NET platform.

Workflow services will reduce the coding effort required to build this application as
the aggregator can be implemented without lots of custom code. This will speed up
development and reduce testing time compared to what it would be if they were to

fully customize all this logic and hosting capability in C#.

Solution operations aspects

Sam Maccoll Financial already has an existing Windows Server 2008 and R2
infrastructure on which they can deploy AppFabric. Supporting workflow systems
like AppFabric and BizTalk are paradigm shifts for many operations staff so training
will be required.

Organizational aspects

As stated, Sam Maccoll Financial already has an existing Windows infrastructure
that can support AppFabric. While this is a new technology and will require some
training, it is not expected that this will be a significant burden. Therefore, AppFabric
represents a good fit for the organization.

[159]

Simple Workflow

Solution evaluation

Design Delivery Operations Organization

Architecture selection

Let us look at how these candidate architecture technologies stack up against each
other. We can break down the primary benefits and risks of each choice in the
following manner:

BizTalk Server
Benefits Risks
e Many out-of-box adapters, which e Perceived large server footprint

means connecting to the majority of

. .) e Requirements can be met for free
systems is only a configuration task

with AppFabric; therefore, cost is

e Provides durability throughout with prohibitive as the customer will
the MessageBox not exploit all the capabilities
e Enterprise-class hosting that the product provides
infrastructure
AppFabric
Benefits Risks
o Lightweight, high throughput e New product, which means
feature, rich host for .NET 4 accepting inevitable immaturity
Windows Workflow and likely changes in tooling
e Debugging, monitoring, and and Fapabllltles in subsequent
versions

exception handling capabilities
e Provides load balancing capabilities

e Implicit and explicit correlation
capabilities

e Provides persistence through
workflow persistence provider

[160]

Chapter 7

There are a number of key benefits of AppFabric in this scenario. It meets all the
requirements with no additional cost over and above Windows license fees. It
provides support for the latest version of .NET 4.0 Windows Workflow, which is
not provided today in the current BizTalk Server 2010 release. BizTalk provides a
lot of additional features, which are not necessarily required in this scenario, where
the priority is on processing transient data. These include BAM, the Business Rules
Engine, and the host of adapters it provides. These are valuable features, but at
present this scenario does not require them.

Therefore, in evaluating these options against the problem scenario, Windows
Server AppFabric is the most appropriate choice. Although both BizTalk Server and
AppFabric meet the necessary solution and design aspects, the organization already
has the infrastructure necessary to support AppFabric with no additional licensing
costs. As they have no firm plans to use BizTalk and do not require any of the
additional functionality, such as BAM or complex mapping, AppFabric becomes the
prominent and chosen candidate.

Building the solution

For this solution demonstration, we will implement three WCF backend services
representing the checking, payment, and retirement account systems; these services
will have data contracts, but will be "stubbed out". We will then implement a workflow
service, which will be our aggregator, and also a sample ASP.NET page which will
represent our web tier. A key aspect of this solution architecture is to follow service-
oriented principles and keep our design as loosely coupled as possible. Within the
organization, passing data by a data contract is acceptable; if we were interfacing with
external systems we would implement message transformation.

e Internet Bank-ASP.NET page

e Aggregator-Windows Server AppFabric workflow
e Checking Account-WCEF service

¢ Savings Account-WCF service

e Retirement Account-WCEF service

[161]

Simple Workflow

The following diagram outlines the main components of the solution:

Get
Account Seni Checking
Info £ eru:_et Account
Request napoin
Get Savings Account oy
Info
User > ©
Logs In Service
& Endpoint
& -
;i Ae, Ire,
Display nternet Bank ~ Return Aggregator COuny /,:"an
dashboard Aggregated o
Response

Service
Endpoint

AN @
Qr=——7——+
© Retirement
Account

Implementing this solution demonstration will allow us to evaluate AppFabric's
capabilities to implement the Scatter-Gather pattern.

For simplicity purposes, we will not implement a timeout in this workflow.
s Chapter 17, Low Latency Request-Reply, covers how to implement this.

Setup

Initial setup is needed to simulate the backend services. For demo purposes, the
backend checking, saving, and retirement account services will be implemented as
separate projects, each containing a single WCF service contract with an arbitrary
operation implementation to return an object representing the account. A separate
data contracts project has been used to define the Customer and Account classes

that we will use to exchange data between different parts of the application. The
DataContract attribute of these classes allows WCEF to serialize the objects and pass
them efficiently between different tiers. It is a good practice to deploy common data
contracts and types to separate assemblies so that they can be reused within different
applications in an organization.

[162]

Chapter 7

This project also contains an empty aggregator project, which will host our workflow
service, and a web-tier project, which will host our ASP.NET page. In this solution
demonstration, you will deploy the backend WCEF services that have been provided
and then implement a Workflow service that serves as our aggregator. Finally, we
will create an ASP.NET page which will consume our aggregator service.

First, let's begin with the setup. Before starting, you will need to ensure you have the
following software on your machine:

1. Visual Studio 2010 (the code that I am writing was created on the RTM
version of this software). For a list of Visual Studio prerequisites see:
http://msdn.microsoft.com/en-us/library/77z6b8tz (VS.100) .aspx.

2. Windows Server AppFabric and required components:

° SQL Server 2008 /R2 —any edition including Express is
supported (at time of writing)

° Microsoft NET Framework

3. Review the release notes provided. If you have previously installed a beta
version of the framework or AppFabric, there are specific steps that
need to be followed.

4. Compatible operating system for Windows Server AppFabric and
Visual Studio 2010.

5. The Visual Studio IIS deployment tools require that the IIS 6.0 Manager
Compatibility feature is enabled. Specifically, the IIS 6.0 Management
consoles, IIS metabase, and IIS 6.0 configuration compatibility sub-features
need to be enabled. You will also need to run Visual Studio 2010 as an
administrator for this feature to work.

6. Launch Visual Studio .NET 2010 and open the Chapter7.SamMaccollBank.
slninthe <Installation Directory>\Chapter7\Begin\Chapter7.
SamMaccollBank\ folder. This contains the projects to help get started with
building the solution. You should see the following project structure :

Solution Explorer

| 2] e

; Selution 'Chapter?.SamMacceollBank' (6 projects)

: I& Chapter7.SamMaccollBank.Aggregator
;ﬂ Chapter?.5amMaccollBank.CheckingAccountService
_EE Chapter?.5amMaccollBank.DataContracts
:& Chapterf.5amMaccollBank.RetirementAccountService
::% Chapter?.5amMaccollBank.SavingAccountService
;ﬂ Chapter? 5amMaccollBank.WebTier

[163]

Simple Workflow

7. Now you will build and publish each of the following projects:

° Chapter7.SamMaccollBank.CheckingAccountService

° Chapter7.SamMaccollBank.RetirementAccountService

° Chapter7.SamMaccollBank.SavingAccountService

8. Let's start with the SamMaccollBank.CheckingAccountService project first
and select Publish. You will see a screen similar to the following screenshot:

9. Note that the publishing settings that are set up are as follows:

o

Target location is a virtual directory http://
localhost/<SubProjectNames>. So for this project it is
http://localhost/CheckingAccountService.

© The default physical location of the virtual directory is
configured to C: \inetpub\wwwroot\<SubProjectNames.
You need to change these settings by editing the deployment
configuration, if you wish to different publishing
configuration.

10. Click on Publish and then repeat this process for the chapter7.
SamMaccollBank.RetirementAccountService and Chapter?7.
SamMaccollBank.SavingAccountService projects.

11. When you now open IIS Manager you should see a screen similar to the
following screenshot:

[164]

http://localhost/<SubProjectName

Chapter 7

12. To verify that all services have been installed correctly using the appropriate
Application Pools and are running the right version of the framework
(should be 4.0), click on Default Web Site. Then in the main window
under AppFabric, double-click on Services. This is shown in the following

screenshot:

13. In the screen that is displayed, you should see three services as shown in the

following screenshot:

Filter: - Go + g Show All | Group by: No Grouping =
Service Name ’ Application Mame Service Virtual Path Site Mame Application Pool Managed Runtime...
£ Chapter].SamMaccollBank.SavingAccountServi... SavingAccountSer... /SavingAccountSe.. Default Web Site ASP.NET v4.0 wd 030319
| Chapter7.5amMaccellBank.RetirementAccount.. Retirementiccou.. /RetirementAccou.. Default Web Site ASP.NET w40 wi.0.30319
3% Chapter7.5amMaccellBank.CheckingAccountSe.. Checkingfccount.. /CheckingAccoun.. Default Web Site ASP.NET v4.0 v.0.30319

14. We will now use the WCFTestClient . exe tool to test RetirementAccount
WCFTestClient .exe; by default, is included in the following directory with

Visual Studio 2010:

C:\Program Files (x86)\Microsoft Visual Studio 10.0\

Common7\IDE\

[165]

Simple Workflow

15. Start WCFTestClient.exe. In the window that appears, right-click on My

Service Projects and select Add Service. When prompted for the endpoint,
enter the following link and click on OK:

http://localhost/RetirementAccountService/RetirementAccount.sve

16. This should add the RetirementAccountService (the tool references the
interface which is implemented). Click on the GetRetirementAccount ()
operation and then enter a customer's details. If you enter New York as the
city name, the CurrentBalance that is returned will be significantly higher
(as per our stub). The following screenshot illustrates this:

&%) WCF Test Client =NREN X

File Tools Help

B--ijj My Service Projects GetRetirement Account (2)

BQ http ./ Aocalhost/Retirement Account Servic
=] o"J IRetirement Account (BasicHttpBinding| || Request
- =kg GetRetirement Accourt ()

Mame Value Type

4 customer Chapter?.SamMaccollBank Datal Chapter7.SamMaccol Bank Datal »
Address1 {nully System. String
Address2 {nully System. String L
City Mew York System .String T
Customer|D {rully System.String
FirstName {rully System.String
LastMame {rully System. String -

Response [Stert anew proxy ‘

Name Value Type

4 Chapter7 SamMaccol Bank . DataCort
Account|D "Retirement_" System.String
Account Type "retirement” System.String
BranchMame "Seattle" System. String
CurertBalance "s2 000.000.00" System.String
Customer|D {nully MullObject

< [T = } ||| Fomatted |XML |
Service invocation completed.

17.

If the operation of the retirement account service is successful, verify the
checking and savings services using the same techniques. Here are the
endpoints you'll need to add as references in the WCF Test Client (assuming
default configuration):

http://localhost/CheckingAccountService/CheckingAccount.sve

http://localhost/SavingAccountService/SavingAccount.sve

[166]

http://localhost/CheckingAccountService/CheckingAccount.svc

Chapter 7

18. One thing to note if you view the Endpoints for these services

(one of the AppFabric extensions available in IIS Manager) —you

will see that the endpoints that are exposed (basicHttpBinding,
serviceMetadataHttpGetBinding, and netNamedPipeBinding) are all
default bindings. This is a new feature of WCF 4.0; in previous versions, an
endpoint must be specified in the web. config file on any deployment with
the new framework. If there are no endpoints present, defaults are created. In
a production scenario, we would certainly specify our own, but the defaults
will satisfy our demonstration purposes.

Building the service aggregator workflow

service

So you have successfully deployed the backend WCF services and utilized the WCF
Test Client tool to test and verify the functionality of each of these. We will now
implement the service aggregator workflow service.

1.

Launch Visual Studio.NET 2010 and open the Chapter7.SamMaccollBank.
sln solution in the <Installation Directorys>\Chapter7\Begin)\
Chapter7.SamMaccollBank\ directory.

Expand and open the Chapter?7.SamMaccollBank.Aggregator project. You
will see there is a placeholder workflow service servicel.xamlx. Right-click
and rename it to AccountAggregator.xamlx.

[167]

Simple Workflow

3. Now right-click on AccountAggregator.xamlx, select View Code, and
update the class name from Servicel to AccountAggregator as shown in
the following screenshot:

AccountAggregatorxamlx ¢ QUGG SavingAccount.svc ISavingAccount.cs CheckingAccou|

="AccountAggregator LAccountAggregator

Was originally Servicel

-l<WorkflowService ConfigurationNama

4. Right-click on References for the Chapter7.SamMaccollBank.Aggregator
project and add a reference to Chapter7.SamMaccollBank.DataContracts.
This will allow you use the data contracts defined within this project when
exchanging data with the backend WCF services.

5. Now you need to add a service reference to each of our backend WCF
services. Right-click on the Chapter7.SamMaccollBank.Aggregator
project and select Add Service Reference. The address should be http://
localhost/CheckingAccountService/CheckingAccount . sve and the
namespace should be CheckingAccountService. Your screen should look
similar to the following screenshot. Click on OK to add the reference.

Add Service Reference l ? |

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.

Address:

- Discover |+

Services: Operations:

(& 4] Checkingfccount W GetCheckingAccount
57 ICheckingAccount

1 service(s) found at address "http://lecalhost/CheckingAccountService/CheckingAccount.sve'.

MNamespace:

CheckingAccountService|

o) []

[168]

Chapter 7

6. Repeat the previous process, adding service references for the retirement and

savings account services using the following details:

Service Namespace

Retirement http://localhost/ RetirementAccountService
retirementaccountservice/
retirementaccount.svc

Savings http://localhost/ SavingAccountService

SavingAccountService/

SavingAccount.svc

7. Once you have added these service references and you have rebuilt the
project, open the AccountAggregator.xamlx workflow. In the toolbox, you
should see three new custom activities, which have been generated and can
be used to call the backend services.

Toolbox > 1 X
4 Chapter/.5amMaccollBank.Aggregator.Retir...
ke Pointer

21 GetRetirementAccount

4 Chapter/.SamMaccollBank.Aggregator.Savin...
k Pointer
L GetSavingAccount

4 Chapter?.SamMaccollBank.Aggregator.Chec...
k Pointer

1 GetCheckingfccount

8. Now we will implement the required logic for the Accountaggregator.
xamlx workflow. Within the workflow, click on the Imports tab and enter the

Chapter7.SamMaccollBank.DataContracts namespace.

9. Now drag-and-drop a Sequence shape onto the empty workflow space.
Change the display name from Sequence to AccountAggregatorScope.

[169]

Simple Workflow

10.

Our service will receive an object of type Customer and will return a sorted
dictionary of type <string, Account >. Because all objects are modeled using
our common base class Account, we will use a single instance of the systen.
Collections.Generic.SortedDictionary class to return the aggregated
account information to the consumer of the service. To create these two
objects, click on the AccountAggregatorscope and then click on the
Variables tab and create the following two objects. Note that to create both
of these objects, you will need to select Browse for type... when selecting the
variable type.

Name

Variable Type Scope Default

currentCustomer Customer AccountAggregator

Scope
(Browse

Chapter7.
SamMaccollBank.
DataContracts to
select).

accountDictionary Dictionary AccountAggregator New

<String, Scope Dictionary
Account> (Of String,

Account)
(Type Dictionary

in the Type

Name to select

the System.
Collections.
Generic.
Dictionary class).

11.

12.

We will also need variables for the request and response messages to the
three backend services that the account aggregator is consuming. The types
were already created for us when we added the service reference. By clicking
on Browse for type ..., you can see them under:

Chapter7.SamMaccollBank.Aggregator.CheckingAccountService
Chapter7.SamMaccollBank.Aggregator.RetirementAccountService

Chapter7.SamMaccollBank.Aggregator.SavingAccountService

For each of these, there is a request message type which is of the format
<OperationName>Request and a response message type with the format
<OperationName>Response. A sub-set of them is shown in the
following screenshot:

[170]

Chapter 7

Browse and Select a .Net Type

Type Name: Chapter7.SamMaccollBank.Aggregator.CheckingAccountService.GetCheckingAccountRequest

4 <Current projects
4 Chapter7.SamMaccollBank.Aggregator [1.0.0.0]
4 Chapter?.SamMaccollBank. Aggregator.CheckingAccountService

GetCheckingAccountResponse

ICheckingAccount
Chapter7.SamMaccollBank. Aggregator.CheckingAccountService Activities
Chapter?.5amMaccollBank. Aggregator.RetirementAccountService
Chapter7.SamMaccollBank. Aggregator.RetirementAccountService Activities
Chapter?.5amMaccollBank. Aggregator.SavingAccountbervice
Chapter7.SamMaccollBank. Aggregator.SavingAccountService Activities

13. As we have a project reference and access to the data contracts assembly,
our generated classes use these types. This enables us to pass the
currentCustomer object to each of the backend service-request operations
as an input variable. This is one of the advantages of having a shared data
contracts assembly. We can also create some variables of type Account to
represent the responses. Now create the following variables, by clicking on the
AccountAggregatorScope first:

Name Variable Type Scope Default
checkingResponse Account AccountAggregatorScope
savingResponse Account AccountAggregatorScope
retirementResponse Account AccountAggregatorScope

14. Your screen should now look like the following screenshot:

I_g AccountAggregatorScope

Drop activity here

MName Variable type Scope Default

currentCustomer Customer AccountAggregatorscope Enter a VB expression
accountDictionary Dictionary<5tring,Account> AccountiggregatorScope Enter a VB expression
checkingResponse Account AccountAggregatorScope Enter a VB expression
savingResponse Account AccountAggregatoricope Enter a VB expression
retirementResponse Account AccountAggregatorbcope Enter a VB expression

[171]

Simple Workflow

15. Now add a Parallel shape inside the AccountAggregatorsScope and change
its display name to Aggregate Call.

16. Within the Aggregate Call shape, add three sequence shapes, which should
be side-by-side. From left to right, call them Checking Account, Saving
Account, and Retirement Account respectively.

17. Within the Checking Account shape, add a GetCheckingAccount activity
from the toolbox.

18. You now need to define the input parameters. Click on the
GetCheckingAccount activity you just added. In the Properties window
you will see a couple of parameters that need to be configured including
Customer, which allows you to specify the input object for this parameter.
GetCheckingAccountResult allows you to specify where the result of
this service operation call will be stored. We will use the variables that we
defined earlier. Configure them as shown in the following table:

Name Variable Type
Customer currentCustomer
GetCheckingAccountResults checkingResponse

19. This should look like the next screenshot:

Properties * 3 X
SamMaccaollBank.Aggregator.CheckingAccountService Activities.GetCheckingAccount
=41 Search: Clear
B Misc
custamer currentCustomer |:|
DisplayMName GetCheckingAccount
EndpointCenfigurationMName BasicHttpBinding_ICheckingAccount
GetCheckingAccountResult checkingResponse |:|

20. Below the GetCheckingAccount activity, add an InvokeMethod activity and
name it Add Checking to Dictionary. Configure the properties as shown in
the next table. Note that to configure the parameters you will need to click
on the ellipsis button.

Property Value

TargetObject accountDictionary
MethodName Add

Parameters

[172]

Chapter 7

Direction Type Value
In String checking
In Account checkingResponse

21. Within the Saving Account shape add a GetsavingAccount activity from the
toolbox.

22. You now need to define the input parameters. Click on the
GetSavingAccount activity you just added. In the Properties window, you
will see a couple of parameters that need to be configured. Customer allows
you to specify the input object for this parameter. Get SavingAccountResult
allows you to specify where the result of this service operation call will be
stored. We will use the variables that we defined earlier. Configure them as
shown in the table:

Name Variable Type
Customer currentCustomer
GetSavingAccountResults savingResponse

23. Below the GetSavingAccount activity add an InvokeMethod activity and
name it as Add Saving to Dictionary. Configure the properties as shown in
the table. Note that to configure the parameters you will need to click on
the ellipsis button.

Property Value
TargetObject accountDictionary
MethodName Add
Parameters
Direction Type Value
In String saving
In Account savingResponse
24. Within the Retirement Account shape add a GetRetirementAccount activity

from the toolbox.

[173]

Simple Workflow

25. You now need to define the input parameters. Click on the
GetRetirementAccount activity you just added. In the Properties window
you will see a couple of parameters that need to be configured including
Customer, which allows you to specify the input object for this parameter.
GetRetirementAccountResult allows you to specify where the result of
this service operation call will be stored. We will use the variables that we
defined earlier. Configure them as shown in the following table:

Name

Variable Type

Customer

GetRetirementAccountResults

currentCustomer

retirementResponse

26. Below the GetRetirementAccount activity add an InvokeMethod activity
and name it as Add Retirement to Dictionary. Configure the properties as

shown in the following table. Note that to configure the parameters you will
need to click on the ellipsis button.

Property

Value

TargetObject
MethodName

Parameters

accountDictionary

Add

Direction

Type

Value

In

In

String

Account

retirement

retirementResponse

27. Your workflow should now look like the following screenshot:

_g AccountAggregaterScope

Wi Aggregate Call

2] Checking Account

(2] GetCheckingAccount

&} Add Checking to Dictionary
TargetType \ (null}
TargetObject accountDictionary

MethodMName Add

|5] Saving Account

(7] GetSavingAccount

;"_f! Add Saving to Dictionary
TargetType | (null) -
TargetObject accountDictionary

MethodMName Add

2] Retirement Account

(] GetRetirementAccount

;_:| Add Retirement to Dictionary
TargetType | (null)
TargetObject accountDicticnary

MethodMame Add

3

>

[174]

Chapter 7

28. Now drag and drop a ReceiveAndSendReply activity at the top of your
workflow just inside the AccountAggregatorscope. This will add a
new Sequence activity, which contains a Receive and a
SendReplyToReceive activity.

29. Create a new variable called handle with the following property:

Name Variable Type Scope Default

handle CorrelationHandle AccountAggregatorScope

30. Drag the Receive and SendReplyToReceive activity above the Sequence
activity (but still within the AccountAggregatorscope). Now delete the
empty Sequence activity.

31. Drag the SendreplyToReceive activity to the bottom of the workflow and
place it just outside the Aggregate Call parallel activity. Your workflow
should now look like the following screenshot. Note that some of the
sections have been collapsed for visibility.

\g AccountAggregatorScope

O #-1 Receive Customer Request

OperationName GetCustomerAccounts

Content View parameter
Wl Aggregate Call A
7| Checking Account ¥ 7| Saving Account 7 7l Retirement Account X
Double-click to view Double-click to view Double-click fo view

+ SendReplyToReceive
Request Receive Customer Reque

Content View message..

[175]

Simple Workflow

32. Click on the Receive activity and change DisplayName to Receive
Customer Request. Set the following properties, which represent the
WCEF service, operation, and parameter information for consumers of this
workflow service. You should follow sensible naming conventions as you
would when defining properties for code-based WCF services:

Property Value

ServiceContractName http://tempuri.org/
IAccountAggregator

OperationName GetCustomerAccounts

33. To define the parameter information that the consumer will see, click on the
ellipsis button of the Content property of the Receive Customer Request
activity. Then click the Parameters radio button. Set the following parameter:

Name Type Assign to

Customer Chapter7.SamMaccollBank. currentCustomer
DataContracts.Customer

34. On the Receive Customer Request activity you also need to make sure that
the CanCreateInstance property is checked true. If this is not selected, this
Receive activity will not be able to instantiate the workflow service. Then
click on the ellipsis button for the CorrelationInitializers property. Make
sure that the initializer is set to the handle variable that we defined earlier.

> =
Add Correlation Initializers &Iéj
handle [Request—reply correlation initializer - ‘

XPath Queries
Key Query

Double click on property

OK Cancel |
I
CorrelatesWith Correlation han I_F
[coneiioniisozers (UMDY
B Misc

Content (Content) El
DisplayName Receive Customer R |=
OperationName GetCustomerdccow
SenviceCantractName {http:/ftempuri.org/
More Properties
Action
CanCreatelnstance +
KnownTypes (Collection) []

ProtectionLevel (null) -

[176]

Chapter 7

35. Click on the sendreplyToReceive activity and click on the ellipsis button of
the Content property. Here select the Message radio button and define the
following properties. This defines the return type that consumers of
the workflow service will receive for the operation we defined with the
earlier Receive activity.

Value

accountDictionary

Property

Message Data

Message Type System.Collections.Generic.Dictionary
<System.String, Chapter7.SamMaccollBank.

DataContracts.Accounts>

36. Your workflow is now complete and should look like the following screenshot:

}.-| AccountAggregatorscope

¢ Receive Customer Reguest

OperationMame GetCustomerAccounts

Content

Wil Aggregate Call

»

:- Checking Account #

;‘I GetCheckingAccount

&3] Add Checking to Dictionary
TargetType | inull) =
TargetOhbject

accountDictionary

MethodMame Add

| 7 Saving Account #

;‘I GetSavingAccount

3] Add Saving to Dictionary
TargetType i[null] - |
TargetOhject

accountDictionary

MethodMame Add

SendReplyToReceive

Request Receive Customer Reque

Content Vis

| 7 Retirement Account

;‘I GetRetirementAccount

3] Add Retirement to Dictionary

TargetType | {rull}

TargetObject accountDictionary

MethodMame Add

[177]

Simple Workflow

Testing the service aggregator workflow
service

We will now use the WCF Test Client Tool to test our aggregator service.

1. Right-click on the SamMaccollBank.Aggregator project and select Publish
to deploy this to your local IIS server with the following settings:

Virtual directory: http://localhost/Aggregator
Folder location: C: \ inetpub\wwwroot \Aggregator

2. Open the WCF Test Client tool. Right-click on My Service Projects and select
Add Service. Enter the endpoint as follows:

http://localhost/aggregator/AccountAggregator.xamlx

3. Expand the endpoint. Select IAccountAggregator (the Service Contract
name, which is as you configured it in the Receive workflow activity). Select
the GetCustomerAccounts () operation. The WCF Test Client Tool will
allow you to define the Customer input parameter. Define it with the
following values:

Property Value
Address1 Avenue Q
Address2 Somewhere On
City New York
CustomerID 1234
FirstName It Is Great
LastName To Be Me

State New York

Zip 98765

4. Click the Invoke button; ignoring all warnings.

5. All the three accounts should be returned as a Dictionary object as per the
following screenshot:

[178]

Chapter 7

&% WCF Test Cliem*
— : —

File Tools Help

=% My Service Projects

@ GetCustomerAccounts()
£ Corfig Fie

« i

GetCustomerAccourts (1) |

-] htp:/ocalhost/Aggregator/ Account Agg
=5 |Account Aggregator (BasicHttpBindir

Request

Name Value

4 GetCustomerAccourts tempuri.org.GetCustomerAccount tempuri.org. GetCustomerAccount »

Type

4 customer Chapter7.SamMaccollBank.Data Chapter7.SamMaccollBank Datal
Address1 Avenue Q System_String
Address2 Somewhere On System_String
City New York System String L
CustomerlD 1234 System_Sting 3
FirstName It Is Great System.Sting
LastName To Be Me System.Sting
State New York System. Sting
Zip 98765 System. Sting -
s armvoen
Name Value Type
4 (retum) GetCustomerAccountsResponse »
a4 ArayOfkeyValueOfsting# length=3 System Collections Generic Dictic|
a 1] System Collections. DictionaryErtr| _
Key “retirement " System.String 1
4 Value Chapter7.SamMaccollBank Datal
AccourtlD "Retirement_1234" System_String
AccourtType "retirement” System String
BranchName “Seattle” System String
CurmentBalanc "$2,000.000.00" System.Sting
CustomerlD {null} NullObject
a [2] System Collections. DictionaryErtr -
Fametied | XML

Service removed successfully.

To debug the workflow, open the Chapter7.SsamMaccollBank.Aggregator
project and open the AccountAggregator. xamlx workflow. Right-click

on the Receive Customer Request activity and select Breakpoint |
Insert Breakpoint. In the Solution Explorer window, right-click on the
AccountAggregator.xamlx file and select Set As Start Page.

Now that you have set the start page, right-click on the Chapter7.

SamMaccollBank.Aggregator project and select Debug | Start New

Instance. This will automatically open an instance of the WCF Test Client
and will host the AccountAggregator.xamlx workflow in the ASP.NET
development web server that Visual Studio provides.

Fill in the required customer details for the GetCustomerAccounts ()

operation as you did previously in the WCF Test Client Tool then

select Invoke.

[179]

Simple Workflow

9. You should now hit the breakpoint you set previously in the workflow. The
screen will look similar to the following screenshot. You can use the standard
controls that you use when debugging C# .NET code; for example, F5 to
continue, F10 to move to the next step, and F11 to move one step backwards.

10. Hit F11 repeatedly to walk through the workflow. If you want to spend a
long time debugging, you may wish to increase the timeout values, which
are stored in the web. config file in the project.

Now that you have successfully created the aggregator component and deployed the
backend services, we will make an ASP.NET page to present this data to the users.

[180]

Chapter 7

Consuming the service aggregator workflow
service with ASP.NET

We will now finish the implementation of the ASP.NET page which will take entry
of customer details, consume our service, and then from the returned Dictionary
object, will display those results to the end user.

1. You should now open the Chapter7.SamMaccollBank.WebTier project. This
contains a stub implementation of the page we will implement.

2. Right-click on Default.aspx and select View in Browser. You should see a
page similar to the following screenshot:

My ASP.NET APPLICATION

Home About

WELCOME TO SAM MACCOLL FINANCIAL

Enter First Mame |

Enter Last Name |

Enter CustomerIDl

Enter Address 1|

Enter Address 2|

Enter C\t;.'l

Enter State I

Enter Zipl

Get Account Details |
Checking account ID:
Checking account Balance:
Saving account ID:
Saving account Balance:
Retirement account ID:

Retirement account Balance:

[181]

Simple Workflow

3. The page has implemented a number of <asp:TextBox>, <asp:Buttons,
and <asp:Label> objects. The <asp: > tag prefix indicates that there is either
local script or server-based dynamic content that needs to be processed;
for example, the user will see the output of this dynamic ASP.NET call
in their browser as standard HTML. You can see this by right-clicking on
the Default.aspx page and selecting View Markup. This is shown in the
following screenshot:

EET Tl Account.cs AccountAggregator. xamix Web.config SavingAccount.sve.cs Web.config SavingAcc|

Client Objects & Events - (Mo Events)
<¥f Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutcEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="SamMaccollBank.WebTier._Default" ¥>

<asp:Content ID="HeaderContent” runat="server" ContentPlaceHolderID="HeadContent">
<fasp:Contents>
—l<asp:Content ID="BodyContent” runat="server" ContentPlaceHolderID="MainContent">
<h2s
Welcome to Sam Maccoll Financial </h2>
= <p>
Enter First Name <asp:TextBox ID="FirstName" RunAt="server" Width="168px" />
</p>
= <p>
Enter Last Name <asp:TextBox ID="LastName" RunAt="server" Width="16@px" />
</p>
- <p>
Enter Customer ID <asp:TextBox ID="CustomerID" RunAt="server” Width="l6@px" />
</p>
= <p
Enter Address l<asp:TextBox ID="Addressl" RunAt="server"” Width="16@px" />
</p>
= <p*
Enter Address 2<asp:TextBox ID="Address2" RunAt="server"” Width="16@px" />
</p>
- <p>
Enter City <asp:TextBox ID="City" RunAt="server"” Width="1l6@px" />
</p3|
- <p>
Enter State <asp:TextBox ID="State" RunAt="server" Width="1l6@px" />
</p>
- <p>
Enter Zip <asp:TextBox ID="ZIP" RunAt="server" Width="1leepx" />
</p>

<asp:Button ID="getAccountInfo” runat="server" Text="Get Account Details" OnClick="getCustomer_Click" />

= <p
Checking account ID: <asp:lLabel runat="server" ID="CheckingID" />
</p>
= <p
Checking account Balance: <asp:lLabel runat="server" ID="CheckingBalance" />

4. The getAccountInfo button has an onclick () method call with
getCustomer_Click specified. If you right-click on the Default.aspx page
and select View Code you can see the empty implementation of this method.
If you view the page in the browser again and click on the Get Account
Details button, you will notice that nothing changes.

[182]

Chapter 7

Add a reference in this project to Chapter7.SamMaccollBank.
DataContracts. This will allow us to access the Customer and Account
objects that we will need.

Also, add a service reference to the Account aggregator workflow service you
just deployed and tested. The following are the settings:

Property Value

Address http://localhost/aggregator/accountaggregator.
xamlx

Namespace AccountAggregator

In the Default.aspx.cs file add the following using statement:

using Chapter7.SamMaccollBank.DataContracts;

In the Default.aspx.cs file add the following implementation
of getCustomer Click:

public void getCustomer Click (object sender, EventArgs e)
//Create the customer object
Customer customer = new Customer () ;

//Get the values from the text boxes and assign them to the
customer object properties

customer.FirstName = FirstName.Text;
customer.LastName = LastName.Text;
customer.CustomerID = CustomerID.Text;
customer.Addressl = Addressl.Text;
customer .Address2 = Address2.Text;
customer.City = City.Text;
customer.State = State.Text;
customer.Zip = ZIP.Text;

//Create the client using the classes generated
by our Service Reference

AccountAggregator.AccountAggregatorClient svcClient = new
AccountAggregator.AccountAggregatorClient () ;

AccountAggregator.GetCustomerAccounts request = new
AccountAggregator.GetCustomerAccounts () ;

request.customer = customer;
//Create dictionary object to store results

Dictionary<string, DataContracts.Accounts>
accountDictionary = svcClient.GetCustomerAccounts (request) ;

//Update Text boxes for each of the accounts

[183]

Simple Workflow

}

CheckingBalance.Text =
accountDictionary ["checking"] .CurrentBalance;

CheckingID.Text = accountDictionary["checking"] .AccountID;

RetirementID.Text =
accountDictionary ["retirement"] .AccountID;

RetirementBalance.Text =
accountDictionary["retirement"] .CurrentBalance;

SavingBalance.Text =
accountDictionary["saving"] .CurrentBalance;

SavingID.Text = accountDictionary["saving"] .AccountID;

9. Right-click again on Default .aspx and select View in Browser. Enter
customer details as was done previously and then click the Get Account
Details button. You should see a page similar to the following;:

My ASP.NET APPLICATION

Home About

WELCOME TO SAM MACCOLL FINANCIAL

Enter First Mame |

Enter Last Name I

Enter Customer ID |

Enter Address 1|

Enter Address 2|

Enter City INew York

Enter State |

Enter Zip I

Get Account Details

Checking account ID:

Checking account Balance: $20,000.00
Saving account ID: Saving_

Saving account Balance: $40,000.00
Retirement account ID: Retirement_

Retirement account Balance: $2,000,000.00

[184]

Chapter 7

Summary

This solution, using Windows Server AppFabric, WCF, and WF from .NET 4.0,
demonstrated how Workflow services can be used to orchestrate communication
between backend service endpoints with minimal code. There was no need to
tightly couple any of the components and any of them could be reused by other
applications. By utilizing well-defined data contracts, we can follow service-
oriented practices and deploy loosely-coupled applications. The Scatter-Gather
pattern is a powerful pattern to implement if you want to provide a dashboard
view for users from multiple sources. As well as for financial services, this can also
be used to provide a single view about an individual across corporate systems;
payroll, vacation, and so on. AppFabric is a very powerful host and with some of its
additional features such as persistence, it is something you should consider for use
within your organization.

[185]

Content-based Routing

Communication between enterprise systems is an essential part of an organization's
architecture. How you decide to link these systems and by which criteria you
distribute data, is something that you will be faced with time and again. In this
chapter, we will look at how to send data messages to the correct target system.

Use case

McKeever Technologies is a medium-sized business, which manufactures latex products.
They have recently grown in size through a series of small acquisitions of competitor
companies. As a result, the organization has a mix of both home-grown applications
and packaged line-of-business systems. They have not standardized their order
management software and still rely on multiple systems, each of which houses details
about a specific set of products. Their developers are primarily oriented towards .NET,
but there are some parts of the organization that have deep Java expertise.

Up until now, orders placed with McKeever Technologies were faxed to a call center
and manually entered into the order system associated with the particular product.
Also, when customers want to discover the state of their submitted order, they are
forced to contact McKeever Technologies' call center and ask an agent to look up
their order. The company realizes that in order to increase efficiency, reduce data
entry error, and improve customer service they must introduce some automation to
their order intake and query processes.

McKeever Technologies receives less than one thousand orders per day and does

not expect this number to increase exponentially in the coming years. Their current
order management systems have either Oracle or SQL Server database backends and
some of them offer SOAP service interfaces for basic operations. These systems do
not all maintain identical service-level agreements; so the solution must be capable of
handling expected or unexpected downtime of the target system gracefully.

Content-based Routing

The company is looking to stand up a solution in less than four months while not
introducing too much additional management overhead to an already over-worked
IT maintenance organization. The solution is expected to live in production for
quite some time and may only be revisited once a long-term order management
consolidation strategy can be agreed upon.

Key requirements

The following are key requirements for a new software solution:

Accept inbound purchase requests and determine which system to add them
to based on which product has been ordered

Support a moderate transaction volume and reliable delivery to
target systems

Enable communication with diverse systems through either web or
database protocols.

Additional facts

The technology team has acquired the following additional facts that will shape their
proposed solution:

1.

The number of order management systems may change over time as
consolidation occurs and new acquisitions are made.

A single customer may have orders on multiple systems. For example, a
paint manufacturer may need different types of latex for different products.
The customers will want a single view of all orders notwithstanding which
order entry system they reside on.

The lag between entry of an order and its appearance on a customer-facing
website should be minimal (less than one hour).

All order entry systems are on the same network. There are no occasionally
connected systems (for example, remote locations that may potentially lose
their network connectivity).

Strategic direction is to convert Oracle systems to Microsoft SQL Server and
Java to C#.

The new order tracking system does not need to integrate with order
fulfillment or other systems at launch.

There are priorities for orders (for example, "I need it tomorrow" requires
immediate processing and overnight shipment versus "I need it next week").

Legacy SQL Servers are SQL Server 2005 or 2008. No SQL Server 2000 systems.

[188]

Chapter 8

Pattern description

The organization is trying to streamline data entry into multiple systems that
perform similar functions. They wish to take in the same data (an order), but
depending on attributes of the order, it should be loaded into one system or another.
This looks like a content-based routing scenario.

What is content-based routing? In essence, it is distributing data based on the
values it contains. You would typically use this sort of pattern when you have a
single capability (for example, ADD ORDER, LOOKUP EMPLOYEE, DELETE RESERVATION)
spread across multiple systems. Unlike a publish/subscribe pattern where multiple
downstream systems may all want the same message (that is, one-to-many), a
content-based routing solution typically helps you steer a message to the system that
can best handle the request.

What is an alternative to implementing this routing pattern? You could define
distinct channels for each downstream system and force the caller to pick the service
they wish to consume. That is, for McKeever Technologies, the customer would call
one service if they were ordering products A, B, or C, and use another service for
products D, E, or F. This clearly fails the SOA rules of abstraction or encapsulation
and forces the clients to maintain knowledge of the backend processing.

The biggest remaining question is what is the best way to implement this pattern. We
would want to make sure that the routing rules were easily maintained and could

be modified without expensive redeployments or refactoring. Our routing criteria
should be rich enough so that we can make decisions based on the content itself,
header information, or metadata about the transmission.

Candidate architectures

A team of technologists have reviewed the use case and drafted three candidate
solutions. Each candidate has its own strengths and weaknesses, but one of them
will prove to be the best choice.

Candidate architecture #1-BizTalk Server

A BizTalk Server-based solution seems to be a good fit for this customer scenario.
McKeever Technologies is primarily looking to automate existing processes and
communicate with existing systems, which are both things that BizTalk does well.

[189]

Content-based Routing

Solution design aspects

We are dealing with a fairly low volume of data (1000 orders per day, and at most,
5000 queries of order status) and small individual message size. A particular order
or status query should be no larger than 5KB in size, meaning that this falls right into
the sweet spot of BizTalk data processing.

This proposed system is responsible for accepting and processing new orders, which
means that reliable delivery is critical. BizTalk can provide built-in quality of service,
guaranteed through its store-and-forward engine, which only discards a message

after it has successfully reached its target endpoint. Our solution also needs to be able
to communicate with multiple line-of-business systems through a mix of web service
and database interfaces. BizTalk Server offers a wide range of database adapters and
natively communicates with SOAP-based endpoints. We are building a new solution
which automates a formerly manual process, so we should be able to design a single
external interface for publishing new orders and querying order status. But, in the case
that we have to support multiple external-facing contracts, BizTalk Server makes it
very easy to transform data to canonical messages at the point of entry into the BizTalk
engine. This means that the internal processing of BizTalk can be built to support a
single data format, while we can still enable slight variations of the message format

to be transmitted by clients. Similarly, each target system will have a distinct data
format that its interface accepts. Our solution will apply all of its business logic on the
canonical data format and transform the data to the target system format at the last
possible moment. This will make it easier to add new downstream systems without
unsettling the existing endpoints and business logic.

From a security standpoint, BizTalk allows us to secure the inbound transport
channel and message payload on its way into the BizTalk engine. If transport
security is adequate for this customer, then an SSL channel can be set up on the
external facing interface.

To assuage any fears of the customer that system or data errors can cause messages
to get lost or "stuck", it is critical to include a proactive exception handling aspect.
BizTalk Server surfaces exceptions through an administrator console. However,
this does not provide a business-friendly way to discover and act upon errors.
Fortunately for us, BizTalk enables us to listen for error messages and either re-route
those messages or spin up an error-specific business process. For this customer, we
could recommend either logging errors to a database where business users leverage
a website interface to view exceptions, or, we can publish messages to a SharePoint
site and build a process around fixing and resubmitting any bad orders. For errors
that require immediate attention, we can also leverage BizTalk's native capability to
send e-mail messages.

[190]

Chapter 8

We know that McKeever Technologies will eventually move to a single order
processing system, so this solution will undergo changes at some point in the future.
Besides this avenue of change, we could also experience changes to the inbound
interfaces, existing downstream systems, or even the contents of the messages
themselves. BizTalk has a strong "versioning" history that allows us to build our
solution in a modular fashion and isolate points of change.

Solution delivery aspects

McKeever Technologies is not currently a BizTalk shop, so they will need to both
acquire and train resources to effectively build their upcoming solution. Their
existing developers, who are already familiar with Microsoft's .NET Framework, can
learn how to construct BizTalk solutions in a fairly short amount of time. The tools to
build BizTalk artifacts are hosted within Visual Studio.NET and BizTalk projects can
reside alongside other .NET project types.

Because the BizTalk-based messaging solution has a design paradigm (for example,
publish/subscribe, distributed components to chain together) different from that

of a typical custom .NET solution, understanding the toolset alone will not ensure
delivery success. If McKeever Technologies decides to bring in a product like BizTalk
Server, it will be vital for them to engage an outside expert to act as a solution
architect and leverage their existing BizTalk experience when building this solution.

Solution operation aspects

Operationally, BizTalk Server provides a mature, rich interface for monitoring
solution health and configuring runtime behavior. There is also a strong underlying
set of APIs that can be leveraged using scripting technologies so that automation of
routine tasks can be performed.

While BizTalk Server has tools that will feel familiar to a Windows Administrator,
the BizTalk architecture is unique in the Microsoft ecosystem and will require
explicit staff training.

Organizational aspects

BizTalk Server would be a new technology for McKeever technologies so definitely
there is risk involved. It becomes necessary to purchase licenses, provision
environments, train users, and hire experts. While these are all responsible things to
do when new technology is introduced, this does mean a fairly high startup cost to
implement this solution.

[191]

Content-based Routing

That said, McKeever technologies will need a long term integration solution as
they attempt to modernize their IT landscape and be in better shape to absorb
new organizations and quickly integrate with new systems. An investment in an
enterprise service bus like BizTalk Server will pay long term dividends even if
initial costs are high.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2-SQL Server 2008 R2

It is possible to build a solution that meets our needs based on SQL Server tools.

Solution design aspects

The basis of this solution is a master repository that stores order information. Orders
arrive into McKeever Technologies and get placed in the new orders database. Each
order is then routed to the appropriate target system based on routing rules.

If the target system is SQL Server-based then we can use SQL Server Service Broker
(SSSB) to transmit data and return acknowledgements to the master repository.
When the target system has an underlying Oracle database store, then we will
leverage SQL Server Integration Services (SSIS) to move data between the systems.

There is a lot of value in establishing this master data repository. This will allow

a single customer to enter an order for multiple products delivered from multiple
legacy systems and remove the potential for improper routing of orders based on
human error. Also, this makes it possible for orders to be queried from a single
location instead of federating the query across multiple order management systems.

The major issue is that there will be significant data lag using SSIS and master data
management tools. These systems work as batch processes, not as real-time systems.
While you can make SSIS run in near real time, it requires extensive customization.

[192]

Chapter 8

Solution delivery aspects

This solution would make heavy use of McKeever's existing SQL Server expertise.
The team is well-versed in building bulk data movement jobs in SSIS, but has only
limited experience authoring SSSB conversations.

Solution operation aspects

The main advantage SSIS and SSSB offer is that they are provided with McKeever's
existing SQL Server licenses, avoiding the additional cost of BizTalk licenses.
McKeever does have staff with on-hand experience in using SQL Server and working
with SQL statements.

Organizational aspects

While McKeever Technologies hopes to move to a centralized order management
system at some point in the future, they are currently more focused on extracting
value from existing systems. Creating a master order management repository

now moves the organization in the right direction, but there are significantly more
hurdles to overcome when gaining the consensus needed to make this happen. In a
federated model, each order management system can still receive and process orders
using existing procedures. We may be creating more work by trying to define and
synchronize a master data store. Also, this solution requires more effort when the
company inevitably absorbs new companies and tries to integrate their

processing systems.

Solution evaluation

Design Delivery Operations Organization

[193]

Content-based Routing

Candidate architecture #3-WCF and Windows
Server AppFabric

One of the key new features of WCF in .NET 4.0 is the ability to do content-based
routing. This means that data inside the message can be used by the WCF framework
at runtime to determine what service endpoint needs to be called. Furthermore, if
nothing matches the content pattern for routing, a default endpoint can be selected
to handle these requests. Routing in .NET 4.0 is accomplished using the Routing
service, which can be configured and hosted inside IIS. Using Windows Server
AppFabric for hosting this service will ensure the best possible execution with all the
AppFabric benefits (See Chapter 3, Windows Server AppFabric Primer, for more
specific details).

Let us walk though the decision framework to see if .NET 4.0 and Windows Server
AppFabric would work for this scenario.

Solution design aspects

Solving this problem with .NET 4.0 and Windows Server AppFabric would have two
parts. The first part would handle the order messages and the second part would
handle order status messages. Both parts would follow similar patterns.

¢ Order Messages: Order messages will be routed to one of the backend
systems using .NET 4.0 content-based routing. Each backend system will be
fronted by a workflow service. This service will ensure guaranteed delivery
of the message to the backend system and allow for various communication
protocols between the frontend and various backend systems. Routing occurs
based on the product being ordered, and product identifiers below a certain
value go to one system, while product identifiers above a certain value go to
the other. This means we can use the routing service to inspect the message
content and choose which Workflow service to invoke.

e Order Status: Order status query messages will be routed to one of the
backend systems using .NET 4.0 content-based routing. Each backend
system will be fronted by a WCF service to allow for various communication
protocols to these systems. If one of the backend systems is down, the WCF
service will return a "not available" message to the client.

Solution delivery aspects

McKeever Technologies currently has a staff of .NET developers and has experience
in developing complex solutions with .NET technologies and managing them in
production. While learning some of the new features of .NET 4.0 and Windows
Server AppFabric would take a little bit of time, this is something the existing
resources should be able to handle.

[194]

Chapter 8

The timeline is less than four months and given the preceding solution outline, this
should be easily accomplished in that timeline.

Solution operation aspects

McKeever Technologies currently has a large block of .NET developers and hence
has Information Technology support resources in this area. Further solutions based
on .NET, should be easily supported by the existing operations staff. Windows
Server AppFabric is a new technology for the McKeever administrators, but the
integration with IIS 7 makes Windows Server AppFabric fairly easy to understand.

Given the relatively low load of the system —1,000 orders a day — performance of the
system is not a huge concern. That said, a Windows Server AppFabric-based solution
has extensive control on persistence points and tracking, to allow or only a minimal
amount of performance impact.

As the solution is based on dealing with orders, it must be able to receive orders and to
retry in the event that the backend system is down. Windows Server AppFabric would
need a frontend network load balancer to ensure a highly available service endpoint,
in addition to a clustered SQL data store for the persistence information. Both of these
would be available for a client with existing .NET applications in production.

Organizational aspects

Organizationally, McKeever Technologies will be taking a slight risk by using
Windows Server AppFabric simply because it is a new technology and employees
will need to learn it. But to that point, investing now in the new technology will
ensure a solution that will be around for years to come. This drives towards a key
point related to maintainability and the need for this solution to survive many years.

Solution evaluation

Design Delivery Operations Organization

[195]

Content-based Routing

Architecture selection

Each solution has benefits and risks that we can use to make a final decision.

BizTalk Server
Benefits Risks
¢ Out-of-the-box adapters to multiple e Lack of in-house expertise
target formats, including SQL Server will require extensive training
and Oracle database of both the developer and
e Reliable messaging infrastructure operations staff
which can guarantee message e Would take longer to build and
delivery deploy solutions that are purely
e Architecture built to support routing code-based
messages based on content
SQL Server
Benefits Risks
e Leverages in-house expertise with e Incapable of processing real-
SQL Server tools time data requests
¢ Encourages master data approach e Different implementation
which provides a unified frontend to techniques based on the type of
clients target database
¢ Can natively communicate with our
target database formats
WCF and Windows Server AppFabric
Benefits Risks

Rapid, lightweight way to build
service-oriented solutions

Built-in capability to do content-
based routing in real time

Includes durable messaging to
promote guaranteed delivery

Leverages existing .NET skill sets

New technologies at the
development (.NET 4.0) and
operations tier (Windows Server
AppFabric)

Routing rules are relatively
primitive and won't support
complex conditions

With all that said, the best choice for this scenario is the Windows Server AppFabric
solution. This provides us a lightweight means to rapidly deploy a flexible and
easy-to-maintain content-based routing solution that still gives us the quality of
service that an enterprise solution such as BizTalk Server provides. In the long term,
this organization will seriously consider investing in an enterprise service bus, but
for this scenario, a Windows Server AppFabric host can meet the current and future
needs of the company.

[196]

Chapter 8

Building the solution

In this section, we will actually construct a working version of the proposed solution,
which will leverage core components of .NET 4.0 (WCF and Windows Workflow
Services) as well as the AppFabric extensions to IIS. Note that for this demonstration,
we are only building the first aspect, which accepts orders, not the second piece
which supports querying the status of a given order. The flow of the solution looks
like the following:

\p <10

°
° °

WCF Workflow Service Order System A

. Pr
WCF Router Service 'Oduc
to » 100

°
° °

WCF Workflow Service Order System B

An order comes from a customer to a single endpoint at McKeever Technologies.
This single endpoint then routes the order based on the content of the order (that is,
the value of the Product ID element). The router sends requests to WCF Workflow
Services, which can provide us durability and persistence when talking to the
backend order management systems. If an order system is down, then the workflow
gets suspended and will be capable of resuming once the system comes back online.

Setup

First, create a new database named ChaptersDb in your local SQL Server 2008 instance.
Then locate the database script named Chapter8Db.sql in the folder <Installation
Directorys>\Chapters\Begin and install the tables into your new database. When
completed, your configuration should look like the following screenshot:

= [Databases
[System Databases
[Database Snapshots
l_J ApplicationServerExtensions
= | J| ChaptersDb
[Database Diagrams
= 3 Tables
|1 System Tables
1 dbo.OrderManagement_Systema
=1 dbo.OrderManagement_SystemB

[197]

Content-based Routing

Next, open Chapters.slninthe <Installation Directory>\Chapter8\Begin
folder. In this base solution you will find two WCF services that represent the
interfaces in front of the two order management systems at McKeever Technologies.
Build the services and then add both of them as applications in IIS. Make sure you
select the .NET 4.0 application pool.

I
=[] Sites
=48 Default Web Site
[+ | aspret_client
; i‘i' Chapterd. OrderManagement. SystemA
¥ Chapters.OrderManagement.SystemB

If you choose, you can test these services using the WCF Test Client application
that comes with the .NET 4.0 framework. If your service is configured correctly, an
invocation of the service should result in a new record in the corresponding SQL
Server database table.

Building the workflow

Now that our base infrastructure is in place, we can construct the workflows that will
execute these order system services.

1. Launch Visual Studio.NET 2010 and open Chapters.sln in the
<Installation Directorys\Chapters\Begin folder. You should see
two WCEF services.

=~ Chapter8 - Microsoft Visual Studio (Administrator) _|EI|1|
File Edit View Project Buld Debug Team Data Tools Architecture Test Analyze
Window Help

E.;'J'Ljﬂ§|:‘3 —_1_3|'4 -ru.\;ﬂ-_—idp;

i Publish: _-Lt o <

Solution Explorer

=
g Solution 'Chapters' (2 projects)

; Chapter8.OrderManagement.5ystemA
_c Chapterd.OrderManagement. SystemB

'—"3 Solution Explorer ﬁ‘ Team Explorer

2. We now must add a new workflow project to the solution. Recall that this
workflow will sit in front of our order service and give us a stronger quality
of service, thanks to the persistence capability of AppFabric. In Visual Studio
.NET 2010, go to File and select New Project.

[198]

Chapter 8

3. Select the WCF Workflow Service project type under the Workflow category

and add the project named Chapters8.SystemA.WorkflowService to our

existing solution.

I.NEFFrameworkq j Sort by: IDefau\t j |

Installed Templates

= Visugl C£ | fiﬁ* Activity Designer Library visual C#
Windows -
Web @ Activity Library Visual C#
Cloud Service
Reporting g Workflow Console Application Visual C#
Silverlight ==
Test C_ﬁ% WCF Workflow Service Application Visual C#
WCF
Workflow

Other Project Types

Database

Modelina Proects -
Online Templates
Per user extensions are currently not allowed to load, Enzble loading of per user extensions
MName: |ChapberS.SysbemA.WorkﬂawService
Location: |C:\JJsers\Adm\nish’amr\Documenis\\-'isual Studio 2010'\Projects\Chapters ;I
Solution: =
Solution name: |Chapb&rS.SysbemA.Workﬁau\'Service

Servicel.xamlx.

=2 Chapters - Microsoft Visual Studio (Administrator) - |I:

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

Senpataiare = - N RECRC NI e R g A R

i Publish: |Create Publish Settings v| = -

x_‘-:i Service L.xamlx > Solution Explorer - 0 x

WorkflowService Expand 21l Collapse all | éj E | 54 | Ja
- ; Solution 'Chapters' (3 projects)

Bk Ordert g t.Syst
Chapterd.OrderManagement. SystemB
= Chapter8.SystemA. WorkflowService
[=d| Properties
3] References
3 App_Data
+ 1 ReceiveRequest] service 1.xambx

i3 Web.config
OperationMame I GetData

Content View message...

5] sequential Service

H

4 SendResponse

Request I ReceiveRequest

Content View message...

4. This project is now part of the solution and has a default workflow named

[199]

Content-based Routing

5. Rename the Servicel.xamlx file to SystemAOrderService.xamlx from
within the Solution Explorer. Also click the whitespace within the workflow
to change both the ConfigurationName and Name properties.

semsoesec < IR

WorkflowService

Properties *OX
System.ServiceModel. Activities. WorkflowService

:f:: ‘El Search: Clear
B Misc

AllowBufferedReca . [
ConfigurationName SystemAOrderService
MName SystemACrderservice

6. We want all our service-fronting workflows to have the same external-facing
contract interface so that we can effectively abstract the underlying service
contracts or implementation nuances. Hence, we add a new class file named
OrderDataContract.cs to this workflow project. This class will hold the
data contracts defining the input and output for all workflows that sit in front
of order systems.

7. Make sure the project itself has a reference to System.Runtime.
Serialization, and then add a using statement for System.Runtime.

Serialization to the top of the OrderDataContract.cs class. Add the
following code to the class:

namespace Chapter8.WorkflowService

{

[DataContract (

Namespace = "http://Chapter8/OrderManagement/DataContract")]
public class NewOrderRequest
{
[DataMember]
public string OrderId { get; set; }
[DataMember]
public string ProductId { get; set; }
[DataMember]
public string CustomerId { get; set; }
[DataMember]
public int Quantity { get; set; }
[DataMember]
public DateTime DateOrdered { get; set; }
[DataMember]
public string ContractId { get; set; }
[DataMember]
public string Status { get; set; }

[200]

Chapter 8

[DataContract (
Namespace = "http://Chapter8/OrderManagement/DataContract")]

public class OrderAckResponse

{

[DataMember]
public string OrderId { get; set; }

}

8. Open the systemhrOrderService.xamlx workflow, click on the top
ReceiveRequest shape, and set the following property values. Note that we
will use the same values for all workflows so that the external-facing contract

of each workflow appears the same.

Property Value

DisplayName ReceiveOrderRequest

OperationName SubmitOrder

ServiceContractName {http://Chapter8/OrderManagement }
ServiceContract

Action http://Chapter8/OrderManagement/SubmitOrder

CanCreatelnstance True

9. Click the Variables tab at the bottom of the workflow designer to show the
default variables added to the workflow.

Systenordersenice e [T
WorkflowSarvice Expand &ll Collapse All
,j [equential Service d
4+ ReceiveOrderRequest
OperationName | SubmitOrder
Content liew message... =1
'+ SendResponse
=
Name Variable type Scope Default
handle ComelationHandle Sequential Sen Han
data Int32 Sequential Sen Enfsr
Create
Variables

[201]

Content-based Routing

10. Delete the data variable.

11. Create a new variable named orderReq. For the variable type, choose

Browse for Types and choose the NewOrderRequest type we defined
earlier in the OrderDataContract.cs class.

Bro £ and Sele 3 = pe

Type Name: I Chapters. WorkflowSservice. MewOrderRequest

= «Current project>
=] Chapter8.SystemA. WarkflowService [1.0.0.0]
= Chapter. WorkflowService
OrderAckResponse
= <Referenced assemblies>
Microsoft.CSharp [4.0.0.0]
meacorlib [4.0.0.0]
System [4.0.0.0]
System.Activities [4.0.0.0]

System.Core [4.0.0.0]
[#] Suckem Dista (400 01

12. Add another variable named orderresp and choose the previously defined
OrderAckResponse .NET type.

13. The orderReq variable gets instantiated by the initial request, but we need
to explicitly set the orderResp variable. In the Default column within the
Variables window, set the value to New OrderAckResponse ().

14. Set a proper variable for the initial receive shape by clicking on the
ReceiveOrderRequest shape and click on the View Message link. Choose
OrderReq as the Message data and set the type as NewOrderRequest.

Content Definition

Message data OrderReg

(UL Sl | Chapters. WorkflowService. NewOrderRequest

15. Now we do the same for the response shape. Select the SendResponse shape
and click on the View Message link. Choose the 0rderResp variable as the
Message data and orderAckResponse as the Message type.

[202]

Chapter 8

16. Keep the SendResponse shape selected and set its PersistBeforeSend
property to On. This forces a persistence point into our workflow and
ensures that any errors that occur later in the workflow will lead to a
suspended/resumable instance.

17. We can test our workflow service prior to completing it. We want to populate
our service response object, so go to the Workflow toolbox, view the
Primitives tab, and drag an Assign shape in between the existing receive
and send shapes.

2] Sequental Sarvica (1]

¥ RecaiveOrdarfizquest

OperationName | SubmitOrdar

Content Mew message...

18. In the Assign shape, set the To value to OrderResp.0OrderID and the right
side of the equation to System.GUID.NewGUID () . ToString (). This sets the
single attribute of our response node to a unique tracking value.

19. Build the workflow and if no errors exist, right-click the
SystemAOrderSystem.xamlx workflow in the Solution Explorer and choose
View in Browser.

[203]

Content-based Routing

20.

21.

22.

23.

24.

Open the WCF Test Client application and point it to our Workflow Service
endpoint. Double-click the Submit Order operation, select the datatype in
the Value column, and enter test input data. Click on the Invoke button and
observe the response object coming back with a GUID value returned in the
OrderId attribute.

JI=TE
File Tools Help
Eig My Service Projects SubmitOrder |
(=1 2] hitp://localhost:1183/5y:
B-5° ServiceCortract (Bas| Request
Poh SubmitOrder
C:nfqu'Te =0 MName | Value | Type |
o El NewOrderRequest chapter8 OrderManagement Datal chapterB On:lerl\;l
Contractld 12345 System String
Customerld RS2001 System String
DateOrdered 12/11/2009 3:55 FM System.DateTim
Orderld 502231 System String
Productld BEE System String
Quantity 11 System Int32
Status Submitted System String
TamrrEs " Stat a new proxy Invoke |
Name | Value | Type
= fretum) SubmitOrderRespor
El OrderAckResponse chapter®.OrderMan
"cfe556be-b03e-4458-3e8c-58% 184 System String

Now we're ready to complete our workflow by actually calling our target
WCEF service that adds a record to the database table. Return to Visual Studio.
NET, right-click the Chapters.SystemA.WorkflowService project, and
choose Add Service Reference.

Point to the service located at http://localhost/Chapters.
OrderManagement . SystemA/OrderIntakeService.svc and type
SystemASvcRef as the namespace.

If the reference is successfully added and the project is rebuilt, then a new
custom workflow activity should be added to the workflow toolbox. This
activity encapsulates everything needed to invoke our system service.

= Chapterd.SystemA. WorkflowService, SystemASvcRef, Activities
k Pointer
1 AddOrder

Add variables to the workflow that represent the input and output of our
system service. Create a variable named ServiceRequest and browse for the
type order, which can be found under the service reference. Set the default
value of this variable to New Order ().

[204]

Chapter 8

25.

26.

27.

28.

29.

Browse and Select a .Net Type

Type Name: I Chapters.5ystem . WorkflowService. SystemASvcRef . Order

E <Current project=
= Chapters.Systema WarkflowService [1.0,0.0]
=] Chapterg. SystemA. WorkflowService, SystemASvcRef
AddOrderRequest
AddOrderResponse
I0rderIntakeService
[Order]

Chapter8.SystemA. WorkflowService. SystemASvcRef. Activities
Chapter8.Workflowservice
Bl <Referenced assemblies>
Microsoft.CSharp [4.0.0.0]
mscorlib [4.0.0.0]
¥ System [4.0.0,0]

Create another variable named ServiceResponse and pick the same order
object but do not set a default value.

Drag the custom AddOrder activity from the workflow toolbox and place it
after the SendResponse shape. This sits after the workflow service response
is sent, so that if errors occur the caller will not be impacted.

Click the AddOrder shape and set its NewOrder property to the
ServiceRequest variable and its AddOrderResult property to
ServiceResponse.

Now we have to populate the service request object. Drag a Sequence
workflow activity from the Control Flow tab and drop it immediately before
the AddOrder shape.

Add six Assign shapes to the Sequence and set each activity's left and right
fields as follows:

Left Side Right Side

ServiceRequest.ContractId OrderReqg.ContractId
ServiceRequest.CustomerId OrderReq.CustomerId
ServiceRequest .DateOrdered OrderReqg.DateOrdered
ServiceRequest .OrderNumber OrderResp.OrderId
ServiceRequest.ProductId OrderReq.ProductId
ServiceRequest.Quantity OrderReq.Quantity

Note that the OrderNumber value of the request is set using the orderRresp
object as that is the one to which we added the GUID value.

[205]

Content-based Routing

30. Our final workflow should look like the following:

2l Sequentizl Service

+ ReceiveOrderRequest

OperationMame |Suhrnil:0rder

Content View messags...

A8 Assign

OrderRasp.Orderld = System.Guid.NewGu

SendResponcs

Reguest | Rec

Content L=

7 Set Request Sequence

&

Dowbile-click to wis

1 Addorder

31. Open the web.config file for the Workflow Service and add the following
configuration entry within the System.ServiceModel node. This makes our
Workflow Service leverage the WsHttpBinding by default and eliminates
issues that arise when using the BasicHttpBinding with the WCF Routing

Service.
<protocolMapping>
<add scheme="http" binding="wsHttpBinding"/>
</protocolMapping>

32. Build the workflow and switch to IIS. Add a new application named
Chapter8.SystemA.WorkflowService to the Default Web Site. Choose
a .NET 4.0 application pool and set the path to the location of your
service project.

33. Right-click the Default Web Site, choose Edit Bindings, and ensure that
net .pipe is listed there.

[206]

Chapter 8

@Q” [3 » RSEROQTER08 * Sites » DefaultWebSite » Chapterd.SystemaA. Wy

SD /Chapter8.SystemA.Wol
1=

€-id |8

Start Page =
RSEROTEROS (RSERCTERDE\Administrator) Groupby: Area - 23~
Q Application Pools ion Server i for .NET|
&, FTP sites _

&/ Sites Al 2 yv & =
& Defauit Web Site o b

Close

| aspnet_dient Dashboard Endpoints Monitoring

: = el
Site Bindings e |

Type | Host Name | Port ‘ IP Address | Binding Informa « Add...
http 30 =
net.tep a08: Edit... |
net.pipe § Remove |
net.m... localhost -
0 - | 2 Browse. |

34. Visit the Advanced Settings of the default website and make sure that
net.pipe is part of the Enabled Protocols. This is needed to support the
AppFabric persistence functionality.

B (General)
Application Pool ASP.NET v4.0
Bindings http:*:80:,net. tcp:808:*,net. pipe: * net.ms|
s} 1
Defit ieh e
Physical Path %aSystemDrive%s\inetpub\wwwroot

Physical Path Credentials
Physical Path Credentials Logon Type ClearText

Start Automatically True
E Behavior
Connection Limits
Enabled Protocols net.pipe http

Failed Request Tracing

35. Right-click the new WF service application and choose Manage WCF and
WEF Services and select Configure. On the Workflow Persistence tab, make
sure that SQL Server Workflow Persistence is selected. On the Workflow
Host Management tab, confirm that the Action on Unhandled Exception is
set to Abandon and suspend.

Configure WCF and WF for Application

General

Throtting
Security

Monitoring

Warkflow Persistence

v Unload instances when idle
—
Unload timeout (in seconds): &0 =

Auto-Start

Workflow Host Management

v Enable instance control

| Persist instances when idle

Persist timeout (in seconds): 33
Action on unhandled exception: Abandon and suspend | ¥

2l

[207]

Content-based Routing

36. Now we can employ the WCF Test Client to call our workflow service and
see a record show up in our database table.

37. In order to flex the true value-add of the AppFabric hosting environment,
turn off the Chapters.OrderManagement . Systema application by
right-clicking it, selecting the Manage WCF and WF Services menu item,
and choosing Stop Application. This effectively simulates failure of our
downstream order system making it unavailable and offline.

38. Call the workflow service again and if you view the AppFabric dashboard,
you should see a Suspended message.

@ Dashboard

Use this feature to monitor .NET 4.0 WF and WCF services with monitoring and,/or persister

View: |Al | Time Period: ILast 15 Minutes 'l
Persisted WF Instances (D Active: 0 Dde: 0
Live Summary OSuspended: 1

Active or Idle Instances Suspended Instances

Grouped by Service (top 5): Grouped by Service (top 5):

Mone found. SystemAOrderService.xa. .. 1

39. Confirm this fact by viewing your database table and noticing that no new
record has been added.

40. Restart the Chapter8.OrderManagement . Systema application to simulate
our order system coming back online.

41. Click on the suspended message in the AppFabric console and choose to
resume the suspended instance.

@ Persisted WF Instances

Use this feature to view, filter and control persisted instances for durable .NET 4.0 WF services with p

| Query Summary: Status = 'Suspended' AND Maximum Items = '50' AND Site Mame = 'Default W

Found 1 item. Displaying 1 item.

Group by: Mo Grouping o

il
Py

Chapter 8

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

The instance is resumed and a new record should be added to the
OrderManagement SystemA database table.

Build one more workflow that is nearly identical to this first one, except that
it consumes the system B order system service.

Create a new WCF Workflow Service application named Chapters.SystemB.
WorkflowService and add it to the existing Visual Studio.NET solution.

Rename the physical xamlx file to SystemBOrderservice.xamlx and set
both the Configuration Name and Name property of the workflow to
SystemBOrderService.

Copy the orderDataContract.cs file from the Chapters.Systema.
WorkflowService project to the Chapters8.SystemB.WorkflowService
project. Recall that we want all workflows of the front order systems to have
the same external-facing data contract.

On the ReceiveRequest shape, change the name to ReceiveOrderRequest,
Operation Name to SubmitOrder, ServiceContractName to {http://
Chapter8/OrderManagement }ServiceContract, and Action to http://
Chapter8/OrderManagement/SubmitOrder. These values are identical to
our previous workflow and help us have the same external-facing contract
definition for both services.

Add a service reference to http://localhost/Chapters.OrderManagement .
SystemB/OrderService. sve and set the namespace to SystemBSvcRef.
Create the variables for the workflow service request and response as well as
the system B service request and response.

Name Variable type Scope

handle ComrelationHandle Sequential Service

OrderReg NewOrderRequest Sequential Service Enter 3 VB expression
Orderfesp OrderAckResponse Sequential Service Mew OrderAckResponse()
ServiceRequest Order sequential Service New Order()
ServiceResponse Order Sequential Service Enter 2 VB expressiorn
Create Variable

Add an Assign shape between the workflow service request and response
and set the response's 0OrderId value equal to System.GUID.NewGUID () .
ToString().

After building the project, drag the new custom AddNewOrder workflow
activity below the service response shape, set its input and output attributes
to the previously defined variables, and finally set its six properties using a
sequence of Assign shapes.

[209]

Content-based Routing

52. Exactly like the earlier Workflow Service, add the following configuration
block to the web.config file:
<protocolMapping>
<add scheme="http" binding="wsHttpBinding"/>
</protocolMapping>

53. Compile the service and create an IIS web application named Chapters.
SystemB.WorkflowService and configure it identically to the Chapters.

SystemA.WorkflowService application.

54. Test the service by calling it via the WCF test client and confirming that your
data is added to the 0OrderManagement SystemB database table.

Adding a router service

Now we have two independent workflow services that sit in front of our order
systems. We don't want our customers to know which service to call, but rather,

we want them to send all their orders to one place and expect that McKeever
Technologies will figure out a way to enter data accurately into appropriate systems.

WCF 4.0 introduces a pre-built routing service that uses configuration values to
direct messages to endpoints, based on a variety of criteria. We can route messages
based on their content, SOAP action, custom headers, and more. There's a great
amount of flexibility we can add to our solution architecture when rich capabilities
like message routing are simply baked into a framework.

The steps for building this part of the solution are as follows:

1. In Visual Studio.NET, add a new website of type WCF Service to our existing
solution and name it Chapters.OrderManagement . RoutingService.

Add New Web Site
| NET Framewark 4 | sortby: |Defaurt | 2B
Installed Templates
Visual Basic %g ASP.NET Web Site Visual C#
% ASP.NET Empty Web Site Visual C#
[c?/, ASP.NET Dynamic Data Entities Web Site Visual C#
lcj#’ ASP.NET Dynamic Data Ling to SQL Web Site Visual C#
Cﬂﬁ WCF Service Visual C#
Fi Cﬁ ASP.NET Reports Web Site Visual C#
L i WCF Adapter Service Visual C#
]
‘% ASP.NET Crystal Reports Web Site Visual C#

[210]

Chapter 8

Delete the code files (interface and service implementation). We are
leveraging the native WCF 4.0 Routing Service and therefore don't need
any code files.

Add a project reference to System.ServiceModel .Routing.
Rename the . svc file to OrderRouter. sve.

Open the service file (. svc) and change its Service attribute reference to
System.ServiceModel .Routing.RoutingService, System.ServiceModel.
Routing, version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf385
6ad364e35. This tells the WCF service to use the built-in router service for its
implementation.

We need to set up the web. config file to implement the routing capability.
within the System. Configuration tags, add the <client> node. This holds
the endpoint definition for both of our order system workflow services. Note
that we don't identify the contract definition because this project technically
has no idea about our service or its contract implementation.

<clients>
<endpoint
address="http://localhost/Chapter8.SystemA.WorkflowService/
SystemAOrderService.xamlx" binding="wsHttpBinding"
bindingConfiguration="" contract="*" name="OrderSystemA" />
<endpoint
address="http://localhost/Chapter8.SystemB.WorkflowService/
SystemBOrderService.xamlx" binding="wsHttpBinding"
bindingConfiguration="" contract="*" name="OrderSystemB" />
</clients>

We create the new WCF 4.0 routing section. We first have a namespace
table, which allows us to create an alias to the namespace of our data
message. Next, we have a filters collection where we have XPath filters
for each order system and which sends messages with productId < 100 to
system A and ProductId > 100 to system B. Finally, we have a filter table,
which links the filters and determines which endpoint to use when the
filter is satisfied.
<routings>
<namespaceTable>
<add prefix="custom"
namespace="http://Chapter8/OrderManagement /DataContract"/>
</namespaceTable>
<filters>
<filter name="SystemAFilter" filterType="XPath"
filterData="//custom:ProductId < '100'"/>

[211]

Content-based Routing

10.

<filter name="SystemBFilter" filterType="XPath"
filterData="//custom:ProductId > '100'"/>

</filters>

<filterTables>
<filterTable name="filterTablel">
<add filterName="SystemAFilter" endpointName="OrderSystemA"
priority="0"/>
<add filterName="SystemBFilter" endpointName="OrderSystemB"
priority="0"/>
</filterTable>
</filterTables>

</routing>

We add a service and behavior entry. The behavior refers to the new routing
capability, and the service points to the framework-provided routing service.

<services>

<service behaviorConfiguration="RoutingBehavior" name="System.
ServiceModel .Routing.RoutingService">

<endpoint address="" binding="wsHttpBinding"
bindingConfiguration=""

name="RouterEndpointl" contract="System.ServiceModel.
Routing.IRequestReplyRouter" />

</services>
</services>
<behaviorss>
<gserviceBehaviors>
<behavior name="RoutingBehavior"s>

<routing routeOnHeadersOnly="false"
filterTableName="filterTablel" />

<serviceDebug includeExceptionDetailInFaults="true"/>
<serviceMetadata httpGetEnabled="true" />

</behaviors>

</serviceBehaviors>

</behaviors>

Build the application and create a new IIS application named Chapters.
OrderManagement . Rout ingService, which runs in the .NET 4.0
application pool.

We can browse directly to the service address to see if our service is online:
http://localhost/Chapter8.OrderManagement .RoutingService/
OrderRouter.svec.

[212]

Chapter 8

11.

12.

13.

14.

If you browse the WSDL of this service, you will notice that it has a generic
request-reply message exchange pattern. Clients of this service should point
to a well-defined WSDL that outlines the specific service and data contracts.

To test this service, create a new console application and add a service
reference to either of our previously built workflow services. Add the
following code to the Main operation:
static void Main(string[] args)
{
Console.WriteLine ("Starting Up Service Client ...");
Console.WriteLine ("Enter a product to order");
string prodId = Console.ReadLine() ;

OrderSvcRef .ServiceContractClient ¢ = new
OrderSvcRef .ServiceContractClient

("wsHttpBinding
ServiceContract") ;
OrderSvcRef .NewOrderRequest request = new
OrderSvcRef.
NewOrderRequest () ;
request.ContractId = "001";
request.CustomerId = "333";

request .DateOrdered = DateTime.Now;

request.ProductId = prodId;

request.Quantity = 10;

request.Status = "Submitted";
OrderSvcRef .OrderAckResponse response = c.SubmitOrder (request) ;
Console.WriteLine ("Response is " + response.OrderId) ;

Console.ReadLine () ;

}

Open the app . config file for the project and find the endpoint added by
the service reference. Remove the URL to the specific workflow service and
replace it with the generic router address. http://localhost/Chapters.
OrderManagement .RoutingService/OrderRouter. svc

Build and run the console application and if you enter a product ID below
100, you should see a record added to the Systema database table, and
conversely, if you enter a product ID greater than 100, you should find a new
record in the SystemB database table.

[213]

Content-based Routing

Summary

In this chapter, we saw how to route messages to specific backend systems. If

this fictitious organization already had an in-house BizTalk Server and a staff of
highly trained developers, then we would have chosen to go down a different path.
Moreover, the NET 4.0 Routing Service offers a compelling way to hide downstream
endpoints and apply simple content-distribution filters.

[214]

Publish-Subscribe

In this chapter, we will look at how to broadcast information to a variety of parties
using the Microsoft technology best suited for this task.

Use case

LarHans Pharmaceuticals is a multinational health sciences company with a special
focus on the human immune system. Because of the nature of their work, the
company is subject to regulations set by governmental agencies around the world
(for example, the Food and Drug Administration in the United States, or the National
Institute for Health and Clinical Excellence in Great Britain). As a result, LarHans
Pharmaceuticals has strict guidelines to which it adheres regarding product safety
and alerting the public to changes in a product's safety profile.

When there is a product recall or change to the product's label, the LarHans team must
send immediate communication to at least the following three distinct locations:

1. Federal agencies: A notice of product recall or label change must be
distributed to governmental bodies within a very short period of time. This
interval may differ by country, but companies face harsh fines if they delay
communication of this information.

2. Internal sales teams: The LarHans sales force must be notified in a timely
fashion to make sure they provide physicians with the latest and most
accurate information regarding product safety.

3. Public website news feed: LarHans conveys product changes to the
consumer population through their public-facing website.

Publish-Subscribe

Today, when such an event occurs, the LarHans organization fills out a series of
paper forms for faxing to each governmental body, crafts and sends out e-mail
messages to various sales organizations, and creates a work order with the website
ownership team. This process has proved to be arduous and LarHans has nearly
missed several filing deadlines because of the frantic coordination of resources and
document preparation.

Moving forward, LarHans Pharmaceuticals wants to establish an automated process
which allows a single label change or product recall event to trigger notification to
all interested parties. Each of the three communication targets outlined before has
some sort of technology interfaces which can be leveraged by this solution. Each
governmental body has either a secure web service interface or FTP drop-spot which
can receive these safety notifications. The directors of the company sales teams

are willing to create e-mail templates that get populated by an automated solution
instead of hand-crafting these customized notices. Finally, the team that runs the
public website is willing to open a channel to the news feed database so that entries
can be added without requiring website administrator interaction.

Because of the sensitivity and impact of this solution, the LarHans team has placed
high importance on quality of service and guaranteed delivery. They want to make
sure that they do not lose or skip notices to government agencies, or open themselves
up to fines or penalties for failure to notify the public.

LarHans Pharmaceuticals is primarily a Microsoft shop with existing investments
in SQL Server, SharePoint Server, BizTalk Server, and .NET development. While
LarHans has entered early-adopter programs for some Microsoft applications, they
typically wait until a service pack is released prior to deploying new software into
the environment.

Key requirements

The following are key requirements for a new software solution:

e Automated distribution of the same message to multiple interested parties.
e Guaranteed delivery of messages or at minimum, notice of failed delivery.

o Flexibility to support future data recipients without reengineering
the process.

[216]

Chapter 9

Additional facts

There are some additional details gathered after the initial use case was shared with
the technical team. These include the following facts:

1. This is a low volume solution that puts a higher priority on reliable delivery
than raw throughput or load.

2. The solution must initially address the three known types of notification
targets (government agencies, sales team, and public website), but there may
be future internal and external parties interested in acting upon product
recall or label change events.

3. There are multiple sales teams and not all teams receive e-mails for all events.
Product recalls or label changes may be specific to a particular country (or set
of countries), so we need the flexibility to notify only the teams that are
directly impacted.

4. Similarly, not all governmental agencies need all notifications. Based on the
scale of the recall or label change (and at whose request that change was
made), only some agencies require notification.

5. While there is an industry-standard data format for these notifications,
not all countries currently accept data in this format. This means that a
transformation strategy is needed.

6. If a transmission to a governmental agency fails, the LarHans team must
proactively be notified so that they can perform manual publication within
the legally required time window.

Pattern description

Unlike the content-based routing scenario which targets a single destination system,
this scenario calls for the broadcast of an event to a variable number of interested
consumers. Similar to the content-based routing pattern where the publisher of a
request does not know who is consuming the information, the publish/subscribe
pattern relies on decoupling the sender from the receiver(s). In a publish/subscribe
scenario, a set of subscribers asynchronously receive a message in parallel to each
other and independently act upon it. This pattern is very successful if you need a
very loosely coupled, scalable way to funnel data to multiple recipients.

Ideally, a message broker in a publish/subscribe solution can provide a robust
quality of service to the subscribers. This typically means that the broker can notify
subscribers in parallel (versus sequentially), perform in a store-and-forward fashion
so that downstream unavailability does not result in lost messages, and filter out
messages that are not of any interest to a particular subscriber.

[217]

Publish-Subscribe

There are a few things to look out for when building a publish/subscribe solution.
First, the ability to tap into the data stream is a blessing and a curse as well. On one
hand, this is good as it allows for easy troubleshooting by adding another subscriber
who does not impact any other part of the solution. On the negative side, this means
that someone (with proper access) could siphon-off very sensitive information.
Hence, thorough design and governance is needed to make sure that sensitive data
is not freely stored and accessible by curious third parties. Another downside of this
pattern is the inability for the publisher of the message to have any real assurance
that its message was consumed properly. Loose coupling can be great for scalability
and maintainability, but you sacrifice the capacity for publishers to receive accurate
acknowledgements. The publish/subscribe broker needs to take ownership of the
delivery guarantees that make up a service-level agreement because the publisher
has no knowledge about the subscribers and their system availability.

Candidate architectures

There are three ways that we decided to tackle this problem. Each possible solution
brings with it some benefits and risks.

Candidate architecture #1-Azure Platform
AppFabric Service Bus

Although going with a Windows Azure solution may be a bit aggressive for a more
traditional IT shop, there are strategic benefits to seriously considering a publish/
subscribe solution hosted in the cloud.

Solution design aspects

While not dealing with an enormous load, the solution does require us to deal with

a varied usage profile and bursts of changes. A cloud-based infrastructure is an asset
when we have inconsistent load and wish to design a solution that scales up or down
based on our needs. Likewise, our clients need to pay only for their data usage (in the
Azure Platform AppFabric case, we pay per connection and for the data transfer per
GB) instead of setting up hardware sized for the peaks, but idle during the valleys.

[218]

Chapter 9

One of the unique aspects of the Azure Platform AppFabric candidate proposal is the
ability to decentralize the attachment of listeners from the router administrator. The
NetEventRelayBinding, special to Azure Platform AppFabric, provides a way to do a
one-way multicast to multiple applications listening on a single endpoint. Each listener
attaches itself to the endpoint by starting up their listener service and providing proper
authentication to the Azure Platform AppFabric Service Bus. This technique provides
a very loosely-coupled routing infrastructure where data consumers can be rapidly
provisioned and decommissioned without the intervention of a central administrator.
The downside of this mechanism is that it becomes difficult to do impact analysis and
have a central console which manages the data flow.

So how do we achieve reliable delivery and automatic retries in the cloud? The
Azure Platform AppFabric Service Bus has the concept of buffers, which act as
temporary queues with limited lifetime and message storage. However, these buffers
are not meant to be a durable store that sits between cloud routers and service
listeners. Instead, we need to build reliability into our listener service which fronts
the backend systems. This means using a durable queue/repository that can store
messages in the event that the target system is unavailable or overloaded.

The Azure Platform AppFabric Service Bus is a light-weight router and thus does not
have a rich set of services for data quality or error handling. However, it can leverage
the Access Control Service to cleanly and efficiently allow both internal and external
parties to authenticate to our service. Exception handling and auditing will need to
be managed at the individual service layer.

Solution delivery aspects

Windows Azure solutions are built using a mix of Visual Studio.NET components
and Azure administration interfaces. Developers who are comfortable building WCF
projects in Visual Studio can easily extend their toolbox to new Azure WCF bindings
and configuration options.

Solution operations aspects

A cloud-based solution means that we have fewer physical infrastructure concerns
and can establish confidence in the ability of the shared cloud platform to perform
predictably under load and properly failover in the event of a node malfunction.

The tooling for Azure administrators is still relatively immature, so solution
administrators will have to establish their own best practices and governance for
monitoring our active router and performing effective troubleshooting.

[219]

Publish-Subscribe

Organizational aspects

LarHans Pharmaceuticals prefers to invest in existing products and minimize their
exposure to fully custom-built solutions. While components of the Windows Azure
AppFabric solution would require custom code, the core routing infrastructure,
security, and usage patterns are already well defined and ready-to-use.

The organization can use their existing .NET resources to build AppFabric projects
and they can be confident that such a solution can be very rapidly provisioned and
deployed. However, there is clearly a risk involved in going with a new offering and
LarHans would have to deem the strategic value in moving to the cloud and whether
it is worth accepting newfound operational and solution risk.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2—-BizTalk Server

A loosely-coupled service bus like BizTalk Server can offer unique quality-of-service
capabilities that closely match the needs of this customer.

Solution design aspects

A BizTalk solution offers us a few key benefits during the design of this solution.
First and foremost, we get an enterprise-scale infrastructure built around

reliable delivery. When we send a product recall message to the Food and Drug
Administration (FDA) in the United States, we can configure our solution to retry the
message in the case of failure, and proactively alert an administrator if a defined set
of retries is exhausted. The BizTalk architecture assures us that messages get queued
in the case of downstream unavailability. If this customer could tolerate a solution
where a message may get missed (for example, a stock ticker message where another
will be coming along later), then non-durable solutions could be a fit. However, for
"can't miss" solutions that demand delivery guarantees, BizTalk is the leading choice.

[220]

Chapter 9

We have a need to talk to existing web services, databases, and e-mail systems.
BizTalk has a series of adapters that make connectivity to these protocols a code-
generation and configuration task, instead of a custom coding or scripting task.
Each message target may accept a different data format for product recalls and
label changes, so here we would want to leverage BizTalk's mapping capability to
transform data at the point of delivery.

Extensibility and loose coupling is also important to this solution. We may have
new or changed endpoints in the future and want to be able to isolate those changes.
BizTalk's publish and subscribe architecture means that a single publisher can

stay decoupled from all the independent consumers of a message. There will be
zero impact on other subscribers if an existing subscriber needs to be modified (for
example, URI address change, alteration to the endpoint's message format) or a
completely new subscriber is added. If this solution needs a very fluid, dynamic

set of subscribers that change with regularity, then the Azure cloud offering might
be a prime choice. However, if you have a static set of endpoints and find central
management and impact analysis to be critical, then BizTalk is the right fit.

Finally, we see that our customer has a very time-sensitive transmission schedule

so failures need to be captured and handled in a consistent, actionable manner. Our
BizTalk solution could actually subscribe on any exceptions thrown by the delivery
service and initiate an additional process or simply notify a group or a person where
manual delivery of a message may be needed to beat the required deadlines. BizTalk
has a number of options for handling exceptions and after a reasonable number of
automated attempts (through configurable retry intervals), alternative options (for
example, fax) are required.

Solution delivery aspects

The LarHans IT organization has existing skill in working with BizTalk Server,

so they have a pool of available developers who can design and implement this
solution. These developers currently store their BizTalk artifacts in an open-source
Subversion source control repository. While BizTalk Server is not installed on all
developer workstations, the organization invests in project-specific virtual machines
that are accessed by developers through remote access.

[221]

Publish-Subscribe

Solution operations aspects

The time-sensitive nature of the data being distributed by this solution means that a
robust and rich monitoring environment is needed. Also, we need to have confidence
in the infrastructure being able to support this new application on top of all the
existing solutions deployed into the BizTalk environment. Our solution has a small
load requirement, but the project stakeholders want to make sure that bursts of data
from other applications do not block the server from processing our mission-critical
messages. BizTalk provides built-in load balancing and we can even segment our
solution into its own processing space to help ensure that it maintains a high priority
for processing.

BizTalk Server comes with a dashboard for monitoring and interacting with failed
messages. This allows us to proactively resume failed transmissions or delete them if
the data ends up being submitted manually to its targets.

Organizational aspects

The BizTalk-based proposal can serve as a long term solution that meets the needs of
LarHans Pharmaceuticals for years to come. It has built-in extensibility points which
allow us to add, change, or remove endpoints without impacting the rest of the
solution. This solution leverages the existing organizational investment in BizTalk
and the developers who are trained in the tool. It also complies with their preference
to configure applications, instead of building them, and gives them the assurance of
reliability necessary to transition a critical manual process to an automated one.

Solution evaluation

Design Delivery Operations Organization

[222]

Chapter 9

Candidate architecture #3—-SQL Service
Broker

This scenario requires a shift of perspective for most database professionals as
we tend to think of publish-subscribe scenarios as replication issues. Here we are
pushing data to diverse routes. These routes are controlled by folks outside of
the control of LarHans Pharmaceuticals. It is difficult enough to maintain route
definitions when the enterprise controls the start and end points. The loss of end-
point control and diversity of potential protocols and message formats will create
administrative issues that we will need to account for in any application.

SQL Server Service Broker is, at first glance, a potentially useful technology match
nonetheless. We are faced with a situation where specific data must be sent with
guaranteed delivery in a specific format, to a specific service. That is a sweet spot for
Service Broker.

Solution design aspects

It is rare that one has a "pure-play" solution in any SQL Server-based technology.
This pattern is particularly illustrative of that fact. We require to set up the following;:

1. User interfaces to allow input of data (for example, input of details around
product recalls).

2. Some form of notification to relevant sales staff (for example, SQL Mail to
pre-defined relevant teams stored in tables).

3. Service Broker conversations with multiple end points, each of which
requires different data, in different formats, and potentially different
languages. These would include:

° Transmissions to regulatory agencies
° External publication to the consumer and medical
communities

All of this would require a fairly complex and custom solution and is not something
easily achieved in SQL Server tooling.

[223]

Publish-Subscribe

Solution delivery aspects

One of the key requirements of this application will be to handle CYA (Call Your
Attorney) situations. Failure to notify can give rise to expensive regulatory and, at
least in the United States, tort liabilities. We need to track precisely when, where, and
how each message was sent and when (or whether) it was delivered. Moreover, if
the message is not delivered within some pre-determined time frame, it must allow
for human intervention. For example, we may want to account for a central FTP
server being unavailable to receive messages for some time period. Beyond that time
period, we may want someone to call the regulatory agency in question or fall back
to alternative methods of delivery.

A second key consideration will be the long term evolution of data that must be sent.
We are dealing with multiple regulatory authorities in multiple countries, each of
which will have their own required format for the data. Of course, each will want
the data in their own national language. As a part of this solution; therefore, we will
need a user interface and database schema that will provide the flexibility for doing
the following tasks:

1. Capturing the data that is required at present.

2. Sending the data in an appropriate format.

3. Allowing edits to that format; hopefully, with minimal IT involvement.
4

Storing that data in a way that allows someone to reconstruct what was sent,
the format used, and when it was sent.

Using SSSB presents advantages for these requirements. First, both physical and
logical access to this data is always under the control of the enterprise. It is also very
easy to relate the data that we leverage in this application with data stored in other
enterprise databases. For example, recall data can be linked to quality control, order
fulfillment, and manufacturing systems to make it easier to obtain a complete view
of the recall process or to respond to any request for further information sent in by
regulatory agencies. We can even place this ability into the hands of power users
using PowerPivot technologies available in Office 2010.

The LarHans team has extensive SQL Server development experience and could
build this solution, but they are relatively new with SQL Server Broker and typically
do not construct SQL solutions that communicate with non-database endpoints.

[224]

Chapter 9

Solution operations aspects

For this application, IT can never be a bottleneck for getting data out the door.

It is not only regulatory and liability issues dictating this requirement, sufficient
though they may be. Real harm, even death can come to real people from ingesting
potentially defective medications. As architects, we should be very well aware of the
real world consequences our designs may impose on people.

Once in operation, this application must allow business users to get appropriate
data, at the appropriate place, in correct format, and in a timely manner. Formats,
data, and potentially even the definition of "timely" can change rapidly over time
and according to a given situation. The application must be flexible enough to
handle such requirements and allow for easy updates to formats, business rules,
and the data stored in the application to meet these requirements. So in addition to
the creation of an SSSB application, we would also need to provide user frontends
to handle these requirements or an IT staff person whose primary role would be to
create and send these messages via SSSB.

Organizational aspects

As noted earlier, LarHans Pharmaceuticals prefers to invest in existing products and
minimize their exposure to completely custom-built solutions. An SSSB solution
will require significant investment in custom code or a DBA dedicated primarily to
operating this system.

Solution evaluation

Design Delivery Operations Organization

[225]

Publish-Subscribe

Architecture selection

Let us look at how these candidate architecture technologies stack up when
evaluating the risks and benefits of each.

Azure Platform AppFabric Service Bus

Benefits Risks
e Rapid provisioning of endpoint e No durable component to
listeners store failed messages
e No new hardware needed to host ¢ No centralized management
message routing function of data subscribers
e Internet-based host allows for secure e Requires endpoints to be able
access for internal and external to integrate with Service Bus
endpoints
BizTalk Server
Benefits Risks
e Reliable messaging engine that can e BizTalk Server does have
ensure delivery of critical data an out-of-the-box business
e Diverse set of adapters that can da(sihboali)d ff)r.mo?l.tlogng
natively communicate with all the and resubmitting fatle
protocols our client demands messages
e Loosely-coupled infrastructure that e Requires additional modules
allows us to add/remove/change or code
endpoints in a non-disruptive
fashion
SQL Server
Benefits Risks
e Reliable delivery of data between e Requires significant coding
database systems effort to communicate with
e In-house staff to develop and diverse endpoints
maintain the solution e Solution would have to

be made up of multiple
components weaved together

Non-trivial effort to modify
or create new endpoints

In evaluating these options against the problem scenario, BizTalk Server is the most
appropriate choice. BizTalk provides us a quality-of-service guarantee through

persistent storage, automatic retry, and flexible exception handling mechanisms. We

also have a static set of endpoints so the powerful, distributed Azure model is not
needed here.

[226]

Chapter 9

Building the solution

For this solution demonstration, we will publish to two of the desired endpoints: the
FDA web service endpoint and the LarHans website database endpoint. This gives
us a chance to evaluate BizTalk's capabilities to communicate with standard web
services as well as database platforms.

One key aspect of our solution architecture is to keep our design as loosely coupled
as possible. In our case, that means embracing canonical formats when performing
routing operations instead of polluting our message processing rules with endpoint-
specific formats. Also, we want our endpoints to be as distinct and separate from
each other as possible, so that changes to one endpoint have little to no impact on
existing message consumers.

Setup

We start off by creating a new database named Chapter9 on a SQL Server 2008
instance. After the database is created, execute the database script Chapter9.sql in
the folder <Installation Directorys>\Chapter9\Begin and install the tables into
your new database. This is the database which holds the public website's company
news feed entries.

Now open the Chapter9.sln Visual Studio.NET solution located in the
<Installation Directorys>\Chapter9\Begin folder. In this solution, you will find
a single WCF service which represents the destination endpoint of the FDA. Build
the solution and add this to IIS 7.0 as a new web application named Chapter9.FDA.
SafetySubmissionService. Testing this service via the WCF Test Client application
should yield a result consisting of a tracking number and timestamp.

Solution Explorer = 1 X

_g Solution 'Chapterd’ (1 project)
= (23 chapters.FDA.SafetySubmissionService
=d| Properties
«J| References
_y App_Data
#] 15afetySubmission.cs
¥ safetySubmission.sve
="} web.config

'—'fi] Solution Explarer ﬁ; Team Explorer B2 Class View

[227]

Publish-Subscribe

Building the canonical solution artifacts

Now that our foundational database and services are in place, we are ready to
develop the canonical solution components which are independent of any particular
downstream system.

1.

4.

Launch Visual Studio.NET 2010 and open the Chapter9.sln in the
<Installation Directorys>\Chapter9\Begin folder. You will find a single
WCF service already in place.

The first BizTalk project is needed to hold enterprise canonical schemas.
Specifically, these are the standard schemas representing a product recall
notice, label change, and government agency response. Regardless of the
data formats required by various subscribers, our core messaging solution
only routes canonical formats.

Right-click the solution in Visual Studio.NET and choose Add | New Project.
Choose the BizTalk Projects category and select Empty BizTalk Server
Project. Name the project Chapter9.LarHans.SafetySchemas.

Add New Project
Recent Templates .MET Framework 4 | Sortby: IDefauIt j

Installed Templates
Visual C# @ Empty BizTalk Server Project

Visual F#
BizTalk Projects @ BizTalk Server BPEL Import Project
Other Project Types
Database
Modeling Projects
Test Projects

Online Templates

Name: |Chapterg.LarHans.Safet\,rSchemas

Location: | C:\Users\Administrator \Documentstyisual Studio 2010'Projects\Chapterd_Code'\Begin

Immediately after creating the BizTalk project, right-click the project, select
Properties, highlight the Signing tab, and set the strong name key. If you
do not have an existing strong name key to reference, select New... from the
Choosing a strong name key drop down box. In the Create Strong Name
Key dialog box, set the parameters for your new key. Finally, switch to the
Deployment tab and set the Application Name to Chapter9.

Now, right-click the BizTalk project again and choose Add | New
Item. Under the Schema Files category, select Schema and name it
ProductRecall XML.xsd.

[228]

Chapter 9

Add New Item - Chapter9.LarHans.SafetySchemas

Installed Templates Sort by: I Default

= BizTalk Project Items
Orchestration Files ﬂ Flat File Schema BizTalk Project Items
Map Files
Pipeline Files E Property Schema BizTalk Project Items
Schema Files

Online Templates ﬂ Schema BizTalk Project Items

E Flat File Schema Wizard BizTalk Project Items
MName: | ProductRecall_¥ML.xsd

Click on the topmost node in the schema named <Schema> and look in the
Visual Studio.NET Properties window for the Target Namespace property.
Change this value to http://Chapter9.LarHans.SafetySchemas. Use this
value as the target namespace for all canonical schemas in this project.

Define the schema so that it looks like the following screenshot. Note that

all elements are of a string data type, and the Lot and Incident nodes are
marked with an unbounded maximum occurrence in their Visual Studio
properties window. This is because our recall notice may impact multiple lots
of the product, and we can have any number of reported incidents associated
with a recall.

ProductRecall_XML.xsd*

E-5r «Schema:

E-[Z| ProductRecal

----- 4| RecallD

----- 5] Product
----- 4| Courtry
== ImpactedLots
----- 5| Hazard
B2 Incidents

----- 5] ConsumerContact
----- 5| MediaContact

[229]

Publish-Subscribe

8. Next, right-click the BizTalk project and add another schema named
ProductLabelChange XML.xsd. Rename its target namespace to the same
value designated in step 6. This schema should look like the following
screenshot. Note that all elements are of type string and there are no
changes to the default node properties.

ProductLabelChange_XML.xsd*

B
EI_'| ProductLabelChange
] ChangelD
5] Product
5] Country
5] ContactDetails
E-|=] ChangeDetails
: ‘|5 ChangeType
-|5] ReasonForChange

9. Now we need a schema to hold the acknowledgements that we receive from
each government agency. Right-click the BizTalk project and add an XML
schema named AgencySubmissionAcknowledgement XML.xsd. Once again,
alter its target namespace as per the value we identified earlier. This schema
has a simple structure that looks like the following screenshot:

AgencySubmis...ement_XMLxsd
B2 AgencySubmissionAcknowledgement
(5] Agency
Country
Aclldentifier
Timestamp

10. We want to have the option to filter our subscriptions for product recalls and
label changes based on some of the values in the messages. Specifically, a
particular subscriber may only wish to receive notifications for a particular
product or for those affecting a specific country. To do content-based routing
in BizTalk solutions, we need to promote message nodes via property
schemas. Right-click the BizTalk project and add a new Property Schema
named SafetyRout ing PropSchema.xsd.

11. This schema has two nodes for country and product.

[230]

Chapter 9

SafetyRouting_PropSchema.xsd| |

12. We now need to get our product recall and label change schemas to point to
this property schema, so that we can perform content-based routing on each
message type. Open the ProductRecall_ XML.xsd schema, right-click the
root <Schema> node, select Promotions | Show Promotions. On the Property
Fields tab, choose to Add a Property Schema to the list by pointing to our
previously built property schema. Then create the relationship between
the Country and Product nodes, and their corresponding property
schema nodes.

B

5| ConsumerCont

Promote Properties

.D\snngulshed Fields Property Fields |

Eca Property schemas list:
RecalllD P

=1 B

x|

Product Prefix | Namespace

| Location

Country
ImpactedLots

Hazard

Incidents

nsi https:/{Chapterd.Lar...

Property fields list:

.\safetyrouting_prop...

MediaContact
Property | Node Path |
add EnsD:Prnduct [*[local-name()="Productrecall and names...
pd | : 3
nsl:Country | f*Jocalname()="Productrecall and names. ..

<< Remove |
Update |
Clear all |

| — T

[ox | cone |

13. Save the schema and then repeat this same process on the

ProductLabelChange XML.xsd schema. At this point, you should have a
BizTalk project with four complete schemas in it.

(= (Z1] Chapterd.LarHans. SafetySchemas
H- [=d| Properties
«g] References
AgencySubmis
= key.snk

ﬂ ProductLabelChange _XML.xsd
ﬂ ProductRecal _¥ML.x=d

ﬂ SafetyRouting_PropSchema.xsd

Admowledgement_XML. x:

[231]

Publish-Subscribe

Building the FDA subscriber solution artifacts

With our canonical objects in place, we can now define subscriber-specific artifacts.
Each subscriber will have its own BizTalk project to hold any schemas and maps
associated with that particular endpoint. Why not bunch them together in a single
project? We want a clear separation of concern and allow isolation of change. If
one subscriber changes their endpoint schema, why should it impact all the other
unchanged endpoints as well? By separating the projects, we establish a very
modular solution with a clear extension pattern.

1. In Visual Studio.NET, right-click the solution and choose to add a new
project. Select the Empty BizTalk Project type and name the project
Chapter9.LarHans.FDA.SafetySubscriber. Upon project creation,
right-click the project, select Properties, and set the strong name key and
Application Name to Chapter9.

2. This project will hold the artifacts needed to communicate with the FDA
service. Right-click the project and choose Add | Add Generated Items.
Select the Consume WCF Service menu option.

Add Generated Ttems - Chapter9.LarHans FDA SafetySubscriber

Installed Templates Sortby: IDEfauIt

[Generated Schema Files
Add Adapter Metadata a Consume WCF Service Generated Schema Files
Generate Schemas

Consume WCF Service

Consume Adapter Service

Online Templates

3. The BizTalk WCF Service Consuming Wizard launches, and when
prompted, choose the Metadata Exchange Endpoint as the service source.

4. For the metadata URL, use the URL of the service you installed into IIS
during the earlier solution setup (for example, http://localhost/
Chapter9.FDA.SafetySubmissionService/SafetySubmission. svc).

[232]

Chapter 9

4 BizTalk WCF Service Consuming Wizard x|

Metadata Endpoint
Specify the MEX endpoint of the WCF service.

Edit credentials for password-based authertication schemes. Edt |

Metadata Address (URL):

http://rseroter08/ChapterS. FDA. Safety Submission. SewicefSafetySubmisj Get |

Example: http://host[:port]/service Pwsdl

<?xml version="1.0" encoding="utf-8" ?=
- <wsdl:definitions name="SafetySubmission"
targetNamespace="http://tempuri.org/"
xmins:wsdl="http:/ fschemas.xmlsoap.org/wsdl/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/enci
xmins:wsu="http:/ fdocs.oasis-
Dnen.uru!wssf2l]l]4!leuTsis—zl]lIMl]l—wss— f

Help <Back | Next > Cancel |

Keep the default namespace on the next wizard page and click on the
Import button.

This wizard creates a host of artifacts in our BizTalk project including an
orchestration, multiple schemas, and two send port binding files.

&
[#- [=d| Properties
- [:=] References
'-_“.3, key.snk

- é] SafetySubmission. BindingInfo.xml
- |#| SafetySubmission.odx

. ﬂ SafetySubmission_atacontract_ora_2004_07_Chapterd_FDA_SafetySubmissionService . xsd
- g SafetySubmission_chapter8_FDA_Contract. xsd

a SafetySubmission_chapter8_FDA_Messages. xsd

- | %] SafetySubmission_Custom.BindingInfo.xml
ﬂ SafetySubmission_schemas_microsoft_com_2003_10_Serialization., xsd
ﬁ SafetySubmission_schemas_microsoft_com_2003_10_Serialization_aArrays. xsd

Now we need to add three maps to this project:

e}

Canonical product recall format to FDA input format
Canonical label change format to FDA input format
FDA acknowledgement format to canonical government
agency response format

Right-click the BizTalk project and choose to add a reference. Point to the

SafetySchemas project so that we can access the canonical schemas
defined there.

[233]

Publish-Subscribe

9. Then right-click the BizTalk project and choose Add | New Item. Select the
Map type and name it ProductRecall_To_FDASafetyIssue.btm.

10. On the left-hand side of the map, click on the Open Source Schema link and
go to the References folder and open the SafetySchemas project. Find and
select the ProductRecall message.

11. Click on the Open Destination Schema on the right-hand side of the map
and navigate directly to the Schemas node to pick the safetySubmission
chapter8_FDA Contract type. Select the PostSafetyIssue type from the
pop-up box. The map should now look like the following screenshot:

e

=

-~ Options -

[| <Schema>
= E‘] Product Recall
‘;;] RecallD
4| Product
‘._;] Country
= E‘] ImpactedLots
&) Lot
E_;] Hazard
= E‘] Incidents
=] ﬁ Incident
‘;3] Date
‘._3] Description
‘._;] ConsumerContact
‘._;] MedizContact

Changel

ConsumerContact [ﬁ

<Schema> & B
PostSafetylssue [‘E =
newlssue E =
Made Description [i
ChangeType [i

DateDetected [
Description [<_>
DriverForChange [i
Hazard [e]
Incidents L =
string E
IsLabelChange [i
lsRecall [ﬁ
LotNumbers [_ =
string B
Manufacturer [i
ProductName [e2|

12. Create the mapping as follows:

Source Destination Comments

Product ProductName

ImpactedLots/Lot LotNumbers/string

Hazard Hazard

Incidents/Incident/Date Incidents/string Use Concatenate functoid

to combine source nodes

Incidents/Incident/Description

ConsumerContact ConsumerContact
isLabelChange = Hard code Value property
false

isProductRecall = true

Manufacturer =
LarHans

Hard code Value property
Hard code Value property

[234]

Chapter 9

ozl o Forsarentenn v I
=3 |:|E N ‘ S —J @] Search +< Options = | 5
= [<Schemax <Schema> ool @
= g Product Recall Post Safetylssue E =
] RecallD newlssue (£ B

ﬁ Product ChangeMadeDescription |‘<_>

‘._;] Country ChangeType |‘<_>

= g] ImpactedLots ConsumerContact @

% Lot ———M DateDetected |‘<_>

&2 Hazard Description [22]

= é] Incidents DriverForChange |‘<_>

= g] Incident Hazard @

ﬁ Date — Incidents L =
&b Description —— b :‘_‘ R —— string ¢
&2 ConsumerContact IsLabelChange [2|
‘._;] MediaContact lsRecall |‘<_>
Lot Mumbers L =
string @
Manufacturer [22
ProductMName éi“

13. It is a good practice to test the map when you complete it, so create an
instance file of the source schema (by right-clicking the ProductRecall

schema in the safetySchemas project and choosing Generate Instance) and
set it as an input to this map via the Properties window. Then right-click the
map and select Test Map. Your output should show all the relevant source

data values in the destination schema.

14. Next, we need the map from the label change to the FDA safety issue.
Right-click the BizTalk project and select Add | New Item. Select the Map
type and name the map LabelChange To_ FDASafetyIssue.btm.

15. For the source schema, navigate to the References node and select the
ProductLabelChange type in the SafetySchemas project.

16. The destination schema should be the same SafetySubmission chapter8
FDA_ Contract type as before. Select the PostSafetylIssue type from the

pop up box.

17. Create the mapping as follows:

Source Destination Comments
Product ProductName

ContactDetails ConsumerContact
ChangeDetails/Change Type ChangeType
ChangeDetails/ReasonForChange DriverForChange

[235]

Publish-Subscribe

Source Destination Comments
ChangeDetails/ContentChanged ChangeMadeDescription
isLabelChange = true Hard coded Value
property
isProductRecall = false Hard coded Value
property
Manufacturer = LarHans Hard coded Value
property

eihange_To rosssernsme o

= & <Schema> <Schemas 0l @
= é] ProductLabelChange PostSafetylssue E =
%] ChangelD newlssue [=| =
é Product ChangeMadeDescription @
‘._;] Courtry ChangeType @

@ ContactDetails

= =] ChangeDetails
@ ChangeType

ﬁ ReasonForChange —

@ ContentChanged —

ConsumerContact @
DateDetected [22
Description E

DriverForChange @
Hazard B
Incidents [=|
lsLabelChange E
lsRecall B
Lot Numbers L
Manufacturer [z2]

ProductMame @

18. Create an instance of the LabelChange message and confirm that the map

19.

20.

functions as expected.

Our final map for this subscriber is for the acknowledgement message.
Add a new item to the BizTalk project, choose the Map type, and name it
FDAResponse To_ AgencySubmissionAcknowledgement.btm.

Select the safetysubmission chapter8 FDA Contract type for the

Schema Source and choose the PostSafetyIssueResponse from the pop-up

window. For the destinations schema, navigate to the References node and
choose the AgencySubmissionAcknowledgement schema.

21. Create the mapping as follows:

Source Destination Comments
AckID AcklIdentifier
Timestamp Timestamp

Agency = FDA
Country = USA

Hard code Value property
Hard code Value property

[236]

Chapter 9

22.
23.

24.

25.

rosResparse_To_g. droniecgenentom < [

o |:,_ ‘ {mj' = —J L I Search 4 Options -~ .
= = <Schemax <Schema> & @
= E‘] Post SafetylssueResponse AgencySubmission Acknowledgement E =]
= E_] Post Safetylssue Result Agency E
‘g:‘; AckiD . Country E
] ProductName T ckldentfier &
(£ Tmestamp Timestamp ¢

Build all the projects currently in the Visual Studio.NET solution.

Right-click Chapter9.LarHans.SafetySchemas and select Deploy. This will
load this project's assembly into the GAC and register the relevant artifacts
with the BizTalk Server.

Once that operation succeeds, right-click and deploy the Chapters.
LarHans.FDA.SafetySubscriber project.

Open the BizTalk Administration Console and navigate to the Chapter9
application. You can confirm the deployment by opening a node such as
Maps to confirm that our recently built maps appear.

Configuring the data publisher and FDA
subscriber

Now that we have the schemas and maps necessary for exchanging information with
the FDA, we can construct the actual endpoint which transmits data. Before we can
build the endpoints that consume the data, we have to set up the publisher which
pulls data into the BizTalk Server. To do that, we configure a BizTalk receive port
and location that publish the product recall and label change messages into the bus.
In this scenario, we are picking up the canonical message via a BizTalk FILE adapter.
Note that we could very well use any adapter to send messages into the BizTalk bus.

1.

Within the BizTalk Administration Console, navigate to the Chapter9
application and create a new, one-way receive port named Chapter9.
LarHans.ReceiveProductRecall.

Add a receive location named Chapter9.LarHans.ReceiveProductRecall.
FILE to our new receive port.

Select the FILE adapter and set the Receive Pipeline to the XMLReceive
pipeline. Choose to configure the FILE adapter and set the polling location to
<Installation Directorys>\Chapter9\Filedrop\PickupRecall folder.

[237]

Publish-Subscribe

4. Create another one-way receive port named Chapter9.LarHans.
ReceiveProductLabelChange with a FILE receive location named Chapter9.
LarHans .ReceiveProductLabelChange . FILE. That receive location
should also use the XMLReceive pipeline and point to the <Installation
Directory>\Chapter9\Filedrop\PickupLabelChange directory.

« | Chapter9.LarHans.ReceiveProductLabelChange.FILE - Receive Location Pro

Schedule

Mame: |G1aptar5.LarHans.Racaive ProductLabelChange.FILE
Receive port: Chapterd LarHans Receive ProductLabelChange

Transport
Select a transport type and transport address below

Type: [Fite | Configue.._|
URI: b Proj NChapterS\FledropPickuplabelChange'.” xmlj
Receive handler: IB\zTaIk ServerApplication 'I
Receive pipeline: IXMLRBceWE [Microsoft. Biz Talk De‘lauhPlpwj _I
¥ Make this the primany; location
Description:
Help 0K I Cancel | Aoply |

5. Note that there are no maps here as we receive the canonical format and
do not want to translate to subscriber formats until the latest point
possible (send ports).

Now that our publisher is built, we can move on and create the FDA subscriber. We
do this by building BizTalk send ports and pointing them to our destination
web service.

1. We could create the FDA send port manually, but when we referenced
the WCEF service in our Visual Studio.NET project, the BizTalk wizard
auto-generated the binding files for the send port. Right-click the BizTalk
application in the Administration Console and choose Import and
then Bindings.

2. Navigate to the Chapter9.LarHans.FDA.SafetySubscriber project and
choose the safetySubmission Custom.BindingInfo.xml file.

3. When the import is complete, you can go to the Send Ports folder in the
Administration Console and see our new send port pointing to
our WCF service.

[238]

Chapter 9

,-;» Send Ports

| Mame

® WcfSendPort_SafetySubmission_HttpEndpoint_Custom

| | Status

&) Unenlisted

Remember that this single send port accepts data for either recalls or label
changes. So, we need to apply both maps here so that regardless of which
message comes in, the correct message goes out. Go to the Outbound Maps
tab and select both the maps that result in a FDASafetyIssue format.

[‘ WcfSendPort_SafetySubmission_HttpEndpoint_Custom - Se

General

Transport Advanced Options
Backup Transport

Inbound Maps

Ouibound Maps

Filters

Certificate

Tracking

[Garin]

The following are the outbound maps used for transforming documents on the cument
port.

Outbound maps:

ﬁ Source Document

|ﬂ Map

Next, we have to add the Inbound Map so that the acknowledgement

that comes back from the FDA maps to our canonical format. Recall that
"inbound" in this context refers to messages coming back into BizTalk from
this send port (that is, the response value from the service call).

:‘ WcfSsendPort_SafetySubmission_HttpEndpoint_Custom - Send Port F

General

Transport Advanced Options
Backup Transport

Outbound Maps

Fitters

Certificate

Tracking

The following are the inbound maps used for transforming documents on the cument port.

Inbound maps:

| ,Eource ; |@ Map

Safety Submijid

A Remove

FDAResponse_To_Agency SubmissionAck

owledgement | Age

[ox]

Cancel | Aoply

[239]

Publish-Subscribe

6.

7.

10.

Finally, we have to create our subscriptions so that this port picks up the
correct messages from the BizTalk MessageBox. Specifically, we want an OR
condition where the BTS.MessageType is equal to either http://Chapter9.
LarHans.SafetySchemas#ProductRecall or http://Chapter9.LarHans.
SafetySchemas#ProductLabelChange. However, as this is a United States
agency, we want to make sure to send notices that relate only to US recalls or
label changes. So, here we also add a filter based on country as well.

Transport Advanced Options Filter expressions determine which messages are routed to this Send Port from the
Backup Transport Message Box. Create one or more filter expressions using any properties in the
context.
Inbound Maps
Outbound Maps # Delete * Move Up ¥ Move Down
_ Property Operator | Value | Group by
Certificate Chapter§.LarHans. SafetySch... United States
Tracking BTS Message Type == http://ChapterS.L... Or
[ChapterS.LarHans. SafetySch... == United States And
BTS MessageType = http://Chapterd.L... And
*
Chapterd.LarHans . Safety Schemas Country == United States And
BTS Message Type ==http://Chapterd. LarHans SafetySchemas#Product Recall
Or
Chapter.LarHans . SafetySchemas Country == United States And
BTS Message Type ==http://Chapterd.LarHans SafetySchemas#Product LabelChange
Help ok | cancel | ooy |

All that is left is to create a send port that listens for the synchronous
acknowledgement back from the FDA service and publishes the canonical
format to disk. Create a new one-way, static send port named Chapter9.
LarHans.SendAgencyAck.FILE. Set the file adapter's destination location to
<Installation Directorys>\Chapter9\Filedrop\DropOffAck\ and use a
filter subscription of BTS.MessageType = http://Chapter9.LarHans.Safe
tySchemas#AgencySubmissionAcknowledgement.

Start both the receive locations and send ports.

Drop a product recall and a label change message into their respective
pickup folders.

If everything is configured correctly, then the FDA service should be called
twice and you should see two files sent to your acknowledgements folder.

[240]

Chapter 9

- <ns0:AgencySubmissionAcknowledgement
xmins:ns0="http://Chapter9.LarHans.SafetySchemas">
<Agency>=FDA</Agency =
<Country =USA</Country=
<AckIdentifier>9bfc6d8f-a6d1-41b8-970b-f44256b3243ed </AckIdentifier=
<Timestamp=2010-01-15T14:02:56.4981344-08:00</Timestamp>

</ns0:AgencySubmissionAcknowledgement:»

Building the website database subscriber
solution artifacts

With our first subscriber working, we can now build the pieces necessary to share
data with our second subscriber —the LarHans website database.

1.

Return to Visual Studio.NET and right-click the solution and add a

new Empty BizTalk Project named Chapter9.LarHans.WebsiteDb.
SafetySubscriber.

Right-click the project and choose Properties to set its strong name key and
Application Name parameters.

Right-click the new project and choose Add | Add Generated Items. Select
the Consume Adapter Service menu option.

Add Generated Items - Chapter9.LarHans.WebsiteDb.SafetySubscriber.btproj

Installed Templates Sort by: I Default j

[Generated Schema Files
Add Adapter Metadata a Consume Adapter Service Generated Schema Files
Generate Schemas
Consume 'WCF Service

Consume Adapter Service

Online Templates

4. When the Consume Adapter Service window opens choose sqlBinding from

the bindings menu. Note that the next screenshot shows only a portion of the
large wizard window that pops up.

1ol x|
Select a binding: Configure a URL:
7| | Corfigure..._ |

Example: mssql://ServerMame/InstanceMameOrBlank/Database Mame PFailoverPartner=pz

Connect Connection status: Disconnected

[241]

Publish-Subscribe

5. Click the Configure button next to the Configure a URI text box.
6. Select Windows as the Client Credential type on the Security tab.

7. On the URI Properties tab, set the Initial Catalog to Chapter9 and
the Server to ".".

x

Securty URI Propetties IBinding Properties |

B Misc
FailoverPartner
Inboundld

InitialCatalog
InstanceMame
Server

InitialCatalog
The name of the database to connect to.

QK I Cancel

8. Click OK to exit the URI configuration window and click on the Connect
button on the Consume Adapter Service wizard page to establish a
connection to our database.

9. We are adding records to a table, so after choosing RecallNews under the
Tables node, select the Insert operation and add it to the list of
operations to generate.

[242]

Chapter 9

iBix
Select a binding: Configure a URI:
IsqIBinding j Imssql '/ £/Chapterg? Configure... |
Bample: mssql://ServerMName/Instance NameOrBlank./Database Name FailoverPatner=pz
Disconnect Connection status: Connected
Select contract type: Search in category: " Tables\[dbo].[RecallNews]
ICliem (Outbound operations) j I \@
Select a category: Awvailable categories and operations:
B/ Name | Node ID |

[+ Procedures =@ Delete TableOp/Delete/dbo/RecallNews

[+ Strongly-Typed Procedures =@ Insert TableOp/Insert /dbo/RecallNews

(- Tables = Select TableOp/Select/dbo/RecallNews

- [dbo] [RecallNews] =@ Update TableOp/Update/dbo, RecallNews
Views
- Scalar Functions ’—I _
[#- Table Valued Functions 2 FarEisE
Added categories and operations:
Name | MNode 1D |
=@ Insert TableOp/Insert/dbo/RecallMews
Remaove Remawe Al
Filemame prefix
™ Generate unique schema types I OK | Cancel |
A

10. After clicking on OK, the wizard generates the artifacts necessary for BizTalk

to communicate with this database table. The BizTalk project in Visual
Studio.NET should now have schemas and a send port binding file.

- @ Chapterd.LarHans, WebsiteDb, SafetySubscriber . btproj
[+~ [=d| Properties

5] References

ﬂ SimpleTypeArray. xsd

& Table.dbo.xsd

11. A single map is needed from the canonical product recall schema to the

database specific format. Right-click the BizTalk project and select Add | New

Item. Choose the Map type and name the map productRecall_To_
InsertRecallNews.btm.

[243]

Publish-Subscribe

12.

13.

14.

15.

Add a reference to the SafetySchemas project so that we can point to our
canonical product recall schema.

Once the reference is in place, set the map's source schema to the
ProductRecall type found in the References node.

Set the Destination Schema equal to the TableOperation.dbo.RecallNews
type and choose Insert from the pop up window.

Create the mapping as follows:

Source Destination Comments

RecalllD ItemID
Product Product
Hazard HazardDescription
ConsumerContact ConsumerContact
DatePosted Date and time functoid

Lots Scripting functoid
leveraging Inline XSLT

16.

17.

The Lots destination field holds all of the possible lots listed in the recall, so
we need a way to mash up all the source node values. As mentioned in the
previous table, a scripting functoid was leveraged. The Inline XSLT used is
as follows:

<Lots
xmlns="http://schemas.microsoft.com/Sgl/2008/05/Types/Tables/dbo" >

<xsl:for-each select=" /*[local-name ()='ProductRecall' and
namespace-uri ()="http://Chapter9.LarHans.SafetySchemas']
/*[local-name () ="' ImpactedLots' and namespace-uri()="'"]
/*[local-name () ='Lot' and namespace-uri()='"'] ">

[<xsl:value-of select="." />]
</xsl:for-each>
</Lots>

The completed map looks like the following screenshot:

[244]

Chapter 9

ProductRecall_To_InsertRecalNews.btm ¢ _
= |:|T ‘En-;, Q .—J G I?ea-':-' ~° Options - o
= [<Schemaz <Schema> 0l B
= él Product Recall Insert [_E =
& RecallD —— 3 Rows [£ =
@Pmduc{— T — ns3:RecalNews [_ =]
5] Courtry i T S S ns3itemld &
g 2] Impactedlots I ns3:Product d=2
ﬁ Lot ns3:DatePosted @
b Hazad ——— ¢ A ————————ns3ilots €2
= E‘] Incidents ﬁ_ |_——"1 —+—1 —ns3:Hazard Description fﬁ'—“ﬁ
= ﬁ Incident it ——ns3:ConsumerContact l{'_i
5] Date - ns3:MediaCortact &
ﬁ Description
&k ConsumerContact
ﬁ MediaContact

18. This BizTalk project can now be deployed to the BizTalk Server by right-
clicking the project and choosing Deploy.

19. Confirm that the deployment was successful by locating our new assembly
and components in the Chapter9 application found in the BizTalk
Administration Console.

Configuring the website database subscriber

Our final activity is to configure the necessary messaging components to distribute
product recall messages to the LarHans website database. Because of the way

we have architected our solution, we can achieve this simply by adding a single
new send port to the application. There is no need to change anything about our
publisher, and there is no impact on our existing FDA service subscriber.

1. While the Consume Adapter Service did produce a binding file (much like
when we consumed a WCF service), we do not want to use it. The binding
file generated was for a two-way send port, but we are not interested in the
result of the database insert operation. So, create a new, one-way static send
port named Chapter9.LarHans.WebsiteDb.SendRecall.Sql.

Choose the WCF-Custom adapter type and click Configure.
3. Switch immediately to the Binding tab and choose the sqlBinding.

Move back to the General tab and enter an address value of
mssqgl://.//Chapter9?
5. For the SOAP Action header, use the following XML configuration:

<BtsActionMapping xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

[245]

Publish-Subscribe

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<Operation Name="Insert" Action=

"TableOp/Insert/dbo/RecallNews" />

</BtsActionMapping>

General | Binding I Behaviorl Credentials | Messages | Import/Export |
— Endpoirt Address

Address (URI):
|mssq|:ff.f;"(hapter5?

Example:
+ scheme://host[:port])/path

r— Endpoint Identity
Optional: the expected service identity.

Edit... |

—SOAFP Action header

Action:

<BtsActionMapping xmlnsxsi="|'rl'lp:,-",-"www.w3.0rgf2DD1fXMLSchema-inst;|
<Operation Name="Insert" Action="TableOp/Insert/dbo/RecallNews" /=

«/BtsActionMapping:|

-
< | »

Single action example:
+ http://www northwindtraders.com/Service/Operation
Action mapping example (using BTS Operation property):
<BtsActionMapping >
<Operation Name="Operation1" Action="Action1" /=
<Operation Name="0OperationN" Action="ActionN" />
</BtsActionMapping>

6. Click on OK to save the adapter configuration settings.

7. Next, we need to set the single outbound map that takes the canonical
product recall format and transforms it into the data structure expected by
the database adapter. View the send port's Outbound Maps tab and set the
map to ProductRecall_To_InsertRecallNews.

[246]

Chapter 9

:‘ Chapter9.LarHans.WebsiteDb.SendRecall.Sql - Send Port Properties ﬂ
General Outbound Maps
Transport Advanced Options The following are the outbound maps used for transforming documents on the cument
Backup Transport port.
Outbound Maps
Fitters Qutbound maps: # Bemove
Certficate ﬂ Source Document | @ Map | ﬂ Target Document
Tracking & | ProductRecall XML .. |[ProductRecall To_insqed| TableOperation_dbo_R...

Help ok | camcsl | Ay |

8. Now go to the Filters tab so that we can set the subscription for this send
port. The filter should look for any BTS.MessageType equal to http://
Chapter9.LarHans.SafetySchemas#ProductRecall.

9. After saving and starting the send port, drop a new product recall message
into BizTalk and you should observe both an acknowledgement file on disk
(from the FDA subscriber) and a database record (from the website
database subscriber).

RSEROTEROS.Ch...bo.RecallNews |
ItemId | Product | DatePosted | Lots
» 1002 Yerevastim 2010-01-16 MLLL
ts = Chapterd - Filedrop - DropOffack + [y |search

Mame = |v| Date modified
,_,E{S?DDlBlg—[JAE1—4DED—A12C—BEF]‘DFC39... 1162010 12:38.

w

|

10. If you publish a product recall message that targets a country besides the
United States, than you'll find that the FDA subscriber does not pick it up,
but the website database subscriber does. This is because our FDA subscriber
is only interested in recalls targeted at the United States while the website
subscriber is grabbing any recall message that it encounters.

[247]

Publish-Subscribe

Summary

In this chapter, we looked at a customer who needed the ability to send a single
event to a varied list of subscribers. There was no need for tight coupling of

the sender and receiver(s), so the injection of a service broker in the middle

was a sensible way to leverage asynchronous routing between endpoints. By
clearly isolating our subscription endpoints we were able to make the addition,
modification, or deletion of endpoints a straightforward task. The publish and
subscribe pattern is a powerful way to transmit data, and the use of canonical
message formats and BizTalk Server gave us enterprise-grade quality-of-service
attributes that were demanded by this scenario.

[248]

10

Repair/Resubmit with Human
Workflow

Workflows can take many forms, such as sequential, a flow chart, and state machine
to name a few. Most workflows model system interactions that operate without
direct human intervention. At times, however, direct human interaction is needed
inside a workflow to correct errors or make judgment-based decisions.

Use case

Bowl For Buddies is a non-profit organization that sets up bowling parties to raise
money for charity. As part of this effort, people raise money by going house-to-
house and asking for donations. The donations are based on the number of pins
the participants knock down during the bowling party (for example, $0.05 for

each pin knocked down). During the house visit, donors give an e-mail address to
which a donation request can be sent after the bowling event is over. In this e-mail,
the donors receive the amount they need to pay and a link to the secure payment
processor. Once payment is made, Bowl For Buddies is notified.

Currently, much of this process is done manually. Data is collected on paper forms
and entered into an Excel spreadsheet. Once the bowling event is over, a volunteer
calculates the amount owed by each person and sends them an e-mail requesting
payment. If no response is received from the donor, it may be weeks before it is
identified through the Excel sheet. Sometimes, delays arise due to an invalid e-mail
and as a result, the donor needs to be contacted over the phone. Finding the total
amount still to be collected and from whom is also difficult, as many different
Excel sheets are used for tracking donor data for various events. The existing Excel
solution is being replaced by an internal SharePoint 2010 implementation.

Repair/Resubmit with Human Workflow

Bowl For Buddies currently has a co-located website running on an ISP-supported
Windows instance. Eventually, they want to be able to collect donations on the
website. This will be a separate system similar to the way payments are currently
collected and tracked. Donations through the website should follow the same process
as donations though the house-to-house method, in terms of collection.

The end-to-end payment collection process needs an overhaul. Bowl For Buddies

is looking at developing e-mail and payment services to add automation to the
collection process. As part of this process, they would like to develop a defined set
of guidelines for the payment collection process with a goal of automating whatever
is possible. The solution will need to work with the new SharePoint 2010 site and
should allow easy modification later to work with the website.

Bowl For Buddies does not have a large IT department or IT budget. The website
they currently have is ASPX-based and the e-mail and payment services they are
building will be done through WCEF services. They are willing to make investments
in areas that aid in the donation collection process and that could be expanded to
other branches if the company expands.

Key requirements

The following are key requirements for a new software solution:

e Automate the process for processing donation pledges.
e Include proactive notifications to staff for delinquent payments or data errors.

e Work with an organization's future strategy around SharePoint and
.NET solutions.

Additional facts

We've identified some additional solution aspects that may help us decide upon the
right solution:

1. SharePoint 2010 is used to maintain lists of customers including their e-mail
addresses and donation amounts.

2. When an e-mail is invalid, returned, or a donor does not pay within a set
amount of time, a person will call to verify the intent of the donor.

3. When the website is able to accept donations, it will use SQL Server to store
user information.

4. A general process for donation collection will include sending the user an
e-mail, evaluating the results of sending the e-mail, waiting for payment,
notification by a human if data needs to be corrected, updating the data for
resubmission, and updating the system once payment is received.

[250]

Chapter 10

Pattern description

Workflows, by definition, are a series of steps that are related to each other. These
steps may require interaction with outside resources. Typically, these resources are
other systems and the interaction can complete in an automated fashion without
any human intervention. In some cases, the workflows require human intervention
to fix and correct data, or the workflows are totally related to human processes like
a document approval process. When a workflow is related to human activity, it is
known as a Human Workflow.

Human workflows can interact with people in several ways. Some of these include
SharePoint, e-mail, text messaging, instant messenger, and web forms. What makes
human workflows different from non-human workflows is the variability introduced
by the human factor. People can be slow to respond, out of town, unwell, or have
other factors that prevent them from interacting with the workflow as expected.

This adds a degree of uncertainty to all human workflows and ensures that they are
typically long-running.

Using automated workflows to model a business process allows for that process to
be applied in the exact same way, time and again. This is something difficult in a
manual, people-driven progression of data collection and processing. In addition to
repeatability, using a central environment for processing these workflows provides
a way to monitor many types of workflows. This allows you to analyze the collective
results of all the workflows and increase efficiency by removing bottlenecks or
streamlining unnecessary steps.

Modeling the Bowl For Buddies payment process in a workflow will help them
apply the same business activity over and over in the same manner. This workflow
can be exposed as a service to allow many different outside entities to interact with
it. The service layer hosting the e-mail and notification service will provide the
abstraction from specific destination systems.

The logical architecture of the solution is as follows:

SharePoint Web Site

Service Layer

Email Notification
Generic Workflow

[251]

Repair/Resubmit with Human Workflow

Candidate architectures

We will look at two candidate architectures which can be used to solve the problems
faced by Bowl For Buddies.

Candidate architecture #1-BizTalk Server

BizTalk is Microsoft's enterprise integration tool, which could be used to help Bowl
For Buddies coordinate the payment collection process. The previous releases of
BizTalk Server had basic built-in human workflow support. This was not widely
adopted nor used in the marketplace and hence is no longer part of the latest version
of the product.

Even without the specific human workflow components, BizTalk does have a robust
orchestration engine that can be easily used to model a business process like the
payment collection process. BizTalk has built-in adapters for SharePoint and SQL,
making it an ideal candidate for consideration.

The following is a detailed review of BizTalk's role in this scenario.

Solution design aspects

A BizTalk Orchestration can model the payment collection process. BizTalk can
expose this orchestration to outside consumers through a WCF service adapter, SQL
Server adapter, or SharePoint adapter. Any or all of these adapters can be used to
activate a new instance of the payment collection process.

Once started, the orchestration makes external calls to the e-mail service to send the
e-mail to the donor. If an invalid response is received, the notification service will be
used to update SharePoint and wait for corrected data to be sent back to the long-
running orchestration. If the response from the e-mail transmission is successful, the
orchestration will wait for the response for payment service and update SharePoint
with the results. If the payment result is not received, the process will wait for
updated information from SharePoint and try again.

The SharePoint adapter will be used to read and write information to SharePoint.
When the SQL Server-based solution is added later, the SQL Server Adapter can
easily be added. BizTalk's extensive routing ability will be used as needed, to route
messages between SQL Server, SharePoint, and external services.

[252]

Chapter 10

Solution delivery aspects

Bowl For Buddies does not have a large IT staff. Using a full-blown enterprise
integration tool like BizTalk Server might be a large undertaking for a small IT
organization. In addition, learning to develop BizTalk-based solutions requires
additional training and effort. This is probably something Bow] For Buddies cannot
undertake given the small staff.

Solution operation aspects

Bowl For Buddies does not have BizTalk running nor do they have servers for
BizTalk to run on. In addition to BizTalk, they would require SQL Server. Both of
these carry heavy licensing costs and require extensive operation monitoring in order
to have a successful implementation. Also, monitoring BizTalk requires training on
how to handle suspended messages and how to reprocess them. This is something
likely to be outside the scope of what the existing IT staff can handle.

Organizational aspects

Bowl For Buddies is not a large organization. Using an enterprise server tool like
BizTalk would not be a good fit for them. Even though they have expansion plans
that could add additional offices, the need for BizTalk in areas other than payment
collection is unknown.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2-Windows Server
AppFabric

A Windows Server AppFabric-based solution would leverage .NET 4.0 technologies
to support this use case. We would use a .NET 4.0 Workflow service to expose
endpoints to a SharePoint Workflow. SharePoint 2010 does not support the latest 4.0
version of Windows Workflow, but rather, supports the .NET 3.5 version. In order
to meet the scenario and provide reuse outside a pure SharePoint-hosted process
workflow, putting core logic inside a service-exposed .NET 4.0 Workflow allows for
reuse by other systems.

[253]

Repair/Resubmit with Human Workflow

Solution design aspects

SharePoint has a built-in workflow engine. This uses .NET 3.5 Workflow technologies
to provide out-of-the-box workflow templates for common scenarios and to support
extensive customization. This could provide a complete solution if the solution would
be totally contained in SharePoint. Given the addition of a future web-based solution,
moving the core workflow logic out of SharePoint is a better answer.

Moving the business process out of SharePoint allows for the use of .NET 4.0 and
Windows Server AppFabric to host the solution. This provides a single point of
tracking and monitoring with the new features of .NET 4.0 Workflow.

Our solution would use a simple SharePoint Workflow to call into a .NET 4.0
Workflow service. The .NET 4.0 Workflow would be a workflow service —a
workflow exposed as a WCF service. This workflow would have the payment
collection process modeled to include sending an e-mail, waiting for a payment
response, and sending notifications. Custom service calls would be needed for
interaction with external systems for email, payment processing, and notifications.

Solution delivery aspects

Bowl For Buddies does not have a tight timeline. The adoption of workflow technology
and workflow services through WCF will speed the delivery process, reducing the
amount of testing needed versus a custom-coded solution.

Solution operation aspects

Using .NET 4.0 and Windows Server AppFabric provides a lot of features out-of-
the-box including logging, monitoring, and troubleshooting support. This is done
through a plugin into IIS—something that many IT resources know well. As Bowl
For Buddies already has an ASPX-based website, its IT staff is already accustomed
to this interface.

Organizational aspects

Adoption of .NET 4.0 and Windows Server AppFabric would not require significant
investment in software licenses as these technologies are all included with the price
of Microsoft Windows. The existing intranet-based server running the SharePoint site
could be used for this solution. Adoption of this technology is a low risk endeavor,
given the fact that it is built into Windows framework.

[254]

Chapter 10

Solution evaluation

Design Delivery Operations Organization

Architecture selection

Let's look at how these candidate architecture technologies stack up against each
other. We can break down the primary benefits and risks of each choice as follows:

BizTalk Server
Benefits Risks
e Out-of-box adapters for SQL Server e Additional licensing costs
and SharePoint e Large learning curve for
¢ Robust enterprise-class hosting development, monitoring, and
infrastructure for processes exposed operations
as WCF Services e Large infrastructure
e Built-in admin tool with extensive requirements

monitoring information

Windows Server AppFabric

Benefits Risks
¢ Robust hosting environment e New technology could face some
e Easy configuration-based tracking breaking-in issues
and monitoring options including e Learning curve for development,
detailed message bodies monitoring, and operations

e Low cost of ownership
e Leverage existing hardware

A key benefit of using .NET 4.0 and Windows Server AppFabric is its light-weight
solution without extensive additional software expenditures. This release of the .NET
Framework has significant changes compared to past .NET releases and it supports
Windows Server AppFabric as a rich hosting environment. While this new technology
introduces a level of risk into the solution, this is acceptable, given the overall benefits
gained from this technology. While BizTalk can do exactly what is needed for this
scenario, it would be an overkill. Given the small size of Bowl For Buddies and the lack
of need for BizTalk in other areas of the company, it is not a right fit in this case.

For this scenario, Windows Server AppFabric is the best choice.

[255]

Repair/Resubmit with Human Workflow

Building the solution

This solution has two key areas — Windows Server AppFabric solution and
SharePoint solution. An ideal layout of the physical architecture is shown in the
following image:

Application Server SharePoint
Payment User Data
Confirmation |[EESS"""""""""""7
""""" = Notification
o o N """ """ ~-~°~°~°)

External Payment Services and
Processor Workflow

While it would be possible to run all the applications on a single server, separation
of the application server running Windows Server AppFabric and SharePoint
components is ideal.

SharePoint 2010 runs with .NET 3.5 Workflow and Windows Server AppFabric uses
.NET 4.0. While these can co-exist on the same server, the solution is cleaner
when separated.

Setup

This sample is broken down into two sections. The first section walks through the
creation and testing of a .NET 4.0 Workflow solution to process payments. The
second section creates a SharePoint customer list. SharePoint is not needed for the
first section and a testing tool is provided to test the workflow. To run the solution
end-to-end, SharePoint 2010 needs to be installed.

This solution has several parts. The key areas are as follows:

1. Various existing services for sending e-mail, processing credit card
payments, and updating the SharePoint list.

2. Windows Server AppFabric hosted workflow —called from the SharePoint
Workflow or test application —to manage the flow of payment processing
and data correction.

3. SharePoint site for hosting the Bowl For Buddies list of customers.

[256]

Chapter 10

4. SharePoint workflow triggered from additions and changes to the
customer list.

Some initial setup is required. These steps assume that SharePoint 2010, InfoPath
2010, and Windows Server AppFabric are all installed on the same server. Even

if you are just running the workflow section, you are required to complete the
following steps because the solution is built around the website names used in them.

Prepare your environment by following these steps:

1.

Add web site i |
Site name: Application poal:
IHumanWUrkﬂow IHumanWorkﬂow Select... |
—Content Directary
Physical path:

Pass-through authentication

IC: WHumanWorkflow

Connect as... | Test Settings...

—Binding

Type: IP address: Port:

Ihtq: j I.-'-\II Unassigned j |1234

Host name:

Example: www.contoso,com or marketing. contoso. com
¥ Start Web site immediately

OK | Cancel

When installed, SharePoint 2010 takes over both port 80 and the default
website as an ASP.NET 2.0-based site. Create a new website inside IIS
running on port 1234. This will host the external services and core workflow.
Ensure the default application pool is running .NET 4.0 — this is likely to
default to .NET 2.0 so it must be changed. Name the website HumanWorkflow
and point it to the C: \HumanWorkflow folder.

2. Launch Visual Studio .NET 2010 and open the Chapter10.HumanWorkflow.

[257]

slnin the <Installation Directory>\Chapter10\Begin folder. When
prompted to create the virtual directories click on OK.

Repair/Resubmit with Human Workflow

3. Once the virtual directories are created, the HumanWorkflow.Notification
service must run in an application pool with access to the SharePoint site. For
this demo, create an application pool running .NET 4.0, as an administrator,
and name it as WF4-sPAccess. Change the application pool for this service
to use the one we have just created.

4. Depending on the operating system, you may need to create event log
sources used by this code. Add the following sources inside the server's
application log: ProcessPayments, EmailService,
and NotificationService.

5. The following projects are included in the Begin solution:

o

HumanWorkflow.CoreWorkflow: This is the main project that
will contain the process payments workflow called
by external systems.

HumanWorkflow.EmailSve: This service is used to simulate
sending an e-mail. Pass in an e-mail address that starts with
an "F" to test the failure logic.

HumanWorkflow.Notification: This service is used to
update SharePoint on the status of a record. For this demo,
this defaults to writing to the event log. See the service
comments on how to switch this to write to SharePoint.

HumanWorkflow.Tester: This is a Windows form to test the
workflow without SharePoint.

HumanWorkflow.HelperDocs: This is a folder with helper
text files used for creating the SharePoint workflow and
SharePoint list.

Building the core workflow

First, the Process Payments .NET 4.0 Workflow will be built and deployed to Windows
Server AppFabric. This workflow will receive a payment request message that starts
the process. The first step is to call an e-mail service to notify the donor. If the response
is successful, the process moves to the payment service. If the process returns an error,
a notification is sent and the workflow waits to receive updated information. Once
updated information is received (note that only e-mail address updation is shown in
the demo), the e-mail is sent again. Once moved into the Receive Payment Notice
flow, the workflow waits to receive payment information. This must be done using the
supplied testing application and the user ID must match with that of the submitted
record. Once payment is received, a success notification is made. If payment errors, the
process sends a notice and waits for updated user information.

[258]

Chapter 10

In this section, the following tasks will be accomplished:

Adding a new .NET 4.0 Workflow service to an existing project
Building request-response contracts for SharePoint integration
Building a flowchart workflow logic for the process payment procedure
Calling several external services and evaluating the response

Setting up content correlation for payment and updated data to be sent back
into the same running workflow instance

Deploying the solution to Windows Server AppFabric

This solution starts with a workflow service project already created and includes
existing service references for e-mail (called Send Email) and notification (called
Send Notification) external services. The project has been set up to run on port 1234
at the following address: http://localhost:1234 /HumanWorkflow.CoreWorkflow/
processPayment. This solution also includes a helper custom activity for writing
information to the event log. This will be used for some basic process-flow tracking.
The tracking features of Windows Server AppFabric could be used for this, but for
simplicity, the event log will work for this demo.

1.

Launch Visual Studio.NET 2010 and open Chapter10.HumanWorkflow.sln
in the <Installation Directorys>\HumanWorkflow\Begin folder.

A project called HumanWorkflow. CoreWorkflow already exists.

Right-click on Project and select Properties. Select the Web tab. Ensure the
Use Local IIS Web Server radio button is selected. Click on Create Virtual
Directory to ensure the directory exists in IIS.

Rick-click on the project and select Add New Item. Select the workflow
templates under Visual C# and add a new WCF Workflow Service called

ProcessPayment .xamlx.

Click on the top-level Sequential Service and click on the Variables tab at
the bottom left. Delete the data variable (this is created by default and
not used).

Add the following variables to the workflow:

[e]

Name: ListHandle, type: CorrelationHandle (this is the
correlation variable used to receive payment confirmation
and updated user data if needed, located under system.
ServiceModel .Activities)

Name: 1istID, type: Int32

Name: 1istName, type: String

[259]

Repair/Resubmit with Human Workflow

o

Name: 1istEmail, type: String

[e]

Name: 1istBowlingScore, type: Double

o

Name: 1istDonationAmount, type: Double

° Name: listTotalDonation, type: Double

7. Click on the ReceiveRequest activity. Under Content, click
on Viewparameter.

8. Select the Parameters radio button and enter the following parameters:

[e]

Name: 1D, type: Int32, assign to: 1istID

o

Name: Name, type: String, assign to: 1istName

[e]

Name: BowlingScore, type: Double, assign to:
listBowlingScore

Name: DonationAmount, type: Double, assign to:
listDonationAmount

Name: EmailAddress, type: String, assign to: listEmail

9. With ReceiveRequest selected, click on the CorrelationInitializes property
(if the properties window is not visible press F4). Select Add initialize. Add
the ListHandle. Select Query correlation initializer from the drop down list.
In the XPath Queries dropdown list, select ID: Int32. Click on OK. This will
set up a correlation value that can be used by other receive activities to get
information back into this same workflow instance.

10. With ReceiveRequest selected, ensure the Can Create Instances checkbox is
checked. This is located under the properties of the activity. Press F4 if they
are not visible.

11. Click on the SendResponse activity. Under Content, click on Define. Select
the Parameters radio button and enter the following parameters:
° Name: Result, type: Boolean, value: True
12. With SendResponse selected, ensure the PersistBeforeSend checkbox is
checked. This is located under Properties.

13. Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it between the ReceiveRequest
and SendResponse activities. Set the TextEventLog property to Received
GETDATA Message. If this activity is not available, build the solution and it
should be seen in the toolbox.

[260]

Chapter 10

14. Drag an Assign shape from the Primitives section of the toolbox and place it
under the EventLogHelper activity. Set the To value to 1istTotalDonation.
Set the Value to 1istDonationAmount * listBowlingScore. IntelliSense
should recognize these values.

15. Drag a flowchart shape from the Flowchart section of the toolbox. Place
it under SendResponse. The workflow should look like the
following screenshot:

_g Sequential Service

1 ReceiveRequest

OperationName | GetData

Content Wew paramelers...

;‘_l EventlLogHelper

AB Assign
listTotalDonation = listDonationAmount ©
SendResponse
Request IF’.-E-ZEi"a'ERE]uES'_

Content Wew paramelers...

E_LJ Flowchart

&

Liifne-oicr o view

16. Double-click on the Flowchart activity to drill down to the flowchart surface.

[261]

Repair/Resubmit with Human Workflow

17. The end result of the next few steps will be a flowchart for the payment
collection process. The final result will look like the following screenshot:

—.
Start
|5 send Email
Double-click to view
SUCCESS EMAILERROR
Switch
[5] Receive Payment Notice
Doubie-click to view TIMEOUT
|5] send Email Error Motification
False
Double-click to view
True Drecision
|5] send Success Natification [5] Receive Updated Data
Doubie-click to view Double-click to view

18. Click on the top-level flowchart and click on the Variables tab at the bottom
left. Add the following variables. These will be within the flowchart scope:
° Name: EmailResult, type: String

o

Name: paymentReceived, type: Boolean
° Name: errorMessage, type: String
19. Drag a Sequence activity from the Control Flow section of the toolbox onto
the flowchart surface under the Start arrow. Rename this to Send Email. This

activity will call the external e-mail service to send the user an e-mail. The
result of this call will determine the next step in the flow.

20. Draw a line from the Start shape to the Send Email sequence activity.

[262]

Chapter 10

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Under the Send Email activity, add a Switch activity from the flowchart
section of the toolbox. Select type to be string when adding the shape to the
surface. Set the Expression property to Email Result.

Draw a line from the Send Email sequence activity to the Switch activity.

Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface, left from the Switch activity. Rename this to Receive
Payment Notice. This activity will wait for a payment message from an
external source for a fixed amount of time. Sending the payment notice can
be done using the provided Tester Windows forms tool located under the
tester project.

Draw a line from the left of the Switch activity to the Receive Payment
Notice sequence. Uncheck the IsDefaultCase checkbox. Set the Case value
to SUCCESS.

Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface to the bottom right from the FlowSwitch activity.
Rename this to Send Email Error Notification. This activity will send error
message information back out of the workflow —in this case back

to SharePoint.

Draw a line from the bottom of the Switch activity to Send Email Error
Notification sequence. Uncheck the IsDefaultCase checkbox. Set the Case
value to TIMEOUT.

Draw a line from the right of the Switch activity to the Send Email Error
Notification sequence. Uncheck the IsDefaultCase checkbox. Set the Case
value to EMAILERROR.

Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface under the Send Email Error Notification sequence
activity. Rename this to Receive Updated Data. This activity will wait for
updated user data from the external data provider —in this case SharePoint.

Draw a line from the bottom of the Send Email Error Notification sequence
activity to the Receive Updated Data sequence.

Draw a line from the right-side of the Receive Updated Data sequence
activity to the Send Email sequence activity.

Moving to the left-side of the flowchart, under the Receive Payment Notice
activity, add a FlowDecision activity from the flowchart section of the
toolbox. Set the Condition property to paymentReceived.

Draw a line from the bottom of the Receive Payment Notice sequence
activity to the top of the Decision activity.

[263]

Repair/Resubmit with Human Workflow

33.

34.

35.

36.

37.

Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface, under the Decision activity. Rename this to Send
Success Notification. This activity will update the external data provider
with a success message —in this case SharePoint.

Draw a line from the left side of the Decision activity to the top of the Send
Success Notification sequence activity. This represents the true result.

Draw a line from the right-side of the Decision activity to the left-side of the
Receive Updated Data sequence activity. This represents the false result.
Notice how once an activity is defined for an event, like Receive Updated
Response, it is easy to reuse that logic.

Now the basic flow of the flowchart is complete. The solution should now
build with no errors. Verify this by right-clicking on the project and selecting
Build. The next steps will add logic to the five sequence shapes that were
added to the flowchart.

On the main flowchart surface, double-click on the Send Email activity. This
set of activities will compose the request and response messages to the external
e-mail service, evaluate the response message, and generate error messages if
needed. At the end, the process will look like the following screenshot:

(] EventLogHelper

A8 Assign

emailCount = emailCount + 1

AR Assign

emailRequest.Amour = listTotalDonation

A8 Assign

emailRequest.Emaild = listEMail

LB Assign

emailRequest.ID = listiD

(21 sendEmail

[264]

Chapter 10

HH Parallel
E Payment Received A
Receive
OperationName IGetPay'mentCUnﬁrmatiDn
Content iew parameter.
2] Mot Paid Timeout A
g EventlLogHelper
3 Delay
SendReplyToReceive

B Assign Request

paymentReceived = False Content
B Assign _,a; If A

errorMessage = "o payment was rec Condition

paymentReceived
Then Else

A¢B Assign

hitDelay = True AB Assign AR Assign

errorMessage = "Payment Received” errorMessage = "The Payment Syster
A Assign
hitDelay = True

38. Click on the top-level Send Email sequence activity and click on the
Variables tab on the bottom left. Add the following variables:

o

Name: emailRequest, type: EmailRequest (from Send
Email add service reference), default: New HumanWorkflow.
CoreWorkflow.SendE-mail.E-mailRequest ()

Name: emailResponse, type: EmailResponse (from Send
Email add service reference)

Name: emailCount, type: Int32
Name: emailResultLocal, type: String
39. Drag the custom activity called EventLogHelper located under

HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to Started Send Email.

[265]

Repair/Resubmit with Human Workflow

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Drag an Assign shape from the Primitives section of the toolbox and place it
under the EventLogHelper activity. Set the To value to emailCount. Set the
Value equal to emailCount + 1.

Drag an Assign shape from the Primitives section of the toolbox and place
it under the previous Assign activity. Set the To value to emailRequest.
AmountDue. Set the Value to 1istTotalDonation.

Drag an Assign shape from the Primitives section of the toolbox and place
it under the previous Assign activity. Set the To value to emailRequest.
EmailAddress. Set the Value to 1istEmail.

Drag an Assign shape from the Primitives section of the toolbox and place
it under the previous Assign activity. Set the To value to emailRequest. ID.
Set the Value to 1istID.

Drag the Send Email service reference from the toolbar and place it under
the last Assign activity. Set Email to emailRequest and SendEmailResult to
emailResponse. If this is not present in the toolbar, rebuild the solution.

Drag an If activity from the Control Flow section of the toolbar under
the Send Email activity. Set the Condition property to emailResponse.
Response.

Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Then side of the If activity. Set the To value to emailResultLocal.
Set the Value to success.

Drag an If activity from the control flow section of the toolbar and place
it inside the Else side of the If activity. Set the Condition property to
emailCount =< 3.

Drag a Sequence activity from control flow section of the toolbox into the
Then side of the If activity. Set the DisplayName property to Email Error.

Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Email Error sequential activity. Set the To value to errorMessage.
Set the Value to "The email process returned an error sending the
message'.

Drag an Assign shape from the Primitives section of the toolbox and place it
below the previous Assign activity. Set the To value to emailResultLocal.
Set the Value to EMAILERROR.

Drag a Sequence activity from control flow section of the toolbox into the
Then side of the If activity. Set the DisplayName property to Timeout.

Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Timeout sequential activity. Set the To value equal errorMessage.
Set the Value to "The e-mail process has hit more than 3 errors'.

[266]

Chapter 10

53. Drag an Assign shape from the Primitives section of the toolbox and place it

54.

55.

below the previous Assign activity. Set the To value to emailResultLocal.
Set the Value to "TIMEOUT".

Drag an Assign shape from the Primitives section of the toolbox and place
it outside of the If activities as the last activity of the workflow. Set the To
value equal emailResult. Set the Value to emailResultLocal.

Return to the main flowchart surface by using the bread crumbs on the top of
the workflow surface. Double-click on the Receive Payment Notice activity.
This set of activities will wait for a response from the payment service,
evaluate the response message, and generate an error message based on

the response or a timeout. This set of activities is only reached if sUCCESS is
returned from the Send Email sequence. At the end, the process will look
like the following screenshot. Note that the following screenshot does not
show the top and bottom event log activity.

m" Paraliel

_§| Payment Received

3

#1 Receive

OperationMName IGE!PaymEntCnnﬁrmahnn

Content Wew parameter..

»

_§| Not Paid Timeout

;‘l EventLogHelper

i2) Delay

+ SendReplyToReceive

AR Assign Request |R

paymentReceived = False Content

AR Assign ;a; IF

»

errorMessage = "No payment was rec Condition

paymentReceived
Then Else
A&B Assign

hitDelay — True #B Assign AB Assign

errorMessage = "Payment Received” errorMessage = "The Payment Syster

AeB Assign

hitDelay = True

[267]

Repair/Resubmit with Human Workflow

56. Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to Started Receive Payment Notice.

57. Drag a Parallel activity from control flow section of the toolbox right under
the EventLogHelper activity.

58. With the Parallel activity selected, click on the Variables tab on the bottom
left. Add the following variable at the Parallel scope:

59. Name: hitDelay, type: Boolean, default: False

60. With the Parallel activity selected, set the CompletionCondition to
hitDelay. This will allow the parallel shape to complete even when all the
branches have not finished.

61. Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface inside the Parallel activity. Set the DisplayName to
Not Paid Timeout.

62. Drag a ReceiveAndSendReply from the Messaging section of the
toolbox and place it to the right of the last sequence activity inside the
parallel activity. This will add a new sequence activity to the flow. Set the
DisplayName of the new right Sequence activity to Payment Received.

63. Working in the Not Paid Timeout sequence, drag a Delay activity from
Primitives section of the toolbox. Set the Duration property to New
TimeSpan (0, 2, 0). This will set a delay of two minutes. While in real life
this would be longer, we do not want to have to wait for a few days to run
the demo.

64. Drag an Assign shape from the Primitives section of the toolbox and place
it below the Delay activity. Set the To value to paymentReceived. Set the
Value to False.

65. Drag an Assign shape from the Primitives section of the toolbox and place
it below the previous Assign activity. Set the To value equal errorMessage.
Set the Value to "No payment was received in the set amount of time".

66. Drag an Assign shape from the Primitives section of the toolbox and place it
below the previous Assign activity. Set the To value equal hitDelay. Set the
Value to True. This will cause the parallel activity to complete rather than
wait for the payment response.

67. Working in the Payment Received sequence activity, click on the Receive
activity. Rename Operation to GetPaymentConfirmation. Under Content,
click on View parameter.... Select the Parameters radio button and enter the
following parameters:

[e]

Name: paymentID, type: Int32

o

Name: paymentResult, type: Boolean, assign to:
paymentReceived

[268]

Chapter 10

68.

69.

70.

71.

72.

73.

74.

75.

With Receive selected, click on the CorrelatesWith property. Set this to
ListHandle. Click on CorrelatesOn. Select paymentID from the drop down
and click OK. This will set the receive activity to follow the correlation based
on the ID of the donor record.

CorrelatesOn Definition
ComelatesWith ListHandle
XPath Queries
Key Query
paymentID : Int32
paymentResult : Boolaan
OK I Cancel |

Click on the SendReplyToReceive activity. Under Content click on Define...
and select the Parameters radio button. Enter the following parameters:

° Name: Result, type: Boolean, value: True
With SendReplyToReceive selected, ensure the PersistBeforeSend checkbox
is checked.

Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it between the receive and send
activities. Set the TextEventLog property to Received Payment Message.

Drag an If activity from the control flow section of the toolbar and place
it under the SendReplyToReceive activity. Set the Condition property to
paymentReceived.

Drag an Assign shape from the Primitives section of the toolbox and
place it inside the Then side of the If activity. Set the To value equal to
errorMessage. Set the Value equal to Payment Received.

Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Else side of the If activity. Set the To value equal to errorMessage.
Set the Value equal to "The Payment System returned an error in the
payment".

Drag an Assign shape from the Primitives section of the toolbox and place
it below the previous If activity, ensure it is outside the If block. Set the To
value equal to hitDelay. Set the Value equal to True. This will cause the
parallel activity to complete rather than wait for the delay.

[269]

Repair/Resubmit with Human Workflow

76. Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it outside of the parallel shape. Set the
TextEventLog property to the errorMessage variable.

77. Navigate back to the main flowchart surface; double-click on the Send
Success Notification activity. After the next few steps, the process will look
like the following screenshot:

‘_;'J Send Success Notification

:_',| EventLogHelper

&E Assign

notificationfequest.] = listD

ArB Assign

notificationfequest.l = "SLKCCESS"

™1 Sendhotification

78. With the Send Success Notification sequence activity selected, click on the
Variables tab on the bottom left. Add the following variables:

o

Name: notificationRequest, type: NotificationRequest
(under the Send Notification reference type), type: New
HumanWorkflow.CoreWorkflow.SendNotification.
NotificationRequest ()

Name: notificationResponse, type:
NotificationResponse (under the Send Notification
reference type)

79. Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to "Started Send Success Notice'.

[270]

Chapter 10

80.

81.

82.

83.

Drag an Assign shape from the Primitives section of the toolbox and
place it below the TextEventLog activity. Set the To value equal to
notificationRequest.ID. Set the Value equal to 1istID.

Drag an Assign shape from the Primitives section of the toolbox
and place it below the previous Assign activity. Set the To value to
notificationRequest.NotificationType. Set the Value to SUCCESS.

Drag the custom activity called SendNotification, located under
HumanWorkflow.CoreWorkflow.SendNotificatio