
www.allitebooks.com

http://www.allitebooks.org

Applied Architecture Patterns
on the Microsoft Platform

An in-depth, scenario-driven approach to architecting
systems using Microsoft technologies

Richard Seroter

Ewan Fairweather

Stephen W. Thomas

Mike Sexton

Rama Ramani

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Applied Architecture Patterns on the Microsoft Platform

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010

Production Reference: 1020910

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-54-7

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Richard Seroter

Ewan Fairweather

Stephen W. Thomas

Mike Sexton

Rama Ramani

Reviewer
Yossi Dahan

Acquisition Editor
James Lumsden

Development Editor
Swapna Verlekar

Technical Editors
Neha Damle

Alina Lewis

Copy Editor
Sanchari Mukherjee

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Shubhanjan Chatterjee

Proofreaders
Aaron Nash

Chris Smith

Graphics
Nilesh Mohite

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

Foreword

To understand is to perceive patterns.

-Isaiah Berlin

Architecting a good software solution is in many ways very much like the art of
cooking a great meal. Just like a chef needs to have a broad knowledge of various
ingredients that go into a meal, an architect needs to have a broad understanding of
potential technologies and tools that he would need for a software solution. Just like
a good chef masters the techniques of combining his raw ingredients into a delicious
course, a good architect should know when and how to use and blend various
software components to come up with elegant and efficient solutions. Just like a
chef's work is confined by physical conditions and customer requirements, so is the
work of a software architect. Both need the right kind of discipline and structure to
cope with external constraints. So knowledge, experience, discipline, and structure
are critical, but as any good chef or architect will tell you, the art of cooking or
architecting requires something extra, and that is creativity. To put it simply in the
words of the author John Updike:

Any activity becomes creative when the doer cares about doing it right,
or better.

The book you are holding is a good example of the outcome of such creativity. I
personally know the authors to be very experienced and knowledgeable on the
topics they write—yet, it is a way they have chosen to distill their experience and
know-how that make this book a very valuable resource for any software architect.
Artfully transforming use-cases and requirements into recognizable patterns while
discussing alternative architectures for implementing these patterns, this book
provides you with an effective framework to handle the complexities of modern
distributed applications.

www.allitebooks.com

http://www.allitebooks.org

Unlike cooking, where the basic raw ingredients do not change as much or as
often over time, dealing with software architecture involves constant and frequent
changes. New paradigms and methodologies for developing and delivering
software solutions are constantly evolving. Innovative new technologies, some with
overlapping capabilities, are introduced at an increasing pace into an already crowded
marketplace. Making sense out of this dynamic and sometimes confusing domain,
even when focusing only on Microsoft technologies, is quite a challenge. A great
team of contributors was assembled to tackle the job. Together, they have produced
an appealing guide by discussing a collection of common architectural patterns in
software development and their implementation using Microsoft technologies.

This may seem like a book of "recipes" devised by a team of highly qualified "software
chefs", but this is where again the analogy falls short: in the world of software, things
are a more complex. In many cases, you'll find that you need to treat these recipes as
the basis to build on. You will need to step into the role of the "chef" and start "cooking"
your own solution by combining patterns or adjusting the suggested solutions to fit
into your project's specific needs. Happy "software cooking"!

Ofer Ashkenazi
Senior Technical Product Manager
Microsoft

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Richard Seroter is a solutions architect for an industry-leading biotechnology
company, a Microsoft MVP for BizTalk Server, and a Microsoft Connected
Technology Advisor. He has spent the majority of his career consulting customers as
they plan and implement their enterprise software solutions. Richard first worked
for two global IT consulting firms, which gave him exposure to a diverse range of
industries, technologies, and business challenges. Richard then joined Microsoft
as a SOA/BPM technology specialist where his sole objective was to educate and
collaborate with customers as they considered, designed, and architected BizTalk
solutions. One of those customers liked him enough to bring him onboard, full
time, as an architect after they committed to using BizTalk Server as their enterprise
service bus. Once the BizTalk environment was successfully established, Richard
transitioned into a solutions architect role where he now helps identify enterprise
best practices and applies good architectural principles to a wide set of IT initiatives.

Richard is the author of the book SOA Patterns with BizTalk Server 2009 (Packt
Publishing), released in April 2009. Richard maintains a semi-popular blog of his
exploits, pitfalls, and musings with BizTalk Server and enterprise architecture at
http://seroter.wordpress.com.

I want to thank my gifted co-authors and technical reviewer who
brought an insightful amount of experience and knowledge to
this project. I also have to thank my wonderful co-workers whose
architectural brilliance constantly inspires and challenges me.
Finally, thanks to my family for their support on this project. My
dog, Watson, unexpectedly offered to proofread my chapters, and I
eagerly accepted his invitation. Thanks buddy. But this book is for
my son Noah who makes me want to be a better man.

www.allitebooks.com

http://www.allitebooks.org

Ewan Fairweather has worked for Microsoft for six years. He currently works as a
program manager in the Business Platform Division on the Customer Advisory Team
(CAT) working on large scale integration and OLTP SQL applications. Prior to this,
Ewan spent three years working for Microsoft UK, in the Premier Field Engineering
team where he worked with enterprise customers, helping them maintain and
optimize their BizTalk applications. This included working in a dedicated capacity
on some of the world's largest BizTalk deployments, predominantly within financial
services. Ewan co-authored the successful Professional BizTalk Server 2006 (Wrox, 2007)
and has written many white papers for Microsoft including the Microsoft BizTalk
Server Performance Optimization Guide, which is available on the Microsoft Developers
Network (MSDN) website. Prior to joining Microsoft, Ewan worked as a Cisco
Certified Academy Instructor (CCAI) for a regional training organization, delivering
advanced routing and networking courses. Ewan holds a bachelor's degree in
computing with management from the University of Leeds. Apart from work, Ewan's
hobbies include reading and going to the gym. He has also recently found a fond
interest for Jiu Jitsu. Ewan maintains his blog at http://blogs.msdn.com/ewanf.

Mum, Dad thanks for always believing in me, Shona and Kieran, and
giving us the strength to do whatever we set our minds on.

Stephen W. Thomas is an independent consultant specializing in BizTalk Server
and other Microsoft Server technologies including Workflow and AppFabric. He has
been working with BizTalk for over eight years. For the past six years, Stephen has
been recognized as a Microsoft Most Valuable Professional (MVP) in BizTalk Server.
In addition to being an MVP, Stephen is a Microsoft Connected Technology Advisor.

Stephen has done consulting work for numerous clients including many in the
Fortune 500. Stephen runs the BizTalk community site http://www.BizTalkGurus.
com. The site offers a community forum, over 50 BizTalk samples, various how-
to videos, and Stephen's blog. Stephen has presented at several Microsoft TechEd
events, multiple SOA Conferences, and various user groups.

I would like to thank my loving wife, Angel, who has supported me
over the many months of working on this book and to the new little
BizTalkGuru scheduled to arrive in February 2011. I would also like
to remember my furry babies Kendall and Jordan who lost out on
valuable play time as I was working on sample code.

www.allitebooks.com

http://www.allitebooks.org

Stunningly handsome, yet surprisingly humble, Mike Sexton spent the first
ten years of his career as a public defender in New York. Upon learning the
discrepancies between his salary and the salary of newly minted college graduates
working in IT, he had an epiphany and immediately learned how to program
database applications. He has designed and built database applications for 12 years
in both SQL Server and Oracle-based systems; he has published in SQL Server
Magazine and blogs on a semi-regular basis. He currently works for Avanade,
the premier integrator of Microsoft technologies in the enterprise. Mike's role as a
database architect has him traveling the USA, bestowing his database wisdom on the
less fortunate. Mike can be found with a gorgeous blonde on his arm, living the high
life in Colorado.

I would like to thank my wife of 25 years for not giving in to the
numerous temptations to murder me that I have provided over the
years. I would also like to thank the management of Avanade for
their patience and support while writing this book.

Rama Ramani has built experience, over the last decade, in enterprise server
products across databases, RFID middleware, and application server caching
technologies. The roles have ranged from systems programming, feature PM in
product teams, and now as part of the Customer Advisory Team working with some
of the largest customer deployments. He has a bachelors degree in computer science
from the University of Madras and a masters degree in computer science from the
University of Florida.

In this free time, he likes to read books or watch motivational videos on leadership
and entrepreneurship.

I would like to acknowledge my co-authors for their excellent
teamwork in getting this book to fruition. I would like to thank my
wife for letting me spend some of the weekends and evenings alone,
working on the book. Finally, I would like to thank my parents, who
have been a great source of inspiration and for providing me with
excellent education.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Yossi Dahan has been involved in professional software development for 13 years.
Starting with the development of e-commerce systems for companies worldwide, he
soon faced challenges involved in creating systems with complex business processes
and both in-house and third party integration requirements. Drawn by these
challenges, Yossi has decided to focus in these areas and so, since 2000, has been
working almost exclusively on projects with significant BPM and EAI aspects.

In 2005, Yossi had founded Sabra Ltd in the UK. Created specifically to help
organizations build better business processes and integration solutions, Sabra has
worked with enterprises of all sizes, all over the UK, helping them architect, design,
and build BPM and EAI solutions using Microsoft technologies.

Sabra also works to build in-house capabilities for its customers' training and
mentoring teams; on design, development, and operations of complex systems,
arming them with its experience gained through many projects, well-proven
patterns, and best practices picked up in their field.

I'd like to thank the authors for asking me to review this book, I was
flattered by their trust in me on this product of their hard work, and
for the opportunity to learn so much in the process; this exercise
has certainly been (as book writing/reviewing often is) thought
provoking.

Of course I thank Iva, my wife, for dealing with long evenings of
solitude while I worked on the chapters of this book and for putting
up with my constant whining about missing my deadlines.

Last, I'd like to thank Packt, and in particular, Shubhanjan
Chatterjee, for all the help during the whole process and for
accepting my excuses for not meeting my deadlines.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Solution Decision Framework	 9

The need for a decision framework	 10
Sources of input to the framework	 11

Functional requirements	 11
Non-functional requirements	 12
Derived requirements	 12
Organization direction	 13

Deciding upon your architecture strategy	 13
Framework dimensions	 14

Solution design aspects	 14
Solution delivery aspects	 20
Solution operation aspects	 22
Organizational aspects	 24

Applying the framework	 26
Summary	 27

Chapter 2: Windows Communication Foundation and
Windows Workflow 4.0 Primer	 29

What does this technology do?	 30
Highlights of the latest release	 32

Windows Communication Foundation enhancements	 33
Windows Workflow Foundation enhancements	 33
Enhancements to both technologies	 34

Typical use cases	 35
Windows Communication Foundation use cases	 35
Windows Workflow Foundation use cases	 35

Example solution	 36
Summary	 40

Table of Contents

[ii]

Chapter 3: Windows Server AppFabric Primer	 41
What does this technology do?	 42
Windows Server AppFabric core components	 43

Application-server hosting and monitoring	 43
Control	 44
Scripting	 44
Hosting	 44
Monitoring	 44
Persistence	 44

Distributed cache	 45
Named cache	 49
Region	 49
Expiration	 49
Eviction	 49
Local cache	 50
High availability	 51
Cache notifications	 51

Typical use cases	 52
Windows Server AppFabric hosting and monitoring	 52
Windows Server AppFabric cache	 53

Typical scenarios	 53
Example solution	 54

AppFabric hosting and monitoring	 54
AppFabric caching	 56

Setup	 56
Steps	 56

Summary	 63
Chapter 4: BizTalk Server Primer	 65

Heterogeneous systems	 65
What does BizTalk Server do?	 66

Can't we just use Web Services or WCF?	 66
Typical BizTalk use cases	 68

Enterprise Application Integration (EAI) 	 68
Business-to-Business (B2B)	 70
Business Process Automation (BPA)	 70
Enterprise Service Bus (ESB)	 71

BizTalk architecture	 71
BizTalk message flow	 71
Key BizTalk server terminology	 74

BizTalk group	 74
Hosts	 75
Host instance	 75
BizTalk databases	 76
Enterprise Single Sign-On 	 77

Table of Contents

[iii]

Adapters 	 77
Message 	 78
Pipeline	 78
Maps	 79
Orchestration	 81

Highlights of the BizTalk 2010 release	 81
Example solution	 82
Summary	 95

Chapter 5: SQL Server and Data Integration Tools Primer	 97
What does this technology do?	 98

SQL Server Integration Services (SSIS)	 98
SQL Server Service Broker (SSSB)	 98
The Microsoft Sync Framework	 99
Master Data Services	 99

A very basic and completely insufficient introduction to data
integration with SQL Server	 100

SSIS	 100
SSSB	 101
Sync Framework	 102
SQL Server 2008 enhancements	 103
SSIS enhancements	 104
SSSB enhancements	 104
Sync Framework enhancements	 105

Typical use cases	 105
Example solution	 105

Writing an RSS feed to SQL Server	 106
Distribution via Sync Framework	 110
SQL Server Service Broker	 112

Summary	 115
Chapter 6: Windows Azure Platform Primer	 117

What does this technology do?	 120
Windows Azure	 120

Usage	 120
Architecture	 121
Fabric controller	 121
Compute	 122
Storage	 123
Provisioning model	 124
Diagnostics and monitoring	 126
How do I get started?	 127

SQL Azure	 127
Usage	 128
Architecture	 129

Table of Contents

[iv]

Provisioning model	 130
Data access and usage patterns	 131
SQL Azure–what is supported and what is not	 132
How do I get started?	 133

Windows Azure Platform AppFabric	 135
Usage	 135
Architecture	 135
Provisioning model	 137

Project "Dallas"	 138
Example solution	 138

Scenario	 138
Setup	 138
Steps	 139

Summary	 147
Chapter 7: Simple Workflow	 149

Use case	 149
Key requirements	 150
Additional facts	 151

Pattern description	 152
Factors affecting implementation details	 153

Candidate architectures	 156
Candidate architecture #1–BizTalk Server	 156

Solution design aspects	 156
Solution delivery aspects	 157
Solution operations aspects	 157
Organizational aspects	 157
Solution evaluation	 157

Candidate architecture #2–Windows Server AppFabric	 158
Solution design aspects	 158
Solution delivery aspects	 159
Solution operations aspects	 159
Organizational aspects	 159
Solution evaluation	 160

Architecture selection	 160
Building the solution	 161

Setup	 162
Building the service aggregator workflow service	 167
Testing the service aggregator workflow service	 178
Consuming the service aggregator workflow service with ASP.NET	 181

Summary	 185

Table of Contents

[v]

Chapter 8: Content-based Routing	 187
Use case	 187

Key requirements	 188
Additional facts	 188

Pattern description	 189
Candidate architectures	 189

Candidate architecture #1–BizTalk Server	 189
Solution design aspects	 190
Solution delivery aspects	 191
Solution operation aspects	 191
Organizational aspects	 191
Solution evaluation	 192

Candidate architecture #2–SQL Server 2008 R2	 192
Solution design aspects	 192
Solution delivery aspects	 193
Solution operation aspects	 193
Organizational aspects	 193
Solution evaluation	 193

Candidate architecture #3–WCF and Windows Server AppFabric	 194
Solution design aspects	 194
Solution delivery aspects	 194
Solution operation aspects	 195
Organizational aspects	 195
Solution evaluation	 195

Architecture selection	 196
Building the solution	 197

Setup	 197
Building the workflow	 198
Adding a router service	 210

Summary	 214
Chapter 9: Publish-Subscribe	 215

Use case	 215
Key requirements	 216
Additional facts	 217

Pattern description	 217
Candidate architectures	 218

Candidate architecture #1–Azure Platform AppFabric Service Bus	 218
Solution design aspects	 218
Solution delivery aspects	 219
Solution operations aspects	 219
Organizational aspects	 220
Solution evaluation	 220

Candidate architecture #2–BizTalk Server	 220
Solution design aspects	 220

Table of Contents

[vi]

Solution delivery aspects	 221
Solution operations aspects	 222
Organizational aspects	 222
Solution evaluation	 222

Candidate architecture #3–SQL Service Broker	 223
Solution design aspects	 223
Solution delivery aspects	 224
Solution operations aspects	 225
Organizational aspects	 225
Solution evaluation	 225

Architecture selection	 226
Building the solution	 227

Setup	 227
Building the canonical solution artifacts	 228
Building the FDA subscriber solution artifacts	 232
Configuring the data publisher and FDA subscriber	 237
Building the website database subscriber solution artifacts	 241
Configuring the website database subscriber	 245

Summary	 248
Chapter 10: Repair/Resubmit with Human Workflow	 249

Use case	 249
Key requirements	 250
Additional facts	 250

Pattern description	 251
Candidate architectures	 252

Candidate architecture #1–BizTalk Server	 252
Solution design aspects	 252
Solution delivery aspects	 253
Solution operation aspects	 253
Organizational aspects	 253
Solution evaluation	 253

Candidate architecture #2–Windows Server AppFabric	 253
Solution design aspects	 254
Solution delivery aspects	 254
Solution operation aspects	 254
Organizational aspects	 254
Solution evaluation	 255

Architecture selection	 255
Building the solution	 256

Setup	 256
Building the core workflow	 258
Testing the workflow without SharePoint 	 274
Building the SharePoint site and SharePoint workflow	 275

Creating the SharePoint site and customer list	 276

Table of Contents

[vii]

Create the SharePoint workflow	 279
Testing the solution using SharePoint	 287

Summary	 288
Chapter 11: Remote Message Broadcasting	 289

Use case	 289
Key requirements	 290
Additional facts	 290

Pattern description	 291
Candidate architectures	 292

Candidate architecture #1–.NET-based polling	 292
Solution design aspects	 292
Solution delivery aspects	 293
Solution operation aspects	 293
Organizational aspects	 293
Solution evaluation	 293

Candidate architecture #2–BizTalk Server	 294
Solution design aspects	 294
Solution delivery aspects	 294
Solution operation aspects	 295
Organizational aspects	 295
Solution evaluation	 295

Candidate architecture #3–Windows Azure Platform AppFabric	 295
Solution design aspects	 296
Solution delivery aspects	 296
Solution operation aspects	 296
Organizational aspects	 297
Solution evaluation	 297

Architecture selection	 297
Building the solution	 299

Signing up for an Azure AppFabric account	 300
Create the WCF services to listen on the Service Bus	 302

Summary	 307
Chapter 12: Debatching Bulk Data 	 309

Use case	 310
Key requirements	 311
Additional facts	 311

Candidate architectures	 312
Candidate architecture #1–SSIS	 312

Solution design aspects	 312
Solution delivery aspects	 313
Solution operations aspects	 313
Organizational aspects	 314
Solution evaluation	 314

Candidate architecture #2–BizTalk Server	 314

Table of Contents

[viii]

Solution design aspects	 315
Solution delivery aspects	 315
Solution operations aspects	 315
Organizational aspects	 316
Solution evaluation	 316

Architecture selection	 316
Building the solution	 317

Encryption	 318
Target system	 320
Debatching with SSIS and SQL Server	 321

Debatching with SQL	 322
Debatch with SSIS	 329

Summary	 331
Chapter 13: Complex Event Processing	 333

Use case	 333
Key requirements	 334
Additional facts	 334

Pattern description	 335
Candidate architectures	 336

Candidate architecture #1‑StreamInsight	 336
Solution design aspects	 336
Solution delivery aspects	 337
Solution operations aspects	 337
Organizational aspects	 338
Solution evaluation	 338

Candidate architecture #2–BizTalk Server	 338
Solution design aspects	 338
Solution delivery aspects	 339
Solution operations aspects	 339
Organizational aspects	 340
Solution evaluation	 340

Architecture selection	 340
Building the solution	 341

Set up	 343
Creating an adapter	 343

Summary	 356
Chapter 14: Cross-Organizational Supply Chain	 357

Use case	 357
Key requirements	 359
Additional facts	 359

Pattern description	 359
Candidate architectures	 362

Candidate architecture #1–BizTalk (with ESB Toolkit)	 362

Table of Contents

[ix]

Solution design aspects	 362
Solution delivery aspects	 365
Solution operations aspects	 365
Organizational aspects	 366
Solution evaluation	 366

Candidate architecture #2–Windows Server AppFabric	 366
Solution design aspects	 366
Solution delivery aspects	 367
Solution operations aspects	 367
Organizational aspects	 368
Solution evaluation	 368

Architecture selection	 368
Building the solution	 369

Setup	 370
Deploying and using a monolithic solution 	 371

PO status codes	 377
Item inventory check status codes	 378
Current behaviors of the system	 378

Utilizing the ESB Toolkit 	 379
Using existing transformations within an ESB Itinerary	 379
Using the itinerary service broker pattern to implement messaging-based routing
with ESB	 384

Summary	 391
Chapter 15: Multiple Master Synchronization 	 393

Use Case	 394
Key requirements	 394
Additional facts	 395

Pattern description	 395
Candidate architecture	 396

Solution design aspects	 396
SSIS	 396
Master Data Services	 397
Search Server Express	 397

Solution operations aspects	 397
Organizational aspects	 397
Solution evaluation	 397

Architecture selection	 398
Building the solution	 398

Fetching relational data	 400
Master Data Services	 401
Unstructured data	 408
Search	 413

Summary	 415

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[x]

Chapter 16: Rapid Flexible Scalability 	 417
Use case	 418
Candidate architectures	 419

Candidate architecture #1–Windows Azure / SQL Azure	 419
Solution design aspects	 419
Solution operations aspects	 420
Organizational aspects 	 420
Solution evaluation	 420

Candidate architecture #2–Hyper-V	 421
Solution design aspects	 421
Solution operations aspects	 421
Organizational aspects	 421
Solution evaluation	 422

Architecture selection	 422
Building the solution	 423

Integrating SSIS with SQL Azure	 425
Summary	 428

Chapter 17: Low-Latency Request-Reply	 429
Use case	 429

Key requirements	 431
Additional facts	 431

Pattern description	 431
Candidate architectures	 432

Candidate architecture #1–BizTalk Server	 433
Solution design aspects	 433
Solution delivery aspects	 433
Solution operation aspects	 434
Organizational aspects	 434
Solution evaluation	 434

Candidate architecture #2–Windows Server AppFabric	 434
Solution design aspects	 435
Solution delivery aspects	 435
Solution operation aspects	 436
Organizational aspects	 436
Solution evaluation	 436

Candidate architecture #3–Windows Azure platform	 436
Solution design aspects 	 437
Solution delivery aspects	 437
Solution operation aspects	 437
Organizational aspects	 438
Solution evaluation	 438

Architecture selection	 438
Architecture selection	 439

Building the solution	 440
Setup	 440

Table of Contents

[xi]

Building the vendor-specific and aggregate workflows	 441
Testing the solution 	 456

Summary	 457
Chapter 18: Handling Large Session and Reference Data	 459

Use case	 459
Key requirements	 460
Additional facts	 460

Pattern description	 461
Candidate architecture	 462

Candidate architecture #1–Windows Server AppFabric Cache 	 462
Solution design aspects	 464
Solution delivery aspects	 466
Solution operations aspects	 466
Organizational aspects	 467

Architecture selection	 467
Building the solution	 468

Setup	 469
Integrating with Windows Server AppFabric cache 	 471

Summary	 480
Chapter 19: Website Load Burst and Failover	 481

Use case	 481
Key requirements	 482
Additional facts	 482

Pattern description	 483
Chosen architecture	 485

Solution design aspects	 486
Solution delivery aspects	 487
Solution operation aspects	 487
Organizational aspects	 487

Solution evaluation	 488
Building the solution	 488

Setup	 489
Adding the WCF portion to Cloud Service	 490
Adding the ASP.NET portion to Cloud Service	 491
Testing and deploying the Windows Azure Cloud Service	 493

Summary	 497
Chapter 20: Wrap Up	 499

What did we find?	 500
Where to go next	 500

Index	 501

Preface
Back in May 2009, I had a lengthy chat with Ewan Fairweather who was a technical
reviewer on my first book. We talked about the host of products that Microsoft had
either released or planned to release, and how it seemed increasingly difficult for an
architect to keep up with such a constant stream of new offerings. It's one thing to
read a press release or a whitepaper and get the marketing spin on a product, but
it's something else to truly grasp their ideal use cases and challenges. Ewan and I
agreed that it would be a useful exercise to try to craft around a dozen enterprise IT
use cases and evaluate which Microsoft product is truly the best fit for each scenario.
Thus, a book idea was born.

To make an educated choice on which product should form the foundation of your
solution architecture, you need to have an accurate picture of the strengths and
weaknesses of the product, as well as see it in action. In this book, we will give you
a solid overview of the core technologies in the Microsoft application platform,
evaluate a range of business problems, and use a consistent decision-making process
to choose the right technology to implement a solution and actually build the
solution using the ideal product.

I started down a path of creating a fancy flowchart which, based on a distinct set
of choices, could direct you to a proper Microsoft application platform technology.
However, decisions about the core technology of a solution cannot be driven from
a single fork of a flowchart. How do you realistically eliminate a product from
consideration by asking a single question such as "is batch processing needed?"
Decision point? There are a myriad of additional factors to consider prior to
eliminating BizTalk Server or embracing SQL Server Integration Services for batch
processing, for instance. Instead of a single, rigid decision matrix or single flowchart,
we chose to create a decision framework that takes into account the essential areas of
interest when comparing a product against the needs of your project.

Preface

[2]

In the first part of the book, we do a short dive into the core technologies demonstrated
in the book. These "primers" provide a background about WCF/WF, Windows Server
AppFabric, BizTalk Server, SQL Server, and the Windows Azure platform. Each
primer will tell you a bit about what a product is for and how to use it. You should
then have enough working knowledge to thoroughly digest the rest of the book.

The rest of the chapters follow a specific structure. Each chapter starts with the
description of a fictional, but realistic, customer use case. We then offer some
background on the customer and find out about the problem they wish to solve.
Following the use case, you will find an evaluation of the type of pattern that best
fits the customer's requirements. We then consider and evaluate multiple solutions
against our decision framework. After the best choice is made, the remainder of the
chapter describes the actual construction of a solution.

I have put together a great team of authors that bring a diverse set of experiences
with the Microsoft platform stack. We started our effort with extensive discussions
about common problems we come across on projects and which topics might be of
most interest to our readers. We ended this first phase of evaluation with dozens of
pattern candidates, and through prioritization, bartering, and a little pleading, we
finally narrowed it down to the thirteen you find here. There are clearly many many
more "common" problems that we all encounter each day, but we hoped to identify
ones where the product choices weren't always clear.

The biggest challenge with a book like this is balancing the inherent bias that we
technologists have towards products that we are most familiar with. It is apt then,
that this is the same problem that architects and developers regularly have on their
own projects. For example, if you are a SQL Server specialist, then most problems
look like they can be solved with a SQL Server-based solution. Much like good
project teams where multiple viewpoints can help create the appropriate solution
architecture, our authors constantly challenged each other to ensure that expertise in
one area did not cloud our judgment in another.

What this book covers
Chapter 1, Solution Decision Framework, outlines where to locate solution requirements
and how to consistently evaluate key dimensions of a solution prior to selecting an
underlying technology.

Chapter 2, Windows Communication Foundation and Windows Workflow 4.0 Primer,
provides a background about WCF/WF technologies and typical scenarios to use
WCF and Windows Workflow.

Chapter 3, Windows Server AppFabric Primer, explains the capabilities of Windows
Server AppFabric and its components.

Preface

[3]

Chapter 4, BizTalk Server Primer, describes what BizTalk Server is, when to use it, and
how to build a simple solution.

Chapter 5, SQL Server and Data Integration Tools Primer, contains a broad overview of
the SQL Server products that address data integration and data management.

Chapter 6, Windows Azure Platform Primer, has an introduction into Microsoft cloud
technologies including Windows Azure, SQL Azure and Windows Azure
Platform AppFabric.

Chapter 7, Simple Workflow, covers a use case that involves aggregating data from
multiple sources and presenting a unified response.

Chapter 8, Content-Based Routing, looks at how to effectively transmit data to
multiple systems that perform similar functions.

Chapter 9, Publish-Subscribe, addresses a scenario where a message must be reliably
sent to multiple endpoints.

Chapter 10, Repair/Resubmit with Human Workflow, builds a process for easy human
interaction with failed messages inside a system.

Chapter 11, Remote Message Broadcasting, demonstrates a scenario where traditional
polling solution is augmented to support real-time updates.

Chapter 12, Debatching Bulk Data, explains how to take giant sets of data and insert
them into databases for analysis.

Chapter 13, Complex Event Processing, addresses website click stream analysis and
creating actionable business events.

Chapter 14, Cross-Organizational Supply Chain, demonstrates how to build a supply
chain solution to integrate systems in a purchase order scenario.

Chapter 15, Multiple Master Synchronization, covers methods for arriving at a single
version of truth from multiple, often conflicting master data sources.

Chapter 16, Rapid Flexible Scalability, looks at creating temporary environments that
can be easily created and contracted as needed.

Preface

[4]

Chapter 17, Low Latency Request-Reply, contains a retail scenario where high
performing query services are established.

Chapter 18, Handling Large Session and Reference Data, discusses usage of distributed
caching to scale large workloads in web applications.

Chapter 19, Website Load Burst and Failover, looks at leveraging the Windows Azure
platform's elastic resources and high service level for building a low cost solution.

Chapter 20, Wrap Up, is a brief summary of the key points addressed in the book.

What you need for this book
The following software products are used in this book:

•	 BizTalk Server 2010 and ESB Toolkit 2.1
•	 .NET Framework 4.0 (which includes Windows Communication Foundation

and Windows Workflow Foundation)
•	 SQL Server 2008 R2
•	 StreamInsight 1.0
•	 Windows Server AppFabric
•	 Windows Azure Platform
•	 Visual Studio 2010

Who this book is for
This book is for the busy architect, developer, or manager who needs to advance
their knowledge of the Microsoft application platform space. If you last evaluated
the Microsoft platform offerings in 2009, then you are woefully out-of-date. Don't
worry, it happens to the best of us. I'd like to hope that flipping through this book
will increase your confidence when trying to figure out a consistent way to choose
which Microsoft product to use.

If you are a developer looking to transfer your skills into architecture, then this book
can help you take a big-picture approach to pattern detection in use cases and apply
a broad range of evaluation criteria to product selection. Alternately, you may just
want to get a short primer on the latest Microsoft technology.

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Data is stored in the custom region
June6_UserReviews of the ReviewsCache".

A block of code is set as follows:

SyncOrchestrator orchestrator = new SyncOrchestrator();
orchestrator.LocalProvider = source;
orchestrator.RemoteProvider = destination;
orchestrator.Direction = SyncDirectionOrder.UploadAndDownload;
//bidirectional sync
orchestrator.Synchronize();

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

SEND ON CONVERSATION @RecvReqDlgHandle
 MESSAGE TYPE [//SOAbook/SampleQueue/ReplyMessage]
 (@ReplyMsg);

END CONVERSATION @RecvReqDlgHandle;
END

SELECT @ReplyMsg AS SentReplyMsg;

COMMIT TRANSACTION;
GO

Any command-line input or output is written as follows:

sn –k biztalk.snk

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:
"Right-click on the BizTalk project and select Properties".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Solution Decision Framework
Decisions, decisions, decisions. Each and every day, architects and developers
make choices, which range from where to store configuration data to whether their
solution calls for real-time messaging or batch processing. Each selection brings
with it a host of side effects that impact the solution's maintainability, security,
performance, speed of development, and more.

Two significant aspects of any architecture decision are: what should be done
and how should you do it. The focus of this chapter is to provide advice on the
latter by outlining a thought process for making sound decisions. Do you need to
deploy your servers globally or in one location? Should the solution employ an
asynchronous communication pattern for data processing? These are just examples
of solution aspects that result from an architectural analysis of the requirements.
This chapter contains a framework to help you determine which architecture quality
attributes you should evaluate for your solution. We will leverage this framework
in subsequent chapters as we evaluate business problems and choose the Microsoft
technology that best matches the requirements of the solution.

In this chapter you will learn the following:

•	 The value of having a consistent, reusable decision framework
•	 Where to find the input information for your decisions
•	 How to organize your architectural assessment of the requirements

Solution Decision Framework

[10]

The need for a decision framework
There is no substitute for the hands-on experience of designing and building software
solutions. The key is how you take what you have learned in each situation and apply
these principles and lessons to subsequent projects. Recording and maturing a reusable
set of decision criteria goes a long way towards establishing personal confidence in
our architectural decisions. Each project should not be a blank slate. Rather, we should
be leveraging our experiences and the experiences of others and reuse them so that
we can surface key issues, prioritize our feature set, and establish which trade-offs we
will need to make early on. While we cannot know every detail or requirement before
starting to craft a solution, we must still make critical decisions that have significant
impact on the direction of the solution architecture. This is all the more a reason to
make consistent, well thought-out decisions.

There is nothing magical about a decision framework. In our case, the
recommendation is to do the following:

•	 Gather all the facts that you can. See the next section (Sources of Input to the
Framework) for ideas on where to obtain the data points necessary to make
informed decisions.

•	 Look for the hard architectural decisions. What is the big picture? What are
the critical aspects that we need to tackle right away? An example of this is
determining whether or not your strategy is to copy data between systems,
do real-time lookups, or leverage a shared data source. Broad data-sharing
patterns shape how you build your system and this is an example of a
weighty decision that impacts how we lay out the rest of the solution.

•	 Capture and evaluate alternatives. It has been said that "if you only have
one solution to a problem, then you are not thinking hard enough". Every
significant decision point should have multiple possible alternatives that
reflect the interests of the project or organization as a whole.

•	 Weigh the strategic importance of feature requests. All desired solution
capabilities are not created equal. If I work in an environment where we have
limited in-house development resources and place a premium on system
maintainability, then I will value products with standard support tools over
products that have a more robust, but custom feature set. Amplify what the
solution must do and avoid being distracted by "nice to have" capabilities.

The list of solution criteria we have in this chapter is by no means exhaustive.
Instead, it is meant to provide a baseline for you to customize with your own
experiences and organizational priorities. Following a framework strategy of "gather
information, inspect for impact, assess alternatives, and weigh importance" will help
you become successful regardless of how big or small your specific list of solution
criteria is.

Chapter 1

[11]

Sources of input to the framework
Where do we get the data points necessary to make informed architectural
decisions? There are four key sources that will shape our understanding of the
business problem: functional requirements, non-functional requirements, derived
requirements, and organizational direction.

Functional requirements
The functional requirements of a solution dictate what the resulting system should
be able to do and include scenarios that summarize the user's expected experience
with the system. Functional requirements could address the type of data entities
the system interacts with, how the system behaves when a user needs to invoke
a particular calculation, or the order of steps to complete a business process.
Functional requirements are typically gathered by a business analyst and are
crucial in determining how a system should be architected. A software solution is
worthless if it is architected beautifully but does not meet the business need. Staying
focused on our client needs will ensure that we build a practical and architecturally
responsible solution.

In order to ensure that our functional requirements help and do not hurt our effort to
architect a solution, we must remain diligent and not allow system requirements to
masquerade as business requirements. For instance, if we see a business requirement
that says that customer profile information from System A should be copied via file
transfer every night to System B, then that should raise a red flag. That business
requirement is dictating system design and does not answer what the business need
actually is. The proper business requirement would be "The system shall enable users
of System B to view up-to-date customer information originating from System A".
As architects, we can choose multiple implementation solutions (for example: shared
database, data transfer, real time lookups) that can both satisfy that requirement and
fit into the overall design patterns we have laid out for the project. While there may
be relevant reasons for technical requirements (for example, security constraints) to
get included as functional requirements, often these technical requirements are better
stated as non-functional requirements.

Solution Decision Framework

[12]

Non-functional requirements
Wikipedia describes non-functional requirements in this way:

A non-functional requirement is a requirement that specifies criteria that can be
used to judge the operation of a system, rather than specific behaviors. This should be
contrasted with functional requirements that define specific behavior or functions.

http://en.wikipedia.org/wiki/Non-functional_requirements as on 10/2009.

So unlike functional requirements, which dictate system behavior, non-functional
requirements stay focused on how the system needs to operate. There are multiple
dimensions to look at when evaluating system operations including maintainability,
security, compliance, availability, and exception management. A business or system
analyst typically uses a pre-defined list of questions to interview stakeholders and
identify non-functional requirements. Questions such as "How many users will the
system support?", "What is the sensitivity of the data stored by the system?", "What
are the regular hours of operation for the system?", "What is the acceptable latency of
a user request?", and "What are the disaster recovery expectations?", will all provide
insight into how to best architect our solution. It should be noted, however, that it
is often the responsibility of the analyst to translate the sometimes technical, non-
functional requirements into more business-relevant questions. For instance, I would
not ask my client to spell out their explicit disaster recovery needs (for example
recovery point objective, recovery time objective, site configurations), but rather, I
would focus on questions addressing business continuity and backup procedures
and extract the disaster recovery needs from their answers.

Derived requirements
We sometimes forget about the requirements that are not explicitly stated but can
be uncovered through the functional and non-functional requirements. Derived
requirements are implied requirements and do not come directly from our users. These
are the things that go unstated (or even forgotten about), yet still belong in the registry
of requirements for the solution. For instance, we may receive functional requirements
that state a need to capture key data points and progress indicators during each stage
of a long-running workflow process. While no reporting interface was requested by the
users, we realize after reading this requirement that the users will need some way to
visualize the progress of a given workflow and thus we see a derived requirement for
a report. Or we have a business requirement dictating that the solution run on mobile
devices but no indication of the required phone platforms, so we may derive the
platform requirement based on the types of phones issued by our company. Once we
identify the derived requirements, we can assess them with appropriate stakeholders
and use them as yet another input to our decision making.

Chapter 1

[13]

Organization direction
Last, but not least, we need to take broader organizational goals into account when
capturing solution attributes that drive architecture. Project architecture decisions
should not be made in a vacuum. While I may be able to flip a coin to decide between
two perfectly viable ways to expose a web service interface for a given project, I should
always be considering enterprise standards and practices when making my selections.

For instance, you may work for a company which has a strict "build instead of buy"
strategy for software because of the high caliber of on-staff developers and a consistent
need to deeply customize any commercial product. If that is the case, I may have a
soft requirement to choose the framework technology over the more rigid
commercial product.

Solution decisions also must take into account the short term and long term
investments of an organization. Am I basing my solution on a technology that is
under consideration for deprecation? Do we have the staff on hand with expertise
in a particular product? These are valid considerations that can sway us from a
seemingly ideal technology to an alternate choice.

Deciding upon your architecture strategy
Once the core requirements are set forth, we as architects can begin to craft the major
patterns that make up the solution architecture. It would be a grave mistake to jump
directly from requirements gathering to a product selection. You would never say
"BizTalk is the choice for all our solutions", unless you were clinically insane or ate
paint chips as a child. Likewise, it would be foolish to jump immediately to a custom
solution unless you had evaluated and eliminated packaged applications as a viable
choice. Your architecture strategy should be driven by a full assessment of the
architecture quality attributes required by your solution.

Turning requirements into patterns is beyond the scope of this book. That said, there
are key aspects you need to decide upon before choosing a particular product for
implementation. These areas of focus may include:

•	 How is data shared? In real time or via batch processing? Is data copied
between systems or should we use a shared database?

•	 Does the system do most work synchronously or asynchronously?
•	 How do users interact with the system? Via services, mobile devices,

command line?

Solution Decision Framework

[14]

•	 Is a centralized workflow needed to span the applications that comprise the
system, or is distributed logic with queue-based transport the best choice?

•	 Should the application be deployed in one location, multiple locations,
or in the cloud?

•	 Does the solution require a single security domain or is identity
federation needed?

•	 What types of service level agreements (SLAs) are expected by the client and
can I capture relevant measurement data?

The framework described next can help you capture the data points necessary to
answer these questions and choose the right product to solve your business problem.

Framework dimensions
Our evaluation criteria have been segmented into four central categories:

1.	 Solution design: This area focuses on dimensions that shape the broad
design patterns that make up our solution.

2.	 Solution development: This topic addresses what it will take to construct the
solution.

3.	 Solution operations: Here we highlight factors that influence how the
solution will be maintained after it has been built.

4.	 Organizational considerations: These are facets of the solution that take
enterprise standards and organization direction into account.

Each category contains a set of criteria along with a description of what those criteria
help identify.

Solution design aspects
In this section, we look at characteristics relevant to the overarching design of a
solution. Once again, this list isn't exhaustive but it should provide you with a
framework for thinking and steer you towards a particular
implementation technology.

These data integration considerations touch upon a variety of needs in data sharing
scenarios including how you receive data, how much of it you process, and what
quality assurances are necessary.

Chapter 1

[15]

Data integration considerations
Software criteria Description
Supports high volumes of data Can a heavy throughput of data reliably flow

through the software? While this characteristic
is often dependent on other criteria mentioned
below (for example: load balancing, latency),
it should be a known aspect of any software
solution. "High volume" may also be a subjective
description. In some organizations, a high
volume of data is thousands of records per day,
whereas other organizations expect thousands of
records per minute.

Handles large individual data sets The raw size of a data set can greatly influence
which software solution you select. Some
products are tuned to process small data
blocks: while others hungrily tackle megabytes,
gigabytes, and terabytes of data all at once. If a
particular software package is a perfect match
for a solution except for its inability to process
thousands of records at once, then maybe we can
revisit the data processing requirements and bite
off smaller chunks of data.

Offers guaranteed, at-least-once
delivery

Reliable delivery is frequently a requirement of
messaging solutions, but sometimes, this is a
nice-to-have instead of must-have. If a particular
piece of data does not reach a destination, can
it be sent again from the source? For instance,
few request/response query operations
require guaranteed delivery since transmission
failures can be instantly retried. Asynchronous
operations are more directly associated with
guaranteed delivery. Also, guaranteeing
once-only delivery is something that has to be
explicitly designed for. While some tools do
support this, this is also where we can architect
an idempotent interface where we can send
data over and over again, without negatively
impacting the data context.

Able to access a wide variety of data
repositories

A thorough analysis of the data requirements
will surface the range of data sources that our
solution needs to leverage. Our chosen software
platform should be able to easily interact with
the full spectrum of data sources that make up
our solution architecture.

Solution Decision Framework

[16]

Data integration considerations

Software criteria Description
Able to access a wide variety of target
system APIs

Much like the preceding criteria, we need to
uncover which systems we need to interact with
and determine whether a given software product
is capable of consuming the interface offered
by the dependent system. This could be a web
service interface, native interface, or a protocol
interface such as MSMQ.

Works with batches of data We looked at large data sets and this criterion
is an extension of that. Regardless of the batch
size, we need to know if a particular software
platform can easily unpack a collection of
data records and process them individually.
Sometimes, records are batched out of
convenience to reduce network traffic and
sometimes they are batched because the records
are all part of a related transaction. Ideally,
our software platform can treat a batch of data
differently depending on this distinction.

Accepts real-time data input The timeliness of data processing is a
foundational aspect of most solutions. If we are
building an application that demands a real-time
(that is, not batch) interface, then we have clear
choices as to which type of product to leverage.

Offers data quality features (de-
duplication, format standardization)

When sharing data between systems, we may
need to apply a series of data quality rules that
cleanse and improve the integrity of the data.
This could involve removing incomplete data,
eliminating duplicate records, enriching the data
with information from external sources, and
standardizing data field formats such as
phone number.

Security is often one of those things that we cannot compromise during application
design. We may have to comply not only with organizational standards, but those of
regulatory bodies. Here are some criteria that touch on user profiles, data in transit,
and data at rest.

Chapter 1

[17]

Security considerations

Software criteria Description

Enables enterprise-wide and cross-
organization users to access the
application

It is important to know if the product can
support enterprise directories for authentication
and authorization so that we can establish
reusable security groups and wide access.

Includes Single Sign-On capabilities If your solution demands access to systems
and repositories that span security domains,
then having an SSO product available will be a
lifesaver. A strong SSO product will enable you
to securely map credentials from one domain
to another and seamlessly access cross-domain
resources.

Offers range of authentication
mechanisms to invoke operations

This applies to items at an API level or even
access to the application itself. If we need to
be able to authenticate users against a default
Windows domain, or also need alternate ways
to prove identity (for example: certificates,
HTTP basic authentication) then we have to
choose a product with this capability baked in.

Provides authorization controls to
invoke operations

Ideally, there is at least a coarse set of knobs
that we can fiddle with in a software package,
which allow us to restrict capabilities by the role
of the user. Some software packages may allow
granular access only through customization.

Provides authentication and
authorization options for
securing administrative aspects of
application

Depending on the scope of your solution, you
may need to provision administrative functions
to distinct sets of users. For instance, you might
have one set of users who can administer the
entire application, while others can only modify
specific settings. If your solution demands this,
you will need to consider this capability in the
available software packages.

Has compartmentalized
components with independent
security boundaries

One way to reduce the attack surface of a
solution is to partition not only the application
tiers, but also the modules within a given tier. A
component that requires elevated permissions
could be isolated on one server while other
components running with least privilege can
execute on additional servers.

www.allitebooks.com

http://www.allitebooks.org

Solution Decision Framework

[18]

Security considerations
Software criteria Description

Enables secure storage of
configuration or reference values

When we extract volatile data values from
code and store them in external configuration
repositories, we make our code easier to
maintain. However, these pieces of data may
contain sensitive information such as passwords
and connection strings. Whether embedded in
the code or stored in a configuration repository,
this data should be encrypted or isolated from
prying eyes.

The project's need for exception handling can often be evaluated late in a delivery
cycle, which is unfortunate. This is one of those areas to ask our clients about early
on and get an understanding of the business need when system, data, or logical
errors arise. Based on the expected types and volume of errors, we may lean one way
or another on which product to leverage.

Error handling considerations

Software criteria Description

Failures within the system are
captured in predictable way

Even the best of us write code that fails. What we
hope to have is a software platform that enables a
graceful handling of exceptions occurring in native
components, custom components or infrastructure.
If the product relies on a database to operate,
what happens if the database temporarily goes
offline? Or, what if you deploy custom code to the
application and an uncaught exception flows up to
the application? Knowing how a product handles
failure goes a long way in understanding how to
build for exceptions and prepare future solution
administrators.

There are limited single points of
failure

We all hope to build solutions that do not have any
one component that can bring the entire system
down. When we look at underlying platform
products, we need to understand where things can
go wrong and which components can or cannot
survive a failure.

Failures in dependent systems are
handled consistently

When we built systems that rely on other systems,
we must prepare for the event when those
dependent systems become unavailable. How does
a particular software product resolve downstream
failures?

Chapter 1

[19]

Error handling considerations

Software criteria Description

Includes facilities to monitor the
system and configure alerts

If a product does not offer a management
dashboard itself, hopefully it should minimally
provide an instrumentation layer that enterprise
monitoring tools can tap into so as to actively track
the health of the application.

There are always a few uncategorized design aspects that touch upon how a
solution can be designed to be maintainable and best leverage existing enterprise
investments. Here we have a few items that address loose coupling of components,
how operations can execute, and establishing transactions across system boundaries.

General design considerations

Software criteria Description

Includes a modular set of components
with a clear separation of concerns

Software products are at their best when they
have clearly defined modules that work both
independently and seamlessly with each other.
When looking at your solution requirements,
you may see aspects that are a perfect match
for components of one product while other
aspects are ideal for another. If those products
are built well, then leveraging the best of each
should be possible. Having modular components
also means that changes can be made to one
component without being forced to deploy or
test all of the other ones.

Has functional flexibility and can be
built for change

Sometimes a solution satisfies a very fixed need
with static business rules and firm interfaces.
However, that scenario appears to be an
exception rather than a rule. If our solution
requirements outline a very dynamic business
space where interfaces may undergo change or
business logic is susceptible to update, then we
need a software product that can accommodate
such demands.

Leverages asynchronous model for
processing

Asynchronous processing allows us to execute
operations without forcing the initiator to wait
for a response. This is valuable for long-running
processes, activities that can be handled at a
later time, or broadcasting data to an unknown
number of interested parties.

Solution Decision Framework

[20]

General design considerations
Software criteria Description
Is capable of enlisting both local and
distributed transactions

If our solution requirements call for us to
synchronize the update to multiple repositories
then we have to make sure our software is
capable of participating in transactions that
potentially span application boundaries.

Solution delivery aspects
The big picture solution aspects cannot be the sole factor in choosing a particular
implementation technology. We must also seriously consider how well the
technology aids in the rapid and successful implementation of our architecture
blueprint. A product that looks perfect from a design perspective may introduce an
unnecessary burden on the implementation team.

First off, we should look at our development resources and consider if the
technology at hand is something that existing .NET or SQL Server developers can
quickly adopt, and what sort of physical environments are needed to perform
development. While BizTalk Server is a mature product, it can still be difficult to
find top-notch talent in the open market. For new products like Windows Server
AppFabric and Windows Azure, there is an obvious gap in the marketplace until
these offerings become more commonplace and skills can be developed. Consider
whether you need, product expertise or have the internal skill set available to grow
the expertise in house.

Resource considerations

Software criteria Description

Skilled developers can be acquired for
this technology

This criterion relates to both in-house developers
and contract developers. Do we have the
resources within the organization and are they
even available to work on this solution? If the
answer to either question is no, then how easily
can we get external expertise?

If a new technology for the
organization, the skill can be picked
up by existing developers

Many of the products in Microsoft's application
platform have similar development paradigms.
Someone with expertise in the .NET
Framework could quickly understand the
development process for products like Windows
Communication Foundation or StreamInsight.

Chapter 1

[21]

Resource considerations
Software criteria Description
Solution components can be run on a
standard developer workstation

Most software can be installed on a typical
developer computer but we should know early
on if we require centralized server software,
virtual machines, or 64-bit hardware.

Once we evaluate the compatibility of products with our resource demands, we
can look at how well a technology helps us actually build the solution we want.
This includes topics such as the richness of the development toolset, maturity of the
community ecosystem, and the existence of solid test and automation capabilities.

Construction considerations
Software criteria Description

Robust set of tools / IDEs available to
construct the solution

New technologies typically have development
and administrative tooling that is fairly basic. It
seems that the priority of the software vendor
is on the underlying component maturity and
tooling is not a primary concern on the initial
release. That said, the proposed solution may
not require significant coding and thus advanced
tooling is ideal, but not required.

Rich ecosystem of plug-ins,
community code, tutorials and blogs
to help developers

When building solutions on a given product
we always hope to follow best practices and
leverage lessons learned by others. This is
where established, mature technologies have
advantages over newer, less investigated ones.

Written in an expressive language
that accomplishes tasks in limited
lines of code

Ideally, developers do not have to spend a
majority of time writing excessive lines of code to
complete simple tasks.

Integrates with a variety of source
control systems

A software solution can be comprised of code,
configuration files, scripts, images, and a host
of other artifacts. We should understand how to
collect all of the solution artifacts and centrally
manage them in a durable source control system.

Allows developers to build and
execute thorough unit tests

The cost of testing and bug fixes goes up as
a project progresses towards completion. A
software product should enable straightforward
unit testing of each component.

Can be set up to run in an automated
build environment

A solution may be made up of a number
of software packages and components, so
automating the regular solution built during
construction can free up resources to focus on
more strategic tasks.

Solution Decision Framework

[22]

Solution operation aspects
Even after we have satisfied our design and implementation needs, we absolutely
must consider the operational aspects of the proposed solution. Although the project
delivery team inevitably moves on to other work after a successful deployment, the
actual solution may remain in a production state for years on end. If we have a grand
architecture that was constructed cleanly, but is an absolute nightmare to maintain,
then we have not delivered a successful project. In fact, many of these operational
concerns actually directly affect our original solution design. These factors, which are
often gathered through the non-functional requirements, have a noticeable effect on
the architecture of the system.

Performance considerations address various topics ranging from application
business process performance to data volume and latency.

Performance considerations

Software criteria Description

Key Performance Indicators (KPIs)
can be captured and monitored

KPIs could relate to the business capabilities
built into the application or KPIs could refer to
the performance of the application itself. If the
business client wants to monitor the efficiencies
of their processes, then we will want to choose
a product that lets us easily capture and modify
key business metrics.

Can produce sub-second latency for
both simple and complex request/
reply operations

Latency requirements will factor into the overall
design of the solution, but this also relates to the
operations of the solution. Can performance be
tuned in the production infrastructure?

Predictable behavior during both
standard and non-standard volumes
of data

Many integration solutions have to deal with
spikes in data processing load at both regular
and unexpected intervals. If this is possible in
your environment, then you want to make sure
that the software can gracefully handle floods of
data without crashing.

The availability needs of the client have direct impacts on which product we should
choose. How mission-critical is the application? Can we afford for the system to be
down for a significant amount of time? What is the consequence if we lose some data
when recovering the application? Honest answers to these questions, which typically
mean fighting the urge to over-inflate the importance of a given application, will
help us direct appropriate attention to availability attributes.

Chapter 1

[23]

Availability considerations
Software criteria Description

Natively includes load balancing
capabilities

You may not need the software to contain its
own load balancing mechanism if you have
existing infrastructure to distribute work among
machines. However, if you are dealing with
a high volume environment with many long
running processes, you may benefit from a
technology that efficiently leverages the available
resources across software nodes.

Can systematically fail over to other
active servers

This also is a factor in solution design. While
it may be quite useful to leverage a software
platform that automatically switches execution
to additional nodes when a given node fails, we
may also want to define a stateless design. If we
limit the state that each node must maintain,
then we limit points of failure and can embrace
automatic node switching.

Includes data backup routines We may have to back up application data
persisted in the software or back up the artifacts
and metadata that comprise the software
solution.

Support zero message loss in the
product or through storage mirroring

If a software product stores application data
(even while in transit), then there may be a
business requirement to avoid any data loss in
the event of system failure. Accomplishing this
can be challenging, so we need to determine the
real need and see if the software platform can
accommodate this.

The day-in-the-life maintenance of an application is not the most exciting thing to
mull over during project planning, but paying attention to this aspect is the greatest
gift you can give to a system administrator. What are some of the general things you
can do to make the maintenance of this application as straightforward as possible?
We must consider the tools we provide, the way we have separated our components,
and the means for making incremental changes to the application over time.

Solution Decision Framework

[24]

General operation considerations

Software criteria Description
Rich set of support tools and
interfaces

Strong administrative tools could be
graphical in nature or through a well-defined
programmatic interface. We may not want to
teach administrators a brand new tool, but
rather leverage existing skill sets or enterprise
configuration tools. This would factor in to our
product choice.

Clear strategy for versioning system
components

If a product is built with a clear separation
of concerns, it will be easier to make isolated
changes. That said, if a solution is expected to
undergo regular changes then we have to fully
grasp the ways to consistently deploy new
versions.

Defined extensibility points Extensibility can be built both into the software
itself and into the system built on top of the
software.

Built-in instrumentation and tracing Many organizations have existing application
monitoring tools and it is important to find out
if a particular software package can feed its data
and system events into such tools.

Organizational aspects
You would think that after you took your project's design, development, and
operations into account you have done proper due-diligence prior to architecting a
solution. However, a good solutions architect always keeps an eye on organization
strategy to make sure that what they are proposing for an isolated solution is in line
with the broad vision of the company.

Here are a few things to consider when switching perspective from a project-centric
viewpoint to an enterprise one.

Chapter 1

[25]

Organization considerations

Software criteria Description
Is sufficient for both temporary
solutions and long-lived solutions

Sometimes we build solutions that are meant
to temporarily solve a given problem. Maybe
the organization is planning a massive system
upgrade but needs an intermediate solution to
a particular pain point. Conversely, we may be
designing a solution that is expected to remain
in operation for 4 to 6 years. If we look at the
planned lifespan of the solution, this can help us
decide which product offers the lowest total cost
of ownership over that duration.

Includes support from Microsoft for
solutions implemented with product

Product support is a critical component of
enterprise systems. When you build a solution
on top of a packaged application, you often get
more vendor support than when you build a
solution on a base framework.

Leverages existing software
investments within the organization

These existing investments could be in
employees or other software packages. Does the
product use an underlying database technology
already deployed at the organization? Or, is it an
additional module of a product already in heavy
use?

Limited impact on budget as
introduction of this technology can be
built upon existing environments

This relates to the prior criteria. The cost of
software that underlies a solution is frequently
a factor in product selection and ideally we can
share existing infrastructure.

Complies with "buy vs. build"
strategy of the organization

If you have an expert staff of developers on
site and frequently find yourself customizing
packaged products, then your organization
may prefer building solutions vs. restricting
themselves to packaged products. On the other
hand, if an organization prefers to fit their needs
into the capabilities of package applications
so as to reduce ownership cost and accelerate
development, then a heavier evaluation
weighting should go to products with fixed
boundaries and limited customization options.

Solution Decision Framework

[26]

Organization considerations

Software criteria Description
Matches the risk tolerance of the
organization

Some companies love being early adopters
of technology and getting the chance to take
advantage of the latest products and capabilities.
For such companies, the risks of deploying new
technologies are outweighed by the business
benefits those technologies offer. However, other
companies have a "service pack 1" mentality
where only mature products are introduced into
the organization landscape.

Provides sufficient speed to market
for new solutions

We cannot make a blanket statement that
building solutions with "Product X" is faster than
building with "Product Y." This all depends on
the solution. That said, we want to evaluate our
candidate software choices by looking at which
software allows us to build (and change!) a given
solution as quickly as possible.

Applying the framework
So what do we do with all this information? In each of the "pattern chapters" of
this book you will find us using this framework to evaluate the use case at hand
and proposing viable candidate architectures. We will have multiple candidate
architectures for each scenario and based on which underlying product is the best fit,
go down the path of explaining that specific solution.

So how do we determine the best fit? As we evaluate each candidate architecture,
we'll be considering the preceding questions and determining if the product that
underlies our solution meets the majority of the criteria for the use case. Using
the next representation, we'll grade each candidate architecture in the four major
decision framework categories. The architecture that is most compatible with the use
case objectives will win.

Design Delivery Operations Organization

Chapter 1

[27]

Summary
A common methodology for evaluating solution requirements against product
capabilities will go a long way towards producing consistent, reliable results. Instead
of being biased towards one product for every solution, or simply being unaware
of a better match in another software offering, we can select the best software
depending on its key capabilities for our client's solution.

In the next set of chapters, we'll introduce you to these core Microsoft application
platform technologies and give you a taste as to what they are good at. While these
primers are no more than cursory introductions to products, they should give you
the background necessary to understand their ideal usage scenarios, strengths,
and weaknesses.

www.allitebooks.com

http://www.allitebooks.org

Windows Communication
Foundation and Windows

Workflow 4.0 Primer
Windows Communication Foundation (WCF) and Windows Workflow
Foundation (WF) were first introduced with the release of the .NET Framework
3.0 in November 2006. The goal of WCF was to introduce a framework that aids in
building distributed applications that leverages web services, MSMQ interfaces, and
remoting with a consistent, service-oriented, communication platform. This platform
abstracts the communication details (including transport, encoding, encryption, and
authentication) from implementation logic. Because of this abstraction, we can often
modify service behavior through configuration changes without impacting existing
logic or compiled code. WCF controls WS-* implementation, distributed transactions,
security, and serialization in a manageable fashion, and in a way that is relatively
consistent across service platforms. With Windows Workflow, the concept of
designer-based workflow was brought to the mass developer audience. This allowed
for a drag-and-drop based coding experience within the confines of the well known
Visual Studio designer.

The developer adoption of WCF as a replacement for traditional web services was
widespread while, in contrast, WF lacked a robust hosting environment and failed
to impress in terms of out-of-the-box features. With the release 3.5 and 3.5 SP1 of the
.NET framework, new features like workflow services (exposing Workflows as WCF
services), basic correlation, and persistence were added and brought more attention
specifically to workflow. This also increased the number of possible use cases,
but still lacked a real attention-grabbing feature or a scalable hosting environment.

Windows Communication Foundation and Windows Workflow 4.0 Primer

[30]

Many questions about the advantages of Workflow have disappeared with the
recent release of the .NET 4.0 framework. Streamlined, model-driven workflow
development is now at the reach of the mass developer market, reducing the need
for complex custom-coded solutions for workflow scenarios. Now is the time to take
a first look at Workflow or re-evaluate this platform, as considerable improvements
have been made to increase both functionality and usability. Windows Workflow is
now mainstream.

In this chapter, we will discuss the following topics:

•	 The basics of Windows Communication Foundation and Windows
Workflow Foundation

•	 What is new with WCF and Workflow in the .NET 4.0 release
•	 The typical scenarios to use WCF and Workflow
•	 A Windows Workflow exposed as a WCF Service

What does this technology do?
While the common goal of WCF and WF was to provide a starting framework for
developers working on custom solutions, the specific implementation scenarios for
each are very different.

Distributed systems have distinct problems. Distributed, by definition means spread-
out; in a programming sense distributed means spread-out but also cross system
and even cross platform. Distributed systems are different from typical standalone
applications in that they need to interact with other systems in order to function.
This brings new challenges including: how these systems communicate, how security
is enforced, and what happens if the system is down, just to name a few. The goal
of Windows Communication Foundation is to simplify this process. WCF is just
that, a foundation for communication, typically for distributed systems. The goal is
to provide a configuration-based approach for systems to communicate with each
other under a common framework, which once learned, will allow a developer to
streamline communication in order to focus on the implementation logic. WCF
provides a framework for developers to leverage specific framework elements inside
a service configuration file and keep their accomplish common tasks like security
and data transport. This is made possible by leveraging the framework built into the
.NET 3.0 and higher framework. Using the framework greatly reduces the amount
of custom coding needed for common tasks, while providing the ability to extend
on the framework when needed to cover additional scenarios. As later .NET releases
have been made, more features have become available in the framework thus,
extending the reach of WCF.

Chapter 2

[31]

While the power of WCF is increasing and basic scenario implementation is being
simplified, the basic fundamentals of WCF remain the same since it was first
released. The basics of WCF configuration are the ABCs:

1.	 Address: When a WCF service is running, this is the destination it will listen
on for inbound requests. This location is created and monitored by the host
process that is running the WCF Service. Typically this is IIS or a
custom-built windows service.

2.	 Binding: Binding represents how the service will talk with outside systems
in terms of transport, security, protocol, and other options. Inside the
bindings, behaviors are defined that govern what will happen to the data
once it is received. This could involve how to serialize the data, how to
decrypt or encrypt it, or perform any other logic that is needed once the
information is received into the service. While this is configuration-based to
enable these features, the code to do it is not. In the bindings, we reference
either framework assemblies or custom-written .NET code. The binding just
outlines what code to use at runtime.

3.	 Contract: The contract outlines the exchange pattern and specifically, what
data the service will exchange. It lists the available operations of the service
and outlines the type of exchange.

These are the three cornerstones of WCF. They highlight how to interact with the
outside world and are independent of the implementation logic of the service. Once
this is mastered, the pattern is consistent for any WCF-based interface.

Windows Workflow Foundation (WF) was introduced at the same time as WCF. The
purpose of WF was to solve a very different problem than WCF. WF is designed to
easily enable workflow-based applications inside Windows. Workflows are typically
thought of as a sequential control flow model with one task after another followed
in order. WF can support the sequential task model as well as more complex state
machine (pre-.NET 4.0) and a Flowchart (.NET 4.0) control models. The State
Machine Workflow contains event-based flow control, based on the state of the
workflow allowing moving from one execution block to another and back again. The
Flow Chart Workflow is used to define a static, non-sequential process flow.

Modeling applications as a workflow using a supplied framework has several
advantages. They are outlined in the following list:

•	 Designer-based problem solving: The designer inside Visual Studio
provides a common platform for workflow development. This allows
virtually anyone who knows WF to be able to read and understand any
workflow process. As the model is graphical, the learning curve is easier in
order to accomplish otherwise complex tasks.

Windows Communication Foundation and Windows Workflow 4.0 Primer

[32]

•	 Consistent approach to solving a problem: Once a specific workflow or
custom activity is written, it can be leveraged again if the implementation is
the same. What makes this different from a custom-coded solution is that the
developer needs to know very little about the solution in order to understand
its use as workflow is a UI-based model.

•	 Leverage the framework: Using workflow and the supplied activities lowers
the amount of custom code, reduces the time to market, and streamlines the
testing process as much of the code is build into the .NET Framework.

•	 Workflow services: Workflows can be exposed as WCF Services. This
combines the power and flexibility of WCF with the features of WF.

While it is always possible to custom code any solution coded in Windows Workflow,
these advantages should outweigh those of a custom C# or VB.NET solution.

In the past, the existence of a supportable, scalable host for workflow was an issue.
With .NET 4.0, significant enhancements have been made to the Windows Application
Server Role to enable scalable WCF and workflow hosting. This is known as Windows
Server AppFabric and will be covered in more detail in Chapter 3, Windows Server
AppFabric Primer.

David Chappell's Whitepaper is a good resource for more information on
Windows Workflow. It can be found here:
http://www.davidchappell.com/TheWorkflowWay--Chappell.
pdf

Highlights of the latest release
With significant investments made in the area of workflow, the following impressive
changes outlined were drastically needed to increase adoption. If you have looked at
Workflow in the past, the .NET 4.0 Workflow release bears little resemblance to past
releases. With dramatic change comes the obvious pitfall of backward compatibility.

Chapter 2

[33]

Windows Communication Foundation
enhancements
The following enhancements are made to WCF in the .NET 4.0 release:

•	 Easier configuration: Developers do not like to spend time learning and
setting up configuration. In WCF 4.0, default values can be set allowing
services to be run without any service-specific confirmation files.

•	 Content-based routing service: WCF now has the ability to route inbound
requests though information in the SOAP header or actual data inside the
message, based on an XPath expression. In addition to this basic routing,
error handling has the ability to send requests to alternative destinations in
the event of a communication issue.

•	 Enhanced MSMQ channel: The MSMQ channel supports peek-and-lock
functionality allowing a WCF process to lock a message, read it, and place
it back onto the queue in the event that it cannot be processed. This is
important when working with some workflow scenarios.

•	 WS-Discovery: Support for ad hoc discovery through a UDP multi-cast
channel on a local subnet or proxy-managed discovery on a large network.

•	 Greater REST support: Support for HTTP caching and HTTP error handling.

Windows Workflow Foundation
enhancements
The following enhancements are made to WF in the .NET 4.0 release:

•	 Workflow service improvements: Workflow services are workflows exposed
as a WCF service. These services are typically long running and durable in
nature. Workflow services have undergone major improvement in the .NET
4.0 release. Improvements have been made in the following areas:

°° New messaging activities to send and receive messages into
and out of workflows, all leveraging WCF under the covers.

°° Transaction support allowing transactions to flow into
workflows.

°° Correlation of messages in long-running workflow and
between workflows, now supports both protocol-based and
content-based routing.

°° Add Service Reference now generates a typed custom
workflow activity allowing for a drag-and-drop designer
experience for calling external services.

Windows Communication Foundation and Windows Workflow 4.0 Primer

[34]

•	 Declarative Model: Workflows, including workflow services, can now be
completely written in Extensible Application Markup Language (XAML).
XAML can then either be compiled into a typed assembly or executed
as XAML.

•	 Flowchart flow style: A new style of workflow has been introduced called
the Flowchart. This allows for a non-sequential, flow-control
design experience.

•	 Simplified persistence: Workflow state can be persisted to a SQL store of
choice, allowing for instance management and durable delays. Workflows
can be stopped, started, suspended, resumed, or terminated while leveraging
the durable delay workflows, which can react to time-based events.

•	 Enhanced library: Past releases of Workflow saw only a handful of out-of-
the-box activities. With the .NET 4.0 release, developers now have a rich set
of activities to leverage. Some of the new highlights include activities for
transactions, data access, flow control (such as Do-While, For-Each), parallel
execution, persistence, and error handling (including Try-Catch).

•	 Removed state machine support: Support for building state machines has
not been carried over to the initial .NET 4.0 release of Workflow. This is being
considered for a later release and in the meantime, the Flowchart workflow
should be used to model this behavior.

•	 Overall designer experience: The workflow authoring experience inside
Visual Studio has improved greatly with support for IntelliSense—the
addition of workflow Variables, Arguments and Imports tab, enhanced
bread crumb support, and overall performance improvements.

Enhancements to both technologies
The following enhancements are made to WCF and WF in the .NET 4.0 release:

•	 Event Tracing for Windows (ETW) events: Event Tracing for Windows
is known as ETW. It is a highly efficient, kernel-level, windows operating
tracing API. It can be turned on and off (early) giving developers the ability
to troubleshoot WCF and WF issues with greater ease. Workflow and WCF
now support tracing using ETW.

•	 Performance Counter improvements: The use of performance counts in the
past .NET releases came at the cost of system performance. Improvements
have been made in this area to limit the impact of collecting data via
performance counters.

Chapter 2

[35]

Typical use cases
Windows Communication Foundation and Windows Workflow Foundation follow
different use case scenarios, but both share the fact that they are frameworks. Both
WCF and Workflow are used as part of a custom-built solution. While some third-
party vendors leverage and re-host these technologies, the use cases outlined here
assume that these technologies are going to be used as the foundation of a new
application. Use cases fit into one of these three categories: WCF, WF,
and WF Services.

Windows Communication Foundation
use cases
Windows Communication Foundation is striving to become the implementation
framework of choice for distributed service-based scenarios. Examples include a
company implementing a company-wide Service-Oriented Architecture (SOA)
to offer enterprise services for tasks such as tax calculations, shipping quotes, or
inventory checks. Using WCF is about approaching different distributed scenarios in
a standardized way, increasing supportability, maintainability, and reducing time
to market.

The WCF-based solution offers complete flexibility in the communication patterns
used on all services, given the configuration-based approach. This would allow the
same service implementation to be used on a client desktop—with no encryption,
inside the network with encryption, or over the internet—totally secured, all with
no changes to the service code. This is drastically different from a traditional ASMX
service that relies heavily on IIS or an application written for .NET Remoting. While
WCF Services are commonly hosted inside IIS, this is not a requirement.

Windows Workflow Foundation use cases
Windows Workflow Foundation provides a foundation for building workflow-based
processes through a rich, designer experience. With a robust designer experience, it
provides a model-driven approach towards workflow development. While nearly
anything built inside the workflow could be custom coded in raw .NET, the goal is
to make the experience simpler, repeatable, and quicker than using raw .NET. The
designer experience is typically hosted inside Visual Studio, but it can be hosted
inside custom applications as well, allowing Independent Software Vendors (ISVs)
the ability to build on top of the workflow foundation.

Windows Communication Foundation and Windows Workflow 4.0 Primer

[36]

Workflow processes are usually long running processes that interact with different
internal or external systems and sometimes require human intervention to approve or
reject specific steps in the process. Some typical workflow processes include a new hire
process, outlining a document review process, and aggregating external service calls
into a single process. These three workflows could be built using Windows Workflow
and then hosted inside a custom .NET application, SharePoint, or simply a console
application. This abstracts the core workflow logic from the hosting application. As
Workflow is a foundation, other applications can build on top of it to leverage the
existing workflow functionality. New features in the Windows Application Server Role
known as AppFabric will add another hosting option for workflows, providing greater
insight into the running mechanics of the workflows themselves.

Example solution
To get you up and running with workflow services, let's set up a simple example.
This will be a Windows Workflow that is exposed as a WCF service. This example
will use Visual Studio to host the workflow and expose WCF endpoints. The service
will accept a simple string and return an updated string.

1.	 Create the new project inside Visual Studio 2010.
°° Go to File | New Project.
°° Select Workflow on the tab on the right under Visual C#.
°° Select the WCF Workflow Service Application project type.
°° Name it to IntroToWFService.
°° Click on OK.

Chapter 2

[37]

This will create a blank project and solution. Service1.xamlx is the base
workflow service file created with the project.

2.	 Create local variables to store the inbound text and set the outbound text of
the service.

°° Click on the Sequence shape to ensure it is the active window.
°° Click on the Variables tab on the bottom left.
°° Add a variable named InternalInputText of type String to

store the original inbound text.
°° Add a variable named InternalOutputText of type String

to create the response string to be returned from the service.

www.allitebooks.com

http://www.allitebooks.org

Windows Communication Foundation and Windows Workflow 4.0 Primer

[38]

3.	 Define the Request and Response Contract because this is how this service
talks to the outside world.

°° On the ReceiveRequest shape, Click on View Message.
°° Select Parameters.
°° Add a new parameter named InputText as type String and

assign it to InternalInputText.

°° Click on OK.
°° Do the same for SendResponse but name the parameter to

OutputText and set it to a value of InternalOutputText.

4.	 Set the output text. This step will create the output variable the service
will return.

°° Drag an Assign shape from the Primitives section of the
toolbox onto the surface between the ReceiveRequest and the
SendResponse shapes.

°° In the To box, set the value to InternalOutputText.
°° In the Enter the VB expression box type the following: "You

said” & InternalInputText as shown in the screenshot.

Chapter 2

[39]

5.	 Build, run, and test the project.
°° Press F5 to build and run the project in debug mode; Visual

Studio will show the Directory Listing of the project running
on port 1110.

°° Click on Service1.xamlx when the page loads to view the
service details.

°° Open WcfTestClient.exe located at: C:\Program Files\
Microsoft Visual Studio 10.0\Common7\IDE\.

°° Right-click on My Service Projects and add the newly
started service. The default address should be http://
localhost:1110/Service1.xamlx. This is the address the
workflow service is listening on and a request should be
sent to.

°° Double-click on GetDate().
°° Set the Value field to: Test Message.
°° Click on Invoke.
°° This should return the response: "You said Test Message”.

The above sample is an example of a simple workflow service. Once the framework
is in place for receiving and sending the request and response data, the internal
implementation can be easily changed by dragging new shapes into the surface. This
can allow the implementation logic to be changed without impacting the
exposed contract.

Windows Communication Foundation and Windows Workflow 4.0 Primer

[40]

Summary
In this chapter, we took a look at the ABCs of WCF along with some basics of WCF
and Workflow. We briefly reviewed the new features in WCF and Workflow that
are available in the .NET 4.0 release. Lastly, we saw a workflow service in action in a
simple request-response scenario. Further chapters will explore the hosting of WCF
and workflow solutions, and dive deeper into the best use scenarios of
these frameworks.

Windows Server AppFabric
Primer

An application server hosts business logic (applications or services) in a multitier
architecture and provides a rich set of capabilities for building robust, high-
performing solutions. From an end-user standpoint, an application server needs
to satisfy a set of criteria such as offering a highly available hosting environment
for web and desktop applications, enabling durable storage through technologies
such as message queues or databases, and providing enterprise monitoring
and management infrastructure. In addition, the platform should provide an
easy development and deployment framework so that the application server is
compelling enough for a user.

Today, Windows Server provides several rich capabilities, some of which have already
been mentioned above. Recently, Microsoft strengthened the Windows application
server offering by making available a set of key enhancements which will provide
unified hosting and monitoring for WCF and WF applications. In addition to this
capability (known during its pre-release cycle as Dublin), the new application server
will provide a distributed cache, originally codenamed Velocity. The distributed cache
feature provides a performance benefit (latency and throughput) to applications by
caching different .NET types and reducing the load on the data tier. Collectively,
these new capabilities for Windows Server platform are known as
Windows Server AppFabric.

With the introduction of Windows Server 2008, Microsoft introduced a new feature
called Server Manager. Server Manager enables easy setup and configuration of a
Windows Server 2008 machine through quick provisioning for the target purpose—
be it that of a domain controller, a Web Server, DNS Server, an Application Server,
or any of its other out-of-the-box roles. The idea of role-based server configuration
is nothing more than just simplifying the setup of a server to perform complex tasks
by aligning Windows' features together into understandable groupings. The new
enhancements to Windows Server will be packaged as an update to the Windows
application server Role.

Windows Server AppFabric Primer

[42]

This primer will focus on Windows Server AppFabric and the enhancements being
made to the Windows application server role as part of the .NET 4.0 release.

What does this technology do?
In addition to being an operating system platform, Windows Server provides
features such as Microsoft Message Queuing (MSMQ), Microsoft Distributed
Transaction Coordinator (MSDTC), and Internet Information Services (IIS) for
hosting ASP.NET applications and performance counters that monitor infrastructure;
all of which make it easy to host web, desktop services and applications. The WCF
framework is slowly becoming the de facto technology for distributed applications.
Windows Workflow Foundation (WF), as a technology, enables automating long
running processes, which could involve human and software interaction. Both WCF
and WF have undergone improvements in the 4.0 release of the .NET Framework.

At its core, Windows Server is Microsoft's application server. Windows Server runs
applications like IIS, custom .NET components, and Web Services. When adding
the existing application server role inside Windows Server, the .NET Framework
is added with the option to also install IIS. The intent of this role is to run custom
applications containing .NET, WCF, WF, and WPF (Windows Presentation
Foundation) code, run distributed services, interact with queues, and perform
other typically distributed tasks across multiple servers. The initial server role on a
Windows Server machine is somewhat limited. Prior to this release, it only provides
basic hosting for WCF services inside IIS with limited tracking, monitoring, and
management functionality. WF applications receive even less attention. To run a
WF application, the user must define their own host, which may run inside IIS or
as a part of a custom Windows service. Enabling the basic application server role's
tracking options requires extensive knowledge of WCF and WF configuration files.
In addition, the tracking models are different from WCF and WF, making knowledge
of both essential in running complex systems.

With the .NET Framework 4.0 release, significant enhancements have been made
to the framework to support enhanced tracking, monitoring, and management.
To capitalize on these enhancements, Microsoft has built tooling and components
to a Windows application role known as AppFabric. These enhancements include
updates to the following core areas, as they relate to WCF and WF applications:

•	 Administration
•	 Scripting
•	 Hosting
•	 Monitoring
•	 Persistence

Chapter 3

[43]

While these enhancements are targeted toward .NET 4.0-based applications, .NET 3.0
and 3.5 WCF and WF applications can run in this host as well albeit with
some limitations.

Windows Server AppFabric core
components
This section is split into two key topics—Application-server hosting and monitoring,
and distributed cache.

Application-server hosting and monitoring
Windows Server AppFabric is a set of integrated technologies that makes it easier
to build, scale, and manage web and composite applications that run on IIS. As
outlined before, this adds key features in five areas. The following diagram gives a
visual view of these outlined enhancements:

Details on each of these are further outlined.

Windows Server AppFabric Primer

[44]

Control
Windows Server AppFabric adds plug-ins into IIS to allow for control of WCF and
WF applications in the same way as one controls websites today. With these controls,
the following tasks are now easily exposed:

•	 Importing and exporting an application
•	 Stopping and restarting an application
•	 Turning the tracking on and off
•	 Setting up custom tracking profiles

Scripting
Windows Server AppFabric allows PowerShell integration of all commands seen in
the UI. This is perfect for scripting of deployment and for ISVs that want to place
commands into existing applications.

Hosting
Windows Server AppFabric added a scalable, supportable hosting environment to
the Windows application server role. This host can serve as a container for WCF and
WF applications written in .NET 4.0.

Monitoring
Monitoring has a greatly enhanced user experience and allows easy access to tracked
data. This feature allows for various levels of out-of-the-box tracking on WCF and
WF applications as well as creation of custom tracking profiles.

Persistence
Along with the basic hosting environment are some other enterprise-ready
features made possible from a shared data store like SQL Server Express. With this
persistence store, we have the foundation for scalability, high availability, instance
re-start, and basic routing.

Chapter 3

[45]

Distributed cache
With the advent of applications built for cloud scale, more data is accessed and
consumed by applications. Further, usage of various smart mobile devices running
these applications has surfaced bottlenecks in the mid-tier and/or database-tier.

One popular solution to this problem is the usage of distributed caching
technologies, which provide a centralized store, elastic scale-out capabilities, and
high availability with low response times even with increasing workloads. Windows
Server AppFabric Cache is Microsoft's entry into the distributed cache market. It is
an explicit, scalable, distributed, and in-memory application cache that can improve
performance and scaling of .NET applications.

After installing and configuring the cache feature into a set of machines, the
combined memory across all servers is made available as a unified cache. The set
of servers now constitutes a cache cluster and can be used by application servers
or web servers running on different machines to read or store items in the cache
cluster. These application and web servers may also be referred to as cache-enabled
applications or simply cache clients. These cache clients use a set of key-value pair
based APIs to store and retrieve items from the cache. The stored value must either
be a serializable .NET type or a byte array. The serialization happens at the cache-
client side using the NetDataContractSerializer object, and the data is then sent
over the wire and stored in the cache servers.

Internally, the cache cluster design uses a partitioned hashing algorithm by which
various cached items are partitioned based on the "key" and stored on separate cache
servers. The mapping information between the key and the actual cache servers
containing the "value" is maintained in a routing table that is available to the cache
client at connection time. When an item needs to be retrieved, cache clients hash the
key value, look up the routing table, and contact the particular cache server. High
Availability (HA) is provided as a configuration knob, where a secondary replica
will be stored in another cache server. This is used for failover scenarios when the
cache server holding the primary replica may go down. In a HA configuration, when
an update is made to the primary cache server, the update must also be propagated
synchronously to the secondary cache server, thereby increasing the latency.
Depending on the data criticality in the workload, HA can be enabled selectively.

For example, one common problem when managing session state in ASP.NET is
protection against state-server machine failures. Given that this session data does not
need persistence but needs to be highly available, it can be stored in the cache cluster
with HA enabled. Additionally, as the session data is now in a central cache cluster,
users can connect to any web server (cache client) and have access to the session
data. Thus, this avoids any sticky routing issues (a requirement to connect to the
same web server where the session state is maintained).

Windows Server AppFabric Primer

[46]

One key benefit when using the distributed cache is being able to scale across several
cache server nodes. Underneath, the distributed cache has a fabric layer used for data
partitioning, rebalancing when nodes go down or are added, and replication in HA
configuration. This layer is shared with the SQL Azure infrastructure, which scales
to several nodes in the cloud.

The distributed cache feature has the following three sub-features:

•	 Caching services
•	 Cache client
•	 Cache administration

While installing the features, the cache client and cache service are a part of
Runtime Features while the cache administration-based PowerShell V2 is a part of
Administration Tools.

The caching service requires Microsoft .NET framework 4.0. The cache client can be
compiled using Microsoft .NET framework 4.0 or 3.5 SP1.

For example, on server machines A, B, and C, one could install and configure
the cache service making them each individually a cache host. Here, the term
cache host refers to the cache host Windows service. This process runs under the
NetworkService account. This selection will install the AppFabric Caching Service
and the required set of DLLs on the machine.

Chapter 3

[47]

From a terminology standpoint, AppFabric Caching Service is referred to as the
cache host and the servers A, B, and C are the cache servers. Cache servers can be
physical machines or run on virtualized environments. Together, all these cache
servers form a distributed cache cluster. The memory from all these cache servers
will constitute the total memory available to cache-enabled applications. In order
to make sure that the cluster is healthy, typical cluster management functionality
can be performed by special cache hosts called lead hosts. These nodes, in addition
to servicing data requests, also do a quorum heartbeat functionality—they check
the health of their neighbors (normal cache hosts) and report back to the cluster
manager, which is a component that runs on one of the cache servers.

The configuration information for the cluster can be maintained in SQL Server or in
an XML file stored in a shared folder. When using SQL Server as the configuration
store, the responsibility of lead hosts for cluster management is done by SQL Server.
In such a configuration, SQL Server will manage the quorum and the cache hosts can
focus on servicing the data requests. The concept of lead hosts is only required when
an XML file is used as a configuration store.

An IT pro can use the administration tool to manage the cluster. This mode installs
a set of PowerShell commandlets to start, stop, and configure the cache cluster. The
cluster uses domain-based security for authentication. By default, security is enabled
at transport-level with encryption on, which will affect performance.

www.allitebooks.com

http://www.allitebooks.org

Windows Server AppFabric Primer

[48]

Applications accessing the cache cluster have to install the cache client sub-feature,
reference the DLL(s), and rebuild the application. In addition, the client application
needs to make some changes to app.config or web.config, by providing the list of
cache servers and in the case of web applications, also change the ASP.NET
session provider.

<configuration>
<!--configSections must be the FIRST element-->
 <configSections>
<!-- required to read the <dataCacheClient> element -->
 <section name="dataCacheClient"
 type="Microsoft.ApplicationServer.Caching.
 DataCacheClientSection,
 Microsoft.ApplicationServer.Caching.Core, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 allowLocation="true"
 allowDefinition="Everywhere"/>
 </configSections>
 <dataCacheClient requestTimeout="15000" channelOpenTimeout="3000"
 maxConnectionsToServer="1">
 <localCache isEnabled="true" sync="TimeoutBased" ttlValue="300"
 objectCount="10000"/>
 <clientNotification pollInterval="300" maxQueueLength="10000"/>
 <hosts>
 <host name="CacheServer1" cachePort="22233"/>
 <host name="CacheServer2" cachePort="22233"/>
 </hosts>
 <securityProperties mode="Transport"
 protectionLevel="EncryptAndSign"/>
 <transportProperties connectionBufferSize="131072"
 maxBufferPoolSize="268435456" maxBufferSize="8388608"
 maxOutputDelay="2" channelInitializationTimeout="60000"
 receiveTimeout="600000"/>
 </dataCacheClient>
</configuration>

Chapter 3

[49]

Here are a set of caching concepts and constructs that are important to understand:

Named cache
A named cache is a logical container, which an application can use to store objects.
A named cache will span across all the machines in the cluster. The data units for
each named cache are managed as partitions, which are then distributed across all
the cache servers in the cluster. There is a "default" named cache. Named caches
can only be created and configured from the admin tool. There are a set of explicit
configurable policy settings that can be defined for named caches.

Region
A region is a container within a named cache that can be used by applications.
Regions allow usage of bulk API, so that applications can get several objects as part
of a single API call. Thus, this construct can be used for the "co-location" of related
objects. For example, on a blog's discussion website there may be a need to show the
topic objects and the related user-comments objects on a page load. There can be a
region that is created for each day and the related objects stored within it. When the
web page loads, it can invoke a single bulk API and get all the objects, improving the
page-load response time. Also, objects within a region can be tagged and enumerated
using these tags. For example, various blog articles can be tagged based on their user
rating and the application can invoke all the "5 star" tagged articles.

Expiration
Objects in a named cache can have a lifetime expiry after which they can be deleted
from the cache. Expiry is a configuration setting that can be maintained at a named
cache. In addition, applications can also explicitly specify the expiry interval when
storing objects.

Eviction
Eviction happens when there is memory pressure on the cache node, and this is done
using the least recently used (LRU) scheme. Thresholds, or watermarks, are enforced
to make sure that memory usage is buttoned-up across all cache hosts in the cluster.
Initially, the expired objects are removed when a low watermark is reached. If the
memory consumption still increases, and exceeds the high watermark threshold,
objects are removed until the consumption goes back down to the low watermark. In
cases when the available memory goes very low (less than 10%), the cache servers have
a throttling behavior to reject writes until the memory gets back to normal state.

Windows Server AppFabric Primer

[50]

Local cache
Local cache is a feature that allows objects to be stored at the client side as a part of
the application memory space. This is useful when there is a lot of repeated access
of the same items. When storing in local cache, objects don't have to undergo the
serialization and deserialization penalty. Local cache can be enabled by configuration
or by code.

<!-- local cache enabled -->
<localCache isEnabled="true" sync="TimeoutBased" ttlValue="300"
 objectCount="10000"/>

//configure client with local cache enabled
int objectcount = 1000;
TimeSpan timeout = new TimeSpan(0, 0, 60);
DataCacheLocalCacheProperties localCacheSettings = new
 DataCacheLocalCacheProperties(objectcount, timeout,
 DataCacheLocalCacheInvalidationPolicy.NotificationBased);

long queuelength = 1000;
TimeSpan pollingInterval = new TimeSpan(0,0, 60);
DataCacheNotificationProperties notifySettings = new
 DataCacheNotificationProperties(queuelength, pollingInterval);

DataCacheFactoryConfiguration dcfc = new
 DataCacheFactoryConfiguration();
dcfc.LocalCacheProperties = localCacheSettings;
dcfc.NotificationProperties = notifySettings;

dcf = new DataCacheFactory(dcfc);

If local cache is enabled before retrieving cached objects from a cache host, the cache
client application first checks whether the object exists locally. If it exists, the object
is returned immediately to the application. If not, the object is fetched from the cache
host and then stored in a deserialized form in the local cache.

There are two types of invalidation for local cache: timeout-based invalidation and
notification-based invalidation. When the local cache is configured for timeout-
based invalidation, the object is removed after the time interval expires. In case of
notification-based invalidation, the application has a thread that polls the cache
servers for any changes. If a particular item has changed, the local cache copy is
invalidated. So the next access of the key will go to the cache tier to get the updated
item value, which will then be be stored in local cache. The polling interval for
synchronization can be configured.

The following figure illustrates cache clustering across cache hosts:

Chapter 3

[51]

High availability
This is one of the policy settings that can be enabled at a named cache level. By
default, this is turned off. This allows two copies of data to be stored in different
cache servers, thus helping in failover scenarios. As the named cache data units
(partitions) are striped across all the cache servers in the cluster, in HA mode,
duplicate replicas are also striped to ensure that the primary and secondary are
on different cache servers. It is important to note that there is no notion of a single
secondary cache server and all cache servers will be primary for certain data and
secondary replicas for others. In a virtualized environment, it is important to ensure
that the various VMs are not on the same physical machine in a HA configuration.

AppFabric Cache is an explicit in-memory cache. Configuring in HA
mode protects cached objects when a single server goes down, but in case
of multiple servers going down, there may be data loss. The cache is not
durable and hence, the application has to explicitly persist it in a durable
store such as SQL Server.

Cache notifications
Notifications are a mechanism by which cache applications can register for key-value
pair changes in the cache cluster. For example, in a social networking application,
once a user logs in, the friend list, status, latest news feed, photo albums, and the like
may need to be refreshed immediately. In order to implement this, a set of services
may register for the login event in Users named cache and populate the other
named caches with relevant data from the backend.

Windows Server AppFabric Primer

[52]

To receive asynchronous cache notifications, add a cache notification callback to your
application. When you add the callback, you define the types of cache operations
that trigger a cache notification and the method in your application that will be
called when the specified operations occur. Here are a set of things that need to be
implemented in code to handle notifications:

private DataCacheNotificationDescriptor ndItemUpdateOps;

ndItemUpdateOps =
 cacheAccess.reviewscache.AddCacheLevelCallback(
 DataCacheOperations.AddItem | DataCacheOperations.ReplaceItem,
 handleCallBack);

public void handleCallBack(string CacheName, string RegionName,
 string Key, DataCacheItemVersion version, DataCacheOperations ops,
 DataCacheNotificationDescriptor nd)
{
 // Logic to handle after receiving the call back.
}

Typical use cases
These are a few scenarios for each technology that demonstrate its best fit in
a solution.

Windows Server AppFabric hosting and
monitoring
The hosting and monitoring enhancements will cover a wide range of use cases with
most uses not utilizing all the features. By far, the most common use case is that this
is a robust, scalable, and supportable host for WCF and WF applications.

In addition to the host itself, we also have a management tool for supporting the
host. This would be a part of any hosting solution. Monitoring can be configured at
different levels based on requirements. In addition, custom monitoring of specific
data elements inside the solutions can be configured and persisted to a database.

Some examples include hosting a .NET 4.0 Workflow service for signing up a new
customer to a website, tracking the number of orders that get processed through the
system per day, and viewing the number of applications in a workflow process that
are in a specific state.

Features are added to the particular solution as requirements of the solution expand.

Chapter 3

[53]

Windows Server AppFabric cache
The data access patterns can be broadly classified as reference (read only), activity
(single user read-write), or resource (multiple users read and write) data.

For example, the Books catalog on Amazon's website or your network list in
LinkedIn is reference data. Such data does not change often and will be used by
several clients accessing the website. Explicitly caching the data allows the system to
respond faster and alleviates the load on the backend database server.

Activity data is tracking a single user's session activities: for example, a shopping
cart for Walmart online, or a vehicle insurance computation from Progressive Direct.
The web application in this scenario needs to respond really fast to the user changes
as well as track the activities maintaining the session state. The user session might
timeout and reconnect; refreshing the activities from the previous session enables a
"stateless" web server to suddenly present user state.

Resource data scenarios are shared across a set of users where read, write, and
updates are allowed. Imagine a travel portal such as Orbitz, which sells airplane
tickets, where the tickets resource is shared and the system constantly makes changes
to the resource, based on transactional activities in the system.

Windows Server AppFabric cache is a distributed, explicit cache that allows
applications to store data in a dedicated chunk of memory. The objects continue
to stay in memory and are not impacted upon by the usage of other applications.
A caching tier such as this can also be used to store intermediate results based on
computations and can be used directly from the application tier.

Typical scenarios
The following scenarios outline some uses of Windows Server AppFabric caching:

•	 ASP.NET session state management
•	 Caching large reference data sets for application objects reducing stress on

backend databases or web services
•	 Intermediate results repository for high-end computations used by

distributed applications
•	 Improving application latency by allowing it to scale for large numbers

of users

In order to leverage caching, .NET applications require code changes and
recompilation. In case of ASP.NET applications that need to use the cache for session
state management, just modifying web.config may be enough. It is recommended to
maintain cache-cluster host information and local cache settings in configuration to
ease deployment.

Windows Server AppFabric Primer

[54]

Example solution
Let us look at a couple of quick solutions that demonstrate the capabilities of
Windows Server AppFabric.

AppFabric hosting and monitoring
AppFabric is an excellent host for .NET 4 Workflow services providing simple
hosting and monitoring. In Chapter 2, Windows Communication Foundation and
Windows Workflow 4.0 Primer, a simple Workflow Service was created. Now, we'll
take that service and host it inside IIS and monitor it using the new
monitoring features.

1.	 Open the AppliedArchitecture.Chapter3.Monitoring.sln project from
the <Installation Directory>\Chapter3\Begin folder. This is the same
solution used in the previous chapter.

2.	 Set the workflow project to use IIS for hosting by selecting the project,
right-click on Chapter3.IntroToWFService, and select Properties.

3.	 Select the Web tab. Under Servers, select the Use Local IIS Web server.
Leave the default address and click on Create Virtual Directory as shown
in the next screenshot:

4.	 Save the project and build it inside Visual Studio.
5.	 Open IIS Manger. Find the project under the virtual directory that was

previously created. Notice the three new administrator icons available
under AppFabric.

Chapter 3

[55]

6.	 Open WcfTestClient.exe located at: C:\Program Files\Microsoft Visual
Studio 10.0\Common7\IDE\.

7.	 Right-click on My Service Projects and add the newly deployed
service. The default address should be http://localhost/Chapter3.
IntroToWFService/Service1.xamlx. This is the address the workflow
service is listening on and where a request should be sent to.

8.	 Run a few messages though the system. Click on the AppFabric Dashboard
inside IIS Manger. This is the main dashboard page for AppFabric
monitoring and tracking. This outlines Persisted WF Instances, WCF Call
History, and WF Instance History over a configurable interval. As this
service was a Workflow Service, items will show up under the WCF Call
History and WF Instance History. Note that no additional configuration was
needed in order to get this working—it just worked.

Windows Server AppFabric Primer

[56]

AppFabric caching
Consider a library application where users can browse for books using the author
or title, read or update book reviews, look at new book releases, and then check
out a particular book they like. The book database catalog has more than 100,000
entries and at any time, the system can have 100 concurrent users using the system
across all locations. From a terminal in any of the library locations, users can use
the application to review the information in the entire library's internal network.
Each user will browse through an application running on the local terminal that
communicates with a central WCF service, which will handle all the distributed
cache interactions. The central service will be running on a Windows Server box in
the library's data center.

Just to simplify the solution, we will use a Windows Forms application
interacting directly with the cache service via the cache utilities class.

Setup
A project solution AppliedArchitecture.Chapter3.CachingPrimer has been
created in the <Installation Directory>\Chapter3\Begin folder. This solution
contains two Windows Form applications that use the distributed cache.

Before beginning the lab, you must have Windows Server AppFabric Cache service
and the client and admin feature installed and configured on your machine. The pre-
requisites for configuring the cache features are .NET 4 RTM and PowerShell v2. In
a development environment, both Windows 7 and Vista OS platform are supported.
For production deployment, the cache servers need to be on either the Windows
Server 2008 SP2 or Windows Server 2008 R2 OS platform.

Steps
1.	 If you don't have the product set up already, install Windows Server

AppFabric from the following location. You can install the standalone
cache feature or check the download section from this link: http://www.
microsoft.com/downloads/en/results.aspx?freetext=Windows+Server
+AppFabricanddisplaylang=enandstype=s_basic.

2.	 Start the Cache Administration Windows PowerShell tool and run the
Start-cachecluster commandlet.

Chapter 3

[57]

3.	 Using the same administration tool, create the following named
caches—CatalogDataCache and ReviewsCache by first using the new-cache
ReviewsCache -NotificationsEnabled true commandlet and then the
new-cache CatalogDataCache commandlet.

4.	 Launch Visual Studio.NET 2010 and open AppliedArchitecture.
Chapter3.CachingPrimer.sln from the <Installation Directory>\
Chapter18\Begin folder. You should see two Windows Form applications.

5.	 WinForm application 1 has the browse logic to see user review comments
and can also let users add review comments for a particular book.

6.	 WinForm application 2 registers for cache-level notifications and displays an
output whenever a user adds a particular comment.

7.	 Add a reference to the Microsoft.ApplicationServer.Caching.Client
and Microsoft.ApplicationServer.Caching.Core DLLs.

8.	 Modify the app.config file to add the AppFabric dataCacheClient
related sections.

Windows Server AppFabric Primer

[58]

9.	 Add a new .NET class CacheUtils.cs to contain all the cache-specific
interaction and at the beginning, add the following set of using statements:
using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using Microsoft.ApplicationServer.Caching;

10.	 Declare the following set of variables:
// channel factory that uses net.tcp binding

private static DataCacheFactory dcf;

// handle to named caches

public DataCache catalogcache, reviewscache;

public bool useCache = false;

private static readonly string CATALOG_CACHE = "CatalogDataCache";

private static readonly string REVIEWS_CACHE = "ReviewsCache";

private static int bookId;

private static readonly string REGION_NAME = "June6_UserReviews";

11.	 In the Setup() method, add the code to set up the channel for
communicating with the cache servers and for creating the region within the
Reviews named cache.
public void Setup()

{

 try

 {

 if (dcf == null)

 {

// Instantiation will setup connections to all cache servers
specified in <hosts> section in app.config

 dcf = new DataCacheFactory();

 }

 catalogcache = dcf.GetCache(CATALOG_CACHE);

 reviewscache = dcf.GetCache(REVIEWS_CACHE);

 LoadBookData();

 CreateRegion(REGION_NAME);

 useCache = true;

 }

 catch (DataCacheException dcexp)

 {

 useCache = false;

Chapter 3

[59]

 }

}

public void CreateRegion(string regionName)

{

 try

 {

 bool created = reviewscache.CreateRegion(regionName);

 }

 catch (DataCacheException dce)

 {

 }

}

12.	 Add two internal classes for storing books and user comments.
[Serializable]

class BookInfo

{

 private string BookName;

 private string ISBN;

 private string AuthorName;

 public BookInfo(string bname, string isbn, string authors)

 {

 BookName = bname;

 ISBN = isbn;

 AuthorName = authors;

 }

 public string GetDesc()

 {

 return BookName + " " + ISBN + " " + AuthorName;

 }

 public string GetShortDesc()

 {

 return ISBN;

 }

}

[Serializable]

class UserReviews

{

 private string UserName;

 private string Comment;

Windows Server AppFabric Primer

[60]

 private string ISBN;

 public UserReviews(string user, string comment, string isbn)

 {

 UserName = user;

 Comment = comment;

 ISBN = isbn;

 }

 public string GetShortDesc()

 {

 return Comment + " - " + UserName;

 }

}

13.	 Add the method to load some test data. This can be replaced by reading a set
of database tables that represent the catalog data.

14.	 Add the methods to retrieve and store user comments.
public ArrayList GetUserComments(string ISBN)

{

 try

 {

 ArrayList output = new ArrayList();

 List<DataCacheTag> tags = new List<DataCacheTag>();

 tags.Add(new DataCacheTag(ISBN));

 IEnumerable<KeyValuePair<string, object>> comments =
 reviewscache.GetObjectsByAnyTag(tags, REGION_NAME);

 foreach (KeyValuePair<string, object> comment in comments)

 {

 output.Add((UserReviews) comment.Value);

 }

 return output;

 }

 catch (DataCacheException dce)

 {

 return null;

 }

 }

 public void StoreUserComment(string ISBN, string user, string
 comment)

 {

 try

 {

Chapter 3

[61]

 UserReviews review = new UserReviews(user, comment, ISBN);

 List<DataCacheTag> tags = new List<DataCacheTag>();

 tags.Add(new DataCacheTag(ISBN));

 string key = user + Guid.NewGuid().ToString();

 reviewscache.Put(key, review, tags, REGION_NAME);

 }

 catch (DataCacheException dce)

 {

 }

 }

}

15.	 In Form2.cs, add the logic to register for notifications.
static CacheUtils cacheAccess;

private DataCacheNotificationDescriptor ndItemUpdateOps;

private static readonly string REVIEWS_CACHE = "ReviewsCache";

private static readonly string REGION_NAME = "June6_UserReviews";

public Form2()

{

 InitializeComponent();

 cacheAccess = new CacheUtils();

}

private void Form2_Load(object sender, EventArgs e)

{

 cacheAccess.Setup();

 NotifyFromReviewsCache();

}

public void NotifyFromReviewsCache()

{

 // ndItemUpdateOps =
cacheAccess.reviewscache.AddRegionLevelCallback(REGION_NAME,
DataCacheOperations.AddItem, handleCallBack);

 ndItemUpdateOps =
 cacheAccess.reviewscache.AddCacheLevelCallback(
 DataCacheOperations.AddItem | DataCacheOperations.
 ReplaceItem, handleCallBack);

}

public void handleCallBack(string CacheName, string RegionName,
 string Key, DataCacheItemVersion version, DataCacheOperations
ops,

Windows Server AppFabric Primer

[62]

 DataCacheNotificationDescriptor nd)

{

 if (CacheName.Equals(REVIEWS_CACHE))

 {

 if (listBox1.InvokeRequired)

 {

 string notification = String.Format("Review comment added at
 {0}. To view, use KEY as {1}",
 DateTime.Now.ToShortTimeString(), Key);

 listBox1.Invoke(new MethodInvoker(delegate {
 listBox1.Items.Add(notification); }));

 }

 }

}

16.	 In Form1.cs, add the logic to load the listbox and then add the logic in the
button-click events to invoke GetUserComments and StoreUserComment.
Also within the load() method, instantiate Form2.cs and invoke the Show()
method on that instance.

17.	 Build and run the application.
18.	 Enter a set of user comments and then click to store the comments. This data

is stored in the custom region June6_UserReviews of the ReviewsCache.

Chapter 3

[63]

19.	 You can monitor the cache statistics from the admin tool.

Summary
With Windows Server AppFabric, now customers have richer features to leverage
WCF, WF, and distributed cache features as part of their solution. Some of the
challenges around hosting and monitoring of such custom applications are now
made easier by hosting in the application server. The distributed cache feature
provides a centralized store, elastic scale-out capabilities, highly available with low
response times even with increasing workloads. As we look towards the future,
this provides a good foothold to enhance the capabilities of the
Windows application server.

BizTalk Server Primer
This chapter is intended to provide people who specialize in technologies like SQL
Server or perhaps, general .NET development with an understanding of what BizTalk
is, how it works, and also gives you an idea of how to write your first application.

If you have worked with BizTalk Server for many years, written pipeline
components, developed custom adapters on the old and new framework, then before
delving into the later chapters please flick over and briefly look at the roadmap
information to ensure there is nothing new that you've missed.

Heterogeneous systems
Every IT department of any reasonable size that I have seen has used systems from
at least two separate vendors. In this heterogeneous world, there are a number of
challenges that I consistently see customers facing:

•	 Incompatible data formats:
°° X12 850, EDIFACT ORDRSP, IDOC 850 are all used to

represent purchase orders, but they look very different and
represent content in different ways

•	 Incompatible system metadata:
°° SAP Repository, Siebel, SQL schema, developer's diagrams
°° Metadata is scattered around systems with no consistent

story for discovery and representation

BizTalk Server Primer

[66]

•	 Incompatible wire formats:
°° Transport and application specific protocols: HTTP, SFTP,

HTTPS, MSMQ, IBM MQSeries, SAP—IDoc, RFC, BAPI, and
SAP DB

•	 Incompatible message exchange protocols:
°° SWIFT versus FIX, X12 versus EDIFACT, EDIINT, RNIF,

BTF 2.0
°° All have different reliability protocols that need to

be supported

•	 Weak process visibility:
°° How do I see what is going on?

What does BizTalk Server do?
Most Microsoft products provide some feature/functionality in the mindset of
internal Microsoft people and customers alike. Microsoft Exchange Server owns
e-mail, SQL Server owns the data tier, and IIS is Microsoft's web hosting solution.
BizTalk Server is Microsoft's premium enterprise integration solution. In few
words, it provides the ability to connect these disparate heterogeneous systems
(entities) together. To provide full system integration, which goes beyond just data
connectivity, adapters provide wire-level connectivity, and message transformation
used for data. A robust Orchestration engine enables complex events and process
workloads to be handled. BizTalk also provides the ability to expose and consume
services, monitor the end-to-end process flow (providing visibility into the process),
and since 2006, the 2006 R2 release has introduced RFID connectivity. Entities may
be a device (in the case of RFID), a system within the same department, organization,
or a service that a partner firm has exposed.

Can't we just use Web Services or WCF?
This is perhaps the most common question I hear. WCF is Microsoft's unified
programming model for building service-oriented applications. It is fully
interoperable with a number of different web service protocols as defined by the
WS-* specifications. This means that it is interoperable with line-of-business (LOB)
systems from vendors who adhere to the standards. This removes a large number of
barriers to implementing a service-oriented approach within an organization. This
can be used to provide intra and inter-organizational connectivity. However, there
are still a number of challenges and factors that need to be considered. Following are
the key factors I consider when working with customers:

Chapter 4

[67]

•	 Wire formats: The number and complexity of different applications that you
need to connect to is a key factor. BizTalk provides extensive connectivity
with 25 out-of-the-box adapters and has more available in the adapter pack
and from third-party vendors. A majority of these are now built on top of the
WCF LOB Adapter SDK, so they can be utilized from any .NET application.
This means that either BizTalk Server could be used, or the WCF Adapters
could be used outside of BizTalk Server within a LOB system, in another host
such as AppFabric, or within your own custom application host.

•	 Data formats: There is still no such thing as a common XML purchase order
format across all systems. Therefore message transformation is required.
This is often the most challenging requirement; different LOB vendor
systems tend to have a different way of modeling and storing organizational
metadata such as customer information and PO format. It is very rare to
find a common XML message format that is used across all systems within
an organization. In addition to this, LOB systems are subject to upgrade,
change of version, and so on, all of which can impact the model they use.
This is compounded by the fact that an organization may decide to change
the attributes of metadata that have modeled the LOB app. If a tight coupling
is built between each LOB system, it is important to consider the work that
needs to be done, should a change on either system occur. In particular, you
should pay attention to schema and model changes and consider the amount
of development work that this will require.
BizTalk Server provides a Mapper, which can be used to handle flat files and
XML-based formats. In the EAI scenario, this can be used to map between
the LOB system models that are used. BizTalk is specifically designed to
deal with existing interface transports and data models. By leveraging this,
you can minimize the change that needs to be performed to the LOB system.
In many cases, due to its powerful transformation capabilities BizTalk can
interact with existing APIs that are exposed with no change required to the
end system.

•	 Process management: WCF provides separation of contract (functionality)
and data transport (binding). This provides wire connectivity, but a service
host is still needed to manage the durability, provide tooling, scale out, and
so on. BizTalk provides this and other building blocks that can be utilized in
your application.

BizTalk Server Primer

[68]

Long running transactions pose another problem. Certain updates to
organizational information may occur over a period of time, for instance to
change a customer's bank address; the change may be initiated but it may
be in a pending state until appropriate copies of documentation have been
received by e-mail post. In this scenario, if the change does not complete for
any reason, it's important that all the systems involved be able to rollback to
a consistent state. BizTalk provides a compensation capability, which enables
this to be performed across many disparate systems.

In summary, in order to meet business requirements, solutions need to provide
version control, the ability to roll out different versions with little or no downtime,
deal with long running services, and have robust instrumentation and tooling.
BizTalk provides a rich host that has these capabilities. It is important to consider
how this will be implemented if you decide to perform your own integrations or
utilize another host such as Windows Server AppFabric.

Typical BizTalk use cases
BizTalk Server is typically used to solve problems in four main areas: EAI, B2B, BPA,
and ESB.

Enterprise Application Integration (EAI)
The modern enterprise is often littered with the spaghetti of proprietary interfaces,
which cannot natively communicate with each other due to incompatible platforms,
data formats, and security policies. This can pose challenges for normal business
activity. For example, when a new employee starts, a record for them needs to be
created in the HR system and an order for a laptop may need to be placed in the
ERP system. An account may need to be created for them in the CRM system with
their appropriate level of access. To avoid doing this manually, one could write a
small application that has all the built-in logic necessary to connect to these disparate
systems. Or perhaps, the HR system has an extension module that allows you to use
some programming language to build the logic in there. Over time, however, as the
system scales, a durable host needs to be developed to run this custom integration
code. Tight coupling between systems means that any changes will often break the
custom integration layer in several systems and require changes in them. A former
manager of mine used to say that "the devil is in the detail" with integration work.
Unfortunately, this custom point-to-point approach often results in a scene like the
next diagram; managing these proprietary interfaces can inhibit an organization
from seeking a service-oriented approach towards system integration.

Chapter 4

[69]

To avoid this problem many organizations use BizTalk as an Integration Broker. This
provides the following features:

•	 Centralized management and administration of integration endpoints and
in-flight instances.

•	 Loose coupling of applications, which means no physical dependencies
between applications.

•	 Durable infrastructure with a scalable model.
•	 Insight into the message flow and business process through BizTalk

Tracking and Business Activity Monitoring.

The following diagram shows BizTalk in an integration broker role. This is the classic
usage of BizTalk and something that has been firmly established in the 10 years since
the first version was shipped.

BizTalk Server Primer

[70]

Business-to-Business (B2B)
The second scenario is to use BizTalk as a business-to-business broker to manage
all communication across organizational boundaries. BizTalk supports Internet-
friendly adapters and can also communicate with legacy and non-Internet friendly
system endpoints. It also supports channel and message-based security. BizTalk
Server provides native support for EDI and a host of accelerators targeted at specific
industry verticals, including a SWIFT (Society for Worldwide Interbank Financial
Telecommunication)—accelerator for financial services. This significantly decreases
the time required to implement durable and robust B2B communication.

Business Process Automation (BPA)
BizTalk's capabilities can be leveraged to automate current manual processes in
organizations. Typically, scenarios that are repetitive have strongly defined rules and
those that involve multiple systems are strong cases. One of my first BizTalk Server
customers was a financial services organization that received several millions pieces
of paper per day. When some financial products mature, there is an option to re-
invest (often the default choice) or transfer the funds. In this case, the customer was
able to leverage BizTalk to automate the processing of such paper-based applications.
A scanning solution translated the paper input into a common XML schema, which
was then processed by BizTalk. Human approval was only required in case of an
exception or if that particular option selected required it. Therefore by using BizTalk,
the customer was able to automate a previously manual, laborious process.

Chapter 4

[71]

Enterprise Service Bus (ESB)
The final way that people consider BizTalk is as a centralized service bus for the
organization, as depicted in the following graphic. By exposing on-ramps to a variety
of destinations, which are determined when the message is received, it enables BizTalk
to act as a durable message bus that is responsible for coordinating communication
across your organization. With BizTalk Server 2010, Microsoft released the ESB Toolkit
2.1 which builds on top of the core BizTalk platform to minimize the time needed to
implement this scenario.

BizTalk architecture
We'll now examine the BizTalk architecture and look at how all the components
relate to each other.

BizTalk message flow
The next diagram illustrates a standard message flow through the main components
of BizTalk. The BizTalk messaging system has three distinct parts: receive port,
MessageBox, and send port.

BizTalk Server Primer

[72]

Messages are received via a receive port. A receive port can contain one or more
receive locations, which provide the ability to have multiple transport entry points
into the application. For example, some customers choose to have a WCF-Custom
receive location but they also have a file receive location for manual re-submission
of messages. A receive location is a combination of an adapter and specific pipeline
configuration. Certain artifacts can be configured at the receive location level, for
example the pipeline used and the adapter configuration. Others, such as the map used
and enabling failed message routing need to be configured at the port level.

Incoming messages are received from the adapter, and can be transformed via
pipelines and maps. If message tracking is turned on, the message is also published
to the tracking database.

Once the message arrives at the MessageBox, the Messaging Engine performs
subscription evaluation and delivers it to subscribers whose subscriptions match.
Subscription matching is done using predicates based on internal message (context)
properties and properties that BizTalk provides. Subscribers can either be instances
of orchestrations, where complex workflow is needed, or send ports where message
transformation and delivery need to be performed. BizTalk fully supports publish-
subscription so the same message can go to one or more orchestration and/or
send ports. Messages may be delivered to orchestrations for further processing. In
messaging scenarios, a message may be delivered to a send port or group. At the
send side, the message is again transformed (via pipelines and/or maps), and sent to
the final destination via an adapter.

Chapter 4

[73]

1.	 A message is received from an entity endpoint. This is handled by a
receive port, through one of its receive locations. Once the message has
been received by an adapter the End Point Manager (EPM) component
provides any necessary preprocessing. Message manipulation (debatching,
decrypting, and so on) is handled by one or more pipeline components
before transformations are applied using the BizTalk Mapper.

BizTalk Server 2010 contains over 25 adapters out of the box. In
addition to this, the BizTalk Adapter Pack is available, which
provides connectivity for complex applications that require an
application-specific context to connect to them. This includes SAP,
Siebel, SQL Server, Oracle eBusiness Suite, and Database.
http://www.microsoft.com/biztalk/en/us/adapter-
pack.aspx

2.	 Once a message has been processed by the adapter, pipeline, and map,
it needs to be routed to the appropriate subscribers, which can be one or
more BizTalk Orchestrations or send ports. The Message Agent (MA) is the
component responsible for this. It publishes the message to the MessageBox
database, which is the centralized queue of BizTalk. The Message Agent is
an abstraction layer between the other BizTalk host (BTSNTSVC.EXE) sub-
services and is responsible for evaluating subscribers to the message. The
abstraction of the MA enables BizTalk to have more than one MessageBox
and hence support scaling out of this tier.

3.	 "Once only" delivery is provided to the MessageBox for transactional systems
and "at least once" delivery for non-transactional systems. The Distributed
Transaction Coordinator (DTC) is used to enforce this. For transactional
systems such as MQSeries, their appropriate resource manager will be
enlisted in the transaction. For non-transactional adapters, the transaction
will occur only between BizTalk and the SQL Resource Manager that hosts
the MessageBox. All non-transactional BizTalk adapters are written so that
the delete operation on the original endpoint occurs after the message has
been published to the MesssageBox.

4.	 BizTalk enforces loose coupling between inbound messages and subscribers,
as part of its publish/subscribe design. On insertion, the Message Agent
calls a number of stored procedures to update promoted properties (used
for routing), evaluate subscriptions based on the context of the message, and
finally make the insertion into the MessageBox spool. If there are multiple
subscribers the message is still stored only once to ensure scalability of the
system. As part of this operation, a reference is added to the host queue table
ready for processing by the subscriber, hosted in the host instance.

BizTalk Server Primer

[74]

5.	 Each host instance polls the database at regular intervals to look for new
work in the queue. In this case, the subscriber is an Orchestration; therefore
the MA would have placed a reference for the inbound message into the
Orchestration host's queue. The MA is responsible for performing this
dequeuing operation and calls a stored procedure bts_DequeueMesssages_<
HostInstanceName> to perform this. This call will retrieve as many messages
as possible up to a configurable limit—the batch size, which by default is 20.
The MA hands over the message to an internal queue hosted in the BizTalk
process space, from which (in this case) the XLANG/S service will retrieve
the message for processing.

6.	 Once it has finished processing, the MA will publish the message back into
the MessageBox using the same process as in step 1 (because there could once
more be multiple subscribers). The MA is required to publish a new message
to the spool as messages within BizTalk are immutable; for example, they
cannot be changed once they are published, and a reference to this message
will be added to the send port host's queue.

7.	 The send host will now de-queue the MessageBox, which again enforces
the loose coupling and hands it over to the EPM which will apply any post
processing through maps, pipelines, and finally initiate the send adapter to
deliver the message over the wire.

8.	 The EPM hands over the message to the send adapter, which delivers the
message to the final endpoint, in this case a file UNC path.

Key BizTalk server terminology
In this section, we will define and describe some of the key terminology that you will
need to be familiar with if using BizTalk Server.

BizTalk group
A BizTalk group is a set of BizTalk runtime machines that share a common BizTalk
Management Database. This enables centralized configuration and administration.
The BizTalk Group metadata is stored in a database that is called the BizTalk
Management Database. This information includes: servers that are members of the
group, database location, host configuration, deployed applications, and artifacts.

Chapter 4

[75]

Hosts
A BizTalk host is an abstract logical container for BizTalk Server resources including
orchestrations and send/receive adapter handlers. Hosts act as the deployment
target for processing resources, and provide resource and security partitioning.
Hosts are either in-process, which means they run within the BizTalk process, or
isolated, which means they run in a process external to BizTalk such as IIS.

Host instance
Host instances are the physical incarnation of hosts that get physically deployed on a
particular machine. A host instance is a physical instance of a logical host on a single
machine. We can create an instance of a host on any BizTalk server in the group,
but cannot have more than one instance of the same host on any one machine. The
following diagram illustrates the relationship between hosts and host instances:

1.	 A host can contain mixed artifacts (ports and orchestrations).
2.	 Not all hosts must have instances on all servers. For example, if you have

three BizTalk Servers a host could be present as an instance on none, one,
two, or all three of these servers.

3.	 Typically, a host instance is created on at least two servers for high
availability reasons so that if a server fails, processing will continue.

4.	 Enterprise Edition of BizTalk is required to have multiple BizTalk Servers
in a Group.

BizTalk Server Primer

[76]

BizTalk databases
BizTalk relies on a number of databases to provide data storage, queuing, and
configuration management. Here is a summary of the main ones:

•	 BizTalkMgmtDb: Centralized configuration store for BizTalk used by all
servers in the group.

•	 BizTalkMsgBoxDb: Heart of BizTalk Server, provides state management and
queuing to support the loose coupling model. It is not directly exposed to the
programmer.

•	 BizTalkDTADb: Provides BizTalk Tracking, which provides information on
service instances (instances of Send Ports or Orchestrations) and is targeted
towards the IT Pro for troubleshooting.

•	 BizTalkRuleEngineDb: This is the policy store for the highly scalable
BizTalk Rules Engine that is based on the Rete algorithm.

•	 SSODB: This is the metadata store that enables BizTalk to provide Windows
to third-party authentication. It is also used to store endpoint information so
that adapters that require security details (for example, the Oracle adapter) as
part of their connection configuration do not compromise the security of
the endpoint.

•	 BAMPrimaryImport: OLTP store that is used by Business Activity Monitoring
(BAM). BAM provides a robust, scalable framework that can be used to
instrument an application end-to-end.

•	 BAMArchive: To ensure optimal performance of the BAM Primary Import
database, this archive is provided to store information that fits outside the
"live" operational window. Taking this approach ensures that there is a
smaller dataset for the most recent data and, hence when querying this,
users get optimal results.

Chapter 4

[77]

Enterprise Single Sign-On
Enterprise Single Sign-On provides a way to map a Windows user ID to non-
Windows user credentials. It is also used to store credentials and configuration
information that receive locations and send ports use; this is done to ensure that this
sensitive information is stored in a secure manner.

Adapters
Adapters provide wire connectivity to and from BizTalk. All other components have
no knowledge of the endpoint they are dealing with, which makes BizTalk truly
loosely coupled. There are three classes of adapters:

1.	 Transport adapters (for example, HTTP, POP3, and so on)
2.	 Line-of-business adapters (for example, SAP, Siebel, and so on)
3.	 Data adapters (for example, SQL, DB2, Oracle, and so on)

BizTalk Server Primer

[78]

Message
Messages are the payload that BizTalk Server processes. BizTalk can process XML
documents and flat file structures among other formats such as PDF. Messages contain
at least one part, which is body; they are immutable and shared, which means that
once a message has been published and written to the MessageBox, it cannot be
altered. This enables the efficient delivery of messages to multiple subscribers.

The message is defined internally by an XSD schema file. Messages have a
set of properties associated with them. If a message is an XML or a flat file
message, the schema will specify a type, which is typically comprised of the
XML namespace and the root node name, for example, http://MyCompany.
Invoice#ApplicationInvoice. This uniquely identifies the message type to BizTalk
Server in the same way that the class name and namespace does in C#.

It is possible to have two schemas with the same root node and
target namespace by defining the schema collection used by the XML
Disassembler pipeline component. However, in my opinion it is a
best practice to have a unique namespace for each document-type
and follow a consistent naming and versioning practice.
For more information, see Chapter 8, Versioning Patterns from the
book "SOA Patterns with BizTalk Server 2009", Richard Seroter.

A message always has a set of context name/value properties associated with it.
This includes details such as the inbound receive port that the message was received
through. These properties are attached to the message throughout its processing in
BizTalk and are used by the Messaging Engine to evaluate subscriptions. To enable
custom property routing, developers can promote their own properties by defining
a property schema and marking a particular node as promoted in the XSD schema.
Custom code can also be used in the pipeline or Orchestration processing can be
made to do this.

Pipeline
Used to normalize data into and out of BizTalk, pipelines provide the ability to
perform pre and post processing. The typical usage scenario for pipelines is to
normalize the inbound payload into an XML message that BizTalk can process. On
the outbound side, the XML message is typically transformed into the desired output
of the outbound endpoint. Although XML is the preferred payload for BizTalk, it can
also manipulate flat files and process binary data. An individual pipeline comprises
one or more components such as: decode/encode, decrypt/encrypt, validate, resolve
party, and so on. A streaming model is used to provide a flat memory footprint
and an integrated pipeline designer is provided in Visual Studio as shown in the
following screenshot.

Chapter 4

[79]

Maps
Maps define one-way transformations between two schemas. An integrated
designer is provided in Visual Studio and makes it easier to perform these common
transformations than if you were to write your own XSLT. BizTalk Server also
provides a set of reusable components called functoids and an extensible framework
to encode your own complex functionality. The following image shows mapping an
Inbound Sales Order information to a destination schema.

BizTalk Server Primer

[80]

BizTalk Server 2010 introduces the long awaited, Intelligent Mapper, which includes
many developer productivity updates for those working with large complex maps
including the following:

•	 Relevance view: Collapses any non-relevant parts of the schema
•	 Auto scrolling of elements: Automatically highlights the attributes or

elements affected by the selected functoid
•	 Suggestive match: Identifies candidates in the destination schema that could

be mapped to the current selected element or attribute

In addition, Map Debugging capabilities were added in BizTalk Server 2009; together
these improvements significantly reduce the time needed to develop large
complex maps.

For more information and an overview of the features that the BizTalk
2010 Intelligent Mapper provides see:
http://msdn.microsoft.com/en-us/library/
aa547076(v=BTS.70).aspx

Performance of maps
The BizTalk runtime still makes use of the .NET Framework 1.1 System.Xml.
Xsl.XslTransform class, which was deprecated when the System.Xml.Xsl.
XslCompiledTransform class was introduced. The XslCompiledTransform
class provides significant performance benefits over the XslTransform because it
implements a compile-once cache and re-use model. This means that if the same
transformation is performed many times, which is common in an integration
scenario, the compilation only occurs once. A colleague in my team made this
discovery and has provided two excellent blog articles along with sample code
that works with existing maps. If you are implementing complex mapping you can
consider using this technique to improve the performance.

The following articles provide further details:
XslCompiledTransform Blog part 1
http://blogs.msdn.com/b/paolos/archive/2010/01/29/
how-to-boost-message-transformations-using-the-
xslcompiledtransform-class.aspx

XslCompiledTransform Blog part 2
http://blogs.msdn.com/paolos/archive/2010/04/08/
how-to-boost-message-transformations-using-the-
xslcompiledtransform-class-extended.aspx

Chapter 4

[81]

Orchestration
Orchestration is the workflow engine that BizTalk provides. It is the original
precursor to Windows Workflow Foundation. Interaction with the world is achieved
through messages. It provides support for durable, long-running workflows, and
uses template shapes to visually represent different activities. The designer provides
various shapes: receive, send, parallel, begin, end, decide, loop, construct, transform,
and scope. It also provides a transaction model, which can model typical atomic
DTC-style transactions and long running transactions (for example, a mortgage
application process), which cannot use typical locking semantics and involve several
systems. An example of this would be ordering an item from a website; the item is
typically ordered, payment may be taken and a confirmation e-mail is sent before the
item is dispatched. In this scenario, it would not be feasible to hold all systems in a
typical ACID-style transaction until the item was dispatched. This would result in a
punitive wait for the user and is likely to result in a timeout, locking, or blocking on
one or more systems. Therefore if the customer was to cancel the order, a number of
actions would need to be taken to ensure that all systems were in a consistent state
and the user didn't for example, receive the goods and not be charged for them, or be
charged and not receive the goods. Compensation is a robust mechanism provided
by BizTalk to enable previously completed work to be rolled back.

The Orchestration engine is version-aware. This is particularly useful for long
running business processes that have been modeled. This allows for side-by-side
execution with automatic message routing to the correct version of the process. The
hosting environment is durable and is tolerant of machine failure, because a DTC
transaction is used by a BizTalk Orchestration host every time it makes an immutable
change. This means that its state can be resumed on another instance of that host.
Orchestrations and Pipelines are automatically instrumented using BizTalk Tracking
for basic execution.

Highlights of the BizTalk 2010 release
Some of the key improvements and investments that have been made are as follows:

•	 Platform realignment and support for the latest generation of Microsoft
technology including: Visual Studio 2010, SQL Server 2008 R2, Windows
Server 2008 R2, SharePoint 2010, and .NET Framework 4.0

•	 Intelligent Mapper
•	 Improved Trading Partner Management (TPM)
•	 Performance dashboard exposes properties, previously only accessible

through registry keys

BizTalk Server Primer

[82]

•	 Support for Backup Compression and Transparent Data Encryption
SQL features

•	 A new System Center Pack
•	 Updated adapters for Oracle, SAP, SQL 2008 R2, and SharePoint 2010
•	 Improved FTP adapter and new FTPS adapter

Example solution
In this section, we will walk through creating our very first BizTalk application.

On a machine with the BizTalk Development Tools and Visual Studio 2008 installed,
open Visual Studio and select BizTalk Project|Empty BizTalk Server Project. The
Solution Name should be AppliedArchitecture.Chapter4.BizTalk. The project
name should be SimpleBizTalkSolution.

If you are using BizTalk Server 2009 and get "Creating project
project name"… "project creation failed" as an error message, there
is a solution at:
http://blogs.msdn.com/biztalkcrt/
archive/2009/08/21/visual-studio-2008-fails-to-
create-open-biztalk-projects.aspx

Chapter 4

[83]

We will create a Customer schema, by adding a new item to the project and selecting
Schema; name it Customer.xsd.

For a full overview of best practices for schema design, please read
the book "SOA Patterns with BizTalk Server 2009", Chapter 5 Schema and
Endpoint Patterns, (Packt Publishing, 2009) by Richard Seroter.

Open the BizTalk editor by selecting the schema. You will notice that the schema's
target namespace has been populated as follows (if you used the naming structure
we provided):

targetNamespace= http://AppliedArchitecture.Chapter4.BizTalk.
SimpleBizTalkSolution.Customer

We store the following details about our customer: Customer ID, name, address, age,
and occupation. Firstly, let's delete the default root node. Right-click on the root node
and select Delete, then right-click on Schema and select Insert Schema Node|Child
Record. Name the child record Customer and leave the default properties for
this record.

Now we need to insert individual elements that define this customer. Insert a Child
Field Element called CustomerID; this will be used to uniquely identify the message
to BizTalk later. Leave the default datatype of xs:string.

BizTalk Server Primer

[84]

Now, insert the following child-field elements under Customer record. Use the
datatypes specified in the following table:

Element name Datatype
Name xs:string

AddressLine1 xs:string

AddressLine2 xs:string

City xs:string

State xs:string

Country xs:string

Age xs:positiveInteger

Occupation xs:string

By default, elements are of String type; change Age to positiveInteger by
selecting the Data Type property in the properties box drop-down list.

Your schema should now look like the following screenshot:

Chapter 4

[85]

We are now going to add a Property schema, which will be used to separately store
a promoted property in the context of the message within the MessageBox. BizTalk
separates these two schemas so that we do not need to load the whole message into
process space just to make a routing decision. To add a new item to the solution,
select the type Property Schema and call it CustomerPropertySchema.xsd. Rename
the default Property1 to CustomerID.

BizTalk Server Primer

[86]

Open your original Customer schema now, right-click on CustomerID, and select
Promote|Show Promotions. In the Promote Properties window that now appears,
select the Property Fields tab, then click on the folder icon and select the customer
property schema you just created. Now verify that the Property fields list has
ns0:CustomerID selected. You have now done the mapping between your CustomerID
in the original schema and the corresponding value in the Property schema.

Now that we have a schema to represent our customer, let's imagine that we want
to send our customer message to a backend system, which will then respond with
the message (a contrived scenario I know, but it will suffice for our purposes). To
implement this, we will use an Orchestration.

This scenario can be implemented in a messaging-only fashion and avoid
a round trip to the MessageBox. The purpose of this is to demonstrate
how the Orchestration Designer functions and how it can be used.

Right-click on the project and select Add|New Item then select BizTalk
Orchestration and call it CustomerRouting.odx. This will display the Orchestration
Designer surface. The first step you need to take is to define an Orchestration
message. Click on Orchestration View, right-click Messages, and add a
message called CustomerMsg. In the Message Type property dialog, select the
SimpleBizTalkSolution.Customer schema you defined earlier.

Chapter 4

[87]

The Orchestration Designer provides a toolbox of shapes that can be used within
your Orchestration. For now, we will just use receive and send shapes. I would
like you to drag the following shapes, in this order, onto the surface and give them
the names in brackets. First a receive shape (Receive_Initial_Customer), then a
send shape (Send_Initial_Customer), then a receive shape (Receive_Response_
Customer), and finally a send shape (Send_Response_Customer). This should
look like the following screenshot. For each shape, click on it and in the properties
window that appears, set Message to CustomerMsg.

BizTalk Server Primer

[88]

The next screenshot illustrates how the property window looks for the Receive_
Initial_Customer shape.

You have now created the send and receive shapes within the Orchestration. For
our scenario, we are going to use four file-drop locations, so we need to create
four logical one-way ports within the Orchestration Design surface. The actual
messaging ports that are used will be defined later.

It is a good practice to separate a logical port configuration in
Orchestration from the physical messaging port. By following this,
you will enable your solution to run in multiple environments and
avoid hard-coded dependencies.

You now need to right-click on the port surface and select New Configured Port.
The Port Configuration Wizard will start; click Next on the first screen. On the
subsequent screen, enter the name Receive_Initial_Customer and click Next.
On the Select a Port Type screen, select Create a New Port Type, and enter a port
type name of OneWayCustomerPortType. Select communication pattern One-Way
as we will not be using Request-Response in this use case. For Access Restrictions
select Internal – limited to this project. On your real projects, you should consider
carefully whether you want to use Private – limited to this Orchestration, Internal
(project limited) or Public (no limit; can be shared across projects). Finally on the
Port Binding screen for Port Direction of Communication (and as this is a receive
port), select I'll always be receiving messages on this port.

Chapter 4

[89]

As port types don't encapsulate "direction", having a port type that
refers to receive or send is usually incorrect. Therefore, we have used
the naming convention <Type|PortType> and we will reuse the same
port type for all our logical ports. This is a useful technique and avoids
cluttering of projects with unnecessary port types. The Type Modifier
property can be set to Internal, Public, or Private, which determines
which other projects/solutions can reference the port type and use it.

For port binding, we will leave the default Specify later. Specify now configures the
endpoint properties as part of the project and is not the best practice. Direct binding
is used for sending only to the MessageBox. Click Next, and then Finish on the final
screen. You should change the Operation_1 default identifier name on the port to
match the receive shape name Receive_Initial_Customer. Finally, because this
is the first receive shape in the Orchestration, change the Activate property to True.
You have now created the first receive port; join this to the Receive_Initial_
Customer receive shape by dragging and dropping the receive port operation you
just created to the Receive_Initial_Customer receive shape on the designer
surface as shown.

Repeat the wizard a second time to create the first send shape. Join this to the first
send port by dragging and dropping on the designer. Use the following values:

•	 Name: Send_Initial_Customer
•	 Use an existing port type
•	 Port Type Name: SimpleBizTalkSolution.OneWayCustomerPortType
•	 Port Direction of communications: I'll always be sending…
•	 Port Binding: Specify later

BizTalk Server Primer

[90]

Repeat the wizard for a third time to create the second receive port. Use the
following values:

•	 Name: Receive_Response_Customer
•	 Use an existing port type
•	 Port Type Name: SimpleBizTalkSolution.OneWayCustomerPortType
•	 Port direction of communications: I'll always be receiving…
•	 Port Binding: Specify later

Repeat the wizard a fourth time to create the second send port. Use the
following values:

•	 Name: Send_Response_Customer
•	 Use an existing port type
•	 Port Type Name: SimpleBizTalkSolution.OneWayCustomerPortType
•	 Port Direction of communications: I'll always be sending…
•	 Port Binding: Specify later

Join the logical ports you just created with the relevant send and receive shapes.
Your Orchestration designer surface should now look something like the
following screenshot:

Chapter 4

[91]

So we now have an Orchestration that receives a message, sends it out somewhere,
waits for a response, and delivers the response. In order to make this work fully, we
will use a feature that Orchestration provides, called correlation. This feature enables
BizTalk to match the response with the appropriate instance of an Orchestration,
which will ensure that the correct Customer message gets routed back to the right
instance of this Orchestration.

Open the Orchestration View tab and right-click on Correlation Set and
select New Correlation Set. Change the default name from Correlation_1 to
CustomerCorrelation. From the Correlation Type drop-down list select Create
New Correlation Type. A correlation type defines the information that BizTalk
will use to correlate the message. In the Correlation Type property window
that appears, click on the ellipsis (…) button. You will see a list of the Context
properties available. As we defined a Property schema earlier, you should also see
SimpleBizTalkSolution and under it, a CustomerID element. Select this and click
on Add, then click OK. In the description box type CustomerID_CorrelationType
and type the same value in Identifier.

For any given correlation set, we generally need to initialize it on the Send
From Orchestration and then follow it on the receive action. Under the covers,
the initialization creates an instance subscription in the BizTalk MessageBox,
which enables BizTalk to successfully correlate the response message to the right
instance of your Orchestration. This capability enables BizTalk to have multiple
instances of the Orchestration process and multiple responses coming in, and it
will be able to route each response instance to the relevant process instance. To
do this, on the first send port property window (in Initializing Correlation Sets)
select CustomerCorrelation from the drop-down box. When the CustomerMsg
is sent from this send port, a correlation set will be initialized using the value of
CustomerID that was in the original message; as long as our customer IDs are unique
we will always correlate to the correct instance. On the second receive shape, set the
Following Correlation Sets property to CustomerCorrelation.

We will now deploy the solution from Visual Studio and configure it in the BizTalk
Administration Console. First, you will need to create a Strong Name Key file; this
is required for all assemblies that are added to the Global Assembly Cache (GAC).
The GAC is for .NET what the registry was for COM+; for example, a machine
central store. Open a Visual Studio command prompt and navigate using the cd
command to the root directory of your solution. Then run the following command:

sn –k biztalk.snk

BizTalk Server Primer

[92]

Right-click on the BizTalk project and select Properties. From the window that
appears, select the Signing tab. Check the box marked Sign the assembly. Then,
from the drop-down box select browse and select the biztalk.snk file you just
created. Then select the Deployment tab, ensure that the configuration database and
server are correct, and enter the application name as SimpleBizTalkSolution. Now
right-click on the project and select Deploy. A message should appear confirming
that the deployment succeeded.

Open the BizTalk Administration Console, expand the node for your BizTalk Server
group (it should reference your management database) and select Applications. If
you set the application name correctly, you should see a SimpleBizTalkSolution
node. Right-click on this and select Configure as illustrated in the next screenshot:

This will now bring up a configure application screen, which allows you to configure
all BizTalk created artifacts. Under Orchestrations select CustomerRouting and
select for host BizTalkServerApplication. You will now need to configure both the
receive and send ports.

Chapter 4

[93]

For Receive_Initial_Customer from the drop-down list select New Receive
Port. On the screen that appears give it the name Receive_Initial_Customer.
Then select Receive Locations and select New. For the name value enter Receive_
Initial_Customer and then select File for the type. For the receive pipeline, and as
we are receiving an XML message, select XMLReceive. Click the Configure button
to configure the file drop location. For the receive folder, configure the following
location (but leave everything else as default) and click on OK:

C:\TempStuff\filedrops\receive_initial

The user running the default host instance will be used by the file adapter
send and receive handlers to access these locations. Therefore, you should
ensure that this account has access to the paths that you specify here.

Repeat the same process for Receive_Response_Customer using Receive_
Response_Customer as receive port and receive location names, XMLReceive
pipeline and C:\TempStuff\filedrops\receive_response.

For the Outbound logical ports, next to Send_Initial_Customer, select New Send
Port. Name the send port Send_Initial_Customer. Select type as File, and leave the
pipeline as PassThruTransmit (as no processing is required after the Orchestration).
Click on Configure and set the destination folder to:

C:\TempStuff\filedrops\send_initial

Repeat the same process for Send_Response_Customer using that as the send port
name and set the outbound folder to:

C:\TempStuff\filedrops\send_response

Your application is now configured; click on OK, right-click the application, and
select Start. We now need to generate a test message to test it. Open up your BizTalk
solution in Visual Studio and select your Customer.xsd schema. In the properties
pane, you will see Output Instance Filename. The BizTalk schema editor has a very
useful function; it will generate an output message for a defined schema so you can
determine whether it fits your criteria. Configure the output location (as shown next)
then right-click on the schema in Visual Studio and select Generate Instance:

C:\TempStuff\filedrops\customer.xml

BizTalk Server Primer

[94]

If you browse the previous location, you should see an output file. Open and inspect
it. Now drop it into the Receive_Initial subfolder. It should disappear almost
instantly. If you open the BizTalk administration console and refresh the Group Hub
page (which is displayed by clicking on the BizTalk Group node of the console) you
should see an output similar to the following screenshot:

The Group Hub page is the dashboard that BizTalk provides to show the current
status of service instances within BizTalk. These can be instances of Orchestrations
or send ports. As shown in the previous screenshot, I have one running service
instance. The following sub-points define the state of the instance:

1.	 If you open the folder in C:\TempStuff\filedrops\send_initial or
whichever location you chose for the Send_Initial_Customer send port,
you will notice that you have an XML file in the folder, which is named as
GUID. Open it and check if it contains the same contents as the original file.
The name of the file in my output folder is: {E8FCBFC9-E200-48E3-8A35-
F6E8A13B3B40}.xml.

2.	 Examine the configuration of the Send_Initial_Customer send port by
right-clicking it in the BizTalk Administration console:
Applications|SimpleBizTalkSolution|Send Ports.

3.	 You will see that the URL specified, %MessageID%, is a macro that generates
a GUID; if you click on Configure, the file adapter exposes the file name
property, which can be modified if you need to adjust it. This can be useful if
your backend system only accepts a file with a certain name. Set the URL to:
C:\TempStuff\filedrops\send_initial\%MessageID%.xml

Chapter 4

[95]

4.	 Go to the Send_Initial folder in your file drop location and cut the
message. Place it into the Receive_Response folder. The message should
disappear and reappear in the Send_Response folder, which is the output
location specified in your send port configuration.

If you refresh the Group Hub page in the BizTalk Administration Console, you
should see that there are no service instances running in your system. What has
happened under the covers is that the message conforms to the Customer schema
type (as specified by the namespace) and the XML receive pipeline promotes the
CustomerID element. The CustomerID element matches the instance subscription
that was created when the correlation set was initialized. Therefore, BizTalk knows
to return this message to the in-flight orchestration instance. When the message
was sent from the first orchestration send port, the correlation set was initialized.
This created an instance subscription in the MessageBox, based on the CustomerID
value as defined in the Correlation type. The Message Agent was able to match this
instance subscription with the inbound message. Hence, the received message was
delivered to the orchestration and it was able to complete its processing.

It's important to note that if 10 orchestrations were waiting on a message with
CustomerID value 10, the first message that returned to the MessageBox would be
delivered to all 10 dehydrated service instances. The next nine responses would
generate a Routing Failure Report, which is BizTalk's internal fault message, used
when no subscriber is found. This example illustrates why it is critical that all
correlation sets be unique.

Summary
In this chapter, we defined and examined the core use cases for BizTalk, we looked at
the core components and tools that BizTalk provides, and we highlighted just a few
aspects of BizTalk that make it a compelling tool to use. Please note that we have not
even scratched the surface of what BizTalk can do. BizTalk Server provides a scalable
messaging engine, robust pub-sub capabilities, and connectivity through over 20 out-
of-the-box (plus many more third-party) adapters. Orchestration enables complex
workflows to be modeled and the Engine provides persistence and failover to
ensure you meet your availability requirements. By building on top of these durable
capabilities, many of the world's largest companies have been able to accelerate their
development. As such, BizTalk is used by many of the world's largest companies to
run mission-critical systems. I have personally worked with customers who have
used BizTalk for inter-bank payment and compliance systems, which can affect
market liquidity if they fail.

BizTalk Server Primer

[96]

I hope that this chapter gave you some insight into the power of BizTalk, and how
it can be used in a service-oriented fashion. In order to assist your evaluation of
BizTalk, we have provided a Decision Framework, which shows the methodology
that we ourselves have developed and used over time to determine the right
technology for a business problem. This will be used to evaluate BizTalk Server
against the architectural patterns we present in the rest of this book. For the patterns
that BizTalk fits into, we will build sample solutions using best practices that we
have used in the real world to architect reusable and maintainable solutions.

SQL Server and Data
Integration Tools Primer

Way back in the Permian epoch of database technologies, circa 2000 CE to 2005 CE,
data integration in the Microsoft stack was accomplished through DTS and MSMQ.
Like in the real Permian epoch, huge bugs roamed the landscape, ready to devour
the lives of the poor database professional stuck in the La Brea tar pits of system
integration support and master data management.

Those of us who look back on those days and shudder were truly grateful for the
introduction of SQL Server Integration Services (SSIS) and SQL Server Service
Broker (SSSB) with SQL Server 2005. SQL Server 2008 now supports multiple
tools for data integration and master data management, including the
following functionalities:

•	 SSIS new functionality
•	 SSSB
•	 Master Data Services
•	 The Sync Framework, for databases that are only occasionally connected

with your networks

With SSIS, SSSB, Master Data Services, and the Sync Framework, database
professionals can actually see their children grow up and have an occasional dinner
with their loved ones—wonder of wonders! Management will be well pleased as they
will no longer need to pay the expenses associated with additional data integration or
ETL tools. There could also be less need for support and development of integration
for occasionally connected systems, message queuing, and messaging applications
because when they purchase SQL Server and Visual Studio 2008/2010 they get the
licenses for these powerful tools as well.

SQL Server and Data Integration Tools Primer

[98]

What does this technology do?
SQL Server is comprised of multiple components that we will briefly review.

SQL Server Integration Services (SSIS)
SSIS is generally thought of as a tool for extraction, transformation, and loading (ETL)
tasks associated with Business Intelligence (BI) or other reporting applications. Indeed,
the classic use of SSIS is for bulk data transfers and large batch data maintenance jobs
typically found in the BI world. Most developers consider it "just" an ETL tool.

In fact, SSIS is an extremely powerful tool that you should consider for use in any
situation that requires you to move data from one point to another or integrate data
across multiple platforms, in or out of the Microsoft stack. SSIS is easily extended
with managed code and scales easily to handle everything from a few rows of data to
very large data transfers. In addition to data transfers, SSIS can also handle the most
common database maintenance tasks with objects available out of the box, and less
common tasks through a simple "Execute SQL Task" object that can execute a SQL
script or stored procedure on any OLE DB-compliant database. You can even use it
to perform maintenance tasks on Oracle or DB2 systems.

The only data integration or data transfer task where SSIS is not a fit would be low
latency or very low-volume data transfers. While SSIS can handle these tasks, a
better fit might be SQL Server Service Broker.

SQL Server Service Broker (SSSB)
SSSB provides native support for messaging and queuing operations. With SSSB
you can build asynchronous, loosely-coupled applications. Unlike traditional
message queues, however, the queue is handled through the databases involved and
messages can be coordinated, grouped, and prioritized. It requires no additional
software. An understanding of Transact-SQL (T-SQL) and its basic services is all
that you need for SSSB.

Using asynchronous processing can yield big performance gains, particularly when
you can prioritize messages. Consider the classic order-entry example that is so often
used in books like this one. When an order is placed, certain systems must get data
immediately to confirm an order. For example, you need to commit data concerning
the customer, the product ordered, and the number of units purchased. On the
other hand, the accounts-receivables system and the order-fulfillment system do not
need this data to confirm the order. You can send the data that those systems need
asynchronously, using SSSB, and even prioritize the messages based on the order
priority (rush orders first, for example). In short, you do the minimum work you
need to do to—accept the order and complete the rest at your leisure.

Chapter 5

[99]

The Microsoft Sync Framework
One might normally think of synchronization through the Sync Framework as
something to use with small amounts of data and non-critical applications. The most
common use of the platform and SDK has been to synchronize handheld devices and
MP3 players with data on a personal computer. With the release of SQL Server 2008
and its change tracking utility, Microsoft was able to extend the Sync Framework
to databases.

The old-school method of tracking data changes usually involved combinations
of timestamps, additional tables and fields, triggers, cleanup processes, and hours
of administrative, programming, and break-fix time. There was almost always an
adverse impact on system performance, including the resulting I/O overhead
needed to write, read, and update the tracking data.

SQL Server 2008 handles these issues for you with the change data capture and
change tracking features.

The Sync Framework now allows you to develop applications that will synchronize
data across any ADO.NET-enabled database. These databases can also synchronize
information with any other source supported by the Sync Framework, such as web
services, file systems, and custom data stores.

For integration of applications and data that is only occasionally connected, or
connected on some ad hoc basis, the Sync Framework should be seriously considered.

Master Data Services
Master Data Services allows you to easily coordinate data across disparate sources
so that all systems, and more importantly, all employees can operate from a single
version of truth. With the release of SQL Server 2008 R2, Microsoft provided us
a tool for dealing with a problem that has been around for a long time; different
systems have different data about the same key business entity. The problem arises
from a number of sources, including human error in data entry and our own failure
as database architects to set up systems to reconcile data discrepancies. The author's
personal experience of poor customer service can often be linked to bad, or even non-
existent, master data management.

This can be more than a customer service issue; it can also be a human safety issue.
Consider the health care industry in the United States. Health care providers seem
to have a very large number of small, isolated applications that handle medical
specialties; however, these applications are not designed to be integrated with each
other. If one department creates a Patient record concerning key patient data,
there is no guarantee that the data will appear in other "stove piped"
specialty applications.

SQL Server and Data Integration Tools Primer

[100]

Doctors could therefore, miss key data which might influence their treatment
decisions, and might even threaten a patient's life because they did not have the data
they needed to make the correct decision.

Master Data Services uses a hub and spoke model around key business nouns and
their attributes (for example, the noun "customer" and attribute "delivery address"). A
central service captures this data and coordinates the resolution of any discrepancies,
first using a set of business rules and then relying on human interaction for
unanticipated problems or to resolve conflicts in the rules. The resolved data is then
sent down the spoke to various systems that require the resolved data.

A very basic and completely insufficient
introduction to data integration with
SQL Server
There are lots of cool features in SQL Server 2008. Complete books and hundreds of
blogs, articles, TechNet, and MSDN pages have been written on each of these subjects.
These below sections on SQL Server's suite of tools are focused on data integration
problems, with occasional forays into the author's pet peeves around data security. We
will, therefore, limit the discussion to key integration technologies and my apologies in
advance for merely scratching the surface of these rich and robust environments.

SSIS
SSIS has no core technologies as such; its core is SQL Server itself. One should
think of SSIS as a collection of objects that create a powerful visual environment for
performing a multitude of tasks associated with master data management, database
maintenance, data integration, and ETL projects.

You create SSIS projects in Business Intelligence Development Studio in Microsoft
Visual Studio. SSIS packages are developed initially with a graphical interface, which
handles the more mundane (and boring) tasks associated with project development.
The graphical environment is so rich that other developers will frequently accuse
SSIS developers of just "drawing pretty pictures". A word of caution: this is a fast
way to get yourself punched out by an SSIS developer.

The basic unit of work in SSIS is a package. A package contains tasks, each of which
does a distinct unit of work. Here, for example, we have a package with a script task
and a data-flow task, each of which fetches an RSS feed and writes it into
different destinations.

Chapter 5

[101]

The details of the package are stored as XML. Indeed, a more adventurous reader
can use the View Code function and directly edit the XML. Those of us who at least
attempt to have a life stick to the GUI.

When you install SQL Server you also install the SSIS service that needs to be
running for your package to work on a given machine. The service will monitor and
control the deployment and execution of packages. Each package can be considered a
script (we use that term as an analogy only), which is executed by the service.

SSSB
SSSB uses a post-office analogy as its model. A user inputs data that must be stored
or otherwise handled on multiple systems. The user's application for SSSB purposes,
called the initiator, initiates a conversation with a target service, builds a message
containing the data required to process a task, and sends that message to the target.

SQL Server and Data Integration Tools Primer

[102]

Letter exchanges in a post-office analogy were asynchronous operations. For
example my cousin Susan, might initiate the correspondence and write to me or I
could initiate the correspondence and write to her or we could both initiate separate
lines of correspondence, each answering the other in turns.

To put this in SSSB terms, Susan could be the initiator—placing her letter in the queue
(the postal system) with me as the target in New Jersey. I could then reply by sending
a response message to the initiator, Susan. Both Susan and I could simultaneously be
the initiator and target of multiple exchange of letters and be involved in multiple,
simultaneous, and asynchronous "conversations" working their way through the
postal service message queue as shown in the following diagram:

In the SSSB exchange of correspondence, messages are XML-based and are placed in
electronic queues, thereby creating a simple asynchronous communication between
two systems. Like Susan and me, each system could be both the initiator and the
target in any one conversation.

Sync Framework
The Sync Framework is a comprehensive platform that allows for collaboration
and coordination across multiple applications or systems. You can use the Sync
Framework with any ADO.NET-enabled database system.

The first step is to configure the relevant database. This involves a simple ALTER
DATABASE statement, followed by an ALTER TABLE statement to set change tracking
on for the database and tables, respectively. SQL Server will store metadata
concerning the relevant databases and tables, allowing the system to track changes
and coordinate synchronization without the need to do full transfers of entire tables
or databases. Only new or changed data is synchronized.

Chapter 5

[103]

When a synchronization session begins, the source begins the session with a
destination. This can be triggered by many events, the most common being the
source system detecting that it is connected to the destination system, similar to
when your mobile device detects that it is connected to your computer and can
synchronize things such as your calendar or your contacts. The metadata is used by
the source to send change versions and sources to the destination. Local versions
at the destination are then compared to the source system. Business rules are used
to resolve conflicts or defer them (for example, from human intervention). The
destination system requests the data and applies it, then updates the metadata.

SQL Server 2008 enhancements
The following enhancements are made to SQL Server 2008:

1.	 The MERGE function. The MERGE function has long been a staple of ETL
development for Oracle. It is nice to see Microsoft eliminate the need for
writing workaround upsert statements that handle both updates
and insertions.

SQL Server and Data Integration Tools Primer

[104]

2.	 New and significantly more powerful encryption functions.
3.	 Data-access auditing, a powerful tool that audits who is accessing what

data and when. For certain highly regulated industries, like health care
and financial services, this functionality will significantly ease the database
administration overhead.

4.	 Filtered indexes, a very useful tool, if one has to select from a field with a
significant amount of null values.

5.	 Parallel query processing on partitioned objects.
6.	 The ability to associate query plans with actual queries; cuts down on the

often significant overhead associated with the creation of a query plan.
7.	 Security enhancements, including easier data access auditing and transparent

data encryption.
8.	 Parallel data warehouse, an integrated SQL Server and storage device with

storage optimized for use with SQL Server.

SSIS enhancements
The following enhancements are made to SSIS:

1.	 Ability to create script tasks that use C#.
2.	 Improved performance of bulk load operations.
3.	 The ability to capture changed data.
4.	 Views of datatype mapping to help prevent annoying datatype

mismatch errors.
5.	 Support for time zone offsets that eliminate the need for messy workarounds.

SSSB enhancements
The following enhancements are made to SSSB:

1.	 Support for conversation priorities.
2.	 New diagnostic utilities.
3.	 Additional object counters to check performance and error states.

Chapter 5

[105]

Sync Framework enhancements
The Sync Framework version 2.0 was released to leverage the power of change
tracking. Almost all of this API's interaction with databases is new with this release.

Typical use cases
The typical use case for each of these tools is rather simple: data is here, it needs to
be moved there. The rest is just details. While the classic uses of these technologies
are ETL, master data management, and asynchronous processing, they should also
be considered for any application that needs to move and transform data in places
where simple log shipping or replication will not meet the need or does not provide
all the functionality required (for example, diverse data sources).

While each of these tools can be extended to most data-movement scenarios, there
are times when one is served better with other tools. The classic case of the need
for an Enterprise Service Bus (ESB) application or the need to move data through
a workflow, would be good examples of business needs where other technologies
might be better suited. There are also industry-specific applications offered by
Microsoft that may better fit a need. For example, Microsoft Amalga is designed to
handle message queues for the health care industry's HL7 standard formatted data.

Example solution
We can take a look at an example of this technology in action, through a demo
application that has some real-world implications beyond "Hello World!". There
are numerous RSS feeds available, which expose a wealth of data. In this case, we
have chosen a sample feed from Microsoft because it allows us to demonstrate some
versatility of SSIS, as well as how data from varying sources can be distributed
throughout an enterprise. We take this feed, shred the XML, and write the resulting
data to SQL Server. We will then use the Sync Framework to distribute the
resulting data.

These feeds also allow us to demonstrate some of the best practices that you should
implement with SSIS. They include the following:

•	 Using the configuration collection of SSIS to store key metadata (for example,
the path to the RSS feed)

•	 Some logging and error-handling best practices

SQL Server and Data Integration Tools Primer

[106]

We should note a few things. SSIS defaults to the .NET framework version 2.0,
which contained some powerful tools for handling XML. In order to serialize an
RSS feed, however, it would be easiest to use the ServiceModel class, available in
.NET version 3.5. Your projects will need to be reconfigured to use this version and
references added to your script objects.

Writing an RSS feed to SQL Server
Here, we will use SSIS to capture data from an RSS feed, load it into a database, then
distribute it around the enterprise using the Sync Framework.

Open Visual Studio and create a SQL Server Integration Services project. Rename
the package getRSSFeed.dtsx to a similar, arbitrary name. Note that you must use
the dtsx extension. Drag a data flow task into the control flow panel. Open the data
flow and drag a script task into the data flow. Next, drag a data conversion task into
the flow and connect it to the script task. Finally, drag an OLE DB destination into
the flow and connect it to the data conversion task. Define the RSS feed you wish
to use as your data source with an HTTP connection manager. Here we used the
Microsoft MVP RSS feed. When complete, the data flow should look something like
the following screenshot:

Chapter 5

[107]

The script task in a data flow is slightly different for those of you who are
accustomed to using script tasks in the main package. Here, we start with a pre-
execute event and use the Connectors collection for our data source.

private XmlReader EcoIndicatorData = null;
private System.ServiceModel.Syndication.SyndicationFeed RSS_Data =
 null;
 private string RSS_URL = string.Empty;
 public override void PreExecute()
 {
 base.PreExecute();
 RSS_URL = Connections.RSSConnection.ConnectionString;
 }

As we use this script as a data source, we then execute the CreateNewOutputRows()
method and add rows to the output buffer, defined in the Script Transformation
Editor interface.

SQL Server and Data Integration Tools Primer

[108]

The method itself is a simple loop through the RSS data, writing out the elements we
want to load to the database.

public override void CreateNewOutputRows()
{
 try
 {
 EcoIndicatorData = XmlReader.Create(RSS_URL);
 RSS_Data = SyndicationFeed.Load(EcoIndicatorData);
 if (RSS_Data != null)
 {
 foreach (var item in RSS_Data.Items)
 {
 Output0Buffer.AddRow();
 Output0Buffer.Title = item.Title.Text;
 Output0Buffer.description = item.Summary.Text;
 Output0Buffer.Link = item.Links[0].Uri.AbsoluteUri;
 }
 }
 }
 catch (Exception ex) {
 LogErrorToEventViewer(ex);
 throw(ex);
 }
}

The result of this exercise holds the data as ASCII strings. The relevant table,
however, will hold the nvarchar datatype. We therefore need to convert the
datatypes in a data conversion task.

Chapter 5

[109]

The results are now loaded into SQL Server using an OLE DB destination task.

SQL Server and Data Integration Tools Primer

[110]

Within this task, source and destination fields are mapped in a visual environment.

In this case, the Unicode data we created in the transformation step is mapped to the
relevant field in the database.

Distribution via Sync Framework
Now that the data is in the database, we will need to distribute it around the
enterprise—in this case, using the Sync Framework. You will first need to download
and install the framework from Microsoft, available at:

http://www.microsoft.com/downloads/details.aspx?FamilyID=89adbb1e-
53ff-41b5-ba17-8e43a2e66254&displaylang=en

Drag a script task into the package and open it. We used C# in this exercise, but you
can use VB scripts as well. You will need to place certain additional references into
the script, as shown in the following code snippet:

using Microsoft.Synchronization;
using Microsoft.Synchronization.Data;
using Microsoft.Synchronization.Data.SqlServer;
using Microsoft.SqlServer;

Chapter 5

[111]

using System.Data.SqlClient;
using System.Data.Common;

The next steps will be to create database connections and add them to
SqlSyncProvider objects. sourceConnString is a string that contains the
connection data for the database where you stored the RSS feed in the prior section
and destinationConnString is a string holding the connection information for
the database where this feed will be sent. You should set these values for your
environment.

SqlConnection sourceConn = new SqlConnection(sourceConnString);
 SqlConnection destinationConn = new
 SqlConnection(destinationConnString);
//set up the source provider
 SqlSyncProvider sourceSqlProv = new SqlSyncProvider();
 sourceSqlProv.ScopeName = "MicrosoftMVPfeed";
 sourceSqlProv.Connection = sourceConn;

The scope of the synchronization is then set, the provider is added to a dictionary and
used to create a RelationalSyncProvider object that will control the synchronization
between two databases. We would follow the exact same steps for the destination, as it
will also be a SQL Server database. Different steps would be followed if the destination
was a CE database or some other ADO.NET-enabled destination.

//provide scope to the source connection
 DbSyncScopeDescription sourceDesc = new
 DbSyncScopeDescription("MicrosoftMVPfeed");
 SqlSyncScopeProvisioning sourceProvision = new

SqlSyncScopeProvisioning();
 sourceDesc.Tables.Add(SqlSyncDescriptionBuilder.
 GetDescriptionForTable("MicrosoftMVPfeed",(System.Data.
 SqlClient.SqlConnection)sourceSqlProv.Connection));
 sourceProvision.PopulateFromScopeDescription(sourceDesc);
//do not recreate table
 sourceProvision.SetCreateTableDefault(DbSyncCreationOption.Skip);
//all is provided
 sourceProvision.Apply((System.Data.SqlClient.SqlConnection)
 sourceSqlProv.Connection);
//add to the provider collection
 providersCollection.Add("Source", sourceSqlProv);
 RelationalSyncProvider source = providersCollection["Source"];

SQL Server and Data Integration Tools Primer

[112]

Once the setup is done, the actual synchronization occurs with a few simple lines
of code. We set up an orchestrator, set a few simple properties—such as the source,
destination, and direction—and then execute the synchronization.

//actually do the sync
 SyncOrchestrator orchestrator = new SyncOrchestrator();
 orchestrator.LocalProvider = source;
 orchestrator.RemoteProvider = destination;
 orchestrator.Direction = SyncDirectionOrder.UploadAndDownload;
//bidirectional sync
 orchestrator.Synchronize();

So we now have a single, easily created C# script. In a single package execution, we
fetch the RSS feed and send it out to other servers throughout the enterprise.

SQL Server Service Broker
While synchronization is powerful, it does have certain shortcomings. For example,
the source and target tables must be exactly the same for the process to work and
there is no way to prioritize what data should be moved first. Often, we will have
to synchronize data across systems that have different uses and therefore use
significantly different schemas. Also, there often are prioritization rules that must be
followed (for example, rush orders versus standard orders). This is where we should
be looking at SSSB.

SSSB provides for asynchronous processing of messages. A conversation is initiated
by the sending database. A receiving database takes the call, receives the incoming
data, validates the data, and acknowledges the receipt. It may then continue the
conversation by sending data back.

Open SQL Server Management Studio and connect to your development database
server. We have created a simple database to illustrate SSSB called SOA_Book.

We start by setting up the database and objects in the database to handle the
conversation as follows. First, we enable the service broker with a simple ALTER
DATABASE statement.

USE master;
GO
ALTER DATABASE SOA_Book
 SET ENABLE_BROKER;
GO

Chapter 5

[113]

We must create message types, contracts, and queues that the service will rely on to
actually converse and then create the service. This is done for both the sending and
receiving ends of the conversation. Our conversation will consist of well-formed XML.
We could validate against a schema as well. You would use the following statement:

USE SOA_Book;
GO

CREATE MESSAGE TYPE
 [//SOAbook/SampleQueue/RequestMessage]
 VALIDATION = WELL_FORMED_XML;
CREATE MESSAGE TYPE
 [//SOAbook/SampleQueue/ReplyMessage]
 VALIDATION = WELL_FORMED_XML;
GO
CREATE CONTRACT [//SOAbook/SampleQueue/SampleContract]
 ([//SOAbook/SampleQueue/RequestMessage]
 SENT BY INITIATOR,
 [//SOAbook/SampleQueue/ReplyMessage]
 SENT BY TARGET
);
GO
CREATE QUEUE SampleTargetQueue;

CREATE SERVICE
 [//SOAbook/SampleQueue/TargetService]
 ON QUEUE SampleTargetQueue
 ([//SOAbook/SampleQueue/SampleContract]);
GO
CREATE QUEUE SampleInitiatorQueue;

CREATE SERVICE
 [//SOAbook/SampleQueue/InitiatorService]
 ON QUEUE SampleInitiatorQueue;
GO

Once the objects are set up, we use them for our dialog. We create a dialog from an
initiator to a target on a particular contract and send a message of a particular type,
all within a transaction.

/*
Send the message
*/
DECLARE @InitDlgHandle UNIQUEIDENTIFIER;
DECLARE @RequestMsg NVARCHAR(100);

BEGIN TRANSACTION;

SQL Server and Data Integration Tools Primer

[114]

BEGIN DIALOG @InitDlgHandle
 FROM SERVICE [//SOAbook/SampleQueue/InitiatorService]
 TO SERVICE N'//SOAbook/SampleQueue/TargetService'
 ON CONTRACT [//SOAbook/SampleQueue/SampleContract]
 WITH ENCRYPTION = OFF;

SELECT @RequestMsg =
 N'<RequestMsg>Do not meddle in the affairs of wizards, for they are
 subtle and quick to anger.</RequestMsg>';

SEND ON CONVERSATION @InitDlgHandle
 MESSAGE TYPE [//SOAbook/SampleQueue/RequestMessage] (@RequestMsg);

SELECT @RequestMsg AS SentRequestMsg, @InitDlgHandle as 'Dialog ID'

COMMIT TRANSACTION;
GO

On the receiving end, we receive the message, and in the following sample, send a
second message back. We begin with a WAITFOR statement as the receiver does not
know when the message will arrive, similar to how a human receiver of a letter does
not precisely know when it will arrive via the postal service. Once we receive the
message, we open the letter with a SELECT statement and send a reply.

DECLARE @RecvReqDlgHandle UNIQUEIDENTIFIER;
DECLARE @RecvReqMsg NVARCHAR(100);
DECLARE @RecvReqMsgName sysname;

BEGIN TRANSACTION;

WAITFOR (
 RECEIVE
 @RecvReqDlgHandle = conversation_handle,
 @RecvReqMsg = message_body,
 @RecvReqMsgName = message_type_name
 FROM SampleTargetQueue
), TIMEOUT 1000;

SELECT @RecvReqMsg AS ReceivedRequestMsg;
SELECT @RecvReqDlgHandle, @RecvReqMsg, @RecvReqMsgName

 IF @RecvReqMsgName = N'//SOAbook/SampleQueue/RequestMessage'
 BEGIN
 DECLARE @ReplyMsg NVARCHAR(100);
SELECT @ReplyMsg = N'<ReplyMsg>And he piled on the whales white hump
all the pain and hate felt by his race from Adam down</ReplyMsg>';

Chapter 5

[115]

SEND ON CONVERSATION @RecvReqDlgHandle
 MESSAGE TYPE [//SOAbook/SampleQueue/ReplyMessage]
 (@ReplyMsg);

END CONVERSATION @RecvReqDlgHandle;
END

SELECT @ReplyMsg AS SentReplyMsg;

COMMIT TRANSACTION;
GO

The statement SELECT @ReplyMsg AS SentReplyMsg simply confirms the successful
completion of the conversation.

The initiator must now listen for the reply and take appropriate actions. In this case,
it simply ends the conversation. Here again, the initiator will not know when the
reply will be delivered or what its content will be, so we follow steps similar to the
receiver. We wait for a reply, open it, and then review it once it is received.

DECLARE @RecvReplyMsg NVARCHAR(100);
DECLARE @RecvReplyDlgHandle UNIQUEIDENTIFIER;

BEGIN TRANSACTION;

WAITFOR(
 RECEIVE TOP(1)
 @RecvReplyDlgHandle = conversation_handle,
 @RecvReplyMsg = message_body
 FROM dbo.SampleInitiatorQueue
), TIMEOUT 1000;

END CONVERSATION @RecvReplyDlgHandle;

SELECT @RecvReplyMsg AS ReceivedReplyMsg;

COMMIT TRANSACTION;
GO

As you can see, SSSB uses a modified set of SQL statements that should be familiar to
almost all database developers.

Summary
Here, we have three powerful tools for data movement (SSIS, Sync, and SSSB) that
can handle data movement, master data management, and data governance needs of
a variety of organizations and in a variety of business circumstances. The tools can be
used in a variety of combinations to get data where it needs to be.

Windows Azure Platform
Primer

With the advent of the Internet, it became possible to access services from just a
browser without requiring several hours of setup and configuration time before using
a technology. This fast bootstrapping usage of elastic, pay-per-use, internet-accessible
services (known as cloud computing), is impacting not just end-consumers, but also
businesses of all sizes. Microsoft is trying to cause a disruptive shift in the
cloud-computing market and lead the next wave of innovation.

6-12-18 is not a random typo that made it into the book, but these are three numbers
discussed by Microsoft executive Oliver Sharp when discussing the deployment
patterns of enterprise customers. Six represents the percentage of data-center
utilization that typically appears in data-center utilization surveys—utilization peaks
at around ten percent. Twelve, is the twelve million square feet server facilities that
Microsoft had bought at the time when Oliver made the note. Finally, eighteen is the
number of days it took for the existing server capacity to max-out when the traffic
increased on a key Microsoft site during the dawn of the web era. This meant that
they had to buy and provision new servers every 18 days and the IT manager had to
manage this process along with all the capacity, power, and cooling issues associated
with it. The net of this is that people are paying significantly more than they need to
for infrastructure.

The cost of this excess capacity represents a huge initial Capital Expenditure
(CAPEX) and ongoing Operational Expenditure (OPEX) for capacity that
organizations are not using. By paying for only what you use, you can effectively
offset a huge amount of both OPEX and CAPEX. In effect, increasing computer
power becomes a proportional tax/cost on your increased income. This represents
a complete paradigm shift to the way things are done today.

Windows Azure Platform Primer

[118]

There are many different definitions and applications of cloud. Much of this
technology has been developed at Microsoft as a result of the journey and lessons
learned from developing and running complex cloud systems such as Bing, Hotmail,
and Xbox LIVE.

In fact, many customers are already building "private" clouds using virtualization
technology, management tools, and techniques that they have developed over time
to run their large distributed systems.

This kind of usage has helped vendors understand customer requirements in areas
such as security, scaling, high availability, and offline scenarios. In the last three to
five years, the first generation of these generic platform resources based on over a
decade of learning have been moved to the cloud—Amazon Web Services, Google
App Engine, and Windows Azure platform.

For the purposes of this chapter, we will define the following three cloud requirements.
The cloud must fulfill the following tasks:

•	 Protect and secure my data
•	 Manage my distributed computing environment at the lowest possible cost
•	 Provide an agile computing environment which can change quickly to

respond to business environment changes and scale incrementally

Throughout each solution implementation, the common requirement is to be
successful in an ever changing, geographically dispersed world; cloud resources need
to be elastic in nature—it needs to make computing resources commoditized and
simple to use. The ultimate vision is for cloud computing to transform in the same
way that utility electricity replaced on-premise power generation. They should be easy
to use, with a shorter setup and maintenance time. This removes the requirement for
companies to purchase infrastructure upfront assuming that they would need these
resources at some point down the road. With the cloud, they simply leverage the cloud
computing resources and throttle usage as and when required. For example, if you are
a beginner working on an innovative idea, you don't have to immediately invest in
procuring hardware resources, software licenses, and staffing IT operations; instead,
you can start focusing on your innovation by leveraging things in the cloud. This
is huge! Finally, these resources should be accessible from almost anywhere and be
enterprise-ready. IT administrators must be able to button-down security provisioning
for a set of user accounts as well as restrict usage, if necessary, from "public" clouds.
One of the core advantages of cloud-based systems is that users do not have to roll out
the updates themselves, they simply utilize the service which is upgraded seamlessly;
this is a key advantage for many companies that spend significant amounts rolling out
new versions of traditional thick-client, on-premise software.

Chapter 6

[119]

Microsoft's approach to cloud computing has been a Software plus Services strategy.
This model allows a combination of on-premise resources and on-cloud resources
with a seamless usage of development tools. This approach makes sense from a
customer standpoint, where they can leverage existing hardware and software
infrastructure in addition to developer skills and tools. So, there is a seamless,
integrated approach with the choice and decision controlled by the customer.

The following are three key pivots to this strategy, which is central across all the
Microsoft offerings:

1.	 Provide the ability to store and access data in the cloud.
2.	 Enable services that run in the cloud to be accessed.
3.	 Run custom code—compute power—in the cloud.

The Windows Azure platform supports all these requirements. The components it
provides are as follows:

1.	 Windows Azure: The underlying Windows cloud-based operating system
environment which provides compute and data storage capabilities.

2.	 Windows Azure AppFabric: Provides the Service Bus and Access Control
components which enable complex, hybrid, service-based applications to be
hosted in the cloud or connected (relayed) through the cloud.

3.	 SQL Azure: Extends SQL Server capabilities to the cloud. It is a cloud-based
relational database—the database resource in the cloud—which provides
TDS and T-SQL-based access and programmability, enabling customers
to take leverage and run their existing applications in the cloud.

The following diagram illustrates these components:

In this chapter, we provide an overview of the platform with a simple solution and
walkthrough instructions to host the solution in the Windows Azure platform.

Windows Azure Platform Primer

[120]

What does this technology do?
In this section, we will drill down deeper into three key aspects of the Windows
Azure platform—Windows Azure, SQL Azure, and Windows Azure AppFabric.

Windows Azure
Windows Azure is the operating system in the cloud. It supports hosting a piece of
application code in disparate Microsoft data centers, while automatically making it
highly available, scalable, on-demand, and accessible from a set of clients over the
Internet. This application does not have to be web-centric as it could be any piece
of code that can be hosted in Windows Azure—for example, it can be a piece of
unmanaged code that uses a computation-intensive algorithm and operates without
an HTTP face. The platform allows non-Microsoft languages and supports popular
standards, languages, and protocols such as SOAP, REST, XML, and PHP.

Usage
Windows Azure provides a familiar development and deployment environment to
build and scale-out applications. Essentially, the platform builds on a set of three key
tenets which are applicable to all of the cloud technologies—easier manageability,
elastic scalability, and developer agility.

When an administrator uses Windows Azure, only a set of logical entities are
exposed—no direct access to the actual virtual machines or complicated, physical
deployment topology is required. The administrator controls a set of application
behaviors. For instance, the administrator can control the deployment topology by
indicating the locality of application access such as the entire US, North Central, or
South Central. In addition, the administrator can create an affinity group which can
call out the dependency of this service/application with other deployed applications.
From here on, the application will be automatically provisioned for use and
deployed in the data center.

Elastic scaling is exposed in Windows Azure via configuration knobs. When an
application is deployed, the number of "entry points" or the amount of background
computation can be specified. This will be used to automatically provision a number
of virtual machine nodes for the application to run. This knob can be tweaked
anytime to increase or decrease scaling, based on the scaling requirements.

Chapter 6

[121]

One important differentiator from competing offerings is the developer experience
on top of this platform. Visual Studio developers can easily build solutions using
existing knowledge instead of having to adopt a new development paradigm. For
example, developers can use the Visual Studio cloud project template and build new
cloud services using popular programming languages and patterns. The new cloud
deployment and application packaging model are natural extensions that are easy to
adopt. The cloud application can use either the Windows Azure storage or SQL Azure.

Architecture
Windows Azure architecture can be broken down into the following three main layers:

•	 Fabric controller.
•	 Compute.
•	 Storage.

Fabric controller
When applications are deployed across Microsoft data centers, the fabric controller is
the layer that provisions the application, detects failures, and automatically spins up
new instances. It also manages updates to maintain zero downtime for your application
code. When an application is deployed, in addition to the code, metadata or application
configuration (also known as service model) is included in the deployment package.
The fabric uses this information to deploy the application on a set of nodes (compute
resources), sets up the network settings, configures the load balancer, and maintain the
life cycle of the application. The usage of the fabric controller is part of the Windows
Azure technology and is not directly exposed to the end-user.

Windows Azure Platform Primer

[122]

Compute
The compute layer represents the set of processing resources exposed as configurable
roles to run portions of the applications. All of the machines in the Microsoft data
center are configured to host a set of virtual machines using a Hyper-V environment
running a customized 64 bit Windows Server 2008 OS. As Microsoft releases future
versions of Windows Server, these VMs will be upgraded, giving customers the
benefit of new OS capabilities without having to perform upgrade cycles themselves.
A service or application hosted in Windows Azure can be configured to consist of
one or more web roles and worker roles.

Web role
A web role is used to host any frontend of an application requiring the UI to
accept and respond to user HTTP requests. Typically, one can expose an ASP.NET,
ASP.NET MVC, WCF service, or even PHP applications as a web role. When an
application is configured to have a set of web roles, then the fabric controller deploys
the application on a set of virtual machines that have IIS installed on them.

Worker role
Typically, applications also require "headless" background processing to perform
computations or interactions with backend systems. Such a model is exposed
through the worker role. For example, consider an airline website that searches
for tickets. The frontend exposed as a web role will accept the user criteria. Then a
service might need to match the user request with the airline tickets' inventory and
price, and generate a set of valid responses. This service logic could be configured
to run as a worker role. Windows Azure-hosted services may be comprised of one
or both types of roles and can run multiple instances of each type. One could host a
generic WCF service, a TCP server, an FTP service, or maybe even an Apache service
in a worker role.

Virtual machine instances that are running these roles can communicate among
themselves synchronously or use the asynchronous model through the Windows
Azure storage services. For example, a web application hosted in a web role can
directly call into a calendar service, hosted in a worker role. If the web application
wants to queue messages then it can write to the Windows Azure storage (more
on this topic in the next section) and another worker-role instance can read-off the
queue and perform background processing.

Role instances can be added or removed based on demand, and allow applications to
quickly and economically scale-up or down when the need arises.

Chapter 6

[123]

More compute roles are being planned to be available in the future. One
popular one is the VM role that will provide administrators with more
control to install, configure, and manage the virtual machine running
the applications.

Storage
There are three durable storage options that can be used by a Windows Azure-hosted
application or by a set of desktop applications accessing the storage in the cloud. For
example, a web application may need to store images in a photo album or queue
some transient requests for processing a user request. Applications can leverage this
highly available and scalable storage that is replicated across a set of windows server
machines in Microsoft data centers.

Windows Azure storage services includes blob services for storing text and binary
data, table services for semi-structured storage that can be queried, and queue
services for reliable and persistent messaging between services.

Blobs
Blob storage is comparable to the typical hard disk storage available on machines.
It can be used to store any kind of data such as images, documents, media, and the
like. Each blob object is replicated and three copies are maintained to make it highly
available and to guarantee persistence across data crashes. The storage is highly
optimized to store several pieces of a large file and supports uploading and reading
the required portions. There are two different types of blobs—block and page. A
block blob is used for storing streaming content like video files, while page blob
is useful for random reads and writes.

Table
Table storage is a misnomer—it does not represent a database table nor does it
replace SQL Azure functionality. It merely represents a C# hashtable or list-like
construct that can be used to store semi-structured data without enforcing a schema.
An application can store any key-value pair in the table service.

Windows Azure Platform Primer

[124]

Queue
Queues are typically used as a light-weight messaging system between different
compute roles. They provide a reliable mechanism to do asynchronous processing
and build loosely coupled systems. When a user inputs data, a web role can store
data in a queue and instantly return to the caller for a snappy user experience.
Another worker role that typically runs for a longer duration of time, can read-off
the queue and perform additional processing such as writing or looking-up against
a set of tables in SQL Azure, for example. If the worker role instance were to crash
for some reason, the queue storage has ways to guarantee durability; whereby,
the message will re-appear in the queue for another worker role instance to start
processing again.

Drive
Windows Azure Drive is a type of storage that lets applications use NTFS API
to access and store data in the cloud. This type of storage is useful for applications
that use data from a directory structure. An administrator can create and mount a
drive for usage by an application. The drive guarantees durability across hardware
and application failures. Underneath, the drive implementation actually uses the
Windows Azure page blob, which performs well for random reads and writes.

Provisioning model
In order to provision an application on Windows Azure, you will need to create a
Windows Azure account and buy a subscription from http://www.microsoft.
com/windowsazure/account/. While signing up, the Windows Azure platform has
a set of subscription offers which vary depending on several factors—the number
of compute hours, the number of transactions, network bandwidth, duration
of commitment, and so on. Once you sign up for the suitable selection using
your Windows Live ID, the subscription can be managed from https://mocp.
microsoftonline.com/Site/Manage.aspx. Once the system activates the account,
details will be sent to the e-mail address linked with your Windows Live ID.

You can then visit the portal https://windows.azure.com/Cloud/Provisioning/
Default.aspx to get started. Using this portal, you can create a new service which
allows two options—to create a storage account or a hosted service. When creating
a storage account, you are essentially provisioning a globally accessible endpoint,
registered as a URL to access the supported storage options—queues, tables, or
blobs. For example, after this process, you will see a set of endpoints similar to
the following ones:

http://appliedarchstorage.blob.core.windows.net/

http://appliedarchstorage.queue.core.windows.net/

http://appliedarchstorage.table.core.windows.net/

Chapter 6

[125]

For each storage account, there are a set of access keys for security purposes. When
an application needs to use a particular storage account, it needs to specify the
correct access key before it is published from Visual Studio. These settings can be
specified in the Properties tab for the web and worker role from Visual Studio.

Another unique feature is the availability of a Content Delivery Network (CDN)
option for the storage account. Windows Azure CDN has several locations around
the world to cache the storage closer to the end-users accessing it. For example,
if the storage is set up in a US data center and enabled to use CDN, then a user
from Australia could access a cached version from a CDN location closer to their
geographic location, giving a better performance and end-user experience.

When one chooses the hosted service option (the other option while creating a
new service), a compute node (64 bit virtual machine) is provisioned to run your
application. The provisioning process is similar when one must choose a globally
unique public name, accessible as a URL for the service. At the end of this step, a
cloud-host environment is set up to run your application.

During this process for setting up a storage account or a hosted service,
administrators can also define an affinity group which decides the closest Microsoft
data center where the resource must be physically located. This is especially useful
when there is a need to co-locate the compute and storage for better performance.
In such cases, one would create an affinity group with a friendly name such as
"US_Region" and tie it to a physical location such as North Central US or South
Central US. While creating a service or storage account, it can be associated with
the affinity group "US_Region", and thus be co-located. Modifying the mapping
of the friendly name to the physical location will affect all the associated services.
In scenarios where there is no need to use affinity groups, the actual physical
location can be directly specified while creating the service.

Windows Azure Platform Primer

[126]

Diagnostics and monitoring
A key aspect of any application deployment is to get diagnostics and monitoring
data for analysis. With Windows Azure Diagnostics, it is possible to collect
diagnostic data for performance-tuning analysis, capacity planning, and general
resource-usage monitoring, in addition to common tasks such as debugging and
troubleshooting. The diagnostics can be enabled within your service code or from
outside of it. As part of diagnostics, it is possible to collect data from the following
sources for web and worker roles—Windows Azure logs, IIS 7.0 logs, Windows
diagnostic infrastructure logs, failed request logs, Windows event logs, performance
counters, crash dumps, and custom error logs. The DiagnosticMonitor class
provides a set of APIs to configure your required set of data sources and this can
be used from within your code, as well as hosted and run on Windows Azure. With
the new release, the platform supports a TraceListener, which allows applications
to write to the standard Event Tracing for Windows (ETW) or use Trace Debug
statements as part of the application code.

DiagnosticMonitorConfiguration diagConfig =
 DiagnosticMonitor.GetDefaultInitialConfiguration();
// Add performance counter monitoring for % processor time
// Run typeperf.exe /q to query the counter list
PerformanceCounterConfiguration procTimeConfig = new
 PerformanceCounterConfiguration();
procTimeConfig.CounterSpecifier = @"\Processor(*)\% Processor Time";
procTimeConfig.SampleRate = System.TimeSpan.FromSeconds(1.0);
diagConfig.PerformanceCounters.DataSources.Add(procTimeConfig);
// Start the diagnostic monitor with this custom configuration
DiagnosticMonitor.Start("DiagnosticsConnectionString", diagConfig);
// Capture complete crash dumps
Microsoft.WindowsAzure.Diagnostics.CrashDumps.EnableCollection(true);

When you need to set this up from outside the actual code running,
the diagnostics can also be enabled from a remote location by using the
DeploymentDiagnosticsManager and RoleInstanceDiagnosticManager classes.
For certain data sources, modifying the configuration file before deploying the
solution will take effect. This diagnostic data can then be transferred to the storage
account as part of a scheduled job or on-demand for analysis. There is also a
monitoring agent that can be used to gather the collected diagnostic data. This data
can then be transferred for analysis of the application behavior and to enforce action.

Chapter 6

[127]

For example, by gathering data from a "Photos R Us" application, you can understand
that the application actually needs an additional worker role to optimize the
performance. The action to increase the worker roles can be done using the portal or
programmatically, using the Service Management API. The action can be done using a
custom script or a PowerShell commandlet to auto scale the application. All the Service
Management APIs are based on Representational State Order (REST) and expose all
functionality other than creation, deletion of accounts, and billing data.

How do I get started?
The Windows Azure SDK presents a set of APIs, tools, samples, and Visual Studio
project templates to help bootstrap the development experience. It also offers a
development experience that simulates the cloud infrastructure (fabric and storage
services) on a developer machine. Using the project templates and the development
fabric, it is easy to understand the various APIs and deployment model without
procuring or getting an online account.

After you have ramped up on the development fabric, you can visit http://www.
microsoft.com/windowsazure/account/ and follow the instructions from the
Provisioning Model section for moving the solution to the cloud. The sample lab
exercise at the end of this chapter has a walkthrough of steps to get a solution up and
running on Windows Azure.

SQL Azure
SQL Azure Database is a cloud database service from Microsoft. SQL Azure offers a
scalable and secure cloud-based relational database built on SQL Server technology.
SQL Azure provides the familiar T-SQL programming model and TDS connectivity
support, which from a development perspective, provides the ability to seamlessly
use these databases in the cloud even though the data sits in Microsoft-owned data
centers. These key factors allow an organization to take advantage of their existing
SQL Server skills and capabilities while leveraging new usage paradigms.

Windows Azure Platform Primer

[128]

Usage
SQL Azure is built on three key tenets: manageability, scalability, and developer
agility. We will quickly examine each of these.

SQL Azure provides the high availability of an enterprise data center for only a
fraction of the associated costs. The logical administration is an abstract ion of the
physical; the latter being handled by Microsoft. This means that regular database
administration, logins, users, and roles must be administered by the DBA, but all
physical deployment details are handled by Microsoft. At present, to deploy a new
application on-premise typically requires coordination among multiple groups in
order to purchase servers, provision them, open ports on the firewall, and numerous
other tasks. SQL Azure enables customers to provision new servers and databases
within minutes, which means that you no longer have to worry about hardware
acquisition and setup. This reduces costs by allowing companies to provision just
what they need upfront. The data that you store on SQL Azure is automatically made
redundant, including automatic failover capabilities in the event of a disaster.

Scalability is a key advantage of the cloud model; SQL Azure can meet the needs
of small departmental and large global applications alike. The "pay as you grow"
pricing model enables extra capacity to be spun up for seasonal demand or as
the usage steadily increases. Because SQL Azure runs in global data centers, new
markets can be reached immediately without the typical management and operations
costs. SQL Azure provides the ability to implement multitenancy, which may be of
interest to ISVs providing hosted solutions.

The third point we will address is developer agility. By building SQL Azure on the
T-SQL language, Microsoft allows developers to use their existing knowledge and
skills, and quickly leverage the cloud as an alternative to an on-premise database.
SQL Azure supports Tabular Data Stream (TDS), which is a protocol used for
communication between a client and an on-premise SQL Server. Therefore, a desktop
client application can connect to SQL Azure Database in the same way it connects
to an on-premise SQL Server instance. This means that your code that was built
using ADO.NET, ODBC, or any other technology you chose to work with, can be
easily migrated to the cloud. Secure Sockets Layer (SSL) is required when a client
application connects to the SQL Azure Database TDS endpoint to ensure security.

Chapter 6

[129]

SQL Azure provides a relational database experience in the cloud, which is familiar
to developers and administrators. Building on existing, proven, scalable, on-premise
technology has minimized the deployment burden. The units of deployment in
SQL Azure are servers and databases which are familiar concepts to DBAs
and administrators.

Architecture
SQL Azure provides the following four main layers of abstraction.

1.	 Client layer: This is the layer responsible for communicating with SQL
Azure, and can reside on-premise or be hosted in Windows Azure. We will
discuss deployment options later in this chapter.

2.	 Services layer: This layer is responsible for several critical functions
including billing, metering, and provisioning new servers to meet client
demand. The final responsibility is for routing connections between the
application and physical servers where the data resides. This layer hides the
complexity of numerous physical servers.

3.	 Platform layer: This layer addresses the physical servers and services required
to provide the services of SQL Azure. This consists of many instances of SQL
Server, which are managed and controlled by the SQL Azure fabric to enable
automatic failover, health monitoring of servers, data replication, and more
necessary supporting operational services. Essentially, this layer is responsible
for the management of the SQL Azure software stack.

4.	 Infrastructure layer: Responsibility lies here for the management and
operational support of the physical hardware infrastructure that provides the
SQL Azure computing power.

Windows Azure Platform Primer

[130]

These layers are illustrated in the following diagram:

Provisioning model
SQL Azure possesses a logical hierarchy to enable you to manage your data effectively.
Before using the service, you must register for a Windows Azure platform account at
http://www.microsoft.com/windowsazure/offers. Each account can be associated
with multiple SQL Azure Servers, each of which can contain multiple databases; this
mirrors the on-premise options that enable one company to have multiple SQL Server
instances across multiple servers, each containing multiple databases.

The SQL Azure Server is a logical container and an administration point for a group
of databases. This allows you to specify logins, similar to those in SQL instances. Each
server is given a fully-qualified domain name (FQDN), which can be accessed across
the Internet. The geographic hosting region is also chosen at this level. The SQL Azure
Server is similar in many ways to the on-premise product that provides a familiar
security model based on logins and each server has a master database.

Chapter 6

[131]

As with a traditional SQL Server instance, a SQL Azure Server may include multiple
databases. They can be created by either the CREATE TABLE T-SQL statement or
through the online portal. SQL Azure implements identical security principals
as the on-premise product, based on SQL Server logins, database users, and role
permissions. This enables DBAs to use familiar concepts and proven security models
to protect access to their organization's cloud data. These principals can be modified
by running appropriate T-SQL statements or using the functionality that the SQL
Azure portal provides.

SQL Azure can store terabytes of information. Currently each individual database is
limited to 50 GB in size. Therefore, a scale-out technique such as Data sharding can be
used to scale your application data across multiple independent SQL Azure servers.

Data access and usage patterns
There are two broad approaches for SQL Azure that I have seen with regard to
deployment. The first approach is to deploy only the database-tier within the cloud
and then have the application-tier access the data in the cloud from a remote location
over the Internet. The second approach is to host both the application and the
data-tier within Windows Azure. The second approach enables you to minimize
the network latency between application-tier and data-tier. The first approach
enables an organization's desktop-based application to be migrated to SQL Azure
with minimal disruption. This strategy may be also be useful for services which
are primarily used by workers who constantly require remote access to the system.
For example, consider an expense report system for travelling sales people,
which would allow access to the system's data over the Internet even if the client
application was sitting on the employee's computer desktop. The second approach
enables web applications written in PHP, ASP.NET, or Silverlight to be hosted in
Windows Azure, and utilizes the underlying SQL Azure service with minimum
possible latency.

Windows Azure Platform Primer

[132]

The following diagram illustrates this model:

SQL Azure–what is supported and what is not
Not all of the features from SQL Server 2008 R2 are currently supported in SQL Azure.

Features included at the time of writing are as follows:

•	 Tables, indexes, and views.
•	 Stored procedures.
•	 Triggers.
•	 Constraints.
•	 Table variables, session temp tables (#t).
•	 OLTP.
•	 T-SQL DML statements.
•	 T-SQL DDL statements that do not attempt to modify physical resources.
•	 T-SQL statements that do not attempt to modify physical resources. For

example, file placement on physical drives.
•	 SQL 2008 datatypes that were not deprecated.

Chapter 6

[133]

Features that are not present in this version are as follows:
•	 Distributed transactions
•	 Distributed query
•	 Common Language Runtime (CLR)
•	 Service broker, analysis services, and reporting services
•	 Spatial
•	 Physical server or catalog DDL and views
•	 Any statements or options that manage physical resource usage; for example,

T-SQL commands and resource governor
•	 Server options or trace flags
•	 Datatypes that were deprecated in SQL 2008 release

How do I get started?
Log into the SQL Azure Portal with your Windows Azure platform account
https://sql.azure.com. Then create a test database using the instructions
provided on the portal. In this example, I have completed these steps already and
the database name I have used is SQLAzurePrimer. I will walk you through how to
connect to the server using SQL Management Studio and then how to run an existing
T-SQL CREATE TABLE command in a database that we have created.

To get started, we will use SQL Server Management Studio. Open the application
and change the authentication mode to SQL Server Authentication. Object Explorer
does not function correctly when pointing to the SQL Azure endpoint; so first click
on Cancel on the initial connection screen. Click on New Query to connect from this
connection screen. Then enter the cloud server name which was specified at creation
time. You will need to select Connection Properties and explicitly enter the name of
the database that you wish to connect to; for example, in this case SQLAzurePrimer.

Windows Azure Platform Primer

[134]

You should now be connected to your SQL Azure Server. To create a table you can
use traditional T-SQL syntax as shown in the following screenshot. One important
caveat is that any table you create on SQL Azure must have a clustered index.

As shown in the previous screenshot, SQL Azure provides familiar management
tools (SQL Management Studio) and traditional T-SQL programming language to
enable you to quickly create and migrate existing on-premise applications and take
advantage of the scalability that the cloud provides.

Chapter 6

[135]

Windows Azure Platform AppFabric
Azure AppFabric includes the Service Bus and Access Control components of
Windows Azure platform which enable complex, hybrid, service-based applications
to be hosted in the cloud or connected through the cloud.

Usage
When you want two applications running on different machines (deployed across
firewalls, security domains, and maybe even across enterprises) to communicate, there
are interesting challenges to make this happen. With the advent of cloud applications,
our applications can also span deployments on-premise and across the cloud.
Typically, to access services outside an enterprise deployment, you might choose to
either open a firewall port or use a VPN. Both these infrastructure-related options have
cumbersome challenges for configuration and for ongoing maintenance. The problem
also tends to compound when there are several such applications that require firewall
or VPN changes.

The second problem is authorizing users for certain applications based on their
identity claims. This is simplified in an enterprise using the same Active Directory
(AD), but becomes very challenging when this is across enterprises where each one
has its own identity systems, possibly on different platforms.

Windows Azure Platform AppFabric is a set of services that make it simpler to
securely interoperate applications and services running on different networks
that use different authorization systems. This is done by exposing the on-premise
services through a cloud endpoint that acts as a secure communication relay.
This web-based service helps solve both network infrastructure complexities and
authorization of users across different claims systems.

Architecture
There are two following key pieces to the Windows Azure AppFabric:

1.	 Service Bus.
2.	 Access Control Service.

Windows Server AppFabric consists of hosting and caching
capabilities for on-premise applications, while Windows Azure
AppFabric provides cloud Service Bus and Access Control Services.

Windows Azure Platform Primer

[136]

Service Bus
The Azure Platform AppFabric Service Bus provides secure connectivity between
loosely-coupled services and applications, enabling them to navigate firewalls or
network boundaries.

Consider a customer who has deployed a three-tier solution in the Windows Azure
Platform where web-tier logic is hosted in ASP.NET, business logic is hosted as WCF
services, and relational data is in a SQL Azure database. All of these architecture
components are deployed and run in the Microsoft data center. In most cases, there
is context, business logic, and data communication that needs to flow between the
customer's on-premise systems and the Windows Azure Platform. In addition,
clients (mobile and desktop) running within on-premise deployment also may need
to receive events or process data from the cloud. In order to wire all this together
there is a lot of custom effort required. The Azure AppFabric Service Bus provides an
easy mechanism that customers can leverage to solve this problem.

The Service Bus exposes a cloud-based communication fabric, which ensures that
different systems spanning on-premise applications and the cloud can plug-in and
communicate in a secure manner. It abstracts the various listeners and services into
a unified namespace asset which makes it easy for services to be accessed using
an Internet-accessible URL irrespective of the location. The global hierarchical
namespaces are DNS and transport-independent entities.

The Service Bus can be used to fulfill the following tasks:

•	 Connect disparate applications across firewalls
•	 Connect Windows Azure applications and SQL Azure databases with

existing applications and databases
•	 Bridge on and off-premise applications
•	 Create composite applications

Chapter 6

[137]

Access Control Service
The Access Control Service helps build federated authorization into your
applications and services that extend beyond organizational boundaries.

In the same scenario as above, consider providing application and service access to a
set of partners. Each partner-identity system could be different and possibly running
on a different platform. There might be a need to provide access to each partner for a
set of applications or services.

The Access Control Service help solve the problem by allowing user accounts to
federate the customer's existing identity management system whether based on the
Active Directory service or other standard directory systems, and integrate with
the authorization model defined for your application or service in the cloud. It
exposes a simple declarative model of rules and claims that enable applications
to respond as if the user accounts were managed locally.

The service is a flexible, standards-based service that supports web protocols such
as REST. It also supports multiple credentials, including X.509 certificates. It is a
developer-friendly programming model based on the Microsoft .NET Framework
and Windows Communication Foundation.

Provisioning model
You can provision the Azure AppFabric account and access more information from
https://appfabric.azure.com/.

You can then create a services namespace that represents the namespace for
the Service Bus and Access Control. For example, Contoso Corp might have a
services namespace called contoso‑prod and the following Service Bus connection
string: sb://contoso‑prod.servicebus.windows.net.

Windows Azure Platform Primer

[138]

Project "Dallas"
Microsoft Codename "Dallas" is a new information marketplace allowing
developers and information workers to easily discover, purchase, and manage
premium data subscriptions in the Windows Azure Platform. Additionally, Dallas
APIs allow developers and information workers to consume this premium content
with virtually any platform, application, or business workflow.

You can get more details on this portal from http://www.microsoft.com/
windowsazure/dallas/.

Example solution
A simple example solution of Azure components may go a long way in helping you
grasp the benefits of using the Microsoft cloud to host your application.

Scenario
Consider a training company that delivers tutorials for students using the web.
The training company is moving to the Windows Azure Platform in order to scale
the solution for a larger customer base across the globe. The frontend application
is built using ASP.NET and leverages SQL Azure to store the tutorial sessions and
results. All the tutorials and quizzes can be taken by students via a web browser. In
this lab, we will build a small portion of the lab and focus on the building blocks of
hosting the solution on Windows Azure.

Setup
A project solution AppliedArchitecture.Chapter6.WinAzure has been created in
<Installation Directory>\Chapter6\WindowAzure\Begin folder. You will start
building the solution using the following set of instructions. A completed solution is
also provided in the End folder.

Before beginning the lab, you must have the latest Windows
Azure SDK installed on your development machine. Please
visit http://www.microsoft.com/windowsazure/
windowsazuresdk/ to download the required tools and SDK for
your environment. Also, make sure all the system requirements
and instructions to install any latest hot-fixes have been followed.

These labs have been developed using Visual Studio 2010 and the Windows Azure
Tools for Microsoft Visual Studio 1.2 (June 2010).

Chapter 6

[139]

As part of the installation, you should get the Windows Azure Cloud Services
project template, the development fabric, and the development storage fabric
on your machine. The development fabric simulates the cloud environment by
simulating a hosting environment for the web and worker roles part of the project.
From the task bar, you can start or shut down the development fabric.

If you need to host the solution on Windows Azure then you need to register on the
Windows Azure portal and have an account setup. For this lab, this is not a necessity
and you can run it on the local development fabric until step 13 as follows:

Steps
1.	 Launch Visual Studio.NET 2010 and create a new project. Choose the

Windows Azure Cloud Service project template installed under Cloud.

Windows Azure Platform Primer

[140]

2.	 You will then see a pop up that asks for the various .NET roles that are a
part of your project. For this lab, we will use one ASP.NET web role and
one worker role. Make the selections as shown in the following screenshot
and hit OK.

3.	 You will see three projects as part of your solution—the first project is
used to generate the deployment package. It contains the configuration
and definition that will be used by development fabric and Windows
Azure to correctly deploy the solution. The other two projects are for
the two roles (web role and worker role).

4.	 Open the designer for default.aspx and create a page as shown in
the next screenshot:

Chapter 6

[141]

5.	 Open Default.aspx.cs and at the beginning, add the following set
of using statements:
using Microsoft.WindowsAzure;

using Microsoft.WindowsAzure.ServiceRuntime;

using Microsoft.WindowsAzure.StorageClient;

6.	 In the same file, add the following code:
static string connectionString;

private CloudStorageAccount csa;

private CloudQueueClient qclient;

protected void Page_Load(object sender, EventArgs e)

{

 connectionString =
RoleEnvironment.GetConfigurationSettingValue(
 "DiagnosticsConnectionString");

 // create a handle to the cloud storage or the developer
 fabric based on the connectionString

 csa = CloudStorageAccount.Parse(connectionString);

 //get a handle to using the queue storage

 qclient = csa.CreateCloudQueueClient();

}

protected void Button1_Click(object sender, EventArgs e)

{

 // create a queue for user answers and add the response as a
 message

Windows Azure Platform Primer

[142]

 CloudQueue q = qclient.GetQueueReference("userquizinput");

 bool q_exists = q.CreateIfNotExist();

 string quizanswers = "Q1:" + TextBox1.Text

 + ":Q2:" + TextBox2.Text

 + ":Q3:" + TextBox3.Text;

 q.AddMessage(new CloudQueueMessage(quizanswers));

 Label1.Text = "";

}

protected void Timer1_Tick(object sender, EventArgs e)

{

 //Check if the worker role processed results are available in
 the user output queue

 CloudQueue q = qclient.GetQueueReference("userquizoutput");

 bool q_exists = q.CreateIfNotExist();

 CloudQueueMessage msg = q.GetMessage();

 if (msg != null)

 {

 q.DeleteMessage(msg);

 Label1.Text = "Score: " + msg.AsString + " / 3";

 }

}

7.	 Now click on the WorkerRole1 project and open WorkerRole.cs. At
the beginning add the following set of using statements:
using Microsoft.WindowsAzure;

using Microsoft.WindowsAzure.ServiceRuntime;

using Microsoft.WindowsAzure.StorageClient;

public Hashtable evalHT = new Hashtable(4);

8.	 Modify the OnStart() method to set up the contents for the hashtable.
evalHT.Add("Q1", "9");

evalHT.Add("Q2", "2");

evalHT.Add("Q3", "4");

9.	 In the Run() method, add the following code:
public override void Run()

{

 string connectionString =
RoleEnvironment.GetConfigurationSettingValue(
 "DiagnosticsConnectionString");

Chapter 6

[143]

 CloudStorageAccount csa =
 CloudStorageAccount.Parse(connectionString);

 CloudQueueClient qclient = csa.CreateCloudQueueClient();

 // queue where the user responses are stored

 CloudQueue q_in = qclient.GetQueueReference("userquizinput");

 q_in.CreateIfNotExist();

 // queue to store the user results after evaluation

 CloudQueue q_out =
 qclient.GetQueueReference("userquizoutput");

 q_out.CreateIfNotExist();

 // will upload the user responses as a blob since the queue
 messages are deleted after processing

 CloudBlobClient bclient = csa.CreateCloudBlobClient();

 CloudBlobContainer container =
 bclient.GetContainerReference("quizcontainer");

 container.CreateIfNotExist();

 CloudBlob blob =
 container.GetBlobReference("userresults.txt");

 while (true)

 {

 CloudQueueMessage msg = q_in.GetMessage();

 if (msg != null)

 {

 // process the results. Eval method will use a HashTable
 which has the questions

 // and the right answers.

 string results = Eval(msg.AsString);

 if (results != null)

 {

 q_out.AddMessage(new CloudQueueMessage(results));

 blob.UploadText(String.Format("Received {0} at {1}",
 msg.AsString, DateTime.Now.ToLongTimeString()));

 q_in.DeleteMessage(msg);

 }

 }

 Thread.Sleep(1000);

 }

}

10.	 Add the logic in Eval() method to handle the user response and compute
the score.

Windows Azure Platform Primer

[144]

11.	 Build the project.
12.	 From the first project, if you double-click on the WebRole1 and WorkerRole1

under Roles | Settings you will see that useDevelopmentStorage is set to
True. First, we will test the application on the development fabric.

13.	 Run the application and enter values in the browser window. To confirm
that the application is writing to the storage, click on the Visual Studio
Server Explorer and browse the Windows Azure Storage node. Under
the (Development) node, there should be the container that was created
in this lab. If you click on it, you should then see the userresults.txt file
that was created.

14.	 Next, let's create storage on Windows Azure and run the solution. In this
case, the application will run on your development machine and store the
results in the cloud database. Note that if you don't have a Windows Azure
account, you should skip the next set of steps.

15.	 Create the storage account from https://windows.azure.com/Cloud/
Provisioning/Default.aspx. Prior to this, you should have signed up for a
Windows Azure account. Create a new project or choose an existing one. Then
click on Create a new service. Choose the option to create a storage account. In
the end, your account will look something like the following screenshot:

Chapter 6

[145]

16.	 Copy the storage account name and the key. You will need to modify the
diagnostics connection string setting in Visual Studio using these values.
Refer to the instructions from step 12 onwards to modify it.

17.	 Build and run the application. To confirm that the application is writing to
the Windows Azure storage, click on Server Explorer and now look under
the cloud storage account. Refer to the instructions from step 13.

18.	 We then modify the solution to host it on Windows Azure. Go to https://
windows.azure.com/Cloud/Provisioning/Default.aspx, click on your
project and then click on Create a new service. Choose Hosting service and
give a friendly name to your service, with the publically accessible URL.

Windows Azure Platform Primer

[146]

19.	 Now, you are ready to publish the solution to Windows Azure. Before doing
this, you will need to associate your solution with a certificate and upload
the certificate to the portal. This is done to ensure that the right security is in
place to access your online account. If you don't have a certificate already,
this is how it needs to be created. Right-click on the AppliedArchitecture.
Chapter6.WinAzure project and select Publish. From Credentials, select
Add. This will bring a pop up which will look like the following screenshot:

20.	 From the first drop down shown in the previous screenshot click on Create,
which creates a new certificate on your machine.

21.	 Next, click on Copy the full path of the certificate and then click on
Developer Portal, which will open a browser window. You might need
to run the browser in administrator mode.

22.	 From the developer portal, choose your project name, the correct hosted
service that was created, and then choose the Account tab on the top. Click
on Manage My API certificates. You should see an option to upload the
certificate file from local storage. Click on Browse and paste the certificate
path that was copied in the earlier step. Upload the certificate to the portal.
Then from the Account page, copy the Subscription ID to the clipboard.

23.	 Go back to the Visual Studio window and paste the subscription ID in step
three as shown in the previous screenshot and continue with the publish
process. At the end of this process, your window should look similar to
the next screenshot:

Chapter 6

[147]

24.	 This will ensure that the solution gets to the staging area on your Windows
Azure portal. Test the staging link and see if it works fine. You can then
promote the solution from staging to production and access the friendly
URL from a browser. You should see something like the following output:

Summary
At the time of writing, it was four years since Ray Ozzie first outlined the
"services transformation" occurring within our industry how it would impact
users, developers, and IT. Ray outlined how software-plus-services would enable
customers to protect existing on-premise investments while transitioning to more
cloud-oriented architectures where it made sense.

Windows Azure Platform Primer

[148]

Since then, Microsoft has had great success with Xbox LIVE and launched a suite
of online business productivity messaging and collaboration solutions. It has also
released a public version of Office Web Apps. Now with the Windows Azure Platform,
it enables customers to take existing applications on the Microsoft stack on-premise
and deploy portions of them onto the cloud.

When deciding on the suitability of Windows Azure platform for your problem
domain, we encourage you to make use of the book's decision framework and
benefits explained in this chapter. Here is a brief summary of some of the factors you
should consider:

•	 Potential cost savings (CAPEX and OPEX). For a short to medium term, cost
saving varies from customer to customer, depending on whether they have
spare capacity or not. Over the long term the majority of customers can save
both.

•	 Supportability of preferred development platform in the cloud. For example,
MySQL is not supported, but PHP is.

•	 Visual Studio usage within current environment. If the customer already uses
this, then they will benefit from the integrated .NET, Windows Azure, and
Visual Studio templates which are provided as a web download.

Simple Workflow
We have provided an overview of each of the core technologies that this book will
focus on. We will now evaluate the possible technology solutions for our first pattern
using the decision framework we defined in Chapter 1, Solution Decision Framework.

Use case
Sam Maccoll Financial is a financial services organization based in Perth, Scotland.
They are focused on providing quality individuals and corporate financial services
with a special focus on individual retirement planning. They employ over 3,000
employees in Scotland. The majority of their branches are in Scotland, but they are
slowly expanding into England and parts of Ireland and Wales.

The company's focus on long term buy-and-hold investments has meant that their
retirement and investment products fared comparatively well in the sub-prime
downturn due to limited exposure. This has meant that they have grown rapidly
over the last 18 months and anticipate further growth. They found that many
customers take multiple products from the Sam Maccoll portfolio; they want to
encourage this as it increases "stickiness".

They have had online banking available for checking and savings account products
since their inception, but they now want to add their other products to enable self-
service. Users increasingly expect an available, self-service portal that provides
a consolidated view across all products. Their current Internet Bank application
is coded in ASP and calls ASMX web services from the application tier to access
savings and checking account information. The current portal does not provide a
summary view for checking, savings, and retirement account information as users
have to log into a separate portal to access this information.

Simple Workflow

[150]

Recently, customer complaints have risen and the company wants to take actions
to provide the best possible customer experience. They want to expand and
provide a consistent dashboard for their checking, savings, and retirement account
information. They would like a platform that provides extensibility; specifically,
this requirement is the ability to add new products and accounts to the dashboard
with minimal code changes. A flexible solution will enable the company to provide a
better portal, which in turn will enable customers to get a fast and real-time view of
their financial products, thereby improving customer satisfaction.

Sam Maccoll's major systems run on the Windows platform and have a web service
facade to which they can connect. As a part of this project, they will be upgrading
these to WCF. They do have a sizeable number of .NET developers and own some of
Microsoft's major server platforms like SharePoint server and Exchange Server. The
downstream systems that hold financial information are standardized on SQL Server
backend databases and have the same identical security model; for example, restrict
each customer to have access only to their own data and provide internal employees
with minimum possible information necessary to perform their job.

Sam Maccoll has adopted a "buy versus build" strategy where they prefer using
existing, well-tested frameworks and products with extensibility points instead of
custom-building their own solutions from the ground up. They try to build their
solutions in a very loosely coupled way, using a common open standard wherever
possible to minimize development effort and the ongoing supportability burden that
comes from maintaining custom code. This is relevant in this case as it is expected that
the Internet Bank will need to expand and add additional systems integration as the
number of self-service products increases. As a first step, the Sam Maccoll architecture
team has asked to see a critical comparison of different architectures against their
requirements. In the recommended approach, they would like to see a proof of
concept, which demonstrates a sample dashboard with an end-to-end implementation.

Key requirements
The following are key requirements for a new software solution:

•	 A single dashboard view for all financial service products that
customers have.

•	 An online banking application that is easier to maintain and requires less
custom code.

Chapter 7

[151]

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. The requirements derived from this include:

1.	 The frontend does not have to know where the information comes from; it
should only contact a single point.

2.	 All calls should be made in a service-oriented fashion.
3.	 The system needs to be able to scale to more than one million users over a 24

hour period, which equates to approximately 12 users per second.
4.	 During peak usage, which occurs at the beginning of a day and during the

evening, the maximum number of users is 25 per second.
5.	 Response time is critical for the dashboard page as this is the page used by

90 percent of customers every day. They would like 95 percent of users to
receive a response within three seconds and 99 percent to receive a response
within five seconds.

6.	 The bank would like to have a consistent workflow platform that supports
synchronous, asynchronous, short, and long running workflows.

7.	 The system must provide tracking and monitoring capabilities.
8.	 The system must provide exception management at every stage.
9.	 Initially, the system must address the dashboard requirement, but must

provide the capabilities necessary to add additional services to the Internet
Bank including the following services:

°° Handling transactional workflows. This is a requirement for
Maccoll Bank to implement workflows requiring guaranteed
once-only delivery (for example, payment workflows).

°° Long-running asynchronous workflows. The bank is
considering implementing an end-to-end mortgage
application; in the future, many of the transactions required
in this type of process can be long running and may require
human intervention/approval. The system should be able to
support these capabilities.

°° The system must be capable of providing real-time updates if
payments are implemented on the system.

Simple Workflow

[152]

Pattern description
In this scenario, we need to receive a single inbound request and then, based on the
content in that request call, several backend services gather information about the
customer and then correlate the responses, aggregate them, and finally send them in
a single response message. The web application will then display their personalized
information to them. The logical choice is to use an aggregator, which is responsible
for the collection of requests, performing transformations (if they are required),
and returning the response. All of this also needs to be done in the shortest possible
time, as users are not willing to wait more than three to five seconds for this type of
information. This pattern is commonly referred to as a Scatter-Gather pattern.

In the Scatter-Gather pattern, information is broadcast to multiple recipients then the
responses are re-aggregated back into a single message. An aggregator component is
responsible for receiving the initial request message, broadcasting in an appropriate
format to all the target systems, and finally, combining the results of these individual
but related messages and returning them as a single response so they can be
processed as a whole. Typically in this pattern, the aggregator is implemented as a
separate tier so it can abstract the logic necessary to maintain the overall message
flow and handle any exceptions from any of the systems queried.

This pattern is particularly successful if you follow service-oriented concepts and
require a loosely-coupled, scalable aggregator which can be reused by different
applications across your organization. As the calling application only calls a single
method on the aggregator, the source of the information and how it is extracted is
abstracted from that tier. This enables additional targets or sources of information to
be added with no update required on the client side. The following image depicts a
high-level representation of what this could look like for Maccoll bank. As is evident
from the diagram, separating the aggregator from the consumer of the aggregator
(the Internet Bank) creates a layer of abstraction between them and the endpoints,
if properly designed. It also means that the consumer need not worry about
implementing any logic that is specific to the interface that the backend systems
provide. The aggregator in this example makes calls to the three target systems
in parallel.

Chapter 7

[153]

Factors affecting implementation details
As we have alluded to so far in this chapter, there are many key factors that need
to be taken into consideration when implementing this pattern. Here I am going to
outline the ones that I consider when evaluating solutions for this type of problem
with customers. The factors that I consider are as follows:

1.	 Completeness: This determines when are we ready to publish the
aggregated response message. Whether returning of partial data is useful
or not is perhaps the most important factor to consider when implementing
this pattern. This will depend on the scenario and the client's requirements.
For example, in a price-comparison engine that queries hundreds of sources,
partial data is likely to be valuable and relevant. In cases where results from
multiple sources need to be merged to one coherent response, partial data
may not be useful.

2.	 Aggregation strategy: The strategy you use depends primarily on the
completeness criteria and SLAs that the aggregator needs to meet. The two
most common scenarios I have seen are: Timeout, where the aggregator
waits for a specified length of time for responses and then either returns the
response or an exception to the client: and Wait for all, which is used when
an incomplete order is not meaningful. Typically, it is important that the
aggregator knows the expected number of responses and has appropriate
exception handling capabilities. An exception to this is where the aggregation
concludes based on some external event; for example, the end of a trading day
may conclude the aggregation of the value of all stock trades in that period.

Simple Workflow

[154]

3.	 Aggregation algorithm: Typically, there will be a requirement to sort or
condense the data in some way. Factors affecting this include the size of the
aggregated response that is to be returned and whether the user is interested
in all of the responses or a small subset of the responses. One extreme would
be if there is a single best answer; for example, in an auction site the seller
may only be interested in the highest confirmed bid. If a larger amount of
data is being returned, it may need to be sorted by one or more criteria;
hotels are a good example of this. Factors for consideration include price,
facilities, and distance from local amenities. Whether the data should be
condensed depends on the type of data being returned, numeric data is best
suited for this; for example, when analyzing sales data it is often the volume
and average order value that is of interest. If you decide to condense the data
and only return a subset, you should consider whether you wish to archive
the complete selected data for later evaluation.

4.	 Exception handling and appropriate timeout: How this is implemented
depends on the aggregation strategy algorithm and completeness criteria
for your system. Even in a "wait for all" aggregation strategy, it is unlikely
that waiting indefinitely is the desired behavior, especially in a synchronous
request-response scenario. A timeout and exception handlers should be
implemented so that the aggregator can handle all possible scenarios
including one of the endpoints being unavailable; for example, due to
system outage. If an exception occurs, it must return an appropriate response
message to the client and you should also log this in the appropriate log.

5.	 Monitoring and tracing: This is distinct from exception handling, providing
the ability to monitor and trace the aggregator. If implemented correctly, this
can be used in a number of ways, such as providing average processing times
for the aggregator over a 24 hour period, or to enable system administrators
to determine the progress of in-process operations. This can be provided by
the following platforms—Windows Server AppFabric provides monitoring
capabilities, so does BizTalk Server, which enhances this further with the
option of implementing Business Activity Monitoring (BAM).

6.	 Type of response to return (data format): How you represent the data to
consumers is an important consideration. Using WCF ensures that you make
appropriate use of message contracts, data contracts, and the bindings it
provides so that you get the right trade-off between performance, client-side
operations that are available on the data set, and interoperability.

Chapter 7

[155]

7.	 Number of calls versus expected usage: Returning smaller data sets typically
places less load on the backend systems that are queried, requires smaller
payload size, less CPU overhead, and can provide better performance
as measured by response time. However, if implementing this approach
requires that each user now needs to make multiple calls to the aggregator
component's operations, this may actually place more overhead on the
system and provide a poorer perceived performance. Consider the scenario
where someone logs into their online bank, views their summary page of all
account balances, and then looks at the detailed statement of one account,
for example, their credit card account. There are two succinct operations that
are performed here. Whether all this information should be returned by the
aggregator in a single response or requires two calls, is an important design
decision to make. Typically, this depends on the normal usage of the system
and the customer requirements. In this case, I would typically ask you to see
historical usage or trending data if it was available. One large Internet Bank
that I worked with had a majority of their logged-in customers who would
examine only the dashboard view and then log out. By only returning the
condensed summary data, we were able to minimize the load on the backend
systems and improve response time.

8.	 Correlation: This is handled implicitly in the platform; for example, if you
are calling synchronous two-way services using a request-response port in
BizTalk, you will need to define this yourself based on Message ID or some
other unique value.

9.	 Processing—parallel or sequential: Unless sequential processing is a typical
requirement, an aggregator should perform all the back end calls in parallel
to minimize processing time and latency.

10.	 Durability of in-flight data: You should determine whether the data is
transient or transactional. Normally in a Scatter-Gather pattern, data is
transient; for example, if the user does not receive a response they will simply
retry. This pattern is intended to service, primarily, read requests from
multiple systems. If you are performing a transaction such as a payment,
you might want to consider implementing this as a separate component and
requiring the client to call this. The Internet Bank I mentioned previously
opted to take this approach. They implemented a single orchestration as their
Scatter-Gather aggregator, and then had separate messaging components if
any stock trade or funds transfer was initialized. If transactional processing
semantics are required, you should determine whether the platform supports
this; for example, the BizTalk orchestration engine which guarantees no loss
of messages.

Simple Workflow

[156]

Candidate architectures
We have two viable choices when looking to implement a Scatter-Gather pattern
using an aggregator. One of them is the new Windows Server AppFabric release and
the other is the BizTalk orchestration engine.

Candidate architecture #1–BizTalk Server
BizTalk is Microsoft's Enterprise Integration tool and has a robust messaging and
workflow (orchestration) engine. Maccoll Bank is already, largely a Microsoft-based
technology firm. BizTalk provides full and complete integration with Microsoft and
other heterogeneous technology through its adapter framework. For the purpose of
this analysis, the assumption will be that BizTalk is not already in use within
the organization.

We can take a look at the decision framework as it relates to BizTalk to see if a
BizTalk-based solution is a fit for this use case.

Solution design aspects
The system needs to be capable of processing one million messages over a 24 hour
period. The peak load represents 25 messages per second. When dealing with
requirements like this, it is always good to have a margin of safety in terms of
throughput ceiling. Therefore, this system will require a robust and proven host,
which can scale to meet these throughput requirements and beyond. To implement
this pattern, we would require use of the BizTalk orchestration Engine, which can
easily be used for service aggregation and provide support for correlation. BizTalk
also has the ability to expose an orchestration through a SOAP or WCF endpoint.
Each call to the backend services could be implemented in an inline fashion using a
.NET helper class to instantiate a WCF channel factory or call the service and retrieve
the response. The more traditional approach is to use the logical request/response
ports that BizTalk server provides to do this. Making the calls in an inline fashion
may be beneficial in this scenario as it reduces the number of persistence points
required, and also the round trips via the MessageBox.

From a performance perspective, recent benchmarks by the BizTalk Customer Advisory
Team demonstrated that BizTalk can scale to process tens of millions of messages per
day well-tuned mid-tier hardware. Specifically, for two-way calls they have obtained
over 60 messages per second, for a Scatter-Gather pattern that made five backend
calls. These tests were performed on mid-tier Enterprise hardware, which is available
to the customer. This gives us sufficient margin of safety as it is more than double
our peak requirements. BizTalk Server also provides a comprehensive monitoring
infrastructure with out-of-the-box built-in capabilities and the Business Activity
Monitoring framework, which can be used to provide a customized business-centric
monitoring solution.

Chapter 7

[157]

Solution delivery aspects
Sam Maccoll Financial is predominantly a Microsoft technology based organization.
The assumption here is that they do not already have BizTalk running, therefore if the
decision was made to use this particular product, they would also have to bear the
additional infrastructure and solution support necessary to support a system like this.

Given that they have already made extensive use of other Microsoft technologies,
they have some of the platform skills required. However, BizTalk is quite a
complicated product to understand and maintain, therefore they would need to
invest in training some key staff to establish one or more subject matter experts
(SMEs) within their architect, development, and operations teams. Given that they
currently do not have the in-house expertise and the amount of money that would be
required for training, unless they have planned broader needs and uses of BizTalk, it
would be a negative factor in this use case.

Solution operations aspects
As stated, Sam Maccoll Financial does not have an existing BizTalk implementation.
Therefore, they would need to invest in training their operational team, putting
processes in place to support BizTalk as well as the necessary infrastructure.
Supporting BizTalk requires a rather unique set of skills.

Solution operations are a negative factor in using BizTalk for this use case.

Organizational aspects
Sam Maccoll Financial does not already have an existing BizTalk platform that they
can leverage and they do not have the experience in running and maintaining this
system. Therefore this is a negative factor in using BizTalk for this use case.

Solution evaluation

Design Delivery Operations Organization

Simple Workflow

[158]

Candidate architecture #2–Windows Server
AppFabric
Windows Server AppFabric provides a rich host for WCF and WF applications. The
AppFabric host provides supporting services, tools, and diagnostics to make hosting
and managing services simpler. An AppFabric solution would leverage the existing
capabilities that Sam Maccoll has in .NET. WCF is something they are already
planning to use for their backend services; WF is capable of providing the durable
workflow tier that they need in order to implement the aggregator.

The aggregator could be implemented as a workflow service. In .NET 4.0, workflow
services have been expanded to provide more features and easier integration with
WCF endpoints. WCF supports several out-of-the-box bindings and additional
bindings are available through several sources, including the BizTalk adapter pack.
Standardizing on WCF would therefore allow them to communicate with their existing
backend services (which will move to a WCF interface) and also add connectivity to
other systems that they want to aggregate in the future. Adding additional services
would be done in a visual drag-and-drop design environment, minimizing the
development time. Any required message transformation could be done in custom
activities. The Parallel Actions shape provides the capabilities to call systems in
a synchronous manner and a timeout can be implemented within the shape to
enforce SLAs for maximum client-wait duration. In addition to this, persistence is
provided in the .NET 4.0 Framework through the SQL Workflow Instance Store. This
allows durability requirements to be met if required at a later date, for example, if
transactional data such as payments is to be processed by AppFabric.

Now, we will look at the decision framework and evaluate AppFabric as an
implementation fit for this use case.

Solution design aspects
As stated previously, the throughput requirements equate to a peak load of 25
messages per second. Implementing this pattern would require a single aggregator
workflow service that must fulfill the following tasks:

•	 Expose a request-response endpoint to the client
•	 Call the backend systems, aggregate the responses
•	 Perform any necessary translation
•	 Implement timeouts to ensure that client SLAs were met
•	 Send the aggregated responses back to the original client

Chapter 7

[159]

The backend services that need to be integrated are WCF-based; by adding service
references to these endpoints the logic is automatically encapsulated into a WF
activity, which can be used within the aggregator workflow. Adding service
references is a straightforward process and means that if additional WCF endpoints
need to be added, it can be done quickly and easily. WF also provides the ability
to write code-based activities that can also be used to encapsulate any specific
code, such as code transformation. Any code-based activities can be defined in a
separate assembly, which would allow this functionality to be reused across different
workflows and applications.

By utilizing AppFabric as a host, one can take advantage of the scale-out capabilities
that it provides. This would enable Sam Maccoll Financial to scale-out their
aggregator tier if it became necessary due to the throughput requirements.

Solution delivery aspects
Sam Maccoll Financial develops complex solutions on .NET and they will be moving
their backend services to WCF as a part of their new Internet Bank project. They
already have a large installed base of Windows Server 2008 and have gradually, over
the last six months, begun rolling out Windows Server 2008 R2. AppFabric, available
as a free download, is an extension on top of IIS/WAS and the development team
already has extensive experience in developing web solutions on the .NET platform.

Workflow services will reduce the coding effort required to build this application as
the aggregator can be implemented without lots of custom code. This will speed up
development and reduce testing time compared to what it would be if they were to
fully customize all this logic and hosting capability in C#.

Solution operations aspects
Sam Maccoll Financial already has an existing Windows Server 2008 and R2
infrastructure on which they can deploy AppFabric. Supporting workflow systems
like AppFabric and BizTalk are paradigm shifts for many operations staff so training
will be required.

Organizational aspects
As stated, Sam Maccoll Financial already has an existing Windows infrastructure
that can support AppFabric. While this is a new technology and will require some
training, it is not expected that this will be a significant burden. Therefore, AppFabric
represents a good fit for the organization.

Simple Workflow

[160]

Solution evaluation

Design Delivery Operations Organization

Architecture selection
Let us look at how these candidate architecture technologies stack up against each
other. We can break down the primary benefits and risks of each choice in the
following manner:

BizTalk Server
Benefits

•	 Many out-of-box adapters, which
means connecting to the majority of
systems is only a configuration task

•	 Provides durability throughout with
the MessageBox

•	 Enterprise-class hosting
infrastructure

Risks
•	 Perceived large server footprint
•	 Requirements can be met for free

with AppFabric; therefore, cost is
prohibitive as the customer will
not exploit all the capabilities
that the product provides

AppFabric
Benefits

•	 Lightweight, high throughput
feature, rich host for .NET 4
Windows Workflow

•	 Debugging, monitoring, and
exception handling capabilities

•	 Provides load balancing capabilities
•	 Implicit and explicit correlation

capabilities
•	 Provides persistence through

workflow persistence provider

Risks
•	 New product, which means

accepting inevitable immaturity
and likely changes in tooling
and capabilities in subsequent
versions

Chapter 7

[161]

There are a number of key benefits of AppFabric in this scenario. It meets all the
requirements with no additional cost over and above Windows license fees. It
provides support for the latest version of .NET 4.0 Windows Workflow, which is
not provided today in the current BizTalk Server 2010 release. BizTalk provides a
lot of additional features, which are not necessarily required in this scenario, where
the priority is on processing transient data. These include BAM, the Business Rules
Engine, and the host of adapters it provides. These are valuable features, but at
present this scenario does not require them.

Therefore, in evaluating these options against the problem scenario, Windows
Server AppFabric is the most appropriate choice. Although both BizTalk Server and
AppFabric meet the necessary solution and design aspects, the organization already
has the infrastructure necessary to support AppFabric with no additional licensing
costs. As they have no firm plans to use BizTalk and do not require any of the
additional functionality, such as BAM or complex mapping, AppFabric becomes the
prominent and chosen candidate.

Building the solution
For this solution demonstration, we will implement three WCF backend services
representing the checking, payment, and retirement account systems; these services
will have data contracts, but will be "stubbed out". We will then implement a workflow
service, which will be our aggregator, and also a sample ASP.NET page which will
represent our web tier. A key aspect of this solution architecture is to follow service-
oriented principles and keep our design as loosely coupled as possible. Within the
organization, passing data by a data contract is acceptable; if we were interfacing with
external systems we would implement message transformation.

•	 Internet Bank–ASP.NET page
•	 Aggregator–Windows Server AppFabric workflow
•	 Checking Account–WCF service
•	 Savings Account–WCF service
•	 Retirement Account–WCF service

Simple Workflow

[162]

The following diagram outlines the main components of the solution:

Implementing this solution demonstration will allow us to evaluate AppFabric's
capabilities to implement the Scatter-Gather pattern.

For simplicity purposes, we will not implement a timeout in this workflow.
Chapter 17, Low Latency Request-Reply, covers how to implement this.

Setup
Initial setup is needed to simulate the backend services. For demo purposes, the
backend checking, saving, and retirement account services will be implemented as
separate projects, each containing a single WCF service contract with an arbitrary
operation implementation to return an object representing the account. A separate
data contracts project has been used to define the Customer and Account classes
that we will use to exchange data between different parts of the application. The
DataContract attribute of these classes allows WCF to serialize the objects and pass
them efficiently between different tiers. It is a good practice to deploy common data
contracts and types to separate assemblies so that they can be reused within different
applications in an organization.

Chapter 7

[163]

This project also contains an empty aggregator project, which will host our workflow
service, and a web-tier project, which will host our ASP.NET page. In this solution
demonstration, you will deploy the backend WCF services that have been provided
and then implement a Workflow service that serves as our aggregator. Finally, we
will create an ASP.NET page which will consume our aggregator service.

First, let's begin with the setup. Before starting, you will need to ensure you have the
following software on your machine:

1.	 Visual Studio 2010 (the code that I am writing was created on the RTM
version of this software). For a list of Visual Studio prerequisites see:
http://msdn.microsoft.com/en-us/library/77z6b8tz(VS.100).aspx.

2.	 Windows Server AppFabric and required components:
°° SQL Server 2008/R2—any edition including Express is

supported (at time of writing)
°° Microsoft .NET Framework

3.	 Review the release notes provided. If you have previously installed a beta
version of the framework or AppFabric, there are specific steps that
need to be followed.

4.	 Compatible operating system for Windows Server AppFabric and
Visual Studio 2010.

5.	 The Visual Studio IIS deployment tools require that the IIS 6.0 Manager
Compatibility feature is enabled. Specifically, the IIS 6.0 Management
consoles, IIS metabase, and IIS 6.0 configuration compatibility sub-features
need to be enabled. You will also need to run Visual Studio 2010 as an
administrator for this feature to work.

6.	 Launch Visual Studio .NET 2010 and open the Chapter7.SamMaccollBank.
sln in the <Installation Directory>\Chapter7\Begin\Chapter7.
SamMaccollBank\ folder. This contains the projects to help get started with
building the solution. You should see the following project structure :

Simple Workflow

[164]

7.	 Now you will build and publish each of the following projects:
°° Chapter7.SamMaccollBank.CheckingAccountService

°° Chapter7.SamMaccollBank.RetirementAccountService

°° Chapter7.SamMaccollBank.SavingAccountService

8.	 Let's start with the SamMaccollBank.CheckingAccountService project first
and select Publish. You will see a screen similar to the following screenshot:

9.	 Note that the publishing settings that are set up are as follows:
°° Target location is a virtual directory http://

localhost/<SubProjectName>. So for this project it is
http://localhost/CheckingAccountService.

°° The default physical location of the virtual directory is
configured to C:\inetpub\wwwroot\<SubProjectName>.
You need to change these settings by editing the deployment
configuration, if you wish to different publishing
configuration.

10.	 Click on Publish and then repeat this process for the Chapter7.
SamMaccollBank.RetirementAccountService and Chapter7.
SamMaccollBank.SavingAccountService projects.

11.	 When you now open IIS Manager you should see a screen similar to the
following screenshot:

http://localhost/<SubProjectName

Chapter 7

[165]

12.	 To verify that all services have been installed correctly using the appropriate
Application Pools and are running the right version of the framework
(should be 4.0), click on Default Web Site. Then in the main window
under AppFabric, double-click on Services. This is shown in the following
screenshot:

13.	 In the screen that is displayed, you should see three services as shown in the
following screenshot:

14.	 We will now use the WCFTestClient.exe tool to test RetirementAccount.
WCFTestClient.exe; by default, is included in the following directory with
Visual Studio 2010:
C:\Program Files (x86)\Microsoft Visual Studio 10.0\
Common7\IDE\

Simple Workflow

[166]

15.	Start WCFTestClient.exe. In the window that appears, right-click on My
Service Projects and select Add Service. When prompted for the endpoint,
enter the following link and click on OK:
http://localhost/RetirementAccountService/RetirementAccount.svc

16.	 This should add the RetirementAccountService (the tool references the
interface which is implemented). Click on the GetRetirementAccount()
operation and then enter a customer's details. If you enter New York as the
city name, the CurrentBalance that is returned will be significantly higher
(as per our stub). The following screenshot illustrates this:

17.	 If the operation of the retirement account service is successful, verify the
checking and savings services using the same techniques. Here are the
endpoints you'll need to add as references in the WCF Test Client (assuming
default configuration):
http://localhost/CheckingAccountService/CheckingAccount.svc

http://localhost/SavingAccountService/SavingAccount.svc

http://localhost/CheckingAccountService/CheckingAccount.svc

Chapter 7

[167]

18.	 One thing to note if you view the Endpoints for these services
(one of the AppFabric extensions available in IIS Manager)—you
will see that the endpoints that are exposed (basicHttpBinding,
serviceMetadataHttpGetBinding, and netNamedPipeBinding) are all
default bindings. This is a new feature of WCF 4.0; in previous versions, an
endpoint must be specified in the web.config file on any deployment with
the new framework. If there are no endpoints present, defaults are created. In
a production scenario, we would certainly specify our own, but the defaults
will satisfy our demonstration purposes.

Building the service aggregator workflow
service
So you have successfully deployed the backend WCF services and utilized the WCF
Test Client tool to test and verify the functionality of each of these. We will now
implement the service aggregator workflow service.

1.	 Launch Visual Studio.NET 2010 and open the Chapter7.SamMaccollBank.
sln solution in the <Installation Directory>\Chapter7\Begin\
Chapter7.SamMaccollBank\ directory.

2.	 Expand and open the Chapter7.SamMaccollBank.Aggregator project. You
will see there is a placeholder workflow service Service1.xamlx. Right-click
and rename it to AccountAggregator.xamlx.

Simple Workflow

[168]

3.	 Now right-click on AccountAggregator.xamlx, select View Code, and
update the class name from Service1 to AccountAggregator as shown in
the following screenshot:

4.	 Right-click on References for the Chapter7.SamMaccollBank.Aggregator
project and add a reference to Chapter7.SamMaccollBank.DataContracts.
This will allow you use the data contracts defined within this project when
exchanging data with the backend WCF services.

5.	 Now you need to add a service reference to each of our backend WCF
services. Right-click on the Chapter7.SamMaccollBank.Aggregator
project and select Add Service Reference. The address should be http://
localhost/CheckingAccountService/CheckingAccount.svc and the
namespace should be CheckingAccountService. Your screen should look
similar to the following screenshot. Click on OK to add the reference.

Chapter 7

[169]

6.	 Repeat the previous process, adding service references for the retirement and
savings account services using the following details:

Service Address Namespace
Retirement http://localhost/

retirementaccountservice/

retirementaccount.svc

RetirementAccountService

Savings http://localhost/
SavingAccountService/

SavingAccount.svc

SavingAccountService

7.	 Once you have added these service references and you have rebuilt the
project, open the AccountAggregator.xamlx workflow. In the toolbox, you
should see three new custom activities, which have been generated and can
be used to call the backend services.

8.	 Now we will implement the required logic for the AccountAggregator.
xamlx workflow. Within the workflow, click on the Imports tab and enter the
Chapter7.SamMaccollBank.DataContracts namespace.

9.	 Now drag-and-drop a Sequence shape onto the empty workflow space.
Change the display name from Sequence to AccountAggregatorScope.

Simple Workflow

[170]

10.	 Our service will receive an object of type Customer and will return a sorted
dictionary of type <String, Account >. Because all objects are modeled using
our common base class Account, we will use a single instance of the Systen.
Collections.Generic.SortedDictionary class to return the aggregated
account information to the consumer of the service. To create these two
objects, click on the AccountAggregatorScope and then click on the
Variables tab and create the following two objects. Note that to create both
of these objects, you will need to select Browse for type… when selecting the
variable type.

Name Variable Type Scope Default
currentCustomer Customer

(Browse
Chapter7.
SamMaccollBank.
DataContracts to
select).

AccountAggregator
Scope

accountDictionary Dictionary
<String,
Account>

(Type Dictionary
in the Type
Name to select
the System.
Collections.
Generic.
Dictionary class).

AccountAggregator
Scope

New
Dictionary
(Of String,
Account)

11.	 We will also need variables for the request and response messages to the
three backend services that the account aggregator is consuming. The types
were already created for us when we added the service reference. By clicking
on Browse for type …, you can see them under:
Chapter7.SamMaccollBank.Aggregator.CheckingAccountService

Chapter7.SamMaccollBank.Aggregator.RetirementAccountService

Chapter7.SamMaccollBank.Aggregator.SavingAccountService

12.	 For each of these, there is a request message type which is of the format
<OperationName>Request and a response message type with the format
<OperationName>Response. A sub-set of them is shown in the
following screenshot:

Chapter 7

[171]

13.	 As we have a project reference and access to the data contracts assembly,
our generated classes use these types. This enables us to pass the
currentCustomer object to each of the backend service-request operations
as an input variable. This is one of the advantages of having a shared data
contracts assembly. We can also create some variables of type Account to
represent the responses. Now create the following variables, by clicking on the
AccountAggregatorScope first:

Name Variable Type Scope Default
checkingResponse Account AccountAggregatorScope

savingResponse Account AccountAggregatorScope

retirementResponse Account AccountAggregatorScope

14.	 Your screen should now look like the following screenshot:

Simple Workflow

[172]

15.	 Now add a Parallel shape inside the AccountAggregatorScope and change
its display name to Aggregate Call.

16.	 Within the Aggregate Call shape, add three sequence shapes, which should
be side-by-side. From left to right, call them Checking Account, Saving
Account, and Retirement Account respectively.

17.	 Within the Checking Account shape, add a GetCheckingAccount activity
from the toolbox.

18.	 You now need to define the input parameters. Click on the
GetCheckingAccount activity you just added. In the Properties window
you will see a couple of parameters that need to be configured including
Customer, which allows you to specify the input object for this parameter.
GetCheckingAccountResult allows you to specify where the result of
this service operation call will be stored. We will use the variables that we
defined earlier. Configure them as shown in the following table:

Name Variable Type
Customer currentCustomer

GetCheckingAccountResults checkingResponse

19.	 This should look like the next screenshot:

20.	 Below the GetCheckingAccount activity, add an InvokeMethod activity and
name it Add Checking to Dictionary. Configure the properties as shown in
the next table. Note that to configure the parameters you will need to click
on the ellipsis button.

Property Value

TargetObject accountDictionary

MethodName Add

Parameters

Chapter 7

[173]

Direction Type Value
In String checking

In Account checkingResponse

21.	 Within the Saving Account shape add a GetSavingAccount activity from the
toolbox.

22.	 You now need to define the input parameters. Click on the
GetSavingAccount activity you just added. In the Properties window, you
will see a couple of parameters that need to be configured. Customer allows
you to specify the input object for this parameter. GetSavingAccountResult
allows you to specify where the result of this service operation call will be
stored. We will use the variables that we defined earlier. Configure them as
shown in the table:

Name Variable Type
Customer currentCustomer

GetSavingAccountResults savingResponse

23.	 Below the GetSavingAccount activity add an InvokeMethod activity and
name it as Add Saving to Dictionary. Configure the properties as shown in
the table. Note that to configure the parameters you will need to click on
the ellipsis button.

Property Value

TargetObject accountDictionary	

MethodName Add

Parameters

Direction Type Value
In String saving

In Account savingResponse

24.	 Within the Retirement Account shape add a GetRetirementAccount activity
from the toolbox.

Simple Workflow

[174]

25.	 You now need to define the input parameters. Click on the
GetRetirementAccount activity you just added. In the Properties window
you will see a couple of parameters that need to be configured including
Customer, which allows you to specify the input object for this parameter.
GetRetirementAccountResult allows you to specify where the result of
this service operation call will be stored. We will use the variables that we
defined earlier. Configure them as shown in the following table:

Name Variable Type
Customer currentCustomer

GetRetirementAccountResults retirementResponse

26.	 Below the GetRetirementAccount activity add an InvokeMethod activity
and name it as Add Retirement to Dictionary. Configure the properties as
shown in the following table. Note that to configure the parameters you will
need to click on the ellipsis button.

Property Value

TargetObject accountDictionary

MethodName Add

Parameters

Direction Type Value
In String retirement

In Account retirementResponse

27.	 Your workflow should now look like the following screenshot:

Chapter 7

[175]

28.	 Now drag and drop a ReceiveAndSendReply activity at the top of your
workflow just inside the AccountAggregatorScope. This will add a
new Sequence activity, which contains a Receive and a
SendReplyToReceive activity.

29.	 Create a new variable called handle with the following property:

Name Variable Type Scope Default
handle CorrelationHandle AccountAggregatorScope

30.	 Drag the Receive and SendReplyToReceive activity above the Sequence
activity (but still within the AccountAggregatorScope). Now delete the
empty Sequence activity.

31.	 Drag the SendReplyToReceive activity to the bottom of the workflow and
place it just outside the Aggregate Call parallel activity. Your workflow
should now look like the following screenshot. Note that some of the
sections have been collapsed for visibility.

Simple Workflow

[176]

32.	 Click on the Receive activity and change DisplayName to Receive
Customer Request. Set the following properties, which represent the
WCF service, operation, and parameter information for consumers of this
workflow service. You should follow sensible naming conventions as you
would when defining properties for code-based WCF services:

Property Value
ServiceContractName http://tempuri.org/

IAccountAggregator

OperationName GetCustomerAccounts

33.	 To define the parameter information that the consumer will see, click on the
ellipsis button of the Content property of the Receive Customer Request
activity. Then click the Parameters radio button. Set the following parameter:

Name Type Assign to
Customer Chapter7.SamMaccollBank.

DataContracts.Customer
currentCustomer

34.	 On the Receive Customer Request activity you also need to make sure that
the CanCreateInstance property is checked true. If this is not selected, this
Receive activity will not be able to instantiate the workflow service. Then
click on the ellipsis button for the CorrelationInitializers property. Make
sure that the initializer is set to the handle variable that we defined earlier.

Chapter 7

[177]

35.	 Click on the SendReplyToReceive activity and click on the ellipsis button of
the Content property. Here select the Message radio button and define the
following properties. This defines the return type that consumers of
the workflow service will receive for the operation we defined with the
earlier Receive activity.

Property Value
Message Data accountDictionary

Message Type System.Collections.Generic.Dictionary
<System.String, Chapter7.SamMaccollBank.
DataContracts.Account>

36.	 Your workflow is now complete and should look like the following screenshot:

Simple Workflow

[178]

Testing the service aggregator workflow
service
We will now use the WCF Test Client Tool to test our aggregator service.

1.	 Right-click on the SamMaccollBank.Aggregator project and select Publish
to deploy this to your local IIS server with the following settings:
Virtual directory: http://localhost/Aggregator
Folder location: C:\inetpub\wwwroot\Aggregator

2.	 Open the WCF Test Client tool. Right-click on My Service Projects and select
Add Service. Enter the endpoint as follows:
http://localhost/aggregator/AccountAggregator.xamlx

3.	 Expand the endpoint. Select IAccountAggregator (the Service Contract
name, which is as you configured it in the Receive workflow activity). Select
the GetCustomerAccounts() operation. The WCF Test Client Tool will
allow you to define the Customer input parameter. Define it with the
following values:

Property Value
Address1 Avenue Q
Address2 Somewhere On
City New York
CustomerID 1234

FirstName It Is Great
LastName To Be Me
State New York
Zip 98765

4.	 Click the Invoke button; ignoring all warnings.
5.	 All the three accounts should be returned as a Dictionary object as per the

following screenshot:

Chapter 7

[179]

6.	 To debug the workflow, open the Chapter7.SamMaccollBank.Aggregator
project and open the AccountAggregator.xamlx workflow. Right-click
on the Receive Customer Request activity and select Breakpoint |
Insert Breakpoint. In the Solution Explorer window, right-click on the
AccountAggregator.xamlx file and select Set As Start Page.

7.	 Now that you have set the start page, right-click on the Chapter7.
SamMaccollBank.Aggregator project and select Debug | Start New
Instance. This will automatically open an instance of the WCF Test Client
and will host the AccountAggregator.xamlx workflow in the ASP.NET
development web server that Visual Studio provides.

8.	 Fill in the required customer details for the GetCustomerAccounts()
operation as you did previously in the WCF Test Client Tool then
select Invoke.

Simple Workflow

[180]

9.	 You should now hit the breakpoint you set previously in the workflow. The
screen will look similar to the following screenshot. You can use the standard
controls that you use when debugging C# .NET code; for example, F5 to
continue, F10 to move to the next step, and F11 to move one step backwards.

10.	 Hit F11 repeatedly to walk through the workflow. If you want to spend a
long time debugging, you may wish to increase the timeout values, which
are stored in the web.config file in the project.

Now that you have successfully created the aggregator component and deployed the
backend services, we will make an ASP.NET page to present this data to the users.

Chapter 7

[181]

Consuming the service aggregator workflow
service with ASP.NET
We will now finish the implementation of the ASP.NET page which will take entry
of customer details, consume our service, and then from the returned Dictionary
object, will display those results to the end user.

1.	 You should now open the Chapter7.SamMaccollBank.WebTier project. This
contains a stub implementation of the page we will implement.

2.	 Right-click on Default.aspx and select View in Browser. You should see a
page similar to the following screenshot:

Simple Workflow

[182]

3.	 The page has implemented a number of <asp:TextBox>, <asp:Button>,
and <asp:Label> objects. The <asp:> tag prefix indicates that there is either
local script or server-based dynamic content that needs to be processed;
for example, the user will see the output of this dynamic ASP.NET call
in their browser as standard HTML. You can see this by right-clicking on
the Default.aspx page and selecting View Markup. This is shown in the
following screenshot:

4.	 The getAccountInfo button has an OnClick() method call with
getCustomer_Click specified. If you right-click on the Default.aspx page
and select View Code you can see the empty implementation of this method.
If you view the page in the browser again and click on the Get Account
Details button, you will notice that nothing changes.

Chapter 7

[183]

5.	 Add a reference in this project to Chapter7.SamMaccollBank.
DataContracts. This will allow us to access the Customer and Account
objects that we will need.

6.	 Also, add a service reference to the Account aggregator workflow service you
just deployed and tested. The following are the settings:

Property Value
Address http://localhost/aggregator/accountaggregator.

xamlx

Namespace AccountAggregator

7.	 In the Default.aspx.cs file add the following using statement:
using Chapter7.SamMaccollBank.DataContracts;

8.	 In the Default.aspx.cs file add the following implementation
of getCustomer_Click:
public void getCustomer_Click(object sender, EventArgs e)

{

 //Create the customer object

 Customer customer = new Customer();

 //Get the values from the text boxes and assign them to the
 customer object properties

 customer.FirstName = FirstName.Text;

 customer.LastName = LastName.Text;

 customer.CustomerID = CustomerID.Text;

 customer.Address1 = Address1.Text;

 customer.Address2 = Address2.Text;

 customer.City = City.Text;

 customer.State = State.Text;

 customer.Zip = ZIP.Text;

 //Create the client using the classes generated
 by our Service Reference

 AccountAggregator.AccountAggregatorClient svcClient = new
 AccountAggregator.AccountAggregatorClient();

 AccountAggregator.GetCustomerAccounts request = new
 AccountAggregator.GetCustomerAccounts();

 request.customer = customer;

 //Create dictionary object to store results

 Dictionary<string, DataContracts.Account>
 accountDictionary = svcClient.GetCustomerAccounts(request);

 //Update Text boxes for each of the accounts

Simple Workflow

[184]

 CheckingBalance.Text =
 accountDictionary["checking"].CurrentBalance;

 CheckingID.Text = accountDictionary["checking"].AccountID;

 RetirementID.Text =
 accountDictionary["retirement"].AccountID;

 RetirementBalance.Text =
 accountDictionary["retirement"].CurrentBalance;

 SavingBalance.Text =
 accountDictionary["saving"].CurrentBalance;

 SavingID.Text = accountDictionary["saving"].AccountID;

}

9.	 Right-click again on Default.aspx and select View in Browser. Enter
customer details as was done previously and then click the Get Account
Details button. You should see a page similar to the following:

Chapter 7

[185]

Summary
This solution, using Windows Server AppFabric, WCF, and WF from .NET 4.0,
demonstrated how Workflow services can be used to orchestrate communication
between backend service endpoints with minimal code. There was no need to
tightly couple any of the components and any of them could be reused by other
applications. By utilizing well-defined data contracts, we can follow service-
oriented practices and deploy loosely-coupled applications. The Scatter-Gather
pattern is a powerful pattern to implement if you want to provide a dashboard
view for users from multiple sources. As well as for financial services, this can also
be used to provide a single view about an individual across corporate systems;
payroll, vacation, and so on. AppFabric is a very powerful host and with some of its
additional features such as persistence, it is something you should consider for use
within your organization.

Content-based Routing
Communication between enterprise systems is an essential part of an organization's
architecture. How you decide to link these systems and by which criteria you
distribute data, is something that you will be faced with time and again. In this
chapter, we will look at how to send data messages to the correct target system.

Use case
McKeever Technologies is a medium-sized business, which manufactures latex products.
They have recently grown in size through a series of small acquisitions of competitor
companies. As a result, the organization has a mix of both home-grown applications
and packaged line-of-business systems. They have not standardized their order
management software and still rely on multiple systems, each of which houses details
about a specific set of products. Their developers are primarily oriented towards .NET,
but there are some parts of the organization that have deep Java expertise.

Up until now, orders placed with McKeever Technologies were faxed to a call center
and manually entered into the order system associated with the particular product.
Also, when customers want to discover the state of their submitted order, they are
forced to contact McKeever Technologies' call center and ask an agent to look up
their order. The company realizes that in order to increase efficiency, reduce data
entry error, and improve customer service they must introduce some automation to
their order intake and query processes.

McKeever Technologies receives less than one thousand orders per day and does
not expect this number to increase exponentially in the coming years. Their current
order management systems have either Oracle or SQL Server database backends and
some of them offer SOAP service interfaces for basic operations. These systems do
not all maintain identical service-level agreements; so the solution must be capable of
handling expected or unexpected downtime of the target system gracefully.

Content-based Routing

[188]

The company is looking to stand up a solution in less than four months while not
introducing too much additional management overhead to an already over-worked
IT maintenance organization. The solution is expected to live in production for
quite some time and may only be revisited once a long-term order management
consolidation strategy can be agreed upon.

Key requirements
The following are key requirements for a new software solution:

•	 Accept inbound purchase requests and determine which system to add them
to based on which product has been ordered

•	 Support a moderate transaction volume and reliable delivery to
target systems

•	 Enable communication with diverse systems through either web or
database protocols.

Additional facts
The technology team has acquired the following additional facts that will shape their
proposed solution:

1.	 The number of order management systems may change over time as
consolidation occurs and new acquisitions are made.

2.	 A single customer may have orders on multiple systems. For example, a
paint manufacturer may need different types of latex for different products.
The customers will want a single view of all orders notwithstanding which
order entry system they reside on.

3.	 The lag between entry of an order and its appearance on a customer-facing
website should be minimal (less than one hour).

4.	 All order entry systems are on the same network. There are no occasionally
connected systems (for example, remote locations that may potentially lose
their network connectivity).

5.	 Strategic direction is to convert Oracle systems to Microsoft SQL Server and
Java to C#.

6.	 The new order tracking system does not need to integrate with order
fulfillment or other systems at launch.

7.	 There are priorities for orders (for example, "I need it tomorrow" requires
immediate processing and overnight shipment versus "I need it next week").

8.	 Legacy SQL Servers are SQL Server 2005 or 2008. No SQL Server 2000 systems.

Chapter 8

[189]

Pattern description
The organization is trying to streamline data entry into multiple systems that
perform similar functions. They wish to take in the same data (an order), but
depending on attributes of the order, it should be loaded into one system or another.
This looks like a content-based routing scenario.

What is content-based routing? In essence, it is distributing data based on the
values it contains. You would typically use this sort of pattern when you have a
single capability (for example, ADD ORDER, LOOKUP EMPLOYEE, DELETE RESERVATION)
spread across multiple systems. Unlike a publish/subscribe pattern where multiple
downstream systems may all want the same message (that is, one-to-many), a
content-based routing solution typically helps you steer a message to the system that
can best handle the request.

What is an alternative to implementing this routing pattern? You could define
distinct channels for each downstream system and force the caller to pick the service
they wish to consume. That is, for McKeever Technologies, the customer would call
one service if they were ordering products A, B, or C, and use another service for
products D, E, or F. This clearly fails the SOA rules of abstraction or encapsulation
and forces the clients to maintain knowledge of the backend processing.

The biggest remaining question is what is the best way to implement this pattern. We
would want to make sure that the routing rules were easily maintained and could
be modified without expensive redeployments or refactoring. Our routing criteria
should be rich enough so that we can make decisions based on the content itself,
header information, or metadata about the transmission.

Candidate architectures
A team of technologists have reviewed the use case and drafted three candidate
solutions. Each candidate has its own strengths and weaknesses, but one of them
will prove to be the best choice.

Candidate architecture #1–BizTalk Server
A BizTalk Server-based solution seems to be a good fit for this customer scenario.
McKeever Technologies is primarily looking to automate existing processes and
communicate with existing systems, which are both things that BizTalk does well.

Content-based Routing

[190]

Solution design aspects
We are dealing with a fairly low volume of data (1000 orders per day, and at most,
5000 queries of order status) and small individual message size. A particular order
or status query should be no larger than 5KB in size, meaning that this falls right into
the sweet spot of BizTalk data processing.

This proposed system is responsible for accepting and processing new orders, which
means that reliable delivery is critical. BizTalk can provide built-in quality of service,
guaranteed through its store-and-forward engine, which only discards a message
after it has successfully reached its target endpoint. Our solution also needs to be able
to communicate with multiple line-of-business systems through a mix of web service
and database interfaces. BizTalk Server offers a wide range of database adapters and
natively communicates with SOAP-based endpoints. We are building a new solution
which automates a formerly manual process, so we should be able to design a single
external interface for publishing new orders and querying order status. But, in the case
that we have to support multiple external-facing contracts, BizTalk Server makes it
very easy to transform data to canonical messages at the point of entry into the BizTalk
engine. This means that the internal processing of BizTalk can be built to support a
single data format, while we can still enable slight variations of the message format
to be transmitted by clients. Similarly, each target system will have a distinct data
format that its interface accepts. Our solution will apply all of its business logic on the
canonical data format and transform the data to the target system format at the last
possible moment. This will make it easier to add new downstream systems without
unsettling the existing endpoints and business logic.

From a security standpoint, BizTalk allows us to secure the inbound transport
channel and message payload on its way into the BizTalk engine. If transport
security is adequate for this customer, then an SSL channel can be set up on the
external facing interface.

To assuage any fears of the customer that system or data errors can cause messages
to get lost or "stuck", it is critical to include a proactive exception handling aspect.
BizTalk Server surfaces exceptions through an administrator console. However,
this does not provide a business-friendly way to discover and act upon errors.
Fortunately for us, BizTalk enables us to listen for error messages and either re-route
those messages or spin up an error-specific business process. For this customer, we
could recommend either logging errors to a database where business users leverage
a website interface to view exceptions, or, we can publish messages to a SharePoint
site and build a process around fixing and resubmitting any bad orders. For errors
that require immediate attention, we can also leverage BizTalk's native capability to
send e-mail messages.

Chapter 8

[191]

We know that McKeever Technologies will eventually move to a single order
processing system, so this solution will undergo changes at some point in the future.
Besides this avenue of change, we could also experience changes to the inbound
interfaces, existing downstream systems, or even the contents of the messages
themselves. BizTalk has a strong "versioning" history that allows us to build our
solution in a modular fashion and isolate points of change.

Solution delivery aspects
McKeever Technologies is not currently a BizTalk shop, so they will need to both
acquire and train resources to effectively build their upcoming solution. Their
existing developers, who are already familiar with Microsoft's .NET Framework, can
learn how to construct BizTalk solutions in a fairly short amount of time. The tools to
build BizTalk artifacts are hosted within Visual Studio.NET and BizTalk projects can
reside alongside other .NET project types.

Because the BizTalk-based messaging solution has a design paradigm (for example,
publish/subscribe, distributed components to chain together) different from that
of a typical custom .NET solution, understanding the toolset alone will not ensure
delivery success. If McKeever Technologies decides to bring in a product like BizTalk
Server, it will be vital for them to engage an outside expert to act as a solution
architect and leverage their existing BizTalk experience when building this solution.

Solution operation aspects
Operationally, BizTalk Server provides a mature, rich interface for monitoring
solution health and configuring runtime behavior. There is also a strong underlying
set of APIs that can be leveraged using scripting technologies so that automation of
routine tasks can be performed.

While BizTalk Server has tools that will feel familiar to a Windows Administrator,
the BizTalk architecture is unique in the Microsoft ecosystem and will require
explicit staff training.

Organizational aspects
BizTalk Server would be a new technology for McKeever technologies so definitely
there is risk involved. It becomes necessary to purchase licenses, provision
environments, train users, and hire experts. While these are all responsible things to
do when new technology is introduced, this does mean a fairly high startup cost to
implement this solution.

Content-based Routing

[192]

That said, McKeever technologies will need a long term integration solution as
they attempt to modernize their IT landscape and be in better shape to absorb
new organizations and quickly integrate with new systems. An investment in an
enterprise service bus like BizTalk Server will pay long term dividends even if
initial costs are high.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2–SQL Server 2008 R2
It is possible to build a solution that meets our needs based on SQL Server tools.

Solution design aspects
The basis of this solution is a master repository that stores order information. Orders
arrive into McKeever Technologies and get placed in the new Orders database. Each
order is then routed to the appropriate target system based on routing rules.

If the target system is SQL Server-based then we can use SQL Server Service Broker
(SSSB) to transmit data and return acknowledgements to the master repository.
When the target system has an underlying Oracle database store, then we will
leverage SQL Server Integration Services (SSIS) to move data between the systems.

There is a lot of value in establishing this master data repository. This will allow
a single customer to enter an order for multiple products delivered from multiple
legacy systems and remove the potential for improper routing of orders based on
human error. Also, this makes it possible for orders to be queried from a single
location instead of federating the query across multiple order management systems.

The major issue is that there will be significant data lag using SSIS and master data
management tools. These systems work as batch processes, not as real-time systems.
While you can make SSIS run in near real time, it requires extensive customization.

Chapter 8

[193]

Solution delivery aspects
This solution would make heavy use of McKeever's existing SQL Server expertise.
The team is well-versed in building bulk data movement jobs in SSIS, but has only
limited experience authoring SSSB conversations.

Solution operation aspects
The main advantage SSIS and SSSB offer is that they are provided with McKeever's
existing SQL Server licenses, avoiding the additional cost of BizTalk licenses.
McKeever does have staff with on-hand experience in using SQL Server and working
with SQL statements.

Organizational aspects
While McKeever Technologies hopes to move to a centralized order management
system at some point in the future, they are currently more focused on extracting
value from existing systems. Creating a master order management repository
now moves the organization in the right direction, but there are significantly more
hurdles to overcome when gaining the consensus needed to make this happen. In a
federated model, each order management system can still receive and process orders
using existing procedures. We may be creating more work by trying to define and
synchronize a master data store. Also, this solution requires more effort when the
company inevitably absorbs new companies and tries to integrate their
processing systems.

Solution evaluation

Design Delivery Operations Organization

Content-based Routing

[194]

Candidate architecture #3–WCF and Windows
Server AppFabric
One of the key new features of WCF in .NET 4.0 is the ability to do content-based
routing. This means that data inside the message can be used by the WCF framework
at runtime to determine what service endpoint needs to be called. Furthermore, if
nothing matches the content pattern for routing, a default endpoint can be selected
to handle these requests. Routing in .NET 4.0 is accomplished using the Routing
service, which can be configured and hosted inside IIS. Using Windows Server
AppFabric for hosting this service will ensure the best possible execution with all the
AppFabric benefits (See Chapter 3, Windows Server AppFabric Primer, for more
specific details).

Let us walk though the decision framework to see if .NET 4.0 and Windows Server
AppFabric would work for this scenario.

Solution design aspects
Solving this problem with .NET 4.0 and Windows Server AppFabric would have two
parts. The first part would handle the order messages and the second part would
handle order status messages. Both parts would follow similar patterns.

•	 Order Messages: Order messages will be routed to one of the backend
systems using .NET 4.0 content-based routing. Each backend system will be
fronted by a workflow service. This service will ensure guaranteed delivery
of the message to the backend system and allow for various communication
protocols between the frontend and various backend systems. Routing occurs
based on the product being ordered, and product identifiers below a certain
value go to one system, while product identifiers above a certain value go to
the other. This means we can use the routing service to inspect the message
content and choose which Workflow service to invoke.

•	 Order Status: Order status query messages will be routed to one of the
backend systems using .NET 4.0 content-based routing. Each backend
system will be fronted by a WCF service to allow for various communication
protocols to these systems. If one of the backend systems is down, the WCF
service will return a "not available" message to the client.

Solution delivery aspects
McKeever Technologies currently has a staff of .NET developers and has experience
in developing complex solutions with .NET technologies and managing them in
production. While learning some of the new features of .NET 4.0 and Windows
Server AppFabric would take a little bit of time, this is something the existing
resources should be able to handle.

Chapter 8

[195]

The timeline is less than four months and given the preceding solution outline, this
should be easily accomplished in that timeline.

Solution operation aspects
McKeever Technologies currently has a large block of .NET developers and hence
has Information Technology support resources in this area. Further solutions based
on .NET, should be easily supported by the existing operations staff. Windows
Server AppFabric is a new technology for the McKeever administrators, but the
integration with IIS 7 makes Windows Server AppFabric fairly easy to understand.

Given the relatively low load of the system—1,000 orders a day—performance of the
system is not a huge concern. That said, a Windows Server AppFabric-based solution
has extensive control on persistence points and tracking, to allow or only a minimal
amount of performance impact.

As the solution is based on dealing with orders, it must be able to receive orders and to
retry in the event that the backend system is down. Windows Server AppFabric would
need a frontend network load balancer to ensure a highly available service endpoint,
in addition to a clustered SQL data store for the persistence information. Both of these
would be available for a client with existing .NET applications in production.

Organizational aspects
Organizationally, McKeever Technologies will be taking a slight risk by using
Windows Server AppFabric simply because it is a new technology and employees
will need to learn it. But to that point, investing now in the new technology will
ensure a solution that will be around for years to come. This drives towards a key
point related to maintainability and the need for this solution to survive many years.

Solution evaluation

Design Delivery Operations Organization

Content-based Routing

[196]

Architecture selection
Each solution has benefits and risks that we can use to make a final decision.

BizTalk Server
Benefits

•	 Out-of-the-box adapters to multiple
target formats, including SQL Server
and Oracle database

•	 Reliable messaging infrastructure
which can guarantee message
delivery

•	 Architecture built to support routing
messages based on content

Risks
•	 Lack of in-house expertise

will require extensive training
of both the developer and
operations staff

•	 Would take longer to build and
deploy solutions that are purely
code-based

SQL Server
Benefits

•	 Leverages in-house expertise with
SQL Server tools

•	 Encourages master data approach
which provides a unified frontend to
clients

•	 Can natively communicate with our
target database formats

Risks
•	 Incapable of processing real-

time data requests
•	 Different implementation

techniques based on the type of
target database

WCF and Windows Server AppFabric
Benefits

•	 Rapid, lightweight way to build
service-oriented solutions

•	 Built-in capability to do content-
based routing in real time

•	 Includes durable messaging to
promote guaranteed delivery

•	 Leverages existing .NET skill sets

Risks
•	 New technologies at the

development (.NET 4.0) and
operations tier (Windows Server
AppFabric)

•	 Routing rules are relatively
primitive and won't support
complex conditions

With all that said, the best choice for this scenario is the Windows Server AppFabric
solution. This provides us a lightweight means to rapidly deploy a flexible and
easy-to-maintain content-based routing solution that still gives us the quality of
service that an enterprise solution such as BizTalk Server provides. In the long term,
this organization will seriously consider investing in an enterprise service bus, but
for this scenario, a Windows Server AppFabric host can meet the current and future
needs of the company.

Chapter 8

[197]

Building the solution
In this section, we will actually construct a working version of the proposed solution,
which will leverage core components of .NET 4.0 (WCF and Windows Workflow
Services) as well as the AppFabric extensions to IIS. Note that for this demonstration,
we are only building the first aspect, which accepts orders, not the second piece
which supports querying the status of a given order. The flow of the solution looks
like the following:

An order comes from a customer to a single endpoint at McKeever Technologies.
This single endpoint then routes the order based on the content of the order (that is,
the value of the Product ID element). The router sends requests to WCF Workflow
Services, which can provide us durability and persistence when talking to the
backend order management systems. If an order system is down, then the workflow
gets suspended and will be capable of resuming once the system comes back online.

Setup
First, create a new database named Chapter8Db in your local SQL Server 2008 instance.
Then locate the database script named Chapter8Db.sql in the folder <Installation
Directory>\Chapter8\Begin and install the tables into your new database. When
completed, your configuration should look like the following screenshot:

Content-based Routing

[198]

Next, open Chapter8.sln in the <Installation Directory>\Chapter8\Begin
folder. In this base solution you will find two WCF services that represent the
interfaces in front of the two order management systems at McKeever Technologies.
Build the services and then add both of them as applications in IIS. Make sure you
select the .NET 4.0 application pool.

If you choose, you can test these services using the WCF Test Client application
that comes with the .NET 4.0 framework. If your service is configured correctly, an
invocation of the service should result in a new record in the corresponding SQL
Server database table.

Building the workflow
Now that our base infrastructure is in place, we can construct the workflows that will
execute these order system services.

1.	 Launch Visual Studio.NET 2010 and open Chapter8.sln in the
<Installation Directory>\Chapter8\Begin folder. You should see
two WCF services.

2.	 We now must add a new workflow project to the solution. Recall that this
workflow will sit in front of our order service and give us a stronger quality
of service, thanks to the persistence capability of AppFabric. In Visual Studio
.NET 2010, go to File and select New Project.

Chapter 8

[199]

3.	 Select the WCF Workflow Service project type under the Workflow category
and add the project named Chapter8.SystemA.WorkflowService to our
existing solution.

4.	 This project is now part of the solution and has a default workflow named
Service1.xamlx.

Content-based Routing

[200]

5.	 Rename the Service1.xamlx file to SystemAOrderService.xamlx from
within the Solution Explorer. Also click the whitespace within the workflow
to change both the ConfigurationName and Name properties.

6.	 We want all our service-fronting workflows to have the same external-facing
contract interface so that we can effectively abstract the underlying service
contracts or implementation nuances. Hence, we add a new class file named
OrderDataContract.cs to this workflow project. This class will hold the
data contracts defining the input and output for all workflows that sit in front
of order systems.

7.	 Make sure the project itself has a reference to System.Runtime.
Serialization, and then add a using statement for System.Runtime.
Serialization to the top of the OrderDataContract.cs class. Add the
following code to the class:
namespace Chapter8.WorkflowService
{
 [DataContract(
 Namespace = "http://Chapter8/OrderManagement/DataContract")]
 public class NewOrderRequest
 {
 [DataMember]
 public string OrderId { get; set; }
 [DataMember]
 public string ProductId { get; set; }
 [DataMember]
 public string CustomerId { get; set; }
 [DataMember]
 public int Quantity { get; set; }
 [DataMember]
 public DateTime DateOrdered { get; set; }
 [DataMember]
 public string ContractId { get; set; }
 [DataMember]
 public string Status { get; set; }
 }

Chapter 8

[201]

 [DataContract(
 Namespace = "http://Chapter8/OrderManagement/DataContract")]

 public class OrderAckResponse

 {

 [DataMember]

 public string OrderId { get; set; }

 }

}

8.	 Open the SystemAOrderService.xamlx workflow, click on the top
ReceiveRequest shape, and set the following property values. Note that we
will use the same values for all workflows so that the external-facing contract
of each workflow appears the same.

Property Value
DisplayName ReceiveOrderRequest
OperationName SubmitOrder
ServiceContractName {http://Chapter8/OrderManagement}

ServiceContract

Action http://Chapter8/OrderManagement/SubmitOrder

CanCreateInstance True

9.	 Click the Variables tab at the bottom of the workflow designer to show the
default variables added to the workflow.

Content-based Routing

[202]

10.	 Delete the data variable.
11.	 Create a new variable named OrderReq. For the variable type, choose

Browse for Types and choose the NewOrderRequest type we defined
earlier in the OrderDataContract.cs class.

12.	 Add another variable named OrderResp and choose the previously defined
OrderAckResponse .NET type.

13.	 The OrderReq variable gets instantiated by the initial request, but we need
to explicitly set the OrderResp variable. In the Default column within the
Variables window, set the value to New OrderAckResponse().

14.	 Set a proper variable for the initial receive shape by clicking on the
ReceiveOrderRequest shape and click on the View Message link. Choose
OrderReq as the Message data and set the type as NewOrderRequest.

15.	 Now we do the same for the response shape. Select the SendResponse shape
and click on the View Message link. Choose the OrderResp variable as the
Message data and OrderAckResponse as the Message type.

Chapter 8

[203]

16.	 Keep the SendResponse shape selected and set its PersistBeforeSend
property to On. This forces a persistence point into our workflow and
ensures that any errors that occur later in the workflow will lead to a
suspended/resumable instance.

17.	 We can test our workflow service prior to completing it. We want to populate
our service response object, so go to the Workflow toolbox, view the
Primitives tab, and drag an Assign shape in between the existing receive
and send shapes.

18.	 In the Assign shape, set the To value to OrderResp.OrderID and the right
side of the equation to System.GUID.NewGUID().ToString(). This sets the
single attribute of our response node to a unique tracking value.

19.	 Build the workflow and if no errors exist, right-click the
SystemAOrderSystem.xamlx workflow in the Solution Explorer and choose
View in Browser.

Content-based Routing

[204]

20.	 Open the WCF Test Client application and point it to our Workflow Service
endpoint. Double-click the Submit Order operation, select the datatype in
the Value column, and enter test input data. Click on the Invoke button and
observe the response object coming back with a GUID value returned in the
OrderId attribute.

21.	 Now we're ready to complete our workflow by actually calling our target
WCF service that adds a record to the database table. Return to Visual Studio.
NET, right-click the Chapter8.SystemA.WorkflowService project, and
choose Add Service Reference.

22.	 Point to the service located at http://localhost/Chapter8.
OrderManagement.SystemA/OrderIntakeService.svc and type
SystemASvcRef as the namespace.

23.	 If the reference is successfully added and the project is rebuilt, then a new
custom workflow activity should be added to the workflow toolbox. This
activity encapsulates everything needed to invoke our system service.

24.	 Add variables to the workflow that represent the input and output of our
system service. Create a variable named ServiceRequest and browse for the
type Order, which can be found under the service reference. Set the default
value of this variable to New Order().

Chapter 8

[205]

25.	 Create another variable named ServiceResponse and pick the same order
object but do not set a default value.

26.	 Drag the custom AddOrder activity from the workflow toolbox and place it
after the SendResponse shape. This sits after the workflow service response
is sent, so that if errors occur the caller will not be impacted.

27.	 Click the AddOrder shape and set its NewOrder property to the
ServiceRequest variable and its AddOrderResult property to
ServiceResponse.

28.	 Now we have to populate the service request object. Drag a Sequence
workflow activity from the Control Flow tab and drop it immediately before
the AddOrder shape.

29.	 Add six Assign shapes to the Sequence and set each activity's left and right
fields as follows:

Left Side Right Side
ServiceRequest.ContractId OrderReq.ContractId

ServiceRequest.CustomerId OrderReq.CustomerId

ServiceRequest.DateOrdered OrderReq.DateOrdered

ServiceRequest.OrderNumber OrderResp.OrderId

ServiceRequest.ProductId OrderReq.ProductId

ServiceRequest.Quantity OrderReq.Quantity

Note that the OrderNumber value of the request is set using the OrderResp
object as that is the one to which we added the GUID value.

Content-based Routing

[206]

30.	 Our final workflow should look like the following:

31.	 Open the web.config file for the Workflow Service and add the following
configuration entry within the System.ServiceModel node. This makes our
Workflow Service leverage the WsHttpBinding by default and eliminates
issues that arise when using the BasicHttpBinding with the WCF Routing
Service.
<protocolMapping>
 <add scheme="http" binding="wsHttpBinding"/>
 </protocolMapping>

32.	 Build the workflow and switch to IIS. Add a new application named
Chapter8.SystemA.WorkflowService to the Default Web Site. Choose
a .NET 4.0 application pool and set the path to the location of your
service project.

33.	 Right-click the Default Web Site, choose Edit Bindings, and ensure that
net.pipe is listed there.

Chapter 8

[207]

34.	 Visit the Advanced Settings of the default website and make sure that
net.pipe is part of the Enabled Protocols. This is needed to support the
AppFabric persistence functionality.

35.	 Right-click the new WF service application and choose Manage WCF and
WF Services and select Configure. On the Workflow Persistence tab, make
sure that SQL Server Workflow Persistence is selected. On the Workflow
Host Management tab, confirm that the Action on Unhandled Exception is
set to Abandon and suspend.

Content-based Routing

[208]

36.	 Now we can employ the WCF Test Client to call our workflow service and
see a record show up in our database table.

37.	 In order to flex the true value-add of the AppFabric hosting environment,
turn off the Chapter8.OrderManagement.SystemA application by
right-clicking it, selecting the Manage WCF and WF Services menu item,
and choosing Stop Application. This effectively simulates failure of our
downstream order system making it unavailable and offline.

38.	 Call the workflow service again and if you view the AppFabric dashboard,
you should see a Suspended message.

39.	 Confirm this fact by viewing your database table and noticing that no new
record has been added.

40.	 Restart the Chapter8.OrderManagement.SystemA application to simulate
our order system coming back online.

41.	 Click on the suspended message in the AppFabric console and choose to
resume the suspended instance.

Chapter 8

[209]

42.	 The instance is resumed and a new record should be added to the
OrderManagement_SystemA database table.

43.	 Build one more workflow that is nearly identical to this first one, except that
it consumes the system B order system service.

44.	 Create a new WCF Workflow Service application named Chapter8.SystemB.
WorkflowService and add it to the existing Visual Studio.NET solution.

45.	 Rename the physical xamlx file to SystemBOrderService.xamlx and set
both the Configuration Name and Name property of the workflow to
SystemBOrderService.

46.	 Copy the OrderDataContract.cs file from the Chapter8.SystemA.
WorkflowService project to the Chapter8.SystemB.WorkflowService
project. Recall that we want all workflows of the front order systems to have
the same external-facing data contract.

47.	 On the ReceiveRequest shape, change the name to ReceiveOrderRequest,
Operation Name to SubmitOrder, ServiceContractName to {http://
Chapter8/OrderManagement}ServiceContract, and Action to http://
Chapter8/OrderManagement/SubmitOrder. These values are identical to
our previous workflow and help us have the same external-facing contract
definition for both services.

48.	 Add a service reference to http://localhost/Chapter8.OrderManagement.
SystemB/OrderService.svc and set the namespace to SystemBSvcRef.

49.	 Create the variables for the workflow service request and response as well as
the system B service request and response.

50.	 Add an Assign shape between the workflow service request and response
and set the response's OrderId value equal to System.GUID.NewGUID().
ToString().

51.	 After building the project, drag the new custom AddNewOrder workflow
activity below the service response shape, set its input and output attributes
to the previously defined variables, and finally set its six properties using a
sequence of Assign shapes.

Content-based Routing

[210]

52.	 Exactly like the earlier Workflow Service, add the following configuration
block to the web.config file:
<protocolMapping>

 <add scheme="http" binding="wsHttpBinding"/>

 </protocolMapping>

53.	 Compile the service and create an IIS web application named Chapter8.
SystemB.WorkflowService and configure it identically to the Chapter8.
SystemA.WorkflowService application.

54.	 Test the service by calling it via the WCF test client and confirming that your
data is added to the OrderManagement_SystemB database table.

Adding a router service
Now we have two independent workflow services that sit in front of our order
systems. We don't want our customers to know which service to call, but rather,
we want them to send all their orders to one place and expect that McKeever
Technologies will figure out a way to enter data accurately into appropriate systems.

WCF 4.0 introduces a pre-built routing service that uses configuration values to
direct messages to endpoints, based on a variety of criteria. We can route messages
based on their content, SOAP action, custom headers, and more. There's a great
amount of flexibility we can add to our solution architecture when rich capabilities
like message routing are simply baked into a framework.

The steps for building this part of the solution are as follows:

1.	 In Visual Studio.NET, add a new website of type WCF Service to our existing
solution and name it Chapter8.OrderManagement.RoutingService.

Chapter 8

[211]

2.	 Delete the code files (interface and service implementation). We are
leveraging the native WCF 4.0 Routing Service and therefore don't need
any code files.

3.	 Add a project reference to System.ServiceModel.Routing.
4.	 Rename the .svc file to OrderRouter.svc.
5.	 Open the service file (.svc) and change its Service attribute reference to

System.ServiceModel.Routing.RoutingService,System.ServiceModel.
Routing, version=4.0.0.0, Culture=neutral,PublicKeyToken=31bf385
6ad364e35. This tells the WCF service to use the built-in router service for its
implementation.

6.	 We need to set up the web.config file to implement the routing capability.
within the System.Configuration tags, add the <client> node. This holds
the endpoint definition for both of our order system workflow services. Note
that we don't identify the contract definition because this project technically
has no idea about our service or its contract implementation.
<client>
 <endpoint
 address="http://localhost/Chapter8.SystemA.WorkflowService/
 SystemAOrderService.xamlx" binding="wsHttpBinding"
 bindingConfiguration="" contract="*" name="OrderSystemA" />
 <endpoint
 address="http://localhost/Chapter8.SystemB.WorkflowService/
 SystemBOrderService.xamlx" binding="wsHttpBinding"
 bindingConfiguration="" contract="*" name="OrderSystemB" />
</client>

7.	 We create the new WCF 4.0 routing section. We first have a namespace
table, which allows us to create an alias to the namespace of our data
message. Next, we have a filters collection where we have XPath filters
for each order system and which sends messages with ProductId < 100 to
system A and ProductId > 100 to system B. Finally, we have a filter table,
which links the filters and determines which endpoint to use when the
filter is satisfied.
<routing>
 <namespaceTable>
 <add prefix="custom"
 namespace="http://Chapter8/OrderManagement/DataContract"/>
 </namespaceTable>
 <filters>
 <filter name="SystemAFilter" filterType="XPath"
 filterData="//custom:ProductId < '100'"/>

Content-based Routing

[212]

 <filter name="SystemBFilter" filterType="XPath"
 filterData="//custom:ProductId > '100'"/>

 </filters>

 <filterTables>

 <filterTable name="filterTable1">

 <add filterName="SystemAFilter" endpointName="OrderSystemA"
 priority="0"/>

 <add filterName="SystemBFilter" endpointName="OrderSystemB"
 priority="0"/>

 </filterTable>

 </filterTables>

</routing>

8.	 We add a service and behavior entry. The behavior refers to the new routing
capability, and the service points to the framework-provided routing service.
<services>

 <service behaviorConfiguration="RoutingBehavior" name="System.
ServiceModel.Routing.RoutingService">

 <endpoint address="" binding="wsHttpBinding"
bindingConfiguration=""

 name="RouterEndpoint1" contract="System.ServiceModel.
Routing.IRequestReplyRouter" />

 </service>

 </services>

 <behaviors>

 <serviceBehaviors>

 <behavior name="RoutingBehavior">

 <routing routeOnHeadersOnly="false"
filterTableName="filterTable1" />

 <serviceDebug includeExceptionDetailInFaults="true"/>

 <serviceMetadata httpGetEnabled="true" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

9.	 Build the application and create a new IIS application named Chapter8.
OrderManagement.RoutingService, which runs in the .NET 4.0
application pool.

10.	 We can browse directly to the service address to see if our service is online:
http://localhost/Chapter8.OrderManagement.RoutingService/
OrderRouter.svc.

Chapter 8

[213]

11.	 If you browse the WSDL of this service, you will notice that it has a generic
request-reply message exchange pattern. Clients of this service should point
to a well-defined WSDL that outlines the specific service and data contracts.

12.	 To test this service, create a new console application and add a service
reference to either of our previously built workflow services. Add the
following code to the Main operation:
static void Main(string[] args)

{

 Console.WriteLine("Starting Up Service Client ...");

 Console.WriteLine("Enter a product to order");

 string prodId = Console.ReadLine();

 OrderSvcRef.ServiceContractClient c = new
 OrderSvcRef.ServiceContractClient
 ("wsHttpBinding_
 ServiceContract");

 OrderSvcRef.NewOrderRequest request = new
 OrderSvcRef.
NewOrderRequest();

 request.ContractId = "001";

 request.CustomerId = "333";

 request.DateOrdered = DateTime.Now;

 request.ProductId = prodId;

 request.Quantity = 10;

 request.Status = "Submitted";

 OrderSvcRef.OrderAckResponse response = c.SubmitOrder(request);

 Console.WriteLine("Response is " + response.OrderId);

 Console.ReadLine();

}

13.	 Open the app.config file for the project and find the endpoint added by
the service reference. Remove the URL to the specific workflow service and
replace it with the generic router address. http://localhost/Chapter8.
OrderManagement.RoutingService/OrderRouter.svc.

14.	 Build and run the console application and if you enter a product ID below
100, you should see a record added to the SystemA database table, and
conversely, if you enter a product ID greater than 100, you should find a new
record in the SystemB database table.

Content-based Routing

[214]

Summary
In this chapter, we saw how to route messages to specific backend systems. If
this fictitious organization already had an in-house BizTalk Server and a staff of
highly trained developers, then we would have chosen to go down a different path.
Moreover, the .NET 4.0 Routing Service offers a compelling way to hide downstream
endpoints and apply simple content-distribution filters.

Publish-Subscribe
In this chapter, we will look at how to broadcast information to a variety of parties
using the Microsoft technology best suited for this task.

Use case
LarHans Pharmaceuticals is a multinational health sciences company with a special
focus on the human immune system. Because of the nature of their work, the
company is subject to regulations set by governmental agencies around the world
(for example, the Food and Drug Administration in the United States, or the National
Institute for Health and Clinical Excellence in Great Britain). As a result, LarHans
Pharmaceuticals has strict guidelines to which it adheres regarding product safety
and alerting the public to changes in a product's safety profile.

When there is a product recall or change to the product's label, the LarHans team must
send immediate communication to at least the following three distinct locations:

1.	 Federal agencies: A notice of product recall or label change must be
distributed to governmental bodies within a very short period of time. This
interval may differ by country, but companies face harsh fines if they delay
communication of this information.

2.	 Internal sales teams: The LarHans sales force must be notified in a timely
fashion to make sure they provide physicians with the latest and most
accurate information regarding product safety.

3.	 Public website news feed: LarHans conveys product changes to the
consumer population through their public-facing website.

Publish-Subscribe

[216]

Today, when such an event occurs, the LarHans organization fills out a series of
paper forms for faxing to each governmental body, crafts and sends out e-mail
messages to various sales organizations, and creates a work order with the website
ownership team. This process has proved to be arduous and LarHans has nearly
missed several filing deadlines because of the frantic coordination of resources and
document preparation.

Moving forward, LarHans Pharmaceuticals wants to establish an automated process
which allows a single label change or product recall event to trigger notification to
all interested parties. Each of the three communication targets outlined before has
some sort of technology interfaces which can be leveraged by this solution. Each
governmental body has either a secure web service interface or FTP drop-spot which
can receive these safety notifications. The directors of the company sales teams
are willing to create e-mail templates that get populated by an automated solution
instead of hand-crafting these customized notices. Finally, the team that runs the
public website is willing to open a channel to the news feed database so that entries
can be added without requiring website administrator interaction.

Because of the sensitivity and impact of this solution, the LarHans team has placed
high importance on quality of service and guaranteed delivery. They want to make
sure that they do not lose or skip notices to government agencies, or open themselves
up to fines or penalties for failure to notify the public.

LarHans Pharmaceuticals is primarily a Microsoft shop with existing investments
in SQL Server, SharePoint Server, BizTalk Server, and .NET development. While
LarHans has entered early-adopter programs for some Microsoft applications, they
typically wait until a service pack is released prior to deploying new software into
the environment.

Key requirements
The following are key requirements for a new software solution:

•	 Automated distribution of the same message to multiple interested parties.
•	 Guaranteed delivery of messages or at minimum, notice of failed delivery.
•	 Flexibility to support future data recipients without reengineering

the process.

Chapter 9

[217]

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following facts:

1.	 This is a low volume solution that puts a higher priority on reliable delivery
than raw throughput or load.

2.	 The solution must initially address the three known types of notification
targets (government agencies, sales team, and public website), but there may
be future internal and external parties interested in acting upon product
recall or label change events.

3.	 There are multiple sales teams and not all teams receive e-mails for all events.
Product recalls or label changes may be specific to a particular country (or set
of countries), so we need the flexibility to notify only the teams that are
directly impacted.

4.	 Similarly, not all governmental agencies need all notifications. Based on the
scale of the recall or label change (and at whose request that change was
made), only some agencies require notification.

5.	 While there is an industry-standard data format for these notifications,
not all countries currently accept data in this format. This means that a
transformation strategy is needed.

6.	 If a transmission to a governmental agency fails, the LarHans team must
proactively be notified so that they can perform manual publication within
the legally required time window.

Pattern description
Unlike the content-based routing scenario which targets a single destination system,
this scenario calls for the broadcast of an event to a variable number of interested
consumers. Similar to the content-based routing pattern where the publisher of a
request does not know who is consuming the information, the publish/subscribe
pattern relies on decoupling the sender from the receiver(s). In a publish/subscribe
scenario, a set of subscribers asynchronously receive a message in parallel to each
other and independently act upon it. This pattern is very successful if you need a
very loosely coupled, scalable way to funnel data to multiple recipients.

Ideally, a message broker in a publish/subscribe solution can provide a robust
quality of service to the subscribers. This typically means that the broker can notify
subscribers in parallel (versus sequentially), perform in a store-and-forward fashion
so that downstream unavailability does not result in lost messages, and filter out
messages that are not of any interest to a particular subscriber.

Publish-Subscribe

[218]

There are a few things to look out for when building a publish/subscribe solution.
First, the ability to tap into the data stream is a blessing and a curse as well. On one
hand, this is good as it allows for easy troubleshooting by adding another subscriber
who does not impact any other part of the solution. On the negative side, this means
that someone (with proper access) could siphon-off very sensitive information.
Hence, thorough design and governance is needed to make sure that sensitive data
is not freely stored and accessible by curious third parties. Another downside of this
pattern is the inability for the publisher of the message to have any real assurance
that its message was consumed properly. Loose coupling can be great for scalability
and maintainability, but you sacrifice the capacity for publishers to receive accurate
acknowledgements. The publish/subscribe broker needs to take ownership of the
delivery guarantees that make up a service-level agreement because the publisher
has no knowledge about the subscribers and their system availability.

Candidate architectures
There are three ways that we decided to tackle this problem. Each possible solution
brings with it some benefits and risks.

Candidate architecture #1–Azure Platform
AppFabric Service Bus
Although going with a Windows Azure solution may be a bit aggressive for a more
traditional IT shop, there are strategic benefits to seriously considering a publish/
subscribe solution hosted in the cloud.

Solution design aspects
While not dealing with an enormous load, the solution does require us to deal with
a varied usage profile and bursts of changes. A cloud-based infrastructure is an asset
when we have inconsistent load and wish to design a solution that scales up or down
based on our needs. Likewise, our clients need to pay only for their data usage (in the
Azure Platform AppFabric case, we pay per connection and for the data transfer per
GB) instead of setting up hardware sized for the peaks, but idle during the valleys.

Chapter 9

[219]

One of the unique aspects of the Azure Platform AppFabric candidate proposal is the
ability to decentralize the attachment of listeners from the router administrator. The
NetEventRelayBinding, special to Azure Platform AppFabric, provides a way to do a
one-way multicast to multiple applications listening on a single endpoint. Each listener
attaches itself to the endpoint by starting up their listener service and providing proper
authentication to the Azure Platform AppFabric Service Bus. This technique provides
a very loosely-coupled routing infrastructure where data consumers can be rapidly
provisioned and decommissioned without the intervention of a central administrator.
The downside of this mechanism is that it becomes difficult to do impact analysis and
have a central console which manages the data flow.

So how do we achieve reliable delivery and automatic retries in the cloud? The
Azure Platform AppFabric Service Bus has the concept of buffers, which act as
temporary queues with limited lifetime and message storage. However, these buffers
are not meant to be a durable store that sits between cloud routers and service
listeners. Instead, we need to build reliability into our listener service which fronts
the backend systems. This means using a durable queue/repository that can store
messages in the event that the target system is unavailable or overloaded.

The Azure Platform AppFabric Service Bus is a light-weight router and thus does not
have a rich set of services for data quality or error handling. However, it can leverage
the Access Control Service to cleanly and efficiently allow both internal and external
parties to authenticate to our service. Exception handling and auditing will need to
be managed at the individual service layer.

Solution delivery aspects
Windows Azure solutions are built using a mix of Visual Studio.NET components
and Azure administration interfaces. Developers who are comfortable building WCF
projects in Visual Studio can easily extend their toolbox to new Azure WCF bindings
and configuration options.

Solution operations aspects
A cloud-based solution means that we have fewer physical infrastructure concerns
and can establish confidence in the ability of the shared cloud platform to perform
predictably under load and properly failover in the event of a node malfunction.

The tooling for Azure administrators is still relatively immature, so solution
administrators will have to establish their own best practices and governance for
monitoring our active router and performing effective troubleshooting.

Publish-Subscribe

[220]

Organizational aspects
LarHans Pharmaceuticals prefers to invest in existing products and minimize their
exposure to fully custom-built solutions. While components of the Windows Azure
AppFabric solution would require custom code, the core routing infrastructure,
security, and usage patterns are already well defined and ready-to-use.

The organization can use their existing .NET resources to build AppFabric projects
and they can be confident that such a solution can be very rapidly provisioned and
deployed. However, there is clearly a risk involved in going with a new offering and
LarHans would have to deem the strategic value in moving to the cloud and whether
it is worth accepting newfound operational and solution risk.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2–BizTalk Server
A loosely-coupled service bus like BizTalk Server can offer unique quality-of-service
capabilities that closely match the needs of this customer.

Solution design aspects
A BizTalk solution offers us a few key benefits during the design of this solution.
First and foremost, we get an enterprise-scale infrastructure built around
reliable delivery. When we send a product recall message to the Food and Drug
Administration (FDA) in the United States, we can configure our solution to retry the
message in the case of failure, and proactively alert an administrator if a defined set
of retries is exhausted. The BizTalk architecture assures us that messages get queued
in the case of downstream unavailability. If this customer could tolerate a solution
where a message may get missed (for example, a stock ticker message where another
will be coming along later), then non-durable solutions could be a fit. However, for
"can't miss" solutions that demand delivery guarantees, BizTalk is the leading choice.

Chapter 9

[221]

We have a need to talk to existing web services, databases, and e-mail systems.
BizTalk has a series of adapters that make connectivity to these protocols a code-
generation and configuration task, instead of a custom coding or scripting task.
Each message target may accept a different data format for product recalls and
label changes, so here we would want to leverage BizTalk's mapping capability to
transform data at the point of delivery.

Extensibility and loose coupling is also important to this solution. We may have
new or changed endpoints in the future and want to be able to isolate those changes.
BizTalk's publish and subscribe architecture means that a single publisher can
stay decoupled from all the independent consumers of a message. There will be
zero impact on other subscribers if an existing subscriber needs to be modified (for
example, URI address change, alteration to the endpoint's message format) or a
completely new subscriber is added. If this solution needs a very fluid, dynamic
set of subscribers that change with regularity, then the Azure cloud offering might
be a prime choice. However, if you have a static set of endpoints and find central
management and impact analysis to be critical, then BizTalk is the right fit.

Finally, we see that our customer has a very time-sensitive transmission schedule
so failures need to be captured and handled in a consistent, actionable manner. Our
BizTalk solution could actually subscribe on any exceptions thrown by the delivery
service and initiate an additional process or simply notify a group or a person where
manual delivery of a message may be needed to beat the required deadlines. BizTalk
has a number of options for handling exceptions and after a reasonable number of
automated attempts (through configurable retry intervals), alternative options (for
example, fax) are required.

Solution delivery aspects
The LarHans IT organization has existing skill in working with BizTalk Server,
so they have a pool of available developers who can design and implement this
solution. These developers currently store their BizTalk artifacts in an open-source
Subversion source control repository. While BizTalk Server is not installed on all
developer workstations, the organization invests in project-specific virtual machines
that are accessed by developers through remote access.

Publish-Subscribe

[222]

Solution operations aspects
The time-sensitive nature of the data being distributed by this solution means that a
robust and rich monitoring environment is needed. Also, we need to have confidence
in the infrastructure being able to support this new application on top of all the
existing solutions deployed into the BizTalk environment. Our solution has a small
load requirement, but the project stakeholders want to make sure that bursts of data
from other applications do not block the server from processing our mission-critical
messages. BizTalk provides built-in load balancing and we can even segment our
solution into its own processing space to help ensure that it maintains a high priority
for processing.

BizTalk Server comes with a dashboard for monitoring and interacting with failed
messages. This allows us to proactively resume failed transmissions or delete them if
the data ends up being submitted manually to its targets.

Organizational aspects
The BizTalk-based proposal can serve as a long term solution that meets the needs of
LarHans Pharmaceuticals for years to come. It has built-in extensibility points which
allow us to add, change, or remove endpoints without impacting the rest of the
solution. This solution leverages the existing organizational investment in BizTalk
and the developers who are trained in the tool. It also complies with their preference
to configure applications, instead of building them, and gives them the assurance of
reliability necessary to transition a critical manual process to an automated one.

Solution evaluation

Design Delivery Operations Organization

Chapter 9

[223]

Candidate architecture #3–SQL Service
Broker
This scenario requires a shift of perspective for most database professionals as
we tend to think of publish-subscribe scenarios as replication issues. Here we are
pushing data to diverse routes. These routes are controlled by folks outside of
the control of LarHans Pharmaceuticals. It is difficult enough to maintain route
definitions when the enterprise controls the start and end points. The loss of end-
point control and diversity of potential protocols and message formats will create
administrative issues that we will need to account for in any application.

SQL Server Service Broker is, at first glance, a potentially useful technology match
nonetheless. We are faced with a situation where specific data must be sent with
guaranteed delivery in a specific format, to a specific service. That is a sweet spot for
Service Broker.

Solution design aspects
It is rare that one has a "pure-play" solution in any SQL Server-based technology.
This pattern is particularly illustrative of that fact. We require to set up the following:

1.	 User interfaces to allow input of data (for example, input of details around
product recalls).

2.	 Some form of notification to relevant sales staff (for example, SQL Mail to
pre-defined relevant teams stored in tables).

3.	 Service Broker conversations with multiple end points, each of which
requires different data, in different formats, and potentially different
languages. These would include:

°° Transmissions to regulatory agencies
°° External publication to the consumer and medical

communities

All of this would require a fairly complex and custom solution and is not something
easily achieved in SQL Server tooling.

Publish-Subscribe

[224]

Solution delivery aspects
One of the key requirements of this application will be to handle CYA (Call Your
Attorney) situations. Failure to notify can give rise to expensive regulatory and, at
least in the United States, tort liabilities. We need to track precisely when, where, and
how each message was sent and when (or whether) it was delivered. Moreover, if
the message is not delivered within some pre-determined time frame, it must allow
for human intervention. For example, we may want to account for a central FTP
server being unavailable to receive messages for some time period. Beyond that time
period, we may want someone to call the regulatory agency in question or fall back
to alternative methods of delivery.

A second key consideration will be the long term evolution of data that must be sent.
We are dealing with multiple regulatory authorities in multiple countries, each of
which will have their own required format for the data. Of course, each will want
the data in their own national language. As a part of this solution; therefore, we will
need a user interface and database schema that will provide the flexibility for doing
the following tasks:

1.	 Capturing the data that is required at present.
2.	 Sending the data in an appropriate format.
3.	 Allowing edits to that format; hopefully, with minimal IT involvement.
4.	 Storing that data in a way that allows someone to reconstruct what was sent,

the format used, and when it was sent.

Using SSSB presents advantages for these requirements. First, both physical and
logical access to this data is always under the control of the enterprise. It is also very
easy to relate the data that we leverage in this application with data stored in other
enterprise databases. For example, recall data can be linked to quality control, order
fulfillment, and manufacturing systems to make it easier to obtain a complete view
of the recall process or to respond to any request for further information sent in by
regulatory agencies. We can even place this ability into the hands of power users
using PowerPivot technologies available in Office 2010.

The LarHans team has extensive SQL Server development experience and could
build this solution, but they are relatively new with SQL Server Broker and typically
do not construct SQL solutions that communicate with non-database endpoints.

Chapter 9

[225]

Solution operations aspects
For this application, IT can never be a bottleneck for getting data out the door.
It is not only regulatory and liability issues dictating this requirement, sufficient
though they may be. Real harm, even death can come to real people from ingesting
potentially defective medications. As architects, we should be very well aware of the
real world consequences our designs may impose on people.

Once in operation, this application must allow business users to get appropriate
data, at the appropriate place, in correct format, and in a timely manner. Formats,
data, and potentially even the definition of "timely" can change rapidly over time
and according to a given situation. The application must be flexible enough to
handle such requirements and allow for easy updates to formats, business rules,
and the data stored in the application to meet these requirements. So in addition to
the creation of an SSSB application, we would also need to provide user frontends
to handle these requirements or an IT staff person whose primary role would be to
create and send these messages via SSSB.

Organizational aspects
As noted earlier, LarHans Pharmaceuticals prefers to invest in existing products and
minimize their exposure to completely custom-built solutions. An SSSB solution
will require significant investment in custom code or a DBA dedicated primarily to
operating this system.

Solution evaluation

Design Delivery Operations Organization

Publish-Subscribe

[226]

Architecture selection
Let us look at how these candidate architecture technologies stack up when
evaluating the risks and benefits of each.

Azure Platform AppFabric Service Bus
Benefits

•	 Rapid provisioning of endpoint
listeners

•	 No new hardware needed to host
message routing function

•	 Internet-based host allows for secure
access for internal and external
endpoints

Risks
•	 No durable component to

store failed messages
•	 No centralized management

of data subscribers
•	 Requires endpoints to be able

to integrate with Service Bus

BizTalk Server
Benefits

•	 Reliable messaging engine that can
ensure delivery of critical data

•	 Diverse set of adapters that can
natively communicate with all the
protocols our client demands

•	 Loosely-coupled infrastructure that
allows us to add/remove/change
endpoints in a non-disruptive
fashion

Risks
•	 BizTalk Server does have

an out-of-the-box business
dashboard for monitoring
and resubmitting failed
messages

•	 Requires additional modules
or code

SQL Server
Benefits

•	 Reliable delivery of data between
database systems

•	 In-house staff to develop and
maintain the solution

Risks
•	 Requires significant coding

effort to communicate with
diverse endpoints

•	 Solution would have to
be made up of multiple
components weaved together

•	 Non-trivial effort to modify
or create new endpoints

In evaluating these options against the problem scenario, BizTalk Server is the most
appropriate choice. BizTalk provides us a quality-of-service guarantee through
persistent storage, automatic retry, and flexible exception handling mechanisms. We
also have a static set of endpoints so the powerful, distributed Azure model is not
needed here.

Chapter 9

[227]

Building the solution
For this solution demonstration, we will publish to two of the desired endpoints: the
FDA web service endpoint and the LarHans website database endpoint. This gives
us a chance to evaluate BizTalk's capabilities to communicate with standard web
services as well as database platforms.

One key aspect of our solution architecture is to keep our design as loosely coupled
as possible. In our case, that means embracing canonical formats when performing
routing operations instead of polluting our message processing rules with endpoint-
specific formats. Also, we want our endpoints to be as distinct and separate from
each other as possible, so that changes to one endpoint have little to no impact on
existing message consumers.

Setup
We start off by creating a new database named Chapter9 on a SQL Server 2008
instance. After the database is created, execute the database script Chapter9.sql in
the folder <Installation Directory>\Chapter9\Begin and install the tables into
your new database. This is the database which holds the public website's company
news feed entries.

Now open the Chapter9.sln Visual Studio.NET solution located in the
<Installation Directory>\Chapter9\Begin folder. In this solution, you will find
a single WCF service which represents the destination endpoint of the FDA. Build
the solution and add this to IIS 7.0 as a new web application named Chapter9.FDA.
SafetySubmissionService. Testing this service via the WCF Test Client application
should yield a result consisting of a tracking number and timestamp.

Publish-Subscribe

[228]

Building the canonical solution artifacts
Now that our foundational database and services are in place, we are ready to
develop the canonical solution components which are independent of any particular
downstream system.

1.	 Launch Visual Studio.NET 2010 and open the Chapter9.sln in the
<Installation Directory>\Chapter9\Begin folder. You will find a single
WCF service already in place.

2.	 The first BizTalk project is needed to hold enterprise canonical schemas.
Specifically, these are the standard schemas representing a product recall
notice, label change, and government agency response. Regardless of the
data formats required by various subscribers, our core messaging solution
only routes canonical formats.

3.	 Right-click the solution in Visual Studio.NET and choose Add|New Project.
Choose the BizTalk Projects category and select Empty BizTalk Server
Project. Name the project Chapter9.LarHans.SafetySchemas.

4.	 Immediately after creating the BizTalk project, right-click the project, select
Properties, highlight the Signing tab, and set the strong name key. If you
do not have an existing strong name key to reference, select New... from the
Choosing a strong name key drop down box. In the Create Strong Name
Key dialog box, set the parameters for your new key. Finally, switch to the
Deployment tab and set the Application Name to Chapter9.

5.	 Now, right-click the BizTalk project again and choose Add|New
Item. Under the Schema Files category, select Schema and name it
ProductRecall_XML.xsd.

Chapter 9

[229]

6.	 Click on the topmost node in the schema named <Schema> and look in the
Visual Studio.NET Properties window for the Target Namespace property.
Change this value to http://Chapter9.LarHans.SafetySchemas. Use this
value as the target namespace for all canonical schemas in this project.

7.	 Define the schema so that it looks like the following screenshot. Note that
all elements are of a string data type, and the Lot and Incident nodes are
marked with an unbounded maximum occurrence in their Visual Studio
properties window. This is because our recall notice may impact multiple lots
of the product, and we can have any number of reported incidents associated
with a recall.

Publish-Subscribe

[230]

8.	 Next, right-click the BizTalk project and add another schema named
ProductLabelChange_XML.xsd. Rename its target namespace to the same
value designated in step 6. This schema should look like the following
screenshot. Note that all elements are of type string and there are no
changes to the default node properties.

9.	 Now we need a schema to hold the acknowledgements that we receive from
each government agency. Right-click the BizTalk project and add an XML
schema named AgencySubmissionAcknowledgement_XML.xsd. Once again,
alter its target namespace as per the value we identified earlier. This schema
has a simple structure that looks like the following screenshot:

10.	 We want to have the option to filter our subscriptions for product recalls and
label changes based on some of the values in the messages. Specifically, a
particular subscriber may only wish to receive notifications for a particular
product or for those affecting a specific country. To do content-based routing
in BizTalk solutions, we need to promote message nodes via property
schemas. Right-click the BizTalk project and add a new Property Schema
named SafetyRouting_PropSchema.xsd.

11.	 This schema has two nodes for country and product.

Chapter 9

[231]

12.	 We now need to get our product recall and label change schemas to point to
this property schema, so that we can perform content-based routing on each
message type. Open the ProductRecall_XML.xsd schema, right-click the
root <Schema> node, select Promotions|Show Promotions. On the Property
Fields tab, choose to Add a Property Schema to the list by pointing to our
previously built property schema. Then create the relationship between
the Country and Product nodes, and their corresponding property
schema nodes.

13.	 Save the schema and then repeat this same process on the
ProductLabelChange_XML.xsd schema. At this point, you should have a
BizTalk project with four complete schemas in it.

Publish-Subscribe

[232]

Building the FDA subscriber solution artifacts
With our canonical objects in place, we can now define subscriber-specific artifacts.
Each subscriber will have its own BizTalk project to hold any schemas and maps
associated with that particular endpoint. Why not bunch them together in a single
project? We want a clear separation of concern and allow isolation of change. If
one subscriber changes their endpoint schema, why should it impact all the other
unchanged endpoints as well? By separating the projects, we establish a very
modular solution with a clear extension pattern.

1.	 In Visual Studio.NET, right-click the solution and choose to add a new
project. Select the Empty BizTalk Project type and name the project
Chapter9.LarHans.FDA.SafetySubscriber. Upon project creation,
right-click the project, select Properties, and set the strong name key and
Application Name to Chapter9.

2.	 This project will hold the artifacts needed to communicate with the FDA
service. Right-click the project and choose Add|Add Generated Items.
Select the Consume WCF Service menu option.

3.	 The BizTalk WCF Service Consuming Wizard launches, and when
prompted, choose the Metadata Exchange Endpoint as the service source.

4.	 For the metadata URL, use the URL of the service you installed into IIS
during the earlier solution setup (for example, http://localhost/
Chapter9.FDA.SafetySubmissionService/SafetySubmission.svc).

Chapter 9

[233]

5.	 Keep the default namespace on the next wizard page and click on the
Import button.

6.	 This wizard creates a host of artifacts in our BizTalk project including an
orchestration, multiple schemas, and two send port binding files.

7.	 Now we need to add three maps to this project:
°° Canonical product recall format to FDA input format
°° Canonical label change format to FDA input format
°° FDA acknowledgement format to canonical government

agency response format

8.	 Right-click the BizTalk project and choose to add a reference. Point to the
SafetySchemas project so that we can access the canonical schemas
defined there.

Publish-Subscribe

[234]

9.	 Then right-click the BizTalk project and choose Add|New Item. Select the
Map type and name it ProductRecall_To_FDASafetyIssue.btm.

10.	 On the left-hand side of the map, click on the Open Source Schema link and
go to the References folder and open the SafetySchemas project. Find and
select the ProductRecall message.

11.	 Click on the Open Destination Schema on the right-hand side of the map
and navigate directly to the Schemas node to pick the SafetySubmission_
chapter8_FDA_Contract type. Select the PostSafetyIssue type from the
pop-up box. The map should now look like the following screenshot:

12.	 Create the mapping as follows:

Source Destination Comments
Product ProductName
ImpactedLots/Lot LotNumbers/string
Hazard Hazard
Incidents/Incident/Date

Incidents/Incident/Description

Incidents/string Use Concatenate functoid
to combine source nodes

ConsumerContact ConsumerContact
isLabelChange =
false

Hard code Value property

isProductRecall = true Hard code Value property
Manufacturer =
LarHans

Hard code Value property

Chapter 9

[235]

13.	 It is a good practice to test the map when you complete it, so create an
instance file of the source schema (by right-clicking the ProductRecall
schema in the SafetySchemas project and choosing Generate Instance) and
set it as an input to this map via the Properties window. Then right-click the
map and select Test Map. Your output should show all the relevant source
data values in the destination schema.

14.	 Next, we need the map from the label change to the FDA safety issue.
Right-click the BizTalk project and select Add|New Item. Select the Map
type and name the map LabelChange_To_FDASafetyIssue.btm.

15.	 For the source schema, navigate to the References node and select the
ProductLabelChange type in the SafetySchemas project.

16.	 The destination schema should be the same SafetySubmission_chapter8_
FDA_Contract type as before. Select the PostSafetyIssue type from the
pop up box.

17.	 Create the mapping as follows:

Source Destination Comments
Product ProductName
ContactDetails ConsumerContact
ChangeDetails/Change Type ChangeType
ChangeDetails/ReasonForChange DriverForChange

Publish-Subscribe

[236]

Source Destination Comments
ChangeDetails/ContentChanged ChangeMadeDescription

isLabelChange = true Hard coded Value
property

isProductRecall = false Hard coded Value
property

Manufacturer = LarHans Hard coded Value
property

18.	 Create an instance of the LabelChange message and confirm that the map
functions as expected.

19.	 Our final map for this subscriber is for the acknowledgement message.
Add a new item to the BizTalk project, choose the Map type, and name it
FDAResponse_To_AgencySubmissionAcknowledgement.btm.

20.	 Select the SafetySubmission_chapter8_FDA_Contract type for the
Schema Source and choose the PostSafetyIssueResponse from the pop-up
window. For the destinations schema, navigate to the References node and
choose the AgencySubmissionAcknowledgement schema.

21.	 Create the mapping as follows:

Source Destination Comments
AckID AckIdentifier
Timestamp Timestamp

Agency = FDA Hard code Value property
Country = USA Hard code Value property

Chapter 9

[237]

22.	 Build all the projects currently in the Visual Studio.NET solution.
23.	 Right-click Chapter9.LarHans.SafetySchemas and select Deploy. This will

load this project's assembly into the GAC and register the relevant artifacts
with the BizTalk Server.

24.	 Once that operation succeeds, right-click and deploy the Chapter9.
LarHans.FDA.SafetySubscriber project.

25.	 Open the BizTalk Administration Console and navigate to the Chapter9
application. You can confirm the deployment by opening a node such as
Maps to confirm that our recently built maps appear.

Configuring the data publisher and FDA
subscriber
Now that we have the schemas and maps necessary for exchanging information with
the FDA, we can construct the actual endpoint which transmits data. Before we can
build the endpoints that consume the data, we have to set up the publisher which
pulls data into the BizTalk Server. To do that, we configure a BizTalk receive port
and location that publish the product recall and label change messages into the bus.
In this scenario, we are picking up the canonical message via a BizTalk FILE adapter.
Note that we could very well use any adapter to send messages into the BizTalk bus.

1.	 Within the BizTalk Administration Console, navigate to the Chapter9
application and create a new, one-way receive port named Chapter9.
LarHans.ReceiveProductRecall.

2.	 Add a receive location named Chapter9.LarHans.ReceiveProductRecall.
FILE to our new receive port.

3.	 Select the FILE adapter and set the Receive Pipeline to the XMLReceive
pipeline. Choose to configure the FILE adapter and set the polling location to
<Installation Directory>\Chapter9\Filedrop\PickupRecall folder.

Publish-Subscribe

[238]

4.	 Create another one-way receive port named Chapter9.LarHans.
ReceiveProductLabelChange with a FILE receive location named Chapter9.
LarHans.ReceiveProductLabelChange.FILE. That receive location
should also use the XMLReceive pipeline and point to the <Installation
Directory>\Chapter9\Filedrop\PickupLabelChange directory.

5.	 Note that there are no maps here as we receive the canonical format and
do not want to translate to subscriber formats until the latest point
possible (send ports).

Now that our publisher is built, we can move on and create the FDA subscriber. We
do this by building BizTalk send ports and pointing them to our destination
web service.

1.	 We could create the FDA send port manually, but when we referenced
the WCF service in our Visual Studio.NET project, the BizTalk wizard
auto-generated the binding files for the send port. Right-click the BizTalk
application in the Administration Console and choose Import and
then Bindings.

2.	 Navigate to the Chapter9.LarHans.FDA.SafetySubscriber project and
choose the SafetySubmission_Custom.BindingInfo.xml file.

3.	 When the import is complete, you can go to the Send Ports folder in the
Administration Console and see our new send port pointing to
our WCF service.

Chapter 9

[239]

4.	 Remember that this single send port accepts data for either recalls or label
changes. So, we need to apply both maps here so that regardless of which
message comes in, the correct message goes out. Go to the Outbound Maps
tab and select both the maps that result in a FDASafetyIssue format.

5.	 Next, we have to add the Inbound Map so that the acknowledgement
that comes back from the FDA maps to our canonical format. Recall that
"inbound" in this context refers to messages coming back into BizTalk from
this send port (that is, the response value from the service call).

Publish-Subscribe

[240]

6.	 Finally, we have to create our subscriptions so that this port picks up the
correct messages from the BizTalk MessageBox. Specifically, we want an OR
condition where the BTS.MessageType is equal to either http://Chapter9.
LarHans.SafetySchemas#ProductRecall or http://Chapter9.LarHans.
SafetySchemas#ProductLabelChange. However, as this is a United States
agency, we want to make sure to send notices that relate only to US recalls or
label changes. So, here we also add a filter based on country as well.

7.	 All that is left is to create a send port that listens for the synchronous
acknowledgement back from the FDA service and publishes the canonical
format to disk. Create a new one-way, static send port named Chapter9.
LarHans.SendAgencyAck.FILE. Set the file adapter's destination location to
<Installation Directory>\Chapter9\Filedrop\DropOffAck\ and use a
filter subscription of BTS.MessageType = http://Chapter9.LarHans.Safe
tySchemas#AgencySubmissionAcknowledgement.

 8.	 Start both the receive locations and send ports.
9.	 Drop a product recall and a label change message into their respective

pickup folders.
10.	 If everything is configured correctly, then the FDA service should be called

twice and you should see two files sent to your acknowledgements folder.

Chapter 9

[241]

Building the website database subscriber
solution artifacts
With our first subscriber working, we can now build the pieces necessary to share
data with our second subscriber—the LarHans website database.

1.	 Return to Visual Studio.NET and right-click the solution and add a
new Empty BizTalk Project named Chapter9.LarHans.WebsiteDb.
SafetySubscriber.

2.	 Right-click the project and choose Properties to set its strong name key and
Application Name parameters.

3.	 Right-click the new project and choose Add|Add Generated Items. Select
the Consume Adapter Service menu option.

4.	 When the Consume Adapter Service window opens choose sqlBinding from
the bindings menu. Note that the next screenshot shows only a portion of the
large wizard window that pops up.

Publish-Subscribe

[242]

5.	 Click the Configure button next to the Configure a URI text box.
6.	 Select Windows as the Client Credential type on the Security tab.
7.	 On the URI Properties tab, set the Initial Catalog to Chapter9 and

the Server to ".".

8.	 Click OK to exit the URI configuration window and click on the Connect
button on the Consume Adapter Service wizard page to establish a
connection to our database.

9.	 We are adding records to a table, so after choosing RecallNews under the
Tables node, select the Insert operation and add it to the list of
operations to generate.

Chapter 9

[243]

10.	 After clicking on OK, the wizard generates the artifacts necessary for BizTalk
to communicate with this database table. The BizTalk project in Visual
Studio.NET should now have schemas and a send port binding file.

11.	 A single map is needed from the canonical product recall schema to the
database specific format. Right-click the BizTalk project and select Add|New
Item. Choose the Map type and name the map ProductRecall_To_
InsertRecallNews.btm.

Publish-Subscribe

[244]

12.	 Add a reference to the SafetySchemas project so that we can point to our
canonical product recall schema.

13.	 Once the reference is in place, set the map's source schema to the
ProductRecall type found in the References node.

14.	 Set the Destination Schema equal to the TableOperation.dbo.RecallNews
type and choose Insert from the pop up window.

15.	 Create the mapping as follows:

Source Destination Comments
RecallID ItemID
Product Product

Hazard HazardDescription
ConsumerContact ConsumerContact

DatePosted Date and time functoid
Lots Scripting functoid

leveraging Inline XSLT

16.	 The Lots destination field holds all of the possible lots listed in the recall, so
we need a way to mash up all the source node values. As mentioned in the
previous table, a scripting functoid was leveraged. The Inline XSLT used is
as follows:
<Lots
xmlns="http://schemas.microsoft.com/Sql/2008/05/Types/Tables/dbo">

 <xsl:for-each select=" /*[local-name()='ProductRecall' and
 namespace-uri()='http://Chapter9.LarHans.SafetySchemas']
 /*[local-name()='ImpactedLots' and namespace-uri()='']
 /*[local-name()='Lot' and namespace-uri()=''] ">

 [<xsl:value-of select="." />]

 </xsl:for-each>

</Lots>

17.	 The completed map looks like the following screenshot:

Chapter 9

[245]

18.	 This BizTalk project can now be deployed to the BizTalk Server by right-
clicking the project and choosing Deploy.

19.	 Confirm that the deployment was successful by locating our new assembly
and components in the Chapter9 application found in the BizTalk
Administration Console.

Configuring the website database subscriber
Our final activity is to configure the necessary messaging components to distribute
product recall messages to the LarHans website database. Because of the way
we have architected our solution, we can achieve this simply by adding a single
new send port to the application. There is no need to change anything about our
publisher, and there is no impact on our existing FDA service subscriber.

1.	 While the Consume Adapter Service did produce a binding file (much like
when we consumed a WCF service), we do not want to use it. The binding
file generated was for a two-way send port, but we are not interested in the
result of the database insert operation. So, create a new, one-way static send
port named Chapter9.LarHans.WebsiteDb.SendRecall.Sql.

2.	 Choose the WCF-Custom adapter type and click Configure.
3.	 Switch immediately to the Binding tab and choose the sqlBinding.
4.	 Move back to the General tab and enter an address value of

mssql://.//Chapter9?

5.	 For the SOAP Action header, use the following XML configuration:
<BtsActionMapping xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance"

Publish-Subscribe

[246]

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<Operation Name="Insert" Action=
 "TableOp/Insert/dbo/RecallNews" />

</BtsActionMapping>

6.	 Click on OK to save the adapter configuration settings.
7.	 Next, we need to set the single outbound map that takes the canonical

product recall format and transforms it into the data structure expected by
the database adapter. View the send port's Outbound Maps tab and set the
map to ProductRecall_To_InsertRecallNews.

Chapter 9

[247]

8.	 Now go to the Filters tab so that we can set the subscription for this send
port. The filter should look for any BTS.MessageType equal to http://
Chapter9.LarHans.SafetySchemas#ProductRecall.

9.	 After saving and starting the send port, drop a new product recall message
into BizTalk and you should observe both an acknowledgement file on disk
(from the FDA subscriber) and a database record (from the website
database subscriber).

10.	 If you publish a product recall message that targets a country besides the
United States, than you'll find that the FDA subscriber does not pick it up,
but the website database subscriber does. This is because our FDA subscriber
is only interested in recalls targeted at the United States while the website
subscriber is grabbing any recall message that it encounters.

Publish-Subscribe

[248]

Summary
In this chapter, we looked at a customer who needed the ability to send a single
event to a varied list of subscribers. There was no need for tight coupling of
the sender and receiver(s), so the injection of a service broker in the middle
was a sensible way to leverage asynchronous routing between endpoints. By
clearly isolating our subscription endpoints we were able to make the addition,
modification, or deletion of endpoints a straightforward task. The publish and
subscribe pattern is a powerful way to transmit data, and the use of canonical
message formats and BizTalk Server gave us enterprise-grade quality-of-service
attributes that were demanded by this scenario.

Repair/Resubmit with Human
Workflow

Workflows can take many forms, such as sequential, a flow chart, and state machine
to name a few. Most workflows model system interactions that operate without
direct human intervention. At times, however, direct human interaction is needed
inside a workflow to correct errors or make judgment-based decisions.

Use case
Bowl For Buddies is a non-profit organization that sets up bowling parties to raise
money for charity. As part of this effort, people raise money by going house-to-
house and asking for donations. The donations are based on the number of pins
the participants knock down during the bowling party (for example, $0.05 for
each pin knocked down). During the house visit, donors give an e-mail address to
which a donation request can be sent after the bowling event is over. In this e-mail,
the donors receive the amount they need to pay and a link to the secure payment
processor. Once payment is made, Bowl For Buddies is notified.

Currently, much of this process is done manually. Data is collected on paper forms
and entered into an Excel spreadsheet. Once the bowling event is over, a volunteer
calculates the amount owed by each person and sends them an e-mail requesting
payment. If no response is received from the donor, it may be weeks before it is
identified through the Excel sheet. Sometimes, delays arise due to an invalid e-mail
and as a result, the donor needs to be contacted over the phone. Finding the total
amount still to be collected and from whom is also difficult, as many different
Excel sheets are used for tracking donor data for various events. The existing Excel
solution is being replaced by an internal SharePoint 2010 implementation.

Repair/Resubmit with Human Workflow

[250]

Bowl For Buddies currently has a co-located website running on an ISP-supported
Windows instance. Eventually, they want to be able to collect donations on the
website. This will be a separate system similar to the way payments are currently
collected and tracked. Donations through the website should follow the same process
as donations though the house-to-house method, in terms of collection.

The end-to-end payment collection process needs an overhaul. Bowl For Buddies
is looking at developing e-mail and payment services to add automation to the
collection process. As part of this process, they would like to develop a defined set
of guidelines for the payment collection process with a goal of automating whatever
is possible. The solution will need to work with the new SharePoint 2010 site and
should allow easy modification later to work with the website.

Bowl For Buddies does not have a large IT department or IT budget. The website
they currently have is ASPX-based and the e-mail and payment services they are
building will be done through WCF services. They are willing to make investments
in areas that aid in the donation collection process and that could be expanded to
other branches if the company expands.

Key requirements
The following are key requirements for a new software solution:

•	 Automate the process for processing donation pledges.
•	 Include proactive notifications to staff for delinquent payments or data errors.
•	 Work with an organization's future strategy around SharePoint and

.NET solutions.

Additional facts
We've identified some additional solution aspects that may help us decide upon the
right solution:

1.	 SharePoint 2010 is used to maintain lists of customers including their e-mail
addresses and donation amounts.

2.	 When an e-mail is invalid, returned, or a donor does not pay within a set
amount of time, a person will call to verify the intent of the donor.

3.	 When the website is able to accept donations, it will use SQL Server to store
user information.

4.	 A general process for donation collection will include sending the user an
e-mail, evaluating the results of sending the e-mail, waiting for payment,
notification by a human if data needs to be corrected, updating the data for
resubmission, and updating the system once payment is received.

Chapter 10

[251]

Pattern description
Workflows, by definition, are a series of steps that are related to each other. These
steps may require interaction with outside resources. Typically, these resources are
other systems and the interaction can complete in an automated fashion without
any human intervention. In some cases, the workflows require human intervention
to fix and correct data, or the workflows are totally related to human processes like
a document approval process. When a workflow is related to human activity, it is
known as a Human Workflow.

Human workflows can interact with people in several ways. Some of these include
SharePoint, e-mail, text messaging, instant messenger, and web forms. What makes
human workflows different from non-human workflows is the variability introduced
by the human factor. People can be slow to respond, out of town, unwell, or have
other factors that prevent them from interacting with the workflow as expected.
This adds a degree of uncertainty to all human workflows and ensures that they are
typically long-running.

Using automated workflows to model a business process allows for that process to
be applied in the exact same way, time and again. This is something difficult in a
manual, people-driven progression of data collection and processing. In addition to
repeatability, using a central environment for processing these workflows provides
a way to monitor many types of workflows. This allows you to analyze the collective
results of all the workflows and increase efficiency by removing bottlenecks or
streamlining unnecessary steps.

Modeling the Bowl For Buddies payment process in a workflow will help them
apply the same business activity over and over in the same manner. This workflow
can be exposed as a service to allow many different outside entities to interact with
it. The service layer hosting the e-mail and notification service will provide the
abstraction from specific destination systems.

The logical architecture of the solution is as follows:

Repair/Resubmit with Human Workflow

[252]

Candidate architectures
We will look at two candidate architectures which can be used to solve the problems
faced by Bowl For Buddies.

Candidate architecture #1–BizTalk Server
BizTalk is Microsoft's enterprise integration tool, which could be used to help Bowl
For Buddies coordinate the payment collection process. The previous releases of
BizTalk Server had basic built-in human workflow support. This was not widely
adopted nor used in the marketplace and hence is no longer part of the latest version
of the product.

Even without the specific human workflow components, BizTalk does have a robust
orchestration engine that can be easily used to model a business process like the
payment collection process. BizTalk has built-in adapters for SharePoint and SQL,
making it an ideal candidate for consideration.

The following is a detailed review of BizTalk's role in this scenario.

Solution design aspects
A BizTalk Orchestration can model the payment collection process. BizTalk can
expose this orchestration to outside consumers through a WCF service adapter, SQL
Server adapter, or SharePoint adapter. Any or all of these adapters can be used to
activate a new instance of the payment collection process.

Once started, the orchestration makes external calls to the e-mail service to send the
e-mail to the donor. If an invalid response is received, the notification service will be
used to update SharePoint and wait for corrected data to be sent back to the long-
running orchestration. If the response from the e-mail transmission is successful, the
orchestration will wait for the response for payment service and update SharePoint
with the results. If the payment result is not received, the process will wait for
updated information from SharePoint and try again.

The SharePoint adapter will be used to read and write information to SharePoint.
When the SQL Server-based solution is added later, the SQL Server Adapter can
easily be added. BizTalk's extensive routing ability will be used as needed, to route
messages between SQL Server, SharePoint, and external services.

Chapter 10

[253]

Solution delivery aspects
Bowl For Buddies does not have a large IT staff. Using a full-blown enterprise
integration tool like BizTalk Server might be a large undertaking for a small IT
organization. In addition, learning to develop BizTalk-based solutions requires
additional training and effort. This is probably something Bowl For Buddies cannot
undertake given the small staff.

Solution operation aspects
Bowl For Buddies does not have BizTalk running nor do they have servers for
BizTalk to run on. In addition to BizTalk, they would require SQL Server. Both of
these carry heavy licensing costs and require extensive operation monitoring in order
to have a successful implementation. Also, monitoring BizTalk requires training on
how to handle suspended messages and how to reprocess them. This is something
likely to be outside the scope of what the existing IT staff can handle.

Organizational aspects
Bowl For Buddies is not a large organization. Using an enterprise server tool like
BizTalk would not be a good fit for them. Even though they have expansion plans
that could add additional offices, the need for BizTalk in areas other than payment
collection is unknown.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2–Windows Server
AppFabric
A Windows Server AppFabric-based solution would leverage .NET 4.0 technologies
to support this use case. We would use a .NET 4.0 Workflow service to expose
endpoints to a SharePoint Workflow. SharePoint 2010 does not support the latest 4.0
version of Windows Workflow, but rather, supports the .NET 3.5 version. In order
to meet the scenario and provide reuse outside a pure SharePoint-hosted process
workflow, putting core logic inside a service-exposed .NET 4.0 Workflow allows for
reuse by other systems.

Repair/Resubmit with Human Workflow

[254]

Solution design aspects
SharePoint has a built-in workflow engine. This uses .NET 3.5 Workflow technologies
to provide out-of-the-box workflow templates for common scenarios and to support
extensive customization. This could provide a complete solution if the solution would
be totally contained in SharePoint. Given the addition of a future web-based solution,
moving the core workflow logic out of SharePoint is a better answer.

Moving the business process out of SharePoint allows for the use of .NET 4.0 and
Windows Server AppFabric to host the solution. This provides a single point of
tracking and monitoring with the new features of .NET 4.0 Workflow.

Our solution would use a simple SharePoint Workflow to call into a .NET 4.0
Workflow service. The .NET 4.0 Workflow would be a workflow service—a
workflow exposed as a WCF service. This workflow would have the payment
collection process modeled to include sending an e-mail, waiting for a payment
response, and sending notifications. Custom service calls would be needed for
interaction with external systems for email, payment processing, and notifications.

Solution delivery aspects
Bowl For Buddies does not have a tight timeline. The adoption of workflow technology
and workflow services through WCF will speed the delivery process, reducing the
amount of testing needed versus a custom-coded solution.

Solution operation aspects
Using .NET 4.0 and Windows Server AppFabric provides a lot of features out-of-
the-box including logging, monitoring, and troubleshooting support. This is done
through a plugin into IIS—something that many IT resources know well. As Bowl
For Buddies already has an ASPX-based website, its IT staff is already accustomed
to this interface.

Organizational aspects
Adoption of .NET 4.0 and Windows Server AppFabric would not require significant
investment in software licenses as these technologies are all included with the price
of Microsoft Windows. The existing intranet-based server running the SharePoint site
could be used for this solution. Adoption of this technology is a low risk endeavor,
given the fact that it is built into Windows framework.

Chapter 10

[255]

Solution evaluation

Design Delivery Operations Organization

Architecture selection
Let's look at how these candidate architecture technologies stack up against each
other. We can break down the primary benefits and risks of each choice as follows:

BizTalk Server
Benefits

•	 Out-of-box adapters for SQL Server
and SharePoint

•	 Robust enterprise-class hosting
infrastructure for processes exposed
as WCF Services

•	 Built-in admin tool with extensive
monitoring information

Risks
•	 Additional licensing costs
•	 Large learning curve for

development, monitoring, and
operations

•	 Large infrastructure
requirements

Windows Server AppFabric
Benefits

•	 Robust hosting environment
•	 Easy configuration-based tracking

and monitoring options including
detailed message bodies

•	 Low cost of ownership
•	 Leverage existing hardware

Risks
•	 New technology could face some

breaking-in issues
•	 Learning curve for development,

monitoring, and operations

A key benefit of using .NET 4.0 and Windows Server AppFabric is its light-weight
solution without extensive additional software expenditures. This release of the .NET
Framework has significant changes compared to past .NET releases and it supports
Windows Server AppFabric as a rich hosting environment. While this new technology
introduces a level of risk into the solution, this is acceptable, given the overall benefits
gained from this technology. While BizTalk can do exactly what is needed for this
scenario, it would be an overkill. Given the small size of Bowl For Buddies and the lack
of need for BizTalk in other areas of the company, it is not a right fit in this case.

For this scenario, Windows Server AppFabric is the best choice.

Repair/Resubmit with Human Workflow

[256]

Building the solution
This solution has two key areas—Windows Server AppFabric solution and
SharePoint solution. An ideal layout of the physical architecture is shown in the
following image:

While it would be possible to run all the applications on a single server, separation
of the application server running Windows Server AppFabric and SharePoint
components is ideal.

SharePoint 2010 runs with .NET 3.5 Workflow and Windows Server AppFabric uses
.NET 4.0. While these can co-exist on the same server, the solution is cleaner
when separated.

Setup
This sample is broken down into two sections. The first section walks through the
creation and testing of a .NET 4.0 Workflow solution to process payments. The
second section creates a SharePoint customer list. SharePoint is not needed for the
first section and a testing tool is provided to test the workflow. To run the solution
end-to-end, SharePoint 2010 needs to be installed.

This solution has several parts. The key areas are as follows:

1.	 Various existing services for sending e-mail, processing credit card
payments, and updating the SharePoint list.

2.	 Windows Server AppFabric hosted workflow—called from the SharePoint
Workflow or test application—to manage the flow of payment processing
and data correction.

3.	 SharePoint site for hosting the Bowl For Buddies list of customers.

Chapter 10

[257]

4.	 SharePoint workflow triggered from additions and changes to the
customer list.

Some initial setup is required. These steps assume that SharePoint 2010, InfoPath
2010, and Windows Server AppFabric are all installed on the same server. Even
if you are just running the workflow section, you are required to complete the
following steps because the solution is built around the website names used in them.

Prepare your environment by following these steps:

1.	 When installed, SharePoint 2010 takes over both port 80 and the default
website as an ASP.NET 2.0-based site. Create a new website inside IIS
running on port 1234. This will host the external services and core workflow.
Ensure the default application pool is running .NET 4.0—this is likely to
default to .NET 2.0 so it must be changed. Name the website HumanWorkflow
and point it to the C:\HumanWorkflow folder.

2.	 Launch Visual Studio .NET 2010 and open the Chapter10.HumanWorkflow.
sln in the <Installation Directory>\Chapter10\Begin folder. When
prompted to create the virtual directories click on OK.

Repair/Resubmit with Human Workflow

[258]

3.	 Once the virtual directories are created, the HumanWorkflow.Notification
service must run in an application pool with access to the SharePoint site. For
this demo, create an application pool running .NET 4.0, as an administrator,
and name it as WF4-SPAccess. Change the application pool for this service
to use the one we have just created.

4.	 Depending on the operating system, you may need to create event log
sources used by this code. Add the following sources inside the server's
application log: ProcessPayments, EmailService,
and NotificationService.

5.	 The following projects are included in the Begin solution:

°° HumanWorkflow.CoreWorkflow: This is the main project that
will contain the process payments workflow called
by external systems.

°° HumanWorkflow.EmailSvc: This service is used to simulate
sending an e-mail. Pass in an e-mail address that starts with
an "F" to test the failure logic.

°° HumanWorkflow.Notification: This service is used to
update SharePoint on the status of a record. For this demo,
this defaults to writing to the event log. See the service
comments on how to switch this to write to SharePoint.

°° HumanWorkflow.Tester: This is a Windows form to test the
workflow without SharePoint.

°° HumanWorkflow.HelperDocs: This is a folder with helper
text files used for creating the SharePoint workflow and
SharePoint list.

Building the core workflow
First, the Process Payments .NET 4.0 Workflow will be built and deployed to Windows
Server AppFabric. This workflow will receive a payment request message that starts
the process. The first step is to call an e-mail service to notify the donor. If the response
is successful, the process moves to the payment service. If the process returns an error,
a notification is sent and the workflow waits to receive updated information. Once
updated information is received (note that only e-mail address updation is shown in
the demo), the e-mail is sent again. Once moved into the Receive Payment Notice
flow, the workflow waits to receive payment information. This must be done using the
supplied testing application and the user ID must match with that of the submitted
record. Once payment is received, a success notification is made. If payment errors, the
process sends a notice and waits for updated user information.

Chapter 10

[259]

In this section, the following tasks will be accomplished:

•	 Adding a new .NET 4.0 Workflow service to an existing project
•	 Building request-response contracts for SharePoint integration
•	 Building a flowchart workflow logic for the process payment procedure
•	 Calling several external services and evaluating the response
•	 Setting up content correlation for payment and updated data to be sent back

into the same running workflow instance
•	 Deploying the solution to Windows Server AppFabric

This solution starts with a workflow service project already created and includes
existing service references for e-mail (called Send Email) and notification (called
Send Notification) external services. The project has been set up to run on port 1234
at the following address: http://localhost:1234/HumanWorkflow.CoreWorkflow/
ProcessPayment. This solution also includes a helper custom activity for writing
information to the event log. This will be used for some basic process-flow tracking.
The tracking features of Windows Server AppFabric could be used for this, but for
simplicity, the event log will work for this demo.

1.	 Launch Visual Studio.NET 2010 and open Chapter10.HumanWorkflow.sln
in the <Installation Directory>\HumanWorkflow\Begin folder.

2.	 A project called HumanWorkflow.CoreWorkflow already exists.
3.	 Right-click on Project and select Properties. Select the Web tab. Ensure the

Use Local IIS Web Server radio button is selected. Click on Create Virtual
Directory to ensure the directory exists in IIS.

4.	 Rick-click on the project and select Add New Item. Select the workflow
templates under Visual C# and add a new WCF Workflow Service called
ProcessPayment.xamlx.

5.	 Click on the top-level Sequential Service and click on the Variables tab at
the bottom left. Delete the data variable (this is created by default and
not used).

6.	 Add the following variables to the workflow:
°° Name: ListHandle, type: CorrelationHandle (this is the

correlation variable used to receive payment confirmation
and updated user data if needed, located under System.
ServiceModel.Activities)

°° Name: listID, type: Int32
°° Name: listName, type: String

Repair/Resubmit with Human Workflow

[260]

°° Name: listEmail, type: String
°° Name: listBowlingScore, type: Double
°° Name: listDonationAmount, type: Double
°° Name: listTotalDonation, type: Double

7.	 Click on the ReceiveRequest activity. Under Content, click
on Viewparameter.

8.	 Select the Parameters radio button and enter the following parameters:
°° Name: ID, type: Int32, assign to: listID
°° Name: Name, type: String, assign to: listName
°° Name: BowlingScore, type: Double, assign to:

listBowlingScore

°° Name: DonationAmount, type: Double, assign to:
listDonationAmount

°° Name: EmailAddress, type: String, assign to: listEmail

9.	 With ReceiveRequest selected, click on the CorrelationInitializes property
(if the properties window is not visible press F4). Select Add initialize. Add
the ListHandle. Select Query correlation initializer from the drop down list.
In the XPath Queries dropdown list, select ID: Int32. Click on OK. This will
set up a correlation value that can be used by other receive activities to get
information back into this same workflow instance.

10.	 With ReceiveRequest selected, ensure the Can Create Instances checkbox is
checked. This is located under the properties of the activity. Press F4 if they
are not visible.

11.	 Click on the SendResponse activity. Under Content, click on Define. Select
the Parameters radio button and enter the following parameters:

°° Name: Result, type: Boolean, value: True

12.	 With SendResponse selected, ensure the PersistBeforeSend checkbox is
checked. This is located under Properties.

13.	 Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it between the ReceiveRequest
and SendResponse activities. Set the TextEventLog property to Received
GETDATA Message. If this activity is not available, build the solution and it
should be seen in the toolbox.

Chapter 10

[261]

14.	 Drag an Assign shape from the Primitives section of the toolbox and place it
under the EventLogHelper activity. Set the To value to listTotalDonation.
Set the Value to listDonationAmount * listBowlingScore. IntelliSense
should recognize these values.

15.	 Drag a flowchart shape from the Flowchart section of the toolbox. Place
it under SendResponse. The workflow should look like the
following screenshot:

16.	 Double-click on the Flowchart activity to drill down to the flowchart surface.

Repair/Resubmit with Human Workflow

[262]

17.	 The end result of the next few steps will be a flowchart for the payment
collection process. The final result will look like the following screenshot:

18.	 Click on the top-level flowchart and click on the Variables tab at the bottom
left. Add the following variables. These will be within the flowchart scope:

°° Name: EmailResult, type: String
°° Name: paymentReceived, type: Boolean
°° Name: errorMessage, type: String

19.	 Drag a Sequence activity from the Control Flow section of the toolbox onto
the flowchart surface under the Start arrow. Rename this to Send Email. This
activity will call the external e-mail service to send the user an e-mail. The
result of this call will determine the next step in the flow.

20.	 Draw a line from the Start shape to the Send Email sequence activity.

Chapter 10

[263]

21.	 Under the Send Email activity, add a Switch activity from the flowchart
section of the toolbox. Select type to be String when adding the shape to the
surface. Set the Expression property to Email Result.

22.	 Draw a line from the Send Email sequence activity to the Switch activity.
23.	 Drag a Sequence activity from the control flow section of the toolbox onto

the flowchart surface, left from the Switch activity. Rename this to Receive
Payment Notice. This activity will wait for a payment message from an
external source for a fixed amount of time. Sending the payment notice can
be done using the provided Tester Windows forms tool located under the
tester project.

24.	 Draw a line from the left of the Switch activity to the Receive Payment
Notice sequence. Uncheck the IsDefaultCase checkbox. Set the Case value
to SUCCESS.

25.	 Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface to the bottom right from the FlowSwitch activity.
Rename this to Send Email Error Notification. This activity will send error
message information back out of the workflow—in this case back
to SharePoint.

26.	 Draw a line from the bottom of the Switch activity to Send Email Error
Notification sequence. Uncheck the IsDefaultCase checkbox. Set the Case
value to TIMEOUT.

27.	 Draw a line from the right of the Switch activity to the Send Email Error
Notification sequence. Uncheck the IsDefaultCase checkbox. Set the Case
value to EMAILERROR.

28.	 Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface under the Send Email Error Notification sequence
activity. Rename this to Receive Updated Data. This activity will wait for
updated user data from the external data provider—in this case SharePoint.

29.	 Draw a line from the bottom of the Send Email Error Notification sequence
activity to the Receive Updated Data sequence.

30.	 Draw a line from the right-side of the Receive Updated Data sequence
activity to the Send Email sequence activity.

31.	 Moving to the left-side of the flowchart, under the Receive Payment Notice
activity, add a FlowDecision activity from the flowchart section of the
toolbox. Set the Condition property to paymentReceived.

32.	 Draw a line from the bottom of the Receive Payment Notice sequence
activity to the top of the Decision activity.

Repair/Resubmit with Human Workflow

[264]

33.	 Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface, under the Decision activity. Rename this to Send
Success Notification. This activity will update the external data provider
with a success message—in this case SharePoint.

34.	 Draw a line from the left side of the Decision activity to the top of the Send
Success Notification sequence activity. This represents the true result.

35.	 Draw a line from the right-side of the Decision activity to the left-side of the
Receive Updated Data sequence activity. This represents the false result.
Notice how once an activity is defined for an event, like Receive Updated
Response, it is easy to reuse that logic.

36.	 Now the basic flow of the flowchart is complete. The solution should now
build with no errors. Verify this by right-clicking on the project and selecting
Build. The next steps will add logic to the five sequence shapes that were
added to the flowchart.

37.	 On the main flowchart surface, double-click on the Send Email activity. This
set of activities will compose the request and response messages to the external
e-mail service, evaluate the response message, and generate error messages if
needed. At the end, the process will look like the following screenshot:

Chapter 10

[265]

38.	 Click on the top-level Send Email sequence activity and click on the
Variables tab on the bottom left. Add the following variables:

°° Name: emailRequest, type: EmailRequest (from Send
Email add service reference), default: New HumanWorkflow.
CoreWorkflow.SendE-mail.E-mailRequest()

°° Name: emailResponse, type: EmailResponse (from Send
Email add service reference)

°° Name: emailCount, type: Int32
°° Name: emailResultLocal, type: String

39.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to Started Send Email.

Repair/Resubmit with Human Workflow

[266]

40.	 Drag an Assign shape from the Primitives section of the toolbox and place it
under the EventLogHelper activity. Set the To value to emailCount. Set the
Value equal to emailCount + 1.

41.	 Drag an Assign shape from the Primitives section of the toolbox and place
it under the previous Assign activity. Set the To value to emailRequest.
AmountDue. Set the Value to listTotalDonation.

42.	 Drag an Assign shape from the Primitives section of the toolbox and place
it under the previous Assign activity. Set the To value to emailRequest.
EmailAddress. Set the Value to listEmail.

43.	 Drag an Assign shape from the Primitives section of the toolbox and place
it under the previous Assign activity. Set the To value to emailRequest.ID.
Set the Value to listID.

44.	 Drag the Send Email service reference from the toolbar and place it under
the last Assign activity. Set Email to emailRequest and SendEmailResult to
emailResponse. If this is not present in the toolbar, rebuild the solution.

45.	 Drag an If activity from the Control Flow section of the toolbar under
the Send Email activity. Set the Condition property to emailResponse.
Response.

46.	 Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Then side of the If activity. Set the To value to emailResultLocal.
Set the Value to SUCCESS.

47.	 Drag an If activity from the control flow section of the toolbar and place
it inside the Else side of the If activity. Set the Condition property to
emailCount =< 3.

48.	 Drag a Sequence activity from control flow section of the toolbox into the
Then side of the If activity. Set the DisplayName property to Email Error.

49.	 Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Email Error sequential activity. Set the To value to errorMessage.
Set the Value to "The email process returned an error sending the
message".

50.	 Drag an Assign shape from the Primitives section of the toolbox and place it
below the previous Assign activity. Set the To value to emailResultLocal.
Set the Value to EMAILERROR.

51.	 Drag a Sequence activity from control flow section of the toolbox into the
Then side of the If activity. Set the DisplayName property to Timeout.

52.	 Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Timeout sequential activity. Set the To value equal errorMessage.
Set the Value to "The e-mail process has hit more than 3 errors".

Chapter 10

[267]

53.	 Drag an Assign shape from the Primitives section of the toolbox and place it
below the previous Assign activity. Set the To value to emailResultLocal.
Set the Value to "TIMEOUT".

54.	 Drag an Assign shape from the Primitives section of the toolbox and place
it outside of the If activities as the last activity of the workflow. Set the To
value equal emailResult. Set the Value to emailResultLocal.

55.	 Return to the main flowchart surface by using the bread crumbs on the top of
the workflow surface. Double-click on the Receive Payment Notice activity.
This set of activities will wait for a response from the payment service,
evaluate the response message, and generate an error message based on
the response or a timeout. This set of activities is only reached if SUCCESS is
returned from the Send Email sequence. At the end, the process will look
like the following screenshot. Note that the following screenshot does not
show the top and bottom event log activity.

Repair/Resubmit with Human Workflow

[268]

56.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to Started Receive Payment Notice.

57.	 Drag a Parallel activity from control flow section of the toolbox right under
the EventLogHelper activity.

58.	 With the Parallel activity selected, click on the Variables tab on the bottom
left. Add the following variable at the Parallel scope:

59.	 Name: hitDelay, type: Boolean, default: False
60.	 With the Parallel activity selected, set the CompletionCondition to

hitDelay. This will allow the parallel shape to complete even when all the
branches have not finished.

61.	 Drag a Sequence activity from the control flow section of the toolbox onto
the flowchart surface inside the Parallel activity. Set the DisplayName to
Not Paid Timeout.

62.	 Drag a ReceiveAndSendReply from the Messaging section of the
toolbox and place it to the right of the last sequence activity inside the
parallel activity. This will add a new sequence activity to the flow. Set the
DisplayName of the new right Sequence activity to Payment Received.

63.	 Working in the Not Paid Timeout sequence, drag a Delay activity from
Primitives section of the toolbox. Set the Duration property to New
TimeSpan(0, 2, 0). This will set a delay of two minutes. While in real life
this would be longer, we do not want to have to wait for a few days to run
the demo.

64.	 Drag an Assign shape from the Primitives section of the toolbox and place
it below the Delay activity. Set the To value to paymentReceived. Set the
Value to False.

65.	 Drag an Assign shape from the Primitives section of the toolbox and place
it below the previous Assign activity. Set the To value equal errorMessage.
Set the Value to "No payment was received in the set amount of time".

66.	 Drag an Assign shape from the Primitives section of the toolbox and place it
below the previous Assign activity. Set the To value equal hitDelay. Set the
Value to True. This will cause the parallel activity to complete rather than
wait for the payment response.

67.	 Working in the Payment Received sequence activity, click on the Receive
activity. Rename Operation to GetPaymentConfirmation. Under Content,
click on View parameter.... Select the Parameters radio button and enter the
following parameters:

°° Name: paymentID, type: Int32
°° Name: paymentResult, type: Boolean, assign to:

paymentReceived

Chapter 10

[269]

68.	 With Receive selected, click on the CorrelatesWith property. Set this to
ListHandle. Click on CorrelatesOn. Select paymentID from the drop down
and click OK. This will set the receive activity to follow the correlation based
on the ID of the donor record.

69.	 Click on the SendReplyToReceive activity. Under Content click on Define...
and select the Parameters radio button. Enter the following parameters:

°° Name: Result, type: Boolean, value: True

70.	 With SendReplyToReceive selected, ensure the PersistBeforeSend checkbox
is checked.

71.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it between the receive and send
activities. Set the TextEventLog property to Received Payment Message.

72.	 Drag an If activity from the control flow section of the toolbar and place
it under the SendReplyToReceive activity. Set the Condition property to
paymentReceived.

73.	 Drag an Assign shape from the Primitives section of the toolbox and
place it inside the Then side of the If activity. Set the To value equal to
errorMessage. Set the Value equal to Payment Received.

74.	 Drag an Assign shape from the Primitives section of the toolbox and place it
inside the Else side of the If activity. Set the To value equal to errorMessage.
Set the Value equal to "The Payment System returned an error in the
payment".

75.	 Drag an Assign shape from the Primitives section of the toolbox and place
it below the previous If activity, ensure it is outside the If block. Set the To
value equal to hitDelay. Set the Value equal to True. This will cause the
parallel activity to complete rather than wait for the delay.

Repair/Resubmit with Human Workflow

[270]

76.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it outside of the parallel shape. Set the
TextEventLog property to the errorMessage variable.

77.	 Navigate back to the main flowchart surface; double-click on the Send
Success Notification activity. After the next few steps, the process will look
like the following screenshot:

78.	 With the Send Success Notification sequence activity selected, click on the
Variables tab on the bottom left. Add the following variables:

°° Name: notificationRequest, type: NotificationRequest
(under the Send Notification reference type), type: New
HumanWorkflow.CoreWorkflow.SendNotification.
NotificationRequest()

°° Name: notificationResponse, type:
NotificationResponse (under the Send Notification
reference type)

79.	 Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to "Started Send Success Notice".

Chapter 10

[271]

80.	 Drag an Assign shape from the Primitives section of the toolbox and
place it below the TextEventLog activity. Set the To value equal to
notificationRequest.ID. Set the Value equal to listID.

81.	 Drag an Assign shape from the Primitives section of the toolbox
and place it below the previous Assign activity. Set the To value to
notificationRequest.NotificationType. Set the Value to SUCCESS.

82.	 Drag the custom activity called SendNotification, located under
HumanWorkflow.CoreWorkflow.SendNotification. Place it under the
Assign activity. Set the Notification property to notificationRequest. Set
the SendNotificationResponse property to notificationResponse.

83.	 Navigate back to the main flowchart surface; double-click on the Send Email
Error Notification activity. After the next few steps, the process will look like
the following screenshot:

Repair/Resubmit with Human Workflow

[272]

84.	 With the Send Email Error Notification sequence activity selected, click
on the Variables tab on the bottom left. Add the following variables at the
Parallel scope:

°° Name: notificationRequest, type: NotificationRequest
(under the Send Notification reference type), default:
New HumanWorkflow.CoreWorkflow.SendNotification.
NotificationRequest()

°° Name: notificationResponse, type:
NotificationResponse (under the Send Notification
reference type)

85.	 Drag the custom activity called EventLogHelper located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the
sequence. Set the TextEventLog property to "Started Send Email Error
Notification".

86.	 Drag an Assign shape from the Primitives section of the toolbox and place it
below the TextEventLog activity. Set the To value to notificationRequest.
ErrorMessage. Set the Value to errorMessage.

87.	 Drag an Assign shape from the Primitives section of the toolbox and
place it below the previous Assign activity. Set the To value equal to
notificationRequest.ID. Set the Value equal to listID.

88.	 Drag an Assign shape from the Primitives section of the toolbox and
place it below the previous Assign activity. Set the To value equal to
notificationRequest.NotificationType. Set the Value equal ERROR.

89.	 Drag the custom activity called SendNotification located under
HumanWorkflow.CoreWorkflow.SendNotification. Place it under the
Assign activity. Set the Notification property to notificationRequest. Set
the SendNotificationResponse property to notificationResponse.

90.	 Navigate back to the main flowchart surface; double-click on the Receive
Updated Data activity. After the next few steps, the process will look like the
following screenshot:

Chapter 10

[273]

91.	 Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it as the first activity in the sequence.
Set the TextEventLog property to Started Receive Updated Data.

92.	 Drag a ReceiveAndSendReply from the Messaging section of the toolbox
and place it under the EventLogHelper activity. This will add a new
sequence activity to the flow. Set the DisplayName of the new Sequence
activity to Update Data.

Repair/Resubmit with Human Workflow

[274]

93.	 Working in the Update Data sequence activity, click on the Receive activity.
Rename Operation to GetUpdatedData. Under Content click on View
parameter.... Select the Parameters radio button and enter the
following parameters:

°° Name: ID, type: Int32, assign to: listID
°° Name: Email, type: String, assign to: listEmail

94.	 With Receive selected, click on the CorrelatesWith property. Set this to
ListHandle. Click on CorrelatesOn. Select ID from the drop down. Click on
OK. This will set up this receive activity to follow the correlation based on
the ID of the donor record.

95.	 Click on the SendReplyToReceive activity. Under Content, click on
Define.... Select the Parameters radio button and enter the
following parameters:

°° Name: Result, type: Boolean, value: True

96.	 With SendReplyToReceive selected, ensure the PersistBeforeSend checkbox
is checked.

97.	 Drag the custom activity called EventLogHelper, located under
HumanWorkflow.CoreWorkflow. Place it between the receive and send
activities. Set the TextEventLog property to Received GETUPDATEDDATA
Message.

98.	 Save the workflow. Right-click on the project and select Build. The workflow
service will now be available to be called from within IIS.

Testing the workflow without SharePoint
The preceding tasks can be tested using the supplied Windows Application in the
Begin or End folder:

1.	 Open IIS and view the AppFabric Dashboard for the HumanWorkflow.
CoreWorkflow application. This will show the status of requests and
workflows being processed.

2.	 Launch Tester.exe located inside the Bin\Debug folder.
3.	 Click on the New User button. This will create a new user ID and call the

Process Payment workflow. The result of this WCF call should be True.
4.	 Click on the Process Payment button. Make sure to enter the same user ID as

before. This will send a payment message for this user.
5.	 This completes the workflow. Check the event log to follow the flow of

the workflow.

Chapter 10

[275]

6.	 Change the e-mail address to Fdemo@demo.com. Click on the New User
button. This will create a new user ID and call the Process Payment
workflow. The result of this WCF call should be True.

7.	 This time a message in the event log will highlight an error condition.
The workflow is now waiting for updated information. Change the e-mail
address on the form to demo@demo.com. Click on Update User.

8.	 Click on the Process Payment button. Make sure to set the user ID value to
the same value as before. This will send a payment message for this user.

9.	 This completes the workflow. Check the event log to follow the flow of
the workflow.

10.	 Continue to try various combinations while following messages in the event
log and inside the IIS Dashboard.

Building the SharePoint site and SharePoint
workflow
In this section, we build the SharePoint site and SharePoint workflow used for
this solution. The SharePoint site will contain a single list used to store customer
information. The SharePoint workflow will monitor new and updated records and
send the list information to the core workflow created in the first step based on
two flag values.

When the core workflow detects an e-mail issue or the user takes a long time to pay,
the SharePoint list will be updated with an error message. A human will need to
research the issue and may have to contact the person about the donation. Once this
happens, the employee will update the information in SharePoint. When the data
needs to be resubmitted into the core workflow, the reprocess flag should be set. In
this section, the following tasks will be accomplished:

1.	 Create a new SharePoint site for Bowl For Buddies
2.	 Create a new customer list
3.	 Modify the customer list to include fields specific to Bowl For Buddies

donation and bowling needs
4.	 Create a new SharePoint workflow project in Visual Studio that will respond

to new customers and changes to the customer list
5.	 Create a .NET 3.5-based workflow to send list information from SharePoint

into a .NET 4.0 Windows Server AppFabric hosted workflow

Repair/Resubmit with Human Workflow

[276]

These steps assume that InfoPath is installed on the SharePoint server. If InfoPath is
not available, the form columns can be created inside SharePoint using the Create
Column button. Ensure the columns are named the same as in Step 20 of the
section below.

Creating the SharePoint site and customer list
1.	 Change the hard-coded useSharePoint boolean variable in the provided

notification service code to update SharePoint rather than the event log. See
the comments of the service for more details.

2.	 Launch SharePoint 2010 Central Administration application from the
Windows start menu.

3.	 Click on Manage web applications under Application Management.
4.	 Click on New on the top left of the screen.
5.	 Keep all the default values but ensure the Port is 44130. The port value

is used in the IIS Name, the IIS Port field, the IIS Path, Public URL, and
Application Pool Name.

6.	 Under Application Pool, go to Select a Security Account. Select Preferred
and Network Service from the dropdown list.

7.	 Click OK.
8.	 Click on Create site collection under Application Management.
9.	 Make sure the Web Application is set to the default site on port 44130

created in the previous steps.
10.	 Set the Title to Bowl For Buddies.
11.	 Make no changes to the Website Address. This will make the address for

the Bowl For Buddies site http://< MachineName:44130>/. It is essential to
access the website using the machine name and not the localhost.

Chapter 10

[277]

12.	 Set the Primary Site Collection Administrator to a user on the server. In this
case, the virtual machine's administrator account was used.

13.	 Click OK to crease the site.
14.	 Navigate to http://<MachineName:44130>/. Ensure the site loads with no

issues.
15.	 Click on List at the middle left.
16.	 Click on Create near the top of the page.
17.	 Select Custom List as the template type and name the list

DonationCustomers. If you do not see the template icons in the selection
window, ensure that you are accessing the site using the machine name and
not localhost.

18.	 Click on Create.
19.	 Ensure the List tab is selected under List Tools. Click on Customize Form.

This will open an InfoPath forms editor.
20.	 Create the following Fields by clicking on Add Field under Actions on the

right. Ensure the case of the fields below is the same as listed here:
°° Display name: Sent, data type: Yes/No
°° Display name: Name, data type: Single line of Text, check:

Cannot be blank
°° Display name: Email Data Type: Single line of text Check:

Cannot be blank
°° Display name: Phone Data Type: Single line of text Check:

Cannot be blank
°° Display name: Donation Amount Data Type: Currency

Check: Cannot be blank
°° Display name: Bowling Score Data Type: Number Check:

Cannot be blank
°° Display name: Paid Data Type: Yes/No
°° Display name: Reprocess Data Type: Yes/No
°° Display name: Error Data Type: Multiple lines of text

(plain text)

21.	 Edit the Title field by right-clicking on it and selecting Field Properties.
Ensure the Cannot be blank check box is unchecked.

Repair/Resubmit with Human Workflow

[278]

22.	 Arrange the fields on the form to make it look something like the following
picture. You can add new rows to the form by right-clicking and selecting
Insert–Rows Below. Remove the two existing fields for Title and Attachment.

23.	 Once complete, click on File. Click on Quick Publish to publish this list to
SharePoint. Close InfoPath.

24.	 The form is saved as DonationCustomerList.xsn in the <Installation
Directory>\HumanWorkflow\HumanWorkflow.HelperDocs folder. Note that
the form in the directory will be data bound to a hard-coded machine name
so use this form as reference only.

25.	 Navigate back to the list view at http://<MachineName>:44130/Lists/
DonationCustomers/AllItems.aspx

26.	 Click on the Modify View button (dropdown off the All Items link) and
make the following changes:

°° Uncheck Attachments and Title check boxes
°° Check the ID check box and set the position to 1
°° Click OK at the bottom of the form

Chapter 10

[279]

Create the SharePoint workflow
1.	 Open the HumanWorkflow solution from the Begin folder if it is not already

open.
2.	 Create a new SharePoint Sequential Workflow project (located under Visual

C#|SharePoint|2010) named HumanWorkflow.DonationListWorkflow.
Make sure you create the project inside the HumanWorkflow folder. Note
that even if the .NET version 4.0 is selected, the project will be created using
version 3.5 as SharePoint does not support .NET version 4.0 at this time.

3.	 The next steps walk you though the wizard that opens as part of the project
template.

4.	 On the Specify the site and security level for debugging window,
ensure the correct site is selected in the drop down. It should be
http://<MachineName>:44130/. Ensure the Deploy as a farm solution is
selected. Click on Next.

5.	 On the Specify the workflow name for debugging window, set the name
to HumanWorkflow.DonationListWorkflow–ProcessPayments. Ensure the
List Workflow radio is selected. Click on Next.

6.	 On the Select the lists you will use when debugging window, select
DonationCustomers in the dropdown list for the library or list to associate
your workflow with. Ensure the Yes, associate... checkbox is checked. Click
on Next.

7.	 On the Specify the conditions for how your workflow is started ensure that
only the The workflow starts automatically when an item is created and
The workflow starts automatically when an item is changed checkboxes are
checked. Click on Finish. This will create the project inside the solution with
a default workflow named Workflow1.

8.	 In order to rename the workflow, it is easier to delete the default and create a
new one. Delete the Workflow1 workflow created by-default.

Repair/Resubmit with Human Workflow

[280]

9.	 Right-click on the project and add a new item. Add a new Sequential
Workflow named ProcessDonationCustomers.

10.	 Keep the defaults on the Specify the workflow name for debugging
window.

11.	 On the Select the lists you will use when debugging window, select
DonationCustomers in the dropdown list for The library or list to associate
your workflow with. Ensure the Yes, associate... checkbox is checked. Click
on Next.

12.	 By default, the sequential workflow has an onWorkflowActivated1 activity.
Keep this shape.

13.	 The flow of the workflow will be created using the following activities. Drag
each activity from the Toolbox.

14.	 Drop a logToHistoryListActivity (under SharePoint Workflow) under the
onWorkflowActivated activity.

15.	 Drop an ifElse (under Window Workflow v3.0) under the
logToHistoryListActivity.

16.	 Drop a SendActivity (under Windows Workflow v3.5) inside the left branch
of ifElse.

17.	 Drop a logToHistoryListActivity (under SharePoint Workflow) under the
SendActivity inside the left branch of the ifElse.

18.	 Drop another send activity (under Windows Workflow v3.5) inside the right
branch of the ifElse.

19.	 Drop a logToHistoryListActivity (under SharePoint Workflow) under the
SendActivity inside the right branch of the ifElse. The overall workflow is
shown in the following screenshot:

Chapter 10

[281]

20.	 Set the HistoryDescription property value on the three
logToHistoryListActivity activities. No need for quotes in the strings.

°° Top Activity: Workflow Started
°° Left IfElse Activity: New Record Completed
°° Right IfElse Activity: Update Record Completed

21.	 Right-click on the onWorkflowActivated1 activity and select Generate
Handlers. This will create a class to be called when this activity is completed.

22.	 Above the onWorkflowActivates1_Invoked() method add the following
code to declare workflow-level variables. All code is in the WorkflowCode.
txt file located under the <Installation Directory>\HumanWorkflow\
HumanWorkflow.HelperDocs folder.
public Int32 listID = default(System.Int32);

public Double listBowlingScore = default(System.Double);

public Double listDonationAmount = default(System.Double);

Repair/Resubmit with Human Workflow

[282]

public String listE-mail = default(System.String);

public String listName = default(System.String);

public bool listReprocess = default(System.Boolean);

public bool listSent = default(System.Boolean);

23.	 Copy the following code inside the onWorkflowActivates1_Invoked()
method. This will read the list values out of the workflow properties and set
them to the local variable.
listID = workflowProperties.ItemId;

listBowlingScore =
 (double)workflowProperties.Item["BowlingScore"];

listDonationAmount =
 (double)workflowProperties.Item["DonationAmount"];

listE-mail = (string)workflowProperties.Item["E-mail"];

listName = (string)workflowProperties.Item["Name"];

listReprocess = (Boolean)workflowProperties.Item["Reprocess"];

listSent = (Boolean)workflowProperties.Item["Sent"];

24.	 While inside the code view, create the following method. They will be called
after a successful call to the external service to update the list properties to
know if a record is new or needs to be updated.
private void ServiceCall_AfterResponse(object sender,
SendActivityEventArgs e)

{

 workflowProperties.Item["Sent"] = true;

 workflowProperties.Item["Reprocess"] = false;

 workflowProperties.Item["Error"] = "";

 workflowProperties.Item.Update();

 workflowProperties.List.Update();

}

25.	 Save the workflow and return to the workflow designer. Select the
ifElseBranchActivity1. This should be on the left side of the ifElse activity.
Rename this to NewRecord using the properties window.

26.	 Select Declarative Rule Condition under the Condition property. Expand
the condition by clicking on the plus sign on the left. Select the ... on the
ConditionName.

Chapter 10

[283]

27.	 On the Select Condition window select New. This will open the Rule
Condition Editor. Set the rule to !this.listSent.

28.	 Click on OK.
29.	 Click on Rename on the Select Condition window. Name the condition

IfNewRecord.
30.	 Click on OK to close the window.
31.	 Select the ifElseBranchActivity2. This should be on the right-side of the

ifElse activity. Rename this to UpdateRecord using the properties window.
32.	 Select Declarative Rule Condition under the Condition property. Expand

the condition by clicking on the plus sign on the left. Select the ... on the
ConditionName.

33.	 On the Select Condition window select New. This will open the Rule
Condition Editor. Set the rule to this.listReprocess.

34.	 Click on OK.
35.	 Click on Rename on the Select Condition window. Name the condition

IfUpdateRecord.
36.	 Click on OK to close the window.
37.	 Add a service reference to the Windows Server AppFabric workflow

created earlier. Right-click on the SharePoint project. Select Add Service
Reference. The address of the service should be http://localhost:1234/
HumanWorkflow.CoreWorkflow/ProcessPayment.xamlx and name the
reference as ProcessUserData.

38.	 Inside the designer, select sendActivity1. Click the ... on
ServiceOperationInfo.

39.	 On Chose Operation, click on Import on the top right.
40.	 Select the IService from the Current Project. Click on OK.
41.	 Select GetDate and click on OK.

Repair/Resubmit with Human Workflow

[284]

42.	 With sendActivity1 selected, set the AfterResponse property to
ServiceCall_AfterResponse.

43.	 Select ChannelToken and name it myChannel.
44.	 Expand the ChannelToken by clicking on the plus sign. Set

the EndpointName to BasicHttpBinding_IService. Set the
OwnerActivityName to ProcessDonationCustomers.

45.	 This step will bind the local workflow variables to the parameters for the
service call. With sendActivity1 (now named GetData on the surface) still
selected, set the following properties by clicking on the ... and selecting the
workflow property. These are located under the Parameters section of
the properties.

°° (Parameter)Name bind to listName
°° BowlingScore bind to listBowlingScore
°° DonationAmount bind to listDonationAmount
°° EmailAddress bind to listEmail
°° ID bind to listID

46.	 The end result should look like the following screenshot:

47.	 Inside the designer, select sendActivity2. Click on the ... on
ServiceOperationInfo.

48.	 Select GetUpdateDate and click on OK.

Chapter 10

[285]

49.	 With sendActivity2 selected, set the AfterResponse property to
ServiceCall_AfterResponse.

50.	 Select ChannelToken and select myChannel from the dropdown.
51.	 This step will bind the local workflow variables to the parameters for the

service call. With sendActivity2 (now named GetUpdatedData on the
surface) still selected, set the following properties by clicking on the ... and
selecting the workflow property. This has fewer properties as it is an update
call into an existing workflow.

°° EmailAddress bind to listE-mail
°° ID bind to listID

52.	 Next, we want to add some basic exception logging. On the top workflow
green arrow, click on the dropdown. Select View Fault Handlers.

53.	 Drag a FaultHandler activity from the Windows Workflow v3.0 toolbox and
place it inside the Drop FaultHandlerActivity Here section.

54.	 On faultHandlerActivity1 set the FaultType property by clicking on ...
and type in System.Exception. Click on OK.

55.	 Drag a logToHistoryListActivity activity from the SharePoint workflow
toolbox inside the faultHandlerActivity1.

Repair/Resubmit with Human Workflow

[286]

56.	 Bind the HistoryDescription to faultHandlerActivity1.
faultHandlerActivity1.Fault.StackTrace and HistoryOutcome to
faultHandlerActivity1. faultHandlerActivity1.Fault.Message. At the
end, the exception workflow will look like the following screenshot:

57.	 Right-click on the project and select Deploy. This will publish the workflow
to SharePoint.

58.	 The last piece is to copy the WCF endpoint information from the local project
into the SharePoint site so the deployed workflow can call the service. Open
the App.config file inside the local project. Copy all the information inside
the <system.serviceModel> tags. Do not copy the tags and make sure you
remove the Net Named Pipes endpoint.

59.	 Open the web.config file for the default SharePoint site located at C:\
inetpub\wwwroot\wss\VirtualDirectories\44130\. Paste the data
inside the <system.serviceModel> right after the following line:
<serviceHostingEnvironment aspNetCompatibilityEnabled="true" />.

60.	 Edit the WCF timeout values from the default value of one minute and
set them to two minutes each. The values are closeTimeout="00:02:00",
openTimeout="00:02:00", and sendTimeout="00:02:00".

Chapter 10

[287]

Testing the solution using SharePoint
The following steps outline how to test the solution:

1.	 Open SharePoint and navigate to http://<MachineName>/
BowlForBuddies/Lists/DonationCustomers/AllItems.aspx.

2.	 Click on Add New Items. Fill in the form with the following information:
°° ID: <Read Only>, sent: <Default>
°° Name: Some Donor, e-mail address: SomeDonor@SomeDonorE-

mail.com

°° Phone Number: 555-555-5555, donation amount: 1.50,
bowling score: 300

°° Paid: <Default>
°° Reprocess: <Default>
°° Error: <Default-Blank>

3.	 This will start a new workflow instance of the ProcessPayments workflow.
Do a refresh on the SharePoint list to check the results of the workflow. Click
on the completed link to see the details of the workflow.

4.	 Once a record is submitted using SharePoint, note the ID of the user and
open the test application. Set the user ID field to the SharePoint ID and click
on the Process Payment button. This will complete the workflow. Check the
event log for details on the process.

5.	 Create another user with an e-mail starting with the letter "F". See the error
message show up in the SharePoint list. Edit the e-mail address to not start
with an "F" and set the reprocess flag. The workflow should continue.

Repair/Resubmit with Human Workflow

[288]

Summary
In this chapter, we looked at how to use SharePoint to call a Windows Server
AppFabric hosted workflow service. Using a workflow external to SharePoint
allows for reuse of the business process by other systems. Using Windows Server
AppFabric gives us a single processing environment which reduces the complexity
of monitoring and administration.

Remote Message
Broadcasting

The ability to communicate with a large number of remote systems is a unique
programming and network challenge. Today, nearly every piece of installed software
checks for updates either on a set schedule or upon application startup. Typically,
these are polling-based service calls to a central location. This approach works well
for items that are not event-driven or that have infrequent updates.

As the frequency and urgency of the updates increase, the traditional means of
updating systems through polling operations gets more and more inefficient. At
some point, replacement of the polling-based system must be considered in favor of
a push-based approach allowing updates to be sent immediately to remote systems.
With a push-based system, connectivity to the backend could become an issue due to
network and firewall complexity. In general, it is more acceptable to let connections
out of a network than back in, thus causing problems with the push approach.

Use case
Virtual Cow Media is a small, Midwestern-based media company offering cable
television and related services. They have an existing subscriber base of about 50,000
customers, of which, about half subscribe to the digital video recording (DVR)
service. One major customer complaint is about the digital video recording service is
the impact of schedule changes to recorded events. If a baseball game runs late or the
U.S. President decides to speak, customers may lose out on parts of recorded events.
In addition, other companies offer end-users the ability to schedule recording events
from a remote location through either a company website or mobile applications. In
these cases, the user will receive real-time confirmation of the recording event after
the site has confirmed the update to the home system. Virtual Cow Media has a
superior pricing package, but they are losing customers to other providers that offer
a richer set of offerings.

Remote Message Broadcasting

[290]

As part of a larger premium offering, Virtual Cow Media plans to offer customers
near real-time updates to programming changes that could be affected by live events
running late or other program interruptions. In addition, they are also offering
customers the ability to create and update recorded events online with instant
notification that the event has been confirmed on the customer's DVR system.

They expect around 2000 customers to subscribe to this service. The number of
customer subscriptions will change daily with users continuously adding and
removing their premium service. While this offering is expected to drive new
customers and stop attrition, the long term success of the offering is unknown. If
customer demand slows down or better options come up, this service could stop at
any time.

Virtual Cow Media currently uses a polling-based updated system for sending daily
downloads of data to customer devices. This approach needs to be reviewed based
on the proposed new service offering. Virtual Cow Media does not want to invest
in new infrastructure at this time given that the extended long-term validity of this
offering is unknown.

Virtual Cow Media is an old company with deep roots in the community. They have
been keeping current with technology trends and have invested in skilled resources
to deliver value-added offerings to customers in order to compete in this intense
market space.

Key requirements
The following are key requirements for a new software solution:

•	 The ability for users to easily subscribe and unsubscribe to the service.
•	 Remote systems should receive scheduling updates frequently and ad hoc.
•	 For synchronous ad hoc requests, remote systems need to return a

response confirmation.

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following facts:

1.	 Virtual Cow Media has a small IT operation competing with many large
national media providers.

2.	 Service offerings tend to have a short life span so investing in new hardware
and software must be well justified.

Chapter 11

[291]

Pattern description
A connection to the Internet is a critical component to many devices at home and the
office. Home computers, televisions, and even disk players require ready access to
the Internet to open a new range of features for the end-user to enjoy.

Typically, in-home devices make outbound calls to download and return requested
information. This could be done via a web service call when the device starts up or is
scheduled through a built-in polling system to check new content. This mechanism is
efficient when updates are infrequent.

A new range of possibilities arise when connections outside home and office can be
made back to the devices. This would allow for remote users to make adjustments, as
needed, to in-home devices in order to view pictures or access data. Technical users
can use a combination of home-router adjustments and a dynamic DNS service to
keep a pathway open for external access—with of course the risk of opening these
ports to the outside world. Professional devices could use a dedicated virtual private
network (VPN) connection to register backend connections or would need to make
sure of similar dynamic DNS systems for communication with remote devices. The
complexity of this backend connection limits the true potential.

The efficiency of a polling or VPN-based solution is affected by the frequency of
updates, the speed at which updates must be applied, latency between updates,
and the variety of networks the systems must support. Polling or VPN solutions
require having a reliable, secure, continuous connection to the Internet for external
applications across many different networks.

This use case introduces two core problems: how to accomplish both message
broadcasting and point-to-point communication to remote systems. We want the
message broadcasting capability to support mass updates to all target systems and
the point-to-point communication to address individual DVR updates. The following
diagram outlines the two scenarios:

Remote Message Broadcasting

[292]

The problem can be solved in one of three ways:

1.	 Polling: Remote system goes out and gets the data it needs.
2.	 Pushing: Remote system in the home receives data via a web call or file drop

by the Virtual Cow Media office.
3.	 Continuous: Remote system is always connected to the network through

a VPN.

Some key factors that affect the solution include:

1.	 Network: What type of connection exists between the Virtual Cow Media
office and the customer's home?

2.	 Distance: How far from the Virtual Cow Media office are the remote hosts?
3.	 Security: How sensitive is the data and is encryption needed?
4.	 Message Size: What is the size of the message payload?
5.	 Volume: How many messages are expected per day?
6.	 Reliability: What happens if a remote home or home office is offline?

The following candidate architecture section outlines three different potential
solutions to this problem.

Candidate architectures
The following are three different architecture options to solve this problem. Let's take
a look at the details of each option to determine the best fit for this scenario.

Candidate architecture #1–.NET-based polling
Currently, the existing home units use infrequent polling to check for updates. A
polling-based solution would build on top of that process to increase the frequency
to meet requirements. This solution would not have any network connectivity issues
as the customer's home system has already been carrying out this process.

Solution design aspects
This solution would involve changes to the existing polling process for scheduled
updates. The current system checks for schedule updates nightly, using the
customer's Internet connection to make a web-service call to Virtual Cow Media's
office. If updates are found, they are downloaded and installed.

Chapter 11

[293]

As scheduling changes to live events can happen with little notice and customers
have the ability to set up remote recordings, the polling interval would need to be
increased. We assume the interval would need to be for a little less than a minute
in order to meet the goals of the system. When the customer makes a real-time
recording update externally through the website, they would need to wait for the
next polling interval to confirm that their DVR was updated.

The overhead of this constant polling will introduce noticeable strain on Virtual Cow
Media's infrastructure and may even negatively impact the customer's home network.

Solution delivery aspects
This solution would require very little time to implement as the existing process is
polling-based. This process would require some changes to the frontend website
code to handle waiting longer for the response message when a user makes an off-
site recording request. It is possible that some additional hardware may be required
to handle the new load, resulting in an additional cost.

Solution operation aspects
Virtual Cow Media and the home users would be negatively affected by this approach.
It would use up a large amount of bandwidth on both sides to have thousands of
customers' home systems polling the Virtual Cow Media office for downloads.

Organizational aspects
Given that this approach is consistent with the existing process for schedule updates,
this is a proven and reliable process that would be easy for the existing staff to
deliver and support.

Solution evaluation

Design Delivery Operations Organization

Remote Message Broadcasting

[294]

Candidate architecture #2–BizTalk Server
BizTalk Server is Microsoft's premiere integration server. It has a strong message
distribution engine that could be used by Virtual Cow Media to communicate with
remote devices in customers' homes.

Solution design aspects
A BizTalk-based solution would involve two key pieces: connectivity back to the
end-customer's digital video recorders through a virtual private network (VPN) and
the BizTalk component to route messages to those systems.

The VPN is needed to ensure that the remote address of the customer's system can
be easily and securely found on the network. This VPN solution could already exist
on the system and would only be activated when a user subscribes to the premium
service. This VPN solution would work in a majority of the situations, but it may not
be possible to ensure VPN connectivity on all Internet service providers and network
topologies. This would end up being a limitation of the offering if a customer chose
to purchase it.

BizTalk Server can be used to route messages to many destinations through a send
port group and to single destinations using a send port. In the case of Virtual Cow
Media, two send ports would be needed for each end-customer to route both the
one-way broadcast messages for television schedule updates and the request-
response point-to-point messages for ad hoc remote recording events. The send ports
would either need to already exist and be enabled, or created when a user purchases
the premium service. The first send port would need to be placed into a send port
group in order to receive the broadcast messages. The second send port would have
filters that could be used to ensure point-to-point communication with a response for
a single user using the service to request a recording event.

BizTalk Server has a built-in persistence store to ensure that no messages are lost.
Communication failures can be retried until they reach the final destination. When
using BizTalk Server for this solution, we would have to figure out how to ensure
a secure, continuous, and known connection to the home unit without creating a
maintenance nightmare inside BizTalk.

Solution delivery aspects
The timelines of this project are quick, given the consistent changes to the residential
entertainment market. Building out a BizTalk-based solution would take some
time to set up the new hardware. Additional time would be needed to train team
members on how to build, support, and manage a BizTalk environment.

Chapter 11

[295]

Solution operation aspects
Virtual Cow Media is offering the premium service on a trial basis. While time and
money have been spent on the initial solution built out, they do not want to spend
money on additional software and hardware for a solution that might get retired in
six to twelve months. Plus, operationally they would need a way to programmatically
create and destroy ports so that they do not have operators constantly fiddling
with send ports. This could result in additional integration work with customer
management systems.

Organizational aspects
Given the young and skilled IT staff, Virtual Cow Media would be able to handle
a BizTalk-based solution organizationally. One concern is the monitoring and
administration involved with BizTalk Server given the small team.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #3–Windows Azure
Platform AppFabric
Windows Azure Platform AppFabric is Microsoft's cloud-based solution for secure
remote system connections. AppFabric consists of two key offerings. The first
product is the Service Bus—Microsoft's cloud-based service broker, which provides
a secure Internet-addressable endpoint for services. This is used for systems of all
types to communicate with each other across many network boundaries by everyone
connecting to the central service bus. The second product is the Access Control
Service. This controls who can connect to the Service Bus and communicate
with applications.

Remote Message Broadcasting

[296]

Solution design aspects
A solution using the Microsoft Platform AppFabric Service Bus would be a total
replacement for the existing daily polling done by the home units today. The new
approach would be to expose two endpoints on the Service Bus for each customer
who purchased the premium service. The first endpoint would support mass
updates based on a schedule change. This would use a client application at Virtual
Cow Media's home office to publish a message on the Service Bus for this type of
notification. The second endpoint would be for a specific point-to-point update via a
remote device, either a website or mobile device. While the point-to-point interface
could have retry logic built into the website and mobile application, message
broadcasting would not. Broadcast messages may need to be sent more than once to
ensure they are received by all endpoints.

To ensure a secure connection, the endpoint would be secured using the built-in
Access Control Service integration with the Service Bus. This would ensure that only
authenticated systems can connect to the Service Bus.

Solution delivery aspects
It only takes a few moments to sign up for an account with Windows Azure Platform
AppFabric. Once the WCF services are built, it is a simple configuration change to
update the endpoints to use the Service Bus and support the correct access control
tokens. While pricing can change at any time, the current offering charges a set
amount for a connection to the Service Bus. Depending on the number of users,
connection charges could start to rack up although the number of users can scale up
or down drastically without any other hardware or software costs.

This solution would fit into the quick timeline of this solution delivery.

Solution operation aspects
As the Service Bus is hosted in the cloud and supported by Microsoft, very little
support and maintenance is needed by the Virtual Cow Media staff. They would need
to develop a solution to enable the endpoints in home units. This could be added as
part of the nightly polling process to trigger the move to real-time endpoints.

As the cloud can flex the connections nearly instantly from few to thousands, adding
and removing new customers would not require any additional hardware
or bandwidth on the Virtual Cow Media's home office.

Chapter 11

[297]

Organizational aspects
Given the skilled IT staff at Virtual Cow Media, the supported Microsoft cloud, and
the simplicity of the solution, the staff would have no problems supporting this
solution. While using the cloud is still a forward thinking approach, the benefits in
this case far outweigh the risks.

Solution evaluation

Design Delivery Operations Organization

Architecture selection
Let's look at how these candidate architecture technologies stack up against each other.

We can break down the primary benefits and risks of each choice as follows:

.NET polling
Benefits

•	 Extends on the existing approach
used today

•	 Short production time as the
hardware and services are already
in place

Risks
•	 Extensive use of customer and

home office network resources
•	 Latency in remote user

recording events via the website

BizTalk Server
Benefits

•	 Extensive routing ability using
publish and subscribe

•	 Reliable messaging
•	 Variety of endpoint choices if needed

for future offerings

Risks
•	 Required new software and

hardware
•	 Endpoint maintenance
•	 Using a VPN could tie up

customer network traffic
•	 Ramp-up time is needed to be

effective with BizTalk Server

Remote Message Broadcasting

[298]

AppFabric
Benefits

•	 No additional software licenses or
hardware costs—pay as you
grow model

•	 Elastic so customers can be added
and be removed easily

•	 Hosted solution meaning less
support for onsite staff

Risks
•	 New, unproven technology in

the cloud
•	 Costs could be high over a

long term
•	 Broadcasting could be unreliable

resulting in missed messages

While reviewing the use case and the previous table, we can call out a clear winner.
The driving factors are: no investment in additional hardware and software, the
flexibility of the cloud, and ability to easily cross network boundaries.

For this scenario, AppFabric is the best choice.

The solution would look as shown in the following figure:

This outlines the use of the Service Bus as the message broker for all communication
between the endpoints. As each of the endpoints connect to the Service Bus, a
secured, tunneled connection is established. This is all accomplished in the cloud
with few changes to existing code. Let us take a closer look at this solution in the
next section.

Chapter 11

[299]

Building the solution
This solution will take an existing WCF service and a client application and update
them to use the Windows Azure Platform AppFabric Service Bus. The Service Bus
will allow for asynchronous message broadcasting to all clients or synchronous
point-to-point communication to the same endpoint. This is all done using
Microsoft's highly available, scalable infrastructure.

The WCF binding configurations are made available after installing the AppFabric
SDK. The SDK provides a collection of six bindings used for communication with the
Service Bus. The corresponding WCF binding is listed as well (if applicable).

Service Bus WCF bindings are as follows:

•	 BasicHttpRelayBinding (BasicHttpBinding): General purpose, SOAP 1.1
•	 WebHttpRelayBinding (WebHttpBinding): Non-SOAP, REST-ful
•	 WS2007HttpRelayBinding (WS2007HttpBinding): Provides support for WS-*
•	 NetTcpRelayBinding (NetTcpBinding): TCP, Service Bus-to-Service Bus

communication
•	 NetOnewayRelayBinding (Service Bus specific): One-way only
•	 NetEventRelayBinding (Service Bus specific): Message broadcasting

The two bindings used in the following solution are NetOnewayRelayBinding and
NetEventRelayBinding. These are specific to the Service Bus. Be aware that the
maximum payload size for Service Bus messages is around 60 KB each and message
delivery to all endpoints in the NetEventRelayBinding is not guaranteed.

In this section the following tasks will be accomplished:

1.	 Signing-up for a Microsoft Windows Azure Platform AppFabric Account.
2.	 Creating a WCF service to listen for a broadcast message securely on the

Service Bus.
3.	 Creating a WCF service to listen for a unique update message and return a

response securely on the Service Bus.

The solution assumes the following software is already installed:

•	 Visual Studio 2008 with Service Pack 1
•	 Windows Azure platform AppFabric SDK V1.0—April update

Remote Message Broadcasting

[300]

Signing up for an Azure AppFabric account
1.	 Go to http://www.microsoft.com/windowsazure/appfabric/.
2.	 Look for the Sign Up Now link on the right side.
3.	 Review the packages and specials available and select the package that is

best for you.
4.	 Enter your Windows Live credentials.
5.	 Enter your profile information including your address and phone number on

the next few screens.
6.	 Review your purchase options. In this case, Microsoft has a special offer for

my region. Select Buy Now.

7.	 Read the terms and conditions, check the checkbox, and select Check Out.
8.	 If you have an existing credit card on file, you can use that. Otherwise, enter

a new credit card. Click on Next.
9.	 Review and agree to the service agreement. Click on I Accept.
10.	 Review your purchase one last time. Click on Complete Order.
11.	 Note your confirmation number on the next page. Proceed with

the activation.
12.	 Give your subscription a meaningful name. In this case, the name

AppliedArchitecture.Chapter11.ServiceBus is used to identify
this subscription.

Chapter 11

[301]

13.	 Confirm the service administrator details and review the next few screens.
14.	 An e-mail confirmation will be sent to the administrator once the service is

available for use. This can take up to 24 hours.
15.	 Click on the AppFabric link in the e-mail or navigate to https://appfabric.

azure.com. This page will list the available projects for AppFabric.
16.	 Click on the created project, AppliedArchitecture.Chapter11.

ServiceBus, unless you named it otherwise.
17.	 Click on the Add Service Namespace. A service namespace is a globally

unique name to represent a Service Bus and access control solution.
18.	 Enter a Service Namespace. Something like: AppliedArchitecture-

Chapter11-<Initials or ZipCode or PhoneNumber>. This sample uses
AppliedArchitecture-Chapter11.

19.	 Set the Region closest to you. This sample uses United States (North/Central).
20.	 Set the ServiceBus Connection Packs. This sample uses 0. If your application

will use a known number of connections, it is best to purchase a connection
pack. Rates are about 50 percent less through the connection pack.

21.	 The end result should look like the following screenshot:

Remote Message Broadcasting

[302]

22.	 In a moment, the page will refresh and an Active status will be shown next to
the newly created project. Click on the service namespace.

23.	 This displays all the connection information for this account. The Registry
URL—in this case it is https://appliedarchitecture-chapter11.
servicebus.windows.net/—and the default issuer name and key. This
information will be needed to have services listen and send messages to the
Service Bus.

Create the WCF services to listen on the
Service Bus

1.	 Launch Visual Studio.NET 2008 and open the AppliedArchitecture.
Chapter11.ServiceBus.sln in the <Installation Directory>\
Chapter11\Begin folder.

2.	 This solution contains the following projects:
°° Chapter11.ServiceBus.HomeA: Service application to

simulate a home DVR device. This code needs to be updated
to listen to the Service Bus.

°° Chapter11.ServiceBus.HomeB: Service application to
simulate a home DVR device. This code is complete but needs
to be updated to listen to the Service Bus.

Chapter 11

[303]

°° Chapter11.ServiceBus.HomeC: Service application to
simulate a home DVR device. This code is complete but needs
to be updated to listen to the Service Bus.

°° Chapter11.ServiceBus.Tester: Client application to send
broadcast and point-to-point messages to the Service Bus.
This needs to be updated to connect to the Service Bus.

3.	 Open the Program.cs file in the Chapter11.ServiceBus.HomeA project.
4.	 Review the two existing contracts and service implementations. The

QuickScheduleUpdate implements a one-way service to receive a broadcast
message and RecordingScheduleUpdate is a request-response service to
receive a point-to-point message and return a response.

5.	 The code to host the console services is missing. Add the following code to
the Main method:
Console.WriteLine("Starting Home A");

// Create the Host for the QuickScheduleUpdate and
RecordingScheduleUpdate

ServiceHost hostQuickScheduleUpdate = new
ServiceHost(typeof(ScheduleUpdate));

ServiceHost hostRecordingScheduleUpdate = new
ServiceHost(typeof(SyncScheduleUpdate));

// Open Each Host on the Service

BushostQuickScheduleUpdate.Open();

hostRecordingScheduleUpdate.Open();

Console.WriteLine("Listening on the Service Bus for Home A");

Console.WriteLine("Press ENTER to exit");

Console.ReadLine();

// Close the HostshostQuickScheduleUpdate.Close();

hostRecordingScheduleUpdate.Close();

6.	 As it stands now, this is just a basic WCF service with service contracts,
implantation logic, and a host. An App.config file is needed to outline
the communication details for these services. The existing App.config has
missing key information.

7.	 Inside the App.config file, each service and endpoint needs to be defined.
Create a Service node for each service. Inside the service, create an endpoint
and set the address, behavior configuration, binding, and contract.

Remote Message Broadcasting

[304]

8.	 The address is the Service Bus project name created in the first section.
Ensure you use the sb:// address prefix rather than the https://. Add
namespace components after the assigned namespace to differentiate the
two service endpoints as shown in the code:

°° The Schedule Update service should use the
netEventRelayBinding and QuickScheduleUpdate as the
added namespace.

°° The Sync Schedule Update service should use the
netTcpRelayBinding and ScheduleUpdate/HomeA as the
added namespace.

9.	 Both services should use the same binding configuration. For now, just call it
serviceBusCredentials.

10.	 The following is how the setting should look in the App.config file:
<service
 name="AppliedArchitecture.Chapter11.
 ServiceBus.HomeA.ScheduleUpdate">

 <endpoint address="sb://appliedarchitecture-chapter11-<Your
 Info Here>.servicebus.windows.net/QuickScheduleUpdate"
 behaviorConfiguration="serviceBusCredentials"
 binding="netEventRelayBinding"
 contract="AppliedArchitecture.Chapter11
 ServiceBus.HomeA.IScheduleUpdate"/>

</service>

<service
 name="AppliedArchitecture.Chapter11.
 ServiceBus.HomeA.SyncScheduleUpdate">

 <endpoint address="sb://appliedarchitecture-chapter11-<Your Info
 Here>.servicebus.windows.net/ScheduleUpdate/HomeA"
 behaviorConfiguration="serviceBusCredentials"
 binding="netTcpRelayBinding"
 contract="AppliedArchitecture.Chapter11.
 ServiceBus.HomeA.ISyncScheduleUpdate"/>

</service>

11.	 One of the key benefits of the Service Bus is the ability to securely connect to
the bus. In order to do so, an issuer name and issuer secret key are needed.
This is found on the namespace details page of the Azure portal from the
first section.

12.	 Create the behavior with your credentials as shown:
<behavior name="serviceBusCredentials">

 <transportClientEndpointBehavior
 credentialType="SharedSecret">

Chapter 11

[305]

 <clientCredentials>

 <sharedSecret issuerName="owner" issuerSecret="<Your Key
 Here>"/>

 </clientCredentials>

 </transportClientEndpointBehavior>

</behavior>

13.	 This completes HomeA. The App.config files for HomeB and HomeC need to be
updated with your Service Bus namespace and secret key.

14.	 Once the individual services are complete, the Tester application needs to be
updated. All the service names and endpoints are already set up. Update the
endpoint address and the behavior secret key just like in the previous steps.

15.	 We are ready to test the solution. Make sure you review the Microsoft Platform
AppFabric Billing to understand the impact of connecting to the Service Bus.
Currently, the default package includes two connections. This solution uses
four. To avoid additional charges, only use the Client and a single Home test
application.

16.	 By default, the solution is set up to start all three services and the client.
Simply press F5. Three console application windows will open along with the
test client as shown in the following screenshot:

Remote Message Broadcasting

[306]

17.	 Set a Channel and Time. Click on Update All Homes button at the top.
Notice each console windows get an update message.

18.	 Set a Channel and Time. Click on Update Home C. Notice only the console
window for Home C gets the update and a response is returned to the client.

Chapter 11

[307]

Summary
In this chapter, we took a look at various ways to update remote systems using
.NET Polling, BizTalk, or the Windows Azure Platform AppFabric Service Bus. For
this use case, using the Service Bus was the right decision, having been given the
requirements of Virtual Cow Media. The Service Bus is elastic, flexible, and has all
the features required by a company like Virtual Cow Media.

Debatching Bulk Data
Debatching data is the process of turning one huge pile of data into many small piles
of data.

Why is it better to shovel one ton of data using two thousand, one pound shovels
instead of one big load from a huge power shovel? After all, large commercial
databases and the attendant bulk loader or SQL Loader programs are designed to do
just that: insert huge loads of data in a single shot.

The bulk load approach works under certain tightly constrained circumstances. They
are as follows:

1.	 The "bulk" data comes to you already matching the table structure of the
destination system. Of course, this may mean that it was debatched before it
gets to your system.

2.	 The destination system can accept some, potentially significant, error rate
when individual rows fail to load.

3.	 There are no updates or deletes, just inserts.
4.	 Your destination system can handle bulk loads. Certain systems

(for example, some legacy medical systems or other proprietary systems)
cannot handle bulk operations.

As the vast majority of data transfer situations will not meet these criteria, we must
consider various options. First, one must consider which side of the database event
horizon one should perform these tasks. One could, for example, simply dump an
entire large file into a staging table on SQL Server, and then debatch using SQL
to move the data to the "permanent" tables. There are, of course, multiple tools
for debatching large bulk data loads including BizTalk Server and SQL Server
Integration Services (SSIS). One can use such tools to break up large batches of data,
manipulate it as needed, and send it on to its next reincarnation (for example, into an
API, a relational database, or a text file). In this chapter, we will take a look at options
for processing large data sets.

Debatching Bulk Data

[310]

Use case
Big Box Stores owns and operates retail chains that include huge Big Box warehouse
stores, large retail operations in groceries and general department stores and small
convenience stores that sell gasoline, beverages, and fast food. The company has
added brands and stores over the past few years through a series of mergers. Each
brand has its own unique point of sale system. The stores operate in the United
States, Canada, Mexico, and Western Europe.

The loss prevention department has noticed that a number of store sales and clerical
staff are helping themselves to "five-finger bonuses." The staff members use various
ruses to take money from cash registers, obtain goods without paying for them, or
otherwise embezzle money or steal goods from Big Box. These patterns typically
unfold over periods of several days or weeks. For example, employees will make
purchases using their employee discount at the store where they work, then return
the product for full price at another store where they are not known or they have an
accomplice return the goods to the employee for a full refund.

The various methods used to steal from Big Box fall into these recognized patterns
and a good deal of this theft can be uncovered by analyzing patterns of sales
transactions. Standard ETL techniques will be used to import data concerning the
stores, products, and employees to a database where we can analyze these patterns
and detect employee theft.

We have been tasked with designing a system that will import comma-delimited files
exported by the point of sales (POS) systems into a SQL Server database that will then
perform the analysis. Data concerning each sale will be sent from each of the point of
sale systems. The files will hold all or part of the prior day's sales and will range from
30,000 to over 2.5 million rows of data per file. For stores that have "regular" business
hours, files will become available approximately one hour after the stores close. This
time will vary based on the day of the week and the time of year. During "normal"
operations, stores typically close at 9:00 PM local time. During certain peak shopping
periods (for example, Christmas or local holiday periods) stores remain open until
midnight, local time. Convenience stores are opened 24 hours per day, 7 days per
week. Data will be sent for these stores after the POS system has closed the books on
the prior day, typically at 1:00 AM local time.

The POS systems can be extended to periodically expose "final" sales to the system
throughout the business day via a web service. The impact of using this method
during a peak sales period is unknown, and performance of the POS may degrade.
A full day's data may also be extracted from the POS system in the comma-delimited
format discussed as follows. The web service would expose the data using the
natural hierarchy of "sales header" and "sales detail."

Chapter 12

[311]

All data must be loaded and available to the loss prevention department by 9 AM
CET for European stores and 9 AM EST for North American stores. It should be
noted that the different POS use different data types to identify stores, employees,
products, and sales transactions. The load job must account for this and properly
relate the data from the store to the master data loaded in a separate application.

The data will be sent in two comma-delimited files, one containing the "Sales Header"
data and one containing the sales details. The data will be in the following format:

Sales Header

SalesID, StoreID, EmployeeID, EmployeeFirstName, EmployeeLastName,
RegisterID, RegisterLocation, storeAddress, StoreCity, StoreProvince,
StorePostalCode, CustomerID, CustomerFirstName, CustomerLastName,
CustomerPostalCode, Date, Time, Method of Payment, CreditCardNumber,
TotalSales, Amount Tendered, Change, PriorSalesID, Return

Sales Detail

SalesID, ProductID, Quantity, markedPrice, ActualPrice, ReturnItem,
DiscountCode, DiscountPercent, DiscountDescription, OriginalPurchaseDate,
OriginalPurchaseStore, OriginalPurchaseSalesID, originalCustomerID,
OriginalFirstName, OriginalLastName, OriginalStoreID, OriginalRegisterID,
OriginalEmployeeID

Key requirements
Our mission is to move this data into a data mart that will use a standard star
schema for this analysis. Big Box intended to prosecute employees for larceny or
theft offences based on evidence this system gathers. Given the legal requirements
that evidence gathered through this process must stand up in court, it is vital that
this data be correct and loaded with a minimal number of errors or issues.

Additional facts
As is fairly typical, the use case above does not contain information on all of the facts
we would need to consider when designing a solution. Every company has operating
assumptions that the enterprise takes as a "given" and others we learn through
our own involvement with the enterprise. These "facts" are so ingrained into an
organization's culture that people may not even recognize the need to explicitly
state these requirements.

Debatching Bulk Data

[312]

For example, if a consultant arrives at a company in Denver, CO that only does
business in the United States, then he or she can expect that the business language
will be English with US spelling. The exact same company in Calgary, doing business
in Canada will need both English with British spelling and French. It is doubtful one
would ever see such "requirements" stated explicitly, but anyone designing
a solution would do well to keep them in mind.

Other facts may be extrapolated or derived from the given requirements. When you
are designing a solution you must take these criteria into account as well. It would
be at best unwise to design a solution that was beyond the skill set for the IT staff,
for example. In this case, it is probably safe to say the following:

Fact or Extrapolation Reason
Big Box has a very sophisticated IT staff that
can handle any advanced and sophisticated
technologies.

They are currently handling multiple POS
systems on 2 continents and already do
sophisticated ETL work from these systems
to existing BI systems.

Getting the deliverable "right" is more
important than getting it done "fast".

Legal requirements for using data as
evidence.

Data must be secure during movement to
avoid allegations of evidence tampering.

Legal requirements for using data as
evidence.

Some level of operational control and
monitoring must be built into the
application we will design.

Common courtesy to the Network
Operations Center (NOC) staff who will
deal with this, if nothing else.

Candidate architectures
We can tackle this problem from multiple angles, so let us take a look at the
available options.

Candidate architecture #1–SSIS
First, we will explore the pros and cons of using SSIS for our solution platform.

Solution design aspects
This scenario is the sweet spot for SSIS. SSIS is, first and foremost, an ETL and batch
data processing tool. SSIS can easily read multiple files from a network drive and has
the tools out of the box that can debatch, either before or after loading to a database.

Nonetheless, we are faced with certain hurdles that will need to be accounted for in
our design. We do not control precisely when the POS data will be made available.

Chapter 12

[313]

There are a number of variables that influence that timing, not the least of which is
the potential need for human intervention in closing books for the day and variable
times throughout the year and across the globe when a particular store's books will
be closed. We need to expect that files will be delivered over a time range.

In some ways this is helpful, as it spreads some of the load over time.

One of the great things about SSIS in this situation is the flexibility it provides. We
can load all of the data in a single batch to a staging table then move it (debatch)
to its final destinations using SQL, or we can debatch on the application side and
load directly to the final tables, or any combination that suits us and the strengths
of the development team. SSIS can also be extended to monitor directories and load
data when it becomes available. Finally, SSIS integrates easily into NOC monitoring
systems and provides the ability to guarantee data security and integrity as required
for this application. Moreover, SSIS does not incur any additional licensing costs, as
it ships with SQL Server out of the box.

Solution delivery aspects
It is not clear from our use case what depth of experience Big Box staff has with SSIS.
However, they certainly have experience with database technologies, SQL queries,
and with other advance technologies associated with data transfer and integration,
given the size of the enterprise operations. We can reasonably expect them to pick up
any unfamiliar technologies quickly and easily.

This application will require some extensions to the typical ETL paradigm. Here
data must go through some amount of human intervention through the daily
"closing" before it is made available. This will involve tasks such as physically
counting cash to make sure it matches the records in the POS system. Any number
of factors can accelerate or delay the completion of this task. SSIS will therefore need
to monitor the directories where data are delivered to ensure the data is available.
Also, we will need to design the system so that it does not attempt to load partially
completed files. This is a classic ETL problem with many potential solutions and
certainly does not present insurmountable issues.

Solution operations aspects
In this case, we have one vitally important operational requirement; the solution must
guarantee data integrity and security so that the data can be used to prosecute thieves
or otherwise stand up to evidentiary rules. SSIS and SQL Server 2008 Enterprise
Edition can handle these requirements. SQL Server 2008 security and data access
auditing features will meet chain of custody requirements and ensure that no data
tampering occurred. SSIS can enforce business rules programmatically to ensure
the precise and accurate transfer of the data sent by the POS systems.

Debatching Bulk Data

[314]

Many of these requirements will be filled with the design of the database itself. We
would use, for example, the data access auditing now available with SQL Server
2008 to monitor who has been working with data. The database would use only
Windows-based security, not SQL Server based security. Other steps to harden SQL
Server against attack should be taken.

All the previously mentioned features secure the data while at rest. We will need to
focus on how to ensure data integrity during the transfer of the data—while the data
is in motion. SSIS has logging tools that will be used to monitor unsuccessful data
transfers. Moreover, we can extend these tools to ensure either a complete data load
or that we will have an explanation for any failure to load. It should be noted that the
loss prevention staff is interested in outliers, so they will want to carefully examine
data that fails to meet business requirements (and therefore fails to load to our target
system) to look for patterns of theft.

Organizational aspects
We understand that Big Box staff has the technical wherewithal to handle this
relatively simple extension to existing SQL Server technologies. This is a group of
database professionals who deal with multiple stores performing over 2 million
transactions per day. They support the POS, financial, inventory, and other systems
required to handle this volume on two continents. This is a small step for them in
terms of their ability to live with this solution.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2–BizTalk Server
While not primarily targeted at bulk data solutions, BizTalk Server can parse
large inbound data sets, debatch the individual records, and insert them into
a target system.

Chapter 12

[315]

Solution design aspects
The POS systems that provide sales data to the Big Box data hub typically produce
comma-delimited files. Using BizTalk Server, we can define the document structure
of delimited files and natively accept and parse them. The requirements earlier also
stated that the POS systems could be extended to publish a more real-time feed via
web services as opposed to the daily file drop of data. This is more in tune with how
BizTalk does standard processing (real-time data feeds) and would be a preferred
means to distribute data through the BizTalk bus.

BizTalk Server's SQL Server adapter is built to insert a record at a time into a
database. This means that the BizTalk solution needs to break apart these large
inbound data sets and insert each record individually into the final repository.
Messages are debatched automatically in BizTalk via pipeline components and
specially defined schemas, but this is a CPU-intensive process. We would want
to isolate the servers that receive and parse these data sets so that the high CPU
utilization doesn't impede other BizTalk-based solutions from running.

Solution delivery aspects
Big Box leverages SQL Server all across the organization, but does not currently
have a BizTalk footprint. This means that they'll need to set up a small infrastructure
to host this software platform. They do have developers well-versed in .NET
development and have typically shown a penchant for utilizing external consultants
to design and implement large enterprise solutions. It would be critical for them to
build up a small center of excellence in BizTalk to ensure that maintenance of this
application and the creation of new ones can progress seamlessly.

Solution operations aspects
BizTalk Server provides strong operational support through tooling, scripting,
and monitoring. If the downstream database becomes unavailable, BizTalk will
queue up the messages that have yet to be delivered. This ensures that no sales
information gets lost in transit and provides a level of guarantee that the data
mart is always accurate.

Given the relatively large sets of data, the operations team will need to configure a
fairly robust BizTalk environment, which can handle the CPU-intensive debatching
and perform the database inserts in a timely fashion.

Debatching Bulk Data

[316]

Organizational aspects
Big Box would be well served by moving to a more real-time processing solution in
the near future. This way, they can do more live analysis and not have to wait until
daily intervals to acquire the latest actionable data. A messaging-based solution that
relies on BizTalk Server is more in tune with that vision.

However, this is a critical program and speed to market is a necessity. Big Box
accepts a high level of risk in procuring a new enterprise software product and
getting the environments and resources in place to design, develop, and support
solutions built upon it.

Solution evaluation

Design Delivery Operations Organization

Architecture selection
SQL Server and SSIS
Benefits

•	 Easily deployed and extensible ETL
tool

•	 Designed to handle batch processing
of large files, exactly the task at hand

•	 No additional licensing costs –
comes with SQL Server

•	 Can be built and maintained by
current staff

Risks
•	 Need to build sophisticated

error handling systems

Chapter 12

[317]

BizTalk Server
Benefits

•	 Provides for live, real-time analysis
•	 Can leverage BizTalk capability

to send events to downstream
transactional systems

•	 Enterprise-class hosting
infrastructure

Risks
•	 CPU-intensive processes
•	 High database process overhead
•	 Additional licensing and capital

costs
•	 Not clear if staff has the skills to

support product

When all is said and done, this is exactly the scenario that SSIS was designed to
handle, a batch load to a data mart. Moreover, the selection of SSIS entails no
additional licensing costs, as might be the case with BizTalk.

Building the solution
This section outlines the construction of a proof-of-concept application that will
implement the functionality required for this application. The details of data
warehousing, OLAP, and data security each would require large, detailed books
in and of themselves. At a minimum, we would suggest you consider studying the
following topics:

•	 Partitioning strategies for data storage and loading
•	 Compression strategies
•	 Transparent data encryption
•	 Data access auditing for PID
•	 Multi-dimensional data structures
•	 Encryption strategies for data in motion
•	 SAN and physical infrastructure design

Debatching Bulk Data

[318]

From a very high level (and shown below), we will be taking data already encrypted
on the source system using agreed upon encryption algorithms, decrypting it,
debatching it, and loading it into our database, or, as an alternative, loading it into a
staging table then debatching it using SQL:

Encryption
We are dealing with people's credit card numbers so we must encrypt this data,
particularly if we plan on sending it to a potentially open folder in a .csv format.
There are numerous methods for handling encryption, and the determination of
which methods to use will depend largely on both data sources and data targets. In
this case, we will use simple symmetric key encryption available with SQL Server,
mostly because it is easy for purposes of illustration. Moreover, the data will be
transferred using internal Big Box networks so we can also rely on network-level
security to protect the data. Asymmetrical keys should also be considered here for
real-world scenarios.

Chapter 12

[319]

In order to generate our simple .csv files we created a mock point of sale (POS)
database named SourceOfWisdom with two tables for our sales header and sales
detail data. To encrypt the data, we first create a master key, then a certificate, and
finally a symmetric key.

use SourceOfWisdom

go

IF EXISTS(

 SELECT *

 FROM sys.certificates

 WHERE name = N'AppPatternCert'

)

DROP CERTIFICATE AppPatternCert

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'InY0urDre@ms'; /* Note
Password complexity */

GO

CREATE CERTIFICATE AppPatternCert WITH SUBJECT = 'Key Protection';

GO

CREATE SYMMETRIC KEY DebatchPatternKey WITH

 KEY_SOURCE = 'KeepMeSecret',

 ALGORITHM = AES_256,

 IDENTITY_VALUE = 'ThisIsSecret2'

 ENCRYPTION BY CERTIFICATE AppPatternCert;

GO

-- a simple test for the certificate

OPEN SYMMETRIC KEY DebatchPatternKey

 DECRYPTION BY CERTIFICATE AppPatternCert;

GO

SELECT 'CreditCardNumber',

 encryptbykey(key_guid('DebatchPatternKey'), 'CreditCardNumber')

GO

Debatching Bulk Data

[320]

Target system
As one would expect, we have a target system that does not match our sources.
Moreover, we can expect the iron law of BI systems will be strictly enforced here.
That law is "no one ever tells the BI staff anything." Psychic abilities are part of
the job description. We can expect that there will be changes made to our source
systems, or that data will be entered in one system but not in another. We must
design our systems accordingly.

Our target schema is shown as follows. You can create this sample database with the
accompanying project.

Chapter 12

[321]

Debatching with SSIS and SQL Server
With our sources and targets defined, we now must decide how we will debatch
the data so that it is properly loaded into the target tables. While using SSIS we can
decide to leverage the objects that come with SSIS out of the box, or simply load the
data into staging tables and use SQL set operations to move the data to target tables.

There is no "right" answer to this issue any more than there is a "right" answer to
"which is better, a hammer or a screwdriver?" We have a box full of very useful tools
and we use them for their most appropriate tasks. There are some general rules that
should be followed.

Set operations should be done with SQL. A set operation is the operation any
relational database uses to match data by common characteristics across data
sets. Databases are based on set or relational algebra and therefore handle these
operations very efficiently.

"Non-set" operations should be handled within the SSIS package, using the objects
available or with custom scripts.

If there is a specific object on either system that makes your life easier, use that.

Always default to the system that allows you to write the most efficient code.
Generally, this will be where you are most comfortable.

In this case, we have used the SQL Server symmetric key encryption to secure PID.
This data is held in the SalesHeader.csv file, so we will need to work with this
data on the SQL side of things. For purposes of illustration, we will demonstrate
debatching the sales detail data on the application side.

We will also make certain assumptions for this illustration that would be risky in
real-world applications. First, we will assume that all of data we will be loading is
fresh and there are no updates to previously loaded records. Second, we will assume
that the source files will not be locked and will be a complete data set when we begin
our loading process. There are numerous ways to control for this in the real world,
including the use of empty trigger files.

We will create a single SSIS package for extracting the data from the flat files,
transforming it, and finally loading it into the appropriate tables in the destination
database. The appropriate code is in two separate sequence containers. We will
assume a certain amount of familiarity with SSIS here, including the primer
information, and not outline every step in the detail one would see in a book
dedicated to the product.

Debatching Bulk Data

[322]

Debatching with SQL
"Debatching" in this context can fit into the "transform" or the "load" phases of any
ETL job. Here we will take one of our source batches of data, load it as a single batch
into a staging table, then "debatch" using SQL statements.

You will need a staging table on your target database for this solution. We will be
doing a significant amount of our transformation and loading using SQL, and this is
a fast way to get the data where we can use SQL. Note that we also create a storage
schema. Long term, this schema will allow storage flexibility by allowing us
to manipulate which physical storage devices hold a particular schema. The table can
be created with the following script:

CREATE SCHEMA staging AUTHORIZATION dbo
GO

CREATE TABLE staging.SalesHeaderSource(
 SalesID int NULL,
 StoreID int NULL,
 storeAddress nvarchar(75) NULL,
 StoreCity nvarchar(50) NULL,
 StoreProvince nvarchar(2) NULL,
 StorePostalCode nvarchar(5) NULL,
 EmployeeID int NULL,
 EmployeeFirstName nvarchar(25) NULL,
 EmployeeLastName nvarchar(25) NULL,
 RegisterID int NULL,
 RegisterLocation nvarchar(10) NULL,
 RegisterType nvarchar(30) NULL,
 DateOfSale nvarchar(50) NULL,
 TimeofSale nvarchar(25) NULL,
 Method_of_Payment nvarchar(25) NULL,
 CreditCardNumber nvarchar(max) NULL,
 CustomerID nvarchar(max) NULL,
 CustomerFirstName nvarchar(max) NULL,
 CustomerLastName nvarchar(max) NULL,
 CustomerPostalCode nvarchar(max) NULL,
 TotalSales numeric(9, 2) NULL,
 AmountTendered numeric(9, 2) NULL,
 Change numeric(9, 2) NULL,
 PriorSalesID nvarchar(76) NULL,
 ReturnTrans NVARCHAR(2) NULL
)

GO

Chapter 12

[323]

Start an SSIS project in Visual Studio, rename the default package to debatch.dtsx,
then drag a sequence container from the tool box to the package. Rename the sequence
container "Load Header" or any similar descriptive term that floats your boat. Place
an execute SQL Task (named "prep staging table" for our example), a data flow task
(named "Load Staging Table" for our example), and a second execute SQL task
(named "Cleanse Return Data"). These three steps will handle our staging table load.

You should also note the creation of connection managers for both our source CSV
file and our target database.

Debatching Bulk Data

[324]

Our data flow task will take data from our .csv file—which will, of course, be
in ASCII—convert the data to the appropriate data type, and load it into the
staging table.

Chapter 12

[325]

The .csv file does not have column names in the first row. For ease of coding
and because we mere mortals cannot remember the names of fields by a numeric
designation, we will need to go into the source connection manager and rename
our columns.

Mapping these column names to the target field in the database will make your life
easier in the long term.

Debatching Bulk Data

[326]

Next, we will need to convert our ASCII data to the appropriate data types. Many of
us got spoiled by earlier versions of SQL Server doing ASCII to Unicode conversions
for us under the covers. You must make this explicit with SSIS.

Next, we map the data into the correct staging table fields as shown next and the
data will load to staging.

Chapter 12

[327]

We want to make sure we have the correct values, particularly for data that comes
from the source as a null. Often SSIS will treat this as a string and load the word
"null" instead of a null value. We therefore perform an execute SQL task that simply
executes the following:

UPDATE staging.SalesHeaderSource SET PriorSalesID = null WHERE
ISNUMERIC(PriorSalesID) = 0
GO
UPDATE staging.SalesHeaderSource SET ReturnTrans = 0
WHERE ISNUMERIC(ReturnTrans) = 0
GO

Now that our data is properly staged, we will move it to the final tables using a
series of SQL statements. Recall that we made an admittedly dangerous assumption
that applies to this step—all of our data is new. We will illustrate a merge statement,
new with SQL Server 2008 and a very convenient alternative to the hoops that we
previously jumped through to "upsert" data.

Debatching Bulk Data

[328]

The data will be moved in a manner consistent with the hierarchy of the data and
the foreign key constraints we have defined. First, we move the stores data with a
merge statement.

BEGIN
SET NOCOUNT ON
MERGE LossPrevention.Stores AS TARGET
USING(select distinct StoreID, storeAddress,StoreCity, StoreProvince,
StorePostalCode FROM staging.SalesHeaderSource)
AS SOURCE (StoreID, storeAddress,StoreCity, StoreProvince,
StorePostalCode)
ON (TARGET.StoreID = source.StoreID)
WHEN MATCHED THEN
UPDATE SET storeAddress = source.storeAddress,
 StoreCity = source.StoreCity,
 StoreProvince = source.StoreProvince,
 StorePostalCode = source.StorePostalCode
WHEN NOT MATCHED THEN
INSERT (StoreID, storeAddress,StoreCity, StoreProvince,
StorePostalCode)
VALUES (source.StoreID, source.storeAddress, source.StoreCity, source.
StoreProvince, source.StorePostalCode);
END;
GO

Next, for the sake of simplicity, we will execute a series of inserts. For example, we
would use this insert for registers:

INSERT INTO [FindCrooks].[LossPrevention].[Registers]
 ([RegisterID]
 ,[StoreID]
 ,[RegisterLocation]
 ,[RegisterType])
 (
 select distinct
 RegisterID, StoreID, RegisterLocation, RegisterType
 FROM
 staging.SalesHeaderSource
)
GO

The balance of the inserts may be found in the accompanying code.

Of course, all of the merge and insert statements can be placed within stored
procedures and executed there.

Here, we have taken a large "batch" of data and broken it apart (debatched) using
SQL statements.

Chapter 12

[329]

Debatch with SSIS
Here, we will start once again with a data flow task; however, after bringing the
data into the SSIS process we will debatch within that process, rather than on the
database. Once again, drag a sequence container onto the package and label it
"Load Details". Next, drag a data flow task into the sequence container and label
it "get details".

As in the earlier data flow, drag a flat file source into the data flow. You will need a
new connection object to the details CSV file and, as before, you should rename the
columns to make them human readable.

We will illustrate the loading of two tables, the "SalesDetail" and "ReturnSales"
tables, using an SSIS multicast object.

The first issue we encounter is that our source system has used the word "Null"
for null values. SSIS interprets this value as a string holding the word "null" so
we will need to deal with this issue, particularly on the numeric and integer value
columns. Add a derived columns object and connect it to the flat-file source. For
illustration, we will add a new column for the "Original Customer ID" value by
substituting an empty string for the word "Null" and we will replace the "Null"
in the "DiscountPercent" field with "0" as illustrated next. Note that this is a
simple "REPLACE" function.

Debatching Bulk Data

[330]

We must then perform our data type conversions, as we did earlier, converting
ASCII to Unicode and strings to the appropriate numeric or integer types, as
required. In order to preserve relational integrity, we will need to get the store
identifier, along with other specific data that was provided in the sales header file.
For this, drag a lookup transformation onto the data flow. In the data transformation
stage, we will have already converted the sales ID to a four byte signed integer data
type. This will allow us to relate the sales header data to the sales detail data in an
accurate manner.

We will be sending our data to two separate tables. Drag a multicast task onto the
flow. This will allow you to send duplicate datasets to multiple destinations. For you
Matrix fans, think of multicasts as the agent Smith of ETL. As you can see from the
illustration shown next, we simply send this to the OLEDB destinations using fast
loads for the tables. Recall that in this application, we are looking for sales that do
not meet certain rules. These require closer inspection as they may indicate employee
theft or customer theft (for example, shoplifting then "returning" the item for a full
refund). In this case, we send this data to a flat file. In the "real world" we would
send this to an "alerts" table to flag it for further review.

Chapter 12

[331]

Summary
Here we have three powerful tools for data movement, SSIS, Microsoft Sync
Framework, and SQL Server Service Broker that can handle the data movement,
master data management, and data governance needs of a variety of organizations
and in a variety of business circumstances. The tools can be used in a variety of
combinations to get data where it needs to be.

Complex Event Processing
Every day, business users and IT professionals acquire information by running
reports against their business data. However, as organizations require more agility
and crave the ability to make more timely decisions, we find that traditional
analytical methods are insufficient. In this chapter, we will discuss how to correlate
different high-volume streams of data and uncover previously undetected business
insight in real time.

Use case
Watson Media Properties is a rapidly expanding network of websites, which sell
objects (such as attire, key chains, and so on) under the "Screaming" brand. Their
initial website, "Screaming Pets" was a viral sensation as hundreds, then thousands,
and then tens of thousands of users flocked to the site to pick up irreverent
bandanas, bumper stickers, and toys for their pet animals. Thereafter, "Screaming
Geeks" was launched and now the company has plans to unleash their most
anticipated property yet—"Screaming Fans".

As Watson Media grows, they have become hyper-sensitive to customer experience
and establishing deep loyalty and affection to the brand. However, their rapid
growth has meant that they are constantly adding hardware to their existing data
centers, and occasionally experience performance slowdowns on the site. A series
of month-end reports has shown a rise in the percentage of site visitors who populate
a shopping cart with items and eventually abandon their cart. The marketing director
is concerned that customers who experience performance problems on the website
during their shopping experience eventually get frustrated and decide to leave the
site before completing their purchase. This deprives Watson Media of revenue, but
more importantly, hurts the brand and impacts long-term customer perception.

Complex Event Processing

[334]

While some analytics have been run on the correlation between site performance
and cart abandonment, the Watson team is more concerned with how to quickly
re-engage customers who have just left the site after experiencing hiccups. Running
reports at the end of the month, or even the end of the day, is too late to discover
problems and try to win back the customer's business. Watson Media is looking
for a way to immediately reach out to customers who abandoned the site in the
midst of an ongoing performance problem. Ideally, if there are more than four
timed-out requests in any one minute period throughout the day (which indicates
that there may be a growing problem in the data center), then any customer who
abandons their cart during that particular time window should be notified that
they will receive a 15 percent discount on their cart if they return and complete
their purchase.

Watson Media has grown organically as a company and therefore has a fairly
homogenous set of core technologies. Their websites are built on ASP.NET, and they
have numerous .NET developers on staff. Their primary database platform is SQL
Server, but they have a number of commercial line-of-business applications that
leverage Oracle databases. As a result of rapid growth of the organization, software
purchases are often done in a best-of-breed manner, instead of building or buying
technology that is cohesively integrated. Thus, early on, the IT director made an
investment in BizTalk Server to ensure that they had a central integration bus that
could tie their disparate technologies and external partners together.

Key requirements
The key requirements are as follows:

•	 Analyze user actions in near real time to discover behavior and re-engage
users who face interruptions during the purchase process.

•	 Identify short-term trends in server performance.
•	 Connect to multiple sources of data events and correlate events

across sources.

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following:

1.	 The original website, Screaming Pets, receives nearly 245,000 unique visitors
per day. The follow-up site, Screaming Geeks, averages about 39,000 unique
visitors per day. Each site has proved to be fairly sticky with web sessions
typically lasting for over 15 minutes and producing dozens of click activities
for users.

Chapter 13

[335]

2.	 This solution is not meant to be the primary processor of transactional data;
rather, it should pull observational events for the purpose of inspecting
and responding to customer behavior. Therefore, the output of this
event processing solution is a notification to a Watson Media customer
service representative (or more preferably, an automated e-mail) and no
communication with back-office processing systems is expected.

3.	 The client is looking for a flexible solution that can talk to a variety of source
systems so that they can extract events from transactional systems, logs, and
other sources of business events.

4.	 Time windows are important to this solution because Watson Media does
not want to be randomly handing out discounts, or misreading temporary
glitches as broad system instability. However, this is a nice-to-have as the
most important thing is to re-engage customers, even if this means sending
out discounts to casual users who simply left the site for other reasons.

5.	 Speed is arguably more important than reliability, in the sense that
Watson Media wants to quickly re-acquire these departed visitors, and
would be willing to let a few visitors slip through the cracks if it meant a
leaner solution.

Pattern description
This solution calls for an event-driven architecture (EDA) and complex event
processing across independent sets of data. When you leverage an event-driven
interaction (versus time/batch-oriented interactions, or request-driven interactions),
you expect systems to produce events as they occur and distribute them in an
asynchronous fashion. An EDA lets an organization respond quickly to opportunities
or threats to the business, reduces latency of business processes, and improves the
overall availability of strategic information.

A well-built event processing engine will act as an efficient intermediary that filters
out noise and amplifies events that demand attention. Such an engine also may
transform the raw events into more canonical formats, enrich events with reference
or lookup data, or even create entirely new events based on detected patterns.
Ideally, the engine can also reorder out-of-sequence events, perform aggregations
(for example, count, produce averages, and so on) and receive events from a variety
of source systems and devices.

Complex Event Processing

[336]

One can do simple event stream processing where conditions are evaluated against
the data in a particular stream, or one can invest in complex event processing (CEP).
CEP is a way of extracting insight from a number of distinct business events through
correlation across data streams and then emitting complex events that can be acted
upon. The queries leveraged by a CEP engine are where institutional knowledge is
turned into rich pattern definitions. However, do not mistake CEP for a data mining
activity. With the CEP model, you establish up front what you are looking for by
defining queries that match, aggregate, or filter data across streams. In this case,
the data comes to the questions rather than the questions coming to the data.

What Watson Media is looking to do is a close fit for CEP. They have what are
typically independent sets of data (server logs/administrative events and user
interaction events) with an intersection established between them so that they can
achieve a business objective: establishing brand loyalty and demonstrating superior
customer service during a period of growth. A key point of what they need is the
ability to immediately act upon detection of the complex event so that they can
rapidly woo back their disheartened customer. An EDA with complex pattern
matching can help them quickly identify and respond to customer behavior by
improving the availability of information.

Candidate architectures
We have two viable choices when looking to extract and process business events as
they occur. One of them is the new Microsoft StreamInsight engine and the other is
the BizTalk integration bus.

Candidate architecture #1‑StreamInsight
SQL Server 2008 R2 includes StreamInsight as a new product for low latency
processing of high-volume data streams. Watson Media is looking for a way to
parse high volumes of data, perform data analysis in seconds, and join traditionally
disconnected data sources. StreamInsight offers an efficient, high performing way
to latch onto stream producers and handle a rich set of queries across streams.

Solution design aspects
One of the key requirements of this solution is the ability to quickly and reliably
process large volumes of data. We are dealing with very small bits of information
(log events, click events, and so on) that need to be rapidly consumed. StreamInsight
is built to provide efficient, in-memory data stream processing against standing
queries. Given that StreamInsight can handle hundreds of thousands of simultaneous
events, we are confident that this solution can scale with our customer's needs.

Chapter 13

[337]

We also need the ability to plug into a wide variety of sources in order to produce
event streams. StreamInsight leverages an adapter model where developers are free
to build adapters in a few different styles. Adapters can poll for data or be recipients
of pushed data. For this solution, we can build a push-oriented adapter that responds
immediately to events produced in the source systems. The fact that StreamInsight
does not limit the types of source systems that you can communicate with is a huge
plus for our client. Basically, if you can communicate with it through .NET, then you
can use its data in StreamInsight.

The StreamInsight architecture enables a clean separation of concerns where you
have adapters independent from the queries and the source and target systems.
StreamInsight works in a very asynchronous manner, which means that our
high-volume stream producers do not have to worry about waiting for the
downstream CEP engine to process their events.

Solution delivery aspects
StreamInsight solutions are built using the .NET framework, so Watson Media can
easily leverage their existing .NET developers when building CEP solutions. Also,
the standing queries in StreamInsight are built using LINQ, which is a relatively new
way in the .NET Framework to query a wide variety of data sources in a consistent
fashion. Watson Media developers who have written LINQ queries for other
applications, will find it very natural to build StreamInsight queries. StreamInsight
is more of a toolkit than a packaged product. Therefore, developers can easily
install and operate the engine locally before deploying the finished product to a
more robust environment. Also, because everything in a StreamInsight solution
is contained within .NET projects, we can manage our code using the prescribed
Watson Media source control repository.

This is a new product from Microsoft. The community ecosystem is still maturing
and developers will have to rely more on the provided documentation and samples
than on hoping that internet searches will return relevant answers to problems.

Solution operations aspects
This is an area where the StreamInsight product still has room to grow. While there are
no concerns over its ability to handle load and gracefully manage excessive bursts of
data, the story around high availability and support tooling remains relatively weak.
That is not to say that we cannot peek into how our engine is running. StreamInsight
comes with a Management Service API, which returns diagnostic results on queries,
adapters, schedulers, and more. You can build an interface that leverages this API or
use PowerShell to return diagnostic information. There is also a fairly elegant visual
debugging tool where we can monitor events and see how events are processed and
aggregated. However, at this point, we do not have a robust administration user
interface for managing our StreamInsight environment.

Complex Event Processing

[338]

Organizational aspects
The company is looking for something that can fill this immediate need while serving
as a viable long-term solution. StreamInsight is a new product so we can only expect it
to improve as it matures in the marketplace. It leverages existing developer skill
sets and adds no net new licensing cost to the business. StreamInsight also provides
a well-thought-out stream processing framework that utilizes a rich multi-threaded
design. This would be difficult for Watson Media developers to produce on their own.
Instead, they can use their expertise at writing queries and leave the server processing
to the StreamInsight engine. That said, developers are required to build their adapters,
so we are still asking Watson Media to accept some level of risk and may require
outside assistance to build the most robust solution possible.

Solution evaluation
The following table shows the factors to derive a solution:

Design Delivery Operations Organization

Candidate architecture #2–BizTalk Server
Watson Media has an existing investment in BizTalk Server, which could be
leveraged here to build a solution with mature out-of-the-box components
for designing and maintaining a data processing solution.

Solution design aspects
While BizTalk is not widely known for its low latency and high throughput, recent
benchmark numbers have shown that a single BizTalk Server machine can process
millions of messages per day. Therefore, even though this particular solution has a
relatively high volume of event traffic, this should not be prohibitive for BizTalk to
handle. Now, one big question is how would BizTalk handle time-window oriented
processing? One solution would be to leverage a singleton orchestration that listens
for timeout events and only runs for a specific amount of time. However, this would
end up being fairly complicated and would cause "zombie message" scenarios in a
high throughput situation. So, we would probably have to leverage custom code and
temporary database storage to aggregate events over sliding windows. Alternatively,
because "windowing" is desired but not a crucial feature, we could build out a
simpler solution that filters out unwanted click events and notifies customers via
e-mail about their discounts.

Chapter 13

[339]

BizTalk's rich adapter model makes the receipt of system events quite simple.
BizTalk adapters come in "push" or "pull" styles, so we could accommodate systems
that either do not naturally publish their events, or systems that are built to natively
produce events for interested listeners. In this scenario, we could either leverage a
WCF TCP adapter, or build a more loosely-coupled model based upon MSMQ.

The other benefit of using BizTalk and its messaging backbone is that events received
from upstream systems could go through other processing within the bus. This might
include insertion into other systems, or triggering of rich business processes that
should respond to specific events or patterns.

Solution delivery aspects
BizTalk solutions are built primarily in Visual Studio.NET. Watson Media developers
are already familiar with constructing these projects and keeping the code in source
control systems. Also, given BizTalk's maturity, there are numerous community tools
and written descriptions of how to best implement certain patterns. As there is a need
to build some fairly robust custom code to handle the window-oriented aggregation
requirements, we will expect a longer development cycle than if this were a traditional
messaging solution.

Solution operations aspects
Application operations are a strong suit of BizTalk solutions. The product has a
clear model for associating application components into a single manageable entity.
Packaging and deployment of solutions is relatively straightforward, and the
operations dashboard provides a clear view into the state-of-the-server environment.
Debugging BizTalk solutions can be challenging, especially as the solution gets more
distributed and loosely coupled. However, the BizTalk tooling is usually sufficient
for identifying the source of any system or business error.

BizTalk also provides a straightforward way for scaling up and out to grow its
ability to handle an increased workload and provide redundancy. Given that this
solution is more about rapid data processing than guaranteed delivery or enterprise
infrastructure, the rich BizTalk administrative capabilities are useful, but not of
paramount importance.

Complex Event Processing

[340]

Organizational aspects
Watson Media has already made a strategic move to leverage BizTalk as their
integration hub. Building this solution in BizTalk Server would let Watson Media
use their existing software, developer, and infrastructure resources and rely on a
mature, scalable product. BizTalk solutions are typically fast to market, but given
the customized nature of some of the event processing that this solution requires,
the company would be facing an extended development time and will have to
maintain a fair bit of custom code.

Solution evaluation
The following table shows the technique for solution evaluation:

Design Delivery Operations Organization

Architecture selection
Let us look at how these candidate architecture technologies stack up against each
other. We can break down the primary benefits and risks of each choice as follows:

StreamInsight
Benefits:

•	 Lightweight, high-throughput
product

•	 Advanced stream processing
capabilities including windowing

•	 Rich query language

Risks:
•	 Lack of community code/

resources
•	 Relatively immature hosting

model with limited load balancing
and failover

•	 New product, which means
accepting inevitable gaps and
likely changes in tooling and
capabilities

Chapter 13

[341]

BizTalk Server
Benefits:

•	 Many out-of-box adapters means
connecting to event producers is
only a configuration task

•	 Can leverage BizTalk capability
to send events to downstream
transactional systems

•	 Enterprise-class hosting
infrastructure

Risks:
•	 Complicated design needed to

accommodate windowing.
•	 BizTalk solutions are made up

of multiple components so slight
pattern algorithm changes are not
easily deployed.

•	 While BizTalk can handle large
loads of data, processing tens,
if not hundreds of thousands of
events per hour could strain the
environment.

A key benefit of complex event processing is its ability to reduce data overload by
filtering out less important events and highlighting the difference-makers.
In a BizTalk-oriented solution, each event message would still have to proceed
through the BizTalk infrastructure, potentially introducing significant performance
degradation even though much of the traffic is unwanted. StreamInsight is built for
doing in-memory processing of events with the LINQ query language. It makes
crafting queries a straightforward task. While BizTalk could be bent to try to fit this
solution, it would be a less-than-ideal use of the product. We would spend excessive
amounts of time customizing and scaling BizTalk, when we could instead be
investing in building out the necessary StreamInsight operational components.

For this scenario, StreamInsight is the best choice.

Building the solution
In this solution, we will be constructing an application that embeds the
StreamInsight Server in-process and pulls data from two separate feeds of data.
Specifically, we are designing a very loosely coupled process where we use MSMQ
as the medium between the event producers and the StreamInsight CEP engine. Each
web server will send its machine event log entries to one MSMQ queue, and all the
web click events will be distributed to a different MSMQ queue.

Complex Event Processing

[342]

We will build MSMQ adapters for StreamInsight in a way that events are loaded into
the CEP server as soon as they hit the queue. Our first LINQ query aggregates server
log events per application, and keeps a sum of each type of event over one-minute
intervals. Then we will add another LINQ query which uses the first query as input
and joins to the click stream events for each website. When a particular website starts
acting up, the "abandon cart" events should be amplified and we can make sure to
immediately court those departed customers.

This flow is better explained in the following figure:

Note that we could also build an "Event Log" adapter to extract server events from
each web server. This would be a good choice if we were in an environment where
pushing of such data was not possible and pulling was the only viable option. In our
case, we have Event Log entries being pushed into the StreamInsight engine, but the
architecture does not differ much in the polling-based scenario.

Also, in reality, we would probably be interested in putting our enterprise
integration bus at the end of this sequence flow, so that we have the option
to fan out the discount offer event to multiple places (such as the marketing
department, executive dashboards, e-mail recipients, and so on). The combination
of StreamInsight for event receipt/filtering/enrichment and BizTalk for enterprise
routing of relevant events is an enticing combination that leverages the best of both
platforms. Consider this when constructing EDA solutions in the future.

Chapter 13

[343]

Set up
Our solution uses MSMQ queues to store events, so we start this solution by
creating two queues. Within the Windows Server 2008 Server Manager, expand
the Features node and expand the Message Queuing node. Right-click the Private
Queues folder and select New | Private Queue. Set the queue as transactional
and name it websiteaction. Create one more transactional queue and name it
websitelogentry.

A project solution has already been created and can be found in the <Installation
Directory>\Chapter13\Begin folder. This solution contains two projects:
Chapter13.WatsonMedia.EventTypes, which holds the three event payload
structures used by the solution, and Chapter13.WatsonMedia.EventPublisher,
which includes the application that populates the two MSMQ queues with website
click and server log events. A StreamInsight event payload is simply a .NET object
demonstrated as follows:

<summary>
/// Event payload definition for web server log events
</summary>
public class WebEventLogEntry
{
 public string SiteName { get; set; }
 public string EntryType { get; set; }
}

If you have not done so, ensure that you have installed the StreamInsight application.
You can download this from the Microsoft website. Register the application by using
your SQL Server 2008 R2 license key.

Creating an adapter
Now we are ready to build the solution. The first thing to create is an MSMQ input
adapter. When deciding how to build an adapter, there is a choice of constructing
a typed or untyped adapter. A typed adapter expects a specific event payload from
the source system or device. An untyped adapter can accept any event data structure
from the source. As you might expect, it takes some effort to build an untyped
adapter because the inbound event must be properly serialized to a known event
type and published to the StreamInsight engine. Our solution requires us to talk to
multiple message queues, so the most efficient strategy is to build a single untyped
adapter, and leverage it for each source queue.

Complex Event Processing

[344]

We are also going to only build "point" adapters, as each event going through our
engine will deal with point-in-time events, as opposed to interval or edge events,
which contain a given duration length. For instance, a server log event is a point
event as it is something that occurs at a single instant in time. An interval event has
a specific start and end time, and the payload is only valid during that period. An
example of this might be gambling odds for a sporting event, where the particular
betting line is only valid for a certain time. Finally, an edge event is like an interval
event where the payload is tied to a specific time window. However, it differs
because the end time is unknown when the event is received by the engine. An
example here may be an event indicating how long a truck driver has been on the
road where the initial event is received when driving begins, but will not close until
the driver clocks out.

Now, we can begin building our untyped point adapter as follows:

1.	 Right-click the Visual Studio .NET solution and choose to add a new class
library project named Chapter13.WatsonMedia.MsmqInputEventAdapter.

2.	 Right-click the project and choose to add a reference. Include the
StreamInsight components Microsoft.ComplexEventProcessing and
Microsoft.ComplexEventProcessing.Adapters. Also add a reference to
System.Messaging, so that we have access to MSMQ-specific objects. Finally,
add a project reference to the Chapter13.WatsonMedia.EventTypes project
contained within our solution. Recall that this project contains the .NET data
objects that represent the event payloads used by StreamInsight.

3.	 Add a new .NET class file to this project and name it MsmqInputConfig.cs.
Create a .NET structure in this class that will hold the runtime configuration
properties that the CEP server passes into the adapter.
public struct MsmqInputConfig

{
 public string QueueName { get; set; }
 public string QueueDataType { get; set; }
 public List<string> InputFields { get; set; }
}

4.	 Add a new .NET class to this project and name it MsmqUntypedPointInput.
cs. This class holds the typed StreamInsight adapter for MSMQ.

5.	 Add the following six using statements to the top of the class:
using System.Messaging;
using Microsoft.ComplexEventProcessing;
using Microsoft.ComplexEventProcessing.Adapters;
using Chapter13.WatsonMedia.EventTypes;
using System.Reflection;
using System.Collections.ObjectModel;

Chapter 13

[345]

6.	 Set the MsmqUntypedPointInput class to inherit from the
PointInputAdapter interface. If we were building a typed adapter, then we
would inherit a different object where we would specify a distinct data type
as the adapter payload.
public class MsmqUntypedPointInput : PointInputAdapter

{

 public override void Resume()

 {

 throw new NotImplementedException();

 }

 public override void Start()

 {

 throw new NotImplementedException();

 }

}

7.	 Add a variable of type MessageQueue to the class. This object holds the
pointer to the MSMQ queue used by our adapter. We also add variables
to hold the base StreamInsight CEP event type (bindTimeEventType), a
collection of fields contained in our runtime event (eventFields), the .NET
type of the event (eventClrType), and an object used during the read from
the active queue (lockObj).
//pointer to MSMQ polled by the adapter

private MessageQueue targetQueue = null;

//store reference to CEP event

private CepEventType bindTimeEventType;

//holds list of fields in the event

private List<string> eventFields;

//hold the late bound Clr type for the event

private Type eventClrType;

//used for prevent queue read overlap

private object lockObj = new object();

8.	 Now we add the additional constructor for the adapter class, which accepts
a configuration information parameter, sets member variable values,
instantiates our queue object, and registers the queue's event handler with
our adapter.
public MsmqUntypedPointInput(MsmqInputConfig configInfo,
 CepEventType eventType, Type eventClrType)

{

 this.bindTimeEventType = eventType;

 this.eventFields = configInfo.InputFields;

Complex Event Processing

[346]

 this.eventClrType = eventClrType;

 try

 {

 //create queue pointer

 targetQueue = new MessageQueue(configInfo.QueueName);

 //set the formatter to know about the message type

 targetQueue.Formatter = new XmlMessageFormatter
 (new Type[] { eventClrType });

 //register with queue receive event

 targetQueue.ReceiveCompleted +=
 new ReceiveCompletedEventHandler (targetQueue_ReceiveCompleted);

 Console.WriteLine("Listening to the target queue named "
 + configInfo.QueueName);

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message + ex.StackTrace);

 Console.ReadLine();

 }

}

void targetQueue_ReceiveCompleted(object sender,
 ReceiveCompletedEventArgs e)

{

 throw new NotImplementedException();

}

9.	 The next step is to add code that adds a given event to the StreamInsight
engine. The following code demonstrates how to create a point event and
add the MSMQ message as its payload. The function takes the untyped object
that came in from the queue and loops through its properties in order to
create a StreamInsight event object.
private bool enqueueMessage(object queueEvent)

{

 //Ensure that the adapter is in the running state

 if (AdapterState.Stopping == AdapterState)

 Stopped();

 if (AdapterState.Running != AdapterState)

 return false;

 //Allocate a point event to hold the data for
 the incoming message

 //If the event could not be allocated, exit the function

 PointEvent currEvent = CreateInsertEvent();

Chapter 13

[347]

 if (currEvent == null)

 return false;

 try

 {

 //Map data from the message into a
 CepEventTypeField structure (key/value pairs)

 foreach (var pi in eventClrType.GetProperties())

 {

 //see if field in event includes field from typed class

 if (eventFields.Contains(pi.Name))

 {

 //create and add CEP field to event

 CepEventTypeField evtField =
 this.bindTimeEventType.Fields[pi.Name];

 currEvent.SetField(
 evtField.Ordinal,pi.GetValue(queueEvent, null));

 }

 }

//Assign the event timestamp - note; this could also come
 from a message property, or the time the message was
 delivered to the MSMQ queue

 currEvent.StartTime = DateTime.Now;

//If the event cannot be enqueued, release the memory and
 signal that the adapter is ready to process more events
 (through Ready())

 if (EnqueueOperationResult.Full == Enqueue(ref currEvent))

 {

 ReleaseEvent(ref currEvent);

 Ready();

 }

 }

 catch (Exception ex0)

 {

 Console.WriteLine("Error in event enqueue: " +
 ex0.ToString());

 Console.ReadLine();

 }

 return true;

}

Complex Event Processing

[348]

10.	 Next up, we call this operation from the event handler we registered in the
adapter's constructor. The event handler reads the message from the queue,
calls the enqueueMessage operation we created earlier, and begins listening
to the queue for the next message.
void targetQueue_ReceiveCompleted(object sender,
 ReceiveCompletedEventArgs e)

{

 try

 {

 //create object that will hold inbound queue message

 object queueEvent = new object();

 //set the formatter on the inbound message

 e.Message.Formatter = new XmlMessageFormatter
 (new Type[] { eventClrType });

 //deserialize the queue message

 queueEvent = e.Message.Body;

 // Synchronize enqueue message to avoid overlapping calls

 lock (lockObj)

 {

 // Enqueue the object

 enqueueMessage(queueEvent);

 }

 //start receiving again

 targetQueue.BeginReceive();

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.ToString());

 Console.ReadLine();

 }

}

11.	 Finally, we have to populate the "start" and "resume" operations that are
required by the referenced StreamInsight interface.
public override void Start()

{

 //listen for next queue message

 targetQueue.BeginReceive();

}

public override void Resume()

{

Chapter 13

[349]

 //listen for next queue message

 targetQueue.BeginReceive();

}

12.	 With the adapter completed, we create a new class file named
MsmqUntypedInputFactory.cs, that returns the correct adapter based on
the factory input. As we have a single untyped adapter, there is no decision
logic necessary to instantiate the correct adapter.

13.	 Add the following three using statements to the top of the class:
using Microsoft.ComplexEventProcessing;

using Microsoft.ComplexEventProcessing.Adapters;

using System.Reflection;

14.	 Our public class implements the IInputAdapterFactory interface that
requires us to implement the operations used by the StreamInsight engine
when instantiating event publishing adapters. The code for the required
create operation is included as follows:
public class MsmqUntypedInputFactory:
 IInputAdapterFactory<MsmqInputConfig>

{

 public InputAdapterBase Create(MsmqInputConfig
 configInfo, EventShape eventShape, CepEventType cepEventType)

 {

 //grab CLR type from CEP event type to be used by
 adapter for MSMQ message typing

 CepObject o = (CepObject)cepEventType;

 Type clrType = Type.GetType(o.ShortName);

 //create and return the adapter

 InputAdapterBase adapter = default(InputAdapterBase);

 adapter = new MsmqUntypedPointInput(configInfo,
 cepEventType, clrType);

 return adapter;

 }

 public void Dispose()

}

Complex Event Processing

[350]

15.	 The StreamInsight Server works on application time versus system time.
This means that the engine relies on the source applications to publish their
application time in order to advance the event timeline. Applications send
Current Time Increment (CTI) events, which tell the StreamInsight engine
that no business events will arrive with a "start time" after the CTI timestamp.
This allows the StreamInsight engine to flush any computed events by
verifying that the timeline up to now will not change. While developers can
explicitly enqueue CTI events to the StreamInsight engine, the easier option
is to use the declarative model offered by the StreamInsight API. Update
the MsmqUntypedInputFactory class declaration by implementing the
IDeclareAdvanceTimeProperties interface.
public class MsmqUntypedInputFactory :
 IInputAdapterFactory<MsmqInputConfig>,
 IDeclareAdvanceTimeProperties<MsmqInputConfig>

16.	 This interface requires us to implement a single operation, which the adapter
uses to publish CTI events after a given number of business events and with
a particular timestamp.
public AdapterAdvanceTimeSettingsDeclareAdvanceTimeProperties
(MsmqInputConfig configInfo, EventShape eventShape,
 CepEventType cepEventType)
{
 var atgs = new AdvanceTimeGenerationSettings
 (1,
 //after how many events should adapter advance time
 TimeSpan.FromTicks(-1),
 true);
 return new AdapterAdvanceTimeSettings(atgs,
 AdvanceTimePolicy.Drop);
}

17.	 We are ready to build our embedded server application which registers
queries and leverages the adapter we built. StreamInsight also supports a
shared infrastructure model where a common instance is provisioned and
multiple clients can register and access queries and streams. In this scenario,
we are taking advantage of the embedded deployment mode. Right-click
the solution and create a new console application named Chapter13.
WatsonMedia.EventProcessingServer.

18.	 Before starting to build the server application, right-click our new project and
add a reference to the StreamInsight.Samples.OutputAdapters.Tracer
DLL included in the StreamInsight SDK sample solution. This adapter either
prints content to disk, or if the file name is empty, it outputs content to the
console. For our purpose, this will serve as our output mechanism.

Chapter 13

[351]

Also add references to Chapter13.WatsonMedia.EventTypes,
Chapter13.WatsonMedia.MsmqInputEventAdapter, Microsoft.
ComplexEventProcessing, Microsoft.ComplexEventProcessing.
ManagementService, and Microsoft.ComplexEventProcessing.Adapters.

19.	 Open the Program.cs file and add the following using statements to the
class. These statements cover CEP querying, business event payloads, our
MSMQ adapter, the StreamInsight sample output adapter, console output,
and thread synchronization.
using Chapter13.WatsonMedia.EventTypes;
using Chapter13.WatsonMedia.MsmqInputEventAdapter;
using StreamInsight.Samples.OutputAdapters.Tracer;
using System.ServiceModel;
using Microsoft.ComplexEventProcessing;
using Microsoft.ComplexEventProcessing.Linq;
using Microsoft.ComplexEventProcessing.ManagementService;
using System.Collections.ObjectModel;

20.	 Before defining the CEP query, let's add two utility operations that produce
CEP streams out of our MSMQ adapters. Each operation accepts
the MsmqInputConfig structure as input and returns a stream.
private static CepStream<WebEventLogEntry>
 CreateEventLogProducer()
{
 // Configure msmq input adapter
 var inputConfData = new MsmqInputConfig
 {
 QueueName = ".\\Private$\\websitelogentry",
 QueueDataType = "LogEntry",
 InputFields = new List<string>() { "SiteName",
 "EntryType" };
 };
 // Get a stream directly from the input adapter factory
 var inputDataStream =
 CepStream<WebEventLogEntry>.Create("LogInput",typeof
 (MsmqUntypedInputFactory), inputConfData, EventShape.Point);
 return inputDataStream;
}
private static CepStream<WebsiteAction>
 CreateSiteActionProducer()
{
 // Configure msmq input adapter
 var inputConfData = new MsmqInputConfig
 {
 QueueName = ".\\Private$\\websiteaction",QueueDataType =
 "SiteAction",InputFields = new List<string>() {
 "WebsiteProperty", "CustomerId", "ActionType" },

Complex Event Processing

[352]

 };

 // Get a stream directly from the input adapter factory

 var inputDataStream =CepStream<WebsiteAction>.Create
 ("SiteInput", typeof(MsmqUntypedInputFactory), inputConfData,
 EventShape.Point);

 return inputDataStream;

}

21.	 We can now populate the Main() function where we start up our server and
define the queries. Then, we can optionally establish a WCF endpoint for the
server that allows for the StreamInsight Debugger to attach to our server and
its running queries.
//create embedded server
using (Server server = Server.Create("RSEROTER"))
{
 //Create a service host to expose the server's
 endpoint for management purposes
 ServiceHost host = newServiceHost
 (server.CreateManagementService());
 WSHttpBinding binding = new WSHttpBinding
 (SecurityMode.Message);
 //make sure that your endpoint has the appropriate
 rights established through netsh
 host.AddServiceEndpoint(
 typeof(IManagementService),binding,"http://localhost:8089/
 StreamInsight/RSEROTER");
 //If you want to run the debugger, start the host
 host.Open();
 //Next, the output adapter configuration needs to be defined.
 //create adapter configuration for output adapter
 var outputConf = new TracerConfig
 {
 DisplayCtiEvents = false,
 SingleLine = true,
 TraceName = "Chap13",
 TraceType = TraceTypeValue.Console
 };

22.	 Next up, we create an application in the server and instantiate our event
streams through our MSMQ adapter.
//create application in the embedded server
 var myApp = server.CreateApplication("SampleEvents");
//instantiate the two CEP event streams
 var webActionStream = CreateSiteActionProducer();
 var webEventDataStream = CreateEventLogProducer();

Chapter 13

[353]

23.	 Now, we are ready for the meat of the CEP application: the queries. The
queries represent the standing questions we have about the data flowing
through the server. The LINQ supported by StreamInsight enables queries
that filter events (WHERE), correlate streams (JOIN), partition data (GROUP),
rank (TOP), aggregate (AVG, SUM, COUNT), and more.

24.	 Any grouping computation such as doing a count of events or a ranking of
events, leverages windows. A window is basically a period of time in which
you are performing the computation. There are multiple types of windows
all of which have different behaviors and event inclusion rules.

25.	 Our first query produces a count of event log "timeout" entries by website
over a specific time interval. In our case, we leverage a Tumbling Window
that has a distinct duration where events are aggregated and flushed after
the interval passes. Any resulting aggregate events are put into a new event
object called WebEventLogSummaryDetails.
//initial query which pulls all web server events that are
timeouts

var logEventQuery = from e in webEventDataStream
 where e.EntryType == "Timeout"group e by new { e.SiteName,
 e.EntryType } into oneMinuteGroup from eventWindow in
 oneMinuteGroup.TumblingWindow(TimeSpan.FromSeconds(60),
 HoppingWindowOutputPolicy.ClipToWindowEnd)
 select new WebEventLogSummaryDetails

{

 Website = oneMinuteGroup.Key.SiteName,
 Entry = oneMinuteGroup.Key.EntryType,
 EventCount = eventWindow.Count()
};

26.	 Our application only cares about scenarios where there are four or more
timeout events in a given window. Another query is defined, which filters
the results of the first query and only emits events when the aggregate
count for the window exceeds four.
//filter the above web server events based on window count

var logEventCountQuery = from e in logEventQuery
 where e.EventCount > 4 select e;

27.	 Our other data stream consists of web clicks by our users. The clicks of
interest are Abandon Cart events so we want to query that data stream and
only return events that match our target condition.
//query of all website clicks related to abandoning cart

var webActionQuery = from e in webActionStream
 where e.ActionType == "AbandonCart" select e;

Complex Event Processing

[354]

28.	 Finally, we are ready to join our queries. We want to find any abandon cart
events for a given website that occur within a window where more than four
server timeouts were observed for that website.
//final join query which merges server log and website click
 events when website is the same

var eventActionJoinQuery = from e in logEventCountQuery
 join f in webActionQuery on e.Website equals
 f.WebsiteProperty
select new
 {f.CustomerId,f.WebsiteProperty,e.Entry,e.EventCount};

29.	 Our final query gets bound to our adapter and started.
var query = eventActionJoinQuery.ToQuery(myApp, "Log Events",
 string.Empty, typeof(TracerFactory), outputConf,
 EventShape.Point, StreamEventOrder.FullyOrdered);

query.Start();

30.	 We wait for the user to halt the query and then execute the stop command.
//wait for keystroke to end

Console.ReadLine();

//end query

query.Stop();

31.	 Build the solution and launch the Event Publisher and Event Server
applications, and notice that our Event Server is listening on two
queues as shown in the following screenshot:

32.	 In the Event Publisher, we want to send in events, but particularly, we want
to trigger timeouts for particular websites. Within our query, the timeout
threshold is set to four, so until more than four timeouts occur in any one
computational window, producing "abandon" events result no output events.
Submit three timeout events for Website A and click the Produce Timeout
Events button. Refer to the following screenshot:

Chapter 13

[355]

33.	 Produce any number of Abandon Cart events for that website, and observe
that nothing is printed to the CEP Server output adapter. If within a short
period of time (so as to fit into the window with the other events) you send
more Timeout events, and then send more abandon events through, you
should see the events output by the subscriber. The following screenshot
shows the output of our timeout count and a series of customer IDs
associated with abandoned carts:

Complex Event Processing

[356]

Summary
By leveraging an event-driven architecture, we enable organizations to be more
proactive in identifying and responding to business events. StreamInsight is a unique
Microsoft product capable of legitimately processing hundreds of thousands of data
points per second, and executing complex filtering or incremental aggregations.
However, even if your business does not have event producers that send out massive
amounts of events, you can still benefit from having an event processing engine like
StreamInsight that maintains standing queries, and drives your organization to look
for new ways to improve efficiency and make smarter decisions faster.

Cross-Organizational
Supply Chain

This chapter will discuss how to design and implement a Message Bus to exchange
purchase order request and response messages within a supply chain.

Use case
Sam MacColl Commodities is a rapidly expanding commodity trading firm, which
is a leader in the production of sustainable and ethical palm oil. Through rapid
expansion and acquisition over the last 10 years, they have grown to be the largest
palm oil plantation and milling operator in Papua New Guinea. Their core activity is
the cultivation and processing of Palm Oil raw products into various derivatives for
sale to domestic and international markets. The primary derivative they trade in is
Crude Palm Oil (CPO), which accounts from 70% of their yield. Their total output of
CPO is approximately 500,000 tones.

Sam MacColl Commodities prides itself on being an environmentally friendly and
efficient company; they only participate in sustainable production. Through strict
adherence to international standards, they have also been able to increase the quality
of their products. They were recently recognized for the low fatty acid levels of their
palm oil.

Cross-Organizational Supply Chain

[358]

Three years ago, the company floated on the Alternative Investment Market in
the UK and with these funds they were able to accelerate their acquisitions and
growth. By increasing size and through appropriate diversification, Sam MacColl
Commodities were able to become the single supplier of choice for a number of large
multi-national corporation customers. Coordinating the order and delivery of large
amounts of commodities across the supply chain has been very challenging. Many
of the individual units have their own individual supply chain systems. In one case,
a huge order was could not be fulfilled because the commodity had already been
sold by the subsidiary unit to another customer. Sam MacColl Commodities were
threatened with legal action in this case.

Another challenge has been managing the credit limit of a large pool of customers.
Previously, the individual sales reps in each subsidiary unit would approve
transactions and seek unit-director level approval above a certain amount. Scaling
this to a large organization is challenging and recently there have been a number
of large transactions for which Sam MacColl Commodities (SMC) did not receive
payment. This results in costly legal action and is extremely damaging
to immediate cash flow and the firm's operations.

SMC's management realizes that they need to improve the quality of their customer
experience to continue their long term growth strategy. They understand the need
to consolidate onto a single set of processes and systems to avoid the direct and
indirect costs associated with the issues we have highlighted. By addressing these
challenges, SMC feel that they will be able to establish deep customer loyalty, which
in turn creates a barrier to the entry for others and reduces their exposure to price
sensitivity, which is notorious in the commodities industry.

SMC has brought in a new IT Director who has a lot of real-world experience
building enterprise systems. His first priority is to ensure that all Customer PO
Requests can be fulfilled with existing inventory before an acknowledgement is sent
to the customer. His second priority is to establish a credit limit system. He intends
to gradually migrate individual business units to this system.

SMC has grown through normal organic growth and acquisition as a company and
therefore has a fairly homogenous set of core technologies. They are primarily a
Microsoft "shop" utilizing ASP.NET for their web platform. They have numerous
.NET developers on staff. Their primary database platform is SQL Server. They run a
mixture of consolidated and dedicated environments depending on the business and
technical requirements of the application. Some of their line-of-business applications
require or run best on Oracle. Therefore, they also have a specialist Oracle support
center. Because of the rapid growth of the organization and the margins that it
provides, software purchases are often done in a best-of-breed manner instead of
building or buying technology that cohesively integrates.

Chapter 14

[359]

Key requirements
The following are key requirements for a new software solution:

•	 Provide a robust Message Bus for the SMC organization.
•	 Provide transport and transformation capabilities to connect to

and consume multiple sources of data.
•	 Implement a loosely coupled design, which can extend and adapt over time.

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following:

•	 The project will need to demonstrate Purchase Order request/response and
credit checking capabilities in an individual subsidiary unit of SMC first.

•	 Over time SMC management would like to on-board additional functionality
into the system and have a single primary processor of transactional data.
Therefore, the system must be able to scale to support up to 1 million
business transactions per day (24 hour period).

•	 SMC is looking for a flexible solution, which can talk to a variety of systems.
•	 Along with immediate functionality for customer service needs, SMC would

also like to understand how the system can be extended in the future to
service additional customer and business needs which are identified.

•	 Reliability and speed are equally important here. Customers expect a
response within 20 seconds for a real-time order as prices are volatile and
they want to lock these in. A faster system will increase customer satisfaction
but only if reliability is not compromised.

Pattern description
This solution calls for a Message Bus pattern. This subject is introduced in the book
Enterprise Integration Patterns (Hohpe, Woolfe):

An enterprise contains several existing systems that must be able to share data and
operate in a unified manner in response to a set of common business requests.

The authors go on to say:

An enterprise often contains a variety of applications that operate independently
but must work together in a unified manner. Enterprise Application Integration
(EAI) defines a solution to this problem but doesn't describe how to accomplish it.

Cross-Organizational Supply Chain

[360]

Many companies that increase in size due to organic or acquisition growth find
themselves in a position where the new enterprise consists of a large number of
disparate systems that are responsible for managing their various products. Many
times this causes inefficiency in the organization as sales reps/agents must log
into multiple systems in order to get the answer to their question. This increases
time and effort and the likelihood of mistakes. Over time, they may discover that
it is inefficient so they may decide to implement a point-to-point integration. For
example, one could create a consolidated web application GUI, which calls system A,
B, or C as appropriate. One of the challenges for this is that as new GUI applications
are added, each of them needs to perform this connectivity between the systems. In
the majority of cases, the environment will be heterogeneous; even if they do manage
to make all the applications work together, any change could stop it from working.
For example, what happens if one of the systems is down, or if a system is upgraded
or replaced? These two scenarios are illustrated in the following diagram:

They could consider integrating the frontend application to all required backend
systems, but this would dramatically increase the complexity of the application and
if any other systems needed to connect to the same systems, that logic would need to
be duplicated and maintained.

Rewriting all of a business's applications on a common platform is unrealistic and
not practical from a financial point of view. Therefore, a Message Bus is an approach
that is commonly implemented. This provides a communication infrastructure,
adapter connectivity, and common command set. Companies that implement
a Message Bus can use a universal connector between their various systems. A
key requirement of a Message Bus is that it must be flexible and must be able to
respond to change quickly, such as the addition of a new system or upgrade of a
system. While the features of GUI systems may differ, the logic necessary to connect
each of the backend systems is common and is encapsulated in the Message Bus
and therefore can be reused by each GUI application. This enables applications
to represent a unified view of their organization to their users, for example, sales
agents, end customers, management, and so on.

Chapter 14

[361]

By leveraging a Message Bus architecture, SMC will be able to provide an integration
architecture that provides a common communication and messaging infrastructure
to support communication between all systems across the enterprise. Let's revisit our
previous example above and demonstrate how a Message Bus can be used.

Here we have two GUI applications that are communicating with the Message
Bus; the complexity of the integration that is required to connect to System A, B
and C is handled by the Message Bus. The Message Bus is now responsible for
routing messages to the appropriate systems and handling any necessary transport
or transformation issues. This avoids the prohibitive costs of doing point-to-point,
otherwise known as "spaghetti" integration. It also avoids the need for users to
log onto multiple systems, thereby increasing productivity. A Message Bus is an
example of a service-oriented architecture. The Message Bus acts as an intermediary
across an enterprise's applications enabling them to be connected in a loosely
coupled fashion. By standardizing on this approach and developing this integration
capability, organizations are able to reduce the time to onboard new applications
and offer new innovative composite services to their customers. This enables them
to quickly react to changes driven either from customer demand or internal mergers,
acquisitions, or re-orgs.

What Sam MacColl Commodities is looking to do is a close fit for Message Bus
architecture. They have what are typically independent business applications built
on top of heterogeneous systems. By establishing a common integration solution
between them, they can achieve a business objective: establishing customer brand
loyalty and demonstrating superior customer service during a period of growth,
which in the long term will reduce their price sensitivity and will be a key source
of competitive advantage. A key point of what they need is the ability to automate
proper due diligence when confirming and fulfilling customer purchase orders in
order to avoid disheartened customers.

Cross-Organizational Supply Chain

[362]

Candidate architectures
We have two viable choices when looking to implement a Message Bus integration
pattern across a supply chain. One of them is Windows Server AppFabric and the
other is the BizTalk integration bus with the ESB Toolkit 2.1.

Candidate architecture #1–BizTalk (with
ESB Toolkit)
BizTalk is Microsoft's Enterprise Integration tool with a robust messaging and
workflow (Orchestration) engine. The assumption for this analysis is that SMC has
a small installation of BizTalk Server, but does not have a common Message Bus
platform or make use of the ESB Toolkit.

The ESB Toolkit 2.1 will be released with BizTalk Server 2010. At the time of writing,
they are both in Beta release. The Toolkit provides a set of services, which build on
the BizTalk platform and are useful for customers implementing a common Message
Bus architecture. The term ESB stands for Enterprise Service Bus, which within the
industry is seen as an evolution and mature view of the Message Bus concept. Two
previous versions of the toolkit were released, 1.0, which worked on BizTalk Server
2006 R2 and 2.0, which worked on BizTalk Server 2009.

BizTalk is an established product from Microsoft for integration and processing of
high-volume data streams. SMC is looking for a way to parse high volumes of data,
perform any necessary transformation with various backend systems, and return
a response to an end-user in seconds. BizTalk Server in combination with the ESB
Toolkit provides an efficient high-performing way to build this capability for the
SMC organization.

Solution design aspects
One of the key requirements of this solution is the ability to quickly and reliably
process and provide pseudo-real time responses to purchase orders. The Message
Bus needs to determine where to route the message and what transformations
to apply to it. BizTalk is a pub-sub system, which fits naturally in this space. The
ESB Toolkit adds additional components called resolvers, which extend the native
BizTalk capabilities and make connectivity more dynamic. We will be dealing with
lots of individual orders and a large number of backend systems. We need to assume
that many of these factors can change over time, therefore the chosen solution must
provide enough flexibility and extendability.

Chapter 14

[363]

The services that the ESB Toolkit provides should be used as appropriate for the
specific customer implementation. It is essentially a set of components and services
that simplify implementing a Message Bus pattern with BizTalk. In the following
table, I've provided a brief description of the main ESB services and an example of
how they could be used to solve SMC's problems.

Service Description Uses in this scenario
Itinerary service Uses XML metadata to route a

message through Orchestration,
transformation, or transmission
services.

Compose the appropriate business
logic depending upon the message
received. Provide flexibility in the
coupling of components. Itineraries
are updateable without recompile.

UDDI service Provides the capability to query
UDDI repositories dynamically
from other ESB services
including Itineraries.

Dynamically update the endpoint
information for new and existing
systems as they are brought online in
SMC's environment. This will remove
unnecessary configuration relating to
other systems in LOB applications.

Exception
Handling service

Accepts standard fault
messages, adds additional
metadata, and provides a central
portal for investigation and root
cause resolution.

Provide a single unified framework
and portal for SMC to manage
exception data.

Transformation
service

Provides the ability to execute
BizTalk maps without using the
underlying BizTalk messaging
infrastructure.

Expose transformations that BizTalk
provides via an endpoint that
SMC LOB applications can call
independently of other BizTalk
services

Resolver service Look up ESB endpoints (using
UDDI, Business Rules Engine
and other including custom
resolvers) and provide all details
of those endpoints.

Enables at runtime flexibility
and determination of the route
of a message within SMC. This is
particularly useful when deploying
a new version or onboarding new
systems.

BizTalk
Operations service

Provides runtime details about
BizTalk hosts and deployed
artifacts.

Provide uptime stats or dashboards to
the business based on the information
provided.

Cross-Organizational Supply Chain

[364]

The following diagram illustrates how these services work together. The glue
between all of these is the Itinerary, which is an XML document that provides the set
of steps and tasks that the ESB Toolkit needs to perform to process the message.

BizTalk Server is built to provide efficient, publish-subscribe messaging capabilities.
By building on top of this platform, the ESB toolkit inherits this. Recent benchmarks
have shown that BizTalk Server can scale to over 1,600 end-to-end messages per
second, which equates to approximately 138 million messages in a 24 hour period.
Given that SMC requires 1 million messages per day, we are confident that BizTalk
Server provides sufficient margin of safety even with the overhead that the ESB
toolkit components will introduce. We also need the ability to connect to a wide
variety of sources in order to produce event streams. BizTalk Server has a
well-understood adapter model where developers are free to use the out-of-the-box
adapters for transport or LOB system connectivity. They can also build their own
adapters using either the BizTalk Adapter Framework or the WCF Adapter SDK
(the new de facto standard introduced in BizTalk Server 2006 R2). BizTalk's wide
variety of out-of-the-box and available-to-buy adapters mean that the majority of
connectivity in SMC should be possible without writing their own custom code or
adapters. The fact that SMC can leverage the existing .NET capability if they do need
to build adapters is a huge plus for them.

The loose coupling of BizTalk and the ESB toolkit enables a clean separation of
artifacts and minimizes dependencies. The itinerary model also allows new and
updated business processes to be deployed rapidly and for many BizTalk customers,
this capability been a long time coming.

Chapter 14

[365]

Solution delivery aspects
The ESB Toolkit is built on top of and leverages existing BizTalk functionality.
It provides extensibility at all key points. The existing .NET skills that the SMC
organization has are applicable as .NET or web service knowledge is applied at all
extension points.

Despite the fact that the Toolkit is built on top of BizTalk Server, there is a learning
curve. The ESB way of doing things is a paradigm shift for many developers. The
2.0 product has been released for approximately 12 months at the time of writing, so
there is a community ecosystem, but it is still quite limited as it is a niche within a
niche. Developers learning the ESB Toolkit should leverage the traditional
Microsoft-provided documentation and samples as well as ad hoc internet searches
to return relevant answers to problems.

SMC already has a small team of architects who have developed BizTalk Server
applications, so they can build on and expand the capability of this team by choosing
the ESB Toolkit. BizTalk developers are familiar with messaging concepts, so will
find it easier to learn how to build solutions using the ESB services, when compared
to someone with no integration experience. Over time, they will be able to effectively
determine which ESB services to use and where. As with BizTalk, developers can
install the ESB Toolkit and operate it locally on their existing BizTalk development
installations before deploying the finished product to a more robust environment.
As everything in an ESB Toolkit solution is contained within .NET projects, they can
manage their code using the existing source-control repository that BizTalk uses.

Solution operations aspects
This is an area where the BizTalk Server product is well-established. There are no
concerns over its ability to handle load and gracefully manage the required amounts
of data. The story around high availability and support tooling is very strong. The
ESB Toolkit's Exception Management portal and service provides the capability to
determine how the engine is running. The Exception Management Service and portal
is seen within the industry as one of the key reasons to adopt the ESB Toolkit into a
solution. The portal interface can be extended and customized to display information
specific to SMC. BizTalk and the ESB toolkit score very highly in this aspect.

Cross-Organizational Supply Chain

[366]

Organizational aspects
The company is looking for something that can fill the immediate need while serving
as a viable long term solution. BizTalk is an established product and the ESB Toolkit
2.0 has been released for some time and has been successfully adopted by a number
of customers. With the 2.1 release, they will be able to take advantage of the features
that BizTalk 2010, .NET Framework 4, and Visual Studio 2010 provide. We can only
expect it to improve as it matures further in the marketplace. It leverages existing
developer skill sets. The licensing costs for BizTalk are non-trivial but are not an
adoption blocker for SMC. The extensibility that BizTalk and the ESB Toolkit provide
enables SMC to create a well-thought-out Message Bus deployment, which can grow
to meet future requirements. Building this functionality themselves would require a
lot of architectural and development time and would pose a significant challenge for
the organization.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2–Windows
Server AppFabric
SMC has an existing investment in .NET and the Microsoft platform. They have
developed several applications that utilize WCF and WF and therefore Windows
Server AppFabric could be leveraged here to build a Message Bus solution with
custom-built components to meet SMC's requirements.

Solution design aspects
Windows Server AppFabric does not have a built-in publish-subscribe or Message
Bus capability. WCF provides a basic routing service, but this in itself is not going to
provide the enterprise-ready messaging and transformation capabilities that SMC
needs. To build the required Message Bus architecture would require lots of custom
code that would need to be developed and maintained. While the BizTalk Adapter
Pack can be used within AppFabric (as long as you purchase a license for it), this
only solves one piece of the puzzle (that is, connectivity). To build the rest of the
capabilities will be a non-trivial and long-running challenge.

Chapter 14

[367]

From a performance perspective, recent Microsoft performance labs have
demonstrated that AppFabric can scale to meet the required loads. AppFabric can
expose service contracts, which are represented by .NET 4 Workflow Services or
traditional WCF services. There is no native transformation service within AppFabric
and only a low-level exception handling capability is inherited from the framework.
Making these generic services will require extensive and costly work.

Due to a combination of the technology being new and the requirement to build a lot
of core complicated components, this is a negative aspect of the candidate solution.

Solution delivery aspects
AppFabric solutions are built primarily in Visual Studio.NET, so SMC developers
are already familiar with constructing these projects and keeping the code in
source-control systems. There is a lack of guidance available right now on how to
best implement certain patterns. Because of the need to build some fairly robust
custom code to handle the core Message Bus requirements, we will expect a
longer development cycle more prone to slippages than if it was built on a typical
messaging and integration platform. In addition to this, both the product and the
underlying .NET 4, which it depends on, have only just been released. Therefore,
development skills and experience in these technologies are difficult to find. It is
likely that SMC would have to go with a team that had no successful deployments of
this technology behind them. Even though they have a strong .NET capability within
the organization, this is still a prohibitive factor.

Solution operations aspects
SMC already has an existing Windows Server 2008 and R2 infrastructure on which
they can deploy AppFabric. This will mean that minimal training will be required in
order to support the necessary AppFabric infrastructure for this application.

The product has a clear model for associating application components into a
single manageable entity. Packaging and deployment of solutions is relatively
straightforward, and the operations dashboard provides a clear look into the state of
the server environment. Whilst the tooling is not as mature as for other platforms, as
this is a version-one release, it is still not a major blocker to deployment.

The tracking functionality does introduce additional overhead. This would need to
be carefully tested and they would need to determine if the tracking functionality
met their operational data requirements if AppFabric was the chosen architecture.

Cross-Organizational Supply Chain

[368]

Organizational aspects
SMC already has an existing Windows infrastructure that can support AppFabric.
While this is a new technology and will require some training, it is not expected
that this will be a significant burden. Therefore, AppFabric represents a good fit
for the organization.

Solution evaluation

Design Delivery Operations Organization

Architecture selection
Let's look at how these candidate architecture technologies stack up against
each other. We can break down the primary benefits and risks of each choice
as follows:

BizTalk Server 2010 with ESB Toolkit 2.1
Benefits

•	 High-throughput application
•	 Proven deployments
•	 Expertise available in core BizTalk

platform
•	 Existing components meet many

requirements
•	 Enterprise-class hosting infrastructure

Risks
•	 Management may view this as an

ESB in a box
•	 Limited proven expertise available

on the ESB Toolkit
•	 Ongoing support for ESB Toolkit,

which is not officially part of the
product

Chapter 14

[369]

Windows Server AppFabric
Benefits

•	 Simple deployment and management
model

•	 Built on top of Windows Workflow 4
•	 Expands on existing .NET development

capabilities

Risks
•	 Requires implementation of

complicated custom components
•	 No proven deployments using

Message Bus pattern on this
platform

•	 Reinventing the wheel may not add
value to the organization

•	 Monitoring and tracking database
functionality

A key benefit of a Message Bus implementation is the ability to reduce dependency
on customized components and point-to-point integration from applications. In an
AppFabric-oriented solution, each message flow would need to be statically defined
through the AppFabric infrastructure. There is no pub-sub messaging capability to
build upon; mimicking this introduces significant architectural and development
risk. The current version of AppFabric is built for doing service aggregation and
workflow and not complex Message Bus processing. In future versions, the gap
is likely to decrease and Microsoft's messaging indicates they will be built on a
common technology platform. But the customer needs to make a pragmatic and
realistic decision now. Future roadmaps are volatile and may change over time.
BizTalk and the ESB Toolkit are well-proven technologies. While AppFabric could be
bent to try to fit this solution, it would be a less-than-ideal use of the product and the
implementation would likely be sub-optimal. We would spend excessive amounts of
time customizing and creating components for AppFabric that are already available
today in BizTalk and the ESB Toolkit.

For this scenario, BizTalk and the ESB toolkit is clearly the best choice.

Building the solution
In this solution, we will be constructing a Message Bus pattern for processing
Purchase Orders using BizTalk Server 2010 and the ESB Toolkit. We are
implementing a single message flow to illustrate an example of how the ESB
functionality can be leveraged. Our system will be loosely coupled and will use
WCF-BasicHttp and WCF-WSHttp as the transport adapters of choice.

Cross-Organizational Supply Chain

[370]

We will use the WCFTestClient tool to initiate PO Requests, which will then be
processed by BizTalk/ESB Server. Our BizTalk/ESB Server will query the inventory
server and customer server to determine whether the items requested are in stock
and the customer meets the required credit limit. The credit limit is fixed across
all customers and will be implemented within BizTalk. Based on the information
received, BizTalk will approve/reject the purchase order appropriately. The main
components are illustrated in the following diagram :

Setup
Before you start, you will need to have a working machine or virtual image that has
the following components and any dependencies installed and configured:

•	 BizTalk Server 2010 (Beta used at time of writing)
•	 ESB Toolkit 2.1 (Beta used at time of writing)
•	 Visual Studio 2010
•	 SQL Server 2008/ R2
•	 UDDI Service
•	 IIS—this is necessary for the ESB web service and portal components
•	 Supported operating system; note that the UDDI component requires

Windows Server 2008/R2

For detailed instructions please see the ESB Toolkit documentation available at
http://msdn.microsoft.com/en-us/biztalk/dd876606.aspx. The central part
of our solution is BizTalk/ESB Server. The first thing that we will do is define the
Message Schemas that will be used to represent the following types:

•	 PORequest
•	 POResponse
•	 InventoryCheckRequest
•	 InventoryCheckResponse

Chapter 14

[371]

This conforms to general contract-first SOA principles. These schemas have
already been defined for you. They can be found in the <Installation
Directory>\Chapter14\Begin\Chapter14.SMCSupplyChain folder. Open the
Chapter14.SMCSupplyChain.sln solution file and you will see the Chapter14.
SMCSupplyChain.Schemas sub-project. Within this, you will see schemas
representing each of the types in the previous list.

Within the solution, you will find the following projects:

•	 Chapter14.SMCSupplyChain.InventoryCheckService

•	 Chapter14.SMCSupplyChain.ItineraryLibrary

•	 Chapter14.SMCSupplyChain.Maps

•	 Chapter14.SMCSupplyChain.Orchestrations

•	 Chapter14.SMCSupplyChain.Schemas

Some of these projects are already implemented for you.

Deploying and using a monolithic solution
We will now walk through and examine a monolithic implementation of this broker
scenario that has already been completed for you. We will deploy this and use the
BizTalk WCF Service Publishing Wizard to expose a monolithic implementation
of this process as a WCF service that we can consume. Once we have done this,
we will demonstrate how the ESB Toolkit can use the same artifacts in an agile
manner through Itinerary. From the Chapter14.SMCSupplyChain solution,
open the Chapter14.SMCSupplyChain.Orchestrations project. Open the
PurchaseOrderBroker.odx Orchestration.

Cross-Organizational Supply Chain

[372]

Your screen should now look like the following screenshot:

This is an example of a monolithic implementation of this chapters, use case. In
particular, please note the following and examine these in Visual Studio:

1.	 The Decision Shape Check_CreditLimit has a conditional branch
CreditLimitApproved, which uses the following static condition:
poRequest.TotalDue<=500

Chapter 14

[373]

2.	 Map usage is embedded into Construct/Transform shapes within the
Orchestrations. See the Construct_InventoryCheckRequest, Construct_
POResponseMessage, and Construct_POResponseMessage shapes.

3.	 The logical port Port_Inventory_Check_Request contains the operation
name for the WCF service. Note that this is the Identifier property of the
port; the value in this case is GetInventoryData.

Now let's deploy the required WCF service contained in the Chapter14.
SMCSupplyChain.InventoryCheckService project and then the BizTalk assemblies.

4.	 Right click on the Chapter14.SMCSupplyChain.InventoryCheckService
project in Visual Studio and select Publish. In the Publish WCF Service box
that appears, click the ellipsis button circled in the following screenshot.

5.	 Select Local IIS and create a new Virtual Directory called SMCSupplyChain.
InventoryCheckservice.

6.	 Follow the remaining steps of the wizard. Check that the target
location is configured as http://localhost/SMCSupplyChain.
InventoryCheckService and then click Publish.

We will now publish the BizTalk application and configure it.

1.	 Right-click on the Chapter14.SMCSupplyChain solution and click Deploy
Solution. Check that no error messages appear and that the Deployment is
successful.

2.	 Open the BizTalk Administration Console and verify that the solution is
deployed in the SMCSupplyChain application.

http://localhost/SMCSupplyChain.InventoryCheckService
http://localhost/SMCSupplyChain.InventoryCheckService

Cross-Organizational Supply Chain

[374]

3.	 To create the port required import the InventoryCheckService_Customer.
BindingInfo.xml binding file, which is contained within the Chapter14.
SMCSupplyChain.Orchestrations folder. This will create a WCF-Custom
send port called WcfSendPOrt_InventoryCheckService_WSHttpBinding_
IInventoryCheckService_Custom.

4.	 We now need to expose our PurchaseOrderBroker.odx Orchestration
as a WCF service. Go back to your Visual Studio with the Chapter14.
SMCSupplyChain solution open. Select Tools | BizTalk WCF Service
Publishing Wizard from the Tools drop-down menu.

5.	 On the first Welcome to the BizTalk WCF Service Publishing Wizard screen
click Next.

6.	 On the next screen, select the following options so that it is identical to the
following screenshot:

7.	 Service Endpoint
8.	 Adapter Name [Transport type]: WCF-WSHttp
9.	 Enable metadata endpoint
10.	 Create BizTalk receive locations...: SMCSupplyChain

11.	 On the next screen select Publish BizTalk orchestrations as WCF service
and click Next.

12.	 Now select the Chapter14.SMCSupplyChain.Orchestrations.dll from the
build output location for the Chapter14.SMCSupplyChain.Orchestrations
project. Click Next.

Chapter 14

[375]

13.	 Leave the default settings on the next screen (Orchestrations and Ports).
14.	 On the next screen, WCF Service Properties, leave the default target

namespace http://tempuri.org.
15.	 On the next screen, WCF Service Location, leave the default location:

http://localhost/Chapter14.SMCSupplyChain.Orchestrations. Mark
Allow anonymous access to WCF Service as true and click Next.

16.	 On the final WCF Service Summary screen click Create. Verify that there
were no errors.

17.	 In the BizTalk Administration Console open up the SMCSupplyChain
application Receive Locations section. You should see a new receive location
which has been created.

18.	 Select the Orchestrations section, right-click Chapter14.SMCSupplyChain.
Orchestrations.Broker and select Properties. Then click Bindings and
configure the Host. For Receive Ports, specify the item generated by the
Publishing Wizard, for the Send Ports specify the WCF-Custom Send Port
created by the binding file which was imported. Click OK. Right-click on the
SMCSupplyChain application and click Start.

You will need to check that the Chapter14.
SMCsupplyChain.Orchestrations Virtual Directory
that was generated runs in an application pool whose
identity (service account) is a member of the BizTalk Isolated
Host Users Group.

19.	 We will now test this using the WCF Test Client. Open the WCFTestClient.
exe located in <Program Files Location>\Microsoft Visual Studio
9.0\Common7\IDE.

20	 Right-click the root node My Service Projects and select Add Service. Enter
the endpoint address which points to the receive location you exposed as a
WCF Service (I have not included it here because the default name is very
long). Click OK to generate the proxy classes that the test client will use.

21.	 Expand the exposed Service Contract (Chapter14_SMCSupplyChain_
Orchestrations_...). and double-click the POProcessing operation.

http://tempuri.org
http://tempuri.org

Cross-Organizational Supply Chain

[376]

22.	 Enter the details for the Request as follows:

Field Value
PurchaseOrderID 2
CUstomerID 2
TotalDue 499
Details Length=1

Note: This will allow you to enter one product
detail. Use values below:

ProductID 1
Quantity 1
ItemPrice 1

23.	 Select Start a new proxy and click Invoke. The first time you invoke it will
take some time as BizTalk needs to load all assemblies and required cache
information into memory.

24.	 You should receive a response that looks like the following screenshot. The
key thing to note is that the Status field has a value of 200. I explain the status
codes after this section.

Chapter 14

[377]

PO status codes
The following status codes apply to overall PO.

Code Meaning
200 Approved
400 Rejected

Cross-Organizational Supply Chain

[378]

Item inventory check status codes
The following status codes apply to the overall status of each Detail,
for example, each item.

Code Meaning
200 Approved
400 Not in stock
600 Not Checked

600 is implemented for the scenario where the Total Due exceeds
the permitted Credit Limit. In this case, the inventory status for each
item is not checked. When implementing systems, it is a best practice
to avoid unnecessary expensive service calls by using this technique.

Current behaviors of the system
•	 The maximum TotalDue is statically defined in the PurchaseOrderBroker

Orchestration as 500. Any TotalDue value greater than or equal to 500 will
return a response code of 400 and each Detail, that is, item in that PO, will
have a Status of 600.

•	 If PurchaseOrderID is an even number and the TotalDue is less than or
equal to 499 then the PO Status will be 200 and each item will be
200. This logic is implemented in the Chapter14.SMCSupplyChain.
InventoryCheckService project.

Experiment by submitting the same request but change the following:

•	 PurchaseOrderID: change value to 3. The PO status should be 400 and each
individual item Status should be 400, that is, not in stock.

•	 PurchaseOrderID: change value to 2 and TotalDue change to 501. The PO
status should be 400 and each individual item Status should be 600, that is,
Not Checked, due to TotalDue exceeding the statically defined credit limit.

The rudimentary logic for the Inventory Service is implemented in
the Chapter14.SMCSupplyChain.InventoryCheckService project.

Chapter 14

[379]

Utilizing the ESB Toolkit
So far, we have seen one way to implement this solution and will now look
at how the ESB Toolkit can make this solution more agile.

Using existing transformations within
an ESB Itinerary
We will now extend this and use some of the existing BizTalk artifacts that
were developed to meet this solution and demonstrate how the maps that we
previously created can be utilized as an Itinerary. For simplicity sake, the itinerary
will be implemented using file drops to facilitate easier testing. We will begin by
implementing one of the transformations step by step, then expand and use another
itinerary, which replicates the functionality of the Orchestration. This itinerary is
transport independent so can be utilized from a different On-Ramp and Off-Ramp.
The purpose of this section is to show you how the ESB Toolkit can be leveraged to
use existing components.

1.	 From the <Chapter 14 files location>\Begin\ folder copy the Filedrops
folder and all subfolders to the root of C:\. This structure will be used to
receive and send files for the itinerary examples. If access to this location
is not permissible on your system, adjust the location in the following
instructions appropriately.

2.	 In the BizTalk Administration Console, open up the SMCSupplyChain
application. Right-click on references and add a reference to the Microsoft.
Practices.ESB application.

3.	 Open the Receive Ports section. Right-click and create a new one-way
Receive port called SMCOnRamp.OneWay; this will be the on-ramp that
BizTalk uses.

4.	 Within the SMCOnRamp.OneWay Receive Port Properties window, click on
the Receive Location tab and select New.

5.	 Enter the name SMCOnRamp.File and specify the transport type as FILE.
Click Configure and set the Receive Folder location to be C:\Filedrops\
SMCIn and leave the default File mask of *.xml.

Cross-Organizational Supply Chain

[380]

6.	 Select the appropriate Receive Handler (default is BizTalkServerApplication).
Select the Receive Pipeline as ItinerarySelectReceiveXML. Your screen
should look like the following image:

7.	 Click on the ellipsis button to configure the ItinerarySelectReceiveXML
pipeline. You should set the ItineraryFactKey to Resolver.Itinerary and the
ResolverConnectionString to ITINERARY:\\name=SMCOneWaySimple.
This means that the Resolver will look up the value of the
SMCOneWaySimple itinerary from the Itinerary store (which is a
configured SQL Server Database). The following screenshot illustrates this:

Chapter 14

[381]

8.	 Note that there are other resolvers that can use the Business Rules Engine
or UDDI v3 to resolve the Itinerary. In this case, we decided to specify this
explicitly. As the itinerary resides in the database, we can change this at any
time.

9.	 We now need to create a Dynamic Send Port within our application, which
can subscribe to the messages that will be published by this Receive Port.
Note the ESB terminology for this is an Off-Ramp. Expand Send Ports
in the SMCSupplyChain application and create a Dynamic One-Way
port called SMCOffRampDynamicOneWay. Set the Send Pipeline to
ItinerarySendPassthrough.

10.	 Click Filters for this port and configure the following filters as per the
next screenshot:

°° Microsoft.Practices.ESB.Itinerary.Schemas.
ServiceName == SMCOffRampDynamicOneWay

°° Microsoft.Practices.ESB.Itinerary.Schemas.
IsRequestResponse ==false

°° Microsoft.Practices.ESB.Itinerary.Schemas.
ServiceState == Pending

Cross-Organizational Supply Chain

[382]

°° Microsoft.Practices.ESB.Itinerary.Schemas.
ServiceType == Messaging

The BTS.ReceivePortName property can be used in the filter expression
to match an Off-Ramp with a particular On-Ramp. Typically, I do
not include this, as it keeps the Off-Ramp generic and reusable across
different itineraries. Note that the GlobalBank ESB sample application
also provides generic reusable On and Off-Ramps.

11.	 Now we will examine the itinerary SMCOneWaySimple, which we specified
we would use in our On-Ramp. Open up the Chapter14.SMCSupplyChain.
ItineraryLibrary project, which is contained within the solution. Open
SMCOneWaySimple.Itinerary to open the Itinerary Designer, which was
introduced in ESB Toolkit 2.0. Your screen should look like the following:

Chapter 14

[383]

12.	 The Itinerary broadly consists of the following:
°° On-Ramp: RcvPOFileDrop receives the message.
°° Messaging Extender: TransformPOInventoryRequest

executes during the receive pipeline stage (the container
object specifies the BizTalk processing stage: either receive
pipeline, Orchestration, or send pipeline) and invokes the
previously defined map to transform the PORequest to an
InventoryCheckRequest.

°° Off-Ramp Extender: SetOffRampLocation uses a static
resolver to specify the output location of C:\filedrops\
SMCOut\%MessageID%.xml.

°° Off-Ramp: SendToFileOut specifies the Dynamic Send port
that we created earlier (our Off-Ramp). The previous resolver
shape provides the transport type and location configuration
in its static resolver.

13.	 First export the itinerary by clicking the Itinerary Designer surface
and selecting Export Model. Save this in a convenient location as
SMCOneWaySimple.xml and verify that it exports successfully.

14.	 We will now deploy this by opening a command prompt and changing to the
directory C:\Program Files\Microsoft BizTalk ESB Toolkit 2.1\Bin.

15.	 We will use the tool ESBImportUtil, which is provided to deploy itineraries.
Run the following command:
EsbImportUtil.exe /f:"<Path to folder with Itinerary>\
SmcOneWaySimple.xml" /c:deployed

16.	 Verify that you get the message :The Itinerary <Itinerary location xml> was
imported successfully successfully to database ….

17.	 Now check that the receive locations, send ports, and required hosts
are started.

18.	 Open the PORequest_output.xml file from the <Chapter 12 files
location>\Begin\SampleMessages directory and once you have done this,
copy it to C:\Filedrops\SMCIn.

Cross-Organizational Supply Chain

[384]

19.	 Navigate to C:\Filedrops\SMCOut and verify that the folder contains a
new message, whose format is of type POResponse. If you used the sample
inbound message that I provided, your screen should look identical to the
following screenshot:

Congratulations! You've now successfully deployed and used your first itinerary.
Note that the deployment of the Itinerary was able to occur whilst BizTalk was still
running. This means that your itineraries can change on the fly with zero downtime,
which is one of the big benefits of ESB toolkit for BizTalk Server.

Using the itinerary service broker pattern to
implement messaging-based routing with ESB
In this next example, we will show a way to use an itinerary to implement similar
broker functionality to the PurchaseOrderBroker Orchestration we used earlier
by leveraging the ESB toolkit. First, let us take a step back and recap on the
functionality we implemented in the PurchaseOrderBroker Orchestration to meet
our requirements:

•	 Receive a PORequest message.
•	 Evaluate the TotalDue promoted property.
•	 If the TotalDue is greater than 500, a map is called to construct a POResponse

message with a status code that indicates that the order has not been
approved. This response is sent to the appropriate location.

•	 If the TotalDue is less than or equal to 500:
°° An InventoryCheckRequest is constructed by using a

BizTalk map.
°° A call is made to the Inventory WCF Service

GetInventoryData operation.

Chapter 14

[385]

°° From the InventoryCheckResponse, which contains details
of all the items requested in the original PORequest, a map is
called to construct the appropriate POResponse.

°° Send POResponse to appropriate location.

The BizTalk Orchestration engine is robust and proven. BizTalk is primarily
targeted at and designed for integration scenarios, therefore, each Orchestration
represents a tight coupling of components; it encapsulates a set of functionality
from transformations to external system calls. To change the order of invocation of
transformations we implemented in the PurchaseOrderBroker Orchestration would
require recompilation and redeployment, which is not acceptable for some systems.
Pub-sub messaging is configuration based so can be changed without recompilation
and redeployment, but implementing the logic above in pub-sub would be
challenging and would lose the view of the message flow that Orchestration
provides. What we would really like is the functionality of Orchestration, with
flexibility, and ease of configuration.

In version 1.0 of the ESB Toolkit, itineraries were a sequential set of steps modeled
in an XML file. When the Export Mode is set to Default for an itinerary this is what
happens under the covers. If this mode is changed to Strict, a number of items
change in the XML output of the itinerary. This includes the addition of a number
of attributes in the file that correspond to itinerary designer properties: specifically,
a Stage attribute, which corresponds to the Container itinerary designer property; a
PropertyBag; a businessName attribute, which corresponds to the Name designer
property. Each Service also contains an id and a nextId value, as shown in the
following image. This reflects internal changes that were made from ESB 2.0; the
runtime now processes the itineraries as a linked list.

The Itinerary Broker Service allows you to take advantage of this and implement
rudimentary routing scenarios without an Orchestration. It is represented as
two shapes in the toolbox: the Itinerary Broker Service and the Itinerary Broker
Outport. The Itinerary Broker Service shape can be used with the Context Resolver,
which enables us to access the BizTalk internal and schema promoted properties
of the message. Recall that in our scenario TotalDue is a promoted property. We've
already demonstrated transformation from within an itinerary, coupled with the
access to the message context and the ability to route on it this looks promising.

In order to call the WCF service, we will require a two-way Off-Ramp, which we will
implement as a BizTalk Dynamic Solicit-Response Port.

Cross-Organizational Supply Chain

[386]

1.	 In the BizTalk Administration Console open up the SMCSupplyChain
application. Right-click on Send Ports and select New then Dynamic
Solicit-Response Send Port.
In the Send Port Properties window set the following properties:

°° Name: SMCOffRampDynamicTwoWay
°° Send Pipeline: ItinerarySendPassthrough
°° Receive Pipeline: ItineraryForwarderSendReceive

2.	 Click Filters for this port and configure the following filters; these deliberately
use the same context properties as the Off-Ramp we created earlier:

°° Microsoft.Practices.ESB.Itinerary.Schemas.
ServiceName == SMCOffRampDynamicTwoWay

°° Microsoft.Practices.ESB.Itinerary.Schemas.
IsRequestResponse ==true

°° Microsoft.Practices.ESB.Itinerary.Schemas.
ServiceState == Pending

°° Microsoft.Practices.ESB.Itinerary.Schemas.
ServiceType == Messaging

3.	 Now we will examine the itinerary SMCOneWayBroker, which we specified
we would use in our On-Ramp. Open up the Chapter14.SMCSupplyChain.
ItineraryLibrary project, which is contained within the solution. Open
SMCOneWayBroker.Itinerary; your screen should look like the following:

Chapter 14

[387]

4.	 The first part of the Itinerary broadly consists of the following:
°° On-Ramp: RcvPOFileDrop receives the message.
°° Messaging Extender: PromoteProperties executes a map

that maps itself, for example, PORequest to PORequest. This
was implemented as a workaround to make the promoted
property TotalDue accessible by the Context Resolver used by
the BrokerService.

°° Messaging Broker Extender: Broker Service evaluates the
value of TotalDue, a promoted property within PORequest.
This is implemented using two filters, SmallPO and
LargePO. Filters are added using the Itinerary Broker
Outport toolbox shape. SmallPO matches less than or equal
to 500; LargePO matches TotalDue greater than 500. The first
filter that evaluates true will be executed, in the same way as
a Switch statement in C#.

5.	 If the LargePO filter evaluates true, the following will occur in order to
return a rejected POResponse:

°° Messaging Extender: TransformPORequest_POResponse
executes a map, which generates the appropriate POResponse
indicating it has been rejected.

°° Messaging Extender: SetOffRampTransport_Broker
uses a static resolver to specify the output location of C:\
filedrops\SMCBroker\%MessageID%.xml.

°° Off-Ramp Extender: OffRampExtender_SMCBroker is a
required component to invoke Off_Ramp.

°° Off-Ramp: OffRamp_SMCBroker specifies the one-way
Dynamic Send port that we created earlier (our Off-Ramp).

6.	 If the SmallPO filter evaluates true, the following will occur in order to check
the inventory and return an appropriate POResponse:

°° Messaging Extender: TransformPOInventoryRequest
executes a map, which generates an InventoryRequest based
on the details of the inbound PORequest.

°° Messaging Extender: SetOffRampTransport uses a static
resolver to configure the WCF properties.

°° Off-Ramp Extender: OffRampExtender is a required
component in strict mode to invoke Off_Ramp.

°° Off-Ramp: OffRamp_Two_Way_WCF_Inventory specifies
the two-way Dynamic Send port that we created earlier and
uses this to call the Inventory WCF Service.

Cross-Organizational Supply Chain

[388]

°° Messaging Extender: Transform_InventoryResponse_
POResponset executes a map to generate the appropriate
POResponse.

°° Messaging Extender: SetoffRampTransport_SMCOut
uses a static resolver to specify the output location of C:\
filedrops\SMCOut\%MessageID%.xml.

°° Off-Ramp Extender: OffRampExtender_SMCOut is a
required component in strict mode to invoke Off_Ramp.

°° Off-Ramp: OffRamp_SMCOut re-uses the one-way
Dynamic Send port that was used for the LargePO filter to
send the POResponse to the folder specified in the resolver
configuration previously.

As described above, this itinerary uses the Itinerary Broker Service to implement
the functionality of the PurchaseOrderBroker Orchestration. Before running this
sample, we will first examine some of the configuration properties and common
gotchas required to make this type of scenario work.

•	 To configure the Filter for the Itinerary Broker Service, one Itinerary
Broker Outport per filter is required. To access the context properties
you should configure the Expression value to be: //Property[@
name='TotalDue']<=500 as shown in the following screenshot:

•	 When changing Export Mode from Default to Strict ensure that you have
an Off-Ramp Extender before any Off-Ramp. Strict mode requires this.

•	 The Static Resolver is configured as follows to call the WCF
Inventory Service:

°° Transport Name: WCF-WSHTTP
°° Target Namespace: http://tempuri.org/

IInventoryCheckService/
°° Action: GetInventoryData This specifies the Operation from

the Service Contract we wish to execute
°° Transport Location: <Path to .SVC file> path not included for

brevity purposes

http://tempuri.org/IInventoryCheckService/
http://tempuri.org/IInventoryCheckService/

Chapter 14

[389]

•	 The SMCOneWayBroker itinerary Is Request Response property is set to
true. Even though we are using a one-way receive location, by setting this
the runtime promotes the TransmitWorkID property to the Message Context.
This is used by the Itinerary Cache component, which is contained
within the ItinerarySendPassthrough pipeline as specified on our
SMCDynamicTwoWay off-ramp. This enables the appropriate itinerary instance
to be matched to the response.

•	 The ItineraryForwarderSendReceive is used in our SMCDynamicTwoWay
off-ramp. When a message is received through a two-way receive port an
instance subscription is created. This consists of the EpmRRCorrelationToken
promoted property and a RouteDirectToTP promoted property.
The Forwarder component contained within this pipeline sets the
RouteDirectToTP property to false in the message content, hence ensuring
that the itinerary can process the message; this is required in our scenario
because we use a two-way off-ramp. Once the itinerary has completed it will
set the property to true; if we had used a two-way On-Ramp, the response
would therefore have been returned.

Now, we will test our itinerary and ESB tracing functionality to examine what is
happening under the covers.

1.	 Open up the Chapter14.SMCSupplyChain.ItineraryLibary project, which
is contained within the solution. Open SMCOneWayBroker.Itinerary.

2.	 Export the itinerary by clicking the Itinerary Designer surface and selecting
Export Model. Save this in a convenient location as SMCOneWayBroker.
xml and verify that it exports successfully.

3.	 We will now deploy this by opening a command prompt and changing to the
directory C:\Program Files\Microsoft BizTalk ESB Toolkit 2.1\Bin.

4.	 We will use the tool ESBImportUtil, which is provided to deploy itineraries.
Run the following command:
EsbImportUtil.exe /f:"<Path to folder with Itinerary>\
SmcOneWayBroker.xml" /c:deployed

5.	 Verify that you get the message "The Itinerary <Itinerary location xml> was
imported successfully to database …".

6.	 Now check that the receive locations, send ports, and required hosts
are started.

7.	 Now, we will enable tracing for the ESB Toolkit. Open your BTSNTSVC.EXE.
CONFIG file, which is located by default in C:\Program Files\Microsoft
BizTalk Server 2010\.

Cross-Organizational Supply Chain

[390]

8.	 Add the following section to your <Configuration> block to configure a
listener for ESB toolkit 2.1 that will write to the event log.
 <system.diagnostics>

 <sources >

 <source name ="BizTalk ESB Toolkit 2.1" />

 </sources>

 <switches>

 <add name="BizTalkESBToolkit20"

 value="4"/>

 </switches>

 <trace autoflush="true"

 indentsize="4">

 <listeners>

 <add name="myListener"

 type="System.Diagnostics.EventLogTraceListener"

 initializeData="BizTalk ESB Toolkit 2.1" />

 </listeners>

 </trace>

 </system.diagnostics>

9.	 From the BizTalk Administration Console, open the SMCSupplyChain
application, expand receive locations, and right-click SMCOnRamp.File and
select Properties.

10.	 Click the configuration ellipsis button for the ItinerarySelectReceiveXML
pipeline. Set the ResolverConnectionString value to: ITINERARY:\\
name=SMCOneWayBroker.

11.	 We will now demonstrate that the Itinerary Broker Service filter functionality
works. First copy the PORequest_small.xml file, which contains a TotalDue
value less than 500, from the <Chapter 12 files location>\Begin\
SampleMessages directory and then copy it to C:\Filedrops\SMCIn.

12.	 Within the C:\Filedrops\SMCOut directory should be a new PORequest
with a Status code of 200 for approved.

13.	 Copy the PORequest_large.xml file, where TotalDue is greater than 500,
from the <Chapter 12 files location>\Begin\SampleMessages
directory to C:\Filedrops\SMCIn

14.	 Within the C:\Filedrops\SMCOut directory should be a new PORequest
with a Status code of 400 for rejected.

15.	 Open the Event Viewer Application Log and you will see events with source
BizTalk ESB Toolkit 2.1. You will see events similar to the following. This
particular event references a service id that corresponds to the id in our
itinerary XML output file.

Chapter 14

[391]

16.	 If we examine the output XML file for the itinerary, we can see that this ID
corresponds with the SMCOffRampDynamicOneWay off-ramp that is
defined in our itinerary.

Using the combination of ESB tracing and the exported XML file enables you to
determine which route your itinerary took and where it stopped if a failure occurred.

Summary
In this chapter, we walked through how to implement a supply chain scenario
using either an inflexible monolithic approach or a Message Bus-based approach
by leveraging the ESB Toolkit 2.1 for BizTalk Server 2010. In particular, we
demonstrated the Itinerary Broker Service functionality, which enables routing
and can remove the need for Orchestration in some simplistic scenarios. We
demonstrated the re-use of previously generated artifacts within different
ESB itineraries. We deployed the itineraries easily without recompilation or
redeployment of solution code.

We have scratched the surface here on the ESB toolkit functionality. It provides many
additional capabilities including the abilities to use Orchestrations within itineraries,
resolve itinerary based on Business Rules Engine (BRE) Policies, and a complex
exception handling framework and management portal.

Multiple Master
Synchronization

"The question is," said Humpty Dumpty, "which is to be master—that's all."

Through the Looking-Glass, by Lewis Carroll

It is a rare business that has one and only one version of truth for all of the data that
it maintains. Instead businesses rely on a hodge-podge of diverse systems, all of
which will identify the critical nouns of a business differently, and will often contain
radically different versions of the definition of those nouns.

For example, in one system one of our authors might be labeled "Mike", in another
"Michael", and in a third "That funny smelling, old guy." When one attempts to
manage and reconcile these discrepancies one is presented with the same issue
Humpty Dumpty presented to Alice in Through the Looking-Glass.

"When I use a word," Humpty Dumpty said in a rather scornful tone, "it means just
what I choose it to mean—neither more nor less."

When trying to integrate and resolve these issues, you are potentially dealing with
dozens of Humpty Dumptys, all of whom have attached different, nuanced meanings
to the nouns they track. In this chapter, we will review how we keep the Red Queen
from chopping off your head by reviewing a use case for a fictitious company, World
Wide Widgets, and evaluating and reviewing portions of a potential solution.

Resolution of these issues will be complex and involve multiple, diverse technologies,
even within the Microsoft stack. Here we will provide you a glimpse into the large
world of master data management and the multiple methods for arriving at a single
version of truth within a large diverse organization.

Multiple Master Synchronization

[394]

Use Case
World Wide Widgets (WWW) developed and patented multiple types of widgets
for use in the brake and acceleration systems of automobiles and light trucks.
They currently manufacture these system components in factories in North
America, South East Asia, and Europe for sale to several auto manufacturers. Each
manufacturer has insisted on slightly different designs of these components. WWW
has sold the Widge-O-Stop brake system and the Widge-O-Go acceleration system,
with modifications to the Toy O D'oh car company.

It was recently announced that Toy O D'oh will recall all 2009 and 2010 models
for faulty brakes and gas pedals. Each of these systems uses WWW's patented
Widge-O units. Regulatory authorities in Asia, North America, and Europe have
all announced investigations and the legal department has warned management to
expect long and protracted litigation around these issues.

You have been assigned the task of designing and building a system that will gather
and characterize all of the company's records on the development of this system, as
well as the sales and marketing of this system to Toy O D'oh. You must get all of the
records, including un-structured and semi-structured data.

Key requirements
The system must correctly identify staff over time and correctly assign to them the
roles they were in during particular times. This was a very long term effort. People
left or joined the company, were promoted or changed roles, or changed names
because of marriage or divorce. The project itself went through many code names.
The trade name "Widge-O" was coined by the marketing department. The engineers,
patent lawyers, and others involved in the research development and patents used
numerous other terms.

Third-party consultants were also used as part of the development efforts. These
include safety testing labs, software developers, and outside law firms for patent and
regulatory work, all of whom should have (but perhaps did not) leave copies of their
work product with WWW. Your system should identify gaps if they exist.

The company requires each staff person to maintain documents and work product
on their local hard drives for seven years. Some staff have found this to be an
onerous requirement so they have moved data onto other media. They will make
that media available to you for searching and indexing.

Structured data that must be searched can be found in both Oracle systems and
SQL Server systems. You must identify employees involved with the Widge-O.
Data concerning these assignments can be found in the Oracle HR system. Data
concerning safety testing can be found in SQL Server-based systems.

Chapter 15

[395]

One of the biggest issues with any forensics type of project is the human factor. Here,
the lawyers are involved and you must expect that everyone will be running for
cover. They will be deleting documents and e-mails, moving material to USB devices
and engaging in every imaginable effort to CYA (Confound Your Assessment).
Additionally, employees are not attempting to cover up or hide data, but they may
inadvertently improperly store data.

During the normal course of events data and documents are altered over time.
Versioning and the explanations for changes can be key evidence in law. You will
need to track versions dates and revisions of data as part of any solution.

Additional facts
Given the risks and issues that would arise should this project fail, including legal
liabilities and damage to the business's good name, we can assume that we will have
more than adequate staffing and technical capabilities for this project. Moreover,
this is an engineering company that understands the need for good design and
competent software development, so they hire superior talent for both development
and operations.

Pattern description
Like most enterprises, WWW has multiple databases each of which controls data
for its specific area or business purpose, each of which is master of its own domain.
Like most enterprises, WWW has no minimal tools in place to monitor and resolve
differences between these data sources. For the purposes of this litigation, these
differences must be identified and brought to the attention of the business so that
they can be resolved or explained.

In master data management (MDM) situations such as this one, we gather the key
data, often called the key nouns of an organization, identify data disparities, and
reconcile those disparities. For example, a key noun for any organization would be
"customers". The same customer might be identified as "Mike" in one system and
"Michael" in another or may have different mailing addresses and phone numbers in
those systems because of a move. One would reconcile these disparities in any MDM
system using appropriate business rules so that the company can properly service
the customer and has an accurate picture of its customer base. One rule might be "the
most recently reported address is deemed to be the correct address", for example.

MDM in this situation serves the key role of gathering evidence for analysis by the
legal team.

Multiple Master Synchronization

[396]

WWW needs to gather all of its data concerning its interactions with Toy oh D'oh,
identify any discrepancies, then reconcile those discrepancies or feed them into a
human workflow so that they can be investigated.

Candidate architecture
There are several tools that we need, to handle the issues presented.

1.	 We must extract existing data from multiple relational systems and load it
into a clean environment where we will track data access and changes.

2.	 We must manage the definitions of key business nouns across multiple
environments.

3.	 We must track metadata concerning various documents, spreadsheets, and
other objects.

4.	 We must use unstructured and semi-structured data as a source for data
mining and data analysis tasks by storing metadata concerning these objects
in SQL Server.

5.	 We must search through and index semi-structured and un-structured data
across the enterprise. This will include every server, every laptop, and all of
the miscellaneous storage devices.

These needs cannot be met with any single product or technology in the Microsoft
catalog. Rather, we will need to incorporate several technologies into our solution to
gather, index, store, and present data to end users.

Solution design aspects
Here, we will review all of the technologies that we can bring to bear on the
problem at hand.

SSIS
We have already discussed the use of SSIS in Chapter 5. Here we have "classic"
ETL issues—the very issues SSIS was designed to deal with—as well as extracting
data from "non-traditional" sources, such as documents, e-mails, and spreadsheets.
SSIS does not typically come up on an architect's radar when faced with these data
sources. Nevertheless, SSIS is an excellent tool for extracting metadata and other
information from these objects.

Chapter 15

[397]

Master Data Services
The key functionality of Master Data Services that we will illustrate here is the
creation of a master data hub—a single source for all master data regardless of
source system. We will ensure data consistency by treating each master data change
as a transaction and logging the date, time, and user making the change.

Search Server Express
We must search and index documents across the enterprise. These documents can
be in numerous formats. Microsoft released Search Server Express in 2008. We might
also consider FAST ESP; however, Search Server provides the functionality we seek
here and has the advantage of being free.

Solution operations aspects
WWW already has SQL Server in place. At most, we are simply leveraging the
functionality of the latest release of SQL Server. While Search Server Express may be
new technology for this enterprise, it has an easy, light, and intuitive administrative
interface and should not provide any significant issues for WWW operations staff.

Organizational aspects
Simply put, this project must get done and must get done correctly. The risks to the
very existence of the company should they lose any litigation, along with the adverse
publicity arising from taking the blame for product failures, is simply too great. The
organization will get the resources needed to be successful. In this case, that should
be a simple task. For the most part, we are extending products already in use with a
staff very familiar with the Microsoft stack.

Solution evaluation
Unlike other scenarios, we have discussed throughout this book, here we have
no single magic bullet technology that can solve all of our issues. Instead, we will
need to deploy multiple technologies that can meet the wide-ranging requirements
presented here.

Design Delivery Operations Organization

Multiple Master Synchronization

[398]

Architecture selection
Let us consider the components that make up this candidate architecture.

SQL Server, Master Data Services, and SSIS
Benefits

•	 Easily deployed and extensible ETL
tool

•	 Designed to handle batch processing
of large files, exactly the task at hand

•	 No additional licensing costs –
comes with SQL Server

•	 Can be built and maintained by
current staff

•	 Can build business rules to resolve
data conflicts

Risks
•	 Need to build sophisticated

error handling systems
•	 Does not handle unstructured

data well

Search Server

Benefits
•	 Indexes unstructured data
•	 Can review administrative shares

(such as C$) on desktops

Risks
•	 Not clear if staff has the skills to

support product
•	 Still possible for users to "hide"

relevant documents on portable
devices

This is an extraordinarily complex data management task as it touches on all of the
data held by the organization in every possible format in which the organization
holds it. You must get data in both the organizations "approved" formats as well
as in any format that might be held by a key staff person that they obtained from
outside sources (such as through internet research). In this case, the combination of
a SQL Server-based solution along with Search Server will serve this organization.
More complex organizations will need to consider FAST.

Building the solution
We will need to deal with both structured data stored in relational databases and
unstructured data stored in file systems of various sorts (for example, marketing
documents, engineering design drawings). We will manage conflicts between the
relational systems using master Data Services, ETL using SSIS, and file system
indexing using Search Server and SSIS.

Chapter 15

[399]

The Electronic Discovery Reference Model (http://edrm.net/) refers to six phases
of handling data:

1.	 Information management
2.	 Identification
3.	 Preservation and Collection
4.	 Processing, Review, and Analysis
5.	 Production
6.	 Presentation

Our tasks focus on steps 1 through 3 while providing a firm foundation for steps 4
through 6, which can be handled using SharePoint, SQL Server Reporting Services,
and Power Pivot.

In order to execute on these tasks we will need to have two data constructs, one
for document and other source metadata and a second to hold relational data for
analysis. While we could use two schemas for this purpose we have elected to
go with two separate databases. First, this will optimize performance for what
is expected to be two very different reporting criteria. Second, it will minimize
confusion for both users and system operators. Third, it will allow us to secure the
data properly, particularly if we need to extend the metadata system to include
comments or other attorney work product, which should not be distributed outside
the organization.

Multiple Master Synchronization

[400]

You can get a basic understanding of attorney client privilege and
attorney work product rules at http://www.lectlaw.com/
files/lit16.htm.

From a high-level logical view our system will look like this:

Fetching relational data
To borrow a phrase from cheap detective novels, we will need to know the who,
what, when, where, and how for the development and production of the Widge-O.
The "who" can be ascertained from the HR system. Here, we will use the HR schema
provided to us in the Oracle 10G express edition as it is already populated with data.
We have written out the employees and department tables to comma-separated files.
As we covered the SSIS objects we will use in the debatching data chapter, we will
not review the details again. We have created two parallel data flows, each of which
pulls data from a comma-delimited ASCII file, converts the data to an appropriate
data type, and loads the data into the correct tables in the HR schema of the metadata
database we previously created.

Chapter 15

[401]

Master Data Services
Since this is a new technology with SQL Server 2008 R2, we should briefly discuss
its setup. Master Data Services installs from its own MSI and is not part of the
"standard" SQL Server install. The install program can be found at <DVD Drive>:\
MasterDataServices\x64\1033_ENU. Upon completion of the install, the Master
Data Services configuration manager will open. Follow the wizards and the
installation instructions you can obtain from Microsoft to install the MDS database
and configure the website to handle the web services that will be used to perform the
actual data management between the MDS hub and the various databases we will
be integrating.

Multiple Master Synchronization

[402]

Once you have completed the installation and configuration, your next step will be to
create a model around the key "nouns" or entities you will be tracking. MDS creates
a hierarchy around each noun and its properties. This is a hierarchical structure that
organizes the data. In our scenario, one key entity that needs to be tracked would be
the Widge-O product line. We might, therefore, use the following model:

•	 WidgeO Litigation
•	 Auto products
•	 Brake products
•	 Widge-O Stop
•	 Acceleration products
•	 Widge-O Go

We will need to create an application. Make sure the WWW service allows
Windows authentication. See http://support.microsoft.com/kb/942043/
for instructions.

Open the MDS configuration manager and select Web Configuration from the left
panel. Next select Create Application to bring up the Create Web Application dialog.
Fill in the configuration fields and select OK.

Chapter 15

[403]

Next, you will need to select a database for the application. Click on the Select
button that appears under the "Database" group box to bring up the "Connect to
Database" dialog. Make the appropriate selections for your databases security
context, and select OK.

Multiple Master Synchronization

[404]

Your Configuration manager should now appear similar to the following screen:

Select Apply. You should see the success dialog box. Select the "Launch Application
in the Browser" checkbox to begin the actual work.

Chapter 15

[405]

This will bring you to your default management page in your browser.

It will quickly become apparent that navigation through the MDS interface is not
particularly intuitive. A cheat sheet is available at http://msdn.microsoft.com/
en-us/library/ee633735(SQL.105).aspx. Open the "System Administration" link.
We need to create a new model as described previously, so click on Models, then
click on the icon with the "+" symbol.

Multiple Master Synchronization

[406]

Enter WidgeO litigation in the text box and leave the defaults and click on the
Save icon.
We will now need to add entities to our model. You can think of entities as levels in
the hierarchy or as dimensions in a snowflake schema. Select the Manage menu item
then select Entities. Once again select the green "+" icon and add Auto products and
select No from the Enable explicit hierarchies and collections drop down. Repeat
the process for "Brake products", "Widge-O Stop", "Acceleration products" and
"Widge-O Go".

Entities have attributes, which are… well attributes. They are similar to attributes
in an XML file or the fields in a table. Once you have completed the creation of the
entities, you should see the manage entities screen, looking like the following image:

Chapter 15

[407]

When you select one of the entities, a number of icons will appear, as you can see
displayed in previous image. We will limit our attribute creation to the Widge-O Go
and Widge-O Stop leaf levels. Highlight Widge-O Go and click on the pencil icon.
You will be taken to the edit entity page. Note that there are already two attributes,
name and code. We will add "version" and "data source" to the attributes. Click on
the green "+" symbol. The Add Attribute page will appear. Type "data source" in the
name field and accept the remaining defaults. Repeat the process for "version" then
repeat these steps for the Widge-O Stop. Click back through the save icons to reach
the entity maintenance page and save your work.

Next, we will need to relate the entities through domain-level attributes. So, for
the "Brake Product" entity, add a Widge-O Stop domain attribute and tie it with
the Brake Product entity. For the acceleration products entities add a Widge-O
Go domain attribute and tie it to the acceleration products. For the auto products
entities, add a brake products and acceleration products domain attribute and tie it
to auto products.

In order to complete our hierarchy, add a domain-based attribute "Products" to the
WidgeO Litigation entity and point it towards the WidgeO Litigation entity in the
Entity drop down.

Navigate back to the main menu. You can use the bread crumbs path appearing next
to the SQL Server graphics in the upper left of the page. You will need to make sure
that the correct model appears in the model menu, and then select "version_1" from
the versions drop down.

Multiple Master Synchronization

[408]

Now (finally) we create our hierarchy. Select "System Administration" from the
home page, then manage derived hierarchies from the menu. The derived hierarchy
is derived from relating domain attributes.

Select WidgeO Litigation from the drop down and click on the green "+" icon. Name
the hierarchy WidgO ToyOdoh litigation and click save. The hierarchy editing page
will appear.

Simply drag the auto products line from the left to the right and the hierarchy
is created. We have now completed our hierarchical structure to use to manage
relational data concerning the product lines.

Next, we will need to create the infrastructure required to manage unstructured and
semi-structured data, such as the material contained in Word files, e-mail, PDF files,
or spreadsheets.

Unstructured data
A significant portion of a company's data is not held in structured relational
databases. Instead, it is held in multiple, unstructured, or semi-structured formats.
Think of how much day-to-day activity you, dear reader, carry out using relational
databases and how much is carried out with e-mail. Indeed, you might even consider
code and comments to fit the definition of semi-structured data.

Here the litigation teams need all of the documents concerning the Widge-O lines
of products. "All" does not mean "most"—so every document, marketing graphic,
engineering design, and sales spreadsheet must be found and indexed.

Chapter 15

[409]

For purposes of this exercise, we want to capture the metadata concerning all
relevant documents. For purposes of illustration, we will create a single directory to
crawl. In the real world, you would need to crawl the administrative partitions and
associated directories of each computer on the network (for example, \\computer1\
C$, \\computer1\D$, \\ComputerN\C$) searching for any file with a relevant
extension (for example, docx, xls, pdf).

Create a directory labeled "WidgeO" then open your SSIS project for this chapter. For
purposes of illustrating this effort, simply load it with a random assortment of files
you now have on your system. Create a variable named path with a string data type,
then drag a Foreach container onto the package.

Multiple Master Synchronization

[410]

Open the Foreach loop container and select the Collection dialog from the left.
We will be using a "For each file" enumerator. Browse to the WidgeO directory you
created earlier.

Next, select the variable mapping and select the User::path variable we created
earlier. This should be mapped to the 0 index. Click OK.

Chapter 15

[411]

Click OK to accept your work.

The Foreach loop will loop through each file in this directory. We will be creating a
script to fetch the metadata and loading the results into our database.

In order to handle that task, create additional string variables createDate to track
the date of creation, DocName for the document name, and lastModDate to track the
last modification date. You can create other variables to track other properties as
you choose.

Drag a script task into the Foreach container and label it getDocData. You can create
some artificial data for purposes of this exercise by copying random files into the
widgeO directory.

Open the execute script object. We need to map the variables correctly. The path
variable should be entered as read only, while the DocName, createDate, and
LastModDate are mapped as read-write. Select the values from the drop downs.

There are many ways we can get this data from the Dts variables collection into the
database. Here we will choose to build an insert statement string and pass it to an
execute SQL task, mostly because the author is about to start vacation and wants to
get this done in the fastest and easiest way possible. To that end, create a variable
"insertSQL" and add it as a read-write variable. We will then simply concatenate the
string to create the insert statement.

Multiple Master Synchronization

[412]

You are now ready to actually write code!

You will need to add a USING System.IO line, then the following code in the Main():

 public void Main()
 {
 string path = Dts.Variables["path"].Value.ToString();
 //remember that the variable name is case sensitive.
 //for test
 //MessageBox.Show(path, "path", MessageBoxButtons.OK);
 System.IO.FileInfo fileInfo = new FileInfo(path);
 Dts.Variables["CreateDate"].Value =
 fileInfo.CreationTime.ToString();
 Dts.Variables["lastModDate"].Value =
 fileInfo.LastWriteTime.ToString();
 Dts.Variables["DocName"].Value =
 fileInfo.Name.ToString();
 //MessageBox.Show(Dts.Variables["DocName"].Value.
 ToString(), "DocName", MessageBoxButtons.OK);
 //build the sql
 string SQL = "INSERT INTO Documents.DocumentTrace
 (DocName,DocPath,CreateDate,LastModifedDate,CreatedBy,
 ComputerID) VALUES (" + "' ";
 SQL = SQL + Dts.Variables["DocName"].Value + "' " + ",
 " + "' " + path + "' " +", ";
 SQL = SQL + "' " + Dts.Variables["CreateDate"].Value + "'
 , " + "' " + Dts.Variables["lastModDate"].Value + "' ,";
 SQL = SQL + "133, 1)";
 //MessageBox.Show(SQL, "SQL", MessageBoxButtons.OK);
 Dts.Variables["insertSQL"].Value = SQL;
 Dts.TaskResult = (int)ScriptResults.Success;
 }

Note that we did not include any error handling as a best practice for this
example shell.

Once your code is complete, drag and execute SQL task into the ForEach loop. We
will use the same connection as we used earlier in the chapter. Select "Variable" from
the SQL Source Type drop down and select User::insertSQL as the
Source Variable.

Chapter 15

[413]

We have previously populated some the tables with data using SQL inserts included
in the source code. This statement will insert the data into the DocumentTrace tables
so that we have the correct metadata for relevant documents. You can now run the
code and test it by selecting off the DocumentTrace table.

Search
Like most companies, the "working knowledge" at WWW is often not contained in
formal, relational data structures. Instead it is in documents, e-mails, spreadsheets,
and a host of other types of files that are used in every company for day-to-day
interaction and collaboration.

You will need to work with a system that has SharePoint installed. Download and
install Search Server Express from Microsoft using the install wizards. We will only
work with crawling data on the local machine hosting SharePoint, as most of our
corporate masters would take a dim view of us crawling production networks and
colleagues' computers as a training exercise. We will also focus on Search Server
Express as it allows you to familiarize yourself with the basic tasks associated with
indexing and searching for unstructured data without incurring any licensing costs.
Free is good.

Multiple Master Synchronization

[414]

Once you have Search Server installed, open the Search Administration page, then
select Content Sources and Add a Content Source.

Name the crawl local files and select the File Shares. For the Start Address enter the
absolute path for the machine you are working with along with the directory you
wish to crawl (for example, \\MyMachine\SomeShare). Select "Crawl the folder and
all subfolders of each start address" and, if you wish, create a schedule for both the
full and incremental crawls. Check the "Start full crawl of this content source", click
OK and away you go. You will be brought back to the Manage Content Sources
page where you will see the status of your crawl.

Chapter 15

[415]

Once the crawl is complete, you can check the results in the crawl log. You can also
enter a search term in the SharePoint site and see the results. For our particular
scenario, this makes the content available quickly and easily to the lawyers and
others who will need to work with it.

Summary
Here we have scratched the surface of the myriad issues surrounding master data
management and the use of unstructured data in enterprise data management
systems. There are, of course, additional tools and methods that we simply do not
have the space to cover. Here we have used the basic tools of master data services
and SSIS to handle some of the tasks associated with this problem.

Rapid Flexible Scalability
How often have you looked at the logs that are monitoring a system's usage and seen
minimal use of memory, CPU, or other system resources? Servers are built to handle
anticipated peak loads. Normal practice and the natural tendency to anticipate the
worst and/or cover your behind usually mean that the highest peaks that a server
can handle are almost never encountered. This is expensive, both in terms of capital
costs for hardware and licenses and operational costs such as electricity, cooling,
floor and rack space costs, support staff and other incidental costs. It also imposes
significant burdens on the operational staff supporting the machines. The more
machines one uses, the more likely it is that one of them will break. In keeping with
Murphy's Law, this break will, of course, occur at 4:55 PM on the Friday before a
holiday weekend.

The solutions associated with cloud computing have been around for some time but
have typically been seen as immature. Certainly, they were never robust enough
for enterprise-level applications such as small data marts or other applications with
lower data storage needs (for example, small "stove pipe" applications supporting
a single department in your company). With the introduction of Hyper-V and
Azure, Microsoft has moved the cloud and virtualization story forward so that it
can now support a flexible environment that scales seamlessly and allows for rapid
application deployment to a secure environment.

In this chapter, we will expand on the use case of Chapter 15 involving WWW and
Toy O D'oh automobile brakes and accelerators.

Rapid Flexible Scalability

[418]

Use case
In Chapter 15, our use case involved World Wide Widgets (WWW) and their sale of
brake and accelerator parts to Toy O D'oh. As a result of the problems with both the
brakes and accelerators in Toy O D'oh vehicles, WWW has been sued in ten US states
and is facing investigations by federal authorities in the United States, provincial
and central government agencies in Canada, and several government regulators
in Europe and Asia. Additional litigation is expected in other US states, as well
as several provinces in Canada. The Italian government has attributed one death
to problems with the braking system and has launched a criminal investigation.
WWW has retained multiple law firms in each of these jurisdictions to handle
these matters. Each jurisdiction has different rules of evidence and requirements
for producing documents or other evidence. Each law firm has been retained for its
capabilities in various areas of law. While each matter will have much in common,
the differences in law require that each firm have a separate, walled off environment
for collaboration with WWW.

WWW requires a consistent public face for these matters so that it can control
adverse publicity and so that inconsistencies are not exploited by opposing
attorneys. WWW also needs to control costs, so the firms must share work with each
other so that WWW will not need to pay for the same efforts more than once.

WWW must quickly spin up a common collaboration area for all law firms as
well as multiple, separate collaboration applications for each individual matter.
WWW cannot afford the overhead and does not have the physical capacity to host
individual database and application servers for each matter. Each matter is expected
to be resolved relatively quickly, so the collaboration applications will need to be
available for a period of six months for the US regulatory matters to three years for
the state court tort litigation. At the close of each matter, the data will be archived
and the collaboration application shut down. Therefore, WWW would like to keep
hardware costs to a minimum.

One complicating factor that must be considered is the issue of attorney-client
privilege and the differing rules that may apply to the privilege in different
jurisdictions and legal systems. (For a general overview of the privilege, see http://
en.wikipedia.org/wiki/Attorney-client_privilege.)

The development team will need to work closely with the user community, in this
case the lawyers, to make sure you are meeting their very precise requirements for
securing these privileged communications. Your failure to secure this data properly
could result in a waiver of attorney client privilege and potentially harm WWW's
position in court or with the public.

http://en.wikipedia.org/wiki/Attorney-client_privilege
http://en.wikipedia.org/wiki/Attorney-client_privilege

Chapter 16

[419]

Candidate architectures
We have two viable options for implementing our business requirements.

Candidate architecture #1–Windows Azure /
SQL Azure
There are several key requirements that Microsoft's cloud computing offering,
Windows Azure, can meet easily. First "new" instances of any application can
be spun up easily and then configured or customized. Each application scales
transparently. As usage peaks, for example when filing or other court deadlines
approach, the Azure platform scales transparently. As usage falls off, costs are
reduced under the "pay for what you use" pricing model offered by Microsoft.

Cloud-based solutions will not require extensive capital expenditures for servers
or delays imposed by the need to build, ship, and install hardware. One simply
goes to Microsoft, activates the appropriate sized solution, and starts to build the
application. The management of Toy O D'oh wants to put this matter behind them,
as it has given them an enormous public relations hit. Given the possibility that
many of these cases will be resolved quickly (for example, through settlement) it
would be unwise to make a large capital investment for multiple servers that may be
decommissioned long before their expected lifespan has expired.

Solution design aspects
Windows Azure offers a simple resource that meets the business requirements for
a rapidly deployed, relatively inexpensive, and highly secure environment. Azure
scales transparently, so during peak usage periods you have no need to worry about
capacity, yet you will not need to pay for or support that additional capacity in the
valleys of demand.

The issue of attorney-client privilege is potentially complicating. Azure stores data
on hardware owned and controlled by Microsoft or its partners, so you are putting
privileged communications on a medium not controlled physically by the attorney
or the client. Some have noted the potential for loss of privacy rights such as
attorney-client privilege (State v. Bellar, 231 Or.App. 80, 217 P.3d 1094 (Sept. 30,
2009)). Make sure to explain to both the internal corporate legal staff
and outside attorneys precisely how data is moved and stored in a cloud
environment so that they understand and sign off any potential risks.

Rapid Flexible Scalability

[420]

Solution operations aspects
Windows Azure provides an easy operational framework because the application is
abstracted from the hardware and operating system. WWW will not need to specify
servers, order them, await delivery, place them in racks, build them out to corporate
specifications, make sure you are in compliance with licenses for the operating
system and other software, install software, test, etc. all before a single line of code is
written or any customization of applications is started. One simply goes online with
Microsoft, orders the appropriately sized environment and you are up and running
that day. Software developers can therefore focus on what they do best, developing
software, instead of worrying about hardware and operating system configurations.

Of course, it does not follow that one can simply throw garbage code up to the cloud
and expect it to run well. Indeed, because it is a shared environment, Microsoft may
well shut down SQL queries that takes "too long" to run, uses tempDB "too much"
or otherwise behaves boorishly with respect to system resources. A developer will
still want to performance test a system to make sure the code is not a bottleneck. The
point here is that your focus is now on the code and only the code, not on the myriad
details of supporting a rack of servers.

Organizational aspects
WWW has a sophisticated IT organization that is faced with the need to get
application infrastructures up and running quickly, securely, and with a minimum
of headaches so they can get on with supporting the business during a time of
crisis. Azure distils these tasks to their essence, allowing the staff to get on with the
application side of extracting WWW from the mud hole they are currently stuck in.

Solution evaluation

Design Delivery Operations Organization

Chapter 16

[421]

Candidate architecture #2–Hyper-V
Hyper-V is a virtualized server environment that will allow WWW to host multiple
solutions in their own environment. They will have control over all aspects of their
data in a Hyper-V environment, including physical control over the data storage.
While this would solve potential issues around waiver of the attorney-client
privilege, it has all of the downsides of hosting the environment at WWW (capital
and operational costs, and so on). Like Azure, new instances can be brought online
quickly after the initial server build is complete. Hyper-V is easy to administer and
well within the capabilities of any senior server administrator and DBA.

Solution design aspects
Like Windows Azure, Hyper-V offers an easy-to-configure environment where
base installs and configurations can be completed within hours once the host server
is installed and configured. As no third party is involved in any aspect of this
architecture there will be no issue of waiving any privilege. WWW does not keep
spare, rather powerful servers and extra Windows Server operating system licenses
just lying around, however, so there will be capital expenses associated with these
purchases, as well as day-to-day operational costs associated with the systems
maintenance.

Solution operations aspects
Hyper-V also provides for an operating system that is abstracted from the
underlying hardware. It is not, however, infinitely scalable. It is limited to four
virtual processors, 64 GB of memory, and has other limitations (see http://
technet.microsoft.com/en-us/library/ee405267(WS.10).aspx for details). For
the purposes of this application, for WWW, we should be well within the limits of
Hyper-V. This application will have a limited number of users and is not expected to
be processor intensive.

Organizational aspects
As with the other technologies discussed, we can expect the IT staff to pick up
Hyper-V quickly and have no issue with the underlying technology. There are,
however, cost, time, and expense issues that need to be considered and balanced
with the legal issues presented. Moreover, the need for a Hyper-V solution will be
over, long before the hardware has reached its end of life. The server could be re-
purposed to other applications after these legal matters have settled, but we do not
have any strategic requirements that would match this hardware.

http://technet.microsoft.com/en-us/library/ee405267(WS.10).aspx
http://technet.microsoft.com/en-us/library/ee405267(WS.10).aspx

Rapid Flexible Scalability

[422]

Solution evaluation

Design Delivery Operations Organization

Architecture selection
Windows Azure / SQL Azure
Benefits

•	 Pay as you go, so no capital license
cost

•	 No need to purchase hardware or
deal with rack space, cooling systems
or other hardware operations

•	 Rapidly deploy applications
•	 No "unused" capacity (for example,

idle servers)

Risks
•	 Learning curve for WWW staff
•	 Potential waiver of attorney-client

privilege

Hyper-V
Benefits

•	 Rapidly deploy applications
•	 Completely control environment,

including physical access to the
servers and data

•	 Integrates easily with WWW AD
security

•	 Licensing is based on physical
processors, so license costs are lower
than "bare metal"

Risks
•	 Delays in roll out caused by vendor

delays in delivering hardware
•	 Licensing and hardware capital costs
•	 Limited scalability
•	 Must use SQL Server 2008 and

Windows Server 2008; will not work
well with any legacy licenses

In this case, we have two potentially conflicting requirements. The first is to
keep capital costs and operational costs to a minimum while quickly bringing up
applications as required. This requirement points strongly towards a Windows
Azure solution. On the other hand, a Windows Azure solution could form the basis
for adverse judicial rulings on assertions of attorney-client privilege. That would be
bad, to say the least.

Chapter 16

[423]

A mixed solution would be highly recommended here.

As a first step, we would need to obtain from the attorneys a list of jurisdictions
where the use of Windows Azure would be too risky relative to the costs involved.
We would then architect a Hyper-V solution that meets the anticipated peak needs of
those jurisdictions. Presumably, the hardware itself will be smaller and present lower
costs than a server built for all jurisdictions. Remember when pricing this model that
Microsoft licenses software based on physical processors, so we can create as many
virtual servers as the physical limitations of the server and network environment
can handle. Ultimately, this means our licensing costs would be lower for a partial
Hyper-V solution.

All of the other environments would be built on Windows Azure. You should expect
this to be an iterative process along the following lines:

You: Here is what it would cost to have all 50 US states on Hyper-V.

Business: That Much?!?!?! Too expensive! Take off these 10 states!

Repeat until resolved.

Building the solution
We will focus our efforts here on building a cloud-based solution and the data
portion of a cloud application.. Cloud computing requires a significant shift in how
one thinks of building applications, particularly in the case of database professionals.
Those of us who spend hours each day worrying about issues like I/O, disk
contention, backup and recovery, storage and partitioning, or other similar issues
related to hardware now have no worries. The effect can be a bit scary, similar to
removing the training wheels from a child's bike. Sure you can go wicked fast, but
how do you keep your balance?

If you have not already done so, go to http://www.microsoft.com/windowsazure/
and set up your Azure account. As of this writing, Microsoft is offering a free
version to help you get started. As a first step, we will want to create a database
and populate it. One thing each of the lawyers will need is data on employees and
their jobs, so they can ascertain who was involved with each technology and contact
them if needed. In addition, this data will tell us which employees should have their
local systems and occasionally connected storage devices (for example, flash drives)
searched for relevant material.

http://www.microsoft.com/windowsazure/

Rapid Flexible Scalability

[424]

Go to your Azure portal and navigate to the SQL Azure database tab and click
the "Create Database" button. As each of these applications is focused on cases or
enforcement actions in individual jurisdictions, we will plan on creating at least
one database for each. Certain jurisdictions, simply because of geographical size,
population, or other issues may require more than one. Here, we will create a
database for Colorado with a size of 1 GB. We used this size because that is free.

Press the create button and the database will be created. There is no need to set the
path for your data files, create separate transaction log files, worry about file groups,
set database level options, or do any other task that one would normally do when
creating a database on a server in your local data center.

DBAs, are you feeling verklempt?

We will want to create unique users and logons for each of our individual
applications so that the security requirements are met. Fire up the SQL Server
management studio and connect to SQL Azure as described in the Azure primer
chapter. Create a new logon and user with simple SQL statements such as the ones
that follow:

Chapter 16

[425]

CREATE LOGIN ColoradoUser
 WITH PASSWORD = '1nYourDre@ms'
GO
use Colorado
go
CREATE USER ColoradoUser
 FOR LOGIN ColoradoUser
 WITH DEFAULT_SCHEMA = dbo
GO

-- Add user to the database owner role
EXEC sp_addrolemember N'db_owner', N'ColoradoUser'
GO

With respect to security, SQL Azure will force you to use strongly typed passwords.
This is, of course, a best practice that we should be using at all times.

Next, we will need to create tables to store relevant data. We will demonstrate data
loading from the Oracle HR schema shipped with Oracle Express using SSIS.

Create the relevant tables using the accompanying scripts. These are extremely
simple Create Table statements. Again, since we have abstracted our application
from the underlying physical storage, we do not need to worry about a host of
parameters we would need to worry about if we were placing the table on storage in
the corporate data center. Hence, we do not see keywords such as "ON" or references
to fill factors.

Integrating SSIS with SQL Azure
In the coming discussion, you will note something quite profound about the
difference between using SSIS as an ETL tool with SQL Azure and SSIS as an ETL
tool with SQL Server on "bare metal" living in your corporate data center. That
profound difference is that there is no difference.

Well, truthfully, that is an oversimplification, but not by much. The steps you
take when designing and building a solution, the decisions on whether to do data
transformations on the database or within SSIS, and similar considerations do not
change at all. Set operations should still be done on the database side; "non-set" or
cursor operations should still be done on the SSIS. SQL Azure does not support CLR
as of this writing. In cases where you would consider a CLR stored procedure, use
script objects in SSIS or create an application in the Application Fabric and use it to
manipulate data instead.

Rapid Flexible Scalability

[426]

SQL Azure will tend to be less forgiving of sloppy or poor coding practices. With
SQL Azure you are sharing a resource, so long running transactions, acquisition of
too many locks, excessive TempDB usage, or other sloppy practices will generate
errors in the Azure environment.

The logic of a shared resource, abstracted from the underlying hardware, also means
that certain transact SQL features are not supported. For example, global temporary
tables, access to system tables, most features related to data storage (for example,
filegroup management) and distributed transactions are all not supported. Check
MSDN for a full listing.

One item that is a bit counter-intuitive is the fact that SQL Azure does not support
heap tables. For you to do inserts, and for the table to be useful by any practical
measure, it must have a clustered index. There are some papers and blog posts
indicating that the need for clustered indexing arises from the way Microsoft
replicates data across physical environments and otherwise maintains storage of
your data.

Clustered indexes are, of course, easily created and do not require any new primary
keys for the purposes of this application. For example, on the HR.Employees table we
created earlier, we would simply execute the following:

Create clustered index IX_Employee_ID
on HR.Employees(Employee_ID)
GO

Again, the index is abstracted from the underlying storage, so we do not need to
worry about storage options. Like the creation of the tables, we do not concern
ourselves with fill factors, padding or other arguments that concern where or how to
physically store the data. We just create the index and let SQL Azure figure out
the rest.

Specific to SSIS, you cannot use OLEDB to connect to SQL Azure. So our first step
will be to create an ADO.NET connection to our SQL Azure database shown as
follows. The more observant reader will note that we are running SSIS on a virtual
machine using Hyper-V. This is because some of our authors just like showing off.

Chapter 16

[427]

Other than the use of ADO.NET, there is nothing very different between connecting
to SQL Azure and connecting to any other database.

Rapid Flexible Scalability

[428]

We will use the same data source we used in prior chapters to load the employees
table, the comma-delimited employees flat file. Once again we will create an
SSIS package and drag a data flow task into it. We will not repeat the specific
instructions set out in earlier chapters. As shown next, you will need a flat file source
for the employee data, a data conversion step to convert the data from ASCII to
the appropriate data types (Unicode, date, numeric(9,2), and four byte unsigned
integers), an ADO.NET destination, and a flat file for logging errors. When complete,
your data flow should look similar to the following image:

Summary
As you can see, SQL Azure allows us to deploy scalable applications rapidly in
response to a business crisis and provides the security we need for even the most
sensitive data and corporate relationships. By running our ETL on Hyper-V, we
further conserve resources and save on licensing and hardware costs.

Low-Latency Request-Reply
In a fast-paced web-based world, the need for up-to-the-minute information from
external sources is critical in maintaining an effective web presence. From
real-time inventory checks, to stock trades, to banking transactions, to large batch
data processing, low-latency processing is essential. This chapter's use case will
focus on low-latency message flow, which is a common pattern for data access with
external systems following a Service Oriented Architecture (SOA)-based topology.

When interacting with external data sources, it is vital to produce efficient service
calls that return external data without significant delay. Building a core foundation
of enterprise services and aggregating results effectively can result in faster response
times and greater end-user satisfaction. For a front end web-based application,
the goal is to have a web page load for the user without a noticeable delay. This is
typically thought of a less than 100 millisecond response time for an end-to-end web
page load time. While the connection the user has with the site cannot be guaranteed,
the response time and logic inside the web page and external service calls can be
optimized while preserving a well-constructed and reusable architecture.

Use case
AllFriends Media is an online retailer specializing in selling DVDs online through
a successful retail store. The key to the success of the online store has been a social
networking experience through other sites allowing users to write detailed reviews
on movies, suggest movies to friends, and tag items that other friends might be
interested in.

As competition increases with the online DVD market and with the introduction
of video download, margins are slim and sales are down. In fact, the business has
realized that sometimes they are not the lowest price for an item they sell. They see
an increasing trend of users searching the site, reading reviews, and going to buy the
DVD elsewhere or buying it on-demand.

Low-Latency Request-Reply

[430]

Rather than losing all the revenue from these users, the business would like to
capitalize on this experience by offering users the ability to buy titles and direct
downloads from other vendors directly on the website.

In order to do this, the business would like to add real-time calls from the website to
outside services that return pricing and availability information from other vendors.
This should happen with limited impact to the user experience. The number of
external vendors will be fixed initially at four but others may be added over time.

A mock up of the screen is shown next. The AllFriends Media graphics department
will add pictures and coloring at a later time.

AllFriends Media is primarily a Microsoft shop and delivers all IT projects internally
leveraging an existing pool of technologists. Given the fast-paced and ever changing
world of web-based technologies, AllFriends Media thinks of itself as a forward
thinking company willing to bet on new technology offerings.

Chapter 17

[431]

Key requirements
The following are key requirements for a new software solution:

•	 The website will make calls out to external services and format the response
information to be displayed on the screen.

•	 It is acceptable that adding a new vendor in the future will require a
code change.

•	 If a call to the external vendor fails or takes too long, no external vendor
information should be displayed on the page for that vendor—in limited
cases, this is acceptable.

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following facts:

1.	 All participating external vendors will expose web services and contracts for
easy interaction.

2.	 The performance and availability of vendor-exposed services cannot be
guaranteed.

3.	 Hardware, network, firewalls, and distance to external vendors are
optimized for low latency.

4.	 While every page will make this service call, network bandwidth internally is
adequate to handle the traffic.

Pattern description
The goal of every Service Oriented Architecture is to build reusable, scalable, and
abstracted solutions that can be re-used enterprise-wide to solve common problems.
Solutions commonly take the form of request-response services. With many
SOA-based solutions, latency of the calls becomes a top issue in the mind of business
stakeholders as this directly relates to the quality of a user's experience. This is
evident when working with request-response messages with an end user waiting for
the response on the other end. In our case, if a poor user experience is encountered,
then that user may end up going to another site.

Low-Latency Request-Reply

[432]

When talking about latency related to an end user's experience on a website, latency
is thought of as the round-trip time that the page requested by the user takes to
load. The goal is to achieve no noticeable latency in the user experience, which is
commonly thought of as a round trip in less than 100 milliseconds. It is important to
note that the connection the user has to the server can be a significant bottleneck in
the process but assumptions need to be made on the quality of this connection.

Latency can exist in many forms. They are as follows:

1.	 Application latency: The amount of time it takes the process doing
something to load and execute.

2.	 Firewall latency: The time through the firewall.
3.	 Router latency: The time to read the headers and route the packets to the

next destination; packages may end up queuing up under heavy load.
4.	 Dropped packets: The time needed to retry packets dropped due to poor

network connections.
5.	 Internet latency: The connection quality and speed the user has to the

remote server.
6.	 Distance: It is one of the basic laws of physics; the closer to the server the

better—even at the speed of light.

No talk about latency is complete without talking about throughput. Throughput
is generally measured by bandwidth as bits per second. This determines the size of
the pipeline that data can flow though. From an application perspective, generally
optimizing latency comes at the cost of greater throughput.

This scenario will focus on reducing the application latency given the assumption
that other types of latency are nearly identical for each proposed architecture. Also,
application latency is commonly something we have direct control over and the low
hanging fruit when it comes to solving latency issues. In general, some of the items
to consider when designing a low latency application are the following:

•	 Reduce or eliminate latency in initial service start up time
•	 Ensure external calls have appropriate timeouts with compensation logic
•	 Optimize payload size for network conditions
•	 Turn off any overhead like logging or tracking
•	 Reduce serialization on the wire
•	 Ensure optimal hardware

Candidate architectures
We will look at three possible solutions to the low-latency scenario outlined in the
use case as follows.

Chapter 17

[433]

Candidate architecture #1–BizTalk Server
BizTalk is Microsoft's Enterprise Integration tool and with AllFriends Media being a
largely Microsoft-based technology firm, chances are BizTalk is already in use in one
form or another. For the purpose of this analysis, the assumption will be that BizTalk
is already in use and has the capacity to handle the additional load of this scenario.

We can take a look at the decision framework as it relates to BizTalk to see if a
BizTalk-based solution is a fit for this use case.

Solution design aspects
BizTalk Server can easily perform web service aggregation using an Orchestration
(that is, business process). BizTalk has the ability to expose an Orchestration as a
WCF Service. A simple request-response schema would need to be created to detail
the contract for this interaction. Inside the BizTalk Orchestration, each external
vendor call will need a separate send port, several maps, and schemas. After all the
messages have been returned from the external vendors, a .NET component or a
multi-message mapping would be needed to build the final
response message.

The main concern with this solution is the use of the publish and subscribe architecture
that is the cornerstone of BizTalk Server. This architecture results in increased latency
because each message is persisted in a SQL Server Database. Another concern is the
use of an Orchestration to aggregate the return results because most Orchestrations
contain a series of persistence points. Persistence points are spots inside the BizTalk
Orchestration that save all the state information of the running Orchestration to SQL
Server. This can be minimized through proper design of the Orchestration. While these
message and state data persistence features of BizTalk are desirable in many cases, it is
not ideal in a low-latency request-response scenario.

Solution delivery aspects
AllFriends Media is a web-based company with a pledge to keep up on current
technology trends or risk being left in the dust by the competition. The assumption
is they already have BizTalk running so adding an new solution to support this
vendor-lookup process is possible.

With existing solutions at the company using BizTalk Server, the skills exist to
build out this scenario within the company. It also means they have resources that
understand how a messaging-based solution would work using BizTalk.

Solution delivery would not be a negative factor in using BizTalk Server for
this scenario.

Low-Latency Request-Reply

[434]

Solution operation aspects
AllFriends Media is an existing Microsoft shop with BizTalk in house. This means
they already have procedures in place to monitor and support BizTalk. If this was
not the case, this could be a factor in the decision given the ramp-up cost to build
skills in supporting BizTalk Server. Supporting BizTalk Server is a unique endeavor
and not like standard web-based technologies.

Solution operations are not a negative factor in using BizTalk for this use case.

Organizational aspects
The company understands what it takes to build a BizTalk solution, because of the
existing investment in BizTalk Server. This is not a negative factor in using BizTalk
for this use case.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #2–Windows Server
AppFabric
Windows Server AppFabric is made up of enhancements to Windows that provide
first class hosting for WCF and WF applications. A Windows Server
AppFabric-based solution would leverage .NET 4.0 technologies to support this use
case. The solution would use a .NET 4.0 Workflow Service to expose endpoints to the
client, in this case the frontend website, through WCF.

This Workflow Service would be a service aggregator. It would make various calls to
the outside vendors and consolidate all the results back to the client. This would all
be done in workflow to allow for easy development using the mostly drag-and-drop
design experience. A small set of custom activities would be needed to transform
vendor-specific request-response messages into generic formats for the frontend
client. Using the Parallel Action shape inside the workflow, an overall timeout can
be set for all the external calls. This will ensure a maximum wait time
for external calls.

Chapter 17

[435]

See Chapter 2 (Windows Communication Foundation and Window Workflow 4.0 Primer)
and Chapter 3 (Windows Server AppFabric Primer) for more specific information on
using WCF, WF, and Windows Server AppFabric.

Now, we can take a look at the decision framework as it relates to .NET 4.0 and
Windows Server AppFabric to see if it is a fit for this use case.

Solution design aspects
This use case can be solved using .NET 4.0 and Windows Server AppFabric for a
single Aggregator Workflow Service. This service would do the following:

1.	 Expose the request-response schema to the frontend
2.	 Know what external vendors to call
3.	 Know how to call each external vendor and translate the various formats

back into the expected response format
4.	 Ensure a timely execution to external vendors ensuring calls are made as fast

as possible
5.	 Avoid persistence of the data to ensure a quick execution

While a single Workflow Service could be used, each specific vendor call will be
segmented out into its own project. This ensures that changes made to vendor
calls are abstracted from the workflow logic. Also, if other systems down the
road need to make calls to this same vendor the code could be reused. Since the
workflows are .NET-based, adding Service References to multiple external services
is straightforward. This would allow for consuming information from various
sources with no issues. This would be done by creating a new workflow for each
vendor. Communication between the Core Workflow and the Vendor Workflows
will be done via defined Data Contracts. The Vendor Workflows would be
required to format all vendor request-response messages into the common format.
Transformation of the vendor data will be done via custom activities.

While retry and persistence are not needed for this solution, Windows Server
AppFabric has the flexibility to add these features to other solutions as the need arises.

Solution delivery aspects
AllFriends Media is a leading-edge web-based company. They have a staff of skilled
resources that would be able to pick up the new design experience of .NET 4.0 and
Windows Server AppFabric. Furthermore, building on Server AppFabric would
ensure that we are using the best and most current technology Microsoft has to offer.

Low-Latency Request-Reply

[436]

Using the Workflow Designer, developers would be able to reduce the coding effort
to build this application since very little custom code would be needed. This should
result in faster development and reduce overall testing time.

The timeline in not a factor given expected completion time using this technology is
low compared to a custom-written C# solution.

Solution operation aspects
AllFriends Media runs an existing website with backend systems largely based on
Microsoft technology. This would lead to the conclusion that a new solution based
on .NET 4.0 and Windows Server AppFabric would fit in well in the landscape.

One of the assumptions is that the internal network bandwidth and hardware can
support the additional load of real-time calls made to the Workflow Service. Given
this assumption, the .NET 4.0 and Windows Server AppFabric-based solution would
work for AllFriends Media.

Organizational aspects
Organizationally, AllFriends Media is on the cutting edge of technology. While
Windows Server AppFabric is new and they do not have existing skills in this area, it
would be easy for the existing team to learn the technology.

Solution evaluation

Design Delivery Operations Organization

Candidate architecture #3–Windows Azure
platform
Windows Azure is Microsoft's cloud-based service offering. We will take a look
to see if this offering with work for this low-latency based scenario. In addition to
latency concerns, the website code will need some changes to be hosted in and make
calls into Windows Azure.

Chapter 17

[437]

Solution design aspects
All the operations of the website that need inputs will be performed in a set of web
roles while all the external web service calls and query matching will be performed
in a worker role. All the headless computing will be performed in a set of worker
roles. In order to maintain a good user experience, the web application can queue
user requests and quickly return control back to the user. The set of worker roles
will read the queue, match responses, and return results to the user. The user screen
will be populated with results as-and-when the external web service calls complete.
The user can perform other activities on the website in the meantime. The external
addresses of vendor websites will be maintained in a configuration file, which will be
used by the worker roles.

The core concern with this approach is the latency between the onsite hosted website
and the remotely hosted Azure services, since the website would need to return data
from an Azure Service call. In addition, the Azure services would have additional
latency in the calls out to the external vendor sites.

From a security standpoint, the design will allow a seamless authentication and
authorization model to support all users (AllFriends Media enterprise users and
internet users) using the Windows Azure AppFabric Access Control Service.

Solution delivery aspects
AllFriends Media Technologies currently has a staff made up of both proficient .NET
developers and administrators well versed in Microsoft server product deployments.
The learning curve to develop the solution on Windows Azure and the new
deployment model will be very easy.

The developers can deploy the Windows Azure development fabric on their
development machines for easy debugging and troubleshooting. Usage of the
existing Microsoft set of tools will be seamless to move from an on-premise
development to Microsoft Azure development model.

The timeline is flexible. Given the solution outline above this should be easily
accomplished in that timeline.

Solution operation aspects
A portion of the daily operations work is now offloaded to Windows Azure. Hence
fewer members of the AllFriends Media operations team will work full time to
support this solution. This team will now focus on monitoring and making sure
the system is meeting their performance bar. They will be able to tweak the elastic
aspects of the Windows Azure deployment based on the system load.

Low-Latency Request-Reply

[438]

Once the developers complete a major milestone, the golden build will be uploaded
to the staging area where the test teams will stress-test the integrated components.
Optionally the team will open up the staging solution to some online users to get
real-time validation before deploying the solution to the production servers.

Such a framework allows an agile development and deployment environment,
helping the teams to focus on key operational metrics and not to worry about the
servers being up, which is guaranteed by the Azure SLA.

Organizational aspects
Given that Microsoft Windows Azure has released recently, AllFriends Media is
adopting a new wave of technology perceived as risky by the operations team. The
team is taking a guarded approach with regards to a full rollout replacing the older
website. So initially the team will continue to support both their existing solution and
the new Microsoft Azure deployment.

The Azure platform is supported by the Microsoft team, which means a strong SLA for
server availability—which is a big reassurance to the AllFriends Media management.

One of the key benefits is that AllFriends Media is able to leverage their existing
investments in Microsoft tools and technology concepts. Given the elastic aspects of
the windows Azure, AllFriends Media is able to keep the costs within the
current budget.

AllFriends Media management does understand that Microsoft Azure provides an
easy elastic model thus paving the way for faster solutions for the market

Solution evaluation

Design Delivery Operations Organization

Architecture selection
Below are some key benefits and risks related to each of the architectures reviewed
in the section above.

Chapter 17

[439]

BizTalk Server
Benefits

•	 Out of the box support for
integrating with outside parties
though various adapters

•	 Ability to aggregate messages
together and return a single
response

•	 Extensive tracking and monitoring

Risks
•	 MessageBox database that

ensures messages do not get lost
also slows down the solution

•	 Additional quality-of-service
features around guaranteed
delivery are unnecessary in
a request-reply consumer
transaction

Windows Server AppFabric
Benefits

•	 Robust hosting for .NET 4.0
workflow and WCF services

•	 Provided at zero cost with a
Windows license

•	 Simple IIS hosting and user
interface

•	 Basic support for tracking and
monitoring

Risks
•	 Unproved scalability and track

record
•	 Additional hardware may be

needed to support the load
•	 New offering so skills will need

to be learned

Windows Azure
Benefits

•	 Scalable, cloud-based approach
with no additional hardware costs

•	 Geo-located with operations
around the world

•	 No additional environment
support and monitoring

Risks
•	 Possible latency issues with

more distributed components
•	 Less flexibility
•	 New offering so skills will need

to be learned

Architecture selection
After reviewing the decision framework and the proposed solutions using BizTalk,
Windows Server AppFabric, or Azure, the best solution for this use case is a solution
based on Windows Server AppFabric.

The key driving factors for this decision are the flexibility around instance
persistence and the ability to host the solution locally and reduce distance latency.

Low-Latency Request-Reply

[440]

Windows Server AppFabric will leverage a .NET 4.0 Workflow Service exposed via
WCF to allow easy interchanges from the website. The workflow calls to the external
vendors will be encapsulated into separate projects to provide further abstraction.
This solution will be optimized for low latency WCF calls by doing the following:

•	 Enabling service auto-start (Available in IIS 7.5) to ensure the service is
warmed up and ready to run optimally before the very first call.

•	 Set a low timeout value on the Parallel Activity inside the workflow with
compensation logic to return whatever results the service has received in a
given amount of time.

•	 Configure the service to not do any tracking or logging, although this is
highly optimized in AppFabric.

•	 Payload sizes are already small so nothing is needed to reduce the
service call size.

•	 For simplicity, this sample uses basicHttpBinding. If endpoints support it,
moving to netTcpBinding would reduce latency in serialization.

Building the solution
This solution will be made up of a Core Workflow Service to handle the request-
response messages from the web frontend. This service has a defined data
contract for receiving the request and sending the response. This is defined in the
DataContracts project in the following solution. These contracts have been simplified
to focus on the concept rather than contract logic.

In order to support a growing site that may expand to other vendors down the road,
a separate workflow project will be created for each vendor interaction. This will also
allow for changes to individual vendors with no impact to other deployed solutions.
Communication with this workflow will be done via defined contracts. In this case, the
input is a product identifier and the response is a generic vendor result. Translation
will be needed to convert the specific vendor results into the generic results.

The Core Workflow collects all the various generic response elements and constructs
the response message to return to the calling application. All this is done with a
handful of lines of custom C# code. All in all, very few lines of custom C# code are
needed to build out this entire solution.

Setup
Initial setup is needed to simulate calls to the external vendors. For demo purposes,
the vendor calls will exist on the same box as the other code in the solution. We will
set up four simulated vendors named Vendor A, Vendor B, Vendor C, and Vendor
D. Each simulated vendor has a unique request-response data structure as they
would in reallife.

Chapter 17

[441]

1.	 Launch Visual Studio.NET 2010 and open the Chapter17_VendorApps.sln
solution in the <Installation Directory>\Chapter17\Begin folder.
When prompted to create the virtual directories click OK.

2.	 Launch Visual Studio.NET 2010 and open the Chapter17.sln solution in the
<Installation Directory>\Chapter17\Begin folder. This contains the
projects to help get started building the solution.

Building the vendor-specific and aggregate
workflows
Once the simulated external vendor services are installed, it is time to build out the
Vendor A Workflow and Core Workflow Service that we consume when calling this
service and aggregate the results.

The following projects are included in the Begin Solution:

•	 Chapter17.CallVendorB: This is the workflow and service details specific
to Vendor B.

•	 Chapter17.CallVendorC: This is the workflow and service details specific
to Vendor C.

•	 Chapter17.CallVendorD: This is the workflow and service details specific
to Vendor D.

•	 Chapter17.DataContracts: This is the data contracts used by the core
workflow service exposed to the frontend website. It also contains the
generic Vendor Result used to exchange data between the workflows. It is
worth taking a look at how the Data Contracts are defined. The response is
designed to return an Array of generic vendor result messages.

•	 Chapter17.TestApp : This is a simple Windows Form used to test the final
workflow solution.

We will be adding the missing projects to complete the end-to-end solution.

1.	 Launch Visual Studio.NET 2010 and open the Chapter17.sln solution in the
<Installation Directory>\Chapter17\Begin folder. You will see several
projects already in the solution for you. They are outlined above. We will add
the missing components to call Vendor A and aggregate the results.

Low-Latency Request-Reply

[442]

2.	 Create a new Activity Library project (located under the Workflow templates
under C#) named Chapter17.CallVendorA.

3.	 Rename the default file from Activity1.xaml to VendorA.xaml.
4.	 Right-click on VendorA.xaml and go to View Code. Update the Class name

from Activity1 to VendorA shown as follows:

5.	 Add a Service Reference to http://localhost/Chapter17.VendorA/
MovieDownloadSrv.svc by right-clicking on the Chapter17.CallVendorA
project and select Add Service Reference. Name the reference
VendorAService. Adding the service reference will create a Toolbox item for
the service call that can be dragged and dropped onto the workflow surface.
The name of the item is the Service Method name; in this case it will be
called GetMoviePrice.

Chapter 17

[443]

6.	 Add a reference to the Chapter17.DataContracts project. This will be used to
formulate the Vendor Result message to return to the Core Workflow.

7.	 Build the project. This will allow the added service reference to be used
later on.

8.	 Once all the initial groundwork is done, it is time to begin to build out the
workflow. Open VendorA.xaml by double-clicking on it. Drag and drop a
Sequence shape (under Control Flow) from the Toolbar onto the surface.
Rename the shape to Vendor A.

9.	 When the Vendor A Sequence shape is selected, click on Variables at the
bottom of the screen.

Low-Latency Request-Reply

[444]

10.	 Variables are needed to create the request and response parameters for the
vendor service call. The data types of these variables were created for us
when we added the service reference. For the variable type, click on Browse
for type…. They are found under the Chapter17.CallVendorA - Chapter17.
CallVendorA.VendorAService shown as follows:

11.	 Create the following variables at the Vendor A scope.
Name: VendorRequest
Type: MovieDownloadRequest
Default: New MovieDownloadRequest()
Name: VendorResponse
Type: MovieDownloadResponse

12.	 The end result is shown as follows:

Chapter 17

[445]

13.	 Click on Variables to close the window. Next, we need to define the
arguments for the workflow. These are the values we want to pass into
and out of the workflow in the same way that we define input and output
parameters in a standard .NET class operation. In our case, the parameters
are ProductId for input and VendorResult for output. Click on Arguments.
Add the following two arguments:
Name: ProductId
Direction: In
Type: String

Name: Result
Direction: Out
Type: VendorResult (Select this from the Chapter17.DataContracts
project reference.)

Low-Latency Request-Reply

[446]

14.	 At the end, it should look like the following image:

15.	 Create a Custom Activity used for mapping the vendor in (this case
Vendor A) specific response to the standard Vendor Response message. This
is needed to ensure the generic response is returned out of the workflow to
the Core Workflow. Add a new item to the project. Under Code, select Class.
Name the new file VendorAToVendorResult.cs.

16.	 Add the following using statements to the existing using statements.
Leveraging the System.Activities reference will allow the class to inherit
from CodeActivity as required to create a custom activity.
using System.Activities;

using Chapter17.DataContracts;

using System.Threading; // Used for testing only

Add the following code inside the namespace tags to complete the custom
activity.
 public sealed class VendorAToVendorResult : CodeActivity

 {

 // Create the IN parms. In this case it will be the
 Vendor A Response

 InArgument<VendorAService.MovieDownloadResponse>
vendorResponse;

 public InArgument<VendorAService.MovieDownloadResponse>
VendorResponse

 {

Chapter 17

[447]

 get { return vendorResponse; }

 set { vendorResponse = value; }

 }

 // Create the OUT parms. In this case it will be the
 generic Vendor Response

 OutArgument<VendorResult> vendorData;

 public OutArgument<VendorResult> VendorData

 {

 get { return vendorData; }

 set { vendorData = value; }

 }

 // Override the Execute method with our specific logic

 protected override void Execute(CodeActivityContext
context)

 {

 // Create a new instance of the Response

 VendorResult oResult = new VendorResult();

 // Mapping

 oResult.BuyURL = this.VendorResponse.Get(context).URL;

 oResult.Price =this.VendorResponse.Get(context).Price;

 // These are not returned from the Vendor A
 Service call.

 // They are hard coded here as they are the same for
 every call to this Vendor.

 // This is a download only Vendor so items are always
 in stock and download.

 oResult.InStock = true;

 oResult.IsDownload = true;

 oResult.Vendor = "Vendor A - Thread ID " +
 Thread.CurrentThread.ManagedThreadId.ToString();

 // Return the result

 context.SetValue(VendorData, oResult);

 }

 }

17.	 Build the project. As a result of the build, the new activity will show up in the
Toolbar and is named VendorAToVendorResult.

Low-Latency Request-Reply

[448]

18.	 Next, add all the workflow activities needed to complete this workflow. Add
the following items, in order, inside the Vendor A Sequence activity.

°° Assign: Rename it to Assign Product ID. This shape is found
in the Toolbar under Primitives.

°° GetMoviePrice: Found on the Toolbar. This was created by
the add service reference and makes the call to the external
vendor service.

°° VendorAToVendorResult: From the Toolbar. This is the
custom activity created earlier.

19.	 The end result is shown as follows:

20.	 The assign shape is used to set the input argument of ProductId to
VendorRequest.SKU.

21.	 Click on the Assign shape and view the properties of the shape in the
Properties window (press F4 if the window is not visible). Set the To value
to VendorRequest.SKU. Set the Value to ProductId. Visual Studio.NET
IntelliSense should recognize both these values.

22.	 On the GetMoviePrice shape, set the following properties. Set
GetMoviePriceResult to VendorResponse and Movie to VendorRequest.

23.	 On the VendorAToVendorResult shape, set VendorData to Result and
VendorResponse to VendorResponse.

24.	 Build the project. It should build with no errors.

Chapter 17

[449]

25.	 This process was followed for each of the other three vendors. Small changes
were made to support the various vendor-specific contracts of each of
the vendors.

26.	 Next, the Core Workflow used to aggregate the individual results will
be created. Create a new project in this same solution. Right-click on the
solution and select New Project. Select Workflow, WCF Workflow Service
Application and name the project Chapter17.CoreWorkflow.

27.	 Right-click on the CoreWorkflow project and go to Properties. Click on the
Web tab. Select the Use Local Web Server selection and click the Create
Virtual Directory button using the default address of http://localhost/
Chapter17.CoreWorkflow. This will create a virtual directory in IIS for
this project.

28.	 Rename the existing Service1.xamlx file to ProcessExternalData.
xamlx. Next, set both the ConfigurationName and Name properties to
ProcessExternalData by clicking on the workflow surface and viewing the
properties in the Properties window (if it is not shown, press F4).

Low-Latency Request-Reply

[450]

29.	 Click on the ReceiveRequest shape and ensure the CanCreateInstance
checkbox is checked.

30.	 Add reference to the following items projects via project references by right-
clicking on Chapter17.CoreWorkflow project, Add Reference…
Chapter17.CallVendorA
Chapter17.CallVendorB
Chapter17.CallVendorC
Chapter17.CallVendorD
Chapter17.DataContracts

31.	 Build the solution. This will ensure all of the activities inside the referenced
projects are made available on the Toolbox inside Visual Studio.

32.	 Define the input and output messages for the Core Workflow. These will be
exposed though the WCF Endpoints of this service. Click on the Variables
tab at the bottom of the workflow surface. Delete the data variable. Add the
following four variables:
Name: ExternalDataRequest (this is the WCF Service Request)
Type: ExternalProductDataRequest (located inside the DataContracts
Reference)
Default
Name: ExternalDataResponse (this is the WCF Service Response)
Type: ExternalProductDataResponse (located inside the DataContracts
Reference)
Default: New ExternalProductDataResponse()

Chapter 17

[451]

Name: EndLoop (this is used to end processing of the parallel shape when
the end of the delay is reached)
Type: Boolean
Default: False
Name: ReturnCount (this is also used to end processing of the parallel shape
when all four external vendor calls are completed)
Type: Int32
Default:
The end result is as follows:

33.	 Set these variables as the request and response messages for the service
by changing the content on the ReceiveRequest and SendResponse
shapes. Click on ReceiveRequest and rename the operation to
GetVendorData. Click on Content. Under Message set the Message Data
to ExternalDataRequest and Message Type to Chapter17.DataContracts.
ExternalProductDataRequest.

34.	 Click on Content on the SendResponse shape. Set the Message Data to
ExternalDataResponse and Message Type to Chapter17.DataContracts.
ExternalProductDataResponse.

Low-Latency Request-Reply

[452]

35.	 Add a Parallel shape between the Receive and Send shapes. Inside the
Parallel shape add five Sequence shapes. Four of the sequence shapes will
each contain the logic to make the calls to the external vendors. The last
sequence shape will be used as a timeout. In the event of any of the calls to
the outside vendors taking longer than the timeout, the workflow will stop
processing the other parallel branches and return the results received to
the caller.

36.	 Ensure the Parallel Shape is selected and under Properties set
CompletionCondition to EndLoop Or ReturnCount = 4.

37.	 The Parallel shape in .NET 4.0 does not guarantee that each action will run
on a separate thread. In the case of asynchronous operations, delay shapes,
or messaging activates separate threads will generally be created. If any of
the branches in the parallel shape set the CompletionCondition (a Boolean
expression), the other branches will no longer be executed. Name each of
the five sequences shapes as follows: Call Vendor A, Call Vendor B, Call
Vendor C, Call Vendor D, Timeout. It should look like the following:

38.	 Double-click on the Call Vendor A Sequence shape on the top right to drill
down into it. The breadcrumb trial on the top of the workflow surface should
now say WorkflowService > Sequential Service > Parallel > Call Vendor A.
Drag and drop from the Toolbar the VendorA shape and place it inside the
Call Vendor A Sequence shape. The VendorA shape appears in the Toolbox
as a result of adding the reference to the Chapter17.CallVendorA project.

39.	 Add an AddToCollection shape directly under the VendorA shape.
This is located under the Collection selection from the Toolbar. The
AddToCollection shape is used to add the response from Vendor A to
the result collection. The result collection is what is returned to the calling
website. Add an Assign shape under the AddToCollection shape.

Chapter 17

[453]

40.	 With the Call Vendor A Sequence shape selected, click on Variables and
create a new variable local to this scope. This variable will only be at this Call
Vendor A scope.
Name: VendorDataResponse
Type: VendorResult (from the Data Contract reference)
Default: New VendorResult()

41.	 At this point, the activity will look like the following:

Low-Latency Request-Reply

[454]

42.	 Now set the parameters on the VendorA, AddToCollection, and Assign
shapes using the variables that have been created.
On the VendorA shape set ProductId to ExternalDataRequest.ProductId
and Result to VendorDataResponse.

43.	 On the AddToCollection shape, set TypeArgument to Chapter17.
DataContract.VendorResult, Item to VendorDataResponse, and Collection
to ExternalDataResponse.Result.

44.	 On the Assign shape set To to ReturnCount and Value to ReturnCount + 1.
45.	 Repeat this process for the other three Vendor Sequence shapes that were

added to the Parallel shape.
46.	 Return to the main workflow surface by using the breadcrumbs at the top.

Double-click on the Timeout Sequence shape to drill down into it.
47.	 Drag a Delay shape and Assign shape from the Toolbox, both from the

Primitive section.

Chapter 17

[455]

48.	 Set the Delay to New Timespan(0,0,0,0,65). This will set up a 65 millisecond
delay on this shape and ensure the service does not wait any longer than 65
milliseconds for an external vendor call.

49.	 On the Assign Shape, set To to EndLoop and Value equal to True.

50.	 The end result should look like the following:

Low-Latency Request-Reply

[456]

51.	 Open the app.config file for each of the Chapter17.CallVendor projects.
Copy the binding information under <basicHttpBinding> into the Web.
config file of the CoreWorkflow project. All four <binding> nodes should
exist under a single <basicHttpBinding> node in the Web.config file. Do
the same for the <endpoint> node under the <client> section. All four
<endpoint> nodes should exist under a single <client> node. This is
needed so that the CoreWorkflow has the necessary binding and endpoint
information to make the WCF calls to the external vendor sites. Check the
End Solution to see the App.Config file for the final solution.

52.	 Configure the services in IIS for low-latency calls by turning off monitoring
and enabling Auto-Start. This will greatly reduce the latency created by the
first call to a service and reduce processing time by not collecting any service
metric data.

Inside IIS, right-click on the Chapter17.CoreWorkflow Virtual Directory. Go
to Manage WCF and WF Services section, Configure….
Select the Monitoring tab. Uncheck the Write events to the database
checkbox.
Select the Auto-Start tab. Select Enable.

Testing the solution
Launch the TestApp, which is a simple application form that contains three buttons.

1.	 Run Service—Calls the Service one time. This returns the total records,
vendor information, and total execution time.

2.	 Run Service – 25—Calls the Service 25 times. Returns vendor information,
minimum service call duration, maximum service call duration, and the
average. Removes the minimum and maximum values prior to calculating
values.

3.	 Run Service – 250—Calls the Service 250 times. Returns minimum service
call duration, maximum service call duration, and the average.

Chapter 17

[457]

Play around with changing sleep values in the simulated external vendor services
and changing the delay time inside the Core Workflow. See how this affects
the results.

Summary
In this chapter, we looked at several different types of latency. The focus was on
how best to reduce Application Latency, which is the latency we developers have
the most control over. We looked at how BizTalk, Windows Server AppFabric, and
Azure all could work in a low-latency environment but we chose a final architecture
based on Windows Server AppFabric. This architecture uses a fast, non-persistent
.NET 4.0 Workflow to aggregate various vendor response messages and to return a
single result to the client.

Handling Large Session and
Reference Data

In this chapter, we will look at how to handle large session and reference data sets
and how implementing a caching tier is beneficial. We will showcase the usage of the
best suited Microsoft technology for this task.

Use case
WinOrBow Games is an interactive online gaming company which has a varied set of
games ranging from tic-tac toe to blackjack. When a user registers with the system,
as part of the social experience they can create a set of personas, subscribe to news
feeds, modify the look-and-feel of their portal page, and more. All of these settings
are tracked as part of their online user profile. Once users log into the system they
can play with other online users or play against the online system also known as
WinGuru. Optionally, users can also team up with their online friends and play
against WinGuru. In this mode, the users share a social experience by sharing
messages about game strategy and working together. Users playing in practice mode
can look up game rules, review finished games, and strategize their next move. Users
can pause a game, log out, and resume it at a later point. This convenience feature
is a big hit among the registered users. The company is also looking to extend the
games to mobile users who will interact with the web applications as part of the "on
the go" experience.

WinOrBow has about 800,000 registered users, of which, 250,000 users are logged
onto the system at any point in time. It is projected for the user base to grow over 5M
in the next three years.

Handling Large Session and Reference Data

[460]

WinOrBow Games is primarily Windows platform where most of the packaged
applications and programming tools are predominantly Microsoft technologies. ASP.
NET is used for building the web applications. At the back end, the system also uses
a set of .NET applications to monitor online user activity. These applications perform
computations and then store the results to specific databases across different backend
platforms. They do have a sizable number of .NET developers and own some of
Microsoft's server platforms like SQL Server. Developers use the Visual Studio and
Team Foundation Server system for all their development and testing efforts.

WinOrBow has adopted a "build versus buy" strategy where they prefer to leverage
platform components and build custom solutions instead of buying high priced
enterprise solutions.

Key requirements
The following are key requirements for a new software solution:

•	 Improve the current performance (latency) of the website.
•	 Architect a solution that can scale for the increased growth of the company.
•	 Implement high availability across all tiers of the solution.
•	 Minimize the impact on the mission critical systems by offloading temporal

workloads to medium end servers.

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following:

1.	 Reasonably cheap boxes will be used to run the non-mission
critical workload.

2.	 Chosen technology must have security and manageability knobs making it
easy for the operations team.

3.	 Users will connect to any web server in the farm, so the data has to be
accessible from any machine.

4.	 The customer is looking to design all components to be pluggable
instead of taking a hard dependency.

Chapter 18

[461]

Pattern description
Application objects are constructed from combining different backend data sources
such as databases and web service calls. When users repeatedly access the same
application object, there is increased stress on the system to regenerate the individual
responses. For example, consider a popular online forums website that shows a list
of topics, various posts for each topic, and then the related threads for each post.
The backend data could be organized across several tables such as Forum_Topics,
ListOf_Posts, Post_RelatedThreads, and User_Response. On each user visit, the
page load needs to visualize data joined from all these tables. Initially, the website
might perform well with most data in the database server memory but slowly as the
users and content increase, there may be disk access that affects the overall latency.
Most of the time, the access might be for such read-only objects.

When using the traditional three tier system (web, business logic, and data tier)
without caching, such repeated access of reference data that goes over the network
requires additional resources. In such cases, the performance can be optimized when
the cross machine and network access is avoided. This happens when the data can
be stored on the webserver and returned immediately. In addition to the web server
impact of database-heavy sites, there is also stress on the database servers which
could affect other core transaction processing systems using the database servers.
When some sort of caching is implemented, the latency can be low across all user
requests. Even as the backend data changes with new topics and user responses, one
can limit the object lifetime in the cache to minimize any consistency issues, which
may be a lesser concern. In such workloads, the application objects access can be
viewed as lookups of <key, value>.

Let us consider another scenario: online travel search. When a user searches for
airfare, hotel accommodation, and places to visit in Italy, for example, the website
needs to respond instantly with the relevant results. A large portion of the results,
such as places to visit or list of popular hotels for a zip code is reference data. In
addition, there are a couple of other access behaviors which are interesting. A user
could submit a set of such queries for different cities for which the website will have
to perform several backend computations. The website could be interacting with
a set of different external systems. One could be an external airline system, a set
of systems for hotel availability and places to visit with reviews. Upon receiving
responses, the website would combine the results, filter them, apply any particular
user preferences (for example, sorting) and then visualize the results for the end user.
In order to do this, the website will need a temporary storage for computing results.
Ideally, a cache will be extremely useful both from a performance and maintenance
standpoint. As all the data is held in memory, there is no additional data storage or
persistence related maintenance operations required.

Handling Large Session and Reference Data

[462]

This is especially useful when the user decides to run the query all over again for a
new city or come back at a later time. Further, as the user makes selections, updates
are made to the shopping cart tracked as part of the session. The session data is
available for both reads and writes as the user traverses the website and it needs to
be available as long as the user is active on the website. As the user adds different
items to the shopping cart and accesses it from several web pages, the website needs
to ensure high availability in addition to performing well.

Broadly, data access in this workload pattern can be viewed as reference (used
primarily for read only access across all users) and activity (single user read-write)
data. For example, catalogs of books or flight arrival information are treated as
reference data. Such data does not change often and will be used by several users
accessing the website. Activity data is specific for each user, for example, purchasing
vehicle insurance from a website using a shopping cart application. Another related
workload is resource data where the data is shared across a set of users where read
and write updates are allowed. In an airline system, the tickets inventory constantly
changes based on the purchase activity in the system. In such cases, some sort of
concurrency control mechanism across all users would be required.

Candidate architecture
We are looking at a single candidate for this solution. While the Windows Server
AppFabric Cache is the best choice for this scenario, we will also discuss the
alternatives for accessing reference data.

Candidate architecture #1–Windows Server
AppFabric Cache
Usage of distributed caching technology is common when implementing this pattern.
Before talking about it, let us look at a couple of other options available – database
servers and ASP.NET (session and application caching). Let us use the data from the
use case and key requirements to see how the options stack up.

Chapter 18

[463]

In large enterprises, SQL Server or any database server is a huge investment used
by many critical applications. In this pattern, the reference data could be accessed
repeatedly from the database tables which may become inefficient and obtrusive to
other transaction processing systems sharing the database instance or the network.
As we have seen in the previous section, when the workload is essentially lookup-
based like <key, value>, it does not require core database functionality such
as querying, data management, logging, indexing, and so on. When temporal
computations are performed, it does not benefit from writes batching and large I/O
optimizations that database servers do so well. Similarly, session data does not really
require durability, it only needs to be available while the user session is active.

Overall, here are some challenges when only using a database server to store
reference data:

1.	 Increased maintenance operations to manage the data growth.
2.	 Additional resources stress (CPU usage, network bandwidth) on the

database server box.
3.	 Impacting performance of other database applications.

SQL Server will perform reasonably well for this workload but would need the
company to plan for the challenges above. In addition, when the resource stress
increases there will be additional investment required to scale up the hardware
resources. We will discuss usage of SQL Server as part of the solution, just not for
session and reference workloads. In our use case, given the projected growth of the
company (5M users) and the kinds of social interaction the website allows, SQL
Server usage for session data and reference data access will not be appropriate.

ASP.NET has support for application caching as well as user session state
management. Using this, each web server can cache reference data but not in a
central manner. This would imply that the data is replicated in each web server
node. As the need for caching reference data increases, this will hinder the scaling
of the solution – either more memory is needed on each web server or application
requests go directly to the backend for certain requests. In the case of session state
management, ASP.NET has an easy mechanism both from a programming model
and configuration knobs. As users connect in a web farm, they can be load balanced
to any web server. Even though, session state can be stored in a common state server
accessible to all web servers, the state server can very soon become the bottleneck for
scaling the application. Another downside is the inability to protect against the state
server failures.

Handling Large Session and Reference Data

[464]

In summary, here are the challenges when using ASP.NET caching and session
features for our use-case:

1.	 Replicating reference data across all web servers.
2.	 Machine failures affecting session state management.
3.	 Usage of central session state server could become a bottleneck with

increased user load.

Neither direct SQL Server access nor ASP.NET caching is the right choice here. Let us
analyze the key requirements and see how Windows Server AppFabric Cache stacks
up against our decision framework.

Solution design aspects
At the core of the requirements of the use case is the fact that the application
has to scale linearly for the long term. This essentially would require a scale out
architecture where one can add servers on demand based on capacity requirements.
In order to avoid making changes to host information, it will be easier if the
application communicates with a logical server farm and doesn't need to know all
the individual server names. This way, it would be a truly distributed application
where users can connect to any cache server in the farm, and the system handles
data partitioning by keeping it transparent to the application. Under the covers,
Windows Server AppFabric Cache shares the core fabric layer with SQL Azure and
is built to scale for large number of servers. The application servers (acting as cache
clients) just need access to one server in the cluster and can then access all servers
in the cluster. However, it is recommended that the application servers reference as
many cache servers in the app.config or web.config as possible. When an application
server connects to any cache server, it gets a routing table which has the mapping
of partitioned data access to the actual cache servers. This design ensures that new
servers are automatically accessible to the application servers.

A key aspect is to maintain low latency for all user requests including the login
experience, exchanging messages with other online friends, loading of the last stored
game, history of previous games, and so on. Accommodating this request would
require an ability to partition the dataset for each user in memory with the ability
to access them individually or all at once. In addition, when multiple users are
playing together, their common strategies such as game moves can be co-located and
available as bulk access to minimize network latency overhead. Another common
design would be to avoid network overhead wherever possible by having data
cached at the client side (on the web servers).

Chapter 18

[465]

In our use case, reference items such as the news feed, information about the logged
on users, and the collection of on-going games are some common items across all
users which will benefit from being maintained on the web servers themselves. As
this data changes, it will be useful to refresh it at configurable intervals. Windows
Server AppFabric Caching provides logical data containers including named caches
and regions. Named caches can be used to partition data for different objects and
they are automatically striped across the entire cluster. It is also possible to set
separate policies for each named cache. Regions allow co-location of objects with an
ability to bulk fetch. Local cache is another feature that lets caching of objects on the
cache client application (web or application servers). It has knobs to expire an object
after a configurable TTL (time to live) or automatically synchronize object changes
via notifications when data changes in the cache cluster. The latter is implemented
by cache client application polling the cache servers for the set of changes over a
configurable interval.

One of the main goals of the solution is to build it for high availability scenarios.
From the use case requirements, the session data and some of the user profile data
will need to be stored with additional replicas to protect against machine failures.
The application should not have to worry about managing the high availability
configuration. In Windows Server AppFabric Caching, the High Availability
option is available at a named cache level and is just a configuration knob. The
system identifies primary and secondary servers for the replicas and monitors their
availability. In case of a server failure, new replica servers are elected automatically.

The application should have control to store and remove objects, change the amount
of cached time in the cache tier, and control the client side caching. User sessions will
need to be available from any web server and will need replicas to protect against
machine failures.

As all the content in the cache tier is in memory, SQL Server will be used as the
data repository in the solution. The application must have control to access the data
explicitly from SQL or from cache as appropriate.

Handling Large Session and Reference Data

[466]

Solution delivery aspects
Windows Server AppFabric Cache exposes a set of .NET based client API and the
solutions can be easily built using Visual Studio, making it a natural fit for WinOrBow
application developers. The product just depends on .NET 4.0 and runs on the
Windows 7 or Vista platform for development purposes. Developers can use Event
Tracing for Windows (ETW) and performance counters for debugging purposes. In
particular, the integration with ASP.NET is pretty straightforward and can be done
via configuration. Many of the behaviors for the caching API such as the cache server
information and local cache usage can be set up via configuration or via code.

It is important to note that this is a new product from Microsoft and hence
availability of detailed patterns and guidance is limited. It is expected that design
patterns and performance guidelines will improve in the future. Developers can
use the product documentation and leverage the online community for specific
guidance discussions. The product uses the channel model net.tcp transport of WCF,
which has several resources available online. Overall, this should make it easy for
WinOrBow developers to deliver the solution in weeks rather than months.

Solution operations aspects
The administration tool for managing Windows Server AppFabric Cache is based
on PowerShell. It exposes command-lets to configure and administer the cache
cluster and getting/setting named cache properties. The hardware configuration
allows usage of medium range servers (quad core) with 8-16 GB memory that play
well to keeping the overall costs low. The product is integrated with ETW and the
Operations team can use existing tools from the Windows resource kit (tracelog,
trace.rpt) to collect diagnostic data for debugging purposes. The product also
provides a set of rich performance counters for collecting steady state information,
identifying capacity issues or application object access failures across the
deployment. The WinOrBow operations team can also leverage the System Center
Operations Manager management pack for proactive management by configuring
specific rules.

At this time, there are no rich, GUI-based tools available as part of the product.
Leveraging the community for availability of additional tools is one possible option.
The current security model for authorizing client applications is based on domain
and only at a cache cluster level which works for the WinOrBow deployment. The
operations team also would need to build expertise and extend their tools to work
with PowerShell.

Chapter 18

[467]

Organizational aspects
WinOrBow is looking at a solution that can satisfy their current requirements and
continues to get better in-line with the company's long term. Given that Windows
Server AppFabric is an important part of the overall strategy for Microsoft, the
cache feature will continue to evolve with the next set of releases. The cache
integration programming paradigm allows the solution to enable or disable the
cache via configuration which minimizes the risk. The product support falls under
the traditional Microsoft support which again minimizes the risk for WinOrBow.
Windows Server AppFabric Cache is part of Windows Server SKU and saves
significant licensing dollars when compared to other competing products.

Architecture selection
As mentioned earlier, Windows Server AppFabric Cache is the best choice. Here is a
quick summary of the evaluation:

Windows Server AppFabric Cache
Benefits

•	 Built for high performance and scale
•	 Easy integration using ASP.NET

session provider and simple .NET
based APIs

•	 Available as part of Windows
Server SKU

Risks
•	 Lack of extensive community

code/resources given V1
product

•	 High Availability feature
supports 2 replicas, however all
data is still held in memory

Handling Large Session and Reference Data

[468]

Building the solution
Here is the high-level architecture of the solution:

The solution built using Windows Server AppFabric Cache along with SQL Server as
the durable store will scale for WinOrBow needs. The application will use a
cache-aside pattern – the application accesses the cache for lookup data and if it is
not found, would execute the query against the database server. After the application
receives the object, it would populate the cache server for the subsequent set of
accesses. In some cases, the cache can be front loaded with the common reference
data, such as finished game information and news feed data, prior to any user
request coming into the system. When games complete, the history can be updated in
the cache tier. Updates to a user profile that needs to be durable can be made directly
against the database server. Another approach could be leveraging notifications in
the cache cluster when items are modified—the recipient of the notification can then
store the object in SQL server.

All the ASP.NET session data (shopping cart) could be stored in the cache servers by
just modifying the web.config.

Chapter 18

[469]

In this solution, we will be building a portion of the application to demonstrate usage
of the cache. The WinOrBow Project will modify an existing ASP.NET application
to leverage the cache for both session and reference data. All the cache related
interactions are isolated as part of the CacheUtilities.cs class file.

1.	 We will set up and configure the cache cluster to include all the
application needs.

2.	 We will modify web.config to provide some information about the cache
cluster under the datacacheclient configuration section.

3.	 We will then add AppFabric Cache provider as the custom ASP.NET
session provider under the "sessionState" section. In this sample, we use the
session provider that shipped with the V1 release. An enhanced version that
supports partial session updates is now available on codeplex - http://
aspnet.codeplex.com/releases/view/46576

4.	 We will then create CacheUtilities.cs and then add code to use it from
Login.aspx and MyPage.aspx.

Setup
A project solution AppliedArchitecture.Chapter18.Caching has been created in
<Installation Directory>\Chapter18\Begin folder. This solution contains the
WinorBow ASP.NET project.

Before beginning the lab, you must have Windows Server AppFabric Cache service,
client and admin feature installed and configured on your machine. The pre-
requisites for configuring the cache features are .NET 4.0 RTM and PowerShell v2.
In your development environment, both Windows 7 and Vista OS platforms are
supported. For production deployment, the cache servers need to be on Windows
Server 2008 SP2 or Windows Server 2008 R2 OS platform. If required, please refer to
Chapter 3 for more installation instructions.

1.	 If you don't have the product set up already, install the RTW version of
Windows Server AppFabric from the following location. It is possible to do a
standalone install of the Cache feature. You can check the download section
from this link: http://www.microsoft.com/downloads/en/results.aspx?
freetext=Windows+Server+AppFabric&displaylang=en&stype=s_basic

Handling Large Session and Reference Data

[470]

2.	 Run the Cache Administration Windows PowerShell Tool to start the
cache cluster.

3.	 Using the same administration tool, create the following named caches–
SessionCache, HeadLineNewsCache, and GamesHistoryCache. The named
caches will be set up with different policies (expiry time, eviction settings,
High Availability) based on application access needs.

Chapter 18

[471]

In a production system, one could deploy SessionCache in High
Availability mode with Secondaries as 1. Such a configuration
would require the cache servers to run Enterprise or Data Center
edition. For this lab, if you set up the Secondaries as 1 on your
development environment (on client OS), the cache service will
crash and fail to restart. Here is the error you would see in ETW:
AppFabric Caching service crashed. {The High Availability feature of
Windows Server AppFabric caching features requires all nodes in the
cache cluster to be running Windows Server Enterprise Edition or
higher. Please confirm that all High Availability cache nodes are running
on a supported.
To recover, you would have to export the cluster configuration
using Export-CacheClusterConfig commandlet to a file, and
then modify the file by changing the named cache properties for
"SessionCache" and then import the cluster configuration using the
Import-CacheClusterConfig command. After this, starting the
cache cluster will succeed.

4.	 Set up the cache cluster security appropriately so that the user account under
which the web application is running has access to the cache cluster. This
can be done by using the commandlet Grant-CacheAllowedClientAccount
<domain\user>. Alternatively, for this development solution, you can
disable security in the cluster by using the commandlet
Set-CacheClusterSecurity None.

Integrating with Windows Server
AppFabric cache
Next up, we actually build the solution that uses the cache.

1.	 Launch Visual Studio.NET 2010 and open the ApliedArchitecture.
Chapter18.Caching.sln from the <Installation Directory>\
Chapter18\Begin folder. You should see the WinOrBow VS project.

2.	 The WinOrBow ASP.NET website project has two web pages—Login.aspx
and myPage.aspx. These two pages contain the logic for playing the simple
"TicTacToe" online game.

Handling Large Session and Reference Data

[472]

3.	 Add a reference to Microsoft.ApplicationServer.Caching.Client and
Microsoft.ApplicationServer.Caching.Core DLLs.

4.	 Modify the web.config to add the AppFabric dataCacheClient and ASP.NET
session provider sections.

Chapter 18

[473]

Even though the cacheName specified in the providers section appears as an
error (attribute is not allowed) it will work fine. It is used by the AppFabric
Cache ASP.NET session state provider to store the objects in the specified
named cache. The named cache must have been created earlier. If this is not
specified, the session data will be stored in the default named cache.

5.	 Add a new .NET class named CacheUtils.cs to contain all the cache specific
interaction and at the beginning, add the following set of using statements:
using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using Microsoft.ApplicationServer.Caching;

6.	 Declare the following set of variables:
// channel factory that uses net.tcp binding

 private static DataCacheFactory dcf;

 // handle to named caches

 private DataCache dc, gamesHistorydc;

 private static string newsCacheName = "HeadLineNewsCache";

 private static string gamesHistoryCacheName =
"GamesHistoryCache";

 public bool useCache = false;

7.	 Add code to the Setup method.
public void Setup()

 {

 try

 {

 if (dcf == null)

 {

 // Instantiation will setup connections to all
 cache servers specified in <hosts> section in
 web.config

 dcf = new DataCacheFactory();

 }

 // Get handles to the named caches used by the
 application for reference data

 dc = dcf.GetCache(newsCacheName);

 gamesHistorydc = dcf.GetCache(
 gamesHistoryCacheName);

Handling Large Session and Reference Data

[474]

 useCache = true;

 }

 catch (DataCacheException dcexp)

 {

 useCache = false;

 }

 }

8.	 Add code to fetch the Header News feed data.
public object GetNewsFeed()

 {

 try

 {

 // Get the latest Headlines to display during
 login

 object item = dc.Get("HEADLINES");

 // In case the cache servers are not available/
 reachable or the object has been expired,

 // item will be null

 return item;

 }

 catch (DataCacheException dcexp)

 {

 return null;

 }

 }

9.	 Add code to the completed set of games as this will be used in the portal
page for the users.
public object GetGamesHistory()

 {

 try

 {

 // Get the games that have completed, for simplicity
 this will be stored as a single item

 // Alternatively, can create separate Regions for each
 day and use Bulk API to get the history

 // In case the cache servers are not available or
 reachable or the object has been expired,

 // item will be null

 object item = gamesHistorydc.Get(gamesCacheKEY);

Chapter 18

[475]

 return item;

 }

 catch (DataCacheException dcexp)

 {

 return null;

 }

 }

10.	 Add code to update the Games history. When a user completes an online
game, this will be invoked to update the games history.
public void UpdateGamesHistory(string updatedGames)

 {

 try

 {

 gamesHistorydc.Put("GAMES", updatedGames);

 // In case the cache servers are not available/
 reachable or the object has been expired,

 // this will fail

 }

 catch (DataCacheException dcexp)

 {

 }

 }

11.	 In the Login.aspx.cs class, declare a static reference to a CacheUtil
instance. This means that all the users accessing this web server will share the
connections made to the cache servers.
private static CacheUtils cacheUtil;

12.	 Set up the instance and add code to access the cache contents during the
login process.
protected void Page_Load(object sender, EventArgs e)

 {

 if (!Page.IsPostBack)

 {

 if (cacheUtil == null)

 {

 cacheUtil = new CacheUtils();

 }

 try

Handling Large Session and Reference Data

[476]

 {

 cacheUtil.Setup();

 }

 catch (Exception excp)

 {

 }

 }

newsItem.Items.Clear();

 try

 {

 // populate the news items

 object item = cacheUtil.GetNewsFeed();

 if (item != null)

 newsItem.Items.Add(item.ToString());

 else

 newsItem.Items.Add("Nothing to show");

 }

 catch (Exception excp)

 {

 if (cacheUtil.useCache)

 newsItem.Items.Add("Headline News not
 available");

 else

 newsItem.Items.Add("Headline news being
 populated");

 }

 }

You may notice that the News is not populated in the login page.
In this solution, we are not populating the named cache with
any items. If you write a service to periodically populate the
HeadLineNewsCache by adding an object, the login page will
update as users login into the system.

13.	 Modify the myPage.aspx.cs page and declare a static reference to a
CacheUtil instance. This will also ensure that all users accessing this web
server share the cache server connections and do not instantiate
new connections.
private static CacheUtils cacheUtil;

Chapter 18

[477]

14.	 Modify the Page_Load method for the first page load to set up the cacheutil
instance. Then access the cache to get the list of past games and load in
the page.
if (cacheUtil == null)

{

cacheUtil = new CacheUtils();

}

try

{

 cacheUtil.Setup();

}

try

{

object val = cacheUtil.GetGamesHistory();

 string finishedGames = "";

 if (val != null)

 {

 	 finishedGames = (string)val;

 // finished games are delimited by ':'

 char[] separator = new char[] { ':' };

 string[] strSplitArr = finishedGames.Split(separator);

 foreach (string arrStr in strSplitArr)

 {

 	PastGames.Items.Add(arrStr);

 }

 }

 finishedGames = finishedGames + String.Format(": User {0}
Date {1} Game {2}", UserName, DateTime.Now.ToShortDateString(),
"TicTacToe");

 cacheUtil.UpdateGamesHistory(finishedGames);

}

catch (Exception excp)

{ }

}

Handling Large Session and Reference Data

[478]

15.	 Build and run the application.
16.	 Enter an identical username and password "test1" on the Login.aspx page

and click the "Log in" button. You will be redirected to myPage.aspx, where
you should choose TicTacToe as the chosen game. Then make a couple of
moves. Your screen should look something like the one shown next. Then
click Disconnect to simulate a user losing connectivity.

17.	 Then log back in with the same credentials, and your session should resume
(similar to when a session does not expire). The dropdown with past games
should show the current game.

Chapter 18

[479]

18.	 Now, you can now create a website using the project, register the application,
and load test the application by creating a set of test clients.

19.	 You can monitor the cache statistics from the admin tool.

Handling Large Session and Reference Data

[480]

20.	 You can also monitor the cache cluster the set of Perfmon counters under
'AppFabric Caching: Cache' and 'AppFabric Caching: Host' counter groups.

Summary
In this chapter, we looked at how an online gaming application with a social
experience and a growing user base can build a scaling solution by leveraging a
caching tier. This is a typical use-case of how more and more applications really need
a caching tier which must be scalable, highly available, offers excellent performance,
and provides easy tools for the operations team. Windows Server AppFabric caching
is a fitting choice that can be used by web and mid-tier applications.

Website Load Burst and
Failover

In this chapter, we'll look at how to leverage the cloud for load burst and failover
scenarios. We will discuss the pattern and a set of implementation candidate options.
Finally, we will showcase the implementation using the Windows Azure platform.

Use case
HomeUtiliiesOnline is the new generation home utility research and services company
that allows their customers (individuals or apartment complexes) to research,
manage, and schedule payments for all services regarding their home. The company
is in a growing phase at this point with about 1 million subscribers, about 70% of
whom own a single family home. The remaining 30% are a combination of apartment
complex managers and residents. The company is also affiliated with a set of utility
service providers. The company provides a portal where users can make payments
to the utility providers – gas, electricity, phone, and cable. Users also visit the site
to research the utilities spending pattern and look at ways to reduce their
monthly costs.

Currently, the company has one main data center on the US West Coast and an
additional site in the East Coast primarily for disaster recovery scenarios. A central
global traffic routing product monitors the status of servers in the data centers and
load balances appropriately. The global traffic routing product always routes users
to the closest data center and also gracefully handles scenarios where one of the data
centers is down.

Website Load Burst and Failover

[482]

The solution is a three tier architecture which is comprised of the website, business
logic, and a backend database system. The business logic, which is implemented as
a set of WCF services, is used for both the internal processing and interaction with
the 3rd party web services. The backend database has the user sensitive information
and transactions secured for authorized access, unlike the consolidated utility
consumption and researchable data sets. Within each data center, there are two sets
of clusters for each tier—web, database, and business logic. In most situations, the
website provides good responses to customer requests. However, in spite of the
current setup for load balancing, it is noticed that during sudden spikes, the servers
in both the data centers are running close to maximum capacity. In a recent outage
that affected both the data centers, the entire site was down for over three hours.

The company management is debating adding another data center for failover and
load burst scenarios, cognizant of the fact that servers across all the data centers may
not be fully utilized.

HomeUtiliiesOnline is built primarily on the Windows platform where all the tiers
and programming tools are predominantly Microsoft technologies. ASP.NET is
used for building the online web system. In the middle tier, there are a set of WCF
services that route the requests to the external utility service or access data from the
backend database. SQL Server, which serves as the enterprise database, manages the
data set required for both the user-specific transactions as well as the consolidated
usage pattern queries. Most of the developers use .NET, Visual Studio, and Team
Foundation Server tools for all of their development and testing activities.

The company has adopted a "buy versus build" strategy where they prefer to
leverage readily available solutions instead of building customizable in-house ones.

Key requirements
The following are key requirements for the new software solution:

•	 Building a solid infrastructure which is resilient and handles the increased
and irregular workload.

•	 Keeping the operational expenses (OPEX) to a minimum.
•	 Enabling the operations team to react in an agile manner.

Additional facts
There are some additional details gathered after the initial use case was shared with
the technical team. These include the following:

•	 Technology choice should ideally build on top of the existing applications
framework and not require too much of a drastic redesign or re-write.

Chapter 19

[483]

•	 The design should scale well for the company's current and future workload
requirements.

•	 Ability to apply failover semantics to different portions of the various tiers.

Pattern description
This pattern essentially has two different parts – handling failover and handling
load burst. Failover is the ability to switch over to another "ready" system when an
abnormal termination occurs. This is usually automatic when the system detects
the termination and assigns control to the ready system. One of the key goals when
designing failover is to make this transparent to the end users. Users might need to
reconnect, but application state or data may be centralized so that the "ready" system
can pick up where the failed one ended. Deciding capacity requirements for a system
is again a systematic and scientific computation process —different metrics such as
the number of transactions, required response time, and the number of concurrent
users may be used. In the end, a decision needs to be made and this number would be
higher than the average of the metrics but lower than the occasional peak. A load burst
is a sudden increase or spike in workload possibly just for a period of time. When this
happens, application performance can degrade and in some cases recover at the end of
the period; in other cases, the application can terminate.

You can break down the system into various layers. First, there is the physical
infrastructure such as server machines, network routers and switches, storage
systems, and so on. Next is the actual platform such as application servers, database
servers, web servers, and so on which run on the physical infrastructure. Finally,
there is the custom application or services (unique to each company) that run on
top of the platform. In order to build systems that are highly available (that support
failover), a key aspect is to make sure that the infrastructure has redundant machines
that can continuously handle user requests. In traditional systems, this has required
additional hardware resources such as high end server boxes, robust network
infrastructure, and shared storage, to name a few considerations. Then, there is a
need to extend the same capabilities to the platform which would require running
high end software SKU licenses and extra effort from the operations teams for
getting the platform components (such as the database server, application servers)
all set up and configured correctly. Finally, it comes down to the custom applications
and services that need to incorporate aspects of high availability. If you think about
it, the final piece is really the crux of what really matters.

Website Load Burst and Failover

[484]

The custom applications and services software layer is the one that drives business
value and the rest of them are merely in place for supporting it. Depending on the
platform choice and how the actual software is designed, the actual application and
services can be made adaptable to failover with minimal effort or require extensive
design. Given all these moving parts, traditionally building failover has always been
a "special" aspect used by high end enterprises. In addition, the current on-premise
failover approach has required spending money well in advance for setting up and
testing the system end to end. And all this "special" handling is for the corner case
when some part of the system breaks down. I am not trying to trivialize this corner
case; indeed, it can have a big impact on the business surviving in case of a viral
social networking site, for example. However, this system failure is indeed a corner
case usually with a low frequency of occurrence.

On a similar note, scaling up to handle load burst scenarios requires similar attention
but is slightly more challenging. In the case of failover preparation, it could be as
simple as mirroring the setup in another system and overall doubling the total
infrastructure. When dealing with load burst, it may be difficult to predict exact peak
and prepare for it in advance. In some cases, this could involve repeatable analysis to
get closer to a reasonable peak workload and might be a "wait and watch" method.
Typically, this needs agility to spin up new resources on demand. Ideally, this needs
to happen with minimal impact on the deployment which is also hard to achieve.
Again, the spike can be a corner case. For example, in our use case, one might
expect increased activity during the beginning and end of every month when a lot
of payments activity happen – users issuing utility payments, partner companies
running monthly reports, and so on. However, there might be external factors that
trigger more activity on the website. For example, when there are adverse weather
conditions, home owners might perform a lot more research for precautionary home
projects or to buy supplies. Such scenarios get harder to predict and prepare for
the IT team.

Traditionally, the stance has been for capacity to be maintained at slightly higher
than average workload to account for such scenarios. In addition, it also requires for
streamlining the operations process which might include a set of IT operations teams
to be available on pager duty every day.

Such an approach has the following challenges:

•	 Constant increase in operation expenses or need for additional resources.
•	 Inability to predict guaranteed SLA and risk calculations.
•	 Affecting company growth.

Chapter 19

[485]

Chosen architecture
The first approach that is usually considered is some sort of virtualization technology
deployed within the enterprise and thus create a type of private cloud. This naturally
builds on top of existing systems in place providing an efficiency model that pools
all the physical infrastructure components. In this case, an operations team might
be able to spin up additional virtual machines on-demand and be more agile in
responding to the needs. However, it does not solve all the other problems. The
company still has to own, set up, and manage the various layers. The sharing of
the pooled resources just helps to optimize the usage but managing the system,
responding to environmental changes, and the onus of maintaining SLAs still need
to be handled in-house, which continues to be a main challenge.

Public cloud technology provides some unique advantages – out-of-the-box high
availability, really high SLAs guarantees (99.99 uptime), elastic scale across "infinite"
resources, and a consumption-based pricing model. Leveraging the public cloud for
load burst and failover scenarios is an interesting choice to consider.

Just like we broke down the constituents of an on-premise system into physical
infrastructure, platform, and the custom applications or services, the public cloud
can be viewed in a similar manner. One approach is to leverage some of the
infrastructure pieces (physical machines, storage, and network) in the cloud and
allow the operations team to deploy and manage everything on it. This does reduce
the workload of the in-house teams with agility and SLA guarantees provided by the
hosting provider. But it still requires the in-house operations team to make sure the
platform and software services are scaled appropriately for incoming workloads.

Finally, the approach that would seem ideal is one where both the infrastructure
and platform aspects are readily taken care and the focus for the company is on
developing the solution, and the operations team's responsibility is for monitoring
the deployment. The operations team can check to make sure the production
deployment is in good health and raise alerts to the cloud platform provider,
who has the onus of maintaining SLAs, physical machine health, environmental
changes for applying software updates, and so on. The in-house team can dial up
or dial down the usage based on their needs. In our use case, they can pro-actively
increase the cloud resources for the beginning and end of the month or increase the
configuration at run-time when the situation requires it. This would be the ideal
choice that lets HomeUtiliiesOnline focus on building valued services and applications
for their customers without having to worry about how the system handles the
scenarios for failover or load burst.

Let's look at how Microsoft Windows Azure stacks up against our decision
framework. Note that only the decision criteria most pertinent to this use case are
included here.

Website Load Burst and Failover

[486]

Solution design aspects
One key decision is to design systems to work with large volumes of data but
provide fast response times. So it is critical to understand which portions of the
architecture need this performance aspects and how they will be affected when using
the on-premise versus cloud deployment model.

Next, one needs to decide the kind of data that needs to be moved to the cloud.
In scenarios where sensitive data or transactions need to flow only from on-premise
systems, it is typical for the read-only or consolidated reporting portions to be made
available in the cloud. In the case of HomeUtiliiesOnline, the capability to research
utilities consumption and look at consolidated utility spending patterns may be
moved over to the cloud system. Users can schedule payments from the cloud hosted
application but actual lookup of sensitive data stored in the on-premise system may
be via a service hosted in the cloud or completely done by the on-premise system.
Usage of the Windows Azure AppFabric (Service Bus and Access control services)
may be applicable here.

Analyze if and how each tier in the architecture can have a corresponding
representation in the cloud. To start off, making the web tier available in the cloud is
usually straight forward. In most cases, the same web solution developed for the on-
premise deployment can be easily modified for deployment in the cloud with some
minor changes to a website's web.config file. Stateless web applications will work
seamlessly. In the case that in-flight web connections get failed over, usually this
would require a restart of the user request submissions. For making the database tier
available in the cloud, the various artifacts (schema, stored procedures, indices, and
so on) of the on-premise data tier need to be replicated on the cloud database as well.
It is possible that the cloud database system lacks many of the robust on-premise
database systems, so portions of the applications that use the minimal functionality
across both systems may lend well to moving to the cloud. Synchronization between
the cloud and on-premise systems needs to be handled out of band. For example,
in the current release, the sync framework is not supported in SQL Azure. Finally
the business logic tier may need some modifications to expose the services as cloud
service endpoints. Hosting the set of WCF services as a web or worker role will need
some configuration and code changes.

Next, choose the allowable interactions between the various tiers deployed across
on-premise and cloud. For example, should the cloud hosted components be a tight
inter-operable unit or can the cloud hosted web application access the on-premise
database system? In the case of Windows Azure, the various tiers are separate
silos—so allowing a mixed model will work as long as there is no state that needs
to span across these systems. Building the components in such a modular fashion is
useful, especially if things need to be changed in the future.

Chapter 19

[487]

The security model becomes a critical choice when using a combination of cloud and
on-premise models –access control services can help federate security and are a
required component for the cloud based services, whose equivalent on-premise
security model could have just leveraged an ADFS model. The security model
for web users and database users is a little simpler. ASP.NET applications can
continue to use the provider model. For example, the security can be in a custom
implementation or a database. So now, the custom provider would need to ensure
that the various resources are available for authenticating users. Database users can
continue to specify user credentials in the SQL connection string.

In summary, there are a varied set of criteria that can skew the design choice based
on the factors outlined above.

Solution delivery aspects
The Windows Azure platform development environment leverages the typical
Microsoft Visual Studio .NET environment. Since HomeUtiliiesOnline has a large team
of .NET developers, it will be very easy for them to pick up this technology. The
platform comes with a set of developer deployment and debugging tools, making it
easy to build the system on a single developer machine.

Solution operation aspects
One of the key value-adds of the Windows Azure platform is the ability to elastically
scale and maintain the SLA for increased load or fail over scenarios. This helps to
limit the number of touch points the operations team needs to monitor and control
the system. However, the management story is probably not as rich as the on-
premise equivalent. The set of management tools and API is limited. Even though
the Windows Azure Service Management APIs are REST based APIs that can be
used to automate the deployment, management, and scaling of applications, it may
still need further validation to support additional run-time requirements such as
increasing capacity. On-premise tools such as Systems Center Operations Manager
used for pro-active monitoring are also missing for the cloud today. SQL Azure
databases need to be managed from SQL Management Studio, since the online portal
only allows basic operations.

Organizational aspects
Even though the Microsoft cloud platform is a V1 offering, it is a core part of the
company's strategy as it moves to the online model. Just recently in 2010 Q2, there
are more than 10,000 customers who have deployed solutions to production on
this platform. By adopting the Windows Azure platform, HomeUtiliiesOnline will
continue to leverage their existing .NET investments and can continue to build upon
for the future.

Website Load Burst and Failover

[488]

Solution evaluation

Design Delivery Operations Organization

Windows Azure Platform
Benefits

Supports elastic scale for large data sets

Easy integration using Visual Studio and
existing skillsets

Choice of pure cloud versus mixed model

Risks

Lack of extensive community code/
resources given a version1.0 product

Many of the operational aspects will
continue to evolve and don't yet have the
rich tools

Building the solution
This section will build out a portion of the solution to demonstrate the
implementation on the Windows Azure platform. The solution contains three
projects – the ASP.NET web tier, a small portion of the WCF business logic, and
finally the Windows Azure Cloud Service project. The database aspects of the
solution are left out; please refer to the SQL Azure section of Chapter 6 of this book
for understanding its design and deployment model. Here is a quick summary of the
steps we will use:

•	 We will add ASP.NET code for the web role of the cloud services project.
For the ASP.NET page design and code, we will use the ASP.NET Webtier
project that is already present in the starter solution.

•	 Within the same web role, we will then create and host a WCF service.
For the WCF service creation, we will use the WCFServiceTier project
which again is already present in the starter solution.

•	 After updating the web role project, we will modify it to host the WCF
service within ASP.NET and wire up the logic to invoke the WCF
service from ASP.NET.

•	 We will build and test the solution on the development machine and use
the Development Fabric.

•	 Finally, we will deploy and host the solution on Windows Azure.

Chapter 19

[489]

Setup
A project solution AppliedArchitecture.Chapter19.HomeUtilitiesOnline.
sln has been created in the <Installation Directory>\Chapter19\Begin folder.
This solution contains the three projects that we will be using in this exercise. The
cloud services project will be deployed and tested. This project was created using the
"Windows Azure Cloud Service" template that is installed as part of the Windows
Azure SDK. If you need to understand how to create such a project and include
the various roles, please refer to the solution that is part of Chapter 6, which is the
Windows Azure primer chapter. That lab solution has screenshots that show wiring
up the various roles.

The other two projects, Webtier and WCFServiceTier, exist as a head-start for
creating the service and ASP.NET logic for the cloud service. These two projects will
not be deployed or tested.

Before beginning the solution, you must have the latest Windows Azure SDK and
Windows Azure tools installed on your development machine. You can access them
from http://www.microsoft.com/windowsazure/windowsazuresdk/ and set
them up for your environment. Also make sure all the system requirements and
instructions to install any latest hotfixes have been followed. These labs have been
developed using Visual Studio 2010 and the Windows Azure Tools for Microsoft
Visual Studio 1.2 (June 2010).

As part of the SDK installation, you should get the Windows Azure Cloud Services
Visual Studio project template, the development fabric, and the development storage
fabric on your machine. The development fabric simulates the cloud environment
locally by simulating a hosting environment for the web and worker roles part of the
project. From the task bar, you can start or shut down the development fabric.

If you need to host the solution on Windows Azure, then you need
to register on the Windows Azure portal and have an account set up.
Please refer to Chapter 6, Windows Azure Platform Primer to get further
instructions. For this exercise, this step is not a necessity and you can run
our solution on the local development fabric until step 5 in the "Testing
and Deploying the cloud service" instructions as follows.

http://www.microsoft.com/windowsazure/windowsazuresdk/

Website Load Burst and Failover

[490]

Adding the WCF portion to Cloud Service
1.	 Launch Visual Studio.NET 2010 and open the AppliedArchitecture.

Chapter19.HomeUtilities.sln in the <Installation Directory>\
Chapter19\Begin folder. You should see the empty cloud services project,
the WCFServiceTier project, and the Webtier project.

2.	 Right-click on the Web Role1 project and add a new item. From the Visual
Studio designer, choose WCF service from the set of installed templates and
give Service1 as the name for this service.

3.	 Next, add code to IService.cs and Service1.svc.cs using the equivalent files
from the WCFServiceTier project.

4.	 Additionally, in Service1.svc.cs, at the beginning add the following
using statement:
using System.Collections;

using System.ServiceModel.Activation;

5.	 Next modify Service1.svc.cs by adding the following lines of code right
before the service declaration:
[ServiceBehavior(AddressFilterMode = AddressFilterMode.Any)]

[AspNetCompatibilityRequirements(RequirementsMode =

 AspNetCompatibilityRequirementsMode.Allowed)]

6.	 At the end of this operation, your WebRole1 project should be as follows:

Chapter 19

[491]

7.	 Then open the project's web.config and add the following section for the
new behavior to support hosting on Windows Azure. You can find this
under the system.servicemodel section of the configuration file.
 <behavior name="httpAzureBehavior">

 <serviceMetadata httpGetEnabled="true" />

 <serviceDebug includeExceptionDetailInFaults="false" />

 <useRequestHeadersForMetadataAddress>

 <defaultPorts>

 <add scheme="http" port="80" />

 <add scheme="https" port="443" />

 </defaultPorts>

 </useRequestHeadersForMetadataAddress>

 </behavior>

8.	 Build the project to make sure there are no errors. With this step, you are
done adding the basic WCF business logic to the project.

Adding the ASP.NET portion to Cloud Service
1.	 From the Web role project, now open Default.aspx and design the page

similar to the page in the Webtier project. You can actually copy the files if it
is easier. If you do copy, make sure that the namespace in Default.aspx.cs,
is WebRole1 and the Default.aspx source view is set up correctly to refer to
WebRole1 and not instead to Webtier.

2.	 We are using the web role to host both the ASP.NET and WCF service so that
they will be deployed on the same virtual machine on the cloud. Another
design option could be to host the WCF service as a separate role, if there are
other clients that could access it.

3.	 Remove the projects WebTier and WCFServiceTier since they are no
longer required.

4.	 Rebuild the solution. View Default.aspx in a browser window to make sure
the page gets loaded correctly.

5.	 Open Default.aspx.cs and add the following piece of code:
private static Service1 invoker;

 protected void Page_Load(object sender, EventArgs e)

 {

 if (invoker == null)

 invoker = new Service1();

 }

Website Load Burst and Failover

[492]

6.	 For the GetUtilProviders button click event, add the following code snippet:
string zipcode = "98052";

int index = zipCodeDropDown.SelectedIndex;

if (index < 0)

 index = 0;

zipcode = zipCodeDropDown.Items[index].ToString();

string providers = invoker.GetProviders(zipcode);

OutputListBox.Items.Add(providers);

7.	 For the GetExpensePatterns button, add the following bit of code:
string zipcode = "98052";

int index = zipCodeDropDown.SelectedIndex;

if (index < 0)

 index = 0;

zipcode = zipCodeDropDown.Items[index].ToString();

string output = invoker.GetExpensePatterns(zipcode);

OutputListBox.Items.Add(output);

8.	 For the SubmitExpenses button, add the following code snippet:
string zipcode = "98052";

string user = UserTxtBox.Text;

string utilityProvider = UtilityProviderTxtBox.Text;

int expenseAmount = Convert.ToInt32(ExpenseAmoutTxtbox.Text);

int index = zipCodeDropDown.SelectedIndex;

if (index < 0)

 index = 0;

zipcode = zipCodeDropDown.Items[index].ToString();

invoker.MakePayment(user, zipcode, utilityProvider,
expenseAmount);

9.	 Build the solution and now you are done with the code changes. We will test
the solution on the development AppFabric and finally deploy it to the cloud.

Chapter 19

[493]

Testing and deploying the Windows Azure
Cloud Service

1.	 In Visual Studio, click on ServiceConfiguration.csfg and modify the
instances count to 3.

2.	 Then, bring up the Development Fabric UI by right-clicking on the task bar
and choosing the option Show Development Fabric UI.

3.	 From the Visual Studio solution explorer, select the AppliedArchitecture.
Chapter19.HomeUtilities project and hit F5.

4.	 If you click on the instance ID under WebRole1 for the service named
AppliedArchitecture.Chapter19.HomeUtilities, you can see the multiple
role instances running and the development fabric doing the status checks.

Website Load Burst and Failover

[494]

5.	 There should be a browser window that loads Default.aspx. On the
browser window, provide some test values to see that the application is
performing. Some sample output is shown as follows:

When using multiple instances, the logic to store the expenses should
be moved to either SQL Azure or to Windows Storage. If you maintain
the in-memory state within the service (for example, in a hash table),
when these role instances get deployed to different virtual machines, the
output will be incorrect.

6.	 Next, we will modify the solution to host it on Windows Azure.
You can reduce the number of Web role instances to 1. Go to
https://windows.azure.com/Cloud/Provisioning/Default.aspx,
click on your project, and then click on Create a new service. Choose
hosting service and give a friendly name to your service with the publically
accessible URL.

7.	 Now, you are ready to publish the solution to Windows Azure. Before doing
this you will need to associate your solution with a certificate and upload
the certificate to the portal. This is done to ensure that the right security is in
place to access your online account. If you don't have a certificate already,
this is how it needs to be created. Right-click on the AppliedArchitecture.
Chapter19.HomeUtilities project and select Publish. From Credentials,
select Add; this will bring up a pop-up which is shown as follows:

https://windows.azure.com/Cloud/Provisioning/Default.aspx
https://windows.azure.com/Cloud/Provisioning/Default.aspx

Chapter 19

[495]

8.	 From the drop down shown in (1) in the picture above, click on <Create>.
This will create a new certificate on your machine.

9.	 Next, click on Copy the full path of the certificate and then click on
Developer Portal, which will open up a browser window. You might need
to run the browser in administrator mode.

10.	 From the developer portal, choose your Project name, then pick the correct
hosted service and then choose the Account tab on the top. Then click
on Manage My API certificates. You should see an option to upload the
certificate file from local storage. Click on Browse and paste the certificate
path that was copied in the earlier step. Upload the certificate to the portal.
Then from the Account page, copy the Subscription ID.

11.	 Now go back to the Visual Studio window and paste the Subscription ID in
step 3 shown in the screenshot above and continue with the Publish process.
At the end of this process, your window should look similar to the following
screenshot:

Website Load Burst and Failover

[496]

12.	 From Visual Studio, you can monitor the progress of the publish process.

Instead of doing the complete publish process from Visual
Studio, alternatively you can choose to just create the
deployment package from Visual Studio and then upload the
package from the Windows Azure portal.

13.	 Now from the Windows Azure portal, you can move the deployment from
staging to production and test the application.

Chapter 19

[497]

Summary
With the advent of the Windows Azure platform, it is increasingly becoming the
platform choice for handling load burst and failover scenarios. With the support for
the various features such as out of the box high availability, really high SLAs (99.99)
guarantees, elastic scale across "infinite" resources, and importantly, consumption-
based pricing model, it now becomes compelling for enterprises and small medium
businesses to leverage it for lowering TCO. However, there are a set of design criteria
and corporate policies that need to be considered to allow mixed access patterns
where the various tiers—web, business, and data tier can access the on-premise or
the cloud hosted logic. Such a mixed deployment model lets companies leverage
their existing infrastructure and complement it with the elastic aspects of the
Windows Azure platform, thus lowering the operation costs.

Wrap Up
In this book, we sought to provide direction to those trying to figure out when to
use a particular Microsoft application platform product. Microsoft has provided
architects and developers with a vast array of solution choices, but it often takes
years of experience before we truly understand the ideal use cases and nuances of
the products being offered. My fellow authors and I have put forth a methodical
approach that looks at a full spectrum of aspects to consider when selecting the
appropriate product for a solution. The Decision Framework outlined key categories
that covered architecture quality attributes as well as strategy, delivery, and
operations. Assessing all of these dimensions will allow us to make an informed and
confident choice.

One thing we did not include in our Decision Framework is a weighting mechanism.
That is, we all know that all requirements are not created equal. Some requirements
are "must have" and others are "nice to have." It is the role of the architect to identify
and amplify the solution needs that are crucial for success and ensure that those needs
are at the top of mind when assessing implementation choices. This can help prevent
"analysis paralysis" where your team goes round and round over product evaluations
and cannot seem to come to a conclusion. By focusing on the key solution (and
organizational) needs, and which product best addresses them, you can move forward
with a peace of mind. This means not looking at every principle in the Decision
Framework as a deal-breaker. What if low latency processing is absolutely critical, but
the best choice fails to have an ideal product administrative function? Which is most
important? Classify the questions you ask by priority of need.

Wrap Up

[500]

What did we find?
We learned through the process of writing this book that some of our preconceived
notions about what products can (or cannot) do was out of date. BizTalk is not the
only solution for message routing and processing, but at the same time, BizTalk
Server still represents the leading choice for doing enterprise-class reliable messaging
on the Microsoft stack. We learned that the SQL Server stack of products is really
maturing and tools like Service Broker and StreamInsight warrant our architectural
attention. We found that Windows Server AppFabric made hosting WCF and WF
services in IIS a viable enterprise solution with enough management and durability
to satisfy many organizational requirements. The Microsoft cloud services, while
admittedly in a "version 1" state, do not just duplicate on-premise capabilities but
also offer inventive ways to solve old problems. The biggest thing that we learned
is that even though there is a clear overlap amongst the application platform
technologies, there are also clear differentiators and ideal use cases for each.

Where to go next
As we stated back in the introduction, this book is not a tutorial on the Microsoft
application platform. Nor does it provide you with a cookie-cutter checklist for each
and every technology problem you encounter. Rather, I hope that you walk away
from this book and do three things:

1.	 Take a more holistic approach to selecting the underlying technology for
your solutions. Investigate your use case and aggressively pursue functional,
non-functional, and derived requirements in order to get the full scope of the
problem at hand. Then assess the software platform components against the
key dimensions of evaluation.

2.	 Customize the decision framework to meet your organizational
needs. While we think that our four categories of consideration (design,
development, operations, and organization) sufficiently cover your key
stakeholders, this model is not set in stone. Look for ways to add/subtract/
modify the qualifying questions that make up each decision area and
personalize it in a way that suites your team.

3.	 Commit to establishing more technical depth on one unfamiliar Microsoft
platform technology. There are not enough hours in the day to go off and
become a rock star for each technology highlighted in this book. What you
CAN do is look for your biggest area of weakness, and dedicate time to fully
understanding the solution space and patterns for that product.

Writing this book was a valuable exercise for us, and hopefully reading it was a
beneficial one for you. We look forward to continuing this discussion with you and
improving the practice of architectural assessment.

Symbols
.NET-based polling, polling pattern

benefits 297
organizational aspects 293
risks 297
solution delivery aspects 293
solution design aspects 292
solution evaluation 293
solution operation aspects 293

.NET Remoting 35

A
access control service, Windows Azure

platform AppFabric 137
accountDictionary 170
adapters 66, 77
adapter, Watson Media Properties

Abandon Cart events 355
creating 343
Current Time Increment (CTI) events 350
Event Publisher 354
IDeclareAdvanceTimeProperties interface

350
Main() function 352
MsmqUntypedInputFactory class 350
point event 344
typed adapter 343
untyped adapter 343
untyped point adapter, building 344, 345
using statements, adding 349
WebEventLogSummaryDetails object 353

address, WCF configuration 31
aggregate workflow, AllFriends Media

building 441-443, 448, 456

AllFriends Media, use case
about 429, 430
additional facts 431
aggregate workflow, building 441-444,

448-455
application latency 432
BizTalk Server 433
BizTalk Server, organizational aspects 434
BizTalk Server, solution delivery aspects

433
BizTalk Server, solution design aspects 433
BizTalk Server, solution operation aspects

434
distance 432
dropped packets 432
firewall latency 432
internet latency 432
key requirements 431
low-latency scenario 431, 432
pattern description 432
pattern, description 431
router latency 432
setup 440
solution, building 440
solution evaluation 436
solution, testing 456, 457
vendor specific workflow, building 441-455
Windows Azure platform 436
Windows Azure platform, organizational

aspects 438
Windows Azure platform, solution delivery

aspects 437
Windows Azure platform, solution design

aspects 437
Windows Azure platform, solution

evaluation 438

Index

[502]

Windows Azure platform, solution
operation aspects 437

Windows Server AppFabric 434, 435
Windows Server AppFabric, Organizational

aspects 436
Windows Server AppFabric, solution

delivery aspects 435
Windows Server AppFabric, solution

design aspects 435
Windows Server AppFabric, solution

operation aspects 436
ALTER DATABASE statement 102, 112
ALTER TABLE statement 102
application latency 432
application-server, Windows Server

AppFabric
about 43
controls 44
hosting 44
monitoring 44
persistence 44
scripting 44

applications, modeling as workflow
advantages 31
framework, leveraging 32
problem solving, consistent approach to 32
problem solving, designer-based 31
workflow services 32

ASMX service 35
ASP.NET portion, HomeUtiliiesOnline

adding, to Cloud Service 491, 492
attorney client privilege and attorney work

product rules
URL 400

availability considerations, solution
operation aspects

software criteria 23
Azure AppFabric account, Virtual Cow

Media
e-mail confirmation 301
ServiceBus Connection Packs, setting 301
signing up for 300

Azure components
example solution 138
scenario 138
setup 138
steps 139-146

Azure Platform AppFabric service bus,
publish/subscribe pattern

benefits 226
organizational, aspects 220
risks 226
solution delivery, aspects 219
solution design, aspects 218, 219
solution evaluation 220
solution operations, aspects 219

B
BAMArchive 76
BAMPrimaryImport 76
BasicHttpRelayBinding (BasicHttpBinding)

299
Big Box Stores, use case

about 310, 311
additional facts 311, 312
BizTalk Server, organizational aspects 316
BizTalk Server, solution delivery aspects

315
BizTalk Server, solution design aspects 315
BizTalk Server, solution evaluation 316
BizTalk Server, solution operations aspects

315
bulk load approach 309
Big Box Stores, use casecandidate

architecture 312
debatching bulk data 309
key requirements 311
point of sales (POS) systems 310, 311
solution, building 318
SQL, debatching with 321-328
SSIS, debatching with 321, 329, 330
SSIS, organizational aspects 314
SSIS, solution delivery aspects 313
SSIS, solution design aspects 312, 313
SSIS, solution evaluation 314
SSIS, solution operations aspects 313, 314

binding, WCF configuration 31
BizTalk application

example 82-95
BizTalk, architecture

adapters 77
BizTalk databases 76
BizTalk host 75

[503]

BizTalk message flow 71, 73, 74
Enterprise Single Sign-On 77
host instance 75
Key BizTalk server 74
maps 79, 80
maps, performance 80
messages 78
orchestration 81
pipeline 78

BizTalk databases. See databases, BizTalk
BizTalkDTADb 76
BizTalk host 75
BizTalk Management Database 74
BizTalk Mapper 73
BizTalkMgmtDb 76
BizTalkMsgBoxDb 76
BizTalkRuleEngineDb 76
BizTalk Server

features 66
BizTalk Server, complex event processing

(CEP)
benefits 341
organizational, aspects 340
risks 341
solution delivery, aspects 339
solution design, aspects 338, 339
solution evaluation 340
solution operations, aspects 339

BizTalk Server, content-based routing
pattern

about 189
benefits 196
organizational, aspects 191, 192
risks 196
solution delivery, aspects 191
solution design, aspects 190, 191
solution evaluation 192
solution operation, aspects 191

BizTalk Server, debatching bulk data
benefits 317
organizational aspects 316
risks 317
solution delivery, aspects 315
solution design, aspects 315
solution evaluation 316
solution operations, aspects 315

BizTalk Server, human workflow pattern

about 252
benefits 255
organizational, aspects 253
risks 255
solution delivery, aspects 253
solution design, aspects 252
solution evaluation 253
solution operation, aspects 253

BizTalk Server, low-latency scenario
about 433
organizational aspects 434
risks 439
solution delivery, aspects 433
solution design, aspects 433
solution operations, aspects 434

BizTalk Server, polling pattern
about 294
benefits 297
organizational, aspects 295
risks 297
solution delivery, aspects 294
solution design, aspects 294
solution evaluation 295
solution operation, aspects 295

BizTalk Server, publish/subscribe pattern
benefits 226
operational, aspects 222
risks 226
solution delivery, aspects 221
solution design, aspects 220, 221
solution evaluation 222
solution operations, aspects 222

BizTalk Server, Scatter-Gather pattern
implementation

about 156
benefits 160
organizational, aspects 157
risks 160
solution delivery, aspects 157
solution design, aspects 156
solution operations, aspects 157

BizTalk Server, use cases
Business Process Automation (BPA) 70
Business-to-Business (B2B) 70
Enterprise Application Integration (EAI)

68, 69
Enterprise Service Bus (ESB) 71

[504]

BizTalk Server (with ESB Toolkit), message
business pattern

about 362
benefits 368
organizational, aspects 366
risks 368
solution delivery, aspects 365
solution design, aspects 362, 364
solution evaluation 366
solution operations, aspects 365

blobs storage, Windows Azure 123
Bowl For Buddies, use case

additional facts 250
BizTalk Server 252
BizTalk Server, organizational aspects 253,

254
BizTalk Server, solution delivery aspects

253, 254
BizTalk Server, solution design aspects 252
BizTalk Server, solution evaluation 253
BizTalk Server, solution operation aspects

253, 254
core workflow, building 258-272
human workflow pattern 251
key requirements 250
setup 256, 258
solution, building 256
Windows Server AppFabric 253
Windows Server AppFabric, solution

design aspects 254
Business Intelligence (BI) 98
Business Process Automation (BPA) 70
Business-to-Business (B2B) 70

C
cache administration, distributed cache 46
cache client, distributed cache 46
cache cluster design 45
cache notifications, distributed cache 51, 52
caching, AppFabric

example 56
setup 56
steps 56-62

caching services, distributed cache 46
CanCreateInstance property 201
candidate architecture, Big Box Stores

BizTalk Server 314
SSIS 312

candidate architecture, Bowl For Buddies
BizTalk Server 252
Windows Server AppFabric 253

candidate architecture, LarHans
Pharmaceuticals

Azure Platform AppFabric service bus 218
BizTalk Server 220
SQL Service Broker 223

candidate architecture, McKeever
Technologies

BizTalk Server 189
SQL Server 2008 R2 192
WCF and Windows Server AppFabric 194

candidate architecture, Sam Maccoll
Commodities

about 362
BizTalk Server (with ESB Toolkit) 362
Windows Server AppFabric 366

candidate architecture, Sam Maccoll
Financial

BizTalk Server 156
Windows Server AppFabric 158

candidate architecture, Virtual Cow Media
.NET-based polling 292
BizTalk Server 294
Windows Azure platform AppFabric 295

candidate architecture, Watson Media
Properties

BizTalk Server 338
StreamInsight 336

canonical solution artifacts, LarHans
Pharmaceuticals

BizTalk project 228
building 228
Choosing a strong name key drop down

box 228
Create Strong Name 228
Deployment tab 228
ProductLabelChange_XML.xsd schema 231
Property Fields tab 231
Schema Files category 228
Signing tab 228
Target Namespace property 229

Capital Expenditure (CAPEX) 117
client layer, SQL Azure 129

[505]

clients 45
Cloud Service, HomeUtiliiesOnline

ASP.NET portion. adding 491, 492
WCF portion. adding 490, 491

complex event processing (CEP), Watson
Media Properties

about 335, 336
BizTalk Server 338
description 335, 336
StreamInsight 336

compute layer, Windows Azure
about 122
web role 122
worker role 122

Connectors collection 107
construction considerations, solution

delivery aspects
aspectssoftware criteria 21

content-based routing pattern, McKeever
Technologies

candidate architecture 189
description 189
router service, adding 210-213
setup 197, 198
solution, building 197
workflow, building 198-209

content-based routing service 33
Content Delivery Network (CDN) 125
contract, WCF configuration 31
core workflow, Bowl For Buddies

Assign shape 271
Assign shape, dragging 267
building 258-260
Send Email activity 264
Send Email Error Notification sequence

activity 272
Send Email sequence activity 265
SendNotificationResponse property 271
SendReplyToReceive activity 269
Send Success Notification sequence activity

270
TextEventLog property 273, 274
top-level flowchart 262

CREATE TABLE command 133
Crude Palm Oil (CPO) 357
currentCustomer 170
Current Time Increment (CTI) events 350

Customer 172
customer list, Bowl For Buddies

creating 276-278

D
Dallas, project 138
databases, BizTalk

about 76
BAMArchive 76
BAMPrimaryImport 76
BizTalkDTADb 76
BizTalkMgmtDb 76
BizTalkMsgBoxDb 76
BizTalkRuleEngineDb 76
SSODB 76

data formats 67
data integration considerations, Solution

design aspects
software criteria 15, 16

data publisher, LarHans Pharmaceuticals
configuring 237-240

David Chappell's Whitepaper, URL 32
debatching bulk data, Big Box Stores

encryption 318, 319
solution, building 317
target system 320

decision framework
applying 26
architecture strategy, deciding 13, 14
input sources 11
need for 10
recommendations 10

decision framework, dimensions
organizational considerations 14, 24, 26
solution delivery 20
solution design 14, 16
solution development 14, 21
solution operations 14, 22, 23

decision framework, input sources
derived requirements 12
functional requirements 11
non-functional requirements 12
organization direction 13

declarative model 34
DeploymentDiagnosticsManager class 126

[506]

derived requirements, decision framework
12

destinationConnString 111
DiagnosticMonitor class 126
DisplayName property 201
distance 432
distributed cache, Windows Server

AppFabric
about 45, 46
benefits 46
cache administration 46
cache client 46
cache cluster design 45
cache host 46
cache notifications 51, 52
caching services 46
clients 45
eviction 49
expiration 49
High Availability (HA) 45, 51
lead hosts 47
local cache 50
named cache 49
NetworkService account 46
regions 49
SQL Azure 46

distributed systems 30
drive storage, Windows Azure 124
dropped packets 432
DTC transaction 81

E
Electronic Discovery Reference Model,

phases
identification 399
information management 399
presentation 399
preservation and collection 399
processing, review and analysis 399
production 399

encryption 318, 319
End Point Manager (EPM) component 73
enhanced library 34
enhancements

WCF 33
WF 33, 34

Enterprise Application Integration (EAI)
about 68, 69

Enterprise Service Bus (ESB)
about 71

Enterprise Single Sign-On 77
entities 66
error handling considerations, Solution

design aspects
software criteria 18, 19

ESB Toolkit documentation
URL 370

ESB Toolkit, Sam Maccoll Commodities
BTS.ReceivePortName property 382
existing transformation, using within ESB

itinerary 379-384
messaging based routing with ESB imple-

menting, itinerary service broker pat-
tern used 384-391

utilizing 379
event-driven architecture (EDA) , Watson

Media Properties 335
Event Tracing for Windows (ETW) 126
Event Tracing for Windows (ETW) events

34
eviction, distributed cache 49
expiration, distributed cache 49
Extensible Application Markup Language.

See XML

F
fabric controller, Windows Azure 121
failover pattern, HomeUtiliiesOnline 483
FDA subscriber, LarHans Pharmaceuticals

configuring 237-240
FDA subscriber solution artifacts, LarHans

Pharmaceuticals
AckID source 236
BizTalk WCF Service Consuming Wizard

232
building 232
ConsumerContact source 234
Hazard source 234
ImpactedLots/Lot source 234
Incidents/Incident/Date source 234
Incidents/Incident/Description source 234
ProductLabelChange type 235

[507]

Product source 234
References node 236
Timestamp source 236

firewall latency 432
flowchart 34
Flow Chart Workflow 31
Foreach loop container 410
functional requirements, decision

framework 11
functoids 79

G
general design considerations, Solution

design aspects
software criteria 19, 20

general operation considerations, solution
operation aspects

software criteria 24
getAccountInfo button 182
GetCheckingAccountResults 172
GetCustomerAccounts() operation 178
GetSavingAccountResult 173
GetSavingAccountResults 173
Global Assembly Cache (GAC) 91

H
High Availability (HA), distributed cache

45, 51
HomeUtiliiesOnline, use case

about 481, 482
additional facts 482, 483
ASP.NET portion, adding to Cloud Service

491, 492
failover pattern 483
key requirements 482
load burst pattern 483
pattern description 483, 484
setup 489
solution, building 488
WCF portion, applying to Cloud Service

490, 491
Windows Azure 485
Windows Azure, benefits 488
Windows Azure Cloud Service, deploying

493-496
Windows Azure Cloud Service, testing

493-496
Windows Azure, organizational aspects

487
Windows Azure, risks 488
Windows Azure, solution delivery aspects

487
Windows Azure, solution design aspects

486, 487
Windows Azure, solution evaluation 488
Windows Azure, solution operation aspects

487
host, BizTalk 75
host instance 75
hub and spoke model 100
human workflow pattern, Bowl For Buddies

logical architecture 251
Hyper-V environment 122
Hyper-V, World Wide Widgets (WWW)

about 421
organizational, aspects 421
solution design, aspects 421
solution evaluation 422
solution operations, aspects 421

I
IDeclareAdvanceTimeProperties interface

350
infrastructure layer, SQL Azure 129
initiator 101
IntelliSense 34
Internet Information Services (IIS) 42
internet latency 432

K
Key Performance Indicators (KPIs) 22

L
LarHans Pharmaceuticals, use case

about 215, 216
additional facts 217
Azure Platform AppFabric service bus 218
Azure Platform AppFabric service bus,

organizational aspects 220
Azure Platform AppFabric service bus,

solution delivery aspects 219

[508]

Azure Platform AppFabric service bus,
solution design aspects 218, 219

Azure Platform AppFabric service bus,
solution evaluation 220

Azure Platform AppFabric service bus,
solution operations aspects 219

BizTalk Server 220
BizTalk Server, organizational aspects 222
BizTalk Server, solution delivery aspects

221
BizTalk Server, solution design aspects

220, 221
BizTalk Server, solution evalution 222
BizTalk Server, solution operations aspects

222
canonical solution artifacts, building

228-231
data publisher, configuring 237-240
FDA subscriber, configuring 237-240
FDA subscriber solution artifacts, building

232-236
federal agencies 215
internal sales team 215
key requirements 216
public website news feed 215
publish/subscribe pattern, description 217,

218
setup 227
SQL Service Broker 223
SQL Service Broker, organizational

aspects 225
SQL Service Broker, solution delivery

aspects 224
SQL Service Broker, solution design

aspects 223
SQL Service Broker, solution evaluation

225
SQL Service Broker, solution operations

aspects 225
website database subscriber, configuring

245-247
website database subscriber solution arti-

facts, building 241-244
lead hosts 47
least recently used (LRU) scheme 49
load burst pattern, HomeUtiliiesOnline 483
local cache, distributed cache 50

low-latency scenario, AllFriends Media
application latency 432
BizTalk Server 433
distance 432
dropped packets 432
firewall latency 432
internet latency 432
router latency 432
Windows Azure platform 436
Windows Server AppFabric 434, 435

M
Main() function 352
Main method 303
maps, BizTalk

about 79, 80
performance 80

master data management (MDM), World
Wide Widgets (WWW) 395

Master Data Services
about 99, 100
hub and spoke model 100

master data services, World Wide Widgets
(WWW) 397

about 401
application, creating 402
Configuration manager 404
database, selecting 403
default management page 405
Widge-O product line 402

McKeever Technologies, use case
about 187, 188
additional facts 188
BizTalk Server 189
BizTalk Server, organizational aspects 191
BizTalk Server, solution delivery aspects

191
BizTalk Server, solution design aspects 190,

191
BizTalk Server, solution operation aspects

191
content-based routing pattern 189
key requirements 188
pattern, description 189
router service, adding 210-213
setup 197, 198

[509]

solution, building 197
solution evaluation 192, 193
SQL Server 2008 R2 192
SQL Server 2008 R2, organizational aspects

193
SQL Server 2008 R2, solution delivery

aspects 193
SQL Server 2008 R2, solution design aspects

192
SQL Server 2008 R2, solution operation

aspects 193
WCF and Windows Server AppFabric 194
WCF and Windows Server AppFabric,

organizational aspects 195
WCF and Windows Server AppFabric,

solution delivery aspects 194
WCF and Windows Server AppFabric,

solution design aspects 194
WCF and Windows Server AppFabric,

solution evaluation 195
WCF and Windows Server AppFabric,

solution operation aspects 195
workflow, building 198-209

MERGE function 103
message business pattern, Sam Maccoll

Commodities 359-361
message flow, BizTalk

about 71-74
BizTalk Mapper 73
End Point Manager (EPM) component 73
MessageBox 72
Messaging Engine 72
receive port 72
send ports 72

messages, BizTalk 78
Microsoft Codename 138
Microsoft Distributed Transaction Coordi-

nator (MSDTC) 42
Microsoft Message Queuing (MSMQ) 42
Microsoft Sync Framework. See Sync

Framework
monolithic solution, Sam Maccoll Com-

modities
deploying 371-376
item inventory check status, codes 378
PO status, codes 377
system, cureent behavior 378

MSMQ channel 33
MsmqUntypedInputFactory class 350

N
n

Action property 201
named cache, distributed cache 49
NetEventRelayBinding (service bus specific)

299
NetOnewayRelayBinding (service bus

specific) 299
NetTcpRelayBinding (NetTcpBinding) 299
NetworkService account 46
non-functional requirements, decision

framework 12
nvarchar datatype 108

O
Operational Expenditure (OPEX) 117
OperationName property 201
orchestration, BizTalk 81
orchestration engine 66
organizational aspects

organization considerations 25, 26
organization considerations, solution

operation aspects
software criteria 25, 26

organization direction, decision framework
13

P
package, SSIS 100
parallel data warehouse 104
performance considerations, solution

operation aspects
software criteria 22

performance Counter improvements 34
pipeline, BizTalk 78
platform layer, SQL Azure 129
polling pattern, Virtual Cow Media

Azure AppFabric account, signing up for
300-02

BasicHttpRelayBinding (BasicHttpBinding)
299

candidate architecture 292

[510]

NetEventRelayBinding 299
NetEventRelayBinding (service bus

specific) 299
NetOnewayRelayBinding 299
NetOnewayRelayBinding (service bus

specific) 299
NetTcpRelayBinding (NetTcpBinding) 299
solution, building 299
WCF service bus bindings 299
WCF services, creating 302-306
WebHttpRelayBinding (WebHttpBinding)

299
WS2007HttpRelayBinding

(WS2007HttpBinding) 299
post-office analogy model 101
process management 67
publish/subscribe pattern, LarHans

Pharmaceuticals
about 217, 218
candidate architecture 218
canonical solution artifacts, building 228,

229, 230, 231
data publisher, configuring 237-240
publish/subscribe pattern, LarHans

PharmaceuticalsFDA subscriber,
configuring 237-240

FDA subscriber solution artifacts, building
232-237

setup 227
solution, building 227
website database subscriber, building 245,

246, 247
website database subscriber solution

artifacts, building 241-244

Q
queue storage, Windows Azure 124

R
regions, distributed cache 49
relational data, World Wide Widgets

(WWW)
fetching 400

RelationalSyncProvider object 111
Representational State Order (REST) 127
requirements

derived requirements 12
functional requirements 11
non-functional requirements 12

resource considerations, solution delivery
aspects

software criteria 20, 21
Retirement Account shape 173
retirementResponse 171
retirement service 169
RoleInstanceDiagnosticManager class 126
router service, content-based routing pattern

adding 210
behavior, adding 212
service, adding 212
WCF 4.0 routing section 211

RSS feed
writing, to SQL Server 106-110

S
SAM. See Sam Maccoll Commodities, use

case
Sam Maccoll Commodities, use case

about 357, 358
additional facts 359
BizTalk application, configuring 373-376
BizTalk application, publishing 374
BizTalk Server (with ESB Toolkit,

organizational aspects 366
BizTalk Server (with ESB Toolkit, solution

delivery aspects 365
BizTalk Server (with ESB Toolkit, solution

design aspects 362-364
BizTalk Server (with ESB Toolkit, solution

evaluation 366
BizTalk Server (with ESB Toolkit, solution

operations aspects 365
BizTalk (with ESB Toolkit) 362
BizTalk (with ESB Toolkit), benefits 368
BizTalk (with ESB Toolkit), risks 368
candidate architecture 362
Crude Palm Oil (CPO) 357
ESB Toolkit, utilizing 379
existing transformation, using within ESB

itinerary 379-384
item inventory check status, codes 378
key requirements 359

[511]

key requiremnets 359
message business pattern 359-361
messaging based routing with ESB

implementing, itinerary service broker
pattern used 384-391

monolithic solution, deploying 371-373
pattern, description 359-361
PO status, codes 377
setup 370, 371
solution, building 369, 370
system, current behavior 378
Windows Server AppFabric 366
Windows Server AppFabric, benefits 369
Windows Server AppFabric, organizational

aspects 368
Windows Server AppFabric, risks 369
Windows Server AppFabric, solution

delivery aspects 367
Windows Server AppFabric, solution

design aspects 366
Windows Server AppFabric, solution

evaluation 368
Windows Server AppFabric, solution

operations aspects 367
Sam Maccoll Financial, use case

about 149, 150
additional facts 151
BizTalk Server 156
BizTalk Server architecture selection 160,

161
BizTalk Server, organizational aspects 157
BizTalk Server, solution delivery aspects

157
BizTalk Server, solution design aspects 156
BizTalk Server, solution operations aspects

157
buy versus build strategy 150
candidate architecture 156
initial setup 161-166
key requirements 150
Parallel Actions shape 158
Scatter-Gather pattern, description 152
Scatter-Gather pattern, implementation

factors 153-155
Scatter-Gather pattern implementing,

aggregator used 156

service aggregator workflow service,
building 167-177

service aggregator workflow service,
consuming with ASP.NET 181-184

service aggregator workflow service, testing
178-180

solution, building 161, 162
Windows Server AppFabric 158
Windows Server AppFabric, 158
Windows Server AppFabric, architecture

selection 160, 161
Windows Server AppFabric, organizational

aspects 159
Windows Server AppFabric, solution

delivery aspects 159
Windows Server AppFabric, solution

design aspects 158, 159
Windows Server AppFabric, solution

evaluation 160
Windows Server AppFabric, solution

operations aspects 159
savingResponse 171
savings service 169
Scatter-Gather pattern implementation

aggregator used 156
BizTalk Server 156
initial setup 162-167
service aggregator workflow service,

building 167-172
service aggregator workflow service,

consuming with ASP.NET 181-184
service aggregator workflow service, testing

178, 179, 180
solution, building 161, 162
Windows Server AppFabric 158

Scatter-Gather pattern implementation,
factors

aggregation algorithm 154
aggregation strategy 153
aggregator, monitoring 154
aggregator, tracing 154
appropriate timeout 154
completeness criteria 153
correlation 155
durability of in-flight data 155
exception handling 154
number of calls versus expected usage 155

[512]

parallel processing 155
sequential processing 155
type of response to return (data format) 154

Scatter-Gather pattern, Sam Maccoll
Financial

about 152
description 152
implementation, factors 153

search server express, World Wide Widgets
(WWW) 397

Secure Sockets Layer (SSL) 128
security considerations, Solution design

aspects
software criteria 17

SELECT statement 114
SendReplyToReceive activity 175
Server Manager 41
service aggregator workflow service, Sam

Maccoll Financial
AccountAggregator.xamlx workflow 169
accountDictionary 170
building 167
checkingResponse 171
consuming, with ASP.NET 181, 182
currentCustomer 170
Customer 172
Endpoints 167
getAccountInfo button 182
GetCheckingAccountResults 172
GetCustomerAccounts() operation 178
GetSavingAccountResult 173
GetSavingAccountResults 173
initial setup 162
initial setup, prerequisites 163
project, rebuilding 169
publishing settings 164
Retirement Account shape 173
retirementResponse 171
retirement service 169
SamMaccollBank.CheckingAccountService

project 164
savingResponse 171
savings service 169
SendReplyToReceive activity 175
service references, adding 169
services, installation verifying 165
solution, building 161, 162

testing 178
service bus, Windows Azure platform

AppFabric
about 136
tasks 136

ServiceContractName property 201
service level agreements (SLAs) 14
ServiceModel class 106
services layer, SQL Azure 129
SharePoint, Bowl For Buddies

building 275, 276
solution, testing 287

SharePoint site, Bowl For Buddies
creating 276-278

SharePoint workflow, Bowl For Buddies
building 275, 276
creating 279-286

simplified persistence 34
SOAP header 33
solution decision framework. See decision

framework
solution delivery aspects

construction considerations 21
resource considerations 20, 21

Solution design aspects
data integration considerations 15, 16
error handling considerations 18, 19
general design considerations 19, 20
security considerations 17, 18

solution operation aspects
availability considerations 23
general operation considerations 24
performance considerations 22

sourceConnString 111
SQL Azure 46

about 119, 127
architecture 129
data access 131
developer agility 128
features, not supported 133
features, supported 132
manageability 128
model, provisioning 130
scalability 128
Secure Sockets Layer (SSL) 128
SQLAzurePrimer 133
starting 133, 134

[513]

Tabular Data Stream (TDS) 128
T-SQL CREATE TABLE command 133
usage 128, 129
usage patterns 131
Windows Azure platform account, URL

130
SQL Azure, architecture

client layer 129
infrastructure layer 129
platform layer 129
services layer 129

SQL, debatching bulk data
debatching with 321-330

SQL Server
RSS feed, writing 106-110

SQL Server 2008
enhancements 103, 104

SQL Server 2008, enhancements
data-access auditing 104
filtered indexes 104
MERGE function 103
parallel data warehouse 104
security enhancements 104

SQL Server 2008 R2 99
SQL Server 2008 R2, content-based routing

pattern
benefits 196
organizational, aspects 193
risks 196
solution delivery, aspects 193
solution design, aspects 192
solution evaluation 193
solution operations, aspects 193

SQL Server Integration Services. See SSIS
SQL Server Management Studio 112
SQL Server Service Broker. See SSSB
SQL Service Broker, publish/subscribe

pattern
benefits 226
organizational, aspects 225
risks 226
solution delivery, aspects 224
solution design, aspects 223
solution evaluation 225
solution operations, aspects 225

SqlSyncProvider object 111
SSIS

about 98-101
best practices 105, 106
Business Intelligence Development Studio

100
enhancements 104
package 100, 101
RSS feed, writing to SQL server 106-110

SSIS, debatching bulk data
benefits 316
debatching with 321, 329, 330
organizational, aspects 314
risks 316
solution delivery, aspects 313
solution design, aspects 312, 313
solution evaluation 314
solution operations, aspects 313, 314

SSIS, enhancements 104
SSIS, World Wide Widgets (WWW)

about 396
integrating, with SQl Azure 426, 428

SSODB 76
SSSB

about 98, 101
enhancements 104
example 112-115
initiator 101
post-office analogy model 101
Transact-SQL (T-SQL) 98

SSSB, enhancements 104
State Machine Workflow 31
storage, Windows Azure

blobs 123
drive 124
options 123
queue 124
table 123

StreamInsight, complex event processing
(CEP)

about 336
benefits 340
organizational, aspects 338
risks 340
solution delivery, aspects 337
solution design, aspects 336, 337
solution evaluation 338
solution operations, aspects 337

[514]

SWIFT (Society for Worldwide Interbank
Financial Telecommunication) 70

Sync Framework
about 99, 102, 103
distribution 110-112
enhancements 105
example 110, 111, 112

Sync Framework, enhancements 105

T
table storage, Windows Azure 123
Tabular Data Stream (TDS) 128
target system 320
Toy O D'Oh car company 394
TraceListener 126
Trading Partner Management (TPM) 81
Transact-SQL (T-SQL) 98
TTL (time to live) 465

U
unstructured data, World Wide Widgets

(WWW)
about 408, 409
Collection dialog 410
DocumentTrace table 413
Foreach loop 411
Foreach loop container 410
search server express, installing 413
User::insertSQL 412
User::path variable 410

use case
AllFriends Media 429, 430
Big Box Stores 310
Bowl For Buddies 249, 250
HomeUtiliiesOnline 481, 482
LarHans Pharmaceuticals 215, 216
McKeever Technologies 187, 188
Sam Maccoll Commodities 357, 358
Sam Maccoll Financial 149, 150
Watson Media Properties 333, 334
WCF use cases 35
WF use cases 35
Windows Workflow Foundation use cases

36
World Wide Widgets (WWW) 394

uses cases, BizTalk Server

Business Process Automation (BPA) 70
Business-to-Business (B2B) 70
Enterprise Application Integration (EAI)

68, 69
Enterprise Service Bus (ESB) 71

V
vendor specific workflow, AllFriends Media

building 441-443, 448, 456
Virtual Cow Media, use case

.NET-based polling 292

.NET-based polling, organizational aspects
293

.NET-based polling, solution delivery
aspects 293

.NET-based polling, solution design aspects
292

.NET-based polling, solution evaluation
293

.NET-based polling, solution operation
aspects 293

about 289, 290
additional facts 290
Azure AppFabric account, signing up for

300-302
BizTalk Server, organizational aspects 295
BizTalk Server, solution aspects 295
BizTalk Server, solution delivery aspects

294
BizTalk Server, solution design aspects 294
BizTalk Server, solution operation aspects

295
continous 292
distance 292
key factors 292
key requirements 290
message size 292
network 292
polling 292
polling pattern 291
publishing 292
reliability 292
security 292
volume 292
VPN pattern 291
WCF services, creating to listen on service

bus 302-306

[515]

Windows Azure platform AppFabric,
operational aspects 297

Windows Azure platform AppFabric,
solution aspects 297

Windows Azure platform
AppFabric,solution delivery aspects
296

Windows Azure platform AppFabric,
solution design aspects 296

Windows Azure platform AppFabric,
solution operation aspects 296

Virtual machine 122
virtual private network (VPN) 291
VPN pattern, Virtual Cow Media. See

polling pattern, Virtual Cow Media

W
WAITFOR statement 114
Watson Media Properties, use case

about 333, 334
adapter, creating 343-355
additional facts 334, 335
BizTalk Server 338
BizTalk Server, benefits 341
BizTalk Server, organizational aspects 340
BizTalk Server, risks 341
BizTalk Server, solution delivery aspects

339
BizTalk Server, solution design aspects 338
BizTalk Server, solution evaluation 340
BizTalk Server, solution operations aspects

339
candidate architecture 336
key requirements 334
pattern description 335, 336
set up 343
solution, building 341, 342
StreamInsight 336
StreamInsight, organizational aspects 338
StreamInsight, risks 340
StreamInsight, solution delivery aspects

337
StreamInsight, solution design aspects

336, 337
StreamInsight, solution evaluation 338

StreamInsight, solution operations aspects
337

WCF
about 30, 66
and WF, enhancements 34
data formats 67
goals 29, 30
process management 67
use cases 35
wire formats 67

WCF and Windows Server AppFabric,
content-based routing pattern

benefits 196
organizational, aspects 195
risks 196
solution delivery, aspects 194
solution design, aspects 194
solution evaluation 195
solution operation, aspects 195

WCF application 42
WCF configuration

address 31
binding 31
contract 31

WCF, enhancements
content-based routing service 33
easier configuration 33
enhanced MSMQ channel 33
greater REST support 33
WS-Discovery 33

WCF framework 42
WCF LOB Adapter SDK 67
WCF portion, HomeUtiliiesOnline

adding, to cloud service 490, 491
WCF service 33
WCF services, Virtual Cow Media

Client test application 305
creating, to listen on service bus 302
Home test application 305
Main method 303
QuickScheduleUpdate 303
serviceBusCredentials 304
Update All Homes button 306

WebEventLogSummaryDetails object 353
WebHttpRelayBinding (WebHttpBinding)

299
web role, compute layer 122

[516]

website database subscriber, LarHans
Pharmaceuticals

FDA subscriber 247
Outbound Maps tab 246
SOAP Action header 245
WCF-Custom adapter type 245

website database subscriber solution
artifacts, LarHans Pharmaceuticals

building 241
Consume Adapter Service menu option 241
Consume Adapter Service window 241
Consume Adapter Service wizard page 242
ConsumerContact source 244
Hazard source 244
Lots destination field 244
Product source 244
RecallID source 244

WF
about 31
and WCF, enhancements 34
David Chappell's Whitepaper, URL 32
use cases 35

WF application 42
WF, enhancements

declarative Model 34
enhanced library 34
flowchart flow style 34
overall designer experience 34
removed state machine support 34
simplified persistence 34
workflow service improvements 33

Widge-O Go 407
WidgeO Litigation 408
WidgO ToyOdoh litigation 408
Windows Azure

about 119, 120
architecture 121
Content Delivery Network (CDN) 125
DeploymentDiagnosticsManager class 126
DiagnosticMonitor class 126
diagnostics 126
Event Tracing for Windows (ETW) 126
model, provisioning 124, 125
Representational State Order (REST) 127
RoleInstanceDiagnosticManager class 126
starting 127
TraceListener 126

usage 120
Windows Azure AppFabric 119
Windows Azure, architecture

compute layer 122
fabric controller 121
storage 123

Windows Azure Cloud Service,
HomeUtiliiesOnline

deploying 493-496
testing 493-496

Windows Azure, HomeUtiliiesOnline
about 485
organizational aspects 487
solution delivery, aspects 487
solution design, aspects 486, 487
solution evaluation 488
solution operation, aspects 487

Windows Azure platform AppFabric
architecture 135
example solution 138
model, provisioning 137
usage 135

Windows Azure platform AppFabric,
architecture

access control service 137
service bus 136

Windows Azure platform AppFabric,
polling pattern

about 295
benefits 298
organizational, aspects 297
risks 298
solution delivery, aspects 296
solution design, aspects 296
solution evaluation 297
solution operation, aspects 296

Windows Azure platform, low-latency
scenario

about 436
benefits 439
organizational aspects 438
risks 439
solution delivery, aspects 437
solution design, aspects 437
solution evaluation 438
solution operation, aspects 437

[517]

Windows Azure, World Wide Widgets
(WWW)

organizational, aspects 420
solution design, aspects 419
solution evaluation 420
solution operations, aspects 420

Windows Communication Foundation. See
WCF

Windows Server AppFabric
about 32, 41
application-server hosting 43
cache 53
caching, example 56
controls 44
core components 43
distributed cache 45
example 54
hosting 44, 52
hosting, example 54, 55
monitoring 44, 52
monitoring, example 54, 55
persistence 44
scenarios 53
scripting 44
setup 56
steps 56-62
uses 53

Windows Server AppFabric Cache 45
Windows Server AppFabric Cache,

WinOrBow Games
about 462, 463
benefits 467
integrating with 471-480
organizational aspects 467
risks 467
solution delivery, aspects 466
solution design, aspects 464, 465
solution operations, aspects 466

Windows Server AppFabric,
human workflow pattern

about 253
benefits 255
organizational, aspects 254
risks 255
solution delivery, aspects 254
solution design, aspects 254
solution operation, aspects 254

Windows Server AppFabric, low-latency
scenario

about 434, 435
benefits 439
organizational aspects 436
risks 439
solution delivery, aspects 435, 436
solution design, aspects 435
solution evaluation 436
solution operations, aspects 436

Windows Server AppFabric, message
business pattern

benefits 369
organizational, aspects 368
risks 369
solution delivery, aspects 367
solution design, aspects 366
solution evaluation 368

Windows Server AppFabric, Scatter-Gather
pattern implementation

about 158
benefits 160
organizational, aspects 159
Parallel Actions shape 158
risks 160
solution delivery, aspects 159
solution design, aspects 158, 159
solution evaluation 160
solution operations, aspects 159

Windows Workflow Foundation. See WF
WinOrBow Games, use case

about 459, 460
additional facts 460
candidate architecture 462
key requirements 460
online travel search scenario 461
pattern, description 461, 462
setup 469-471
solution, building 468, 469
Windows Server AppFabric Cache 462-464
Windows Server AppFabric Cache, benefits

467
Windows Server AppFabric cache,

integrating with 471-480
Windows Server AppFabric Cache,

organizational aspects 467

[518]

Windows Server AppFabric Cache, risks
467

Windows Server AppFabric Cache, solution
delivery aspects 466

Windows Server AppFabric Cache, solution
design aspects 464, 465

Windows Server AppFabric Cache, solution
operations aspects 466

wire formats 67
worker role, compute layer 122
workflow, Bowl For Buddies

testing, without SharePoint 274, 275
workflow, content-based routing pattern

Action property 201
CanCreateInstance property 201
DisplayName property 201
New Order() 204
OperationName property 201
OrderDataContract.cs file 200
OrderReq variable 202
ServiceContractName property 201
SystemAOrderSystem.xamlx workflow 203
WCF Workflow Service, selecting 199

Workflow Foundation (WF) 42
workflow service improvements 33
workflow services

about 29
example solution 36-39

World Wide Widgets (WWW), use case
about 394
additional facts 395
candidate architecture 396, 398, 419
Electronic Discovery Reference Model 399
Hyper-V 421
Hyper-V, benefits 422
Hyper-V, organizational aspects 421
Hyper-V, risks 422
Hyper-V, solution design aspects 421
Hyper-V, solution evaluation 422
Hyper-V, solution operations aspects 421
key rquirements 394, 395
master data management (MDM) 395
master data services 397, 401-408
master data services, benefits 398
master data services, risks 398
operational aspects 397
relational data, fetching 400

search server, benefits 398
search server express 397
search server, risks 398
solution, building 398, 423-425
solution design aspects 396
solution evaluation 397
solution operations aspects 397
SQL server, benefits 398
SQL server, risks 398
SSIS 396
SSIS, benefits 398
SSIS, integrating with SQL Azure 425, 426,

428
SSIS, risks 398
system, high level logical view 400
unstructured data 408-413
Windows Azure 419
Windows Azure, benefits 422
Windows Azure, organizational aspects

420
Windows Azure, risks 422
Windows Azure, solution design aspects

419
Windows Azure, solution evaluation 420
Windows Azure, solution operations

aspects 420
World Wide Widgets (WWW), use

casepattern, description 395, 396
WPF (Windows Presentation Foundation)

42
WS2007HttpRelayBinding

(WS2007HttpBinding) 299
WS-Discovery 33
WS-* implementation 29

X
XML 34
XPath expression 33
XslCompiledTransform Blog

URL 80

Thank you for buying
Applied Architecture Patterns on the

Microsoft Platform

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

SOA Patterns with BizTalk
Server 2009
ISBN: 978-1-847195-00-5 Paperback: 400 pages

Implement SOA strategies for BizTalk
Server solutions

1.	 Discusses core principles of SOA and shows
them applied to BizTalk solutions

2.	 The most thorough examination of BizTalk and
WCF integration in any available book

3.	 Leading insight into the new WCF SQL Server
Adapter, UDDI Services version 3, and ESB
Guidance 2.0

MySQL 5.1 Plugin Development
ISBN: 978-1-849510-60-8 Paperback: 288 pages

Extend MySQL to suit your needs with this unique
guide into the world of MySQL plugins

1.	 A practical guide with working examples
explained line by line

2.	 Add new functions to MySQL with User
Defined Functions

3.	 Export information via SQL using the
INFORMATION_SCHEMA plugins

4.	 Search within PDFs, MP3s, and images;
offset user typing errors with fulltext
parser plugins

Please check www.PacktPub.com for information on our titles

WCF Multi-tier Services
Development with LINQ
ISBN: 978-1-847196-62-0 Paperback: 384 pages

Build SOA applications on the Microsoft platform in
this hands-on guide

1.	 Master WCF and LINQ concepts by completing
practical examples and apply them to your real-
world assignments

2.	 First book to combine WCF and LINQ in a
multi-tier real-world WCF service

3.	 Ideal for beginners who want to build scalable,
powerful, easy-to-maintain WCF services

Programming Microsoft
Dynamics NAV 2009
ISBN: 978-1-847196-52-1 Paperback: 620 pages

Develop and maintain high performance NAV
applications to meet changing business needs with
improved agility and enhanced flexibility

1.	 Create, modify, and maintain smart NAV
applications to meet your client's business
needs

2.	 Thoroughly covers the new features of NAV
2009, including Service Pack 1

3.	 Focused on development for the three-tier
environment and the Role Tailored Client

4.	 For experienced programmers with little or no
previous knowledge of NAV development

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Solution Decision Framework
	The need for a decision framework
	Sources of input to the framework
	Functional requirements
	Non-functional requirements
	Derived requirements
	Organization direction

	Deciding upon your architecture strategy
	Framework dimensions
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects

	Applying the framework
	Summary

	Chapter 2: Windows Communication Foundation and Windows Workflow 4.0 Primer
	What does this technology do?
	Highlights of the latest release
	Windows Communication Foundation enhancements
	Windows Workflow Foundation enhancements
	Enhancements to both technologies

	Typical use cases
	Windows Communication Foundation
use cases
	Windows Workflow Foundation use cases

	Example solution
	Summary

	Chapter 3: Windows Server AppFabric Primer
	What does this technology do?
	Windows Server AppFabric core
components
	Application-server hosting and monitoring
	Control
	Scripting
	Hosting
	Monitoring
	Persistence

	Distributed cache
	Named cache
	Region
	Expiration
	Eviction
	Local cache
	High availability
	Cache notifications

	Typical use cases
	Windows Server AppFabric hosting and monitoring
	Windows Server AppFabric cache
	Typical scenarios

	Example solution
	AppFabric hosting and monitoring
	AppFabric caching
	Setup
	Steps

	Summary

	Chapter 4: BizTalk Server Primer
	Heterogeneous systems
	What does BizTalk Server do?
	Can't we just use Web Services or WCF?

	Typical BizTalk use cases
	Enterprise Application Integration (EAI)
	Business-to-Business (B2B)
	Business Process Automation (BPA)
	Enterprise Service Bus (ESB)

	BizTalk architecture
	BizTalk message flow
	Key BizTalk server terminology
	BizTalk group
	Hosts
	Host instance
	BizTalk databases
	Enterprise Single Sign-On
	Adapters
	Message
	Pipeline
	Maps
	Orchestration

	Highlights of the BizTalk 2010 release
	Example solution
	Summary

	Chapter 5: SQL Server and Data Integration Tools Primer
	What does this technology do?
	SQL Server Integration Services (SSIS)
	SQL Server Service Broker (SSSB)
	The Microsoft Sync Framework
	Master Data Services

	A very basic and completly insufficient introduction to data integration with
SQL Server
	SSIS
	SSSB
	Sync Framework
	SQL Server 2008 enhancements
	SSIS enhancements
	SSSB enhancements
	Sync Framework enhancements

	Typical use cases
	Example solution
	Writing an RSS feed to SQL Server
	Distribution via Sync Framework
	SQL Server Service Broker

	Summary

	Chapter 6: Windows Azure Platform Primer
	What does this technology do?
	Windows Azure
	Usage
	Architecture
	Fabric controller
	Compute
	Storage
	Provisioning model
	Diagnostics and monitoring
	How do I get started?

	SQL Azure
	Usage
	Architecture
	Provisioning model
	Data access and usage patterns
	SQL Azure–what is supported and what is not
	How do I get started?

	Windows Azure Platform AppFabric
	Usage
	Architecture
	Provisioning model

	Project "Dallas"

	Example solution
	Scenario
	Setup
	Steps

	Summary

	Chapter 7: Simple Workflow
	Use case
	Key requirements
	Additional facts

	Pattern description
	Factors affecting implementation details

	Candidate architectures
	Candidate architecture #1–BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–Windows Server AppFabric
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setup
	Building the service aggregator workflow service
	Testing the service aggregator workflow service
	Consuming the service aggregator workflow service with ASP.NET

	Summary

	Chapter 8: Content-based Routing
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architectures
	Candidate architecture #1–BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–SQL Server 2008 R2
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #3–WCF and Windows Server AppFabric
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setup
	Building the workflow
	Adding a router service

	Summary

	Chapter 9: Publish-Subscribe
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architectures
	Candidate architecture #1–Azure Platform AppFabric Service Bus
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #3–SQL Service Broker
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setup
	Building the canonical solution artifacts
	Building the FDA subscriber solution artifacts
	Configuring the data publisher and FDA subscriber
	Building the website database subscriber solution artifacts
	Configuring the website database subscriber

	Summary

	Chapter 10: Repair/Resubmit with Human Workflow
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architectures
	Candidate architecture #1–BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–Windows Server AppFabric
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setup
	Building the core workflow
	Testing the workflow without SharePoint
	Building the SharePoint site and SharePoint workflow
	Creating the SharePoint site and customer list
	Create the SharePoint workflow

	Testing the solution using SharePoint

	Summary

	Chapter 11: Remote Message Broadcasting
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architectures
	Candidate architecture #1–.NET-based polling
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #3–Windows Azure Platform AppFabric
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Signing up for an Azure AppFabric account
	Create the WCF services to listen on the Service Bus

	Summary

	Chapter 12: Debatching Bulk Data
	Use case
	Key requirements
	Additional facts

	Candidate architectures
	Candidate architecture #1–SSIS
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Encryption
	Target system
	Debatching with SSIS and SQL Server
	Debatching with SQL
	Debatch with SSIS

	Summary

	Chapter 13: Complex Event Processing
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architectures
	Candidate architecture #1‑StreamInsight
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2—BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Set up
	Creating an adapter

	Summary

	Chapter 14: Cross-Organizational Supply Chain
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architectures
	Candidate architecture #1–BizTalk (with
ESB Toolkit)
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–Windows
Server AppFabric
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Setup
	Deploying and using a monolithic solution
	PO status codes
	Item inventory check status codes
	Current behaviors of the system

	Utilizing the ESB Toolkit
	Using existing transformations within
an ESB Itinerary
	Using the itinerary service broker pattern to implement messaging-based routing with ESB

	Summary

	Chapter 15: Multiple Master Synchronization
	Use Case
	Key requirements
	Additional facts

	Pattern description
	Candidate architecture
	Solution design aspects
	SSIS
	Master Data Services
	Search Server Express

	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Fetching relational data
	Master Data Services
	Unstructured data
	Search

	Summary

	Chapter 16: Rapid Flexible Scalability
	Use case
	Candidate architectures
	Candidate architecture #1–Windows Azure / SQL Azure
	Solution design aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2–Hyper-V
	Solution design aspects
	Solution operations aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Building the solution
	Integrating SSIS with SQL Azure

	Summary

	Chapter 17: Low-Latency Request-Reply
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architectures
	Candidate architecture #1–BizTalk Server
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #2: Windows Server AppFabric
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Candidate architecture #3: Windows Azure platform
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Architecture selection
	Architecture selection

	Building the solution
	Setup
	Building the vendor-specific and aggregate workflows
	Testing the solution

	Summary

	Chapter 18: Handling Large Session and Reference Data
	Use case
	Key requirements
	Additional facts

	Pattern description
	Candidate architecture
	Candidate architecture #1: Windows Server AppFabric Cache
	Solution design aspects
	Solution delivery aspects
	Solution operations aspects
	Organizational aspects

	Architecture selection
	Building the solution
	Setup
	Integrating with Windows Server
AppFabric cache

	Summary

	Chapter 19: Website Load Burst and Failover
	Use case
	Key requirements
	Additional facts

	Pattern description
	Chosen architecture
	Solution design aspects
	Solution delivery aspects
	Solution operation aspects
	Organizational aspects
	Solution evaluation

	Building the solution
	Setup
	Adding the WCF portion to Cloud Service
	Adding the ASP.NET portion to Cloud Service
	Testing and deploying the Windows Azure Cloud Service

	Summary

	Chapter 20: Wrap Up
	What did we find?
	Where to go next

	Index

