Professional

Applied SOA Patterns on the
Oracle Platform

Sergey Popov [PACKT] enterprise 8

professional experlise distilled
PUBLISHING

http://www.allitebooks.org

Applied SOA Patterns on the
Oracle Platform

Fuse together your pragmatic Oracle experience with
abstract SOA patterns with this practical guide

Sergey Popov

enterprise &

professional expertise distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Applied SOA Patterns on the Oracle Platform

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its ealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014
Production reference: 1050814

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-056-3
www . packtpub.com

Cover image by Artie Ng (artherng@yahoo.com. au)

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Sergey Popov

Reviewers
Mehmet Demir

Gilberto Holms
Robert van Mdlken
Fabio Persico

Phil Wilkins

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Balaji Naidu

Technical Editors
Venu Manthena

Mrunmayee Patil

Shruti Rawool

Copy Editors
Alisha Aranha

Roshni Banerjee
Janbal Dharmaraj

Gladson Monteiro

Project Coordinator
Amey Sawant

Proofreaders
Simran Bhogal

Stephen Copestake
Maria Gould
Ameesha Green
Paul Hindle

Indexers
Monica Ajmera Mehta

Priya Subramani

Graphics
Sheetal Aute

Ronak Dhruv

Disha Haria

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Sergey Popov is an SOA Implementation Expert, Oracle Certified Professional,
Oracle Fusion Middleware Architect, certified Oracle SOA Infrastructure
Implementation Specialist, and certified SOA Trainer in Architecture and Security.
With over 20 years of experience in establishing enterprise collaboration platforms
based on SOA and integration principles, he started with earlier Oracle DB versions
while still an undergraduate in the early 90s.

After graduating with Honors from St. Petersburg Telecommunication Institute, he
became part of the shipping and transportation business, initially working in Norway
for a large RORO and then later with container-shipping companies such as Wilh.
Wilhelmsen ASA and Leif Hoegh as an Integration / SOA Developer and Architect.
During this technology-shifting period, when EDI was initially enhanced and later
replaced by XML, a number of solutions were provided for message brokering,
enterprise application integration, and public services implementation. By adopting
the emerging SOA principles, lightweight service brokers were implemented, handling
around 100 to 1,000 messages daily in all possible formats and protocols. With new
Oracle products that were launched in early 2,000s, new technological solutions were
tried and realized, based on Service Repositories and Enterprise Orchestrations.

Upon joining Accenture, Nordic, new opportunities emerged for him with regards to
the implementation of the SOA methodology and Oracle-advanced products across
Scandinavia and Northern Europe. Sergey was an Architect, responsible for enabling
the service of a massive installation of Oracle E-Business Suite at Posten Norge, the
largest Scandinavian logistics operator. Several OFM 10g products were employed
in order to achieve the desirable high throughput. The project was considered
successful by both the client and Oracle. Providing message-brokering solutions at
TDC, Danish Telecom, and designing the entire SOA infrastructure blueprint for
DNB NORD bank were other significant tasks that he accomplished at the time.

As a certified trainer in several SOA areas, Sergey in recent years has been engaged
in providing extensive multipath training to highly skilled architects, participated as
a speaker at SOA Symposium, and published several articles for Service Technology
Magazine, which is dedicated to the optimal Service Repository taxonomy.

[vww allitebooks.cond

http://www.allitebooks.org

As an Enterprise SOA /SDP Architect at Liberty Global (LGI), Sergey participated
in the implementation of the Pan-European Service Layer for the entire telecom
enterprise, based on optimal combinations of various SOA patterns. The benefits
of the SOA methodology allow you to combine Oracle Fusion products with the
best-in-breed from Security and ESB platforms (Intel, Fuse, and ServiceMix).

The success of this course would not have been possible without great efforts
from the TMNS development and implementation team.

Nine chapters that cover all the major SOA frameworks along with
all the fundamental patterns cannot be written just in 10 months;
they're the result of more than 10 years of practical experience, and
all this time my wife Victoria has been supporting me, diligently and
with ever-lasting patience.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Mehmet Demir is a TOGAF-certified Enterprise Architect with more than 15 years
of experience in designing systems for large companies. He has hands-on experience
in developing and implementing SOA-based solutions using Oracle Fusion
Middleware, WebCenter Portal, WebCenter Content, BEA WebLogic/ AquaLogic
product technologies, and Oracle Identity Access Management Suite. As an
Oracle-certified SOA Architect, IBM-certified SOA Designer, BEA-certified Architect,
and Oracle WebCenter 11g Certified Implementation Specialist, Mehmet focuses

on developing high-quality solutions using best practices. He is currently working
for EPAM, Canada, as an Enterprise Architect, delivering high-value IT solutions

to many of Canada's most prominent companies such as CIBC, Home Hardware,
and Bell TV. Prior to EPAM, Mehmet worked for BEA Systems where he had been

a principal member of the Canadian consulting team. In addition to his technical
capabilities, Mehmet has an MBA from Schulich School of Business and is a

certified Project Manager with PMI's PMP designation. Mehmet can be contacted

at http://ca.linkedin.com/in/demirmehmet.

I would like to thank my beautiful wife Emily and my sweet
daughters Lara, Selin, and Aylin for their support.

[vww allitebooks.cond

http://ca.linkedin.com/in/demirmehmet
http://www.allitebooks.org

Gilberto Holms is currently working as an IT Architect at Multiplus SA, a
Brazilian loyalty program company. He has around 8 years of experience in the
software development industry, working on Java and Middleware technologies,
and has been the Lead Architect for many JEE, SOA, and BPM solutions. In his
current role at Multiplus, he works on the architecture, design, and implementation
of strategic IT solutions that are mainly based on Oracle SOA and BPM technologies.
Currently, he is particularly interested in API development, SOA enterprise
governance, artificial intelligence algorithms, and open source projects. He

regularly writes technical articles on SOA, BPM, Middleware, and Java on his

blog, http://gibaholms.wordpress.com/.

Robert van Molken is a Senior Oracle Integration Specialist with emphasis on
building service-oriented business processes. He has over 6 years of experience in
Oracle's SOA Suite and Service Bus where his speciality is with BPEL, SCA, SOAP,
XPath, XQuery, XML, Java, JAX-WS, Advanced Queuing, and PL/SQL. Since

2007, he has had experience in dealing with Oracle SOA Suite 10g and later with
SOA Suite 11g. Last year, he joined the Oracle SOA Suite 12¢ Beta and presented

a new Fusion Middleware 12c product called Managed File Transfer along with

the Product Manager at Oracle OpenWorld. He is also an active blogger on the
technology blog of AMIS Services where he writes about SOA, testing, and the
Internet of Things. Robert works at AMIS located in the Netherlands. AMIS helps
partners to use the investments they put in to Oracle technology as effectively and
economically as possible, and contributes to the success of their organization. AMIS
is the Oracle knowledge partner in the Netherlands. This is evident from the world's
leading weblog, http://technology.amis.nl/, the level of knowledge, projects,
employees, and Oracle awards.

[vww allitebooks.cond

http://gibaholms.wordpress.com/
http://technology.amis.nl/
http://www.allitebooks.org

Fabio Persico was born in Sorrento in the south of Italy in 1981. After completing
2 years of an MSc in Computer Science in 2006, he got involved in the Oracle world
through an internship of 9 months with Oracle, Italy. As an apprentice at Oracle,

he had the chance to learn more about the J2EE platform and some Oracle products
such as Oracle Database and the SOA Suite. After that, he continued to work with
Oracle and got fully involved mainly in the SOA stack, working for many customers
from different areas. He's been working with infoMENTUM Limited since 2012,
where he is mainly playing the role of a developer/architect in a project based on
the Oracle FM/SOA stack. Fabio is an Oracle Certified Specialist consultant.

I would like to thank Sergey Popov, the writer, for giving me the
opportunity to work with him by reviewing this SOA patterns
book. It has been a great experience, and I really enjoyed all the best
practices that the author has shared with the reader.

Phil Wilkins has spent nearly 25 years in the software industry, working with both
multinationals and software startups. He started out as a developer and has worked
his way up through technical and development management roles. His last 12 years
have been primarily in Java-based environments. He now works as an Enterprise
Technical Architect within an IT group for a global optical healthcare manufacturer
and retailer. Outside his work commitments, he has contributed his technical
capabilities to support others in a wide range of activities: from the development

of community websites to providing input and support to people authoring books
and developing software ideas and businesses, including reviewing a number of
Java- and Oracle-related books for Packt Publishing. When not immersed in work
and technology, he spends his downtime pursuing his passion for music and
spending time with his wife and two boys.

I'd like to take this opportunity to thank my wife Catherine and

our two sons, Christopher and Aaron, for their tolerance during the
innumerable hours I spent in front of a computer, contributing to
activities for both my employer and many other IT-related activities
that I've supported over the years.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . PacktPub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee@
packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[@]PACKT)

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: SOA Ecosystem — Interconnected Principles,

Patterns, and Frameworks 11
The characteristics, goals, and benefits of SOA 1"
An example of architecting for tactical goals 19

SOA principles 21
Standardized service contract 23
Loose Coupling 24
Service abstraction 26
Service reusability 30
Service autonomy 31
Service statefulness 32
Service discoverability 33
Service composability 35

SOA technology concept 38
XML 40
Web Services (WS) 40
WS transports 41
Need for the WS-* extensions 42

SOA standards 44
Methodology and governance 44
Interconnected WS-* standards 56

SOA frameworks 62
The Application Business Connector Services framework 66
The Object Modeling and Design framework 70
The XML Modeling and Design framework 71
The Enterprise Business Flows framework 73
The Enterprise Business Services framework 76
The Enterprise Service Repository / Inventory framework 79

SOA Service Patterns that help to shape a Service inventory 81

Summary 84

Table of Contents

Chapter 2: An Introduction to Oracle Fusion — a Solid

Foundation for Service Inventory 85
The Oracle SOA technology platform 85
The Oracle SOA development roadmap — past, present, and future 86
Oracle SOA frameworks and technology layers 95
Oracle SOA Foundation — methodology 101
Enterprise Business Object 104
Enterprise Business Message 105
Enterprise Business Services 107
Application Business Object and Message 108
Oracle SOA foundation — runtime backbone 112
The Oracle database 113
The Oracle application server 118
The Oracle Rule Engine 124
Oracle transformation and translation engine 126
How Oracle products compose the SOA framework 129
Service creation — Object and XML Design frameworks 130
Service development — automated test and deployment 132
Establishing the adapter framework 134
Providing orchestration — enterprise business flows 135
Setting up Service Bus — enterprise business services 138
Discovering enterprise — enterprise service repository 140
Service governing — monitoring, error handling, and recovering 143
Securing service interactions — Security Gateway 143
Summary 147
Chapter 3: Building the Core — Enterprise Business Flows 149
Oracle SOA's dynamic Orchestration platform 150
The telecommunication primer 152
Basic facts about the telecommunication enterprise 153
History of CTU 153
Technical infrastructure and automation environment 154
Business goals and obstacles 155
Oracle Enterprise Business Flows SOA patterns 157
Establishing a Service Inventory 157
Initial analysis 158

A summary of the initial solution 161
Detailed analysis — functional decomposition 162
Asynchronous agnostic Composition Controller 174
Extending the asynchronous agnostic Composition Controller 184
Usage and limitations of a Mediator as a dynamic router 186
Dynamic compensations in a simple agnostic controller 192

Lii]

Table of Contents

The Rule Engine endpoint and decision service 194
Using Mediator for process discoverability 198
The Orchestration pattern and embedded Java 199
Summary 200
Chapter 4: From Traditional Integration to
Composition — Enterprise Business Services 203
The Dynamic Service Collaboration platform 204
Improving the Agnostic Composition Controller 205
The Proxy design pattern and its relatives 206
Implementing a basic Proxy on OSB 21
From Message Broker to Service Broker 216
A simplified Message Broker implementation 218
Receive 218
Transform 227
Deliver 229
Oracle Enterprise Business Service's SOA patterns 231
Detailed analysis — functional decomposition 233
Short summary 237
Establishing a Service Inventory 240
Asynchronous Agnostic Composition Controller 240
Business Delegate (main dispatcher) 241
Execution plan extraction 241
Parameter initiation 242
Main tasks loop 244
Service invocation 245
Invoking custom services 246
Invoking Generic Adapter 248
Transformation 249
Validation 250
Summary 258
Chapter 5: Maintaining the Core — Service Repository 263
Flexible taxonomy for Service Repository 264
General objectives 264
Service metadata for Agnostic Composition Controller 268
Exploring the Oracle Repository's taxonomy 271
Open standards for the SOA taxonomy 280
The UDDI taxonomy (V.3) in Oracle OSR 285
Runtime Discoverability analysis 296
Runtime lookup 298

[iii]

Table of Contents

Entity types 301
Entity types' relations 302
Decentralized realization 303
The application project store 303
Centralized realization 305
Domain Repository 305
The Cross-domain Utility layer 307
The Enterprise Service Repository 309
Creating a lightweight taxonomy for dynamic service invocations 310
Service as an entity model 310
Object 312
Service/Task 312
Composition/Process 313
Rules 314
Event 315
Message 316
The SQL implementation of the service taxonomy (example) 319
The XML implementation of Execution Plan 320
Managing Service Repository 321
Summary 323
Chapter 6: Finding the Compromise — the Adapter Framework 325
Optimizing the Adapter Framework 326
Logistic primer 338
Basic facts about the company 338
Initial analysis 341
Refactoring the DB-centric Fusion Application 344
Events registration 344
Events filtering 348
Message construction 351
Message parsing 354
Endpoint handling 357
Establishing the Adapter Framework 365
Exposing EJB through OSB 368
Traditional DB Adapter implementation 373
Dynamic Adapters implementation and DB Transport Adapter 377
Summary 383
Chapter 7: Gotcha! Implementing Security Layers 385
Where are we now? 386
Initial analysis 387
Common SOA vulnerabilities 391
Common SOA risks 399
Attack types 404
Risk mitigation design rules 413
Identity management — defending credentials verification systems 414

[iv]

Table of Contents

Exception shielding — preventing an information leakage 418
Message screening — preventing injection attacks 419
Oracle Enterprise (API) Gateway 421
Vendor-neutral (generic) requirements 421
Performance requirements 422
Summary 424
Chapter 8: Taking Care — Error Handling 425
Associating SOA patterns with OFM standard tools 426
Initial analysis 427
Common requirements 430
Maintaining Exception Discoverability 433
Error-handling design rules 441
Basis for proactive Fault Management 447
Technical monitoring for proactive Fault Management 448
OFM Fault Management frameworks 458
Policy-based handling 458
Compensative transactions 464
Exception handling in OSB 465
Complex exception handling 468
Automated recovery concepts 478
Summary 482
Chapter 9: Additional SOA Patterns — Supporting
Composition Controllers 483
Processing complex events 484
Initial analysis 486
Processing Object Context in business logic events 489
Communication and machine events 502
Fast events + Big Data 503
EDN in the SOA stack — a practitioner's approach 511
High service performance combined with High Availability 517
Coherence and OSB 526
Coherence and event processing 528
Monitoring service activities 529
Direct integration of BAM and BPEL 531
The BAM and JMS connection 532
BAM and the webservice API 533
SOA as a cloud foundation 534
Summary 539
Index 541

[v]

Preface

Arguably, distributed computing is the most complex concept in computer science.
The practical realization of this concept in the form of service-oriented computing
further adds to this complexity. Generally, there are two reasons: firstly, because of a
compound architectural approach, SOA is based on already complex techniques, and
secondly, to stay on the cutting edge of computing technology, SOA must appeal to
non-IT businesses to be successfully adopted in modern enterprises. To achieve this
goal of successful adoption, SOA architects must combine a vendor-neutral approach
to systems design with a deep knowledge of platforms on which the solution will

be realized. This combination will allow service-oriented solutions to be flexible and
resilient at the same time.

Maintaining the right balance of these two success factors is quite a challenge in

the multilayered, multiframework, and compound environments of SOA. Since
there are several success factors with a magnitude of problems associated with their
implementation, SOA adoption requires a structural and pattern-based approach. In
this book, our task is a practical demonstration of pattern-oriented problem solving
based on the concrete implementation of service collaboration and integration
systems in different industries (telecom, shipping, and logistics). The book goes for
the most complex and, at the same time, the most common use cases. Conceivably,
the most challenging problems in SOA are related to dynamic service compositions,
usually assembled on runtime and in a business-agnostic way. This is the ultimate
realization of the SOA Composability principle. This principle is, in turn, the
foundation of the main service-orientation promise: keeping businesses agile and
adaptive to any type of environmental shifts by assembling new compositions

(that is, business processes) out of existing atomic services.

Preface

The general approach to achieve this, also used in every chapter of this book,
is as follows:

* Find the root cause of the problem and analyze it in strong relevance to the
SOA design principles.

* Speculate the decomposition of the problem into smaller, more manageable
parts that could be implemented as separate atomic components or services.

* Identify the ways of standardizing the decomposed components/services,
focusing on the improvement of their reuse.

* Propose various vendor-neutral solutions (not exactly Oracle) based on the
identified components/services and, again, diligently analyze them using the
SOA design principles, focusing on the desired SOA characteristics.

* Present the most optimal solution based on an Oracle platform and
compare it to other alternatives proposed during the analysis phase. Since
we are vendor-neutral and focus primarily on the preferred solution's
characteristics, we cannot guarantee that Oracle realization will always win,
but it will be the closest bet for most of the discussed use cases.

In order to make the first step (the problem analysis) consistent, verifiable, and
undisputable, in Chapter 1, SOA Ecosystem — Interconnected Principles, Patterns, and
Frameworks, we introduce you to the SOA principles and the areas of their application.
It is important to see these principles interconnected as their relations are not always
straightforward and we should be very careful in balancing them in different
frameworks and service layers. Some key SOA standards will also be discussed with
the focus on those employed in the composition controllers design.

Logically, following the architectural two-folded task, after discussing the vendor-
neutral SOA aspects, we look at the Oracle product's portfolio and see how it

can help us in achieving the goals of service orientation. The introduction to the
characteristics of Oracle Fusion Middleware will help us in the chapters to follow,
when building practical solutions around Agnostic Composition controllers for
different companies. Importantly, we will not jump into Oracle realization at the
very beginning of every chapter (this part is dedicated to a certain SOA framework).
Instead, we will look very closely at every alternative, check its feasibility, and see
how common solutions (in the form of patterns) can help us in mitigating common
problems for these frameworks.

[2]

Preface

What this book covers

Chapter 1, SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks, sets
the tone for the entire book, presenting the main SOA frameworks in relation to
individual SOA characteristics and goals. To achieve these goals, we will discuss
the SOA design principles, their dependencies, and roles in maintaining a robust
SOA ecosystem. For a better understanding of the importance of these principles, we
will start by presenting a practical and quite realistic use case, depicting the disaster
that may follow when design principles are sacrificed to achieve short-lived tactical
goals. These problems will be further analyzed during the course of this book and
individual SOA patterns will be offered as proven solutions within every individual
SOA framework. The practical outcome of this chapter will present you with a
complete set of SOA frameworks and SOA Service Inventory patterns, which help
shape the Service Inventory according to the presented frameworks.

We suggest that everyone, even seasoned veterans familiar with the concept of
service orientation, begin with this chapter. Here, we establish the glossary and
architectural vocabulary, essential not only to understand further material but also
for your day-to-day technical communications. This chapter also sufficiently presents
fundamental materials to prepare for the Certified SOA Professional examinations
(http://www.soaschool.com/certifications/professional)

If you are an Oracle practitioner and familiar with the modern Fusion Middleware
stack, you can skip the next chapter and proceed directly to service composition
patterns, described in Chapter 3, Building the Core — Enterprise Business Flows, and
Chapter 4, From Traditional Integration to Composition — Enterprise Business Services. If
you already have hands-on experience with Agnostic Composition controllers and
dynamic service invocation, we suggest that you first read Chapter 5, Maintaining the
Core - the Service Repository, which explains the role of reusable service artifacts and
Service Repository in runtime discoverability.

Chapter 2, An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory,
provides a list of Oracle products (OFM stack) and methodology(Oracle AIA+FP
with Foundation Pack) that fit the pattern/frameworks matrix, presented in Chapter
1, SOA Ecosystem - Interconnected Principles, Patterns, and Frameworks. This chapter
explains the roles of the tools and the Oracle roadmap in support of the SOA
principles. Most importantly, it explains how Oracle products support SOA ws-*
standards (WS-ReliableMessaging, WS-Coordination, WS-BPEL, WS-Addressing...)
and how this fact aids in pattern implementation. Information from this chapter will
help architects in setting realistic requirements and composing a proper RFI matrix
for Oracle products in relation to the SOA frameworks.

[31]

[vww allitebooks.cond

http://www.soaschool.com/certifications/professional
http://www.allitebooks.org

Preface

Chapter 3, Building the Core — Enterprise Business Flows, first presents the SOA
platform's refactoring initiative, undertaken in a large-scale telecom enterprise,
aiming for the optimization of a complex multinational Service Inventory.
Traditionally, the first target is complex long-running processes, most commonly,
those based on BPEL. Oracle SOA Suite is perhaps the most mature tool for this job,
but it is still widely misinterpreted by many developers and architects. This chapter
will explain how to maintain the right balance using the four SCA components,
minimize pressure on the BPEL dehydration store, achieve optimal performance,
and improve agility of the composition logic using the Agnostic Composition
controller. The chapter's practical outcome will be the Service Broker, suitable to
handle dynamically synchronous and asynchronous service compositions.

Chapter 4, From Traditional Integration to Composition — Enterprise Business Services,
continues discussion of the Telecom primer started in the previous chapter by
addressing the separation of the concerns principle and untying the Agnostic
Composition controller from the Orchestration platform and Enterprise Service
Bus. This chapter will demonstrate how to build business-agnostic composition
controllers on OSB to dynamically route messages and coordinate transactions in
a reliable manner for synchronous and fast-running services. The roles of all ESB-
related SOA patterns are explained in great detail.

Chapter 5, Maintaining the Core — the Service Repository, demonstrates how to design,
collect, maintain, and access service metadata from the very beginning of the SOA
project until the service is decommissioned at the end of the lifecycle. You will be
presented with a lightweight service taxonomy, essential to maintain the service
composition logic in the composition controllers designed in previous chapters.
From a broader perspective, this chapter sets the basis for effective SOA Governance,
presenting all SOA Foundational Inventory patterns and their implementation using
Oracle Service Repository and Registry. The DB realization of a flexible service
taxonomy will be the practical outcome of this chapter.

Chapter 6, Finding the Compromise — the Adapter Framework, discusses ways to balance
and optimize the adapter framework in Enterprise Service Inventory. Oracle has

the most advanced adapter framework for applications, protocols, and resources.
This chapter will demonstrate what frameworks and tools (OSB or SCA) are the best
candidates for patterns implementation and how to avoid the most common mistake,
creating hybrid services. We also discuss in considerable detail ways to avoid
adapters as a non-SOA approach through interface standardization.

[4]

Preface

Chapter 7, Gotcha! Implementing Security Layers, explains how services can be designed
in a secure way from the very beginning. The core aspects of service security design
are highlighted, starting from vulnerabilities and risk analysis to common attack
types and risk mitigation methods. These aspects are presented from the attacker's
and security architect's sides; the SOA Security pattern's role is demonstrated from
components up to the Security Gateway levels.

Chapter 8, Taking Care — Error Handling, completes the Agnostic Composition
controller design, started in Chapter 3, Building the Core — Enterprise Business Flows.
Here we will demonstrate how complex recovery scenarios can be implemented
using the standard Oracle Fault Management framework and custom composition
controllers, acting as automated recovery tools. With the focus on proactive service
monitoring and error prevention, we will discuss the SOA patterns that can
contribute to one of the most complex SOA problems —recovery of the composite
business service composed agnostically.

After completing the preceding chapters and gaining some practical experience in
SOA implementations, you will be equipped to attain the Certified SOA Architect
level (http://www.soaschool.com/certifications/architect).

Chapter 9, Additional SOA Patterns — Supporting Composition Controllers, concludes
the book by presenting complex SOA patterns, realized on very interesting Oracle
products: Coherence and Oracle Event Processing. Combined in line with the

SOA patterns and enhanced by the business monitoring tool (BAM), these products
present a new Oracle approach in the event-driven architecture — fast data.

Using a logistics example, we will discuss how an event-driven network approach
and Oracle CQL can improve data processing and business decision services in
complex distributed environments.

What you need for this book

To implement solutions based on the examples in this book, install Oracle SOA
Suite 11g Patch Set 6 (11.1.1.7). Also, for Chapter 4, From Traditional Integration to
Composition — Enterprise Business Services, and Chapter 6, Finding the Compromise — the
Adapter Framework, Oracle Service Bus (11.1.1.7) is needed. Oracle DB 11g (or 12c)

is a prerequisite for any installation, but it will be used as a standalone tool for
examples discussed in Chapter 5, Maintaining the Core - the Service Repository, and
Chapter 6, Finding the Compromise — the Adapter Framework. A better understanding of
the concept of Enterprise Service Repository, Oracle SR 11g, and Registry would be
useful in Chapter 5, Maintaining the Core — the Service Repository. Oracle API Gateway
(formerly, Oracle Enterprise Gateway, Release 11.1.2.2.0) is discussed in Chapter 7,
Gotcha! Implementing Security Layers, and you could have it installed (optionally) to
better understand the security patterns discussed in this chapter.

[51]

http://www.soaschool.com/certifications/architect

Preface

Who this book is for

Some say experience is something you don't get until you stop needing it.

This book is what an established professional of today would have wanted to

read at least ten years ago. Here you will find my combined experience of at least 15
large-scale service-oriented projects in three industries. Successful implementations
were recognized by not only clients, but also Oracle. I really admire the skills and
ingenuity of professionals who have worked together on the implementation of the
described concepts. I believe that the presented materials will be useful for experts
working at different levels:

* SOA architects working on Oracle products —from the solution to enterprise
levels —will get a comprehensive guidance on how to apply an SOA practice
on the Oracle platform.

* SOA architects practicing the vendor-neutral approach (although Java is not
purely neutral anymore) will find enough materials on patterns, methods,
and realizations of efficient and low-cost solutions for small- and mid-sized
enterprises.

* SOA DevOps team leads will learn how to manage Oracle Fusion projects
using both the Agile or Waterfall methodologies. Code snippets presented in
the book are more than enough for developers to get going with their own
implementation.

If you are looking for study materials on the SOA architecture to pass the vendor-
neutral exams (such as SOACP SOASchool; http: //www.soaschool.com/), this
book should be sufficient to attain the Certified SOA Architect status. In fact, having
the Certified Trainer status, we were asked several times to prepare for combined
SOA school lectures, which condensed SOA architecture, analytics, and security
courses into a one-week intensive training for experienced architects. In many
aspects, Applied SOA Patterns on the Oracle Platform is the lecture material we use for
these purposes. We should also mention that we use these materials actively in our
day-to-day activities.

Please bear in mind that despite the numerous technical examples, this is not a
Cookbook or Programmer's Guide (such as http: //www.packtpub.com/oracle-
service-bus-11g-development -cookbook/book). You can find plenty of them for
every Oracle product we use in this book on the official Packt Publishing website. For
a better understanding of the presented materials and examples, you must be familiar
with the SCA concept (in particular, BPEL and Medjiator), Rule Engines, and Oracle
Service Bus (the implementation of proxies is a must). The common prerequisites
include some Java skills (EJB and Servlets), XML, and PL/SQL. Nevertheless, we strive
to present all the concepts in the most comprehensive manner and you will find plenty
of references to the Oracle documentation and best practices.

[6]

http://www.soaschool.com/
http://www.packtpub.com/oracle-service-bus-11g-development-cookbook/book
http://www.packtpub.com/oracle-service-bus-11g-development-cookbook/book

Preface

Staying focused on the Agnostic Composition controllers, we had to rationalize

the set of tools, excluding some really interesting ones such as Oracle BPM Suite.
Unfortunately, it's virtually impossible to put all Oracle products from the Fusion
Middleware stack into a single book; please see related books on the publisher's site.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The xsd:any element is at the upper level in this hierarchy; it has an equivalent
object in OOP."

A block of code is set as follows:

Public SearchObject getSearchResultObject () throws Exception {

try{
InputStream source = getResultStream(search url);
Reader reader = new InputStreamReader (source) ;
Gson gson = new Gson() ;

SearchObject response = gson.fromJson (reader,
SearchObject.class) ;
reader.close() ;
return response;

}

catch (Exception e)
log.error (getClass () .getSimpleName (), "Error for URL "
+ search url, e);

}

return null;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

//invoking parser
execute immediate
BEGIN '||v _parser||'(:1, :2, :3, :4); END;'
USING IN ip lob, IN v_msgid,
OUT v_status,
OUT v_status_text;

[71

Preface

Any command-line input or output is written as follows:

loadjava -grant public -user <xdbuser>/<xdbuserpwd>@<XDBSID>
CustomServlet.class

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The CTUMessage payload is our generic message container."

“ Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

[8]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/0563EN ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[o]

https://www.packtpub.com/sites/default/files/downloads/0563EN_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/0563EN_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

SOA Ecosystem —
Interconnected Principles,
Patterns, and Frameworks

In this chapter, we will discuss how Service-oriented Architecture (SOA) as a
design approach allows us to achieve certain goals and the characteristics that have
to be maintained to make these benefits feasible. The practical ways of attaining
these characteristics are based on a concrete balance of very well-defined principles,
and we will closely look at each one of them. This balance is maintained in specific
areas of relevance and is formed in a structure of frameworks. Here, we will discuss
issues that are frequently encountered within and across these frameworks, and the
common patterns employed as a publicly approved way of solving these recurring
problems. One of the main purposes of this chapter is to give developers and
architects a matrix of the design rules (patterns) in relation to the corresponding
frameworks, all based on SOA principles.

The characteristics, goals, and benefits
of SOA

As an evolutionary approach, comprising the best of the architectural and technical
solutions designed in the last forty years (arguably even more), SOA nowadays in
many ways is quite well standardized with a well laid out vocabulary of meanings
of technical terms. Along the course of the entire book, we will stick to the definition
of SOA, summarized by Thomas Erl in Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall / PearsonPTR Publishing.

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

This is also available at http://serviceorientation.com/whatissoa/service
oriented_architecture. The complete SOA Manifesto that was developed as a
result of systematic collaboration of many experts' groups can be found at
http://serviceorientation.com/soamanifesto/annotated.

Still, it's quite fascinating to see that debates are still being sparked and raged
worldwide regarding proper terms and their meanings. We are not going to judge
or participate in any form in these discussions. That's not the purpose of this book.
Obviously, there is one good way to avoid that, which is to stay focused on the
practical targets that SOA helps us to achieve. No wonder these goals and benefits
are quite well defined and are the sole purposes and reasons why the SOA approach
was proposed in the first place. Any practicing architect who has been through
several projects (even if not defined as being SOA-based) could easily recollect

the common requirements stated by both sides: Business and IT. Let's just quickly
recollect them. So, any concrete solution should have the following properties:

* They should be kept as simple as possible while still meeting the
business needs [R 1]

* They should be kept flexible and consistent to support the changing
enterprise-wide business needs and enable the evolution of the
company [R 2]

* They should be based on open industry standards [R 3]

* Systems and components within the proposed IT domain (architecture)
will be viewed as a set of independent and reusable assets that can be
composed to provide a solution for the company [R 4]

e They should be based on clearly defined, well-partitioned, and
loosely-coupled components, processes, and roles [R 5]

* They should be designed for ease of testing [R 6]

* They should be based on a proven, reliable technology that is used as
originally intended [R 7]

* They should be designed and developed, focusing on nonfunctional
requirements right from the start [R 8]

* They should be secure; able to protect confidentiality and the privacy
of all underlying resources and communications [R 9]

* They should be resilient to faults, that is, capable of staying operational
even in the event of catastrophic failure of the internal components [R 10]

These are actual consolidated requirements taken from more
= than ten projects and RFIs.

[12]

http://serviceorientation.com/whatissoa/service_oriented_architecture
http://serviceorientation.com/whatissoa/service_oriented_architecture
http://serviceorientation.com/soamanifesto/annotated

Chapter 1

We could really continue on, but in general, these are the top-ten points of any
requirements list, and it will be hard to go further without repeating them.
Therefore, any list that is similar to this cannot be consistent with more than 15
unique statements within it. We suggest keeping these points up your sleeve until
the end of this chapter. This is because at the end of the chapter, we will do some
practical exercises of matching listed declarations to the capabilities of SOA. Quite
often, these requirements are based on pure common sense, and some people declare
them as design principles. It is hard to argue that real design principles should at
least be based on common sense, but compliance to this simple fact is not enough

to talk about elements from the previous list as principles. At the moment, they

are just declarations of good intentions, and we, after several implementations of
complex projects, know quite well what road is paved with them. We will talk about
the definition of principles a bit later in a considerable amount of detail, but now

it's important to analyze these wishes and find what's common there and how it is
relevant to the service-oriented approach. It is quite simple to see that the whole list
(with one small exception, which is just to confirm the general rule) can be divided
into two categories. These categories are related to effort (first, third, fourth, fifth,
sixth, seventh, and eighth items) and time (second and seventh items), with the
seventh item equally relevant to both effort and time.

Standing a bit aside, the ninth item, generally described as compliance by security
policies, is nothing more than pure money, as almost no one these days seeks fun in
simple informational vandalism. All security breaches aim to steal your information,
that is, money, and therefore, put you out of business. As a consequence, it's

needless to say that time and effort can essentially be compared to money as well. So,
unsurprisingly, everything boils down to the same logical end, that is, money, which
is the key; we have learned this many times, when talking to the bosses (CIO, CEO,
project manager, and so on). As stated previously, in IT, money comes in two general
ways: either we consistently shorten the delivery cycle or reduce operational costs.

Firstly, we would like to place strong affectation on the word consistently, otherwise,
all delivered solutions will tend to be quick and dirty with rocketing operational
costs. The two ways (mentioned previously) don't need to be exactly inversely
proportional, and proper balance can be found, as we will see later.

A shortened delivery cycle simply means that we will strive to employ the existing
reusable components if feasible. Also, every new component or element of the
infrastructure that we will add to our inventory will be designed, keeping reusability
features in mind. The good rate of return from previous investments (that is, ROI) is
the main direction of implementation for new products. At the same time, a higher
level of reuse denotes a lower number of heterogeneous components and elements in
the infrastructure.

[13]

[vww allitebooks.cond

http://www.allitebooks.org

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

A less diverse technical infrastructure with more standardized components tends

to be more predictable and consequently more manageable, and the lowering Total
Cost of Ownership (TCO), which is the key part of operational costs, becomes
more attainable. With higher ROI and lower TCO, an organization becomes more
adaptable to market changes. This is because with them, we will maintain a more
transparent and understandable application portfolio with a high level of reuse, and
at the same time, reserve more money for creating new and best-of-breed products
in the areas of our business expansion.

How can these strategic business benefits be achieved from a components'
development standpoint? We have already mentioned that to make our components
more interoperable, we should reduce the level of disparity, but at what level? By
building components on the same platforms using the same languages, versions,
protocols, and so on? This will be unrealistic even within a single department, not to
mention a decent-sized enterprise. Our development and implementation processes
must be focused on reducing the integration efforts between components, aiming

to standardize interfaces. Taking this standardization further onto higher levels,

we could achieve a certain abstraction level that will be comprehensible to business
analysts yet present enough technical details to be sufficient for IT personnel. The
long time benefits promised (which may not be entirely directed) by object-oriented
programming (OOP) are quite rarely achieved due to the complexity of inheritance
and encapsulation concepts.

The Agile developing approach is the solid basis on which business analysts and
technical leads can find mutual areas for fostering reusable components with
minimal interaction cycles. Still, the Agile methodology in place is not the main
prerequisite for achieving this, and if correctly maintained, the level of interface
abstraction allows people from both business and technology fields to speak the
same language. The main outcome of this exercise should be to provide a description
of a component's interface with business-related capabilities that is desirable for

the expected level of reuse. What is inside the component, that is, its technical
implementation, is completely out of discussion, and it's up to the technical lead to
decide which way to go.

Thus, various technical platforms can leverage their best sides where it's needed

(or where it's inevitable due to specific skill sets in place of physical implementation)
by staying interconnected without affecting each other's premises and project
deadlines. Finally, the federated approach gives the opportunity to choose the best
products from various vendors and assemble them in the business flows, abstracted
and architected in the previous steps. Of course, these products must stay in
compliance with the interface specifications and the operational requirements that
we put in place. The opposite is also true, that is, setting standards from our business
standpoint will help vendors to adjust their products and offerings in such a way that
integration efforts will be minimal.

[14]

Chapter 1

So, it's all about money, as the logical sequence mentioned earlier demonstrates.
Have you noticed that in that logical exercise, we didn't use the abbreviation SOA
at all? So far, we are just trying to convert the previously presented list of intentions
derived from various project-design documents, such as request for informations
(RFIs) and request for proposals (RFPs), into a concise list of benefits. Our next
step will be to assess how attainable they are. Although that will be the purpose

of the entire book, the key criterion will be defined here shortly. Before proceeding
with this, we would like to stress again that the basic terminology around business
benefits and design characteristics is based on the widely accepted structure
presented by Thomas Erl as mentioned earlier. Also, we do not want to reinvent
the wheel for the thousandth time and then participate in terminology wars, which
will lead us nowhere. Thomas Erl has described the obvious benefits that we would
like to achieve in a logical sequence, and you can see the proposed sequence for
implementing the listed-out goals in the following table:

Goals and benefits Common solutions'
requirements

Increased ROI 1,8

Reduced IT burden (low TCO) 1,3

Increased organizational agility (shorter time to market) 4, 8,10

Increased intrinsic interoperability (reduce integration 2,4,6

efforts)

Increased vendor diversification options 3

Increased federation 56

Increased business and technology alignment 1,2

It is also obvious from the previous requirements list that some of the requirements
are very contradictory, and in most practical implementations, there could be quite
a few natural enemies present, such as:

* Security and performance (always blood enemies).

* Reliability factors and highly reusable components (for example, having a
single point of failure).

* Resilience achieved by Redundant Implementation and IT costs,
independent reusable assets and governance costs (for example, preventing
the component logic from getting scattered over several implementations).

* Flexibility and reuse-by-design and development costs (for example, in the
initial phase of development). Higher flexibility denotes that more execution
paths are required, which requires more testing.

[15]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

This list can go on as the previously mentioned points are just the obvious ones.
Thus, the benefits summarized in the table are comparably more consistent as
the most contradicting parts are abstracted. However, we must keep in mind that
they are still there, and we will focus on them in more detail while discussing

the implementation of design principles. What is important now is to distill the
most common characteristics that any architectural approach will ensure in every
application to attain these benefits.

It is clear that one of the primary requirements for reducing time to market is to
improve communication between the technical leads and business analysts. If the
ways of expressing the business and technical requirements are kept abstracted from
the analysts, and at the same time, the essential technical specifications are kept

in place for the developers, then this architectural model could be truly business-
driven. The other way around is also valid. If IT provides a managed collection

of reusable business-related services, then it's quite possible that new business
opportunities can be spotted and proposed by business analysts; this is because new
workflows are composed out of the existing services. The response time to the new
challenges will be lowered as the change in the implementation's task force will be
business-driven and IT will be resource-oriented at the same time.

Components, especially developed with a business recomposition option in mind,
will gradually form some kind of components library. With strong sponsorship from
architects, this library will become attractive for more and more extensive reuse in
various business domains, depending on the business context of the components of
course. This library has a name. Traditionally, it's called repository, and we will spend
a lot of time discussing its purpose and architecture a bit further. However, from

the characteristics standpoint, let's depict it as a technical platform that is capable of
hosting these components and providing runtime and design-time visibility, which
will be discussed further. Simplistically, this will be any application server with a
management console, available for all enterprise developers and architects; it will
present all reusable components as the sole enterprise-centric assets.

This second characteristic would be possible only when the presented components
are designed with the highest level of composability in mind. This means that when
integration efforts, including regression test requirements, platform performance
enforcements, and activity monitoring are tamed enough to a level where the
reusability option becomes so attractive for all the technical and business teams, the
idea of reinventing the wheel would never come as a plausible option. Surely, these
characteristics could have more governance efforts in the background than purely
technical ones. Still, with proper planning based on honest and realistic maturity
assessment and with evasion of the big bang's "all-or-nothing" approach, when
SOA becomes more religion than the practical "one step at the time" approach,

it’s quite achievable.

[16]

Chapter 1

Components developed as reusable assets should follow commonly accepted
standards; otherwise, reusability will be severely limited to one technology domain.
Another alternative would be to reinvent the already existing standards, which is
always a waste of time. It doesn't mean that any published standard must be followed
blindly; the adoption of standards must be carefully planned. An enterprise's maturity
analysis combined with marketing research on top products in a particular area will
guide an architect towards common models, describing the component's behavior and
implementation technique with minimal integration efforts. Thus, by achieving the
first three characteristics, we will open the highly desirable option of maintaining the
hot-pluggable infrastructure where best-of-breed products from various vendors could
be combined into well-turned fabric based on common standards. It is an architect's
responsibility to stay watchful, analyze standards' specifications, and deduct the
crucial parts and to be focused on increasing the desirable characteristics.

This design characteristic of making it possible for all components in a repository to
stay vendor-neutral has an extra significance for us in the context of this book; it is
dedicated to the realization of certain design patterns on the Oracle platform. Actually,
there is no contradiction here. This is because we will strive to present concrete
solutions in a vendor-neutral way first, if possible, and then demonstrate how Oracle
tools could address the same issue. We will do this here and try to demonstrate the
maturity of the Oracle platform, which is capable of delivering hot-pluggable solutions
that could potentially pose fewer burdens for the enterprise IT domain.

So, now it's a good time to sum up the short descriptions given previously in the
table of architectural characteristics, in the way they have been defined by Thomas
Erl. Here, we will again repeat our exercise, trying to map the supporting core
characteristics to most of our requirements (if not all).

Characteristics Requirements [R 1] to [R 8]
Business-driven 2
Composition-centric 1,5,8
Enterprise-centric 4
Vendor-neutral 7

We have selected the most obvious characteristics, which directly support the most
common requirements, summarized at the beginning of this chapter. There is no
need to elaborate on this further, as we can easily see that other requirements are
supported directly or indirectly. However, we would strongly recommend that
you repeat this exercise every time you analyze the requirements for new products,
systems, or components in the RFI scope or at any other stage of the project.

[17]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

The following figure summarizes all that we have learned so far:

Until now, we have intentionally avoided mentioning the term SOA during this
short exercise of outlining the keystones of the requirements analysis. The purpose
is quite straightforward: if you could clearly define your goals in a very precise way
and declare concise characteristics in support of these objectives, it really doesn't
matter what the name of your design approach is. Some can call it common sense,
and that's perfectly fine. Nothing could be better than a design approach based

on common sense, which is easily comprehendible by business and IT. However,
apparently something else is needed, and that would be the design principles as a
strong foundation for the first two keystones.

In the following paragraphs, we will outline this foundation again using the
classification provided by a best-selling SOA author and founder of the SOA School,
Thomas Erl, which is accepted by Oracle. This time, we will strongly focus on SOA
and Service-Oriented Computing (SOC) as the best technical implementation of
common sense depicted earlier. There is no reason to evade it further — if it looks
like a duck, swims like a duck, and quacks like a duck, then it is probably a duck.
Goals and characteristics mentioned previously are exactly how the SOA declares
them. How they will be achieved and supported is a matter of the principles'
implementation. They are all interconnected, so the balance is also part of common
sense, and as is usually put, it must be applied in a meaningful context. The extent of
this is the level of realization of tactical and strategic goals and technical capabilities
of the principles' implementation.

[18]

Chapter 1

An example of architecting for tactical
goals

Please be forewarned as the following example is a recipe for a perfect
M disaster. We have to put this disclaimer as some could take it as direct
Q architectural advice. It is also sadly realistic, since all that we have
described next was taken from real implementations. We will use this
example in the later chapters.

So, what are the tactical goals? The essence here is time, usually limited by a
timeframe of a project or several milestones of non-correlated projects. It is always
good to stay on budget and deliver on time what was promised. This is a common
scenario for a component or a single application development process. Isolation,
focus on performance, and reliability as primary targets have their obvious benefits.
As a solution architect, do not bother your team much with interoperability, as
you probably have another enterprise application integration (EAI) team that is
especially dedicated to this purpose; they are somewhere nearby and are capable
of performing the tricks. Skillful EAI means that some integration platforms are

in place already, providing hub-and-spoke capabilities with all the necessary
transformations, translations, protocol bridges, and so on. Honestly, nothing's
wrong with that. At least, not yet.

All that you need is a capable integration team and be lucky enough not to be at the
end in the row of endless regression tests. Also, it would be prudent to maintain a
very thorough events/error log for your product, just in case you need to identify
where all your inbound/outbound messages have gone. You must be able to prove
that you (your application) have sent all the required outgoing messages, and they
are definitely now on the integration platform's side (just search better); alternatively,
if you haven't received what you need, the flaw is definitely on the part of the

EAI's design.

As time is of the essence, moving further, you can take the liberty to define all
your APIs and XSDs as close to your technical implementations as possible, based
on the DB structure and the logic of the classes. Modern development platforms
and SDK/XDK are truly advanced, so this task can really be done in no time by

a right-mouse click. Following this path, you can provide newer versions of your
application almost instantly after receiving new requirements, and it's purely EAI's
responsibility to maintain concurrent APIs published on an integration platform.
Again, just be the first in the list of regression tests.

[19]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

As performance is declared to be one of the primary objectives, always demand

for direct access to the resources you need. A direct DB access or Remote Method
Invocation (RMI) is much faster than the hub-and-spoke integration approach. At
the same time, do not let anyone access your internal resources, as it potentially could
affect the third characteristic declared prime, that is, reliability. On second thoughts,
it would be good to hide all your implementation details and keep them hidden from
everyone. It will prevent any unauthorized access into your backend resources.

Strengthening security is a positive side effect of this isolation. The obvious fact that

all technical details and data structures are already exposed via your autogenerated
Web Services Description Languages (WSDLs) are just Web Services (WS) collaterals
and must be handled again by EAL This is because we follow a common principle

of separation of concerns by delegating security operations to the middleware. By
helping middleware handle error situations, you could provide a full-stack trace from
your entire web-based AP], leaving the standard SOAP Fault message by default. The
EALI team will have to find all the necessary details and handle them according to their
understanding of business logic, as we will keep our internal logic secluded for the
reasons explained previously (security and resource protection).

As you already have direct connections to the resources in other systems, you
could potentially implement some extra logic on your side in order to speed up the
external processes and get the necessary results without waiting. Why not? We are
endorsing distributed computing! You can go even further; you can include your
public API's capabilities from other systems, as you already have access to them.
So, it's a mashup, isn't it? For the sake of clarity, you just inform the EAI team that
these new capabilities are foreign and not covered by your original SLA, as you
cannot guarantee that the design of other systems would be good; however, you
welcome everyone to use them. Speaking of SLA, quite soon you will spot that the
autogenerated XSDs are a bit elaborate, causing some latency on the API side and
extra processing overhead on the EAI platform. As an architect, you would propose
quite a simple workaround (remember that performance is the essence): switch

off the XSD validation at the EAI platform's end. It certainly helped a bit, but not
enough. Later, you will discover the original cause, that is, the standard JAXB library
responsible for message marshaling/demarshaling is way too slow.

The implementation of custom marshaling would certainly be helpful not only

for your application, but also for others' as well. Why not help other teams by
supplying them with a more robust and reliable XDK? In parallel, you can make

some improvements to the XML structure, presenting custom elements within the
message body for parsing acceleration. For instance, if you have several addresses in
the message (billing, postal, and corporate), you could implement special predicates to
indicate which one is to be used in a particular business case and when others should
be suppressed. You can really dedicate some time to these tasks so that developing and
adapting your components is not so burdensome.

[20]

Chapter 1

Our tactical goals have been well achieved. All that's left is to explain to your CIO
why the consolidated IT costs after three years of tactical architecting are almost
equal to corporate revenues.

If you think the presented scenario is a bit artificial, please suspect not. On the
contrary, some unnecessary technical details had been omitted to make it less chilling.
However, we would like to make one thing clear: we are not against tactical goals at
all; they are chunks of iterative development and essential parts of SCRUM sprints.
We just believe that tactical goals and benefits must be a native part of some bigger
strategy; otherwise, you could win a battle or two but lose the war very badly. The
temptation to achieve your target instantly by buying another magic pill is always high
but usually leads to a spaghetti-like infrastructure. In best case scenarios, you will get
a lasagna-style infrastructure if your integration efforts are consistent (another term
for expensive). So now, we are going to discuss the principles that could make our
strategy capable of supporting declared goals and characteristics.

SOA principles

Don't worry, we will not be reinventing the terms here again. After more than ten
years of implementation, the principles are quite well declared and explained.

The consolidation done by Thomas Erl has been accepted de facto by most of the
top market players, and what is most important for this exercise is that it has been
accepted even by Oracle. You can refer to it at http: //serviceorientation.com/
serviceorientation/index.

Here, we will mostly focus on the relation of the principles and characteristics and
the consequences that will follow if the principles are neglected. Jumping ahead,

it would be right to say that the patterns are really needed when principles are not
implemented as they are intended. The reasons for this could be different, which are
mentioned as follows:

* The already existing burden of legacy systems prevents us from
implementing more reusable solutions immediately. We really do not want
any revolutions.

* The obvious political reasons of all kinds, usually caused by strong focus
on tactical goals, temptation to pick the low-hanging fruit, and show quick
results even if they are based on another silo in the app's stack.

* Most interestingly, patterns would be required to resolve the conflicts
that arise during the implementation of different principles from the same
technological area. Yes, principles can contradict and must be applied in a
meaningful context.

[21]

http://serviceorientation.com/serviceorientation/index
http://serviceorientation.com/serviceorientation/index

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

It is also important to recognize that all these architectural principles are generic,
common, and universal for the selected technological area (SOA in this case).
Principles are also tangible, well recognized, and limited in number.

Some may say that our top-ten requirements can be perceived as principles as well.
Even all illities could be principles because of their universality and simplicity.
Unfortunately, simplicity here cannot help. We, as architects, should give strict,
precise, and most importantly, tangible guidance to developers, and be able to
follow our own recommendations.

The measurable outcome is the result of proper guidance, and the principles here

are closest to the physical implementation and must be understood and followed.
Some principles could be less tangible than others and could just present the results
for collective implementation principles with lesser abstraction, but still the results

of the implementations can be measured. Let's take the most common illities such as
reliability or flexibility and try to explain to your developers (or yourself) in just few
words how to code your components in order to achieve them.

Q [llities are also known as non-functional requirements (NFRs).

Depending on the technology platform, the explanation could take up to a couple
of pages or several chapters. Still, they should seem obvious and even quite
measurable. (Reliability is usually the Mean Time Between Failure (MTBF) and
flexibility is also a time-based characteristic that displays how fast a system can be
reconfigured for other business requirements.) So, NFRs are also precise technical
requirements and not a guide in technical terms. Looking forward, let's propose a
logical hierarchy of the terms, one way or another related to principles and their
areas of application. By the end of this chapter, we will cover all of them. Your
benefit from this exercise will be a clear outline that will guide you on how to
analyze requirements and apply design rules for most of your SOA-related
projects. The following table illustrates the principles and patterns discussed:

Principles and patterns Quantity

Even being highly generic, the characteristics of generic 7
illities have certain practical implications and materialize
in at least six architectural frameworks.

[22]

Chapter 1

Principles and patterns Quantity

Technology stack's architectural principles (for SOA 8
design principles) states that every application consists

of several technology areas, the sharing or reuse of

components, and composites. For every application, an

individual and balanced combination of the universal

principles is the key for successful implementation.

Architectural patterns form a pattern catalog, commonly >85
approved as open standard (. org). It is the number of
concrete patterns that are recognized.

The following figure explains the preceding principles and patterns:

Generic “jljjtjoon

We will discuss frameworks separately after a quick walkthrough
L of the principles.

So let's start with the obvious ones that were already mentioned earlier.

Standardized service contract

In a standardized service contract, we really believe that the word service here is a bit
of an overkill. Services today are strongly associated with the web service's technical
implementations, so naturally, the first thing that comes to our mind would be
WSDL with schemas, optionally, with policies. Nothing's wrong with that; it's truly
the most common service implementation (or REST maybe), but the fact that any
WSDL and XSD can be easily autogenerated compromises this idea. Autogeneration
doesn't turn it into a standard. An autogenerated service contract is nothing but
trouble, and if you haven't got it after the first exercise dedicated to tactical goals,

we will have plenty of opportunities to convince you.

[23]

vww allitebooks.conl

http://www.allitebooks.org

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

By doing so, you are just forcing everyone to adapt to your specifications, which
include existing applications. Surely, if you are an architect in a big bank, this approach
might work; we're hesitant about the stub's implementation time at the remote end.

The second point here is that we can build a very robust service-oriented system
without a single web service. The Oracle PL/SQL will do it beautifully, and we

will demonstrate it in the next chapters. So, the contract could be anything that
declares public operations, available protocols, and data structures such as the
PL/SQL package header .pks, C++ class header .h, and the Java interfaces (also called
contracts). Component-based development is a completely valid approach in SOA if
it's approved by all the members of the implementation domain. Interactions between
different domains will require some integration efforts even if the technology is the
same, but that would be true for web services as well, so that's not a major drawback
of using components as SOA's building blocks.

The problem here is that all components' contracts are nondetachable compared to
WSDLs. The true beauty of WS interfaces is that we can sit in a quiet corner along
with developers and business analysts and by using just a pen and a napkin describe
the prototype of service compositions, go back to our stations, and start coding right
away. Talking seriously, by describing the detachable contract as WSDL, we can
really provide a parallel development process and work on an iterative development
in a reasonably painless manner. Simply speaking, you can compile the service logic
(Java) without WSDL and try to do the same with a PL/SQL package body without
the package specification. Finally, the most important thing is that this contract-first
approach allows us to generate the code based on an initially defined and mutually
accepted contract, and Oracle is really good at it. Practically, you can generate
skeletons on any platform that you want to be your logic carrier, such as Java,

BPEL, and Mediators.

A standard contract is the primary means of presenting your service as a corporate
asset to maintain at least two main SOA characteristics: Composition-centric and
Enterprise-centric. With the WS-based approach, you will achieve vendor neutrality
as well.

Loose Coupling

This principle is probably the most well-comprehended principle. Everybody knows
that tight coupling is bad. Is it really? To discuss this, let's first describe what kind

of couplings we could get. You'll be able to understand this from the realization of
service anatomy. Basically, we have the following:

* Service resources, presented as DB, file structures, and so on

* Technology platform (Java, .NET)

[24]

Chapter 1

* Service logic implementation

* Parent service logic

Anything that links your contract or, even worse, your consumer to one of those
service resources can obstruct the core SOA characteristics we are trying to maintain.
So, all links going from contract to service resources or bypassing the contract are
bad. The opposite direction is not much better because providing details of the
technology platform or excessive resource demonstrations is not good, as it can
provoke the service consumers to build their consumption logic based on these
details. However, what about the contract-first principle? Yes, it's a positive thing,

so coupling your service logic to the declared contract is a natural and decent way of
implementing the service. However, neither the service logic nor the service contract
has been set in stone —business is evolving, and so are our services. Quite soon, a
new contract version will be published or the core service logic will be patched.

It will eventually turn out that this positive coupling also has its deficiencies. No
reason to despair though; it's life. All of us are evolving, and customers connected

to our contract are always welcome. How to deal with this situation using various
Oracle SOA patterns will be discussed further.

In addition to this, we would like to emphasize that coupling from customer to
contract is the second positive coupling, although it is susceptible to the same
problem like the one with contract evolution. All other couplings must be prohibited
if possible. This statement is not as strong as you would expect. We have touched
upon the reason for this earlier in the tactical goal's architecture example, that is,
performance. Standard contract denotes the message processing overhead, some
milliseconds (or more) in addition to the total processing time, CPU utilization,
and memory consumption. Is it worthy enough to jump over the service contract
and utilize service resources directly? Only you know what these milliseconds of
overhead mean for your business, and the decision on what to sacrifice is yours.
In general, the answer is no. Please look at your contract first. Is it truly standard?
Assess your needs using the following logic:

* Do you clearly define your data structures with the required elements only?

* Do you avoid autogeneration, especially for operations with CLOB fields
without CDATA or <any> elements? (Memory leaks during marshaling is a
common outcome of this approach.)

* Can a concurrent contract with more lightweight technology (REST
instead of SOAP) possibly solve the problem? (Concurrent contracts
will be discussed further in the Chapter 4, From Traditional Integration to
Composition - Enterprise Business Services.)

* How about a platform-specific SOAP/XML acceleration? Oracle's WLS T3
protocol could be useful as it has proven many times

[25]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

* The tuning of the execution environment and proactive monitoring.

* If platform-neutral contracts (WSDL / REST-based) do not help,
could we employ a component-based concurrent contract?

Always think what price you will pay to break this principle for gaining ten or fifty
milliseconds of processing time. This principle directly supports the composition's
centricity and vendor neutrality's SOA characteristics.

Service abstraction

The logical outcome from the implementation of the first two principles is standard,
preferably (but not mandatory) a detachable service contract as a declaration of

our capabilities, processing requirements, and input expectations. Still, the word
standard is a bit vague. Let's put the discussion about existing standards aside

for a moment and focus on the areas of standardization. The bottom line is that
standardization is the way of generalizing information, a process of making it more
abstract in order for it to be more multipurpose in predefined technical boundaries.
Some of the elements of abstraction in service-orientation boundaries that we have
already mentioned during the discussion of Loose Coupling are as follows:

* Do not reveal in your service contract the specifications of your technical
platform (such as the coding language, SDK's details, and XDK properties)

* Do not expose details regarding your underlying resources (such as the DB
structure, constraints, and especially the foreign keys)

* Bereasonably reserved regarding services-composition members that
comprises your service

Why would you do that? It is because of the same reasons we mentioned while
discussing the previous principle. Excessive information can provoke negative

coupling to service resources, making the service less adaptive and reducing its
reusability options.

For example, you have a lot of useful functions in your service logic. Obviously,
you can fall into the trap of promising extra features in addition to the already
agreed one. (Okay, not you, your new project manager.) It literally costs almost
nothing at the beginning. Most probably, it will not even affect the level of
standardization of your contract at first glance, which is shown as follows:

* Your data model that is based on your corporate-approved entity's
Canonical Data Model (CDM)

* Your naming standards are very clean and comprehensible,
based on industry standards

[26]

Chapter 1

Who can give you a warrant that the business logic, encapsulated in your service,
will not change tomorrow and that an auxiliary-declared operation becomes a
burden or even an unwanted shortcut in the business process? How about a number
of consumers who become dependent on your extra feature? Migration in SOA is not
an easy task, even with certain SOA patterns applied.

On the other hand, even in a relatively static business ecosystem, this new feature
could become so popular that all of the hardware power dedicated to your service
scope will be consumed by only this one operation.

Level of abstraction — granularity and models

So, do not promise anything and keep everything for ourselves? Let's not blow this

out of proportion. SOA is full of promises; it was designed in this way, and luckily,

we have enough methods to keep these promises. If service capabilities (that is,
operations) are correctly planned from the beginning and used unevenly, then maybe
we have put too much on a single service's plate. What is the functional scope of this
service? If this service handles one single business entity (such as invoice), then all our
operations should be bound to its functional context, which is abstracted to the level of
a functionally completed environment. You would hardly keep salt, sugar, and flour in
one jar in your kitchen just because all of them are white. Still, it's rather amazing how
this simple thing called granularity is neglected in the real life of service development.

Functional granularity is based on the understanding of service models. Entity
services that are already mentioned are the first and closest abstracts to the atomic
data representations in an enterprise, for example, invoice, order, cargo unit, and
customer. All operations would be naturally based on the DB CRUD model but not
limited by them. The number of truly unique entity services is rarely more than

20 in any enterprise. The functional granularity here is usually based on the
OLAP/OLTP segregation:

* Online transaction processing (OLTP) as very short, real-time, CRUD-like
operations with high demands for response time are naturally the primary
capabilities of the entity services, and their operational time slot is frequently
within the standard business hours (that is, 08:00-17:00)

* Online analytical processing (OLAP) operations are not that demanding
when it comes to response times, but data volumes are usually higher and
operational time slots are either evenly distributed around the clock or tend
to be close to the regular nightly batch-operations time.

[27]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

As you can see, mixing them together would not be a good idea if we have an
overlapping operational time slot. The possible conflict between high volumes
and high throughput will require your attention at the very early stages of service
modeling. Should we abstract OLAP operations to DWH-specific services?

The second service model is the utility that usually presents the most reusable

and supplemental logic, consumed by all other services. The level of functional
abstraction here is really high and business-independent. Your transformation,
translation, or measure-unit conversion services are typical representatives of this
model. The level of functional granularity can be easily defined and operations can
be tuned for high-usage demands. Migration issues are not that frequent here,

so functional abstraction is fairly simple.

The last model or task service is what we usually know as workflow, which is the
composition of other services combined together in order to fulfill one single task
such as OrderProcurement and BookingRequest.

Distinctive properties of this service model comprise one task, one operation, and
one business context. Functional abstraction should not be a big puzzle, but still
we can see a lot of misinterpretation caused by the deceptive simplicity of modern
development tools, providing neat visualization of service compositions, plus
very mature resource adapter frameworks starting from order fulfillment (many
thanks to Oracle for providing an extremely detailed Fusion Order Demo (FOD),
available at http://www.oracle.com/technetwork/developer-tools/jdev/
learnmore/fod1111-407812.html). An enthusiastic developer can soon include
Invoice, Booking, and General Ledger flows into one monster. Entity services are
commonly neglected, as we do not need them anymore; a DB adapter can provide
us with the perfect result in five clicks. Additional interfaces that were constructed
while composing this task service can be easily exposed to external consumers. The
problem here is that this service is not a task anymore; it's a hybrid with the worst
possible functional granularity, combining business-specific and business-agnostic
capabilities. A thorough application of the abstraction principle from the very
beginning could prevent this problem.

The deceptive simplicity of development can hoodwink developers, who are

left alone without architectural guidance. This fact provokes developers to use it
everywhere, whether it's appropriate or not. Some industry-specific forums and
advisory boards quite often produce rather vague frameworks and business process
specifications that are in fact not more than business heat maps. Following them too
directly can easily result in such hybrid services with unclear abstraction levels.

[28]

http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html

Chapter 1

Data granularity is the next level of granularity we should take into consideration
when applying the abstraction principle. Processing one single order line or a
complete bunch of orders received in one message in reality makes a difference;
however, in your design of an Order XSD, all that it takes is to set minOccurs to
greater than 1 for the order node right under the orderHeader element.

The data constraints granularity or constraints granularity in general is the next
logical level of granularity. Again, talking about XSD, you could be really restrictive
with your data type definitions while determining whether they are necessary by
declaring a simple type using XSD patterns, explained as follows:

Fine-grained Coarse-grained

<xsd:simpleType
name="imageType" >
<xsd:restriction

base="xsd:string"> xsd:string xsd:any

<xsd:pattern
value="(.)+\.
(gif|jpg|jpeg|bmp)"/>
</xsd:restriction>

</xsd:simpleType>

Fine-grained Coarse-grained

Here, you want to be sure that the image's filename provided in a message is safe

(at least not executable). This could not be achieved by the most popular xsd:string
data type alone in the service contract. The xsd:any element is at the upper level in
this hierarchy, which in OOP has equivalent object. All these levels of abstraction
have full rights to exist, but you must clearly realize which part of your SOA
infrastructure should employ these different levels of granularity. The other means
of data granularity already mentioned are minOccurs, maxOccurs, and nillable
that are applicable for the elements and xsd: attributes. Terms usually used for
different levels of detailing are the fine- and coarse-grained granularity, and they are
quite self-explanatory. The levels of declared granularity directly impact the location
of the service-processing logic. This means that with a more fine-grained XSD, you
will put more processing demands on the contract's message processing logic — XDK
marshalers (serializers). With a more coarse-grained granularity, you inevitably put
the big chunk of message parsing and validation logic into the service's component
logic behind the contract. It could also make service difficult to test, as highly
abstracted contract will not reflect any changes that are supposed to be presented

to the Consumer.

[29]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Other abstractions include the abstraction of technical details hidden behind the
service contract, and programming language aims to increase the federation of our
heterogeneous service infrastructure. Abstracting contract-related parts of SLA,
such as quality of service, availability information, and performance metrics also
helps to standardize service profiles within a service inventory.

We have deliberately put aside the security considerations related to the abstraction
principle until now. By declaring more precise data types, you could reveal technical
information necessary for data-oriented attacks. When using the data type casts
features, the attacker could trigger the error, revealing internal data structures
associated with the element (the point of the attack) and exploit them. An element
with the type <any> reveals nothing, but at the same time allows it to send any types
of data, including the harmful code. With such a high level of abstraction, presenting
the service contract with the operation process and data model Any, you literally open
the door for all kinds of parser-related attacks, memory leaks, and buffer overflows.
Possible ways of balancing the granularity and abstraction levels for services that
operate on different technology layers will be discussed further in Chapter 7, Gotcha!
Implementing Security Layers.

The ultimate purpose of principles' implementation in SOA is to increase the
service composability options as a direct method of increasing ROI. A less abstract
service contract where more information is revealed tends to be more attractive for
developers as they are more interpretable.

The implementation of this principle directly affects SOA characteristics such as
composition centricity and vendor neutrality. This principle directly supports Loose
Coupling. Abstraction from excessively expressed technical details will certainly
increase the business value of the service (business-driven).

Service reusability

The first three fundamental principles combined together will lead us to the
declaration of the first really tangible design principle, that is, reusability. One can
say that this is the essence of all the SOA principles. Still, we will not crown it above
all others, as it cannot be maintained alone without proper foundation of the first
three. In the book dedicated to the Java EE enterprise architecture, Sun Certified
Enterprise Architect for Java EE Study Guide (2nd Edition) by Mark Cade, Humphrey
Sheil, Prentice Hall Publishing, this principle is not included in the requirements for
the component's architecture. The first three include performance, scalability, and
reliability, and that's absolutely true. No one needs reusable components that are
unreliable and cannot perform as intended.

[30]

Chapter 1

We just have to realize that these illities here are applied to the service logic,
presented by Java components. If it's not reliable, and we would like to put that
first, we must not present this logic as a public service. In traditional component
architecture, the reusability support is delegated to the integration layer. In SOA,
we strive to make services reusable by means of the following:

* Defining the standard contract, exposing canonical data and
canonical operations.

* Making internal service logic more universal (another synonym for abstract)
and suitable for reutilization by other services. As discussed earlier, only one
service model is allowed to be highly specific, that is, task, as a composition
of other services, fulfilling the specific operation.

* Preventing negative couplings by promoting the technical contract as
only one way of accessing the service logic.

The level of reusability is really easy to assess: just count the number of compositions
where this service participates. The implementation of this principle directly
promotes composability and the enterprise's centricity. Let's now look at the two
pure technical principles that support reusability.

Service autonomy

An service can maintain the required level of reliability (measured by MTBF as time,
or percentage as an availability) necessary for consistent reuse only if it can possess
and control its own underlying resources. Database, file objects, physical realization
of the service logic, and so on should not be shared or delegated to other services.
The service should be perceived as an atomic unit of concrete logic, functioning

in a dedicated technical environment. In this case, the service behavior will be
predictable, fulfilling scalability requirements, and making it possible to relocate

the service into a similar technical environment with reasonably low efforts.

This last illity is highly desirable for a cloud-based implementation.

Unfortunately, this principle is probably the hardest to implement. We all know
that most commonly used databases are shared resources. License costs, bundles of
legacy applications, common network infrastructure, and so on are the reasons why
this principle is very hard to achieve without significant investment or considerable
maintenance efforts.

[31]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

This principle is quite often mistaken for Loose Coupling. Indeed, they are very
similar with regards to the negative impact on service reusability, although we
can draw a distinct line between them as mentioned as follows:

* Loose Coupling is the ratio between iterations, carrying through the service
contract from consumer and service resources (relatively positive coupling)
and iterations bypassing the contract (negative coupling). In fact, the service
is always coupled if it's in use, positively and negatively. Service-oriented
architecture based on components is more prone to negative coupling, as
their APIs are more technology-specific.

* Service autonomy is the measure of service independence. A business
usually has quite a limited number of data warehouses (DWHs) (usually one
per business domain and ideally —only one). Therefore, all analytical services
(InvoiceHistory, OrderHistory, and so on) using a single DWH DB will not
be autonomous. Present them as one service (this is not an advice), move into
a private cloud, and you will get a perfectly autonomous service. Now the
question is the price.

The implementation of this principle directly promotes the composition and
enterprise centricity and vendor neutrality.

There are no negative impacts on other principles, but as we have said, true service
autonomy is the nirvana that is really hard to reach.

Service statefulness

This second technical and very tangible design principle is the support of the
service reusability.

It's defined as an ability of a service to maintain low-resource consumption when
needed, namely between service activities, while waiting for a response, and so on.

At first glance, it's more applicable to the long running asynchronous services,
which could run for days or weeks. The deferring service state is vital here.

We have to store execution scope variables and preinvocation data in a special
database with all necessary information for waking it up when the response arrives.
In this Hibernation DB (dehydration store in Oracle terms), we will have a chain

of defer-awake records that are equal to the number of asynchronous invocations.
Moving further, we can defer the information at any stage of the long running
process for legal or compensative activities. This type of storage is compulsory

for all task-orchestrated services and is usually provided centrally by an
orchestration platform.

[32]

Chapter 1

This fact makes all task orchestrated services far less autonomic than other service
models. Surely, you can implement individual partial state deferral for every
task-orchestrated service (task service hosted within an orchestration platform),
making them ultimately autonomous. In that case, we truly admire the grandiosity
of your project's budget, not to mention the infrastructure and support.

Asynchronous services are not the only ones that need to maintain their state.

A poorly designed synchronous service with a lot of global variables, excessive
looping or branching logic, and a lot of calls to underlying storage resources will
consume a lot of memory and CPU. There is no remedy for this scenario that is
provided by the SOA technology platform; you can only rebuild it from scratch.
You could technically turn this service into an asynchronous process and set the
queues as transport means; however, that's not what consumers expect, and the
level of potential reuse drops considerably. Only services with predictable state
management will have predictable behavior and scale well when necessary.

This principle addresses the same benefits as autonomy but has negative impact
on the autonomy itself.

Service discoverability

Despite its obvious meaning, this is arguably the most-neglected principle.

The main reason for such negligence is the misunderstanding of service governance
boundaries. For some, governance starts after the service deployment process in
production. Although it's been said many times before, we would like to repeat it
again — governance starts long before the first line of code is written. You must plan
for the following:

* Which service trace records will be left in your audit/trace log under the
different logging settings

* How service activities will be perceived by different operational policies

* How a service could be dynamically invoked by different consumers
and controllers

These items among many others form the so-called runtime discoverability. It is in
your best interests to expose your service to all who can potentially use it. This is
possible if you follow these points:

* Service operations and functional boundaries are well defined according
to the service contract

* Service particulars presented in the form of service metadata help everyone
understand possible service runtime roles, model, composability potential,
and limitations

[33]

[vww allitebooks.cond

http://www.allitebooks.org

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

* Quality of service information describing service availability, reliability,
and performance is guaranteed

* Supplementary information regarding all test results and test conditions
are in support of declared performance

* Policy standards to which services adhere to mandatorily or optionally

All these items are elements of design-time discoverability. As part of governance
efforts, special layers of service infrastructure will be established in order to
support these two types of discoverability. We will dedicate a whole chapter to

this challenge, as we reckon lack of discoverability is probably the main problem

in the implementation of SOA. However, even if a technical platform is capable of
supporting dynamic discovery and invocation, and the service metadata storage is
full of service details down to the particular engines in use and rule types employed,
we could still jeopardize potential reuse by keeping interpretability of discovered
information below the comprehension level. Information that is too abstract (see the
Implementation of Service Abstraction principle) will prevent the demonstration of full
service potentials. A methodology in support of service taxonomy and metadata
ontology (discussed in Chapter 5, Maintaining the Core - the Service Repository in great
detail) will be not only established, but also conveyed to all individuals responsible
for SOA governance from the very beginning to the end.

How do we measure service discoverability? What questions should you ask your
developers and architects (including yourself) in order to understand the level of
principle adoption? Refer to the following questions:

* Do we have an inventory for all enterprise assets acting as service consumers
and service providers? In other words, what are the enterprise/domain
boundaries?

* Do we have individual service profiles?

* What are the key elements of service metadata available from the service
profile that we will use for a service lookup?

* From which service infrastructure layers will we perform the lookup and for
what purpose? In other words, who is allowed to discover this information
and when (security)?

* Can we perform reverse search metadata by service?

* How will these metadata elements be presented in a service message,
in which parts, and at what level of detail?

* Are these metadata elements in the service messages covered by the existing
SOA standards? Can we keep them vendor-neutral and minimalistic?

[34]

Chapter 1

Believe it or not, a simple Excel spreadsheet will do the trick, and the explanation
will be provided shortly. How many times have we witnessed the situation
when without a well-structured and understandable taxonomy, even the most
powerful harvesters (SOA artifacts introspection tools) with marvelous graphical
representation of discovered relations just turn the situation from bad to worse?

This principle undoubtedly supports all four desirable SOA characteristics.
This principle conflicts with the service abstraction and can negatively impact
security when poorly implemented.

Service composability

Finally, we come to the last principle that completes the foundation of SOA. This
principle is in fact the paramount realization of SOA, as it's the closest thing to
money, the universal entity that is understandable by any members of an enterprise.

Next, we compose and recompose the new business applications and processes out
of the existing building blocks; the less we waste, the more we gain through reuse.
However, is there any overlap between composability and the reusability principles
discussed before? Yes, but only at first glance, as the key here is in the measure of
"waste" we would like to prevent. Almost everything in IT could be reused; the
question is how much effort (time) it could cost for doing this.

The composability principle defines the measure of how easily any service from a
particular service inventory could be involved in a new composition, regardless

of the composition's size or complexity. Of course, a service should be involved

in the operations it was designed for and in the roles it can support. Thus, the
common quantifier for this principle is time. When designing a service from the very
beginning, you should speculate on how hard it would be to implement composed
capabilities using your service along with others, and how many compositions a
single instance of your service can support from the performance standpoint.

Yes, the statement regardless of the composition's size or complexity has its own limits,
and these limits will be thoroughly tested during the unit stress test and properly
documented in the individual service profile.

The quantification of this principle is roughly similar to the measure of flexibility
of hub-and-spoke integration platform. For hub-and-spoke, with all enterprise
applications connected to it, you have the canonical data models for all entities
presented by the application. When a new application with its own data
representation arrives, all that you need is to perform the following:

* Transform the newly received application data model to a canonical model

* Establish routing rules for message flows in a hub for this application

[35]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

For simplicity, we assume that a unified canonical protocol is in place. With this
simplistic model, we can estimate that a new XSLT (actually, two of them) with a
reasonable level of complexity could be built in four hours, and the routing rules in
a static table can be maintained in another two. Allocate a day for testing and we are
ready for production in less than 16 business hours! Theoretically. Let's now recall
how reality typically bends our plans.

No. How do we see it What it means

1 Yes, it's not a problem to build XSLT or XQuery in Discoverability and
four hours. Obtaining the mapping instruction and Abstraction
understanding the meaning of field names and data
types can take week(s).

2 Not all data elements needed for CDM and other Standardized contract

applications in the farm are available via a public APIL

3 To extract necessary data, we have to bypass the API ~ Loose Coupling
and reach out for internal resources.

4 The extraction of additional data inevitably Autonomy
implements call-back interchange patterns, which are
not always positive. This could disrupt performance
of the main app functions and put some logic outside
the app boundaries.

5 Quite often, internal logic of a new application is Loose Coupling
more complex than what a simple request-response
interchange pattern can provide, thus requiring
the hub atomic transaction coordinator's (ATCs)
capabilities. We have to put more logic on the hub.

This shortlist of five items is only the tip of the iceberg; usually, it's more than a page
long. The bottom line is that the total time required for making a new application
composable via the hub-and-spoke approach is usually from two to six months.

With the service-oriented approach, the result will be quite similar if any of the
previously discussed principles are neglected or put off-balance. The following
figure explains the general relations between principles and their importance for
composability. Loose Coupling and Abstraction together with Composability are
the regulatory principles, shaping and governing the implementation of others.
Despite their regulatory status, only Abstraction is quite difficult to quantify,
although it's still quite possible by assessing the amount of message-processing
logic in marshaler / contract parser and core service logic.

[36]

Chapter 1

Discoverability —4CEES Abstraction

The Statefulness and Autonomy services are pure technical principles and
directly affect Reusability. It would be quite right to say that Reusability and
Discoverability together have a major impact on Composability, but other
principles also must be accounted for.

We would like to advise you to keep this relation matrix in front of you every time
you are given the task to analyze an existing design or propose a new one based

on expressed illities, or analyze what's behind the illities, which is promoted as
design guidance. It will prevent you from establishing rules that are too vague for
understanding and following. For the final exercise dedicated to principles alone,
let's get back to our list of top ten generic wishes and analyze the sixth item; refer to
the following table:

Designed for testing Meaning Requirement
Valid (we are testing Service / Component APIs Standardized
what we are supposed can be easily exposed to any Contract

to test) existing testing tool (JMeter,

SoapUl, LoadUl, and so on) and
all the test operations generated
with low efforts.

Verifiable (we must be Test results, achieved in one Autonomy,
able to recreate the results) environment (JIT, for instance) Statefulness
can be easily recreated in any
other environment in testing
hierarchy. This means no
surprises in production!

[37]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Designed for testing Meaning Requirement

Reliable (we will trust Service with acceptable Autonomy,

test results) characteristics achieved initially ~ Statefulness,
must not be obscured by later Loose Coupling

amendments/implementations
breaking services, technical

consistency.
Comprehendible Test results, sometime Discoverability
(we must be able to together with test suites (Beware of
understand the results) must be stored in a place Abstraction)

where it can be reached,
accessed, comprehended by
any concerned party and re-
implemented if necessary.

This simple exercise demonstrates that there's neither any need to invent new
principles out of wishes or abstract illities, nor to multiply unnecessary entities:

Entia non sunt multiplicanda praeter necessitatem
- Ockham

Principles here act as precise technical guidance. Elaborative lists of more than

50 items, produced as a collective effort of several departments in some enterprises,
usually leave only one question: how are you supposed to enforce all of them?

A principle is the direct order, and it is only good if you can control its fulfillment.

For good measure, may we suggest that you repeat this exercise for the remaining
nine requirements in that list?

SOA technology concept

The deceptive simplicity of SOA as an architectural approach made it attractive
twelve years ago, and this deception (actually, the misunderstanding) caused its
downfall after two to three years of initial implementations. Initially, the idea was
pure and simply brilliant; it is mentioned as follows:

* Quickly maturing XML, as the most universal standard and foundation
for practically everything: messaging, transformations, protocols, data
representation, the way you name it

[38]

Chapter 1

* Emergence of web services, as the next logical step in object-orientation
and procedural programming with the highest level of encapsulation and
standard detachable API expressed via the WSDL contract

* SOAP presented in 1998 promised some transport-independent (to a certain
extent) messaging protocol that was simple enough to gain popularity in the
blink of an eye

In addition to the UDDI standard, employing lots of XML features has also been
presented in order to support service discoverability. Thus, we got our first so-called
Contemporary SOA representation in the shape of a triangle: Service Consumer
(Sender), Service Provider (Receiver), and Service Registry (UDDI) shown as follows:

B,

Retrieve WSDL

| Publish tModel

Message is always SOAP-based synchronous request/response; contract is

WSDL with number of operations abstracted to be reasonable minimum. Service
Consumer is displayed in a different color in order to stress the fact that it doesn't
have to be a web service. This means that a service can be called from any program,
interface, and device if WSDL can be understood and SOAP request-response can
be supported.

This model will work (and more importantly it works) perfectly within designated
boundaries for simple compositions or compositions based on multiple sequential
invocations. We will discuss the obvious limitation of the contemporary model
shortly; now, let's focus on core technologies, which are the core of all SOA models.

[39]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

As stated before, we do not intend to cover all SOA standards, as we simply have

no room for this in a single chapter. We will briefly touch only those which we

will be using in the following chapters. The book Web Service Contract Design and
Versioning for SOA, Prentice Hall Publishing, by Thomas Erl, could be a good reference
in addition to the web recourses from standard authorities for SAML, OAuth, and so
on. This section is just a technical recap of the absolute bare minimum requirements
to link previous paragraphs dedicated to SOA principles with the soon-to-arrive
SOA design rules based on patterns applied in particular SOA frameworks.

As an experienced architect, you are certainly quite familiar with all the technologies
we will briefly touch on now.

XML

This is the foundation of most of the standards and applications, not only SOA.
Please note that you do not have to use XML to make your platform service-oriented
in order to achieve goals of service-orientation, but you will find it rather difficult
not to do so. You will have to replace quite a sizeable amount of movable and

static elements of your infrastructure (configuration files, interchange messages,
transformation mappings, contracts, and so on) with some similar but older formats
such as CSV, EDIFACT, and X12 with lots of unexpected consequences. Modern
standards such as JSON are also not entirely XML-free. So, we would like to suggest
something for your own architectural benefits. Please look at the simple W3C School
XML quiz (http://www.w3schools.com/xml/xml_quiz.asp); it will only take five
minutes. If your score is less than 100 percent, we suggest you refresh yourself by
reading a good XML book.

Web Services (WS)

If service is an atomic building block of the whole SOA, then web services are the
most popular variant of these building blocks. The reason for this is in an object/
XML serializer, which is the native part of any WS and the link between a detached
WSDL-based service contract and core service logic. For the Oracle platform (but not
only), quite naturally employed Java marshaling/unmarshaling, Java-WS (or JWS)
technology would be based on one of the following serialization APIs:

* Java architecture for XML binding: JAXB (exists on multiple implementations
but is not always fully compatible).

* A more advanced JiBX. This can inject the conversion code directly into Java
classes during the post-compilation process, and by doing so, improve the
performance considerably when compared to JAXB. Also, it has its own
runtime-binding component.

* Simplified mapping-free version of marshaler: XStream.

[40]

http://www.w3schools.com/xml/xml_quiz.asp

Chapter 1

JAXB is still the most popular one because of the number of characteristics it offers:

* Runtime message validation
* XPath-oriented
* No post compilation required for code injection

* Can support very complex message structures

The JAXB APl is part of Java SE and EE package bundles, but still it is better to
check for the latest release if performance is an issue. If serialization performance
is the major concern, look at the JiBX more closely as it could be up to five times
(some claim more) faster.

Here again, the reliability and predictability of parser should be balanced with
reasonable performance; otherwise, you will have to rebuild your services from
scratch every time the XSD specifications change.

So, in the JWS specification, JAXB is responsible for mapping a Java class to the
message's XSD using customizable annotations. Java API for XML Web Services
(JAX-WS) is the technology that is responsible for mapping Java parameters to the
WSDL declaration. These two specifications conclude service endpoint interface
(SEI) as the representation of a standardized contract. Of course, just using them
alone doesn't guarantee that contract will be truly standardized, but they are the two
essential technical WS specs. The last and the most important part of the ws spec is the
web container; it is responsible for performing basic HTTP operations: POST and GET.
It's related to the handling of transport protocols, and we will discuss it right away.

WS transports

XML-based SOAP-messaging protocol handled by the web container is typically
implemented as a servlet if you need to utilize the HTTP transport protocol, which
is most common for JWS. SOAP is a type of XML structure, serving as a container
for service message interactions. There are two mandatory parts: soap: Envelope
as a root and soap:Body that acts as a business payload container. Two optional
elements can also be present: soap:Header and soap:Fault. Although the header
element is optional, its role for providing transport and processing-related metadata
is enormous. Most of the ws-* extensions followed after the first publication of
initial WS specs are related to the SOAP headers. There are some which could

be equally distributed between the header and body. For instance, ws-security
naturally relates to the body and header via encrypted and signed elements and
WS-MetadataExchange provides and distributes WSDL-related data necessary for
establishing service interactions, which can also be done via the SOAP body.

[41]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Most commonly, the Java web container will probably use a servlet as the front
controller, and it is responsible for parsing the header elements and invoking the
JAXB mapping to Java objects to process the SOAP body.

We will discuss UDDI-related protocols as part of contemporary SOA further
when we approach the Service Registry architecture.

Need for the WS-* extensions

There are no drawbacks in the contemporary SOA model. Every single technical
element is mature and proven to be reliable after dozen of years of evolution and
improvements. Actually, it was pretty acceptable from the very beginning, but its
broad usage was severely limited by the initial constraints set by the simplified
service interaction model: synchronous request-response between limited numbers
of composition members (usually two). At the time of the first implementation, it
was apparent that a substantial number of complex real-life requirements needed
be addressed by the SOA technology platform to make it capable of fulfilling its
promises; they are as follows:

* There is more than one simple message exchange pattern (MEP). We can
count one-way MEPs, two-ways, callback MEP types along with all possible
types of acknowledgements (responses), such as mandatory, only on errors,
and so on.

* Asynchronous MEPs are equally popular and must be covered by the
technology platform in a common way. The ability to maintain sync-async
communication bridges for complex service interactions was the prerequisite
for further SOA proliferation.

* Even synchronous service compositions could be far more complex than the
basic request-response method with all elements of distributed transactions
and two-phase commits requiring a transparent level of transaction
coordination.

* Long-running transactions also need common and reliable methods
of controlling process execution with a lot of callbacks and numerous
activation-deactivation phases. First of all, this involves transparent
coordination based on the correlation ID and correlations sets, and
the ability to compensate unsuccessful transactions.

* Services must be able to reliably communicate in cases where we have
infrastructure breakdowns or slow responses from other parties.

* Service messages must be equipped with information that is sufficient
for supporting complex routings and distributions.

[42]

Chapter 1

* Services and service registries are extremely vulnerable to security
breaches due to high exposure to potential consumers (implementation of
the Discoverability principle). This issue will be addressed with minimal
impact on services intrinsic's interoperability.

These are only the most obvious requirements, which had to be fulfilled in order
to make service orientation capable to serve its purpose and achieve the goals we
discussed in the beginning of this chapter. It is apparent that all these issues must
be addressed in a standard way; otherwise, proprietary implementations will be
put across service environments' federation and vendor neutrality.

Most of the standards in the form of recommendations and profiles are provided
by three main standardization committees, as shown in the following table:

About OASIS W3C WS-1

URL https://www. http://www. http://www.
oasis-open.org/ w3.org/ ws-1i.org/

Established 1993 as SGML Open 1994 by Tim 2002

Berners-Lee

Approximate 600 About 390 200

membership

Overall goal OASIS promotes W3C's primary The Web Services

(asitrelates to industry consensus and activity is to Interoperability

SOA) produces worldwide develop protocols Organization
standards for security, and guidelines that ~ (WS-I) is an
Cloud computing, ensure long-term open industry
SOA, web services, growth for the Web. organization
Smart Grid, electronic W3C's standards chartered to
publishing, emergency define key parts establish best
management, and of what makes the practices for the
other areas. OASIS's World Wide Web web services

open standards offer
the potential to lower
the cost, stimulate
innovation, grow
global markets, and
protect the right of free
choice of technology.
(From official site)

work. (From official
site)

interoperability.
It is for selected
groups of

web services
standards across
platforms,
operating
systems, and
programming
languages

[43]

vww allitebooks.conl

https://www.oasis-open.org/
https://www.oasis-open.org/
http://www.w3.org/
http://www.w3.org/
http://www.ws-i.org/
http://www.ws-i.org/
http://www.allitebooks.org

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

About

OASIS

W3C

WS-I

Delivered
Standards/

Specifications

UDD], ebXML, SAML,

XACML, WS-BPEL,
WS-Security

XML, XML Schema,
XQuery, XML
Encryption, XML
Signature

XPath,

XSLT, WSDL,
SOAP, WS-CDL,
WS-Addressing,

Web Services
Architecture

WS-Eventing

Basic Profile,
Basic Security
Profile

SOA standards

In this section, we will group and discuss the service orientation standards and their
roles in establishing framework-based infrastructure. Every standard deserves at
least a single dedicated chapter, so we advise you to follow the links to the provided
standardizations committee technical pages for more details on the latest versions.

Methodology and governance

Standards that define service repository taxonomy and semantics are explained in
the following sections.

SOA Repository Artifact Model and Protocol (S-RAMP)
The details on S-RAMP are given in the following table:

Authority Primarily Latest release
addresses
OASIS Discoverability https://www.oasis-open.org/committees/

tc_home.php?wg abbrev=s-ramp

[44]

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp

Chapter 1

The S-RAMP technical specification defines a common data model for SOA
repositories as well as an interaction protocol to facilitate the use of common
tooling and sharing of data. S-RAMP is not intended to define general purpose
ontology for SOA. Instead, the specification references the work of The Open Group
(http://www.opengroup.org/), defining how it is integrated and used in the
context of SSRAMP. S-RAMP is focused on publication and query of documents
based on their content and metadata.

This specification will be used together with Service-Aware Interoperability
Framework (SAIF) further for defining lightweight service repository taxonomy,
which is suitable for service lookup and dynamic invocation by agnostic
composition controllers.

Service definitions, routing, and reliability

The core standards that define services' contracts and reliable communications
will be covered in the following sections.

WSDL
The details of WSDL are as shown in the following table:

Authority Primarily addresses Latest release

W3C Reusability, Loose http://www.w3.org/TR/wsdl20/
Coupling, and
Discoverability,
Composability

Web Services Description Language Version 2.0 (WSDL 2.0) provides a model and
an XML format for describing web services. Description has abstract and concrete
parts. In the abstract part, we can define what messages can participate in which
operations; consequently, in request and response, we can define what fault message
can be generated. The concrete part binds operations with related messages to the
physical service endpoint shown as follows:

<!-- WSDL definition structure -->

<definitions name="cargoBooking"
targetNamespace="http://erikredshipping.com/booking/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- abstract definitions -->
<types> ...

[45]

http://www.opengroup.org/
http://www.w3.org/TR/wsdl20/

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

<message> ...
<portType> ...

<!-- concrete definitions -->
<binding> ...
<service> ...

</definition>

Downloading the example code

I You can download the example code files for all Packt books you have
Q purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

WSDL is equally important for implementing the ws-* specification as SOAP.
Practically, all elements can be linked to the WS policy statements, describing
behavior, data requirements, or QoS declarations. One of the most important

pieces of information along with the declared data models / types (XSD) and
operations (via declared canonical expressions such as get, process, and so on)
is to bind the message exchange pattern.

The WSDL Message Exchange Patterns (MEPs) 2.0 are as follows:
* The in-out pattern, which is the standard request-response operation.
This is the most common pattern.
* The out-in pattern, where a service provider initiates the interchange.
* The in-only pattern, which is the regular fire-and-forget MEP.

* The out-only pattern, which is the reverse of the in-only pattern.

* The robust in-only pattern is similar to the previous one, but it comes with
the capability to provide the fault response message back if there is an error.

* The robust out-only pattern is similar to the out-only pattern, but it provides

the optional fault message.

* The in-optional-out pattern is similar to the in-out pattern, but here,

the response message is optional. This pattern also supports the generation

of a fault message.

* The out-optional-in pattern is the reverse of the in-optional-out pattern,

where the incoming message is optional. Here, generation of a fault message

is supported.

We will touch upon some of these MEPs later, discussing the ws- * specification's

roadmap.

[46]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

WS-Addressing
The details of WS-Addressing are as shown in the following table:

Authority Primarily addresses Latest release
W3C Loose Coupling and http://www.w3.org/Submission/
Composability ws-addressing/

This standard is the keystone for the whole ws- * stack, as all other standards
are actively using it. It provides a neutral way of distributing messages. The
SOAP header is the placeholder for all key elements, and they are presented
in the following table:

wsa: Element Description

wsa:MessagelID This property presents the ID of a message that can be
used to uniquely identify a message.

wsa:To This property provides the destination URI, and it
indicates where the message will be sent to. If not
specified, the destination defaults to http: //www.
w3 .0rg/2005/08/addressing/anonymous.

wsa:From This property provides the source endpoint reference,
and it indicates where the message came from.

wsa:ReplyTo This property provides the reply endpoint
reference, and it indicates where the reply for the
request message should be sent. If not specified,
the reply endpoint defaults to http: //www.
w3.0rg/2005/08/addressing/anonymous.

wsa:RelatesTo This property conveys the message ID of a related
message along with the relationship type.

wsa:FaultTo This property provides the fault endpoint reference.
It indicates where the fault message should be sent to
if there is a fault. If this is not present, usually the fault
will be sent back to the endpoint where the request
came from.

wsa:Action This property displays the action related to a message.
For example, the wsa : Act ion property can be used
to identify the operation to be invoked upon receiving
a request message. It must be provided in the message
addressing properties of a message.

wsa:ReferenceParameters This property references parameters that need to
be communicated.

[47]

http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

WS-Addressing allows the sending of messages to the specific instance of a service,
which is not possible by WSDL concrete bindings alone. The SOAP request and

response implementation is as follows:

Request

Response

The code for request implementation is
as follows:

<soapenv:Envelope
xmlns:soapenv ="http://www.
w3.0rg/2003/05/soap-envelope"
xmlns:wsa="http://www.
w3.0rg/2005/08/addressing/">
<soapenv:Header>
<wsa:MessagelD>

http://example.com/
someuniquestring
</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://example.com/
Myclient</wsa:Address>

</wsa:ReplyTo>
<wsa:To>

http://example.com/fabrikam/
Purchasing

</wsa:To>
<wsa:Action>

http://example.com/fabrikam/
SubmitPO

</wsa:Action>
<soapenv:Header>
<soapenv:Body>

</soapenv:Body>
</soapenv:Envelope>

The code for request implementation is
as follows:

< soapenv:Envelope

xmlns:soapenv ="http://
www.w3.0rg/2003/05/soap-
envelope"

xmlns:wsa="http://www.
w3.0rg/2005/08/addressing" >

<soapenv:Header>

<wsa:MessageID>http://
example.com/
someotheruniquestring</
wsa:MessageID>

<wsa:RelatesTo>http://
example.com/
someuniquestring</
wsa:RelatesTo>

<wsa:To>http://example.
com/MyClient/wsa:To>
<wsa:Action>

http://example.com/
fabrikam/SubmitPOAck

</wsa:Action>
</soapenv:Header>
<soapenv:Body>

</soapenv:Body>
</soapenv:Envelope>

Requirements for addressing in WSDL are presented in the following fragment:

<binding name="cargoBookingPortBinding" type="tns:cargoBooking"s>

<wsaw:UsingAddressing wsdl:required="true" />

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

<operation name="bookCargoUnit"s>

[48]

Chapter 1

<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
<fault name="missingCargoId"s>
<soap:fault name=" missingCargoId" use="literal"/>
</fault>
</operation>
</binding>

WS-ReliableMessaging

WS-ReliableMessaging provides an interoperable protocol that a Reliable
Messaging (RM) source and RM destination are used to provide the application
source and destination with a guarantee that a message that is sent will be delivered:

Authority Primarily Latest release
addresses

OASIS Composability, * http://docs.oasis-open.org/ws-rx/
Loose Coupling, wsrm/200702

* http://specs.xmlsoap.org/ws/2005/02/
rm/ws-reliablemessaging.pdf

The guarantee is specified as a delivery assurance. The protocol supports the
endpoints by providing these delivery assurances. It is the responsibility of the
RM source and the RM destination to fulfill the delivery assurances or raise an
error. It would be right to see the analogy between WSRM and JMS in the Java
world in terms of delivery assurance. The key differences are that JMS is highly
platform-specific with a standard API, whereas WSRM is platform-independent
by means of SOAP (and WSDL). Of course, WSRM agents (handlers) must be
implemented behind services WSDLs and also on the client side to retransmit the
message if necessary or provide the acknowledgement; however, these agents are
invisible at the service/application's interaction levels. WSRM is an extension of
SOAP, and all of its protocols are based on the concept of sequence. Sequence is
the number of predefined steps, shown as follows:

®* CreateSequence

®* CreateSequenceResponse

[49]

http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

® C(CloseSequence
® C(CloseSequenceResponse
® TerminateSequence

® TerminateSequenceResponse
You can see the latest specification on the official OASIS site.

Reliable messaging in a WSDL implementation is as shown in the following
code snippet:

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"

xmlns:wsam="http://www.w3.0rg/2007/
05/addressing/metadata"

xmlns:rm="http://docs.ocasis-open.org/ws
-rx/wsrm/200702"

xmlns:tns="http://docs.oasis-open.org/
ws-rx/wsrm/200702/wsdl"

targetNamespace="http://docs.oasis
-open.org/ws-rx/wsrm/200702/wsdl" >

<wsdl:typess>
<Xs:schema>

<Xs:import namespace="http://docs.oasis-open.org/ws-rx/
wsrm/200702"

schemaLocation="http://docs.oasis-open.org/ws-rx/wsrm/200702/
wsrm-1.1-schema-200702.xsd"/>

</xs:schemas>
</wsdl:types>

<wsdl:message name="CreateSequence">
<wsdl:part name="create" element="rm:CreateSequence"/>
</wsdl :message>
<wsdl :message name="CreateSequenceResponse">
<wsdl:part name="createResponse" element="rm:CreateSequenceRespon
se"/>
</wsdl :message>

<wsdl:message name="TerminateSequence">

[50]

Chapter 1

<wsdl:part name="terminate" element="rm:TerminateSequence"/>
</wsdl :message>
<wsdl:message name="TerminateSequenceResponse">

<wsdl:part name="terminateResponse" element="rm:TerminateSequence
Response"/>

</wsdl :message>

<wsdl:portType name="SequenceAbstractPortType">
<wsdl:operation name="CreateSequence">

<wsdl:input message="tns:CreateSequence" wsam:Actions=
"http://docs.ocasis-open.org/ws-rx/wsrm/200702/CreateSequence" />

<wsdl:output message="tns:CreateSequenceResponse"
wsam:Action="http://docs.oasis-open.org/ws-rx/wsrm/200702/
CreateSequenceResponse" />

</wsdl:operation>

<wsdl:operation name="TerminateSequence">

<wsdl:input message="tns:TerminateSequence" wsam:Actions=
"http://docs.ocasis-open.org/ws-rx/wsrm/200702/TerminateSequence" />

<wsdl:output message="tns:TerminateSequenceResponse"
wsam:Action="http://docs.ocasis-open.org/ws-rx/wsrm/200702/
TerminateSequenceResponse"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

Policy and metadata

The service metadata describes what is needed for the service consumers, including
composition controllers to establish successful interchange sessions with service
provider(s). Some of the WS specifications are described in the following sections.

WS-MetadataExchange

Almost all elements of WSDL can be perceived as metadata: XSD structures, and also
as message data types, policies, provider's capabilities, requirements for transaction
control, or reliable messaging. The details of WS-MetadataExchange are as shown

in the following table:

Authority Primarily addresses Latest release

W3C Discoverability, http://www.w3.0org/TR/ws-
Composability, Loose metadata-exchange/
Coupling

[51]

http://www.w3.org/TR/ws-metadata-exchange/
http://www.w3.org/TR/ws-metadata-exchange/

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

These metadata elements can be pushed or pulled as a whole or partially from

the service provider's contract. In general, these standards describe the way of
encapsulating this data and the extraction protocols. Some elements responsible for
pulling or pushing data and its encapsulation are presented in the following table:

Element Description

mex:GetMetadata A requester may send a GetMetadata request
message to an endpoint to retrieve the metadata
associated with that endpoint. This operation may be
supported by the WS-MetadataExchange compliant
service endpoints.

mex:MetadataReference This is an endpoint reference to a metadata resource
and is of the type EndpointReferenceType as
defined by WS-Addressing. This metadata resource
must support the Get operation, WS-Transfer,
to allow the retrieval of the metadata unit for the
MetadataSection class's dialect and identifier.

mex:Location The mex : Locat ion element may be used to specify a
reference to an HTTP metadata resource. A requester
may use an HTTP GET operation on the indicated URL
to retrieve the metadata.

mex:Metadata This contains one MetadataSection child class for
each distinct unit of metadata. When there is a large
amount of metadata, the children should contain
MetadataReferences or MetadataLocations
instead of the actual information.

Standard Business Document Header (SBDH)

The SBDH standard provides a document header that identifies a key data about a
specific business document. The details of SBDH are shown in the following table:

Authority Primarily Latest release
addresses

UN/CEFACT GS1 Discoverability http://www.gsltw.org/twct/gslw/
download/SBDH_v1.3 Technical
Implementation Guide.pdf

Since SBDH standardizes the way data is presented, the data elements within SBDH
can be easily located and leveraged by multiple applications. SBDH is a business
document header and should not be confused with a transport header. It is created
before the transport routing header is applied to the document and is retained after
the transport header is removed.

[52]

http://www.gs1tw.org/twct/gs1w/download/SBDH_v1.3_Technical_Implementation_Guide.pdf
http://www.gs1tw.org/twct/gs1w/download/SBDH_v1.3_Technical_Implementation_Guide.pdf
http://www.gs1tw.org/twct/gs1w/download/SBDH_v1.3_Technical_Implementation_Guide.pdf

Chapter 1

Although SBDH is not the transport header, data in it can be used by transport
applications to determine the routing header since it does contain the sender,
receiver, and document details. It can also be used by business applications to
determine the appropriate process that is to be performed on the business
document. The specifications are explained in the following section.

WS-Policy
This very wide specification establishes conditions and restrictions for a service's

invocation and consequently for all compositions it may participate in. The details
of WS-Policy are as follows:

Authority W3C

Primarily addresses =~ Composability, Loose Coupling, and Abstraction

Latest release http://www.w3.org/TR/ws-policy/

Most importantly, when compared with human-readable SLAs, these conditions are
expressed in a machine-readable form. In fact, this specification has a lot of common
features with the metadata exchange standard, but it's far wider as it expresses service
requirements and preferences regarding all other ws- * specifications in a detachable
form, presented as an XML policy file. This separation allows you to centralize

all policies and present them in a hierarchical way, simplifying attachment to the
provider's WSDL.

Some delivery assurance elements along with their descriptions are as follows:

Element Description

AtMostOnce Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

AtLeastOnce Every message is delivered at least once. It is possible that some
messages are delivered more than once.

ExactlyOnce Every message is delivered exactly once, without duplication.

InOrder Messages are delivered in the order that they were sent. This
delivery assurance can be combined with one of the preceding
three assurances.

The ws-pPolicy delivery assurance elements are typically used together with
other ws-* specifications for enforcing certain operational requirements, such as
reliable messaging timeout and acknowledgement interval, as shown in the next
code snippet.

[53]

vww allitebooks.conl

http://www.w3.org/TR/ws-policy/
http://www.allitebooks.org

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

The following code will help us understand how the policy is defined as a child
element of the wsdl:definitions element:

<wsp:Policy wsu:Id="RMAcknowledge policy">
<wsp:ExactlyOnes>
<wsp:All>
<wsaw:UsingAddressing/>
<wsrm:RMAssertions>
<wsrm:Acknowledgement Interval Milliseconds="500"/>
<wsrm:InactivityTimeout Milliseconds="100000"/>
</wsrm:RMAssertions>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

The last step will be the referencing of the policy with the child element of the
wsdl : binding element shown as follows:

<wsdl:binding name="testWsRmBinding" type="tns:TestWSRM">
<wsp:PolicyReference URI="# RMAcknowledge policy "/>

Transaction control and activity coordination

The specifications of transaction control and activity coordination are explained
in detail in the following sections.

WS-Coordination

The details of WS-Coordination are as shown in the following table:

Authority Primarily addresses Latest release

OASIS Reusability, Composability ~ http://docs.oasis-open.
org/ws-tx/wstx-wscoor-
1.1-spec-errata-os/wstx-
wscoor-1l.l-spec-errata-
os.html

This specification is the foundation for the service federation, allowing services
from different business and technology domains to coordinate their interoperability
operations, both long- and short-term living. According to this specification,

it's realized in two stages:

* In the first phase, all participants registered in one unified coordination
context and communication protocols are agreed upon

[54]

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html

Chapter 1

* In the second phase, all registered participants exchange messages
according to the protocols and rules of engagement established during
the registration phase

This specification is responsible for the following;:

* Creating and formatting CoordinationContext that contains registration
information, which is mandatory for all participants

* Establishing a coordination protocol based on CoordinationContext,
and the ways of distributing this context between participants

* Establishing a registration protocol

CoordinationContext in the header of a SOAP message can be seen in the
following code snippet:

<wscoor:CoordinationContext >
<wsu:Expires>2014-03-21T00:00:00.0000000-05:00</wsu:Expires>
<wsu:Identifiers
uuid:0d13748c-7a09-8520-a911-17c73f09ac82
</wsu:Identifiers>
<wscoor:CoordinationType>
http://schemas.xmlsoap.org/ws/2003/09/wsat
</wscoor:CoordinationType>
<wscoor:RegistrationServices
<wsa:Address>
http://erikredshipping.com/ShcheduleCoordinationService/
RegistrationCoordinator
</wsa:Address>
<wsa:ReferenceParameters >

<refApp:Appl> ... </refApp:Appl>
<refApp:App2> ... </refApp:App2>

</wsa:ReferenceParameters >
</wscoor:RegistrationServices
</wscoor:CoordinationContext>

The wWs-Coordination specification is the foundation for other specifications, setting
the standards for complex coordinated activities: WS-AtomicTransaction and Ws-
BusinessActivity. Both of these define a type of agreement coordination that
addresses the needs of complementary classes of activities, ACID- and BASE-type
requirements, as discussed later in this chapter.

[55]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Security

Security standards and specifications will be discussed in Chapter 2, An Introduction
to Oracle Fusion - a Solid Foundation for Service Inventory, and Chapter 7, Gotcha!
Implementing Security Layers, dedicated to security and Oracle's approach

for its implementation.

Interconnected WS-* standards

To understand how ws- * standards could help solve some problems that are not
addressed by the simple model of contemporary SOA, we will walk through the
process-identification flow diagram shown in the next figure. This diagram is based
on the interactions of web-based services as native areas of the ws-* standards
implementation. We will start with the definition of the process as a number

of services invocations, sequential or parallel, with different durational

and transactional requirements.

First, let's identify whether it is a long or short running process. Longevity is the
subject of technical and/or business timeouts. The first one is related to a time slot;
here, your services in composition could hold on to the active state without draining
too many resources. The second is set by business requirements and can be quite
substantial (days, weeks, and so on). Moving by the left lane, we will first look at the
synchronous services and the standards associated with them. In common cases, we
could assemble service compositions from different domains, so a Service Broker
will be compulsory; it will help us resolve the disparity of the data models, formats,
and protocol bridging as well.

Also, brokering means that routing and mediation could be necessary for complex
service activities when more than two services are involved. In these cases, Service
Broker will act as a Composition Controller. Both of them are SOA patterns,
arguably most-commonly used, and we will see their implementation in detail
soon. If it's just a synchronous single interaction between a service consumer and a
service provider, it's called a primitive activity. In general, the following two major
standards must be taken into consideration:

* WSDL should have a binding to a proper MEP; otherwise, communication
simply will not be possible.

* The ws-ReliableMessaging service must be implemented if a feeble
connection or slow response from a service message-receiver could affect
service activities. The application of this standard will ensure that the
message is delivered or at least provide an acknowledgement about the
state of the delivery.

[56]

Chapter 1

Let's move on to the middle lane. If more than two participants in a synchronous
composition can be expected, for example, one composition initiator and two or
more composition members, the number of ws-* standards and specifications
involved will be doubled. Composition Controller becomes mandatory in this
scenario. In addition to WSDL MEPs and WS-RM from primitive activities, the
transaction coordination based on WS-AtomicTransaction arguably will be one
of the most important specifications for these types of composition. It will address
typical ACID requirements related to multiphase commits:

* At design time, define all the Atomic Transaction Coordinators
(ATC) phases in WSDL with specific messages such as wsat : Prepare,
wsat :Prepared, wsat : Aborted, wsat : Commit, wsat :Rollback,
wsat : Commited, and wsat :Reply. Bind ATC messages to the operations.

* Atruntime, initiate the transaction, send messages, collect votes, commit if
all participants have voted positively, send the rollback signal if any vote is
not received in the designated time slot or is negative, repeat operations if
necessary, and propagate the response to the initial sender.

With many services involved in this complex activity, some from different domains
with different data models (which is common in the adapter technology layer),
requirements for complex transformations could be anticipated. The transformation
technique could be different, of course; sometimes, you may come across a proprietary
technique. However, here we will discuss the standard XSLT/XQuery approaches.
Most common complex transformations that we will be coming across in our designs
are as follows:

* The message aggregations design: Here, we combine several
messages in one that are further processed by a service that can accept
only coarse-grained data models. If messages arrive sequentially, XSLT
alone will not be enough; some transformation's intermediate store will
be necessary if we do not want to keep the messages in.

* The message debatching or splitting design: Here, we separate one message
that contains a batch of similar messages into a sequence of messages suitable
for processing by a service with a fine-grained data model. This task is
very common; inbound messages usually in a non-XML format and whole
processing will require a ws-RM implementation, as ordered sequential
processing is involved in providing possible acknowledgements for batch
or individual messages.

[57]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Finally, for the middle lane, the most common standard ws-Addressing will
be compulsory if message mediation is required for complex service activities.
Usually, it's presented as a content-based routing, sometimes based on rules
handled by the rule engine; static routing tables are also common.

This concludes the mapping of synchronous service activities to the technology
standards and ws- * specifications.

Asynchronous services are more complex, as more infrastructural technical
elements are required as follows:

* Asynchronous queuing will require server resources such as topics
and/or queues

* State repository will be required for resource hibernation during the
composition's inactive state

Their realization is not covered by any particular ws-* specification, but their
presence is significant for the ws-BusinessActivity specification's implementation.
The ws-BusinessActivity specification together with wS-AtomicTransaction and
support from Ws-Coordination has presented the mechanism controlling service
activities over a long period of time. The Business Activity coordination protocol
can be perceived as a chain of discrete over-the-time atomic coordinations. As it is
clear from the context, rollback actions are virtually impossible between different
stages of business activities, so the possibility to have an arbitrary compensative
transaction is the essential part of this protocol. Using compensation, it is possible to
return the data of an application's participant to a consistent state, but not exactly to
the state before the transaction, such as the Atomic Coordination. The complexity of
compensative transactions could be very high, allowing you to correct the changes
happened many steps before the actual error.

Further implementation of standards and recommendations in the right

lane is similar to implementing complex synchronous activities; this confirms

the fact that an asynchronous business activity is a chain of complex synchronous
activities. A special significance of asynchronous transactions is that it has a
WS-Coordination specification for its role of establishing a coordinator service
model we mentioned earlier.

[58]

Chapter 1

The composition of a coordinator service model consists of the
following services:

e The activation service, which creates new coordination contexts and
associates them with the planning activity

* The registration service, which registers a service's participant and
distributes coordination contexts among them

* Protocol-specific services, which represent the protocols supported by the
coordinator's coordination type

* The coordinator controller service of this composition, also known as the
coordination service

A key element of the coordination context is the correlation key, which is
common for all activities in a particular composition. WS-Addressing's elements
wsa:ReferenceParameters and wsa:ReplyTo could be employed as a container
for correlation ID and address, where the response will be sent:

<soap:Header>

<wsa:MessageID>uuid:35f19ca8-c9fe</wsa:MessagelD>
<wsa:Action>http://erikredcarrier.com/ship</wsa:Action>
<wsa:To>http://www.portaquaba.com:7070/ShippingService</wsa:To>
<wsa:ReplyTo>

<wsa:Address>

http://www.portbremen.com:7777/response
</wsa:Address>
<wsa:ReferenceParameterss>
<customHeader>correlationKey</customHeader>
</wsa:ReferenceParameters>

</wsa:ReplyTo>

Combined together, these elements form the SOA pattern called Service Callback,
which is most commonly used in asynchronous communications.

[59]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Another pattern that is common to all types of service interactions related to the
service is the Policy Centralization SOA pattern. The ws-Policy specification is

a machine-readable language for representing these web service capabilities and
requirements as policies. A policy makes it possible for providers to represent such
capabilities and requirements in a machine-readable form. A separate policy file such
as policy.xml can contain several policy expressions that are grouped under different
WS-Utility identifiers (wsu: 1d) for simplified referencing, both external (http://
erikredcarrier.shipping.com/policy.xml#common) and internal (just #common);
please see the PolicyReference examples shown in the following code snippet:

<Policy wsu:Id="common">
<wsap:UsingAddressing />

<!-- other policies with usage attributes : wsp:Optional="true"
-->

</Policy>

The representation Policy to the service consumers is designed by binding policy
expressions to WSDL elements, to service operation, for example as shown in the
following code:

<wsdl:binding name="AddressingBinding" type="tns:RealTimeDatalnterfa
ce" >

<PolicyReference URI="#common" />

<wsdl:operation name="getCargoStatus" >...</wsdl:operation>

</wsdl:binding>

The last standards, presented as optional for all lanes are related to complex event
processing specifications: WS-Notifications (OASIS) and WS-Eventing (W3C).

In a nutshell, both of them describe the publish-subscribe protocols with the
propagation of events that follow right from the publisher to the subscriber,

some sort of fire-and-forget messaging patterns. It is important to remember that
both subscribers and consumers are not always the same actors; most interestingly,
for Brokered Notification, some form of Service Broker called Event Broker will be
employed for distributing events between multiple consumers.

[60]

Chapter 1

Depends on

requirements
(second, days ,
weeks and) and

Is l[%hort technical timeout
or long
runmning
process
Synchronous Asynchronous
Process Process
Main ME Asynchronous I i
Service Broker Synchronous queueing State Repository
implementation P impl d
Complex
activities i
required pN
One TR Cne
Primitive receier Complex "‘;":""- Business
activity in gynomode activity ol activity
4 or B MEPS7 MEPs type 7 = be Error Hospital
equined? ACK pr Implementation
WSDL 2.0 o WSDL 20) Compen_saling
MEPs used : MEPs used Service .
4 40 4L Transaction EKE&D!JO"I
; . implemented Sh'Q’F":dg
WS- . N . requir
Notification) We-Eveniog) | (sanitation)
required equ
Exception
i
WS-Reliable WS-Reliable mmf:d_
messaging messaging Relries. let
required _ required inler;'al i
P - WS-Paliey * L . WS-Policy * . A
: required — required 1 Automatic
............................. recovery
| T | procedure
. AlLeas . |
NACK, I Ti JL
.:""“"’ A o A : Manual
N Partial State recovery
Transaction
- Deferral 3 procedure
Coordination uired y
. required req /
Does DTC supparted 7 . -
How comedation ID recognized |
and progagated.. How orphan - ————
priLingumy et 1= Coordination »!
. \ required /
Advanced Advanced
Transformation Transformati mma, stale be
XSLT support for: required on required
-Data Model
-Data Format ranslormation -
~Domain Valus Maps
Java
“Massage joining
“Mussage spitting
Content-
based —
routing -
Dynamic Routing, Address _required - -
recogtion - |0 WS-
= Addressing 3
required

completed

completed

completed

SOA Standards and Patterns implementation roadmap

[61]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

We didn't cover all the existing ws-* specifications, but the ones described earlier are
quite capable of dealing with challenges, something that the contemporary SOA is
unable to address. These specifications were under development during the last ten
years, and some of them are still evolving; however, overall, the technology stack
based on ws-* is very mature. Although some of the specifications are a bit complex,
the fact that all of them are based on clearly defined principles has made them
commonly acceptable and adoptable not only by main market players/sponsors

of standardization committees, but also by open source communities, acting as

some of the most valuable contributors toward the proliferation of these standards.

Abstract principles and vendor-neutral standards do not exist in a vacuum;

they have practical service boundaries as we have seen during the discussion

of the standards' implementation roadmap. We even touched upon some roles

of patterns discussing principle-standards relations. These relations could have
many forms and dependencies with regards to the infrastructural areas of service
implementation. Every area has its own distinctive characteristics, a proprietary
for every single step of service's lifecycle such as analysis, modeling, development,
testing, and implementation.

Collectively, they are shaping service boundaries in the form of complex
building blocks that connect internal information assets with external consumers
of those assets.

Distinctive characteristics of these blocks are formalized in a collection of design
rules, one for each particular area; however, collectively, they aim at the same
goal of maintaining a desirable level of composability for services that exist in
these ecosystems.

SOA frameworks

Framework is one of the most commonly used terms, not just only in IT (probably,
together with pattern). It is also commonly said that SOA is a framework in itself. This
means that the SOA framework is dedicated to the technological and operational areas
for the implementation of SOA Principles in order to achieve the predefined goals. One
problem here though is that it's too often mentioned that principles must be applied in
a meaningful context.

[62]

Chapter 1

Too much about framework, which by its dictionary definition should show some
precision as mentioned in The American Heritage® Dictionary of the English Language,
Fourth Edition copyright ©2000 by the Houghton Mifflin Company:

1. A structure for supporting or enclosing something else, especially a skeletal
support used as the basis for something being constructed.
A fundamental structure, as for a written work.
A set of assumptions, concepts, values, and practices that constitutes a way

of viewing reality.

So, maybe from reviewing SOA realities, we could identify the number of
frameworks it consists of and their distinguishing characteristics, as we can
see in the following figure:

BL | AP1
7
I',‘r!" i B ﬁ y BL APl
| BL | API
App N BL @ APl

The starting point would be the realization of the ultimate goal of any business
application's infrastructure to have a hot-pluggable collection of business applications
(App1 to App N), each providing and effectively serving its own functional context.
All functional contexts have strictly defined non-overlapping boundaries; physical
realization of applications has a high level of technical autonomy, which in fact makes
these applications hot-pluggable. At any given point in time, an application that
becomes technically obsolete or functionally irrelevant can be replaced with its more
modern and cost-efficient equivalent.

[63]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

As long as all functional boundaries are precise and individual, business logic

(BL) encapsulated within each application is transpired and comprehendible.

It can be clearly separated from application resources and modeled/remodeled using
platform-independent means as there are no parasitic couplings between separated
elements of business logic of any kind. Every application presents public operations
and related data models via standardized APIs using common notations, available
for all involved parties in a comprehendible way.

A number of communication protocols and exchange patterns have been reduced to
reasonable minimum with well defined timeouts and compensation activities if there
are occasional miscommunications.

What we just described is a collection of services, as they should be designed from
the beginning. A service can be perceived as an application if a functional context
permits this without affecting Loose Coupling and Abstraction negatively.

The following two assumptions are distinctive:

* Assumption 1: Services have non-overlapping functional boundaries,
encapsulating the logic that is specific only for this service.

* Assumption 2: Services allow you to access the service logic only via a
publicly available service contract, which is expressed using the canonical
data model and canonical expressions for capabilities. Canonical protocols
complete the picture.

Federated Canonical Expression
Endpoint Canonical Protocol
layer: Canonical Schema

AP1

API

BL | apl

(.

RN BL | API
£
M Business Service Compositions

[64]

Chapter 1

In this case, the implementation of a new business process would be achieved by
simply recomposing existing service capabilities in the sequence and duration as
per the new functional context.

We will need some hypothetical area where this recomposition will be possible
technically. There shouldn't be any problem, as the protocol, data, and interfaces
stay homogenous. Any programming language or platform will do if the result of
the recomposition — the new service — follows the initially declared standards for
the services.

The fact that a newly composed application is also the service is important, as this
composition could potentially be part of an even bigger composition; therefore, all
strict standards must be applied all the way. This idealistic picture is pretty close

to the contemporary SOA model. We have only one solid framework here that is
used for business service composition, and with this, we practically accomplish very
little. All our compositions would be just invocations of existing APIs' capabilities
with values' assignments in between. No transformation is required as all data
models are CDM-compliant, and a unified protocol eliminates the necessity of the
bridging protocol.

The first real wake-up call would come from the realization that not all our

APIs really are parts of the canonical Federated Endpoint Layer (as explained in
Chapter 6, Finding the Compromise — the Adapter Framework). The Assumption 2 item
mentioned in the previous bullet list is quite often too optimistic in real life;

this means that:

* Data model transformation and data format transformation (translation)
could be needed.

* There could be no APIs at all. Even worse, data required for a new composite
service will be pulled from various sources, sometimes with multiple data
cleansing and filtering routines extended over a period of time.

* Complex transformations will be performed to maintain the initially declared
data granularity on service composition, such as aggregation or debatching.

* Messaging and/or transport protocols are not canonical, and this disparity
must be harmonized.

[65]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

The Application Business Connector Services
framework

Following the principle of separation of concerns, we must preserve our Business
Service Composition's hypothetical area that is free from all disparities; this

is suitable only for fast and clean compositions. Thus, the implementation of
Application Business Connector Services is compulsory. This is the first concrete
framework in the list of SOA frameworks we are going to discuss. The sole purpose
of this framework is to compensate for the lack of the service(s) to present a
standardized contract, suitable for repeatable reuse and utilization. Services residing
in this framework are special forms of wrappers, designed to receive/extract,
translate, transform, filter, validate, and propagate (route) further information
required for business compositions, that is, implement the VETRO pattern (http://
www.oracle.com/technetwork/articles/soa/jellema-esb-pattern-1385306.
html). You can see the required functionalities, implementation techniques, and
service models for this framework in the following list of requirements:

* Implementation technique:
° Synchronous implementation for simple MEPs
° Asynchronous transaction coordinator for adapters (data-collectors),
handling long-running data aggregation transactions
* Service models:
° Adapter services (Legacy Wrappers, File Gateways, FTP Hotels,
and so on) are utility services in general

* Required functionalities:

° Availability of Protocol adapters such as SOAP.

° Availability of Transport Adapters available such as JMS/MQ, AQ,
and HTTP.

° Availability of Application adapters such as OEBS, Siebel, and so on.
° Availability of Component adapters such as DBs for instance.

° Presence of Atomic Transaction Coordinator at the adapter level,
and the implementation of the voting mechanism.

° WS-ReliableMessaging support.

° Data model and data format transformations support (types and
engines) and protocol bridges (SOAP<->REST).

° Automated fault handlers (retry mechanisms) for southbound
adapters mostly.

[66]

Chapter 1

Implementation of the FTP(S) Gateway pattern.
Implementation of the File Gateway pattern.

Filesystem objects' (FSO) replication such as files and
folders/subfolders.

Reverse proxy realization for security reasons.

API for JCA adapters that provides the possibility to create
your own adapters.

Reliable store-and-forward queue mechanisms with full message
traceability and no message losses.

Message filtering mechanisms, suppressing unwanted responses.
Multiconsumer queues' support.

Implementation of the high-availability reliable adapters.

The following figure explains the presented list:

==

Transform

This framework is kind of special. Ideally, it is not supposed to exist; yet, it is one of
the most common and, at the same time, heavy frameworks in use. It's heavy with
embedded functionalities, practically all ws-+* standards employed here in order to
support the VETRO pattern's implementation.

[67]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

There is a strong reason for viewing these types of services as temporary services,
exiting only during the time of the transition of incapable application to a consistent
service state with all SOA principles properly applied. This transition could be very
time consuming, so some characteristics should be observed constantly in order to
not create hybrid services and make the situation worse.

The ABCS design rules usually are as follows:

Northbound ABCS receives any type of messages and produces a canonical
model (CDM) for the service composition layer. Inbound Debatching/
Aggregation is performed here.

Southbound ABCS gets CDM and reliably delivers application-related
messages.

ABCS is responsible for consistently maintaining all message header elements.

Error occurring in the active (poller) northbound ABCS will be not
propagated further. Acknowledge the message returned to the northbound
application if necessary, and a record is usually created in the audit log.
Numbers of extraction retries could be unlimited, as a business transaction
is not started yet. Still, limiting the number of retries can be wise.

Error occurring in southbound ABCS is reported back to the composition
controller or actual service worker. The number of retries allowed is limited
and policy-based. Depending on the type of transaction (sync-async), ATC
rules are applied.

ABCS is highly tailored to the endpoint application service. It is not
recommended to have one terminal adapter for several endpoints. It would
be quite right to say that the adapter belongs more to a service-enabled
application than an SOA inventory.

If the number of identical adapters is substantial, the Adapter Factory pattern
could be applied for instantiating particular adapters of similar types (only
the actual endpoint is different and looked up from the registry). Adapter
Factory Service acts as a coordinator and does not belong to the ABCS
technology layer.

Transaction Coordinator is a valid SOA pattern for ABCS if data extraction
procedures require transactional control. For instance, some of the data must
be extracted from the first DB and the extraction flags subsequently updated,
then another portion of data extracted from second DB, and values changed
again and after that consolidated and validated following the final update. We
must remember that data extraction routines must not be mixed with business
logic; otherwise, we unconsciously introduce a hybrid service on an adapter
layer, scattering the logic over and making this solution very hard to maintain.

[68]

Chapter 1

Again, from pure logic, ABCS's have no right to exist. If your application is not
capable of being a reliable composition member, it is better to something about it,
such as redesign, rewrite, retest, and reimplement. Alas, it doesn't work this way in
real life. From the version control standpoint, ABCS's are inevitable; however, how
many times did we witness that adapter services with complexities are compared
to the application logic it tried to isolate and abstract. From very beginning though,
it meant presenting a lightweight wrapper only. In most cases, that's the result

of the second dissonance with reality, that is, Assumption 1 is wrong and our
application, even with proper WS AP, is too bulky, sluggish, and not reliable to
act as a composition member. Yes, implementation of ABCS could potentially

help, but some SOA principles have to be sacrificed (original applications such as
Autonomy, Loose Coupling, and Abstraction), which makes the situation even
worse. Thus, a service must be redesigned in this scenario, as an adapter alone
cannot improve its composability.

Obviously, two new linked frameworks have to be introduced, although there is
nothing new about them; they are as follows:

* The Object Modeling and Design framework must be adopted for proper
implementation of the separation of concerns principle. As a practical
outcome of its application, functional boundaries of the services must be
rearranged; autonomy of the services improved due to resource isolation,
if it's possible; and the negative couplings resolved by the application of
logic-to-contract positive coupling.

* The XML Design framework as a support of canonical business model must
be presented. XML message is a serialized transportable representation of the
business object, encapsulated in service logic. Therefore, this framework in
general is the extension of objects' modeling and design.

It is hard to say which one of these two frameworks is the primary one as both of
them have a particular purpose, that is, to promote the Contract-First design rule

as much as possible. Surely, this design rule is more applicable in the top-down
approach when we have the possibility to design a service from scratch. Redesigning
a bulky legacy application significantly limits our options, but functional
decomposition together with the discussed ABCS's layer still makes it possible.

[69]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

The Object Modeling and Design framework

The details of the GF02: Object Modeling and Design framework are as shown in the
following table:

Implementation technique Service models Required functionality
Avoid the generation of a All service models that Object-to-XML mappings
contract (WSDL) from the include Utility services,

service logic Entity Services, Task

Services, and so on (with
some limitations for
orchestrated services)

Identify all service metadata Flexible XML marshalling
elements
Register metadata elements in Support of WS-Security

an individual service profile

Persistence support
(mapping relational data to
XML and object model)

Complete support of
object- and aspect-oriented
programming (by default)

The following figure explains the table:

Logic A3.1

Task Service

Hybrid Legacy Application

This framework is vendor-specific and is only related to the component/service
implementation. Anything will do really, such as Spring Web Services / MVC,
the NET framework, and so on.

[70]

Chapter 1

For functional decomposition, we will the need combined efforts of business
analysts, service architects, and technical infrastructure experts for balancing SOA
principles discussed previously with technical feasibility of redesigned services
(in order to understand the physical level of decomposition required). To follow
the Contract-First principle, any SDK is good.

The XML Modeling and Design framework

The third related framework, XML Design, is interrelated to Object Design and
primarily concerned with establishing a canonical business model for the service
inventory. This model is not a single entity; it's a collection of enterprise entities in

the form of Enterprise Business Objects closely related to the existing DB models that
describe primary enterprise assets such as Order, Invoice, and CargoUnit. One possible
source of them is already mentioned in functional decomposition, which is the oldie
but goodie reverse engineering fashion that can harvest these entities for us. With the
top-down approach, these entities can be acquired from technology-specific forums
that are related to business functional areas such as telecommunication, transportation,
and healthcare. However, you must be quite skeptical about the amount of data
presented on these resources; these specifications are some sort of all-weather cases
that are oversized and over-bloated with elements you could never use in your
business. By following them blindly, you can end up with a simple purchase order
with two or three order lines of 3 Meg size. Another problem is that these models are
quite illogically partitioned, mixing together all essential building blocks:

* Qualified data types (QDT)
* Qualified data object (QDO)
* Message header and process header elements

* Message tracking data

Amazingly, through some international projects, we also witnessed the
implementation of regional data models using local languages. Yes, you won't believe
it. An entire local messaging hierarchy (XML elements, attributes, documentation,
and constraints) has been implemented in one Scandinavian language —so much for
discoverability and composability, without mentioning the encoding issues.

The foundation for the XML framework has been well set by the UN/CEFACT
Document XML Naming and Design Rules draft version published in August 2004.
Please acquire the latest version and follow the design rules section (see Appendix C,
Naming and Designing the Rules List). They are all important, from [R 1] to [R 185]; we
just would like to quote the most important part from our point of view.

[71]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

The following table lists the implementation techniques, service models, and some
selected design rules using the contract-first approach, as follows:

Implementation technique Service models Selected Design rules
(out of 185)

Avoid XSD generation from All: Utility Services, [R 4] ELEMENT, ATTRIBUTE
DB model Entity Services, and AND TYPE NAMES MUST
Task Services BE IN THE ENGLISH
LANGUAGE, USING
THE PRIMARY ENGLISH
SPELLINGS PROVIDED IN
THE OXFORD ENGLISH
DICTIONARY.

Identify all EBO/EBM [R 5] LOWER-CAMEL-CASE
elements (LCC) MUST BE USED FOR
NAMING ATTRIBUTES.

Follow Naming and Design [R 6] UPPER-CAMEL-CASE

Rules List (UCC) MUST BE USED FOR
NAMING ELEMENTS AND
TYPES.

Register message-related [R 13] A ROOT SCHEMA

metadata elements in service MUST BE CREATED

repository FOR EACH UNIQUE
BUSINESS INFORMATION
EXCHANGE.

[R 23] A QUALIFIED DATA
TYPE SCHEMA MODULE
MUST BE CREATED

The figure explaining the table is as follows:

N / V4 \ \ y - ~ =, - — \
(JAXB JPA [JAX-WS | | |\ (QDT)(apo) (EBMm " EBO \:
- A . AN e \ SN PR AN s
- - - - - - m /_// N N =
Object Modeling and Design Framework '. XML Design Framework

Needless to say, these rules also must be applied wisely with proper understanding
of all consequences. For example, following the rule [R 60], that is, THE XSD: ANY
ELEMENT MUST NOT BE USED, we would not be able to implement an agnostic
composition controller using the message container concept. However, this rule is
highly important for security reasons and must be strictly followed for ABCSs and
in Perimeter Gateways implementations.

[72]

Chapter 1

For now, we have identified three frameworks that are responsible for shaping and
creating a service, establishing communication, and resolving interchange disparities.
The Hypothetical Business Service Composition area remains untouched, but now it is
the time to find out what is it, really. From the standards roadmap diagram, we realized
that complex compositions could be synchronous with elements of atomic transaction
coordination and asynchronous with running chains of complex communications,
lasting for very extended period of time. Different technical standards and operational
requirements delineate two new frameworks, each dedicated to its own type of service
interactions, mostly based on time metrics. We will start with asynchronous service
compositions, as they are more technically demanding.

The Enterprise Business Flows framework

Firstly, the presence of State Repository is a very distinctive feature, a proprietary
for this framework. It will allow all business flows to be consolidated under this
technical platform, deferring the transactional state while waiting for a response.

It can be done by any form of DB such as Relational, XML, or NoSQL, depending
on types of messages running in these flows. The Relational type is still one of the
most common,; it allows you to conduct a quick search of hibernated instances

and associations with the designated Correlation ID. Possible glitches, resulting in
leaving orphan-hibernated records, can also be more easily dealt with in a relational
environment. The storage overhead, which is common for relational models, must
be taken into consideration during the planning phase. Also, it's important to realize
a unified Enterprise Business Flow framework's state repository can present a single
point of failure and/or a performance bottleneck, so proper DBA administration,
replication, and maintenance is one of the highest demands for this framework.

To make business flows more manageable and centralized, another element of
technical infrastructure should be observed as a decision service is based on rules
engine. We deliberately segregate the rules, associated with pure business logic and
centralize them in one location, thus making it possible to employ dynamic message
routing and process invocation, value mapping, and data sorting processes. Of
course, taking some logic away from the compound process reduces its autonomy
and also could present a single point of failure, but this calculated risk makes
business flows more agile and quickly adaptable to the shifting business conditions.

Task-orchestrated services are most commonly composed using languages based on
WS-BPEL specifications (Business Process Execution Language). Common requirements
(such as the implementation techniques, service models, and required functionalities)
for the GF04: EBF framework are given in the following following list of requirements:

* Implementation technique:
° WS-BPEL, Orchestration

[73]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

* Service models:

o

Task Orchestrated Services

* Required functionalities:

o

Level of WS-BPEL support (versions, extensions) with full
orchestration features, which include branching, parallel processing,
conditions, looping, scoping, and so on.

Correlations and correlations sets, which include native support for
long running processes. Native transition for different protocols,
that is, SOAP/HTTP <->JMS

Implicit Correlation support.

Support of standard BPEL Faults, the ability to assign recovery
operations dynamically or statically, and fault handling in
long-running compositions using compensations.

Custom activity implementation and custom variable assignment
extensions. BPEL 2.0 extensibility mechanism implementation.

Embedded Java support (or any other high-level language).
Level of XPath support (XPath versions).

SOAP/Message Header support, that is, the ability to reassign the
whole header to the new message.

Level of XQuery support (XQuery version).

° Level of REST support in BPEL. Native support REST and SOAP
resources (partner links).

The forEach looping and branching support for the XML nodes
with various interactions technique.

Assigning data by default to the missing/empty nodes.

Supporting transport and message processing metadata
(Message Tracking Data or Process context metadata).

SBDH support (optionally).
Dynamic partner links invocation.

Rule-based invocation/mediation. Limitations for MEPs and
data transformation.

Orchestration engine's capability to clean-up orphan/obsolete data
in hibernation store automatically or by schedule.

Transformation accelerators, partial validation.
Transport protocol accelerators.

Possibility to use external transformation engines for complex
callouts in transformation.

[74]

Chapter 1

[e]

Runtime optimization of message size in order to avoid possible
memory leak.

Various compensation flows implementation technique.

Possibility to dynamically invoke different compensation flows
by rules/types of failures.

Asynchronous Service Broker implementation.

WSIF support (implementations, extensions).

Human task workflow support.

WS-Policy support.

Availability of High Availability (HA) patterns tested for EBF.

Level of CEP support (signals, probes, sensors, patterns analyzers,
event language, and so on).

Common J2EE patterns/artifacts support SpringBeans, EJB, and so on.

The figure explaining the previous list is as follows:

[edfed]
e

Long-Running
Compositions

)

Seate R #ory

a3

Enterprise
Business
Flows

[75]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

The Enterprise Business Services framework

Business services with high throughput demands, participating in quick running
compositions are naturally interconnected in the Enterprise Business Services (EBS)
framework. Let's not get confused by the naming. The GF05: ESB framework in itself
provides tools and methods to address the required functionalities, which are listed
as follows in terms of implementation techniques and required functionalities:

* Implementation technique:

o

o

o

Service Broker as composition controller
Mediators

Asynchronous message queues

* Required functionality:

o

o

e}

Atomic Transaction Coordinator implementation.
WS-RM support (versions, implementations, and extensions).
WS-Addressing support (versions, implementations, and extensions).

Native WS-Coordination support (versions, implementations,
and extensions).

Supported transport protocols.

Supported messaging protocols.

Supported protocol's sync-async bridging.
Supported MEPS (for WSDL1.1 - 4; for WSDL 2.0-8).

Concurrent Contract support (contact versioning, by proxy or
by other means, such as agents/facades).

Supported adapters (including JCA).

Process pipes orchestration: looping, branching, termination,
and service chaining.

Basic security support: encryption, digital signature,
and authorization/authentication.

Types of data model transformation (XQuery, XSLT).
Types of message objects transformation (xSD<->JSON, and so on.).
Content based routing, dynamic rule-based routing.

Types of message validation (complete, partial, nodes, security
screening by regular expression/ pattern, and so on).

Federated heterogeneous ESB support (native links to other
vendors using the ws-* standard), such as coexistence with
Mule or GlassfishESB (ESB grids, snowflakes).

[76]

Chapter 1

[e]

WS-Policy, WS-SecurityPolicy, WS-Policy Attachment support.

Big message volume / throughput native support, such as message
throttling, internal component balancing, if any.

Possibility support sticky sessions (WS-Correlation), in a cluster as
well, together or without LBs.

Scalability and clusters (number of nodes supported, dynamic
scaling, dynamic cloud burst).

JCache (jsr-107) support or other caching support technique for
distributed in-memory operations with message's zero-loss tolerance.
Number of transactions achieved in reference architecture.

Available Rile Engines, rule types, ruleflows, RETE support,
and available APIs.

HA patterns tested for ESB.

The figure explaining the previous list is as follows:

)

B

|
J

Short-
Running
Compositions

-

Folisy Repestmny)

.
(o=

Enterprise
Business
Services

[77]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Service Bus as a pattern provides structural ways to solve the problems we most
probably have while applying these programmatic and methodological tools in order
to fulfill the requirements. First, similar to enterprise business flows, we will also

deal with composition controllers, managing complex transaction, but in Atomic,
Consistent, Isolated, and Durable way (so called ACID), compared to EBF's tolerant
way, abbreviated as BASE for Basic Availability, Soft-state, and Eventual consistency.
Therefore, the ATC implementation is the one of the top requirements, usually fulfilled
by composition controllers and transaction registration services.

Synchronous service brokers together with message mediators are the natural elements
of ESB. Similar to the EBF framework, EBS has to consolidate and centralize the
business rules, as the magnitude of tasks is similar to asynchronous compositions:

* Rule-based routing and transformations

* Rule-based invocation and computation

It doesn't mean that rule stores must be separate for synchronous and asynchronous
frameworks. Decentralization must be conducted on technical requirements:
performance and the level of reliability. It is possible to have two (or more) rule
engines and one centralized rule store implemented with high availability options.

The same is true for the Policy store and Policy centralization itself, as they are vital
parts of EBS and service buses. The point here is that due to its more lightweight
nature when compared to EBF, service buses act as service gateways and service
perimeter guards, at least the core components of ESB such as Service Brokers do
this. Security policies, message mediation and invocation policies, and QoS policies
are attached to the service contracts, and most importantly, they are globally
enforced through the implementation of policy declaration and policy enforcement
points on ESB.

We already mentioned several shared stores required for process-related entities
and message metadata. Looking at the broader picture, the physical service
implementation requires some sort of logical structure, providing a segregation of
the services by types, runtime roles, models, engines required for service executions,
failover types, and so on. Actually, we already segregated the Enterprise Business
Flow framework for long running services from the fast-spinning Enterprise Service
Bus. It is simply inevitable, as technical requirements for platforms holding and
running these services are quite opposite, and this fact is obvious enough to start
this segregation from the modeling and analysis phase of a service's lifecycle. That's
a purely governance matter and will be addressed by a separate framework.

[78]

Chapter 1

The Enterprise Service Repository / Inventory
framework

As service governance is a never-ending process that begins before a service is
created and doesn't finish until it is decommissioned, shaping and defining the
service inventory should be addressed at the beginning, before other frameworks.
Nevertheless, we would prefer to come to this point at the end of frameworks'
discussion, when high demands for it become clear and obvious. Yet, this is probably
the most misunderstood and obscured framework. Even naming can be confusing, so
we need to explain the difference between repositories and inventories first.

The service repository is the centralized store of service-related artifacts and
metadata that (possibly) include service code, test results and metrics, and services
message attributes. This store is organized as a container with clearly defined
metadata taxonomy and service ontology, supporting fast search and lookup.

This container is mostly of the design-time nature, but can be actively used on
runtime as well; it is usually supplied with elaborative human-readable interface in
support of design-time discoverability, allowing artifact harvesting out of exiting
implementations and expanding the arbitrary service taxonomy.

The service inventory is the runtime-accessible list of service artifacts mostly related
to a service contract that supports fast search and dynamic service invocations.
These are supported by machine-readable APIs, which are capable of registering
newly deployed services, and search by different elements of service contract
(WSDL and tModels).

Both support discoverability, that is, runtime and design-time, and therefore

should not be implemented separately. One just supports the other. The role of this
framework is immense; the UDDI mechanism was declared as an essential part of
contemporary SOA from the very beginning. We would risk assuming that initially
slow acceptance of SOA was also caused by immature or complex taxonomies of
service inventories. Simply put, it's rather hard to invoke and reuse something that
is difficult to find or comprehend. At the present moment, most standards related to
the service taxonomy are under development and still maturing.

Common frameworks' requirements for GF06: ESR are consolidated as follows:

* The Service Repository tool available with links to EBS and EBF

* An Object Harvesting mechanism for existing objects/installations
(service/objects discovery in designtime)

* UDDI support for ESR, automatic registration on deployment

[79]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

* Automatic service discovery in runtime (ESR unified)

* Service templates available for ESR (tModels, or something more
human readable)

* BPMN2.0 support for all stages of service development—modeling,
analysis, and conversion: UML- >XML- >XDD- >SRL

The following figure explains the Common frameworks' requirements for GF06: ESR:

)

—

r o
[uDDI
—

Policy Reposito;

o N\
[Service Metadata /
M~)

Rule Reposito:

Enterprise
Service
Repository

N

The role of this framework is to position services as an enterprise asset during
design time, collect all necessary service metadata and store it in a well-partitioned
repository, and provide runtime search capabilities for a dynamic invocation of the
service and service-related artifacts. The results of invocation should be properly
logged using elements of this framework for further business analysis and usage
monitoring. One of the most challenging tasks here is the establishment of the
mentioned well-partitioned repository, and we will dedicate a whole chapter for
defining its possible taxonomy.

[80]

Chapter 1

SOA Service Patterns that help to shape a
Service inventory

Now is the time to put all the discussed frameworks together and identify

the role of patterns in every framework. Six core frameworks are identified,
but some more should be explored to complete the picture:

Security framework: Reliable security is a result of diligent measures that
are applied to all elements of all frameworks, and it's impossible to say
where it is more or less important to have a secure design in place. Still,
from the application of principle separation of concerns, a considerable
amount of security features are usually dedicated to Secure Perimeter and
most commonly implemented as Enterprise Service Bus. So, the security
framework has a lot of similarities to the EBS framework.

Automated Testing framework: This requires technical infrastructure
elements for supporting continuous integration or other forms of automated
build and testing.

Automated Deployment: This framework is strongly related to the previous
test automation framework and are usually used together.

Governance framework: This acts as a combination of precepts and standards
with relations to processes and roles. This framework is based on proper ESR
implementation, but it is much wider than the service's metadata taxonomy.

| R Classification
- Sturage
TH
SR Access
= . ____RE__J
S AL | APL || adapter ESB
& (ABCS) | (EBS) |/ Orchestration(EBF) I ESR
XML Modeling and De I Object Modeling and Development

(ﬁ

=3

0

%
=
D © ©

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

One could extend this list of framework, adding more fragmentation; however, from
any practical point of view, these ten frameworks (that is, 6 + 4) are pretty adequate
for dividing the entire technical infrastructure into distinguished and consistent
areas of implementation principles, standards, and patterns. However, what are
patterns, the main subject of this book?

Through the examples we already explored, we can agree on some of the most
frequent problems that are well known to any practicing architect. These problems
are common, and so will the solutions be. Thus, commonly approved solutions

for regular problems have a common name pattern. The history of patterns in
distributed computing is quite similar to the history of the SOA itself. It was a

stiff curve from love and passion to hate and disbelief, and there is a very simple
explanation for it; that is, the pattern is not a panacea and not an ultimate purpose
of your solution design. It would be prudent if from now on you exclude the
following questions from your architectural vocabulary:

* What kind of pattern will we apply here?
* Is this design according to the approved pattern catalog?

* Isit pattern or anti-pattern (http://www.oracle.com/technetwork/
topics/entarch/oea-soa-antipatterns-133388.pdf)?

A pattern is a stick for the lame, a remedy for the disease, not the other way around.
A clear realization of the problem must be identified first; otherwise, you'll be left
looking out for a suitable lame for the stick. This is usually unsuccessful and is
followed by the amputation of the healthy application's part, just for making use of
the patented remedy from the catalogue with some catchy name. If fact, the patterns'
catalogues should be seen as common problems' catalogues. The implementation of
the pattern as a working solution could be in jeopardy if:

* You misunderstand the problem on hands, its location (as a framework),
root cause, and its relation with the execution environment

* You misinterpret the existing standards, their areas of application, and,
as a result, attempt to reinvent it

* You misinterpret the design principles, the balance between them, and the
areas of their application

[82]

Chapter 1

We already gave you a map of the frameworks and standards in relation to the
principles, so it's time now to list all the frameworks we mentioned in this chapter
and structure them for further discussion, as shown in the following table:

Framework Standards

Foundational Functional Decomposition, Enterprise
Inventory, and Logic Centralization

Design Contract Centralization, State Messaging,
Messaging Metadata, and Service Broker

Implementation Agnostic Controller and subcontroller,
Compensation Service Transaction,
Composition Autonomy, Inventory
Endpoint, Partial State Deferral, Legacy
Wrapper, and File Gateway

Governance Service Decomposition, Service Refactoring,

and Metadata Centralization

The following figure explains the preceding table:

T)

B2

All these patterns will be discussed during the implementation of three already
mentioned main SOA compound patterns: Enterprise Service Bus, Orchestration,

and Federated Endpoint Layer.

[83]

SOA Ecosystem — Interconnected Principles, Patterns, and Frameworks

Summary

Services are the functionally consistent atomic units of work with technical
boundaries, providing the required level of autonomy where principles of the
service orientation are applied in order to maintain characteristics that are essential
for achieving the goals of service orientation.

Service orientation is the architectural approach that is based on the recognition
of a service as a unified business block.

One of the key roles of the independent standards (ws-* specifications) is to ensure
that service-oriented solutions based on these standards stay truly vendor-neutral.

The SOA framework is a structured and technically independent area where design
principles and standards can be repeatedly applied together in a measured balance
during various stages of analysis, modeling, development, implementation, testing,
and governing in order to achieve the desired technical characteristics. As some

WS- * specifications can be seen as a framework as well, most of the SOA frameworks
have a compound nature.

SOA patterns are commonly accepted and approved solutions to repeatable
and recognizable problems usually occurring in different frameworks,
while implementing combinations of standards and principles.

[84]

An Introduction to Oracle
Fusion — a Solid Foundation
for Service Inventory

From this chapter onward, all discussions and examples will be based on the

Oracle platform, products, and methodologies. In this chapter, we will discuss
Oracle's technical implementation of abstract frameworks, as proposed in the first
chapter. We will demonstrate that Oracle's technology stack can practically cover

all the aspects of the service-oriented application's lifecycle, from development and
implementation to monitoring and error handling. The degree of coverage essentially
depends on the understanding and proper balancing of the SOA principles and the
level of standards supported by Oracle's platform. Even though it has great coverage
of service-oriented approaches and all SOA benefits, Oracle's platform also has
certain limitations. These limitations will be discussed in the following chapters,
which are dedicated to the patterns' realization in specific frameworks. The logical
outcome of this chapter is the framework's requirements tables, containing all of
Oracle's specifications.

The Oracle SOA technology platform

We have already defined ten SOA frameworks, of which six essential ones are

quite SOA-specific. We will follow this notion until the last page, but we are not too
eager to defend this logical segregation and will not force you to accept it blindly.

If you already have a working framework model based on TOGAF (http://www.
opengroup.org/togat/) or ITIL (http://www.itil-officialsite.com/), that's
perfectly fine. We chose this framework model for three reasons. First, this simplified
model with concise but distinctive layers is quite well-accepted by both groups of
practitioners — developers and operational personnel.

http://www.opengroup.org/togaf/
http://www.opengroup.org/togaf/
http://www.itil-officialsite.com/

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Second, and most importantly, this model is derived from Oracle's service
implementation methodology (discussed later in the chapter). The third reason
is purely empirical and based on Oracle's history of acquisitions and integration
of different components into a solid application portfolio.

The Oracle SOA development roadmap — past,
present, and future

Nowadays, Oracle offers probably the most complete family of products.

This family has two distinctive SOA characteristics —each member of the family is
the "best-of-breed" in its class (read: framework) and each product is hot-pluggable.
Thus, the portfolio itself follows the principles of Composability, and because it has
been shaped mostly through the chain of acquisitions, it's genuinely vendor neutral.

This type of SOA packaging would not be possible if Oracle didn't follow the service
orientation principles. This fact alone makes it quite attractive for many industries
and enterprises. For example, you would naturally choose a doctor who is capable of
taking his own remedies. It is also quite natural that this status quo was not always
this happy. We all have good and bad times during different phases of our SOA
endeavors (http://oracle.com.edgesuite.net/timeline/oracle/). Please refer
to the following table:

Oracle products timeline Industry standards
timeline

Pre-SOA development

Year | Product(s) Type | Description Standard Agency

1979 | Oraclev 2 DB First commercial
version

1985 | Oraclev 5 DB Implemented in a
client-server model

1988 | Oraclev 6 DB PL/SQL engine added
to DB

1992 | Oraclev 7 DB Stored procedures ISO 9075, Entry | ANSI
and triggers and most | Level SQL92

mature traditional Standard
RDBMS

1997 | Oracle v 8 DB RDBMS with SQL
object orientation, AQ
introduced (persistent
messaging)

[86]

http://oracle.com.edgesuite.net/timeline/oracle/

Chapter 2

Oracle products timeline Industry standards
timeline
Pre-SOA development
Year | Product(s) Type | Description Standard Agency
1998 | Oracle v 8i DB Integration with JVM | XML W3C
(here i stands for the
Internet)
1998 | JDeveloper IDE The first IDE release SOAP W3C
1.0 (based on Borland
code)
Building Contemporary Oracle SOA
1999 | XML XDK | XML parser, renderer, | XSLT, XPath W3C
Development validator, and so on
Kit
2000 | Oracle OAS OAS | Oracle Application WSDL W3C
Server
2000 | OracleiFS FSO | Oracle Internet File UDDI OASIS
System (iFS)
2001 | OC4J OAS | Oracle Java container | Java Connector | JCP
implemented with architecture
Orion acquisition (JCA) and
and standalone J2EE Java message
application server service (JMS)
2002 | TopLink JPA Object-relational SAML OASIS
mapping (ORM)
2003 | Secure FSO | Oracle acquired WS-Reliable OASIS
Remote FileFish, which Messaging
Access becomes part of
Oracle's Collaboration
Product Suite,
aggregating remote
file system objects
(FSO)
2004 | Oraclev10g | DB First Oracle grid- Service Data OASIS
oriented DB (g-grid) Objects (SDO)
2004 | Oracle IAM | Oracle acquired WS-Security OASIS
Identity Phaos, Identity
Management management solution
provider
2004 | BPEL Process | BPEL | Oracle acquired WS-BPEL OASIS
manager Collaxa, first release
Oracle BPEL

[87]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Oracle products timeline Industry standards
timeline
Pre-SOA development
Year | Product(s) Type | Description Standard Agency
2005 | Business BAM | Oracle acquired WS-CDL W3C
Activity PeopleSoft, BAM is
Monitor one of the products in
(BAM) the stack
2006 | Oracle Data ELT | Oracle acquired WS-Addressing | W3C
Integrator Sunopsis, Extract
(ODI) Load Transform tool
for data integration
and master data
management
2007 | Enterprise ESR | Oracle acquired Agile, | XQuery W3C
Lifecycle Integrated Enterprise
Management Product Lifecycle
Management provider
2007 | Oracle IAM | Oracle acquired WS- OASIS
Adaptive Bharosa, provider HumanTask
Access of fraud prevention
Manager and authentication
solutions (OAAM)
and integrated JAM
2007 | Oracle Role IAM | Oracle acquired WS-Policy W3C
Manager Bridgestream,
with Role Manager
product, managing
Role Based Access
(RBA) integrated
with IAM
2007 | Oracle AIA | Oracle integration ebXML OASIS
Application approach for Messaging
Integration establishing seamless | Services 3.0
Architecture collaboration between
numerous fusion
applications —OEBS,
Siebel, JD Edwards,
and so on

[88]

Chapter 2

Oracle products timeline Industry standards
timeline
Pre-SOA development
Year | Product(s) Type | Description Standard Agency
2007 | Oracle XTP | Oracle acquired WS-BPEL 2.0 OASIS
Coherence Tangosol, WS-Context 1.0
implementing reliable
in-memory data grid
technology, known as
Extreme Transaction
Processing (XTP)
Maturing Oracle Fusion Middleware
2008 | Oracle ESB OFM | Oracle acquired BEA, | Solution OASIS
(OSB) and moving to the more Deployment
other tools reliable JVM, App Descriptor
Server, Service Bus, (SDD)
and Repository
2009 | Oracle hosts | OFM | Oracle acquired Sun Basic Security | WS-1
JEE Microsystems witha | Profilev 1.1
wide range of Sun's
Middleware products
(GlassFish, OpenESB,
OpenSSO) and
complete Java stack
2009 | OFM11g OFM | Complete SOA WS-Federation | OASIS
products stack 1.2, WS-
running on Oracle Discovery 1.1
WebLogic Server 11g
2010 | Oracle SOA OEM | Oracle acquired Extensible OASIS
Management AmberPoint with Resource
Pack fully centralized Identifier
management console | (XRI)
(OEM), integrating
BPEL console and
BAM
2011 | Oracle ESB Oracle partnership Standard for W3C
Service with Vordel, provides | Online Privacy,
Gateway service security and first draft
API management
solutions
2013 | OFM 11g Only the journey is written, not the destination
11.1.1.7 (PS6)

[89]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

The previous table does not pursue the presentation of the complete
historical perspective of Oracle's acquisitions and development
_ milestones, but merely links the key middleware products with
% the history of SOA's WS- * standards implementation by the most
= influential standardization agencies. For recent acquisitions in the
Oracle Middleware products family, please visit http://www.
oracle.com/us/corporate/acquisitions/index.html
and refer to the Middleware section.

Middleware products were not the primary line of business for the company,

which was initially prominent for its DB products. For almost two decades since

the early eighties, Oracle was a relational database management system (RDBMS)
flagship company, providing reliable relational DB and data processing commercial
products literally for all industries. Again, mainly through the chain of acquisitions,
practically all enterprise domains, such as ERP, CRM, SCM, and HCM, were covered
by DB-centric applications: Oracle E-Business Suite, PeopleSoft, JD Edwards,
Primavera, and Siebel. Business domains are truly enterprise wide, shown as follows:

* Financial management: This is useful in General Ledger, Accounts Payable
and Receivable, Asset Management, and so on

* Human capital management: This is useful in Global Human Resources,
Global Payroll, Benefits and Performance Management, and so on

* Supply chain management: This is useful in Inventory, Shipping and
Receiving, Distributed Order Orchestration, Cost Management, and so on

* Project portfolio management: This is useful in Project Costing, Control
and Billing, Performance Reporting, and so on

* Procurement: This is useful in Purchasing, Sourcing, Supplier Management,
Spend and Performance Analysis, and so on

* Customer relationship management: This is useful in Customer Master,
Sales, Marketing, Quota Management, Social Media, Portals, and so on

Common to all these suites are the Access Controls, Configuration Controls and
KPIs, BI Dashboards, and Extendibility Foundation packs.

This massive application stack has been building gradually over the years,
accommodating requirements from all industries, such as Telecommunication,
Healthcare, Logistics and Transportation, and Governance, among others. Oracle's
own DB-based flagship product, E-Business Suite, accommodated 1,000 lines of PL/
SQL code in every business module, not mentioning C and Java.

[90]

http://www.oracle.com/us/corporate/acquisitions/index.html
http://www.oracle.com/us/corporate/acquisitions/index.html

Chapter 2

The commercial value of all these products is out of the question. In 2001, Larry
Ellison announced the following;:

Oracle saved $1 billion by implementing and using its own business applications.

Apparently, that was before SOA, and the whole stack was not that massive in scale.
With more and more applications in the portfolio, seamless product integration
becomes quite challenging, not only within an individual enterprise, but also within
the cross-enterprise.

. Today, Oracle's application stack (http: //www.oracle.com/us/
% products/applications/overview/index.html) consists of
/= more than 200 hot-pluggable applications; this is probably the biggest
commercial application farm.

Shifting from the client-server to the multitier infrastructure was quite evident with
the dedication of the middleware tier as an integration medium. Oracle proactively
worked on the accommodation of the middleware strategy before introducing SOA
as a methodological approach. Advanced queuing (AQ) was implemented as a
reliable message delivery mechanism and embedding JVM into DB opened the door
for more interoperability options. New JEE middleware products were launched in
order to improve interoperability, such as the following;:

* Oracle Application Server (OAS): This was not the best application server
at the time or fully compliant with many J2EE standards, and it suffered
from memory leaks and poor performance. This was followed with Oracle
Integration Server (OIS), but it didn't improve the situation much.

* Oracle InterConnect: This was the predecessor of the first Oracle Service Bus.
Even this was not considered a total success, but it shaped the whole concept
of ESB (of course, for Oracle) and demonstrated the necessity of the adapter
layer (Interconnect Technology Adapters).

Soon it became quite obvious that the main problem with integration is integration
itself. With a considerable number of disparate components, each establishing
interoperability, putting all efforts into a single integration layer was similar to

the search for the philosopher's stone. Hot-pluggability cannot be contracted by
means of super glue. Some efforts should be put into the applications (services),
such as Infrastructure, Methodology, and Governance, in order to make seamless
interoperability more effortless, and needless to say that all these efforts must adhere
to the already discussed principles and standards to make the effect profound.

[91]

http://www.oracle.com/us/products/applications/overview/index.html
http://www.oracle.com/us/products/applications/overview/index.html

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Oracle has been taking a very active role in development and putting these standards
into practice as a member of W3C since August 1995. Oracle has been a sponsor of
the OASIS Web Services' technical committees since 2002 (and members of the board
of directors since 2003). Oracle participated in practically all technical committees for
all core SOA standards such as WS-ReliableMessaging, WS-Addressing, WS-BPEL,
and so on. The previous timeline shows a strong correlation of product releases with
standards acceptance and approval. Today, about 200 open standards and industry
specifications are adopted in Oracle's SOA-related products. Surely, for such a huge
company with such a comprehensive portfolio, changes and adaptations weren't as
fast as some would expect with open source products (from the Apache community).
In addition (and this would be the primary reason), the clients' reception of Oracle's
initiatives was sometimes inadequate due to the products' roles and SOA principles
being misunderstanding in general.

Probably one of the most noticeable examples would be the launch of the first
release of Oracle BPEL Manager (originally from Collaxa). The Service Orchestration
Engine, primarily nominated for its asynchronous services, was mistaken by many
as the synchronous Service Bus. How many complaints about its synchronous
MEPs performance did we witness (and produce, to be honest) at the time? All the
complaints were because the Orchestration pattern was not clearly distinguished
from the ESB pattern in various implementations. Public demand for a clear service
collaboration strategy was quite noticeable, and after several years of initially
combined SOA and integration efforts, Oracle responded with Fusion Strategy
Roadmap (2006), where Fusion Middleware was declared as an SOA Enabler. In
this sense, the term Fusion indicates a balanced approach, where the main focus

is on SOA interoperability between components with the elements of integration,
where service orientation is not feasible or too burdensome. Oracle SOA Suite 10g as
a part of Fusion Middleware was introduced as a milestone of the Fusion roadmap
including the following products:

* Oracle Service Bus, the first full-fledged Oracle ESB after InterConnect

* Oracle BPEL Manager with an extremely extensive Adapter framework

* Oracle Web Service Manager, with agents and gateways for secure
policy-based message interchange

* Oracle Rule Engine, which supports various types of rules with rule SDK

[92]

Chapter 2

The previously listed products are just a few of those available in the Fusion bundle.
Oracle had much more to offer, and in general, these products met expectations from
SOA architects and developers. The Fusion strategy started to pay off. The next steps
according to the Fusion strategy were as follows:

* To improve application server reliability and performance as Oracle iAS10g,
at the time, was already an obsolete OC4]J-based server

* The Business Activity Monitoring tool was quite detached from the entire
Fusion stack and based on a separate technology platform

* Rule Engine proved to be quite fast, but the rules' authoring and
management was rather unfriendly, and that jeopardized its acceptance

* Oracle JDeveloper 10.1.X was noticeably slow compared to other
IDEs and was not fully integrated with all SOA Suite components
(unfortunately, jumping ahead, we can say that this is still the truth)

* Inaddition, Oracle's own Service Bus could not keep up with the closest
competitors for some aspects

Oracle addressed these issues quite radically, acquiring BEA. The next generation

of Fusion Middleware, 11¢ (2009), came equipped with AquaLogic Service Bus

(OSB), BPM Studio, Enterprise Service Repository, and most importantly, WebLogic
Application Server (WLS), one of the best J2EE servers available; all of these are
based on the very reliable JVM. It took almost two years to reassemble and repackage
all the new middleware components with the new WLS Application Server as the
foundation and other BEA components. JDeveloper 11¢ proved to be more reliable
and more integrated with most core frameworks, such as DB and SOA Suite, but it
still did not cover the ESB development lifecycle. The standard of Service Component
Architecture (SCA) was adopted in SOA Suite, where BPEL's role was rearranged
and three other equally important components were added. Together with SOA

Suite, three other suites were offered for Event Driven Architecture (EDA), BPM, and
Governance, with overlapping functionality. Fusion's hot-pluggability option allows
customers to select only the functionality that they really need at the moment, reducing
resource wastage.

After the first radical turn, the next huge acquirement of Sun Microsystems was a
completely logical thing in shaping the Fusion strategy. Now Oracle had the true
foundation of all Java resources — the Java language itself. In addition, the Oracle
family inherited Sun's Java-based, nonstrategic, but very attractive, products —
Glassfish Application Server (https://blogs.oracle.com/theaquarium/entry/
java_ee_and_glassfish_server; Oracle GlassFish Server will not be releasing a 4.x
commercial version), OpenESB, and NetBeans IDE.

[93]

https://blogs.oracle.com/theaquarium/entry/java_ee_and_glassfish_server
https://blogs.oracle.com/theaquarium/entry/java_ee_and_glassfish_server

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Despite their nonstrategic status, these products are quite capable of playing their parts
in the construction of an SOA infrastructure of any size, and are quite cost effective

as well. All these products are supported by open communities (http://www.open-
esb.net/index. php?option=com_content&view=article&id=90&Itemid=469)

and in some cases, are more advanced than the Fusion middleware stack (for instance,
Glassfish is the first Java EE 7 Server). Anyway, from the customers' point of view,

it's quite positive to have multiple options such as the three available ESBs. Out of the
three, we have discussed OSB and OpenESB (refer to http: //www.open-esb.net/,
the Sun Microsystems and Seebeyond products, for more information on OpenESB).
We will soon come to the third ESB.

Another strategic benefit of this acquisition is the availability of advanced hardware,
capable of hosting the preconfigured complex Fusion solutions (both DB and MW).
Clustering highly reusable Canonical software components logically leads to the
implementation of the scalable Canonical Resource (hardware, infrastructure)
pattern. Oracle responded to that with the Exadata and Exalogic combined solutions
based on Sun machines (engineered systems) running on Oracle Linux. There

are some debates regarding the elasticity of the HW + SW bundled approach and
how it suits the public cloud. Clearly, this platform as a service (PaaS) solution

is optimal for private and hybrid clouds, providing horizontal scaling, dynamic
resource provisioning (with some limitations), and cloud burst-in and burst-out.
Some of these challenges can be solved by inner-cloud load balancing and functional
decomposition between the clouds. The fourth most critical cloud characteristic

is Multitenant Access, which requires complex security measures and is also
addressed in Oracle's Fusion roadmap.

In 2011, Oracle announced its strategic partnership with Vordel (now part of
Axway), and the Oracle Enterprise Service Gateway product launched as a
rebranded Vordel API Gateway. Today, it's also called Oracle API Gateway.
Nevertheless, with the best-of-breed Secure Gateway, Oracle finally introduced a
comprehensive security layer essential for any cloud model. As with most Service
Gateways, the API Gateway is essentially an ESB, consolidating all common features
for the service bus SOA patterns. Thus, now we have three full-fledged ESBs in the
Oracle technology stack and something to choose from.

Cloud patterns and technologies are not the primary aims of this book, but to add
some silver lining to emerging clouds, we could mention some of Oracle's other
initiatives, again expressed via acquisitions, addressing both SOA and the cloud.
For example, the quite recent (2013) acquisition of Nimbula — provider of the private
cloud infrastructure management software; capable of managing the infrastructure
resources of services delivery, quality, and availability; as well as workloads in
private and hybrid cloud environments. It seems to be a perfect addition to the
Oracle cloud-based Sun hardware resources.

[94]

http://www.open-esb.net/index.php?option=com_content&view=article&id=90&Itemid=469
http://www.open-esb.net/index.php?option=com_content&view=article&id=90&Itemid=469
http://www.open-esb.net/

Chapter 2

It would not be entirely correct to state that all Oracle Fusion roadmap's milestones
were based on acquisitions. Oracle primarily adopted JavaServer Faces (JSF)

with lots of other JEE standards and patterns and came up with Application
Development Framework (ADF), a foundation for all Web 2.0 and Enterprise 2.0
Oracle products mentioned as follows:

* WebCenter, a web-based collaboration suite, replacing Oracle forms,
consolidating portals, social media management, and content management

* BAM Studio, proactive service monitoring, and dashboard creation
* Bl Suite, analytics, reporting, OLAP, and scorecard management

* Enterprise Manager consoles

Needless to say that with the acquisition of Sun, ADF Java-based development is
gaining a new boost.

So that was just a quick glance at some SOA and Oracle combined milestones, but
history is not over yet. Distributed computing is setting new challenges, which we
could address by the proper application of tools, principles and methodologies,
and combinations of patterns. Oracle has nothing to prove really. It's obvious from
the history line that only two options are available: Silo and SOA. Being the main
consumer of its own Fusion technology, Oracle set the direction for cost-effective
application collaboration based on the SOA principles and standards, moving from
a Silo-based approach. Let's now see how these concrete tools can be fitted into
Oracle's vision of a standard technical infrastructure.

Oracle SOA frameworks and technology layers

In Chapter 1, SOA Ecosystem — Interconnected Principle, Patterns, and Frameworks,

we have already outlined the abstract layers related to the technical infrastructure,
divided into 10 frameworks. At least six frameworks have concrete realization

in four major technical layers. We will discuss the technical layers first, starting
traditionally from the top, as demonstrated in the next figure.

The Data layer usually presented by data clusters is grouped into three types of
high availability (HA) implementations such as zero data losses with automated
failover, manual failover, and a single instance with a cold standby, suitable for
manual recovery. The last one is not HA at all, but is still quite suitable for business
applications with non-OLTP requirements and capable of staying offline during data
recovery routines from backups. Only complete HA solutions are suitable to serve
the orchestrated service compositions with state deferral requirements. Services
with DB resources underneath cannot be reliable composition members if DB is not
covered by HA capabilities.

[95]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

In some cases, it can be addressed by the implementation of reliable messaging with
asynchronous queuing, but that's not an option for fast-running compositions or
service-oriented middleware itself, where the role of DB is crucial. Middleware DB,
as we already mentioned, is a host of the Task Services state repository, operation
monitoring reporting, service repository and registry, and error recovery. More than
20 different schemas will be installed in DB during the OFM installation, responsible
for the various aspects of middleware runtime activities. Simply put, the Entity and
Task services cannot be implemented without a reliable DB.

Interestingly, these days, DB itself becomes more and more Fusion-like. According
to a statement made by Larry Ellison in October 2012, it was promised that the
upcoming 12¢ Version would implement a new concept of a hot-pluggable DB,
allowing multiple DBs to run under one copy of Oracle DB.

The following figure shows Oracle's Reference Architecture:

©Cooo 800

Cald failover
Gore and Critical Data Layer
ﬁp 2.4

o

Standard

DB Access control layet

hd

App 1

@ousiness Domain 1 Aop Bundie

hd

App 1.3

hd

App 1.4

v

App15

hd

pp 1.1 2 App 2.2 AppZ! App 2.4 App

L

Fusion

a5
Soie

.Bus\noss Dormain 2 App Bundie

o
a

(@)

AP layer]]

Core Fusion Applications.

Fusion
Securi

N
e
@ 9 Application Business Connactor Services {Adapter framework)
ESRDB
Object Modeling
Fusion and Design
= il i
L Sarvica Orchestration Layar (EBF)
Registry
Autsmated Testing Automaled XML Modeling and
and Assembly Degloyment esign ‘Service _ Sarvice-Oriented Middleware Platform
— Raposilo
\ Core SOA Design Platform S Core SOA Runtime Platform
—

O

[

Enterprise Security Layer

Sacurlty Parimater [PKI j (umz Control j]]

According to Oracle's Reference Architecture (http://www.oracle.
com/technetwork/topics/entarch/oracle-pg-soa-governance-
frwrk-r3-0-176707.pdf), the second layer is an application infrastructure,
similar to the DB layer divided by application bundles into several application
domains (also covered by HA options).

[96]

http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-governance-fmwrk-r3-0-176707.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-governance-fmwrk-r3-0-176707.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-governance-fmwrk-r3-0-176707.pdf

Chapter 2

From a technology standpoint, it is a pure application server implementation

(on WebLogic or any other JEE compliant server) with all the required elements
of the server infrastructure such as Node Managers, Admin Server, and Managed
Servers in separate nodes. Three distinguishable sublayers can be mentioned
(following the MVC pattern) as follows:

* Core application logic presented by the traditional Java modules
(EJB, POJO, and so on)

* DB Persistence layer responsible for DB access, object-relational mapping for
the relational DB, or object extraction for the object-related NonSQL DB

* The API and representation layer responsible for the exposure of the
application interfaces

Application modules and APIs within an application package are presented as red
and green boxes, respectively.

The Fusion Middleware layer is also based on the WLS Application Server and
probably should be placed in between the DB and App layers, according to its

name; however, we deliberately put it close to the southbound end of the Fusion
perimeter, binding it with the security layer. This layer hosts most of the SOA
frameworks, which in turn compose most of the patterns discussed later. Now, all
abstract frameworks, discussed in Chapter 1, SOA Ecosystem - Interconnected Principle,
Patterns, and Frameworks, are mapped to this layer and numbered. The layer itself can
be vertically divided into Runtime and Design areas. Note that this division is rather
arbitrary as ESR and Governance frameworks are actively used in both areas.

The runtime area holds four distinctive frameworks, namely:

* Adapters (1)
* Service Bus (5)
* Orchestration (4)

* Service management (runtime part)

The Service Brokers, as agnostic controllers and subcontrollers, are the essential
patterns acting across these frameworks. So, it's impossible to say which runtime
framework in particular is used for their physical realization. Business Activity
Monitoring (BAM) as a tool is a part of the broader Service Monitoring solution,
incorporated into the Service Management (that is, Governance) framework; together
they form a business and technical service monitoring solution. This solution, among
other functions, feeds the error-handling facility with the information needed for
service recovery, both manual and automated. The Automated Recovery Tool (ART)
is a part of the error handler specific for particular service inventory, but based on
Oracle's common error hospital pattern, which is essentially the implementation of the
agnostic service controller SOA pattern linked to the Enterprise Service Inventory.

[97]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

The Service Inventory framework during its runtime provides the discoverability
of services and the service artifact to all runtime frameworks via unified AP],
constructed according to the Service Inventory (Repository) Endpoint pattern.
Any service, service agent, or composition controller in these frameworks could
perform the lookup and discovery of any service metadata element according to
the Service Repository (SR) taxonomy.

It is highly important to realize the role of the Fusion technology layer for these
runtime frameworks. This layer, based on WLS and JVM(s) (it's also true for the APP
and DB layers) provides all the necessary Service Engines (SEs) essential for the
functioning of all runtime frameworks and the hosting of our business-services logic.

Service Engines are the services that serve our services, so to say. As we can expect,
BPEL as a language will be interpreted and executed somehow; the same for ESB,
where proxy services must be decoupled from business services and the VETRO
logic between them must somehow be fulfilled. Actually, the transformation,
translation, and rule verification do not belong to a single framework and are
provided independently to any layer that needs them. Moreover, their realization
comes in the form of an engine, that is, how we call them — for instance, the Rule
Engine. SE can be implemented in several ways, but the common requirements are
portability, simplified binding of the engine and the service component, and the
unified messaging model.

Fdrvice Locator:
Jransformation

Service Locator:
Deliverer

Service Locator: "7.' =
AnyTask !

i Arinask:
Management DB , (Registered)
Service Repository EJB,POJO.WS

Service Engines Runtime environment

[98]

Chapter 2

The SE as a runtime environment for service execution and message exchange can
be based on the Java Business Integration (JBI) standard (JSR-208). Oracle inherited
the JBI specification with the aquisition of Sun. In fact, JBI is a SCA enabler as it
permits the SCA components to be realized through a technology-agnostic generic
programming model that decouples the components' implementation from their
communication, allowing a high level of reuse. JBI SEs communicate with each
other at the technology level, leaving business communications to the services. This
communication model is defined as a WSDL contract that we mentioned earlier.

All communications are decoupled by a message dispatcher, called the normalized
message router (NMR), which physically support all MEPs, as declared in WSDL.

Ideally, we should be able to choose any engine for our abstract operation

(that is, transformation or BPEL interpretation) and use a certain engine in any
part of our frameworks. In fact, the Rule Engine and its SDK are unified across
the Oracle Service Bus, orchestration, and even DB. (It is worth mentioning here
that the Glassfish application server and OpenESB support JBI.)

From a service implementation prospective, architects should realize that the service
models (such as entity, utility, or task) define the needs of certain engines. Therefore,
the task-orchestrated services are rather special, as they strongly require the BPEL
engine along with the DB infrastructure, as compared to the simple utility service,
which can be implemented as a lightweight portable jar. Service layering within
Service Inventory must be done with extra caution to avoid performance overhead
and excessive infrastructure costs.

The design time part of Fusion Middleware hosts the rest of the compulsory
frameworks such as the XML and Object Development frameworks and Automated
Testing and Deployments frameworks. They are covered by several Oracle tools,
linked to the source control and the Enterprise Repository. The two main developer
tools are JDeveloper and Eclipse with the Oracle pack for OSB.

The security layer is a form of ESB as it basically serves similar features such as
message screening (a form of validation), transformation, and exposure-only services
designated for the outside world (that is, hiding and abstracting the internal Service
Inventory). So, can it be implemented using Oracle Service Bus? Hmmm...yes! Firstly,
OSB is integrated with Oracle Web Service Manager (OWSM). OWSM allows you to
define policies, store them in the policy store, and attach them to a particular service.
OSB can support message encryption and digital signature, the two main mechanisms
for establishing message confidentiality, nonrepudiation, and integrity. Integrity
guarantees that a message has not been altered on transit, confidentially ensures

that only authorized people or processes have access to the message's content,

and nonrepudiation signifies that the act of message transmission cannot be

denied by the sender.

[99]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

OWSM supports SAML, so brokered authentication and an Authorization pattern
can be supported as well. It all sounds good. However, there are some other
requirements that should be taken into consideration, shown as follows:

* OSBis an SE on top of WLS with connection to the DB (in the full version).
With so many moving parts (OS + JVM + WLS + OSB + OWSM and DB
somewhere nearby), will you consider moving it to the DMZ, as security
perimeters should be in front of the firewall, not behind it?

* The conventional XML parsers and validators do the XML validation. They
are quite well-known and have been exposed to very thorough scrutiny
with not always good intentions. Naturally, the XDK development is mostly
focused on functionality first, good performance after that and, honestly,
security is not given highest priority as the performance's natural enemy.
Would you consider putting a functionally brilliant but potentially insecure
XML validator as your northbound XML Gateway?

* Talking about performance, we have to admit that conventional validators
and transformation engines are not the best players. A secure perimeter
should be considered as a corporate asset, common to all projects and
products. It's not that uncommon to have about 10 K tps with a 5 K SOAP
message per single node (VM 2CPU 8 GB).

Yet another architectural approach should be evaluated. The security perimeter is
an ESB with all common features as we mentioned before. It can perform service
brokering, mediation, and protocol bridging, both for message and transport
protocols, and can also apply corporate policies (with security in mind first). Thus,
for the external services, the presence of this framework makes the conventional
Enterprise Service Bus (ESB) handling the Enterprise Business Services (EBS)
layer quite superfluous, especially from a performance point of view. At the same
time, services with outbound-only MEPs can reside in the conventional EBS layer
and employ security features of OSB, whether it's possible from a functional and/or
performance point of view.

Functionality specific to the security perimeter (SP) ESB is expressed by
the following SOA security patterns, specific to a service message in transit for
transport and message-based security:

* Message screening: We must prevent the infiltration of insecure message
content through SP. One of the measures addressing it is XSD-based
validation, which could be ineffective in the case of a conventional
XML processor.

[100]

Chapter 2

* Exception shielding: We must prevent the exposure of a service's error stack
trace to the outside world. SP is not the optimal place for this, as the service
itself must be designed to prevent this kind of leakage. It's our last resort,
but functionality must be in place.

* Full triple-A support: Authentication, Authorization, and Accounting (triple-A
support) should be based on the WS-Security specifications, combining a
dozen ws- * standards, including digital signature (DSS; https://www.oasis-
open.org/committees/tc_home.php?wg abbrev=dss), encryption, portable
trust, secure conversation, and so on. In contrast to the XML engines are the
security-related libraries for signature and encryption practicing the policy that
can be expressed as the security algorithms being widely open with the key(s)
strictly undisclosed (of course, except the public key). This is one of the ways
that we can ensure that our security algorithms are secure enough.

All of these security requirements, and many more on top of that, are covered

by the Oracle API Gateway. This concludes the overview of Oracle's Reference
Architecture (http ://www.oracle.com/technetwork/topics/entarch/oracle-
ra-soa-foundation-r3-1-176715.pdf) layers and related tools. Now we will
proceed with each tool individually, starting from the Fusion foundation.

Oracle SOA Foundation — methodology

"It's like if you want to buy a car. Would you get an engine from BMW, a chassis
from Jaguar, windshield wipers from Ford? No, of course not. Right now with the
software that's out there, you need a glue gun — or hire all these consultants to put it
together. They call it best of breed. I call it a mess. We want to put an end to that."

- Larry Ellison

This emotional but hesitation-free statement made in the year 2000 pointed out the
Oracle CEO's core procedural beliefs for the next few years as follows:

* Packaging the best-of-breed components without standardization is a
dead end. You will run out of glue. The sole term best-of-breed without
any criterion (read: principles) describes why it's actually the best and
is clarity of meaning,.

[101]

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss
http://www.oracle.com/technetwork/topics/entarch/oracle-ra-soa-foundation-r3-1-176715.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-ra-soa-foundation-r3-1-176715.pdf

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

* Components standardization is impossible without rewriting the
components in order to make it compliant with the SOA principles
specifically responsible for the service/component design (such as
autonomy, statefulness, abstraction, and reusability). However, this is bad
news for those who believe that OSB and BPEL alone will solve everything.

Oracle had to establish a solid methodology in order to plug various Fusion
applications together and give customers an option regarding what to choose

from for their primary business components. The regular choice would be the ERP
Oracle products from the Fusion application portfolio. But methodology, based on
SOA principles, would be suitable to establish the collaboration between different
products as long as their architecture is based on the same principles. In other
words, you do not need to purchase OEBS, Siebel, PeopleSoft, and so on in order
to follow the methodology proposed by Oracle. Most importantly, you do not need
to buy methodology-related frameworks to practice it if you do not have a single
Fusion application in your portfolio. This architectural approach, called Application
Integration Architecture (AIA), is a perfect example of how to employ SOA
principles and patterns grouped in clearly defined frameworks to work toward

the integration of disparate applications.

Wait a minute, you might say. Earlier, we stated that SOA contrasts integration,
and integration is the beast we would like to get rid of. Is there some kind of
contradiction here? Not really. Firstly, most Fusion applications (and not only
Fusion) emerged and were acquired well before the realization of the SOA
approaches. All these approaches are evolutionary, so the transition from classical
integration to SOA pluggability was gradual and the applications have been
rewritten many times. SOA Big Bang is the last thing we need in our business,
and thus traditional integration still has its share in this framework.

All these integration step-backs are clearly covered by recognizable (and therefore
reusable) SOA patterns. Would these patterns be a good example for companies

with the heavy burden of legacy applications, which are not exactly Oracle
products-based? And last but not least, AIA provides a defined and practical way

to implement SOA frameworks which are not really bound to Oracle's products.

Ask yourself, how many times have you been arguing about what would be the
practical realization of the TOGAF model (or any other model such as Zachman,

P**F, and ITIL/ITSM)? For instance, why is the data in TOGAF's Information System
Architecture (ISA) detached from technology and business? Enough is enough; here is
an example, and it works!

[102]

Chapter 2

AIA provides a clear decision tree on what approach, SOA or EAI, you should
undertake depending on your requirements, where the key requirement is
transformation. Technically, AIA is packaged as follows:

* OFM products as a backbone: SOA Suite, OSB, BPM Suite, SOA Registry
and Service Management, and ODI for heavy batch processing

* AIA Foundation Pack (FP) as a framework reference: Reference process
models, Common Objects, and Lifecycle and Governance

* Pre-built Integration Packs (PIPs): Practical realization of
ready-to-configure task-orchestrated services (business processes)
for Oracle Fusion Applications

For companies with several Fusion applications installed, PIPs are a really interesting
part of AIA as they provide fine-tuned, business optimal composite services such

as Order to Cash, Agent Assisted Billing Care, and so on. You can learn a lot from
them about how to implement all the SOA patterns. What if your version of an APl is
different and/or the business flow has its own specific versions? AIA's FP provides
clear guidance on implementation as follows:

* Modify existing WSDL or create and register a new one

* Enhance Enterprise Business Object (EBO), a canonical data model
representation

* Set Enterprise Business Message (EBM) according to the
corresponding EBO

* Implement required transformations to accept/provide Application
Business Message according to the API

* Alter PIP to add/remove elements of business logic

Oracle provided PIPs for several business domains and industries. The first

industry that received a comprehensive set of task-orchestrated services was the
Telecommunications industry. There are some extensions for utilities and insurance
as well. You probably noticed from the very beginning that we used the AIA
terminology to actively describe frameworks and SOA artifacts, and we will continue
doing so. Therefore, we will illustrate the core components in a bit more detail in the
following sections.

[103]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Enterprise Business Object

AIA provides standard canonical data models known as Enterprise Business
Object (EBO). It is a standard business data object definition and is a reusable
data component as shown in the following figure:

, ’ coreinv:SalesContact
Core Invoice Type type corecom:ConlaciType

]
$ @ preferredLanguagelD
type LanguageCodeType

Status
type corecom:StatusType

sssssssspassssssasfPepaansmanay

coreinv:ConsolidatedinvoiceReference

H]
type corecom:invoiceReferenceType

Telecom Specific Type

telcocom:BillToPartyReference
type BillToPartyReferenceType

corecom:BillFromPartyReference o
type BillFromPanyReferenceType

R

InvoiceEBO
type InvoiceEBOType

o actionCode =
type corecomActionCodeType

corecom:RemiiToPartyReference
type RemifToParyRefarancaTyps

sssgs

corecom:LegalEntityReference o
type LegalEntityRieferenceType

smsmgn s ge el

corecom:ProjectReference = o
type ProjectReferenceType

corecom:Attachment :
type AttachmeniType :

.)
9 type :
type NormalizedStringType |8

Here, we present the part of Invoice XSD specific to a Telecom PIP pack. It has the
following characteristics:

* Represents the business concept of an invoice

* Defined using inputs from multiple applications and content standards
* Common service payload used by all applications

* Designed for extensibility

This is a perfect example of AIA's service contract standardization, and in this case,
of data model canonicalization.

[104]

Chapter 2

Enterprise Business Message

An Enterprise Business Message (EBM) represents the specific content of an EBO
needed to perform a specific activity. For instance, in order to create an invoice, we
may not require complete information about that invoice. So, EBM is the operational
and transportational form of EBO.

CreateinvoiceEBMType

corecom:EBMHeader
typa EBMHeaderType

H
$ 4 languageCode |
type LanguageCodeType

Standard Message Header

CreatelnvoiceDataAreaType
(SBDH concept) =
corecom:Create B

type CreateType
4 responseCode
type ResponseCode

EBM Operation type

CreateinvoiceType

I identification
i orecomtidentificationTy

CreatelnvoiceEBM
type CraatelnvoiceEBMType

€
jit Base

@ languageCode i = &
¥ coreinvinvoiceBaseType

type corecom:LanguageCodeTy.. [) tipe VP

9 versioniD InvoiceLine
type corecom NormalizedString. type InvoiceLineType

Invoice EBO types

& corecom:CreditCard Bl
DniwAcon :
:> Iype CraateinvoiceDalaAtuaType & (=) i U CAmC

B corecom:PaymentTerm
type PaymentTermType

type |
type NormalizedStringType

This structure depicts the core parts of EBM to create an invoice based on Invoice
EBO. The core EBM features are as follows:
* Application-agnostic encapsulation of an EBO
* Generally coarse-grained and operates either on the whole EBO or its subset
* Payload of a web service operation in EBS

* Semantically precise — performs a specific action, that is, one EBM for one
verb (operation)

* A CRUD (create, read/query, update, and delete) operation or a
special operation

* Comprises a MessageHeader, verb (that is, the operation name), and an EBO

[105]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

* Transport protocol agnostic (for example, SOAP, HTTP, HTTPS, and JMS)

@ schemeAgencyMame
type xsdistring

@ schemeVersionlD

type xsd:normalizedString

VerbCode
type CodeType

@ listiD

type xsdnormalizedString
a listAgencylD
type xsd:normalizedString
2 listagencyName

type xsd g

corecom:EBMHeader B :
type EBMHeaderType H

=
& languageCode
type LanguageCodeType

istName
type xsd:string
4@ listVersionlD
type xsd:normalizedString
type xsd:string

Sender
type SenderType

Target &
type TargetType

EBMTracking
EBMTra

type corecomcustCustomEBMHeaderType

EBM Header structure

EBMHeader carries information that can be used for (but is not limited to)
the following:

* Tracking important information

* Auditing for business and legal purposes

* Indicating source and target systems

* Error handling and tracing

[106]

Chapter 2

The AIA EBMHeader implementation is correlated with the existing SBDH
standards, and we advise you to ensure that the development of common enterprise
structures adheres to this best practice. There are some critical elements in the
EBMHeader implementation that are always needed. These are as follows:

e EBMID
e EBOName
e Version

* SenderSystem
* TargetSystem
* ProcessInfo

* ReferencelD

e (CreationDateTime

Verb in EBM identifies the action that the sender/requester application wants

the receiver/provider application to perform on the EBM. The verb also stores
additional information pertaining to the action that needs to be carried out on the
noun. Thus, the EBM verb practically implements the Canonical Expression SOA
pattern, one of the core SOA patterns responsible for service contract standardization
and maintaining discoverability at a desirable level.

Enterprise Business Services

Enterprise Business Services (EBS) are the foundation blocks in AIA. EBS represents
the application-independent web service definition to perform a business task. It is
self-contained, that is, it can be used independent of any other services. In addition, it
can be used within another EBS. EBSs are the standard business-level interfaces that
can be implemented by the applications that want to participate in the integration.

EBSs are generally coarse-grained and typically perform a specific business activity
such as creating an account in a billing system or getting account balance details
from a billing system.

Each activity in an EBS has a well-defined interface described via WSDL (see the next
screenshot). This interface description is composed of all the details required for the
client to independently invoke the service.

[107]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Presented next is the abstract part of InvoiceEBS.wsdl:

x '!miceEBS.wsdl Xi 8| SalesOrderEBS. wsdl X | [@]AccountBalanceAdjustmenteBS.wsdl x | 2 SalesOrdereBM.xsd « (O]

@ sexchooament $@F) P % % D _'

/A Imports W o Artifacts W

[=] Messages @ X =] Port Types 3 K
=[] QueryInvoicelistReqMsg =9 Invoicelnterface
#-4P documentation = 4§ documentation
[8] part - invebm:Queryl...eryInvoicelistReqMsg # 4P Interface
=] B QueryInvoicelistRespMsg =l [a QueryInvoiceList
- 4$ documentation #-4¥ documentation
= 4P Message = 1@ input
49 Description = [E] QueryInvoiceListReqMsa
[58]) part - invebm:Queryl...rylnvoiceListRespMsg # 42 documentation
=[] Faultisg {&8] part - invebm:Queryl. ..eryInvoicelistRegMsg
+ -4 documentation = E_I output
[a8] part - corecom:Fault Fault = D QueryInvoicelistRespMsg

=49 documentation
+ 4P Message
[part - invebm:Queryl. ..ryInvoicelistRespMsg

=@ fault

- [E] Faultvsg

Application Business Object and Message

The Application Business Object (ABO) and the Application Business Message
(ABM) represent the data model relevant to a specific application. The collection of
ABOs represents one abstract business entity as a canonical EBO.

In conclusion, we can say that EBO / EBM XSDs together with EBS WSLs shape the
Official Endpoint layer, centralizing the services logic and ensuring that the logic

is always accessed via a standardized contract. If any alteration is needed, AIA FP
provides clear guidance (http://docs.oracle.com/cd/E23549_01/doc.1111/
el17364/bldgintflows.htm#sthref126) on how to extend the data model or alter
the service WSDL.

Therefore, AIA defines integration architecture by adopting an SOA approach.
The proposed framework has many out-of-the-box features that can be utilized to
address any integration requirements and fulfill SOA principles.

[108]

http://docs.oracle.com/cd/E23549_01/doc.1111/e17364/bldgintflows.htm#sthref126
http://docs.oracle.com/cd/E23549_01/doc.1111/e17364/bldgintflows.htm#sthref126

Chapter 2

Other SOA principles fulfilled by the framework are as follows:

SOA principle AIA response
Standardized Service Enables extensive access to web services and accommodates the
Contract following standard MEPs:

* Request/Response
* Fire-and-Forget
e Publish/Subscribe
Service Loose Coupling This defines loosely bound services that are invoked through
communication protocols that stress location transparency and
interoperability. It also defines services that have implementation-
agnostic interfaces.

Service Abstraction This adopts an application's independent data model to accomplish
the decoupling of a data format.

Service Reusability This provides a general infrastructure for consistent integrations
that are also extensible.

Service Autonomy This replaces one service implementation with another with
minimum impact on the framework.

Service Statelessness This incorporates synchronous and asynchronous communication
and provides partial state deferral (dehydration DB).

Service Discoverability This uses the Business Process Repository to store business process
models and related artifact and the Business Process Publisher
publishes the models in HTML format.

Service Composability This facilitates the use of services in orchestrated process flows and
supports incremental adoption and implementation.

AlAFW

gz F 3
[l il - I - \
._t | ==f EBS ABCS :ii
Ar i?-‘« ABCS | :
L | i
[|
ABCS |

ABCS }:

EBO
EBS/
EBM
ABO

[109]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

From an architectural perspective, AIA can be presented by three main and two
supplementary frameworks. These frameworks govern the truly application-
agnostic, highly reusable components architecture, where each component is
scalable and stackable. This is the outmost evolution of Receive Transform Deliver
(RTD), hub-and-spoke (opposite of ETL) integration patterns. How this framework
can affect the design of other frameworks and the implementation of physical
infrastructure is explained in the following table:

Framework Description Impact on technical ~ SOA patterns
infrastructure employed
EBF * This framework * Asapart * Orchestration

is BPEL based. of BPEL, an e Process

* It describes the EBF farm can centralization
implementation be.clustered * Service Broker
of the optional using Load (asynchronous)
PIP backbone Balancers Y
related to the (LB) ¢ Partial State
specific EBO. * Ttisinstalled Deferral
Other EBOs can on the SOA e Rule
also participate Suite server Centralization
in this flow only. C .
through * ompensatlon
connections to . ?cﬁlsiderations ?"ervme i
the other EBFs must take ransaction
or EBSs. An into account
EBF cannot be long-running
connecte;d to the processes.
ABCS directly.

. e IthasaDB

e Itisused to host Dehydrated
a ru.le' engme/ storage.
decision service.

. . e Jtis

e Itis presentin alternatively
the EBO/EBM Stateful via
level ProcessHeader

e Itis Stateful in and BPEL-
general. correlations.

e Itis optional in * Ithasa
AlA. separate LB

for this layer.

[110]

Chapter 2

Framework Description Impact on technical SOA patterns

infrastructure employed

EBS This framework * Itisinstalled * Enterprise Service
is OSB based, as a separate Bus
Stateless, and OSB domain. « Reliable
mandatory. * Itis clustered Messaging
It is used as Stateless. « Asynchronous
to ro;llte * Separate LBs queuing
synchronous
ir}:vocations. can be used. * Intermediate
Iti ted t * Coherence Routing

is connected to : :
installation
ABSCS and/ or with WLS * Rule
EBE. centralization
* Messaging

Metadata
(SBDH standard
implementation)

ABCS This framework * Itisinstalled e Federated
is BPEL based. on an SOA Endpoint Layer
It is used to Sugce: servlefr d * File Gateway
host adapters and 1s reafize

’ * Legacy Wrapper
compensation on BPEL . gacy PP
layersl and Adapters m ° Multl—Channel
ABM-EBM HA mode Endpoint
transformations. whe1.'e * Partial message

possible. S
It is connected to validation
API and EBS. * Separate LBs + Message

can be used.
It is Stateless in Format/Model
most cases and Transformation
is mandatory.

BPR This is the e lItis * Enterprise
Business Process implemented Inventory
.Repos'itory and using Oracle « Inventory
is optional. Service Endpoint

Registry and
Enterprise
Repository

¢ For runtime,
discoverability
must be
covered by
HA patterns.

[111]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Framework Description Impact on technical SOA patterns
infrastructure employed

CAVS * This is the * Thisis * Process
Composite conditional. Abstraction
Aprl'lcat.lon * It has minimal * Entity
Veri 1cat10n. impact on Abstraction
system and is technical
used as a test infrastructure.

framework.

Al

~ Generally, AIA does not recommend the reuse of individual ABCS
components, which should be individual for every EBS operation.

It's a sound rule. Adapters are the highly tailored components bound to the
individual application, especially when we are talking about Fusion applications.
Nevertheless, adapters related to the protocol or technology could be reused by
several services (such as JMS, AQ, or File). Therefore, it is your choice to share
that type of adapters between different services.

We didn't discuss the Enterprise Business Flows in detail, but as the implementation
of long-running processes is related to the single EBO, they are quite commonly
known by the typical BPEL implementations. The Order Fusion Demo mentioned
earlier could be seen as an example of EBF with all distinctive elements of SOA
Suite involved in its assembly.

Even if you do not have Fusion applications in your portfolio, we advise that you to
study AIA internal architecture and component implementation anyway, as they are
probably the best example by Oracle of a working and very solid SOA approach.

Oracle SOA foundation — runtime backbone

The AIA methodology is a fusion of principles and patterns implemented on
Oracle's technology stack, which is in its turn is a fusion of message-oriented
middleware, database, application servers, security tools, governance suites,
developers workbenches, and languages, which has matured over the years.

Each of them presents its own universe, deserved to be explored in many separate
books (and it is). We are not aiming to give you any guidance on them as it's
simply impossible within the scope of this book, although links to the most recent
documentation for each component will be provided in the related section.

[112]

Chapter 2

Our goal is to demonstrate how certain tools can contribute to solving particular
problems of service orientation and what strengths of these tools we should employ
during patterns implementation.

We will not only focus on SOA Suite and the OSB components of OFM as they
can hardly solve all the common SOA implementation problems alone, but we
will also start from the foundation.

The Oracle database

In addition to the database being Oracle's roots and glory, there is nothing that cannot
be implemented in the Entity service model by means of the Oracle DB (presently,
11gR2 and we see that 12¢ has arrived). This is not an exaggeration. Literally, what you
can do with Java or C#, you can do with modern PL/SQL. It won't be an exaggeration
to state that some utility and task-orchestrated services can be (and probably must be)
implemented by a sole Oracle DB. Among many other modern (and not that modern)
DB features, the following items help to make this possible:

* Native XML support

* Native object-orientation with Java support

* Multitude of message delivery methods (protocols and MEPs)
Firstly, it's possible because of the full XML support along with the object-orientation
support. The XML functionality is presented by the XDB features, available since
2002. Oracle DB has its own JVM with J2EE support, making it a fully capable
application server with complete XDK support. Practically all W3C standards
are supported with the core J2EE patterns, such as Front Controller (Servlet).
The configuration of Oracle XML DB is defined and stored in an Oracle XML DB

Repository resource, /xdbconfig.xml, and here is the section responsible for the
Servlet configuration, as shown in the following code:

<httpconfigs>
<webappconfig>
<servletconfigs>

<servlet-lists>
<gservlet> ... </servlet>

[113]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

</servlet-lists>
</servletconfig>
</webappconfig>

<plsgl> ... </plsqgl>
</httpconfig>

The Servlet configuration section is a child of the protocol configuration described
as follows:

<protocolconfigs

<commons> ... </commons>
<ftpconfig> ... </ftpconfig>
<httpconfig> ... </httpconfigs>
</protocolconfig>

From this section, you can clearly see that two protocols are supported by default:
FTP protocol and HTTP protocol. Actually, one more is also supported, a WebDAV.
Standard Local Listener is responsible for the handling of all XDB requests according
to the parameters registered in the configuration sections as shown earlier, <ftp-
port>and <http-ports. In addition, it is essential to add the related dispatcher
entry to the init.ora file: dispatchers=" (PROTOCOL=TCP) (SERVICE=<sid>XDB)".
You can always check the currently configured XDB Listener ports executing under
the DBA privileges:

select dbms_ xdb.gethttpport (), dbms xdb.getftpport() from dual;

Thus, we have standard configurable Servlet features to listen and receive any
data (including XML) into Oracle XML DB. But what about the HTTP posting?
This functionality is extremely well-covered by the UTL_* PL/SQL packages,
UTL_HTTP in particular. With this package, you can manage the following;:

* Session settings

* HTTP requests/responses

e HTTP cookies handling

e HTTP persistent connections

e HTTP error conditions

We will cover this functionality in detail when discussing the SOA-oriented
DB APIs.

[114]

Chapter 2

While sending and receiving the XML data, we must be able to handle the payload
inside the DB: store, register, transform, validate, and map to the relational structures.
The key element here is XMLType, the abstract Oracle type capable of representing the
XML data. Moreover, XMLIndex can sort XML data in addition to the B-tree and Oracle
text indexes. XDB provides a complete range of XML-related functions for this data
type to handle XML itself (add, modify, and delete nodes, siblings, and elements) and
register it in DB. Oracle XML DB Repository provides a hierarchical way of storing
XML documents, overcoming the disadvantages of a relational model. A repository
provides all the necessary file-handling features including versioning, tagging, and
access control based on the access control lists (ACL).

Despite the existing security mechanisms in XDB, we would not recommend direct
access to the XDB features for external service consumers, thus bypassing the
security perimeter and Service Gateways. There are many reasons for that as XDB
simply does not provide the necessary security-related patterns, discussed earlier
for layer 7, visualized in the first figure of this chapter but one reason has to be
mentioned explicitly. The implementation of the Trusted Subsystem SOA security
pattern requires the separation of security accounts for the service and the service's
underlying resources. Nevertheless, for internal consumers, or for consumers
isolated by means of Secure Gateway (SG) in layer 7, XDB provides an excellent
opportunity for the entity-oriented service model's implementations. The principle of
concerns' separation is maintained by the segregation of security features delegated
to the SG and the entity service's basic operations delegated to the XDB. The main
concern here should be the scalability because, for better results, we need a more
atomic service realization.

Surely, for XDB Servlet creation, complex XPath operations, transformations, and

so on, you can rely on something more robust than PL/SQL (although the oldie but
goodie PL/SQL can do a lot). It will be quite right to say that PL/SQL nowadays can
be seen as a wrapper for Java, thanks to SQL]J specification. You can create your own
Servlet, compile it, and load it into your DB using the following:

loadjava -grant public -user <xdbuser>/xdbuserpwd>@<XDBSID>
CustomServlet.class

Then, register it in /xdbconfig.xml in a preceding section where we discussed the
configuration of Oracle XML DB.

However, native DB Java capabilities are wider than just XDB functionality. You can
do practically everything — from transaction control and complex XML operations to
file handling — putting aside the UTL_FILE package. Again, despite being perfectly
feasible, this solution should be clearly analyzed for scalability requirements.

[115]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

From messaging infrastructure in addition to synchronous HTTP(S) calls, Oracle DB
can offer the native support of reliable asynchronous communications compatible
with JMS queuing, known as Advanced Queuing (AQ). AQ is a database-integrated
messaging infrastructure. Thus, all the DBs' operational benefits, such as High
Availability, Scalability, and Reliability, are applicable to the messages and queues
in AQ. Standard database features such as backup and recovery and security and
manageability are available for AQ as well. All AQ features can be accessed from the
DB side by Java or PL/SQL (the two main packages are DBMS_AQADM and DBMS_AQ),
where you can enqueue, dequeue (one or a group of messages), sort, propagate, and
perform many other functions. The payload data type could be opaque (ANYDATA)
or based on a predefined abstract data type (ADT). Messaging interfaces on the
consumer side can be based on any popular programming interface, but naturally,
in Fusion Middleware, the Java JMS APl is used (the oracle. jms package).

All the previously discussed features present Oracle DB (we are talking about the
classic RDBMS 11g) as a perfect platform candidate for DB-related Entity services
and some utility, such as the File Gateway SOA pattern, responsible for fetching
files, and transforming and persisting in single or multiconsumer AQ(s). However,
the role of DB as a process state deferral store for task-orchestrated services is hard
to underestimate. It's a primary feature of Oracle RDBMS in Fusion Middleware,
employed in Framework 4. DB-based Rule centralization, Policy centralization, and
storage for runtime-related XML artifact (XSLTs, XPaths, other XML fragments,
and XQuery as well), together with reliable messaging persistence in AQ, cover

all the types of runtime data persistence we need. Responsible for design-time,
Discoverability Services metadata is also securely kept in an Oracle DB, Framework
6, and accessed via a unified inventory's endpoint. It is worth mentioning that the
rule engine SDK is available for the DB, Java, and PL/SQL.

We have mentioned RDBMS several times as you may have noticed, and we did
it on purpose. Yes, XDB with XML-relational model mapping is crucial to handle
well-structured, query-intensive data such as Order, Invoice, Client, and so on.

It is rather hard to justify why intensively queried data elements should be stored
in CLOB or XMLType fields. But what if all we need is to pertain the object-oriented
data and pass it further on for client-side processing? Yes, that's an AJAX with
the JSON payload type of processing. Nevertheless, the payload data could

also be the Lists, Sets/Ordered Sets, Hash maps, primitives, and so on.

All types of message-object-related mappings are quite expensive and could

be complex; moreover, we don't always need them on the Message Oriented
Middleware (MOM) side.

[116]

Chapter 2

Oracle offers good additions (we wouldn't describe it as a pure alternative) to
RDBMS in the form of Oracle Big Data Appliance (optimized for Oracle Exadata
Database Machine, but it can run on any hardware). This includes an open source
distribution of Apache Hadoop (http://hortonworks.com/hadoop/), the Oracle
NoSQL Database (frontend for well-known Berkley DB), Oracle Data Integrator
Application Adapter for Hadoop, and Oracle Loader for Hadoop.

The last two components implement a MapReduce-distributed computing pattern
(http ://highlyscalable.wordpress.com/2012/02/01/mapreduce -patterns/),
linking Hadoop Big Data realized as Hadoop Data File System (HDFS) to Oracle's
external tables, which are transparent for regular SQL queries. The pattern's name
MapReduce could be misleading as the object-relational mapping is not the primary
goal of this solution. In this pattern, we try to achieve the highest level of processing
parallelism for clustered multitenant data in HDFS. We are literally mapping chunks
of data with unique numbers (key-value pairs), where the key is associated with
processing nodes and responsible for the reducing of the overall workload by the
parallel processing of related data chunks. Processing could be online or offline

and multiconsumer AQs can be used quite extensively by job controllers in some
pattern's realizations.

So, we could potentially have the classic RDBMS and NoSQL key-value distributed
stores at the same time. All these types of data access, loading, and distribution

put serious requirements on the data access layer, technically residing in the App
Server layer (the next layer in the technical infrastructures hierarchy). Not only

will components of the mentioned MapReduce pattern be implemented there, but
practically the whole data layer must be abstracted in a way that data manipulation
routines do not affect the application's logic, and apparently, old JPA is not enough.
The latest JPA 2.x (JSR 338) covers most of aspects of access schema-less DB, in
addition to the traditional implementations. Polyglot Persistence allows the abstracting
of JPA's implementations even further, and with in-memory data-grid Coherence (JSR
107), we can achieve the highest level of data abstraction and availability.

When discussing a DB's role in an SOA technical infrastructure, it is quite interesting
to mention the number of critical errors solely related to DB faults/mishandling.
Does the following list look familiar?

* We dequeued the inbound message from the JMS queue, but failed to
persist it in the DB because of tablespace problems. Where can we find
the message for process recovery? (By the way, should we mention that
the queue retention time was set to 0?)

[117]

http://hortonworks.com/hadoop/
http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

* During the night batch job, one longops runs out of rollback size as it was
not big enough. About 25 percent of our active orders failed CRM-ERP
synchronization and now applications are out of sync. Worse, policy-based
automated recovery triggered automatically, but it also failed for the same
reason. Now a manual clean-up is necessary. (The DBA forgot to assign a
longops transaction to the one big rollback segment.)

* BPEL tried to dehydrate the process, but the tablespace was full.
(Obviously, the SCA audit level was not tuned, but it seems that the
DBA didn't monitor tablespace usage as well.)

From our experience, we can say that about 60 percent of all SCA crashes in
production are caused by DB-related reasons.

The implementation of the State Deferral pattern for orchestrated services in terms
of data persistence has significant impact on storage management, where one of the
critical operations is the process of data cleansing. Oracle provides purge scripts
together with purge strategies, depending on your operational requirements.

The Oracle application server

The core strategic assets of the Oracle WebLogic application server are interactively
described at http://www.oracle.com/webfolder/technetwork/tutorials/obe/
fmw/wls/Poster/poster.html.

WebLogic Application Server together with the DB is another keystone in SOA
foundation. It's an engine of engines, so to say. All that you will build, deploy,
execute, or consume as a resource will reside on WLS. An exception could be Secure
Gateway (the Oracle API Gateway), which for good reasons we will touch upon in
the Securing service interactions - Security Gateway section, is not based on WLS.

As we mentioned previously, we will focus only on some core features enabled
with the SOA functionality, rather than on the WLS administration aspects. Firstly,
we have to mention that WebLogic 11¢g supports JEE 5 and JAX-WS 2.1 for the web
service development when the newest 12c¢ release supports JEE6 and JAX-WS 2.2.

In the context of the SOA infrastructure, what is the most interesting for us is which
resources can be securely provided for utilization and how they can be managed on
runtime. Needless to say that resources such as JMS for asynchronous communications
usually do not belong to the particular application (if the application that encapsulates
the communication channel is down, we can hardly rely on that channel anymore),

so we need the JMS server to handle our J]MS messaging.

[118]

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/Poster/poster.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/Poster/poster.html

Chapter 2

All these resources, and some more, are securely provided by WLS:

¢ EJBresources

* Enterprise Information Systems (EIS) resources

* Java DB Connectivity (JDBC) resources

* Java Messaging Service (JMS) resources

* Java Naming and Directory Interface (JNDI) resources
* Web service resources

e Work context resources

As WLS is compliant to JSR-255 JMX management extension standards, there

are many ways to manage shared recourses. For instance, the standard sequence
to create JMS Queue —Creating a JMS Server -> Creating a Module ->
Creating Queue ->—can be fulfilled using the WLS console or the WLS scripting
tool. The basic resources (such as JMS) can be combined to expose shared WLS
services, which are also known as managed WLS resources. Among others, we
would like to mention one managed service responsible for establishing a reliable
messaging infrastructure —Oracle's Store and Forward (SAF) service.

The SAF service enables WebLogic Server to distribute messages reliably between
applications that are spread across the WebLogic Server instances; effectively, the
implementation of the Reliable Messaging SOA pattern. For example, with the SAF
service, an application that runs on or connects to a local WebLogic Server instance
can reliably send messages to an endpoint that resides on a remote server. If the
destination is not available at the moment the messages are sent, either because of
network problems or system failures, then the messages are saved on a local server
instance and forwarded to the remote endpoint once it becomes available.

Oracle Work Manager is responsible for the second part of the question,
that is, how resources are managed. To manage work in the installed applications,
we define one or more of the following Work Manager components:

* Fair Share Request Class

* Response Time Request Class

* Min Threads Constraint

* Max Threads Constraint

* Capacity Constraint

* Context Request Class

[119]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Depending on your preferences, Work Manager can be assigned to any application
(including the Web application), application component in the WLS domain, or OSB
Business Service. You have to choose one of the four configuration files (please see
the WLS documentation http://www.oracle.com/technetwork/middleware/
weblogic/documentation/index.html for more information) to specify thresholds
for the Work Manager components and assign them to your deployed application or
component according to its deployment descriptor. You can always check the status

using the WLS console — Deployments | Monitoring | Workload —as shown in the
following screenshot:

Corfiaurstion eding is & Settings for WorkManagerWeb
changes wil automatcal ou — R -
modfy, add or delete iten Overview, Degloyment Plan Configuraton Secunty Targets Control Testng Monitoring Notes
Domain Structure Web Applications ~ Serviets Sessons PageFlows [Workdoad = Wel) Service Clients
- Use this page to view statistics for the Work Managers, constrants, and policies that are configured for this Web applcation

p Customize this table

Work Managers
Name Server Pending Requests
- e default AdminServer
myCustom\WaridManager AdminServer

WLS Work Manager's configuration

Work Manager uses a common execute queue (common thread pool), so it prioritizes
work based on the rules we define in the configuration files. The rules can be set

for response time, max/min threads, and run-time metrics, including the actual

time it takes to execute a request and the rate at which requests enter and leave

the pool. For example, simple math gives you the understanding of thread pool
utilization and backlog size. If your web service can guarantee its performance for

20 concurrent calls (Max Threads) and Maximum Capacity for its work managers is
25, then backlog queue size will be 5 (25-20), and these requests will wait for a thread
to become available. For rejected threads (over 25), you can assign a meaningful
response message.

[120]

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

Chapter 2

. We should be very careful with numbers that we put in the Work
~ Manager's configuration files. For instance, it's definitely not a good
Q idea to have the number of threads higher than that of the available
connections in the DB connection pool.

Finally, from the Orchestration and Service Bus perspective, WLS is the host of the
whole SOA infrastructure maintained in the high-availability mode. Start the node
managers first using the designated script and then start your servers.

Needless to say that the node manager, which handles cluster nodes interoperability,
should not be a single point of failure and must also be covered by high-availability
options (please see the WLS documentation http: //www.oracle.com/webfolder/
technetwork/tutorials/obe/fmw/wls/12c/10-NodeMgr--4472/nodemgr. htm).

In the following screenshot, you can see all our servers (SOA, OSB, and BAM)
running on the same WLS. Although this is not recommended for production, please
plan your infrastructure in a more segregated way according to the framework layers
we explained earlier. In the following screenshot, you can see all our servers (SOA,
OSB, and BAM) running on the same WLS on entering the following command:

/wlserver 10.3/server/bin/startNodeManager. *

Ne>
<17-Apr-2013 10:35:12 o'clock CEST> <Info> <Security> <BER-0398306> <Changing the
default Random Number Generator in RSA CryptoJ from ECDRBG to FIPS186PRNG. To d
isable this change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true>

T-Apr-2013 10:35:15 o'clock CEST» <Info> <{Security> <{BEA-090908> ng defaullg
t WebLogic SSL Hostname Uerifier implementation.>
{17-Apr-2013 10:35:15 INF (Secure socket listener started on port 5556>
17-Apr-2013 10:35:15 weblogic.nodemanager.seruer SSLL ener run
INFO: Secure socket listener started on port 5556

[121]

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/10-NodeMgr--4472/nodemgr.htm
http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/10-NodeMgr--4472/nodemgr.htm

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Although this is not recommended for production, please plan your infrastructure in
a more segregated way according to the two framework layers explained earlier. The
WLS console with core OFM servers can be accessed after starting your server from the
related WLS domain, see the following command (.cmd or .sh depending on your OS):

/user_projects/domains/<my domain>/bin/startWebLogic.*

- ’ = | sl
Summary of Servers = e i
€« c localhost 1 { b=t ! 1bel =\WLSSe 1 y 18 a @a=
ORACLAE WebLoghs Server® Aamisierstion Coesi B ot
Change Center @ Home Log Ou wces (B Racord Help Q Welcome, weblogic | Conected to: base._domain
‘ Wiew changes and restarts
Configuration editng is ensbied. Future
changes wil automaticaly be i

modify, add or delets itams in thes dam,

Summary of Servers
Domain Structure

Configraten Control

_doman -

Lise this page in changs the stal
startig the hiods Manager. Startng

= Wehilogic Server domain, Conirol aperations on Managed Senvers reguine
waged Servers n Standby mode requires the doman wide sdministration port.

Last Refreshed: Apr 17, 2013 512545 PM

| Customize this table

Servers (Filtered - More Columns Exist)

Showing 1to 4of 4 Previcus | Next

Machine State Status of Last Action
How do 1. 1 | ik
Lecale RERITG
[LocaDey SHUTDOWN
LozaDe RLBBIING ETE
LocaDe SHUTDOWN
Showary D 4 o Previous | Next
WLS core OFM Servers

Summarizing what we have just discussed, we can describe the WLS as the most
generic way of covering all the SOA principles for our infrastructure, since the DB
we discussed earlier only provides Statefulness (Process Dehydration) and Loose
Coupling (AQ) directly. The application server covers Loose Coupling by maintaining
JMS and SAF in an application-independent way. JNDI also contributes to Loose
Coupling, isolating the resource name, for instance, the DB connection pool from the
physical DB location; so when the database is moved or changed, you do not have to
alter your DB-related service. JNDI's resource-naming unification and configuration
centralization also positively impacts discoverability, but the main contributor to the
realization of this principle is UDDI. The UDDI 2.0 Server is part of WebLogic Server
and is started automatically when WebLogic Server is started. With complete JAX-
WS 2.x support, WLS helps you to maintain Service Abstraction and Standardized
Contract, but of course, you should put some effort into designing the services to
realize these principles.

[122]

Chapter 2

WebLogic as the integral component of all infrastructures, abstracting, sharing and
monitoring resources, is the key contributor to Service Autonomy. Using the WLS
Administration console or scripting tools, Work Manager can assign or revoke
computing power to the installed application and components, thus increasing or
decreasing their runtime autonomy. The clustered implementation controlled by
WLS node manager(s) increases SOA applications' resiliency and high availability.
Consequently, because of high availability, abstraction, and visibility, all the
servers' resources are highly reusable in a very controllable manner (thanks to
Work Managers), and as a result, are composable. The unification of the resource
types and the ways of resource discovery and management open the door for the
implementation of the Canonical Resource SOA pattern; this helps to present all
components of the underlying technical infrastructure as unified blocks, easily
shared and consumed by different services. Elastic resource provisioning based
on the simplified replication model, specific for Cloud (mostly for 12¢, but 11g also
has some support), helps to avoid the decreasing of service autonomy during the
implementation of the Canonical Resource pattern.

Again, we have to stress the fact that WLS cannot guarantee the employment of

all of these principles and characteristics alone in your architecture. Only basic SOA
patterns, such as Reliable Messaging and Canonical Resources for some elements,
can be provided out of the box. We have to architect our components right from the
start to achieve a desirable level of Composability.

There are some more things on the technical side related to SOA, which are not
supported by WLS (11¢g and 12c):

* No OSGi support. Even though it was said that WebLogic 12c uses
OSGi for internal modularization and to deliver products such as Oracle's
Complex Event Processor (CEP), there is no direct support for this standard.
For instance, if you are developing components for unmanaged devices, and
you need to implement the dynamic component model managed remotely,
Fuse/ServiceMix ESBs could be a better choice.

* Limited JBI support. Same as previous.
* No OAUTH 2.0 support for RESTful services. You should rely on a secure

perimeter solution.

The GlassFish application server could be the alternative for WLS, but we must
remember that it isn't a strategic product; not all OFM products will be supported
and some enterprise features will not be available.

[123]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

The Oracle Rule Engine

For many OFM developers, Rule Engine (RE) is visualized as a decision component
in the SOA suite, shown as follows:

_ (<3) LS 5}
=& @ ‘2 Router L2) ‘ZedimentExecuti... | |
client l ;) E

Operations: L e e
gotE xecution Plan

Indeed, this is the most common way of utilizing the power of business rules in
composite applications, expressing very complex conditions, combined in collections
(rulesets). The Decision component is the method of exposing the Decision services.
The Decision component is an SCA component that can be used within a composite
wired to a BPEL component or exposed directly as Service. In addition, the Decision
components are used for the dynamic routing capability of Mediator and Advanced
Routing Rules in Human Workflow, Case Management, and BPM. The Decision
component can be seen as a web service wrapper for the decision function and ultimate
endpoint for a subset of the rule dictionary. The decision function in the rule dictionary
can be presented as rules or decision tables. This dictionary, acting as a central rule
repository, contributes to the implementation of the Rule Centralization SOA pattern.

Business Rule Designer is the frontend to define and author various rules in SOA
Suite and combines them in rulesets. The following screenshot demonstrates how
a set of conditions based on Facts extracted from the message XSD (imported from
message header elements, but also can be from Java class or created explicitly in
designer) can be linked to a concrete action; in this case, the execution of a certain
business process related to the user request. The following screenshot gives a view
of Business Rule Designer:

v 8 do =

Sl 5 Folbenl NudeSet Yow | [EvecuterPn DecsonTatie o X
£ Punctens

s ¥ % b DnecutionPlen_DecisionTsbie

£ Bucdmturts

o5 ks

. Condaimns Ry | RE R) | R4 RS | mE | B7 | eh | B9 | RN | R | Rt

Bulesets L SFr— P ——

s Felliment_RulcSet

& Pulfinent_Order

Confict Hesshition

L Actigns
AL senet rew PubesCusputfac Tyge - = s - - - - - - v | | [| > - My
L T ML_AGWT. HASE ML A M M DE TR M Mo M M M. M G... M FmovebobdeFesture... Mo Tes., Tes.,

Business Rule Designer

[124]

Chapter 2

Compared to the decision tables, the rule functions are more 1F-THEN like, where IF
is a set of conditions or pattern matches and THEN is the list of actions. A rule might
perform several types of actions. An action can add, modify, or remove facts and can
execute a Java method or perform a function, which may modify the status of facts
or create facts. Here you can see the problem. If a rule action can modify the fact and
if a decision is based on this fact, then it's quite possible to create a never-ending
loop within the ruleset or lead to the so-called "combinatorial rules explosion." When
a rule adds facts and when these facts run against the rules, this process is called

an inference cycle. Luckily, Oracle implements the JSR-94-compliant RETE logic
(http ://docs.oracle.com/cd/E15523 01/integration.1111/e10228/intro.
htm) for optimization of a rule's execution, avoiding unnecessary checks

for facts when they were altered or deleted during the rule function execution.

The RETE algorithm provides the following benefits:

* Rule orders independence.
* Optimization across multiple rules.

* High-performance inference cycles; typically, each rule firing changes just
a few facts. The cost of updating the RETE network is proportional to the
number of changed facts, not the total number of facts or rules.

Yet we have to warn you that as long as all the rule executions for the highest
performance is memory-based, combinatorial explosion is still a threat and the
RETE algorithm's compliance alone cannot prevent memory depleting. Plan all
your rulesets wisely and do not follow the Rule Centralization too rigorously. The
Rule Centralization must be strictly observed for rule development, authoring,
and testing, but physical implementation can be divided between frameworks and
application layers depending on the rulesets' complexity. As any centralization, the
rule centralization can implement the single point of failure and definitely affects
the Service Autonomy principle negatively, taking away business logic (or part of
it) from the business service. However, the last bit is the whole idea of increasing
business agility and Composability, and there are numerous positive customer
use cases where Oracle RE has been implemented in mission-critical, online-fraud
prevention and money laundering detection applications that handle and scan
billions of transactions or records daily. Thus, there are no doubts that Oracle RE
can provide fast performance and the highest level of reliability.

In general, Oracle RE is a standalone Java application that provides a very
comprehensive SDK and API for the rules' utilization from any element of
infrastructure: DB or OSB. Even if we do not have a rule-related activity for the
request and response pipes in OSB, it is quite possible to implement rules using Java
calls on the RE API. Oracle rules can be expressed by Rule Language (RL), which is
a subset of Java and is relatively easy to use. Oracle DB 11¢g has packages that present
built-in rule engine functionality; primarily, DBMS_RULE_ADM and DBMS_RULE.

[125]

http://docs.oracle.com/cd/E15523_01/integration.1111/e10228/intro.htm
http://docs.oracle.com/cd/E15523_01/integration.1111/e10228/intro.htm

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Oracle transformation and translation engine

As XML is the core standard in service-oriented computing, common to all
frameworks, the last but not least shared technical component discussed in the
Oracle SOA Foundation - runtime backbone section is Oracle XML Development Kit—a
set of tools, utilities, and modules, bundled with Oracle DB, JDeveloper, OSB, and
SOA Suite. All operations with XPaths, XQueries, XML nodes, XSDs, and XSLTs are
possible because of the XDK functions. Some core functionalities related to the latest
versions of XML standards are listed here:

* The JAXB-compliant XML class generator to generate classes from DTDs
and XML schemas on runtime and design time

* The DOM v 3.0 and SAX-compliant XML Parsers, full support for JAXP 1.3
interfaces, and implements and access XMLType in Oracle DB

* XSLT v 2.0 processors for transformation or the rendering of XML
* XML schema processors for runtime and design time schema validation
* XML SQL utility, essential for XDB to convert SQL queries into XML

All core XML libraries are associated with an SOA project upon creation, but you can
always verify the existing libraries or add new ones following Project Properties |
Libraries. The Oracle XML Parser v2 library is mainly responsible for XML parsing and
validation, as shown in the following screenshot. TopLink mentioned in the previous
section is the main O-R mapper. Refer to http: //www.oracle.com/technetwork/
middleware/toplink/overview/index.html and http://www.oracle.com/
technetwork/middleware/toplink/overview/index.html for more details.

Fle Edit View Application Refactor Search MNavigate Build Run Versioning Tools Window Help

IoEg e XEan 0 - O & ARMa- D -¥-
|~Application ~ Applcation 5 x [" i
& et = || =» Project Properties - C\Projects\UPC\SIF\CIO_PEVSCANC i i kupSeni i g
=) STF-Provisioning ~ -]
Frojects &g TE- & Libraries and Classpath
ﬂsr-’omawler [172.16.77.28) : % - Project Source Paths Use Custom Settings
: _‘Em 3 Hew. 3+ ADF Model) Uise Project Settngs
Edit Project Source Paths.. in e Java S Version:
G- Ant
3 |29 Detete Project | il a— 1.6.0_24 (Defoult) Change...
&Y Version Project... 3
2038 ! & Compier Classpath Entries:
" fa] {8 Find Project Fi Pepenoendea
@ ind Project Files Deglayment Export Description Add Lirary...
i ShowOverview i e v|] 504 Designtime ‘Add JAR Directon
ol 4 = ¥ il SOA Runtme = 153
q dlls Make ExecutionPlanLookupServie :.I.H‘;:,m vl gl 5PEL Runtime
[£33 Repuild ExecutionPlanLookupSery Il h'.“ S vl Wl Mediator Runtime
offd Deploy :TP i v M s Runme
& ISP Tag Libraries ¥ gll] ADFm Designtime A%
-';ﬂFD Run 35P Visual Editor v ol Toplnk
"Dehug v) ADE hadal Sntpe
E_ﬂ Ul Resource Bund] Crade XML Parser v2
_ﬁ_f : I3 Reformat Run/Debug Pro V) l} Crace 108
-4 Organize Imports Tecndiogy Scope 9] ovace Rude

SF CheckOut.
Versignin|

ComparefWith

@] ¢ Replace \§it

Restore ocal History...

Oracle XML Parser configuration

[126]

http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Chapter 2

Thanks to the mouse's right-click menu functions —Reformat and Validate XML —
you can always check the consistency of your document and keep it in a readable
form. The same validation can be done using the following command line:

>java oracle.xml.parser.v2.oraxml -schema PurchaseOrder.xml

The input XML file is parsed without errors using the Schema validation mode.
Similar to this, to apply style sheets in the command line, the oraxs1 utility is handy.

The translation capability of Oracle XDK is provided by Native Data Format
Translator (NDFT) and this feature is highly useful in the adapter framework when
we map non-XML files into XML and vice versa, as shown in the following screenshot:

[s, FILE Adapter Configuration Wizard - Step Baf@ " =]

Messages

Defire the mestsags for the Fead Fle operation. Spedfy the Schema File Location and sslect the Schema Bement
Ehat defires the messages in the incoming files. Lise the Browes button to find an existing schema definition. If you
check ‘Schema i O =1 Wou G0 Nos feed 1o spealy & Schem

] LI

Target namespaoe: tto [T arge thamespace com ferwer
wtmm;ﬂrmarm&;\:mm
Enter name of element gontaining multple records: Roat-Element
Enter a name: for glement that vall represent recond: - |

Fie: C2\TEMPIEL et

[|c2 [ca [c4 les |
Productl 1 Streetl, Towal 20-08-1954 1-493-171% YES|
Product? 2 Street?, Town? 20-08-1954 2-453-1718 NO
Froductd I Streetd, Townd 20-08-1954 3-439-171F WO
Froductd 4 Streecd, Townd 20-08-1954 4-499-1718 YES

Native Data Format Translator

[127]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Here, simple comma-separated files were translated into simple XML files suitable
for further processing. XSD for the complex type, generated by Native Format
Schema generator from initial CSV file you can see in the following screenshot:

=5 FILE Adapter Configuration Wizard - Step Bof 8

Messages

Define the message for the Read Fie aperation. Spedffy the Schema File Location and select the Schema Element
that defines the meszages in the ncoming fles. Uss the Browss button to find an existing schems definiton. If you
chedk: Scdhema 50 ey wvns Ao nak need 1o soedify a Schen

-, Native Format Builder - Step 7 of 7
| Generated Native Format Schema File

Generated natnee format schema s shovwn below. You may edit the schema before saving.

usdzcomplexTypes
sxslsequences
sxsdiebeiment name="TF" minCecurs="1" maxOcour s="unbourded™s
sxsdbcomplaxTypes
alEequUences
<xsdinbemnent name="C1" lype="xgd #ing” nusd dyle="Taminaled” nucarminabdy="" niced quobedBy="Sguol," /=
axsdpbenment names"C 2 types"cso sring” rcsd syles"Terminated™ roogct {erminatedBys" " nocsd quobesBys"Souot, " i
sxsdebenment name="C3 type="xed ring” ncsd stylesTerminaled” nosdierminabedBy="" nxad quobedBy="Equd,” /»
=xscinbement fame="C4" fype="xad sring” firsd Syle=Taminsted” frosd ierminaladBy="" fsd quobedBy="Sgud " =
aX SRR Names"C5" Typee=csd Sring” Mt MylesTarminated” nctdlerminaladBy="F{ 0l nctd auobedBy =" S,
Mg soquUende-
<gstkcomplexType-
s dnelemeent s
sfsdsequences ¥

Path: C:'Projects', .. \SCACompostes \Broker \ExenutionPlanl ookapSerioe wed
File name: m

]

Test
[<gook [x>] =¥

Native Format Schema Generator

However, what if a situation is not as simple and we cannot use the preconfigured
wizards for files separated with a predefined delimiter of fixed-length files? XDK's
Native Schema translator provides constructs that can cover practically all possible
complex cases, helping with conversion to canonical XML. A few of them that are
extremely useful in our opinion (from practical experience) are listed as follows:

Native schema Usage
translator
startsWith This looks for the specified string in the native data.

surroundedBy This looks for the native data being surrounded by the specified string.
terminated By This looks for the native data being terminated by the string specified.
skip This skips the specified number of bytes or characters.

[128]

Chapter 2

Frankly, by using these four translators, you can find any piece of information in

a very complex mutilated file and map it to your canonical model. We advise you

to look at the full list of constructs and related examples in Oracle's Native Format
Builder Wizard documentation, related to the adapter framework. Finally, if this
approach doesn't work (yes, the IBM EBCDIC encoding with all possible mixes of
formats are still in use), use Java callouts from your framework (OSB or BPEL) and
implement your chopper using the Tokenizer patterns with any extensions you need.

Summarizing this, we simply do not know how to express more the importance

of a reliable and performing XML framework for the whole Enterprise architecture
(not only SOA). All six core frameworks rely on the robustness of Oracle XDK,

but the Security and Adapter frameworks, our gateway keepers, are explicitly
responsible for maintaining our canonical data models and reducing the number
of transformations and translations.

Some complex products, such as Oracle E-Business Suite, comprise

several XDKs, sometimes in different versions, as DB/ XDB and the
M Application server can have their own instances. Be careful with the

complex XML constructs and transformation schemas and always

pay attention to the parser you are using within your application.

There may be some problems with compatibility and definitely,

the performance will be different.

How Oracle products compose the SOA
framework

We discussed the foundation of Oracle SOA, the components that will always

be present in your infrastructure. Even if you decide to install OSB in a lightweight
mode (no DB and Repository Creation Utility (RCU)) without reporting the
functionality, the Derby DB will be installed anyway. Combined together, these
products cover all SOA principles and introduce all ws-* standards. When properly
maintained, they will help you to regularly address the common challenges you
face during the implementation of the SOA infrastructure. Here are just some of the
problems and patterns that address what we have already mentioned:

Common problem Pattern addressing the problem

Latency on the service provider's * Asynchronous Queuing: Covered by

side negatively affecting the WebLogic's implementation of JMS Server
service consumer's functions with queues and topics.

[129]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Common problem Pattern addressing the problem

Unreliable communication channels * Reliable Messaging: Addressed by WebLogic's

between the service consumer and Store and Forward Service (SAF), with agents

service provider securely delivering messages with all the
necessary acknowledgements.

Making stateful (and stateless as * Service Grid: Insured by Coherence, in-memory

well) services constantly available grid computing solution, hosted by WebLogic

in a fault-tolerant way and ready to (JSR-107 compliant). Working together with

scale up rapidly OSB, provides a simplified service deployment

on the clustered environment and rapid
high-volume processing. Combined with
Oracle Event Processing implements ultra-fast
event processing network.

Computing resource unification and * Canonical Resources: Covered by WebLogic's

management harmonization JNDI, Resource Management, and Work
Managers implementation of unified resource
management.

Increasing the reliability and * Redundant Implementation: Guaranteed by

availability of services WebLogic clustered implementation, including

Coherence and Node Manager
in a redundant mode.

Controlling all business rules * Rule Centralization: Provided by
centrally and avoiding business logic Oracle Rule Engine with SDK, APIs,
from creeping in and management console.

In general, what we are missing here is the services collaboration and operational
support for long- and short-running services (Orchestration and ESB, respectively),
security enforcement, and service governance (including Enterprise Repository).
However, we would first like to discuss the positioning of the development, testing,
and deployment tools in these frameworks.

Service creation — Object and XML Design
frameworks

Oracle JDeveloper is probably the most all-encompassing tool among the whole
range of developers' workbenches, covering the entire development workcycle.
Please see the most common steps in the next screenshot.

UML designing is the complete UML coverage for use cases, activities, classes

and sequences diagrams. Sequence diagrams have an effective autoplay feature,
simplifying the concept demonstration. UML diagrams are part of your SOA Suite
project, which is the closest thing to your code, so you and a business analyst can sit
together during prototyping, a very critical stage of the project, in order to eliminate
any possible design gaps.

[130]

Chapter 2

Needless to say that all artifacts are the subjects of the version control (subversion
is displayed, but Rational ClearCase, MS Team System, and Serena Dimensions are
also supported) as mentioned in the following list:

First is the service composition visual development (SCA) of all components

such as BPEL, all types of rules (discussed previously in The Oracle Rule
Engine section), SCA mediators, and Human Workflow routines. The contact-
first concept is fully supported, you can create BPEL or Mediator right from
the WSDL and deploy it straight from JDeveloper on any deployment target
in your preconfigured servers list. The standard Java development, including
embedded coding with outlining and code insight, is greatly simplified, but
some insight features are probably better to switch off, as code completion
can be annoying for some. The BPEL visual designer is brilliant in the latest
versions and the number of crashes are considerably reduced.

Second is the Visual XML development; XSLT mappings are really mature and

the number of XML-related function is substantial. Still, when some complex
XML manipulation is added into the source, visual development can become
unavailable. That can be irritating; however, in the defense of JDeveloper, this
is true for some other XML development tools such as Altova's XMLSpy.

— Oracle JDeveloper 11 Release 1~ SIFUMLAppcation.jus - SEUMLjpr ; CAProjects\UPC\SICIO_PEVSCA\VApplicat

@

&,

cEg 9w

AW O-O- 1 &-

ool

&
[siFuMLAppication
Projects
= @ st

-1 com

-0 com.upc

=i com.upc.sf
S common

€ mhs:Megld
4 4P rhsReoteTme
[0 mhs:BusnessEvent
& @ mhs:Sender

- fes] mhs:ObjectContext

B@ 7=

= [Appheation Sources

* 0

~& -

Apphcationt | |

Fle [dit View Application Refagtor Search Navigate Buid Run Versigning Took Window Help

AR dw- -

to enable. ﬁ
Extensions:

~ Versioning Suppart for Subversion 11.1.1.6.38.61.92
| Provides ntegrated support for Subversion

JantcotupRequest_To_assuranceDessionSernvice.xdl X

SEFacade. ServiceBroker{ Async)

Generic Adapter Error

Cancel

=

e

@ paciag

&) seerrof *
5] seerrod
(5] seErrod @) Find Broject Files
BUE ghow Ovenview

Delete Project

Version Project...

Edit Project Source Pathi...

\¥Sl Brok ‘i I)

| ExecutionPlant ookupService.
RulesTestIAR.

4@ mhs:ObjectReference |

e ¥ ele
tns:calFunctionstateless €5 | 08 .
name = Assur... [TIEE Conversi
tns:configURL e} Date Fury
trs:bpellnstance [e] @ b Logical iy =
tnsparameterist € = Mathems
|ssuranceExecutionPlanRulesFact €5 = Node s
TradngPartner ER String Fuf
imf:‘;: ig ::i ol Assign_GetExecPlan_Input 3 cdit ava Embeoding f =
Instance 5 Be) compa) = =
BusinessDoman @8 1l concat| X ‘ Genesal | CASERORRS] EONICE
S a
ServesTasiane @y contary Hama: [1ava_setProcessTite
R g 5 eate Invoks_GetExecutionPlan Code snpets [y (
BusinessEvent T O ence secfompositelnstanceTitle (gecvarisblebaca
ProfieRequestType } catch{Exception e) {
o WorkOrderType 53 | format addAuditTeailEncey ("Exception creating
b & et Retrieve_ExecutionPlan
i, getoc

@ IFoExistingExecutionPlan

\Ewmwﬁwwmwﬁmmmmuwm _

JDeveloper OFM capabilities

[131]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

When discussing JDeveloper, we would really like to avoid the holy wars of JDev
versus Eclipse versus NetBeans. It has no relation to the SOA patterns, the subject

of this book. We have to admit that JDeveloper is the perfect tool for SOA Suite and
almost any other type of development, except for the Oracle Service Bus (OSB). We
either use the OSB console or the Eclipse plugin (OEPE) to construct our OSB flows. Is
this a drawback? Certainly! A single tool that covers SCA/SOA Suite and OSB would
unquestionably simplify our life, but we have to remember that EBF (SCA composites
and orchestration) and EBS (service bus) are different frameworks; they are almost
different universes. We already have some OFM 12¢ products at our disposal and,
hopefully, with the full release of OFM 12¢, we will have these tools merged.

One of the problems of using Eclipse is that it is as good as the quality of the

plugins we have, and from our experience, we know that OSB and WLS admin pack
plugins are really good; the old plugins for BPEL worked only for quite simple flows.
So, splitting OSB and SCA development may not be that bad after all.

The last piece in the development and modeling stack is SQLDeveloper, which in
many ways is better for DB development and administration than JDeveloper.

Service development — automated test and
deployment

The open OFM development architecture allows for the creation of the Continuous
Integration (CI) framework, where the central role will be on the Hudson build

server. Please see the following figure:
Deploymen y
O =u»

Report %e;ﬂc’_\'
heck Ou ey %3
- F _ @d
) Hudson
LK’L/J

Continuous Integration
Server

_y \ﬁeckfar
Subversion Updates

[continuous)

_ Repository Status esecuion
SOA Application :

[SOA Project 1]
Maven pom.xml =g

| SOA Project .N
Mavenpom.xml ;- .

== | Checkin

Manage

SOA_HOME

[132]

Chapter 2

Hudson is an open source tool supported by Oracle. It's a continuous integration
server capable of executing practically any scripting tasks, such as Ant targets, Java
compiler tasks, and Maven goals, and in doing so, performs almost any type of
assembly and deployment. It can also be easily integrated with any type of version
control system and equipped with a powerful scheduler. All connections can be
secured and dedicated credentials can be established for every subsystem (code
repository or deployment targets). All Hudson's projects can be established in a
hierarchical way with the master project on the top and subtasks below. The build
process itself can be distributed as Hudson supports the master-slave topology for
distributed assembly and compilation. Master (central Hudson server) and Slaves
(agents performing build tasks) can be dispersed between on-premise and cloud(s)
installations. The previous figure illustrates the simplest (yet most effective) way of
implementing this framework.

Maven (http://maven.apache.org/what-is-maven.html) and its plugins will

be necessary when your project has different heterogeneous components —not only
SOA Suite SCAs but also DB schemas, separate Java modules, and Oracle Meta
Data Services (MDS). In most cases, Ant can do all the jobs required for the task's
execution against the targets. The mandatory part here is the versioning system
(subversion) in connection to JDeveloper and Hudson, deployment server (probably
WLS), and Hudson CI server. When a developer submits the project's code, Hudson
detects the change in versioning system and run the scripts associated with these
projects. Alternatively, it will be more effective to schedule these Hudson tasks at

a certain interval. Developers must observe and respect the code build and submit
culture diligently. When code is assembled and compiled successfully, Hudson can
proceed with the deployment on the JIT server and execute the test scripts. If an error
occurs during the assembly and build or during testing, a report will be generated.
Build Manager and the developers will always see the status on the Hudson console
as sunny Or rainy.

This framework probably does not produce an SOA pattern, but its role together
with the Service XML and Object development frameworks in maintaining

the contract-first development paradigm is crucial. That's the core of the Agile
development, and without establishing a proper development and deployment
culture, we will not be able to move further toward complex Orchestration and
Service Brokering.

[133]

http://maven.apache.org/what-is-maven.html

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Establishing the adapter framework

When discussing AIA, we emphasized the role of the adapter framework in
establishing the compound SOA pattern named Federated Endpoint Layer
(in AIA terms, ABCS). This pattern is composed of several atomic patterns,
where they directly govern the following canonicalizations:

* Canonical Expression: This indicates expressing contracts' capabilities
(operation) in a consistent and comprehendible way, improving
discoverability, and consequently, reusability.

* Canonical Protocol: This means reducing the number of communication
protocols to the optimal level. It is essential to maintain composability.

* Canonical Schema: This denotes establishing canonical data models,
and reducing transformations and as a result, improving performance
and the overall reusability.

According to the AIA methodology, the adapter framework is usually realized by
BPEL. This advice has very strong historical reasons because the very first version
of BPEL had dozens of different connectors presented as partner links to DB, Files,
FTP, MQ, and so on (see the following screenshot). Adapters are arguably the
strongest part of Oracle BPEL. The framework is extremely extensive and
provides the possibility to link to third-party adapters.

Oracle Application Adapters have also been one of the strongest selling points
for BPEL. With these types of adapters, we can natively communicate with
OEBS PL/SQL concurrent APIs, shadow tables, and custom interfaces:

P Service Adanters
T e = ADF-BC Service
ErrorManager m AQ Adapter
Operations:
initiate @ B2
onResult {{j) BAM Adapter
{j Database Adapter
&3 Direct Binding
¥ ;55‘} { EJB Service
ServiceBroker 193 File Adapter
Operations: 3§ FTP Adapter
nitiate (=]
i (@ HTTP Binding
{5 IMS Adapter
{in MQ Adapter
.i.:: = d 3 Orade Applications
it i) Socket Adapte
AuditProxy D s
Operations: (&} Third Party Adapter
initiate éf; Web Service

[134]

Chapter 2

The latest releases allow adapters to subscribe to the OEBS business event or

a group of events (see the following screenshot). We will discuss how it fits the
whole SOA paradigm in Chapter 6, Finding the Compromise — the Adapter Framework.
What's important now is to stress that Oracle looks like a primary platform for the
adapter framework.

Clicking the Other Interfaces > Business Events > Outbound > Groups
node displays the business event groups.
= €@ Other Interfaces
=} - (58 Business Events
+- 53 Inbound(Raise Business Events into Oracle Apps)
=} (63 Outbound(Listen to Business Events from Orazle Apps)
(@ &8 Groups |
\—:D ORACLE.APPS.AP.PROCESSPAYMENT .CCNFIRM
Eq_jORACLE.APPE,FTE.SSNO,CONF[RM
£7) ORACLE.APPS.PER .KI,CONFIRM
371 QA SAMPLING REDUCED INSPECTION
71 QA SKIPLOT FREQUENCY CHANGE
q‘:) oracel. apps.po.event.update_asl
i) oracle.apps.alr response.receive
1] oracle.apps.ams.approval. ObjectApproved h.
-U oracle. apps.ams.campaign.ExecuteSchedule

From a vendor-neutral perspective, we would not advise you to entirely lock on
the BPEL realization. As repeatedly mentioned, BPEL is the orchestration tool. Fast
service collaboration can be affected by latencies of this platform. On the other
hand, data format/data model transformations and protocol bridging can be easily
implemented on Oracle Service Bus. These two patterns are the building blocks of
the Service Broker pattern, together with asynchronous queuing, which is part of the
classic Enterprise Service Bus. Thus, if your adapter does not require complex data
extractions with possible multicommits from DBs with degraded performance, all
you need is to transform and validate the inbound XML and consider OSB as your
adapter layer. However, the general rule is always the same — minimize the adapter
framework in your enterprise as much as you can. The standardization of service
contracts across the Service Inventory is the primary goal.

Providing orchestration — enterprise business flows

With all the complexities of this layer and numerous SOA patterns encapsulated into
it, the technical foundation of this framework can be described precisely as Oracle
SOA Suite. In more detail, it consists of Oracle DB (XE; standard or Enterprise is also
possible with some configuration amendments regarding max cursors and processes)
with SOA DB schemas installed (by the Repository Creation Utility, RCU), and
Oracle WLS with soa_server, a domain dedicated for orchestration.

[135]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

From a component perspective, Oracle SCA consists of the following:

e BPEL
e Decision Service
e Mediator

¢ Human Workflow

Interestingly, after five years of exploitation, SOA Suite 11g is sometimes called
BPEL, where BPEL actually represented just 25 percent of the overall functionality.
In fact, it plays a clearer role now, acting as the glue between other services and the
components. SOA Suite itself presents a very good example of the separation of
concerns. Probably the most disputed component is Mediator. Its role is sometimes
mistaken for the lightweight service bus. We do not believe that the weight matters
here; Mediator can also be dehydrated as it's stateful, and so it's not that lightweight.
Mediator relieves the BPEL processes from the implementation of complex if-else /
routing functionality: parallel, sequential, static, dynamic, and rule-based.

The execution of parallel rules requires the enqueuing of messages in
the DB dehydration store. As a DB is involved, performance tuning and

M performance monitoring are required.
Oracle Mediator's dynamic rule-based routing is an effective feature,
but we are limited only by an asynchronous MEP (nonsynchronous or
one-way MEPs) and we cannot alter the payload (no transformation).
Also, only SOAP binding is currently supported.

Thanks to the BPEL-based artifacts, we can finally focus on the grouping task-
centric logic related to particular EBMs, presenting enterprise-centric business logic
in a transparent and manageable way. Clearly, that's the Process Abstraction SOA
patterns' implementation, which aims at the creation of a task service layer in our
service inventory. A new SOA pattern-candidate has been introduced recently —
Entity Linking. According to its name, the purpose of this pattern is to maintain the
desirable level of the Loose Coupling principle between the isolated Entity services,
giving them a possibility to natively communicate as some business relations always
exist between them (Order <-> Invoice, Schedule <-> Vehicle, and so on). In
this context, Mediator can be seen similar to this pattern's implementation, but this
is for task services within one composite because, task services are also quite often
related to a single EBO.

In the SOA modeling and analysis practice, there is one rule that concerns the
functional decomposition of business logic, that is, isolate manual tasks and do not try
to automate them (at least see the automation of manual tasks as a second priority).
Human Workflow is actually a very elegant way to address this designing dilemma.

[136]

Chapter 2

So, the simple conclusion about this framework is that Oracle SOA Suite covers it
pretty well, following the BPEL 2.0, WSDL 2.0, XSD 1.1, and XSLT 2.0 standards.
Some XPath 2.0 functional arrears are supported as well. Therefore, we can give
positive, as well as practical, answers for all questions in the following table
dedicated to the EBF aspects from Chapter 1, SOA Ecosystem — Interconnected
Principles, Patterns, and Frameworks. In terms of SOA patterns, the most important
composite pattern, Orchestration, is covered in great detail.

Common problem Pattern addressing the problem

The isolation of * Process Abstraction: SOA Suite is quite cleverly
business-centric organized according to Service Component Architecture
(nonagnostic) services (SCA), allowing the abstraction of assembled

from agnostic, highly components and hiding implementation details.

reusable components,
and visually
representing them in
a comprehensive and
manageable form

¢ Mediator, Human Task Services, and Decision Services
reduce the complexity of BPEL processes, increasing
modularity and composability of complex business
solutions.

* Agnostic services (Entity and Utility) can be easily
recognized and filtered out for separate implementations.
Surely, this separation cannot be done by SOA Suite alone.
We have to architect our service layers cleverly.

Task services are * Process Centralization: Oracle SOA Suite provides

a special kind of all the necessary engines to support orchestrated task
services, with specific services. All these service models are centralized under a
requirements for the harmonized environment (WLS soa_server), covered
service engine. In by HA measures. Nevertheless, it must be realized that
fact, as we have four all engines (BPEL, Mediator, Rule, and ADF runtime
separate components, for hardware) are a burden for the infrastructure and
then four separate operational support, so please model your services
engines will probably carefully and avoid hybrid models in order to save costs
be necessary in our and effort.

technical 1nfr§structure * Back to the discussion of development tools unification;
to support this the physical isolation of orchestrated task services from
framework.

other infrastructures does not justify the IDEs' disparity,
but at least it explains the complexity of unification.

* Another type of centralization pattern covered by SOA
Suite is Rules Centralization. Decision services, connected
to the central rule repository, allow us to abstract
business rules and make our task services more flexible.
The risks associated with the realization of this pattern
were discussed earlier in The Oracle Rule Engine section.

[137]

An Introduction to Oracle Fusion - a Solid Foundation for Service Inventory

Common problem

Pattern addressing the problem

What makes the
orchestration layer
quite special is the
necessity to persist
process data during an
inactive state for days,
or even weeks.

Even with the
implementation

of transaction
management (Atomic
Service Transaction
SOA pattern), it is not
always possible to
maintain long-running
transactions such as
ACID.

State Repository: We already discussed this pattern
when talking about DBs. This is a crucial pattern for
the whole orchestration, and the point here is not

the performance deficiencies that are quite natural in
(almost) any persisting technique. The question here is
the safekeeping of storage and data consistency.

Choose your storage purge strategy wisely; Oracle
supplies us with online and offline purge scripts, but
local DBA's attention is highly advisable. And, of course,
back up, back up, back up...

Recently (in the PS6 release), Oracle presented the Table
Recreation Script (TRS) that can be used as a corrective
action in addition to the standard purge script. You should
also be aware that purging strategies could be different for
different DB vendors (MS SQL Server or DB2).

Last but not least, select your SOA audit level
appropriately. The trace/debug mode in production
is probably not the best idea.

Compensation Service Transactions: The SOA Suite
compensation flows present the BASE transaction
management that cover this pattern.

Setting up Service Bus — enterprise business

services

Inherited from BEA, Oracle Service Bus is probably one of the most well-equipped
commercial ESBs and is similar to the Orchestration layer. We can provide positive
responses to all questions for the table under The Enterprise Business Services
framework section in Chapter 1, SOA Ecosystem - Interconnected Principles, Patterns,

and Frameworks.

[138]

Chapter 2

Also compound, OSB shares several SOA patterns with Orchestration:

Asynchronous Queuing and Reliable Messaging are the strong sides of OSB,

We also need Rule Centralization in ESB, and although the connection to
the decision service in OSB will require a bit more effort than that in SOA
Suite, we can use the Rule Service SOAP API to call the decision service prior
routing, get the endpoint URI based on our conditions, and route accordingly
(in this case, we could use the SOA Suite SCA component-wrapping decision
service, but this is not always advisable). Alternatively we can use the RE
Java API to fire the rule/ruleset from the Java callout.

Data Model Transformation is also common to ESB and Orchestration.

As both compound patterns (and frameworks) are candidates for the adapter
framework, the implementation of transformations is almost inevitable,

but it is better to be done with them in ABCS.

as shown in the following screenshot:

Transport Configuration UMS Transport Configuration

Configuration Configuration
Use this page to configure the transport informat pse this page to configure protocol-dependent transport irl
Protocol Destination Type 9 Queu