
www.allitebooks.com

http://www.allitebooks.org

Applied SOA Patterns on the
Oracle Platform

Fuse together your pragmatic Oracle experience with
abstract SOA patterns with this practical guide

Sergey Popov

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Applied SOA Patterns on the Oracle Platform

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its ealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1050814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-056-3

www.packtpub.com

Cover image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Sergey Popov

Reviewers
Mehmet Demir

Gilberto Holms

Robert van Mölken

Fabio Persico

Phil Wilkins

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Balaji Naidu

Technical Editors
Venu Manthena

Mrunmayee Patil

Shruti Rawool

Copy Editors
Alisha Aranha

Roshni Banerjee

Janbal Dharmaraj

Gladson Monteiro

Project Coordinator
Amey Sawant

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Monica Ajmera Mehta

Priya Subramani

Graphics
Sheetal Aute

Ronak Dhruv

Disha Haria

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sergey Popov is an SOA Implementation Expert, Oracle Certified Professional,
Oracle Fusion Middleware Architect, certified Oracle SOA Infrastructure
Implementation Specialist, and certified SOA Trainer in Architecture and Security.
With over 20 years of experience in establishing enterprise collaboration platforms
based on SOA and integration principles, he started with earlier Oracle DB versions
while still an undergraduate in the early 90s.

After graduating with Honors from St. Petersburg Telecommunication Institute, he
became part of the shipping and transportation business, initially working in Norway
for a large RORO and then later with container-shipping companies such as Wilh.
Wilhelmsen ASA and Leif Høegh as an Integration / SOA Developer and Architect.
During this technology-shifting period, when EDI was initially enhanced and later
replaced by XML, a number of solutions were provided for message brokering,
enterprise application integration, and public services implementation. By adopting
the emerging SOA principles, lightweight service brokers were implemented, handling
around 100 to 1,000 messages daily in all possible formats and protocols. With new
Oracle products that were launched in early 2,000s, new technological solutions were
tried and realized, based on Service Repositories and Enterprise Orchestrations.

Upon joining Accenture, Nordic, new opportunities emerged for him with regards to
the implementation of the SOA methodology and Oracle-advanced products across
Scandinavia and Northern Europe. Sergey was an Architect, responsible for enabling
the service of a massive installation of Oracle E-Business Suite at Posten Norge, the
largest Scandinavian logistics operator. Several OFM 10g products were employed
in order to achieve the desirable high throughput. The project was considered
successful by both the client and Oracle. Providing message-brokering solutions at
TDC, Danish Telecom, and designing the entire SOA infrastructure blueprint for
DNB NORD bank were other significant tasks that he accomplished at the time.

As a certified trainer in several SOA areas, Sergey in recent years has been engaged
in providing extensive multipath training to highly skilled architects, participated as
a speaker at SOA Symposium, and published several articles for Service Technology
Magazine, which is dedicated to the optimal Service Repository taxonomy.

www.allitebooks.com

http://www.allitebooks.org

As an Enterprise SOA/SDP Architect at Liberty Global (LGI), Sergey participated
in the implementation of the Pan-European Service Layer for the entire telecom
enterprise, based on optimal combinations of various SOA patterns. The benefits
of the SOA methodology allow you to combine Oracle Fusion products with the
best-in-breed from Security and ESB platforms (Intel, Fuse, and ServiceMix).
The success of this course would not have been possible without great efforts
from the TMNS development and implementation team.

Nine chapters that cover all the major SOA frameworks along with
all the fundamental patterns cannot be written just in 10 months;
they're the result of more than 10 years of practical experience, and
all this time my wife Victoria has been supporting me, diligently and
with ever-lasting patience.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mehmet Demir is a TOGAF-certified Enterprise Architect with more than 15 years
of experience in designing systems for large companies. He has hands-on experience
in developing and implementing SOA-based solutions using Oracle Fusion
Middleware, WebCenter Portal, WebCenter Content, BEA WebLogic/AquaLogic
product technologies, and Oracle Identity Access Management Suite. As an
Oracle-certified SOA Architect, IBM-certified SOA Designer, BEA-certified Architect,
and Oracle WebCenter 11g Certified Implementation Specialist, Mehmet focuses
on developing high-quality solutions using best practices. He is currently working
for EPAM, Canada, as an Enterprise Architect, delivering high-value IT solutions
to many of Canada's most prominent companies such as CIBC, Home Hardware,
and Bell TV. Prior to EPAM, Mehmet worked for BEA Systems where he had been
a principal member of the Canadian consulting team. In addition to his technical
capabilities, Mehmet has an MBA from Schulich School of Business and is a
certified Project Manager with PMI's PMP designation. Mehmet can be contacted
at http://ca.linkedin.com/in/demirmehmet.

I would like to thank my beautiful wife Emily and my sweet
daughters Lara, Selin, and Aylin for their support.

www.allitebooks.com

http://ca.linkedin.com/in/demirmehmet
http://www.allitebooks.org

Gilberto Holms is currently working as an IT Architect at Multiplus SA, a
Brazilian loyalty program company. He has around 8 years of experience in the
software development industry, working on Java and Middleware technologies,
and has been the Lead Architect for many JEE, SOA, and BPM solutions. In his
current role at Multiplus, he works on the architecture, design, and implementation
of strategic IT solutions that are mainly based on Oracle SOA and BPM technologies.
Currently, he is particularly interested in API development, SOA enterprise
governance, artificial intelligence algorithms, and open source projects. He
regularly writes technical articles on SOA, BPM, Middleware, and Java on his
blog, http://gibaholms.wordpress.com/.

Robert van Mölken is a Senior Oracle Integration Specialist with emphasis on
building service-oriented business processes. He has over 6 years of experience in
Oracle's SOA Suite and Service Bus where his speciality is with BPEL, SCA, SOAP,
XPath, XQuery, XML, Java, JAX-WS, Advanced Queuing, and PL/SQL. Since
2007, he has had experience in dealing with Oracle SOA Suite 10g and later with
SOA Suite 11g. Last year, he joined the Oracle SOA Suite 12c Beta and presented
a new Fusion Middleware 12c product called Managed File Transfer along with
the Product Manager at Oracle OpenWorld. He is also an active blogger on the
technology blog of AMIS Services where he writes about SOA, testing, and the
Internet of Things. Robert works at AMIS located in the Netherlands. AMIS helps
partners to use the investments they put in to Oracle technology as effectively and
economically as possible, and contributes to the success of their organization. AMIS
is the Oracle knowledge partner in the Netherlands. This is evident from the world's
leading weblog, http://technology.amis.nl/, the level of knowledge, projects,
employees, and Oracle awards.

www.allitebooks.com

http://gibaholms.wordpress.com/
http://technology.amis.nl/
http://www.allitebooks.org

Fabio Persico was born in Sorrento in the south of Italy in 1981. After completing
2 years of an MSc in Computer Science in 2006, he got involved in the Oracle world
through an internship of 9 months with Oracle, Italy. As an apprentice at Oracle,
he had the chance to learn more about the J2EE platform and some Oracle products
such as Oracle Database and the SOA Suite. After that, he continued to work with
Oracle and got fully involved mainly in the SOA stack, working for many customers
from different areas. He's been working with infoMENTUM Limited since 2012,
where he is mainly playing the role of a developer/architect in a project based on
the Oracle FM/SOA stack. Fabio is an Oracle Certified Specialist consultant.

I would like to thank Sergey Popov, the writer, for giving me the
opportunity to work with him by reviewing this SOA patterns
book. It has been a great experience, and I really enjoyed all the best
practices that the author has shared with the reader.

Phil Wilkins has spent nearly 25 years in the software industry, working with both
multinationals and software startups. He started out as a developer and has worked
his way up through technical and development management roles. His last 12 years
have been primarily in Java-based environments. He now works as an Enterprise
Technical Architect within an IT group for a global optical healthcare manufacturer
and retailer. Outside his work commitments, he has contributed his technical
capabilities to support others in a wide range of activities: from the development
of community websites to providing input and support to people authoring books
and developing software ideas and businesses, including reviewing a number of
Java- and Oracle-related books for Packt Publishing. When not immersed in work
and technology, he spends his downtime pursuing his passion for music and
spending time with his wife and two boys.

I'd like to take this opportunity to thank my wife Catherine and
our two sons, Christopher and Aaron, for their tolerance during the
innumerable hours I spent in front of a computer, contributing to
activities for both my employer and many other IT-related activities
that I've supported over the years.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: SOA Ecosystem – Interconnected Principles,
Patterns, and Frameworks	 11

The characteristics, goals, and benefits of SOA	 11
An example of architecting for tactical goals	 19

SOA principles	 21
Standardized service contract	 23
Loose Coupling	 24
Service abstraction	 26
Service reusability	 30
Service autonomy	 31
Service statefulness	 32
Service discoverability	 33
Service composability	 35

SOA technology concept	 38
XML	 40
Web Services (WS)	 40
WS transports	 41
Need for the WS-* extensions	 42

SOA standards	 44
Methodology and governance	 44
Interconnected WS-* standards 	 56

SOA frameworks	 62
The Application Business Connector Services framework	 66
The Object Modeling and Design framework	 70
The XML Modeling and Design framework	 71
The Enterprise Business Flows framework	 73
The Enterprise Business Services framework	 76
The Enterprise Service Repository / Inventory framework	 79

SOA Service Patterns that help to shape a Service inventory	 81
Summary	 84

Table of Contents

[ii]

Chapter 2: An Introduction to Oracle Fusion – a Solid
Foundation for Service Inventory	 85

The Oracle SOA technology platform	 85
The Oracle SOA development roadmap – past, present, and future	 86
Oracle SOA frameworks and technology layers	 95
Oracle SOA Foundation – methodology	 101

Enterprise Business Object	 104
Enterprise Business Message	 105
Enterprise Business Services	 107
Application Business Object and Message	 108

Oracle SOA foundation – runtime backbone	 112
The Oracle database	 113
The Oracle application server	 118
The Oracle Rule Engine	 124
Oracle transformation and translation engine	 126

How Oracle products compose the SOA framework	 129
Service creation – Object and XML Design frameworks	 130
Service development – automated test and deployment	 132
Establishing the adapter framework	 134
Providing orchestration – enterprise business flows	 135
Setting up Service Bus – enterprise business services	 138
Discovering enterprise – enterprise service repository	 140
Service governing – monitoring, error handling, and recovering	 143
Securing service interactions – Security Gateway	 143

Summary	 147
Chapter 3: Building the Core – Enterprise Business Flows	 149

Oracle SOA's dynamic Orchestration platform	 150
The telecommunication primer	 152
Basic facts about the telecommunication enterprise	 153
History of CTU	 153

Technical infrastructure and automation environment	 154
Business goals and obstacles	 155

Oracle Enterprise Business Flows SOA patterns	 157
Establishing a Service Inventory	 157

Initial analysis	 158
A summary of the initial solution	 161

Detailed analysis – functional decomposition	 162
Asynchronous agnostic Composition Controller	 174

Extending the asynchronous agnostic Composition Controller	 184
Usage and limitations of a Mediator as a dynamic router	 186
Dynamic compensations in a simple agnostic controller	 192

Table of Contents

[iii]

The Rule Engine endpoint and decision service	 194
Using Mediator for process discoverability	 198

The Orchestration pattern and embedded Java	 199
Summary	 200

Chapter 4: From Traditional Integration to
Composition – Enterprise Business Services	 203

The Dynamic Service Collaboration platform	 204
Improving the Agnostic Composition Controller	 205
The Proxy design pattern and its relatives	 206

Implementing a basic Proxy on OSB	 211
From Message Broker to Service Broker	 216

A simplified Message Broker implementation	 218
Receive	 218
Transform	 227
Deliver	 229

Oracle Enterprise Business Service's SOA patterns	 231
Detailed analysis – functional decomposition	 233

Short summary	 237
Establishing a Service Inventory	 240
Asynchronous Agnostic Composition Controller	 240

Business Delegate (main dispatcher)	 241
Execution plan extraction	 241
Parameter initiation	 242
Main tasks loop	 244

Service invocation	 245
Invoking custom services	 246
Invoking Generic Adapter	 248

Transformation	 249
Validation	 250

Summary	 258
Chapter 5: Maintaining the Core – Service Repository	 263

Flexible taxonomy for Service Repository	 264
General objectives	 264
Service metadata for Agnostic Composition Controller	 268
Exploring the Oracle Repository's taxonomy	 271
Open standards for the SOA taxonomy	 280

The UDDI taxonomy (V.3) in Oracle OSR	 285
Runtime Discoverability analysis	 296

Runtime lookup	 298

Table of Contents

[iv]

Entity types	 301
Entity types' relations	 302

Decentralized realization	 303
The application project store	 303

Centralized realization	 305
Domain Repository	 305
The Cross-domain Utility layer	 307
The Enterprise Service Repository	 309

Creating a lightweight taxonomy for dynamic service invocations	 310
Service as an entity model	 310

Object	 312
Service/Task	 312
Composition/Process	 313
Rules	 314
Event	 315
Message	 316
The SQL implementation of the service taxonomy (example)	 319
The XML implementation of Execution Plan	 320

Managing Service Repository	 321
Summary	 323

Chapter 6: Finding the Compromise – the Adapter Framework	 325
Optimizing the Adapter Framework	 326

Logistic primer	 338
Basic facts about the company	 338

Initial analysis	 341
Refactoring the DB-centric Fusion Application	 344

Events registration	 344
Events filtering	 348
Message construction	 351
Message parsing	 354
Endpoint handling	 357

Establishing the Adapter Framework	 365
Exposing EJB through OSB	 368
Traditional DB Adapter implementation	 373
Dynamic Adapters implementation and DB Transport Adapter	 377

Summary	 383
Chapter 7: Gotcha! Implementing Security Layers	 385

Where are we now?	 386
Initial analysis	 387

Common SOA vulnerabilities	 391
Common SOA risks	 399
Attack types	 404

Risk mitigation design rules	 413
Identity management – defending credentials verification systems	 414

Table of Contents

[v]

Exception shielding – preventing an information leakage	 418
Message screening – preventing injection attacks	 419

Oracle Enterprise (API) Gateway	 421
Vendor-neutral (generic) requirements	 421
Performance requirements	 422

Summary	 424
Chapter 8: Taking Care – Error Handling	 425

Associating SOA patterns with OFM standard tools	 426
Initial analysis	 427
Common requirements	 430

Maintaining Exception Discoverability	 433
Error-handling design rules	 441

Basis for proactive Fault Management	 447
Technical monitoring for proactive Fault Management	 448

OFM Fault Management frameworks	 458
Policy-based handling	 458
Compensative transactions	 464
Exception handling in OSB	 465

Complex exception handling	 468
Automated recovery concepts	 478
Summary	 482

Chapter 9: Additional SOA Patterns – Supporting
Composition Controllers	 483

Processing complex events	 484
Initial analysis	 486

Processing Object Context in business logic events	 489
Communication and machine events	 502
Fast events + Big Data	 503

EDN in the SOA stack – a practitioner's approach	 511
High service performance combined with High Availability	 517

Coherence and OSB	 526
Coherence and event processing	 528

Monitoring service activities	 529
Direct integration of BAM and BPEL	 531
The BAM and JMS connection	 532
BAM and the webservice API	 533

SOA as a cloud foundation	 534
Summary	 539

Index	 541

Preface
Arguably, distributed computing is the most complex concept in computer science.
The practical realization of this concept in the form of service-oriented computing
further adds to this complexity. Generally, there are two reasons: firstly, because of a
compound architectural approach, SOA is based on already complex techniques, and
secondly, to stay on the cutting edge of computing technology, SOA must appeal to
non-IT businesses to be successfully adopted in modern enterprises. To achieve this
goal of successful adoption, SOA architects must combine a vendor-neutral approach
to systems design with a deep knowledge of platforms on which the solution will
be realized. This combination will allow service-oriented solutions to be flexible and
resilient at the same time.

Maintaining the right balance of these two success factors is quite a challenge in
the multilayered, multiframework, and compound environments of SOA. Since
there are several success factors with a magnitude of problems associated with their
implementation, SOA adoption requires a structural and pattern-based approach. In
this book, our task is a practical demonstration of pattern-oriented problem solving
based on the concrete implementation of service collaboration and integration
systems in different industries (telecom, shipping, and logistics). The book goes for
the most complex and, at the same time, the most common use cases. Conceivably,
the most challenging problems in SOA are related to dynamic service compositions,
usually assembled on runtime and in a business-agnostic way. This is the ultimate
realization of the SOA Composability principle. This principle is, in turn, the
foundation of the main service-orientation promise: keeping businesses agile and
adaptive to any type of environmental shifts by assembling new compositions
(that is, business processes) out of existing atomic services.

Preface

[2]

The general approach to achieve this, also used in every chapter of this book,
is as follows:

•	 Find the root cause of the problem and analyze it in strong relevance to the
SOA design principles.

•	 Speculate the decomposition of the problem into smaller, more manageable
parts that could be implemented as separate atomic components or services.

•	 Identify the ways of standardizing the decomposed components/services,
focusing on the improvement of their reuse.

•	 Propose various vendor-neutral solutions (not exactly Oracle) based on the
identified components/services and, again, diligently analyze them using the
SOA design principles, focusing on the desired SOA characteristics.

•	 Present the most optimal solution based on an Oracle platform and
compare it to other alternatives proposed during the analysis phase. Since
we are vendor-neutral and focus primarily on the preferred solution's
characteristics, we cannot guarantee that Oracle realization will always win,
but it will be the closest bet for most of the discussed use cases.

In order to make the first step (the problem analysis) consistent, verifiable, and
undisputable, in Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and
Frameworks, we introduce you to the SOA principles and the areas of their application.
It is important to see these principles interconnected as their relations are not always
straightforward and we should be very careful in balancing them in different
frameworks and service layers. Some key SOA standards will also be discussed with
the focus on those employed in the composition controllers design.

Logically, following the architectural two-folded task, after discussing the vendor-
neutral SOA aspects, we look at the Oracle product's portfolio and see how it
can help us in achieving the goals of service orientation. The introduction to the
characteristics of Oracle Fusion Middleware will help us in the chapters to follow,
when building practical solutions around Agnostic Composition controllers for
different companies. Importantly, we will not jump into Oracle realization at the
very beginning of every chapter (this part is dedicated to a certain SOA framework).
Instead, we will look very closely at every alternative, check its feasibility, and see
how common solutions (in the form of patterns) can help us in mitigating common
problems for these frameworks.

Preface

[3]

What this book covers
Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks, sets
the tone for the entire book, presenting the main SOA frameworks in relation to
individual SOA characteristics and goals. To achieve these goals, we will discuss
the SOA design principles, their dependencies, and roles in maintaining a robust
SOA ecosystem. For a better understanding of the importance of these principles, we
will start by presenting a practical and quite realistic use case, depicting the disaster
that may follow when design principles are sacrificed to achieve short-lived tactical
goals. These problems will be further analyzed during the course of this book and
individual SOA patterns will be offered as proven solutions within every individual
SOA framework. The practical outcome of this chapter will present you with a
complete set of SOA frameworks and SOA Service Inventory patterns, which help
shape the Service Inventory according to the presented frameworks.

We suggest that everyone, even seasoned veterans familiar with the concept of
service orientation, begin with this chapter. Here, we establish the glossary and
architectural vocabulary, essential not only to understand further material but also
for your day-to-day technical communications. This chapter also sufficiently presents
fundamental materials to prepare for the Certified SOA Professional examinations
(http://www.soaschool.com/certifications/professional).

If you are an Oracle practitioner and familiar with the modern Fusion Middleware
stack, you can skip the next chapter and proceed directly to service composition
patterns, described in Chapter 3, Building the Core – Enterprise Business Flows, and
Chapter 4, From Traditional Integration to Composition – Enterprise Business Services. If
you already have hands-on experience with Agnostic Composition controllers and
dynamic service invocation, we suggest that you first read Chapter 5, Maintaining the
Core – the Service Repository, which explains the role of reusable service artifacts and
Service Repository in runtime discoverability.

Chapter 2, An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory,
provides a list of Oracle products (OFM stack) and methodology(Oracle AIA+FP
with Foundation Pack) that fit the pattern/frameworks matrix, presented in Chapter
1, SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks. This chapter
explains the roles of the tools and the Oracle roadmap in support of the SOA
principles. Most importantly, it explains how Oracle products support SOA WS-*
standards (WS-ReliableMessaging, WS-Coordination, WS-BPEL, WS-Addressing...)
and how this fact aids in pattern implementation. Information from this chapter will
help architects in setting realistic requirements and composing a proper RFI matrix
for Oracle products in relation to the SOA frameworks.

www.allitebooks.com

http://www.soaschool.com/certifications/professional
http://www.allitebooks.org

Preface

[4]

Chapter 3, Building the Core – Enterprise Business Flows, first presents the SOA
platform's refactoring initiative, undertaken in a large-scale telecom enterprise,
aiming for the optimization of a complex multinational Service Inventory.
Traditionally, the first target is complex long-running processes, most commonly,
those based on BPEL. Oracle SOA Suite is perhaps the most mature tool for this job,
but it is still widely misinterpreted by many developers and architects. This chapter
will explain how to maintain the right balance using the four SCA components,
minimize pressure on the BPEL dehydration store, achieve optimal performance,
and improve agility of the composition logic using the Agnostic Composition
controller. The chapter's practical outcome will be the Service Broker, suitable to
handle dynamically synchronous and asynchronous service compositions.

Chapter 4, From Traditional Integration to Composition – Enterprise Business Services,
continues discussion of the Telecom primer started in the previous chapter by
addressing the separation of the concerns principle and untying the Agnostic
Composition controller from the Orchestration platform and Enterprise Service
Bus. This chapter will demonstrate how to build business-agnostic composition
controllers on OSB to dynamically route messages and coordinate transactions in
a reliable manner for synchronous and fast-running services. The roles of all ESB-
related SOA patterns are explained in great detail.

Chapter 5, Maintaining the Core – the Service Repository, demonstrates how to design,
collect, maintain, and access service metadata from the very beginning of the SOA
project until the service is decommissioned at the end of the lifecycle. You will be
presented with a lightweight service taxonomy, essential to maintain the service
composition logic in the composition controllers designed in previous chapters.
From a broader perspective, this chapter sets the basis for effective SOA Governance,
presenting all SOA Foundational Inventory patterns and their implementation using
Oracle Service Repository and Registry. The DB realization of a flexible service
taxonomy will be the practical outcome of this chapter.

Chapter 6, Finding the Compromise – the Adapter Framework, discusses ways to balance
and optimize the adapter framework in Enterprise Service Inventory. Oracle has
the most advanced adapter framework for applications, protocols, and resources.
This chapter will demonstrate what frameworks and tools (OSB or SCA) are the best
candidates for patterns implementation and how to avoid the most common mistake,
creating hybrid services. We also discuss in considerable detail ways to avoid
adapters as a non-SOA approach through interface standardization.

Preface

[5]

Chapter 7, Gotcha! Implementing Security Layers, explains how services can be designed
in a secure way from the very beginning. The core aspects of service security design
are highlighted, starting from vulnerabilities and risk analysis to common attack
types and risk mitigation methods. These aspects are presented from the attacker's
and security architect's sides; the SOA Security pattern's role is demonstrated from
components up to the Security Gateway levels.

Chapter 8, Taking Care – Error Handling, completes the Agnostic Composition
controller design, started in Chapter 3, Building the Core – Enterprise Business Flows.
Here we will demonstrate how complex recovery scenarios can be implemented
using the standard Oracle Fault Management framework and custom composition
controllers, acting as automated recovery tools. With the focus on proactive service
monitoring and error prevention, we will discuss the SOA patterns that can
contribute to one of the most complex SOA problems—recovery of the composite
business service composed agnostically.

After completing the preceding chapters and gaining some practical experience in
SOA implementations, you will be equipped to attain the Certified SOA Architect
level (http://www.soaschool.com/certifications/architect).

Chapter 9, Additional SOA Patterns – Supporting Composition Controllers, concludes
the book by presenting complex SOA patterns, realized on very interesting Oracle
products: Coherence and Oracle Event Processing. Combined in line with the
SOA patterns and enhanced by the business monitoring tool (BAM), these products
present a new Oracle approach in the event-driven architecture—fast data.
Using a logistics example, we will discuss how an event-driven network approach
and Oracle CQL can improve data processing and business decision services in
complex distributed environments.

What you need for this book
To implement solutions based on the examples in this book, install Oracle SOA
Suite 11g Patch Set 6 (11.1.1.7). Also, for Chapter 4, From Traditional Integration to
Composition – Enterprise Business Services, and Chapter 6, Finding the Compromise – the
Adapter Framework, Oracle Service Bus (11.1.1.7) is needed. Oracle DB 11g (or 12c)
is a prerequisite for any installation, but it will be used as a standalone tool for
examples discussed in Chapter 5, Maintaining the Core – the Service Repository, and
Chapter 6, Finding the Compromise – the Adapter Framework. A better understanding of
the concept of Enterprise Service Repository, Oracle SR 11g, and Registry would be
useful in Chapter 5, Maintaining the Core – the Service Repository. Oracle API Gateway
(formerly, Oracle Enterprise Gateway, Release 11.1.2.2.0) is discussed in Chapter 7,
Gotcha! Implementing Security Layers, and you could have it installed (optionally) to
better understand the security patterns discussed in this chapter.

http://www.soaschool.com/certifications/architect

Preface

[6]

Who this book is for
Some say experience is something you don't get until you stop needing it.
This book is what an established professional of today would have wanted to
read at least ten years ago. Here you will find my combined experience of at least 15
large-scale service-oriented projects in three industries. Successful implementations
were recognized by not only clients, but also Oracle. I really admire the skills and
ingenuity of professionals who have worked together on the implementation of the
described concepts. I believe that the presented materials will be useful for experts
working at different levels:

•	 SOA architects working on Oracle products—from the solution to enterprise
levels—will get a comprehensive guidance on how to apply an SOA practice
on the Oracle platform.

•	 SOA architects practicing the vendor-neutral approach (although Java is not
purely neutral anymore) will find enough materials on patterns, methods,
and realizations of efficient and low-cost solutions for small- and mid-sized
enterprises.

•	 SOA DevOps team leads will learn how to manage Oracle Fusion projects
using both the Agile or Waterfall methodologies. Code snippets presented in
the book are more than enough for developers to get going with their own
implementation.

If you are looking for study materials on the SOA architecture to pass the vendor-
neutral exams (such as SOACP SOASchool; http://www.soaschool.com/), this
book should be sufficient to attain the Certified SOA Architect status. In fact, having
the Certified Trainer status, we were asked several times to prepare for combined
SOA school lectures, which condensed SOA architecture, analytics, and security
courses into a one-week intensive training for experienced architects. In many
aspects, Applied SOA Patterns on the Oracle Platform is the lecture material we use for
these purposes. We should also mention that we use these materials actively in our
day-to-day activities.

Please bear in mind that despite the numerous technical examples, this is not a
Cookbook or Programmer's Guide (such as http://www.packtpub.com/oracle-
service-bus-11g-development-cookbook/book). You can find plenty of them for
every Oracle product we use in this book on the official Packt Publishing website. For
a better understanding of the presented materials and examples, you must be familiar
with the SCA concept (in particular, BPEL and Mediator), Rule Engines, and Oracle
Service Bus (the implementation of proxies is a must). The common prerequisites
include some Java skills (EJB and Servlets), XML, and PL/SQL. Nevertheless, we strive
to present all the concepts in the most comprehensive manner and you will find plenty
of references to the Oracle documentation and best practices.

http://www.soaschool.com/
http://www.packtpub.com/oracle-service-bus-11g-development-cookbook/book
http://www.packtpub.com/oracle-service-bus-11g-development-cookbook/book

Preface

[7]

Staying focused on the Agnostic Composition controllers, we had to rationalize
the set of tools, excluding some really interesting ones such as Oracle BPM Suite.
Unfortunately, it's virtually impossible to put all Oracle products from the Fusion
Middleware stack into a single book; please see related books on the publisher's site.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The xsd:any element is at the upper level in this hierarchy; it has an equivalent
object in OOP."

A block of code is set as follows:

Public SearchObject getSearchResultObject() throws Exception {
 try{
 InputStream source = getResultStream(search_url);
 Reader reader = new InputStreamReader(source);
 Gson gson = new Gson();
 SearchObject response = gson.fromJson(reader,
 SearchObject.class);
 reader.close();
 return response;
 }
 catch (Exception e){
 log.error(getClass().getSimpleName(), "Error for URL "
 + search_url, e);
 }
 return null;
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

//invoking parser
 execute immediate
 BEGIN '||v_parser||'(:1, :2, :3, :4); END;'
 USING IN ip_lob, IN v_msgid,
 OUT v_status,
 OUT v_status_text;

Preface

[8]

Any command-line input or output is written as follows:

loadjava -grant public –user <xdbuser>/<xdbuserpwd>@<XDBSID>
CustomServlet.class

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The CTUMessage payload is our generic message container."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[9]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/0563EN_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/0563EN_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/0563EN_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

SOA Ecosystem –
Interconnected Principles,
Patterns, and Frameworks

In this chapter, we will discuss how Service-oriented Architecture (SOA) as a
design approach allows us to achieve certain goals and the characteristics that have
to be maintained to make these benefits feasible. The practical ways of attaining
these characteristics are based on a concrete balance of very well-defined principles,
and we will closely look at each one of them. This balance is maintained in specific
areas of relevance and is formed in a structure of frameworks. Here, we will discuss
issues that are frequently encountered within and across these frameworks, and the
common patterns employed as a publicly approved way of solving these recurring
problems. One of the main purposes of this chapter is to give developers and
architects a matrix of the design rules (patterns) in relation to the corresponding
frameworks, all based on SOA principles.

The characteristics, goals, and benefits
of SOA
As an evolutionary approach, comprising the best of the architectural and technical
solutions designed in the last forty years (arguably even more), SOA nowadays in
many ways is quite well standardized with a well laid out vocabulary of meanings
of technical terms. Along the course of the entire book, we will stick to the definition
of SOA, summarized by Thomas Erl in Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall / PearsonPTR Publishing.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[12]

This is also available at http://serviceorientation.com/whatissoa/service_
oriented_architecture. The complete SOA Manifesto that was developed as a
result of systematic collaboration of many experts' groups can be found at
http://serviceorientation.com/soamanifesto/annotated.

Still, it's quite fascinating to see that debates are still being sparked and raged
worldwide regarding proper terms and their meanings. We are not going to judge
or participate in any form in these discussions. That's not the purpose of this book.
Obviously, there is one good way to avoid that, which is to stay focused on the
practical targets that SOA helps us to achieve. No wonder these goals and benefits
are quite well defined and are the sole purposes and reasons why the SOA approach
was proposed in the first place. Any practicing architect who has been through
several projects (even if not defined as being SOA-based) could easily recollect
the common requirements stated by both sides: Business and IT. Let's just quickly
recollect them. So, any concrete solution should have the following properties:

•	 They should be kept as simple as possible while still meeting the
business needs [R 1]

•	 They should be kept flexible and consistent to support the changing
enterprise-wide business needs and enable the evolution of the
company [R 2]

•	 They should be based on open industry standards [R 3]
•	 Systems and components within the proposed IT domain (architecture)

will be viewed as a set of independent and reusable assets that can be
composed to provide a solution for the company [R 4]

•	 They should be based on clearly defined, well-partitioned, and
loosely-coupled components, processes, and roles [R 5]

•	 They should be designed for ease of testing [R 6]
•	 They should be based on a proven, reliable technology that is used as

originally intended [R 7]
•	 They should be designed and developed, focusing on nonfunctional

requirements right from the start [R 8]
•	 They should be secure; able to protect confidentiality and the privacy

of all underlying resources and communications [R 9]
•	 They should be resilient to faults, that is, capable of staying operational

even in the event of catastrophic failure of the internal components [R 10]

These are actual consolidated requirements taken from more
than ten projects and RFIs.

http://serviceorientation.com/whatissoa/service_oriented_architecture
http://serviceorientation.com/whatissoa/service_oriented_architecture
http://serviceorientation.com/soamanifesto/annotated

Chapter 1

[13]

We could really continue on, but in general, these are the top-ten points of any
requirements list, and it will be hard to go further without repeating them.
Therefore, any list that is similar to this cannot be consistent with more than 15
unique statements within it. We suggest keeping these points up your sleeve until
the end of this chapter. This is because at the end of the chapter, we will do some
practical exercises of matching listed declarations to the capabilities of SOA. Quite
often, these requirements are based on pure common sense, and some people declare
them as design principles. It is hard to argue that real design principles should at
least be based on common sense, but compliance to this simple fact is not enough
to talk about elements from the previous list as principles. At the moment, they
are just declarations of good intentions, and we, after several implementations of
complex projects, know quite well what road is paved with them. We will talk about
the definition of principles a bit later in a considerable amount of detail, but now
it's important to analyze these wishes and find what's common there and how it is
relevant to the service-oriented approach. It is quite simple to see that the whole list
(with one small exception, which is just to confirm the general rule) can be divided
into two categories. These categories are related to effort (first, third, fourth, fifth,
sixth, seventh, and eighth items) and time (second and seventh items), with the
seventh item equally relevant to both effort and time.

Standing a bit aside, the ninth item, generally described as compliance by security
policies, is nothing more than pure money, as almost no one these days seeks fun in
simple informational vandalism. All security breaches aim to steal your information,
that is, money, and therefore, put you out of business. As a consequence, it's
needless to say that time and effort can essentially be compared to money as well. So,
unsurprisingly, everything boils down to the same logical end, that is, money, which
is the key; we have learned this many times, when talking to the bosses (CIO, CEO,
project manager, and so on). As stated previously, in IT, money comes in two general
ways: either we consistently shorten the delivery cycle or reduce operational costs.

Firstly, we would like to place strong affectation on the word consistently, otherwise,
all delivered solutions will tend to be quick and dirty with rocketing operational
costs. The two ways (mentioned previously) don't need to be exactly inversely
proportional, and proper balance can be found, as we will see later.

A shortened delivery cycle simply means that we will strive to employ the existing
reusable components if feasible. Also, every new component or element of the
infrastructure that we will add to our inventory will be designed, keeping reusability
features in mind. The good rate of return from previous investments (that is, ROI) is
the main direction of implementation for new products. At the same time, a higher
level of reuse denotes a lower number of heterogeneous components and elements in
the infrastructure.

www.allitebooks.com

http://www.allitebooks.org

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[14]

A less diverse technical infrastructure with more standardized components tends
to be more predictable and consequently more manageable, and the lowering Total
Cost of Ownership (TCO), which is the key part of operational costs, becomes
more attainable. With higher ROI and lower TCO, an organization becomes more
adaptable to market changes. This is because with them, we will maintain a more
transparent and understandable application portfolio with a high level of reuse, and
at the same time, reserve more money for creating new and best-of-breed products
in the areas of our business expansion.

How can these strategic business benefits be achieved from a components'
development standpoint? We have already mentioned that to make our components
more interoperable, we should reduce the level of disparity, but at what level? By
building components on the same platforms using the same languages, versions,
protocols, and so on? This will be unrealistic even within a single department, not to
mention a decent-sized enterprise. Our development and implementation processes
must be focused on reducing the integration efforts between components, aiming
to standardize interfaces. Taking this standardization further onto higher levels,
we could achieve a certain abstraction level that will be comprehensible to business
analysts yet present enough technical details to be sufficient for IT personnel. The
long time benefits promised (which may not be entirely directed) by object-oriented
programming (OOP) are quite rarely achieved due to the complexity of inheritance
and encapsulation concepts.

The Agile developing approach is the solid basis on which business analysts and
technical leads can find mutual areas for fostering reusable components with
minimal interaction cycles. Still, the Agile methodology in place is not the main
prerequisite for achieving this, and if correctly maintained, the level of interface
abstraction allows people from both business and technology fields to speak the
same language. The main outcome of this exercise should be to provide a description
of a component's interface with business-related capabilities that is desirable for
the expected level of reuse. What is inside the component, that is, its technical
implementation, is completely out of discussion, and it's up to the technical lead to
decide which way to go.

Thus, various technical platforms can leverage their best sides where it's needed
(or where it's inevitable due to specific skill sets in place of physical implementation)
by staying interconnected without affecting each other's premises and project
deadlines. Finally, the federated approach gives the opportunity to choose the best
products from various vendors and assemble them in the business flows, abstracted
and architected in the previous steps. Of course, these products must stay in
compliance with the interface specifications and the operational requirements that
we put in place. The opposite is also true, that is, setting standards from our business
standpoint will help vendors to adjust their products and offerings in such a way that
integration efforts will be minimal.

Chapter 1

[15]

So, it's all about money, as the logical sequence mentioned earlier demonstrates.
Have you noticed that in that logical exercise, we didn't use the abbreviation SOA
at all? So far, we are just trying to convert the previously presented list of intentions
derived from various project-design documents, such as request for informations
(RFIs) and request for proposals (RFPs), into a concise list of benefits. Our next
step will be to assess how attainable they are. Although that will be the purpose
of the entire book, the key criterion will be defined here shortly. Before proceeding
with this, we would like to stress again that the basic terminology around business
benefits and design characteristics is based on the widely accepted structure
presented by Thomas Erl as mentioned earlier. Also, we do not want to reinvent
the wheel for the thousandth time and then participate in terminology wars, which
will lead us nowhere. Thomas Erl has described the obvious benefits that we would
like to achieve in a logical sequence, and you can see the proposed sequence for
implementing the listed-out goals in the following table:

Goals and benefits Common solutions'
requirements

Increased ROI 1, 8
Reduced IT burden (low TCO) 1, 3
Increased organizational agility (shorter time to market) 4, 8, 10
Increased intrinsic interoperability (reduce integration
efforts)

2, 4, 6

Increased vendor diversification options 3
Increased federation 5, 6
Increased business and technology alignment 1, 2

It is also obvious from the previous requirements list that some of the requirements
are very contradictory, and in most practical implementations, there could be quite
a few natural enemies present, such as:

•	 Security and performance (always blood enemies).
•	 Reliability factors and highly reusable components (for example, having a

single point of failure).
•	 Resilience achieved by Redundant Implementation and IT costs,

independent reusable assets and governance costs (for example, preventing
the component logic from getting scattered over several implementations).

•	 Flexibility and reuse-by-design and development costs (for example, in the
initial phase of development). Higher flexibility denotes that more execution
paths are required, which requires more testing.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[16]

This list can go on as the previously mentioned points are just the obvious ones.
Thus, the benefits summarized in the table are comparably more consistent as
the most contradicting parts are abstracted. However, we must keep in mind that
they are still there, and we will focus on them in more detail while discussing
the implementation of design principles. What is important now is to distill the
most common characteristics that any architectural approach will ensure in every
application to attain these benefits.

It is clear that one of the primary requirements for reducing time to market is to
improve communication between the technical leads and business analysts. If the
ways of expressing the business and technical requirements are kept abstracted from
the analysts, and at the same time, the essential technical specifications are kept
in place for the developers, then this architectural model could be truly business-
driven. The other way around is also valid. If IT provides a managed collection
of reusable business-related services, then it's quite possible that new business
opportunities can be spotted and proposed by business analysts; this is because new
workflows are composed out of the existing services. The response time to the new
challenges will be lowered as the change in the implementation's task force will be
business-driven and IT will be resource-oriented at the same time.

Components, especially developed with a business recomposition option in mind,
will gradually form some kind of components library. With strong sponsorship from
architects, this library will become attractive for more and more extensive reuse in
various business domains, depending on the business context of the components of
course. This library has a name. Traditionally, it's called repository, and we will spend
a lot of time discussing its purpose and architecture a bit further. However, from
the characteristics standpoint, let's depict it as a technical platform that is capable of
hosting these components and providing runtime and design-time visibility, which
will be discussed further. Simplistically, this will be any application server with a
management console, available for all enterprise developers and architects; it will
present all reusable components as the sole enterprise-centric assets.

This second characteristic would be possible only when the presented components
are designed with the highest level of composability in mind. This means that when
integration efforts, including regression test requirements, platform performance
enforcements, and activity monitoring are tamed enough to a level where the
reusability option becomes so attractive for all the technical and business teams, the
idea of reinventing the wheel would never come as a plausible option. Surely, these
characteristics could have more governance efforts in the background than purely
technical ones. Still, with proper planning based on honest and realistic maturity
assessment and with evasion of the big bang's "all-or-nothing" approach, when
SOA becomes more religion than the practical "one step at the time" approach,
it’s quite achievable.

Chapter 1

[17]

Components developed as reusable assets should follow commonly accepted
standards; otherwise, reusability will be severely limited to one technology domain.
Another alternative would be to reinvent the already existing standards, which is
always a waste of time. It doesn't mean that any published standard must be followed
blindly; the adoption of standards must be carefully planned. An enterprise's maturity
analysis combined with marketing research on top products in a particular area will
guide an architect towards common models, describing the component's behavior and
implementation technique with minimal integration efforts. Thus, by achieving the
first three characteristics, we will open the highly desirable option of maintaining the
hot-pluggable infrastructure where best-of-breed products from various vendors could
be combined into well-turned fabric based on common standards. It is an architect's
responsibility to stay watchful, analyze standards' specifications, and deduct the
crucial parts and to be focused on increasing the desirable characteristics.

This design characteristic of making it possible for all components in a repository to
stay vendor-neutral has an extra significance for us in the context of this book; it is
dedicated to the realization of certain design patterns on the Oracle platform. Actually,
there is no contradiction here. This is because we will strive to present concrete
solutions in a vendor-neutral way first, if possible, and then demonstrate how Oracle
tools could address the same issue. We will do this here and try to demonstrate the
maturity of the Oracle platform, which is capable of delivering hot-pluggable solutions
that could potentially pose fewer burdens for the enterprise IT domain.

So, now it's a good time to sum up the short descriptions given previously in the
table of architectural characteristics, in the way they have been defined by Thomas
Erl. Here, we will again repeat our exercise, trying to map the supporting core
characteristics to most of our requirements (if not all).

Characteristics Requirements [R 1] to [R 8]
Business-driven 2
Composition-centric 1, 5, 8
Enterprise-centric 4
Vendor-neutral 7

We have selected the most obvious characteristics, which directly support the most
common requirements, summarized at the beginning of this chapter. There is no
need to elaborate on this further, as we can easily see that other requirements are
supported directly or indirectly. However, we would strongly recommend that
you repeat this exercise every time you analyze the requirements for new products,
systems, or components in the RFI scope or at any other stage of the project.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[18]

The following figure summarizes all that we have learned so far:

Until now, we have intentionally avoided mentioning the term SOA during this
short exercise of outlining the keystones of the requirements analysis. The purpose
is quite straightforward: if you could clearly define your goals in a very precise way
and declare concise characteristics in support of these objectives, it really doesn't
matter what the name of your design approach is. Some can call it common sense,
and that's perfectly fine. Nothing could be better than a design approach based
on common sense, which is easily comprehendible by business and IT. However,
apparently something else is needed, and that would be the design principles as a
strong foundation for the first two keystones.

In the following paragraphs, we will outline this foundation again using the
classification provided by a best-selling SOA author and founder of the SOA School,
Thomas Erl, which is accepted by Oracle. This time, we will strongly focus on SOA
and Service-Oriented Computing (SOC) as the best technical implementation of
common sense depicted earlier. There is no reason to evade it further—if it looks
like a duck, swims like a duck, and quacks like a duck, then it is probably a duck.
Goals and characteristics mentioned previously are exactly how the SOA declares
them. How they will be achieved and supported is a matter of the principles'
implementation. They are all interconnected, so the balance is also part of common
sense, and as is usually put, it must be applied in a meaningful context. The extent of
this is the level of realization of tactical and strategic goals and technical capabilities
of the principles' implementation.

Chapter 1

[19]

An example of architecting for tactical
goals

Please be forewarned as the following example is a recipe for a perfect
disaster. We have to put this disclaimer as some could take it as direct
architectural advice. It is also sadly realistic, since all that we have
described next was taken from real implementations. We will use this
example in the later chapters.

So, what are the tactical goals? The essence here is time, usually limited by a
timeframe of a project or several milestones of non-correlated projects. It is always
good to stay on budget and deliver on time what was promised. This is a common
scenario for a component or a single application development process. Isolation,
focus on performance, and reliability as primary targets have their obvious benefits.
As a solution architect, do not bother your team much with interoperability, as
you probably have another enterprise application integration (EAI) team that is
especially dedicated to this purpose; they are somewhere nearby and are capable
of performing the tricks. Skillful EAI means that some integration platforms are
in place already, providing hub-and-spoke capabilities with all the necessary
transformations, translations, protocol bridges, and so on. Honestly, nothing's
wrong with that. At least, not yet.

All that you need is a capable integration team and be lucky enough not to be at the
end in the row of endless regression tests. Also, it would be prudent to maintain a
very thorough events/error log for your product, just in case you need to identify
where all your inbound/outbound messages have gone. You must be able to prove
that you (your application) have sent all the required outgoing messages, and they
are definitely now on the integration platform's side (just search better); alternatively,
if you haven't received what you need, the flaw is definitely on the part of the
EAI's design.

As time is of the essence, moving further, you can take the liberty to define all
your APIs and XSDs as close to your technical implementations as possible, based
on the DB structure and the logic of the classes. Modern development platforms
and SDK/XDK are truly advanced, so this task can really be done in no time by
a right-mouse click. Following this path, you can provide newer versions of your
application almost instantly after receiving new requirements, and it's purely EAI's
responsibility to maintain concurrent APIs published on an integration platform.
Again, just be the first in the list of regression tests.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[20]

As performance is declared to be one of the primary objectives, always demand
for direct access to the resources you need. A direct DB access or Remote Method
Invocation (RMI) is much faster than the hub-and-spoke integration approach. At
the same time, do not let anyone access your internal resources, as it potentially could
affect the third characteristic declared prime, that is, reliability. On second thoughts,
it would be good to hide all your implementation details and keep them hidden from
everyone. It will prevent any unauthorized access into your backend resources.

Strengthening security is a positive side effect of this isolation. The obvious fact that
all technical details and data structures are already exposed via your autogenerated
Web Services Description Languages (WSDLs) are just Web Services (WS) collaterals
and must be handled again by EAI. This is because we follow a common principle
of separation of concerns by delegating security operations to the middleware. By
helping middleware handle error situations, you could provide a full-stack trace from
your entire web-based API, leaving the standard SOAP Fault message by default. The
EAI team will have to find all the necessary details and handle them according to their
understanding of business logic, as we will keep our internal logic secluded for the
reasons explained previously (security and resource protection).

As you already have direct connections to the resources in other systems, you
could potentially implement some extra logic on your side in order to speed up the
external processes and get the necessary results without waiting. Why not? We are
endorsing distributed computing! You can go even further; you can include your
public API's capabilities from other systems, as you already have access to them.
So, it's a mashup, isn't it? For the sake of clarity, you just inform the EAI team that
these new capabilities are foreign and not covered by your original SLA, as you
cannot guarantee that the design of other systems would be good; however, you
welcome everyone to use them. Speaking of SLA, quite soon you will spot that the
autogenerated XSDs are a bit elaborate, causing some latency on the API side and
extra processing overhead on the EAI platform. As an architect, you would propose
quite a simple workaround (remember that performance is the essence): switch
off the XSD validation at the EAI platform's end. It certainly helped a bit, but not
enough. Later, you will discover the original cause, that is, the standard JAXB library
responsible for message marshaling/demarshaling is way too slow.

The implementation of custom marshaling would certainly be helpful not only
for your application, but also for others' as well. Why not help other teams by
supplying them with a more robust and reliable XDK? In parallel, you can make
some improvements to the XML structure, presenting custom elements within the
message body for parsing acceleration. For instance, if you have several addresses in
the message (billing, postal, and corporate), you could implement special predicates to
indicate which one is to be used in a particular business case and when others should
be suppressed. You can really dedicate some time to these tasks so that developing and
adapting your components is not so burdensome.

Chapter 1

[21]

Our tactical goals have been well achieved. All that's left is to explain to your CIO
why the consolidated IT costs after three years of tactical architecting are almost
equal to corporate revenues.

If you think the presented scenario is a bit artificial, please suspect not. On the
contrary, some unnecessary technical details had been omitted to make it less chilling.
However, we would like to make one thing clear: we are not against tactical goals at
all; they are chunks of iterative development and essential parts of SCRUM sprints.
We just believe that tactical goals and benefits must be a native part of some bigger
strategy; otherwise, you could win a battle or two but lose the war very badly. The
temptation to achieve your target instantly by buying another magic pill is always high
but usually leads to a spaghetti-like infrastructure. In best case scenarios, you will get
a lasagna-style infrastructure if your integration efforts are consistent (another term
for expensive). So now, we are going to discuss the principles that could make our
strategy capable of supporting declared goals and characteristics.

SOA principles
Don't worry, we will not be reinventing the terms here again. After more than ten
years of implementation, the principles are quite well declared and explained.
The consolidation done by Thomas Erl has been accepted de facto by most of the
top market players, and what is most important for this exercise is that it has been
accepted even by Oracle. You can refer to it at http://serviceorientation.com/
serviceorientation/index.

Here, we will mostly focus on the relation of the principles and characteristics and
the consequences that will follow if the principles are neglected. Jumping ahead,
it would be right to say that the patterns are really needed when principles are not
implemented as they are intended. The reasons for this could be different, which are
mentioned as follows:

•	 The already existing burden of legacy systems prevents us from
implementing more reusable solutions immediately. We really do not want
any revolutions.

•	 The obvious political reasons of all kinds, usually caused by strong focus
on tactical goals, temptation to pick the low-hanging fruit, and show quick
results even if they are based on another silo in the app's stack.

•	 Most interestingly, patterns would be required to resolve the conflicts
that arise during the implementation of different principles from the same
technological area. Yes, principles can contradict and must be applied in a
meaningful context.

http://serviceorientation.com/serviceorientation/index
http://serviceorientation.com/serviceorientation/index

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[22]

It is also important to recognize that all these architectural principles are generic,
common, and universal for the selected technological area (SOA in this case).
Principles are also tangible, well recognized, and limited in number.

Some may say that our top-ten requirements can be perceived as principles as well.
Even all illities could be principles because of their universality and simplicity.
Unfortunately, simplicity here cannot help. We, as architects, should give strict,
precise, and most importantly, tangible guidance to developers, and be able to
follow our own recommendations.

The measurable outcome is the result of proper guidance, and the principles here
are closest to the physical implementation and must be understood and followed.
Some principles could be less tangible than others and could just present the results
for collective implementation principles with lesser abstraction, but still the results
of the implementations can be measured. Let's take the most common illities such as
reliability or flexibility and try to explain to your developers (or yourself) in just few
words how to code your components in order to achieve them.

Illities are also known as non-functional requirements (NFRs).

Depending on the technology platform, the explanation could take up to a couple
of pages or several chapters. Still, they should seem obvious and even quite
measurable. (Reliability is usually the Mean Time Between Failure (MTBF) and
flexibility is also a time-based characteristic that displays how fast a system can be
reconfigured for other business requirements.) So, NFRs are also precise technical
requirements and not a guide in technical terms. Looking forward, let's propose a
logical hierarchy of the terms, one way or another related to principles and their
areas of application. By the end of this chapter, we will cover all of them. Your
benefit from this exercise will be a clear outline that will guide you on how to
analyze requirements and apply design rules for most of your SOA-related
projects. The following table illustrates the principles and patterns discussed:

Principles and patterns Quantity
Even being highly generic, the characteristics of generic
illities have certain practical implications and materialize
in at least six architectural frameworks.

7

Chapter 1

[23]

Principles and patterns Quantity
Technology stack's architectural principles (for SOA
design principles) states that every application consists
of several technology areas, the sharing or reuse of
components, and composites. For every application, an
individual and balanced combination of the universal
principles is the key for successful implementation.

8

Architectural patterns form a pattern catalog, commonly
approved as open standard (.org). It is the number of
concrete patterns that are recognized.

>85

The following figure explains the preceding principles and patterns:

We will discuss frameworks separately after a quick walkthrough
of the principles.

So let's start with the obvious ones that were already mentioned earlier.

Standardized service contract
In a standardized service contract, we really believe that the word service here is a bit
of an overkill. Services today are strongly associated with the web service's technical
implementations, so naturally, the first thing that comes to our mind would be
WSDL with schemas, optionally, with policies. Nothing's wrong with that; it's truly
the most common service implementation (or REST maybe), but the fact that any
WSDL and XSD can be easily autogenerated compromises this idea. Autogeneration
doesn't turn it into a standard. An autogenerated service contract is nothing but
trouble, and if you haven't got it after the first exercise dedicated to tactical goals,
we will have plenty of opportunities to convince you.

www.allitebooks.com

http://www.allitebooks.org

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[24]

By doing so, you are just forcing everyone to adapt to your specifications, which
include existing applications. Surely, if you are an architect in a big bank, this approach
might work; we're hesitant about the stub's implementation time at the remote end.

The second point here is that we can build a very robust service-oriented system
without a single web service. The Oracle PL/SQL will do it beautifully, and we
will demonstrate it in the next chapters. So, the contract could be anything that
declares public operations, available protocols, and data structures such as the
PL/SQL package header .pks, C++ class header .h, and the Java interfaces (also called
contracts). Component-based development is a completely valid approach in SOA if
it's approved by all the members of the implementation domain. Interactions between
different domains will require some integration efforts even if the technology is the
same, but that would be true for web services as well, so that's not a major drawback
of using components as SOA's building blocks.

The problem here is that all components' contracts are nondetachable compared to
WSDLs. The true beauty of WS interfaces is that we can sit in a quiet corner along
with developers and business analysts and by using just a pen and a napkin describe
the prototype of service compositions, go back to our stations, and start coding right
away. Talking seriously, by describing the detachable contract as WSDL, we can
really provide a parallel development process and work on an iterative development
in a reasonably painless manner. Simply speaking, you can compile the service logic
(Java) without WSDL and try to do the same with a PL/SQL package body without
the package specification. Finally, the most important thing is that this contract-first
approach allows us to generate the code based on an initially defined and mutually
accepted contract, and Oracle is really good at it. Practically, you can generate
skeletons on any platform that you want to be your logic carrier, such as Java,
BPEL, and Mediators.

A standard contract is the primary means of presenting your service as a corporate
asset to maintain at least two main SOA characteristics: Composition-centric and
Enterprise-centric. With the WS-based approach, you will achieve vendor neutrality
as well.

Loose Coupling
This principle is probably the most well-comprehended principle. Everybody knows
that tight coupling is bad. Is it really? To discuss this, let's first describe what kind
of couplings we could get. You'll be able to understand this from the realization of
service anatomy. Basically, we have the following:

•	 Service resources, presented as DB, file structures, and so on
•	 Technology platform (Java, .NET)

Chapter 1

[25]

•	 Service logic implementation
•	 Parent service logic

Anything that links your contract or, even worse, your consumer to one of those
service resources can obstruct the core SOA characteristics we are trying to maintain.
So, all links going from contract to service resources or bypassing the contract are
bad. The opposite direction is not much better because providing details of the
technology platform or excessive resource demonstrations is not good, as it can
provoke the service consumers to build their consumption logic based on these
details. However, what about the contract-first principle? Yes, it's a positive thing,
so coupling your service logic to the declared contract is a natural and decent way of
implementing the service. However, neither the service logic nor the service contract
has been set in stone—business is evolving, and so are our services. Quite soon, a
new contract version will be published or the core service logic will be patched.
It will eventually turn out that this positive coupling also has its deficiencies. No
reason to despair though; it's life. All of us are evolving, and customers connected
to our contract are always welcome. How to deal with this situation using various
Oracle SOA patterns will be discussed further.

In addition to this, we would like to emphasize that coupling from customer to
contract is the second positive coupling, although it is susceptible to the same
problem like the one with contract evolution. All other couplings must be prohibited
if possible. This statement is not as strong as you would expect. We have touched
upon the reason for this earlier in the tactical goal's architecture example, that is,
performance. Standard contract denotes the message processing overhead, some
milliseconds (or more) in addition to the total processing time, CPU utilization,
and memory consumption. Is it worthy enough to jump over the service contract
and utilize service resources directly? Only you know what these milliseconds of
overhead mean for your business, and the decision on what to sacrifice is yours.
In general, the answer is no. Please look at your contract first. Is it truly standard?
Assess your needs using the following logic:

•	 Do you clearly define your data structures with the required elements only?
•	 Do you avoid autogeneration, especially for operations with CLOB fields

without CDATA or <any> elements? (Memory leaks during marshaling is a
common outcome of this approach.)

•	 Can a concurrent contract with more lightweight technology (REST
instead of SOAP) possibly solve the problem? (Concurrent contracts
will be discussed further in the Chapter 4, From Traditional Integration to
Composition – Enterprise Business Services.)

•	 How about a platform-specific SOAP/XML acceleration? Oracle's WLS T3
protocol could be useful as it has proven many times

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[26]

•	 The tuning of the execution environment and proactive monitoring.
•	 If platform-neutral contracts (WSDL / REST-based) do not help,

could we employ a component-based concurrent contract?

Always think what price you will pay to break this principle for gaining ten or fifty
milliseconds of processing time. This principle directly supports the composition's
centricity and vendor neutrality's SOA characteristics.

Service abstraction
The logical outcome from the implementation of the first two principles is standard,
preferably (but not mandatory) a detachable service contract as a declaration of
our capabilities, processing requirements, and input expectations. Still, the word
standard is a bit vague. Let's put the discussion about existing standards aside
for a moment and focus on the areas of standardization. The bottom line is that
standardization is the way of generalizing information, a process of making it more
abstract in order for it to be more multipurpose in predefined technical boundaries.
Some of the elements of abstraction in service-orientation boundaries that we have
already mentioned during the discussion of Loose Coupling are as follows:

•	 Do not reveal in your service contract the specifications of your technical
platform (such as the coding language, SDK's details, and XDK properties)

•	 Do not expose details regarding your underlying resources (such as the DB
structure, constraints, and especially the foreign keys)

•	 Be reasonably reserved regarding services-composition members that
comprises your service

Why would you do that? It is because of the same reasons we mentioned while
discussing the previous principle. Excessive information can provoke negative
coupling to service resources, making the service less adaptive and reducing its
reusability options.

For example, you have a lot of useful functions in your service logic. Obviously,
you can fall into the trap of promising extra features in addition to the already
agreed one. (Okay, not you, your new project manager.) It literally costs almost
nothing at the beginning. Most probably, it will not even affect the level of
standardization of your contract at first glance, which is shown as follows:

•	 Your data model that is based on your corporate-approved entity's
Canonical Data Model (CDM)

•	 Your naming standards are very clean and comprehensible,
based on industry standards

Chapter 1

[27]

Who can give you a warrant that the business logic, encapsulated in your service,
will not change tomorrow and that an auxiliary-declared operation becomes a
burden or even an unwanted shortcut in the business process? How about a number
of consumers who become dependent on your extra feature? Migration in SOA is not
an easy task, even with certain SOA patterns applied.

On the other hand, even in a relatively static business ecosystem, this new feature
could become so popular that all of the hardware power dedicated to your service
scope will be consumed by only this one operation.

Level of abstraction – granularity and models
So, do not promise anything and keep everything for ourselves? Let's not blow this
out of proportion. SOA is full of promises; it was designed in this way, and luckily,
we have enough methods to keep these promises. If service capabilities (that is,
operations) are correctly planned from the beginning and used unevenly, then maybe
we have put too much on a single service's plate. What is the functional scope of this
service? If this service handles one single business entity (such as invoice), then all our
operations should be bound to its functional context, which is abstracted to the level of
a functionally completed environment. You would hardly keep salt, sugar, and flour in
one jar in your kitchen just because all of them are white. Still, it's rather amazing how
this simple thing called granularity is neglected in the real life of service development.

Functional granularity is based on the understanding of service models. Entity
services that are already mentioned are the first and closest abstracts to the atomic
data representations in an enterprise, for example, invoice, order, cargo unit, and
customer. All operations would be naturally based on the DB CRUD model but not
limited by them. The number of truly unique entity services is rarely more than
20 in any enterprise. The functional granularity here is usually based on the
OLAP/OLTP segregation:

•	 Online transaction processing (OLTP) as very short, real-time, CRUD-like
operations with high demands for response time are naturally the primary
capabilities of the entity services, and their operational time slot is frequently
within the standard business hours (that is, 08:00-17:00)

•	 Online analytical processing (OLAP) operations are not that demanding
when it comes to response times, but data volumes are usually higher and
operational time slots are either evenly distributed around the clock or tend
to be close to the regular nightly batch-operations time.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[28]

As you can see, mixing them together would not be a good idea if we have an
overlapping operational time slot. The possible conflict between high volumes
and high throughput will require your attention at the very early stages of service
modeling. Should we abstract OLAP operations to DWH-specific services?

The second service model is the utility that usually presents the most reusable
and supplemental logic, consumed by all other services. The level of functional
abstraction here is really high and business-independent. Your transformation,
translation, or measure-unit conversion services are typical representatives of this
model. The level of functional granularity can be easily defined and operations can
be tuned for high-usage demands. Migration issues are not that frequent here,
so functional abstraction is fairly simple.

The last model or task service is what we usually know as workflow, which is the
composition of other services combined together in order to fulfill one single task
such as OrderProcurement and BookingRequest.

Distinctive properties of this service model comprise one task, one operation, and
one business context. Functional abstraction should not be a big puzzle, but still
we can see a lot of misinterpretation caused by the deceptive simplicity of modern
development tools, providing neat visualization of service compositions, plus
very mature resource adapter frameworks starting from order fulfillment (many
thanks to Oracle for providing an extremely detailed Fusion Order Demo (FOD),
available at http://www.oracle.com/technetwork/developer-tools/jdev/
learnmore/fod1111-407812.html). An enthusiastic developer can soon include
Invoice, Booking, and General Ledger flows into one monster. Entity services are
commonly neglected, as we do not need them anymore; a DB adapter can provide
us with the perfect result in five clicks. Additional interfaces that were constructed
while composing this task service can be easily exposed to external consumers. The
problem here is that this service is not a task anymore; it's a hybrid with the worst
possible functional granularity, combining business-specific and business-agnostic
capabilities. A thorough application of the abstraction principle from the very
beginning could prevent this problem.

The deceptive simplicity of development can hoodwink developers, who are
left alone without architectural guidance. This fact provokes developers to use it
everywhere, whether it's appropriate or not. Some industry-specific forums and
advisory boards quite often produce rather vague frameworks and business process
specifications that are in fact not more than business heat maps. Following them too
directly can easily result in such hybrid services with unclear abstraction levels.

http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html

Chapter 1

[29]

Data granularity is the next level of granularity we should take into consideration
when applying the abstraction principle. Processing one single order line or a
complete bunch of orders received in one message in reality makes a difference;
however, in your design of an Order XSD, all that it takes is to set minOccurs to
greater than 1 for the Order node right under the OrderHeader element.

The data constraints granularity or constraints granularity in general is the next
logical level of granularity. Again, talking about XSD, you could be really restrictive
with your data type definitions while determining whether they are necessary by
declaring a simple type using XSD patterns, explained as follows:

Fine-grained Coarse-grained
<xsd:simpleType
name="imageType">

 <xsd:restriction
base="xsd:string">

 <xsd:pattern
value="(.)+\.
(gif|jpg|jpeg|bmp)"/>

 </xsd:restriction>

</xsd:simpleType>

xsd:string xsd:any

Here, you want to be sure that the image's filename provided in a message is safe
(at least not executable). This could not be achieved by the most popular xsd:string
data type alone in the service contract. The xsd:any element is at the upper level in
this hierarchy, which in OOP has equivalent Object. All these levels of abstraction
have full rights to exist, but you must clearly realize which part of your SOA
infrastructure should employ these different levels of granularity. The other means
of data granularity already mentioned are minOccurs, maxOccurs, and nillable
that are applicable for the elements and xsd: attributes. Terms usually used for
different levels of detailing are the fine- and coarse-grained granularity, and they are
quite self-explanatory. The levels of declared granularity directly impact the location
of the service-processing logic. This means that with a more fine-grained XSD, you
will put more processing demands on the contract's message processing logic—XDK
marshalers (serializers). With a more coarse-grained granularity, you inevitably put
the big chunk of message parsing and validation logic into the service's component
logic behind the contract. It could also make service difficult to test, as highly
abstracted contract will not reflect any changes that are supposed to be presented
to the Consumer.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[30]

Other abstractions include the abstraction of technical details hidden behind the
service contract, and programming language aims to increase the federation of our
heterogeneous service infrastructure. Abstracting contract-related parts of SLA,
such as quality of service, availability information, and performance metrics also
helps to standardize service profiles within a service inventory.

We have deliberately put aside the security considerations related to the abstraction
principle until now. By declaring more precise data types, you could reveal technical
information necessary for data-oriented attacks. When using the data type casts
features, the attacker could trigger the error, revealing internal data structures
associated with the element (the point of the attack) and exploit them. An element
with the type <any> reveals nothing, but at the same time allows it to send any types
of data, including the harmful code. With such a high level of abstraction, presenting
the service contract with the operation Process and data model Any, you literally open
the door for all kinds of parser-related attacks, memory leaks, and buffer overflows.
Possible ways of balancing the granularity and abstraction levels for services that
operate on different technology layers will be discussed further in Chapter 7, Gotcha!
Implementing Security Layers.

The ultimate purpose of principles' implementation in SOA is to increase the
service composability options as a direct method of increasing ROI. A less abstract
service contract where more information is revealed tends to be more attractive for
developers as they are more interpretable.

The implementation of this principle directly affects SOA characteristics such as
composition centricity and vendor neutrality. This principle directly supports Loose
Coupling. Abstraction from excessively expressed technical details will certainly
increase the business value of the service (business-driven).

Service reusability
The first three fundamental principles combined together will lead us to the
declaration of the first really tangible design principle, that is, reusability. One can
say that this is the essence of all the SOA principles. Still, we will not crown it above
all others, as it cannot be maintained alone without proper foundation of the first
three. In the book dedicated to the Java EE enterprise architecture, Sun Certified
Enterprise Architect for Java EE Study Guide (2nd Edition) by Mark Cade, Humphrey
Sheil, Prentice Hall Publishing, this principle is not included in the requirements for
the component's architecture. The first three include performance, scalability, and
reliability, and that's absolutely true. No one needs reusable components that are
unreliable and cannot perform as intended.

Chapter 1

[31]

We just have to realize that these illities here are applied to the service logic,
presented by Java components. If it's not reliable, and we would like to put that
first, we must not present this logic as a public service. In traditional component
architecture, the reusability support is delegated to the integration layer. In SOA,
we strive to make services reusable by means of the following:

•	 Defining the standard contract, exposing canonical data and
canonical operations.

•	 Making internal service logic more universal (another synonym for abstract)
and suitable for reutilization by other services. As discussed earlier, only one
service model is allowed to be highly specific, that is, task, as a composition
of other services, fulfilling the specific operation.

•	 Preventing negative couplings by promoting the technical contract as
only one way of accessing the service logic.

The level of reusability is really easy to assess: just count the number of compositions
where this service participates. The implementation of this principle directly
promotes composability and the enterprise's centricity. Let's now look at the two
pure technical principles that support reusability.

Service autonomy
An service can maintain the required level of reliability (measured by MTBF as time,
or percentage as an availability) necessary for consistent reuse only if it can possess
and control its own underlying resources. Database, file objects, physical realization
of the service logic, and so on should not be shared or delegated to other services.
The service should be perceived as an atomic unit of concrete logic, functioning
in a dedicated technical environment. In this case, the service behavior will be
predictable, fulfilling scalability requirements, and making it possible to relocate
the service into a similar technical environment with reasonably low efforts.
This last illity is highly desirable for a cloud-based implementation.

Unfortunately, this principle is probably the hardest to implement. We all know
that most commonly used databases are shared resources. License costs, bundles of
legacy applications, common network infrastructure, and so on are the reasons why
this principle is very hard to achieve without significant investment or considerable
maintenance efforts.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[32]

This principle is quite often mistaken for Loose Coupling. Indeed, they are very
similar with regards to the negative impact on service reusability, although we
can draw a distinct line between them as mentioned as follows:

•	 Loose Coupling is the ratio between iterations, carrying through the service
contract from consumer and service resources (relatively positive coupling)
and iterations bypassing the contract (negative coupling). In fact, the service
is always coupled if it's in use, positively and negatively. Service-oriented
architecture based on components is more prone to negative coupling, as
their APIs are more technology-specific.

•	 Service autonomy is the measure of service independence. A business
usually has quite a limited number of data warehouses (DWHs) (usually one
per business domain and ideally—only one). Therefore, all analytical services
(InvoiceHistory, OrderHistory, and so on) using a single DWH DB will not
be autonomous. Present them as one service (this is not an advice), move into
a private cloud, and you will get a perfectly autonomous service. Now the
question is the price.

The implementation of this principle directly promotes the composition and
enterprise centricity and vendor neutrality.

There are no negative impacts on other principles, but as we have said, true service
autonomy is the nirvana that is really hard to reach.

Service statefulness
This second technical and very tangible design principle is the support of the
service reusability.

It's defined as an ability of a service to maintain low-resource consumption when
needed, namely between service activities, while waiting for a response, and so on.

At first glance, it's more applicable to the long running asynchronous services,
which could run for days or weeks. The deferring service state is vital here.
We have to store execution scope variables and preinvocation data in a special
database with all necessary information for waking it up when the response arrives.
In this Hibernation DB (dehydration store in Oracle terms), we will have a chain
of defer-awake records that are equal to the number of asynchronous invocations.
Moving further, we can defer the information at any stage of the long running
process for legal or compensative activities. This type of storage is compulsory
for all task-orchestrated services and is usually provided centrally by an
orchestration platform.

Chapter 1

[33]

This fact makes all task orchestrated services far less autonomic than other service
models. Surely, you can implement individual partial state deferral for every
task-orchestrated service (task service hosted within an orchestration platform),
making them ultimately autonomous. In that case, we truly admire the grandiosity
of your project's budget, not to mention the infrastructure and support.

Asynchronous services are not the only ones that need to maintain their state.
A poorly designed synchronous service with a lot of global variables, excessive
looping or branching logic, and a lot of calls to underlying storage resources will
consume a lot of memory and CPU. There is no remedy for this scenario that is
provided by the SOA technology platform; you can only rebuild it from scratch.
You could technically turn this service into an asynchronous process and set the
queues as transport means; however, that's not what consumers expect, and the
level of potential reuse drops considerably. Only services with predictable state
management will have predictable behavior and scale well when necessary.

This principle addresses the same benefits as autonomy but has negative impact
on the autonomy itself.

Service discoverability
Despite its obvious meaning, this is arguably the most-neglected principle.
The main reason for such negligence is the misunderstanding of service governance
boundaries. For some, governance starts after the service deployment process in
production. Although it's been said many times before, we would like to repeat it
again—governance starts long before the first line of code is written. You must plan
for the following:

•	 Which service trace records will be left in your audit/trace log under the
different logging settings

•	 How service activities will be perceived by different operational policies
•	 How a service could be dynamically invoked by different consumers

and controllers

These items among many others form the so-called runtime discoverability. It is in
your best interests to expose your service to all who can potentially use it. This is
possible if you follow these points:

•	 Service operations and functional boundaries are well defined according
to the service contract

•	 Service particulars presented in the form of service metadata help everyone
understand possible service runtime roles, model, composability potential,
and limitations

www.allitebooks.com

http://www.allitebooks.org

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[34]

•	 Quality of service information describing service availability, reliability,
and performance is guaranteed

•	 Supplementary information regarding all test results and test conditions
are in support of declared performance

•	 Policy standards to which services adhere to mandatorily or optionally

All these items are elements of design-time discoverability. As part of governance
efforts, special layers of service infrastructure will be established in order to
support these two types of discoverability. We will dedicate a whole chapter to
this challenge, as we reckon lack of discoverability is probably the main problem
in the implementation of SOA. However, even if a technical platform is capable of
supporting dynamic discovery and invocation, and the service metadata storage is
full of service details down to the particular engines in use and rule types employed,
we could still jeopardize potential reuse by keeping interpretability of discovered
information below the comprehension level. Information that is too abstract (see the
Implementation of Service Abstraction principle) will prevent the demonstration of full
service potentials. A methodology in support of service taxonomy and metadata
ontology (discussed in Chapter 5, Maintaining the Core – the Service Repository in great
detail) will be not only established, but also conveyed to all individuals responsible
for SOA governance from the very beginning to the end.

How do we measure service discoverability? What questions should you ask your
developers and architects (including yourself) in order to understand the level of
principle adoption? Refer to the following questions:

•	 Do we have an inventory for all enterprise assets acting as service consumers
and service providers? In other words, what are the enterprise/domain
boundaries?

•	 Do we have individual service profiles?
•	 What are the key elements of service metadata available from the service

profile that we will use for a service lookup?
•	 From which service infrastructure layers will we perform the lookup and for

what purpose? In other words, who is allowed to discover this information
and when (security)?

•	 Can we perform reverse search metadata by service?
•	 How will these metadata elements be presented in a service message,

in which parts, and at what level of detail?
•	 Are these metadata elements in the service messages covered by the existing

SOA standards? Can we keep them vendor-neutral and minimalistic?

Chapter 1

[35]

Believe it or not, a simple Excel spreadsheet will do the trick, and the explanation
will be provided shortly. How many times have we witnessed the situation
when without a well-structured and understandable taxonomy, even the most
powerful harvesters (SOA artifacts introspection tools) with marvelous graphical
representation of discovered relations just turn the situation from bad to worse?

This principle undoubtedly supports all four desirable SOA characteristics.
This principle conflicts with the service abstraction and can negatively impact
security when poorly implemented.

Service composability
Finally, we come to the last principle that completes the foundation of SOA. This
principle is in fact the paramount realization of SOA, as it's the closest thing to
money, the universal entity that is understandable by any members of an enterprise.

Next, we compose and recompose the new business applications and processes out
of the existing building blocks; the less we waste, the more we gain through reuse.
However, is there any overlap between composability and the reusability principles
discussed before? Yes, but only at first glance, as the key here is in the measure of
"waste" we would like to prevent. Almost everything in IT could be reused; the
question is how much effort (time) it could cost for doing this.

The composability principle defines the measure of how easily any service from a
particular service inventory could be involved in a new composition, regardless
of the composition's size or complexity. Of course, a service should be involved
in the operations it was designed for and in the roles it can support. Thus, the
common quantifier for this principle is time. When designing a service from the very
beginning, you should speculate on how hard it would be to implement composed
capabilities using your service along with others, and how many compositions a
single instance of your service can support from the performance standpoint.
Yes, the statement regardless of the composition's size or complexity has its own limits,
and these limits will be thoroughly tested during the unit stress test and properly
documented in the individual service profile.

The quantification of this principle is roughly similar to the measure of flexibility
of hub-and-spoke integration platform. For hub-and-spoke, with all enterprise
applications connected to it, you have the canonical data models for all entities
presented by the application. When a new application with its own data
representation arrives, all that you need is to perform the following:

•	 Transform the newly received application data model to a canonical model
•	 Establish routing rules for message flows in a hub for this application

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[36]

For simplicity, we assume that a unified canonical protocol is in place. With this
simplistic model, we can estimate that a new XSLT (actually, two of them) with a
reasonable level of complexity could be built in four hours, and the routing rules in
a static table can be maintained in another two. Allocate a day for testing and we are
ready for production in less than 16 business hours! Theoretically. Let's now recall
how reality typically bends our plans.

No. How do we see it What it means
1 Yes, it's not a problem to build XSLT or XQuery in

four hours. Obtaining the mapping instruction and
understanding the meaning of field names and data
types can take week(s).

Discoverability and
Abstraction

2 Not all data elements needed for CDM and other
applications in the farm are available via a public API.

Standardized contract

3 To extract necessary data, we have to bypass the API
and reach out for internal resources.

Loose Coupling

4 The extraction of additional data inevitably
implements call-back interchange patterns, which are
not always positive. This could disrupt performance
of the main app functions and put some logic outside
the app boundaries.

Autonomy

5 Quite often, internal logic of a new application is
more complex than what a simple request-response
interchange pattern can provide, thus requiring
the hub atomic transaction coordinator's (ATCs)
capabilities. We have to put more logic on the hub.

Loose Coupling

This shortlist of five items is only the tip of the iceberg; usually, it's more than a page
long. The bottom line is that the total time required for making a new application
composable via the hub-and-spoke approach is usually from two to six months.

With the service-oriented approach, the result will be quite similar if any of the
previously discussed principles are neglected or put off-balance. The following
figure explains the general relations between principles and their importance for
composability. Loose Coupling and Abstraction together with Composability are
the regulatory principles, shaping and governing the implementation of others.
Despite their regulatory status, only Abstraction is quite difficult to quantify,
although it's still quite possible by assessing the amount of message-processing
logic in marshaler / contract parser and core service logic.

Chapter 1

[37]

The Statefulness and Autonomy services are pure technical principles and
directly affect Reusability. It would be quite right to say that Reusability and
Discoverability together have a major impact on Composability, but other
principles also must be accounted for.

We would like to advise you to keep this relation matrix in front of you every time
you are given the task to analyze an existing design or propose a new one based
on expressed illities, or analyze what's behind the illities, which is promoted as
design guidance. It will prevent you from establishing rules that are too vague for
understanding and following. For the final exercise dedicated to principles alone,
let's get back to our list of top ten generic wishes and analyze the sixth item; refer to
the following table:

Designed for testing Meaning Requirement
Valid (we are testing
what we are supposed
to test)

Service / Component APIs
can be easily exposed to any
existing testing tool (JMeter,
SoapUI, LoadUI, and so on) and
all the test operations generated
with low efforts.

Standardized
Contract

Verifiable (we must be
able to recreate the results)

Test results, achieved in one
environment (JIT, for instance)
can be easily recreated in any
other environment in testing
hierarchy. This means no
surprises in production!

Autonomy,
Statefulness

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[38]

Designed for testing Meaning Requirement
Reliable (we will trust
test results)

Service with acceptable
characteristics achieved initially
must not be obscured by later
amendments/implementations
breaking services, technical
consistency.

Autonomy,
Statefulness,
Loose Coupling

Comprehendible
(we must be able to
understand the results)

Test results, sometime
together with test suites
must be stored in a place
where it can be reached,
accessed, comprehended by
any concerned party and re-
implemented if necessary.

Discoverability
(Beware of
Abstraction)

This simple exercise demonstrates that there's neither any need to invent new
principles out of wishes or abstract illities, nor to multiply unnecessary entities:

Entia non sunt multiplicanda praeter necessitatem

 – Ockham

Principles here act as precise technical guidance. Elaborative lists of more than
50 items, produced as a collective effort of several departments in some enterprises,
usually leave only one question: how are you supposed to enforce all of them?
A principle is the direct order, and it is only good if you can control its fulfillment.

For good measure, may we suggest that you repeat this exercise for the remaining
nine requirements in that list?

SOA technology concept
The deceptive simplicity of SOA as an architectural approach made it attractive
twelve years ago, and this deception (actually, the misunderstanding) caused its
downfall after two to three years of initial implementations. Initially, the idea was
pure and simply brilliant; it is mentioned as follows:

•	 Quickly maturing XML, as the most universal standard and foundation
for practically everything: messaging, transformations, protocols, data
representation, the way you name it

Chapter 1

[39]

•	 Emergence of web services, as the next logical step in object-orientation
and procedural programming with the highest level of encapsulation and
standard detachable API expressed via the WSDL contract

•	 SOAP presented in 1998 promised some transport-independent (to a certain
extent) messaging protocol that was simple enough to gain popularity in the
blink of an eye

In addition to the UDDI standard, employing lots of XML features has also been
presented in order to support service discoverability. Thus, we got our first so-called
Contemporary SOA representation in the shape of a triangle: Service Consumer
(Sender), Service Provider (Receiver), and Service Registry (UDDI) shown as follows:

Message is always SOAP-based synchronous request/response; contract is
WSDL with number of operations abstracted to be reasonable minimum. Service
Consumer is displayed in a different color in order to stress the fact that it doesn't
have to be a web service. This means that a service can be called from any program,
interface, and device if WSDL can be understood and SOAP request-response can
be supported.

This model will work (and more importantly it works) perfectly within designated
boundaries for simple compositions or compositions based on multiple sequential
invocations. We will discuss the obvious limitation of the contemporary model
shortly; now, let's focus on core technologies, which are the core of all SOA models.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[40]

As stated before, we do not intend to cover all SOA standards, as we simply have
no room for this in a single chapter. We will briefly touch only those which we
will be using in the following chapters. The book Web Service Contract Design and
Versioning for SOA, Prentice Hall Publishing, by Thomas Erl, could be a good reference
in addition to the web recourses from standard authorities for SAML, OAuth, and so
on. This section is just a technical recap of the absolute bare minimum requirements
to link previous paragraphs dedicated to SOA principles with the soon-to-arrive
SOA design rules based on patterns applied in particular SOA frameworks.

As an experienced architect, you are certainly quite familiar with all the technologies
we will briefly touch on now.

XML
This is the foundation of most of the standards and applications, not only SOA.
Please note that you do not have to use XML to make your platform service-oriented
in order to achieve goals of service-orientation, but you will find it rather difficult
not to do so. You will have to replace quite a sizeable amount of movable and
static elements of your infrastructure (configuration files, interchange messages,
transformation mappings, contracts, and so on) with some similar but older formats
such as CSV, EDIFACT, and X12 with lots of unexpected consequences. Modern
standards such as JSON are also not entirely XML-free. So, we would like to suggest
something for your own architectural benefits. Please look at the simple W3C School
XML quiz (http://www.w3schools.com/xml/xml_quiz.asp); it will only take five
minutes. If your score is less than 100 percent, we suggest you refresh yourself by
reading a good XML book.

Web Services (WS)
If service is an atomic building block of the whole SOA, then web services are the
most popular variant of these building blocks. The reason for this is in an object/
XML serializer, which is the native part of any WS and the link between a detached
WSDL-based service contract and core service logic. For the Oracle platform (but not
only), quite naturally employed Java marshaling/unmarshaling, Java-WS (or JWS)
technology would be based on one of the following serialization APIs:

•	 Java architecture for XML binding: JAXB (exists on multiple implementations
but is not always fully compatible).

•	 A more advanced JiBX. This can inject the conversion code directly into Java
classes during the post-compilation process, and by doing so, improve the
performance considerably when compared to JAXB. Also, it has its own
runtime-binding component.

•	 Simplified mapping-free version of marshaler: XStream.

http://www.w3schools.com/xml/xml_quiz.asp

Chapter 1

[41]

JAXB is still the most popular one because of the number of characteristics it offers:

•	 Runtime message validation
•	 XPath-oriented
•	 No post compilation required for code injection
•	 Can support very complex message structures

The JAXB API is part of Java SE and EE package bundles, but still it is better to
check for the latest release if performance is an issue. If serialization performance
is the major concern, look at the JiBX more closely as it could be up to five times
(some claim more) faster.

Here again, the reliability and predictability of parser should be balanced with
reasonable performance; otherwise, you will have to rebuild your services from
scratch every time the XSD specifications change.

So, in the JWS specification, JAXB is responsible for mapping a Java class to the
message's XSD using customizable annotations. Java API for XML Web Services
(JAX-WS) is the technology that is responsible for mapping Java parameters to the
WSDL declaration. These two specifications conclude service endpoint interface
(SEI) as the representation of a standardized contract. Of course, just using them
alone doesn't guarantee that contract will be truly standardized, but they are the two
essential technical WS specs. The last and the most important part of the WS spec is the
web container; it is responsible for performing basic HTTP operations: POST and GET.
It's related to the handling of transport protocols, and we will discuss it right away.

WS transports
XML-based SOAP-messaging protocol handled by the web container is typically
implemented as a servlet if you need to utilize the HTTP transport protocol, which
is most common for JWS. SOAP is a type of XML structure, serving as a container
for service message interactions. There are two mandatory parts: soap:Envelope
as a root and soap:Body that acts as a business payload container. Two optional
elements can also be present: soap:Header and soap:Fault. Although the header
element is optional, its role for providing transport and processing-related metadata
is enormous. Most of the WS-* extensions followed after the first publication of
initial WS specs are related to the SOAP headers. There are some which could
be equally distributed between the header and body. For instance, WS-Security
naturally relates to the body and header via encrypted and signed elements and
WS-MetadataExchange provides and distributes WSDL-related data necessary for
establishing service interactions, which can also be done via the SOAP body.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[42]

Most commonly, the Java web container will probably use a servlet as the front
controller, and it is responsible for parsing the header elements and invoking the
JAXB mapping to Java objects to process the SOAP body.

We will discuss UDDI-related protocols as part of contemporary SOA further
when we approach the Service Registry architecture.

Need for the WS-* extensions
There are no drawbacks in the contemporary SOA model. Every single technical
element is mature and proven to be reliable after dozen of years of evolution and
improvements. Actually, it was pretty acceptable from the very beginning, but its
broad usage was severely limited by the initial constraints set by the simplified
service interaction model: synchronous request-response between limited numbers
of composition members (usually two). At the time of the first implementation, it
was apparent that a substantial number of complex real-life requirements needed
be addressed by the SOA technology platform to make it capable of fulfilling its
promises; they are as follows:

•	 There is more than one simple message exchange pattern (MEP). We can
count one-way MEPs, two-ways, callback MEP types along with all possible
types of acknowledgements (responses), such as mandatory, only on errors,
and so on.

•	 Asynchronous MEPs are equally popular and must be covered by the
technology platform in a common way. The ability to maintain sync-async
communication bridges for complex service interactions was the prerequisite
for further SOA proliferation.

•	 Even synchronous service compositions could be far more complex than the
basic request-response method with all elements of distributed transactions
and two-phase commits requiring a transparent level of transaction
coordination.

•	 Long-running transactions also need common and reliable methods
of controlling process execution with a lot of callbacks and numerous
activation-deactivation phases. First of all, this involves transparent
coordination based on the correlation ID and correlations sets, and
the ability to compensate unsuccessful transactions.

•	 Services must be able to reliably communicate in cases where we have
infrastructure breakdowns or slow responses from other parties.

•	 Service messages must be equipped with information that is sufficient
for supporting complex routings and distributions.

Chapter 1

[43]

•	 Services and service registries are extremely vulnerable to security
breaches due to high exposure to potential consumers (implementation of
the Discoverability principle). This issue will be addressed with minimal
impact on services intrinsic's interoperability.

These are only the most obvious requirements, which had to be fulfilled in order
to make service orientation capable to serve its purpose and achieve the goals we
discussed in the beginning of this chapter. It is apparent that all these issues must
be addressed in a standard way; otherwise, proprietary implementations will be
put across service environments' federation and vendor neutrality.

Most of the standards in the form of recommendations and profiles are provided
by three main standardization committees, as shown in the following table:

About OASIS W3C WS-I
URL https://www.

oasis-open.org/
http://www.
w3.org/

http://www.
ws-i.org/

Established 1993 as SGML Open 1994 by Tim
Berners-Lee

2002

Approximate
membership

600 About 390 200

Overall goal
(as it relates to
SOA)

OASIS promotes
industry consensus and
produces worldwide
standards for security,
Cloud computing,
SOA, web services,
Smart Grid, electronic
publishing, emergency
management, and
other areas. OASIS's
open standards offer
the potential to lower
the cost, stimulate
innovation, grow
global markets, and
protect the right of free
choice of technology.
(From official site)

W3C's primary
activity is to
develop protocols
and guidelines that
ensure long-term
growth for the Web.
W3C's standards
define key parts
of what makes the
World Wide Web
work. (From official
site)

The Web Services
Interoperability
Organization
(WS-I) is an
open industry
organization
chartered to
establish best
practices for the
web services
interoperability.
It is for selected
groups of
web services
standards across
platforms,
operating
systems, and
programming
languages

www.allitebooks.com

https://www.oasis-open.org/
https://www.oasis-open.org/
http://www.w3.org/
http://www.w3.org/
http://www.ws-i.org/
http://www.ws-i.org/
http://www.allitebooks.org

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[44]

About OASIS W3C WS-I
Delivered
Standards/
Specifications

UDDI, ebXML, SAML,
XACML, WS-BPEL,
WS-Security

XML, XML Schema,
XQuery, XML
Encryption, XML
Signature
XPath,
XSLT, WSDL,
SOAP, WS-CDL,
WS-Addressing,
Web Services
Architecture
WS-Eventing

Basic Profile,
Basic Security
Profile

SOA standards
In this section, we will group and discuss the service orientation standards and their
roles in establishing framework-based infrastructure. Every standard deserves at
least a single dedicated chapter, so we advise you to follow the links to the provided
standardizations committee technical pages for more details on the latest versions.

Methodology and governance
Standards that define service repository taxonomy and semantics are explained in
the following sections.

SOA Repository Artifact Model and Protocol (S-RAMP)
The details on S-RAMP are given in the following table:

Authority Primarily
addresses

Latest release

OASIS Discoverability https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=s-ramp

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp

Chapter 1

[45]

The S-RAMP technical specification defines a common data model for SOA
repositories as well as an interaction protocol to facilitate the use of common
tooling and sharing of data. S-RAMP is not intended to define general purpose
ontology for SOA. Instead, the specification references the work of The Open Group
(http://www.opengroup.org/), defining how it is integrated and used in the
context of S-RAMP. S-RAMP is focused on publication and query of documents
based on their content and metadata.

This specification will be used together with Service-Aware Interoperability
Framework (SAIF) further for defining lightweight service repository taxonomy,
which is suitable for service lookup and dynamic invocation by agnostic
composition controllers.

Service definitions, routing, and reliability
The core standards that define services' contracts and reliable communications
will be covered in the following sections.

WSDL
The details of WSDL are as shown in the following table:

Authority Primarily addresses Latest release
W3C Reusability, Loose

Coupling, and
Discoverability,
Composability

http://www.w3.org/TR/wsdl20/

Web Services Description Language Version 2.0 (WSDL 2.0) provides a model and
an XML format for describing web services. Description has abstract and concrete
parts. In the abstract part, we can define what messages can participate in which
operations; consequently, in request and response, we can define what fault message
can be generated. The concrete part binds operations with related messages to the
physical service endpoint shown as follows:

<!-- WSDL definition structure -->
<definitions name="cargoBooking"
 targetNamespace="http://erikredshipping.com/booking/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
<!-- abstract definitions -->
 <types> ...

http://www.opengroup.org/
http://www.w3.org/TR/wsdl20/

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[46]

 <message> ...
 <portType> ...
<!-- concrete definitions -->
 <binding> ...
 <service> ...
</definition>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

WSDL is equally important for implementing the WS-* specification as SOAP.
Practically, all elements can be linked to the WS policy statements, describing
behavior, data requirements, or QoS declarations. One of the most important
pieces of information along with the declared data models / types (XSD) and
operations (via declared canonical expressions such as get, process, and so on)
is to bind the message exchange pattern.

The WSDL Message Exchange Patterns (MEPs) 2.0 are as follows:

•	 The in-out pattern, which is the standard request-response operation.
This is the most common pattern.

•	 The out-in pattern, where a service provider initiates the interchange.
•	 The in-only pattern, which is the regular fire-and-forget MEP.
•	 The out-only pattern, which is the reverse of the in-only pattern.
•	 The robust in-only pattern is similar to the previous one, but it comes with

the capability to provide the fault response message back if there is an error.
•	 The robust out-only pattern is similar to the out-only pattern, but it provides

the optional fault message.
•	 The in-optional-out pattern is similar to the in-out pattern, but here,

the response message is optional. This pattern also supports the generation
of a fault message.

•	 The out-optional-in pattern is the reverse of the in-optional-out pattern,
where the incoming message is optional. Here, generation of a fault message
is supported.

We will touch upon some of these MEPs later, discussing the WS-* specification's
roadmap.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[47]

WS-Addressing
The details of WS-Addressing are as shown in the following table:

Authority Primarily addresses Latest release
W3C Loose Coupling and

Composability
http://www.w3.org/Submission/
ws-addressing/

This standard is the keystone for the whole WS-* stack, as all other standards
are actively using it. It provides a neutral way of distributing messages. The
SOAP header is the placeholder for all key elements, and they are presented
in the following table:

wsa: Element Description
wsa:MessageID This property presents the ID of a message that can be

used to uniquely identify a message.
wsa:To This property provides the destination URI, and it

indicates where the message will be sent to. If not
specified, the destination defaults to http://www.
w3.org/2005/08/addressing/anonymous.

wsa:From This property provides the source endpoint reference,
and it indicates where the message came from.

wsa:ReplyTo This property provides the reply endpoint
reference, and it indicates where the reply for the
request message should be sent. If not specified,
the reply endpoint defaults to http://www.
w3.org/2005/08/addressing/anonymous.

wsa:RelatesTo This property conveys the message ID of a related
message along with the relationship type.

wsa:FaultTo This property provides the fault endpoint reference.
It indicates where the fault message should be sent to
if there is a fault. If this is not present, usually the fault
will be sent back to the endpoint where the request
came from.

wsa:Action This property displays the action related to a message.
For example, the wsa:Action property can be used
to identify the operation to be invoked upon receiving
a request message. It must be provided in the message
addressing properties of a message.

wsa:ReferenceParameters This property references parameters that need to
be communicated.

http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[48]

WS-Addressing allows the sending of messages to the specific instance of a service,
which is not possible by WSDL concrete bindings alone. The SOAP request and
response implementation is as follows:

Request Response
The code for request implementation is
as follows:

<soapenv:Envelope
xmlns:soapenv ="http://www.
w3.org/2003/05/soap-envelope"
xmlns:wsa="http://www.
w3.org/2005/08/addressing/">
 <soapenv:Header>
 <wsa:MessageID>
 http://example.com/
someuniquestring
 </wsa:MessageID>
 <wsa:ReplyTo>
<wsa:Address>http://example.com/
Myclient</wsa:Address>
 </wsa:ReplyTo>
 <wsa:To>
 http://example.com/fabrikam/
Purchasing
 </wsa:To>
 <wsa:Action>
 http://example.com/fabrikam/
SubmitPO
 </wsa:Action>
 <soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
</soapenv:Envelope>

The code for request implementation is
as follows:

< soapenv:Envelope
 xmlns:soapenv ="http://
www.w3.org/2003/05/soap-
envelope"
 xmlns:wsa="http://www.
w3.org/2005/08/addressing">
 <soapenv:Header>
 <wsa:MessageID>http://
example.com/
someotheruniquestring</
wsa:MessageID>
 <wsa:RelatesTo>http://
example.com/
someuniquestring</
wsa:RelatesTo>
 <wsa:To>http://example.
com/MyClient/wsa:To>
 <wsa:Action>
 http://example.com/
fabrikam/SubmitPOAck
 </wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
</soapenv:Envelope>

Requirements for addressing in WSDL are presented in the following fragment:

<binding name="cargoBookingPortBinding" type="tns:cargoBooking">
 <wsaw:UsingAddressing wsdl:required="true" />
......
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="bookCargoUnit">

Chapter 1

[49]

 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <fault name="missingCargoId">
 <soap:fault name=" missingCargoId" use="literal"/>
 </fault>
 </operation>
 </binding>

WS-ReliableMessaging
WS-ReliableMessaging provides an interoperable protocol that a Reliable
Messaging (RM) source and RM destination are used to provide the application
source and destination with a guarantee that a message that is sent will be delivered:

Authority Primarily
addresses

Latest release

OASIS Composability,
Loose Coupling,

•	 http://docs.oasis-open.org/ws-rx/
wsrm/200702

•	 http://specs.xmlsoap.org/ws/2005/02/
rm/ws-reliablemessaging.pdf

The guarantee is specified as a delivery assurance. The protocol supports the
endpoints by providing these delivery assurances. It is the responsibility of the
RM source and the RM destination to fulfill the delivery assurances or raise an
error. It would be right to see the analogy between WSRM and JMS in the Java
world in terms of delivery assurance. The key differences are that JMS is highly
platform-specific with a standard API, whereas WSRM is platform-independent
by means of SOAP (and WSDL). Of course, WSRM agents (handlers) must be
implemented behind services WSDLs and also on the client side to retransmit the
message if necessary or provide the acknowledgement; however, these agents are
invisible at the service/application's interaction levels. WSRM is an extension of
SOAP, and all of its protocols are based on the concept of sequence. Sequence is
the number of predefined steps, shown as follows:

•	 CreateSequence

•	 CreateSequenceResponse

http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[50]

•	 CloseSequence

•	 CloseSequenceResponse

•	 TerminateSequence

•	 TerminateSequenceResponse

You can see the latest specification on the official OASIS site.

Reliable messaging in a WSDL implementation is as shown in the following
code snippet:

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsam="http://www.w3.org/2007/
 05/addressing/metadata"
 xmlns:rm="http://docs.oasis-open.org/ws
 -rx/wsrm/200702"
 xmlns:tns="http://docs.oasis-open.org/
 ws-rx/wsrm/200702/wsdl"
 targetNamespace="http://docs.oasis
 -open.org/ws-rx/wsrm/200702/wsdl">

 <wsdl:types>
 <xs:schema>
 <xs:import namespace="http://docs.oasis-open.org/ws-rx/
wsrm/200702"
 schemaLocation="http://docs.oasis-open.org/ws-rx/wsrm/200702/
wsrm-1.1-schema-200702.xsd"/>
 </xs:schema>
 </wsdl:types>

 <wsdl:message name="CreateSequence">
 <wsdl:part name="create" element="rm:CreateSequence"/>
 </wsdl:message>
 <wsdl:message name="CreateSequenceResponse">
 <wsdl:part name="createResponse" element="rm:CreateSequenceRespon
se"/>
 </wsdl:message>

 <wsdl:message name="TerminateSequence">

Chapter 1

[51]

 <wsdl:part name="terminate" element="rm:TerminateSequence"/>
 </wsdl:message>
 <wsdl:message name="TerminateSequenceResponse">
 <wsdl:part name="terminateResponse" element="rm:TerminateSequence
Response"/>
 </wsdl:message>

 <wsdl:portType name="SequenceAbstractPortType">
 <wsdl:operation name="CreateSequence">
 <wsdl:input message="tns:CreateSequence" wsam:Action=
"http://docs.oasis-open.org/ws-rx/wsrm/200702/CreateSequence"/>
 <wsdl:output message="tns:CreateSequenceResponse"
wsam:Action="http://docs.oasis-open.org/ws-rx/wsrm/200702/
CreateSequenceResponse"/>
 </wsdl:operation>

 <wsdl:operation name="TerminateSequence">
 <wsdl:input message="tns:TerminateSequence" wsam:Action=
"http://docs.oasis-open.org/ws-rx/wsrm/200702/TerminateSequence"/>
 <wsdl:output message="tns:TerminateSequenceResponse"
wsam:Action="http://docs.oasis-open.org/ws-rx/wsrm/200702/
TerminateSequenceResponse"/>
 </wsdl:operation>
 </wsdl:portType>

</wsdl:definitions>

Policy and metadata
The service metadata describes what is needed for the service consumers, including
composition controllers to establish successful interchange sessions with service
provider(s). Some of the WS specifications are described in the following sections.

WS-MetadataExchange
Almost all elements of WSDL can be perceived as metadata: XSD structures, and also
as message data types, policies, provider's capabilities, requirements for transaction
control, or reliable messaging. The details of WS-MetadataExchange are as shown
in the following table:

Authority Primarily addresses Latest release
W3C Discoverability,

Composability, Loose
Coupling

http://www.w3.org/TR/ws-
metadata-exchange/

http://www.w3.org/TR/ws-metadata-exchange/
http://www.w3.org/TR/ws-metadata-exchange/

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[52]

These metadata elements can be pushed or pulled as a whole or partially from
the service provider's contract. In general, these standards describe the way of
encapsulating this data and the extraction protocols. Some elements responsible for
pulling or pushing data and its encapsulation are presented in the following table:

Element Description
mex:GetMetadata A requester may send a GetMetadata request

message to an endpoint to retrieve the metadata
associated with that endpoint. This operation may be
supported by the WS-MetadataExchange compliant
service endpoints.

mex:MetadataReference This is an endpoint reference to a metadata resource
and is of the type EndpointReferenceType as
defined by WS-Addressing. This metadata resource
must support the Get operation, WS-Transfer,
to allow the retrieval of the metadata unit for the
MetadataSection class's dialect and identifier.

mex:Location The mex:Location element may be used to specify a
reference to an HTTP metadata resource. A requester
may use an HTTP GET operation on the indicated URL
to retrieve the metadata.

mex:Metadata This contains one MetadataSection child class for
each distinct unit of metadata. When there is a large
amount of metadata, the children should contain
MetadataReferences or MetadataLocations
instead of the actual information.

Standard Business Document Header (SBDH)
The SBDH standard provides a document header that identifies a key data about a
specific business document. The details of SBDH are shown in the following table:

Authority Primarily
addresses

Latest release

UN/CEFACT GS1 Discoverability http://www.gs1tw.org/twct/gs1w/
download/SBDH_v1.3_Technical_
Implementation_Guide.pdf

Since SBDH standardizes the way data is presented, the data elements within SBDH
can be easily located and leveraged by multiple applications. SBDH is a business
document header and should not be confused with a transport header. It is created
before the transport routing header is applied to the document and is retained after
the transport header is removed.

http://www.gs1tw.org/twct/gs1w/download/SBDH_v1.3_Technical_Implementation_Guide.pdf
http://www.gs1tw.org/twct/gs1w/download/SBDH_v1.3_Technical_Implementation_Guide.pdf
http://www.gs1tw.org/twct/gs1w/download/SBDH_v1.3_Technical_Implementation_Guide.pdf

Chapter 1

[53]

Although SBDH is not the transport header, data in it can be used by transport
applications to determine the routing header since it does contain the sender,
receiver, and document details. It can also be used by business applications to
determine the appropriate process that is to be performed on the business
document. The specifications are explained in the following section.

WS-Policy
This very wide specification establishes conditions and restrictions for a service's
invocation and consequently for all compositions it may participate in. The details
of WS-Policy are as follows:

Authority W3C
Primarily addresses Composability, Loose Coupling, and Abstraction
Latest release http://www.w3.org/TR/ws-policy/

Most importantly, when compared with human-readable SLAs, these conditions are
expressed in a machine-readable form. In fact, this specification has a lot of common
features with the metadata exchange standard, but it's far wider as it expresses service
requirements and preferences regarding all other WS-* specifications in a detachable
form, presented as an XML policy file. This separation allows you to centralize
all policies and present them in a hierarchical way, simplifying attachment to the
provider's WSDL.

Some delivery assurance elements along with their descriptions are as follows:

Element Description
AtMostOnce Messages are delivered at most once, without duplication. It is

possible that some messages may not be delivered at all.
AtLeastOnce Every message is delivered at least once. It is possible that some

messages are delivered more than once.
ExactlyOnce Every message is delivered exactly once, without duplication.
InOrder Messages are delivered in the order that they were sent. This

delivery assurance can be combined with one of the preceding
three assurances.

The WS-Policy delivery assurance elements are typically used together with
other WS-* specifications for enforcing certain operational requirements, such as
reliable messaging timeout and acknowledgement interval, as shown in the next
code snippet.

www.allitebooks.com

http://www.w3.org/TR/ws-policy/
http://www.allitebooks.org

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[54]

The following code will help us understand how the policy is defined as a child
element of the wsdl:definitions element:

<wsp:Policy wsu:Id="RMAcknowledge_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsaw:UsingAddressing/>
 <wsrm:RMAssertion>
 <wsrm:AcknowledgementInterval Milliseconds="500"/>
 <wsrm:InactivityTimeout Milliseconds="100000"/>
 </wsrm:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

The last step will be the referencing of the policy with the child element of the
wsdl:binding element shown as follows:

<wsdl:binding name="testWsRmBinding" type="tns:TestWSRM">
 <wsp:PolicyReference URI="# RMAcknowledge_policy "/>
…...

Transaction control and activity coordination
The specifications of transaction control and activity coordination are explained
in detail in the following sections.

WS-Coordination
The details of WS-Coordination are as shown in the following table:

Authority Primarily addresses Latest release
OASIS Reusability, Composability http://docs.oasis-open.

org/ws-tx/wstx-wscoor-
1.1-spec-errata-os/wstx-
wscoor-1.1-spec-errata-
os.html

This specification is the foundation for the service federation, allowing services
from different business and technology domains to coordinate their interoperability
operations, both long- and short-term living. According to this specification,
it's realized in two stages:

•	 In the first phase, all participants registered in one unified coordination
context and communication protocols are agreed upon

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-os.html

Chapter 1

[55]

•	 In the second phase, all registered participants exchange messages
according to the protocols and rules of engagement established during
the registration phase

This specification is responsible for the following:

•	 Creating and formatting CoordinationContext that contains registration
information, which is mandatory for all participants

•	 Establishing a coordination protocol based on CoordinationContext,
and the ways of distributing this context between participants

•	 Establishing a registration protocol

CoordinationContext in the header of a SOAP message can be seen in the
following code snippet:

<wscoor:CoordinationContext>
 <wsu:Expires>2014-03-21T00:00:00.0000000-05:00</wsu:Expires>
 <wsu:Identifier>
 uuid:0d13748c-7a09-8520-a911-17c73f09ac82
 </wsu:Identifier>
 <wscoor:CoordinationType>
 http://schemas.xmlsoap.org/ws/2003/09/wsat
 </wscoor:CoordinationType>
 <wscoor:RegistrationService>
 <wsa:Address>
 http://erikredshipping.com/ShcheduleCoordinationService/
RegistrationCoordinator
 </wsa:Address>
 <wsa:ReferenceParameters >

 <refApp:App1> ... </refApp:App1>
 <refApp:App2> ... </refApp:App2>

 </wsa:ReferenceParameters >
 </wscoor:RegistrationService>
</wscoor:CoordinationContext>

The WS-Coordination specification is the foundation for other specifications, setting
the standards for complex coordinated activities: WS-AtomicTransaction and WS-
BusinessActivity. Both of these define a type of agreement coordination that
addresses the needs of complementary classes of activities, ACID- and BASE-type
requirements, as discussed later in this chapter.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[56]

Security
Security standards and specifications will be discussed in Chapter 2, An Introduction
to Oracle Fusion – a Solid Foundation for Service Inventory, and Chapter 7, Gotcha!
Implementing Security Layers, dedicated to security and Oracle's approach
for its implementation.

Interconnected WS-* standards
To understand how WS-* standards could help solve some problems that are not
addressed by the simple model of contemporary SOA, we will walk through the
process-identification flow diagram shown in the next figure. This diagram is based
on the interactions of web-based services as native areas of the WS-* standards
implementation. We will start with the definition of the process as a number
of services invocations, sequential or parallel, with different durational
and transactional requirements.

First, let's identify whether it is a long or short running process. Longevity is the
subject of technical and/or business timeouts. The first one is related to a time slot;
here, your services in composition could hold on to the active state without draining
too many resources. The second is set by business requirements and can be quite
substantial (days, weeks, and so on). Moving by the left lane, we will first look at the
synchronous services and the standards associated with them. In common cases, we
could assemble service compositions from different domains, so a Service Broker
will be compulsory; it will help us resolve the disparity of the data models, formats,
and protocol bridging as well.

Also, brokering means that routing and mediation could be necessary for complex
service activities when more than two services are involved. In these cases, Service
Broker will act as a Composition Controller. Both of them are SOA patterns,
arguably most-commonly used, and we will see their implementation in detail
soon. If it's just a synchronous single interaction between a service consumer and a
service provider, it's called a primitive activity. In general, the following two major
standards must be taken into consideration:

•	 WSDL should have a binding to a proper MEP; otherwise, communication
simply will not be possible.

•	 The WS-ReliableMessaging service must be implemented if a feeble
connection or slow response from a service message-receiver could affect
service activities. The application of this standard will ensure that the
message is delivered or at least provide an acknowledgement about the
state of the delivery.

Chapter 1

[57]

Let's move on to the middle lane. If more than two participants in a synchronous
composition can be expected, for example, one composition initiator and two or
more composition members, the number of WS-* standards and specifications
involved will be doubled. Composition Controller becomes mandatory in this
scenario. In addition to WSDL MEPs and WS-RM from primitive activities, the
transaction coordination based on WS-AtomicTransaction arguably will be one
of the most important specifications for these types of composition. It will address
typical ACID requirements related to multiphase commits:

•	 At design time, define all the Atomic Transaction Coordinators
(ATC) phases in WSDL with specific messages such as wsat:Prepare,
wsat:Prepared, wsat:Aborted, wsat:Commit, wsat:Rollback,
wsat:Commited, and wsat:Reply. Bind ATC messages to the operations.

•	 At runtime, initiate the transaction, send messages, collect votes, commit if
all participants have voted positively, send the rollback signal if any vote is
not received in the designated time slot or is negative, repeat operations if
necessary, and propagate the response to the initial sender.

With many services involved in this complex activity, some from different domains
with different data models (which is common in the adapter technology layer),
requirements for complex transformations could be anticipated. The transformation
technique could be different, of course; sometimes, you may come across a proprietary
technique. However, here we will discuss the standard XSLT/XQuery approaches.
Most common complex transformations that we will be coming across in our designs
are as follows:

•	 The message aggregations design: Here, we combine several
messages in one that are further processed by a service that can accept
only coarse-grained data models. If messages arrive sequentially, XSLT
alone will not be enough; some transformation's intermediate store will
be necessary if we do not want to keep the messages in.

•	 The message debatching or splitting design: Here, we separate one message
that contains a batch of similar messages into a sequence of messages suitable
for processing by a service with a fine-grained data model. This task is
very common; inbound messages usually in a non-XML format and whole
processing will require a WS-RM implementation, as ordered sequential
processing is involved in providing possible acknowledgements for batch
or individual messages.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[58]

Finally, for the middle lane, the most common standard WS-Addressing will
be compulsory if message mediation is required for complex service activities.
Usually, it's presented as a content-based routing, sometimes based on rules
handled by the rule engine; static routing tables are also common.

This concludes the mapping of synchronous service activities to the technology
standards and WS-* specifications.

Asynchronous services are more complex, as more infrastructural technical
elements are required as follows:

•	 Asynchronous queuing will require server resources such as topics
and/or queues

•	 State repository will be required for resource hibernation during the
composition's inactive state

Their realization is not covered by any particular WS-* specification, but their
presence is significant for the WS-BusinessActivity specification's implementation.
The WS-BusinessActivity specification together with WS-AtomicTransaction and
support from WS-Coordination has presented the mechanism controlling service
activities over a long period of time. The Business Activity coordination protocol
can be perceived as a chain of discrete over-the-time atomic coordinations. As it is
clear from the context, rollback actions are virtually impossible between different
stages of business activities, so the possibility to have an arbitrary compensative
transaction is the essential part of this protocol. Using compensation, it is possible to
return the data of an application's participant to a consistent state, but not exactly to
the state before the transaction, such as the Atomic Coordination. The complexity of
compensative transactions could be very high, allowing you to correct the changes
happened many steps before the actual error.

Further implementation of standards and recommendations in the right
lane is similar to implementing complex synchronous activities; this confirms
the fact that an asynchronous business activity is a chain of complex synchronous
activities. A special significance of asynchronous transactions is that it has a
WS-Coordination specification for its role of establishing a coordinator service
model we mentioned earlier.

Chapter 1

[59]

The composition of a coordinator service model consists of the
following services:

•	 The activation service, which creates new coordination contexts and
associates them with the planning activity

•	 The registration service, which registers a service's participant and
distributes coordination contexts among them

•	 Protocol-specific services, which represent the protocols supported by the
coordinator's coordination type

•	 The coordinator controller service of this composition, also known as the
coordination service

A key element of the coordination context is the correlation key, which is
common for all activities in a particular composition. WS-Addressing's elements
wsa:ReferenceParameters and wsa:ReplyTo could be employed as a container
for correlation ID and address, where the response will be sent:

<soap:Header>
 <wsa:MessageID>uuid:35f19ca8-c9fe</wsa:MessageID>
 <wsa:Action>http://erikredcarrier.com/ship</wsa:Action>
 <wsa:To>http://www.portaquaba.com:7070/ShippingService</wsa:To>
 <wsa:ReplyTo>
 <wsa:Address>
 http://www.portbremen.com:7777/response
 </wsa:Address>
 <wsa:ReferenceParameters>
 <customHeader>correlationKey</customHeader>
 </wsa:ReferenceParameters>
 </wsa:ReplyTo>
...

Combined together, these elements form the SOA pattern called Service Callback,
which is most commonly used in asynchronous communications.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[60]

Another pattern that is common to all types of service interactions related to the
service is the Policy Centralization SOA pattern. The WS-Policy specification is
a machine-readable language for representing these web service capabilities and
requirements as policies. A policy makes it possible for providers to represent such
capabilities and requirements in a machine-readable form. A separate policy file such
as policy.xml can contain several policy expressions that are grouped under different
WS-Utility identifiers (wsu:Id) for simplified referencing, both external (http://
erikredcarrier.shipping.com/policy.xml#common) and internal (just #common);
please see the PolicyReference examples shown in the following code snippet:

<Policy wsu:Id="common">
 <wsap:UsingAddressing />

 <!-- other policies with usage attributes : wsp:Optional="true"
-->
</Policy>

The representation Policy to the service consumers is designed by binding policy
expressions to WSDL elements, to service operation, for example as shown in the
following code:

<wsdl:binding name="AddressingBinding" type="tns:RealTimeDataInterfa
ce" >
 <PolicyReference URI="#common" />
 <wsdl:operation name="getCargoStatus" >...</wsdl:operation>
 ...
</wsdl:binding>

The last standards, presented as optional for all lanes are related to complex event
processing specifications: WS-Notifications (OASIS) and WS-Eventing (W3C).
In a nutshell, both of them describe the publish-subscribe protocols with the
propagation of events that follow right from the publisher to the subscriber,
some sort of fire-and-forget messaging patterns. It is important to remember that
both subscribers and consumers are not always the same actors; most interestingly,
for Brokered Notification, some form of Service Broker called Event Broker will be
employed for distributing events between multiple consumers.

Chapter 1

[61]

SOA Standards and Patterns implementation roadmap

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[62]

We didn't cover all the existing WS-* specifications, but the ones described earlier are
quite capable of dealing with challenges, something that the contemporary SOA is
unable to address. These specifications were under development during the last ten
years, and some of them are still evolving; however, overall, the technology stack
based on WS-* is very mature. Although some of the specifications are a bit complex,
the fact that all of them are based on clearly defined principles has made them
commonly acceptable and adoptable not only by main market players/sponsors
of standardization committees, but also by open source communities, acting as
some of the most valuable contributors toward the proliferation of these standards.

Abstract principles and vendor-neutral standards do not exist in a vacuum;
they have practical service boundaries as we have seen during the discussion
of the standards' implementation roadmap. We even touched upon some roles
of patterns discussing principle-standards relations. These relations could have
many forms and dependencies with regards to the infrastructural areas of service
implementation. Every area has its own distinctive characteristics, a proprietary
for every single step of service's lifecycle such as analysis, modeling, development,
testing, and implementation.

Collectively, they are shaping service boundaries in the form of complex
building blocks that connect internal information assets with external consumers
of those assets.

Distinctive characteristics of these blocks are formalized in a collection of design
rules, one for each particular area; however, collectively, they aim at the same
goal of maintaining a desirable level of composability for services that exist in
these ecosystems.

SOA frameworks
Framework is one of the most commonly used terms, not just only in IT (probably,
together with pattern). It is also commonly said that SOA is a framework in itself. This
means that the SOA framework is dedicated to the technological and operational areas
for the implementation of SOA Principles in order to achieve the predefined goals. One
problem here though is that it's too often mentioned that principles must be applied in
a meaningful context.

Chapter 1

[63]

Too much about framework, which by its dictionary definition should show some
precision as mentioned in The American Heritage® Dictionary of the English Language,
Fourth Edition copyright ©2000 by the Houghton Mifflin Company:

1.	 A structure for supporting or enclosing something else, especially a skeletal
support used as the basis for something being constructed.

2.	 A fundamental structure, as for a written work.
3.	 A set of assumptions, concepts, values, and practices that constitutes a way

of viewing reality.

So, maybe from reviewing SOA realities, we could identify the number of
frameworks it consists of and their distinguishing characteristics, as we can
see in the following figure:

The starting point would be the realization of the ultimate goal of any business
application's infrastructure to have a hot-pluggable collection of business applications
(App1 to App N), each providing and effectively serving its own functional context.
All functional contexts have strictly defined non-overlapping boundaries; physical
realization of applications has a high level of technical autonomy, which in fact makes
these applications hot-pluggable. At any given point in time, an application that
becomes technically obsolete or functionally irrelevant can be replaced with its more
modern and cost-efficient equivalent.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[64]

As long as all functional boundaries are precise and individual, business logic
(BL) encapsulated within each application is transpired and comprehendible.
It can be clearly separated from application resources and modeled/remodeled using
platform-independent means as there are no parasitic couplings between separated
elements of business logic of any kind. Every application presents public operations
and related data models via standardized APIs using common notations, available
for all involved parties in a comprehendible way.

A number of communication protocols and exchange patterns have been reduced to
reasonable minimum with well defined timeouts and compensation activities if there
are occasional miscommunications.

What we just described is a collection of services, as they should be designed from
the beginning. A service can be perceived as an application if a functional context
permits this without affecting Loose Coupling and Abstraction negatively.

The following two assumptions are distinctive:

•	 Assumption 1: Services have non-overlapping functional boundaries,
encapsulating the logic that is specific only for this service.

•	 Assumption 2: Services allow you to access the service logic only via a
publicly available service contract, which is expressed using the canonical
data model and canonical expressions for capabilities. Canonical protocols
complete the picture.

Chapter 1

[65]

In this case, the implementation of a new business process would be achieved by
simply recomposing existing service capabilities in the sequence and duration as
per the new functional context.

We will need some hypothetical area where this recomposition will be possible
technically. There shouldn't be any problem, as the protocol, data, and interfaces
stay homogenous. Any programming language or platform will do if the result of
the recomposition—the new service—follows the initially declared standards for
the services.

The fact that a newly composed application is also the service is important, as this
composition could potentially be part of an even bigger composition; therefore, all
strict standards must be applied all the way. This idealistic picture is pretty close
to the contemporary SOA model. We have only one solid framework here that is
used for business service composition, and with this, we practically accomplish very
little. All our compositions would be just invocations of existing APIs' capabilities
with values' assignments in between. No transformation is required as all data
models are CDM-compliant, and a unified protocol eliminates the necessity of the
bridging protocol.

The first real wake-up call would come from the realization that not all our
APIs really are parts of the canonical Federated Endpoint Layer (as explained in
Chapter 6, Finding the Compromise – the Adapter Framework). The Assumption 2 item
mentioned in the previous bullet list is quite often too optimistic in real life;
this means that:

•	 Data model transformation and data format transformation (translation)
could be needed.

•	 There could be no APIs at all. Even worse, data required for a new composite
service will be pulled from various sources, sometimes with multiple data
cleansing and filtering routines extended over a period of time.

•	 Complex transformations will be performed to maintain the initially declared
data granularity on service composition, such as aggregation or debatching.

•	 Messaging and/or transport protocols are not canonical, and this disparity
must be harmonized.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[66]

The Application Business Connector Services
framework
Following the principle of separation of concerns, we must preserve our Business
Service Composition's hypothetical area that is free from all disparities; this
is suitable only for fast and clean compositions. Thus, the implementation of
Application Business Connector Services is compulsory. This is the first concrete
framework in the list of SOA frameworks we are going to discuss. The sole purpose
of this framework is to compensate for the lack of the service(s) to present a
standardized contract, suitable for repeatable reuse and utilization. Services residing
in this framework are special forms of wrappers, designed to receive/extract,
translate, transform, filter, validate, and propagate (route) further information
required for business compositions, that is, implement the VETRO pattern (http://
www.oracle.com/technetwork/articles/soa/jellema-esb-pattern-1385306.
html). You can see the required functionalities, implementation techniques, and
service models for this framework in the following list of requirements:

•	 Implementation technique:
°° Synchronous implementation for simple MEPs
°° Asynchronous transaction coordinator for adapters (data-collectors),

handling long-running data aggregation transactions

•	 Service models:
°° Adapter services (Legacy Wrappers, File Gateways, FTP Hotels,

and so on) are utility services in general

•	 Required functionalities:

°° Availability of Protocol adapters such as SOAP.
°° Availability of Transport Adapters available such as JMS/MQ, AQ,

and HTTP.
°° Availability of Application adapters such as OEBS, Siebel, and so on.
°° Availability of Component adapters such as DBs for instance.
°° Presence of Atomic Transaction Coordinator at the adapter level,

and the implementation of the voting mechanism.
°° WS-ReliableMessaging support.
°° Data model and data format transformations support (types and

engines) and protocol bridges (SOAP<->REST).
°° Automated fault handlers (retry mechanisms) for southbound

adapters mostly.

Chapter 1

[67]

°° Implementation of the FTP(S) Gateway pattern.
°° Implementation of the File Gateway pattern.
°° Filesystem objects' (FSO) replication such as files and

folders/subfolders.
°° Reverse proxy realization for security reasons.
°° API for JCA adapters that provides the possibility to create

your own adapters.
°° Reliable store-and-forward queue mechanisms with full message

traceability and no message losses.
°° Message filtering mechanisms, suppressing unwanted responses.
°° Multiconsumer queues' support.
°° Implementation of the high-availability reliable adapters.

The following figure explains the presented list:

This framework is kind of special. Ideally, it is not supposed to exist; yet, it is one of
the most common and, at the same time, heavy frameworks in use. It's heavy with
embedded functionalities, practically all WS-* standards employed here in order to
support the VETRO pattern's implementation.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[68]

There is a strong reason for viewing these types of services as temporary services,
exiting only during the time of the transition of incapable application to a consistent
service state with all SOA principles properly applied. This transition could be very
time consuming, so some characteristics should be observed constantly in order to
not create hybrid services and make the situation worse.

The ABCS design rules usually are as follows:

•	 Northbound ABCS receives any type of messages and produces a canonical
model (CDM) for the service composition layer. Inbound Debatching/
Aggregation is performed here.

•	 Southbound ABCS gets CDM and reliably delivers application-related
messages.

•	 ABCS is responsible for consistently maintaining all message header elements.
•	 Error occurring in the active (poller) northbound ABCS will be not

propagated further. Acknowledge the message returned to the northbound
application if necessary, and a record is usually created in the audit log.
Numbers of extraction retries could be unlimited, as a business transaction
is not started yet. Still, limiting the number of retries can be wise.

•	 Error occurring in southbound ABCS is reported back to the composition
controller or actual service worker. The number of retries allowed is limited
and policy-based. Depending on the type of transaction (sync-async), ATC
rules are applied.

•	 ABCS is highly tailored to the endpoint application service. It is not
recommended to have one terminal adapter for several endpoints. It would
be quite right to say that the adapter belongs more to a service-enabled
application than an SOA inventory.

•	 If the number of identical adapters is substantial, the Adapter Factory pattern
could be applied for instantiating particular adapters of similar types (only
the actual endpoint is different and looked up from the registry). Adapter
Factory Service acts as a coordinator and does not belong to the ABCS
technology layer.

•	 Transaction Coordinator is a valid SOA pattern for ABCS if data extraction
procedures require transactional control. For instance, some of the data must
be extracted from the first DB and the extraction flags subsequently updated,
then another portion of data extracted from second DB, and values changed
again and after that consolidated and validated following the final update. We
must remember that data extraction routines must not be mixed with business
logic; otherwise, we unconsciously introduce a hybrid service on an adapter
layer, scattering the logic over and making this solution very hard to maintain.

Chapter 1

[69]

Again, from pure logic, ABCS's have no right to exist. If your application is not
capable of being a reliable composition member, it is better to something about it,
such as redesign, rewrite, retest, and reimplement. Alas, it doesn't work this way in
real life. From the version control standpoint, ABCS's are inevitable; however, how
many times did we witness that adapter services with complexities are compared
to the application logic it tried to isolate and abstract. From very beginning though,
it meant presenting a lightweight wrapper only. In most cases, that's the result
of the second dissonance with reality, that is, Assumption 1 is wrong and our
application, even with proper WS API, is too bulky, sluggish, and not reliable to
act as a composition member. Yes, implementation of ABCS could potentially
help, but some SOA principles have to be sacrificed (original applications such as
Autonomy, Loose Coupling, and Abstraction), which makes the situation even
worse. Thus, a service must be redesigned in this scenario, as an adapter alone
cannot improve its composability.

Obviously, two new linked frameworks have to be introduced, although there is
nothing new about them; they are as follows:

•	 The Object Modeling and Design framework must be adopted for proper
implementation of the separation of concerns principle. As a practical
outcome of its application, functional boundaries of the services must be
rearranged; autonomy of the services improved due to resource isolation,
if it's possible; and the negative couplings resolved by the application of
logic-to-contract positive coupling.

•	 The XML Design framework as a support of canonical business model must
be presented. XML message is a serialized transportable representation of the
business object, encapsulated in service logic. Therefore, this framework in
general is the extension of objects' modeling and design.

It is hard to say which one of these two frameworks is the primary one as both of
them have a particular purpose, that is, to promote the Contract-First design rule
as much as possible. Surely, this design rule is more applicable in the top-down
approach when we have the possibility to design a service from scratch. Redesigning
a bulky legacy application significantly limits our options, but functional
decomposition together with the discussed ABCS's layer still makes it possible.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[70]

The Object Modeling and Design framework
The details of the GF02: Object Modeling and Design framework are as shown in the
following table:

Implementation technique Service models Required functionality
Avoid the generation of a
contract (WSDL) from the
service logic

All service models that
include Utility services,
Entity Services, Task
Services, and so on (with
some limitations for
orchestrated services)

Object-to-XML mappings

Identify all service metadata
elements

Flexible XML marshalling

Register metadata elements in
an individual service profile

Support of WS-Security

Persistence support
(mapping relational data to
XML and object model)
Complete support of
object- and aspect-oriented
programming (by default)

The following figure explains the table:

This framework is vendor-specific and is only related to the component/service
implementation. Anything will do really, such as Spring Web Services / MVC,
the .NET framework, and so on.

Chapter 1

[71]

For functional decomposition, we will the need combined efforts of business
analysts, service architects, and technical infrastructure experts for balancing SOA
principles discussed previously with technical feasibility of redesigned services
(in order to understand the physical level of decomposition required). To follow
the Contract-First principle, any SDK is good.

The XML Modeling and Design framework
The third related framework, XML Design, is interrelated to Object Design and
primarily concerned with establishing a canonical business model for the service
inventory. This model is not a single entity; it's a collection of enterprise entities in
the form of Enterprise Business Objects closely related to the existing DB models that
describe primary enterprise assets such as Order, Invoice, and CargoUnit. One possible
source of them is already mentioned in functional decomposition, which is the oldie
but goodie reverse engineering fashion that can harvest these entities for us. With the
top-down approach, these entities can be acquired from technology-specific forums
that are related to business functional areas such as telecommunication, transportation,
and healthcare. However, you must be quite skeptical about the amount of data
presented on these resources; these specifications are some sort of all-weather cases
that are oversized and over-bloated with elements you could never use in your
business. By following them blindly, you can end up with a simple purchase order
with two or three order lines of 3 Meg size. Another problem is that these models are
quite illogically partitioned, mixing together all essential building blocks:

•	 Qualified data types (QDT)
•	 Qualified data object (QDO)
•	 Message header and process header elements
•	 Message tracking data

Amazingly, through some international projects, we also witnessed the
implementation of regional data models using local languages. Yes, you won't believe
it. An entire local messaging hierarchy (XML elements, attributes, documentation,
and constraints) has been implemented in one Scandinavian language—so much for
discoverability and composability, without mentioning the encoding issues.

The foundation for the XML framework has been well set by the UN/CEFACT
Document XML Naming and Design Rules draft version published in August 2004.
Please acquire the latest version and follow the design rules section (see Appendix C,
Naming and Designing the Rules List). They are all important, from [R 1] to [R 185]; we
just would like to quote the most important part from our point of view.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[72]

The following table lists the implementation techniques, service models, and some
selected design rules using the contract-first approach, as follows:

Implementation technique Service models Selected Design rules
(out of 185)

Avoid XSD generation from
DB model

All: Utility Services,
Entity Services, and
Task Services

[R 4] ELEMENT, ATTRIBUTE
AND TYPE NAMES MUST
BE IN THE ENGLISH
LANGUAGE, USING
THE PRIMARY ENGLISH
SPELLINGS PROVIDED IN
THE OXFORD ENGLISH
DICTIONARY.

Identify all EBO/EBM
elements

[R 5] LOWER-CAMEL-CASE
(LCC) MUST BE USED FOR
NAMING ATTRIBUTES.

Follow Naming and Design
Rules List

[R 6] UPPER-CAMEL-CASE
(UCC) MUST BE USED FOR
NAMING ELEMENTS AND
TYPES.

Register message-related
metadata elements in service
repository

[R 13] A ROOT SCHEMA
MUST BE CREATED
FOR EACH UNIQUE
BUSINESS INFORMATION
EXCHANGE.
[R 23] A QUALIFIED DATA
TYPE SCHEMA MODULE
MUST BE CREATED

The figure explaining the table is as follows:

Needless to say, these rules also must be applied wisely with proper understanding
of all consequences. For example, following the rule [R 60], that is, THE XSD: ANY
ELEMENT MUST NOT BE USED, we would not be able to implement an agnostic
composition controller using the message container concept. However, this rule is
highly important for security reasons and must be strictly followed for ABCSs and
in Perimeter Gateways implementations.

Chapter 1

[73]

For now, we have identified three frameworks that are responsible for shaping and
creating a service, establishing communication, and resolving interchange disparities.
The Hypothetical Business Service Composition area remains untouched, but now it is
the time to find out what is it, really. From the standards roadmap diagram, we realized
that complex compositions could be synchronous with elements of atomic transaction
coordination and asynchronous with running chains of complex communications,
lasting for very extended period of time. Different technical standards and operational
requirements delineate two new frameworks, each dedicated to its own type of service
interactions, mostly based on time metrics. We will start with asynchronous service
compositions, as they are more technically demanding.

The Enterprise Business Flows framework
Firstly, the presence of State Repository is a very distinctive feature, a proprietary
for this framework. It will allow all business flows to be consolidated under this
technical platform, deferring the transactional state while waiting for a response.
It can be done by any form of DB such as Relational, XML, or NoSQL, depending
on types of messages running in these flows. The Relational type is still one of the
most common; it allows you to conduct a quick search of hibernated instances
and associations with the designated Correlation ID. Possible glitches, resulting in
leaving orphan-hibernated records, can also be more easily dealt with in a relational
environment. The storage overhead, which is common for relational models, must
be taken into consideration during the planning phase. Also, it's important to realize
a unified Enterprise Business Flow framework's state repository can present a single
point of failure and/or a performance bottleneck, so proper DBA administration,
replication, and maintenance is one of the highest demands for this framework.

To make business flows more manageable and centralized, another element of
technical infrastructure should be observed as a decision service is based on rules
engine. We deliberately segregate the rules, associated with pure business logic and
centralize them in one location, thus making it possible to employ dynamic message
routing and process invocation, value mapping, and data sorting processes. Of
course, taking some logic away from the compound process reduces its autonomy
and also could present a single point of failure, but this calculated risk makes
business flows more agile and quickly adaptable to the shifting business conditions.

Task-orchestrated services are most commonly composed using languages based on
WS-BPEL specifications (Business Process Execution Language). Common requirements
(such as the implementation techniques, service models, and required functionalities)
for the GF04: EBF framework are given in the following following list of requirements:

•	 Implementation technique:
°° WS-BPEL, Orchestration

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[74]

•	 Service models:
°° Task Orchestrated Services

•	 Required functionalities:

°° Level of WS-BPEL support (versions, extensions) with full
orchestration features, which include branching, parallel processing,
conditions, looping, scoping, and so on.

°° Correlations and correlations sets, which include native support for
long running processes. Native transition for different protocols,
that is, SOAP/HTTP <->JMS.

°° Implicit Correlation support.
°° Support of standard BPEL Faults, the ability to assign recovery

operations dynamically or statically, and fault handling in
long-running compositions using compensations.

°° Custom activity implementation and custom variable assignment
extensions. BPEL 2.0 extensibility mechanism implementation.

°° Embedded Java support (or any other high-level language).
°° Level of XPath support (XPath versions).
°° SOAP/Message Header support, that is, the ability to reassign the

whole header to the new message.
°° Level of XQuery support (XQuery version).
°° Level of REST support in BPEL. Native support REST and SOAP

resources (partner links).
°° The forEach looping and branching support for the XML nodes

with various interactions technique.
°° Assigning data by default to the missing/empty nodes.
°° Supporting transport and message processing metadata

(Message Tracking Data or Process context metadata).
°° SBDH support (optionally).
°° Dynamic partner links invocation.
°° Rule-based invocation/mediation. Limitations for MEPs and

data transformation.
°° Orchestration engine's capability to clean-up orphan/obsolete data

in hibernation store automatically or by schedule.
°° Transformation accelerators, partial validation.
°° Transport protocol accelerators.
°° Possibility to use external transformation engines for complex

callouts in transformation.

Chapter 1

[75]

°° Runtime optimization of message size in order to avoid possible
memory leak.

°° Various compensation flows implementation technique.
°° Possibility to dynamically invoke different compensation flows

by rules/types of failures.
°° Asynchronous Service Broker implementation.
°° WSIF support (implementations, extensions).
°° Human task workflow support.
°° WS-Policy support.
°° Availability of High Availability (HA) patterns tested for EBF.
°° Level of CEP support (signals, probes, sensors, patterns analyzers,

event language, and so on).
°° Common J2EE patterns/artifacts support SpringBeans, EJB, and so on.

The figure explaining the previous list is as follows:

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[76]

The Enterprise Business Services framework
Business services with high throughput demands, participating in quick running
compositions are naturally interconnected in the Enterprise Business Services (EBS)
framework. Let's not get confused by the naming. The GF05: ESB framework in itself
provides tools and methods to address the required functionalities, which are listed
as follows in terms of implementation techniques and required functionalities:

•	 Implementation technique:
°° Service Broker as composition controller
°° Mediators
°° Asynchronous message queues

•	 Required functionality:

°° Atomic Transaction Coordinator implementation.
°° WS-RM support (versions, implementations, and extensions).
°° WS-Addressing support (versions, implementations, and extensions).
°° Native WS-Coordination support (versions, implementations,

and extensions).
°° Supported transport protocols.
°° Supported messaging protocols.
°° Supported protocol's sync-async bridging.
°° Supported MEPS (for WSDL1.1 - 4; for WSDL 2.0-8).
°° Concurrent Contract support (contact versioning, by proxy or

by other means, such as agents/facades).
°° Supported adapters (including JCA).
°° Process pipes orchestration: looping, branching, termination,

and service chaining.
°° Basic security support: encryption, digital signature,

and authorization/authentication.
°° Types of data model transformation (XQuery, XSLT).
°° Types of message objects transformation (XSD<->JSON, and so on.).
°° Content based routing, dynamic rule-based routing.
°° Types of message validation (complete, partial, nodes, security

screening by regular expression/pattern, and so on).
°° Federated heterogeneous ESB support (native links to other

vendors using the WS-* standard), such as coexistence with
Mule or GlassfishESB (ESB grids, snowflakes).

Chapter 1

[77]

°° WS-Policy, WS-SecurityPolicy, WS-PolicyAttachment support.
°° Big message volume / throughput native support, such as message

throttling, internal component balancing, if any.
°° Possibility support sticky sessions (WS-Correlation), in a cluster as

well, together or without LBs.
°° Scalability and clusters (number of nodes supported, dynamic

scaling, dynamic cloud burst).
°° JCache (jsr-107) support or other caching support technique for

distributed in-memory operations with message's zero-loss tolerance.
Number of transactions achieved in reference architecture.

°° Available Rile Engines, rule types, ruleflows, RETE support,
and available APIs.

°° HA patterns tested for ESB.

The figure explaining the previous list is as follows:

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[78]

Service Bus as a pattern provides structural ways to solve the problems we most
probably have while applying these programmatic and methodological tools in order
to fulfill the requirements. First, similar to enterprise business flows, we will also
deal with composition controllers, managing complex transaction, but in Atomic,
Consistent, Isolated, and Durable way (so called ACID), compared to EBF's tolerant
way, abbreviated as BASE for Basic Availability, Soft-state, and Eventual consistency.
Therefore, the ATC implementation is the one of the top requirements, usually fulfilled
by composition controllers and transaction registration services.

Synchronous service brokers together with message mediators are the natural elements
of ESB. Similar to the EBF framework, EBS has to consolidate and centralize the
business rules, as the magnitude of tasks is similar to asynchronous compositions:

•	 Rule-based routing and transformations
•	 Rule-based invocation and computation

It doesn't mean that rule stores must be separate for synchronous and asynchronous
frameworks. Decentralization must be conducted on technical requirements:
performance and the level of reliability. It is possible to have two (or more) rule
engines and one centralized rule store implemented with high availability options.

The same is true for the Policy store and Policy centralization itself, as they are vital
parts of EBS and service buses. The point here is that due to its more lightweight
nature when compared to EBF, service buses act as service gateways and service
perimeter guards, at least the core components of ESB such as Service Brokers do
this. Security policies, message mediation and invocation policies, and QoS policies
are attached to the service contracts, and most importantly, they are globally
enforced through the implementation of policy declaration and policy enforcement
points on ESB.

We already mentioned several shared stores required for process-related entities
and message metadata. Looking at the broader picture, the physical service
implementation requires some sort of logical structure, providing a segregation of
the services by types, runtime roles, models, engines required for service executions,
failover types, and so on. Actually, we already segregated the Enterprise Business
Flow framework for long running services from the fast-spinning Enterprise Service
Bus. It is simply inevitable, as technical requirements for platforms holding and
running these services are quite opposite, and this fact is obvious enough to start
this segregation from the modeling and analysis phase of a service's lifecycle. That's
a purely governance matter and will be addressed by a separate framework.

Chapter 1

[79]

The Enterprise Service Repository / Inventory
framework
As service governance is a never-ending process that begins before a service is
created and doesn't finish until it is decommissioned, shaping and defining the
service inventory should be addressed at the beginning, before other frameworks.
Nevertheless, we would prefer to come to this point at the end of frameworks'
discussion, when high demands for it become clear and obvious. Yet, this is probably
the most misunderstood and obscured framework. Even naming can be confusing, so
we need to explain the difference between repositories and inventories first.

The service repository is the centralized store of service-related artifacts and
metadata that (possibly) include service code, test results and metrics, and services
message attributes. This store is organized as a container with clearly defined
metadata taxonomy and service ontology, supporting fast search and lookup.
This container is mostly of the design-time nature, but can be actively used on
runtime as well; it is usually supplied with elaborative human-readable interface in
support of design-time discoverability, allowing artifact harvesting out of exiting
implementations and expanding the arbitrary service taxonomy.

The service inventory is the runtime-accessible list of service artifacts mostly related
to a service contract that supports fast search and dynamic service invocations.
These are supported by machine-readable APIs, which are capable of registering
newly deployed services, and search by different elements of service contract
(WSDL and tModels).

Both support discoverability, that is, runtime and design-time, and therefore
should not be implemented separately. One just supports the other. The role of this
framework is immense; the UDDI mechanism was declared as an essential part of
contemporary SOA from the very beginning. We would risk assuming that initially
slow acceptance of SOA was also caused by immature or complex taxonomies of
service inventories. Simply put, it's rather hard to invoke and reuse something that
is difficult to find or comprehend. At the present moment, most standards related to
the service taxonomy are under development and still maturing.

Common frameworks' requirements for GF06: ESR are consolidated as follows:

•	 The Service Repository tool available with links to EBS and EBF
•	 An Object Harvesting mechanism for existing objects/installations

(service/objects discovery in designtime)
•	 UDDI support for ESR, automatic registration on deployment

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[80]

•	 Automatic service discovery in runtime (ESR unified)
•	 Service templates available for ESR (tModels, or something more

human readable)
•	 BPMN2.0 support for all stages of service development—modeling,

analysis, and conversion: UML->XML->XDD->SRL

The following figure explains the Common frameworks' requirements for GF06: ESR:

The role of this framework is to position services as an enterprise asset during
design time, collect all necessary service metadata and store it in a well-partitioned
repository, and provide runtime search capabilities for a dynamic invocation of the
service and service-related artifacts. The results of invocation should be properly
logged using elements of this framework for further business analysis and usage
monitoring. One of the most challenging tasks here is the establishment of the
mentioned well-partitioned repository, and we will dedicate a whole chapter for
defining its possible taxonomy.

Chapter 1

[81]

SOA Service Patterns that help to shape a
Service inventory
Now is the time to put all the discussed frameworks together and identify
the role of patterns in every framework. Six core frameworks are identified,
but some more should be explored to complete the picture:

•	 Security framework: Reliable security is a result of diligent measures that
are applied to all elements of all frameworks, and it's impossible to say
where it is more or less important to have a secure design in place. Still,
from the application of principle separation of concerns, a considerable
amount of security features are usually dedicated to Secure Perimeter and
most commonly implemented as Enterprise Service Bus. So, the security
framework has a lot of similarities to the EBS framework.

•	 Automated Testing framework: This requires technical infrastructure
elements for supporting continuous integration or other forms of automated
build and testing.

•	 Automated Deployment: This framework is strongly related to the previous
test automation framework and are usually used together.

•	 Governance framework: This acts as a combination of precepts and standards
with relations to processes and roles. This framework is based on proper ESR
implementation, but it is much wider than the service's metadata taxonomy.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[82]

One could extend this list of framework, adding more fragmentation; however, from
any practical point of view, these ten frameworks (that is, 6 + 4) are pretty adequate
for dividing the entire technical infrastructure into distinguished and consistent
areas of implementation principles, standards, and patterns. However, what are
patterns, the main subject of this book?

Through the examples we already explored, we can agree on some of the most
frequent problems that are well known to any practicing architect. These problems
are common, and so will the solutions be. Thus, commonly approved solutions
for regular problems have a common name pattern. The history of patterns in
distributed computing is quite similar to the history of the SOA itself. It was a
stiff curve from love and passion to hate and disbelief, and there is a very simple
explanation for it; that is, the pattern is not a panacea and not an ultimate purpose
of your solution design. It would be prudent if from now on you exclude the
following questions from your architectural vocabulary:

•	 What kind of pattern will we apply here?
•	 Is this design according to the approved pattern catalog?
•	 Is it pattern or anti-pattern (http://www.oracle.com/technetwork/

topics/entarch/oea-soa-antipatterns-133388.pdf)?

A pattern is a stick for the lame, a remedy for the disease, not the other way around.
A clear realization of the problem must be identified first; otherwise, you'll be left
looking out for a suitable lame for the stick. This is usually unsuccessful and is
followed by the amputation of the healthy application's part, just for making use of
the patented remedy from the catalogue with some catchy name. If fact, the patterns'
catalogues should be seen as common problems' catalogues. The implementation of
the pattern as a working solution could be in jeopardy if:

•	 You misunderstand the problem on hands, its location (as a framework),
root cause, and its relation with the execution environment

•	 You misinterpret the existing standards, their areas of application, and,
as a result, attempt to reinvent it

•	 You misinterpret the design principles, the balance between them, and the
areas of their application

Chapter 1

[83]

We already gave you a map of the frameworks and standards in relation to the
principles, so it's time now to list all the frameworks we mentioned in this chapter
and structure them for further discussion, as shown in the following table:

Framework Standards
Foundational Functional Decomposition, Enterprise

Inventory, and Logic Centralization
Design Contract Centralization, State Messaging,

Messaging Metadata, and Service Broker
Implementation Agnostic Controller and subcontroller,

Compensation Service Transaction,
Composition Autonomy, Inventory
Endpoint, Partial State Deferral, Legacy
Wrapper, and File Gateway

Governance Service Decomposition, Service Refactoring,
and Metadata Centralization

The following figure explains the preceding table:

All these patterns will be discussed during the implementation of three already
mentioned main SOA compound patterns: Enterprise Service Bus, Orchestration,
and Federated Endpoint Layer.

SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks

[84]

Summary
Services are the functionally consistent atomic units of work with technical
boundaries, providing the required level of autonomy where principles of the
service orientation are applied in order to maintain characteristics that are essential
for achieving the goals of service orientation.

Service orientation is the architectural approach that is based on the recognition
of a service as a unified business block.

One of the key roles of the independent standards (WS-* specifications) is to ensure
that service-oriented solutions based on these standards stay truly vendor-neutral.

The SOA framework is a structured and technically independent area where design
principles and standards can be repeatedly applied together in a measured balance
during various stages of analysis, modeling, development, implementation, testing,
and governing in order to achieve the desired technical characteristics. As some
WS-* specifications can be seen as a framework as well, most of the SOA frameworks
have a compound nature.

SOA patterns are commonly accepted and approved solutions to repeatable
and recognizable problems usually occurring in different frameworks,
while implementing combinations of standards and principles.

An Introduction to Oracle
Fusion – a Solid Foundation

for Service Inventory
From this chapter onward, all discussions and examples will be based on the
Oracle platform, products, and methodologies. In this chapter, we will discuss
Oracle's technical implementation of abstract frameworks, as proposed in the first
chapter. We will demonstrate that Oracle's technology stack can practically cover
all the aspects of the service-oriented application's lifecycle, from development and
implementation to monitoring and error handling. The degree of coverage essentially
depends on the understanding and proper balancing of the SOA principles and the
level of standards supported by Oracle's platform. Even though it has great coverage
of service-oriented approaches and all SOA benefits, Oracle's platform also has
certain limitations. These limitations will be discussed in the following chapters,
which are dedicated to the patterns' realization in specific frameworks. The logical
outcome of this chapter is the framework's requirements tables, containing all of
Oracle's specifications.

The Oracle SOA technology platform
We have already defined ten SOA frameworks, of which six essential ones are
quite SOA-specific. We will follow this notion until the last page, but we are not too
eager to defend this logical segregation and will not force you to accept it blindly.
If you already have a working framework model based on TOGAF (http://www.
opengroup.org/togaf/) or ITIL (http://www.itil-officialsite.com/), that's
perfectly fine. We chose this framework model for three reasons. First, this simplified
model with concise but distinctive layers is quite well-accepted by both groups of
practitioners—developers and operational personnel.

http://www.opengroup.org/togaf/
http://www.opengroup.org/togaf/
http://www.itil-officialsite.com/

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[86]

Second, and most importantly, this model is derived from Oracle's service
implementation methodology (discussed later in the chapter). The third reason
is purely empirical and based on Oracle's history of acquisitions and integration
of different components into a solid application portfolio.

The Oracle SOA development roadmap – past,
present, and future
Nowadays, Oracle offers probably the most complete family of products.
This family has two distinctive SOA characteristics—each member of the family is
the "best-of-breed" in its class (read: framework) and each product is hot-pluggable.
Thus, the portfolio itself follows the principles of Composability, and because it has
been shaped mostly through the chain of acquisitions, it's genuinely vendor neutral.

This type of SOA packaging would not be possible if Oracle didn't follow the service
orientation principles. This fact alone makes it quite attractive for many industries
and enterprises. For example, you would naturally choose a doctor who is capable of
taking his own remedies. It is also quite natural that this status quo was not always
this happy. We all have good and bad times during different phases of our SOA
endeavors (http://oracle.com.edgesuite.net/timeline/oracle/). Please refer
to the following table:

Oracle products timeline Industry standards
timeline

Pre-SOA development
Year Product(s) Type Description Standard Agency
1979 Oracle v 2 DB First commercial

version
1985 Oracle v 5 DB Implemented in a

client-server model
1988 Oracle v 6 DB PL/SQL engine added

to DB
1992 Oracle v 7 DB Stored procedures

and triggers and most
mature traditional
RDBMS

ISO 9075, Entry
Level SQL92
Standard

ANSI

1997 Oracle v 8 DB RDBMS with SQL
object orientation, AQ
introduced (persistent
messaging)

http://oracle.com.edgesuite.net/timeline/oracle/

Chapter 2

[87]

Oracle products timeline Industry standards
timeline

Pre-SOA development
Year Product(s) Type Description Standard Agency
1998 Oracle v 8i DB Integration with JVM

(here i stands for the
Internet)

XML W3C

1998 JDeveloper
1.0

IDE The first IDE release
(based on Borland
code)

SOAP W3C

Building Contemporary Oracle SOA
1999 XML

Development
Kit

XDK XML parser, renderer,
validator, and so on

XSLT, XPath W3C

2000 Oracle OAS OAS Oracle Application
Server

WSDL W3C

2000 Oracle iFS FSO Oracle Internet File
System (iFS)

UDDI OASIS

2001 OC4J OAS Oracle Java container
implemented with
Orion acquisition
and standalone J2EE
application server

Java Connector
architecture
(JCA) and
Java message
service (JMS)

JCP

2002 TopLink JPA Object-relational
mapping (ORM)

SAML OASIS

2003 Secure
Remote
Access

FSO Oracle acquired
FileFish, which
becomes part of
Oracle's Collaboration
Product Suite,
aggregating remote
file system objects
(FSO)

WS-Reliable
Messaging

OASIS

2004 Oracle v 10g DB First Oracle grid-
oriented DB (g-grid)

Service Data
Objects (SDO)

OASIS

2004 Oracle
Identity
Management

IAM Oracle acquired
Phaos, Identity
management solution
provider

WS-Security OASIS

2004 BPEL Process
manager

BPEL Oracle acquired
Collaxa, first release
Oracle BPEL

WS-BPEL OASIS

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[88]

Oracle products timeline Industry standards
timeline

Pre-SOA development
Year Product(s) Type Description Standard Agency
2005 Business

Activity
Monitor
(BAM)

BAM Oracle acquired
PeopleSoft, BAM is
one of the products in
the stack

WS-CDL W3C

2006 Oracle Data
Integrator
(ODI)

ELT Oracle acquired
Sunopsis, Extract
Load Transform tool
for data integration
and master data
management

WS-Addressing W3C

2007 Enterprise
Lifecycle
Management

ESR Oracle acquired Agile,
Integrated Enterprise
Product Lifecycle
Management provider

XQuery W3C

2007 Oracle
Adaptive
Access
Manager

IAM Oracle acquired
Bharosa, provider
of fraud prevention
and authentication
solutions (OAAM)
and integrated IAM

WS-
HumanTask

OASIS

2007 Oracle Role
Manager

IAM Oracle acquired
Bridgestream,
with Role Manager
product, managing
Role Based Access
(RBA) integrated
with IAM

WS-Policy W3C

2007 Oracle
Application
Integration
Architecture

AIA Oracle integration
approach for
establishing seamless
collaboration between
numerous fusion
applications—OEBS,
Siebel, JD Edwards,
and so on

ebXML
Messaging
Services 3.0

OASIS

Chapter 2

[89]

Oracle products timeline Industry standards
timeline

Pre-SOA development
Year Product(s) Type Description Standard Agency
2007 Oracle

Coherence
XTP Oracle acquired

Tangosol,
implementing reliable
in-memory data grid
technology, known as
Extreme Transaction
Processing (XTP)

WS-BPEL 2.0
WS-Context 1.0

OASIS

Maturing Oracle Fusion Middleware
2008 Oracle ESB

(OSB) and
other tools

OFM Oracle acquired BEA,
moving to the more
reliable JVM, App
Server, Service Bus,
and Repository

Solution
Deployment
Descriptor
(SDD)

OASIS

2009 Oracle hosts
JEE

OFM Oracle acquired Sun
Microsystems with a
wide range of Sun's
Middleware products
(GlassFish, OpenESB,
OpenSSO) and
complete Java stack

Basic Security
Profile v 1.1

WS-I

2009 OFM 11g OFM Complete SOA
products stack
running on Oracle
WebLogic Server 11g

WS-Federation
1.2, WS-
Discovery 1.1

OASIS

2010 Oracle SOA
Management
Pack

OEM Oracle acquired
AmberPoint with
fully centralized
management console
(OEM), integrating
BPEL console and
BAM

Extensible
Resource
Identifier
(XRI)

OASIS

2011 Oracle
Service
Gateway

ESB Oracle partnership
with Vordel, provides
service security and
API management
solutions

Standard for
Online Privacy,
first draft

W3C

2013 OFM 11g
11.1.1.7 (PS6)

Only the journey is written, not the destination

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[90]

The previous table does not pursue the presentation of the complete
historical perspective of Oracle's acquisitions and development
milestones, but merely links the key middleware products with
the history of SOA's WS-* standards implementation by the most
influential standardization agencies. For recent acquisitions in the
Oracle Middleware products family, please visit http://www.
oracle.com/us/corporate/acquisitions/index.html
and refer to the Middleware section.

Middleware products were not the primary line of business for the company,
which was initially prominent for its DB products. For almost two decades since
the early eighties, Oracle was a relational database management system (RDBMS)
flagship company, providing reliable relational DB and data processing commercial
products literally for all industries. Again, mainly through the chain of acquisitions,
practically all enterprise domains, such as ERP, CRM, SCM, and HCM, were covered
by DB-centric applications: Oracle E-Business Suite, PeopleSoft, JD Edwards,
Primavera, and Siebel. Business domains are truly enterprise wide, shown as follows:

•	 Financial management: This is useful in General Ledger, Accounts Payable
and Receivable, Asset Management, and so on

•	 Human capital management: This is useful in Global Human Resources,
Global Payroll, Benefits and Performance Management, and so on

•	 Supply chain management: This is useful in Inventory, Shipping and
Receiving, Distributed Order Orchestration, Cost Management, and so on

•	 Project portfolio management: This is useful in Project Costing, Control
and Billing, Performance Reporting, and so on

•	 Procurement: This is useful in Purchasing, Sourcing, Supplier Management,
Spend and Performance Analysis, and so on

•	 Customer relationship management: This is useful in Customer Master,
Sales, Marketing, Quota Management, Social Media, Portals, and so on

Common to all these suites are the Access Controls, Configuration Controls and
KPIs, BI Dashboards, and Extendibility Foundation packs.

This massive application stack has been building gradually over the years,
accommodating requirements from all industries, such as Telecommunication,
Healthcare, Logistics and Transportation, and Governance, among others. Oracle's
own DB-based flagship product, E-Business Suite, accommodated 1,000 lines of PL/
SQL code in every business module, not mentioning C and Java.

http://www.oracle.com/us/corporate/acquisitions/index.html
http://www.oracle.com/us/corporate/acquisitions/index.html

Chapter 2

[91]

The commercial value of all these products is out of the question. In 2001, Larry
Ellison announced the following:

Oracle saved $1 billion by implementing and using its own business applications.

Apparently, that was before SOA, and the whole stack was not that massive in scale.
With more and more applications in the portfolio, seamless product integration
becomes quite challenging, not only within an individual enterprise, but also within
the cross-enterprise.

Today, Oracle's application stack (http://www.oracle.com/us/
products/applications/overview/index.html) consists of
more than 200 hot-pluggable applications; this is probably the biggest
commercial application farm.

Shifting from the client-server to the multitier infrastructure was quite evident with
the dedication of the middleware tier as an integration medium. Oracle proactively
worked on the accommodation of the middleware strategy before introducing SOA
as a methodological approach. Advanced queuing (AQ) was implemented as a
reliable message delivery mechanism and embedding JVM into DB opened the door
for more interoperability options. New JEE middleware products were launched in
order to improve interoperability, such as the following:

•	 Oracle Application Server (OAS): This was not the best application server
at the time or fully compliant with many J2EE standards, and it suffered
from memory leaks and poor performance. This was followed with Oracle
Integration Server (OIS), but it didn't improve the situation much.

•	 Oracle InterConnect: This was the predecessor of the first Oracle Service Bus.
Even this was not considered a total success, but it shaped the whole concept
of ESB (of course, for Oracle) and demonstrated the necessity of the adapter
layer (Interconnect Technology Adapters).

Soon it became quite obvious that the main problem with integration is integration
itself. With a considerable number of disparate components, each establishing
interoperability, putting all efforts into a single integration layer was similar to
the search for the philosopher's stone. Hot-pluggability cannot be contracted by
means of super glue. Some efforts should be put into the applications (services),
such as Infrastructure, Methodology, and Governance, in order to make seamless
interoperability more effortless, and needless to say that all these efforts must adhere
to the already discussed principles and standards to make the effect profound.

http://www.oracle.com/us/products/applications/overview/index.html
http://www.oracle.com/us/products/applications/overview/index.html

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[92]

Oracle has been taking a very active role in development and putting these standards
into practice as a member of W3C since August 1995. Oracle has been a sponsor of
the OASIS Web Services' technical committees since 2002 (and members of the board
of directors since 2003). Oracle participated in practically all technical committees for
all core SOA standards such as WS-ReliableMessaging, WS-Addressing, WS-BPEL,
and so on. The previous timeline shows a strong correlation of product releases with
standards acceptance and approval. Today, about 200 open standards and industry
specifications are adopted in Oracle's SOA-related products. Surely, for such a huge
company with such a comprehensive portfolio, changes and adaptations weren't as
fast as some would expect with open source products (from the Apache community).
In addition (and this would be the primary reason), the clients' reception of Oracle's
initiatives was sometimes inadequate due to the products' roles and SOA principles
being misunderstanding in general.

Probably one of the most noticeable examples would be the launch of the first
release of Oracle BPEL Manager (originally from Collaxa). The Service Orchestration
Engine, primarily nominated for its asynchronous services, was mistaken by many
as the synchronous Service Bus. How many complaints about its synchronous
MEPs performance did we witness (and produce, to be honest) at the time? All the
complaints were because the Orchestration pattern was not clearly distinguished
from the ESB pattern in various implementations. Public demand for a clear service
collaboration strategy was quite noticeable, and after several years of initially
combined SOA and integration efforts, Oracle responded with Fusion Strategy
Roadmap (2006), where Fusion Middleware was declared as an SOA Enabler. In
this sense, the term Fusion indicates a balanced approach, where the main focus
is on SOA interoperability between components with the elements of integration,
where service orientation is not feasible or too burdensome. Oracle SOA Suite 10g as
a part of Fusion Middleware was introduced as a milestone of the Fusion roadmap
including the following products:

•	 Oracle Service Bus, the first full-fledged Oracle ESB after InterConnect
•	 Oracle BPEL Manager with an extremely extensive Adapter framework
•	 Oracle Web Service Manager, with agents and gateways for secure

policy-based message interchange
•	 Oracle Rule Engine, which supports various types of rules with rule SDK

Chapter 2

[93]

The previously listed products are just a few of those available in the Fusion bundle.
Oracle had much more to offer, and in general, these products met expectations from
SOA architects and developers. The Fusion strategy started to pay off. The next steps
according to the Fusion strategy were as follows:

•	 To improve application server reliability and performance as Oracle iAS10g,
at the time, was already an obsolete OC4J-based server

•	 The Business Activity Monitoring tool was quite detached from the entire
Fusion stack and based on a separate technology platform

•	 Rule Engine proved to be quite fast, but the rules' authoring and
management was rather unfriendly, and that jeopardized its acceptance

•	 Oracle JDeveloper 10.1.X was noticeably slow compared to other
IDEs and was not fully integrated with all SOA Suite components
(unfortunately, jumping ahead, we can say that this is still the truth)

•	 In addition, Oracle's own Service Bus could not keep up with the closest
competitors for some aspects

Oracle addressed these issues quite radically, acquiring BEA. The next generation
of Fusion Middleware, 11g (2009), came equipped with AquaLogic Service Bus
(OSB), BPM Studio, Enterprise Service Repository, and most importantly, WebLogic
Application Server (WLS), one of the best J2EE servers available; all of these are
based on the very reliable JVM. It took almost two years to reassemble and repackage
all the new middleware components with the new WLS Application Server as the
foundation and other BEA components. JDeveloper 11g proved to be more reliable
and more integrated with most core frameworks, such as DB and SOA Suite, but it
still did not cover the ESB development lifecycle. The standard of Service Component
Architecture (SCA) was adopted in SOA Suite, where BPEL's role was rearranged
and three other equally important components were added. Together with SOA
Suite, three other suites were offered for Event Driven Architecture (EDA), BPM, and
Governance, with overlapping functionality. Fusion's hot-pluggability option allows
customers to select only the functionality that they really need at the moment, reducing
resource wastage.

After the first radical turn, the next huge acquirement of Sun Microsystems was a
completely logical thing in shaping the Fusion strategy. Now Oracle had the true
foundation of all Java resources—the Java language itself. In addition, the Oracle
family inherited Sun's Java-based, nonstrategic, but very attractive, products—
Glassfish Application Server (https://blogs.oracle.com/theaquarium/entry/
java_ee_and_glassfish_server; Oracle GlassFish Server will not be releasing a 4.x
commercial version), OpenESB, and NetBeans IDE.

https://blogs.oracle.com/theaquarium/entry/java_ee_and_glassfish_server
https://blogs.oracle.com/theaquarium/entry/java_ee_and_glassfish_server

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[94]

Despite their nonstrategic status, these products are quite capable of playing their parts
in the construction of an SOA infrastructure of any size, and are quite cost effective
as well. All these products are supported by open communities (http://www.open-
esb.net/index.php?option=com_content&view=article&id=90&Itemid=469)
and in some cases, are more advanced than the Fusion middleware stack (for instance,
Glassfish is the first Java EE 7 Server). Anyway, from the customers' point of view,
it's quite positive to have multiple options such as the three available ESBs. Out of the
three, we have discussed OSB and OpenESB (refer to http://www.open-esb.net/,
the Sun Microsystems and Seebeyond products, for more information on OpenESB).
We will soon come to the third ESB.

Another strategic benefit of this acquisition is the availability of advanced hardware,
capable of hosting the preconfigured complex Fusion solutions (both DB and MW).
Clustering highly reusable Canonical software components logically leads to the
implementation of the scalable Canonical Resource (hardware, infrastructure)
pattern. Oracle responded to that with the Exadata and Exalogic combined solutions
based on Sun machines (engineered systems) running on Oracle Linux. There
are some debates regarding the elasticity of the HW + SW bundled approach and
how it suits the public cloud. Clearly, this platform as a service (PaaS) solution
is optimal for private and hybrid clouds, providing horizontal scaling, dynamic
resource provisioning (with some limitations), and cloud burst-in and burst-out.
Some of these challenges can be solved by inner-cloud load balancing and functional
decomposition between the clouds. The fourth most critical cloud characteristic
is Multitenant Access, which requires complex security measures and is also
addressed in Oracle's Fusion roadmap.

In 2011, Oracle announced its strategic partnership with Vordel (now part of
Axway), and the Oracle Enterprise Service Gateway product launched as a
rebranded Vordel API Gateway. Today, it's also called Oracle API Gateway.
Nevertheless, with the best-of-breed Secure Gateway, Oracle finally introduced a
comprehensive security layer essential for any cloud model. As with most Service
Gateways, the API Gateway is essentially an ESB, consolidating all common features
for the service bus SOA patterns. Thus, now we have three full-fledged ESBs in the
Oracle technology stack and something to choose from.

Cloud patterns and technologies are not the primary aims of this book, but to add
some silver lining to emerging clouds, we could mention some of Oracle's other
initiatives, again expressed via acquisitions, addressing both SOA and the cloud.
For example, the quite recent (2013) acquisition of Nimbula—provider of the private
cloud infrastructure management software; capable of managing the infrastructure
resources of services delivery, quality, and availability; as well as workloads in
private and hybrid cloud environments. It seems to be a perfect addition to the
Oracle cloud-based Sun hardware resources.

http://www.open-esb.net/index.php?option=com_content&view=article&id=90&Itemid=469
http://www.open-esb.net/index.php?option=com_content&view=article&id=90&Itemid=469
http://www.open-esb.net/

Chapter 2

[95]

It would not be entirely correct to state that all Oracle Fusion roadmap's milestones
were based on acquisitions. Oracle primarily adopted JavaServer Faces (JSF)
with lots of other JEE standards and patterns and came up with Application
Development Framework (ADF), a foundation for all Web 2.0 and Enterprise 2.0
Oracle products mentioned as follows:

•	 WebCenter, a web-based collaboration suite, replacing Oracle forms,
consolidating portals, social media management, and content management

•	 BAM Studio, proactive service monitoring, and dashboard creation
•	 BI Suite, analytics, reporting, OLAP, and scorecard management
•	 Enterprise Manager consoles

Needless to say that with the acquisition of Sun, ADF Java-based development is
gaining a new boost.

So that was just a quick glance at some SOA and Oracle combined milestones, but
history is not over yet. Distributed computing is setting new challenges, which we
could address by the proper application of tools, principles and methodologies,
and combinations of patterns. Oracle has nothing to prove really. It's obvious from
the history line that only two options are available: Silo and SOA. Being the main
consumer of its own Fusion technology, Oracle set the direction for cost-effective
application collaboration based on the SOA principles and standards, moving from
a Silo-based approach. Let's now see how these concrete tools can be fitted into
Oracle's vision of a standard technical infrastructure.

Oracle SOA frameworks and technology layers
In Chapter 1, SOA Ecosystem – Interconnected Principle, Patterns, and Frameworks,
we have already outlined the abstract layers related to the technical infrastructure,
divided into 10 frameworks. At least six frameworks have concrete realization
in four major technical layers. We will discuss the technical layers first, starting
traditionally from the top, as demonstrated in the next figure.

The Data layer usually presented by data clusters is grouped into three types of
high availability (HA) implementations such as zero data losses with automated
failover, manual failover, and a single instance with a cold standby, suitable for
manual recovery. The last one is not HA at all, but is still quite suitable for business
applications with non-OLTP requirements and capable of staying offline during data
recovery routines from backups. Only complete HA solutions are suitable to serve
the orchestrated service compositions with state deferral requirements. Services
with DB resources underneath cannot be reliable composition members if DB is not
covered by HA capabilities.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[96]

In some cases, it can be addressed by the implementation of reliable messaging with
asynchronous queuing, but that's not an option for fast-running compositions or
service-oriented middleware itself, where the role of DB is crucial. Middleware DB,
as we already mentioned, is a host of the Task Services state repository, operation
monitoring reporting, service repository and registry, and error recovery. More than
20 different schemas will be installed in DB during the OFM installation, responsible
for the various aspects of middleware runtime activities. Simply put, the Entity and
Task services cannot be implemented without a reliable DB.

Interestingly, these days, DB itself becomes more and more Fusion-like. According
to a statement made by Larry Ellison in October 2012, it was promised that the
upcoming 12c Version would implement a new concept of a hot-pluggable DB,
allowing multiple DBs to run under one copy of Oracle DB.

The following figure shows Oracle's Reference Architecture:

According to Oracle's Reference Architecture (http://www.oracle.
com/technetwork/topics/entarch/oracle-pg-soa-governance-
fmwrk-r3-0-176707.pdf), the second layer is an application infrastructure,
similar to the DB layer divided by application bundles into several application
domains (also covered by HA options).

http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-governance-fmwrk-r3-0-176707.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-governance-fmwrk-r3-0-176707.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-governance-fmwrk-r3-0-176707.pdf

Chapter 2

[97]

From a technology standpoint, it is a pure application server implementation
(on WebLogic or any other JEE compliant server) with all the required elements
of the server infrastructure such as Node Managers, Admin Server, and Managed
Servers in separate nodes. Three distinguishable sublayers can be mentioned
(following the MVC pattern) as follows:

•	 Core application logic presented by the traditional Java modules
(EJB, POJO, and so on)

•	 DB Persistence layer responsible for DB access, object-relational mapping for
the relational DB, or object extraction for the object-related NonSQL DB

•	 The API and representation layer responsible for the exposure of the
application interfaces

Application modules and APIs within an application package are presented as red
and green boxes, respectively.

The Fusion Middleware layer is also based on the WLS Application Server and
probably should be placed in between the DB and App layers, according to its
name; however, we deliberately put it close to the southbound end of the Fusion
perimeter, binding it with the security layer. This layer hosts most of the SOA
frameworks, which in turn compose most of the patterns discussed later. Now, all
abstract frameworks, discussed in Chapter 1, SOA Ecosystem – Interconnected Principle,
Patterns, and Frameworks, are mapped to this layer and numbered. The layer itself can
be vertically divided into Runtime and Design areas. Note that this division is rather
arbitrary as ESR and Governance frameworks are actively used in both areas.
The runtime area holds four distinctive frameworks, namely:

•	 Adapters (1)
•	 Service Bus (5)
•	 Orchestration (4)
•	 Service management (runtime part)

The Service Brokers, as agnostic controllers and subcontrollers, are the essential
patterns acting across these frameworks. So, it's impossible to say which runtime
framework in particular is used for their physical realization. Business Activity
Monitoring (BAM) as a tool is a part of the broader Service Monitoring solution,
incorporated into the Service Management (that is, Governance) framework; together
they form a business and technical service monitoring solution. This solution, among
other functions, feeds the error-handling facility with the information needed for
service recovery, both manual and automated. The Automated Recovery Tool (ART)
is a part of the error handler specific for particular service inventory, but based on
Oracle's common error hospital pattern, which is essentially the implementation of the
agnostic service controller SOA pattern linked to the Enterprise Service Inventory.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[98]

The Service Inventory framework during its runtime provides the discoverability
of services and the service artifact to all runtime frameworks via unified API,
constructed according to the Service Inventory (Repository) Endpoint pattern.
Any service, service agent, or composition controller in these frameworks could
perform the lookup and discovery of any service metadata element according to
the Service Repository (SR) taxonomy.

It is highly important to realize the role of the Fusion technology layer for these
runtime frameworks. This layer, based on WLS and JVM(s) (it's also true for the APP
and DB layers) provides all the necessary Service Engines (SEs) essential for the
functioning of all runtime frameworks and the hosting of our business-services logic.

Service Engines are the services that serve our services, so to say. As we can expect,
BPEL as a language will be interpreted and executed somehow; the same for ESB,
where proxy services must be decoupled from business services and the VETRO
logic between them must somehow be fulfilled. Actually, the transformation,
translation, and rule verification do not belong to a single framework and are
provided independently to any layer that needs them. Moreover, their realization
comes in the form of an engine, that is, how we call them—for instance, the Rule
Engine. SE can be implemented in several ways, but the common requirements are
portability, simplified binding of the engine and the service component, and the
unified messaging model.

Service Engines Runtime environment

Chapter 2

[99]

The SE as a runtime environment for service execution and message exchange can
be based on the Java Business Integration (JBI) standard (JSR-208). Oracle inherited
the JBI specification with the aquisition of Sun. In fact, JBI is a SCA enabler as it
permits the SCA components to be realized through a technology-agnostic generic
programming model that decouples the components' implementation from their
communication, allowing a high level of reuse. JBI SEs communicate with each
other at the technology level, leaving business communications to the services. This
communication model is defined as a WSDL contract that we mentioned earlier.
All communications are decoupled by a message dispatcher, called the normalized
message router (NMR), which physically support all MEPs, as declared in WSDL.

Ideally, we should be able to choose any engine for our abstract operation
(that is, transformation or BPEL interpretation) and use a certain engine in any
part of our frameworks. In fact, the Rule Engine and its SDK are unified across
the Oracle Service Bus, orchestration, and even DB. (It is worth mentioning here
that the Glassfish application server and OpenESB support JBI.)

From a service implementation prospective, architects should realize that the service
models (such as entity, utility, or task) define the needs of certain engines. Therefore,
the task-orchestrated services are rather special, as they strongly require the BPEL
engine along with the DB infrastructure, as compared to the simple utility service,
which can be implemented as a lightweight portable jar. Service layering within
Service Inventory must be done with extra caution to avoid performance overhead
and excessive infrastructure costs.

The design time part of Fusion Middleware hosts the rest of the compulsory
frameworks such as the XML and Object Development frameworks and Automated
Testing and Deployments frameworks. They are covered by several Oracle tools,
linked to the source control and the Enterprise Repository. The two main developer
tools are JDeveloper and Eclipse with the Oracle pack for OSB.

The security layer is a form of ESB as it basically serves similar features such as
message screening (a form of validation), transformation, and exposure-only services
designated for the outside world (that is, hiding and abstracting the internal Service
Inventory). So, can it be implemented using Oracle Service Bus? Hmmm…yes! Firstly,
OSB is integrated with Oracle Web Service Manager (OWSM). OWSM allows you to
define policies, store them in the policy store, and attach them to a particular service.
OSB can support message encryption and digital signature, the two main mechanisms
for establishing message confidentiality, nonrepudiation, and integrity. Integrity
guarantees that a message has not been altered on transit, confidentially ensures
that only authorized people or processes have access to the message's content,
and nonrepudiation signifies that the act of message transmission cannot be
denied by the sender.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[100]

OWSM supports SAML, so brokered authentication and an Authorization pattern
can be supported as well. It all sounds good. However, there are some other
requirements that should be taken into consideration, shown as follows:

•	 OSB is an SE on top of WLS with connection to the DB (in the full version).
With so many moving parts (OS + JVM + WLS + OSB + OWSM and DB
somewhere nearby), will you consider moving it to the DMZ, as security
perimeters should be in front of the firewall, not behind it?

•	 The conventional XML parsers and validators do the XML validation. They
are quite well-known and have been exposed to very thorough scrutiny
with not always good intentions. Naturally, the XDK development is mostly
focused on functionality first, good performance after that and, honestly,
security is not given highest priority as the performance's natural enemy.
Would you consider putting a functionally brilliant but potentially insecure
XML validator as your northbound XML Gateway?

•	 Talking about performance, we have to admit that conventional validators
and transformation engines are not the best players. A secure perimeter
should be considered as a corporate asset, common to all projects and
products. It's not that uncommon to have about 10 K tps with a 5 K SOAP
message per single node (VM 2CPU 8 GB).

Yet another architectural approach should be evaluated. The security perimeter is
an ESB with all common features as we mentioned before. It can perform service
brokering, mediation, and protocol bridging, both for message and transport
protocols, and can also apply corporate policies (with security in mind first). Thus,
for the external services, the presence of this framework makes the conventional
Enterprise Service Bus (ESB) handling the Enterprise Business Services (EBS)
layer quite superfluous, especially from a performance point of view. At the same
time, services with outbound-only MEPs can reside in the conventional EBS layer
and employ security features of OSB, whether it's possible from a functional and/or
performance point of view.

Functionality specific to the security perimeter (SP) ESB is expressed by
the following SOA security patterns, specific to a service message in transit for
transport and message-based security:

•	 Message screening: We must prevent the infiltration of insecure message
content through SP. One of the measures addressing it is XSD-based
validation, which could be ineffective in the case of a conventional
XML processor.

Chapter 2

[101]

•	 Exception shielding: We must prevent the exposure of a service's error stack
trace to the outside world. SP is not the optimal place for this, as the service
itself must be designed to prevent this kind of leakage. It's our last resort,
but functionality must be in place.

•	 Full triple-A support: Authentication, Authorization, and Accounting (triple-A
support) should be based on the WS-Security specifications, combining a
dozen WS-* standards, including digital signature (DSS; https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=dss), encryption, portable
trust, secure conversation, and so on. In contrast to the XML engines are the
security-related libraries for signature and encryption practicing the policy that
can be expressed as the security algorithms being widely open with the key(s)
strictly undisclosed (of course, except the public key). This is one of the ways
that we can ensure that our security algorithms are secure enough.

All of these security requirements, and many more on top of that, are covered
by the Oracle API Gateway. This concludes the overview of Oracle's Reference
Architecture (http://www.oracle.com/technetwork/topics/entarch/oracle-
ra-soa-foundation-r3-1-176715.pdf) layers and related tools. Now we will
proceed with each tool individually, starting from the Fusion foundation.

Oracle SOA Foundation – methodology
"It's like if you want to buy a car. Would you get an engine from BMW, a chassis
from Jaguar, windshield wipers from Ford? No, of course not. Right now with the
software that's out there, you need a glue gun—or hire all these consultants to put it
together. They call it best of breed. I call it a mess. We want to put an end to that."

 – Larry Ellison

This emotional but hesitation-free statement made in the year 2000 pointed out the
Oracle CEO's core procedural beliefs for the next few years as follows:

•	 Packaging the best-of-breed components without standardization is a
dead end. You will run out of glue. The sole term best-of-breed without
any criterion (read: principles) describes why it's actually the best and
is clarity of meaning.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss
http://www.oracle.com/technetwork/topics/entarch/oracle-ra-soa-foundation-r3-1-176715.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-ra-soa-foundation-r3-1-176715.pdf

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[102]

•	 Components standardization is impossible without rewriting the
components in order to make it compliant with the SOA principles
specifically responsible for the service/component design (such as
autonomy, statefulness, abstraction, and reusability). However, this is bad
news for those who believe that OSB and BPEL alone will solve everything.

Oracle had to establish a solid methodology in order to plug various Fusion
applications together and give customers an option regarding what to choose
from for their primary business components. The regular choice would be the ERP
Oracle products from the Fusion application portfolio. But methodology, based on
SOA principles, would be suitable to establish the collaboration between different
products as long as their architecture is based on the same principles. In other
words, you do not need to purchase OEBS, Siebel, PeopleSoft, and so on in order
to follow the methodology proposed by Oracle. Most importantly, you do not need
to buy methodology-related frameworks to practice it if you do not have a single
Fusion application in your portfolio. This architectural approach, called Application
Integration Architecture (AIA), is a perfect example of how to employ SOA
principles and patterns grouped in clearly defined frameworks to work toward
the integration of disparate applications.

Wait a minute, you might say. Earlier, we stated that SOA contrasts integration,
and integration is the beast we would like to get rid of. Is there some kind of
contradiction here? Not really. Firstly, most Fusion applications (and not only
Fusion) emerged and were acquired well before the realization of the SOA
approaches. All these approaches are evolutionary, so the transition from classical
integration to SOA pluggability was gradual and the applications have been
rewritten many times. SOA Big Bang is the last thing we need in our business,
and thus traditional integration still has its share in this framework.

All these integration step-backs are clearly covered by recognizable (and therefore
reusable) SOA patterns. Would these patterns be a good example for companies
with the heavy burden of legacy applications, which are not exactly Oracle
products-based? And last but not least, AIA provides a defined and practical way
to implement SOA frameworks which are not really bound to Oracle's products.
Ask yourself, how many times have you been arguing about what would be the
practical realization of the TOGAF model (or any other model such as Zachman,
P**F, and ITIL/ITSM)? For instance, why is the data in TOGAF's Information System
Architecture (ISA) detached from technology and business? Enough is enough; here is
an example, and it works!

Chapter 2

[103]

AIA provides a clear decision tree on what approach, SOA or EAI, you should
undertake depending on your requirements, where the key requirement is
transformation. Technically, AIA is packaged as follows:

•	 OFM products as a backbone: SOA Suite, OSB, BPM Suite, SOA Registry
and Service Management, and ODI for heavy batch processing

•	 AIA Foundation Pack (FP) as a framework reference: Reference process
models, Common Objects, and Lifecycle and Governance

•	 Pre-built Integration Packs (PIPs): Practical realization of
ready-to-configure task-orchestrated services (business processes)
for Oracle Fusion Applications

For companies with several Fusion applications installed, PIPs are a really interesting
part of AIA as they provide fine-tuned, business optimal composite services such
as Order to Cash, Agent Assisted Billing Care, and so on. You can learn a lot from
them about how to implement all the SOA patterns. What if your version of an API is
different and/or the business flow has its own specific versions? AIA's FP provides
clear guidance on implementation as follows:

•	 Modify existing WSDL or create and register a new one
•	 Enhance Enterprise Business Object (EBO), a canonical data model

representation
•	 Set Enterprise Business Message (EBM) according to the

corresponding EBO
•	 Implement required transformations to accept/provide Application

Business Message according to the API
•	 Alter PIP to add/remove elements of business logic

Oracle provided PIPs for several business domains and industries. The first
industry that received a comprehensive set of task-orchestrated services was the
Telecommunications industry. There are some extensions for utilities and insurance
as well. You probably noticed from the very beginning that we used the AIA
terminology to actively describe frameworks and SOA artifacts, and we will continue
doing so. Therefore, we will illustrate the core components in a bit more detail in the
following sections.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[104]

Enterprise Business Object
AIA provides standard canonical data models known as Enterprise Business
Object (EBO). It is a standard business data object definition and is a reusable
data component as shown in the following figure:

Here, we present the part of Invoice XSD specific to a Telecom PIP pack. It has the
following characteristics:

•	 Represents the business concept of an invoice
•	 Defined using inputs from multiple applications and content standards
•	 Common service payload used by all applications
•	 Designed for extensibility

This is a perfect example of AIA's service contract standardization, and in this case,
of data model canonicalization.

Chapter 2

[105]

Enterprise Business Message
An Enterprise Business Message (EBM) represents the specific content of an EBO
needed to perform a specific activity. For instance, in order to create an invoice, we
may not require complete information about that invoice. So, EBM is the operational
and transportational form of EBO.

This structure depicts the core parts of EBM to create an invoice based on Invoice
EBO. The core EBM features are as follows:

•	 Application-agnostic encapsulation of an EBO
•	 Generally coarse-grained and operates either on the whole EBO or its subset
•	 Payload of a web service operation in EBS
•	 Semantically precise—performs a specific action, that is, one EBM for one

verb (operation)
•	 A CRUD (create, read/query, update, and delete) operation or a

special operation
•	 Comprises a MessageHeader, verb (that is, the operation name), and an EBO

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[106]

•	 Transport protocol agnostic (for example, SOAP, HTTP, HTTPS, and JMS)

EBM Header structure

EBMHeader carries information that can be used for (but is not limited to)
the following:

•	 Tracking important information
•	 Auditing for business and legal purposes
•	 Indicating source and target systems
•	 Error handling and tracing

Chapter 2

[107]

The AIA EBMHeader implementation is correlated with the existing SBDH
standards, and we advise you to ensure that the development of common enterprise
structures adheres to this best practice. There are some critical elements in the
EBMHeader implementation that are always needed. These are as follows:

•	 EBMID
•	 EBOName
•	 Version
•	 SenderSystem
•	 TargetSystem
•	 ProcessInfo
•	 ReferenceID
•	 CreationDateTime

Verb in EBM identifies the action that the sender/requester application wants
the receiver/provider application to perform on the EBM. The verb also stores
additional information pertaining to the action that needs to be carried out on the
noun. Thus, the EBM verb practically implements the Canonical Expression SOA
pattern, one of the core SOA patterns responsible for service contract standardization
and maintaining discoverability at a desirable level.

Enterprise Business Services
Enterprise Business Services (EBS) are the foundation blocks in AIA. EBS represents
the application-independent web service definition to perform a business task. It is
self-contained, that is, it can be used independent of any other services. In addition, it
can be used within another EBS. EBSs are the standard business-level interfaces that
can be implemented by the applications that want to participate in the integration.

EBSs are generally coarse-grained and typically perform a specific business activity
such as creating an account in a billing system or getting account balance details
from a billing system.

Each activity in an EBS has a well-defined interface described via WSDL (see the next
screenshot). This interface description is composed of all the details required for the
client to independently invoke the service.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[108]

Presented next is the abstract part of InvoiceEBS.wsdl:

Application Business Object and Message
The Application Business Object (ABO) and the Application Business Message
(ABM) represent the data model relevant to a specific application. The collection of
ABOs represents one abstract business entity as a canonical EBO.

In conclusion, we can say that EBO / EBM XSDs together with EBS WSLs shape the
Official Endpoint layer, centralizing the services logic and ensuring that the logic
is always accessed via a standardized contract. If any alteration is needed, AIA FP
provides clear guidance (http://docs.oracle.com/cd/E23549_01/doc.1111/
e17364/bldgintflows.htm#sthref126) on how to extend the data model or alter
the service WSDL.

Therefore, AIA defines integration architecture by adopting an SOA approach.
The proposed framework has many out-of-the-box features that can be utilized to
address any integration requirements and fulfill SOA principles.

http://docs.oracle.com/cd/E23549_01/doc.1111/e17364/bldgintflows.htm#sthref126
http://docs.oracle.com/cd/E23549_01/doc.1111/e17364/bldgintflows.htm#sthref126

Chapter 2

[109]

Other SOA principles fulfilled by the framework are as follows:

SOA principle AIA response
Standardized Service
Contract

Enables extensive access to web services and accommodates the
following standard MEPs:

•	 Request/Response

•	 Fire-and-Forget

•	 Publish/Subscribe
Service Loose Coupling This defines loosely bound services that are invoked through

communication protocols that stress location transparency and
interoperability. It also defines services that have implementation-
agnostic interfaces.

Service Abstraction This adopts an application's independent data model to accomplish
the decoupling of a data format.

Service Reusability This provides a general infrastructure for consistent integrations
that are also extensible.

Service Autonomy This replaces one service implementation with another with
minimum impact on the framework.

Service Statelessness This incorporates synchronous and asynchronous communication
and provides partial state deferral (dehydration DB).

Service Discoverability This uses the Business Process Repository to store business process
models and related artifact and the Business Process Publisher
publishes the models in HTML format.

Service Composability This facilitates the use of services in orchestrated process flows and
supports incremental adoption and implementation.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[110]

From an architectural perspective, AIA can be presented by three main and two
supplementary frameworks. These frameworks govern the truly application-
agnostic, highly reusable components architecture, where each component is
scalable and stackable. This is the outmost evolution of Receive Transform Deliver
(RTD), hub-and-spoke (opposite of ETL) integration patterns. How this framework
can affect the design of other frameworks and the implementation of physical
infrastructure is explained in the following table:

Framework Description Impact on technical
infrastructure

SOA patterns
employed

EBF •	 This framework
is BPEL based.

•	 It describes the
implementation
of the optional
PIP backbone
related to the
specific EBO.
Other EBOs can
also participate
in this flow
through
connections to
the other EBFs
or EBSs. An
EBF cannot be
connected to the
ABCS directly.

•	 It is used to host
a rule engine/
decision service.

•	 It is present in
the EBO/EBM
level.

•	 It is Stateful in
general.

•	 It is optional in
AIA.

•	 As a part
of BPEL, an
EBF farm can
be clustered
using Load
Balancers
(LB).

•	 It is installed
on the SOA
Suite server
only.

•	 AA
considerations
must take
into account
long-running
processes.

•	 It has a DB
Dehydrated
storage.

•	 It is
alternatively
Stateful via
ProcessHeader
and BPEL-
correlations.

•	 It has a
separate LB
for this layer.

•	 Orchestration
•	 Process

centralization
•	 Service Broker

(asynchronous)
•	 Partial State

Deferral
•	 Rule

Centralization
•	 Compensation

Service
Transaction

Chapter 2

[111]

Framework Description Impact on technical
infrastructure

SOA patterns
employed

EBS •	 This framework
is OSB based,
Stateless, and
mandatory.

•	 It is used
to route
synchronous
invocations.

•	 It is connected to
ABSCS and/or
EBF.

•	 It is installed
as a separate
OSB domain.

•	 It is clustered
as Stateless.

•	 Separate LBs
can be used.

•	 Coherence
installation
with WLS

•	 Enterprise Service
Bus

•	 Reliable
Messaging

•	 Asynchronous
queuing

•	 Intermediate
Routing

•	 Rule
centralization

•	 Messaging
Metadata
(SBDH standard
implementation)

ABCS •	 This framework
is BPEL based.

•	 It is used to
host adapters,
compensation
layers, and
ABM-EBM
transformations.

•	 It is connected to
API and EBS.

•	 It is Stateless in
most cases and
is mandatory.

•	 It is installed
on an SOA
Suite server
and is realized
on BPEL
Adapters in
HA mode
where
possible.

•	 Separate LBs
can be used.

•	 Federated
Endpoint Layer

•	 File Gateway
•	 Legacy Wrapper
•	 Multi-Channel

Endpoint
•	 Partial message

validation
•	 Message

Format/Model
Transformation

BPR •	 This is the
Business Process
Repository and
is optional.

•	 It is
implemented
using Oracle
Service
Registry and
Enterprise
Repository

•	 For runtime,
discoverability
must be
covered by
HA patterns.

•	 Enterprise
Inventory

•	 Inventory
Endpoint

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[112]

Framework Description Impact on technical
infrastructure

SOA patterns
employed

CAVS •	 This is the
Composite
Application
Verification
system and is
used as a test
framework.

•	 This is
conditional.

•	 It has minimal
impact on
technical
infrastructure.

•	 Process
Abstraction

•	 Entity
Abstraction

Generally, AIA does not recommend the reuse of individual ABCS
components, which should be individual for every EBS operation.

It's a sound rule. Adapters are the highly tailored components bound to the
individual application, especially when we are talking about Fusion applications.
Nevertheless, adapters related to the protocol or technology could be reused by
several services (such as JMS, AQ, or File). Therefore, it is your choice to share
that type of adapters between different services.

We didn't discuss the Enterprise Business Flows in detail, but as the implementation
of long-running processes is related to the single EBO, they are quite commonly
known by the typical BPEL implementations. The Order Fusion Demo mentioned
earlier could be seen as an example of EBF with all distinctive elements of SOA
Suite involved in its assembly.

Even if you do not have Fusion applications in your portfolio, we advise that you to
study AIA internal architecture and component implementation anyway, as they are
probably the best example by Oracle of a working and very solid SOA approach.

Oracle SOA foundation – runtime backbone
The AIA methodology is a fusion of principles and patterns implemented on
Oracle's technology stack, which is in its turn is a fusion of message-oriented
middleware, database, application servers, security tools, governance suites,
developers workbenches, and languages, which has matured over the years.
Each of them presents its own universe, deserved to be explored in many separate
books (and it is). We are not aiming to give you any guidance on them as it's
simply impossible within the scope of this book, although links to the most recent
documentation for each component will be provided in the related section.

Chapter 2

[113]

Our goal is to demonstrate how certain tools can contribute to solving particular
problems of service orientation and what strengths of these tools we should employ
during patterns implementation.

We will not only focus on SOA Suite and the OSB components of OFM as they
can hardly solve all the common SOA implementation problems alone, but we
will also start from the foundation.

The Oracle database
In addition to the database being Oracle's roots and glory, there is nothing that cannot
be implemented in the Entity service model by means of the Oracle DB (presently,
11gR2 and we see that 12c has arrived). This is not an exaggeration. Literally, what you
can do with Java or C#, you can do with modern PL/SQL. It won't be an exaggeration
to state that some utility and task-orchestrated services can be (and probably must be)
implemented by a sole Oracle DB. Among many other modern (and not that modern)
DB features, the following items help to make this possible:

•	 Native XML support
•	 Native object-orientation with Java support
•	 Multitude of message delivery methods (protocols and MEPs)

Firstly, it's possible because of the full XML support along with the object-orientation
support. The XML functionality is presented by the XDB features, available since
2002. Oracle DB has its own JVM with J2EE support, making it a fully capable
application server with complete XDK support. Practically all W3C standards
are supported with the core J2EE patterns, such as Front Controller (Servlet).
The configuration of Oracle XML DB is defined and stored in an Oracle XML DB
Repository resource, /xdbconfig.xml, and here is the section responsible for the
Servlet configuration, as shown in the following code:

<httpconfig>
 ...
 <webappconfig>
 ...
 <servletconfig>
 ...
 <servlet-list>
 <servlet> ... </servlet>
 ...

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[114]

 </servlet-list>
 </servletconfig>
 </webappconfig>
 ...
 <plsql> ... </plsql>
</httpconfig>

The Servlet configuration section is a child of the protocol configuration described
as follows:

<protocolconfig>
 <common> ... </common>
 <ftpconfig> ... </ftpconfig>
 <httpconfig> ... </httpconfig>
</protocolconfig>

From this section, you can clearly see that two protocols are supported by default:
FTP protocol and HTTP protocol. Actually, one more is also supported, a WebDAV.
Standard Local Listener is responsible for the handling of all XDB requests according
to the parameters registered in the configuration sections as shown earlier, <ftp-
port> and <http-port>. In addition, it is essential to add the related dispatcher
entry to the init.ora file: dispatchers="(PROTOCOL=TCP) (SERVICE=<sid>XDB)".
You can always check the currently configured XDB Listener ports executing under
the DBA privileges:

select dbms_xdb.gethttpport(), dbms_xdb.getftpport() from dual;

Thus, we have standard configurable Servlet features to listen and receive any
data (including XML) into Oracle XML DB. But what about the HTTP posting?
This functionality is extremely well-covered by the UTL_* PL/SQL packages,
UTL_HTTP in particular. With this package, you can manage the following:

•	 Session settings
•	 HTTP requests/responses
•	 HTTP cookies handling
•	 HTTP persistent connections
•	 HTTP error conditions

We will cover this functionality in detail when discussing the SOA-oriented
DB APIs.

Chapter 2

[115]

While sending and receiving the XML data, we must be able to handle the payload
inside the DB: store, register, transform, validate, and map to the relational structures.
The key element here is XMLType, the abstract Oracle type capable of representing the
XML data. Moreover, XMLIndex can sort XML data in addition to the B-tree and Oracle
text indexes. XDB provides a complete range of XML-related functions for this data
type to handle XML itself (add, modify, and delete nodes, siblings, and elements) and
register it in DB. Oracle XML DB Repository provides a hierarchical way of storing
XML documents, overcoming the disadvantages of a relational model. A repository
provides all the necessary file-handling features including versioning, tagging, and
access control based on the access control lists (ACL).

Despite the existing security mechanisms in XDB, we would not recommend direct
access to the XDB features for external service consumers, thus bypassing the
security perimeter and Service Gateways. There are many reasons for that as XDB
simply does not provide the necessary security-related patterns, discussed earlier
for layer 7, visualized in the first figure of this chapter but one reason has to be
mentioned explicitly. The implementation of the Trusted Subsystem SOA security
pattern requires the separation of security accounts for the service and the service's
underlying resources. Nevertheless, for internal consumers, or for consumers
isolated by means of Secure Gateway (SG) in layer 7, XDB provides an excellent
opportunity for the entity-oriented service model's implementations. The principle of
concerns' separation is maintained by the segregation of security features delegated
to the SG and the entity service's basic operations delegated to the XDB. The main
concern here should be the scalability because, for better results, we need a more
atomic service realization.

Surely, for XDB Servlet creation, complex XPath operations, transformations, and
so on, you can rely on something more robust than PL/SQL (although the oldie but
goodie PL/SQL can do a lot). It will be quite right to say that PL/SQL nowadays can
be seen as a wrapper for Java, thanks to SQLJ specification. You can create your own
Servlet, compile it, and load it into your DB using the following:

loadjava -grant public –user <xdbuser>/xdbuserpwd>@<XDBSID>
CustomServlet.class

Then, register it in /xdbconfig.xml in a preceding section where we discussed the
configuration of Oracle XML DB.

However, native DB Java capabilities are wider than just XDB functionality. You can
do practically everything—from transaction control and complex XML operations to
file handling—putting aside the UTL_FILE package. Again, despite being perfectly
feasible, this solution should be clearly analyzed for scalability requirements.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[116]

From messaging infrastructure in addition to synchronous HTTP(S) calls, Oracle DB
can offer the native support of reliable asynchronous communications compatible
with JMS queuing, known as Advanced Queuing (AQ). AQ is a database-integrated
messaging infrastructure. Thus, all the DBs' operational benefits, such as High
Availability, Scalability, and Reliability, are applicable to the messages and queues
in AQ. Standard database features such as backup and recovery and security and
manageability are available for AQ as well. All AQ features can be accessed from the
DB side by Java or PL/SQL (the two main packages are DBMS_AQADM and DBMS_AQ),
where you can enqueue, dequeue (one or a group of messages), sort, propagate, and
perform many other functions. The payload data type could be opaque (ANYDATA)
or based on a predefined abstract data type (ADT). Messaging interfaces on the
consumer side can be based on any popular programming interface, but naturally,
in Fusion Middleware, the Java JMS API is used (the oracle.jms package).

All the previously discussed features present Oracle DB (we are talking about the
classic RDBMS 11g) as a perfect platform candidate for DB-related Entity services
and some utility, such as the File Gateway SOA pattern, responsible for fetching
files, and transforming and persisting in single or multiconsumer AQ(s). However,
the role of DB as a process state deferral store for task-orchestrated services is hard
to underestimate. It's a primary feature of Oracle RDBMS in Fusion Middleware,
employed in Framework 4. DB-based Rule centralization, Policy centralization, and
storage for runtime-related XML artifact (XSLTs, XPaths, other XML fragments,
and XQuery as well), together with reliable messaging persistence in AQ, cover
all the types of runtime data persistence we need. Responsible for design-time,
Discoverability Services metadata is also securely kept in an Oracle DB, Framework
6, and accessed via a unified inventory's endpoint. It is worth mentioning that the
rule engine SDK is available for the DB, Java, and PL/SQL.

We have mentioned RDBMS several times as you may have noticed, and we did
it on purpose. Yes, XDB with XML-relational model mapping is crucial to handle
well-structured, query-intensive data such as Order, Invoice, Client, and so on.
It is rather hard to justify why intensively queried data elements should be stored
in CLOB or XMLType fields. But what if all we need is to pertain the object-oriented
data and pass it further on for client-side processing? Yes, that's an AJAX with
the JSON payload type of processing. Nevertheless, the payload data could
also be the Lists, Sets/Ordered Sets, Hash maps, primitives, and so on.
All types of message-object-related mappings are quite expensive and could
be complex; moreover, we don't always need them on the Message Oriented
Middleware (MOM) side.

Chapter 2

[117]

Oracle offers good additions (we wouldn't describe it as a pure alternative) to
RDBMS in the form of Oracle Big Data Appliance (optimized for Oracle Exadata
Database Machine, but it can run on any hardware). This includes an open source
distribution of Apache Hadoop (http://hortonworks.com/hadoop/), the Oracle
NoSQL Database (frontend for well-known Berkley DB), Oracle Data Integrator
Application Adapter for Hadoop, and Oracle Loader for Hadoop.

The last two components implement a MapReduce-distributed computing pattern
(http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/),
linking Hadoop Big Data realized as Hadoop Data File System (HDFS) to Oracle's
external tables, which are transparent for regular SQL queries. The pattern's name
MapReduce could be misleading as the object-relational mapping is not the primary
goal of this solution. In this pattern, we try to achieve the highest level of processing
parallelism for clustered multitenant data in HDFS. We are literally mapping chunks
of data with unique numbers (key-value pairs), where the key is associated with
processing nodes and responsible for the reducing of the overall workload by the
parallel processing of related data chunks. Processing could be online or offline
and multiconsumer AQs can be used quite extensively by job controllers in some
pattern's realizations.

So, we could potentially have the classic RDBMS and NoSQL key-value distributed
stores at the same time. All these types of data access, loading, and distribution
put serious requirements on the data access layer, technically residing in the App
Server layer (the next layer in the technical infrastructures hierarchy). Not only
will components of the mentioned MapReduce pattern be implemented there, but
practically the whole data layer must be abstracted in a way that data manipulation
routines do not affect the application's logic, and apparently, old JPA is not enough.
The latest JPA 2.x (JSR 338) covers most of aspects of access schema-less DB, in
addition to the traditional implementations. Polyglot Persistence allows the abstracting
of JPA's implementations even further, and with in-memory data-grid Coherence (JSR
107), we can achieve the highest level of data abstraction and availability.

When discussing a DB's role in an SOA technical infrastructure, it is quite interesting
to mention the number of critical errors solely related to DB faults/mishandling.
Does the following list look familiar?

•	 We dequeued the inbound message from the JMS queue, but failed to
persist it in the DB because of tablespace problems. Where can we find
the message for process recovery? (By the way, should we mention that
the queue retention time was set to 0?)

http://hortonworks.com/hadoop/
http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[118]

•	 During the night batch job, one longops runs out of rollback size as it was
not big enough. About 25 percent of our active orders failed CRM-ERP
synchronization and now applications are out of sync. Worse, policy-based
automated recovery triggered automatically, but it also failed for the same
reason. Now a manual clean-up is necessary. (The DBA forgot to assign a
longops transaction to the one big rollback segment.)

•	 BPEL tried to dehydrate the process, but the tablespace was full.
(Obviously, the SCA audit level was not tuned, but it seems that the
DBA didn't monitor tablespace usage as well.)

From our experience, we can say that about 60 percent of all SCA crashes in
production are caused by DB-related reasons.

The implementation of the State Deferral pattern for orchestrated services in terms
of data persistence has significant impact on storage management, where one of the
critical operations is the process of data cleansing. Oracle provides purge scripts
together with purge strategies, depending on your operational requirements.

The Oracle application server
The core strategic assets of the Oracle WebLogic application server are interactively
described at http://www.oracle.com/webfolder/technetwork/tutorials/obe/
fmw/wls/Poster/poster.html.

WebLogic Application Server together with the DB is another keystone in SOA
foundation. It's an engine of engines, so to say. All that you will build, deploy,
execute, or consume as a resource will reside on WLS. An exception could be Secure
Gateway (the Oracle API Gateway), which for good reasons we will touch upon in
the Securing service interactions – Security Gateway section, is not based on WLS.

As we mentioned previously, we will focus only on some core features enabled
with the SOA functionality, rather than on the WLS administration aspects. Firstly,
we have to mention that WebLogic 11g supports JEE 5 and JAX-WS 2.1 for the web
service development when the newest 12c release supports JEE6 and JAX-WS 2.2.

In the context of the SOA infrastructure, what is the most interesting for us is which
resources can be securely provided for utilization and how they can be managed on
runtime. Needless to say that resources such as JMS for asynchronous communications
usually do not belong to the particular application (if the application that encapsulates
the communication channel is down, we can hardly rely on that channel anymore),
so we need the JMS server to handle our JMS messaging.

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/Poster/poster.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/Poster/poster.html

Chapter 2

[119]

All these resources, and some more, are securely provided by WLS:

•	 EJB resources
•	 Enterprise Information Systems (EIS) resources
•	 Java DB Connectivity (JDBC) resources
•	 Java Messaging Service (JMS) resources
•	 Java Naming and Directory Interface (JNDI) resources
•	 Web service resources
•	 Work context resources

As WLS is compliant to JSR-255 JMX management extension standards, there
are many ways to manage shared recourses. For instance, the standard sequence
to create JMS Queue—Creating a JMS Server -> Creating a Module ->
Creating Queue ->—can be fulfilled using the WLS console or the WLS scripting
tool. The basic resources (such as JMS) can be combined to expose shared WLS
services, which are also known as managed WLS resources. Among others, we
would like to mention one managed service responsible for establishing a reliable
messaging infrastructure—Oracle's Store and Forward (SAF) service.

The SAF service enables WebLogic Server to distribute messages reliably between
applications that are spread across the WebLogic Server instances; effectively, the
implementation of the Reliable Messaging SOA pattern. For example, with the SAF
service, an application that runs on or connects to a local WebLogic Server instance
can reliably send messages to an endpoint that resides on a remote server. If the
destination is not available at the moment the messages are sent, either because of
network problems or system failures, then the messages are saved on a local server
instance and forwarded to the remote endpoint once it becomes available.

Oracle Work Manager is responsible for the second part of the question,
that is, how resources are managed. To manage work in the installed applications,
we define one or more of the following Work Manager components:

•	 Fair Share Request Class
•	 Response Time Request Class
•	 Min Threads Constraint
•	 Max Threads Constraint
•	 Capacity Constraint
•	 Context Request Class

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[120]

Depending on your preferences, Work Manager can be assigned to any application
(including the Web application), application component in the WLS domain, or OSB
Business Service. You have to choose one of the four configuration files (please see
the WLS documentation http://www.oracle.com/technetwork/middleware/
weblogic/documentation/index.html for more information) to specify thresholds
for the Work Manager components and assign them to your deployed application or
component according to its deployment descriptor. You can always check the status
using the WLS console—Deployments | Monitoring | Workload—as shown in the
following screenshot:

WLS Work Manager's configuration

Work Manager uses a common execute queue (common thread pool), so it prioritizes
work based on the rules we define in the configuration files. The rules can be set
for response time, max/min threads, and run-time metrics, including the actual
time it takes to execute a request and the rate at which requests enter and leave
the pool. For example, simple math gives you the understanding of thread pool
utilization and backlog size. If your web service can guarantee its performance for
20 concurrent calls (Max Threads) and Maximum Capacity for its work managers is
25, then backlog queue size will be 5 (25-20), and these requests will wait for a thread
to become available. For rejected threads (over 25), you can assign a meaningful
response message.

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

Chapter 2

[121]

We should be very careful with numbers that we put in the Work
Manager's configuration files. For instance, it's definitely not a good
idea to have the number of threads higher than that of the available
connections in the DB connection pool.

Finally, from the Orchestration and Service Bus perspective, WLS is the host of the
whole SOA infrastructure maintained in the high-availability mode. Start the node
managers first using the designated script and then start your servers.

Needless to say that the node manager, which handles cluster nodes interoperability,
should not be a single point of failure and must also be covered by high-availability
options (please see the WLS documentation http://www.oracle.com/webfolder/
technetwork/tutorials/obe/fmw/wls/12c/10-NodeMgr--4472/nodemgr.htm).
In the following screenshot, you can see all our servers (SOA, OSB, and BAM)
running on the same WLS. Although this is not recommended for production, please
plan your infrastructure in a more segregated way according to the framework layers
we explained earlier. In the following screenshot, you can see all our servers (SOA,
OSB, and BAM) running on the same WLS on entering the following command:

/wlserver_10.3/server/bin/startNodeManager.*

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/10-NodeMgr--4472/nodemgr.htm
http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/10-NodeMgr--4472/nodemgr.htm

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[122]

Although this is not recommended for production, please plan your infrastructure in
a more segregated way according to the two framework layers explained earlier. The
WLS console with core OFM servers can be accessed after starting your server from the
related WLS domain, see the following command (.cmd or .sh depending on your OS):

/user_projects/domains/<my_domain>/bin/startWebLogic.*

WLS core OFM Servers

Summarizing what we have just discussed, we can describe the WLS as the most
generic way of covering all the SOA principles for our infrastructure, since the DB
we discussed earlier only provides Statefulness (Process Dehydration) and Loose
Coupling (AQ) directly. The application server covers Loose Coupling by maintaining
JMS and SAF in an application-independent way. JNDI also contributes to Loose
Coupling, isolating the resource name, for instance, the DB connection pool from the
physical DB location; so when the database is moved or changed, you do not have to
alter your DB-related service. JNDI's resource-naming unification and configuration
centralization also positively impacts discoverability, but the main contributor to the
realization of this principle is UDDI. The UDDI 2.0 Server is part of WebLogic Server
and is started automatically when WebLogic Server is started. With complete JAX-
WS 2.x support, WLS helps you to maintain Service Abstraction and Standardized
Contract, but of course, you should put some effort into designing the services to
realize these principles.

Chapter 2

[123]

WebLogic as the integral component of all infrastructures, abstracting, sharing and
monitoring resources, is the key contributor to Service Autonomy. Using the WLS
Administration console or scripting tools, Work Manager can assign or revoke
computing power to the installed application and components, thus increasing or
decreasing their runtime autonomy. The clustered implementation controlled by
WLS node manager(s) increases SOA applications' resiliency and high availability.
Consequently, because of high availability, abstraction, and visibility, all the
servers' resources are highly reusable in a very controllable manner (thanks to
Work Managers), and as a result, are composable. The unification of the resource
types and the ways of resource discovery and management open the door for the
implementation of the Canonical Resource SOA pattern; this helps to present all
components of the underlying technical infrastructure as unified blocks, easily
shared and consumed by different services. Elastic resource provisioning based
on the simplified replication model, specific for Cloud (mostly for 12c, but 11g also
has some support), helps to avoid the decreasing of service autonomy during the
implementation of the Canonical Resource pattern.

Again, we have to stress the fact that WLS cannot guarantee the employment of
all of these principles and characteristics alone in your architecture. Only basic SOA
patterns, such as Reliable Messaging and Canonical Resources for some elements,
can be provided out of the box. We have to architect our components right from the
start to achieve a desirable level of Composability.

There are some more things on the technical side related to SOA, which are not
supported by WLS (11g and 12c):

•	 No OSGi support. Even though it was said that WebLogic 12c uses
OSGi for internal modularization and to deliver products such as Oracle's
Complex Event Processor (CEP), there is no direct support for this standard.
For instance, if you are developing components for unmanaged devices, and
you need to implement the dynamic component model managed remotely,
Fuse/ServiceMix ESBs could be a better choice.

•	 Limited JBI support. Same as previous.
•	 No OAUTH 2.0 support for RESTful services. You should rely on a secure

perimeter solution.

The GlassFish application server could be the alternative for WLS, but we must
remember that it isn't a strategic product; not all OFM products will be supported
and some enterprise features will not be available.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[124]

The Oracle Rule Engine
For many OFM developers, Rule Engine (RE) is visualized as a decision component
in the SOA suite, shown as follows:

Indeed, this is the most common way of utilizing the power of business rules in
composite applications, expressing very complex conditions, combined in collections
(rulesets). The Decision component is the method of exposing the Decision services.
The Decision component is an SCA component that can be used within a composite
wired to a BPEL component or exposed directly as Service. In addition, the Decision
components are used for the dynamic routing capability of Mediator and Advanced
Routing Rules in Human Workflow, Case Management, and BPM. The Decision
component can be seen as a web service wrapper for the decision function and ultimate
endpoint for a subset of the rule dictionary. The decision function in the rule dictionary
can be presented as rules or decision tables. This dictionary, acting as a central rule
repository, contributes to the implementation of the Rule Centralization SOA pattern.

Business Rule Designer is the frontend to define and author various rules in SOA
Suite and combines them in rulesets. The following screenshot demonstrates how
a set of conditions based on Facts extracted from the message XSD (imported from
message header elements, but also can be from Java class or created explicitly in
designer) can be linked to a concrete action; in this case, the execution of a certain
business process related to the user request. The following screenshot gives a view
of Business Rule Designer:

Business Rule Designer

Chapter 2

[125]

Compared to the decision tables, the rule functions are more IF-THEN like, where IF
is a set of conditions or pattern matches and THEN is the list of actions. A rule might
perform several types of actions. An action can add, modify, or remove facts and can
execute a Java method or perform a function, which may modify the status of facts
or create facts. Here you can see the problem. If a rule action can modify the fact and
if a decision is based on this fact, then it's quite possible to create a never-ending
loop within the ruleset or lead to the so-called "combinatorial rules explosion." When
a rule adds facts and when these facts run against the rules, this process is called
an inference cycle. Luckily, Oracle implements the JSR-94-compliant RETE logic
(http://docs.oracle.com/cd/E15523_01/integration.1111/e10228/intro.
htm) for optimization of a rule's execution, avoiding unnecessary checks
for facts when they were altered or deleted during the rule function execution.
The RETE algorithm provides the following benefits:

•	 Rule orders independence.
•	 Optimization across multiple rules.
•	 High-performance inference cycles; typically, each rule firing changes just

a few facts. The cost of updating the RETE network is proportional to the
number of changed facts, not the total number of facts or rules.

Yet we have to warn you that as long as all the rule executions for the highest
performance is memory-based, combinatorial explosion is still a threat and the
RETE algorithm's compliance alone cannot prevent memory depleting. Plan all
your rulesets wisely and do not follow the Rule Centralization too rigorously. The
Rule Centralization must be strictly observed for rule development, authoring,
and testing, but physical implementation can be divided between frameworks and
application layers depending on the rulesets' complexity. As any centralization, the
rule centralization can implement the single point of failure and definitely affects
the Service Autonomy principle negatively, taking away business logic (or part of
it) from the business service. However, the last bit is the whole idea of increasing
business agility and Composability, and there are numerous positive customer
use cases where Oracle RE has been implemented in mission-critical, online-fraud
prevention and money laundering detection applications that handle and scan
billions of transactions or records daily. Thus, there are no doubts that Oracle RE
can provide fast performance and the highest level of reliability.

In general, Oracle RE is a standalone Java application that provides a very
comprehensive SDK and API for the rules' utilization from any element of
infrastructure: DB or OSB. Even if we do not have a rule-related activity for the
request and response pipes in OSB, it is quite possible to implement rules using Java
calls on the RE API. Oracle rules can be expressed by Rule Language (RL), which is
a subset of Java and is relatively easy to use. Oracle DB 11g has packages that present
built-in rule engine functionality; primarily, DBMS_RULE_ADM and DBMS_RULE.

http://docs.oracle.com/cd/E15523_01/integration.1111/e10228/intro.htm
http://docs.oracle.com/cd/E15523_01/integration.1111/e10228/intro.htm

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[126]

Oracle transformation and translation engine
As XML is the core standard in service-oriented computing, common to all
frameworks, the last but not least shared technical component discussed in the
Oracle SOA Foundation – runtime backbone section is Oracle XML Development Kit—a
set of tools, utilities, and modules, bundled with Oracle DB, JDeveloper, OSB, and
SOA Suite. All operations with XPaths, XQueries, XML nodes, XSDs, and XSLTs are
possible because of the XDK functions. Some core functionalities related to the latest
versions of XML standards are listed here:

•	 The JAXB-compliant XML class generator to generate classes from DTDs
and XML schemas on runtime and design time

•	 The DOM v 3.0 and SAX-compliant XML Parsers, full support for JAXP 1.3
interfaces, and implements and access XMLType in Oracle DB

•	 XSLT v 2.0 processors for transformation or the rendering of XML
•	 XML schema processors for runtime and design time schema validation
•	 XML SQL utility, essential for XDB to convert SQL queries into XML

All core XML libraries are associated with an SOA project upon creation, but you can
always verify the existing libraries or add new ones following Project Properties |
Libraries. The Oracle XML Parser v2 library is mainly responsible for XML parsing and
validation, as shown in the following screenshot. TopLink mentioned in the previous
section is the main O-R mapper. Refer to http://www.oracle.com/technetwork/
middleware/toplink/overview/index.html and http://www.oracle.com/
technetwork/middleware/toplink/overview/index.html for more details.

Oracle XML Parser configuration

http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Chapter 2

[127]

Thanks to the mouse's right-click menu functions—Reformat and Validate XML—
you can always check the consistency of your document and keep it in a readable
form. The same validation can be done using the following command line:

>java oracle.xml.parser.v2.oraxml -schema PurchaseOrder.xml

The input XML file is parsed without errors using the Schema validation mode.
Similar to this, to apply style sheets in the command line, the oraxsl utility is handy.

The translation capability of Oracle XDK is provided by Native Data Format
Translator (NDFT) and this feature is highly useful in the adapter framework when
we map non-XML files into XML and vice versa, as shown in the following screenshot:

Native Data Format Translator

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[128]

Here, simple comma-separated files were translated into simple XML files suitable
for further processing. XSD for the complex type, generated by Native Format
Schema generator from initial CSV file you can see in the following screenshot:

Native Format Schema Generator

However, what if a situation is not as simple and we cannot use the preconfigured
wizards for files separated with a predefined delimiter of fixed-length files? XDK's
Native Schema translator provides constructs that can cover practically all possible
complex cases, helping with conversion to canonical XML. A few of them that are
extremely useful in our opinion (from practical experience) are listed as follows:

Native schema
translator

Usage

startsWith This looks for the specified string in the native data.
surroundedBy This looks for the native data being surrounded by the specified string.
terminated By This looks for the native data being terminated by the string specified.
skip This skips the specified number of bytes or characters.

Chapter 2

[129]

Frankly, by using these four translators, you can find any piece of information in
a very complex mutilated file and map it to your canonical model. We advise you
to look at the full list of constructs and related examples in Oracle's Native Format
Builder Wizard documentation, related to the adapter framework. Finally, if this
approach doesn't work (yes, the IBM EBCDIC encoding with all possible mixes of
formats are still in use), use Java callouts from your framework (OSB or BPEL) and
implement your chopper using the Tokenizer patterns with any extensions you need.

Summarizing this, we simply do not know how to express more the importance
of a reliable and performing XML framework for the whole Enterprise architecture
(not only SOA). All six core frameworks rely on the robustness of Oracle XDK,
but the Security and Adapter frameworks, our gateway keepers, are explicitly
responsible for maintaining our canonical data models and reducing the number
of transformations and translations.

Some complex products, such as Oracle E-Business Suite, comprise
several XDKs, sometimes in different versions, as DB/XDB and the
Application server can have their own instances. Be careful with the
complex XML constructs and transformation schemas and always
pay attention to the parser you are using within your application.
There may be some problems with compatibility and definitely,
the performance will be different.

How Oracle products compose the SOA
framework
We discussed the foundation of Oracle SOA, the components that will always
be present in your infrastructure. Even if you decide to install OSB in a lightweight
mode (no DB and Repository Creation Utility (RCU)) without reporting the
functionality, the Derby DB will be installed anyway. Combined together, these
products cover all SOA principles and introduce all WS-* standards. When properly
maintained, they will help you to regularly address the common challenges you
face during the implementation of the SOA infrastructure. Here are just some of the
problems and patterns that address what we have already mentioned:

Common problem Pattern addressing the problem
Latency on the service provider's
side negatively affecting the
service consumer's functions

•	 Asynchronous Queuing: Covered by
WebLogic's implementation of JMS Server
with queues and topics.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[130]

Common problem Pattern addressing the problem
Unreliable communication channels
between the service consumer and
service provider

•	 Reliable Messaging: Addressed by WebLogic's
Store and Forward Service (SAF), with agents
securely delivering messages with all the
necessary acknowledgements.

Making stateful (and stateless as
well) services constantly available
in a fault-tolerant way and ready to
scale up rapidly

•	 Service Grid: Insured by Coherence, in-memory
grid computing solution, hosted by WebLogic
(JSR-107 compliant). Working together with
 OSB, provides a simplified service deployment
on the clustered environment and rapid
high-volume processing. Combined with
Oracle Event Processing implements ultra-fast
event processing network.

Computing resource unification and
management harmonization

•	 Canonical Resources: Covered by WebLogic's
JNDI, Resource Management, and Work
Managers implementation of unified resource
management.

Increasing the reliability and
availability of services

•	 Redundant Implementation: Guaranteed by
WebLogic clustered implementation, including
Coherence and Node Manager
in a redundant mode.

Controlling all business rules
centrally and avoiding business logic
from creeping in

•	 Rule Centralization: Provided by
Oracle Rule Engine with SDK, APIs,
and management console.

In general, what we are missing here is the services collaboration and operational
support for long- and short-running services (Orchestration and ESB, respectively),
security enforcement, and service governance (including Enterprise Repository).
However, we would first like to discuss the positioning of the development, testing,
and deployment tools in these frameworks.

Service creation – Object and XML Design
frameworks
Oracle JDeveloper is probably the most all-encompassing tool among the whole
range of developers' workbenches, covering the entire development workcycle.
Please see the most common steps in the next screenshot.

UML designing is the complete UML coverage for use cases, activities, classes
and sequences diagrams. Sequence diagrams have an effective autoplay feature,
simplifying the concept demonstration. UML diagrams are part of your SOA Suite
project, which is the closest thing to your code, so you and a business analyst can sit
together during prototyping, a very critical stage of the project, in order to eliminate
any possible design gaps.

Chapter 2

[131]

Needless to say that all artifacts are the subjects of the version control (subversion
is displayed, but Rational ClearCase, MS Team System, and Serena Dimensions are
also supported) as mentioned in the following list:

•	 First is the service composition visual development (SCA) of all components
such as BPEL, all types of rules (discussed previously in The Oracle Rule
Engine section), SCA mediators, and Human Workflow routines. The contact-
first concept is fully supported, you can create BPEL or Mediator right from
the WSDL and deploy it straight from JDeveloper on any deployment target
in your preconfigured servers list. The standard Java development, including
embedded coding with outlining and code insight, is greatly simplified, but
some insight features are probably better to switch off, as code completion
can be annoying for some. The BPEL visual designer is brilliant in the latest
versions and the number of crashes are considerably reduced.

•	 Second is the Visual XML development; XSLT mappings are really mature and
the number of XML-related function is substantial. Still, when some complex
XML manipulation is added into the source, visual development can become
unavailable. That can be irritating; however, in the defense of JDeveloper, this
is true for some other XML development tools such as Altova's XMLSpy.

JDeveloper OFM capabilities

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[132]

When discussing JDeveloper, we would really like to avoid the holy wars of JDev
versus Eclipse versus NetBeans. It has no relation to the SOA patterns, the subject
of this book. We have to admit that JDeveloper is the perfect tool for SOA Suite and
almost any other type of development, except for the Oracle Service Bus (OSB). We
either use the OSB console or the Eclipse plugin (OEPE) to construct our OSB flows. Is
this a drawback? Certainly! A single tool that covers SCA/SOA Suite and OSB would
unquestionably simplify our life, but we have to remember that EBF (SCA composites
and orchestration) and EBS (service bus) are different frameworks; they are almost
different universes. We already have some OFM 12c products at our disposal and,
hopefully, with the full release of OFM 12c, we will have these tools merged.

One of the problems of using Eclipse is that it is as good as the quality of the
plugins we have, and from our experience, we know that OSB and WLS admin pack
plugins are really good; the old plugins for BPEL worked only for quite simple flows.
So, splitting OSB and SCA development may not be that bad after all.

The last piece in the development and modeling stack is SQLDeveloper, which in
many ways is better for DB development and administration than JDeveloper.

Service development – automated test and
deployment
The open OFM development architecture allows for the creation of the Continuous
Integration (CI) framework, where the central role will be on the Hudson build
server. Please see the following figure:

Chapter 2

[133]

Hudson is an open source tool supported by Oracle. It's a continuous integration
server capable of executing practically any scripting tasks, such as Ant targets, Java
compiler tasks, and Maven goals, and in doing so, performs almost any type of
assembly and deployment. It can also be easily integrated with any type of version
control system and equipped with a powerful scheduler. All connections can be
secured and dedicated credentials can be established for every subsystem (code
repository or deployment targets). All Hudson's projects can be established in a
hierarchical way with the master project on the top and subtasks below. The build
process itself can be distributed as Hudson supports the master-slave topology for
distributed assembly and compilation. Master (central Hudson server) and Slaves
(agents performing build tasks) can be dispersed between on-premise and cloud(s)
installations. The previous figure illustrates the simplest (yet most effective) way of
implementing this framework.

Maven (http://maven.apache.org/what-is-maven.html) and its plugins will
be necessary when your project has different heterogeneous components—not only
SOA Suite SCAs but also DB schemas, separate Java modules, and Oracle Meta
Data Services (MDS). In most cases, Ant can do all the jobs required for the task's
execution against the targets. The mandatory part here is the versioning system
(subversion) in connection to JDeveloper and Hudson, deployment server (probably
WLS), and Hudson CI server. When a developer submits the project's code, Hudson
detects the change in versioning system and run the scripts associated with these
projects. Alternatively, it will be more effective to schedule these Hudson tasks at
a certain interval. Developers must observe and respect the code build and submit
culture diligently. When code is assembled and compiled successfully, Hudson can
proceed with the deployment on the JIT server and execute the test scripts. If an error
occurs during the assembly and build or during testing, a report will be generated.
Build Manager and the developers will always see the status on the Hudson console
as sunny or rainy.

This framework probably does not produce an SOA pattern, but its role together
with the Service XML and Object development frameworks in maintaining
the contract-first development paradigm is crucial. That's the core of the Agile
development, and without establishing a proper development and deployment
culture, we will not be able to move further toward complex Orchestration and
Service Brokering.

http://maven.apache.org/what-is-maven.html

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[134]

Establishing the adapter framework
When discussing AIA, we emphasized the role of the adapter framework in
establishing the compound SOA pattern named Federated Endpoint Layer
(in AIA terms, ABCS). This pattern is composed of several atomic patterns,
where they directly govern the following canonicalizations:

•	 Canonical Expression: This indicates expressing contracts' capabilities
(operation) in a consistent and comprehendible way, improving
discoverability, and consequently, reusability.

•	 Canonical Protocol: This means reducing the number of communication
protocols to the optimal level. It is essential to maintain composability.

•	 Canonical Schema: This denotes establishing canonical data models,
and reducing transformations and as a result, improving performance
and the overall reusability.

According to the AIA methodology, the adapter framework is usually realized by
BPEL. This advice has very strong historical reasons because the very first version
of BPEL had dozens of different connectors presented as partner links to DB, Files,
FTP, MQ, and so on (see the following screenshot). Adapters are arguably the
strongest part of Oracle BPEL. The framework is extremely extensive and
provides the possibility to link to third-party adapters.

Oracle Application Adapters have also been one of the strongest selling points
for BPEL. With these types of adapters, we can natively communicate with
OEBS PL/SQL concurrent APIs, shadow tables, and custom interfaces:

Chapter 2

[135]

The latest releases allow adapters to subscribe to the OEBS business event or
a group of events (see the following screenshot). We will discuss how it fits the
whole SOA paradigm in Chapter 6, Finding the Compromise – the Adapter Framework.
What's important now is to stress that Oracle looks like a primary platform for the
adapter framework.

From a vendor-neutral perspective, we would not advise you to entirely lock on
the BPEL realization. As repeatedly mentioned, BPEL is the orchestration tool. Fast
service collaboration can be affected by latencies of this platform. On the other
hand, data format/data model transformations and protocol bridging can be easily
implemented on Oracle Service Bus. These two patterns are the building blocks of
the Service Broker pattern, together with asynchronous queuing, which is part of the
classic Enterprise Service Bus. Thus, if your adapter does not require complex data
extractions with possible multicommits from DBs with degraded performance, all
you need is to transform and validate the inbound XML and consider OSB as your
adapter layer. However, the general rule is always the same—minimize the adapter
framework in your enterprise as much as you can. The standardization of service
contracts across the Service Inventory is the primary goal.

Providing orchestration – enterprise business flows
With all the complexities of this layer and numerous SOA patterns encapsulated into
it, the technical foundation of this framework can be described precisely as Oracle
SOA Suite. In more detail, it consists of Oracle DB (XE; standard or Enterprise is also
possible with some configuration amendments regarding max cursors and processes)
with SOA DB schemas installed (by the Repository Creation Utility, RCU), and
Oracle WLS with soa_server, a domain dedicated for orchestration.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[136]

From a component perspective, Oracle SCA consists of the following:

•	 BPEL
•	 Decision Service
•	 Mediator
•	 Human Workflow

Interestingly, after five years of exploitation, SOA Suite 11g is sometimes called
BPEL, where BPEL actually represented just 25 percent of the overall functionality.
In fact, it plays a clearer role now, acting as the glue between other services and the
components. SOA Suite itself presents a very good example of the separation of
concerns. Probably the most disputed component is Mediator. Its role is sometimes
mistaken for the lightweight service bus. We do not believe that the weight matters
here; Mediator can also be dehydrated as it's stateful, and so it's not that lightweight.
Mediator relieves the BPEL processes from the implementation of complex if-else /
routing functionality: parallel, sequential, static, dynamic, and rule-based.

The execution of parallel rules requires the enqueuing of messages in
the DB dehydration store. As a DB is involved, performance tuning and
performance monitoring are required.
Oracle Mediator's dynamic rule-based routing is an effective feature,
but we are limited only by an asynchronous MEP (nonsynchronous or
one-way MEPs) and we cannot alter the payload (no transformation).
Also, only SOAP binding is currently supported.

Thanks to the BPEL-based artifacts, we can finally focus on the grouping task-
centric logic related to particular EBMs, presenting enterprise-centric business logic
in a transparent and manageable way. Clearly, that's the Process Abstraction SOA
patterns' implementation, which aims at the creation of a task service layer in our
service inventory. A new SOA pattern-candidate has been introduced recently—
Entity Linking. According to its name, the purpose of this pattern is to maintain the
desirable level of the Loose Coupling principle between the isolated Entity services,
giving them a possibility to natively communicate as some business relations always
exist between them (Order <-> Invoice, Schedule <-> Vehicle, and so on). In
this context, Mediator can be seen similar to this pattern's implementation, but this
is for task services within one composite because, task services are also quite often
related to a single EBO.

In the SOA modeling and analysis practice, there is one rule that concerns the
functional decomposition of business logic, that is, isolate manual tasks and do not try
to automate them (at least see the automation of manual tasks as a second priority).
Human Workflow is actually a very elegant way to address this designing dilemma.

Chapter 2

[137]

So, the simple conclusion about this framework is that Oracle SOA Suite covers it
pretty well, following the BPEL 2.0, WSDL 2.0, XSD 1.1, and XSLT 2.0 standards.
Some XPath 2.0 functional arrears are supported as well. Therefore, we can give
positive, as well as practical, answers for all questions in the following table
dedicated to the EBF aspects from Chapter 1, SOA Ecosystem – Interconnected
Principles, Patterns, and Frameworks. In terms of SOA patterns, the most important
composite pattern, Orchestration, is covered in great detail.

Common problem Pattern addressing the problem
The isolation of
business-centric
(nonagnostic) services
from agnostic, highly
reusable components,
and visually
representing them in
a comprehensive and
manageable form

•	 Process Abstraction: SOA Suite is quite cleverly
organized according to Service Component Architecture
(SCA), allowing the abstraction of assembled
components and hiding implementation details.

•	 Mediator, Human Task Services, and Decision Services
reduce the complexity of BPEL processes, increasing
modularity and composability of complex business
solutions.

•	 Agnostic services (Entity and Utility) can be easily
recognized and filtered out for separate implementations.
Surely, this separation cannot be done by SOA Suite alone.
We have to architect our service layers cleverly.

Task services are
a special kind of
services, with specific
requirements for the
service engine. In
fact, as we have four
separate components,
then four separate
engines will probably
be necessary in our
technical infrastructure
to support this
framework.

•	 Process Centralization: Oracle SOA Suite provides
all the necessary engines to support orchestrated task
services. All these service models are centralized under a
harmonized environment (WLS soa_server), covered
by HA measures. Nevertheless, it must be realized that
all engines (BPEL, Mediator, Rule, and ADF runtime
for hardware) are a burden for the infrastructure and
operational support, so please model your services
carefully and avoid hybrid models in order to save costs
and effort.

•	 Back to the discussion of development tools unification;
the physical isolation of orchestrated task services from
other infrastructures does not justify the IDEs' disparity,
but at least it explains the complexity of unification.

•	 Another type of centralization pattern covered by SOA
Suite is Rules Centralization. Decision services, connected
to the central rule repository, allow us to abstract
business rules and make our task services more flexible.
The risks associated with the realization of this pattern
were discussed earlier in The Oracle Rule Engine section.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[138]

Common problem Pattern addressing the problem
What makes the
orchestration layer
quite special is the
necessity to persist
process data during an
inactive state for days,
or even weeks.

•	 State Repository: We already discussed this pattern
when talking about DBs. This is a crucial pattern for
the whole orchestration, and the point here is not
the performance deficiencies that are quite natural in
(almost) any persisting technique. The question here is
the safekeeping of storage and data consistency.

•	 Choose your storage purge strategy wisely; Oracle
supplies us with online and offline purge scripts, but
local DBA's attention is highly advisable. And, of course,
back up, back up, back up…

•	 Recently (in the PS6 release), Oracle presented the Table
Recreation Script (TRS) that can be used as a corrective
action in addition to the standard purge script. You should
also be aware that purging strategies could be different for
different DB vendors (MS SQL Server or DB2).

•	 Last but not least, select your SOA audit level
appropriately. The trace/debug mode in production
is probably not the best idea.

Even with the
implementation
of transaction
management (Atomic
Service Transaction
SOA pattern), it is not
always possible to
maintain long-running
transactions such as
ACID.

•	 Compensation Service Transactions: The SOA Suite
compensation flows present the BASE transaction
management that cover this pattern.

Setting up Service Bus – enterprise business
services
Inherited from BEA, Oracle Service Bus is probably one of the most well-equipped
commercial ESBs and is similar to the Orchestration layer. We can provide positive
responses to all questions for the table under The Enterprise Business Services
framework section in Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns,
and Frameworks.

Chapter 2

[139]

Also compound, OSB shares several SOA patterns with Orchestration:

•	 We also need Rule Centralization in ESB, and although the connection to
the decision service in OSB will require a bit more effort than that in SOA
Suite, we can use the Rule Service SOAP API to call the decision service prior
routing, get the endpoint URI based on our conditions, and route accordingly
(in this case, we could use the SOA Suite SCA component-wrapping decision
service, but this is not always advisable). Alternatively we can use the RE
Java API to fire the rule/ruleset from the Java callout.

•	 Data Model Transformation is also common to ESB and Orchestration.
As both compound patterns (and frameworks) are candidates for the adapter
framework, the implementation of transformations is almost inevitable,
but it is better to be done with them in ABCS.

Asynchronous Queuing and Reliable Messaging are the strong sides of OSB,
as shown in the following screenshot:

OSB transport configuration

The classic ESB SOA composite pattern has more atomic patterns inside,
such as Event-Driven Messaging (actually, Event Delivery Network in the Oracle
realization is more SOA Suite-oriented), but Service Brokering and Intermediate
Routing will be our main discussion subjects in Chapter 4, From Traditional Integration
to Composition – Enterprise Business Services.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[140]

Discovering enterprise – enterprise service
repository
With so many technical layers, frameworks (we are focusing on a core ten, but
that's a very simplistic model), and components, even in a single composite, it is
highly important to keep control centralized on all the projects' artifacts; therefore,
Oracle supplies all OFM products with Metadata Services (MDS) by default. This
infrastructure with the support of customization is common to all types of artifacts,
initially stored locally in all 11g SOA projects in order to avoid clashes. The common
location can be configured on the application level by setting the correct path to the
shared MDS location $application_home/.adf/META-INF/adf-config.xml,
as follows:

 <metadata-store class-name="oracle.mds.persistence.stores.file.
FileMetadataStore">
 <property value="C:\Users\SergeyPopov\workspace\CIO_PE\SCA\MDS"
 name="metadata-path"/>
 <property value="soa" name="partition-name"/>
 </metadata-store>

Of course, you can set in a more clever way as ${oracle.home}/integration/…
Certainly, you could have several metadata stores defined in adf-config.xml,
each with its own metadata storage usage namespaces and paths. The storage in
the previous example is file-based, but DB can be used as well with some additional
benefits (for instance, faster and more complex runtime queries). So, in general, it
looks like some sort of version control for the following:

•	 BPEL, BPMN (http://www.oracle.com/ocom/groups/public/@otn/
documents/webcontent/172298.pdf)

•	 XML-related artifact such as XSLT, XSD, XQuery, any XML fragments,
and XPaths

•	 Human Workflows
•	 Business Rules
•	 Web artifacts such as Portlets, JSF pages, and ADF components

The beauty of this approach is that you can reference and access your
MDS-shared artifacts using the oramds:/apps/… path from any SOA components
(BPEL, Mediator, and so on) for domain value maps (DVM), policies, XML
mappings, and so on. For instance, here is an example of fault policies binding
in the SCA project's composite.xml:

 <property name="oracle.composite.faultPolicyFile" type="xs:string"
 many="false" override="may">oramds:/apps/OraSOAPatterns/
faultPolicies/fault-

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/172298.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/172298.pdf

Chapter 2

[141]

 policies.xml
 </property>
 <property name="oracle.composite.faultBindingFile" type="xs:string"
 many="false" override="may">oramds:/apps/OraSOAPatterns/
faultPolicies/fault-
 bindings.xml
 </property>

MDS is actively used not only in JDeveloper in conjunction with SOA Suite, but
also in the Oracle ADFs MVC patterns' development, the WebCenter Web 2.0
development platform, and Fusion applications. Fusion Middleware control provides
complete management capabilities for MDS repositories such as registration,
deployment artifacts, migration, exporting, labeling, versioning, backups/recovery,
and deletion. The same management functionality is also available through WLST.

Despite all the brilliant MDS repository's design and runtime features (even Design
Time @ Runtime lookup/discovery capabilities), it tends to be more of a developer's
tool than the enterprise service lifecycle support suite. To some extent, it can be seen
as a UDDI, which is also brilliant for Service metadata description and discovery.
However, it can mostly be viewed through programming interfaces built into UDDI
APIs, providing a little support for metadata classification, taxonomy, analytics, and
end-to-end control. Oracle has Enterprise Repository to cover all these requirements.
OER is a part of Oracle SOA Governance Suite, natively connected to MDS, UDDI
instances, and the developer tools. It would be quite difficult to find a single element
of service lifecycle that is not covered by OER. Please see the following list that
details how OER covers common SOA Governance requirements:

•	 First is Code Compliance Inspection with automated design-time compliance
evaluation against WS-I interoperability tests.

•	 Next is the Native Contract support, helping negotiate terms of use between
the service consumer and provider (see the figure under the Establishing the
Adapter framework section). Both the technical and SLA aspects of service
contract are covered in great detail. We probably do not need napkin
drawings anymore. This capability together with the Code Compliance
Inspection is covered by the AIA harvester and workbench.

•	 Once the contract and related Trading partners are defined, every single step
of the service lifecycle can be clearly defined.

•	 Business and technical policies can be defined and centrally stored in support
of the defined service lifecycle.

•	 The lifecycle service events can be recognized, and automated notifications
can be delivered to access subscribers.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[142]

•	 What if we have legacy services or bulk-delivered projects? The Asset
Harvesting tool can discover the artifacts and populate OER. Harvesting
also supports clustered environments.

•	 Most of the OER features are accessible from SOA IDEs.
•	 The bi-directional synchronization with UDDI registries.
•	 Oracle BI Publisher supports a whole range of OER standard and

custom reports.

Oracle Enterprise Repository is a vital element of any service inventory, ensuring
runtime and design time discoverability and, ultimately, maintaining composability.
Really, what good will even the best of our services do if nobody knows of their
existence and capabilities? Or, how do we know that the service is really good if
we do not know its vital metrics and runtime statistics? How can we assure service
consumers about a service's vitality without providing stress test results and a
description of test harnesses? How can we collect money for service usage?
How can we centralize our business policies?

With or without OER, we will have to answer all these questions. The realization
painfulness will be directly proportional to the size (and complexity) of our
enterprise: a small company with 10 employees will probably do well with one Excel
spreadsheet, but any sizable firm with IT staff of about 20 with the same spreadsheet
will constantly be in a "Oh shhh…!" situation.

Again, OSR, OER, UDDI, and MDS are only part of the complete Governance suite
and what Oracle can offer.

Chapter 2

[143]

Service governing – monitoring, error handling,
and recovering
A complete governance infrastructure includes the following components
of Oracle's SOA Governance Suite in addition to OER and OSR:

•	 Runtime security policy enforcement (OWSM)
•	 Service monitoring (Oracle Enterprise Manager SOA Management

Pack Enterprise Edition)
•	 Business Activity Monitoring (BAM)
•	 The Centralized Fault Management facility (partly Error Hospital in

SOA Suite)

Here we would like to reiterate that you do not need to implement all the elements
of the governance infrastructure from the very beginning. It's definitely expensive,
depends on your company's size, and is ultimately useless if you do not have a
clear SOA strategy in mind (building a strategy was discussed in Chapter 1, SOA
Ecosystem – Interconnected Principles, Patterns, and Frameworks). Although some
components will be prepacked, like Error Hospital as a part of SOA Suite, a separate
purchase won't be necessary. It's part of a policy-based fault management framework
(yes, another one) within SOA Suite, so we cannot consider it as enterprise wide.
Nevertheless, you can assign custom actions to your error conditions and use retry
and notification mechanisms. Some effort will be required to make it common
for several frameworks, and we will discuss this in Chapter 8, Taking Care – Error
Handling. No wonder Enterprise Repository will be an essential part of the unified
Error Handler.

All together, these elements of the Governance framework contribute to the realization
of discoverability and the Composability principles. More about governance
infrastructure can be obtained from the Oracle documents at: http://docs.oracle.
com/cd/E28280_01/doc.1111/e16581/install.htm#sthref9.

Securing service interactions – Security Gateway
This is the last framework to discuss, both graphically (the seventh layer in the
very first figure in this chapter) and chronologically, according to Oracle's purchase
history, but undoubtedly, a highly critical one. From the SOA realization perspective,
this framework should be based on the ESB, as we discussed earlier, because of its
message filtering, screening, and routing functions. Indeed, it was for a quite long
time, where OSB played the role of a Service Gateway and Oracle Web Service
Manager was responsible for policy enforcement, providing a common gateway and
individual agents to secure service interactions.

http://docs.oracle.com/cd/E28280_01/doc.1111/e16581/install.htm#sthref9
http://docs.oracle.com/cd/E28280_01/doc.1111/e16581/install.htm#sthref9

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[144]

This approach is still valid and you can use it in your enterprise between the internal
SOA domains, but apparently, some more security-related features have to be added
for Message Screening (Content Filtering), Authentication, and Authorization.

The Oracle API server has all these requirements nicely covered. See the
following screenshot:

Oracle API Gateway Policy Studio

Originally from Vordel, this gateway has quite extensive workflow capabilities
(see the following screenshot) and is specifically designed to operate in very hostile
environments, such as DeMilitarized Zone (DMZ). The application is well-layered
and runs as a managed code on JVM, but no WLS or OSB is required. So it's very
lightweight on one hand and reasonably protected from buffer stack overflow
attacks by JVM features on the other. Surely, the latest Java security updates must
be applied promptly as certain risks related to JVMs' security holes will exist, but
this calculated risk is justified by the possibility to run on the newest versions of OS
and JDK as unmanaged gateways, because versions sometimes lag behind due to
longer implementation time. Obviously, older OS releases are exposed longer to the
evaluation of vulnerabilities, giving more opportunities to hackers. Although we do
not really want to participate in the managed versus unmanaged code clashes, the
unmanaged Intel Expressway Service Gateway in our tests produced a stunning 10 K
tps 3 K SOAP message on two really modest dual core CPU servers.

Chapter 2

[145]

At the same time, Oracle Gateway was almost as good, showing pretty similar
figures. Thus, the choice is yours.

Oracle API Gateway Policy Studio

The option to choose the physical realization of this technical layer again comes
from the following principles, opening the door for vendor-neutral security
implementation. What must be strictly observed though is the compliance
with common security standards:

Requirements Standards
Transport layer
security

SSL and TLS
http://tools.ietf.org/html/rfc6101

http://tools.ietf.org/html/rfc5246

Confidentiality
enforcement XML
Encryption

XML Encryption
http://www.w3.org/standards/techs/xmlenc#w3c_all

Integrity,
Non-repudiation,
and origin assurance

XML Signature
http://www.w3.org/TR/xmldsig-core/

WS-Security (SAML, Kerberos, X.509 token profiles)
https://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=security

http://www.ietf.org/rfc/rfc4120.txt

http://tools.ietf.org/html/rfc6101
http://tools.ietf.org/html/rfc5246
http://www.w3.org/standards/techs/xmlenc#w3c_all
http://www.w3.org/TR/xmldsig-core/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.ietf.org/rfc/rfc4120.txt

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[146]

Requirements Standards
Generic application
of rules and
conditions

WS-Policy
http://www.w3.org/Submission/WS-Policy/

Subset of the
policies, related to
security

WS-SecurityPolicy
http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/ws-securitypolicy-1.2-
spec-os.html

Brokered trust
management
(claims, assertions,
tokens)

WS-Trust
http://docs.oasis-open.org/ws-sx/ws-
trust/200512/ws-trust-1.3-os.html

Governing secure
context exchange
(tokens during
handshake, and
so on.)

WS-SecureConversation
http://docs.oasis-open.org/ws-sx/ws-
secureconversation/200512/ws-secureconversation-
1.3-os.html

XML-based Access
Control Language

XACML
https://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=xacml

Key management
specification

XKMS
http://www.w3.org/TR/xkms2/

Cryptography
standards

PKCS#1, PKCS#7, PKCS#12
http://www.emc.com/emc-plus/rsa-labs/standards-
initiatives/public-key-cryptography-standards.
htm

Securing rich/
multipart content

S/MIME
http://tools.ietf.org/html/rfc2311

Open delegated
authorization
standard

OAuth
http://tools.ietf.org/html/rfc6749

It's not that uncommon when parties are unable to communicate having the
best-of-breed Secure Gateways in place just because of incompatible encryption
protocols or the unsupported enveloped/enveloping signature concept.

One very interesting topic here is the necessity of the EBS layer for external
communications, handled by a security perimeter (essentially, Service Bus as well).
We will not discuss it in this chapter, as it is dedicated only to products linking to
the abstract frameworks, but rather keep it for future discussion.

http://www.w3.org/Submission/WS-Policy/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.w3.org/TR/xkms2/
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/public-key-cryptography-standards.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/public-key-cryptography-standards.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/public-key-cryptography-standards.htm
http://tools.ietf.org/html/rfc2311
http://tools.ietf.org/html/rfc6749

Chapter 2

[147]

The names of the security standards supported by the API Gateway are very
similar to the functionalities we expect from it. With this product in the portfolio,
Oracle now covers all eight generic SOA Security patterns.

Summary
Oracle has come a long way from ad-hoc apps that link to enterprise integration
and finally, to the full-fledged service orientation. With no doubt, products from
Collaxa, BEA, and Sun turned the single DB-company into one of the strongest
Middleware players with the most advanced products in the portfolio. Importantly,
we see that Oracle SOA's product stack is evolving and this evolution is guided
by the open standards committees where Oracle is the one most active contributor
and is influenced from partners and customers who bring business demands and
challenges. At the same time, it is important for us not to follow this path blindly,
trusting somebody else's strategy, but rather choose our own way of achieving the
strategic goals. In this sense, Oracle is setting a good example by assembling its own
and acquired products following the Composability principle and giving us a wide
range of the tools, enabling service-oriented computing.

Some architects accuse Oracle of offering products with overlapping functionalities
in application suites and packages. Indeed, this claim has factual context.
Apparently, overlapping can hardly be avoided in a particular market's expansion
strategy. But honestly, most of the enterprise architects have to admit that in our
own companies, the level of redundant denormalized functionality in applications/
services is sometimes far from optimal, and that's normal. Architecture is a living
mechanism—it has to evolve—and as long as we do not want to get into the
disastrous Big Bang approach, we have to move gradually, allowing some level of
functional denormalization along the way. So Oracle does as well.

What matters is the way we normalize our functional and technical boundaries.
More rationally, this could be done by applying the SOA principles and standards
in identified frameworks. After all, most of the Oracle components in software
packages are optional. If you do not have long-running services, go for OSB (EBS)
first and turn to SOA Suite (EBF) later, when necessary. If your security requirements
are particularly high and performance must not be compromised, consider the API
Gateway as your single service collaboration platform with no extra layers. If you
run mostly heavy-batch jobs during the night hours, give ODI and master data
management (MDM) a general thought; however, bear in mind that these tools
are also parts of the EDN and AIA SOA implementation. Nevertheless, what almost
certainly will be presented in your infrastructure are the core ten frameworks, and as
we discussed in this chapter, Oracle has good candidates to employ.

An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory

[148]

As a final example to conclude this chapter, we can look at the industry-specific case
of an SOA platform realization based on Oracle products. The telecom industry is
rapidly moving these days, both technologically (emerging 4 K TV + H.265 HEVC
codec and to accommodate it at home -802.11 ac routers) and commercially (any
content + any protocol + any device + any place). To accommodate this business shift
technologically, another term was proposed—Service Delivery Platform (SDP)—
and all the key telecom providers rushed to offer their platform realizations: Huawei,
Amdocs, Ericsson, Alcatel-Lucent, and Telcordia. According to Gartner (market
analysis 2012), Oracle is among the strongest three SDP providers. However, what
is Oracle SDP? Again, Oracle's Telecom-specific products are the result of the latest
acquisition (from Convergin): Oracle Communications Converged Application
Server (OCCAS), Oracle Communications Services Gatekeeper (OCSG),
and Oracle Communications Marketing and Advertising (OCMA).

Generally speaking, the controller and gatekeeper are the elements of the
telecom-specific adapter framework, handling telephone network protocols
(OCCAS: SIP, ISC, INAP, and so on) and telecom enablers (OCSG). Gatekeeper is also
capable of handling home devices, such as REST and SOAP calls. Unsurprisingly, these
ABCS elements are connected to the enterprise backbone, where Oracle Service Bus,
SOA Suite, Service Repository, and API Secure Gateway are playing the same roles as
we discussed for each enterprise framework. Oracle put considerable effort into the
Contract Standardization of each component of the Telecom SOA platform, abstracting
specific protocols to increase SDP Composability and demonstrating a high-level of
reusability of its own assets to achieve strong merits.

Now we are ready to look at the most widely recognized SOA framework,
Enterprise Business Flows (EBF), and see how SOA patterns can solve
typical problems there.

Building the Core –
Enterprise Business Flows

Service Orchestration is one of the terms that is most commonly associated
with the Enterprise Business Flows framework and SOA implementation in
general. At the same time, Orchestration is one of the two most common compound
patterns (the other is ESB) employed for addressing reoccurring problems related to
application integration. In this chapter, we will discuss these common problems and
the ways of mitigating them using different patterns that are related to Orchestration,
and find ways to turn integration into service collaboration. Not all debated patterns
will be related to the Orchestration realm directly.

However, as long as they are quite universal and applicable to every framework,
we will put them here; this is because the Orchestration layer can be a good
demonstration ground to begin with this exercise. Some basic SOA Suite skills
(for 11g composites: BPEL, Mediator, and RE) and some Java skills (MDB and JMS)
would be useful, as we simply do not have enough room here to provide a complete
technical tutorial. The main focus in this chapter will be on patterns, ensuring
reusability and composability. Therefore, architecting the agnostic Composition
Controllers and subcontrollers will be the most interesting part.

Another reason to start with Orchestration first is that due to the popularity of Oracle
BPEL Process Manager (initially Collaxa and later 10g and 11g), in the last 9 years,
quite a few enterprises have maintained a considerable amount of orchestrated
services with different degrees of service orientation. It is not too common for an
enterprise to start something from scratch these days (such as the St. Matthews
Hospital example in Oracle SOA Suite 11g Handbook, Lucas Jellema, McGraw-Hill),
practicing a pure top-down approach. Thus, the patterns related to Service Inventory
Analysis and Modeling will be essential for understanding the presented example.

Building the Core – Enterprise Business Flows

[150]

Oracle SOA's dynamic Orchestration
platform
Orchestration is always related to task-orchestrated services and non-agnostic
workflows that are devised for covering a single (but complex) business operation,
which we discussed in Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns,
and Frameworks. This master service is a chain of service invocations and simple
request-responses and/or complex transactions that involve several services at a
time (ACID- or BASE-style). As mentioned earlier, this master service fulfills the
runtime role called Composition Controller, which controls the service's composition
members or other subcontrollers. This is a pure runtime role, and the next time you
decide to include this master-controller into a more complex composition, the new
role will be different (becomes a subcontroller). We also know that Composition
Controller does not always start the service interaction (or service activities) within
the composition. More often than not, a composition is commenced by a composition
initiator that is not part of the composition itself.

In relatively static business models (big savings/deposit banks and some
governments institutes), compositions could be pretty static as well with fixed data
models and business rules. Some conservative businesses can rely on traditional
BPEL processes, especially if geographic areas are well set and related service
endpoints are permanent. As we all know, the static business model is rarely used
these days, even in government structures. This is because there are many aspects
such as technological, commercial, and organizational that shake our organizations.
Interestingly, even small companies with a single line of business also like to stay
more and more agile and adaptable in modern competitive surroundings. Task
services that are placed at the top of the whole IT stack, most closely related to
concrete operations and business people, must not pose bottlenecks for adapting the
enterprise principle. How can we achieve that? Yes, you are right, all eight principles
must be applied, but with some preconditions as follows:

•	 Composition members must logically encapsulate a concise business context
and introduce a standard service contract (among the other seven principles),
that is, stay composable

•	 Controllers that compose these members into a business process fabric must
be agnostic

Chapter 3

[151]

The second outcome is possible when all the business rules are abstracted from
Composition Controller (remember that theoretically, we are compromising the
controller's autonomy), and it can be accessed and consumed by the controller
dynamically using the message context. Following this logic, we can assume that
Composition Controller can recursively act as a subcontroller for just another instance.
That's it! Just by changing the rules, we can change the sequence of the invocations and
consequently implement new processes on the fly. So simple, isn't it? Who would think
about it? Here, we can conclude the chapter and probably the entire book.

Again, as you can see, suggestions are based on common sense;
most certainly, these logical outcomes are not new to you. We now
see our task as a demonstration of Oracle SOA Suite's capabilities
to implement the suggested outcomes.

Talking about it seriously though, dynamic Composition Controllers are not new
at all, and we have all coded and implemented them many times. However, here
we are going to choose examples that are specific to Orchestration, where we have
two distinct properties: processes should be long running and asynchronous and the
controller must be truly agnostic for dynamically brokering other service members.
Therefore, the problems we are facing are obvious too:

•	 There is no problem in abstracting the rules, centralizing them, and accessing
them dynamically. What we must remember is that these rules could evolve
while the process is running for days and weeks. Thus, rule versioning must
be handled seamlessly by Composition Controller together with Rule Engine.
A single process cannot start using one ruleset and finish with another.

•	 The process can fail for many reasons. With a static non-agnostic controller,
you can set precise compensations and error handler(s), anticipating concrete
faults. An agnostic controller alone has no idea about what to do in error
situations, which means that you will again need to employ Rule Engine in
order to compensate for the error.

•	 A compensation itself is rather specific as we cannot always apply generic
compensation flow(s) in a generic controller. We should also be careful in
propagating the error to the upper level (initiator or master-controller) for
many reasons.

Building the Core – Enterprise Business Flows

[152]

•	 Actually, abstraction and centralization of the rule is the problem as we
technically present a single point of failure, and the infrastructure must
provide a redundant solution for this.

•	 While abstracting the controller itself, we must not forget that these types of
controllers are more suitable for synchronous and fast-running compositions.
Long-running compositions will require persisting the process state, and
agnostic controllers are not the best candidates for this. Actually, BPEL
was invented to solve this problem, presenting a task-orchestration service
as a non-agnostic Composition Controller and one of the means for the
implementation of the Process Centralization SOA pattern.

So, why would we step aside from the Process Centralization pattern based on a
very comfortable and easy-to-use BPEL and then try to decentralize the processes
using an agnostic controller? The following practical example based on a counterfeit,
yet quite realistic, telecommunication primer will demonstrate the reasons for
this approach. Jumping ahead a little, we would like to substantiate that we
are not actually breaking the concept of the Process Centralization pattern with
the implementation of an agnostic controller, as we are enforcing the process of
centralizing composition's rules. Secondly, we are not going to abandon the idea
of using BPEL as the Orchestration language/engine or reinvent BPEL's syntax.
Instead, we will use SOA Suite tools (11g PS6) in this example; since SOA patterns
have very generic solution approaches, you can roll it up on any other platform.

The telecommunication primer
It is difficult to find a business sector with more rapidly changing commercial and
operational environments than telecom these days. Reasons such as active mergers
of mobile operators with cable and content providers, new technologies and
geographic diversities, and high demands from customers for new products set the
highest requirements for the agility and adaptability of business processes. Intense
competition will easily put any company of any size out of business if it cannot keep
up with these types of shifts. Let's see how the agnostic controller can address these
challenges, and at the same time, mitigate the problems described in the bulleted list
in the previous section.

Chapter 3

[153]

Basic facts about the telecommunication
enterprise
Some of the basic facts about our fictitious telecommunication enterprise are
mentioned in the following table:

Telecommunication
enterprise

Business domain Governing and type of
ownership

CableTelUnlimited Inc.
(CTU), HQ: Brasilia

Telecommunication Public

History of CTU
CTU was started 20 years ago as a cable company, providing TV/video for
customers in one geographic area. Quite soon, through a series of acquisitions,
they became a large telecom enterprise, delivering various combinations of three
main traditional-for-cable-company products:

•	 Voice/phone (landline VoIP)
•	 Video entertainment
•	 Internet provisioning

Following this business development strategy, geographic operations were expanded
all over South America during the last ten years, effectively covering ten countries
and turning the company into one of the biggest telecom market players.

Currently, business operations are still cable-oriented and mobile products are
not in the company's portfolio yet, but there are some plans for business expansion
in this area.

Traditionally, this telecom enterprise is not a "software house", so all the
development work is done by external vendors. The two main factors, namely
the technically diversified products' portfolio (video/voice/Internet) and past
acquisition, have shaped the company into three main departments (offices)
with a relatively low level of collaboration.

Building the Core – Enterprise Business Flows

[154]

Also, local affiliates in all the countries where the enterprise operates have
a considerable level of freedom with regards to standards implementation;
additionally, the burden of legacy applications is also quite substantial. Some legacy
applications have been in operation for almost ten years due to budget constraints
or lack of life cycle governance, so the level of adaptation to the current business
environment is below expectations.

Technical infrastructure and automation
environment
CTU has a massive inventory of products from various vendors. In operational HQ,
these products are unevenly distributed between three main operational departments:

•	 Network (responsible for Internet and voice), handled by the CNO
•	 Technology (content delivery and Video on Demand), handled by the CTO
•	 IT and internal IT systems (responsible for order management and

provisioning, billing, and customer management), handled by the CIO

The last department was also involved in providing internal system integration to
some extent to the other two departments, especially the CRM domain. Only a few
solutions were developed in-house, mostly for integration and service abstraction.
The number of applications in the application's portfolio is unknown but can be
roughly estimated at 50 in CIO, 200 in CTO, and 100 in CNO.

The HQ's application farm is deployed, maintained, and administered on two business
data centers with more than 600 virtual machines, each in clustered environments,
handling multitenant and individual accesses for regional offices. The level of
multitenancy is low at the present moment; about 90 percent of all VMs are
country-specific, although their business logic is similar with very small variations.

Regional offices have their own local application infrastructure that supports
business applications in regional offices and maintains integration with core
HQ apps related to the affiliates.

It must also be mentioned that in some countries, a corporate entity has more than
one affiliate, depending on the line of business. The level of an affiliate's technical
efficiency varies, reflecting business proficiency. Each of the three HQ administration
offices has an IT division with its own departmental structure and organizational
hierarchy. There are regular meetings between the IT managers from all divisions,
but outside of that, there is infrequent communication or coordination.

Chapter 3

[155]

The vendor selection process and new product procurement routines are formalized
by policies, which are specific for each department. The standard RFI/RFP process
could take up to 10 months according to these policies; at the same time, the
requirements for new product/projects' implementation are about 6 months.
IT resources are rarely shared between departments.

Business goals and obstacles
The recent annual financial report demonstrated the best corporate earnings over
the last 10 years. At the same time, a detailed analysis revealed that operational
costs have increased considerably compared to the last year by almost 10 percent.
The reasons can be identified as follows:

•	 Two new strategic products were released last year with the first stage
covering one third of the countries in operations

•	 Some applications have been migrated from local premises to a private
cloud that is built on a corporate data center

These reasons are naturally positive, but some considerable drawbacks should
also be mentioned:

•	 New products were under development for three years and
the implementation was out of budget (40 percent) and time
(the deadline was moved three times).

•	 Due to the delay, some first-on-market advantages were lost, and during
the same period, competitors managed to deliver two to four products
more in different geographic areas.

•	 The architectural delivery models for these products were presented in the
application-silo style at the last stage of the products' delivery with very
limited service collaboration efforts. Most of the applications were integrated
in a point-to-point (P2P) manner.

•	 Although migration of some applications to a private cloud was considered
successful, it didn't reduce the operational cost, as none of the cloud delivery
models (Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS)) were presented clearly. VM provisioning
still takes up the same amount of time that it used to with on-premise
deployment.

Building the Core – Enterprise Business Flows

[156]

Considering all of the stated reasons, the Board of Directors decided to transform the
IT process, aiming to initiate the following:

•	 Streamline the RFI/RFP process for optimizing PoC time and narrowing
down the vendors list. They decided that having two approved vendors
would be the common rule for all departments.

•	 Bridge the gaps between architectural groups in the main operational
departments, and establish a new enterprise architecture office. A new
Chief Architecture Office (CAO) head was appointed.

•	 This new department was made responsible for establishing standards,
policies and design rules, and controlling E2E delivery from the enterprise
architecture standpoint. Even common terminologies were supposed to be
consolidated, agreed upon, and conveyed down to all the related parties,
from the project management and delivery office to the coders from a
number of vendors.

•	 The physical implementation of this approach was required to be
materialized in the PoC prototype for every key delivery.

Suppose that the new CAO designates you as the lead architect for the first SOA
initiative. This will be a highly visible project that your colleagues and superiors will
be observing with high interest. The goal of this project will be to assess the services
currently in development and to upgrade the CTU runtime platform using proven
SOA design solutions in order to demonstrate that SOA can solve a series of problem
areas. In support of this goal, you will be provided with funding to implement a
modern enterprise service bus platform.

As the starting point of this challenging IT transformation program, the Operations
System support domain is selected. Traditionally, setting up the Order Management
(OM) functionality is the primary objective for the implementation of
service-oriented computing within this domain.

Chapter 3

[157]

Oracle Enterprise Business Flows SOA
patterns
Challenges will first be described, and after a detailed analysis, we will formalize
the patterns that are most suitable for solving the problems on hand. Not all
SOA patterns related to Orchestration will be covered here; we will focus only
on candidates who are most frequently (in our opinion) engaged in the practical
implementation of Service Inventory. We have mentioned some of these candidates
several times already—it's a Service Broker together with Intermediate Routing that
acts as an agnostic Composition Controller.

These patterns are related to ESB primarily. The telecom
example presented in The telecommunication primer section
will demonstrate that these patterns are very important for
Orchestration as well. There are some more patterns that are
not directly related to Orchestration, but without them, it will
be impossible to build a reliable EBF framework. Our intention
is not to follow the SOA pattern catalog, but rather demonstrate
the practical values of the patterns.

Establishing a Service Inventory
To reuse something, first we need to establish the easily accessible inventory of
reusable entities and make sure that these entities are truly reusable. From Chapter
1, SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks, you are aware
of the eight principles we must follow to achieve the four desirable characteristics.
Simply put, it is your (any) solution's evaluation spreadsheet that contains eight
rows and four columns for each component you are planning to evaluate. Surely,
you can place your requirements at the top, but bear in mind the tangibility of your
criteria. Obviously, you will have to pay some price for reusability as well. You need
to balance your tactical and strategical goals wisely, but what is obvious from the
presented telecom example is that strategic targets were sacrificed.

Building the Core – Enterprise Business Flows

[158]

Initial analysis
Your first task as a lead architect is to meet the development team and review
their design of the new Order Management System service. You must evaluate
the possibility of improving the current Orchestration layer in order to reduce the
operational costs (firstly by minimization of service installations). Another obvious
choice would be to scrap the Order-oriented orchestration entirely and select a
commercial product, Oracle Communications Order and Service Management
(OSM), for instance.

Operations and Business System Support (OSS/BSS) form the core of the
telecommunication domain, handling custom relations management (CRM)
and order management and procurement among other functionalities.

TMForum (www.tmforum.org) is the main standardization authority in
telecommunication. Its eTOM specification was used for implementing the
first release of the Pan-American service layer, suitable for providing a unified
order management.

Physical realizations presented by three tightly coupled Orchestrated services
are as follows:

•	 COM: Commercial order management
•	 TOM: Technical order management
•	 SPC: Service provisioning

Obviously, the realization is on BPEL, as the development was initially carried
out on the previous Version 10g and then migrated and refactored for 11g.

Service Request is received as a delimited file, containing one or more ordered
items according to the advertised CTU products. The COM module verifies a
client's profile and the current products registered for this customer.

A further Service Request in the TOM module is converted into working order
with lines that are sorted according to business logic and enriched with the client's
information. For instance, if a client needs TV channels in higher quality over the
Internet, the currently provisioned Internet bandwidth must be adjusted to these
requirements. Consequently, copper or optic cables must be considered and verified;
some newly advertised features cannot be supported by older versions of the Set
Top Box (STB).

www.tmforum.org

Chapter 3

[159]

There are certain interdependencies between core telecom products such as
VOIP and Internet, and Order provisioning must adhere to these rules of practical
fulfillment. From the field force management perspective, for instance, you cannot
send a technician to install the cable modem or STB if the cable requirements are not
met. All of this must be carefully analyzed for converting the received commercial
order into its technical implementation plan.

Therefore, Order lines are grouped for parallel or sequential processing and are
passed to the service provisioning module for actual processing. As you can
understand, every single line of commercial order could be potentially converted
into multiple lines of technical tasks that are related to certain application endpoints
or other compositions. Thus, there are a lot of IF-ELSE controls included in the last
module in an attempt to cover all the possible business combinations.

This last module presents a lot of adapters and partner links to endpoint systems,
acting as service providers for IP Provisioning, DTV Provisioning, registration/
alteration in CRM, and so on. After completing the list of technical tasks that are
related to a single Order line, its status must be returned to the caller of the process.
The last successfully executed Order line will update the Order status if all the line
invocations were successful. A failure in the execution of the group of invocations
(or single operation in the group) related to a single Order line leads to complex
compensation activities. The complexity could be very high as the number of
combinations of technical tasks related to one Order line is massive. Thus, in most
cases, developers just park the error order in the error queue for manual recovery.
In an attempt to help operational personnel with order recovery, developers decided
to log error information with excessive details. Regretfully, due to the complexity
of the compositions and the number of telecom subsystems involved, there are also
several logs and information related to errors that are not centralized.

To summarize this, Service Request Input is in a delimited file format where
delimiters could vary, the number of lines could potentially be unlimited, and line
terminators are not always in place. This is the result of some inconsistencies in the
legacy system that is responsible for the construction of this file. This fact complicates
the implementation of the adapter that is responsible for data format transformation
at the receiving endpoint. It appears that this adapter is part of a COM process.

Building the Core – Enterprise Business Flows

[160]

The development team confirmed that an XML object, constructed after the data
format transformation by the receiving adapter, is in full compliance with the
TMForum data model (Telco CDM Order), implementing all the declared elements.
Most of these elements are not in use at the moment, thereby presenting placeholders
for further business implementation. Not all elements are presented in an optional
way. Therefore, the whole structure is propagated to the ultimate service provider's
adapter, passing all the three orchestrated services to it without moving on to the
second transformation.

Chapter 3

[161]

Access to the Customer DB and Service catalog (commercial service term) is
implemented using DB adapters, as these resources do not provide public interfaces
that are suitable for the new OM system. These resources are also consumed by other
applications that perform read-write operations. For a couple of hours every day,
Customer DB handles excessive workload caused by some DWH OLTP operations;
thus, to address latency during this period, developers increased the timeout for this
particular adapter.

The Product catalog (and its DB) is presented as a separate service with a standard
contract. The XSD for this service was autogenerated, ensuring that the data model
was presented very precisely in the XML schema.

The level of standardization of the presented contract is also ensured by the fact that
it was generated from an entity object based on an existing data model, which means
that all the basic operations such as GET and SET are in place.

Most importantly, developers confirmed that these three Orchestration services
are truly universal and ready to serve multitenant requests. It was achieved by
placing complex branching logic into TOM and COM with separate branches for
each country/affiliate. For some use cases, which are not formalized yet, separate
placeholders are preserved for later implementation. At some places, additional
transformation will be implemented in the next phases to make it rapidly available
for adapters.

The development team is not concerned about the size of the composition, as they
believe that the partial state deferral DB will be capable of handling the process
hibernation state. Error-handling routines are covered by throwing SOAP fault
errors with maximum details, as we mentioned previously.

A summary of the initial solution
Branching logic with dynamic expansion of branches depends on the root conditions
that lead to an avalanche-like physical implementation. Starting from obvious business
fractions, it would be very hard to stop. At the time of initial analysis, three coupled
processes had nearly 20,000 lines of BPEL code (the code was written over several
years by a very big consulting company). It not only makes the code unreadable
(by other developers), but also unmanageable (by ops, as opening the failed flow in
the Enterprise Manager (EM) console could take five minutes). By the way, did we
mention that the company has had operations in ten countries, and the BPEL code
branches have to accommodate each of these countries' specific logic as well?

Building the Core – Enterprise Business Flows

[162]

We believe that the situation looks pretty familiar to many of us (certainly for
the telecom architects), and that strong temptation to turn to Oracle OSM is only
restrained by the tiny feeling that the same logic had to be deployed on another,
more secluded tool, adding another silo to the CTU farm and increasing the
dependency on the vendor.

Detailed analysis – functional decomposition
The detailed analysis pattern together with Enterprise Inventory and Logic
Centralization (see the second figure under the SOA Service Patterns that help to shape
a Service Inventory section in Chapter 1, SOA Ecosystem – Interconnected Principles,
Patterns, and Frameworks) shapes the boundaries of our reusable service catalog in a
way that is similar to the separation of concern principle. The "divide and conquer"
rule is the gradual adaptation of bulky silo-like BPEL processes to the idea of
dynamic assembly and service consumption. The initial step here is to separate the
automated logic (something we can code and run) from manual operations. It's done
already in general, but some calls to frontend GUI services still must be isolated for
proper human task implementations. The next step is to identify business cases that
are related to the provisioning of core telecom products (TV, Internet, and Voice) and
their bundles. Technical cases that support business cases also have to be separated
and then arranged into dedicated services (ACS, STB control flows, and so on).

The common parts of all Orchestrated services (also as Orchestrated services)
must be extracted and segregated as a result of this analysis. You do not have to
implement them physically in the first place; however, as long we are dealing
with BPEL, it would not be a problem to identify the IF-ELSE branches in a copy
of analyzed process and take them out, storing the new flow under a new version
or/and name. Eventually, we can drill down all our processes to the realization of
the fact that all branches' diversity is mostly related to the geographic specialties
presided by the following:

•	 Different endpoints of similar applications in regional installations
•	 Different combinations of similar services/applications due to regional

business specifications

The two-steps approach based on the initial functional decomposition and following
the logic abstraction and centralization is presented in the following block diagram.
These patterns must be applied gradually for the most obvious IF-ELSE branches
first, avoiding big bang implementation.

Chapter 3

[163]

This segregation leads to the following:

•	 We have tree products, and each has around 20 to 25 different business
flows. (We have Internet that provides high speed, ceases high speed, selects
the bandwidth, and so on. We have TV to request the relevant TV package,
cancel a TV channel, add a channel to a package, and so on.)

•	 We have ten countries where each country could have its own variation of
business flows.

•	 In each country, we could have two (sometimes more) affiliates, providing
individual or aggregated services.

•	 We have seven telecom-specific applications for all those countries
that participate in our OSS/BSS business flows and one or two specific
applications for some countries.

•	 Variations within an individual process for different countries are
insignificant. Usually, it's just a sequence of invocations of similar
applications. Anyway, it makes processes different.

•	 A single branch (or decomposed process with concise and formalized
functional boundaries) has up to 10 invocations (one application can be
called several times).

Building the Core – Enterprise Business Flows

[164]

No wonder the realization of all of these in practically every single BPEL process was
problematic; simple math can provide us with this: 3 products * 20 business cases * 10
countries * 2 affiliates = 1200 different combinations of single order provisioning (this is a
quite modest number; we could have more combinations).

Thus, potentially, we have 1,200 services (task-orchestrated models) to maintain in
our Service Inventory, and it's definitely clear that it cannot be implemented as a
single Order Management process (sorry, Order Fusion Demo). However, what's
wrong with 1,000 BPEL processes? Firstly, it's quite a big number to maintain on the
server. It will require quite a powerful server farm and considerable Governance
efforts to control versions, DB utilization when a state is dehydrated, and significant
memory resources for services running in parallel. It seems that this extreme level
of functional decomposition is not good either as so many similar services will
complicate Governance and error recovery, plus, again, the hardware resources'
consumption will be considerable.

Chapter 3

[165]

Balance must be maintained during Functional Decomposition (1) and Service
Refactoring (2). Not every use case (business process) is equally demanding. You
should focus on refactoring 20 percent of the services, leaving the remaining 80
percent to handle the task on hand (yes, common sense again). Do not rush to
decompose the hybrid Entity services. Try to separate the agnostic and non-agnostic
parts first, keeping in mind Occam's rule (http://en.wikipedia.org/wiki/
Occam's_razor).

Quite soon, we will have our core atomic business processes, related to certain use
cases of Order provisioning, decomposed and stored separately in Service Inventory.
Actually, we just started shaping our Service Inventory and are not really concerned
about its taxonomy. All we need to know at this moment is that we will have two
distinctive layers:

•	 Task-orchestrated layers for decomposed and refactored BPEL processes,
presenting atomic processing legs

•	 Entity services (Product, Service, and Customer), which for the time being
are also presented as BPEL processes, are primary candidates for rewriting
an appropriate language (staying with Oracle: Java + Spring JPA).

You may think that BPEL processes in the task layer will remain untouched, and
that would be a mistake. We will come to this quite soon. The Application of
Process Centralization (5) pattern is just a beginning; we will focus on Service
Normalization (6) shortly. Now what's interesting is how we will invoke our
centralized services.

It is obvious that SPC will now act as a composition initiator, and we are quite close
to realization of our Composition Controller (not agnostic yet). This controller will
isolate the initiator from service(s)-actors, hide the complexity of the composition,
and provide dynamic invocation together with the service locator component. From
the previous figure, you can clearly see that this is the description of a classic J2EE
Business Delegate, the way it's described in http://www.corej2eepatterns.com
and http://www.oracle.com/technetwork/java/businessdelegate-137562.
html. Refer to the following points:

•	 We want to promote Loose Coupling between the initiator and
service-worker

http://en.wikipedia.org/wiki/Occam's_razor
http://en.wikipedia.org/wiki/Occam's_razor
http://www.corej2eepatterns.com
http://www.oracle.com/technetwork/java/businessdelegate-137562.html
http://www.oracle.com/technetwork/java/businessdelegate-137562.html

Building the Core – Enterprise Business Flows

[166]

•	 We want to minimize service calls from the composition initiator for
fulfilling this complex task

•	 We would like to shield the initiator from composition or invocation
exceptions, thereby providing a clear and understandable error context
and completion status

•	 We want to keep this process dynamic, allowing logic to mutate without
affecting the initiator

•	 We want to maintain this delegation as highly manageable, allowing us to
easily change the business rules within the composition

Thus, we place the classic Business Delegate as a part of the solution where its role
in SOA terms is slightly wider, covering service brokering and mediation at the
same time. So, potentially, it would be the SCA mediator, as a router and message
transformer. Potentially, it can detect the use case using a message header provided
by the component-initiator (SPC in the earlier figure), and route the message to the
decomposed BPEL process. We have already mentioned a drawback of this decision:

•	 A composition could be enormous if we place all the decomposed services in
one SCA. Even the addition of certain aspects of atomic BPEL processes will
make it rather heavy. Decomposing a big process and then assembling the
atomic pieces in SCA using a mediator is a very common approach, but not
for the discussed number of services.

•	 A mediator with a static routing table can be overinflated by the number of
conditions and rules. Adding transformation to it will not make it better than
the original solution. A rule-based mediation has certain limitations that we
mentioned in Chapter 2, An Introduction to Oracle Fusion – a Solid Foundation
for Service Inventory, and we will discuss it a bit further.

Chapter 3

[167]

•	 Most importantly, quite a few of the decomposed processes are almost
identical from the business logic and involved applications' perspective
(Canonical Expressions and Canonical Schema are either in place or can
be maintained).

The last bullet item means that for some processes, we could continue with the
decomposition down to the endpoints' definitions, aiming to apply the dynamic
partner links technique as an option or generalize the processes to simple XML
configuration files in the form of routing slips, describing the endpoints that should
be called. This process is similar to the ultimate DB's structure normalization, where
we strive to eliminate redundant constructions and minimize dependencies. This
activity is described as the SOA Process Normalization pattern where we eliminate
redundant logic and establish the atomic process as a single carrier of business logic.
Of course, the primary candidates for normalization are as follows:

•	 Processes of the same logic for different geographic units
(only endpoints are different)

•	 Processes similar for one type of product or the same
service-provisioning group

For these Processes/Service Normalization and Capability Composition (assembling
capabilities outside the service boundaries in order to fulfill complex business logic; a
typical role of task-orchestration services), business logic can be really "dehydrated"
to routing slips. The concept of routing slips is quite common and mature; it's one
of the core EAI patterns (http://www.enterpriseintegrationpatterns.com/)
that is inherited by SOA as well. Products such as Apache Camel and ServiceMix
(and the commercial Red Hat version, Fuse ESB) use it for dynamic and static
routing. The whole concept is highly related to the WS-Addressing standard notation
that we discussed in Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns,
and Frameworks: "The message came from A, then must go to the endpoint B and
sequentially to C. The reply must be delivered to service D. In case of error, service E
must be notified".

http://www.enterpriseintegrationpatterns.com/

Building the Core – Enterprise Business Flows

[168]

We would like to repeat it here again, just for comparison.

WS-Addressing Static Routing Slip: ServiceMix
The code for WS-Addressing
is as follows:

<SOAP:Header>
 <wsa:MessageID>uuid:
aaaabbbb-cccc-dddd-
 eeee-
ffffffffffff
 </wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>
 http://CTU.Order/CRM/
Clarify
 </wsa:Address>
 </wsa:ReplyTo>
 <wsa:To SOAP:must
Understand="1">
 mailto:support@CTU.
Order
 </wsa:To>
 <wsa:Action>
 http://CTU.Order/
Provision/Activate
 </wsa:Action>
 <wsa:FaultTo>
 <wsa:Address>
 http://www.w3.org/2005/08/
addressing/anonymous
 </wsa:Address>
 <wsa:Reference
Parameters>
 <ctuns:ParameterA
 xmlns:ctuns="http://
CTU.Order.namespace">
 FAULT
 </ctuns:ParameterA>
 <ParameterB>
ServiceBroker</ParameterB>
 </wsa:Reference
Parameters>
 </wsa:FaultTo>
</SOAP:Header>

The code for Static Routing Slip
is as follows:
<eip:static-routing-slip
 service="ctuOrder:
routingSlip"
 endpoint="endpoint">
 <eip:targets>
 <eip:exchange-target

service="ctuOrder:Service1" />
 <eip:exchange-target

service="ctuOrder:Service2" />
 <eip:exchange-target

service="ctuOrder:Service3" />
 </eip:targets>
</eip:static-routing-slip>

Chapter 3

[169]

Thus, this ultimate implementation of Normalization of an SOA pattern leads to the
conversion of BPEL artifacts into some primitive XML constructs, fulfilling a part of
the WS-Addressing paradigm.

"Stop" you say? Two points must be clarified straightaway:

•	 Are we reinventing another more lightweight BPEL?
•	 Intermediate routing within SCA is perfectly covered by a mediator.

What's wrong with it, and why can't we employ it instead of routing slips?

Firstly, BPEL 2.0 is a full-fledged language with quite an extensive syntax. It's no
longer a simple approach with essential "Assign-Invoke" commands. A complex
syntax requires a very smart Interpretation Engine. Look at the construct on the
right-hand side of the previous table. You do not need an engine to execute this;
any language with a standard XDK can execute it gracefully. Even without any XDK,
you can execute it using less than a dozen lines of code. Secondly, it's transportable
and portable. WS-Addressing is just fine, but it's part of the SOAP header, and it's
still the WS-* standard; however, we will not always call WS, and WSIF is not always
an option.

Also, you probably noticed that the routing slip is nothing more than a description
of Endpoints. Endpoints (API) are one of the key (probably most crucial) elements
of our service infrastructure, and from the Governance standpoint, we must simply
register and maintain them in our Service Repository (and Registry as well). The
Registry structure will be discussed in a separate chapter, but for now, we can
assume that endpoints are already there after the completion of decomposition
and logic centralization. It's also not a big deal to extract a consolidated endpoint
descriptor in the form of a routing slip from the Repository. We have to stress that
we are not opposing WS-Addressing routing slips and BPEL as an Orchestration
language; further, you will see how they gracefully coexist. Now we come to the
realization of two new SOA patterns:

•	 Metadata Centralization (4)
•	 Inventory Endpoint (7)

Metadata is data about data (probably the shortest description possible, and we love
it). The endpoints and types of Service Engines in use, which include runtime roles of
services and service models, are data elements that describe the service. They will be
in our Inventory eventually (the sooner the better) but accessed through the unified
Inventory Endpoint. So far, we have plans to keep the service endpoints and extract
them using the WS API, which we described in the development phase.

Building the Core – Enterprise Business Flows

[170]

By cautiously practicing the philosophy "one baby step at a time,"
we cannot boldly proclaim an emerging inventory as an Enterprise.
This Service Inventory currently belongs to the OSS/BSS domain;
thus, it's a Domain Inventory (3).

Returning to the first point of concern, we would like to confirm its validity. Keeping
the routing slip reasonably simple is the key; otherwise, we will just reinvent the
wheel. It would be much easier than presenting the routing slip as the BPEL 2.0 XML
artifact and the routing slip parser as a subclass of the BPEL engine, reacting only on
the constructs invoke and transform. By doing this, universalism will be maintained,
but we will have to forget about portability.

Select a very limited vocabulary for your routing slip if you decide to go
this way (as if you have a choice). Technically, we would like to execute
some tasks by calling public endpoints. Later we will call it Execution
Plan (EP), with some similarity to DB's execution plans.

Thus, we have no plans to reinvent the BPEL. Even more, by balancing the
Normalization of different processes, we openly declare that not all processes can
(and should) be decomposed down to a simple sequential EP. We deliberately
would like to keep complex processes untouched and invoke them from the same
EPs. Even more, we will denormalize some processes due to the presence of complex
parallel processing or difficulties that arise with error compensation. Another reason
for the implementation of the Contract Denormalization pattern is the needless
multiplication of the services and high performance demands associated with it.
For sequential processes though, Execution Plans (structure will be explained in
detail with connection to Enterprise Repository in Chapter 5, Maintaining the
Core – the Service Repository, but critical elements will be presented here) can solve
this problem more gracefully.

Next, all of the logic related to BPEL is applicable to the Mediator concern as
well. The fact is that the Oracle Mediator is not lighter than BPEL, and its engine
is also rather heavy. Yes, the syntax and vocabulary is a bit more modest, but
Mediator is also a stateful component that is capable enough to perform the
processing sequentially and in parallel with the predefined priorities. Thus, its
XML metalanguage is not the best candidate for performing a simple sequential EP.
However, similar to what we did with BPEL, we are planning to use at least two
(initially) mediators: one for dynamically extracting EP or routing to the complex
denormalized BPEL and another for routing to the specific endpoint (this decision
will be revised soon).

Chapter 3

[171]

Gradually, we will come to the dynamic extraction of EPs, which can be realized
on Rule Engine; now we are moving on to the Rule Centralization pattern (8),
enforced by Oracle SCA Decision Service. Here, another concern can be expressed.
Would it be more logical to use Rule Engine to identify the next task in the dynamic
workflow instead of extracting the execution plans by the same Rule Engine? The
answer is already in the question. For a sequential composition, we will need up to
10 Decision Service invocations instead of one (see requirements). Most importantly,
for dynamically branching a process, we can invoke RE from EP with no problems,
or we can call another SCA that could encapsulate another Decision Service.

Functional analysis would not be complete without defining the message structure
that is consumed and propagated between the controller, composition members,
service providers, and composition initiator. Obviously, the message payload is the
Order in the CDM form according to the TMForum specification. As mentioned
in Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks,
discussing the Standardized Service Contract, the optimization of its structure is
extremely important, but we cannot approach it just yet due to compatibility reasons
(external applications are used to it) and because all those enormous BPEL processes
are our primary concern at the time. However, we will have to address message
normalization as soon as possible. Due to this pending task, we have to construct our
message in such a way that the alteration of payload would not affect Composition
Controller's functionality, that is, make it universal (or process agnostic). It could
be possible if we isolate the payload and a dynamic part of it, and expose the
payload object's particulars in the message header. The Execution Plan(s) must also
be presented in the message, and mandatory routing slip(s) and statuses of object
alterations must also be preserved for the controller's convenience.

All these message components are best discussed in conjunction with the Service
Repository taxonomy, and we will do that in the coming chapters. We would just
like to stress on the fact that the implementation of a universal message-container
will convert our Composition Controller into a truly agnostic service that is capable
of serving not only Order messages, but all types of payloads in a very dynamic and
lightweight fashion. This will inevitably lead to the following consequences:

•	 As you will realize, a universal message container can be designed
by the implementation of the <any> element in the payload section.
(Yes, by [CDATA] as well, but we are not talking about this extreme case
for obvious reasons.) We mentioned this point in Chapter 1, SOA Ecosystem
– Interconnected Principles, Patterns, and Frameworks, as rather undesirable:
security considerations and excessive XML processing at the backend.
This could be fairly and successfully mitigated by the following:

°° We are in the EBF framework behind security gateways in DMZ
and the conventional ESB. If the enemy is already present, it's too
late anyway.

Building the Core – Enterprise Business Flows

[172]

°° Besides, our payload is not really <any>; it's still a corporate EBO
(Order, Invoice, Client, Device, and Resource) and is strictly
compliant with CDM's XSD. If we would like to perform message
screening in EBF by means of an XDK, we can do that easily
(although, it's rather unusual and ineffective all the same).

•	 The message header will be in place despite the presence of any type of
message structure. Should we also mention that it will be SBDH-compliant
(see Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and
Frameworks)? Thus, all objects' particulars will be in the header anyway,
simplifying payload processing. Even more, this approach could make our
payload lighter, as we can delegate some common objects' elements to the
message header.

•	 A universal message-container denotes the universal agnostic Composition
Controller, and consequently, the promotion of Domain Inventory to
Enterprise Inventory. This would be a very positive outcome.

Now we can summarize the results of our analysis and draw the functional diagram
of the proposed solution. We have an initial understanding of the tools we are
going to use, and all of them are in the SOA Suite bundle (both 11g and 12c) and
quite well within the EBF framework.

Chapter 3

[173]

The summary of the results is as mentioned in the following table:

No. Component Purpose OFM SCA
1 Decision

Service (RE)
This component is used to
replace the hardcoded "if-
else" business logic and make
it portable, centralized, and
detached from the composite
application and make the
business logic more visible
for business analysts. This is
also used to establish dynamic
routing logic based on the
previous step and maintain
the endpoint URL resolution
on the fly.

Oracle Rule Engine as Decision
service within Composite.
As Separate activity invoked
within Service broker in order to
obtain execution plan based on
message parameters. Execution
plan can be a preconstructed
object or can be constructed by
Rule Engine on the fly.
Pros: Truly detach business
logic from SCA and make
it highly dynamic and
manageable. Implements Process
centralization and Functional
decomposition patterns.
Cons: Gives most positive results
when logic is complex. Increases
maintenance costs.
Dynamic routing based on
Decision Service is a standard
Oracle SCA pattern. Mediator
is required. Downsides
are discussed.

2 Service
Repository (ER)

This is a placeholder where
all service references are
stored (such as URL) with
supplemental information
in some Service Profile
form. Task lists' references
could also be stored here as
Orchestrated Task Services.

Oracle Service Repository
Custom DB
Local XML files

3 Service
Inventory
Endpoint

This is a Service Registry
Lookup service and is used
to accept CDM elements as
parameters and return the
Execution Plan object.

Depending on the realization, it
will act as an adapter to a DB or
file. Alternatively, it can act as a
solution, as in the previous step.

Building the Core – Enterprise Business Flows

[174]

No. Component Purpose OFM SCA
4 Execution Plan

Object (task/
endpoint list)

Orchestrated Task service
sequential representation; a
collection of tasks/endpoints
in the form of execution
plans. These are dynamically
discovered and are an array
of tasks with associated
compensation/rollback tasks
(service endpoint IDs).

XML
Part of the universal CTU
message-container

5 Business
Delegate

Dispatcher to the actual
worker. Looping through
the Execution Plan and
sequentially invoke services
from a list. Store response
and dispatch to associated
compensation task/endpoint
if response is negative.

BPEL process within composite
with four activities:

•	 Assign MH elements.
•	 Using MH elements

obtain Execution Plan.
•	 Loop over Execution

Plan and invoke tasks/
services. Depending on
response, proceed to next
or compensation.

•	 Wrap up response.
6 Dynamic

Endpoint
Resolution
(Mediator)

Isolate Business Delegate
from actual service
implementation. Dynamically
resolves service URI.

See the previous step

7 Transformation
Service
(optional)

Transform and Enrich
Messages between service
invocations.

Optional service/activity:
•	 Can be atomic BPEL

process for each XSLT.
•	 Can be generic service

with XSLT as a parameter
from Execution Plan.

Asynchronous agnostic Composition
Controller
The block diagrams shown previously present the complete solution that consisted
of the order management part (non-agnostic task-orchestrated services together with
entity services), encompassing the following generic parts as well:

•	 Business delegates as service brokers, both synchronous and asynchronous
(currently we will focus on asynchronous), fulfilling the role of an agnostic
Composition Controller

Chapter 3

[175]

•	 A Service Broker facade, responsible for wrapping an inbound Order
message into a message container

•	 An Inventory Endpoint in the form of Execution Plan Lookup Service,
as we have only EPs in our Metadata Repository for the time being

•	 A Task Router that is presented as a mediator for a synchronous
service broker

The next step after you're done with drawing a comprehensible solution block
diagram is presenting detailed sequence diagrams, covering all aspects of the
components' runtime behavior. Needless to say that it can only be done with
close cooperation with the developers. Here, we would like to present the complete
sequence diagram with focus on Service Broker's activities shown as follows:

Service Brokers as a core of Composition Controller

Building the Core – Enterprise Business Flows

[176]

Usually, sequence diagrams should contain all the elements of the solution to
visualize the service activities that involve the following:

•	 An audit service
•	 Error handlers
•	 Inbound and outbound adapters
•	 Common Order-handling components

We will discuss each of them later. In the previous figure, we depicted the part
that acts as an agnostic Composition Controller. This part can be created in any
environment (again, SOA patterns are vendor-neutral) for any of your projects where
an agnostic controller's functionality is required; however, for good reason, you should
plan to implement it in BPEL. Now we will drill into some details that are essential for
its physical implementation, although we will stay focused on the positive execution
scenario first (rollbacks will be discussed later in the chapter).

All controllers' SOA artifacts will be packed into one composite for simplicity.
This simplicity will be illusive from the very beginning as we will have to handle
synchronous and asynchronous operations in one place. Thus, we will have
two pairs of BPEL (as a service broker and business delegate) and Mediator as a
task router. However, that's the whole idea: gradually convert a bulky solution
into something composable. The four main steps in the realization of this idea's
realization are presented in the following SCA diagram:

Composition Controller's realization on SCA

Chapter 3

[177]

Naturally, two types of invocations could be possible: one from the async (1) initiator
and the other from sync (2). Then, Execution Plan will be extracted for every call (3),
and every sequential task will be passed to the Adapter framework (4).

Create the asynchronous Service Broker as an asynchronous BPEL, exposing its WSDL
as a SOAP service. We are omitting some obvious initial steps only to return to them
later. The first important step is to invoke the Inventory Endpoint and extract EP as a
routing slip, as shown in the following screenshot:

Building the Core – Enterprise Business Flows

[178]

Obviously, EP must be implanted into the universal message container for further
traversing in the loop during the execution/invocation. Universality means that a
controller can be nested so that it acts as a subcontroller; therefore, the extraction
of an EP is not always necessary. So, we should recognize the presence of an EP
provided by a master-controller and invoke the lookup only if it's necessary.
Logically, EP can be provided by the Adapter framework, where an individual
adapter handles a particular use case. EP's extraction is based on message header
elements that are initially known: sender, affiliate, object (Order), and event
(requested product and operation). The Message Header is SBDH-compliant as
discussed in Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and
Frameworks. The final step here is to store the EP tasks array in a global variable.

We got the list of tasks as an XML array, and now we can invoke them sequentially
in the loop shown as follows:

Chapter 3

[179]

This is the essence of the constructed BPEL process and the core of the execution
logic, although later, we will have to add some extra functionalities to keep it
agnostic and task-oriented at the same time. As explained during the analysis
phase, each order line could dynamically spawn a number of subtasks, which
should be logically grouped, where the last task in a group should perform a
specific operation on the service context. This task is the last one in the group
of EP and the middle lane of the control is responsible for handling it. The right
lane is for the standard task; it also updates the task execution history, but only
the ones that are related to tasks such as status, isRolbackRequired, and
currentTaskcounter, which are essential for traversing and looping. The left
lane is responsible for executing the compensation task when the response from
the actor is negative; it's possible only if current and compensative tasks are
included in EP in relation to the primary task.

Using the While looping is quite easy; with the following code, we just simplified the
condition for the sake of demonstration:

<while name="WhileNotFinalTask">
 <condition>
 (... ($finalizeTask_counter <= $finalizeTask_total)...)
 </condition>
 <scope name="ExecuteTask" exitOnStandardFault="no">

There are many ways in which you can loop over XML nodes in Oracle BPEL.
All of them involve the Assign element, counting the number of XML nodes
using the count function in XPath and XPath's position[] function. The one
we can use in this case was extracted in the previous step where the execution
plan was stored in a global variable, which is common for all BPEL scopes. In
the ForEachTsk scope, to the single EP task element that currently exists in the
universal Message Container (Process Header) part, we assign the value of the
task node from the global variable with the position that is equal to the current
task counter. The task counter is incremented after each task is invoked, and we
will perform a reassignment in every loop.

Building the Core – Enterprise Business Flows

[180]

This is probably not the fastest technique, but it works; additionally, we have
advantages in terms of memory utilization, keeping only one node at a time
in the Process Header within the message container.

Extend the task types further to make the controller more universal.

Chapter 3

[181]

With no intention of making our routing slip heavy or close to BPEL, we have to
extend its syntax a bit further. It is obvious that different tasks in our task sequence will
require different data subsets; even if we use a canonical XSD for our Order (actually,
we are not going to use it yet the TM Forum model is too "all-weather"). This fact
will require additional transformations between invocations. We can perform these
executions in the adapter framework layer and relieve the Business Delegate from
this functionality; however, some of our service-workers will be other composites,
standalone BPEL(s), or other services that are not covered by the ABCS layer yet.

A separate lightweight Servlet can do it gracefully, making the solution truly
universal; however, because we have decided to stay in a single composite for now,
the standard BPEL functionality will be enough:

ora:processXSLT($TransformationFileName, $TransformationInput)

Here, TransformationFileName is a task parameter, assigned in BPEL as shown in
the following code snippet:

<assign name="AssignFileName_and_Input">
 <copy>
 <from>
 string($currentTask/ns15:taskList/ns15:task/ns15:transform/@
location)
 </from>
 <to>$TransformationFileName
 </to>
 </copy>

We must also supply the task worker (service provider) with additional information
about the transported business object. This information resides in the SBDH message
header, the Object Context part, and presented in the name/value pairs form,
storing all objects' supplemental information. Now we are ready to invoke the
actual Service Provider.

Agnostic Task Invocation

Building the Core – Enterprise Business Flows

[182]

The only task associated with the designated provider is maintained in the
Execution plan, and this task is exactly what we want to execute. Thus, the
extraction of this variable is simple, and we pass it to Task Router (SCA Mediator).
It is now the Mediator's job to substitute the actual endpoint URI with the variable
from the task list.

This operation is similar for synchronous and asynchronous service brokers;
only Mediators are different.

That's it! We can extract the XML task array from the metadata inventory; this array
has endpoint references, and we can loop through and invoke them synchronously
or asynchronously, get the result back, update an object's payload and its contexts,
keep track of the execution in a special placeholder of our XML container, and
even react to errors with predefined tasks in the same tasks array.

The mentioned endpoint reference term is part of the WS-Addressing vocabulary
we briefly discussed in Chapter 1, SOA Ecosystem – Interconnected Principles,
Patterns, and Frameworks. Let's look at it a bit closer now. The endpoint reference
is the XML construct that allows us to select one of the available services in a
WSDL. We can also define the service endpoint at runtime. As we just saw, BPEL
is very good at assigning variables at runtime, practically for all XML entities in a
composite. With the very first version of the Oracle BPEL manager, we got a brilliant
DynamicPartnerLink example, demonstrating the substitution of a dynamic
partner-link address; it was turned into an excellent chapter in SOA Best Practices:
The BPEL Cookbook, Oracle.

One might think that as we focus on SCA (and BPEL in particular), why not really
implement everything in BPEL and use the same old technique (with no Mediator)?
Actually, the old example is similar to Mediator, how it exists today. We initially
defined a dummy service endpoint and created a WSDL for it with all the predefined
real endpoints; after that, we used the wsa:EndpointReference type variable in
assignment to the partnerReference variable, pointing to the real endpoint in WSDL.
This approach could be taken even further with the substitution of an actual WSDL
with different addresses for the same reference. This approach is not purely dynamic,
as we will have to redeploy the new WSDL. What was proved is that we can call any
of the services even without addresses registered in WSDL, as long we know the actual
address at runtime. For addresses that are not specified, the default endpoint in WSDL
will be used. All of these benefits though are already in the SCA Mediator (with lots
of extra benefits), and we do not need to modify BPEL. We delegate the endpoint
reference and partner links' handling to the Mediator without affecting BPEL and
WSDL alterations. Here, we are clearly following the separation of concern principle.

Chapter 3

[183]

Before getting a bit deeper into Mediator, we would like to check some other
features we would like to include into the BPEL Service Broker/Business Delegate
component. We already added the transformation and clearly separated it from the
task invocation (we can still invoke something that will perform the transformation
for us). However, what else can be added?

We assume that all responses (callbacks) will be handled by the adapter framework,
and ABCS will make sure that the response is based according to XSD. Assumption
could be a bit bold, and some internal services could be called directly. A service
broker in this case is obliged to validate the output before calling the next service.
Therefore, adding a new task type, Validate, in addition to Invoke and Transform
is inevitable. It's not a problem yet, as it can be easily supported, but we better stop
here, otherwise the SB will not be better than the initial monstrous BPEL.

Select this approach with extra caution. It has all rights to exist
because BPEL is one of the possible platforms for ABCS and
Service Broker with routing capabilities; it is an essential pattern
for northbound and southbound adapters. In a non-agnostic
controller, the best approach would be to validate the XML
property for validating inbound and outbound XML messages;
just set it to True (in the SOA EM console, SOA Administration
| BPEL Properties). Of course, it impacts the performance. For
our agnostic controller with a containerized payload as the
<any> element, we have limited options, but anyway, it would
be more prudent to delegate this function to every individual
adapter that is isolating the endpoint.

One more thing. We have already departed from the telecom-orders-specific
Composition Controller and strive to achieve a truly agnostic realization, hence
the routing slip could potentially contain more than ten invocations (endpoints).
In the SCM domain, for instance, we deal with objects such as CargoManifest,
BillOfLading, VesselSchedule, and quite often, the same task will be repeated a
considerable number of times (even dozens). How can we do that?

Building the Core – Enterprise Business Flows

[184]

Extending the asynchronous agnostic Composition
Controller
The following table explains the method to accomplish the functions in the
first column:

Task Realization
Include the same task n number
of times in EP

This option allows us to keep the task parser
within the Business Delegate simplified. Only
one loop is maintained. Alternatively, if we
need to perform nested looping, we will call
another service broker's instance with the
new EP (extracted first), or another composite
with the While loop based on the payload,
extracted EP, and object's context. This option
is very attractive for the implementation of
parallel or foreach flows.
The drawback here could be that the size of the
EP can grow considerably depending on the
number of task interactions.

Delegate the looping to the
Adapter framework

At first glance, this would be the best
approach, as it looks similar to debatching.
With debatching, we send message chunks
to the designated endpoint. Unfortunately,
debatching here is not pure as we want to send
the entire message several times (or perform
several invocations with the same payload);
most importantly, batching and debatching
functionalities are supported for a limited
number of adapters: DB, FTP, and File for
inbound adapters.
Anyway, an adapter is the most logical option
from the separation of concern standpoint. We
have to supply an adapter with the number of
interactions we want to execute and that could
be done using EP (see the following option
with the looping attribute). The previous tip is
also valid here.

Chapter 3

[185]

Set an extra attribute for individual tasks, describing the number of iterations
for this task:

Here, setting the attribute is not a problem:

$currentTask/ns15:taskList/ns15:task/@loopOver

However, we should be very careful about further requirements that might follow.
Technically, we have implemented a nested loop for a single task, but this task can be
part of the compensative actions (the Rollback EP mode) for carrying out the primary
operation, and it can compensate the single (last) interaction for the task group or
the entire group. In other words, without the support of native adapters, we have
to handle all the errors ourselves with this approach, and nested looping must be
applied discriminately for positive and negative execution scenarios.

Building the Core – Enterprise Business Flows

[186]

You can also follow the second option (adapter); in this case, establishing the
attribute will be enough for fulfilling these requirements, and the specific adapter
will do it non-agnostically.

Using this five-step approach, we have implemented the agnostic Composition
Controller using SCA components. This is the first iteration after functional
decomposition, and we still have some deficiencies in the design:

•	 We still have synchronous and asynchronous parts in one composite.
•	 Focusing mostly on the component's design, we didn't cover the structure

of the message container and all its parts. We will do this later in relation
to the metadata storage.

Now we will discuss the role of Mediators in our design and in general.

Usage and limitations of a Mediator as a
dynamic router
The primary role of Mediators is to implement the Intermediate Routing SOA pattern
in SOA Suite SCAs, which are the building blocks of either Orchestration (EBF) or
Adapter frameworks. From the SOA Patterns catalog, we know that Intermediate
Routing together with the Service Broker belongs to the ESB compound pattern. So,
at first glance, it might be a bit outlandish to have them both actively discussed in
the chapter that is dedicated to Orchestration. This is the obvious question that arises
when someone tries to apply (or avoid applying) a seemingly fitting pattern, instead
of understanding the actual problem and the ways of its mitigation (not exactly by
the pattern with a fancy name from the catalog).

The message path in complex compositions could be equally complex, sometimes
even unpredictable at design time, requiring dynamic (or rule-based) dispatching.
Oracle SOA Suite composites (as deployment units) could be really complex,
aggregating different components (primarily presented, but not limited, by four
predefined types); the negative impact of excessive usage of the heavy if-else logic
that is implanted into any of primary components (mainly BPEL) has been clearly
explained at the beginning of this chapter.

Chapter 3

[187]

The BPEL's dynamic endpoints' invocation approach discussed in the
DynamicPartnerLink example is ingenious but has certain limitations that are
mentioned in this paragraph and the first bulleted list in this chapter. Also,
this approach is apparently obsolete with the presence of SOA Suite SCA 11g.
We need more than just simple WS invocations in our use case, and Mediator
covers them all gracefully.

Configuring Mediator in Agnostic Composition Controller

Do you remember that in the first release of our Service Broker, we have two
mediators for synchronous and asynchronous processes? The logic we will cover
next is applicable for each of them.

Firstly, by decoupling (isolation) our business delegate BPEL process from
actual service-workers, we have to anticipate different MEPS involved in service
activities. Yes, we have already demonstrated that Mediator can initially be created
with either synchronous or asynchronous interfaces (we will discuss one-way and
event-based later).

Building the Core – Enterprise Business Flows

[188]

This fact, though, is significant for SCA dehydration routines (Mediator is a stateful
component whereas OSB is not) and for the definition of the Port Type; naturally,
the sync interface has one Port Type as the response that is returned to the caller,
whereas, for async, you can define Callback Port Type for response messages.

For now, it's important to provide all combinations of one- and two-way MEPs.

Mediators' MEPs (green one- and two-way arrows to the left of the service address
fields) are based on the service WSDL we are selecting for target service operations.
We have already decomposed a considerable number of processes, and we are quite
aware of their WSDL. Therefore, any speculation about the possible MEPs and
operations will be easy, and it's pretty similar to defining the "generic LoanService"
from the DynamicPartnerLink example in SOA Best Practices: The BPEL Cookbook, Oracle.

Chapter 3

[189]

Here, we just go a little further and define the abstract and generic "Sync
CustomService", "Async CustomService", and "OneWay CustomService" for services
we would like to invoke directly from our service broker. Also, in the earlier
screenshot, you can see some statically defined services such as Audit, EP Lookup
Service, and Error Handler, which we will be using anyway. The CRM facade here is
just an example of the static business non-agnostic service, which is still not covered
by a dynamic composition. Feel free to amend it in your actual implementation.

The generic Adapter endpoint in the list is probably the most important endpoint
for cross-framework communication as it represents an OSB adapter, fulfilling
the same routing/transformation functions in the EBS framework. That's how we
communicate with eternal standalone services and applications that are not directly
invoked by a single SCA.

The sequence of establishing this static routing is quite standard (see the Oracle
docs, http://docs.oracle.com/cd/E17904_01/integration.1111/e10224/
med_createrr.htm); we will shortly highlight the important step. After clicking on
the green plus sign in the upper-right corner, you will be invited to select the target
service. It is obvious that static and dynamic routes cannot be mixed in one mediator
instance (a warning is shown in the screenshot); you can consider it as a limitation,
but there are several simple ways to mitigate it. Nothing prevents you from calling
another mediator of the desired type sequentially.

The next step is to learn how to set content-based routing using an expression
builder. The content and structure of our execution plan are completely related to
our metadata taxonomy in ESR; we will have to dedicate much more time to it later,
although we have already displayed several key fields in the earlier screenshot:

•	 mep: This is the flag that is used for routing to the appropriate abstract
service. In our case, it could be generic sync, async, and one-way flags.
You can add your own MEP type according to WSDL 2.0 MEP if you want.

•	 location: This is the concrete service URI and will be used further for
substituting in a generic endpoint. This is necessary for distinguishing
endpoint types.

•	 taskDomain: This is an optional element for routing to the specific business
domain (another Mediator or Service Broker in a separate business domain).
It could be the CRM, ERP, SCM, and so on. Use your own business
landscape, but this element in general contradicts the agnostic nature
of our Service Broker.

http://docs.oracle.com/cd/E17904_01/integration.1111/e10224/med_createrr.htm
http://docs.oracle.com/cd/E17904_01/integration.1111/e10224/med_createrr.htm

Building the Core – Enterprise Business Flows

[190]

•	 serviceEngine type: This was not shown earlier, but it is quite a useful
element that you can declare as a service engine that will be responsible
for executing tasks such as BPEL, Transformation, and DB. It's especially
relevant for transformations, as they can display different behavior in complex
compositions. You can route to the specific engine using this element.
We are still in Mediator's request path. Here, there are three things that we
should consider (following the logic of our solution).

•	 Assign value: This is the field that does all the magic. Using mediators'
properties (we have plenty of useful properties; please read about these in
the documentation, as we have no place to discuss them here), endpointURI
in particular, we can assign our service URI from the execution plan
dynamically, resolving any address issues according to the selected MEP.

Please remember that the Mediator has inbound and outbound
properties, and it could happen that you will not find the right
property in the drop-down list. Just type property in the dialog
box field and make sure that you spell it correctly. It's not a bug; it's
a long lasting feature now.

•	 Content transformation: This is another highly important feature of
Mediator. Yes, we are trying to minimize transformations within a single
service domain; however, with the huge legacy application burden, it's not
always possible. For an agnostic Composition Controller, it is even more
inevitable, as we need to extract (by means of XSLT) the payload from our
agnostic message container (CTUMessage) because the endpoint application
cannot handle the entire container. Apparently, we would prefer to do this in
the ABCS layer as transformations are usually associated with adapters.

•	 The Validate Semantic operation: This is provided by the Schematron tool
or XSD validation, and the most interesting part of this feature is that we
could apply the Partial Validation SOA pattern, checking only part of
the message, thereby considerably reducing the time to perform quite
an expensive XML operation. As you can see in the following screenshot,
we do not use this operation in an outbound call. Why is that? It is because
of the following reasons:

°° It is our outbound flow. We believe that here we can trust ourselves.
Still, we have the possibility to employ southbound ABCSes to
perform the validation.

Chapter 3

[191]

°° We have already decided that the validation would be part of
the execution plan performed on SB. It gives us a lot of flexibility,
and we can maintain this operation in a really agnostic way.

Configuring Mediator's endpoint property

You have to consider this option wisely. With an agnostic payload, we can generally
validate MessageHeader, ProcessHeader (with EP), and MessageTrackingData.
Logically, it should be done on OSB and/or the adapter layer. Although the
Schematrons functionality is really quick, we can achieve the same kind of
performance by other means. We suggest that you perform JIT verifications
yourself. For this use case, we will not perform it on Mediator.

Inbound flows are easier (again, for this use case only), but practically, all of the
outbound functionalities are applicable for inbound flows as well. You can also
perform partial/complete validation (we don't). The transformation of SCA's
responses is also inevitable, as we will put the response into a container. We can
also assign an endpoint for a callback, even for synchronous calls; however, we
don't want to do that, as we will handle all the responses in an agnostic controller.
Although there is some other Mediator functionality available, we would like to
demonstrate it with regard to inbound flows here.

Building the Core – Enterprise Business Flows

[192]

Dynamic compensations in a simple agnostic
controller
We want to demonstrate another interesting Mediator feature we used in some
inbound flows, although it's not related to any SOA patterns directly at first glance.
For some operations within a single service invocation group, we will need to
translate the remote response code (errors, messages, and statuses) into generic
agnostic controller statuses. Using these statuses, the controller will decide whether
to proceed with the next task or execute the compensative action. You can see it in a
flows fragment as demonstrated in the earlier screenshot. The task is fairly obvious
as external applications, which are not in our Service Inventory, naturally have
their own code, statuses, and resolution logic. At best, they will provide you with
certain code, reflecting their operational status; however, those situations when some
error dumps will be returned are also quite common. Codes and related resolutions
should be discussed during the service encapsulation and functional decomposition
stage, and we should have at least the initial table with values and code in the form
of Domain-Value Map (DVM). You can create DVM for your SCA application/
active project (Ctrl + N, then navigate to All Technologies | Domain-Value Map)
and store it in your MDS for common use. You can use it in any of your XSLTs as
well (you can find plenty of examples on that), but the usage in Mediator is most
interesting to us.

Using DVM in Mediator for error code mappings

Chapter 3

[193]

The expression present in the Type field in the From section, realizing the lookup
of the error code via status text using DVM in our MDS, is as follows:

dvm:lookupValue("dvm/StatusText_to_ErrorCode_Mapping_nested.dvm",
"StatusText",
$in.payload/ns7:CTUMessage/ns17:MessageTrackingData/
ns17:MessageTrackingRecord/ns17:StatusText,
"ErrorCode", $in.payload/ns7:CTUMessage/ns17:MessageTrackingData/
ns17:MessageTrackingRecord/ns17:ErrorCode)

As demonstrated in the earlier screenshot, we perform three lookups for ErrorCode,
ErrorMessage, and ErrorDetails, which we store in the MessageTracking section
of the message container, and our agnostic controller will use this value for dynamic
compensation. As mentioned earlier, every task has a compensation pair, registered
as a sibling in the EP. In cases where there is a recognized error (recognized as
a Rollback flag even if it's not an actual rollback), this compensative task will
be executed instead of the next one in the sequence; the task counter will not be
increased and further execution will depend on the results of this compensation
(again, provided via Mediator). The final error resolution will be covered by a
dedicated Error Handler, which is part of the conventional BPEL compensation flow,
and we will discuss it in detail in Chapter 8, Taking Care – Error Handling.

This simple but effective solution does not eliminate the necessity
of full-grown error handlers and compensation flows. We are just
demonstrating how DVM can help with basic resolution actions
and execution status tracking.

Of course, compensative branching logic in an agnostic controller must be strictly
conducted as per the values you put in DVM. DVM can be modified at runtime,
changing the business logic brokered by an agnostic controller; however, if you
misspell a word, the situation can be unpredictable. (Another question is who would
do that directly in production? Sadly, we all know the answer.) Another issue that
must be taken into consideration is what if the business task does not (or could not)
have a dynamic compensation routine? For simplicity, we didn't show this scenario,
but this situation can be anticipated. In most common cases, we can ignore this
condition and continue with the next task or park it in Human Workflow to come
up with a manual resolution.

Building the Core – Enterprise Business Flows

[194]

So, now you can see that Mediator can do a lot as a static router:

•	 Dynamically substitute the endpoint URI, which is most interesting
for us here.

•	 Substitute the values using DVM, stored in MDS. Here, we can partially
implement the Exception Shielding SOA pattern, improving our security
landscape (do not rely on that much though).

•	 Perform all kinds of transformations for invocations and callbacks.
•	 Perform partial validation, implementing the Partial Validation SOA

pattern, thereby improving performance.

Other things we didn't discuss here (yet) are as follows:

•	 Event propagation, implementing Event Driven Messaging (the Event
Aggregation Programming model in AIA terms)

•	 Using Java callouts in message mediation and process handling
•	 Rule-based dynamic routing

Actually, now we are going to discuss the implementation of the decision service
that is responsible for selecting the appropriate execution plan and then we will
continue with Mediator.

The Rule Engine endpoint and decision
service
In the third step depicted on the consolidated agnostic Composition Controller
SCA diagram, we called PlanLookupService to acquire the routing slip (EP). This
service is clearly visible among others in the list of target services that are available
for invocation by our Service Broker. You already know the basic structure of EP
and the MessageHeader elements used as input parameters; therefore, establishing
WSDL for this service should not be a problem. Simply put, this is all that we know:
the requested product, county/affiliate, business event, and the requested business
operation. This information should be sufficient for determining which business
process (in the form of EP) must be fired (namely, EP's name extracted and passed
for its execution in Business Delegate within a loop). Consequently, these parameters
will be the elements of the Business Rule components' inbound and outbound
variables, where outbound is just the name of an XML object (file) stored in MDS.

Chapter 3

[195]

To begin with, we design this SCA Composite in an exceedingly simple way; it
should only contain Mediator and the Business Rule component. We will start the
configuration from business rules. The configuration steps are obvious; just follow
the Oracle documentation:

•	 The XSD schema will be created with two types, reflecting the inbound
and outbound elements (hint: see the transformation part in the following
screenshot). Feel free to adapt the types according to your requirements
or just simplify it, leaving no more than three elements for the start.

•	 Drag the rules component from the right palette, and assign the input and
output variables from the defined XSD (input is based on the MessageHeader
XSD and output just on a string).

•	 These input and output variables will be our XSD-based rule facts.
•	 It would be useful to define baskets as List of Values (LOV) for country,

affiliate, product, and business operations (action types). Think of baskets
as enumerators with fixed values that we will use in our decision table.

Now, we can create our decision table as shown in the following screenshot:

Building the decision table for Agnostic Composition Controller

Building the Core – Enterprise Business Flows

[196]

The earlier table is similar to any table you can create for this purpose (in Excel,
for instance). There are two parts. In the first part, using basket LOVs, we define
the conditions provided by inbound parameters such as productType: VOIP;
businessEvent: UpdateOrderStatus; country: BR (for Brazil); and affiliate: BraTello
(for Brazil Telephonic). In the second part, we define actions, which in our case is the
filename of the Execution Plan. Needless to say that this file is stored in MDS, and
we know the actual path; it's part of the deployment profile and configuration plans.
You do not have to describe the whole complexity of business rules and conditions
from the start; taking one small step at a time is important, and we would really
like you to repeat it. Obviously, the execution plans and their names will emerge
gradually (and not exactly slowly) along the way of the functional decomposition
process together with logic centralization and service refactoring (all of them are
SOA patterns, representing the common sense we mentioned many times).

Apparently, the ultimate outcome of this practical exercise would be the
establishment of a concrete Service Inventory, which is currently maintained
on MDS. We are not going to discuss the pros and cons of this realization now;
we're just jumping ahead, but we can assure you that we will rebuild it for
better association with SOA Patterns and as a result provide better performance,
maintainability, and scalability. Anyway, you can be rest assured that the
presented solution is already solid enough and it works!

We could only have the Business Rule component in our EP lookup composite,
but again, we will add the Mediator. Why is that? For its transformation and routing
support, of course. Again, following the SOA principles, we want to maintain
PlanLookupService in an atomic state, decoupled from the MessageHeaders
implementation. The MH XSD can evolve, following our understanding of business
requirements and the SBDH standard; also, we definitely do not want to affect our
Rule Facts, which are already implanted into the decision service. Another important
thing is the flexibility of the Rule Engine itself. We can have more than one ruleset,
supporting multiple decision tables or rule functions. Thus, we should not only
transform message headers' values from an inbound request into rule function
parameters (see the callFunctionStateless transformation in the following
screenshot, the Transform Using field), but also route individual requests to the
specific decision table (or rule function). Static routing will do perfectly fine here.

Chapter 3

[197]

You can see how many operations we can support from the client's perspective with
our service in the previous screenshot from the previous paragraph; all operations
are synchronous, which is logical because async MEPs simply will not work here.

Talking about the Rule Centralization SOA pattern, we have to stress the fact
that concentrating on all the rules in the form of heavy decision tables in one decision
service is not a good idea at all. The rule of the thumb here would be to centralize
all the business delegates' decision tables in one decision service and separate it from
other business domains (see the corresponding BusinessDomain element in the
following mapping):

Acquiring an XML object using Mediator

Handling a synchronous reply is easier as we have only one element to deal with, that
is, the URL of the actual execution plan. Here as well, we have to use transformation
with one simple concatenation function to combine our oramds: path with the <EP>.
xml filename; you can see it in the following screenshot. Now, back to the Mediator
routing rules and transformations presented earlier in the chapter, you can see more
clearly how we transform our Execution Plan as an XML object.

Building the Core – Enterprise Business Flows

[198]

The next operation in the row Assign: Retrieve_ExecutionPlan is just to assign
the whole of the reply to the EP type in the Messages Process header. (Yes, "retrieve"
probably is not the best term here as it is in fact an inject, but you get the idea.)

Concatenating XML objects in Mediator's transformation

Using Mediator for process discoverability
That's it! We're almost done here. One more very convenient thing related to
Mediator should be mentioned. Although it's not directly related to any SOA
message mediation patterns, this feature directly supports Runtime Discoverability,
and by enforcing this SOA principle, we can greatly improve the lives of our
operational personnel. We all know (as diligent architects who support and control
the health of deployed applications) that with a considerable number of business
processes, tracing them in the SOA EM dashboard could be hard. The native SCA
ConversationID could be ugly, and leaving the Instance name empty is not a decent
courtesy towards those who will deal with our products. Regretfully, our dynamic
approach, as you already guessed, does not improve the situation much; quite
contrary to this, it will complicate it. We do not have the actual business process
name until we call the EP lookup process. We should assign the instance title
somehow in the request or preferably in the response to make it more searchable
and traceable.

Chapter 3

[199]

Setting the Composite Instance title using Mediator

Here again we can use Mediator properties to complete the task; see the previous
screenshot. Feel free to select any meaningful fields from your message in the XPath
function call, as presented in the next code snippet (here, med: stands for Mediator's
namespace). Now we can assign the concatenated value to the mediator property.
In the Oracle documentation, tracking.compositeInstanceTitle is mentioned,
which is obviously invisible. In our example, we use testfwk.testRunName, which
is pretty good as well:

med:setCompositeInstanceTitle(concat($in.request/mhs:MessageHeader/
mhs:Sender/mhs:Instance,
'_', $in.request/mhs:MessageHeader/mhs:RequestId));

You can imagine that this is not the only way to set the Instance title.

The Orchestration pattern and embedded
Java
In a book that is dedicated to practical aspects of SOA patterns, we cannot devote
much space to Java, as we are supposed to stay reasonably language-neutral (one of
the SOA benefits, you remember). Sure, it's impossible when we talk about concrete
implementations on the Oracle platform where Java is the blood and bones of the
entire ecosystem. Thus, some words about it are in order here.

Building the Core – Enterprise Business Flows

[200]

We deliberately omitted some steps at the beginning of our Business Delegate
(or Service Broker) process. They are quite typical and are as follows:

•	 We have to set appropriate audit and tracing levels, identifying them from
the message context (the Message Header is involved).

•	 We want to set the instance title from the very beginning, again using
Message Header values. This can be done using embedded Java; see the
following screenshot:

You can do a lot using Java callouts in BPEL, but be reasonable and do not reinvent
existing functions. Other areas of direct Java application would be Mediator's Java
Callouts and BPEL custom sensor actions; you can register custom classes with the
SOA Suite.

Summary
Using an interactive approach, we gradually constructed our first SOA framework
that is responsible for holding, running, and maintaining our Enterprise Business
Flows (in Oracle's AIA notation). Although AIA denotes this framework as optional,
in reality it's the most common and heaviest element of the integration infrastructure
in almost any enterprise. Consequently, the source of practically all the problems in
this framework is the understanding of business flows as part of a solid integration,
sometimes point-to-point and not service collaboration.

Chapter 3

[201]

Orchestration, according to the SOA pattern catalog, is the biggest compound
pattern, comprising many atomic patterns that are responsible for turning the
integration approach into a more agile service-oriented computing. As demonstrated
in this chapter, the first step would be the proper categorization and decoupling of
our bulky services according to their models and levels of granularity. Reassembling
these services into managed compositions should not always be done in a static way,
especially for services of a similar business nature with slight composition variations.
Despite the nature of a static BPEL (rather imaginable), it's quite possible to
implement agnostic Composition Controllers that are capable of assembling business
processes dynamically. At first, we must stay focused on business process parts,
which can be automated without manual interventions; Oracle SCA components
such as BPEL, Mediator, and Business Rules are the main building blocks, and they
are powerful enough to deliver any Orchestrated solution.

We also demonstrated a problem-focused approach, where we do not lock on to
particular patterns, but rather strive to alleviate the negative sides of the existing
solution by applying the most fitting method (based on pattern, if possible). By
practicing this approach, we demonstrated a flexible way of understanding patterns'
boundaries using Service Broker and Intermediate Routing patterns, which are
originally bound to OSB in the Orchestration framework. We kindly advise you
to follow the same "pattern", so to say, not focusing on the patterns' catalog, but
analyzing the problem according to SOA principles, decomposing it into manageable
pieces, and refactoring components according to service-orientation if possible. Also
remember that ultimate reusability can come at a price you simply could not afford,
so balance your efforts wisely, again using SOA principles.

The presented part of the solution (Orchestration) in the beginning is completely
functional and is taken from a real-life project, although the company is fictitious,
of course. Now you have enough samples to build your own controller, MDS, and
service repository; however, please bear in mind that this is just a beginning, and
we will show you the ways to improve it.

This chapter just begins the functional decomposition process. It is evident that we
have synchronous and asynchronous service brokers, acting as agnostic Composition
Controllers that are maintained on the Orchestration platform. In the next chapter,
we will separate them using the appropriate patterns.

From Traditional Integration
to Composition – Enterprise

Business Services
In the previous chapter, we used Foundational Service Patterns and Composition
Implementation Patterns along with elements of a Compound Orchestration
Pattern to start the gradual refactoring of a complex telecom service landscape
(refer to the Design Patterns (by category) section at http://soapatterns.org/).
After the initial analysis and redesign, we came up with the first working model
of a service orchestration layer, and this layer is equipped with Universal Agnostic
Controller; it serves both long- and short-running compositions. Although
completely operational, this solution is still far from optimal. Thus, we dedicate this
chapter to further optimization of solutions through continuous service-oriented
analysis, identification of common problems, and application of solutions in the
form of commonly approved SOA patterns.

As an immediate result, we expect the following benefits:

•	 The segregation of synchronous and asynchronous layers
•	 Establishment of the service abstraction layer with low cohesion

and improved APIs
•	 Improved loose coupling between the controller's components
•	 Refined platform reliability and composability

We will continue our practice of chaining appropriate SOA patterns together in a
logical fabric, as demonstrated in the previous chapter, starting from the analysis
phase. You will get an understanding of Pattern-Oriented Software Architecture
(POSA) in relation to the SOA domain at http://www.cs.wustl.edu/~schmidt/
POSA/, although this is not our primary goal here.

http://soapatterns.org/
http://www.cs.wustl.edu/~schmidt/POSA/
http://www.cs.wustl.edu/~schmidt/POSA/

From Traditional Integration to Composition – Enterprise Business Services

[204]

A practical outcome will be establishing the synchronous Agnostic Composition
Controller based on the OSB functionality within the Enterprise Business Services
(EBS) framework boundaries and the demonstration of the OSB Adapter Factory
capability, the service proxy, and the Service Facade. You will also see how to (re)use
the Rule Engine (RE) decision service in OSB. As this dynamic controller solution can
be a bit too complex to dive in to directly, we will start with the demonstration of a
simple Java-based Message Broker in order to explain some concepts.

The Dynamic Service Collaboration
platform
According to the Oracle methodology formalized in the AIA approach, Enterprise
Service Bus is the only mandatory pattern in the enterprise SOA infrastructure,
which is maintained as an EBS framework. That's what we have learned in the first
two chapters. At the same time, in our practical exercise in the previous chapter, we
started with Enterprise Business Flows, discussing the orchestration patterns and
not ESB. How is it possible to have an optional core? Is it really a core? Yes, it is.
First of all, Enterprise Business Flows (EBF), which are offered as task-orchestrated
services, are the closest entities that represent our business and how we understand
it. No wonder most of the IT initiatives related to SOA are carried out by the
BPEL implementations (since Oracle 10g), despite the service's nature, their MEPs
(synchronous or asynchronous), and the necessity of orchestration in general. The
telecommunication primer is pretty common as seven out of 10 companys' architects
associate the SOA patterns with orchestration alone, and this legacy has to be
refactored sooner or later, and so have we done it.

As we have already demonstrated, the SCA dynamic Composition Controller is able
to carry out reliable broker services for all the MEP types within an existing business
domain (order provisioning) and between other domains in OSS/BSS. The actual
numbers achieved with this approach are presented in the following table:

Typical OSS/BSS NFRs Metrics Operational conditions and settings
Average number of
transactions

30,000 orders daily
(60,000 peak)

This workload has been handled with
one fault per 50,000 orders. The most
common reason is that the input is not
according to XSD.

Asynchronous
transactions

2 minutes to 14
days

This depends on the type of order and
requested product. No message loss
takes place.

Chapter 4

[205]

Typical OSS/BSS NFRs Metrics Operational conditions and settings
Synchronous
transactions
(Stress test)

800 ms for an
execution plan with
nine consecutive
tasks

•	 soa-infra: Select SOA logs | Log
configuration: Level: ERRORS;

•	 soa-infra: Select SOA
Administration | Common
Properties. Set Audit Level: Off

•	 Capture Composite Instance
State: Off

Synchronous
transactions
(Production)

1500 ms for an
execution plan with
nine consecutive
tasks

•	 soa-infra: Select SOA Logs
| Log Configuration; Level:
WARNING

•	 soa-infra: Select SOA
Administration | Common
Properties; Audit Level:
Production

•	 Capture Composite Instance
State: Off

In the preceding table, you can see that we can maintain less than 100 ms per operation
(invocation) with audit / logging set to OFF in SCA. Of course, in production, the
required numbers are almost doubled. With some more fine-tuning, we could gain 10
to 15 ms more, but apparently these numbers are rather inadequate for fast-running
synchronous transactions. This is just one obvious thing that we can spot immediately.
We should continue improving the solution using a service-oriented approach.

The presented numbers were achieved on a double CPU 2Core VM with
8 GB memory and single node SOA Suite installation. All endpoints
were mocked using SoapUI.

Improving the Agnostic Composition
Controller
The implementation of a redesigned service collaboration platform with the
orchestration pattern in the OSS/BSS business domain was recognized as a major
success. Other departments decided to implement the existing functionality on their
premises or, even better, they decided to reuse the existing frameworks directly as a
Service Broker / Mediator to develop the service inventory. However, some concerns
were expressed. It is clear that to improve performance, we have to separate the
synchronous and asynchronous service activities. Together with the orchestration
platform's performance fine-tuning, we will probably gain some milliseconds.

From Traditional Integration to Composition – Enterprise Business Services

[206]

However, this is not an ideal approach. Thus, a synchronous part that does not
require the Partial State Deferral pattern implementation shall be moved to the
Enterprise Service Bus we are about to build. This means that the Dispatcher and
Decision Service (another instance) elements of the functional decomposition figure
in the previous chapter shall be redesigned in a new framework. Not only that,
the Business Delegate (http://www.corej2eepatterns.com/Patterns2ndEd/
BusinessDelegate.htm) that decouples the service consumer / composition
imitator will continue to play its role in the SCA realization of the service broker
by performing the following tasks:

•	 Minimize the number of calls from the client to the service provider, acting as
a transaction coordinator for logically aggregated business operations

•	 Hide the networking issues associated with the distributed nature of services
•	 Shield the clients from possible volatility in the implementation of the

business service API
•	 The Business Delegate should be implemented on ESB, somewhere close to

the repositioned dispatcher (for performance reasons)

These roles associated with the maintenance of the Loose Coupling principle are
traditionally linked to implementation of the Proxy pattern of services/components.
This design pattern was one of the most popular patterns (before SOA) to wrap the
physical component in an additional layer to control access, maintain the distributed
nature of an asset by delegating interoperability functions, and hide the complexity
of the implementation. With emerging enterprise services, especially on the WS
technology, this pattern becomes even more demanding, as the detachable service
contract fits really well into the Proxy concept and makes consumer-provider
decoupling easier and more native. This design pattern is intrinsically connected to
some other generic (non-SOA) design styles, and it's the basis for some fundamental
SOA patterns. In Oracle ESB realization, you basically put all actual development
behind a proxy. Thus, by following the POSA promise, we will start with this pattern
and explore its relations with other ESB patterns.

The Proxy design pattern and its relatives
We have already mentioned some tasks that are explicitly related to traditional
Proxy realization. We will definitely employ a Proxy pattern when we have certain
needs, such as:

•	 Establishing the local representation of a remote object that may exist in
another network segment or domain. This primary and classical role of
Proxy has a long history with COM/COM+/DCOM and CORBA.

http://www.corej2eepatterns.com/Patterns2ndEd/BusinessDelegate.htm
http://www.corej2eepatterns.com/Patterns2ndEd/BusinessDelegate.htm

Chapter 4

[207]

•	 Protecting our object; a protective Proxy can be established where
access permissions can be verified. Reverse Proxy is one of the forms
of protective Proxy.

•	 Establishing the placeholder for the object that we will create only
upon the client's request. This virtual Proxy can help us save a lot of
physical resources.

•	 Implementing a smart, type-based Proxy that can check for the presence
and state of the object before passing the request, or that can act as a master
objects reference table, counting number of object instances and destroying
unused ones.

So, Proxy is a decoupling layer between the client and provider, safely plugging the
requestor to the subject, allowing them to live or evolve independently at the same
time. Can it be described as an Adapter pattern then (another generic pattern)? Yes?
No? Yes? Perhaps more like maybe. Talking seriously, in classic design, adapters
must (according to their name and nature) adapt inbound signals to the receiver's
capabilities expressed in a contract. Thus, the Transformation and Bridging traditional
patterns are native companions of an Adapter, while Proxy is supposed to provide the
same interface. Of course, nothing is set in stone here, and we are just outlining the
patterns relation according to generic POSA, with some common sense for spice.

What if we want to extend the existing service contract, add a new capability, or
change the granularity for one or several contracts elements (functions and not data
types)? In OOP, it's similar to extending a class (subclassing), but we would still
like to maintain decoupling. As we know, OOP inheritance is a useful thing, but it
certainly introduces tight coupling in the inheritance hierarchy. What is good at the
component-level architecture is not exactly positive and desirable at the next higher
level (service layer) within the composite architecture, and further in the service
inventory. Also, sometimes, this kind of enhancement must be performed at
runtime; therefore, OOP is not really applicable to its inheritance.

In real-life situations, with so many variations added to the superclass through
inheritance, we can easily introduce a nightmare of the so-called "class explosion".
These complications can be resolved by the application of the Decorator pattern. The
purpose of a Decorator is to "mash up" the capabilities of a concrete class with new
capabilities to present a new compound contract. Usually, this is done by creating an
abstract decorator, which is a proxy to the main object (in fact, it's an exact replica of
the abstracting class), and concrete Decorators that enhance the actual object's methods.
So, here, the role of Proxy is clearly visible and the link between Proxy and Decorator
is apparent (compare this with the Adapter-Proxy relations). With regards to the SOA
design, the Decorator pattern is implemented as a composite at the component level,
and this pattern can be applied in the composite application layer as well.

From Traditional Integration to Composition – Enterprise Business Services

[208]

The Decorator pattern is also linked to the adapter's pattern implementation.
This relation is not straightforward though. It is better to see it from the Decorator's
downside. Although we have replaced the inheritance by composition (except
Abstract Decorator-Proxy), we can still end up with tons of concrete Decorators.
Yes, we have achieved a reasonable level of decoupling, but at what cost? We still
have a lot of static modules (that is, enhanced interfaces) to maintain; wrap them into
Decorators and explicitly instantiate them. It would be good if we could instantiate
them blindly through the interface without knowing about concrete implementation.
Actually, this is possible by using the Factory Method pattern, which provides an
interface to create (access) objects without knowing their realization. Of course,
all objects in a collection must be of the same type. We can go one step further in
our abstraction and implement the Abstract Factory pattern on the top of concrete
factories in order to access/instantiate different object collections. Now, decorators
along with Abstract Factory will not only decouple a caller from the object (provider)
with the enhanced interface, but it will also allow us to access this interface without
knowing its explicit specification dynamically.

So, a Decorator as a wrapper could work well together with Abstract Factory.
Adapters can be seen as a wrapper as well. In real life, we don't always deal with
only one adapter (unfortunately), as we have many interfaces to adapt. Thus, our
collection of adapters must be abstracted first and then accessed in a dynamic
way, without the knowledge of an actual consumer/provider implementation
and depending on the invocation directions (remember, we have northbound and
southbound sides of the same ESB). In this case, Abstract Factory can be evolved
into Adapter Factory.

This pattern is not exactly from the traditional pattern catalogues (for SOA, visit
http://soapatterns.org/, or for OOP, check out http://www.oodesign.com/),
but its necessity is obvious. Although every physical adapter is an individual wrapper
to the concrete API (not always legacy), transformation, validation, filtration, and
enrichment are common functions associated with the traditional adapter pattern. It is
also obvious that JCA technology/protocol adapters (for file/FTP, JMS MQ, AQ, and
in most cases, DB) also have a lot of common properties. This allows us to group them
under the factory methods, which will do the actual dispatching to specific adapters.

Abstract Factory, which acts as a dispatcher, should be isolated from the client by
the Facade with a simplified interface that accepts Message Container. In fact, in
JEE terms, it's a Transfer Object (http://www.oracle.com/technetwork/java/
transferobject-139757.html) with the Business Object inside and all elements
in a header, necessary for obtaining the instance of the required protocol adapter
from Adapter Factory.

http://soapatterns.org/
http://www.oodesign.com/
http://www.oracle.com/technetwork/java/transferobject-139757.html
http://www.oracle.com/technetwork/java/transferobject-139757.html

Chapter 4

[209]

In this case, the Factory Method pattern acts as a dispatcher between adapters of the
same technology/protocols, Abstract Factory mediates between groups of transport
adapters, and Facade isolates client calls from Adapter Factory and performs
all necessary tasks on Transfer Object (extract headers elements, for instance).
Validation and transformation of business payload should ideally be done on
Adapter in order to keep Adapter Factory's Facade completely generic, but this
task can be generalized as well by using OSB; we will be discussing this soon.

We just mentioned another pattern related to Proxy, that is, Facade. If we want to
simplify the interface, make it more generic and universal (in other words, abstract),
we should put the Facade upfront. It's similar to the Decorator pattern, but we are
not adding a new method to the abstracting (wrapping) interface; we are simplifying
it. Actually, it's quite the opposite. The whole point here is the unification of access
to the object/API. We are hiding the complexity of the existing implementation and
moving the delegation to the underlying methods upon receiving the call. Thus, it's
pretty close to Abstract Factory and not Decorator. Is it some kind of Adapter? Not
really. The Facade pattern implements a new, simplified interface, while Adapter
strives to preserve the existing one. This key difference is crucial, as it defines the
physical location of Facade in SOA topology and we will get back to it when we will
discuss the SOA reincarnation of these traditional patterns. You can spot one relation
already: our SCA Mediator is in fact the Facade!

We left Mediator in the SCA orchestration layer, and now we
have mentioned it while talking about traditional patterns in ESB.
Confusing? Yes, if you believe that the SOA patterns catalogue
is something fixed and predefined. Here, we are showing the
application of patterns in a working platform, in relation to other
patterns and physical boundaries, are limited by the logic of the SOA
principles and characteristics we want to achieve.

Mediator is one of the core patterns that establishes intermediate routing between
sender(s) and receivers (for OOP, visit http://www.oodesign.com/mediator-
pattern.html, and for GoF, http://www.eaipatterns.com/Introduction.html).
Mediator makes the senders and receivers reference each other indirectly. There are
some other traditional patterns that implement routing and referencing, statically
or dynamically, but we will stay with the more traditional definition of Mediators.
Someone can describe Mediator's core functionality as Receive-Transform-Deliver
(RTD), which is exactly opposite to ETL), but Transformation is not a traditional
design pattern and it is mostly associated with the Adapter implementation. By
combining Mediator and Transformation (from Adapter, both for Data Format and
Data Models), we essentially implement the Message Broker pattern, which is the
predecessor of traditional ESBs. Practically, all hub-and-spoke integration patterns
are based on a compound Message Broker.

http://www.oodesign.com/mediator-pattern.html
http://www.oodesign.com/mediator-pattern.html
http://www.eaipatterns.com/Introduction.html

From Traditional Integration to Composition – Enterprise Business Services

[210]

Due to its simplicity, it is one of the most popular lightweight implementations
of traditional EAI patterns and it's not that easy to draw a line between Message
Broker and Service Broker in the SOA ESB. In fact, for the services that have
strictly predefined contracts (REST Services, which are based on HTTP POST/GET
operations) and are exposed as lightweight endpoints, Message Broker could be
the most optimal solution from performance and maintenance standpoints.

Basic relations between the discussed traditional patterns are illustrated in the
following figure:

Our short walk through Proxy and other related patterns can be summarized
as follows:

•	 Most of the patterns discussed in the preceding sections are from OOP and
traditional components design practices. Their area of application lies mostly
within the component/service architectural layer, and they are governed
by the principles that are not always in accordance with the SOA design
principles. Inheritance is quite opposite to Loose Coupling.

Chapter 4

[211]

•	 The preceding fact must not discourage us from learning and adapting
these patterns to work in an ESB framework. Contradiction of principles
is a regular occurrence, even the SOA principles are not always friendly
to each other. Besides, OOP and traditional integration are major contributors
to SOA.

•	 Proxy is a service governance pattern that is actively used in more complex
design patterns. Its primary role is to decouple service consumers and service
providers. Generally, it is either an object wrapper or a remote placeholder
for the object that presents the same interface to its subject.

•	 Adapter is a wrapper as well, but it offers a different subject's interface
(adapted to consumer). This allows dissimilar objects to communicate.
Transformation (model or format) is one of the functionalities of an Adapter.
Protocol bridging for disparate protocols is another functionality.

•	 The Decorator pattern enhances an existing interface by adding new
method(s).

•	 Facade implements a simplified and more abstract interface suitable
for invocation by clients with different requirements, as it introduces
a consolidated view of enterprise objects. Abstract Factory has a
similar purpose.

•	 In order to guarantee smooth and reasonably painless service evolution,
you must plan two placeholders for the Façade pattern implementation in a
new service design: one between the contract and service logic and another
between the service logic and the underlying resources.

•	 Abstract Factory can also abstract and wrap dissimilar interfaces together
with Adapter patterns, effectively introducing Adapter Factory with the
main purpose of dispatching a request to the particular interface.

Now, it will be interesting to see how these EAI patterns can be implemented on
an Oracle realization of Service Bus.

Implementing a basic Proxy on OSB
Although we have no intention (and primarily, bookspace) to supply you with
detailed step-by-step OSB tutorials, some guidelines to create the basic OSB
resources and Proxy in particular will be in order. We are certain that you will find
plenty of good guidelines on the Internet or in the Packt Publishing bookstore.
However, since OSB is the only mandatory SOA framework and the Proxy pattern
is the heart of the OSB, we will walk through the creation process in just three and a
half quick steps.

From Traditional Integration to Composition – Enterprise Business Services

[212]

Have a look at the following screenshot:

In order to demonstrate the different Oracle tools to handle OSB, we will create
OSB artefacts (Business and Proxy services in particular) by using the OSB console
(http://<your-host>:7001/sbconsole) and not Eclipse. According to WLS practice,
any changes in the resource configuration shall be done during an alteration session:

1.	 In Change Center of the Oracle Service Bus, click on Create to create a new
session. If something goes wrong, you can always click on Discard (and lose
all of your changes). However, we believe that we will be happy with OSB.
So, after completing all the required steps, we will activate our changes.

1.	 In the Oracle Service Bus Console navigation pane, select
Project Explorer.

Chapter 4

[213]

2.	 In the Enter New Project Name field, in the Projects section,
type the name of your project. In the preceding screenshot, we
used SOAPgateway_CustomerInfo from one of our test cases.
You can use any other name as per your convenience.

3.	 It will be a good practice to dedicate individual folders in our
project space for every resource that we will deploy or abstract
in OSB. For example, Proxy Service (Proxy), Business Service
(Business), and WSDL.

Some common XML-based artifacts are as follows:
°° WSDL resources for agnostic web services, the Entity and Utility

service models
°° XML schemas for EBO/EBM, which are widely used in other projects
°° The WS-policy files that are used in more than one project/Proxy
°° XSLT transformations are related to EBO/EBM, and are especially

used in facades for core business processes
°° Cross-project XQueries (yes, it's not XML, but anyway)

From Traditional Integration to Composition – Enterprise Business Services

[214]

It is better to put them into dedicated common folders that are not related
to individual projects. That's what we have done here by placing the entity
WSDL in the dedicated folder. Therefore, it is not visible in the preceding
screenshot. You will see a more elaborate folder structure in the following
example of SB. Why do we put your attention on that? It is not your real
artifacts repository yet. Implementing proper resource structuring will save
you from lots of grief even for small projects, as resource structuring can be
painful. The additional steps are as follows:

1.	 On the Project page, in Folders, enter the folder name in the
field provided. Initially, enter WSDL and click on Add Folder
(create a folder that is more suitable for common recourses
if you deem it prudent).

2.	 Repeat the previous step for Proxy and Business, but now in the
concrete project, which you will use for Proxy-based operations.

3.	 Activate your changes in WLS Change Center.

2.	 We assume that you have plenty of web services in your service inventory,
as we don't want to waste your time in creating some "Hello world":

1.	 Create a new OSB session in Change Center and select Project
Explorer in the navigation pane.

2.	 Go to the WSDL folder you created earlier.
3.	 In the Resources pane, from the Select Resource Type list,

select WSDL.
4.	 Enter the following information in the Create a New WSDL

Resource page:
°° Enter the meaningful name for your service as the

resource name
°° Browse and select the WSDL associated with your service
°° Click on Save to create the WSDL resource and activate

the changes

3.	 Finally, we create the Proxy Service by performing the following steps:
1.	 Again, create a new session and go to the proxy subfolder of

your project.
2.	 In the Select Resource Type list, select Proxy Service.
3.	 Give the Proxy Service a service name according to your preferences,

but follow the Canonical Expression SOA pattern.

Chapter 4

[215]

4.	 In Service Type, select WSDL Web Service and then click on Browse.
5.	 The Select a WSDL page will appear. The Proxy Service pattern is

based on the WSDL resource that you originally created; hence, you
must reference the resource here. Select the initially imported WSDL.

6.	 Select the WSDL port.
7.	 Submit the changes on this page.
8.	 Go to the next page and accept the default protocol as HTTP.
9.	 It is a good time to set the endpoint URI for our Proxy, as from

now on all consumers will access your service through a newly
created /order/getCustomerInfo Proxy.

10.	 Accept the default for the Get All Headers option, or set it according
to your operational requirements. This option is especially important
for the REST services.

11.	 After reviewing the Proxy Service configuration settings, click on
Save to register the service.

12.	 Do not forget to activate the changes.

We are done. We have created a middle tier between the requestor and the provider,
and all abstract patterns visualized in the first figure of this chapter will be squeezed
into one purple box behind Proxy, thanks to the Message Flow tab that is associated
to the Proxy in the OSB realization. Thus, Proxy is our ESB Patterns enabler in Oracle
apprehension, of course. Still, it's perfectly aligned with the vendor-neutral SOA
patterns catalogue.

From Traditional Integration to Composition – Enterprise Business Services

[216]

We not only separated the business service (provider) and client, who will now
access the resource using /order/getCustomerInfo, but we also established a layer
of framework. This will allow us to control all the aspects of the service's lifecycle—
SLA, policies, security, and monitoring (refer to selected areas in the preceding
figure). Now, we can intercept all traffic to/from our service and do all that is
necessary. Interestingly, Interceptor is the exact word that describes this behavior in
other realizations of the ESB SOA pattern, for instance, ServiceMix/CXF. Naturally,
we will not be able to touch all these aspects in one chapter, so please refer to the
OSB documentation for each tab in the preceding screenshot.

Our short exercise was based on the WS/WSDL service. The REST Proxy
implementation will be even easier, as we do not need to import any
resources. Yes, REST services were designed with simplicity in mind, but
think of detachable contract—how much flexibility it gives us! The time
of holy wars between SOAP and REST is over, and thanks to OSB, we
have unified service management for all types of services.

The Message Broker pattern mentioned previously is equally capable to dispatch
messages and could be a good choice for REST or just HTTP-based services. Message
Broker, as a commercial product, is commonly associated with IBM (http://www-
01.ibm.com/software/integration/ibm-integration-bus/library/message-
broker/), and we hope that you understand that we are focusing only on the pattern.
It will be interesting to see what we gain and what we lose if we try to implement a
custom lightweight Message Broker for a predefined canonical protocol.

From Message Broker to Service Broker
Again, we will look at the CTU business case started in the previous chapter. While
the Brazilian CIO was busy re-engineering and implementing order fulfillment in a
Pan-American way, urgent needs for a lightweight service broker for mobile OSS/
BSS operations were expressed in the Chile regional office.

A new project named Extended Data Interchange (XDI) was started independently.
Initial requirements were to cover message brokering between ERP (Oracle EBS R11)
and mobile/network equipment providers, routing purchase orders to different
suppliers. Direct communication was impossible for the following two reasons:

•	 OeBS R11 was able to post messages as SOAP 1.1, where most of the
suppliers required SOAP 1.2.

http://www-01.ibm.com/software/integration/ibm-integration-bus/library/message-broker/
http://www-01.ibm.com/software/integration/ibm-integration-bus/library/message-broker/
http://www-01.ibm.com/software/integration/ibm-integration-bus/library/message-broker/

Chapter 4

[217]

•	 Supplier endpoint maintenance was considered impractical in the core
ERP and the need for a middleware layer was expressed. The solution
had to be compact enough to be moved out from the production to the
communication zone or even to the DMZ. Basic security features were
implemented in the new broker.

From the very beginning, this solution was considered as temporary, as more
mature enterprise products were expected. However, nothing is more permanent
than temporary. Migration from R11 to R12 with the SOAP 1.2 support has been
considerably delayed; full-fledged ESBs were prohibited by the headquarter until
completion of the pilot SOA project in Brazil. We are sure that you must be familiar
with such situations.

What have we got as an architect here?

•	 We have local developers familiar with JEE.
•	 We managed to negotiate the Canonical Protocol for all parties as HTTP.

That greatly simplifies our life as we will deal with only one synchronous
protocol, with simple operations and no SOAP conversions. If SOAP 1.2 is
required, we will wrap our message in the required envelope.

•	 We realize that this broker will be temporary anyway, but all EBO/EBM
structures, transformations, routing slips are related to the core business,
and will stay. Therefore, the solution must be highly modular, ensuring
easy migration or coexistence with solutions to come.

•	 Obviously, MB must be a very reliable and a good performer.

Naturally, new requirements emerged quite soon. Now, we have to transport more
business messages (not only the purchase order as it was planned initially). Also,
we have more application to integrate in addition to a single instance of OEBS.
Still, all of this doesn't sound that bad. We can easily deduce that we have the
classic RDT interchange pattern with transformation, possibly with translation and
content-based routing. Synchronous APIs do not require complex processing; all
brokering must be performed from a central location. The broker will be some kind
of single point of contact, acting in the same manner as a Front Controller. The Front
Controller is one of the common JEE patterns, although it is commonly related to UI
and presentation-tier integration (http://www.oracle.com/technetwork/java/
frontcontroller-135648.html). Physical realization of a Front Controller is our
main interest as it's a classic servlet, and after consultations with developers we
agreed that this will be the heart of our Message Broker.

http://www.oracle.com/technetwork/java/frontcontroller-135648.html
http://www.oracle.com/technetwork/java/frontcontroller-135648.html

From Traditional Integration to Composition – Enterprise Business Services

[218]

Talking about Message Broker's body parts, the next vital organ will be Business
Delegate, which can be accessed through the servlet's helper. As we discussed in
the previous chapter, it has the responsibility to transform and dispatch messages
to the actual workers (service providers). This will be the solution's brain. The last D
(deliver) from RTD will be closely associated with Business Delegate, which presents
the Adapter Factory pattern. Despite the initial intention to serve only HTTP
communications, file/FTP operations requirements were added into the design.

A simplified Message Broker implementation
Now, we will walk through the RTD parts focusing on pattern implementation in a
simple hub-and-spoke solution.

Receive
The receiving part must contain functions for message parsing, message
identification, and the extraction of an execution plan based on message ID.
These are typical parts of any servlet, except probably the execution plan, which we
add for dynamic task invocation. A servlet's lifecycle starts with initialization, which
occurs only once when the servlet is started, as presented in the following code:

String dispatchSufix = "";
String mappingURL = null;
...
public void init(ServletConfig config) throws ServletException {
 super.init(config);
 ...
 tmp = config.getInitParameter(MAPPING_URL);
 if (tmp != null) mappingURL = tmp;

 tmp = config.getInitParameter(OK_PAGE);
 if (tmp != null) okPage = tmp;
 ...
 tmp = config.getInitParameter(XMLRULESPROVIDER_URL);
 if (tmp != null) XDIRuleListWSURL = tmp;

This fact gives us the possibility to put all heavy, but one-time, operations into
the initialization routine, for instance, obtaining and caching the data sources. For
simplicity, we will not use the database directly in this example, and in general the
performance is not our primary concern. Initially, we just need some pages to display
the positive and negative responses, resource mapping, default logging level, and
type of rule engine we will use for the process type resolution (name of routing slip),
and default transformation. All these parameters will be registered in the web.xml
deployment descriptor according to the servlet specification and reassigned during
the initiation step as shown in the preceding code.

Chapter 4

[219]

We will simplify two default servlet operations, doGet and doPost, by calling
the same processRequest procedure that will be our entry point to the
processing logic:

public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
 processRequest(request, response);
 }
public void doPost(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
 doGet(request, response);
 }

First, we will make an instance of a request helper, a log handler, and two
supporting objects, namely MessageHeader and Acknowledge:

 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 ...
 MessageRequestHelper helper =
 getMessageRequestHelper(request, response);
 LogHandler logger = new LogHandler();
 ...
 MessageHeader mheader = new MessageHeader();
 Acknowledge ack = new Acknowledge();

The MessageHeader object will contain all message-context elements that we will
extract from the inbound message. It is ideal that we will have a unified standard
header (which is not always true) within a single organization (CTU), but external
partners/mobile equipment suppliers use their own standards, which are not always
compatible with SDBH. Thus, we will have to modify the message header after
identifying the trading partner(s). Have a look at the following figure:

From Traditional Integration to Composition – Enterprise Business Services

[220]

This modification can be done on the MessageHeader Java object if the receiver is one,
or after combining the message header and message body together in an individual
transformation step within an execution plan if we have multiple TP receivers.

We can say the same about the Acknowledge object. Initially, the sender was
only one, Oracle e-Business Suite, and the Acknowledge was predefined for
this application. However, as it was described in the business case, quite soon,
other internal applications discovered the benefits of this Message Broker and
the transformation of the Acknowledge message becomes necessary. Luckily,
standardization of the Acknowledge message is easier than Message Header,
as all applications are internal.

You can understand the structure of the Acknowledge object from the overridden
toString() function, which we recommend that you should have for every entity
class. The following code is for object structure only, as you can be better off with
Apache commons for the implementation of the toString() function, by using
ToStringBuilder.reflectionToString(this) for instance:

/*
 * @webmethod
 */
 public String toString(){
 return getClass().getName()
 +" ackReceiptID:"+ackReceiptID
 +" ackDateReceived:"+ackDateReceived
 +" ackDateProcessed:"+ackDateProcessed
 +" ackTradingPartnerID:"+ackTradingPartnerID
 +" ackFileName:"+ackFileName
 +" ackReferenceNumber:"+ackReferenceNumber
 +" ackMessageID:"+ackMessageId
 +" ackMessageStatusCode:"+ackMessageStatusCode
 +" ackEventCode:"+ackEventCode
 +" ackEventDescription:"+ackEventDescription
 +" ackEventSource:"+ackEventSource
 +" ackAction:"+ackAction;
 }

When we talk about Message Header, we assume that it will be based (if not
compatible) on the SBDH standard. For Acknowledge, there are no publicly
accepted standards, but the structure of an existing, common Logging service
(and its storage) could be a good start. In this design, a traditional log4j library was
used for technical errors and a log DB structure was standardized long before the
creation of this Message Broker. In addition to this, the function-related LogHandler
is responsible for choosing an appropriate way to register business events (type of
information, warning, and error).

Chapter 4

[221]

Naturally, WS realization will be the most atomic and modular, therefore
LogHandler has the capability to select the logging procedure. However, there
were some concerns regarding possible performance deprivation. Logging level and
realization are the parameters settled during servlet's initialization, and the default
values are in the web.xml descriptor. We must remember that parameters acquired
during the init phase will stay active during the servlet's life. Therefore, the logging
level of the process must be configurable from the execution plan's header:

// Implementation of the task logger in LogHandler
public void log(String ipMsgtype, Task currtask) throws java.
io.IOException {
 try{
 log(ipMsgtype,
 getLogEventDescription(currtask), currtask.getMsgId(),
currtask.getSenderTPId(),
 currtask.getTaskEngine(), currtask.getXDIInstanceID(),
currtask.getEdiProcessReportLevel()
);
 }
 catch(Exception ex) { ex.printStackTrace(); }
 }

//Implementation of the basic logger in LogHandler
 public void log(String ipMsgtype, String ipMsgtext, String
 ipMsgcode, String ipUsermsg, String ipMsgsrc,
 String ipMsgjobid, String ipLoglvl) throws
 java.io.IOException
 {
 EventLogHandler logwriter = new EventLogHandler();
 logwriter.log(ipMsgtype, ipMsgtext, ipMsgcode, ipUsermsg,
ipMsgsrc, ipMsgjobid, ipLoglvl);
 }
....
//Typical use
 logger.log("INFO", "Rule engine in use : " + RuleEngineType ,
 mheader.getXDIMsgId(), mheader.getXDIUser(),
 "XDI.RuleEngine", mheader.getXDIJobRefId(), "3");

Although the realization of the Logger WS is pretty straightforward, it also has two
distinctive paths: either you write data directly into the DB or enqueue the message
into Advanced Queue. Anyway, it is a one-way service and must not disrupt
message processing. It is important to mention that Log4j (or a newer SLF4J library
if you choose to use it) also has its own configuration for level and layout, which we
set in a LogHandler.

From Traditional Integration to Composition – Enterprise Business Services

[222]

Now, after the helper's initiation, our first task is to recognize an inbound message.
There are two possible strategies here, based on the XML parsing: DOM and SAX.
Obviously, each strategy has its own pros and cons, but if we require really
high performance, we should rely on MsgID recognition by the SAX parser.
We instantiate the SAX cmdHelper in the servlet's processRequest and
execute the SAX parsing function.

The SAX parsing sequence is presented by the following code snippet:

//In XDIServlet, processRequest
MessageCommand cmdHelper = helper.getCommand();
 XdiMsgID = cmdHelper.execute(helper);
 logger.log("INFO", "New message received. Message ID: "+
 XdiMsgID", "N/A", "N/A", XDIServlet.servletInstance + "
 Front Controller", "N/A", "3");

//In MessageRequestHelper
.....
 private static final String elementName = "XDIMSG_ID";
....
 public MessageCommand getCommand(){
 java.util.ArrayList elementList = new
 java.util.ArrayList();
 elementList.add(elementName);
 return new MessageGetElementCommand(elementList);
 }

// In MessageGetElementCommand
public String execute(MessageRequestHelper helper) throws javax.
servlet.ServletException, java.io.IOException {
 String elementContent = null;
 //
 // Start reading content
 //
 try{
 java.io.Reader bodyReader = helper.getReader();
 elementContent = getElementContent(bodyReader);
 bodyReader.close();
 }
 catch (javax.xml.parsers.ParserConfigurationException e){
 throw new javax.servlet.ServletException(e);
 }

Chapter 4

[223]

 catch (org.xml.sax.SAXException e){
 throw new javax.servlet.ServletException(e);
 }
 return elementContent;
 }
......
// where getElementContent is SAX Parser implementation

private String getElementContent(java.io.InputStream inputStream)
throws
 javax.xml.parsers.ParserConfigurationException,
 org.xml.sax.SAXException,
 java.io.IOException {
 String elementContent = null;
 inElement = false;
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 SAXParser parser = factory.newSAXParser();

 parser.parse(inputStream,this);
 if (stringBuffer.length() > 0) elementContent =
 stringBuffer.toString();
 return elementContent;
 }

This SAX parsing routine is pretty standard for all the XML servlets as it's the first
step to map message type/content for further actions. For simple routing actions,
this implementation will be sufficient. As a matter of fact, if we want to have a
full-fledged Message Broker with content-based routing, an implementation of the
DOM parsing is inevitable, as shown in the following code:

//In XDIServlet, processRequest
//new: DOM parser.
//Get message DOM using Oracle XDK
 XMLDocument msgXdiDOM = helper.getMessageDOM(ack);

//In MessageRequestHelper
 public XMLDocument getMessageDOM(Acknowledge ack) throws
 ServletException, IOException {
 String bodyroot = null;

From Traditional Integration to Composition – Enterprise Business Services

[224]

 //declaration for different DOM specs
 XMLDocument msgXdiDOM = null;
 // Document msgXdiDOM;
 ...
 XDIMessageHelper msghelper = new XDIMessageHelper();
 try
 {
 //Oracle parser
 msgXdiDOM = msghelper.getmsgXdiasDOM(getReader());
 }
 catch(Exception ex) {
 logger.log("ERR", "Unable to parse incoming message",
 "N/A", "N/A", XDIServlet.servletInstance + " Front
 Controller", "N/A", "3");
 ack.setackMessageStatusCode(ack.STATUS_CRITICAL_ERROR);
 ack.setackEventCode(ack.STATUSCODE_CRITICAL_ERROR);
 ack.setackEventDescription(ex.toString());
 ex.printStackTrace();
 }
 return msgXdiDOM;
 }

......
// In XDIMessageHelper. Actual parsing
//Technically you can use any DOM parser. We use classic oracle.xml.
parser.v2.* It's also configurable through Servlets initiation
 public XMLDocument getmsgXdiasDOM(java.io.Reader reader)
 throws IOException, SAXParseException, SAXException
 {
 XMLDocument msgXdiDOM = OraXMLHelper.parse(reader, null);
 return msgXdiDOM;
 }

As you have noticed, we are populating the Acknowledge object (passing the ack
parameter) every time when it's necessary, and definitely in case of errors. We will
do exactly the same with MessageHeader, right after obtaining the DOM message:

// set Message header values
 helper.setMessageHeader(msgXdiDOM, mheader, ack);

Chapter 4

[225]

Why do we need to do this? For the same reason why the SAX parser with one
element (MsgID) recognition is not enough. For the guaranteed identification of the
business process, we will need SenderID and EventName at least (and some more,
but we will skip the details for brevity):

Our MessageHeader elements will be used in the next step for the recognition of
business process and extraction of the execution plan for this process. It will be used
further for the construction of the XML Message Header in the delivery phase. Here,
we will discuss how we are going to implement marshalling/unmarshalling for the
core objects that we have in our broker. You can see a list of objects in the preceding
screenshot.

From Traditional Integration to Composition – Enterprise Business Services

[226]

Naturally, not all of them have to be converted into XML and back, but Process,
ProcessHeader, Acknowledge, and MessageHeader are the primary candidates. For
instance, in Chapter 2, An Introduction to Oracle Fusion – a Solid Foundation for Service
Inventory, dedicated to modern SOA technology, we mentioned several common
O/X mappers such as JAXB and JiBX frameworks. The key factors that are naturally
defining our choice of marshaller are performance and ease of configuration. Spring
O/X can be a very good alternative as we do not need to construct the JAXB context,
JiBX binding factories, and so on. We have other options such as using Castor XML
mappings, XMLBeans marshallers, and XStreams. The choice is yours, but you can
also implement the conversion of an object to XML without any libraries. Here, our
task is really simple. Therefore, good, simple Java constructs will work quite well
and surprisingly fast. Every object has its own helper, where we have a primitive
section for XML construction. First, we get an instance of the element writer utility,
based on System.out.println(), as shown in the following code:

ElementWriter ewriter = new ElementWriter();
 java.io.StringWriter xdiDocWriter = new
 java.io.StringWriter();

We will then write our elements as shown in the following code:

xdiDocWriter.write("<mhs:MessageHeader>");
ewriter.element(xdiDocWriter, "mhs:XDIMsgId", mhs.getXDIMsgId());
ewriter.element(xdiDocWriter, "mhs:BusinessEvent",
 mhs.getBusinessEvent());
ewriter.element(xdiDocWriter, "mhs:Sender", mhs.getSender());

For more complex objects and messages, we will advise you to use the Spring
framework, or any other that suits you.

Now, we have all the necessary functionalities to extract an execution plan. Similar
to the realization discussed in the previous chapter, the execution plans are the
XML objects stored as a file object, and they will be extracted from XML mapping
file, linking the sender and the message IDs with process. The name and location
of this file is configured using the web.xml deployment descriptor and extracted
during the servlet's init phase. The FileIO realization of this lookup makes this
broker extremely lightweight and suitable for autonomous installation on DMZ or
in an integration zone without connecting to any database. If your requirements are
not that strict, you can implement ExecutionPlanLookupService as a WS (using
SCA from the previous chapter) and invoke it using MessageHeader as an input
parameter. This was not the case when we decided to build this broker. After the
extraction of the execution plan XML, we are ready to process it.

Chapter 4

[227]

Transform
Transformation is not the only task we will perform; therefore, this name is a
bit misleading. In general, we can invoke any EJB or another HTTP endpoint
registered in the execution plan. Initially, we agreed that the scope of our tasks
will be transformation, translation, and delivery (as FileIO or HTTP post), which
are presented as individual helpers (dispatchers) that are controlled by the
ProcessHandler factory. Please refer to the following figure:

VETRO sequence on custom Service Broker

It's a classic VETRO pattern, where validation (for V) is initially done by the receiver
(servlet) when we parse it into DOM and implicitly done during the individual
transformation (enrichment) steps. A message incompliant to the declared XSD
will result in failure in transformation.

Technically, we are looping though the task list nodes and invoking a related helper
to execute the task as follows:

 TaskHelper tskhelper = new TaskHelper();
 TransformerHandler transformhandler = new
 TransformerHandler();

From Traditional Integration to Composition – Enterprise Business Services

[228]

 try {
 setBody(reader, true);
 XMLDocument taskListDOM =
 tskhelper.getTaskListDOM(mheader,ack);
 // new call for task ArrayList
 ArrayList tasklist =
 tskhelper.getProcessTaskList(taskListDOM,
 mheader,ack);
...
 for (int i = 0; i < tasklist.size(); i++) {
 Task currtask = (Task)tasklist.get(i);
..
 if(currtask.getTaskAction().equals("Transform")){
 log.info("Executing:" +
 currtask.getTaskAction());
 msgbodyReader =
 transformhandler.transformdispatcher
 (getReader(), currtask, request);
 if(currtask.getTaskAction().equals("Deliver")){
 log.info("Executing:" +
 currtask.getTaskAction());
 DeliveryHandler deliverer = new
 DeliveryHandler();
 deliverer.deliver(getReader(), currtask, request,
 ack, mheader);

The transformation engine type is defined as a parameter for the transformation task,
and the dispatcher will send it to an appropriate engine where transformation is
finally done. This is demonstrated in the following code:

 try {
 stylesheetfile = task.getStylesheetLocation();
 stylesheet = new XSLTInputSource(stylesheetfile);
 xmlsource = new XSLTInputSource(reader);
 }
 catch (Exception e) { ... }
 try {
 ...
 XSLTResultTarget xmlresult = new XSLTResultTarget(out);
 XSLTProcessor transformer =
 XSLTProcessorFactory.getProcessor();
 transformer.process(xmlsource, stylesheet, xmlresult);
 ...
 java.io.Reader msgbodyReader = new
 java.io.StringReader(xmlresult.toString());

Chapter 4

[229]

 return msgbodyReader;
 try {
 stylesheetfile = task.getStylesheetLocation();
 stylesheet = new XSLTInputSource(stylesheetfile);
 xmlsource = new XSLTInputSource(reader);
 }
 catch (Exception e) { ... }
 try {
 ...
 XSLTResultTarget xmlresult = new XSLTResultTarget(out);
 XSLTProcessor transformer =
 XSLTProcessorFactory.getProcessor();
 transformer.process(xmlsource, stylesheet, xmlresult);
 ...
 java.io.Reader msgbodyReader = new
 java.io.StringReader(xmlresult.toString());
 return msgbodyReader;

Deliver
The last broker's responsibility is to deliver the message to the ultimate recipient(s):

//Dispatcher uses the task engine to dispatch to the certain task
...
if(task.getTaskEngine().equals("XDIMB.apache.httpcomponents.httpcl
 ient")) {
 log.info("Dispatching as HTTP, TaskCommType: "+
 task.getTaskCommType() + "; Engine: "+
 task.getTaskEngine());
 httpdeliverer.deliverCommonHTTP(outbodyReader, task,
 request, ack, mheader);
 }
...
//here is the standard Apache HTTP Component library
....
 tskurl = task.getReceiverEndpoint();
 userName = task.getReceiverEndpointUserName();
 port = task.getReceiverEndpointPort();
 tskhost = task.getReceiverEndpointHost();
 ...
 HttpParams params = new SyncBasicHttpParams();
 HttpProcessor httpproc = new ImmutableHttpProcessor(new
 HttpRequestInterceptor[] {...}

 ...

From Traditional Integration to Composition – Enterprise Business Services

[230]

 HttpRequestExecutor httpexecutor = new HttpRequestExecutor();
 HttpContext context = new BasicHttpContext(null);
 HttpHost host = new HttpHost (tskhost, port);
 DefaultHttpClientConnection conn = new
 DefaultHttpClientConnection();
 ConnectionReuseStrategy connStrategy = new
 DefaultConnectionReuseStrategy();
 ...
 BasicHttpEntityEnclosingRequest request = new
 BasicHttpEntityEnclosingRequest("POST", tskurl);
 request.setEntity(requestBodies[i]);
 ...
 request.setParams(params);
 httpexecutor.preProcess(request, httpproc, context);
 HttpResponse response = httpexecutor.execute(request, conn,
 context);
 response.setParams(params);
 httpexecutor.postProcess(response, httpproc, context);
....

//If you want to dispatch to an other HTTP poster, add engine type to
Execution Plan, new IF branch to dispatcher and new Java deliverer

The pros and cons of a simplified Message Broker
The solution based on the presented architecture has been delivered quickly and
served its purposes really well for a limited number of trading partners (message
recipients). Most importantly, performance was more than acceptable and it was
really reliable, so the tactical goals were achieved. We can even see this servlet-
based approach as a good investment in the REST service infrastructure. Commonly,
REST is implemented by Jersey-servlets, and we encourage you to look at this
technology as it's not in the scope of this book. You will find a lot of similarities
with the quick example we discussed previously. Oracle has many good examples
that cover the servlet pattern and its utilization in JAX-RS/Jersey (http://docs.
oracle.com/cd/E19776-01/820-4867/ghqxq/index.html). This means that you
really do not have to do everything from ground zero for message brokering and
service implementation. The actual purpose of this example was to demonstrate the
physical implementation of some patterns such as Mediation and Adapter Factory,
as discussed before, and mainly the EAI-SOA path of evolution: point2point |
hub-and-spoke | message broker | service broker | full-fledge ESB.

http://docs.oracle.com/cd/E19776-01/820-4867/ghqxq/index.html
http://docs.oracle.com/cd/E19776-01/820-4867/ghqxq/index.html

Chapter 4

[231]

The example also demonstrated the complexity of the task. We didn't cover a lot of
features that are compulsory for a full-scale solution, for instance:

•	 Basic security
•	 MTOM / messages with attachments
•	 Throttling / Load balancing

Also, many more solutions will be covered later. However, most importantly,
we didn't implement true service decoupling, as no Proxy concepts were provided.
It is a good time to return to the CTU service broker now and see how we can
improve this solution using the discussed and tested patterns.

Oracle Enterprise Business Service's
SOA patterns
After completing the previous task, we have a Message Broker that is capable of
implementing the RTD interchange pattern in the form of a hub-and-poke controller.
Although it is perfectly operational, you have to add a little to the demonstrated
code snippets to create a production version. Its practical application is limited
by assumptions we made at the beginning of this exercise. Let's repeat the
assumptions again:

•	 Limited number of protocols.
•	 Limited number of message validation techniques.
•	 Limited ways of message transformation (XSLT is preferable).
•	 Relatively elaborate ways of implementing new delivery options and any

pluggable modules in general.
•	 When it comes to policy-based management, you will have to manage

everything on your own. You will have to implement policy enforcement
points (PEP) on your own too.

•	 To make the situation more dramatic, as you remember, we even
implemented a custom rule engine (although this argument is weak
as nothing prevents us from using any RE with Java or WS API; almost
nothing, as performance should be considered seriously).

From Traditional Integration to Composition – Enterprise Business Services

[232]

Simply put, this is a servlet with some customization and with all downsides
related to a custom solution. Apparently, CTU cannot accept it as a generic
Pan-Latin-American Service Broker and Adapter Factory. Equipped with knowledge
gained during this exercise and understanding what we need from the SOA patterns
catalogue to mitigate the discovered problems, we are now ready to refactor our
SCA solution from the previous chapter and move the synchronous parts to the
OSB. There will be more protocols to adapt, more formats to translate, more models
to transform, more tasks to invoke, and more operations to execute. Refer to the
following figure:

Chapter 4

[233]

The preceding figure demonstrates a sequence diagram for the refactored part of
the asynchronous Service Broker. As we have mentioned before, following the AIA
methodology, the EBS layer will be presented by northbound and southbound
parts (as sequence diagrams go from left to right, this geographic notation is
naturally shifted anticlockwise). Service Bus, as a natural part of EBS, should be
universal enough to execute VETRO patterns regardless of the location. For a better
understanding of the challenges, we have summarized SB's functional capabilities
for each area in a table that follows in the next section. We need it for a better
understanding of the feasibility of implementation of an all-in-one Composition
Controller by using the OSB.

Detailed analysis – functional decomposition
The Synchronous Composition Controller can receive service consumer calls from
two directions—from Composition Initiator (Application Sender), optionally through
the Adapter framework, or from the EBF/SCA master Composition Controller. In
the case of a synchronous interchange pattern, we could perform all operations in
OSB without involving the SCA business flows.

We really should do that, because even synchronous logic can be quite complex.
Do not let your enterprise service collaboration layer (or EBS framework) turn
into a full-scale orchestration! We have started with a demonstration of the Proxy
capability of ESB, and we would like to repeat that decoupling again. It is probably
the most important role of ESB and we would perform transformation, validation,
and protocol bridging (which we can relatively easily implement on the Adapter
level, which is not always ESB) only after that. Synchronous Composition Controller
should operate only with simple and linear routing slips (execution plans), with a
number of steps not more than 10 (this is quite an empirical figure). Of course, the
limit for the number of invocations should be set according to your operational
environment / computing power.

Let's do the simplest math. You certainly have three fully equipped
network zones, namely DB, APP, and integration, in your technical
infrastructure. Ping integration from the DB. Most probably, you will
get no less than 2 ms. Even the simplest pass-through Proxy will have
the same ping interpretation period of 2 ms. We can expect double
or more from utility services implementing VETRO patterns in OSB.
With full logging, 10 consecutive invocations can have up to 300 ms of
operational time in OSB alone. Be careful about promising something
faster than that.

From Traditional Integration to Composition – Enterprise Business Services

[234]

In the case of a linear sequential synchronous process, inbound and outbound
functional parts of OSB will be reduced to the same technical layer that acts as a
Service Broker with intermediate routing and asynchronous queuing, if necessary.
Here, the main difference with the Message Broker will be the complete reliance on
the Proxy Service pattern implementation for true decoupling.

Now, we will summarize the challenges of ESB's functional decomposition.

Task Northbound Southbound
Receive We must bear in mind that a

message could come in the form
of a container with a Message
Header object already in place.
Although it simplifies the message
recognition, we should be careful
when putting this message into a
universal container for Agnostic
Composition Controller. Service
Facade should be implemented to
remove nested headers.

In general, a southbound
controller will never act as an
ABO message receiver.
From the SCA business flow,
we will receive EBM with
all elements in place, but
an execution plan will most
probably contain only one task,
as SCA will implement its own
master Composition Controller.

Message
identification

If Message Header is in place, the
universal MsgID will be used for
identification. Otherwise, we can
use the name of the message root
element. In this case, the trading
partner agreement will guarantee
that every ABO will have its own
unique root element.
If none of that is possible, the
Adapter framework must be
employed for message header
construction. Application Business
Connector Service (ABCS) will be
entirely responsible for conversion
of ABO into EBM.

Only the MessageHeader
element MsgID is needed.

Chapter 4

[235]

Task Northbound Southbound
Business
Process
Recognition

This is the next logical step after
message identification. It can
be done by MsgID, senderID,
and events name; all of them are
the parts of Standard Business
Document Header (SBDH). The
result of this operation could be the
extraction of an execution plan, but
that will be necessary if EP is not
provided in the message container
by the ABCS framework.
Alternatively, we can delegate the
extraction of an execution plan to
the asynchronous Service Broker
in SCA. However, if we are really
looking for good performance
(and reliability too) of synchronous
services, we should avoid calling
the SCA level excessively.
MessageHeader elements
will clearly indicate the process
Message Exchange Pattern (MEP).

In this part of the framework,
we only consume an execution
plan provided in the previous
steps.

Validate Without ABCS, this function shall
be performed on the northbound
ESB part. This functionality is
standard in the Message Processing
palette.

We should perform message
validation on a response
action pipe.

Filter Filtering is based on identification
of a certain XPath in the message
body and has a purpose to
suppress unwanted requests.
This must be configurable in the
Request Action pipe.

Similar to northbound, the
edge should be configurable
for the response action pipe.

Enrich This is not applicable for
northbound. Enrichment is usually
done on the adapter level. Inbound
messages could be transformed,
though.

Enrichment means service
callout, which requests
additional data. Thus,
its regular invocation of
dynamic endpoint, when the
endpoint URL is extracted
from the EP in Agnostic
Composition Controller, shall
be configurable with a bypass
option.

From Traditional Integration to Composition – Enterprise Business Services

[236]

Task Northbound Southbound
Transformation This operation is not really

common on the northbound side,
but could be possible if the URL to
XSLT or XQuery resources will be
provided in the inbound EP.

The most common task on
the southbound side of SB.
The URL to XSLT or XQuery
resources shall be provided
in an inbound EP. For better
isolation, it could be realized
by the implementation of the
transformation Proxy where
we will perform dynamic
transformation.

Deliver message This passes well-formed messages
to the SCA or southbound SB part.

The realization of Adapter
Factory was discussed earlier.
It will dynamically dispatch a
message to a concrete protocol
Adapter Proxy, similar to what
we had in Message Broker.

Adapters At this moment, we assume that all our OSB operations will be based
on SOAP. The technology of creating a JCA adapter in Oracle 11g is
practically the same as in the previous 10g release. Traditionally, we
have to create an empty SCA in JDeveloper, drag the required adapter
(DB, File, FTP, and so on), and set all the necessary properties related
to the adapter's type (pay special attention to JNDI name). We will
use the previously created .jca, .wsdl, and .xsd files in Eclipse to
generate the OSB services, representing JCA transport. Thus, we will
call these adapters transport adapters. They will be actively used by
both Northbound and Southbound parts of our agnostic controller.
However, we assume that the Southbound layer will employ them
directly, when Northbound will require a generic reader to dispatch
to the different kind of controllers.
It is also important to bear in mind that the JCA-compliant resources
are hosted not on OSB, but one level down—on WLS as a public
resource. On OSB, we create only Proxy/Business services that
interact with a supported adapter. That's the beauty of decoupling!
We will discuss the OSB Adapter framework in more detail in the
following chapters.

Chapter 4

[237]

Short summary
Let's summarize what we learned. The preceding table does not reveal any
contradicting functionality in the southbound and northbound OSB realization of
the synchronous composition controller; therefore, we can build unified versions
that are suitable to handle all In and Out service collaboration scenarios. We will
just have to add conditional branches in our inbound and outbound pipelines to
enable/disable certain operations, depending on the process context that is provided
by a recognized execution plan. Let's not forget that not every service collaboration
scenario should be handled by an Agnostic Composition Controller, only those that
really require implementation of the SOA ESB patterns in a business agnostic way
(and dynamic invocation is a prerequisite). Please refer to the business requirements
formalized in the previous chapter.

Apart from the Proxy-based service governance patterns discussed previously,
we are constantly referring to the service messaging and transformation patterns
in the SOA patterns catalog that is assembled under the ESB compound pattern
as three compulsory patterns: Asynchronous Queuing, Intermediate Routing,
and Service Broker suitable for Agnostic Composition Controller scenarios will fall
into these patterns, but we need more detailed descriptions for each of them, linking
the generic SOA patterns with the VETRO tasks identified in the preceding table.
Really, Intermediate Routing sounds too generic.

To understand the nuances, we are going to link SOA patterns with the underlying
EA integration patterns, and then we are going to see the operations we will have to
implement on OSB to make them generic.

Problem Components
required

EAI
patterns

SOA patterns

Intermediate routing
We need to redirect messages
to the different service
providers depending on the
message content.

Static routing table,
Business Delegate

Content-
based
routing

Intermediate
Routing

This is similar to the previous
task, but we need to establish
a high level of maintainability
and business agility.
Therefore, we need to avoid
dependency on the router
on all possible (current and
future) destinations.

Rule storage, rule
engine, Business
Delegate

Dynamic
Router

Intermediate
Routing plus rule
centralization;
Inventory
Endpoint;

From Traditional Integration to Composition – Enterprise Business Services

[238]

Problem Components
required

EAI
patterns

SOA patterns

We want to process messages
with different parts, each
of which have different
processing requirements; that
is, different service providers.

Transformation
engine (Java Bean,
POJO), message
intermediate storage

Splitter Intermediate
Routing plus
Composition
Controller

After processing the different
parts of the message on
different endpoints, we want
to assemble the results into
one message.

Transformation
engine (Java Bean,
POJO), message
intermediate storage

Aggregator Intermediate
Routing plus
Composition
Controller, and
Service Instance
Routing

We want to process a message
sequentially, passing it
through a series of processing
steps.

Execution plan
(XML), Business
Delegate

Routing
slip

Intermediate
Routing plus
state messaging,
messaging
metadata, service
agent

This is similar to routers, but
we want to dispatch messages
to several recipients n out of
total list m.

Static routing table
with parallel rules
Business Delegate

Recipient
list

Intermediate
Routing

We want to suppress the
unwanted message.

XPath processor
(XMLBean)

Message
filter

Messaging
metadata

That's the ultimate processing
block, presenting the RTD
processing pattern in a
compound way. We split
messages upon receiving,
route it to the destinations,
and aggregate the responses.
The pattern can include
routing slip or recipient list as
well instead of a basic router.

All components
from the preceding
column

Composed
Message
Processor

Composition
controller and
subcontroller;
Service Broker
plus Intermediate
Routing

Chapter 4

[239]

Problem Components
required

EAI
patterns

SOA patterns

Transformation
We need to enhance the
messages data by the
elements not available on the
receiver.

Decorator: Callout
to external service
and transformation
engine

Content
Enricher

Data Model
Transformation
plus Composition
subcontroller

We are not suppressing a
message. We are filtering out
unwanted elements.

Transformation
engine (Java Bean,
POJO)

Content
Filter

Data Model
Transformation

The same information we
want to receive in different
formats from the same
service. For instance, the same
service should provide the
same content in JSON and
XML format for SOAP and
REST implementations.

Different
O\X Mappers
implemented in the
same service

Content
negotiation

This is similar to the previous
one; service provides can
be requested using the
URL query string (empty
body) or by an HTTP
payload for SOAP and REST
implementations.

Intermediary router
in front of several
transformation
service agents

Normalizer Dual Protocol
(Messaging,
not Transport);
multichannel
endpoint

Message Transformation also covers classic Sort and Validate, and it is realized
on XML Transformation engine(s). A Partial Validation pattern is supported for
performance improvement as one of the validation forms. Throttler, Load Balancer,
and Multicast are the forms of the traditional intermediate routing. A Generic (and
therefore pretty undisruptive) Service Agent SOA Pattern is the most common way
of addressing the mentioned tasks, but we are not sure that such a vague definition
could help anyone. The components required for each realization are listed in the
previous table, but what we really want is an agnostic way of fulfilling the tasks.

From Traditional Integration to Composition – Enterprise Business Services

[240]

Establishing a Service Inventory
For a synchronous Agnostic Composition Controller, we will reuse most of the
supporting service building blocks created for the asynchronous Service Broker.
The most obvious ones are listed as follows:

•	 Inventory endpoint is a service that will provide us execution plans together
with Oracle Rule Engine. The input parameter will be our Message Header.

•	 Logging and auditing services.
•	 The CTU message container. Naturally, all XML entities will be the same.

In addition to this, we will have to build two types of endpoints:

•	 Generic synchronous and asynchronous endpoints (generic), which are
required for dynamic routing to the actual services. Endpoint addresses
will be obtained from the execution plan during runtime.

•	 The Transport Adapters that we discussed earlier.

Asynchronous Agnostic Composition
Controller
All prerequisites are identified, required patterns are discussed, and building blocks
and components are defined. Now, we can take a step by step walk through the
implementation of a dynamic service broker with agnostic capabilities. Again, we
assume that you are familiar with OSB; therefore, we will skip obvious operations.
The Oracle pack for Eclipse will be our main tool. First, we will create an ESB project
and folder for Service Broker (you can use any name you want, but we decided to
call it this way as it reflects the project's functional purpose). Then, we will create
several proxies for Service Broker and Generic Adapter, which will be used to route
to the custom service. In addition to this, we will need separate folders for protocol
adapters, Facades, XQueries, XSDs, and XSLTs. To execute the following steps,
we advise you to keep the SB sequence diagram close together with the overall
solutions block diagram, presented on the functional decomposition figure
(refer to the previous chapter).

Chapter 4

[241]

Business Delegate (main dispatcher)
The Business Delegate is responsible for the following tasks:

•	 Initial verification of inbound message
•	 Extraction of rooting slip using detected message header
•	 Looping variables initiation
•	 Traversing through tasks in an EP's task list

Execution plan extraction
The first operation in a main dispatcher as Agnostic Composition Controller will be
the extraction of a routing slip with a task list.

This is the Service Callout of the execution plan business service. Before extracting
EP, we must check for the presence of an execution plan in the inbound message. If
it's there, we assume that EP was provided by an adapter or a master Composition
Controller and accept it. In the case of an error, ErrorHandler will record a detailed
description into the log in most of the common cases: the Lookup service is not
available, EP is not found, or the CTU message container already exists in the
message body. Take a look at the following screenshot:

Just a small reminder, the first step in the message flow is actually saving the
message body ($body) in the v_originalBody variable (for obvious purposes).

From Traditional Integration to Composition – Enterprise Business Services

[242]

Parameter initiation
We have to initiate looping variables and current values for all the Message
Container parts, so please refer to the following script.

One important thing must be realized clearly: for Agnostic Composition
Controller, we cannot apply Configuration Details (in the simple Proxy example
in the preceding screenshot) for main for parameters in the following screenshot:

The reason is clear—if a controller is agnostic, then these values will depend on the
nature of the business process and the nature of the services we will dynamically
invoke. We shall pass these parameters in EP, as shown in the following code, and
create an additional loop for retries within the task loop, with the counter set in the
Assign operation. This is demonstrated in the preceding screenshot.

<con:stage name="Iterate">
 <con:context>
 <con1:varNsDecl
 namespace="urn:com:telco:ctu:la:ctumessage:v01"
 prefix="urn"/>
 <con1:varNsDecl
 namespace="urn:com:telco:ctu:la:processheader:v01"
 prefix="urn1"/>

Chapter 4

[243]

 <con1:varNsDecl
 namespace="urn:com:telco:ctu:la:messagetrackingdata:v01"
 prefix="urn2"/>
 <con1:varNsDecl namespace="urn:com:telco:ctu:la:payload:v01"
 prefix="urn3"/>
 <con1:varNsDecl
 namespace="urn:com:telco:ctu:la:messageheader:v01"
 prefix="urn4"/>
 </con:context>
 <con:actions>
 <con2:assign varName="taskInput">
 <con1:id>_ActionId-3019043452746376819-
 7d5319e3.13a7dc61937.-76d7</con1:id>
 <con2:expr>
 <con1:xqueryTransform>
 <con1:resource
 ref="CTUFusion_BUS/Resources/Xquery/ServiceBroker/
 XQ_CTUMessage"/>
 <con1:param name="messageTrackingData">
 <con1:path>$body/urn:CTUMessage[1]/
urn2:MessageTrackingData[1]</con1:path>
 </con1:param>
 <con1:param name="messageHeader">
 <con1:path>$body/urn:CTUMessage[1]/
 urn4:MessageHeader[1]</con1:path>
 </con1:param>
 <con1:param name="Version">
 <con1:path>$body/urn:CTUMessage[1]/urn:Version[1]/
 text()</con1:path>
 </con1:param>
 <con1:param name="processHeader">
 <con1:path>$body/urn:CTUMessage[1]/
 *:ProcessHeader[1]</con1:path>
 </con1:param>
 <con1:param name="MessageType">
 <con1:path>$body/urn:CTUMessage[1]/urn:MessageType[1]/
 text()</con1:path>
 </con1:param>
 <con1:param name="payload1">
 <con1:path>$body/urn:CTUMessage[1]/
 urn3:Payload[1]</con1:path>
 </con1:param>
 </con1:xqueryTransform>
 </con2:expr>
 </con2:assign>

From Traditional Integration to Composition – Enterprise Business Services

[244]

Main tasks loop
Now, we can start looping over every task in a task list by using the For Each OSB
flow control. You can see a set of variables in the following screenshot:

You must be thinking, "What type of tasks did we decide to support in our execution
plan (VETRO)?" Naturally, for transformation, we will need to extract and assign
working variables into data for the following operations:

•	 Transformation input
•	 Transformation output
•	 Current payload

We will use them in the transformation Proxy of this type of task.

For the retry looping option, we will set "continue" as a flag to continue with
the next operations.

Chapter 4

[245]

Service invocation
This is the essence of this Business Delegate and the core of the task loop.
If the continue flag is on, that is, there are no errors in the previous operation
and we can continue with the current task, $continue='true', generally we have
the following two scenarios:

•	 We could perform any combination of VETRO operations, which are in
the left path of the If branch. We will call Adapter Factory (or Generic
Adapter, as it's displayed), where we will delegate all generic operations
for transformation, enrichment, validation, and filtering, before moving
on to Transport Adapter.

•	 We could invoke any service directly, as a synchronous request-response or
as fire-and-forget; this is the path to the right (Else If). In this case, we also
perform the service callout to the Custom Service Proxy, which is acting as
a placeholder for actual service address substitution.

From Traditional Integration to Composition – Enterprise Business Services

[246]

Generally, that's all about the core path in Main Dispatcher. We will skip error
handling for now as it's not that important to understanding the logic, and will only
make us deviate from Service Broker realization. We will definitely discuss it later
on. Now, we will discuss the paths where we routed our container to, starting from
the right branch for custom service invocation as it's relatively easier.

Invoking custom services
This Proxy Service (refer to the next screenshot) pattern is acting as a Facade for the
actual business service.

Chapter 4

[247]

Again, due to the nature of our composition controller, invocation could be either
synchronous or one-way synchronous. In the request pipe, we configure three
assignment settings that are required for the last operation; that is, routing:

•	 Message Exchange Pattern (MEP)
•	 Message payload
•	 Uniform Resource Identifier (URI)

In a routing option, we will use $uri from the previous assignment to dispatch
a message to the actual service. As you can clearly see here, we have left the retry
interval and retry count empty, as they are not applicable and we handle them using
EP parameters. You will have also noticed that the mode is Request-Response.
Therefore, for one-way MEP, we should suppress the response payload by providing
a proper error code in message tracking data:

<CTUMessage xmlns="urn:com:telco:ctu:la:ctumessage:v01">
 <Payload xmlns="urn:com:telco:ctu:la:payload:v01"/>
 <MessageTrackingData xmlns="urn:com:telco:ctu:la:messagetrackingd
ata:v01">
 <MessageTrackingRecord>
 <ErrorCode>0</ErrorCode>
 </MessageTrackingRecord>
 </MessageTrackingData>
</CTUMessage>

Implementation of the business-agnostic VETRO pattern on OSB

Now, we will look at the left branch, starting with Generic Adapter. It's more
complex than just dynamic service invocation with our standard message container
(remember, we extracted the payload from the container before invoking the service).

From Traditional Integration to Composition – Enterprise Business Services

[248]

Invoking Generic Adapter
The Generic Adapter is the Adapter Factory pattern's realization, performing
common-for-all adapters VETRO operations on both pipelines.

As always, initially we assign working variables for each part of the message
container and do validation for the container's consistency. After that, we go
through the VETRO steps.

Technically, it's a sequence of flow stages, and in each step we check for the task
step name, for instance, filter:

fn:exists($body/*:CTUMessage/*:ProcessHeader/*:ExecutionPlan/*:taskLis
t/*:task/*:invoke/*:serviceTask/*:taskSteps[@flow='request']/*:filter)

In each stage (where it's necessary), we can use the Publish operation (from Stage
Actions) to invoke the Audit Proxy service. It's also done by using Routing Options.
The auditing level for every process is maintained by the EP element:

Chapter 4

[249]

Transformation
Naturally, the most common operation before the invocation of Transport Adapter is
Transformation, as described in the following screenshot:

We decided to take this operation from Generic Adapter for better modularity and
separation of concerns. Just like we did for Message Broker, we want to have a
possibility to use different transformation engines/techniques that are interfaced
by transformation proxies, as presented in the following code. Currently, it's a very
simple Proxy Service pattern with two assign operations, where at first we assign the
transformation query:

data($body/*:CTUMessage/*:ProcessHeader/*:ProcessContext/*:
ParameterValue[@name = 'TaskTransformation']) to TransFileName

From Traditional Integration to Composition – Enterprise Business Services

[250]

Then, apply the operation to the message body (through dynamic XQuery) with the
following reassignment to the transformation output:

Implementation of message validation on OSB

In a response pipe, we'll replace a message body with the transformation output.

Validation
Validation is similar to transformation as it uses dynamic queries for the XSD
validation of the message body. The major difference is that we will not create a
separate Proxy for this operation, as Oracle Service Bus can perfectly implement
effective complete or partial validation by using the standard XQuery mechanism,
as shown in the following screenshot:

Chapter 4

[251]

Of course, we do not use the standard operation (Validate from OSB Flow
Control). We'll just extract XQuery from the task's parameter by using the
following expression:

data($body/*:CTUMessage/*:ProcessHeader/*:ExecutionPlan/*:taskList/*:
task/*:invoke/*:serviceTask/*:taskSteps[@flow='request']/*:validate/@
location)

From Traditional Integration to Composition – Enterprise Business Services

[252]

Enrich
This operation denotes a callout to the external Entity service to extract
additional data. This is also a dynamic invocation of the URI provided in
the EP's task parameter.

Implementation of Enrich functionality on OSB

Of course, the proxy for the reference data adapter must be created. We will look
at it in Chapter 6, Finding the Compromise – the Adapter Framework. Right now, we will
just repeat what we have said in the functional decomposition table. Practically,
there are no dedicated adapters here, compared to what we see in SOA Suite.
So, we will use the JCA adapter approach, especially for DB, following the
sequence described earlier.

We will skip the filtering operation for brevity, but you can easily figure it out by
yourself. Naturally, that will be another dynamic query in the Assign operation,
checking the message body for the presence of XPath, which is provided as a
parameter in the EP Filter task. If the XPath pattern is recognized, the Discard flag is
returned and further processing is terminated by the Raise Error operation with the
following message: The message has been filtered.

Now, we have come to the last part of the VETRO sequence: operate.
We will pass the message to the Adapter Facade Proxy Service, which will
do the actual dispatching.

Chapter 4

[253]

Operate
The operate task is actually the routing implementation. In the request action pipe,
we set ABO and Transport Header (which is responsible for transporting the JCA
parameters that are related to the Transport Adapter properties):

Implementation of the Operate functionality on OSB

Replace the message body with the results of the transformation (or the original
body if the transformation step was omitted). The Adapter Facade Proxy is
(traditionally) based on CustomService.wsdl, our dummy service which we
use for dynamic binding. Please refer to the simple WSDL in the following
screenshot. The CTUMessage payload is our generic message container.

That's the beauty of the "contract first" approach, isn't it?

From Traditional Integration to Composition – Enterprise Business Services

[254]

Routing to the protocol adapters (delivery)
Proxy is relatively simple with one major action: dynamic routing with XQuery
as a service. XQuery's function checks for the type of protocol adapter we
want to invoke and route to the appropriate URI.

OSB dynamic routing

The XQuery function checks for the type of protocol adapter we want to invoke and
route to the appropriate URI, as shown in the following code:

xquery version "1.0" encoding "Cp1252";
(:: pragma parameter="$request" type="xs:anyType" ::)

Chapter 4

[255]

declare namespace xf =
 "http://tempuri.org/CTUFusion_BUS/Resources/
 XQuery/routing/XQ_Request_ProtocolAdapter_Route/";
declare namespace ctx = "http://www.bea.com/wli/sb/context";
declare function xf:XQ_Request_GAdapter_Route($request as
 element(*))
 as element(*) {

 if (data($request//*:AdapterMessage/*:protocol)= 'DB')
 then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_Database_
 Protocol_Adapter</ctx:service>
 </ctx:route>)
 else if (data($request//*:AdapterMessage/*:protocol) =
 'HTTP') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_Soap_
 Protocol_Adapter</ctx:service>
 </ctx:route>)
 else if (data($request//*:AdapterMessage/*:protocol) =
 'REST') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_REST_
 Protocol_Adapter</ctx:service>
 </ctx:route>)
 else if (data($request//*:AdapterMessage/*:protocol) =
 'JMS' or data($request//*:AdapterMessage/*:protocol) =
 'SOAPJMS') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_JMS_
 Protocol_Adapter</ctx:service>
 </ctx:route>)

From Traditional Integration to Composition – Enterprise Business Services

[256]

 else if (data($request//*:AdapterMessage/*:protocol) =
 'FTP') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_FTP_
 Protocol_Adapter</ctx:service>
 </ctx:route>)
 else if (data($request//*:AdapterMessage/*:protocol) =
 'SFTP') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_FTP_
 Protocol_Adapter</ctx:service>
 </ctx:route>)
 else if (data($request//*:AdapterMessage/*:protocol) =
 'HumanTask') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_HumanTask_
 Protocol_Adapter</ctx:service>
 </ctx:route>)
 else if (data($request//*:AdapterMessage/*:protocol) =
 'SMTP') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_SMTP_
 Protocol_Adapter</ctx:service>
 </ctx:route>)
 else if (data($request//*:AdapterMessage/*:protocol) =
 'OSB') then
 (<ctx:route>
 <ctx:service
 isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical
 Adapter/ProtocolAdapter/PS_OSB_
 Protocol_Adapter</ctx:service>
 </ctx:route>)

Chapter 4

[257]

 else (
 <ctx:route>
 <ctx:service isProxy='true'>DEFAULT</ctx:service>
 </ctx:route>)
 };
declare variable $request as element(*) external;
xf:XQ_Request_GAdapter_Route($request)

That's it. You can extend this list as much as you want and build your own adapters
by importing the JCA and WSDL files from the SCA adapter composite. Respect
the contract-first principle. Bear in mind that lots of parameters can be passed to
the adapter itself; even the JNDI name that you give in SCA can be declared as a
variable (view it as a property in composite.xml for related BPEL) and managed
dynamically or via System MBean Browser in soa_domain (WLS console).
The sequence of actions for the DB adapter, for instance, could be as follows:

•	 Transport Data Adapter receives CTUMessage as an input with
JCA properties

•	 Adapter extracts data source name and SQL statement
•	 Adapter calls the XQuery executing fn-bea:execute-sql()

For your Service Broker, we recommend that you build this list gradually, starting
from the most common and generic adapters: HTTP/SOAP first. Some adapters
are not simple like for JSON payload, where some Java coding will be necessary
to remap XML to the JSON format.

Conclusion – the pros and cons of OSB Agnostic Composition
Controller
We separated the synchronous part of our Agnostic Composition Controller and
moved it away from SCA. Now, our asynchronous Service Broker in SOA Suite
looks much more concise and modular, and all synchronous service interactions
are delegated to the EBS Framework where they belong. You can clearly see the
resemblance in implementation steps for Message Broker and Service Broker,
but the difference is quite distinguishable:

•	 Just look at the list of transport protocols we can support (yes, they are all
JCA adapters, but they are pretty standard).

•	 Although some coding efforts are still required (XQuery for instance),
it is comparably less than the custom servlet-based approach.

•	 Dynamic Routing, Invocation, and Transformation is really handy.

From Traditional Integration to Composition – Enterprise Business Services

[258]

•	 Most importantly, by following the contract-first approach, we delivered
a modular solution! The concept of Proxy Service allows us to gracefully
assemble truly loosely coupled components. We have highly manageable
and completely decoupled layers that are based on patterns (SOA and EAI),
namely Business Delegate, Service Broker, Adapter Factory, and Adapters.

•	 EAI and JEE patterns are not dead (as you probably heard on some SOA
symposiums). Appropriately applied on the service composition level, they
can improve modularity even more. Thanks to them, we can Aggregate, Split,
Route, Transform, Enrich, Filter, and Validate. Combined with the power of
the agnostic controller, we can do it dynamically and process-agnostically.

Summary
Oracle realization of the Service Bus is based on the Business Service / Proxy Service
concept, where every service is treated individually. That's what you will learn in
every book dedicated to OSB (such as Oracle Service Bus 11g Development Cookbook,
Guido Schmutz and Mischa Kölliker, Packt Publishing). This kind of personal-touch
approach for every service has a strong reason as we would like to maintain the
highest performance possible and desirable level of modularity. Only one more or
less complex pattern (refer to the second figure in the Implementing a basic proxy on
OSB section) is really provided out of the box in OSB: Split-Join. Using this pattern,
we can split a really big message that has clearly distinctive separate parts (such
as order line in a big order), do the parallel calls to order the line processor, gather
responses in a join phase, and deliver the processed payload.

You have to implement all other SOA patterns yourself, just like we have covered
in this chapter:

•	 Message Enrichment (Callout action); it's not a decorator though as we are
not adding new features to our contract.

•	 Static Routing (Static Routing table).
•	 Dynamic Routing (Dynamic routing action, XQuery as a possible

destination).
•	 Transformation (partial or complete) using XQuery or XSLT. Remember,

XQuery is more complex than XSLT in general and not an XML. You do
not have nice graphical features for elements mapping, but you have
much more flexibility there.

Chapter 4

[259]

All of these implementations are not a problem as OSB has a lot of features to
support your development. The challenge will become apparent when you have
hundreds (and most probably thousands) of synchronous services you will have to
decouple, interconnect, delegate, and route.

For the services with similar operations or similar compositions, Agnostic Controller
will help you minimize the number of atomic proxies that will turn your state-of-art
ESB into spaghetti-mess if developed in an uncontrollable manner. We believe that
the way of establishing agnostic Service Broker with Dynamic Intermediate Routing
presented here will save you from lots of headache. Not all features and components
of the actual solution were presented. We omitted inbound and outbound Service
Facades, holding features that are specific for Northbound and Southbound parts
of OSB, but it was our intention (refer to the table in the Detailed analysis – functional
decomposition section) to concentrate on generic tasks. Partly missing components will
be covered in the Adapter framework discussion.

We stepped beyond the traditional OSB features and implemented some of the
mediation patterns mentioned in the functional decomposition table. We did it with
the intention to demystify the most commonly used SOA terms—Service Agent
and Service Facade (patterns). If you are using this book as an additional resource
to prepare for your SOASchool SOA Architect (http://www.soaschool.com/
certifications/architect) exams, we can give you a simple rule regarding
this terminology:

•	 Service Agent is an event-driven program (module) without a publicly
exposed contract. It's most commonly located in the SOA technical
infrastructure between the atomic services, intercepting the interactions and
reacting to certain events. Sometimes, it is called an interceptor or a listener.
We just delegate routing, transformation, and other features to this module
and use OSB as a container for agents. At the same time, SCA Mediator can
have a contract. Is it an agent?

•	 Service Facade is a module that resides within an individual service,
decoupling logic and underlying resources and contracts, allowing them
to evolve independently. We used them in our preceding design. It's
probably the closest thing to the decorator pattern. Again, SCA Mediator,
as an intra-composite element, exists inside the task service. Is it a Facade?

http://www.soaschool.com/certifications/architect
http://www.soaschool.com/certifications/architect

From Traditional Integration to Composition – Enterprise Business Services

[260]

Speaking further on realization SOA and EAI patterns from the functional
decomposition table, we can draw some more conclusions. As you probably noticed,
the EAI patterns look suspiciously similar to those decaled in Camel/ServiceMix
ESB (Fuse is a RedHat commercial version http://www.redhat.com/fusesource/
downloads/), they were systematized by Gregor Hope and Bobby Woolfe in
Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solution.
That's absolutely true. Even the concept of a Routing Slip (we call it an execution
plan) is similar, although this is not an exclusive property of Camel:

•	 As Camel is one of the best open source Oracle rivals, we just reconfirmed
OSB's capability to keep up with the strongest performers.

•	 OSB can do it by means of a simple Messaging Metadata pattern (EP XML in
Message Header), without inventing Java-like DSL.

•	 When it comes to truly lightweight but comprehensive solutions without
any compromises in features, think twice before building your own Message
Broker as we did at the beginning of this chapter for learning purposes.
You really will have it all in Camel/Fuse (mind you, we are not working
for Oracle, at least for the moment). We are just happy to confirm that the
Oracle, Apache Camel and JBoss Fuse teams share the same SOA vision.

Finally, what we haven't done (neither should you) with your OSB agnostic controller:

•	 The OSB Service Broker is much closer to the Message Broker we discussed
than to Orchestration (that's why we discussed the Message Broker, actually).
It's still a good old RTD interchange pattern. Do not implement any business
logic here! Do not orchestrate in ESB, only decouple, transform, and route.

•	 The logical continuation of the preceding point is that if you think that you
can do the callout to a Java function from the OSB performing a business
logic—don't! Count how many SOA principles you will break.

•	 Do not use your OSB Proxy Service for the patterns different from what we
discussed. If it looks like implanting business logic into Proxy—stop here.
Implement atomic service and then present it via OSB.

http://www.redhat.com/fusesource/downloads/
http://www.redhat.com/fusesource/downloads/

Chapter 4

[261]

•	 It's a very thin line between the Split-Join pattern and batch processing in
ESB. Although it's quite possible to do some batch processing between the
two DBs (your DBA is prohibited from using DBLinks and, for some reason,
believes that SQL*Loader is for dinosaurs), try to avoid that design. Use the
Oracle ODI product, if you can.

•	 As deduced from all the preceding points—OSB can act as an adapter layer,
but still Oracle recommends BPEL for this purpose. Think about it.

There are plenty of common components that are utilized by both Service Brokers,
synchronous and asynchronous. In EBF and EBS frameworks, we share common
Audit, Logging, and ErrorHandling services. However, most importantly, we use the
same execution plan (scontroller's routing slip). This configuration entity and part of
the generic message container is based on the service metadata that is maintained on
Enterprise Service Repository. This core framework is the subject of our next chapter.

Maintaining the Core –
Service Repository

In our endeavor to create the Agnostic Composition Controller using probably the
most popular SOA pattern, we demonstrated the role of two out of three core SOA
operational frameworks, covering Service Creation, Composition, and Governance
patterns. Focusing on its most complex realization, based on dynamic service
discovery and invocation, we delved into the problem of Metadata Centralization
and its relation to message structure and service layering: logical and physical; we
cannot disregard these any longer. Building a Service Inventory without a plan in
mind will produce results far worse than point-to-point spaghetti. Unfortunately,
there is no tool to guide us right after the installation. Only the SOA principles
(yes, to a meaningful extent) help us build a practical SOA inventory with a
working Governance Reference model.

This chapter is the focal point of this book. First, we will give you a vendor-neutral
taxonomy for a Service Inventory you can use with any tool without significant
investments. Second, we will see how to roll it up to the Oracle Enterprise Repository
and Service Registry. The Foundational Inventory pattern, together with the
Inventory Implementation and Governance patterns, is the biggest category in the
SOA patterns catalogue and covers all the aspects of a service lifecycle. We will try
to cover all these aspects—from requirement analysis, service design, testing,
and runtime monitoring to decommissioning.

Maintaining the Core – Service Repository

[264]

Flexible taxonomy for Service Repository
Taxonomy is a method used to classify entities, items, and categories, among
other things. The ultimate goal of taxonomy is to establish a hierarchy or structure
of categories (in our case, all SOA artifacts). In this sense, an ontology is a wider
concept because it is primarily responsible for the identification, separation, and
description of categories, and it is further used in our classification to establish
relations. Ontology is closer to the theory of classification, originally defined
by Aristotle as the first philosophy. Recall that that's where we started in the first
chapter—the identification of frameworks, principles, and characteristics essential
for our service-oriented architecture. Finally, we put them together and declared
relations and dependencies.

Now, we extend this initial hierarchy with the essential SOA elements to maintain
optimal composability as an immediate target and promote effective SOA Governance.
The outcome will lay a strong foundation for the entire Enterprise SOA Governance
from all standpoints—software architecture, business, and operations.

General objectives
Actually, we should start the book with this chapter, and only after establishing a
solid foundation should we proceed with the on-top frameworks. The deceiving
simplicity of WSDL-based service creation plays poor tricks on SOA-like projects,
focusing only on the API aspects of service orientation. The blueprint of the Service
Repository is a fundamental element of the Enterprise SOA architecture that
demands commitment on all levels, primarily from architects. Surprisingly, not all
architects are willing to support this architectural layer due to its complex nature
and the fact that the direct benefits don't seem all that obvious. "We will think
about it tomorrow. Today we stay on target—our delivery deadline." For this kind
of attitude (read: project delivery mode from the initial example of Chapter 1, SOA
Ecosystem – Interconnected Principles, Patterns, and Frameworks), architects are not
required. If one does not know to which port one is sailing, no wind is favorable. The
orchestration layer and ESB are not directions, but merely physical containers for our
Service Inventory. These containers have been packed mindlessly by different teams
working in parallel with a different understanding of service orientation, and will
need total refurbishing every four or five years.

Chapter 5

[265]

Think of it this way—your SOA Enterprise architecture is a megalopolis, inhabited
by doctors, milkmen, truck drivers, firefighters, and so on. They are your service
providers and consumers. To operate smoothly, they need to be positioned rationally
(logical layering), that is, a fire brigade will serve no good if it cannot reach a certain
location in the predefined time (runtime interoperability). Any good citizen should
be capable of locating a (legally) required service with minimal effort, for example,
by browsing the yellow pages (runtime Discoverability on the Service Registry). Most
importantly, a citizen must be able to understand the nature of the service—look for
a particular doctor, select the right one, and be sure that this doctor is located exactly
where mentioned (interpretability of the Service Registry). These are our runtime
features of the Service Inventory.

At the same time, you, as the good governor of this megalopolis, must plan the
layering wisely—concentrate on one type of service, such as financial institutions
(Inventory Centralization), and evenly spread another, such as waste removal and
law enforcement (the Cross-Domain Utility Layer). To do so properly, you need
a wide variety of information about these services (service records about your law
enforcement officers), available in the Service Repository. Only a precise subset of
this information will be used during runtime by other services. Some other types of
service records will be constantly used to measure their (services) runtime behavior,
and based on that, we will decide about service promotion or decommission. These
are the design-time features of the Service Inventory.

Is the city too big for you to handle (Enterprise Inventory)? Don't take it personally.
There could be many reasons, and most of them are out of your control—you are
an architect and not a CEO after all. Start with one district (Domain Inventory) and
constantly prepare for expansion. However, remember that neglecting even one of
the patterns (presented in bold earlier in this section) will cause significant trouble
in your domain. Thus, ideally, this chapter should have been at the beginning.

Nevertheless, nothing can prevent experienced architects from reading this chapter
first. If you've played enough with ESB and BPEL and are now looking to get things
organized, you know by now the principles to enforce and the gaps to fill.

Maintaining the Core – Service Repository

[266]

However, the objectives we chase by implementing the Service Repository and
the design rules we will implement to achieve these objectives (utilities) remain
worth highlighting.

Objective Design rules to achieve the objectives
Reliability •	 The component/modular approach

•	 The optimal number of components in the compositions
(this is the balance between composition complexity and
components size, validated during the JIT testing phase)

•	 Avoiding long-running multiphase commit transactions
•	 Implementing an atomic transaction coordinator
•	 Rigorous and continuous automated assembly/testing

during development
•	 Building only when necessary
•	 Maintaining potential single points of failure redundantly

Reusability •	 Business agnostic components
•	 Designing with reusability in mind
•	 Having Discoverability during design time and,

consequently, at runtime
•	 The standardization of the service contract, including

CDM and the implementation of SBDH, MC, Audit and
Acknowledge messages, and protocol standardization

•	 MEPs standardization/optimization
•	 Promoting changes through configuration

Maintainability •	 Unified scalable components with measurable and
predictable behavior

•	 Centralized configuration store/management
•	 Automated assembly and deployment framework
•	 Unified Utility patterns (Logger, ErrorHandler, and

PolicyAudit)
•	 Autonomous implementation of services
•	 Observing service layering (do not mix Utility and Task

Orchestrated services in one layer (horizontal) or combine
entity services with proprietary adapters (vertical))

Chapter 5

[267]

Objective Design rules to achieve the objectives
Performance •	 Single-purpose scalable components

•	 Minimal-to-none state maintenance
•	 A minimal number of transformations/translation
•	 Minimal protocol bridging and staying with lightweight

protocols, with the possibility to minimize marshalling/
serializations

•	 Optimizing message sizes
•	 Optimizing of queue processing, parallel, balanced

multi-consumer, advanced datatype queues with message
filtering and queue content propagation

•	 Preparing components for clustered, cached, or balanced
deployment

•	 Adjustable logging/audit levels
•	 Avoiding singletons

All presented ilities and related design rules are equally important and will have
a proportional impact on the Service Inventory. However, the money is in the
Discoverability principle (presented in bold in the preceding table). If we are unable
to discover the required service or artifact, or understand what we have discovered,
our SOA composability is worth nothing, literally. The situation would be even more
dramatic if you were running a public service on a pay-per-use (PPU) basis, locally
or on a cloud.

Furthermore, the Service Repository design will be based on the requirements of the
already redesigned cross-Latin-American realization of the TM Forum's resource
provisioning component:

•	 A composition of three provisioning BPEL flows with Pan-American content,
which are agnostic to any CTU's geographical unit (GU) while handling an
order header and body.

•	 The individual handler of an order line, although it is not agnostic and caters
to specific parts of the operating countries.

•	 Other conditions must be taken into account. Every order line could
spawn several subsequent processes depending on the mentioned
conditions. These conditions are met by establishing a universal agnostic
composition controller in the form of synchronous (OSB) and asynchronous
(SCA) Service Brokers, as explained in the previous two chapters. They are
the main service consumers of the Inventory Endpoint. They decouple the
Service Inventory from other services and provide the lookup capability
for all sorts of service artifacts.

Maintaining the Core – Service Repository

[268]

Generally, we can expect three kinds of compositions or individual services to
call the Inventory Endpoint:

•	 Compositions that are completely generic and potentially reusable on every
geographic unit of operation. The roles can be Controllers, Subcontrollers,
Initiators, and Composition members.

•	 Services that have a generic structure but different Endpoints or Endpoint
particulars. The roles can be Controllers, Subcontrollers, and Mediators.

•	 Processes/services that are non-agnostic and GU-specific.

Regarding the first two, if we follow the SOA design rules, we will also have to
make them domain-agnostic so that they are not just bound to the order-provisioning
domain, but are much wider than that.

Our Assumptions for the technical realization are obvious, as follows:

1.	 The SCA (BPEL) will be the main orchestration platform for long-running
processes (already assumed and implemented).

2.	 ESB will be the main Service Broker for short-running stateless operations
(done in the previous chapter).

3.	 Our design must be vendor-independent such that we can replace any
component—stateless or common—by using custom build (Java) or other
vendor components from other vendors.

The last assumption is extremely important for the Service Inventory and is the
focal point in the entire service infrastructure—any inaccuracy in the implementation
of the Service Metadata Centralization pattern will cause all other components to
be severely affected, Discoverability to be compromised, and composability to
become questionable.

Service metadata for Agnostic
Composition Controller
In the previous CTU composition controllers' refactoring examples, two teams
were tasked to maintain, lookup, retrieve, and inject service metadata into a
service message in a form suitable for processing by at least two core players
of our service composition:

•	 Composition Controller and Subcontroller (sync and async Service
Brokers (SB))

•	 Adapter Factory (AF; also known as Generic Adapter (GA))

Chapter 5

[269]

Both teams followed the same classification approach as follows:

•	 A single service's invocation is a task
•	 Each invocation has a number of particulars, expressed as parameters,

bound to the task
•	 Composition is a sequence of the tasks that logically represents the business

process or its completed part (scope is defined in BPEL terms)

Tasks can be grouped according to the business logic, but both teams must abide
by the following rules:

•	 Do not make the routing slip (the task's execution plan) too complex
•	 If we have several logical groups (>3) or too many tasks in a group (>9),

then it is better to denormalize some processes again into an atomic
task-orchestrated service and call it dynamically from a smaller
execution plan

We are reiterating this only because we want to remind you that we are not
reinventing the BPEL. We are purely centralizing the service metadata and
applying it to the service message when necessary. So, the general structure is
obvious: metadata elements should cover all composition levels (process, individual
composition, task, and task parameters), but how different can the understanding of
metadata be? The composition's Execution Plan for the custom synchronous Service
Broker from the previous chapter is easier as we do not have to focus on the actions
on the return path. So, let's look at it now. The following is just a single task node:

<TPProcess>
 <TradingPartnerProcessList EdiProcessId="100" EdiProcessCommType="6"
 BusinessEventName="com.ctu.oebs.purchaseorder.insert"
 Rule="1" RuleCondition="ALL" Source="OEBS"
 ObjectClassName="PurchaseOrder"
 ObjectName="PurchaseOrderID" ObjectAction="Insert"
 EdiProcessAckID="2" EdiProcessAckComm="6"
 EdiProcessReportLevel="3">
 <TradingPartners>
 <Senders>
 <Sender>
 <TPId>1</TPId>
 <TPCode>CTU</TPCode>
 <XDIBoxId>1</XDIBoxId>
 …

Maintaining the Core – Service Repository

[270]

 <MailBox/>
 </Sender>
 </Senders>
 <Receivers>
 <Receiver>
 <TPId>2</TPId>
 <TPCode>IBX</TPCode>
 <XDIBoxId>2</XDIBoxId>
 </Receiver>
 </Receivers>
 </TradingPartners>
<TPProcessDescription>
 <TPProcessTask TaskId="1" ProcessTaskDescription="Receive"
 ProcessTaskId="1" ProcessTaskName="Receive"
 ProcessTaskOrder="1"
 TaskActionName="Receive"
 TaskDescription="Receive and Detect" TaskCommType="NA"
 TaskActive="Y" TaskParametersCount="1"
 TaskEngine="XDIMB.Pojo" ProcDefId="100"
 ProcDefDescription="TDC IBX PO" ReceiverEndpoint=""
 ReceiverEndpointHost="//somehost"
 ReceiverEndpointPort="3201"
 ReceiverEndpointUserName="" ReceiverEndpointPrivateKey=""
 SenderEndpoint="/Box/System/Out/" MsgId="83"
 MsgFileName="PurchaseOrder" MsgFileExt="xml"
 MsgLogLevel="3" MsgDescription="PurchaseOrder"
 MsgConsolidatedFlag="N" MsgGroup="Order" MsgCode=""
 MsgHeaderVersion="" SchemaFilename=""
 StylesheetLocation=""
 FieldSeparator="" ElementSeparator="" TermSeparator=""
 MsgHeader="" MsgFooter=""/>
 <TPProcessTask TaskId="2" ProcessTaskDescription="Translate"
 …
</TPProcessDescription>
</TPProcess>

Chapter 5

[271]

Horrible, isn't it? However, we will not discuss the pros and cons of putting task
parameters into the XMLNode attributes or present them as elements to parse/traverse
simplicity. Also, incompliance with the XML elements' naming standard is not a
huge crime, although it should be avoided. What you clearly see from this example is
that the attempt to devise an all-occasion task with all the possible parameters leads
to a mess. We got everything here: a path to transformation XSLTs (transformation
task), delimiters and terminators for the EDI file translation (translation task), service
engine descriptors for non-WS tasks, a process-logging level flag, a task-logging level
flag, and so on. Truly, when you start expanding the parameter list, it's really hard
to stop.

We need some guidance here to find a way to classify our major SOA artifacts and
service particulars and rationalize their storage and extraction. Designing it as
vendor-independent will eventually show us how this can be deployed on Oracle
tools: Repository and Registry. Therefore, let's prepare the playground by installing
Repository first. The taxonomy provided by Registry is UDDI based, so we will
return to it a bit later in this chapter.

Exploring the Oracle Repository's taxonomy
The Repository installation is straightforward (three simple steps). The installation
instructions are easily found on the Oracle site. Nevertheless, we should mention
a few things here. First, it's DB based, which is a positive feature because we want
to change from the initial file-based design (although MDS can also be DB-based);
however, this also means that close DBA attention will be necessary for this critical
component (RMAN, RAC planning, and so on). You will create three tablespaces
for data, indexes, and CLOB; please place them wisely. The application is a JAR
file and will be deployed on your WLS, so the app server is the second prerequisite
for the actual installation. Of course, OER can be installed not just on WLS (please
see the complete list in the installation guide). Actually, the same is valid for DB as
well. During the installation, please give special attention to the correctness of the
value you put in the Fully qualified server name field (in local test mode, it's just
a localhost). A typical .jar installation has a script screen identical to that in the
following figure.

By the way, if something went wrong and you had to restart the installation, please
do not forget to recreate the tablespaces (the installation will not continue with the
tables in place) and purge the OER instance from the Oracle_Home inventory. It
would be logical to create a new WSL domain (oer_domain) separated from soa_
and osb_. Do not forget to add an admin server with the console as a feature. Start it
in the regular fashion (first is the Node Manager and then WLS, followed by the WLS
console, start oer_server1) and log in to http://<localhost>:7101/oer/ using
the default credentials. We will not tell you which ones.

Maintaining the Core – Service Repository

[272]

At the time of writing this, it was admin/admin. Yes, have fun with Oracle password
consistency. You will be prompted to change the password anyway. For further
references, please go to the folder [Oracle_Home] \repository[xxx]\core\tools\
solutions; the folder has some utilities essential for further SOA Governance:

Oracle Enterprise Repository installation

Now let's check what we have got right out of the box in terms of taxonomy and
SAO mindset organization. Since any Repository is initially organized around Asset
Management as Asset is the main atomic unit of operational handling, search for
All Assets of All Types and take a look at the list. There are several samples of
varying types—from the adapters to the frameworks. You can explore relations
between assets by choosing Asset and clicking on the left button below the Assets
list. Technology adapters will be presented with no relations, and application
adapters will be linked to the isolated application (such as Siebel). Guess what
you will see once you have selected the MVC pattern?

You will see an Asset registration and the means to visualize the dependency,
but we still need to maintain the categories, types, and relations; some SOA guidance
would be useful here. Click on the Admin menu option and search for Asset Type to
see what kinds are available (see the following figure):

Chapter 5

[273]

OER Asset Management

The more interesting type is Component; it is possibly one of the building blocks
of our SOA, but what we have got in the default data element list for this type is
not exactly encouraging. Hourly burden rate, License Type, and all other elements
are certainly useful for runtime auditing and project management organization
(they are also based on Enterprise Repository; we will come to that later in this
section). However, we see only a couple of elements we could use for our runtime
discovery in the Composition Controller.

Maintaining the Core – Service Repository

[274]

No problem; no one expects a complete runtime-ready taxonomy model immediately
out of the box. We have been following the SOA methodology all the way in the last
two chapters, so we can try to export all our previously built artifacts and see how
they will fit the existing taxonomy skeleton and what kind of categorization and
types will be added to the classification.

Before we proceed with the OER console, please complete one more install; this one
will now be on your JDeveloper. Go to the update center and install the Enterprise
Repository Harvester (see the previous figure). You will have to restart JDeveloper
after completing the updates. Actually, the harvesting can be seen as an Ant task in
JDev (we have other options as well), so we need to perform three more steps
(for JDeveloper11g):

1.	 Create backups of all your JDeveloper config files.
2.	 Go to the [JDev_home]/harvester folder created during the first step

and replace all the occurrences of C:/oracle/middleware/jdev_5361/
jdeveloper in tools11g.xml with your current JDev path.

Chapter 5

[275]

3.	 Merge the content of your tools11g.xml with product-preferences.
xml in your <user>/AppData/…/JDeveloper/<system_version>/o.
jdeveloper (mine is in Users\spopov\AppData\Roaming\JDeveloper\
system11.1.1.6.38.61.92\o.jdeveloper). Copy the content if the XML
hash node oracle.ideimpl.externaltools.ExternalToolList does not
exist. Otherwise, simply replace it.

4.	 Check the OER connection detail in [JDev_home]/harvester /
HarvesterSettings.xml. You can also establish a connection by navigating
to JDeveloper File | New | Connections | OER Connection, but after that,
encrypting the password would be a good idea. Just run encrypt.bat
from the same folder.

The integration of OER and JDeveloper is one of the really effective OFM features,
and we are sure that you will enjoy it. However, balancing it with one friendly
warning would be in order.

To browse the Repository, any browser will do, but for administrative
and maintenance features in Asset Editor, please use Internet Explorer
with the latest JDK (see the installation screen); otherwise, there is a
high probability that you will get the Premature end of file
error. Quite annoying, actually.

Now, since we are forewarned, we can go back to the OER console and complete the
second part of the harvester's installation. We need to import the harvester solution
pack with all the possible service taxonomy types and classifications. Click on Admin
and then Import/Export and import the pack as shown in the following screenshot:

Maintaining the Core – Service Repository

[276]

When the import initiates, you will immediately notice the number of asset and
relation types being imported (please see the following figure):

After completing the import, you can go to the Admin page and check the assets
types again. We have got plenty of new artifacts and business processes, but
the elements for the existing ones haven't changed; check this using the same
Component asset. You will always see the recent changes of the Assets structure
or their usage on the first page. How to change the types and elements for the
assets including the element relations we will see a bit later, when we get a better
understanding of what we want. At the moment, all these assets will be needed for
harvesting, that is, uploading previously-built SOA components into a Repository.

Chapter 5

[277]

Now back to JDeveloper. You will be able to see the following two options by
right-clicking, as shown in the figure that follows:

•	 Submit Project to Enterprise Repository
•	 Submit File to Enterprise Repository

The first one can be applied to the root (your project's name) and the second is
suitable for artifacts such as WSDL and XSD (2). Before you continue, please check
the connectivity to the OER (1). It's right above the MDS connection we used in the
previous chapters:

Submitting artifacts to Oracle Enterprise Repository

Maintaining the Core – Service Repository

[278]

We will harvest the entire ExecutionPlanLookupService project; please see the Ant
log in the following screenshot:

Harvesting SOA artifacts from the existing project

Although we successfully completed the harvest, some messages should attract your
attention. We extracted all project objects and artifacts from the SOA Suite, but we
have a lot references to OSB. So what about them? Oracle provided an individual
harvester with OSB, which we can use for ESB object retrospection. We already have
our OER prepared and the OSB configuration steps are similar to what we did in
JDeveloper: modify HarvesterSettings.xml in the [MIDDLEWARE_HOME]\<Oracle_
OSB1>\harvester folder, and set the correct OER connection parameters and path to
our OSB project's export sbconfig.jar file. After that, encrypt the password. Now, to
perform harvesting, run setenv.bat from the same folder and then osb11g-harvest.
bat. You will see the OSB assets in the OER console by searching for the name of our
project (for instance, we used Service Broker in the previous chapter). The Oracle
documentation provides a complete reference to harvest in different runtime and
design-time environments (http://docs.oracle.com/cd/E23943_01/admin.1111/
e16580/harvest.htm). We suggest that you look closely at the relations between
different assets harvested on different platforms.

http://docs.oracle.com/cd/E23943_01/admin.1111/e16580/harvest.htm
http://docs.oracle.com/cd/E23943_01/admin.1111/e16580/harvest.htm

Chapter 5

[279]

So far so good. We have established a complete platform for bottom-up project
development. However, browsing through the Assets Types, all we can see are
collections of name-value pairs with basic relations, covering the generic needs
of any Enterprise; these collections are not exactly SOA-oriented.

OER Type Manager's Taxonomies

The taxonomy of elements, presented for the service asset in the earlier figure, is too
generic. Moreover, although it is suitable for dynamic invocation (Technical/
UDDI registry), it still does not comply with all the requirements we expressed
earlier for implementation using the Agnostic Composition Controller's capabilities.

Taxonomies such as NAICS and UNSPSC, mentioned in the preceding screenshot,
are purely business-oriented and are not suitable for SOA as an architectural
approach. To find the proper classification for service attributes, we should look
at the public SOA taxonomies and ontologies.

Maintaining the Core – Service Repository

[280]

Open standards for the SOA taxonomy
Generally, we have two sets of public standards: Repository and Registry.
Open Group came up with a wide range of standardization initiatives, of which
two can be very beneficial to us:

•	 The SOA Governance Technical Standard (including the SOA Governance
Reference Model (SGRM))

•	 The SOA Ontology Technical Standard

The Governance Reference model covers all aspects of the Enterprise SOA lifecycle
and, naturally, all ontology features. One of the aspects covered is service harvesting,
which is the third principle after service reuse and service description. We learned
that it will give us little without the first two principles. Therefore, service metadata
is the main element of the service description to support service reuse, one of the main
SOA principles to maintain. There is a plethora of material on the SGRM standard for
organizing projects, implementing change requests, and establishing and monitoring
KPIs. However, in the context of this chapter, references to ontology are most
important to us. A detailed presentation of the current version of Open Group's
service ontology is provided on the organization's website, and we recommend
that you take a close look at the two main diagrams on the introduction page, the ER
diagram and hierarchy drawing—the entire ontology is graphically presented in these
two forms. They are definitely something we could use for our OER taxonomy design,
so review the diagrams intently.

Remember that these public standards are constantly under
development. Conduct your own Web Ontology Language
(OWL) studies (http://www.opengroup.org/soa/
ontology/20101021/soa.owl) at the moment of publication.

When studying the hierarchy, we cannot help but notice several aspects that
might be crucial to the acceptance of this ontology as the basis for agnostic
composition controller implementation:

•	 On the SGRM page, the first guiding principle is "SOA Governance must
promote the alignment of business and IT". This is effective indeed and has
always been one of the goals (an objective, not a principle) of SOA. Please
look at Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and
Frameworks, again in which we discussed principles, goals, good wishes,
common sense, and what separates them. Nevertheless, this statement
rightfully promotes Process as the key element of any business-oriented
SOA. However, this is not the case when you look at the hierarchy graphics;
Process is a child node in the Composition.

http://www.opengroup.org/soa/ontology/20101021/soa.owl
http://www.opengroup.org/soa/ontology/20101021/soa.owl

Chapter 5

[281]

Generally, a top-level Composition consists of Processes and presents the
Master Composition, not the other way around. On the other hand, in the
OWL schema, the Process consists of Compositions. At the same time,
ServiceComposition is a subset of the Composition and has no direct
relation to the Service itself. We agree that a Process, Composition, and
ServiceComposition can (or cannot) be presented as a Service. However,
in this case, a Service should be taken out of the hierarchy and placed
separately, close to the Event.

•	 The ServiceContract and ServiceInterface classes are separate elements
of hierarchy, and this could create some confusion. Generally, Open Group
describes a contract in terms of SLA, which includes parties involved in
service activities and their legal obligations. ServiceInterface has a more
technical nature and presents an RPC-like access point for message-based
invocations (not a totally correct term as we have DOC-type services, not
RPC-style ones; however, we hope that you get the idea). Therefore, we
can expect some attributes as Operation or Task (again, in WSDL terms).
Indeed, Task is the property of the ServiceInterface class. At the same
time, you will find this property in the ServiceContract class. An example
of the Task property is provided by OWL: "WashWindows is an instance of
Task, performed by the service provider (John)."

•	 In addition to Task, both contract and interface have something called
Effect. Effect represents the outcome of service interaction and holds value
for the customer. Here, we have another inconsistency. If our interface is
message-oriented and a message is a transportable form of an object, then
the logical outcome of the service operation is a new (changed) state of
the object. An object's noticeable change is an Event—"The weather has
changed. Expect heavy rain in ... hours." So, what is the Event according
to the Open Group ontology?

•	 An Event is described as an occurrence on an Element to which an Element
may choose to respond. From this, we understand that an Element is, in
fact, an Object. An Element is at the top of practically any hierarchy. You
will find an Element at the top of the Open Group Ontology as well; only an
Effect will be higher. An Event is detached and located at the bottom of the
hierarchy. The logic underlying this decision is not entirely clear.

•	 The authors tried to avoid using the term "Object" and proposed a superclass
for Element, Thing. What's wrong with the old "Object" is completely unclear
as well.

Maintaining the Core – Service Repository

[282]

•	 A Policy is defined as "a statement of direction that a human actor may
intend to follow or may intend that another human actor should follow."
First, when talking about SOA, we immediately exclude, during the functional
decomposition phase, human operations from the composition logic, deeming
them unsuitable for automation. We do not abandon them, but just have
another approach for them. Thus, the policy should have a slightly broader
meaning. Second, statements of directions are usually expressed through
certain directives, that is, operations (tasks). These operations could be
performed by units of logic without a contract or public interface (service
agents, event-driven modules, not the services). Thus, the whole structure
of the Policy class is rather questionable.

Despite these considerably small discrepancies with the classic OOP and generic
SOA in terminology and relations ontology, we can take a lot from the presented
approach and use it in our service metadata classification, optimized for dynamic
and agnostic service invocation. We understand that the discussed ontology is an
all-purpose model; therefore, we focus on relations suitable for practical
implementation of Service Repository on traditional DBs.

Other standardization groups, excluding Open Group, have made proposals for the
service metadata taxonomy. Noteworthy is the Reference Architecture Framework
for the SOA (SOA-RA) initiative by OASIS (http://docs.oasis-open.org/
soa-rm/soa-ra/v1.0/csd03/soa-ra-v1.0-csd03.pdf; please check for the
latest release). At the time of writing, their draft seemed rather theoretical and the
committee members were still debating on the definition of "service." When asked
about the practical value of this reference model for SOA practitioners (at the fifth
SOA & Cloud Symposium, where the first draft was presented), the presenter, Mr.
Brown, responded that the purpose is to build a better SOA. Without a doubt it's
a noble cause, and we believe that eventually it will produce something valuable
for SOA practitioners. For now, taxonomy Elements such as Willingness, Social
Structure, Evidence, Real-World Effect, and Reputation are out of the scope of the
SOA patterns' implementation.

Actually, apart from the taxonomy, SOA-RA can be useful to understand the
internal Oracle ER DB structure. As you already noticed, there are so many elements
to maintain with so many relations in both public ontology frameworks that we
couldn't avoid maintaining categorization using the name-value style. SOA-RA
Elements Common to General Description (Figure 14 in http://docs.oasis-open.
org/soa-rm/soa-ra/v1.0/soa-ra.pdf) is generic and quite similar to the asset
definition domain in OER (please see the following diagram):

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/csd03/soa-ra-v1.0-csd03.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/csd03/soa-ra-v1.0-csd03.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf

Chapter 5

[283]

You can check it yourself, but just remember that the previously presented relational
model from the real SR database is simplified for brevity. Nevertheless, using the
model, you can easily construct the insert statement to manually insert assets.
In addition to asset relations being constructed this way, the metadata domain
also has a similar structure.

Another noteworthy, and rather important, point with regard to this type
of DB model is that, although quite simple in design and, probably, in
the initial value population, the key-value pair DB approach will most
certainly turn into a nightmare from a maintenance standpoint later.
Key-value pairs in relational databases are a constant headache for DBAs,
SOA process owners, service custodians, and so on. Yes, the Oracle ER
interface around this previous model will solve this problem gracefully,
but the main issue will persist—the performance bottlenecks of your SQL
statements during the runtime discovery on your Mediators and Service
Brokers. And don't think of turning to the Big Data NoSQL model for this
kind of metadata; this is not the case by any means. Quite soon, you will
see that the taxonomy can be really lightweight and compatible with a
relatively simple relational model.

Maintaining the Core – Service Repository

[284]

In Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks, we
mentioned another standard published by the HL7 group, called Service-Aware
Interoperability Framework-Canonical Definition (SAIF CD). We kept this
framework for the final discussion as we see it as an optimal model for lightweight
repository implementation. Actually, it is not a single framework, it is an entire
collection, covering Service Data Modeling, Governance, Enterprise Consistency,
Conformity, and several others. Some of the frameworks (Governance) are
completely based on the SOA concepts gathered in Thomas Erl's books. We will not
repeat the concepts discussed in Chapter 1, SOA Ecosystem – Interconnected Principles,
Patterns, and Frameworks. One framework is of particular value to us: the Behavioral
framework; this provides the language necessary to explicitly and unambiguously
define dynamic semantics used to specify the behavior of enterprise objects involved
in shared purpose scenarios.

This is the core of the service metadata definition and classification, and it's attached
from three directions:

•	 Contract semantics: In contract semantics, we can see only one unusual
term, community, which represents the collection of interoperable objects
aggregated by their business purpose or other similarities. The synonyms
would be domain or group, but that's not as important. What's important
is all relations between services, its possible roles and policies, and its
permissions, prohibitions, and obligations are clearly and elegantly defined.

•	 Operation-specific semantics: This is even simpler and more straightforward,
although the concept of an operation's pre- and post-conditions can be more
clearly defined through policies (conditions apply to ObjectContext) or other
operations performed before or after.

•	 Process semantics: This is probably the most complex in this framework,
but we see a lot of similarities with our adoption of this concept, expressed
by the execution plan object and Service Broker. The approach to the
organization-specific implementation of SAIF-CD is basically derived from
the SAIF Implementation Guide (IG).

Relations between these semantics and our implementation is presented in the
following table:

SAIF BF process
semantics

SAIF description Oracle Composition framework

Process Collection of
invocations or
operations

Atomic task-orchestrated service (BPEL/
SCA) or individual execution plan

Flow elements Sequence of steps in a
process

BPEL Sequence or EP task group

Chapter 5

[285]

SAIF BF process
semantics

SAIF description Oracle Composition framework

Activity Service operation EP individual task:
Event Trigger •	 Event is an element in Message

Header for the Composition
Controller

•	 Event is described in the .edl file in
JDeveloper (see screenshot below),
where the SCA Mediator acts as a
subscriber:

Sequence flow Ordered sequence of
actions

Execution plan

Gateway Control element that
performs branching,
forking, merging, and
joining

Mediator in the SCA Service Broker
(Chapter 3, Building the Core – Enterprise
Business Flows)

Adapter factory with a generic adapter in
the OSB Service Broker (Chapter 4,
From Traditional Integration to Composition
– Enterprise Business Services)

As we can see from this reference table, SAIF-CD is pretty close to our understanding
of the general service taxonomy. We will use the best of these three open frameworks
to establish logically structured, universal, and most importantly, well-performing
metadata storage for runtime and design-time discovery. One open standard
remains, which is especially designed for runtime discovery; it's our "yellow"
book, and we will look at it now.

The UDDI taxonomy (V.3) in Oracle OSR
In contrast to all the possible repository taxonomies and ontologies, Service Registry
is very well standardized. UDDI was one of the cornerstones of contemporary SOA,
and Oracle can offer the latest release compliant with Version 3 of the open standard.
To understand this standard, we must take a look at the tModel concept (http://
uddi.org/taxonomies/UDDI_CoreOther_tModels.htm) as the key aspect of
UDDI organization.

http://uddi.org/taxonomies/UDDI_CoreOther_tModels.htm
http://uddi.org/taxonomies/UDDI_CoreOther_tModels.htm

Maintaining the Core – Service Repository

[286]

In discussing the Open Group Ontology, we mentioned two entities that represent
a service to consumers and other composition members: ServiceContract and
ServiceInterface. We also mentioned that the definition of ServiceInterface
is generic and needs more detail for practical implementation. So, now, we can
formulate that tModel (the technical model) as a complex data type, used for
defining and representing the interface of a service we are going to discover and
invoke (dynamically in our composition controller). In the case of the web service,
tModel will at least represent the Service's WSDL as the URL, its name, and the
description text, which is sufficient for service discovery and interpretation.
We recommend that you view OWL and tModel side by side:

OWL Service Interface UDDI tModel for Service Interface
(org.uddi.api_v3.TModel)

<owl:Class
rdf:about="#Service
Interface">
 <owl:disjointWith>
 <owl:Class
rdf:ID="Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class
rdf:ID="Service
Contract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class
rdf:ID="Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class
rdf:ID="HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class
rdf:ID="Task"/>
 </owl:disjointWith>
</owl:Class>

<complexType name="tModel">
 <complexContent>
 <restriction base="{http://www.
w3.org/2001/XMLSchema}anyType">
 <sequence>
 <element ref="{urn:uddi-
org:api_v3}name"/>
 <element ref="{urn:uddi-
org:api_v3}description"
maxOccurs="unbounded" minOccurs="0"/>
 <element ref="{urn:uddi-
org:api_v3}overviewDoc"
maxOccurs="unbounded" minOccurs="0"/>
 <element ref="{urn:uddi-
org:api_v3}identifierBag"
minOccurs="0"/>
 <element ref="{urn:uddi-
org:api_v3}categoryBag" minOccurs="0"/>
 <element ref="{http://www.
w3.org/2000/09/xmldsig#}Signature"
maxOccurs="unbounded" minOccurs="0"/>
 </sequence>
 <attribute name="tModelKey"
type="{urn:uddi-org:api_v3}tModelKey" />
 <attribute name="deleted"
type="{urn:uddi-org:api_v3}deleted"
default="false" />
 </restriction>
 </complexContent>
 </complexType>

Chapter 5

[287]

The simplest XML service descriptor based on the tModel's XSD from the preceding
table will be as follows:

<tModel tModelKey="uuid:9AF82501-E6A9-1ba3-A094-2C7FE45CD859">
 <name>Public interface for adding NEW Mobile Service into clients
Order bundle </name>
 <description xml:lang="en">WS Interface for addNew Mobile CTU
generic Order</description>
 <overviewDoc>
 <description xml:lang="en">The service's WSDL document</
description>
 <overviewURL>http://www.ctu.com/bss/ services/order/
provisioning/
 /addMobileOrder.wsdl</overviewURL>
 </overviewDoc>
 ….
</tModel>

As you can see, this model is uniquely identified by UUID, used as a reference to
this model. For the service's invocation, the most important element is overviewURL,
containing the pointer to the service WSDL/Endpoint descriptor. All other elements
are self-descriptive.

Rather minimalistic, isn't it? Generally, what we can get is the reference to WSDL
and information about its structure (remember the discussions about abstract
and concrete in Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and
Frameworks). We can figure out what a server does and what effects to expect. So, is
UDDI just a list of WSDL? What if we need some more information about a service
and, more importantly, not just as a consumer where just the Endpoint is enough,
but as an Agnostic Composition Controller and/or Agnostic Adapter Factory? By the
way, what if our service provider is not SOAP/WSDL-based at all?

Well, generally, we can put any type of Endpoint in the overviewURL element. All
other service particulars can be packed in a bag. Literally, there is an element named
categoryBag; please see its schema in the following code:

<complexType name="categoryBag">
 <complexContent>
 <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 <choice>
 <sequence>
 <element ref="{urn:uddi-org:api_v3}keyedReference"
maxOccurs="unbounded"/>

Maintaining the Core – Service Repository

[288]

 <element ref="{urn:uddi-org:api_v3}keyedReferenceGroup"
maxOccurs="unbounded" minOccurs="0"/>
 </sequence>
 <element ref="{urn:uddi-org:api_v3}keyedReferenceGroup"
maxOccurs="unbounded"/>
 </choice>
 </restriction>
 </complexContent>
 </complexType

 So, the XML portion of this bag will be in tModel as presented in the following code:

</overviewDoc>
…
<categoryBag>
 <keyedReference
 tModelKey="uuid: 9AF82521-F6A9-1ba3-C094-2C7FE45CD859"
 name="Another specification to web service or other endpoint
descriptor"
 value="SomeWSDLSpec"/>
 </categoryBag>
</tModel>

But wait, can you figure out what the structure is? Yes, you're right, it's a name-
value pair. What else could it be? There is no other way to define plural properties.
By the way, the schema for identifierBag is similar, but a bit simpler. Thus, the
categoryBag element is a collection of keyedReferences, where each of them is
presented as a tModel. Therefore, you can have a collection of technical specs in the
form of tModels to express different WS categories: messaging protocol, transport
protocol, portType references, MEP types, and so on. Actually, mapping between
WSDL and UDDI V2-V3 is pretty straightforward, and this fact raises a question:
Why do we need a description for the description?

Well, individual services (for example, our milkman, postman, or doctor) could have
a good description of their individual capabilities, but we need a structure to put all
of them into our services' yellow book. Again, we have pretty good mechanisms to
build this structure in the form of tModels, but we are (yet again) on our own in the
quest of delivering it.

Chapter 5

[289]

In the first chapter, we mentioned that our first attempt at establishing global service
Discoverability was not a real success, and now you can see why. Initially, UDDI was
not about web services, it was about business collaboration. tModels are just a way
of describing entities and relations between them. The complete UDDI hierarchy
consists of the following:

•	 businessEntity: It's your company, or business unit, that provides
a wide variety of business services, and thus the model should be descriptive
enough: the company's name, description of the line of business, contact
details, and available business services. Previously mentioned business
taxonomies, such as NAICS and UNSPSC, are very well suited for the
description of this entity and are widely used in the identifierBag
and categoryBag reference collections (via tModels of course). In this
case, identifierBag answers the question "What is the company we are
describing here?" and categoryBag addresses the questions "What are
the functions of the company?" and "What are the services provided by
the company?"

•	 businessService: The schema of this entity represents descriptive
information about a particular family (or domain) of technical services.
In addition to the name, the description, and categoryBag, this has one
or several bindingTemplates, representing the technical description of
publicly available services (as tModels of course).

•	 bindingTemplate: At the top, it has a human-readable description and
the AccessPoint element holding the host URL. The URL type is provided
as an attribute, such as an HTTP host. Detailed service info is gathered in
the tModelInstanceDetails/tModelInstanceInfo collection.

With so much freedom provided by tModels and the lack of comprehendible
taxonomies in the earlier 2000s, anarchy reigned in the SOA realm, quite severely
damaging UDDI acceptance. With the new arrival of different API servers, we
hope that UDDI will improve its reputation. It's still one of the existing strategic
technologies shaping the SOA landscape, and Oracle plays its part quite well here.

Maintaining the Core – Service Repository

[290]

To get a closer look at the tool, please proceed with the installation. It's quite similar
to OER. Here, again, you should start with the DB preparation, although only one
tablespace is necessary—the UDDI value-name pairs are quite light and do not
require LOBs:

Oracle service Registry installation

The installation is simple, as shown in the preceding screenshot (steps 1, 2, and 3 for
training purposes). You do not have to create a separate WLS domain and install
it on the existing OER domain. Just assign a different port for the console (we use
7201 as you can see in the next screenshot, step 1). To get a better understanding of
Oracle's approach to the tModels' implementation, include the demo data installation
during the DB selection step. Upon browsing the DB schema, you will find that the
internal DB tables' structure is clearly built around the UDDI taxonomy—there are
dedicated tables for BusinessEntity, BusinessService, and BindingTemplate.

Chapter 5

[291]

For each table, maintain separate bags for categories and identities containing
references to tModels registered in the related table. Despite this model's simplicity,
there are many additional service tables grouped in the service domains, as follows:

•	 Approval
•	 Access control
•	 Replication
•	 Events Reporting

This grouping should attract our attention as it has a direct relation with the physical
realization of the SOA patterns and the Registry layering in particular. During the
installation, you probably noticed that we can install the Registry in three different
modes: Publication, Intermediate, and Discovery. This is how Oracle (quite cleverly)
implements the double D in the UDDI standard. Naturally, as an architect, you will
not allow anyone registering for new/updated services directly in your production
registry. Initially, information should be injected into the Publishing registry (first D)
and you can have as many as you need (per business domain, GU, or service roles).
All these registries are stacked vertically, that is, they have the same rank. After
approval, metadata will be propagated to the Discovery Registry (second D). You
will find more details about the OSR data model/tModel relations and deployment
topology in the Oracle documentation at http://docs.oracle.com/cd/E14571_01/
doc.1111/e15867/uddi.htm.

Publishing service artifacts and taxonomy categories (see the following screenshot,
part 2) using the UDDI console is straightforward. Just follow the screen instructions
after clicking on the menu options at the top (for WSDL and other XML-based
artifacts) or the tabs on the left for Details, Categories, and Identifiers (see the
following screenshot, part 3) when modifying business entities or tModels.

According to the SOA Governance cycle, any artifact has to pass several approvals
and be accepted by several custodians (for example, Service, XSD/Schema, and the
Policy and Registry custodians). Thus, in addition to vertical layering, we will have
a horizontal chain, presented by the intermediate registries between the publication
and discovery.

http://docs.oracle.com/cd/E14571_01/doc.1111/e15867/uddi.htm
http://docs.oracle.com/cd/E14571_01/doc.1111/e15867/uddi.htm

Maintaining the Core – Service Repository

[292]

It is wise to have individual Intermediate Registries in every individual test
environment, JIT-UAT-ORT as well, and promote services to production only
after passing all acceptance gates:

Publishing service artifacts on UDDI

Although Oracle provides a clear OSR installation guide, we would like to
advise you to be careful with the node installation sequence for security reasons.
Naturally, all centralized assets concentrated in the Registry are protected by
security policies and ACLs. We recommend LDAP for the storage of user accounts,
but trust the relations between registries in the propagation chain, maintained
by digital security certificates. Therefore, we advise you to start from the end.
The digital security certificate of the Discovery Registry is needed when installing
the Publication Registry.

Another highly important SOA pattern must be strictly observed here due to the
critical nature of the Registry and its position as the single point of failure: redundant
implementation. In the WLS-based topology, we choose from the very beginning;
it's attained by means of a WebLogic Cluster. The Cluster operation is achieved by
running multiple registries and combining their functionalities with a load balancer
(proxy). The configuration of this infrastructure is common for WLS and well
documented in the HA section of the OSR installation guide.

Chapter 5

[293]

As the central point of the Enterprise SOA, OSR has all the possible connections
to the SOA Suite, Enterprise Repository, OSB, and development environments
(JDeveloper). In the following screenshot, you can see how, in five easy steps, we can
initiate the dynamic resolving of the WSDL Endpoint location using Oracle Registry
in JDeveloper. First we establish the connection (File | New | Connections | UDDI
Registry Connection) and then verify it in the JDev Resource palette. Now you
will see the three connections ready and at your service (including OER and the
old MDS):

Configuring a service artifact's dynamic resolution

Drag a new web service to the right SCA swimlane and click on the icon for the
WSDL selection; take it from the Resource palette and then select the earlier
published (previous figure, step 2) service.

Maintaining the Core – Service Repository

[294]

After that, you will be prompted to select a runtime dynamic resolution type (the
SOAP Endpoint or WSDL), and that's the essence of our runtime Discoverability
using UDDI! Depending on the selected UDDI deployment option, the composite.
xml file will have a different syntax for the binding.ws element, describing the
Endpoint's binding location.

Endpoint type Binding realization
SOA Endpoint <binding.ws port="http://ctu.com/wsdl/dev/uddi/

services/#wsdl.endpoint(OrderStatusService/
OrderStatusService)"
 location="http://localhost:7201/
registry/uddi/doc/dev/OrderStatusService.wsdl"
 soapVersion="1.1">
 <property name="oracle.soa.uddi.serviceKey"
type="xs:string" many="false">
 uddi:
9AF82521-F6A9-1ba3-C094-2C7FE45CD859
 </property>
 </binding.ws>

WSDL <binding.ws port="http://ctu.com/fulfillment/
order#wsdl.endpoint(OrderStatusService/
OrderStatusService)"
 location="orauddi:/uddi: 9AF82521-
F6A9-1ba3-C094-2C7FE45CD859"
 soapVersion="1.1">
 </binding.ws>

Now you can use any service with the dynamic address resolution in any service
composition. This basic yellow book functionality is perfectly fine, but we need more
search capabilities with adequate granularity for search criteria, which is suitable for
our agnostic controller. Here, we face the second type of limitation (apart from the
lack of taxonomy guidance, which is mostly based on the WSDL binding)—limited
search capability. In general, the classic UDDI provides us with search restricted
to the WS name and its classification. Because of the name-value pair approach
of the tModels, there is no uniform way to query services and their attributes.
Some attempts were undertaken in the UDDI V.3 specs (see sections 4 and 5.1.8
of the Inquiry API functions, http://uddi.org/pubs/uddi-v3.0.2-20041019.
htm#_Toc85908076). You will find 10 generic functions to find core UDDI entities
(Business, Service, and Bindings) and get details about them, including tModels.

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908076

Chapter 5

[295]

Oracle offers a solution for these limitations by providing the UDDI API, which
covers both Ds—Description (Publishing API) and Discovery (Inquiry API).
In the scope of dynamic composition controller functionalities, the latter is of
higher interest to us. Technically, we have two Inquiry APIs: ClientSide and
UI. The last one has only one operation, get_entityDetail, which will return
the list of UDDI data structures. Using the ClientSide API, you can call any
standard UDDI V2 inquiry function. The most commonly used parameters are
Name (find_<searchingEntity>.setName(new Name(Name))), serviceKey
(find_<searchingEntity>.serServiceKey(serviceKey))), and tModelKey
(find__<searchingEntity>. addTModelKey (tModelKey))). We can also
define any String qualifier in our search, such as find_tModel.addFindQualifier
(findQualifier), when preparing the find object. This gives us some freedom in
defining our search criteria, but we must be certain about what we are looking for
and the parameters available to define our search in the SBDH-compliant Message
Header. These parameters are marked in bold in the full version of MessageHeader
in the following code. So, some of them can be categorized as Service Entities, while
most of them qualify as tModels for the taxonomy we are about to build:

<?xml version="1.0" encoding="UTF-8" ?>
<urn:CTUMessage xmlns:urn="urn:com:telco:ctu:la:ctumessage:v01"
 xmlns:urn1=" urn:com:telco:ctu:la:messageheader:v01"
 xmlns:urn2=" urn:com:telco:ctu:la:processheader:v01"
 xmlns:urn3=" urn:com:telco:ctu:la:payload:v01"
 xmlns:urn4=" urn:com:telco:ctu:la:messagetrackingdata
:v01">
 <urn:MessageType>EBO</urn:MessageType>
 <urn:Version>0.1</urn:Version>
 <ns11:MessageHeader xmlns:ns11=" urn:com:telco:ctu:la:messagehead
er:v01">
 <ns11:RefId>604244_1</ns11:RefId>
 <ns11:RequestId>CMSA697</ns11:RequestId>
 <ns11:MsgId>EBM109</ns11:MsgId>
 <ns11:RefDateTime xsi:nil="true" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance"/>
 <ns11:Sender>
 <ns11:SenderCode xsi:nil="true" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance"/>
 <ns11:CountryCode>BR</ns11:CountryCode>
 <ns11:Affiliate xsi:nil="true" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance"/>
 <ns11:Instance>BR_IP</ns11:Instance>
 </ns11:Sender>

Maintaining the Core – Service Repository

[296]

 <ns11:ObjectReference>
 <ns11:ObjectName>Order</ns11:ObjectName>
 <ns11:ObjectKeyName>OrderID</ns11:ObjectKeyName/>
 <ns11:ObjectKeyData> CMSA-697BR09521</ns11:ObjectKeyData/>
 <ns11:Domain>Fulfillment</ns11:Domain>
 </ns11:ObjectReference>
 <ns11:ObjectContext>
 <ns11:ParameterValue name="ActionType">DROP</
ns11:ParameterValue>
 <ns11:ParameterValue name="ProductType">IP</
ns11:ParameterValue>
 <ns11:ParameterValue name="ServiceType">SERVICE</
ns11:ParameterValue>
 </ns11:ObjectContext>
 </ns11:MessageHeader>

Now that we are equipped with the knowledge of OER and OSR functionalities
and open SOA ontology standards, we will continue with the functional analysis
of runtime Discoverability requirements for the composition controller.

Runtime Discoverability analysis
We will start with the runtime Discoverability requirements because it seems
a bit easier—we are already using runtime lookup for the service particulars
and different XML artifacts in the EBF and EBS service composition controllers,
and all requirements are expressed in the execution plan's structure (look at
ExecutionPlanLookupService). This is our Service Registry and is currently based
on MDS, but our intention is not to isolate Registry and Repository, but to rationally
combine them into one management pack. In this respect, Oracle has two products
to offer, OER and OSR, with a utility for the synchronization of metadata between
them (orrxu, http://docs.oracle.com/cd/E21764_01/doc.1111/e16580/oereu.
htm). Adding the metadata harvesting capability in OER for reverse engineering and
the requirements for OSR integration with WLS for the automatic registeration of
new service deployments in the Service Registry will complete the picture of Oracle's
response to the Discoverability principle and SOA Governance.

But isn't it too complex? Yes, it is. The simple fact that the OER DB schema has 145
tables (Release 11.1.1.7.0) for "all weather conditions" doesn't make our life easier.
From the very beginning, it was clear that managing complex technologies such as
SOA would not be easy, but we should expect a bit more methodological support
for SOA runtime compositions in particular. We are about to provide this support
to the best of our ability, focusing on vendor-neutral SOA principles first and then
extending them to Oracle's product realization (OSR and OER).

http://docs.oracle.com/cd/E21764_01/doc.1111/e16580/oereu.htm
http://docs.oracle.com/cd/E21764_01/doc.1111/e16580/oereu.htm

Chapter 5

[297]

We will do this exactly how we did in the previous chapter: discuss a generic
Message Broker requirement first and then implement it as a Service Broker on
OSB. Speaking of which, we must mention certain things related to its complexity:

•	 Runtime and Design-time lookups are closely related and the physical
segregation of Registry and Repository is not always optimal from a
performance point of view in regards to the complexity of queries. Registry
realization is UDDI compliant; thus, we will have three major XML data
structures, presented in tModels. In general, it's a representation of service
interfaces (for instance, WSDL for WS), and all other related extra features
come in value-name pairs. It may be flexible (in terms of the value-name
pairs), but not always interpretable and, therefore, discoverable.

•	 Continuing with a repository's segregation issues, we can say that simply
mixing SOA project data, service design particulars, runtime logs, service
session data, results from load/stress—only because they cannot be easily
defined in the tModels taxonomy or are not related to the Registry—will
definitely not improve our SOA Governance (see a single schema of
OER). Keeping the Governance under control, we can clearly identify the
boundaries of AuditLogs, ErrorLogs, project control data, and the Service
Repository itself. This consideration requires a precise definition of Inventory
Endpoints' interface(s), suitable for all types of Governance actions.

•	 To continue with Governance, a services metadata harvesting tool is a really
effective feature. However, ask yourself: if you, as an architect, have been
devising an enterprise Service Inventory for a while now and still need to
perform reverse engineering to reveal hidden dependencies, then how valid
is your service taxonomy? Could it be that you overlooked some services/
entities during the design phase? No, we are not saying that a harvester is
unnecessary; that's not the point. Indeed, you should run it regularly (it's
an Ant task in JDeveloper), and if in OER Asset Editor's search report you
see anything new or something that you haven't seen in the Unsubmitted/
Unfilled folder, you can proudly ask for a raise.

•	 Whatever technical realization you choose for our Service Inventory
(building blocks such as services or components; languages such as Java,
C, PL, and SQL; and so on), your primary concern is the availability of your
Service Registry/Repository for the flawless support of Discoverability,
along with other utilities from the first table in this chapter. Please take a
second look at the design rules in this table.

Maintaining the Core – Service Repository

[298]

What would be the most logical approach to address availability and performance
issues expressed in the preceding bullet points? Correct, to position SR as close to
the composition controller as possible. But how would this be possible? Only by the
segregation of the service taxonomy model from its physical realization. Doing so,
we should be able to re-implement it on any technical platform, easily accessible
by the concrete composition controller. Remember, Secure Gateway in DMZ is an
ESB too, and Service Broker is common to both. Thus, service metadata lookup is
not an extraordinary feature. Will you query your production OER or OSR from
DMZ? Think twice. You could have the discovery node in DMZ, but what about
the physical storage? Oracle DB? Again, think twice when it comes to security.
You should be quite close to the iron. How will you securely synchronize your
Production and DMZ discovery nodes?

Runtime lookup
One of the practical ways to classify services and artifacts' taxonomy is to detect
the type of data we see on every service layer. For vertical infrastructure layering,
we suggest that you use the Oracle AIA service layer notation. This leaves us with
three main layers: Adapters, Enterprise Services (usually hosted or available through
ESB), and task-orchestrated services in the Enterprise Business Flow layer. Note that
vertical stratification for the three main service models still remains; vertical layering
is presented in the following figure:

Chapter 5

[299]

Based on the preceding figure, in the following table, we consolidated all the possible
lookup and entity types that our Service Repository must maintain and reliably
provide. The table has a numerical index for Lookup Types (runtime discovery
use cases) for simple reference in this and further chapters.

Lookup type 1: The service business delegate is looking for a service worker:

Role Location Entity Example
Composition
controller /
Composition
subcontroller

EBF, EBS Service as a URL,
Component as a URL

•	 One BPEL
process invokes
another within the
business domain
depending
on the context.

•	 One ESB service
needs to relay
a message to
another. A URL
as a variable is
returned.

Lookup type 2: The service is looking for the Endpoint(s):

Role Location Entity Example
Composition
subcontroller,
Dispatcher, and
Mediator

EBF, EBS The TP Endpoint
URLs could be as
follows: File, JMS,
HTTP, and FTP

•	 A BPEL process
as a final worker
wants to deliver a
message to its final
destination/ESB.

•	 ESB wants to
deliver a message
to SCA or to the
Endpoint. A URL
as a variable is
returned.

Maintaining the Core – Service Repository

[300]

Lookup type 3: The service wants to perform data transformation/validation:

Role Location Entity Example
Dispatcher and
Mediator

EBS •	 URL to XSLT

•	 XQuery
String

The ESB Service resolves
parameters for transformation/
Enrichment

Lookup type 4: The service is looking for Endpoint particulars (bindingTemplate in
the tModel notation):

Role Location Entity Example
Dispatcher
and Mediator

EBS Object
(EBO/SDO)

ESB is looking for the Endpoints' particulars
(Transport, Proxy, Port, and Username/
Password).

Lookup type 5: The service is looking for an internal task's parameters:

Role Location Entity Example
Service
participant

EBF Object
(EBO/
EBM)

•	 WSIF invocation, similar to Oracle E-Business
Suite SOA Gateway realization; see the
Metadata definition section at http://docs.
oracle.com/cd/E18727_01/doc.121/
e12169/T511175T513090.htm.

•	 Java callout from BPEL or Mediator to obtain
the additional object's parameters.

Lookup type 6: The service is making a decision(s):

Role Location Entity Example
Dispatcher,
Mediator,
Service-
participant

EBF, EBS Object (EBO/SDO),
TP Endpoint URL

•	 BPEL uses the Rule Engine
to get a value (any value
including true or false)
or an object.

•	 The ESB Service is looking for
another service.

http://docs.oracle.com/cd/E18727_01/doc.121/e12169/T511175T513090.htm
http://docs.oracle.com/cd/E18727_01/doc.121/e12169/T511175T513090.htm
http://docs.oracle.com/cd/E18727_01/doc.121/e12169/T511175T513090.htm

Chapter 5

[301]

Entity types
Summarizing all the entity types from the preceding table, we come up with the six
main types, which are in line with the public classifications proposed by Open Group
and SAIF BF:

1.	 Objects (top hierarchy entity).
2.	 Messages or message particulars (XML or a representation of a serialized

object in transit).
3.	 Services, tasks, or a task's particulars (including WSDL and its parts).
4.	 An application's Endpoints or Endpoint particulars (SOAP or other types).
5.	 Rules or Rulesets.
6.	 Enterprise Business Events.

The SR physical implementation can be as follows:

•	 File-based (for instance, temporarily MDS has been used in all
previous chapters)

•	 DB-based (planned for flexibility and performance):

°° The OER DB schema with complex assets relations
°° The OSR entities with metadata elements in tModels
°° Custom DB with OER/OSR synchronization (a custom DB structure

is presented later in The SQL Implementation of the service taxonomy
section in this chapter)

The composite entities (such as tasks) can be constructed as:

•	 Static from the file location
•	 Dynamic from the DB query
•	 Static from the DB
•	 Dynamic from the RE

A common rule for the ER implementation for all approaches is to have a unified
ESR endpoint for an entity lookup, with the MessageHeader elements as an
input parameter.

Maintaining the Core – Service Repository

[302]

Entity types' relations
With entity types accounted for and identified, to save your time, we will jump right
to their relations and explain their roles later:

SR entity relationships

In the center, we have our Entity Repository storage that holds all the metadata
in a secure, interpretable, and discoverable fashion. According to Conway's law
(http://www.melconway.com/Home/Conways_Law.html), it can be organized in
at least four different ways:

•	 Decentralized (project-based)
•	 Domain
•	 Cross-domain
•	 Enterprise

We will start with the simplest project-based realization.

http://www.melconway.com/Home/Conways_Law.html

Chapter 5

[303]

Decentralized realization
The idea of decentralized realization is to avoid lookups of any kind and maintain the
orchestration logic as a static process. This way, processes will be reconfigured only
through recoding and reimplementation. Simply put, this option can be described as
do nothing. We identified all the downsides of this approach at the beginning of Chapter
3, Building the Core – Enterprise Business Flows, when discussing the assessment of the
CTU SOA solutions.

The application project store
The primary goal of this realization is to establish a centralized metadata repository
for all artifacts developed within a single SOA project. This repository can support
runtime lookups (for instance, in SCA Mediator), but for entities designed for a
specific SCA, limited by a single project or a small group of projects. The structure
of metadata, its taxonomy, and ontology will be completely at the discretion of
project's team lead. You will certainly remember the small exercise from Chapter
4, From Traditional Integration to Composition – Enterprise Business Services, when we
implemented a basic proxy on OSB. In the first step of this exercise, we created a
common folder structure for XML-based artifacts. We realize that many of you found it
far from optimal and different from your usual classification. This is exactly our point.
A project-centric repository, based on a similar (custom) approach and maintained
using Oracle Metadata Services (MDS), is extremely flexible and convenient for a
single department; however, it requires constant vigilance from SOA architects and
Governance specialists. In fact, as is, it fits most of the needs of a small department. The
positive side is that the performance of the MDS lookups (for file- and DB-based MDS
realization) is quite good. Based on the runtime lookup scenarios' individual tables
from the preceding section, we can identify the lookup types and entities as follows:

•	 Lookups types in use: The types are none or limited, which use the
oramds protocol

•	 Entities maintained: The entities are none and are project specific in MDS

The first approach in project-based SR realization is straightforward:

•	 The first and second assumptions (from the General objectives section) are
taken for granted and the provisioning flow is functionally decomposed
at the level where agnostic common services are separated from the
functionally complete GU-specific business services.
As a result, the layers of the Service Inventory are established for the task
and entity services.

Maintaining the Core – Service Repository

[304]

•	 Design new, full-scale, functional compositions to minimize the creeping of
business logic, that is, reduce the number of compositions for maintenance
and reusability purposes. This is the classic top-down approach.
A top-down approach means to devise a complete analysis upfront. It does
not just take a lot of time, but considering a dispersed GU, it requires deep
and precise knowledge of the entire business operation everywhere, not to
mention a substantial budget. In general, it is too late to conduct a top-down
analysis at this stage, although the analysis itself is a positive practice.

•	 Use SCAs to implement compositions in a static BPEL way. Dynamic
Service/Endpoint invocations with lookups, avoiding the creation of BPEL
flows, are more visible when it comes to inexperienced developers.
The Utility Services layer in the Service Repository is deliberately neglected
for the purpose of simplification. In fact, it can potentially lead to the
implementation of hybrid services. In this case, reliability (Objective 1;
the first objective from the objectives table at the beginning of this chapter)
is reduced.
If vendors' SOA knowledge is deliberately not considered very high (for the
man/hour cost reasons), it will broaden the choice of vendors; however, this
potentially invites inexperienced solution providers and affects reliability.
In general, processes will be identical to minor alterations and developed
using the copy and paste approach. Maintainability (Objective 3) will be
severely affected. With no common Utility components as the single point of
failure, reliability can be high. However, without design time discovery, after
several implementation laps, it will be virtually impossible to maintain the
desired level of reusability (Objective 2).
Reliability (Objective 1) can vary by process, depending on the complexity
of the orchestration logic. The more complex the "if-else" logic used, the
more prone to errors the process will be. As a workaround solution, SCA
mediators with static dispatching logic can be implemented. Math for
mediator filters/branches can be the same as that for the number of processes.

•	 Service Endpoint handling in ESB is similar to the SCA solution. The number
of services will equal the number of channels multiplied by the number of
affiliates. Goals will be affected in a similar way.

Chapter 5

[305]

Centralized realization
Centralization denotes constant reuse through runtime resources lookup and
discovery. The types of lookups and objects are defined in the table in the Runtime
lookup section. The alteration of the Governance rule by configuration will provide
the most profound benefits when maintained centrally. The following approaches
practice the same lookup paradigm with different degrees of centralization and
lookup frequencies.

It is obvious that the number of cross-platform lookups should be limited due to
performance requirements, and the scope of the returned objects must be adjusted
to its transactional scope. For this purpose, according to the third assumption, we
implemented the Message Container with the Process Header (SBDH compliant),
where the business object and transaction-related values must be persisted and
propagated along the way via all the layers. So, a certain trade-off must take place
to optimize the size of the process transaction-specific data, the number of lookups,
and the transaction MEP.

The Message Container implementation with PH/MH also allows us to have
significant independence from the platform vendors.

Domain Repository
Establishing a centralized Service Repository with global lookup capabilities for the
entire enterprise is not only expensive but also unnecessary. The reasons can vary
from dispersed geographic locations of business units (GU) to dissimilar business
models. For instance, for a telecom company with a dedicated OSS/BSS division,
several of their services and artifacts will be useful only within this single domain.
That is, order management-related services are not concerned with the technology
domain, responsible for maintaining Software-defined Networking. At the same
time, the number of correlated projects and their common SLA requirements make
a decentralized approach not only feasible, but also dangerous. Let's take a look at
what artifacts and lookup types we can employ in this situation:

•	 Lookup types in use: 1-4
•	 Entities maintained: 1-4

Maintaining the Core – Service Repository

[306]

This approach can be a good choice in the following scenarios:

•	 A GU has a great deal of independence in order to stay more flexible in terms
of business operations

•	 The GU is supplied with all the necessary SOA guidelines and has a strong
SOA sponsorship that is willing to follow the Enterprise Integration Center
of Competence (ICC) guidelines (expressed in the first table in this chapter)

•	 The GU is capable of maintaining its own SOA assets and infrastructure
•	 The GU SOA assets are mostly GU specific, so establishing an Enterprise

Repository is simply impractical

Usually, we expect that lookups 1-4 are used. A domain Service Broker(s) will be
implemented to perform service dispatching. Part of the Service Broker, the service
locator, must discover enough information to support end-to-end transactions and
supply the Message Broker (ESB) with all the information for 3-4.

The design rules are as follows:

•	 Synchronous MEPs: This includes one DR lookup per transaction and
persisting data in Process Header

•	 Asynchronous MEPs with Global Correlation ID: This comprises one
DR lookup and one PH lookup by CorrID

•	 Asynchronous MEPs without Global Correlation ID: This involves more
than one DR lookup, depending on the number of services/operations
to invoke

Again, the preceding rules are subject to trade-offs and depend on the level of
service granularity, message size, and process simplification.

This approach is also very traditional and requires you to perform the
following steps:

1.	 Functional decomposition does not have to be completed before
implementation. Only the Utility Services must be clearly identified
upfront, which is simple as these services are well patterned: Service Broker,
Translator, Transformer, RE Endpoint, DE Endpoint, and Message Broker.
Business services can be presented initially in big chunks; this is suitable for
further decompositions. This is the typical meet-in-the-middle approach,
where top-down and bottom-up benefits are combined. As a result, the
optimal delivery time with measurable and attainable performance is
significantly better than that with a decentralized approach. Also, reliability
is constantly maintained in a balanced manner along the decomposition.

Chapter 5

[307]

2.	 Business logic and complex composition logic are removed from the
Composition Controllers and subcontrollers in order to make the
composition adjustable through simple configuration files (entities and
rules), and not by recoding. The important thing here is that Composition
Controllers don't have to be totally abstract and agnostic because they are
predefined in the business and/or GU domain. This is also a way to provide
trade-off reusability for time to market. The borderline is where the EBO
for the Composition controller is implemented in the Message Container
as the payload <any> or within the Message Container namespace. It could
be acceptable to have an alternative approach in this type of realization.
This causes a positive impact on reusability. Maintainability is significantly
increased. Performance could be potentially less than that in a direct coding
approach, but it can be easily justified through the resizing of compositions.
This is attainable through configuration. Reliability can also be negatively
impacted as we have implemented some single points of failure here, but
caching and redundant implementation can solve this problem just as easily.

3.	 The transactional part of an extracted configuration persisted in the Message
Container and Process Header (execution plan, set of transactional variables,
or routing slip). Process Header will be propagated end-to-end to the
adapter framework before the ultimate receiver. This positively impacts all
characteristics.

4.	 EBS in ESB will use PH values for Transformation (enrichment), Validation,
Filtering, and the Invocation service, or its ABCS. A minimal number of
lookups is allowed as this layer must be a good performer. However, if
necessary, Java callouts to the MDBs (such as RE MDB) are allowed. This
approach is in alignment with the Delivery Factory pattern, where groups of
adapters to the ultimate receiver can be abstracted through the factory layer.
Grouping is usually done by MEP and the transport protocol. This positively
impacts all characteristics.

The Cross-domain Utility layer
Apparently, even in a decentralized enterprise, some domain-specific services can
be utilized between dissimilar domains. First, this could be completely agnostic
Utility Services. Of course, their utilization across different domains will be carefully
evaluated using performance numbers derived from their usage statistics and SLA
declarations. Demands could be too high for the installation of a single utility service,
and we should use redundant implementation in order to address it. Nevertheless,
this is the same service, and we did not reinvent it. We just discovered it and added a
new service node.

Maintaining the Core – Service Repository

[308]

Entity services are also good candidates for cross-domain implementation.
For instance, the Customer entity service (usually from OSS/BSS) can provide
vital information for authentication and authorization purposes to all other services
in the enterprise. Let's take a close look:

•	 Lookups types in use: 1-5
•	 Entities maintained: 1-5

The main disadvantage of the previous approach is that we identified and
implemented, but didn't reuse it across all the domains' Utility layers within the
Service Repository. The Utility layer is too generic, so with some effort, it could
be totally reusable. These efforts were clearly identified in the previous approach
as follows:

•	 Make a broker payload-independent, presenting the <any> block in the
Message Container

•	 Implement an SBDH-compliant Message Header as a reference to the payload
•	 Implement the Process Header as a persistent container to route the

slip/execution plan
•	 Implement the Audit/Message Tracking Data to track message information

The last point is a positive outcome of this implementation, as a universal
Message/Service Broker will endorse the implementation of other OFM
common patterns, for example, Error Hospital, Common Audit, and Centralized
Logging. This is highly important to maintain a unified contract for all Service
Broker-connected components, which can be fairly simple with the implementation
of a Message Container as described previously.

Cross-layer Utility Services will be more thoroughly reviewed and tested against a
domain-specific implementation. Moreover, it will have a positive impact on reliability
and performance. The SB scalability must be treated with the utmost care as it may
be a success factor for a cached/clustered implementation. Apparently, SB/SR
become single points of failure; therefore, rigorous stress testing is absolutely required.
A dedicated framework must be devised for this. Due to the implementation of a
Canonical Endpoint for all composition members, an alternative implementation
based on J2EE can be presented with relatively little effort.

Reusability and maintainability will be higher than those with previous methods.
However, as it is still at the domain level (GU), it is not yet at the top level and is
quite decentralized.

All four of the preceding steps are identical to the previous solution, except that the
implementation of the Utility layers/patterns is governed from a central location.

Chapter 5

[309]

The Enterprise Service Repository
The Enterprise Services Repository (ESR) is the central repository, where we define,
access, and manage SOA assets such as services and data types. The repository
stores the definitions and metadata of enterprise services and business processes.
According to the reference tables, we have seen quite simple definitions for entities
and lookup types:

•	 Lookups types in use: All
•	 Entities maintained: All

If a GU prerequisite from the Domain Repository is left out, the implementation
of the Domain Repository with/without the common utility layers becomes
problematic. In this case, decentralization will effectively lead to the same disorder
and the implementation of the application's project store. The key success factor
for the Domain Repository is to maintain the Canonical Endpoints and a unified
configuration for the PE, as mentioned in the previous section.

With this approach, all entities must be maintained centrally. This is important
because development and maintenance are already performed centrally in the
Latin-American HQ. Therefore, all decomposed and recomposed GU-related flows
will be maintained and configured in a single Service Repository. According to an
evaluation, up to 80 percent of all business flows across GUs have the same structure
and logic (we are in the telecom business after all), and therefore, the main lookup
types will be 2, 3, and 4.

All four implementation steps will be similar to those in the Domain Model with the
Cross-Domain Utility layer, with some exceptions:

•	 The Functional Decomposition will be on the GU and affiliate level.
•	 The possible decomposition parameters for Service Broker and Message

Broker will be stored centrally as execution plans/routing slips.
•	 Before implementing a new process, a diligent investigation must be

conducted. This could result in the further decomposition of existing
processes, with the next decomposition occurring according to new
requirements. This may end with the implementation of a new execution plan.

•	 The Rule Engines will be used very extensively. The main concern with
this will be the implementation of inexpensive rules (avoid the "explosion"
of rules). This is already done by splitting the rule tables per domain.

As a conclusion of this approach, we can expect the performance to be the same
as that in the previous one. Maintainability and reusability will be at the top,
and stability will be our main concern and the subject of proper infrastructure
implementation.

Maintaining the Core – Service Repository

[310]

Creating a lightweight taxonomy for
dynamic service invocations
Now it is time to assemble a single practical taxonomy for all service entities that our
expert teams have identified in the runtime lookup scenarios exercise. The ultimate
goal is to present a complete, but a very compact, ESR DB schema.

Service as an entity model
We will start by putting together the basic artifacts, most of which we already
identified when counting our lookup entities. It is obvious that everything begins
with the Object and that it is the most abstract entity in a hierarchy. Furthermore, we
will see that on an enterprise level, we are really dealing with quite a limited number
of truly unique things, usually described in the earlier stages of a project's MDA
exercises (in UML form). It is also obvious that the transportable (or serializable)
form of an object is a message, which is a bit less abstract, but it can still exist as
a message. A message is commonly described as an XSD. An Object does not exist
alone. The Object and its context live and evolve within the application, presented
as a set of components and resources interfaced by the API (or contract), which
comprise a complex artifact called, in the old EDI times, a "trading partner ".

That's not exactly an SOA term, but it is quite capable of describing an application,
application user(s), and API (contract) with related protocol(s) and interchange
pattern(s) as a composite entity. A message, representing an application object,
will be constructed and propagated when a certain noticeable change in the object's
state occurs, denoting an event. This so-called basic or primitive event can be specific
to this application, or can be taken in the broader SOA context, that is, it can be an
enterprise business event. Event filtering and recognition, message construction,
and mediating are usually controlled by a set of rules. These rules play a significant
role in every aspect of Service activities and composition's policies. When combined
together in a certain order, they represent rulesets.

The mentioned services are the essence of the SOA, and through their models and
realizations, assume different roles in every framework of the SOA landscape. For
this taxonomy, it would be enough to say that the Service/Task is the executable
module with a clearly identified API (an API that is presented as a contract is
separated for WS and implanted for components) and a service engine responsible
for the execution.

Chapter 5

[311]

In this sense, the term "executable" means that every service or component
must support dynamic execution or invocation in the appropriate form—web
services must be composable (via the support of a standardized service contract,
statelessness, and loose coupling), Java components should support the
IoC/dependency injection, PL/SQL packages should be written to support
NDS, and so on. The last common abstract thing is the Process—a composition
of the previously registered Services/Tasks.

Following the basic rule of the separation of abstract and concrete taxonomy parts
(as in the standard WSDL), we can initially assume that these seven entities are
abstract, with the following properties as exceptions:

•	 Trading Partner: TP's Application Endpoint URI cannot be abstract. It is
usually defined at the late stage of the project.

•	 Rules: As we will discuss later, rules can be registered as functional,
XPath-based, and references to the decision tables. In all cases, they
cannot be abstract.

•	 Services: Depending on the runtime role, a service can be the ultimate
receiver, which makes it the TP's Endpoint, where a URI cannot be abstract.
Another property related to the registered Component is an Engine, which
must also be concrete.

So, the abstract entities' hierarchy can be shaped as follows, where the primary
artifacts are presented in white:

Maintaining the Core – Service Repository

[312]

To finalize the practical implementation of this semantic, we will go through all the
entities and identify all the properties essential for the dynamic service compositions.
Further, we will define how these properties can be implemented in a message
structure utilized by Service Broker.

Object
In the serialized form, Entity, Business, or Service-related objects present message
business payload. The types of Enterprise Business Objects are always quite limited:
product, resource, customer, and so on. Information about the transporting Object is
one of the mandatory parts of message identification, used for Object filtering, routing,
and transformation (the last one naturally shall be avoided). This information must be
presented in the MessageHeader together with ObjectContext for the realization of
the Event Identification and State Messaging pattern.

The properties of the object are OBJECT_ID, OBJECT_NAME, and UML_REF.

Service/Task
The most simple part of the taxonomy is defined in SOA terms. We register the
executable module that can be a part of the composition (fulfill the role of composition
member) and/or something we can dynamically execute (for instance, the rule
function). Thus, a role cannot be a property of a service as it's related to a service
within the composition. Engine and Model are the Service properties. Part of the
design-time service definition is a registration of service event messages, provided to
the runtime log. This information will be used for runtime Audit and testing purposes.

Chapter 5

[313]

Obviously, services can be a part of the bigger composition (SCA), which is also a
service, and can be registered in the repository for further reuse.

The properties of the Service/Task are SERVICE_ID, SERVICEMODEL_ID, ENGINE_ID,
SERVICE_NAME, and SERVICE_DESCRIPTION.

Composition/Process
Services' composition is actually what we are aiming for. A simple and descriptive
representation of the service composition is the main goal of the Service Repository's
taxonomy and the foundation for Service Broker.

So, a Process as a Service Composition is a sequenced collection of Services
performing the Operations and assuming the Roles in order to fulfill the complex
business logic of transporting (with possible transformation) of the Object in the
form of a Message between Applications Composition members, presented via
public Endpoints (contract, interfaces), initiated by the Business Event, occurred in
the Composition Initiator.

This statement pretty much formalizes the XML entity we will further denote as
composition Execution Plan (EP).

Maintaining the Core – Service Repository

[314]

It is also visible from the description of the execution plan that, for its discovery,
we need the names of three entities as input parameters:

•	 Object
•	 Event
•	 Service-Composition Initiator

The properties of the Compositon/Process are COMPOSITIONLIST_ID, PROCESS_ID,
SERVICE_ID, TASK_ORDER, OPERATIONTYPE_ID, and ROLE_ID.

Rules
Rules are governing conditions used to control the common aspects of service
activities. Rules Centralization is one of the core SOA patterns employed to establish
the Service Repository in general. However, rules are special because the rule storage
realization depends on a particular Rule Engine. Rule Engine (RE) is a special form
of Service Engine with very high performance demands, and these demands are
usually accommodated by placing rule storage as close to the engine as possible.
The most obvious repository realization is on DB, thus making us aware of possible
DB rule storages from various vendors. Oracle from DB Version 10g has a rule
management package, DBMS_RLMGR, with rather extensive functionality, although it
doesn't mean that our Rule Engine realization will be also on DB. The avoidance of
a vendor's lock-in is not always the primary concern. The main problem here is the
visibility of defined rules, so we must provide a rule with a name referencing from
the Repository to the actual rule storage. The rule reference in the Service Repository
leads to the actual ruleset in RE storage and, therefore, is part of the design-time
Rules Centralization exercises.

In one possible scenario, Inventory Endpoint using the previously mentioned
Message Header's input parameters will recognize the decision table's name
and route object to this table for rule evaluation.

Chapter 5

[315]

RE can be used to find XML EP by name during runtime if EP storage is file-based,
but that would not be our first choice.

Interestingly, the requirement to store rulers (rulesets) close to the RE can also be
fulfilled from another direction by moving RE toward the storage. Again, it rests on
the realization of your particular RE. However, depending on the actual complexity
of your business rules, it wouldn't be so difficult to implement a very lightweight,
but effective, custom rule engine if open source engines (Drools for JBoss) are not
an option for some infrastructural reasons. Detailed realization is the subject of a
separate discussion, but the basic idea is quite straightforward:

•	 Describe the supported rule types: let's say, XPath and Functional.
•	 XPath-based rules will evaluate the XML object using single Java,

getNodeValue(), or the XDK function, valueOf(xmlDoc, xpathRule),
where the rule is the XPath expression, (xpathRule).

•	 The Functional rule realization is based on the dependency injection,
where a rule's predefined function is executed dynamically for an object's
data evaluation. A returned value is compared with the data stored in the
decision table.

•	 Define acceptable rule operations and implement the handler for them
(=, >, <, !, =, and so on).

•	 Define supported rule aggregations (weak and strong, that is AND, OR,
respectively) and implement the aggregation handler accordingly.

It is quite obvious that the implementation of Rule Centralization does not require
the presence of the single rule engine. Only the rulesets storage will be common
(and preferably, ER-based). Following the steps from the preceding bullet points, it
is probable, and sometimes desirable, to implement RE in several key points of the
infrastructure—in the ESB layer for rule-based routing and invocation and in DB for
functional Audit and KPI evaluation. The latter is related to the operational policy
and for its monitoring, rules are essential. Thus, we will place the policy entity close
to the rules definitions.

Event
The implementation of an event's taxonomy is also straightforward. We just have to
reflect our understanding that the event is the change of an object's state, the object
exists within the application (service or composition), and from the whole enterprise
application prospective, the event could be seen as a primitive (basic) or enterprise
(complex). Events filtering and recognition is the task for the Rule Engine, which is
usually inside the northbound adapter layer.

Maintaining the Core – Service Repository

[316]

The event is part of the Message Header structure, together with three other
mandatory elements, and the key part of composition coordination and context
management. The biggest part of this management is apprehended by the message
elements and recognition is the task for the rule engine.

Message
A business message is a serialized business object. In terms of Service Brokering,
it is presented as an Enterprise Business Object (EBO) XSD in the CDM stack.
This is an actual payload, but we need to define and implement other essential
parts of a Message Container to make agnostic service brokering possible. We
have already mentioned two of them: Message Header (MH) and the composition
execution plan. What other possible moving parts of the Message Container do you
see in the following figure?

Chapter 5

[317]

Message Header (MH) is an SBDH-compliant construct (http://www.gs1.org/
docs/gsmp/xml/sbdh/SBDH_v1_3_Technical_Implementation_Guide_i1.pdf)
with the main purpose of conveying additional metadata about the message or a
payload in the message. Originally, from its specification, it can also provide some
generic processing information.

To support the object referencing and process coordination parts, we propose to
separate the processing construct in the Process Header, which will contain the
composition EP as coordination instructions for the Service Broker.

Business Object (EBO), Message Header, and Qualified Data Types (QDT) are
subjects of versioning and should have a namespace's postfixes according to
individuals' current versions.

In addition to the QDTs, Qualified Data Object (QDO) can be maintained and
governed. For example, governing should take control over the distinction of
QDT and QDO:

•	 QDT: Examples include Credit Card Data Type, Local Timestamp,
Local Date, and Specific ID

•	 QDO: Examples include Address, and so on

Qualified types and object can also be part of payload (EBO).

In a Message Container, EBO will be presented as <any>:

<xsd:element name="Payload">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any processContents="lax"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

This type of granularity is definitely negative for security reasons, but as long
as we are building SB on the EBF layer, our primary concern is the ability to perform
message/service brokering agnostically. The adapter framework, together with
the service perimeter guard, will be responsible for message screening, validation,
and wrapping ABO/EBO in the container.

http://www.gs1.org/docs/gsmp/xml/sbdh/SBDH_v1_3_Technical_Implementation_Guide_i1.pdf
http://www.gs1.org/docs/gsmp/xml/sbdh/SBDH_v1_3_Technical_Implementation_Guide_i1.pdf

Maintaining the Core – Service Repository

[318]

Thus, the application (or service) acting as a composition initiator (the most common
role of a trading partner is sender) is not required to construct a message container.
It can be done by adapters in the ABCS layer, but all necessary elements for this
must be presented in the Message Header:

•	 The elements include transactional data, timestamps, the object ID,
object primary key name, and key data. Basic event identification will be
provided in a way an application sender sees it. This will be used for object
identification in the Agnostic Message Container.

•	 To identify a complex business event and possible service composition
associated with it, information only about an object is not enough. An object
exists in the operational environment in conjunction with other objects and
in transit from one state to another. This information is presented in the
Message Header as name-value pairs, as the ID previously described in the
object-context relation (See the Object section).

Chapter 5

[319]

The SQL implementation of the service taxonomy
(example)
As an outcome of the realization of the service taxonomy, we can now demonstrate
the Enterprise Service Repository database schema, which is quite simple but fully
functional and capable of supporting runtime and design-time Discoverability for
practically any line of business (not only telcommunication). You can use it as an
example for your own implementation. Relations between entities are clearly visible
and very suitable for exposure by quick JAX-WS Service Inventory Endpoint. But we
do not need to do that for our agnostic controller. It will be no problem to modify
ExecutionPlanlooupService for the extraction of EP information from DB. We will
have to add the DB adapter and use it instead of the rule component. The SQL query
in the adapter will be based on the view built around the relational model presented
earlier, where the composition linking the table is the cornerstone. The view will
isolate the select statement in the adapter from further development in the
Custom ER schema.

Custom SR DB-schema

Maintaining the Core – Service Repository

[320]

The XML implementation of Execution Plan
Finally, the Execution Plan (synonymous with Task List or Service Routing Slip)
is the XML representation of the service composition we described earlier. It's
a sequence of the tasks with Endpoint URLs, where a task can have steps for
synchronous MEPs and the definition of Service Engines responsible for task
execution (Oracle OSB in the following example).

As you can see in the following working example, a list of the actual task's operation
is rather limited: invoke and transform. You can add your operation, but this
minimal set for Service Broker functionality is quite enough as we do not have any
plans to create another BPEL. For error handling, task pairs can have the rollback or
compensation part, which will be executed by Service Broker if the response from the
first execution is negative. In general, compensation can be another execution plan,
that is, if the rollback scenario is complex.

The rule of thumb is simple: rollback tasks can be implemented in the same execution
plan. Complex compensation activities shall be combined in a separate execution
plan and the master Service Broker will delegate the execution to the subcontroller
(another instance of the Service Broker). These operations are controlled by the
error handler, which also communicates with the Service Repository to find the
error resolution:

<?xml version = '1.0' encoding = 'UTF-8'?>
<phs:ExecutionPlan xmlns:phs="urn:com:telco:ctu:la:processheader:v01">
 <phs:taskList>
 <phs:task>
 <phs:invoke taskDomain="OrderFulfillment"
taskName="changeStatus" mep="sync">
 <phs:serviceTask>
 <phs:taskSteps flow="request" technology="OSB">
 <phs:transform location="Fusion/Xquery/
transformation/ChangeOrderRequest" type="OSB-Resource"/>
 <phs:invoke protocol="HTTP"
endpoint="http://<physical_address>"/>
 </phs:taskSteps>

Chapter 5

[321]

 <phs:taskSteps flow="response" technology="OSB">
 <phs:transform location=" Fusion/Xquery/
transformation/ChangeOrderResponse" type="OSB-Resource"/>
 </phs:taskSteps>
 </phs:serviceTask>
 </phs:invoke>
 </phs:task>
 </phs:taskList>
</phs:ExecutionPlan>

The physical implementation of the Execution Plan is presented in the
following figure:

Managing Service Repository
During the runtime Discoverability analysis phase, we mentioned deployment
options on which we could roll up our taxonomy model. OSR and OER are obvious,
where an asset's definition will be used in OER and tModels in OSR. For OSR-based
implementation, we can see a good match for entities such as message and object.
Task/Service can also be easily implemented in the case of WS-type, with generic
WSDL-tModel mapping. So, we can cover two and a half Runtime Discoverability
cases by defining these entities on OSR, and that's not good enough. Together with
OER, we will cover all the Discoverability scenarios for all entities we identified earlier;
however, whatever deployment option we chose, we will have to follow the taxonomy
reference model during the deployment process.

Maintaining the Core – Service Repository

[322]

Please see the following figure:

Maintaining entity relationships in SR

The preceding sequence is based on the custom DB model we presented earlier.
However, every entity can be presented as an OER asset or expressed using tModels
in OSR. The concrete Business Process (8) will be extracted as an XML Execution Plan
in LookupService using the DB adapter.

1.	 First, the atomic entity is a Trading Partner, representing the application/
service with concrete Endpoint and Endpoints Service Contract. The TP role
could be a Sender or Receiver.

2.	 The TP application is a logic that handles objects, including business objects.
All business objects must be registered as Business Entities.

3.	 Event reflects the change in an object, so we have to maintain a Registry for
all the business events.

4.	 TP, Object, and Event are the key elements of the message identification
(via Message Header), and message payload is an EBO carrying a
business object.

Chapter 5

[323]

5.	 Composition participant, controller, subcontroller, and service providers (TP)
perform tasks, expressed as service/components operations. Tasks' activities
are based on service engines capabilities and controlled by parameters.
Message-related tasks, such as translation or transformation, will require
registering message-processing XML artifacts (XSLT, XQuery, Xpath as
tModels, artifacts, or references to the file location).

6.	 All operations are governed by the rules, starting from events recognition
(business/nonbusiness or basic/complex) to message routing and
composition controller activities. Rules are combined in rulesets and based
on tasks. Rule collections are the essence of the policies.

7.	 Process can be defined as a tasks assembly. In this step, we define it as an
abstract process, describing business context, rules, and conditions.

8.	 Process, associated with TP/Endpoints, is a business process and can
be presented as an Execution Plan, or an individual SCA, depending
on factors we discussed earlier. A completely descriptive process
must be registered as a service for runtime/design-time discovery and
dynamic invocation.

Summary
The Governance of the Service Inventory using the Service Repository and Registry
is a complex multiphase cyclic process, covering a service's lifecycle aspects—from
the cradle to the grave. It's not possible to even scratch the surface regarding most of
them in a sixty-page chapter; an entire book is not enough (although, we would like
to recommend Thomas Erl's SOA Governance: Governing Shared Services On-Premise
and in the Cloud, Prentice Hall)! Oracle has the necessary building blocks to cover
these requirements:

•	 A Registry for runtime Discoverability
•	 A Repository to store all SOA artifacts with their relations and descriptions

for design-time Discoverability and comprehensive project management
•	 The utility for the synchronization of Registry and Repository to compensate

tModels' limitations and expand the runtime Discoverability options
•	 An API and simple UIs to handle and control all the artifacts in Registry

and Repository
•	 Connectors to a developer's tools and application servers for developers

and administrators
•	 Connectors to error handling facilities and business monitoring tools for

policy enforcement and the control of service statistics

Maintaining the Core – Service Repository

[324]

All of this would be not possible without a clear understanding of an artifact's
taxonomy and relations. This chapter demonstrated this aspect and the ways of
expressing these taxonomies in the XML forms for the entire message, Message
Header, and Process Header (execution plan). The concepts of Domain and
Enterprise Inventories patterns were explained from a Discoverability requirements
standpoint together with the Cross-Domain Utility layer. As a practical outcome,
you were presented with a custom lightweight Service Repository schema, suitable
for implementation on OER. We will use this concept further in the next chapters
dedicated to the adapter framework and error handling.

Finding the Compromise –
the Adapter Framework

This chapter concludes our discussion on the core compulsory SOA frameworks,
presenting the last framework (ABCS according to AIA notations) and all the SOA
patterns associated with it. This framework is also optional and probably even
more undesirable for pure (theoretical) SOA, but it is still one of the most extensive
and heavier layers in most technical infrastructures of modern enterprises. Why?
Because of all the legacy applications enterprises have? Let's check our calendar—
the concepts of unified standard contracts and canonical APIs (Official Endpoint,
Canonical Schema, Canonical Expression, and Canonical Protocol SOA Patterns)
weren't invented yesterday; they are more than ten years old and have been
cornerstones of contemporary SOA since 1999. With an average lifespan of any
core ERP/CRM/SCM bundle in an enterprise of about six years, all that dinosaurs
requiring adapters for smooth plugging to the EBS framework (Service Bus) should
be as good as gone. So, what are the reasons to keep this layer irrationally thick
nowadays? Integration efforts are considerable not only on domain edges, but also
within domains, and that raises questions about domain boundaries in general.

How can we minimize our integration efforts and focus mostly on services/
components collaboration? Can we avoid building adapters? What SOA Patterns
could help us overcome the interfaces disparity? Are there any ways of reusing
adapters? We will try to cover these and some other questions in this chapter. We
will continue developing the transport adapter framework attached to the Adapter
Factory, as discussed in Chapter 4, From Traditional Integration to Composition –
Enterprise Business Services. We will also touch upon more traditional ways of
establishing adapters using BPEL/SCA, but our main objective is to demonstrate
some ways of making applications more service-oriented in order to avoid creating
extensive Adapter frameworks, and here we will utilize some service metadata
taxonomies developed in the previous chapter.

Finding the Compromise – the Adapter Framework

[326]

Optimizing the Adapter Framework
The best adapter is the one you do not have to implement. The end. Ah, if only we
could get rid of them so easily. Requirements for an adapter within a domain usually
signify that something in your service inventory went wrong and you overlooked the
discrepancies in your data models, formats, and/or messaging/transport protocols.
Regarding protocols, you could actually anticipate that a single protocol would not
be enough and the Dual Protocol SOA Pattern (http://soapatterns.org/design_
patterns/dual_protocols) can be justified in the cases explained next.

Your service activities on both the north and south sides are the canonical SOAP
over HTTP, but between servers, handling every individual layer of your SOA
frameworks (ABCS<->EBS, EBS<->EBF, and EBS<->EBS), you would like to have
something faster, without XML processing overhead. In this case, the RMI-type
protocols could be the optimal choice, such as iiop/iiops or t3/t3s. While iiop
is used by the a CORBA-enabled Java clients and requires CORBA naming context,
the t3 protocol is the internal WebLogic protocol for Java-to-Java connections. In
fact, this protocol from the very beginning was the essence of Application Server's
interoperability, even before it became WebLogic. This protocol is quite fast and
supports all interoperability features such as Load Balancing, including complex
Load Balancing algorithms (Weight-Based, Random). For this scenario, you can
actually build services with contracts supporting only one canonical SOAP over
HTTP and let WLS handle the t3 protocol. Thanks to Oracle, most of the job can be
done through the configuration. The t3 protocol is a foundation for the SOA-Direct
protocol and SB-Transport protocol used in SOA Direct Binding, and the difference
between them is explained in the following figure:

http://soapatterns.org/design_patterns/dual_protocols
http://soapatterns.org/design_patterns/dual_protocols

Chapter 6

[327]

You have both SOAP and non-SOAP clients, which prefer a plain HTTP protocol for
several reasons; one of those is external Load Balancers, where just HTTP is the
best. Another is the most obvious one—the service consumer prefers plain HTTP.
Thus, you will need to handle both the transport and messaging protocol, and you
could do it on the service's side, maintaining two contracts through the application
of the Concurrent Contract SOA Pattern: one for SOAP, where you consequently
use JAXB (discussed earlier in Chapter 2, An Introduction to Oracle Fusion – a Solid
Foundation for Service Inventory) and SOAP wrapping for the object, and another
where you just do the O/X Mapping (again using JAXB or the Spring framework),
and then the classic HTTP Post routines—prepare request, set header parameters,
open connection, make the post, read response, and so on. What is important for us
here is that we always have to anticipate these requirements in our atomic service
design and prepare placeholders for X/O Mappers and basic inner adapters in the
form of a Service Facade SOA Pattern.

This facade will sit between your contract and actual component representing
service logic. In fact, that's what you get on applying REST/SOAP technologies
from most mature marshaling/unmarshaling frameworks (annotations in POJO,
Spring, JiBX, and so on). However, what if your service cannot support facade
injections or if the variety of required protocols is a bit wider than two (out of the
scope of the Dual Protocol pattern)? Well, then a traditional way to handle this
is to present the adapter layer in ABCS and handle it through the application of
the Protocol Bridging SOA Pattern. That's the classic integration approach with
transformation service agents in the ABCS framework. By the way, please note that
the Concurrent Contract is always based on the application of the Service Facade.
Also, just for the sake of SOA exam preparation (S.90.xx), keep in mind that Facade
in SOA terms is something present inside the Service.

What if you have the HTTP as your solid Canonical Protocol for transport,
but your messaging protocols can be SOAP over HTTP, plain HTTP(s), and
HTTP REST-style? Yes, that's quite a common situation when some clients would
like to have unified protocol operations (POST, GET, PUT, DELETE), and others prefer
more meaningful operations, expressed in WSDL.

Finding the Compromise – the Adapter Framework

[328]

That's a really interesting issue; please see the following figure:

Why would you need that? For example, in the context of telecommunication primes
which we discussed in Chapter 3, Building the Core – Enterprise Business Flows, we are
quite aware of the common trends in current video entertainment options, which are
listed as follows:

•	 Video on Demand (VoD) and classic Linear TV should not be seen as
separate delivery channels, but presented as a combined media resource with
consolidated assets for live (or near-live) programs and on-demand sources.
These assets should be accessible through a unified entry point, suitable
for all types of assets/channels (YouTube, HBO, live programs, and so on).
Naturally, all services handling these sources have different messaging
protocols such as REST, SOAP, and proprietary.

•	 Inside the telecom organization, we also have services with different
messaging protocols due to their technical nature. Services related to the
STBs operations (the small black box under your TV) are RESTful in general,
but some of them are also parts of Billing and Order Fulfillment, which are
traditionally SOAP-based. The telecom business domain is not exceptional;
you can see it everywhere.

Chapter 6

[329]

With the modern "Any content on Any device, Anywhere" paradigm, telecom
providers should ensure a seamless experience on TV and tablet/mobile devices
or any device for the same content. Thus, our APIs must be universal enough to
handle content on managed and unmanaged devices, supporting REST and SOAP
simultaneously (some call it Triple A, but it fact, we have a fourth A: Anytime).

Arguably one of the most complex APIs in telecom for all types of media resources
is a consolidated search. Your client could watch The Bourne Identity on his tablet and
at some moment decide to figure out how many Austin Minis were destroyed while
shooting a single chase scene on the stairways in Paris or who else in the history of a
spy's paperback lost his memory and got conscience convulsions instead. You must
instantly provide him with options to purchase the subscription to Top Gear where
Jeremy Clarkson will teach your client how to drive a Morris Marina or purchase
the The Spy Who Came In From the Cold movie from HBO Go (or an audio book from
Amazon instead, depending on your business affiliations). What could be easier,
some say. Those of us who hit some REST limitations wouldn't be so eager though.
How many query parameters can we put in a browser's search string? What is the
maximum length of the query string? How can we parse the complex query string
with plural parameter combinations? Indeed, some of these questions can be solved
by the Google YouTube Search API, for instance, but it would be much better and
easier to use classic SOAP/XML to construct the query XML object. You will not
have limitations on the query string, at least.

Generally speaking, the mapping of standard HTTP methods (POST, GET, and so
on) to meaningful business operations was never easy and can be done more or less
directly only for Entity Services (Recourses in that matter), where PUT->add, DELETE-
>del, GET->get, and so on. For more complex cases, you will have to do some
sort of "triangulation", where the meaning of your operation will depend on the
combination of three things—the resource instance, data type, and basic operation.
Yes, you could have as many combinations as you want, but please do not forget to
put it with utmost diligence into the repository from the previous chapter and make
it public; otherwise, discoverability and interpretability of your service will be just
a little less than nothing. And that's the common rule for all the RESTful services,
as they do not present formally discoverable contracts and require the resource
hierarchy with clear meaning of operations.

Finding the Compromise – the Adapter Framework

[330]

Just in case if someone got an idea—the first and foremost thing to
remember is that we do not want to start pointless discussions such
as SOAP versus REST. We never participate in such discussion and
we use them proportionally in all technical infrastructures where
necessary. We are just pointing out that REST simplicity has a price
and some declarations such as "SOAP is dead, all migrate to REST!"
are over-exuberant at least.
We truly admire the knowledge, style, and presentation skills of
Craig Larman (http://www.craiglarman.com/wiki/index.
php?title=Main_Page), one of the most influential Agile Experts
and his ways of making jokes. Although he claims that his jokes lack
humor, we think his jokes are brilliant. Instead, we can try one bad
joke here and we hope that you do not read this book to your kids
before sleep. When a beautiful young Princess was born, the evil
witch predicted that the Princess would die of pricking her finger
on her 15th birthday. So, to save his daughter's life, the good King
ordered to cut off all the Princess' fingers.
Simplicity of the REST services came from the visualization of linking
resources in an Internet style, based on a unified protocol with a
unified (and highly limited) set of commands. Cutting lots of SOAP
functionalities initially gave the REST concept a considerable boost.
Now, when REST services are facing similar challenges as SOAP,
simplicity is not that obvious. Actually, the same thing we can say
about OAuth 2.0 (half-dead, half-alive), and even about SOAP itself.
Look, it's not simple, it's not exactly about the object, it's not only
about the access, and it's not truly the protocol.

And speaking about the mapping of basic HTTP methods a in REST services to
business procedures, we should mention that situation when DELETE in fact could
mean CREATE in business terms is very common and that can be quite confusing.

So, where will we put all this bridging? That would be the same approach as in the
previous point. Plan for facade from the very beginning. Implement two mappers
for the same component: one for REST service implementation and another for Web
Services. Obviously, in most IDEs, all it takes is a right-click, but be careful with the
code-first approach. Luckily, contract first is also supported.

http://www.craiglarman.com/wiki/index.php?title=Main_Page
http://www.craiglarman.com/wiki/index.php?title=Main_Page

Chapter 6

[331]

Draw the Service contract (WSDL) as you see it, generate the code for the component,
and then build REST from this component, exposing the required operations
using JAX-RS (as one possible option). The second option would be to put the
REST<->SOAP conversion on the Adapter framework and OSB.

This solution also can be perfectly justified; for instance, the search of Video
Asset can be based on many search engines and API (both internal and external): the
YouTube API, IMDb, RottenTomatos, and your internal metadata store. You would
need the adapter if you will have to do the Transformation/Translation/Bridging.
If all your APIs are RESTful and you can extract data elements according to your
Video Asset EBO, you can do this kind of aggregation on OSB. In the case of any
transformation, consider the presence of the Adapter framework. All core patterns
for the Proxy service were discussed in Chapter 4, From Traditional Integration to
Composition – Enterprise Business Services.

Remember, this type of aggregation doesn't make this service task-orchestrated
because it remains totally business agnostic. It is also synchronous and we do not
need any kind of state deferral from the BPEL engine. Thus, placing this type to
BPEL/SCA will definitely be a mistake making the service slow and unreliable
(more infrastructural elements that necessarily do not improve reliability).
In general, individual requestors are interfaces to different search APIs and
can be presented as separate EJBs/POJOs and then you can assemble them on OSB
using the JEJB transport. The JEJB proxy service serves as a stateless session
bean to the EJB client interface.

The next logical outcome from the previous point would be the JSON/XML
conversion for the same type of Enterprise Business Message (EBM). Yes, this is
not really a Protocol Bridging; it's a Data Format Transformation SOA pattern as
we have different formats to deal with. Again, transformation can be avoided if the
Concurrent Contract SOA pattern is observed at the early stages of service design.
Indeed, that's quite common (and prudent) to have services designed for XML/JSON
messaging format support and in case of REST services, such as http://ctu.com/
services/v2013/fusion/ltv/json/Channels/sort/LogicalNumber or http://
ctu.com/services/v2013/fusion/ltv/xml/ Channels/sort/LogicalNumber.

http://ctu.com/services/v2013/fusion/ltv/json/Channels/sort/LogicalNumber
http://ctu.com/services/v2013/fusion/ltv/json/Channels/sort/LogicalNumber
http://ctu.com/services/v2013/fusion/ltv/xml/ Channels/sort/LogicalNumber
http://ctu.com/services/v2013/fusion/ltv/xml/ Channels/sort/LogicalNumber

Finding the Compromise – the Adapter Framework

[332]

We have plenty of libraries and frameworks to the marshal/unmarshal Object
to XML/JSON as mentioned earlier, and JAX-RS is one of the most powerful
framework to do the job; please see the following figure:

Avoiding the service's Data Format Transformation using annotations

We have the Video Asset class exposed as a REST service. As you can see, we have
REST WADL describing how the same operation "Get Asset by Title from particular
Source" exposed through the Service Bus can be linked to two functions-wrappers
with different annotations: @Path and @Produces. Behind it we have the same
getAssetList. This is about the GET method, but what about POST? The annotation
in this case will be @Consumes and you can combine the json and xml formats in one
annotation. Now, Client should include an appropriate content-type header in his
POST request to be properly handled. For more information about JAX-RS and JAXB,
please see the Oracle documentation at http://docs.oracle.com/javaee/6/
tutorial/doc/gkknj.html.

In addition to that, Google supplied us with Gson to do simple serialization with
JSON. (We are using it currently in our projects at the moment of writing. Feel free
to use Jackson instead. Don't forget to look at YQL from Yahoo REST API Console;
it's very ingenious.) For a quick demonstration, let's just return to the media Search
service we mentioned earlier and focus only on one external API from IMDb. The
following REST API will return JSON containing all records related to the Bourne
Identity request.

The search URL of the Bourne Identity request is http://www.imdb.
com/xml/find?json=1&nr=1&tt=on&q=Bourne%20Identity.

http://docs.oracle.com/javaee/6/tutorial/doc/gkknj.html
http://docs.oracle.com/javaee/6/tutorial/doc/gkknj.html
http://www.imdb.com/xml/find?json=1&nr=1&tt=on&q=Bourne%20Identity
http://www.imdb.com/xml/find?json=1&nr=1&tt=on&q=Bourne%20Identity

Chapter 6

[333]

Casting it to the object will require just a couple of lines of code, shown as follows:

public SearchObject getSearchResultObject() throws Exception {
 try{
 InputStream source = getResultStream(search_url);
 Reader reader = new InputStreamReader(source);
 Gson gson = new Gson();
 SearchObject response = gson.fromJson(reader,
 SearchObject.class);
 ...
 reader.close();
 return response;
 }
 catch (Exception e) {
 log.error(getClass().getSimpleName(), "Error for URL "
 + search_url, e);
 }
 return null;
}

Surely SearchObject is completely based on the IMDb JSON response. Constructing
it will also require no time, thanks to the Google library, jsonschema2pojo. Just
install it, save the IMDb JSON in a file, and do the conversion (use your own
parameters if needed), using the following command line:

jsonschema2pojo --source imdb.json --target java-gen -R -a GSON -T JSON

You will find a complete class hierarchy in the java-gen folder, suitable for
consumption by Gson. Well, not exactly suitable, to be honest. What we just
demonstrated is not exactly the code-first approach, as we have generated classes
from the message, but this is not a Canonical Schema (Message) by any standard,
and anyone who looked at the Google YouTube JSON, for example, knows how
many "specific" things are in there. IMDb is not an exception. Without compromising
the classes' structure and hierarchy, you really can make POJOs more logical and
compact, and we advise you to do that. Anyway, the previous code will work
right away, but is not advisable from the SOA's standpoint.

To complete the following example, we demonstrate the getResultStream function.
It's entirely based on the Apache HTTP client and exceedingly simple (thanks to the
Apache community):

 DefaultHttpClient client = new DefaultHttpClient();

Finding the Compromise – the Adapter Framework

[334]

 HttpGet getRequest = new HttpGet(url);

 try {
 HttpResponse getResponse = client.execute(getRequest);
 final int statusCode =
 getResponse.getStatusLine().getStatusCode();
 if (statusCode != HttpStatus.SC_OK) {
 log.error(getClass().getSimpleName(), "Error " +
 statusCode + " for URL " + url);
 return null;
 }
 HttpEntity getResponseEntity = getResponse.getEntity();
 return getResponseEntity.getContent();
 }

 catch (IOException e){…}

You can expose this service using OSB now as shown in the previous screenshot.
Job done, no Protocol Bridging of Data Format Transformation required for this
simple implementation.

As you can imagine, a complete enterprise-ready implementation will require a
little more effort and another common adapter-related pattern will be necessary.
What we will need to do is:

1.	 Implement URL Builder for constructing the REST query string accepting
more than one parameter (for example, title, List<sources>, actor,
rating, num_hits_returned).

2.	 Implement SearchObject (ABO) for every external resource/application.
3.	 Validate canonical SearchObject (EBO) for internal resources.
4.	 Implement casting of individual ABOs to the consolidated EBO.
5.	 Finally, expose consolidated services on ESB (OSB), for JSON and XML.

Step four signifies that the Data Model Transformation SOA pattern (ABO->EBO)
should be used.

Traditionally, in a classic BPEL-based Adapter framework for SOAP services with
XML payload, XSLT transformation is the easiest choice. With visual mapping
and a drag-and-drop approach, you can achieve desirable results in minutes for
simple cases. Regretfully, complex cases would require manual coding, and from a
performance standpoint, XSLT is probably the slowest.

Chapter 6

[335]

Naturally, complex coding in XSLT will make it impossible to be seen in Visual
Designer. One can argue that complex coding is hardly possible in XSLT and,
anyway, the temptation to do Java Callouts will be incredibly strong. By the way,
the JSON payload will require some manual coding anyway. Considering this,
our architectural directions could be as follows:

•	 Expose every individual's Search Services via the Adapter framework to the
Service Bus and aggregate service calls to different sources on OSB. Only one
service will be exposed to the customers; the result will be provided in the
canonical form (XML/JSON formats). The solution's modularity will be quite
high, as every source will be individually wrapped. Performance will not be
at the best, as we will have to do lots of serialization/deserialization and data
model conversions. The Adapter framework could be quite heavy.

•	 Still, only one service will be exposed, but instead of wrapping every
individual source into an adapter and assembly on OSB, we will do all
object-to-object mapping behind the main service, presenting custom
searches as separate EJBs or POJOs. This approach could be suitable when
performance requirements are high, the number of individual sources are
limited and/or static (due to business agreements with external providers),
and when aggregation logic is quite complex; you will have to put it into a
separate Java module anyway. You remember the rule from Chapter 4, From
Traditional Integration to Composition – Enterprise Business Services, dedicated to
Oracle Enterprise Service Bus—do not place complex orchestration/service
collaboration logic on OSB!
Actually, from a modularity prospective, both approaches are pretty much
identical. The second approach also can be quite modular with a proper Java
classes design. It also can be swift, as we will not leave Java premises and do
all mappings on a low level. Spring 3 Object Mapping is a very good choice
(see http://static.springsource.org/spring/previews/mapping.html),
but we have lots of other libraries from Apache, such as Commons-Lang and
Commons-Convert, ModelMapper (http://modelmapper.org/), and Dozer
for JavaBeans. This list is not complete. Therefore, with proper placing of the
SOA patterns, the ABCS layer still can be very thin and manageable.

•	 And finally, Protocol Bridging on OSB will be simply inevitable if we
have services in our inventory communicating synchronously and
asynchronously (via queues). In this case, the most logical approach is
to establish OSB Service Broker as we did in Chapter 4, From Traditional
Integration to Composition – Enterprise Business Services with some Adapter
framework around it.

http://static.springsource.org/spring/previews/mapping.html
http://modelmapper.org/

Finding the Compromise – the Adapter Framework

[336]

For the SOA exam preparation (S.90.xx), please keep in mind that
Data Format Transformation, Data Model Transformation, and
Protocol Bridging SOA patterns are the parts of Service Broker
compound patterns, which is an essential part of ESB implementation.
You also should remember that you can apply any of these patterns at
any layer of your SOA infrastructure, but necessity of this application
signifies that your design is not really optimal.

We can come to a conclusion that after a quick walk-through of these of these use
cases (five in total) described previously. We can clearly see that Protocol Bridging
pattern will be highly demanded only in one of them. With the implementation of
the Canonical Schema SOA pattern, Data Model Transformation can be avoided
and Data Format Transformation can be solved on the service side. All of this will
minimize our integration efforts and help establish a more predictable and reliable
Service Inventory, well suited for long- and short-running compositions.

How can you achieve this? Sorry, the answer is quite non-technical and has only one
word—Governance. You, as an architect, are the Mayor of this SOA metropolis and
it's you who is responsible for establishing policies and watchdogs around the crucial
elements of your SOA infrastructure and in context of the Adapter framework— the
Federated Endpoint Layer. This compound pattern is a result of the combination of
the following patterns, which we discussed earlier:

•	 Canonical Protocol: Clearly, it's impossible to have only one protocol
(transport and messaging) in our Service Inventory. From the previous use
cases, you can expect that at least three will be required. Direct binding can
be achieved through configuration and will not require (significant) efforts
for bridging. Watch for others two and do not let them spread around. You
can mitigate the risks by promoting the Service Facade and Concurrent
Contracts at earlier stages of the service design.

•	 Canonical Schema: Establish the EBO model and EBM schemas as your
first step. Stay alert about any amendments in XSDs.

•	 Canonical Expression: Operations such as doTask and
getOrdforPrevRepPeriodInVideoDomainperCountry are two extreme
cases of expressing service capabilities and neither is consistent or
interpretable. In Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns,
and Frameworks, we mentioned that the Java naming convention and XML
naming standards documentation could be a good start for establishing a
proper naming system.

Chapter 6

[337]

•	 Service Normalization: Presence of redundant logic should be strictly
justified and generally avoided. Services should not have overlapping
functional boundaries, and if you have the same services working in a
cluster for the reliability and performance reasons, it means that you have
a Redundant Implementation SOA pattern in place, not a denormalized
inventory. Constantly watch for new services delivered by different project
teams. Prevent any attempts to implement "another version of that service,
just a bit faster and better suited for our (projects) compositions". Almost
immediately after implementation, you will have to integrate this "better
service" in your service domain/enterprise and migrate customers.

•	 Official Endpoint: This is another Compound pattern, based on Logic
Centralization and Contract Centralization. Logic Centralization seems
similar to the Service Normalization pattern, but generally focusing on
gathering agnostic logic in atomic units of work and presenting them as
unique blocks for reuse. The Contract Centralization pattern in this case
will guarantee the application of the Loose Coupling principle and prevent
negative coupling. Simply put, in order to keep our inventory normalized,
we will avoid building hybrid services with partial/incomplete/mixed logic
and strictly prevent access to service resources bypassing service contract.

Thus, SOA methodology supplies us with all the necessary means to minimize
the Adapter framework in order to reduce integration efforts. We believe that some
technical demonstration will help you understand ways of service, "canonicalization"
in this sense. Arguably, the most common adapters in our Adapter layer are
DB-Adapters, so, probably we should concentrate our attention on them first
in our examples.

Also, we would like to demonstrate how to use the elements of the custom service
repository we discussed in the previous chapter in our adapters design, mostly
because of its flexible taxonomy. Our intention is not really to build the Adapter
layer, but find ways to get rid of it. Therefore, for the next technical exercise, we
would like to put CTU Telecom aside for the moment (we will return to it soon,
discussing Error Handling frameworks) and select DB-centric Enterprise with lots of
business logic concentrated in PL/SQL packages and a huge integration layer based
on different BPEL processes, where most of the flows are DB-adapters.

Because of the large number of the Oracle E-Business Suite installations around the
globe, it's not that difficult to picture such an enterprise, and this time it will be the
biggest Scandinavian logistic operator, Reindeer Rudolph Delivery AS, the corporate
moving all kinds of goods around Northern Europe, from post and parcels to IKEA
products (again, the company is counterfeit).

Finding the Compromise – the Adapter Framework

[338]

Another reason for selecting this type of primer is Oracle's SOA products history,
which we have discussed in Chapter 2, An Introduction to Oracle Fusion – a Solid
Foundation for Service Inventory. From the table in the The Oracle SOA development
roadmap – past, present, and future section in Chapter 2, An Introduction to Oracle Fusion
– a Solid Foundation for Service Inventory, we can see that the first revolutionary step
in Oracle SOA adoption was in 1998-99 with the introduction of Oracle 8i and a
full-fledged XML Developer Kit (XDK, latest version http://www.oracle.com/
technetwork/developer-tools/xmldevkit/index.html?ssSourceSiteId=opn).
Together with other two (Collaxa and BEA acquisitions), it was truly a cornerstone
for all the SOA portfolios (acquisition of Sun/Java was just logical continuation
in this direction). Using this opportunity, we would like to express our deep
appreciation to Steve Muench for his efforts in composing one of the best SOA
books of the earlier SOA days (2000).

Many DB versions changed, lots of XDKs come and go, and some
methods demonstrated by Steve Muench are quite obsolete (starting
from 9i) nowadays, but an elegant architectural approach, clear vision
of optimal solutions, and good balance in the tools selection (Java, PL/
SQL) could serve as a good illustration of the rational design and we
will use it in our following example. Surely, 11g DB and modern XDK
functionality will be preferred. After all, it doesn't matter if it is modern
or not, all that matters is if it works according to our principles or not.
The color of the cat does not matter, as long as it catches the mice.

Logistic primer
The following example is based on the sequence of SOA and integration projects
undertaken over several years on one of the oldest Scandinavian Company, aimed
to improve costs savings and operational agility. The details about the company
and the project undertaken are explained in the following sections.

Basic facts about the company
Some of the details about the company and its market position are as follows:

Logistic operator Business domain Governing and
type of ownership

Number of
employees

Reindeer Rudolph
Delivery (RRD) AS

Logistic and
distribution with
more than 300 years
of service

State owned/
Government

20,000

http://www.oracle.com/technetwork/developer-tools/xmldevkit/index.html?ssSourceSiteId=opn
http://www.oracle.com/technetwork/developer-tools/xmldevkit/index.html?ssSourceSiteId=opn

Chapter 6

[339]

RRD history
RRD is a well-established big logistic operator, freight forwarder, and parcel
delivery service, operating across Scandinavia and Northern Europe. Its main assets
are cargo transportations units, cargo and transshipment terminals and collection
and distribution centers.

All operations are very centralized and governed from a single operation center
(Stockholm HQ). Development and implementation tasks are under the control
of the local IT department with high level of skills in centralization. Although up
to 50 percent of implementations are done by internal IT forces, the presence of
external vendors, carrying on development, is substantial due to the magnitude
of ongoing tasks.

Technical infrastructure and automation environment
The application landscape just reflects the governance model as all core applications
are implemented by the centralized Oracle E-Business Suite bundle running on
very beefy hardware (a modern mainframe), on the HA topology.

A very extensive Adapter framework is employed in order to handle a sizeable
amount of remote service consumers and service providers. In order to handle a
desirable level of concurrency, asynchronous interchange patterns are considered
as a primary way of communications. The Oracle E-Business Suite is the main
source of business events, which are identified and distributed for message
construction and processing.

The challenges here can be described as follows:

•	 Using the highest level of logic centralization in one application suite
provides a desirable level of flexibility for all concurrent vendor's teams to
implement independent solution logic without disrupting each other's work

•	 Make sure that adapters and message transformation modules will not
become a bottleneck for the performance

•	 Considering the first two points, it becomes clear that implementation
of the Event-Driven Network is one of the strategic directions for RRDs
service-orientation

Finding the Compromise – the Adapter Framework

[340]

The GetAResInvData service (account receivable invoice data) is one of the core
services exposed for external systems. The following figure shows the service
architecture:

Oracle EBS events handling sequence

The existing design specification for this service describes the parts of this service
architecture, as follows:

•	 The Oracle E-Business Suite is a unified and centralized invoice handling
system (among others, functions such as Account Payable, Account
Receivable, and OM), presenting a solid ERP, and thus, GetAResInvData
is the single access point for the invoice data from the middleware side
towards the RP.

•	 The Account Receivable (AR) part of OEBS is concurrently accessed by
many internal modules, including the frontend.

•	 Every invoice object alteration in an AR domain is controlled by service
agents, propagating change state to Business Event System (BES) for event
recognition and filtering. The BES validates the type of event and helps
constructing the Event XML message, if the event is business, as well as
message-oriented.

•	 A very small XML message with the event data is sent to the event
subscriber, which is a part of the message-oriented middleware.

•	 Service-subscriber pass the event particulars to the data-extraction module,
which queried AR DB for the invoice object.

•	 The Invoice Object is extracted from OEBS and transformed in the
required format.

Chapter 6

[341]

Initial analysis
Something can be spotted immediately such as the service name(s). Yes, it's
quite far from canonical by any standard. Minor thing, you say? Unfortunately
not. As mentioned, a lot of vendors and solution providers are concurrently
implementing different projects using centralized OEBS instance and an Adapter
framework around it. How can we be sure that the service purpose and context
can be unambiguously understood and then properly used? Regretfully, a strict
governance policy and centralized control weren't established the best from the
very beginning of Service Inventory creation, which opens the door for redundant
logic implementation and service denormalization in general. This fact affected the
Adapter frameworks quite severely, leading to multiple adapters of the same nature
and hybrid services instead of task-orchestrated services in a right block of figure in
the Optimizing the Adapter Framework section.

External programmers and Trading Partners became confused by the magnitude of
interfaces and business operations offered in unstructured and unclear ways, which
inevitably leads to a strong desire for most of them (internal TPs, developed and
controlled by solution providers) to get direct access to underlying OEBS resources.

This is not the worst yet. We already mentioned the Oracle Business Event System
as a core component for handling business events in OEBS, acting as a subscribe-
publishing mechanism to all consumers for all business events occurred in any
business domain. By default, BES has more than 1,000 seeded events, preconfigured
for most common business cases per domain. Generally, it gives you a great
flexibility to propagate the Event message in order to trigger any process in OFM or
run any custom module from the custom schema. The configuration of events and
event subscribers is relatively simple and can be done in a few clicks using the OEBS
Admin console. The problem here is that without proper guidance, each vendor
(such as IBM, Accenture, Capgemini, and lots of others) who is involved in project
delivery in RRD has their own understanding (or misunderstanding) of business
events and their relations. Some might think that there is no required event or no
proper action for the event and so on. Even with a common understanding of the
concept, there is enormous temptation to make a shortcut under the pressure of a
tight project schedule. And the result is hundred lines of code (literally!) in dozens
of triggers, associated with main business tables in each domain. Even more—lots
of weird events registered in BES, connected to dead or malfunctioning business
procedures. After a year of such implementation, the BES finally failed completely
as a module and as a concept and RRD administrators just shut it down.

Still, most of it can be considered as a Governance issue and lack of policy
enforcement, especially from the ownership prospective. There is nothing
bad related to adapters implementation, the topic of this chapter. Or is there?

Finding the Compromise – the Adapter Framework

[342]

Let's look at the sequence of messages exchange logic again as follows:

•	 First, an event is detected. Event subscribers are recognized and the
event message is issued to all recipients through the common channel
(AQ in most cases).

•	 Recipients recognize the event and activate the object extraction
though the standard OEBS API which we mentioned in Chapter 1,
SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks.

•	 For complex business cases, one extraction is not enough, we have to enrich
extracted business objects (EBO) several times or build a custom procedure
in an XXCU custom schema for complex data aggregation and use a standard
DB adapter for that.

•	 We will process the business object and return the completion status back
to OEBS.

What can we say about the classic Hollywood principle here ("don't call us, we'll call
you")? Well, apparently, if we have more than one call here, the principle is entirely
broken. Someone is calling us and asking to call back. So much for low coupling and
high cohesion, isn't it? We have a callback MEP where it's not really required. Try
to imagine this type of interchange applied in stock exchange and utilized by stock
trading robots: the robot will receive notification about an index change (time) and
then make a decision for index data extraction (some more time) and after that do
the actual extraction (and more time). Are we going long or short? No matter what,
money will be lost anyway.

You can say that this case is kind of extreme; some latency will exist anyway in
any system, and such rapid response is not really required for RRD business cases
(we use AQs after all). However, the main question remains—why not provide EBM
for the actual object itself in the first place, not just events notification? We've been
talking about schema standardization quite a lot, but here it seems only the event
message is standardized in the APP_WF_EVENT_T.xsd schema. The main reason for
that was mentioned earlier—lack of governance, which resulted in many versions
of the same EBM.

In fact, they are ABMs with no centralized EBO. The object generally provided
by the standard OEBS API is disregarded as too complex or vague. Most of the
processes handling the Event notifications in SOA Suite SCA should be aware of the
data models, locations, and constraints to pull the data out for object construction
and enrichment, and for a more custom version of EBO, you need a more complex
extraction for the procedures, bypassing standard OEBS APIs. Finally, we have the
hybrid type of services, mixing adapters functionality and task-orchestrated service
operations in one service.

Chapter 6

[343]

There is no service bus like the one we discussed in Chapter 4, From Traditional
Integration to Composition – Enterprise Business Services, it's pretty much a two-layer
architecture with one core application and lots of denormalized hybrid services
with overlapped boundaries, multiple adapters, some generic (for event) and many
proprietary, extracting similar business objects with small variations.

Inside the main application, we can see a lot of custom triggers with overlapping
triggering conditions and elements of business code, resulting quite often in
ORA-04091: table <tablename> is mutating….

Now the picture is quite clear, we hope. So, what would be the action plan?
Ultimately, we should put BES back to operation as the standard Oracle event
system, but ideally we should propagate canonical EBM to task services around
OEBS, not events. In other words, we should get rid of the callback pattern and
eventually minimize the Adapter framework footprint here. We have the perfect
opportunity for that, as we have a snowflake architecture (classification you can
find in Application Integration: EAI B2B BPM and SOA from Bernard Manouvrier and
Laurent Menard) in place with a single "source of truth" (OEBS with linked business
domains) and lots of trading partners, capable to accept RRDs canonical objects.
Therefore, the proposed steps are as follows:

1.	 As a "table mutation" is the immediate problem, remove all triggers from
core business tables and present one unified way of event detection.

2.	 Consolidate all enterprise objects representations under canonical models,
present them as generic XSDs, and make them public and available for all
external/internal developing teams. SOA MDS and external HTTP servers
will be good options.

3.	 Analyze message construction procedures and consolidate them inside
OESB in order to eliminate the Adapter framework (at least minimize the
footprint). All SCAs/BPELs should receive the required EBM without
enrichment or excessive transformations.

4.	 We are not only constructing messages, we receive them as well. Supply
every EBO with a unified individual parser/loader. It will conclude the
message-handling components set (constructor/parser).

5.	 After removing table triggers, we have to put all event's recognition/filtering
logic somewhere. That will be our rule functions and the XPath artifact,
which we also have to register in the Service Repository (or BES subsystem
when it will be operational again).

6.	 Our canonical protocol will be JMS/AQ. Thus, we will have to implement AQ
handling for enqueuing and dequeuing inside the main application OEBS.

Finding the Compromise – the Adapter Framework

[344]

Refactoring the DB-centric Fusion Application
Some of the presented actions can be achieved by standard OEBS
components—XML Gateway, Oracle Application Service Adapters, and BES.
We will rely on them as well, but again, our main goal here is to demonstrate
how to avoid building the Adapter framework and how to utilize service taxonomy,
which we presented in the previous chapter. Then you will be able to roll it up on
any DB, simplify the DB Adapter framework, and have better understanding of the
internal BES structure of OEBS.

Events registration
The table mutation problem as a first task can be solved quite quickly and drastically,
although not everyone will be happy about the radical approach: we just remove
all triggers from every Entity business table and implant only one Universal trigger,
presented as follows:

CREATE OR REPLACE TRIGGER XXCU.XXCU_EHS_REGEVENT_TRG
BEFORE DELETE OR INSERT OR UPDATE ON XXCU.XXCU_EHS_TESTADDRESS
REFERENCING NEW AS New OLD AS Old
FOR EACH ROW
DECLARE
 new_trgBasicEvent XXCU_EHS_EVENT.BasicEvent_rec;
 msgtype varchar2(20) := 'ERR';
 msgid varchar2(20);
 msgtext varchar2(2000);
 msgsrc varchar2(200):= 'XXCU_EHS_REGEVENT_TRG.register_event';
BEGIN
 new_trgBasicEvent.v_srcref_type := 0;
 new_trgBasicEvent.v_object_name := 'ADDRESS';
 new_trgBasicEvent.v_objectkey_name := 'ADDDRESS_ID';
 new_trgBasicEvent.v_objref_data := :NEW.ADDDRESS_ID;
 new_trgBasicEvent.v_objref_group := 'EHS';
 new_trgBasicEvent.v_objref_processed := 'N';
 new_trgBasicEvent.v_objref_detected := 'N';
 new_trgBasicEvent.v_job_id := 9999;
 new_trgBasicEvent.v_status := 1;
 new_trgBasicEvent.v_retry_attempts := 0;
 new_trgBasicEvent.v_transferred := SYSDATE;
 new_trgBasicEvent.v_processed := SYSDATE;
 new_trgBasicEvent.v_appuser_code := 1;

Chapter 6

[345]

 if inserting then
 new_trgBasicEvent.v_objref_action :='1';
 elsif updating then
 new_trgBasicEvent.v_objref_action :='2';
 elsif deleting then
 new_trgBasicEvent.v_objref_action :='3';
 new_trgBasicEvent.v_objref_data := :OLD.ADDDRESS_ID;
 end if;
 --

 -- Composite events key registration
 -- . . .
 --

 XXCU_EHS_EVENT_HANDLER.register_event(new_BasicEvent =>
 new_trgBasicEvent);
 EXCEPTION
 WHEN OTHERS THEN
 msgtype := 'ERR';
 msgid := SQLCODE;
 msgtext := SQLERRM (msgid);
 msgsrc := 'XXCU_EHS_REGEVENT_TRG.register_event';
 XXCU_COMMON_LOG_RT.msglog (msgtype,
 msgtext,
 msgid,
 1,
 msgsrc,
 9999
);
END XXCU_EHS_REGEVENT_TRG;
/

We decided to put almost the complete code for several reasons; some are as follows:

•	 From declaration of the BasicEvent record, you can immediately understand
the structure of the Event Log table, which we will use for physically
decoupling basic Events Registration and further outbound processing. For
demo purposes, we show the Address object events registration, although it's
not entirely "business", it's more like the QDO (see Chapter 5, Maintaining the
Core – the Service Repository), and it's quite essential for logistic operations.

•	 You can see the runtime logging call and its data structure. We will use it
later while discussing Error Handling.

Finding the Compromise – the Adapter Framework

[346]

•	 The last reason is deducted from the common question—it seems that the
Basic Event record contains only the object key, object name, key ID data,
CRUD operation indicator, and some timestamps. Would it be enough?
The common answer is, amazingly, yes! With proper DB organization,
you can construct the Business Object by just using these parameters
(OEBS DB is based on Oracle Trading Community Architecture, TCA
standard—http://docs.oracle.com/cd/E18727_01/doc.121/e13570/
toc.htm—and is really well organized). Still, we can supply any Event
Handler with ADT array, which is part of the BasicEvent record, holding 20
elements for any object / object context-related data you will ever need in
further message construction and propagation. You can increase the number
of elements, but in practice, you will never exceed the proposed number.
Naturally, the Event Log registration table has a column based on this ADT
type and you can query it without any difficulty. So the compound event key
registration part looks as follows:

--1
 new_event_attr.ParameterName := 'FND_GLOBAL.USER_NAME';
 new_event_attr.ParameterValue := 'NA';
 new_event_attr.BusinessName := 'FND_GLOBAL.USER_NAME';
 new_event_attr.ParameterType := 'VARCHAR2';
 new_event_attr.ParameterOrder := 1;
 new_event_attr.ParameterStageIndex := 1;
 new_event_attr.ParameterStage := 'old';
 v_EHS_evtcontext.EXTEND;
 v_EHS_evtcontext(1) := new_event_attr;
--2
 new_event_attr.ParameterName := 'FND_GLOBAL.APPLICATION_
NAME';
...
/*--

 OBJECT SPECIFIC, OPTIONAL
--

 Put your values here below, up to 15
--
---------------------*/
 --6
 new_event_attr.ParameterName := 'OLD_ADDRESS_ID';
 new_event_attr.ParameterValue := 'old_address';
 new_event_attr.BusinessName := 'Old Address';
 new_event_attr.ParameterType := 'VARCHAR2';

http://docs.oracle.com/cd/E18727_01/doc.121/e13570/toc.htm
http://docs.oracle.com/cd/E18727_01/doc.121/e13570/toc.htm

Chapter 6

[347]

 new_event_attr.ParameterOrder := 6;
 new_event_attr.ParameterStageIndex := 1;
 new_event_attr.ParameterStage := 'old';
 v_EHS_evtcontext.EXTEND;
 v_EHS_evtcontext(6) := new_event_attr;
.....

As you can see, the first five are OEBS-specific FND_GLOBAL attributes, and you have
15 more elements of your own. The register_event procedure just puts the basic
event record into the event log table. That's it, registration complete, and no more
activities on the Entity table whatsoever. A completely separate process, based
on Oracle Job (Scheduler) will scan this table for the new entries and decide on
further steps. We have completely decoupled event registration and further object
construction. From the number of processing flags in the event record, you can
understand that locking mechanism is established on the Event Registration table
(see flags v_retry_attempts, v_transferred and v_processed in the previous
code) and you could have as many event handlers as you like, implementing the
parallel processing: vertically (per Objects type: one for Orders, one for Invoices,
and so on) and horizontally (by number of records—500 records per handler, for
instance). Therefore, event registration and event recognition parts will never
be your bottleneck. However, one problem has to be mentioned. Even though
the triggers and event log table footprints are so insignificant that we can hardly
consider this technique as invasive, their implementation can be problematic in
environments that do not entirely belongs to us. If the vendor is sensitive to his
internal DB structure, you will have to find noninvasive ways of events registration.

If you are an architect on the client's side and during the RFP process,
you discover such kind of "sensitivity" combined with the inability of
your vendor to explain how events are registered, filtered, and later
used for EBM construction, be extra cautious. The presence of the
Callback pattern for Events processing also has to be justified.

Implementation of noninvasive ways of event recognition and filtering (or change
data capture, CDC) is not more difficult than what was discussed earlier. Even more,
some solutions can be much faster with highest selectivity and precision, with zero
CDC misses. One possible way can be based on the already existing data replication
solution for your critical mission applications (and OEBS is definitely one of them).
There are many tools you can employ for this task and SharePlex could be a good
option—it has no footprint on the source database; it's extremely quick, and most
importantly, it performs replication for data and statements, allowing you to "sniff"
certain operations on certain DB objects.

Finding the Compromise – the Adapter Framework

[348]

Even more, SharePlex does support data transformation before applying on the
target DB and it can work in the hub-and-spoke mode, aggregating data from many
sources, not to forget to mention that it can move a tremendous amount of data. It's
relatively simple, so establishing filters for capturing events and recording them to
the event log for further processing won't be a problem. The solution can be truly
elegant, as you kill two (or probably more) birds with one stone—establish CDC
with no footprint on the source DB and reliable 24 x 7 zero loss DB replication.
Comparing different data replication solutions is not the subject of this book, but
looking to products such as Golden Gate, Streams (from Oracle), and SharePlex
(now from Dell) from our experience, we can say that SharePlex would be the
optimal choice (at the moment of writing), especially considering the price and
CDC capabilities. GG is quite similar to SharePlex and also has data transformation
capabilities, so if you have budget for it, you can try implementing CDC on it as well.

The last thing that you can see from the previous code—all object- and
context-related variables are compliant with the SBDH model we presented
in the earlier chapters, so we will use it quite extensively in all our examples.

Events filtering
Earlier we explained the difference between a basic and complex event. It's obvious
and generally related to the amount of the object's context information utilized
during the event filtering/recognition phase. Initially, the event is registered in
a completely business agnostic way, just as an evidence of the business objects
changes. All that we know is the business object, primary key data, and business
domain. Of course, we have composite context data recorded as an ADT array. What
we want to know are two things—who is the recipient (or in what compositions
object, propagated as a message should participate), and what would be the
format of the message. We have already declared our main goal—minimization of
transformation and bridging; therefore, we will focus on recognition of the TP. Thus,
we should link the object/object data with potential recipients, as we explained
when discussing Service Taxonomy in the previous chapter. Establishing the rules,
combined into rulesets, does it. Every object and list of associated events is linked to
one or more rulesets, where rules can be functions or XPath-based, as we discussed
in the previous chapter. When we have an object in native code for outbound
processing, the functional rules are more appropriate; please see the following
code. Here we have the simple function, returning location by ID. For Rule Engine
simplification, we decided to make all rule functions accepting only one parameter,
which is initially our primary key:

FUNCTION get_AddressLocbyID(ip_addressid IN
 xxcu_EHS_testaddress.adddress_id%type)
 RETURN VARCHAR2
 IS

Chapter 6

[349]

 CURSOR AddressbyID_cur (ip_addressid
 xxcu_EHS_testaddress.adddress_id%type)
 IS
 SELECT xxcu_EHS_testaddress.adddress_id,
 xxcu_EHS_testaddress.location,
 xxcu_EHS_testaddress.description
 FROM xxcu_EHS_testaddress
 WHERE xxcu_EHS_testaddress.adddress_id = ip_addressid;
 AddressbyID_rec AddressbyID_cur%ROWTYPE;
 v_address VARCHAR2 (400) := NULL;
 BEGIN
 OPEN AddressbyID_cur (ip_addressid);
 FETCH AddressbyID_cur INTO AddressbyID_rec;
 IF AddressbyID_cur%FOUND
 THEN
 IF AddressbyID_rec.location IS NULL
 THEN
 v_address := NULL;
 ELSE
 v_address := AddressbyID_rec.location;
 END IF;
 END IF;
 CLOSE AddressbyID_cur;
 msgtext := 'XXCU_EHS_TEST_ADDR.get_AddressLocbyID.
 Return: '|| v_address;
 XXCU_COMMON_LOG_RT.msglog (...);
 RETURN v_address;
 EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 v_address := NULL;
 RETURN v_address;
 WHEN OTHERS
 THEN
 msgtype := 'ERR';
 msgid := SQLCODE;
 msgtext := SQLERRM (msgid);
 msgsrc :=
 'XXCU_EHS_TEST_ADDR.get_AddressLocbyID. Unable to
 resolve address location for address ID '
 || ip_addressid;
 XXCU_COMMON_LOG_RT.msglog (.....);
 END get_AddressLocbyID;

Finding the Compromise – the Adapter Framework

[350]

In general, all rule conditions can be expressed in a function receiving only one
parameter or a group of functions assembled in one ruleset using logic aggregation
operators (AND and OR). Actually, Rule Engine has no limitation for the number of
inbound parameters, but using only one, we can simplify construction of the agnostic
decision table; that is, if a dynamically executed function F returns result A when the
input parameter is B and the expected result was C, RE considers the rules outcome
as negative if the rule condition was = (equal). If this rule was aggregated into the
ruleset using a strong rule (AND), the execution is terminated and the decision is
negative (no TP-receiver found, for instance). With weak aggregation, execution
will be continued until the first hit. The RE counts the number of hits for weak and
strong rules, allowing rule grouping (which are not really necessary, as it would
be much easier sometimes to implement two rulesets—for weak and strong rules
separately). An implementation with multiple conditions (=, <, >, !=, and so on) is
also simple. The execution of rule functions is based on NDS and implementation of
the dynamic facilitator is exceedingly simple; see the following code snippet:

PROCEDURE dynstatexec (
 statement IN VARCHAR2,
 nargs_in IN NUMBER := 0,
 arg1_in IN VARCHAR2 := NULL,
 …
 arg9_in IN VARCHAR2 := NULL,
 v_result OUT VARCHAR2
...
IF nargs_in = 0
 THEN
 EXECUTE IMMEDIATE statement || '; END;';
 ELSIF nargs_in = 1
 THEN
 EXECUTE IMMEDIATE statement || '(:1, :2,); END;'
 USING arg1_in, OUT v_result;
 ELSIF nargs_in = 2
 THEN
…...

You can build it for any number of inbound parameters and for any type of returning
value. This approach is highly universal, lightweight, and can be used everywhere,
especially combined with a DB schema for service artifacts from the previous
chapter: the statement is an executable module registered as a task (service) and
linked as a rule in the ruleset, associated with the event/object. If you prefer a more
standard approach (and heavy) based on Oracle tools, please proceed with a similar
implementation using Oracle BRE API for Java and implement PL/SQL wrappers
for it. In this case, you will use the standard rule repository. We believe that the
approach presented earlier is a bit more suitable for implementation within OEBS.

Chapter 6

[351]

One more thing to mention: after execution of business rules, we will have a list of
Trading Partners (or none, if nobody subscribed to this event), and a list of messages
we have to produce (we agreed that it will be only one Canonical per Entity, but
still we have the capability to construct different messages). We can fire execution
right away, or we can record discovered information back to the Process Log
table. Another process (via Scheduler) will start actual construction. This two-step
processing will increase decoupling even more, providing you with great flexibility
and deferred execution options, but adds extra latency at the same time. You can
select the architectural model more suitable for you.

Message construction
Actual construction is pretty much straightforward. We just have to keep in mind
that we are constructing two types of objects: Message Header and Payload. As
CLOBs, they will be combined together at the final stage of construction.

Using XDB construction functionality we can build any XML using a standard set of
commands (XMLELEMENT, XMLAGG) in a standard SQL SELECT way; see the following
constructor for a bank's Credit Monitoring message:

SELECT DISTINCT xmlelement("CreditMonitoring",
 xmlagg(XMLELEMENT("Country", XMLELEMENT("Country", 'SE'),
 XMLELEMENT("CustomerCode",
 fnd_profile.VALUE('XXCU_AR_SEBNORDBANKIUID')),
 XMLELEMENT("CustomerCode", v_blank_value),
 XMLELEMENT("CountryCode", p.country) ,
 XMLELEMENT("CountryRegistrationNumber",
 REPLACE(cm.organization_no, '-','')),
 XMLELEMENT("DUNSnumber", NVL(p.duns_number, '1234567890')),
 XMLELEMENT("CustomerId", v_blank_value) ,
 XMLELEMENT("CustomerId2", v_blank_value),
 XMLELEMENT("Belop1", v_blank_value),
 XMLELEMENT("Belop2", v_blank_value)))).getclobval() into
 v_xml_message FROM xxcu_ocm_credit_monitoring_all cm,
 xxcu_ocm_credit_monitoring_v cm, ar.hz_parties p
 WHERE cm.utmeldt_dato IS NULL AND NVL (cm.status, 'x') = 'A'
 AND cm.party_id = p.party_id

The output will be CLOB containing our XML message. The presented message is
fairly simple and so the statement is, but beware—real-life messages (Orders,
Bill of Ladings, Cargo Manifests) can be several pages long. Still, it's probably the
most common way of XML construction, as the XSU XDK utility (9i, 10g) is rather
obsolete. The XML message can be constructed in a familiar way and sent directly
to TP (using AQ).

Finding the Compromise – the Adapter Framework

[352]

The important point here is that the ways of XML message construction are probably
important for SOA realization but not directly related to the minimization of the
Adapter framework and efforts related to it. From the task definition, we know
that in RRD, we already have a huge amount of reusable SQL cursors (available in
package specifications) and recreating the same using XDB would be really a big
waste of time and effort. Thus, we have to find the ways to reuse existing cursors in
XML construction procedures. Obviously, we will again use the custom approach
and we are about to present it to you in a very concise way. Teaching you PL/SQL
is not the purpose of this book, so we believe that you can figure out the simple
commands behind the XXCU_COMMON_UTIL_* packages we employ in our examples.

The custom message constructor can be implemented by performing the following
simple steps:

1.	 Make sure that all necessary cursors are public and valid.
2.	 Create temporary CLOB for further EBO construction and open it using

the following line of code:
v_olob := XXCU.XXCU_COMMON_UTIL.createtmpclob;
 DBMS_LOB.OPEN (v_olob, 1);

3.	 Open initial tags according to your XSD and open cursor using the
following code:

XXCU.XXCU_COMMON_UTIL_XML.open_xml_tag (v_olob,
 'CreditMonitoring');
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag
 (v_olob,'CountryCode', ip_countrycode);
 OPEN creditmonitoring_cur(ip_countrycode);
 LOOP FETCH creditmonitoring_cur INTO
 creditmonitoring_rec; EXIT WHEN
 creditmonitoring_cur%NOTFOUND;

Construct the Business Object XML. If you have nested nodelists—call procedures
for their construction. To do so, just pass your temporary CLOB to a subprocedure
and use the same construction steps. Do it in a loop if you have recordsets with
many rows, shown as follows:

XXCU.XXCU_COMMON_UTIL_XML.open_xml_tag (v_olob, 'Company');
 v_country_id_attr := XXCU.XXCU_COMMON_UTIL_XML.get_attribute
 ('CountryCode', creditmonitoring_rec.country_code);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob, 'Country',
 creditmonitoring_rec.country);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob,
 'CustomerCode', creditmonitoring_rec.customer_code);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob,
 'CountryRegistrationNumber',

Chapter 6

[353]

 creditmonitoring_rec.country_registration_number);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob, 'DUNSnumber',
 creditmonitoring_rec.duns_number);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob, 'CustomerId',
 creditmonitoring_rec.customer_id);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob, 'CustomerId2',
 creditmonitoring_rec.customer_id2);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob, 'Belop1',
 creditmonitoring_rec.belop1);
 XXCU.XXCU_COMMON_UTIL_XML.print_xml_tag (v_olob, 'Belop2',
 creditmonitoring_rec.belop2);
 XXCU.XXCU_COMMON_UTIL_XML.close_xml_tag (v_olob, 'Company');
END LOOP;

(Please compare this approach with the pure XDB-based sample from the previous
snippet.) Close the tags, cursor, and temporary CLOB. Remember that CLOB is your
output parameter shown as follows:

CLOSE creditmonitoring_cur;
 XXCU.XXCU_COMMON_UTIL_XML.close_xml_tag (v_olob,
 'CreditMonitoring');
 op_olob := v_olob;
 XXCU.XXCU_COMMON_UTIL.closetmpclob (v_olob);

That's it, construction completed. Now you can construct any canonical message
(cursors are common and reusable, that was the purpose), or create individual
messages for selected TPs quite easily, because the presented approach provides the
highest granularity possible. Either way, transformation could be avoided, as we will
have individual constructors. Alternatively, to minimize the number of constructors,
XDK transformation functions could be used. Next, we will shortly explain the
purpose of functions used in a message construction as shown in the following table.

Generally, the functions are based on DBMS_LOB.WRITE not
on DBMS_OUTPUT.PUT_LINE.

Function Description
XXCU.XXCU_COMMON_UTIL_
XML.open_xml_tag

Open an XML tag for a nodelist or group of nodelists.
The attribute can be used as <Element>.

XXCU.XXCU_COMMON_UTIL_
XML.close_xml_tag

Close the XML tag for a nodelist or group of nodelists
as </Element>.

XXCU.XXCU_COMMON_UTIL_
XML.get_attribute Create an attribute for further use.

XXCU.XXCU_COMMON_UTIL_
XML.print_xml_tag

Create fully formatted element, attribute available as
<Element>data</Element>.

Finding the Compromise – the Adapter Framework

[354]

Alternatively, you can use the standard DBMS_XMLGEN package (or older
DBMS_XMLQUERY, which is implemented in Java and therefore in not supported with
Oracle DB Express Edition, thus this technique is not truly universal). Here NULL
values and date values are supported natively by DBMS_XMLGEN.setnullhandling()
and NLS_DATE_FORMAT.

Message parsing
To complete the message-handling routines, we will discuss the inbound flows.
The processing of inbound messages is slightly different and not only because of
the opposite flows direction. First, we do not need Event Registration tables—we
have AQs instead, and they are pretty much tables as well. Secondly, you can have
as many AQs as you want; naturally, one table does not limit you. You can have
separate AQ per TP and/or Object or group of objects. You can even have only one
AQ per object, serving all TPs though the single object queue. All what you have to
do is to declare this AQ as ADT-based and then you will have the perfect possibility
to dequeue messages by individual handlers per TP. However, most importantly,
for inbound XML messages, you will have only one rule function based on XPath's
valueof() and all rulesets will be just a collection of XPaths with expected values.
You can achieve the highest level of parallelism and keep everything manageable
at the same time. Most probably you will decide to handle an inbound message at
the moment of dequeueing, so balancing the amount of handlers and queues is your
primary task as an architect. Once message parsed, all its elements will be presented
as a recordset and we will just call INSERT statements we already have for core Entity
tables (business APIs). Thus, the implementation sequence will be as follows:

1.	 Declare records parsed from XML values. The message header record
v_SBDHShort for message header is mandatory and shall be preserved.
At least one business object record must be declared. This record(s) will
be later used as input parameter for your business API. The record can be
based on business OEBS table, or any other structure from a custom RRD
business object as:
v_tst_address_rec xxcu_EHS_tstaddr_parser.tst_address_rec;
v_SbdhShort XXCU_EHS_MESSAGE_HEADER.SBDH_rec;

2.	 Declare XML parsers, nodes, and nodelists. The number of nodes and
nodelists must be equivalent to the number of related objects in the received
XML. Reserve the first nodelist for message header values. We could use the
values from it later in your API call (it's our object context):
v_inXmlDOM XDB.DBMS_XMLDOM.domdocument;
parser XDB.DBMS_XMLPARSER.parser;
style XDB.DBMS_XSLPROCESSOR.stylesheet;

Chapter 6

[355]

curnode0 XDB.DBMS_XMLDOM.domnode;
curnode1 XDB.DBMS_XMLDOM.domnode;
msg_msgheader XDB.DBMS_XMLDOM.domnodelist;
address_proplist XDB.DBMS_XMLDOM.domnodelist;
theDocElt XDB.DBMS_XMLDOM.DOMElement;

3.	 Oracle XDK parsers are namespace-aware. We have to take it into account
parsing different namespaces with different prefixes, or just strip them
completely using search and replace, leaving only the MH namespace in
place. This solution is rather dirty as we handle XML as a plain text, but if no
security concern is expressed, this solution can be really quick and simple.

4.	 Parse the document (inbound CLOB). Another thing to remember is that
Oracle Applications can have several DOM and SAX parsers, so we should
use the DOM parser associated with version 10gR1 and higher (RRD current
solution is on 11gR2). In R11/R12, the parser is in the XDB schema:
parser := XDB.DBMS_XMLPARSER.newparser;
XDB.DBMS_XMLPARSER.parseclob (parser, olob);
v_inXmlDOM := XDB.DBMS_XMLPARSER.getdocument (parser);
XDB.DBMS_XMLPARSER.freeparser (parser);

5.	 The get_SBDH procedure returns the standard business document header
using XMLDOM as an input parameter.

6.	 Start the main parsing loop and populate nodelists and nodes, using the
following code:
address_proplist := XXCU_COMMON_UTIL_XML.selectnodes
 (v_inXmlDOM, msg_BO_root_url);
 FOR b IN 1 .. XDB.DBMS_XMLDOM.getlength
 (address_proplist) LOOP curnode1 :=
 XDB.DBMS_XMLDOM.item (address_proplist, b - 1);

7.	 Go through the DOM tree and map nodes to record elements using
simple XPATH expressions (process elements). Also, we advise you to use
the NULL value substitution and remove line break functions, as shown in
the following code. Implementation is skipped for brevity. We believe that
you have a good understanding about the illegal XML characters and how
to handle line breaks:
...
v_tst_address_rec.addressID :=
 NVL(XXCU_COMMON_UTIL_TXT.removestrbrakes
 ((XXCU_COMMON_UTIL_XML.valueof(curnode1,'addressID'))),
 v_null_value);
...

Finding the Compromise – the Adapter Framework

[356]

8.	 After parsing, we can call the business API using populated record(s) as
input parameters. The Business API should always return two output
parameters: v_status_code and v_error_message, where the first is code
(0: status OK, 1: API warning, 2: critical API error, or any other coding at
your choice), and the second is a textual description of the API code. Based
on the status code, the framework will decide how to process a faulty
message, shown as follows:
apps.xxcu_om_import_creditinfo_pkg.import_creditinfo(
 p_data_parties => v_parties_int_rec
 , p_data_addresses => v_addresses_int_rec
 , p_data_contactpts => v_contactpts_int_rec
 ...
 , p_data_creditratings => v_creditrtngs_int_rec
 , p_operating_unit_name => null
 , x_status_code => v_status_code
 , x_error_message => v_error_message);

9.	 Do not forget to close all temporary CLOBs and parsers, as shown in the
following code:

XXCU_COMMON_UTIL_XML.freedocument (v_inXmlDOM);
 XXCU_COMMON_UTIL.closetmpclob (olob);

So, the task was done in nine simple steps. Logically, the number of parsers will be
equal to the number of inbound messages, but as long as all of them (we assume)
are in canonical form, their number will be quite moderate. Again, after message
detection and extraction from the queue, we can apply the transformation to any
custom message, but this approach should be avoided. In general, these exercises
for establishing parsers and constructors have a very positive effect on internal
App organization, expressed as follows:

•	 The statements-duplicates provided by parallel teams were consolidated
and adjusted according to the recommended canonical models. Canonical
models are finalized and approved at last.

•	 All the remaining SQL statements were carefully turned for optimal
performance, and the usage of all clauses such as DISTINCT and UNION
were redesigned.

•	 All artifacts, required for rule-based processing and any kind of dynamic
invocations were registered in the Service Repository.

Chapter 6

[357]

•	 Canonical models, related parsers/constructors, Business Events, and
all other public artifacts from Service Repository were also published on
Corporate WIKI, a "How-To Cookbook" was composed and provided to
every developers.

•	 Checklists from the previously enforced formal delivery acceptance process.

The example will be not complete without a few words about canonical
endpoint handling.

Endpoint handling
RRD Canonical Protocol is JMS/AQ and we expect that all communications will be
queue-based, especially for inbound flows, because that will considerably simplify
message recognition and parsing, as demonstrated previously. However, as we
mentioned earlier, Oracle Fusion Apps and Oracle DB, in general, are very capable of
supporting practically all common protocols, without the Adapter framework, directly
to the Service Bus, which is service collaboration and decoupling layer. Oracle DB
Listener is a HTTP listener as well, we can easily do the HTTP POST/GET and construct
SOAP messages, either manually or using OEBS XML Gateway. File operations never
were a problem. We are not sure that doing FTP directly from DB is a good idea from
a security standpoint, but we can do that as well. Practically, as we can call any Java
function and wrap it in PL/SQL, we can do anything. The question is—should we?

The answer is that the RRD SOA Implementation board officially prohibited all
protocols for internal developers except JMS/AQ and that was the right thing to do.
Still, the proper solution will introduce the separation of a message's construction
and delivery, so after gluing the Message Header (constructed as a separate CLOB)
and Message payload in one container (msh_olob), we call the message dispatcher,
which will select the correct delivery MEP (JMS/AQ, all other methods are
commented). MEPs and protocols are associated with TP messages and TP endpoints
according to the presented service taxonomy, and therefore, dispatching is simple,
flexible, and architecturally identical to the Java Deliverer, as discussed in Chapter 4,
From Traditional Integration to Composition – Enterprise Business Services. A dispatcher
call with all associated parameters is presented as follows:

msgtext := 'Invoking deliverer for Message ID= ' || v_msgid;
 XXCU_EHS_ENDPOINTHANDLER.msgdispatcher
 (olob => msh_olob,
 msgid => v_msgid,
 msgjobid => msgjobid,
 db_action => v_dbaction,
 ret_err_status => ret_err_status
)

Finding the Compromise – the Adapter Framework

[358]

Enqueue
Here is a small and simple enqueuing procedure, based on the DBMS_AQ package:

procedure enqueue_msg(p_queue in varchar2,
 p_xml in varchar2,
 p_priority in number default 50,
 p_corrid in varchar2 default null
)
is
 msgsrc VARCHAR2 (4000):= package_name||'.enqueue_msg(VC)';

 l_stmt varchar2(250 CHAR) := 'declare';
 l_jms_message sys.aq$_jms_text_message;
 l_message_properties dbms_aq.message_properties_t;
 l_enqueue_options dbms_aq.enqueue_options_t;
 l_msgid raw(16);
begin
 -- blocked in XE
 l_jms_message := sys.aq$_jms_text_message.construct;
 l_jms_message.set_text(p_xml);

 l_message_properties.priority := p_priority;
 l_message_properties.correlation := p_corrid;
 dbms_aq.enqueue(p_queue,
 l_enqueue_options,
 l_message_properties,
 l_jms_message,
 l_msgid
);
 commit;
 EXCEPTION
 WHEN OTHERS THEN
 msgtext := 'EQUEUING FAILED: ';
 msgcode := SQLCODE;
 msgtext := msgtext ||'; '||SQLERRM (msgcode);
 XXCU_COMMON_LOG_RT.msglog('ERR',msgtext, msgcode,usermsg,
 msgsrc, msgjobid);
end enqueue_msg;

Chapter 6

[359]

Dequeue
The dequeuing functionality is also based on the DBMS_AQ package and is fairly
simple, as shown in the following code snippet:

 DBMS_AQ.DEQUEUE(
 queue_name => l_queue_name,
 dequeue_options => l_dequeue_options,
 message_properties => l_message_properties,
 payload => l_message,
 msgid => l_message_handle);

Some specific functionality exists for inbound flows, as we mentioned previously. The
EndpointHandler function will invoke only the parser associated with the received
message. This invocation will be performed dynamically and we do not have to code
it! That's one benefit of this framework. However, message-parser association is a
developer's responsibility and basically it's done through an ESR configuration.

Association can be based on the rootnode element's name. It will be recognized after
parsing of the incoming message. As long as every message has a unique root (and
that's true for all canonical messages), the message ID will be recognized by a simple
lookup on ESR's message definition table, where every message (ID) is connected to
the parsing routine, registered in the ESR Service/Task table as parser. The developer
is responsible for the proper declaration of the construction and parsing tasks in the
Service/Task entity table and linking them to the canonical message (or any, in that
matter). Another, and probably more correct, way of message recognition would be the
parsing of the msg_ID element in the message header. Naturally, XPath is static for this
element. You can see one of the possible realizations in the following code snippet:

v_rootElementName:=XDB.DBMS_XMLDOM.getLocalName(XDB.DBMS_XMLDOM
 .getDocumentElement(v_eventDOM));
 msgtext := 'Root node detected :'||v_rootElementName;
XXCU_COMMON_LOG_RT.msglog(msgtype, msgtext, msgcode, usermsg,
 msgsrc, v_parsejob_id);
 v_msgid := XXCU_INTF_MESSAGE.get_msgidbyroot
 (ltrim(rtrim(v_rootElementName)));
v_parser := XXCU_INTF_MESSAGE.get_msgparser(v_msgid);

When a parser is recognized, it can be dynamically invoked using the NDS
functionality, as shown in the following code:

//invoking parser
 execute immediate
 'BEGIN '||v_parser||'(:1, :2, :3, :4); END;'
 USING IN ip_lob, IN v_msgid,
 OUT v_status,
 OUT v_status_text;

Finding the Compromise – the Adapter Framework

[360]

Actually this type of dynamism would not be needed if we establish an individual
queue handler for every TPs inbound queue. In this case, we will do inline message
parsing together with dequeueing and all business API as a last step.

Some notes regarding universal endpoints handling are as follows:

•	 A few words about the DBMS_AQ package would be in order. We mentioned
that the functionality is fairly simple, and it is actually, for the Oracle DB
Standard/Enterprise editions, at least. A complete solution will work
perfectly on XE as well, but AQ functionality is a bit tricky (Java is required),
so we advise you to look for the very elegant solution on the AMIS
Technology Blog (actually, you can find it in many places). Thus, you will
have several AQ handling functions in your endpoint dispatcher.

•	 File object handling is also rather simple in implementation, but again we
would advise you to use Java for that and wrap it into the PL/SQL package.
We also advise you to avoid handling remote file objects from your DB.

Conclusion
Although being very simple and lightweight, the entire solution is about 40
PL/SQL packages (only core, excluding individual CDMs constructor/parser
pairs), 10 separate and embedded Java modules, 4 separate FSO/FTP scripts, and a
complete ESR DB schema as presented in the previous chapter. From the operations'
perspective, it includes about 100 individual installation scripts, assembled in one
bundle for jobs, triggers, index/table optimization, and so on. We simply do not
have enough space to show it to you in detail (source code for core packages will
be provided together with the ESR DB schema), but the general idea has been
conveyed quite clearly, covering all aspects of solution's lifecycle, starting from
the development's perspective, as follows:

•	 It is quite possible to implement a business agnostic solution in any
silo-based Oracle application, converting it to be completely SOA-oriented.
Following the SOA paradigm, with a clear understanding of design
principles and relations between service artifacts, all these packages were
delivered into production in 40 working days.

•	 Design proved to be so native and logical that after a couple of hours of
training, all developers from the main RRD vendors become familiar with
the concept and were capable of carrying on. The reason for that can be seen
through the following figure—the red architectural blocks will be received by
every team directly from the framework and the team will have to do only
minor changes in the blue ones adapting them to specific EBM/Event. The
DBO part is actually our Service Repository, as shown in the following figure:

Chapter 6

[361]

•	 As a result of the previous point, the development cycle reduced considerably.
Implementation of a complex message with all related events reduced to two
working days (Purchase Order EBM). The entire Order Management program
was implemented in two weeks, plus two weeks for thorough testing (from
the very beginning we agreed that every message handling module will be
supplied with testing packages, that is, the actual parser will be delivered
with the constructor for unit test and vice versa). Interestingly, the dynamic
execution approach (based on the service Repository taxonomy and NDS)
became so popular that we had to restrain developers from using it for
purposes other than event filtering, message parsing, and construction.

•	 Finally, now you can clearly see the resemblance between the RTD
pattern, implemented in Chapter 4, From Traditional Integration to
Composition – Enterprise Business Services in custom Service Broker realization
and this solution. We used the same methods, patterns, and semantics.
Obviously, according to the Law of Indestructibility of Matter, the Adapter
framework cannot just disappear by a flick of the SOA magic wand. We have
to move some components to another layers, also changing the surroundings
(Canonicalization first).

In addition to the development perspective, we would like to explore several
points from a pure vendor-neutral architectural standpoint, as follows:

•	 Without any revolutions or the Big Bang, we refactored the solution making
it more composable. We followed the reusability principle, employing
existing cursors for message construction. We engaged the Loose Coupling
principle for the separation of event detection, message construction, and
message delivery. We observed the parallelism, maintaining desirable
throughput and performance. And most importantly, we implemented
Canonical Schema and Canonical Protocol; the main enablers of
Composability for this solution.

Finding the Compromise – the Adapter Framework

[362]

•	 We enforced the Hollywood principle, presenting a completely decoupled
agnostic solution. Now, middleware does not need to know anything about
OEBS APIs, internal table structure, concurrent programs, and so on to pull
the data after receiving an event message. The complete (Canonical EBM)
message is promptly delivered with minimal delay.

•	 No protocol bridging, no transformations, both model or format. The number
of EBM/EBOs has been reduced to the optimal level.

•	 Finally we considerably reduced the Adapter framework around the Oracle
E-Business Suite. That was our ultimate goal and we reached it in a very
short time. Mind you, we did not say "eliminated", as some ABCS elements
remain dedicated to really weird things. Actually, that's what the Adapter
framework is for.

•	 And one more thing—RRD's Event Handling System (EHS) solution is
completely portable. It can be implemented on any Oracle DB (including
XE). Although it was not our first (or even second) goal, this option is quite
positive from a budget planning perspective.

With decoupled message construction queue and the native BES queue handler,
the message construction sequence will be as presented as follows:

Chapter 6

[363]

A vendor-neutral architectural perspective must be extended with aspects that are
specific to Oracle-based implementation, and specifically, with benefits emerged
from tools standardization:

•	 One of the cornerstones of this approach of eliminating ABCS layer is
Event Detection. Although TIBCO is quite prominent for its Event-driven
Architecture, Oracle also has a good history of Event recognition solutions,
naturally based on DB products. Starting from 9i, Oracle provide CDC in
an almost identical way as described previously, based on triggers, change
tables, and mostly suitable for the ETL pattern. Remember, ETL is what
we are trying to avoid here. From 10g, the approach was enhanced by
asynchronous feeds from changes detected into the redo logs. The advantage
is obvious—the CDC is not part of the transaction anymore. Together with
Oracle Streams, the CDC is capable to detect and propagate the changes to
subscribers. In general, tables change history trace functionality was possible
because of the new DBMS_FLASHBACK package. In 11g, synchronous change
data capture was introduced. Still, to understand the meaning of the basic
event, the events data should be transported to the decision support system
(DSS) or online analytical processing (OLAP) applications. You can employ
these options for CDC, but you still need to do an analysis for a proper
decision and also bear in mind that some of these options are available in the
Enterprise Edition only.

•	 The XML message construction can be easily done by XDB constructs if you
do not have legacy of existing cursors and will build everything from scratch.
Otherwise, a custom construction utility would be more suitable; at least
you will avoid a lot of mistakes by simply following the existing query
logic in cursors.

•	 Message delivery is also one of the benefits. Actually, standardization
options here can be seen purely from an SOA perspective. We need
application/message agnostic protocol and MEP. JMS and JMS/AQ is
an optimal choice as we could avoid implementation application-specific
adapters and minimize the ABCS footprint in general. Of course, if your SOA
infrastructure is completely based on the data model, provided by the OEBS
XML Gateway or Application adapter by default, and all consumers are
happy with that, then you should go for this solution. However, evaluate the
complete Oracle AIA implementation as it could be the best choice, especially
with all the industry PIPs.

Finding the Compromise – the Adapter Framework

[364]

We mentioned this before and we would like to repeat it
again—SOA doesn't have to be expensive. On the contrary, based
on so many technologies and standards, it allows us to choose the
optimal combination of tools and methods exactly according to our
specifications and budget. We are not selling Oracle products, so we
have no interest in offering AIA, CDC, ODI, and GG when you do not
really need them. Actually, we strive to share the lessons we learned
from our practical SOA implementation, based on Oracle tools.

Finally, what operations will we get after replacing the Adapter framework
with this event driven solution? Are there any significant benefits of this radical
simplification? Let's start from core NFRs:

•	 That's a really interesting point. Yes, it's inexpensive and easy to use,
but what about the performance? Although the company's name is fake,
the following numbers are real:

°° 350,000 to 450,000 outbound messages monthly for all OEBS
domains. The number of inbound messages is roughly the same.

°° Depending on the financial period, the daily rate can be up to
100,000 messages per day.

°° Throughput is about 10 msg/sec for a 150 KB Order message.
This parameter was never a problem as we can increase operational
concurrency by implementing parallel queues/handlers.

°° The error rate is approximately 0.01 percent faulty message per
week. Practically, all errors are related to XML validation for
inbound messages.

•	 One of the declared goals was to put OEBS BES back into production.
After an initial trial period, EHS implementation was considered so
satisfactory that it stayed in production for three years (since 2011).

•	 Because of considerable simplification of the Adapter framework,
migration from OFM 10g to 11g was gradual and relatively smooth.

Of course, there are always walls to hit. We had plenty of them, as already
mentioned, including AQ implementation in XE, the DBMS_LOB functions for CLOB
handling below and above 4 KB, and so on. We can explore the following two major
factors that helped implement this approach:

•	 Strong support from local RRD Architecture team. Because of a very strong
discipline established by system owners and wide authority finally granted
to the chief architect (truly, Necessity is the best Advisor), implementation of
this concept became possible in such a competitive environment.

Chapter 6

[365]

•	 When developing in Java or SOA Suite, we have plenty of tools for
maintaining concurrent development, implementation, and components
interdependency (Maven is the natural choice, Hudson/Jenkins, classic
Ant, and so on). Unfortunately, we do not have so many options for team
collaboration in PL/SQL. Code rollup is a tricky business in centralized
DB environments, such as OEBS, when a dozen teams work on the same
modules (Account Payable, for instance) and we need some framework in
addition to the strong discipline. Luckily, such frameworks were established,
thanks a lot to the architect who managed to build a Maven-like tool, which
allowed us to do complete or partial installations, code validation, and
assembly on running environments practically without downtimes.

We hope that this example demonstrated how to optimize the Adapter framework
(for DB adapters) by refactoring core applications, making them more SOA-oriented.
Now, we return to the middleware layer and see how the ABCS optimization can be
achieved there.

Establishing the Adapter Framework
The Adapter framework optimization, or, in fact, the minimization of all protocols/
endpoint types aiming the realization of the Official Endpoint SOA pattern presented
previously, depends on many factors (we have indicated them in the Conclusion
section), but decisive is only one. As we already mentioned, this factor is not technical,
unfortunately. At the end, the main question is the level of ownership we as architects
have on refactored application endpoints. When the approach is invasive (we have
to inject unified triggers and establish event handling and ESR schemas), we totally
depend on the level of cooperation with the application owner/vendor. If this
approach is not approved, then noninvasive methods shall be considered and some of
them, as we explained earlier, could be based on disaster recovery data replication and
here we could face even bigger resistance from DBAs/Operations.

Who can blame them? The approaches we discussed in the first part of this chapter
have been proved many times and you can completely rely on them, but at the end,
everything will rest on your ability to convey the rational of discussed SOA Patterns
to the managers and application owners. We already gave you enough arguments
to win hearts and minds (including the real operational figures, which in complete
stress test were 35 percent higher), so we will put this discussion aside for now,
but the possible outcome of this discussion could be "Build the integration layer
to get our data" and that means—establish full-fledged ABCS. It doesn't mean that
our optimization failed; it's just another confirmation that the SOA approach has
plenty of room for traditional integration methods, which we will apply consciously.
Thus, we move back to the CTU Telecom Enterprise, as we left it in Chapter 4, From
Traditional Integration to Composition – Enterprise Business Services.

Finding the Compromise – the Adapter Framework

[366]

One small note before we continue with the CTU Adapter framework. Application
Adapters, Technology Adapters, and Protocol Adapters are really a strong
(and probably the strongest) side of OFM. The list of available adapters is enormous
(we mentioned it in Chapter 2, Oracle Fusion Introduction – A Solid Foundation for
Service Inventory) and the methods of their implementation are wizard-based and
very native. This fact also reflects Oracle's transition from traditional integration to
the composition-oriented approach. You can find a lot of books and web tutorials full
of step-by-step demos, overloaded by screenshots, and we would like to spare you
from that here. Still, some rules of thumb will be mentioned, which are as follows:

•	 The primary rule of adapters design can be expressed as "sacrifice the
Reusability for better Loose Coupling and Contract Standardization". Indeed,
for better modularity and performance, each adapter should be tailored to
the application's endpoints. In order to keep all applications hot-pluggable,
we should avoid the reuse of adapters (well, not exactly; the following
examples will show why).

•	 An adapter should not disturb the underlying layers (ESB and Orchestration)
by endpoint-specific errors and should not propagate them when the source
endpoint cannot provide the necessary data or a target cannot accept the
correct message. Retry mechanisms, close integration with audit, and error
handling are a must. Discussing the EHS framework earlier, we omitted this
part (which is quite substantial and based on AQ and business rules), but we
will definitely return to this in Chapter 8, Taking Care – Error Handling.

•	 In order to support the first design rule, Adapter (Northbound) must
provide a Canonical message and accept it before transformation to the ABM
(Southbound). Thus, both types of transformation patterns and bridging
should be implemented in Adapter. Remember that they are parts of the
Service Broker pattern, which is in turn an essential part of ESB.

Following this approach, you can just use BPEL straight away. Just beware of
hybrid service implementation, and you do not need to read further. And the hybrid
services are quite a significant risk, as we demonstrated during the analysis of CTU's
initial solution. That's why Oracle recommends isolating ABCS from EBF by EBS
layers. So, the rules are meant to be broken, isn't it? Not quite. Again, we are just
following common sense, that is, applying the pattern to a "meaningful extent".

What if (like in CTU) all your main ERP applications are scheduled for
decommissioning in the next decade, that is, will stay for quite a while? What if the
number of your applications, which you have to wrap by adapters, is so big that the
quantity of adapters will just make your SOA infrastructure cumbersome?

Chapter 6

[367]

Even more, what if all these applications are very similar in technology and in
business purpose (CTU example, regional installations of the same application
with minor changes)? Thus, the Reusability principle can be applied in the
Adapter framework as well and we are going to demonstrate how.

In Chapter 4, From Traditional Integration to Composition – Enterprise Business Services,
discussing OSB, we established the ESB layer with Generic Adapter (GA), fulfilling
the VETRO pattern in an endpoint-agnostic way (which is an absolutely pure
solution according to the SOA Pattern catalog) and Service Façade, dynamically
dispatching the message (or service call) to the concrete Protocol Adapter. In
addition to the classic ESB SOA patterns altogether, they are followed to the Business
Delegate and Adapter Factory JEE pattern implementation rules; most of the
Transport Adapters are JCA-based and all necessary parameters were transported to
the GA and Facade in a message payload in the form of Adapter Message. Of course,
the structure of this message is adapter bound and these elements are extracted
from the Service Repository during the EP construction phase in the Composition
Controller. We also kept the possibility to do the lookup in GA for EP extraction
simplification, as these attributes are not necessary for the entire composition. You
can see the list of Transport adapters in the following figure:

Finding the Compromise – the Adapter Framework

[368]

In the scope of one chapter, it is simply impossible to cover dynamic implementation
of all adapters, so we will focus on the DB adapter first (as we did earlier during
the RRD example), as probably the most common and interesting and will show
two different methods of technical implementation. Before we do that, we will
demonstrate how a traditional DB SCA adapter can be exposed on OSB and how we
can decouple the EJB implementation using a proxy service on service bus. These
two examples can be used directly in your projects as well, but they are essential for
understanding the dynamic approach.

Exposing EJB through OSB
For the demonstration of the concept, we will create simple EJB using JDeveloper
as an Entity bean and expose it as a Stateless Session bean on OSB. We will not go
into the details as you can find all necessary details in the Oracle documentation or a
dozen cookbooks, full of step-by-step instructions and screenshots for every mouse
click. Entity beans are most often based on entities from DB tables, so we can easily
use the DBs and DB connections we established in the previous chapter.

Create a new project in the same application we used for offline OER DB analysis
(1). If you didn't look at the internal OER structure, you can choose any other DB
source you have for test purposes; just one entity table will be enough. Our choice
is naturally the Asset table in the OER schema. While configuring the EJB settings,
please select EJB 3.0 (what else?) and invoke the wizard constructing Entity from
tables. You have several options for the DB connection type (online, offline, and
from AppServer); select the one most suitable for you. We will proceed with online
and select the ASSETS table (2) after querying OER schema. In any case, go to the
persistence.xml file (3) after EJB generation and change jta-data-source to the
correct one you use on your server (in two places).

Chapter 6

[369]

Building the Assets entity bean

Now we can create Session bean (1) and expose the operation(s), which we later will
introduce using OSB Proxy. Start the Session bean wizard, create the AssetService
bean and expose only one operation getAssetFindAll() for brevity (2). Create local
and remote interfaces for this bean (using default settings in the interfaces section). It
will be also useful to create separate deployment profiles for EJB JAR and Client JAR
(navigate to [Project Root] | Project Properties | Deployment | New) (3).

Building the Assets session bean

Finding the Compromise – the Adapter Framework

[370]

A single function in AssetServiceBean, List<Assets> getAssetsFindAll(), can be
used directly by Client or OSB Callout. However, it would be better to create one
more Java class in the EJB project, accepting output from this function, do the simple
alteration in a list, and return it (we will do the filtering of Assets, getRuleAssets(),
but you can use your own implementation). Also, please copy the EJB's JNDI name
from the Client class as shown in the following code snippet; we will use it later
in the OSB:

AssetService assetService =
 (AssetService)context.lookup("ESR-ServiceModel-
 AssetService#fusion.esr.model.ejb.AssetService");

Deploy the Client class as a jar. It will be used in the OSB Business Service
(copy it to the JAR OEPE project folder).

We're done with JDeveloper and now we can proceed with the OSB part.
We assume that you already have a JNDI provider configuration file in the
root of your OSB project. If not, you should create one now, pointing to your
development server (usually http://localhost:7001, for a more complex
clustered JIT environment, you could have t3://jitosbhost:<port>,
jitosbhostmirror:<port>) (1). Now we are ready to create Business Service.

Go to the Business Service subfolder, select Business Service Wizard from the
context menu, and name it accordingly (2). Select Transport Type Service in the
Service tab below and then go to the Transport tab. Set protocol as JEJB and set
the Endpoint URI as a concatenation of your JNDI Provider's name and JNDI
name from the Client class mentioned earlier (3).

Click on JEJB Transport type, set EJB Spec Version as 3.0, and click on Browse
for the Client jar. Go to the Client's jar location, pick it, and validate the client's
method in the Methods sections. For simplicity purposes, we have created it
with only one method. You will see the EJB-based Business Service created in
the Operation field (4).

Chapter 6

[371]

Deploying the EJB service on OSB

Now, with another few quick steps, we will proceed with the creation of Proxy
Service from our EJB Business Service. Go to the Proxy Services subfolder and
start the Proxy Service wizard.

By the way, you can have any folder's structure according to your
preferences, but we advise you to look closely at the structure
presented in step one in the previous figure. It seems to be a minor
thing, but it has considerable impact on team collaboration, bundle
deployment, and Governance in general. The presented structure
is strongly conducted to the one old Oracle standard we omitted in
Chapter 2, An Introduction to Oracle Fusion – a Solid Foundation for Service
Inventory for brevity—the Optimal Flexible Architecture (OFA). The
role of this standard is really hard to overestimate and DB architects
and DBAs know it really well. For OSB/SCA, in terms of the Adapter
framework, the purpose of this standard is to identify the location of
OSB and JDeveloper artifacts. For some, as we mentioned earlier, two
developer tools around one framework seems too many and you can
find the examples where the structure of the JDev SCA/JCA projects is
embedded into the Eclipse OSB folders structure. Although we can see
the reason for that, we still advise you to keep these structures separate
and use the Continuous Integration and delivery bundling tools for
the final assembly. Also remember that OFA principles are extremely
important for the FTP/FSO TP folders hierarchy.

Finding the Compromise – the Adapter Framework

[372]

Name your Proxy service suitably and set it as Transport Type Service (the General
tab). Transport shall be JEJB, similar to the Business service. Set an endpoint URI
as you want or leave it as proposed. JEJB properties are the same as for Business
Service in step 4, please choose the same Clients jar. Leave all values in other tabs
as proposed by default. Now we are ready to implement the Message Flow around
this EJB. Refer to the following screenshot:

Implementing the EJB service message flow

Go to the Message Flow tab and right click on the PS_AssetService starting point.
Add the Route node (as we want to route to our Business-Service-EJB wrapper)
and create the routing activity. Select the business service created earlier using the
Browse button (1). Please use inbound operation for the outbound call, as presented
in the preceding screenshot.

Now you can add pipeline pairs above and for the sake of appearances, add two
stages for request and response, and establish logging activities in each. Surely,
it is better to give meaningful names for every stage and operation, but that's not
important in this example and therefore skipped. You can log the entire message
body for the request operation and for the response. Now we are ready to publish
this Proxy Service on our OSB (2).

Chapter 6

[373]

After publishing this service on OSB, you can find the JNDI name of the proxy in the
WLS JNDI tree (Environment | Servers-<your_Server_name> | View JNDI Tree
(new window) | <Name_of _EJB_Proxy>). Copy the value from the Binding Name
field and paste it into the context.lookup operation in the Client test class. Now
when you run the test, you will see that all requests are going through the Proxy;
check the response in the OSB console.

One last thing left to complete this quick demo is to add another stage in the
response pipeline, we call it FilterResponse, and add the Java Callout activity.
In the Method field, browse the Client jar, where getRuleAssets() is implemented,
and select it as we are going to invoke it. In the Action field, choose the Expression
builder and as an inbound parameter, select the entire response, and set the output
to the new variable in the Result Value field. Add Replace operation after Callout
in this scope and select Replace node contents (body with XPath expression for
Response return value) by variable from the previous step.

Redeploy it on OSB and run the Client again. You will see the modified results
according your implementation.

This quick and basic demo just demonstrated how easily we can decouple any EJB
invocation using OSB and although it's not really an adapter yet (just a proxy, as
explained in Chapter 4, From Traditional Integration to Composition – Enterprise Business
Services), we will further demonstrate how an EJB approach can be used for the
dynamic Adapter framework. As you realize, functionality within the bean can be
much more complex than just filtering the Java list of values. We can encapsulate the
entire DB call in a DB-agnostic way.

Traditional DB Adapter implementation
Any ABCS elements should be abstracted through OSB as we have learned in the
previous chapters. Let us repeat that again for better modularity and composability.
We should avoid direct Adapters connection to the Enterprise Business Flows. In other
words, our task-orchestration services must not become hybrid; otherwise, business
logic will be polluted by TP API specific logic. The following example is based on an
absolutely standard Oracle technique, so for brevity, we will not overburden you with
screenshots, as they are quite obvious. Three tools will be required—JDeveloper and
Eclipse with OEPE for development and SoapUI ideally for testing.

Do not follow this example right away, please read it first.

Finding the Compromise – the Adapter Framework

[374]

This is primarily an architectural exercise (although every step can be useful for an
OSB OEPE developer):

1.	 Let's start with the creation of DB Adapter in JDev. Create a new SOA Project
and choose the Empty Composite template.

2.	 Drag DB Adapter from Service Adapters to the left swimming lane; it will
start Adapter Wizard. Use a DB of your choice. We will use the Service table
from a custom ESR realization from the previous chapter. Give a meaningful
name to your adapter.

3.	 As all adapters are WLS resources, JDBC Application Modules shall be
established for our application server. Technically, the JNDI is the lookup
mechanism, allowing you to dynamically resolve the connection property
of a JDBC Connection object by JNDI alias. The connection name shall be
unique. Remember, WLS Connection Factories are deprecated.

4.	 Use a DB connection from the Offline DB ESR project or create a new one.
Provide a JNDI name, which we will use on our Application server.

5.	 For simplicity, use only the Select as a DB Operation option on Service
Table. We can maintain relations between Service and Service Engine tables.
We also can apply the attribute filtering.

6.	 We can define select criteria, selecting only Rule functions, based on the DB
Rule execution engine (NDS).

7.	 Finalize the wizard, generating WSDL, XSD, JCA configuration, and TopLink
mappings. We will use these files in our OSB project.

8.	 Start OEPE and create a new OSB project and import JCA, XSD, and WSDL
files (right click on a project and select Import) from the JDev project root.
If the JCA file will be invalid after import, just open it and fix the path
according to the new location.

9.	 Generate Business Service by a right-click from JCA. We will leave all
generated parameters for transport, message handling, and policy as is.

10.	 Now we need to create proxy service in order to complete the decoupling.
We already have WSDL from the SCA DB adapter, but we really would like
to hide the DB-related implementation and present the true decoupling.

11.	 Start Proxy Service wizard and give it a suitable name. Add Routing
node and browse to the Business Service created earlier, similar to the
previous example.

Chapter 6

[375]

12.	 By changing the ExecutionPlanLookup service from a File-based to DB-
based implementation, we have created a complex view for consolidation of
all relevant service metadata, stored in the Enterprise Service Repository
(ESR) into complete Execution Plan (EP). As the ExecutionPlanLookup
service is the utility service, we can add an adapter into composition
without compromising SOA principles. We also preserved the file-based
implementation (together with the Oracle Rule Engine EP's resolution)
and can switch between File-based and DB-based implementations using
configuration settings or the MH parameter (tracing level element). View,
Query, and In/Out Transformations on Adapter are quite heavy (although
not complex), so we will skip the detailed implementation and trust that
you can implement it yourself, using the presented taxonomy and DB
schema, if it will suit your needs. The point here is should we move the
Transformations into OSB, leaving Adapter as a bare DB access point or keep
transformations to the canonical EP (or any other Canonical Message
in your case) inside adapter? Actually, we answered this question earlier,
but let's look at the technical possibilities.

13.	 While working with OSB, you must have definitely noticed two things.
Despite the wide range of message manipulation techniques, XQuery is
the most common, and secondly, XQuery mapper is rather minimalistic
compared to the XSLT mapper in JDeveloper. Still, this mapper is quite
capable of doing the quite complex operations and you can access it in OEPE
by navigating to Window | Open Perspective | XQuery Transformation.
In the following screenshot, you can see the actual EP mapping example that
we used in the Synchronous Service Broker realization (on OSB) to create
simple task collection:

XQuery Transformation perspective

Finding the Compromise – the Adapter Framework

[376]

14.	 After changing the perspective, you can create two mappings for the Request
and Response actions in your routing. First, we will map the MH Request
elements to the inbound parameter used to select necessary rule functions
from repository, and secondly, transform the DB Response to the canonical
EP (remember, this is just an example).

15.	 Constructed XQueries will be used in the Expressions of Replace actions,
located in the Request and Response pipelines respectively, by replacing
the node content of <soap-env:Body>. We have to specify, in the parameter
binding, the element that presents the Response from the adapter.
We are almost there.

16.	 We need to test it. Publish Proxy on OSB and start SoapUI. Get the URL to
the Proxy WSDL (http://<your_OSB_host>:<your_OSB_port>/<your_
OSB_project_step8>/<ServiceName>?wsdl) and paste it into the Initial
WSDL/WADL field. Generate the Request, change the content of the query
according to your DB data, and send the Request. This is it.

In a quick pace, but with all necessary details kept intact, we demonstrated the
traditional approaches of the implementation and Adapters isolation using OSB.
Although EJB wrapping into Proxy is not completely an adapter-related task,
it's quite common and can give you a flavor of what you can achieve by the
power of EJB methods, hiding the complexity of Java manipulations, and exposing
them in one simple method.

Some more OSB aspects shall be mentioned in relation to the Adapter
framework—the ability to support transactions. The JCA transport is transactional.
If a JCA proxy service is invoked in an EIS transaction, or if a JCA business service
is invoked in a transaction, the transport propagates the transaction. Sometime
ago, Oracle had got in its arsenal, which is one of the most powerful Transaction
Coordinators, Tuxedo (http://www.oracle.com/technetwork/middleware/
tuxedo/overview/tuxedo-and-soa-bwp-128150.pdf), and if you need complete
transactional support for your applications, this could be the perfect choice. Still, the
Oracle Service Bus can provide adequate transactional support for our adapters. A
transactional adapter has the potential to start or enlist in a global transaction context
when processing a message. The following examples from Oracle documentation
illustrate how transactional properties vary depending on the adapter:

•	 A JMS proxy service that uses the XA connection factory is a transactional
endpoint. When the message is received, the container ensures that a
transaction is started so that the message is processed in the context
of a transaction.

•	 A Tuxedo proxy service may or may not be a transactional endpoint.
A Tuxedo proxy service is only transactional if a transaction was started
by the Tuxedo client application before the message is received.

http://www.oracle.com/technetwork/middleware/tuxedo/overview/tuxedo-and-soa-bwp-128150.pdf
http://www.oracle.com/technetwork/middleware/tuxedo/overview/tuxedo-and-soa-bwp-128150.pdf

Chapter 6

[377]

•	 While an HTTP proxy service will not typically have an associated
transaction when invoked by an HTTP client, you can set an option in
the HTTP proxy service configuration that starts a transaction and executes
the message flow in the context of that transaction.

You can read more on these use cases at http://docs.oracle.com/cd/E23943_01/
dev.1111/e15866/architecture.htm.

Dynamic Adapters implementation and DB
Transport Adapter
Now we have everything we need, we can go to the core skipping the
implementation technique details explained earlier. What we do want is to execute
any SQL statement on any SQL (Oracle) database in our infrastructure and we would
like to do it in a dynamic way based on the information provided in the message
container shown as follows:

1.	 Probably the simplest way to execute the dynamic SQL statement is to
use the execute-sql XQuery function directly in the Proxy Message flow,
in a request pipeline, presented as follows. You will need two input
parameters; one for the query, and another for DB source name. Although
lightweight and simple as is, this method has some limitations—we can
execute only single statement and only SELECT. The last one is quite a
considerable drawback as it would be quite difficult to execute complex
transitions (although possible, depending on your SQL skills). We saved the
following code as a standalone XQuery script and will use it further in our
flow:
Declare variable $database as xs:string external;
declare variable $query as xs:string external;

declare function xf:xq_runQuery($database as xs:string,
$query as xs:string)as element(*) {
 <out>
 {fn-bea:execute-sql($database, xs:QName('rows'), $query)}
 </out>
};

xf:xq_runQuery($database, $query)

http://docs.oracle.com/cd/E23943_01/dev.1111/e15866/architecture.htm
http://docs.oracle.com/cd/E23943_01/dev.1111/e15866/architecture.htm

Finding the Compromise – the Adapter Framework

[378]

2.	 Secondly, we can implement the Session bean with one main method,
executeSQL, demonstrated as follows. The EJB implementation is pretty
straightforward and EJB will be invoked using the EJB Transport, similar
to what we discussed earlier. Again, it will accept a datasource and a SQL
statement list. After establishing the connection, it will loop over the SQL
statements in the same transaction. If one transaction fails, all of them
will be rolled back:
@Override
@WebMethod
@WebResult(name = "sqlResponse")
public CTUFusionDBAdapterResponse executeSQL(
 @WebParam(name = "SQLStatements")
CTUFusionDBAdapterSQLStatements sqls,
 @WebParam(name = "datasource") String datasource) {
 int x = 0;
 CTUFusionDBAdapterResponse response = null;
 try {
 connection = getDynamicConnection(datasource);
 Statement statement = connection.createStatement();
 String resultStr ="";
 String[] sqlStrings = sqls.getSql();
 for(x=0;x<sqlStrings.length;x++){
 boolean result =
 statement.execute(sqlStrings[x]);
 if(!result){
 resultStr+=Integer.
 toString(statement.getUpdateCount());
 }else{
 resultStr+="S";
 }
 resultStr=(x<sqlStrings.length-
 1)?resultStr+"|":resultStr;
 }
 response = new
 CTUFusionDBAdapterResponse("0","",resultStr);
 statement.close();
 connection.commit();
 connection.close();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 log.severe("SQLException,
 ["+sqle.getMessage()+"]");

Chapter 6

[379]

 return new CTUFusionDBAdapterResponse("SQL-
 1","SQLException, SQL@position["+x+"]
 "+sqle.toString(),null);
 } catch (NamingException e) {
 e.printStackTrace();
 log.severe("NamingException resolviing datasource,
 ["+e.getMessage()+"]");
 return new CTUFusionDBAdapterResponse("Sys-1",
 e.toString(),null);
 }finally{
 try {
 if(!connection.isClosed()) {
 connection.rollback();
 connection.close();
 }
 } catch (SQLException e) {
 log.severe("SQLException clossing the
 connection, ["+e.getMessage()+"]");
 e.printStackTrace();
 }
 }
 return response;
}

3.	 Speaking of establishing the dynamic connection (getDynamicConnection),
the implementation is presented as follows, just to complete the example:
InitialContext context = new InitialContext();
DataSource source = (javax.sql.DataSource) context.
lookup(datasource);
connection = source.getConnection();
connection.setAutoCommit(false);
return connection;

4.	 Finally, to cover all EJB related details, please see the following
CTUFusionDBAdapterResponse class implementation; setters
and getters are omitted here for brevity:
@XmlRootElement(namespace =
 "urn:com:telco:ctu:la:adapter:dbadapter:v01")
public class CTUFusionDBAdapterResponse implements
 Serializable {

 private String errorCode;
 private String errorMessage;
 private String result;
...

Finding the Compromise – the Adapter Framework

[380]

Steps 2 to 4 are related to the standard EJB implementation and DB handling
in Java. For all the necessary details for implementation, you will find in
Oracle documentation and tutorials at http://docs.oracle.com/javase/
tutorial/jdbc/basics/sqldatasources.html.

5.	 Now, as we have all executable modules, we need to address the inbound
message structure as a carrier and provider of our inbound parameters.
As already mentioned, we will use our standard message container CTU
Message, and all Protocol Adapter details will be injected into the payload
from the Execution Plan. Adapter-specific parameters, injected from EP
are highlighted in the following example. As you can see from the ESR DB
schema presented in the previous chapter, values for these parameters are
taken from the MEP and Endpoint table, related to the application, action as
a TP in our service composition:
<AdapterMessage>
 <endpoint>{JNDI name of DB connection}</endpoint>
 <protocol>{DB}</protocol>
 <payload>
 <SQLStatements>
 <Sql>SQL Statement 1</Sql>
 <Sql>SQL Statement 2</Sql>
 <!—->
 <Sql>SQL Statement N</Sql>
 </SQLStatements>
 </payload>
</AdapterMessage>

Now, with actual workers (executable modules, XQuery, and Java),
and input and output parameter structures, we can proceed with the
assembly of our DB protocol Adapter as a Service Proxy.

6.	 Let's return to our Generic Adapter implementation from Chapter 4, From
Traditional Integration to Composition – Enterprise Business Services and look
again at Operate function. It invokes Facade (actual dispatcher) using
dynamic XQuery- and DB-related part and is presented as seen in the
following code snippet. Now you can clearly see the complete picture of
how dynamic routing works and what parameters in message container we
employed for that:
...
if (data($request//*:AdapterMessage/*:protocol)= 'DB') then
 (<ctx:route>

http://docs.oracle.com/javase/tutorial/jdbc/basics/sqldatasources.html
http://docs.oracle.com/javase/tutorial/jdbc/basics/sqldatasources.html

Chapter 6

[381]

 <ctx:service isProxy='true'>CTUFusion_BUS/Resources/Proxy
 Service/Logical Adapter/
 ProtocolAdapter/PS_Database_Protocol_Adapter</
ctx:service>
 </ctx:route>)
...

7.	 OSB Project was created and a new Business Service wrapping SQL handling
EJB was deployed in a similar manner as we explained in the Exposing
EJB through OSB section previously. A new Proxy Service (as a Messaging
Service) was created, based on this Business Service with XML Messaging
based on the CTU Message container (Messaging tab).

8.	 The first step in a Proxy Message flow (right after the logging of an inbound
message, of course) would be a variable creation and assignment for SQL
query and datasource. We will use it almost immediately.

Assigning a SQL query from message payload

Finding the Compromise – the Adapter Framework

[382]

9.	 The SQL execution part is quite similar to the flow we implemented for a
simple EJB in the previous exercise, except that we have two more things.
First, we have to implement IF branching, routing the simple queries to the
XQuery function execution (step 1) and all others to the EJB Service Callout.
The condition is as presented on the following screenshot, (1) (it should be
only one statement and only SELECT). Secondly, for the complex queries, we
have to prepare a SQLStatements List and datasource parameters for the Java
invocation. See the following script:
<urn:executeSQL
 xmlns:urn="urn:com:telco:ctu:la:adapter:dbadapter:v01"
 xmlns:java="java:ctu.fusion.adapter">
 <urn:SQLStatements>
 {
 for $sql in $query//*:Sql return
 <java:Sql>{data($sql/text())}</java:Sql>
 }
 </urn:SQLStatements>
 <urn:datasource>{$database}</urn:datasource>
</urn:executeSQL>

The complete SQL execution part is presented in the following screenshot,
where step 1 is the condition for our If branching, step 2 is the Assign
operation, executing our single SELECT XQuery, and step 3 is the EJB
Service Callout:

Maintaining the EJB service callout

10.	 Finally, in our Response flow, we generally have to replace CTUMessage/
Payload (body) with result of the Query execution.

Chapter 6

[383]

That's all folks. In ten relatively simple (and most importantly—standard) steps,
we created a lightweight and very universal DB adapter, completely agnostic and
suitable for any Composition Controller. The main enabler of this technique is not the
OSB's XQuery engine or EJB, as they are absolutely standard and work exactly the
same way on other ESBs (RedHat FUSE or ServiceMix/CXF, for instance, where we
have a similar approach to Service Bean invocation from the XML blueprint, acting
as an EP), but the Service Repository with taxonomy, adapted for runtime discovery
and invocation of any Service / Service Artifact.

Summary
We are in the middle of the book, but journey is far from over yet. So far we covered
the three main SOA Frameworks: Service Collaboration (ESB), Service Orchestration
(EBF), and Application Business Connector Services (ABCS, or Adapters) and all
SOA Patterns associated with them. We also described the role of Enterprise Service
Repository (yet another framework, heart of the SOA Governance) in all of these
frameworks. This chapter, entirely dedicated to the ABCS layer had no purpose to
cover all aspects of Adapters implementation though, but rather how to optimize this
layer in order to make all our service-oriented applications in our inventory more
intrinsicly interoperable (one of the major SOA characteristics, you remember).

Why? Well, why does a classic construction brick have pretty much a standard size
of 3 5/8". 2 1/4". 8"? Maybe because none of the construction architects in the entire
world want to have their masons waste their time adjusting boulders, rocks, and
stones instead of building houses and bridges? And further on, maybe that's the way
the Pattern-based standardization approach, proposed by Christopher Alexander,
becomes so increasingly successful among the software architects as well?

The Extensive Adapter framework is not only a waste of time (and money) during
design time and development, but also the constant pain for Operations and Support
depts and the reason for more than 80 percent of outages and breakdowns in our
operational environments. All middleware specialists know that they are the first
people to blame when the message from source A didn't reach destinations B and
C. The root cause of that—application A initially was not able to collaborate with
applications B and C, and the adapter was simply unable to fix this problem for a
complete 100 percent. Even if it could, it's an extra layer, adding complexity to our
landscape and therefore making it susceptible to faults.

Finding the Compromise – the Adapter Framework

[384]

Thus, our primary architectural task would be to make our core applications more
service-oriented for eliminating the requirements for adapters. This approach was
demonstrated in the first part of this chapter, when we optimized the OEBS APIs
and Event Handling System for the Scandinavian Logistic operator. You were
supplied with enough information and code samples for your own implementation
of this approach.

Composability and Composition Controllers are the primary goals of this book
as this principle and these building blocks are endorsing reuse and modularity
(read—cost savings and operational reliability). Therefore, the second part of this
chapter demonstrated how we could promote reusability on the Adapter level,
balancing adapter-related SOA patterns between OSB and ABCS. Remember,
although perfectly operational, this technique should be applied with caution,
depending on the number of legacy applications in your infrastructure and the
level of their similarity. Sorry, it would be quite irresponsible to give you numbers
for selecting any of these approaches, but the CTU example can give you an
understanding of what could be really achieved.

Finally, if first two approaches are not possible, you can employ the standard adapter
technique, quite well-known from version 10g and even earlier, build the individual
adapters for all applications, and decouple them using OSB. Some examples for that
have been provided as well.

Once again, just in case if someone has an idea—we have nothing against Adapters,
we love them. Frankly, it's a good way of making money (although we believe that
composing yet another book, full of screenshots from BPEL Creating Partner Link
for all type of adapters wizard would be quite useless for you as you probably have
enough already). Adapters are inevitable and play essential roles in many solutions,
presenting Data Integration, Virtualization, Federation, and Master Data Management.
Most of them are based on classic SOA ESB patterns and can be quite effectively
implemented on the Oracle OFM (surely, most salesmen of these tools will strongly
disagree with us). Anyway, Oracle has a single product called ODI to cover most of
these requirements, but that's the subject of a completely different book.

Only the journey is written not the destination. Our next stop will be the Security
Patterns and how they can be applied at all levels, from a single Java component up
to Security Gateway. We will look at possible threats, attacks types, and the methods
of risk mitigation.

Gotcha! Implementing
Security Layers

Nothing is more vulnerable to any kind of attack than the compositions of different
components. In fact, better perimeter protection is one of the tactical advantages
of the old silo approach, and no one can deny this. You could protect your service
compositions made from the same service domain because you can control it in the
same way as a silo; however, if there is a single participant (composition member)
outside of the domain's premises, all security concerns will multiply drastically.

In this chapter, we will be faced with quite a few challenges, some of which we have
already mentioned. Firstly, native-born security architects have completely different
mindsets than solution architects. We cannot ask you to forget all that you have
already learned from previous chapters, but we will try to introduce you to another
way of thinking using our knowledge of patterns and frameworks.

In about 40 pages, we will do our best to systematically cover all the common
techniques and approaches used in SOA security patterns, with references to best
practices and publications. Most (if not all) books dedicated to SOA security that you
find on Amazon will be dated 2008, 2005, or even 2003, and do not cover the latest
standards development (OAuth, SAML, and PKI) and recent tools. Probably the
best (in our opinion) paperback, Securing Web Services with WS-Security: Demystifying
WS-Security, WS-Policy, SAML, XML Signature, and XML Encryption, was published
in 2004. Thus, in this chapter, we will not capture the immensity of the SOA security
topic and instead focus on layered protection, realized by standard SOA patterns.
This layered protection cannot be covered without touching upon SOA-specific
attacks aimed at SOA-specific vulnerabilities. Patterns will demonstrate how to
mitigate security risks common to SOA implementations.

Gotcha! Implementing Security Layers

[386]

Where are we now?
We would like to start with a quote from a security report based on research
of 110 companies from industries including financial services, the government,
and IT. The quote is quite long but really interesting:

•	 More than two-thirds of IT security resources remain allocated to
protecting the network layer, while less than one-third of the staff and
budget resources were allocated to protecting core infrastructure such
as databases and applications.

•	 When comparing the potential damage caused by breaches, most enterprises
believed that a database breach would be the most severe.

•	 Nearly 66 percent of respondents said they apply a security inside out
strategy, whereas 35 percent base their strategy on endpoint protection.

•	 Even with this fundamental belief in strategy, spending does not truly align
as more than 67 percent of IT security resources—including budget and staff
time—remain allocated to protecting the network layer and less than 23
percent of resources were allocated to protecting core systems like servers,
applications, and databases.

•	 44 percent believed that databases were safe because they were installed
deep inside the perimeter.

How old do you think this report is? Twenty years, maybe ten? Not at all. The
results of this survey (http://www.oracle.com/us/corporate/press/1972875)
were published in mid 2013. Take a look at the Oracle SOA development roadmap table
(Chapter 2, An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory).
Basic Security Profile Version 1.1 was published in 2009 and this profile de facto has
finalized all security standards developed for more than 10 years. You do not have
to be a pentester to understand that something is wrong here. The question is,
how bad?

No, this is not bad, because the word bad is not capable enough to describe how
horrible the actual situation is! It simply means that in at least 66 percent of cases, vital
information about your clients, financial transactions, planned merges/acquisitions,
employees' private data, and strategic development/products is already in the caring
hands of your diligently watchful competitor(s). It also means that this information in
two-thirds of cases can be acquired within two days without significant investments
into complex sniffing equipment. Yet again, in most cases, it's in the best interest of
intruders to keep your data intact and hide all evidence of the security breach.

http://www.oracle.com/us/corporate/press/1972875

Chapter 7

[387]

Without a doubt, the human factor is crucial in any security system;
however, discussing this is beyond the scope of this book. Nevertheless,
you have to contemplate the fact that about 90 percent of all information
leakages are carried out or initiated internally. Yes, sometimes
unintentionally, but even good intentions (or the absence of bad ones)
provide sufficient basis for anecdotic stories about lost or forgotten
notebooks or CDs by agents of one kingdom with allegedly the most
proficient secret service in the world. As a result of this contemplation,
a clear understanding must be firmly implanted in your mind; in SOA
environments, starting from moderate complexity and higher, with
more than two service domains and the presence of intermediary, the
reliance on TLS/SSL alone is no better than publishing your connection
strings with a username/password on your corporate front page.

In this chapter, we will start with an analysis of the situation in order to formalize
essential solutions patterns capable of reducing security risks.

Initial analysis
We would like to begin our analysis with an old saying: a chain is no stronger than
its weakest link. Banal, isn't it? Sorry about that, but indeed with four architectural
SOA levels, everything comes down to the resiliency of the single-service
implementation, which is in the lowest architectural service layer. As long as any
particular service is a composition of services (Task or Task-orchestrated service), the
three basic building blocks of SOA infrastructure can be identified. The first two are
Utility and Entity service models, usually employed to compose the Task service(s).
The third is a Service engine (which is not a small thing, but you will probably
rely on an existing one instead of inventing your own for commercial realization).
An Entity service's internal architecture is usually more complex than a Utility
service, as it commonly involves DB as the entity's persistence storage. Therefore,
from the static implementation standpoint, all four enterprise SOA layers will be
protected proportionally to the level of security resilience of the Entity service
anatomy, and you certainly remember its every single block:

•	 The core logic is encapsulated into single or several components. How
are you handling exceptions, including NullPointerException? Is your
code thread-safe? How about memory utilization and stack control, global
variables, and so on? If you do not know this, how can you be sure that your
main architectural block is safe? A stack/buffer overflow attack is one of the
most popular ways of breaking into your system and is commonly focused
on components' implementation.

Gotcha! Implementing Security Layers

[388]

•	 We already mentioned DB's presence in the service anatomy. The ways of
service persistence implementation are utterly crucial for the entire SOA
implementation. The absolute champion among all types of attacks is SQL
injection, and it has been for years. Combined with improper error handling
in the component (see the previous point), it will present grave danger for
your business. Another quick check is of the DB account that you assigned
for this service. What privilege options are available? DBA, XDB, or both?
Another obvious question is: does anyone else access the Service data
bypassing the Service Contract (just because it is faster and someone
decided to cut some corners)?

•	 The Service Contract presents quite a substantial set of internal service
Facades and Agents, performing service data serialization/deserialization,
exposing a component's functions, and enforcing the internal policies.
Usually, most of this functionality is easily available from libraries or
IDEs, but its openness is not exactly a good thing. Attack spearheads will
be pointing to XML/JSON parsers and marshallers, exploiting existing or
possible vulnerabilities in standard libraries and XSD syntax.

Here we mentioned only three internal services elements susceptible to attacks, but
these attacks are the most common and truly devastating. Common to these types of
vulnerabilities and attacks is that their target is static core service logic, encapsulated
in component or groups of components. However, this doesn't make them similar
to the classic security issues of the silo approach because we have the second native
part of SOA—the service interactions.

Services or components have to communicate with each other in order to carry out
their business tasks. What's worse for security personnel is that they have to perform it
dynamically, depending on numerous business conditions that involve a considerable
amount of external resources in an agnostic manner (see the CTU example, discussed
in previous chapters). We do not have strict domain security boundaries anymore
because one message can carry information about different (even business-opposing)
parties. Different parts of the message can be transformed or enriched separately
by independent intermediaries and so on. Information Confidentiality, Integrity,
Non-Repudiation, and Origin are constantly at risk when we have something in
transit, and we constantly do. Thus, certain measures (in the form of Patterns)
shall be applied in order to protect the aforementioned information properties.
Luckily, these measures, covered by WS-* specs as Encryption, Digital Signature,
and Portable Trust, are quite mature and far older than the SOA concept itself.

Chapter 7

[389]

Before we go into the risk analysis, vulnerabilities, and SOA-related attacks,
we would like to jump ahead to some generic conclusions:

•	 It is not possible to have poorly designed services at the beginning (usually
designed as a PL/SQL Web Service or any web service by right-clicking in
JDev) and then convert them into something secure by hiding behind some
magical "Secure Gateway" or "Defense Perimeter". At best, the performance
of such a service, after applying all security restrictions, will degrade ten
times or more (Oracle estimates). This is because a Service Gateway (SG)
will have to meticulously screen every single call and validate every single
response in order to shield the holes in the service design and intentionally
throttle the traffic, as the service simply cannot keep up with the incoming
requests. Surely, such a situation will feed the common stories about how the
"naughty" security killed our good performance.

•	 The logical outcome from the preceding point is that you as an architect
should ensure that the service design is safe and sound in every single
detail and not just by drawing blue boxes in PowerPoint and connecting
them by red lines. As mentioned earlier, developing entirely in Java would
probably be too much (although this is definitely a positive thing), but
you should perform peer reviews and participate in testing at all levels.
Frankly, this is not news; please refer to Thomas Erl's book, Service-Oriented
Architecture (SOA): Concepts, Technology, and Design, where you find SOA
architect's role laid across a whole project's lifespan.

•	 With no magic pill available to mend all security issues at the end of the
project, an SOA architect should work hand in hand with a security specialist
and be familiar with the current trends in risks, vulnerabilities, and attack
types. OWASP (http://www.owasp.org) is definitely one of the best places
to go, and all our further analysis will be based on the classification proposed
by this project.

•	 We have already mentioned one common security design rule generally
associated with encryption and digital signature—algorithms are widely
open, keys (private of course) are utterly protected. This statement not only
stresses the necessity of rigorous testing of a security's crucial elements
but also denotes the considerable risk associated with having something
custom-built (in-house) as the central part of your security infrastructure.
The security is probably the one (very conservative) area of IT where having
your own private opinion could be an expensive luxury indeed.

http://www.owasp.org

Gotcha! Implementing Security Layers

[390]

You don't have to build everything from scratch. There are plenty of appropriate tools
and libraries and you, as an architect, should just put them (or apply the patterns) in
the right place. Again, a good starting point could be to maintain OWASP's terms and
terminology within your team—the common understanding of spoofing, surreptitious
forwarding, stack smashing, and so on. For the same reason, we will just follow the
already proposed classification, avoiding unnecessary reinvention.

To illustrate the risks of having a poor understanding of security
design, a highly respectable IT company, and pioneer in event
processing and BPMN, participated in CTU's RFI process. Lacking
the COTS market-proven security solution, this company proposed
a custom package, developed for other customers over several years.
The proprietary Security Perimeter was proposed to the completely
stunned architects where scans for the threatening content was
executed after authentication. Further still, the scanner itself was based
on the standard XML parser. Having said that, in this chapter, we will
not present you with the custom solution as we did before for ESB and
adapters. Instead, we will talk about the API Gateway, a relatively new
Oracle strategic product capable of covering five out of eight common
SOA security patterns.

From the proven SOA Pattern Catalog, we have eight security patterns:
four for service implementation (Group I for static service implementation,
starting from Exception Shielding; http://soapatterns.org/design_patterns/
exception_shielding) and four to protect service interactions (Group II for service
messages in transit). Some of the patterns such as Data Confidentiality and Data
Origin Authentication (group II, see http://soapatterns.org/design_patterns/
data_confidentiality) are in fact the direct realization of the WS-Security
standard, WSS (see https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wss), covering two main W3C specifications: XML Encryption (http://www.
w3.org/TR/xmlenc-core/) and XML Signature (http://www.w3.org/TR/xmldsig-
core/). Since they are of the utmost importance, they are well covered in all the books
we have already mentioned, so we will not focus on them much.

The Trusted Subsytem in its turn (group I) is a security-related extension of the
Contract Centralization pattern, designed to prevent access to service resources,
bypassing the standard service contract and associated security policies. Thus,
there are five patterns left: two related to Authentication and Authorization and
three that can be implemented (centralized) by the so-called Security Perimeter.
To understand their roles and importance, we will proceed with the most common
vulnerabilities first.

http://soapatterns.org/design_patterns/exception_shielding
http://soapatterns.org/design_patterns/exception_shielding
http://soapatterns.org/design_patterns/data_confidentiality
http://soapatterns.org/design_patterns/data_confidentiality
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

Chapter 7

[391]

Common SOA vulnerabilities
Think of military operations in close encounters. Your service domain has a certain
edge that is in one way or another exposed to the world outside. (If it's not exposed,
you are the lucky one! Why are you reading this?) This edge is actually the skirmish
point, where the attacker methodically shoots and observes, trying different weapons.
A publicly exposed contract (WSDL/REST) gives enough information for the imposter
to devise the initial weapon of choice, for example, service operations or an XSD
structure—everything is there, so an attacker has an undisputed tactical advantage.
Vaguely defined XSD (types any or string for all elements) just makes more room for
experiments (in case your attacker is bored) and intercepted valid messages can give
the attacker a quite a good understanding of the possible data ranges.

One option is to not expose the WSDL definition (hide the API documentation or
at least remove all the comments from WSDL). Well, the secluded contract is not
really inline with the Composability principle. However, what about your UDDI?
It is similar to the DNS server for IP networks and susceptible to similar attacks.
UDDI-crawling attacks can turn your own versioning strategy against you if you
keep old, less secure contracts available for backward compatibility.

In any case, the attacker will be looking for a response from your service—the more
elaborative the better. Ideally, a complete error stack trace is what the attacker is
dreaming of (an entire unhandled SOAP error with faultString is good enough),
but in fact, any piece of information is welcome. Needless to say that the biggest
portion of this information will be provided by your Error Handlers (EH) at all
levels; therefore, vulnerabilities in EH design shall be discussed first.

It would be a mistake to think that the standard HTTP response or no response at
all will considerably improve the overall security. Blind-type injection is one of the
most difficult injections for attackers, but it is still quite able to deliver results and
standard responses can be mapped to attack types and they are informative enough.

Surely our goal is to make the attacker's life hard, but our developers and operation
will be proportionally affected as the Discoverability principle is sacrificed.

Error handling vulnerability analysis
Here, we will combine the most common error handling vulnerabilities, allowing
attackers to explore your line of defense and collect all the necessary technical
information about your services for further steps, aiming at authentication/
authorization weaknesses. The methods are quite obvious:

•	 Study exposed contracts and/or intercept valid messages
(being a passive intermediary or eavesdropping).

Gotcha! Implementing Security Layers

[392]

•	 Check the message for potential cryptographic nonce, constructed as the
concatenation of random string and timestamp and used once per message.
If the message contains additional information regarding the valid time range
(for instance, return_acknowledge_till<…>), try to resend the message
(as an active intermediary) within this interval. Interestingly enough, it's not
that rare that for an add<something> operation, the attacker gets a message
acknowledging the error, with faultString containing the primary key
violation along with the constraint name, table name, and some additional
information about DB itself.

•	 The presence of a nonce technically means that the message is signed
(HMAC-SHA or older MD5); otherwise, this composite nonce doesn't make
any sense. Here the attacker has two options: it's quite possible that a small
clock synchronization interval can be maintained between the involved
systems, potentially allowing reply attacks. If the weak hash algorithm is
used, the attacker can exploit it by using brute force or a collision technique
(MD5, evilize library; for an example by Peter Selinger, see http://www.
mathstat.dal.ca/~selinger/md5collision/). Anyway, these attacks
will be undertaken after studying the message structure and the response.

•	 It's also not as rare as you might think (yes, it sounds unbelievable) that the
XML digital signature cannot be strictly enforced by a contract's WS-Policy.
This could happen during the transition period, when some migrating
consumers are not ready to be fully compliant with the declared policy.
So, all the XML ds:nodes containing the following code can be easily
stripped by the attacker and a message will still be accepted:

<SignatureValue>
WkZUJAJ/0QNqzQvwne2vvy8U5Pck8ZZ5UTa6pIwR7GE+OoGi6A1kyw==
</SignatureValue>

The important thing is that whatever hacking technique is employed by the attacker,
the initial step is always the same: gather as much information from your service
response message as possible. Your Error Handler is the major supplier of this
information.

Regarding the following vulnerability list, feel free to use your own labels
(alphanumerical codes) for all kinds of vulnerabilities. As you go further, you will
need them as flags to mark potential weaknesses on the technical infrastructure map.

http://www.mathstat.dal.ca/~selinger/md5collision/
http://www.mathstat.dal.ca/~selinger/md5collision/

Chapter 7

[393]

Information leakage
The vulnerability code for information leakage is EH01. Take a look at the common
catch block:

catch (Exception ex){
ex.printStackTrace();
System.out.println(ex);
}

What is good for the logfile in a Dev or JIT environment is a disaster in production
and definitely should be avoided in a SOAP error response.

Missing error handling
The vulnerability code for missing error handling is EH02.

Standard HTTP response codes 4XX (Unauthorized, Bad Request, Forbidden,
Not Found, Method Not Allowed, and so on) are quite often employed in REST-
based APIs. Firstly, they are already quite informative for the attacker. Secondly,
using standard handlers instead of fine-tuned handlers in your services could not
only potentially reveal service technical information (presence of resources, class/
resource hierarchy, and methods availability) or service business logic, but can also
make the life of your developers difficult if mapping is too generic.

We also have to mention that redirection of everything to a single generic error page
or attempts to map 403 to 404 and so on (with the intention of deceiving the attacker)
will primarily affect service consumers and ops, not the culprit.

Empty catch block/uncaught exception
The vulnerability code is EH03. The following code is another quite common block:

try {
 provideService();
}
catch (SomeUnusualException ex){
 // our system is quite resilient and we do not care about
low-probability cases
}

Note two things here: practical—if this unusual exception ever occurs, you will
have no information about it, and philosophical—you better believe it will happen.
A developer's laziness is the attacker's best friend. Peer review is an essential part of
an architect's tasks. Some tools from the following section can help you.

Gotcha! Implementing Security Layers

[394]

Catching NullPointerException
The vulnerability code for catching NullPointerException is EH04.

Catching NullPointerException doesn't make much sense. Generally,
this is not a runtime exception we should handle in a catch section. In general, it's
the lack of coding culture (note, we are not accusing anyone) and if you have filthy
code, none of the existing perimeter protection systems or IDS can protect you.
Sorry, that is just the way it is. Here are the tools you can use for static and dynamic
analysis of your code:

•	 Static and dynamic (with heap walking) analysis:
°° Oracle JRockit Mission Control: http://www.oracle.com/

technetwork/middleware/jrockit/overview/index-090630.
html

°° JProfiler: http://www.ej-technologies.com/products/
jprofiler/overview.html

•	 Static analysis:

°° FindBugs: http://findbugs.sourceforge.net/

Return inside the finally block
The vulnerability code for the return statement inside the finally block is EH05.

All errors that might occur or are thrown in the try block will be ignored by the
return statement in the finally block:

Object ObjectHandlingMethod() {
 Object o = null;

 try {
 o = MethodErrorThrower();
 }
 finally {
 CleanUpRoutines();
 return o;
 }
 }
 Object HandlerErrorThrower(){
 ...
 if (size == 0) {

http://www.oracle.com/technetwork/middleware/jrockit/overview/index-090630.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-090630.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-090630.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://findbugs.sourceforge.net/

Chapter 7

[395]

 throw new EmptyStackException();
 }
 catch{
 logerror()
 }
 ...
 }

An exception is thrown in the other method, called from the core class. An error
was caught and even properly logged, but it wasn't propagated back to the caller.
The return statement in the finally block is choking any exceptions, making the
code not only unsafe, but also very hard to maintain.

Inappropriate cleaning
The vulnerability code for inappropriate cleaning is EH06.

As you can see from the preceding code, we have CleanUpRoutines() in the
finally block. This is a mandatory part for any final block—all connections must
be closed, file pointer released, threads unlocked, and memory cleaned from the
loop-related variables. This is highly important as some attacks are not only aimed at
revealing technical implementation details but also at depleting the service resources.

Handling dissimilar exceptions in the same block
The vulnerability code for handling dissimilar exceptions in the same block is EH07.

This situation is quite close to the one described for vulnerability with code
EH02 and can also be presented by using the same exception handler for differed
named exceptions. An indiscriminate handler will not only open the door to the
mishandling of complex situations simulated by an attacker, but also will leave an
unclear trace record in the system's logs, blinding the response/ops team.

Authentication and authorization vulnerabilities
Here we mostly talk about API authentication (System-to-System) and not just about
human and web page interactions (although it's also based on SOAP and REST
services, serving direct and brokered authentication). In this case, arguably, you can
assume the main authentication weakness of all time—the password strength can be
finally tamed as the API is not affected by typical human factors, that is, the ability
to remember passwords (or leaving yellow sticky notes on the monitor). Indeed,
just from a password strength calculator (you will find a lot of them on the Web),
we can see that a four-character password, which is common for humans, can be
brute forced in a couple of minutes, while a 20-character API key will take ages
(with adequate OS (Linux/Unix/Windows) file protection in place, of course).

Gotcha! Implementing Security Layers

[396]

Well, our optimism should be very cautious about that though. Not too long ago,
we were able to use Amazon S3 and EC2 cloud services (actually, AMIs with all
our assets) to log in with our regular Amazon shopping account. So naturally,
as mentioned earlier, using signature-wrapping (stripping) and cross-site scripting
(XSS) attacks, pentesters were able to compromise these Shopping and EC2
credentials and gain total control over the victim's account with virtual machines
containing stored code and data. Should we mention the victim's shopping cart?
Should we also mention that EC2 is probably the most popular sandbox for
developers from several leading companies?

We believe that this vulnerability is already mended by Amazon, but we can
add several good recommendations to our list of security design rules from the
preceding case:

•	 Using the same password could be convenient, but that's not the idea
behind SSO, especially if cross-system authentication is based on such
weak possession or knowledge. Do not mix human- and system-based
AA approaches.

•	 Single-factor authentication should be avoided; two-factor (by the way,
Amazon claims to have multifactor authentication, MFA) with one easily
compromised factor will give you a false sense of protection. In fact, any
systems based on something you know (password) should be enforced with
something you possess (token), something you are (for example, fingerprint),
or better, password transmission should be avoided completely.

Generally, gaining direct access by exploiting or resending SOAP/REST messages
is a kind of gamble and will require not only inefficiency in security design,
but also a little luck as well, and usually attackers do not count on that. After
the identification of the backend system's types by studying response messages,
the attacker will perform the following tasks:

•	 Try to obtain credential information from service resources
(DB and config files) directly.

•	 If the credentials for this service are obtained, check the system
privileges associated with them.

•	 Explore the possibility to bypass the service contract and directly get to
the service resources. Use the known weaknesses of the technical platform
(missing latest security patches for Oracle DB, MSSQL, and so on).

Chapter 7

[397]

For some reason (for instance, license policy), you can decide to use an MS SQL
database as the backend for certain critical products such as the Oracle Enterprise
Repository. That's perfectly fine, but you (your DBA) forgot to disable xp_cmdshell
(or better, delete xpsql70.dll, drop EXEC sp_dropextendedproc @functname='xp_
cmdshell', and forget about its existence). What's worse is that the backend resources
are shared (which is common) and some services are used as a Trusted Subsystem
with SA privileges. This is the perfect recipe for a successful SQL injection attack as
well as an invitation to gain full control over all your resources. These types of attacks
are well documented and included in OWASP. Countermeasures that have already
been mentioned include not giving your service account more privileges than is
really necessary. (Frankly, we all know where it comes from—on a Dev server, our
developers focus on functionality first and security granularity later. Please do peer
review for the component's code and installation scripts including DB.) In addition
to the already mentioned vulnerabilities, the most common authentication and
authorization (AA) vulnerabilities are gathered in the following sections.

Simple authentication protocol
The vulnerability code for a simple authentication protocol is AU01.

Utilize the Diffie-Hellman scheme to create a session random hash value. This type
of authentication is quite susceptible to reflection attacks, that is, when an attacker
creates the second handshake session using the challenge obtained during the first
(incomplete) one.

Password system exploits
The vulnerability code for password system exploits is AU02:

String plainText = new String(plainTextIn)
 MessageDigestencer = MessageDigest.getInstance("SHA");
 encer.update(plainTextIn);
 byte[] digest = password.digest();
 if (digest==secret_password()){
//log me in
 }

The failure of a password authentication mechanism will almost always result in
attackers being authorized as valid users.

Gotcha! Implementing Security Layers

[398]

Authentication decision based on the Referer field
The vulnerability code is AU03.

The HTTP header element as defined by W3.org is Referer = "Referer" ":"
(absoluteURI | relativeURI). The J2EE code for extracting a fields value for
further authentication is HttpServletRequest.getHeader("referer"). In fact,
the Referer field in HTML requests can be simply modified by malicious users.

Authentication decision based on the DNS name resolution
The vulnerability code for the authentication decision based on the DNS name
resolution is AU04:

import java.net.InetAddress;
public class Authenticator {
public boolean authByHostname (String clientIP) throws Exception {
 booleansafe = false;
 InetAddress address =InetAddress.getByName(clientIP);
 String hostname=address.getHostName();
String canonicalhostname = address.getCanonicalHostName();
 If (canonicalhostname.endsWith("trustedsite.
com")) {
 safe = true;
 }
 return safe;
 }
}

You cannot control external DNS servers. All that is in there (IP/name mapping, cache,
and registering APIs) one day can be poisoned and compromised. Traffic can be routed
to the ghosts controlled by culprits, where IP addresses, names, and host attributes will
be mocked as trusted. Simply put, don't trust anything coming from outside, especially
from DNS, and do not base your authentication on these attributes.

Single-factor authentication
The vulnerability code for single-factor authentication is AU05.

Consider a dual-factor authentication as significantly more secure. Increasing the
factor will certainly increase authentication resilience, but it could have a negative
effect on performance (depending on the number of authentications per second,
and it must be evaluated case by case).

Chapter 7

[399]

Least Privilege Violation
The vulnerability code for Least Privilege Violation is AZ01.

The elevated privilege level required to perform operations such as chroot()
should be dropped immediately after the operation is performed.

Most commonly, this vulnerability is exploited when your service, acting as a Trusted
Subsystem, uses the elevated privilege level, accessing the common resources.

File Access Race Condition
The vulnerability code for File Access Race Condition is AZ02.

The program checks a property of a file, referencing the file by name.
It later performs an FSO operation using the same filename and assumes
that the previously checked property still holds.

Common SOA risks
Vulnerabilities represent risks materialized (or maybe not, depending on how good
we are) through various attacks. Any project (at least in practice) has a risk
assessment. Security risks are the main part, especially for services with external
exposure. This section is critical and must stay tuned with the current security
trends. OWASP is one of the primary sources of trend information.

We took the OWASP top 10 data for 2013 (https://www.owasp.org/index.php/
Top_10_2013) and mapped it to the standard SOA security patterns, capable of
mitigating these threats.

Injection
Anything that can be inserted, implanted, or simply added to the command line
or DB query string could not only break data consistency or add unwanted data
portion to the dataset, but also execute some DB or OS command, allowing the
attacker at the end to gain complete control of the victim's system.

At the very least, the system will respond with an error message, and it is
the architect's responsibility to balance the SOA security, abstraction,
and discoverability requirements.

Several factors make this risk number one in the top 10: difficulties in mitigation,
number of attack-automation tools, and potential devastation.

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Top_10_2013

Gotcha! Implementing Security Layers

[400]

The following are the suggested patterns to apply:

•	 Message Screening for inbound messages: Implementation of this pattern
is based on establishing the Service Perimeter Guard (yet another pattern) in
front of the Service Perimeter and firewall. Additionally, it can be applied to
a regular ESB.

•	 Exception Shielding for responses: This is for an individual service at the
time of design, combined with the Service Broker (composition controller).
In addition, it can be applied to the Service Perimeter Guard.

Broken authentication and session management
The factors that can lead to insufficient authentication are reliance on weak
passwords, single-factor authentications, unreliable/compromised protocols,
algorithms (such as MD5), the usage of digital signature without encryption
(and vice versa), too short or repeatedly reused session keys, a simplified nonce,
the possibility to compare protected and unprotected messages, revealing/loss
of private keys and certificates, storing passwords as clear text in AIM DB, and
misconfiguration of trusted subsystems that allow the bypassing of the service
contract and accessing the service resources directly.

The following are the suggested patterns to apply:

•	 Brokered and Direct Authentication:

°° Identity DB/LDAP
°° Policy Enforcement Point
°° Policy Definition Point
°° SOAP Header
°° HTTP Header
°° SAML elements
°° PKI elements (such as CRL)

Cross-site scripting (XSS)
The distributed way of handling a service request is quite common.
What's more is a single message can be addressed to separate services in
parallel or sequentially. Intercepted (the man-in-the-middle attack) and forged
in certain parts, impersonating trusted parties (see Trusted Subsystem pattern,
http://soapatterns.org/design_patterns/trusted_subsystem), a message
can cause session hijacking, malicious redirections, and the exposure of sensitive
data. As we mentioned earlier, an attack on Amazon was successful because the
application signature verification and XML interpretation were handled separately.
Yet again, Amazon is quite protected now against XSS. Are you?

http://soapatterns.org/design_patterns/trusted_subsystem

Chapter 7

[401]

The following are the suggested patterns to apply:

•	 Data Origin Authentication (digital signature): In this, Service Perimeter
Guard can be used as a pattern

•	 Data Confidentiality (encryption): In this, a service message prompts you
to make sure that every individual part of the SOAP message is supplied
with the signed digest; the nonce is crypto resilient

Insecure direct object references
The usage of FSO configuration elements is inevitable (for example, XML, INI, or
property files), especially close to the skirmish point. The developer's logic is simple:
"I cannot use full-fledged DB in DMZ; it's too heavy and has many weaknesses.
The amount of config data I will use in my utility service (or agent) dynamically is
insignificant and I can use simple XML instead, staying flexible and configurable at
the same time." The logic is flawless, but do we have file consistency checks every
time we access it? Do we have adequate file protection from the OS side? What if
the attacker, by executing a buffer overflow attack, causes a segmentation fault,
halts the program execution (exits abnormally), gains control over the program's
resources (not exactly root!), substitutes/modifies the file, and lets the system
restart the process? This means that the service agent infrastructure (part of the
SOA architecture) is equally vulnerable to attacks as are common entity services
because agents are common event-driven programs utilized in all service interactions
(imagine the agent checking the elements of the <string> type for the acceptable
length) and, sometimes, their log footprint is so small that you will have a hard time
finding the real problem.

The following are the suggested patterns to apply:

•	 Trusted Subsystem

This pattern will be applied to every service and agent in the SOA
infrastructure. This is a joint task for an architect, OS administrator, and
security specialist, and must be performed during a peer review. Every single
call to a resource shall be validated and tested. As most common attacks here
will be related to buffer overflows, you have to decide on want type of code
(that is, language) you want to implement your protection, especially close to
DMZ—managed (Java) or unmanaged (C).

Gotcha! Implementing Security Layers

[402]

Security misconfiguration
Speaking of mandatory configuration routines, please do the basic sanity check
by asking yourself the following questions: has LDAP synchronization managed
with open protocol (not SSL)? Have you applied security patches or are you afraid
of breaking something in production (alternatively, have you applied the wrong
patch)? Do you encrypt HD with sensitive data? Have you forgotten to update the
Certificate Revocation List? Have you run a service under the root privileges? Do
you keep your firewall ports configured by default (it's still not a problem to find
which are opened, but we do not want to give the bad guys a chance to slack)?
Still believe that WEP is unbreakable (in addition, allowing guest WEP-based
Wi-Fi access to corporate data)?

This sanity checklist is not complete, but we have no intention to publish a corporate
red book with all security do's and don'ts.

Another noteworthy point is that you can play and have a lot of fun with honeypots
and honeynets, but please make sure that they are completely (better still, physically)
separated from any of your actual environments.

There is no pattern called diligence or vigilance; that's the state of mind of security
ops. You, as an architect, must assist with the proper security configuration of the
following elements of the SOA infrastructure:

•	 Composition controllers and subcontrollers
•	 Concurrent contacts
•	 ESB / SG engines / agents
•	 Orchestration engines

In fact, every single element of your SOA infrastructure must not go amiss.
An obvious thing to say is that highly reusable components, service engines,
and most common service agents must be checked first and on a regular basis.

You also have to include into your Ops red book (security response plan) and orange
book (backup/recovery plan), a drill schedule, usually performed on your honeynet.

Sensitive data exposure
From a perspective of common sense, this is not a vulnerability, but primarily a
negligence similar to the security misconfiguration discussed earlier and quite
common to web applications (remember, we are not accusing anyone). However,
for SOA, it has a broader context. Data is not only exposed on static web via AJAX/
REST API. More often than not, it is insufficient crypto-strength or the lack of
crypto-protection on sensitive elements of a SOAP message.

Chapter 7

[403]

Reliance on TLS when intermediaries are on the message path is another example of
such exposure, especially if the intermediary is active, that is, involved in message
transformation. Even behind the Secure Gateway, in IPC-certified organizations,
message data should be encrypted all the way to the ultimate receiver.

The following are the suggested patterns to apply:

•	 Data Origin Authentication (digital signature)
•	 Data Confidentiality (encryption)

°° Service Contract
°° Service Messaging

•	 Resource Data Storage or similar resources

Missing function-level access control
Missing function-level access control vulnerability denotes insufficient
authorization. It is not enough to just check whether the user is valid; a system
must guarantee that this user will be allowed to call only permitted operations.

The Entitlement Server is an essential part of identity management, and for API
management, Oracle Enterprise Repository with Registry (UDDI) synchronization is
highly important. In terms of authorization, all your policy definition points should
be supplied with connectivity to the IAM Rights/Entitlement store. Needless to say,
any client-based validations for authorization do not make sense.

The following are the suggested patterns to apply:

•	 Service Perimeter Guard
•	 Service Contract (concurrent contract)
•	 Service Messaging
•	 MDM for all identity sources

Cross-site request forgery (CSRF)
This is a kind of manipulation, that is, when a legitimate client is forced to send a
request to the service on behalf of a forger. A request can include session-related
information including cookies.

Distributing session cookies is a common practice, for instance, in a multiscreen
IP TV, when a valid user wants to transmit active session data from the big screen to
or her tablet (or vice versa). This situation can be emulated by an attacker in order to
catch and analyze the session data.

Gotcha! Implementing Security Layers

[404]

The following is the suggested pattern to apply:

•	 Service Perimeter Guard
Actually, perimeter protection is the last resort. Services and especially
services-composition controllers must be designed with caution based
on all the previously mentioned recommendations for the components
design and security configuration.

Using components with known vulnerabilities
Similar to XSS, this kind of design flaw is quite harmful for distributed service
activities (although, OWASP considers it as a moderate threat). The dynamic
nature of service compositions makes SOA architecture quite susceptible to
these kinds of attacks.

Going further, the implementation of the absolutely valid Endpoint Redirection SOA
pattern (http://soapatterns.org/design_patterns/endpoint_redirection),
used for version control and service load balancing, can open the door for such
attacks if redirection is done by simple mapping on LB without any perimeter
protection with message scanning.

The following are the suggested patterns to apply:

•	 Service Perimeter Guard
•	 Composition Controller (subcontroller)
•	 Enterprise Service Repository

Make sure that all redirects originated and orchestrated by your composition
controller (destination endpoints taken from the service repository, the external API
URL) are validated separately by SG. Do not accept any redirect parameters from the
response message belonging to previous invocations.

If you maintain an invocation list in a message header (message tracking data),
make sure that it is assembled from trusted sources.

Attack types
The following are the different types of identity/authentication manipulation attacks.

Chapter 7

[405]

Reflection attacks
The attack code for the reflection attack is AT01. A typical attack sequence is listed in
the following steps:

1.	 The attacker starts a new session and sends a request/challenge.
2.	 The server responds with an encrypted challenge and its own challenge.
3.	 In a new session opened in parallel, an attacker sends the server's challenge

from the first session (still opened).
4.	 Naturally, the server understands the second session as new and responds

with a new encrypted challenge.
5.	 The attacker uses the server's response from the second session as its own

response for the initial session. With a nonzero probability, the server will
accept its own response from the second session as a valid handshake and
open the connection.

Identity spoofing
The attack code for identity spoofing is AT02.

The identity associated with the message or resource must be removable or
modifiable in an undetectable way for the attacker to perform this attack.

For example, after authentication, the valid REST service user will have their
token as a part of the URL query string for an extended session. Resource access
permission is validated using this token. The user with less privileges from
the parallel valid session will obtain this query string (man-in-the-middle,
https://www.owasp.org/index.php/Man-in-the-middle_attack and
eavesdropping, https://www.owasp.org/index.php/Network_Eavesdropping
and modify the session using the obtained token (or user ID if it is open). They will
have time until the session expires to illegally access the resources.

In the query string, the entire static section of it must be signed. The signed digest
can be in the HTTP header and enforced by a contracts policy (in the security
gateway). In the case of SOAP messages, WS-Security elements for the digital
signature and encryption must be applied.

Replay attack
The attack code for the replay attack is AT03.

As we demonstrated earlier, replay attack is the attacker's bread and butter. Having
constructed using your XSD or intercepted message, the attacker modifies the time
range in the message (if applicable), and the sequence numbers (if necessary), and
resends it, sometimes stripping the signatures (if the policy allows).

https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Network_Eavesdropping

Gotcha! Implementing Security Layers

[406]

This attack has many variations and is not always intended to be successful at the
very beginning; gathering response info is the initial target, including session data
(as almost any SOA message exists in a certain session context). An attacker will
explore the predictability and randomness of the session ID in order to repeat this
attack with a more accurate IDs. Needless to say that the sequential IDs and reliance
on date or time ranges is not a really good idea.

This attack can be combined with buffer overflow attacks in order to crash the
service completely. An attacker can assume that after the service restarts, cache
will be nullified as well, so the new session ID (possibly starting with zero) will
be accepted for the same old message. Oracle's distributed cache and clustered
environment with many OFM nodes can prevent this, but an attacker could try
to shutdown all nodes at at once, or try to get to the Node Manager (especially if
it's in a single-node mode).

If the distribution of cookies is involved, cookies reverse engineering can be
employed in order to make the reply attack successful.

SQL injection
The attack code for SQL injection is AT04.

The true and, therefore, bitter irony here is that due to a lot of DB abstraction layers
(including X/O mapping, persistence layers, and even migration to NoSQL DB types)
in a service's internal architecture, some experts openly proclaimed a couple of years
ago the Death of SQL Injection. As you can see, it's a present-day top risk and all the
old techniques we used for old ASP pages are quite powerful for REST and SOAP.

This is the most common attack, yet it is devastating and difficult to
repel (it ranks first in the top 10 previously mentioned). We will try to
focus on it in a greater detail, but if you want to know more, you have
to study the resources particularly dedicated to it.

Even if the replay attack fails the information about the backend DB is gathered,
such as the version, patches, platform, and possibly constraints, DB name and tables
name. It is quite a good start to look for a violation of your Contract Centralization
SOA pattern implementation (http://soapatterns.org/design_patterns/
contract_centralization), look for open DB connections available at the service
location, and carry on with the injections.

http://soapatterns.org/design_patterns/contract_centralization
http://soapatterns.org/design_patterns/contract_centralization

Chapter 7

[407]

Interestingly, SOAP messages can be a good carrier of SQL injection attacks and
an overenthusiastic Error Handler can provide perfect assistance in it. A simplified
SOAP request will look like the following code:

<soapenv:Body>
 <pci:getCreditCard soapenv:encodingStyle="http://schemas.
xmlsoap.org/soap/encoding/">
 <id xsi:type="xsd:string">1 or 1=1</id>
 </pci:getCreditCard>
</soapenv:Body>

Yes, the same old 1 or 1=1, exactly as in old HTML/ASP times. The pci namespace
is pointing to the webgoat.owasp.org test application, which is open to such a direct
approach. You might think that your application is far better protected than OWASP
WebGoat application (which is in fact deliberately unsecured). We hope so, but let's
not jump to conclusions right away. All we know (from the preceding code) is that
the XML SOAP message can be used for the SQL injection directly. There are three
classes of SQL injections: Inband, Out-of-band, and Inferential. The difference is how
you get the response (if you ever get it). If you see the response immediately, that's
Inband, and in the SOA world, it's the most common. What if you shut down the
error handler, block all responses and return nothing, and redirect everything back
to a 404 page? Can you be safe? Sorry fellow architect, the answer is no. Jumping
ahead, we can say that an Inferential or Blind SQL injection technique is the hardest
one, but it can still do the trick. The following is a simplified modification of the
previous code example:

<id xsi:type="xsd:string">id=1; if not(select system_user)<>'sa'
waitfor delay '0:0:10' </id>

So, what we are actually asking is what privileges your service account has on
the underlying resources. If it's a MS SQL system admin, please return your
"unbreakable" 404 page after 10 seconds. One way or another, we will get the
answer, but it will take just a little longer.

All these attacks are so common and effective that they have a lots of tools to
support most of the attack types. Firstly, to find the victim (entity service, potentially
with DB), public Seekda Web Service search engine or WSindex can be used.
For official UDDI crawling of public services, http://www.soapclient.com/
uddisearch.html is useful.

Gotcha! Implementing Security Layers

[408]

To probe and test the targeted service, SoapUI is amazingly good (you can try it
together with WebGoat first). However, if someone wants command-line tools to
fire constructed SOAP messages with injections, then SOAPClient4XG (Java), CURL,
and SOAP::Lite (Perl) prove to be handy. If you need something for all occasions,
Burp Suite is an obvious choice and you will learn a lot about injection attack
patterns and much more. Talking about injections, specifically with proxy assistance,
look at the following list:

•	 paros
•	 w3af
•	 sqlmap
•	 wpoison

We are sure that you will find more, but at the time of writing this, these were active
and quite helpful. Still, if you are going to use them as a verification tool, remember
that they do not cover all three types of injections and you have to do a lot of manual
work to identify service weaknesses (we will not go into the basics of injection as it's
not the subject of this chapter).

So an attacker gets the error message (or whatever—system silence is also a
message). The injection point is identified. The next step is to identify what type of
data is behind. That's simple, because your XSD will clearly say that. If not, it is not
that difficult to learn after a series of reply attacks. Why is it important? Because
attackers will learn, should they use a single quote for 1=1, and the type of evasion
technique will be necessary to bypass signature scanners at the Security Gateway:

…>id=1 having 1=1... or …>id=X' having 1=1 …

An attacker wants your data. Thus, union-based constructs will be used along the
way. If your service stays passive, the last resort is blind injection.

What's important here is that this technique is almost identical for REST, SOAP, or
command-line (direct) attacks in terms of construction of the injection syntax. In
REST, you (or the attacker) can use the following:

http://[victim_site]/[victim_resource_page]?id=1%20or%20
1=convert(int,(CREDITCARD_NUM))

If error messages are on, the system will respond with an error saying that the
conversion to int failed, but it will give you (or the attacker) the actual column
name. So, you can collect all the column names from the REST service DB
(guesswork here is exceedingly easy).

Chapter 7

[409]

If that doesn't work, you can identify the number of columns first using a union-
based technique, such as UNION, SELECT ALL, 1, 2, 3...N, where N is the number of
columns and you have to try it N times (just some guess work). After that, you can
start replacing the numbers with possible column names and watch the response.
A lot of the previously mentioned hacking tools can do this for you.

Blind injection is the hardest because all that you can simulate usually is how
quick the blank error page (404, or whatever) will be returned. So, it's basically just
"Yes" or "No"; however, with some persistence, that would be enough. The sqlmap.
org site uses blind injection, so it will help you in the hardest cases.

For an attacker (or you, if you pentest your security perimeter), life is a bit more
complex than breaking into a WebGoat site and the actual REST injection query
string could contain something like the following code (depending on DB and
its version) as well as 200 more characters, presenting conditional branching,
redirecting, and calls for recreation of the earlier deleted xp_cmdshell stored
procedure. (Yes! It can be restored by SQL injection in the REST service query!):

...OPENROWSET('SQLOLEDB',";'sa';'<password>','select 1; DECLARE@
resultint,@OLEResultint, EXECUTE @OLEResult=sp_OACreate "WScipt.
Shell", "CreateObject%0X",...

An attacker can change the privileges, call standard packages, or stored procedures
(Oracle or MS SQL). Even using a blind injection, it is possible to extract a sys
password and the current service account into the DBA group.

We will touch upon countermeasures in the following section, but while we are in
the attacker's shoes, we will briefly explain how they can be dodged:

1.	 If the REST/SOA API is used in a web app and the user data entered is
sanitized by JavaScript before the API ... no, we are not going to discuss it,
it's just too easy!

2.	 If the first point is clear, then the defender will establish the already
mentioned Service Perimeter Guard with the secure perimeter's SOA
Message Screening pattern. The first move is to maintain the black list and
to look at the 1=1 signatures. Where is the enforcement point? Equal sign?
So, is this the numeric filtering with "<,>,!=", yes? How about like
instead? What about 2=2; or 3>1; or /**/2/**/=/**2? We can go for
miles with such tricks, but we will save you time and head straight to the
sad truth: the signature-based IDS will catch only school kids playing with
a freshly downloaded Burp Suite or automated tools configured by default.
Does the restrictive list have comments? Replace them with %2D:
http://[victim_site]/[victim_resource_page]/[resource_
operation]?id=2/**/or/**2/**/like/**/2%2D%2D

sqlmap.org
sqlmap.org

Gotcha! Implementing Security Layers

[410]

3.	 Looking for more complex regular expressions in IDS such as SELECT,
UNION ALL, LIKE, and so on? Go to asciitohex.com and read what's
written further: %55%4e%49%4f%4e%20%41%4c%4c. Go on, add it to the
REST query string with some of your trimmings.

4.	 Now IDS can identify Hex. Good! Does it check for UnIoNaLl letter case
mutilation in Hex? And why should it always be the same encoding type?
An attacker has plenty encodings to play with: UTF7 or UTF8 (here some
XML developers will start getting the idea why declaring encoding in the
XML message root is so important).

5.	 For the automation of detection evasion, go to http://phpids.org/.
Try your own injection strings and see what patterns/IDS regular
expression will be triggered for free!

The last thing to mention is that SQL injection is still the most popular, but don't
count on it alone. The attacker will unleash a complex multivector attacks the
injection's support. One of the possible combinations could be as follows:

•	 Crash restart your service (buffer overflow) in order to reset the
nonce sequencing.

•	 Detect the IDS type and see which logs it's controlling (Apache, IIS).
Then attack the HTTP servers in order to get to the logs and clean them.

•	 Detect internal IDS weaknesses including the black lists.

By the way, if you think that SQL injections are possible because someone
is concatenating the SQL string before executing the query, be aware that the
SQL procedure injection is quite possible as well. Prepared statements are more
resilient though.

The conclusion is that the attacker has an advantage, not you. Your task is to
prepare a multilayered defense.

XPATH injection
The attack code for XPATH injection is AT05.

The underlying idea behind XPath (and XQuery) is to see XML as a kind of
systematic storage (similar DB) and have similar ways of accessing data.

So, as in SQL, user supplied information can be used for the construction of
the XPath query string. The hacking methods are almost identical to those
previously explained.

asciitohex.com
http://phpids.org/

Chapter 7

[411]

The standard path to employees' XML data, /employees/employee[@
id='EMPLOYEE_ID'], can be easily supplied with the classic '%20or%20'1'='1 and
all the employee data (including CEO) will be dumped to the browser. You can add
any XPath-related function you like, such as:

'%20or%20fn:contains(fn:lower-case(@lastname),'your_CEO_lastname')%20
or%20'

The counter-countermeasures are similar to an SQL injection. The most hard to break
are the prepared statements for XPath expressions.

JSON injection/JavaScript injections
The attack code for JSON and JavaScript injections is AT06.

Imagine your service accepts the JSON documents (or constructs them based on user
input) and stores them for public use. For big and bulky JSONs, you would dedicate
a NoSQL database, hoping that NoSQL means NoSQL injections.

JSON itself is brilliant, as it's simple, and it can be injected (in a positive way) in any
software/site capable of handling JavaScript. The flexibility is immense, thanks to
AJAX and shared DOM. We can manipulate web page elements almost effortlessly
using, for instance, the Chrome extension API (chrome.extension.getURL()). JSON
content will be included directly into the <script> tag of the targeted page. You will
find all the necessary instructions on the jQuery site, including manifest.json and a
sample of the <injected.js> files.

Fellow architects, the preceding paragraphs are from the Chrome Extension
API and jQuery documentation (https://developer.chrome.com/extensions/
extension#method-getURL and http://jquery.com/), that's not a joke.
You will even find the following examples:

document.head.appendChild(script);
document.body.setAttribute("onLoad", "injected_main();");

At first glance, nothing is wrong, except the potential JSON parser/deserializer's
strength. Also, we know that the standard eval() function, used for conversion
JSON into a JS object, is full of holes. The eval() function in many cases (five
conditions that can prevent this from happening, some of which are based on
filtering) can execute the embedded JavaScript code. Also JSON's array vulnerability
has been exploited many times. The most well-known victims are Gmail and Twitter.

https://developer.chrome.com/extensions/extension#method-getURL and http://jquery.com/
https://developer.chrome.com/extensions/extension#method-getURL and http://jquery.com/

Gotcha! Implementing Security Layers

[412]

JSON is no less secure than XML. It's all about how you use data
(encryption, digital signature, screening, validating against standards,
use of reliable parsers instead of eval()). The preceding example
with the injecting of potentially insecure JSON (which also could be
the subject of injection) is something you must strongly reconsider.

Schema poisoning
The attack code for schema poisoning is AT07.

Poisoning, that is, injecting malicious code into a single document, XML or JSON,
is bad enough, but the corruption of your entire service data blueprint is a disaster,
one that attackers will try to hide from you as long as they can, sneaking in and
out unchallenged. It could be the result of a long-planned attack, when an attacker
watched your dev repository site, got into it, modified schema or its include
elements, and then waited for the opportunity in production.

A bit complex isn't it? Most common for the complex schemas is having different
XSDs at different locations, sometimes public for common QDT/namespaces;
an attacker can get into the weakest location and change the element type of the
XSD instruction. Sometimes, just changing the level of data granularity could be
enough—an unlimited string in a key element can open enough room for injections.

Another way of poisoning is having entire schema as <any>. Yes, we used this
type of declaration for the demonstration of the universal message container for
the agnostic controller, but we did it behind the perimeter protection. We all know
many SOAP-like endpoints that accept <any message> because there are so many
message/schemas, types of data, and vendor's versions, so it seems to be easier to
parse messages on the backend without initial validation. So many opportunities for
the attacker!

Forced browsing
The attack code for forced browsing is AT08.

As described by OWASP, forced browsing is an attack where the aim is to enumerate
and access resources that are not referenced by the application but are still accessible.

Chapter 7

[413]

This is quite a nasty thing and really dangerous. You have SOAP/WSDL, or more
commonly, the REST service infrastructure with plenty of handy services available.
It's so easy to build the REST service, as demonstrated earlier. When you start, it's
almost impossible to stop. You have them for the internal purposes of accounting/
finance, delivery and warehouse, procurement and provisioning, and those
OrderRequest and getInvoice services that you decided to make public.
Or do you just think only two of these are public?

Some of the scanners mentioned earlier are capable of traversing the victims' server
in order to find those that are not declared but still exposed resources with a much
less secure model. Brute force guessing could work as well.

Risk mitigation design rules
We didn't set a goal of covering all possible vulnerabilities and attacks. You can
study them at OWASP and other resources, but the ones mentioned are sufficient
to devise your battle plan and gather all the critical requirements for your SOA
protection. Clearly, there is no single tool that can help us a 100 percent, but from
from the risk table, you can gather that Service Perimeter Guard is the top pattern
to address most of the SOA-related risks. Together with proper service design,
an identity management system, security token services, and Policy Studio,
this pattern, materialized as Secure Gateway, will be our first line of defense.

Using code for vulnerabilities and attack types from the from the previously
discussed classification we will compose our security battle map—a security-related
heat map in a form of SOA components and technical infrastructure blueprint, where
we link the existing service domains with predefined codes. The goal is to identify
critical nodes in our infrastructure and assess the feasibility of the core SOA patterns
application. We will use the CTU telecom example from the previous chapters, but
its SOA infrastructure is quite common to any enterprise. The level of details on
this block diagram will ultimately define the precision of the security protection
assessment. So it's in your own interest to make it as complete and comprehensive as
possible. What is presented in the next figure is just a starting point and you should
expand it for every layer with a clear definition of overlapping sections (areas that an
attacker will try to address first).

Gotcha! Implementing Security Layers

[414]

We already placed Oracle strategic products in appropriate places, including Service
Gateway, Entitlement, and Identity Management Suite. Bear in mind that most
vulnerabilities are inherited from poor service design and this fact is quite hard to
visualize on the heat map; you should refer to peer review reports for this.

SOA technical infrastructure from security perspective

Identity management – defending credentials
verification systems
Gartner defines Identity Management as follows: "Identity management is the set
of business processes, and a supporting infrastructure for the creation, maintenance,
and use of digital identities." Direct or Brokered identification services are the most
critical resources in our service inventory, not only because they hold clients and
corporate sensitive information, but also because of their highest level of reuse.

The most common rules around identity management protection are as follows:

•	 Use a zero-knowledge password protocol (ZKPP) such as SRP.

Chapter 7

[415]

•	 Passwords should be stored safely to prevent insider attacks and to ensure that
if a system is compromised, the passwords are not retrievable. Due to the reuse
of a password, this information might be useful in the compromise of other
systems these users or services work with. In order to protect these passwords,
they should be stored in an encrypted way, in a nonreversible state, so that the
original text password cannot be extracted from the stored value.

•	 Password aging should be strictly enforced to ensure that passwords do not
remain unchanged for long periods of time. The longer a password remains
in use, the higher the probability that it has been compromised. For this
reason, passwords should require periodic refreshing, and users should be
informed of the risk of passwords that remain in use for too long.

The common tasks around identity management can be described as gathering and
storing all credential information in a secure way (passwords as hash, storage media
encrypted, and DB row-level security). We have to remember that identity data is
quite often scattered around several applications in different business domains,
so MDM could be the essential part in Identity Data Maintenance and protection.
Once collected and synchronized, credentials will be exposed through a secure
API to a Security Token Service, which will provide/renew/revoke tokens, and
to the authentication services (usually in scope of Perimeter Guard) and making
authentication decisions based on the information in the incoming message.
Following the separation of the concerns principle, ID storage (ID management),
ID validation (access management), and ID extraction/injection (on SG) are three
different components of the AAA security subsystem.

As you can see in the following figure, the starting point is always Perimeter Guard;
its main purposes will be to scan the message before AA's operations and isolate
IDM systems from the client. The additional level of isolation can provide the reverse
proxy pattern, shielding internal Web/REST resources from direct calls.

IDM modularity opens the possibility for the parallel implementation of Direct and
Brokered Authentication. The first one is simple and described by the name itself.
Brokered Authentication (the synonym is SSO) requires an Authentication Broker,
usually to act as a Security Token Provider, which returns the entry validation ticket
(token) to the service-requestor for a predefined amount of time with a list of the
allowed resources. As this operation requires redirection (see OWASP risks), SG
shall be involved in scanning redirects, signing the tokens, and minimizing redirects
(the initial client request can be immediately redirected to STS without it reflecting
back to the client).

Gotcha! Implementing Security Layers

[416]

From the following figure, we see that Oracle Identity suite and API Gateway can
be combined with other products such as Tivoli Federated Identity Manager (as STS)
and WebSEAL reverse proxy.

SOA technical infrastructure from identity management perspective

Authorization data can be stored separately, but controlled by the same Oracle
Identity Manager.

The list of Oracle Identity Management and Access Management products at the
time of writing this are as follows (some of these could be rebranded, renamed,
or merged, so check the Oracle site regularly).

The following are the Identity Governance products:

•	 Oracle Identity Manager (OIM): This is an identity provisioning product.
OIM includes features for self-service password management, access
request forms, delegated administration, approval routing workflows,
and entitlement management across any number of connected systems.

•	 Oracle Identity Analytics (OIA): This collects logs from IDM products
and other systems to report on usage, builds effective IT roles, and detects
account-related audit issues such as orphaned accounts.

Chapter 7

[417]

•	 Oracle Privileged Account Manager (OPAM): This secures accounts with
elevated access, such as root accounts on Unix systems and databases,
by implementing a password checkout system.

The following are the Access Management products:

•	 Oracle Access Manager (OAM): This is a Web Access Management (WAM)
product that enables SSO across an organization's web presence.

•	 Oracle Adaptive Access Manager (OAAM): This enables organizations to
apply stronger, risk-based, and multifactor access control to an organization's
web presence.

•	 Oracle Identity Federation (OIF): This provides standards-based identity
federation capabilities to enable SSO across websites.

•	 Oracle Security Token Service (OSTS): This is a WS-Trust compliant STS
implementation. An STS converts security tokens of various types, enabling
compatibility and trust across federation boundaries.

•	 Oracle Entitlements Server (OES): This is a fine-grained entitlements service
that supports various externalized authorization mechanisms including
XACML 3.0.

•	 Oracle Enterprise Single Sign-On (OeSSO): This is a client-based
SSO product that enables users to access web, client-server, and legacy
applications through a single, strong authentication wallet for authentication.

Directory services products
Indisputably, Oracle is one of the leaders in directory product offerings (LDAP
directories). The Oracle Internet Directory (OID) was the first product in this
group and now, we have a highly efficient Oracle Unified Directory (OUD), which
includes both a highly scalable LDAP directory service based on Java and a Oracle
Virtual Directory (OVD) product. OUD comes with the following three main
components:

•	 Directory Server
•	 Proxy Server
•	 Replication Server

The Directory Server essentially is a highly scalable and top-performing LDAP.
The Proxy Server contributes to LDAP's high-performance proxy requests and
responses and the Replication Server is responsible for the data replication
from one OUD to another.

Gotcha! Implementing Security Layers

[418]

This list of products is just an indication that Oracle has everything necessary
for the proper implementation of all eight SOA security patterns. Now it is your
responsibility to enforce the security of your services by addressing error handling
vulnerabilities (these are what makes your services leak and opens the door for
injection-type attacks).

Exception shielding – preventing an information
leakage
We have put together short responses to problems in Error Handling (EH[nn])
identified during error handling vulnerability analysis.

EH05
As an option, javac will warn you about the return in the finally block if a
compiler's argument is set as -Xlint:finally. Use of the Ant <compilerarg>
element as follows:

<javacsrcdir="${src.dir}" destdir="${classes.dir}"
classpathref="libraries">
<compilerarg value="-Xlint"/>
</javac>

EH06
Correct cleaning is always important, but you should be extra careful with threads.
Please look at the following code samples. They can help you to mitigate at least two
types of attacks, bases of buffer overflow and information leakages:

private static final long SLEEP_INTERVAL = 100;
private static void removeGarbage() {
 try {
 System.gc();
 //give a thread chance if you can
 Thread.sleep(SLEEP_INTERVAL);
 System.runFinalization();
 }
 catch (InterruptedExceptionie){
 //handle threads properly, log exception clearly,
 //DO NOT JUST print stack trace !
 // Try to exit neatly, do not just kill it by .stop() method
 Thread.interrupt();
 }
//Other errors
 catch (Exception ix){

Chapter 7

[419]

 //same as above, DO NOT JUST print stack trace !
 // use Runtime.getRuntime().totalMemory(), maxMemory() and
freeMemory()
 // in logging procedure for recording the JVM memory state at
the moment of
 //error. Use simple equation usedJVMMemory = totalMemory() –
 // freeMemory() for calculating amount of used memory.
 }
}

Do not force garbage cleaning by calling System.gc() too often to
release the memory. You should trust the intelligence of modern JVM
(Oracle JRockit in particular, the true core of OFM) and rest assured that
JVM does everything possible to optimize memory utilization. If your
code is far from optimal, and contains any vulnerabilities mentioned
in vulnerability analysis at the beginning of this chapter, even the
best garbage cleaner from JRockit won't be able to turn the tide.
Furthermore, even the paramount perimeter protection around your
Service Inventory will just die trying to defend service compositions.

Although samples in this paragraph are Java-related (strategic Oracle language),
make sure that you have the proper PL/SQL exception handlers as well. All data
handling code should be on PL/SQL. (This is for a relational DB, of course; for
NoSQL, it depends on realization but is close to data.) Use PL/SQL packages
for better modularity and EH centralization. The statement in packages must
be prepared. That's it. These are the most effective measures to make injection
attacks as hard as possible. Oracle provides complete guidance on how to write
injection-proof PL/SQL code. You can find the documentation at http://www.
oracle.com/technetwork/database/features/plsql/overview/how-to-write-
injection-proof-plsql-1-129572.pdf.

Message screening – preventing injection attacks
While discussing the attack types, we spent most of the time talking about injections,
because this is the best way to get to your precious data. That's what the attackers
want, not just to crash your system. Some say that DoS (http://www.cert.org/
historical/tech_tips/denial_of_service.cfm) repelling is the hardest security
task. No, it isn't. It's just most expensive, but not the hardest. Injections are much
more tricky. Why? Because most of the protection techniques are based on scanning
input signature and we demonstrated (very briefly though) that IDS methods can be
disabled and bypassed. The deceptive complexity of data abstraction levels should
not hoodwink you—most serializers/marshallers are designed to transport data
from the XML to the SQL column without changes (that's their sole purpose) and
security is not their responsibility.

http://www.oracle.com/technetwork/database/features/plsql/overview/how-to-write-injection-proof-plsql-1-129572.pdf
http://www.oracle.com/technetwork/database/features/plsql/overview/how-to-write-injection-proof-plsql-1-129572.pdf
http://www.oracle.com/technetwork/database/features/plsql/overview/how-to-write-injection-proof-plsql-1-129572.pdf
http://www.cert.org/historical/tech_tips/denial_of_service.cfm
http://www.cert.org/historical/tech_tips/denial_of_service.cfm

Gotcha! Implementing Security Layers

[420]

Does this mean that message screening is futile? No, even 50 percent positive
catches is a positive thing, and we really could reach higher numbers. Just remember,
defense is complex. How? Secure Gateway (Oracle and most of others) is an ESB by
design. So, we basically have two ESBs and you can add an additional XSD check on
OSB as well. Make sure that the only option your attackers have is a blind injection.
Let's make their life harder. What else can help us? The following are the most
effective measures for consideration:

•	 As already mentioned, use prepared statements. But remember, all data in the
statement binding must be parameters. If in addition to that, you construct
your statement as a concatenation of a string, you're just invite trouble.

•	 Oracle SG (inherited from Vordel) uses nonstandard XSD parsers. Surely,
nonstandardization is not a guarantee of protection, but at least, it will give
attackers a hard time. By the way, the same algorithm is used in Intel ESG,
which is also quite secure, so it's double-checked.

•	 Simple and restricted inputs are easier to scan. That is, the input of 10 digits
is much easier to protect than a car's VIN. Yes, that's not always the case, but
you can work on Canonical Data in order to minimize the impact on security.

•	 Generic Adapter from Chapter 6, Finding the Compromise – the Adapter
Framework, which is capable of dynamically executing any SQL statement,
should be considered insecure and you should never contemplate using it
for externally exposed compositions. Actually, we mentioned this when we
discussed its design and clearly stated that, ideally, every adapter will be
individually tailored to the wrapped application. Generic Adapter (Adapter
Factory) is a pattern aimed at the reduction of similar adapters in front of
ESB. Still, it can be secured—a statement can be prepared (and presented as a
procedure call), and input parameters can be thoroughly sanitized (that's how
it works in CTU—lengths and types are strongly restricted). Still, the main rule
is to use it only for internal services and hide all composition behind Secure
Perimeter.

Combined together, the preceding measures can give quite a level
of protection. Amazingly, there are still a lot of developers who
produce tons of JAVA code such as Statement stmt = conn.
createStatement("INSERT INTO customer VALUES('" +
user + "')"); stmt.execute();. Thus, Oracle API Gateway
must be in your arsenal.

Chapter 7

[421]

Oracle Enterprise (API) Gateway
From the diagram in the Risk mitigation design rules section, you can see that OEG is
the product with highest concentration of core SOA security patterns. What are the
common requirements for such a tool to be trusted?

Vendor-neutral (generic) requirements
Some information about the requirements can be found on OWASP (search for OWASP
XML Security Gateway Evaluation Criteria Project), but a list of twenty or
forty criteria is too small. Our actual list has almost 200 positions and comprises
technical requirements of three different commercial SGs. Oracle is one of them.
We encourage you to read some technical whitepapers about its capabilities as it is
beyond the scope of this book.

Pass-through proxy with HTTP header verification

Number 5 in the OWASP top 10 is directly related to the complexity of security
tools and mechanisms. In our experience, OEG proved to be amazingly simple in
installation, maintenance, and development (see the previous screenshot). Right after
unpacking, you will get a resilient and simple environment and an easy to start/stop
and monitor. Policy Studio (main development tool) is not exactly Eclipse-style, so
it will take time some time to adapt after OSB with its traditional request-response
pipelines; however, in an hour, you will be able to build reasonably complex flows
for SOAP/REST services with an HTTP or SOAP attribute verification and validation
and so on. Development is policy-based, that is, you can define the message
flows and different policies for every step separately, maintain nested policies
(implementing a Policy Centralization SOA pattern), and apply a common policy to
the different flow elements.

Gotcha! Implementing Security Layers

[422]

Using drag-and-drop development, you can assign a scan for inbound messages,
connect to different identity providers, extract or inject SAML tokens, and protect
them from spoofing/alteration (see the message processing flow in the next
screenshot). The full set of OEG development categories is seen on the right-hand
side of the next figure, in the orange box . It is a truly complete set of functions,
essential for perimeter protection, inbound/outbound message screening,
authentication, authorization, and runtime audit.

Performance requirements
One of the critical requirements for a business is obviously concerned with
incongruity between security and performance. A simple dummy REST proxy
service (not a real case!), assembled as shown in the following screenshot, was
even unable to stress dual-core 8GB RAM VM, handling 500 REST transactions per
second (response 3K JSON). Actually, LoadUI from a single machine was unable
to produce enough stress.

REST service stress test setup

Chapter 7

[423]

The preceding example demonstrates how easily the REST service
flow can be assembled. For your own protection, please forget
that Basic HTTP authentication exists. Using HTTP Header for
authorization is not bad though, as it's encrypted and signed.

For real OEG performance capabilities, please see figures from our real perftest report.

We have several tests that run the 50 KB message that contain the following aspects:

•	 Signing of the <EmployeeID>..</EmployeeID > element
•	 Encryption of the <Salary>..</Salary > element
•	 Signing of the SOAP body
•	 Using HTTPS between test tool and Oracle Enterprise Gateway

The main test was executed from a terminal session running on the Linux server:

use HTTPS sessions

parallel (threads): 64

test duration: 3600 (somehow the actual test run for a bit more then 2
hours)

time taken: 7785.540000 secs.

bytes sent: 22362.978370MB (23449282407 octets)

bytes received: 24503.956365MB (25694260549 octets)

transactions: 445609

connections: 445629

sslConnections: 445629

sslSessionsReused: 0

bytes sent/sec: 2.872373MB (3011901.859987 octets)

bytes received/sec: 3.147368MB (3300254.131248 octets)

transactions/sec: 57.235465

As a conclusion from these figures, you can deduce that having 10K TPS on a
single VM with two cores and an 8 GB RAM for a 50K SOAP message, completely
protected by TLS and MLS, is an achievable target.

Gotcha! Implementing Security Layers

[424]

Summary
Following the book's paradigm, "identify the problem first and propose the
adequate solution (pattern)", we spent a lot of time discussing security threats, risks,
and attack types. We only regret that, in this format, we cannot elaborate more on
hackers' techniques. Nevertheless, forewarned is forearmed. You are now equipped
with some of the most common and dangerous tricks. You have a list of essential
Oracle tools and fundamentally, you know how to combine them in defensive and
preventive patterns.

Practically, any attacks start from "reconnaissance missions" to obtain the critical
information from regular or fault responses, error logs, dumps, and so on. Therefore,
the next chapter will be dedicated to fault handling frameworks and will logically
continue the security frameworks requirements in regard to error catching, shielding,
prevention, and recovery.

Taking Care – Error Handling
While discussing security patterns, we described handling (or, in fact, mishandling)
faults as one of the major contributors to the vulnerabilities of SOA, and the
inadequately designed Fault/Errors Handling (EH) framework is apparently the
main provider of all information to the error/event logs and the "grateful" attacker.
We mentioned some simple rules for exception handling inside a single service
(Entity or Utility service models) as the sole building block of the entire SOA
infrastructure. Implementation of this rule would be enough for an infrastructure
that contains only these models of SOAP services or simple REST services without
compositions of any complexity. When we have something more complex (such
as Task Orchestrated service models) or in fact any external exposure along with
associated security risks or (usually) both, something that is a lot more substantial
is required. This something in addition to a proper EH's service design will require
events logging and log mining/analyzing; it also requires you to add compensation
handlers, build compensation policies, bind policies and handlers, and establish
manual recovery routines in a worklist as the last line of defense. More often than
not, the complexity of the steps we just mentioned is frustratingly high (composition
with three sequential invocations can easily span compensation activities with five
invocation steps). It is so complex that after several workshops and incomplete
prototypes, architects decide to put all of the handling into a work list to come
up with a manual resolution with all the associated human-related problems
(responsiveness, accuracy, and consistency).

The design of our agnostic composition controller will be incomplete and the whole
idea of dynamic composition assembly compromised if we do not demonstrate
how to automate error recovery using SOA patterns. Traditional Oracle OFM/
SCA realization covers both Rollback and Compensation patterns (where Rollback
is part of Atomic Transaction Coordination and Compensation is BPEL/SCA); the
automated recovery functionality is usually consolidated in the policy-based Error
Hospital OFM facility.

Taking Care – Error Handling

[426]

It would be useful to look at the term policy-based and understand what the policy
is, how it can be enforced, how many of them there are, and is it really possible
to centralize all policies in one center. The role of the Service Repository, whose
taxonomy we discussed earlier, has to be observed from one more side.

In this chapter, we are going to discuss standard tools first, explaining what kind
of centralizations you have to maintain to achieve Policy Centralization (for recovery,
compensation, and composition protection) as well as basic patterns such as
Compensative Service Transaction, Service Repository, and Service Instance Routing.
However, the main purpose here is to present Automated Recovery Tool (ART),
which is capable of automating service recovery and transaction compensation.

Associating SOA patterns with OFM
standard tools
Compensation is not exactly proportional to the complexity of your composition.
With no rollback option available, returning to a condition that is equivalent to
the composition's initial state (before the composition was initiated, or at a certain
composition condition where the state of affairs was consistent) is directly related to
the duration of the composition. Think of it this way: if you break your wife's favorite
cup, a bunch of flowers and another cup would be enough. However, if you forget
your wedding anniversary, even a good diamond ring could barely settle this down
(although, one positive thing is for certain: you will never forget it again). Talking
seriously about services' data consistency, the further we are from the composition's
initiation point, the more difficult it will be to remove all relations that occur around
the data implanted by service activities. As we mentioned, long running compositions
hosted by SCA in general can be presented as a chain of ATCs that are handled by
OSB. Actually, this is the shortest description of the agnostic composition controller,
which is available in Chapter 3, Building the Core – Enterprise Business Flows, to
Chapter 6, Finding the Compromise – the Adapter Framework; it signifies that the
centralized exception handling facility should equally cover Rollback and
Compensations.

Regardless of the terminology you have established for your domain, the
process of handling errors, exceptions, and system messages, in general,
is the same as that of detecting the event, assigning an appropriate action
for it, and executing this action in a controlled manner. In the scope of
this chapter, the event we understand is not just any event (change of
state), but those that are not in the range of our "happy execution plan".
A forced event such as Audit is something different, although its data
can be stored together with exceptions in the common log.

Chapter 8

[427]

As we mentioned, a number of corrective actions can be quite substantial, and
going further, not all of them can be really corrective. There are some preparations
and post-completion steps required; also, the service composition should adhere to
certain design rules in order to be more controllable in situations when recovery is
needed. We will start with gathering common requirements first and then see which
of the Oracle tools can cover them in a generic and reusable way. Our first traditional
move is the analysis of a typical SOA landscape.

Initial analysis
Firstly, we have to bear in mind that for one single composition, we have
six runtime-related SOA frameworks involved from end to end. Therefore,
the occurrence of an event requiring extra care must be delivered to the composition
controller that is currently involved in coordinating services' collaboration.
This delivery process is conditional and depends on the composition phase
(initiation, registering participants, requesting participants, invocation, accepting
votes, rejecting votes, data assembly/transformation, and final delivery). Thus,
an events' origins (the producer that the so-called event produces) and its time of
occurrence will define how it should be handled/recorded.

At least four different Oracle products make service interactions possible: OSB, SCA/
SOA Suite, ESG, and OER. This is the bare minimum, so the list of products could be
much broader. These service engines, buses and orchestrators, as separate products,
have their own error-handling facilities. That's quite understandable for separating
API gateway error information from the service domain behind it, but it doesn't help
with harmonization and unification of exception handling. The master composition
controller will get accurate and consistent information about an exception in order
to take proper corrective actions. As we could have at least two types of controllers'
realizations (demonstrated earlier), handlers' collaboration is not a simple task.

Remember that events can be basic or complex. From the Exception Handler's
standpoint, events can be of two types:

•	 The first type is where there is immediate reaction of an abnormal situation
on service, service engine, an element of service infrastructure, or a remote
endpoint, provided as an error message (for instance, a SOAP error message
for WS-services, or error stack trace for an internal service resource)

•	 The second type of event talks about the result of statistics gathering and/or
patterns' analysis of basic events that is obtained during a certain amount of
time (with relation to a certain threshold of time)

Taking Care – Error Handling

[428]

By considering all of this together with the previous point, we realize the importance
of consolidation of all Error Handlers under one controller; going further, we'll
talk about Log Centralization as the source for complex event processing (CEP).
Oracle has a number of instruments for data analysis and monitoring; BAM is one of
them and is sometimes considered a service transaction monitoring tool. However,
some limitations make it unsuitable for runtime composition error handling. BAM
is the topic of the next chapter; there, we will talk about it a bit more. Right now,
we just need to mention that lack of runtime SOA capabilities makes architects and
developers look at log mining and infrastructure monitoring tools such as Nagios
(http://www.nagios.org/) closely. In your service infrastructure, you could have
your own homemade monitoring/logging tools, and quite often, developers have
their own opinions about the usage of log4j and its structure (scattered everywhere).
Thus, Log Centralization is one of the primary prerequisites of a successful EH
implementation, although, it's not considered a standard SOA pattern (it's just good
common sense). By the way, Oracle is putting in some efforts in this direction by
presenting different management packs for products' OEMs. Alerts from OEMs can
be very useful as an input for EH.

You will also need to consolidate all logs—when we say all, we mean ALL. Data
misses from hidden or stray logs, growing uncontrollably, are not only a perfect
recipe for service resources' depletion and system crashes, but also a juicy target for
attackers—and integration of all Error Handlers are the two main requirements for
establishing Policy Centralization. Again, here we are talking about fault policies
mostly, setting aside all other policies. This task is harder than the previous type of
centralization for several reasons:

•	 Every tool has its own policy representation and ways of binding it to the
event resolution, and different components within SCA have different
policies: Mediator, BPL, and HumanTask.

•	 The WS-Policy specification along with related WS-SecurityPolicy and
WS-PolicyAttachment are not related to most internal policies in OFM.
They share some common principles, but do not expect them to be
compatible or easily transformable. OEG (API Gateway) Policy Studio will
not cover all diversities of policies despite its name, and it would be better
to not use it for a purpose that is different from security.

Obviously, the complexity of Policy Centralization as a task is proportional to the
complexity of underlying individual policies and their alternatives for every Policy
Subject within its scope. These terms will be explained shortly (as you will need them
for SOA exams), but stating it plainly, centralization of EH policies will be positive
only if you anticipate all error scenarios for your compositions and present them
in a clear hierarchy. Otherwise, it will be the centralization of false positives, thereby
mishandling most of the error situations.

http://www.nagios.org/

Chapter 8

[429]

Individual service exception handlers and resource exception handlers could be
a good start for building this hierarchy. The process of speculation on possible
compositions in which this service might participate in would be the second step,
and results of this process should be properly correlated with established Service
Layers (also SOA patterns, which are discussed in Chapter 1, SOA Ecosystem –
Interconnected Principles, Patterns, and Frameworks), vertically and horizontally. Simply
put, this kind of anticipation and countermeasure planning must be commenced
right from the service design stage, even before the first line of code is written. Your
first WSDL is a good basis for this work. However, what if we cannot anticipate
all the possible error situations? Well, manual recovery using SOA Suite Human
Workflow is still acceptable for cases that cannot be identified, but the number
of these cases must be kept to a minimum. This will ensure that manual recovery
operations will be performed in minutes.

For instance, in the article Protecting IDPs from Malformed SAML Requests
(Steffo Webber, Oracle), the discussion of OEG policies for securing SAML tokens
clearly state that for mitigating SSL flaws, the manual reaction of the vulnerabilities
of an SAML token on these threats is acceptable as long as the policy allows you to
catch the event and send the alert.

We also have to take into account that any centralization will require storage
for policy assertions, and as long as we deal with different policy formats,
these assertions have to be expressed in a form that is suitable for the following:

•	 Transformation and quantification
•	 Should be understood by humans (ops, rule designers, and business

analysts), with possible alterations only by an authorized personnel

Logically, Service Repository would be our first choice with the Service Repository
endpoint available.

While talking about storages and logs, we have to make one distinction between
Audit and Exceptions. This difference is clear in service components' design where
we handle errors in the catch{} block, and Audit any data using log.info() or
any other command/library you want. At the OFM tools' level, it's also obvious; for
instance, OSB has log activity. The situation is not always clear when we are dealing
with orchestration engines where dehydration storage can also be the source of
Audit; for custom packages, it can be a common logic. In general, the level of Audit
and error reporting is not the same, especially in Identity Management and Perimeter
Protection. Also, regarding the Oracle Fusion Audit Framework, you should be
aware that applications will not stop operating if the Audit is malfunctioning.
Standalone applications can be included into the OFM Audit Framework through
the configuration of the jps-config.xml file.

Taking Care – Error Handling

[430]

Now, we will consolidate the results of our analysis into common but detailed
requirements, which are suitable for extending Oracle's Exception Handling facilities.

Common requirements
Let's get back to Chapter 1, SOA Ecosystem – Interconnected Principles, Patterns, and
Frameworks, and look at the figure under the SOA Technology Concept one more
time. In the first chapter, we tried to consolidate WS-* specifications in one
logical roadmap. Generally speaking, we do not have standards that are specially
dedicated to Error Handling, and activities in this area are governed by policies
(as we mentioned, not exactly WS-Policies and differently for all vendors); this is
due to the importance of the subject we put on the right-hand side of SOA patterns
(generic) under the roof of the consolidated Error Hospital (which is Oracle-specific).
So, we must have and maintain the following:

•	 The ultimate importance of the Exception Shielding pattern for SOA security
has been explained in the previous chapter. There, we stated that doing
shielding and error message sanitation on the gateway is not a good choice
because unclean messages will travel across the whole infrastructure until
the front door before it is cleansed/blocked. However, what if you do not
have a Gateway? Even if you have, think about the processing pressure you
put on the secure perimeter, which is already loaded with Message Screening
tasks, or the possibility to read an error's theatrical information within your
network. Anyway, excessive messaging could unnecessarily stress your
network. Therefore, cleansing must be on service at first hand, at least for
proper distribution of the workload.

•	 Another task associated with Exception Shielding is the translation of an
error's message/code. Unfortunately, this task cannot be performed on a
service; that's the responsibility of the Composition Controller (within Error
Handler as well). When the remote application returns a completely valid
error message with an error code that is different from your service domain
notation, it must be filtered/normalized according to your standards. As a
typical composition controller is either an SCA- or OSB-based service, it can
be done on these inner layers. Alternatively, it can be done by an adapter in
the ABCS Framework using Adapter Factory (which is also OSB-based in our
realization). In our design, we have the Lookup functionality, but its main
purpose is to extract from the ER transformation descriptor (XQuery function
or XSLT) or endpoint's URI. In this case, translation can be performed by
transformation, but everything depends on the transformations' complexity.
Transformation of an acknowledged message from an external service would
be requited anyway, as we should not expect that its format will be the same
across different domains; this would be too ideal.

Chapter 8

[431]

If you decide to handle it in SCA, traditional Domain Value Maps will do the
job with the handy dvm:lookupValue function. Later, we will touch upon
how it can be done in a traditional way, but you surely remember that DVMs
are traditionally stored in OFM MDS, and transformations could be scattered
across adapter projects. So, the maintenance of any form of centralization is
a question.

•	 After cleansing/normalization, an error's technical information is properly
logged. Obvious things such as squeezing the entire stack trace dump
into the 2K VARCHAR2 field are solved during the development stage, but
the question is a bit broader than the completeness of stored information.
According to generic SOA principles, the core requirements for Abstraction
and Discoverability (which are not exactly the best of friends) are as follows:

°° Interpretability of logged data. Data elements that are necessary for
making a decision must be easily discoverable and understandable,
as many policies will trust their meanings. Just think of this: not all
reactions on an event should be immediate; it is desirable to have
different handling policies for the same error, and it should depend
on the time window and the number of event occurrences in a certain
time interval. This means that some abnormal events which happen
between business hours (09:00-17:00) should be handled in
5 minutes (retried, passed to compensation, send to human tasklist,
or canceled), whereas 02:00-04:00 batch operations' mishaps of the
same type must be handled after one hour (the question of why
someone could decide to run batch jobs using SOA compositions is
not critical for this example; it can be done anyway). Conditions for
this kind of discriminant handling with sliding time windows could
be really complex, so the data for making decisions must be precise
and easily extractable.

°° Interpretability also requires proper error classification, and for
immediate exceptions, this can be done on an acting service. Even
simple segregation of Technical and Functional errors will be helpful
for event pattern recognition, but actually, we can do a lot during
the initial service design phase. It is our responsibility to identify the
framework that will be hosting our service (we will identify the closest
neighbours of our service) and types of compositions it will participate
in. Thus, for runtime errors, it's quite possible to compose a list of
errors and their causes. Right from the start, we can say that most
technical errors will be related to utility services, whereas functional
types belong to task-orchestrated services. This classification must
be stored in the Service Repository, but we should warn you about
making it too formal. Example of this registering and classification
exercise will be demonstrated further.

Taking Care – Error Handling

[432]

°° The preceding requirement is the main prerequisite for a low EH
footprint. The exception handling system should not consume vital
server resources, essential for the business operation environment.
The EH component must not only be lightweight, but the physical
components should be separated as well to reduce the additional
burden on EH. Obviously, the Retry/Continue/Cancel default
resolutions are properties of OFM service engines (OSB/SCA), and
the basic compensation mechanisms are attached to BPEL. However,
log consolidation jobs, complex processing of events using patterns,
instances of composition controllers, and running EH-related
compositions can be moved to the separate environment.

•	 Next and probably the main EH requirement is the Error Handling
automation. In the previous bullet point, we already mentioned the basic
resolution operations based on primitive policies, but what we really are
looking for is the automation of complex compensations, triggered by
irregularities in dynamic compositions. Logically, compensation of such
compositions should also be dynamic, which makes this task quite difficult.
If service composition error classifications are covered diligently with all
the necessary details, dynamic compensation is achievable in various ways:
through the standard OFM Error Hospital and/or custom compensation
execution plans similar to what we discussed in Chapter 3, Building the
Core – Enterprise Business Flows, and Chapter 4, From Traditional Integration
to Composition – Enterprise Business Services, which are dedicated to
synchronous and asynchronous composition controllers.

•	 Finally, if dynamic resolution is impossible (too late or too complex),
manual resolution is the only option.

Generic Audit requirements in OFM are covered by Audit Framework for any
application, included in the Audit policy (yes, another policy), using two-phase
event propagation with optional event filtering. Any Audit-enabled application
(Java running on WLS or a web app on an HTTP server) can dump Audit data using
an Audit API to local storages called bus-stops. In the second phase, an Audit loader
agent will upload dumped data to the centralized DB for Log Centralization. In
some cases, dispersed bus-stops will suffice, but then you will miss the analytical
capabilities that are provided by the Oracle BI Publisher connected to the central DB.

These five major requirements all together present the complete scope of EH that is
capable of resolving most SOA errors with reasonably reduced pressure on Ops task
forces. Naturally, the complexity of the recovery operations will not disappear only
with the realization of what has to be done; to make it happen, quite a considerable
amount of work must be done during the service design phase and during the initial
exception testing phase in the dev environment.

Chapter 8

[433]

There must be a strict rule indicating that all draft service versions must be delivered
into a JIT environment with a complete set for all possible "rainy day" scenarios. This
approach is common for all types of EH resolutions; either you maintain them on a
standard Error Hospital using OFM policies or you delegate them to more complex
EH composition controllers, linked to the Service Repository with the required EPs.
In this case, fulfilling the requirements of service composition error classifications
should be the first step, and we will look at it now.

Maintaining Exception Discoverability
Although service error definition and classification is utterly important for the
reasons we just saw, we only have enough room to provide directions for building
and maintaining such a list in the Service Repository. This exercise is part of building
a Service Profile and a Service-level profile structure (see Chapter 15, SOA Principles of
Service Design, Thomas Erl, Prentice Hall). The basis for the exercise is as follows:

•	 The number of frameworks that will participate in service deployment
and interactions.
We mentioned six, but commonly, we should focus on three: EBF, EBS,
and ABCS (see the next figure, where the color red indicates errors and
orange indicates Audit). For the presence of the ESR framework, we
should consider Inventory Endpoint as an abstraction point within EBS.

•	 Technical layering (vertical) and positioning of the service in core
technical layers.
Naturally, we have EBF as only a single layer. Bus and Adapters
(not always physically, as some components/patterns are common,
such as Adapter Factory) can logically be Northbound and Southbound,
so the service operations will also be location-specific.

•	 The nature of underlying service technical resources.
The resource acquisition error from entity services sharing the same
DB should be treated with elevated priority compared to a service with
a dedicated configuration file, such as FSO. Continuing on that, it seems
to be that Functional type warning from task-orchestration services about
gradual performance degradation must be correlated with dehydration
DB runtime metrics, and so on.

•	 Structure of the SOAP fault and other acknowledge and error messages.

Taking Care – Error Handling

[434]

The structure of these messages must be associated with logs' structures in
order to minimize mappings and transformations on logging APIs and EJBs.

Fault handling sequence diagram in Agnostic Composition Controller

In the preceding sequence diagram, which is the consolidated view of all our SOA
layers and frameworks around the agnostic composition controller, starting from the
left (northbound), we can identify generic EH rules as follows:

1.	 First, we start with the error in Application Adapter 1 (Active Poller), stating
Service-Legacy wrapper cannot extract data. The reason why an active
service adapter cannot connect to the endpoint data source is because DB is
offline and Queue is unavailable. Information will be provided to the Error
Handler when the common resolution operation "Retry predefined number
of times" (configured on ABCS/ OSB, depending on adapter realization),
failed last time. Error Manager (ErM) will initiate the process of sending an
acknowledgment message to the Legacy Application (if it can accept it, either
human or machine readable) and activate data extraction using Dual Protocol
again if it's available. Technically, ErM cannot do much about this error on the
north side, even if poller is a complex BPEL process that assembles data from
various data sources over a prolonged amount of time into a consolidated
ABO. This scenario just signifies that the source is not available and business
composition cannot be initiated, so the individual legacy adapter will just
send a clear message to Audit (the orange line).

Chapter 8

[435]

At the same time, when Adapter-Aggregator is based on an agnostic
composition controller, then exception handling should also be agnostic with
extraction of resolution action from Service Repository. We should do this
with caution, not overloading the SR endpoint with requests that involve
trivial responses (OSB can perfectly handle retries with predefined intervals).
The advantage of this approach is that you can monitor a controller's state
(active or down) more proactively, without the need of having an additional
heartbeat and external monitoring (although, it is inevitable for a passive
adapter and some other components in the underlying frameworks).
Other (additional) reasons could be that the ABCS layer is down, there is a
network/firewall issue, file location is detached, the queue is unavailable,
load balancer is (mis)configured, and the server (node) is down.

2.	 The next error situation: data extracted and assembled on the
north side, but transformation from ABO1 to EBO failed. The
potential reasons for this can be that the XQuery statement is not available,
the execution of XQuery returns a business fault, and business data is
inconsistent. Here, we cannot blame the application-composition initiator for
all these errors; if the transformation descriptor is not available, we might
have severe problems with the Enterprise Repository. Recovery options
are still limited, but the severity of this problem is very high. If an adapter
supports asynchronous communications, the recovery operation will not
involve data retransmission from the source. Technically, this error could be
related to misconfiguration or erroneous installation, so it can be recognized
at earlier stages.

3.	 When business data is invalid, we should stop processing immediately
and store the inbound message in an Audit log for further investigations.
The application source should be informed accordingly.

4.	 What if we get an exception in ErM? In this case, the ErM composition
controller will not be able to invoke compensation flows or return names/
code of resolution actions to individual components. This problem is quite
similar to the situation where the master composition controller fails. (To
avoid possible misunderstandings, the main composition controller and
the EH composition controller are different instances of the same agnostic
composition controller; both of them are based on the SOA pattern and
promote Reuse and Composability. In order to reduce the EH footprint,
you could decide to physically separate them on different WLS nodes.)
Most commonly, this situation is related to the missing/inaccessible routing
slip (execution plan). This is a highly critical situation, and a warning will
be issued together with a proper Audit.

Taking Care – Error Handling

[436]

This is one of the reasons why in your design, you should separate Error
Management and Audit. The same is true for errors that occur in Audit, but
they are definitely not life threatening and business can continue as usual.
Only Error Handler can inform you about the possible causes: invalid Audit
message input, JMS queue as an Audit service is unavailable, Audit MDB has
malfunctioned, Audit service is down, and Audit DB is down.

The OFM Audit Framework by default is undisruptive for business
processes/applications because of the chain of bus-stops and Audit
loaders. The situation could not be so simple in OFM if you decide to
include COMPOSITE_INSTANCE, CUBE_INSTANCE, CI_INDEXES,
and DLV_MESSAGE tables into your Audit schema to trace a runtime
trail of a message flow, identified by an execution context ID (ECID)
outside of the OEM console. Actually, you should do this, as all together
these tables can provide you with about 100 status codes regarding the
composite instance's state. We do not have space to present them here;
you will easily find them in the Oracle documentation. Thus, if your
Audit, based on information from these tables, hangs, it's a very bad sign
of the health of your SCAs. So, do not build SQL Audit statement killers
that could slow down the SCAs' database; on the other hand, missing
inconsistent Audit data from these tables indicates the critical situation
in SCA. Talking about the status code in general, only STATE_CLOSED_
COMPLETED (5) should make you happy. Be extra careful about
STATE_CLOSED_STALE and STATE_OPEN_FAULTED. Code 12 (running
with faults, recovery required, and suspended) must have the highest
priority in your recovery routines. We will talk about SCA Mediator
code from MEDIATOR_INSTANCE a little further.

5.	 The next error situation (5 on the previous figure) is similar to the previous
error, but occurred on the master controller. Generally speaking, there are two
main reasons that are associated with this: either we do not have something
to execute or we are unable to invoke something. The first one cannot be
handled at runtime, as it's a result of a design-time or deployment mistake.
In the controller operation, you do not even have to stop it for fixing this
situation. You can disable the failing service first in ESR, then deploy the
corrected EP, and enable the service again. Situations where we cannot invoke
something or receive an erroneous response from the composition member
during runtime are the main reasons why we should have Error Handler with
dynamic error resolutions. Exceptions will be handled automatically when:
the Service Broker SCA is down; the queue for Async SB is unavailable; BPEL,
DB is overloaded or down; threads stuck; called SCA is down; messages
cannot be correlated; the message structure invalid; an unknown Correlation
ID is provided in the response message.

Chapter 8

[437]

6.	 Exceptions (parts 6 and 7 in the previous figure) in southbound ESB/
ABCS layers, occurred during the execution of EP and/or VETRO pattern
operations, will be propagated back to the master controller where they will
be handled as mentioned in the previous paragraph. The exception causes
are the same as for northbound, but the southbound layer is completely our
responsibility; here, we will do everything possible to deliver the service
message to the composition member. Basic reties of individual adapters
will be handled in OSB locally within the business interval and only then
will the error be transmitted back to SB. There are some common reasons
for this: the JMS queue is unavailable for async, HTTP Servlet is down,
network problems, general OSB technical problems (proxy service not
found or disabled), the application server is down, application data source
is unavailable, and an error situation on the adapter factory (OSB) together
with responses from southbound applications/services will be properly
audited (parts 2 and 3 in the previous figure).

In the following table, we will consolidate core exception handlings' properties with
regards to a particular framework, a component in a framework, its role, operations
performed, possible errors, error causes with relation to the operation, possible
resolution actions, and areas where these recovery operations will be performed.
Again, we are not going to perform the full mapping operation or present the
complete list of values for the operation and possible reasons for an error to occur.
This is simply because there is no space for it, and our role is to give you directions
and basis for your team exercise. Anyway, your own SOA Framework layering
cannot be much different from what is presented in the previous figure. So, after two
to three workshops with developers, you will compose the complete spreadsheet,
which will be ready to be deployed on ESR and exposed via the Inventory Endpoint
for ErM lookup and fire. Regarding error code, you must map the external code
to your own coding system and vice-versa if necessary. This mapping will be
implemented in DVM or (better) in ESR.

Property Common values (the list is incomplete for brevity; extend it with
your values, but avoid redundancy)

Framework This list is complete. It includes South [ABCS1, EBS1], EBF, and North
[ABCS2, EBS2]

Service Role Some more roles can be assigned in addition to the following:
Designated controller
Composition controller
Composition member
Composition initiator
Ultimate receiver

Taking Care – Error Handling

[438]

Property Common values (the list is incomplete for brevity; extend it with
your values, but avoid redundancy)

Service Type Some more types can be found in addition to the following:
Configurable Poller
Generic Poller
Generic Adapter
Service Broker
Custom Composition Member
Application Adapter
Protocol Adapter

Operation Some more types can be found in addition to the following:
EBM payload validation
ABM validation
ABM/EBO transformation
EBF layer invocation
Asynchronous read from queue
Asynchronous invoke GA
EBM payload filtering
EBM payload transformation
Protocol Adapter invocation
SB invocation
Asynchronous instantiation
MDS read
EP parse
EP traverse
Composition member invocation

Logging/
Audit
requirements
for functional
monitoring

Put your own requirements here. We suggest (and actually have it
implemented in our design) that we perform an unconditional audit on
the edges south and north. The BPEL Audit level is set to Prod. Logging
for errors is mandatory. The External Audit log DB is implemented for
data consolidation and maintaining vendor neutrality; it is available for
external monitoring tools as well as for BAM. Common Audit sources
include COMPOSITE_INSTANCE, CUBE_INSTANCE, and DLV_MESSAGE.
Add your own sources. The External Audit facility is probably the
most common homebrew application. The main rule is the consistency
of unified log records, for instance, services-initiators on north should
provide log records containing "START ..", not "starting" or null;
similarly, for ultimate receiver: "END", not "stopped" or "exit."

Chapter 8

[439]

Property Common values (the list is incomplete for brevity; extend it with
your values, but avoid redundancy)

Error code Canonical expression can be applied here. As an error occurs in a
framework when a certain operation is performed by a component
that assumes a certain role, the combination of these three codes
could be quite logical. Mapping to/from external code will require
an extra column.

Error
description

The list is not complete. Add your own descriptors with extra care for
services with external exposure. Descriptions based on the application
Canonical Expression pattern could be as follows:

•	 Transformation EBM2ABM failed
•	 Requested business data is invalid
•	 Unable to find XML routing slip (EP) for response flow

Possible
reasons

The list is not complete. This information is for the Audit log, not for
the SOAPFault message. Make it clear that this will be the basis for
your ops teams' actions. Every new reason discovered during the
exploitation must be diligently added to the following list:
Cannot correlate message, message structure is invalid, execution plan
XML is not according to XSD or missing XDK error, Invalid Audit
message input, JMS queue as an Audit service is unavailable, Audit
MDB is malfunctioned, Audit service is down, Audit DB is down,
and so on.

Resolutions The following list is not complete:
Abort, ErM Notification, AbortSilently, RetryOperation, and Recover

Resolution
scope

List is not complete:
OSB PS, SCA BPEL, Custom Java, Network Infrastructure

Severity This position together with the next one will set requirements for the
response time:
Low, Moderate, High, or Critical

Probability Low, Moderate, or High

The structure of the spreadsheet with the initial data we mentioned in the preceding
table is a balanced scorecard (see the next figure, step 2), which is divided into
several tabs for every framework. It contains the logical outcome for a combination:
service + performed operation + position in technical infrastructure + process step
(this is the service role). The completeness of the spreadsheet will depend on the
granularity of the sequence diagrams for all use cases (step 1).

Taking Care – Error Handling

[440]

You do not have to use Excel as presented in the following figure. Any tool will
do, but in the end, all the details must be stored in ESR (Oracle or custom, step 3)
and the runtime part exposed via Service Endpoint for ErM.

Defining fault resolution actions

In step 3, you will have to enter the results of your analysis into ESR assets (Service
Profiles in this case). Optionally, you can upload the source of the entire spreadsheet.
Sorry, we do not know how to import Excel into ESR with one click, but if the amount
of discovered error-handling data is enormous (please do not overcook it, one step at
a time), you can construct insert statements using ER (Chapter 5, Maintaining the
Core – the Service Repository, which is dedicated to Enterprise Repository Taxonomy).
Custom ER that is based on lightweight taxonomy (covered in the previously
mentioned chapter) is much easier, and we used the last figure for building SQL
insert statements for data import.

Now, we can see that handling exceptions in complex compositions will be
inevitably complex as well. Similar to security, this complexity can be restrained
by proper layering and application of SOA patterns as follows:

•	 Policy Centralization (fault policies first of all) and Metadata
Centralization (steps 1, 2, and 3 in the preceding figure)

Chapter 8

[441]

•	 Enterprise Repository and Inventory Endpoint
•	 Logic Centralization (with focus on exception handling)
•	 Exception Shielding (in assistance to service security)

Now, we are ready to formalize common design rules for taming this complexity.

Error-handling design rules
Common requirements combined with discovered EH handling properties are
expressed in the following points. By combining them together, we will strive to
deliver fault-handling solutions for the entire SOA infrastructure, where composition
controller(s) are the cornerstone. A single component's exception handling (only on
BPEL or OSB) is not enough for enterprise-wide implementation, as it will lead to
fault misses and mishandling of security threats:

•	 Rule 1: Error Handling Centralization on SB. EH Centralization will be
maintained for agnostic Service Brokers (SBs) that broker service calls
between heterogeneous components. Primarily, it must unify the OSB
and SCA fault-handling frameworks, allowing error recognition (listening),
catching, and propagation of unified policy-based handlers. Two handlers
will be maintained for sync and async errors' resolution. This maintenance
denotes reuse, as we have already demonstrated two types of Service Brokers
that are capable of handling happy and unhappy tasks. Processing centralization
will be based on three other Centralizations (Policy, Logic, and Metadata).

•	 Rule 2: Extend Metadata Centralization on Logs. Centralization must be
applied to the metadata (service and fault object/message), policies, and
logs. The immediate result of this centralization is the decreasing of fault
message Model/Format Transformations between fault frameworks and
fault handlers (logging MDBs, for instance). The main goal is to present
ESR with all the metadata elements centralized. The MDS is an adequate
option for SCA's metadata and policies.

•	 Rule 3: Contemplate the delegation of primitive recovery actions to service
edges. Metadata Centralization after analysis, similar to the one offered
previously in the Maintaining Exception Discoverability section, will present the
list of common faults and primitive recovery actions (Retry, Abort,
and Continue) that can be immediately delegated to service edges
(OSB and ABCS, the first line of EH handling) and provide ways of fault
elevation/propagation back to SB (second line). Common faults should
include the standard faults defined in the WS-BPEL specification (20 generic
faults; see the BPEL 2.0 documentation). Redundancy with your own custom
code will be avoided (don't reinvent the wheel, just discover and abstract).

Taking Care – Error Handling

[442]

•	 Rule 4: Balance the Policy Centralization on the platform/frameworks. Policy
Centralization will be applied to a meaningful extent. This means that by being
realistic, we can hardly present some kind of universal policy (as one XML
file), suitable for all OFM elements and frameworks. For instance, in SCA,
we have fault policy binding for BPEL, Mediator, and SOA composite, and
we reference them in composite.xml. The location of policies can be defined
using the oracle.composite.faultPolicyFile property and their bindings
to the SCA components in the oracle.composite.faultBindingFile
property. The physical location quite often is MDS (oramds:/apps/
faultpolicyfiles/...). In OSB, we have OWSM (including basic security)
and WLS 9 (including WS-Policy compliant) policies, and the first one is
located in the OWSM policy store. Should we mention the API gateway policy
store? So much for centralization. Thus, the rule is to maintain the policy
descriptors (in human-readable form) in ESR and clearly define their areas of
application. Using this definition one level down, in SCA, we can present clear
policy chaining for automated resolutions (policy-id1 -> policy-id2 ->
policy-idN), where it's possible.

•	 Rule 5: Minimize log data cleansing by applying the Canonical Expression
pattern. Log Centralization (not an SOA pattern) and activities around data
collection and cleansing could be a very heavy and complex operation. No,
this way, very complex. Why? We will demonstrate it later. For now, consider
a separate DB and servers for log assembly/cleansing (depending on the
complexity of your logs, of course). The rule of thumb is that the more diligent
and accurate you are at the initial design stages (previous figure), the fewer
problems you will have at later stages. This rule is so important that we
should put it first. Break it (just misspell the stage or resolution code, or name
it differently in ESR and your Java/BPEL code) and all further rules will have
values that will be close to nothing. The Discoverability SOA principle rules
the error-handling process.

•	 Rule 6: Apply ErM based on Service Roles. Observe service roles when
applying rule 4. Complex global policies applied to composition members
(SCAs), invoked and handled by the agnostic composition controller (SB)
dynamically instead of fixing the error, could make the situation much worse.
Simply put, errors in complex dynamic compositions must be handled (at
least propagated to) by the same composition controller where all composition
members are initially registered. An individual member will have no idea
about the complexity of a composition. Thus, Error Hospital and OFM Fault
Management Framework, in general, are more suitable for static (defined
during design time) compositions (classic BPEL Mediator SCA from Fusion
Order Demo). At the same time, standard policies (fault-binding.xml+
fault-policies.xml => composite.xml) can be good candidates for an
agnostic master SB and individual adapter services for the north side.

Chapter 8

[443]

•	 Rule 7: Maintain strict control on the ErM components footprint on Services
and Compositions. As a logical outcome of rule 3, EH decentralization or
service decomposition (if we assume Error Handler as a service utility type)
will reduce an exception-handling footprint on the service infrastructure.
Depending on your hardware specs and daily business workload, you will
set thresholds for EH activities such as 5 percent CPU, 10 percent RAM, and
10 percent of total threads (just an example).

•	 Rule 8: Apply the Redundant Implementation pattern on critical elements
of ErM. Redundant implementation of elements of the SOA infrastructure
(WLS Nodes and Node manager, and SAN RAC DB) is an absolute must
for a resilient HA infrastructure; however, from the EH standpoint, it is
also prudent to consider a separate node for ErM SB.

•	 Rule 9: Provide alternative execution paths for business-critical service
compositions. You cannot fix faulty OFM using the same OFM. Automated
Recovery Tool (ART), or whatever you call it, must be in the utility service
layer with a very shallow technical infrastructure and a maximum of one or
two service engines, at least part of it. Just think of this: if an airplane loses
its hydraulics, usually it is doomed as it cannot steer. The bitter irony is that
there are still plenty of means to keep the plane safe and maneuverable: we
could still have the engine's thrust and use it; alternatively, inbound air flows
could power a small generator for elevator/rudder servos. Why is it not
implemented? Actually it is, but only for some special (mostly military) cases
because it's rather expensive. Is it also expensive in SOA? Not at all! We have
presented universal XML EPs, and we clearly demonstrated how they can be
executed by different engines (BPEL, JEE, XMLDB). So you have it already.
Additionally, consider Dual Protocols for helping different engines consume
EP and messages (for instance, OraDB can consume an HTTP call more easily
than HTTP/SOAP; although, SOAP is not an issue either). Sync/Async pairs
are always good, especially with Oracle AQ.

•	 Rule 10: Avoid SPOF on MetadataStore and provide alternative means to
access it. Metadata Centralization, like with any type of centralization, has a
natural flaw: SPOF. Its weak point is Inventory Endpoint, which is used by
ExecutionPlanLookupService in our design (the same is true for any design).
In addition Service Grid and Redundant Implementation, consider the dual
storage type for your Metadata Storage in ESR. Technically, it's a service data
replication (we can assume service metadata elements that are consumed by
SB as its sole data) for execution plans. The realization of this design rule is
exceedingly simple; in fact, you have it already. As you will remember, initially
we implemented EPs as FSO, stored as simple files, and decomposed them as
DB elements in Chapter 5, Maintaining the Core – the Service Repository.

Taking Care – Error Handling

[444]

The ExecutionPlanLookupService is capable to work with both
implementations, abstracting physical storage resources. Thus, a simple
script or service can easily dump the EP from the database every time
some changes occur; how it works was explained in Chapter 6, Finding the
Compromise – the Adapter Framework. The same is true for the Oracle ESR
implementation, where standard synchronization ESR to the UDDI utility
can be extended with an additional functionality for EP FSO. Adhering to
this rule will eliminate the risk of ESR runtime unavailability quite gracefully.
Unfortunately, it will present a risk when a developer tries to cut some
corners and perform alterations directly on FSO, bypassing ESR. Also, this
could be the case for an insecure direct object reference vulnerability; see
Chapter 7, Gotcha! Implementing Security Layers. Well, there is no perfection in
the world. The first issue can be addressed with proper governance (set the
watchdogs around your Service Repository). The second is about establishing
a Trusted Subsystem pattern and avoiding using SB in adapters at the Service
Gateway for external services (which is not always possible). This rule can
also be associated with the newly introduced Reference Data Centralization,
but we believe that the existing Metadata Centralization pattern is overkill.
There is no need to inflate the SOA pattern catalog with obvious things.

•	 Rule 11: Apply EM rules according to service layers. Passive Northbound
adapters do not propagate validation errors to EBF. Transformation errors
related to missing XSLT should be propagated, but their probability is rather
low (usually related to incorrect deployment and fixed in the first hour).

•	 Rule 12: Propagate the errors according to service layers. VETRO errors
from the south will be propagated back to the EBF SB after completing
basic recovery operations (if assigned).

•	 Rule 13: Observe Service Message TTL when applying EH rules. Combined
logical outcome of rules 11 and 12 strictly observe service message time-to-
live (business validity period, set in MH). If business data is actually set to
30 minutes only and you set the Retry option on OSB with three different
intervals of 5, 15, and 20 minutes, it will do no good. Again, work diligently
on Metadata Centralization (previous figure) and define your business
exception policies clearly. Use SOAP/SBDH header elements for propagating
business policies to local Error Handlers, together with the State Messaging
pattern (Message Tracking Data section in CTU EBM, explained in Chapter 5,
Maintaining the Core – the Service Repository).

Chapter 8

[445]

•	 Rule 14: Maintaining preventive Error Management must be preventive.
However, avoid using heartbeat test messages for performing ABCSes (both
passive and active, especially for active) health check, either for north or
south. This is a valid technique for JIT and Unit tests, but not for production;
it could (and most probably will) complicate everything from data cleansing
in the production database to opening the door for attackers' message
probes. There are plenty of other methods to check the status of your service
edges, and JMX should be one of your first choices. Oracle OEM and OEM
management packs are shipped with predefined thresholds for main vital
parameters. Please use them. It might be funny if it weren't so sad; how many
problems could we avoid if the DBA (and Nagios) admin reacted properly on
clear 99% of ORABPEL table space is full?

•	 Rule 15: Automated Recovery Solution should be SB-based. Again, Error
Management must be preventive. This means that our service edge handlers
(with retries, abort and so on), individual service handlers (BPEL Fault
Handlers, Compensative Transactions, and Mediator policies), and SB-
centralized policy-based handlers are in fact reactive and not truly effective
(yet essential). Real prevention comes from the already mentioned Log
Centralization, just-in-time analysis of all technical information from the
entire technical infrastructure (through JMX, WLST, or Jython), and an
immediate response. To come to this realization at this point sounds like
telling your 18-year-old kid that there is no Santa. Actually, this realization
just spawns another rule in addition to rules 9 and 14; a proactive component
that contains ART will be presented effectively, controlling the already
mentioned Log Centralization: data log cleansing, on-the-fly analysis, and
triggering preventive or recovery actions. Yes, this is actually the event-
driven SOA, a combination of Event-Driven Network, Event-Driven
Messaging, and Complex Event Processing (CEP); although, for reasons
explained in rule 9, we cannot put all our eggs into the "OFM Mediator
with BPEL Sensors and Events declared in BPEL's Invoke Operation" basket
(those are the main OFM EDN players). Actually, it's not possible technically
as we will control the entire OFM's underlying infrastructure; refer to the
next figure.

Taking Care – Error Handling

[446]

Every rule paragraph is considerably bigger than one line; however,
we have not only manifested the rules, but have also put clear reasons
behind each of them for you. These reasons are not only the result of
the following SOA design principles and SOA patterns (both clearly
indicated), but the quintessence of our own combined experience
from various projects. Some say rules are meant to be broken. Go
on, break these rules, and see what will happen. The severity of
consequences will depend on the complexity of your compositions,
from mess in static until disaster in dynamic. The best outcome
would be to park every fault for manual resolution, which is far from
optimal. Again,these rules are for the implementation of an agnostic
Composition Controller. For static task-orchestrated processes the
standard OFM Fault Management Framework will suffice and for
this type of implementation please follow the rules 3, 4, 11, 12, and 13.
We also have to mention that this list can be extended with your own
rules, as we could have the design variation on south, around Adapter
Factory.
Also, please bear in mind that we will use the rule numbers (from 1
to 15) all the way in this chapter. The number 15 will be some kind of
magical number here, because at the end we will see how 15 design
rules refer to 15 main Audit event sources.

From top to bottom, one rule is leading to the next, thus summarizing all the
preceding 15 rules and SOA patterns (presented in bold) around Preventive Error
Managing (rule 15). We can extend the SOA infrastructure diagram from Chapter 7,
Gotcha! Implementing Security Layers (related to security, the first figure), with all the
layers—the sources of monitoring information, required for proactive management
and automated recovery:

Chapter 8

[447]

Technical and Functional monitoring flows in a typical SOA infrastructure

Basis for proactive Fault Management
For TOGAF architects, the preceding diagram will present some resemblance to
generic horizontal layering, which is similar to the OSI Reference Model where
each layer provides services to the surrounding layers. We exclude some generic
enterprise layers in order to focus on the SOA enterprise model, as it is realized in
OFM. The difference is that OSI mostly depicts seven layers between applications,
from one API to another (that is, integration), which is not applicable for service
compositions where an individual service spans across several technical and logical
layers. We have no intentions here to map the TOGAF/OSI model to SOA (actually,
this theoretical exercise is done already). The sole purpose of this diagram is to
illustrate the KPI-monitoring sources, their types, and input according to rules 5,
9, 14, and 15. WLS, obviously, is the main OFM server and the Oracle database
(XE, standard, or enterprise), so technical monitoring for proactive error handling/
prevention will be focused around WLS JMX (green) and database server metrics
(red). Functional monitoring is based on the information provided by SOA
applications and their APIs (SCA and OSB, yellow flows). Generally, that's what
we get from BPEL's activities to Audit, Catch, CatchAll, Throw, and OSB's Log().
We have to omit the monitoring of the network infrastructure for brevity; as an
enterprise architect, you should keep this in mind.

Taking Care – Error Handling

[448]

Technical monitoring for proactive Fault
Management
Just declaring the rules and listing the SOA patterns to prevent fault handling
provides you with little practical help. For green information flows (JMX), we
have grouped some core MBeans and their attributes that you should monitor;
please see the following table:

Resource
category

MBean name MBean attribute

Threads MinThreads
Constraint
Runtime

OutOfOrderExecutionCount,
PendingRequests, CompletedRequests,
MaxWaitTime, CurrentWaitTime,
ExecutingRequests, DeploymentState,
InvocationTotalCount,
ExecutionTimeTotal,
ExecutionTimeAverage,
PoolMaxCapacity, HealthState,
ConnectionsCount, MessagesSentCount,
ServerConnectionRuntimes, and
MaxCapacity

MaxThreads
Constraint
Runtime

CurrentCapacity, MaxCapacity,
ExecutionTimeTotal,
ExecutionTimeAverage, PoolMaxCapacity,
and HealthState

ThreadPool
Runtime

PendingUserRequestCount,
CompletedRequestCount,
ExecuteThreadIdleCount, QueueLength,
PoolMaxCapacity, ExecutionTimeHigh,
MaxCapacity, JMSThreadPoolSize,
MaxMessageSize, DestinationsTotalCount,
and HoggingThreadCount

JVM JVMRuntime HeapFreePercent, JavaVersion,
HeapFreeCurrent, HeapSizeMax,
HeapSizeCurrent, InvocationTotalCount,
ExecutionTimeTotal,
ExecutionTimeAverage, ExecutionTimeHigh,
MessagesPendingCount, and
MessagesReceivedCount

Chapter 8

[449]

Resource
category

MBean name MBean attribute

JMS JMSRuntime JMSServersCurrentCount,
JMSServersTotalCount, HealthState, and
JMSPooledConnections

JMSDestination
Runtime

MessagesCurrentCount,
MessagesPendingCount, and
MessagesHighCount

Queues ExecuteQueue
Runtime

PendingRequestCurrentCount

JDBC JDBCService
Runtime

HealthState,
JDBCMultiDataSourceRuntimeMBeans,
JDBCDriverRuntimeMBeans,
JDBCDataSourceRuntimeMBeans,
ConsumersTotalCount,
ConsumersCurrentCount,
MessagesPendingCount,
MessagesReceivedCount, and
MessagesSentCount

JTA JTARuntime TransactionRolledBackTimeoutTotalCount,
TransactionRolledBackTotalCount, and
TransactionAbandonedTotalCount

OFM
Server
Engine

ServerRunTime Healthstate, State

The preceding attributes are selected from the thousands that are available on WLS;
you can add (or exclude) any MBean attribute as you deem prudent. Please refer to
the documentation at http://docs.oracle.com/cd/E12839_01/apirefs.1111/
e13951/core/index.html regarding each of them, their meanings and metrics; also,
check for new and deprecated ones (we do not have space for this here). The ones
presented here are the most common ones (actually, those are the ones that we use
and we strongly advise you to do the same); these are sufficient for detecting and
reacting to most bottlenecks in the Oracle SOA infrastructure.

The ways in which you will implement regular attributes to pull data could be
different, and they depend on your KPI consolidated solution. If you already use the
mentioned Nagios, check for the Nagios plugins project and WLS plugins on Nagios
exchange. Naturally, Oracle has quite a lot of their own tools in addition to the
classic Enterprise Manager console on top of a Diagnostic Framework (DFW), and
one of the most powerful tools is the Remote Diagnostic Agent (RDA) utility.

http://docs.oracle.com/cd/E12839_01/apirefs.1111/e13951/core/index.html
http://docs.oracle.com/cd/E12839_01/apirefs.1111/e13951/core/index.html

Taking Care – Error Handling

[450]

To get it, you must have an Oracle support account (old metalink); usually, it is
used on one of those unhappy days when you need to generate diagnostic dumps
for Oracle's technical specialists, for instance, OSB as rda.cmd -vSCRP OSB.

So, RDA is a manual tool by default for collecting static configuration information
and runtime statistics. This is not really useful for proactive runtime monitoring and
fault prevention, is it? Yes, it's part of the disaster recovery plan (your Orange Book),
but we have one good use for tools such as RDA. Some of the typical scenarios were
as follows:

•	 A new release of the SOA application bundle (SCA and OSB) was
delivered from UAT to ORT (operation readiness environment) after
passing all the tests.

•	 Performance issues were detected on Operation Readiness Test (ORT),
and some fine WLS/SOA Server tuning was applied by admins after
consultation with the developers. Traditionally, last-minute changes weren't
logged on the ops wiki (that's never happened in your organization, right?).

•	 After deployment in Production, considerable changes in performance
became obvious. Stabilization attempts had no positive effect (or little).

•	 Even if said otherwise, obviously we have three different SOA runtime
environments (assuming that VMs or physical servers are the same).

Dumping the MBeans attributes (as XML, for instance) and automatically comparing
the static configs and runtime metrics under the same load from the servers in
question will reveal the difference. The problem can be fixed without the traditional
swop ORT <-> Prod by RDA. In any case, creating and keeping the healthy dump as a
reference will be a good start for proactive monitoring.

Actually, by default, you'll be provided with the ability to automatically collect
and store diagnostic dumps along with SOA Suite, and it will be provided by
Oracle Diagnostic Framework (DFW). As it is primarily related to SOA Suite, it
does not cover the WLS configuration and runtime metrics, but it can seamlessly
work with WebLogic Diagnostic Framework (WLDF), which will supply DFW
with notifications about exceptions. You even get a preconfigured FMWDFW
Notification in your DFW after the SOA Suite is deployed.

With this, you understand that these dumps must be stored somewhere, and
Automatic Diagnostic Repository (ADR) exists in every managed server in a
domain for this purpose (look at <SERVER_HOME>/adr). Bear in mind that ADR
is not the SOA Suite log you usually read every time you look for the initial
diagnosis records. Oracle Diagnostic Logging (ODL) is the basic and primary
means of any OFM applications' logging, recording every single step in great detail.

Chapter 8

[451]

In addition to the traditional Timestamp (actually, several of them), Message ID,
and Message text, you will get MODULE_ID, THREAD_ID, and PROCESS_ID that can
be correlated to the MBean data acquired using JMX/WLST from other preventive
monitoring flows (see the previous figure). Talking about correlation, what's
particularly interesting is that it presents us with the Execution Context ID (ECID),
a global unique identifier for a service request, and an execution environment for
handling this request. The main purpose of this ID is to link error messages from
different components, and it will be a good idea to also use it as the basis for
your Business Correlation ID within your SCA. We will show you how to do this
a little later.

What is the role of RDA in this log's life cycle? The last incidents (the last 10 in
total by default in Version 11.1.1.6) will be collected by RDA and incorporated into
other information gathered using JMX, static, and runtime. Diagnostic Dumps and
Incidents (which are a collection of dumps and are created by DWF, stored in ADR,
and aggregated by RDA) can be:

•	 Adjusted to be more sensitive to log details, that is, additional details can
be collected at a certain level

•	 Bundled and packaged for uploading to Oracle support
•	 Purged from time to time after they are uploaded for proper analysis

The preceding points are essential tasks for Log Centralization, and Oracle has
two additional instruments for them. The first one, Selective Tracing, is available
in Version 11.1.1.4; it's a response to one of the major requirements: a low monitoring
footprint with an adequate level of tracing. This feature is managed by OEM or,
more selectively, by WLST, and fine-tuned selectivity can be based on any attributes
(fields) of ODL.

The last two tasks are covered by Automatic Diagnostic Repository Command
Interpreter (ADRCI). Later OMF versions include the Perl-based utility, the so-called
Incident Packaging System (IPS), which is capable of packaging offline RDA bundles
for uploading. To some extent, it competes with the RDA itself.

Everything mentioned in the previous points fit very well to the Log Centralization,
incident management, and SOA governance in general, but RDA, ADRCI, DFW, and
even WLDF are tools too reactive to be truly preventive. Indeed, aftermath dumps
will not contribute much to pulse monitoring of a runtime SOA. Yes, it's true, but
you as an architect will be aware that these tools work well in order to advise your
ops where to start when it comes to investigate complex composition errors scenarios
(not just bare metal or bare OFM infrastructure faults). It is also true that for all these
tools and instruments, we have a critical part, which is purely the runtime main
diagnostic information provider: Dynamic Monitoring Service (DMS).

Taking Care – Error Handling

[452]

DMS is delivered by default in the form of a servlet web app: <ORACLE_HOME>/
modules/oracle.dms_<your_version>/dms.war. It can be accessed using
http://telco.ctu.com:7778/dms/Spy (set your host and port accordingly).
You will find a broad range of parameters that are combined in a collection of
noun types and their individual attributes and exposed as MBean instances. DMS
presents them at runtime for monitoring, which is performed through the already
mentioned WLDF. This monitoring is organized in the form of WLDF watches,
monitoring particular DMS attributes and their thresholds. Should we say again
how important it is to include all the parameters from the previous table in your
monitoring pattern?

A notification is fired by WLDF Watches every time a threshold is crossed, and DFW
will create an incident in addition to the incidents that DWF can pull from ODL
events. You should know that three WLDF watches are configured by default in the
SOA Suite for deadlocks, stuck threads, and unchecked exceptions. They are bare
essentials; please extend the watches according to the information from the previous
table. You should also be aware of the latest SOA Suite diagnostic dumps, based on
watches for the following:

•	 soa.composite.trail: These are notifications from your running
composites. They are highly important for dynamically running
compositions.

•	 soa.config: These are errors in deployment configuration, and they include
MDS as well.

•	 soa.db: This provides DB information on SOA-Infra DB and its repository.
•	 soa.wsdl: This provides information on contracts/endpoints.

The preceding list is not complete. For more information about scopes, errors, and
error codes, please refer to http://docs.oracle.com/cd/E17904_01/core.1111/
e10113/chapter_ows_messages.htm.

This very quick walkthrough we had around Fusion DWF seems to be rather
complex. We tried to simplify the complexity of DWF composite relations at
a functional level in the following figure, but it cannot be used as a reference
model for operations planning:

http://docs.oracle.com/cd/E17904_01/core.1111/e10113/chapter_ows_messages.htm
http://docs.oracle.com/cd/E17904_01/core.1111/e10113/chapter_ows_messages.htm

Chapter 8

[453]

Actually, the main purpose of the preceding diagram is to demonstrate how all three
information flows can be consolidated around the centralized Logs Aggregator and
thereby ultimately feed the Automated Recovery Tool. It is also obvious that you
have complete freedom to implement your own lightweight JMX, monitoring the
client for preselected parameters in addition to the existing standard OFM DMS.
It will also provide you with an understanding of how a DMS Servlet is organized.
As it is not the purpose of this book, the MBean attribute parsing the servlet code is
omitted for brevity, but you can find perfect working examples provided by Steven
Haines in his book Pro Java EE 5 Performance Management and Optimization, 2006
(yes, this book is probably a bit old, but still brilliant and useful).

Taking Care – Error Handling

[454]

Just to give you some ideas about servlets' implementation in conjunction with another
tool, keep in mind that different log aggregators have different MEPs around the data
flow; for instance, Nagios is generally a puller, so you can even consider converting
Steven's JMX Servlet into a REST service by providing MBean attributes as JSON or
XML. Initially, the proposed servlet has two main parts. The first one is the abstract
where all operations are declared, including the main one, that is, service:

public abstract class AbstractStatsServlet extends HttpServlet
public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException
MBeanServer server = (MBeanServer)this.ctx.getAttribute("mbean-
server");
// Ask the Servlet instance for the root of the document
Element root = this.getPerformanceRoot(server, objectNames);
// Dump the MBean info
Element mbeans = new Element("mbeans");
for(Iterator i=objectNames.keySet().iterator(); i.hasNext();) {
String key = (String)i.next();
Element domain = new Element("domain");
domain.setAttribute("name", key);
Map typeNames = (Map)objectNames.get(key);
for(Iterator j=typeNames.keySet().iterator(); j.hasNext();){
String typeName = (String)j.next();
Element typeElement = new Element("type");
typeElement.setAttribute("name", typeName);
List beans = (List)typeNames.get(typeName);
for(Iterator k=beans.iterator(); k.hasNext();) {
ObjectName on = (ObjectName)k.next();
Element bean = new Element("mbean");
bean.setAttribute("name", on.getCanonicalName());
// List the attributes
if(showAttributes){
try {
MBeanInfo info = server.getMBeanInfo(on);
Element attributesElement = new Element("attributes");
MBeanAttributeInfo[] attributeArray = info.getAttributes();
for(int x=0; x<attributeArray.length; x++) {
String attributeClass = attributeArray[x].getType();
//set XML attributes for class: is-getter, readable, writable
attributeElement.setAttribute("description", attributeArray[x
].getDescription());
 // Output the XML document to the caller
 XMLOutputter out = new XMLOutputter();
 out.output(root, res.getOutputStream());

 }

Chapter 8

[455]

The result is the creation of a complete DOM document with your MBean's attributes
tree. Using domain keys and attribute names, you can filter it or just construct
the required part.

This abstract class is extended by the JMX statistic servlet; this is where you connect
to your server and gather statistics:

public class StatsServlet extends AbstractStatsServlet
....
 String config = getServletContext().getResource("/WEB-INF/xml/
stats.xml").toString();
 SAXBuilder builder = new SAXBuilder();
 Document doc = builder.build(config);
 Element root = doc.getRootElement();
 Element adminServer = root.getChild("admin-server");
 String port = adminServer.getAttributeValue("port");
 url = "t3://localhost:" + port;
 username = adminServer.getAttributeValue("username");
 password = adminServer.getAttributeValue("password");

As you can see from Steven Haines' code, the connection is established with the
admin server to acquire information from runtime servers. The direct connection
to manage a server bean, as depicted in the earlier figure, is not advisable.

Why this is so important is clear from the second table in this chapter, and we advise
you to familiarize yourself with Steven Haines' book and Oracle DMS Servlet in
particular. We have more than 16,000 MBean attributes in WLS, and you have to
pick the correct ones from the beginning, understand their roles and relations,
and monitor them diligently.

If for some reason you have no time for this, but the necessity of configuring Log
Centralization/Aggregation by external tools is clear to you (see rule 9), then you
can look at open source tools such as Jolokia (http://www.jolokia.org/). Jolakia
is a JMX-HTTP connector with many adapters to many servers, including WebLogic
(9.2.3.0, 10.0.2.0, and 10.3.6.0 at the time of writing this book). Technically, it will be
the same servlet as mentioned earlier, and you should use it together with DMS for
complete monitoring.

http://www.jolokia.org/

Taking Care – Error Handling

[456]

Continuing on with rule 5 (Log Centralization), we cannot avoid discussion, as old
as the hills, about the consolidation of security, operational, and business logs. Our
advice from Chapter 7, Gotcha! Implementing Security Layers, was to deploy the Oracle
API Gateway for proper implementation of all eight SOA security patterns (for
static service deployment and message in transit). Please see the following sample
of Jython code for extracting web service names from the gateway and displaying
them on the Nagios dashboard. You can extend it in parts by gathering more service
attributes for completeness and better visibility:

list the web services in a Gateway
from java.lang import Integer
from deploy import DeployAPI
from esapi import EntityStoreAPI
from vtrace import Tracer
import common
t = Tracer(Tracer.INFO) # Set trace to info level
dep = DeployAPI(common.gw_deployURL, common.defUserName, common.
defPassword)
es = dep.getStore('')
webServices = es.getAll('/[WebServiceRepository]name=Web Service
Repository/[WebServiceGroup]**/[WebService]')
i = 0
for webService in webServices:
 name = webService.getStringValue('name')
 //gather here all statuses for each web service

 t.info(Integer.toString(i) + ': ' + name);
 i = i + 1
es.close()

Regarding the consolidation of different log types, we have to stress the fact that we
have been talking about different technical types from/within generic SOA technical
frameworks (two previous figures, first and third). We are quite far from suggesting
that you should put all logs in one location (DB) and monitor them from the same
dashboard by the same personnel. Trying to find analogy, we can say that even if
it is possible to put all of the corporate traffic in one TCP/IP-based backbone (for
cost optimisation, for instance), security guys and emergency brigades would never
be happy to have fire sensor wires, VIP landline phones, and intrusion detection
channels combined with a regular business network (simply put, it' a bit more than
just SPOF).

Chapter 8

[457]

Similar to this, we have not one, not two, but many types of logs, which will be
grouped for diligent monitoring by different teams of experts, sometimes reasonably
separated; please see the following figure. Although it could be annoying, there are
some strong reasons why SOA business ops cannot have immediate access to Secure
Gateway or IDS logs. At the same time, Security and SOA Architects must constantly
coordinate their efforts on a regular basis, and what is absolutely unacceptable is
when DB logs are kept only for DBA.

Thus, a comprehensive but still a minimal model on the following figure must be
designed as the basis; however, it should be carefully adjusted according to your
business model and Industrial Policies/Regulation (PCI, Healthcare, and so on).

Taking Care – Error Handling

[458]

To conclude, we have to again highlight the importance of proactive monitoring in
adhering to the 5, 7-10, and 14-15 rules; further, we will show how it can leverage
the implementation of Automated Recovery Tools to fulfil rule 1. Now, we have to
spend a little time discussing how Oracle contributes to the first and second line of
exception handling: rules 6 and 11-13.

OFM Fault Management frameworks
Frameworks, in plural form? Yes, we have more than one in OFM, as we already
mentioned. From the components' inheritance, we have similar features that are
based on:

•	 Policy fault handling (the core of Error Hospital): SCA and EBF/ABCS
Frameworks

•	 BPEL fault management (compensative transaction): SCA and EBF/ABCS
Frameworks

•	 OSB error-handling mechanisms: ESB and the EBS Framework

We are not going to spend a lot of time discussing standard OFM EH mechanisms;
they have been around since 10g, and since 2008, they have been presented in many
books and Oracle ACEs' blogs in great detail (here again, we can refer to Lucas
Jellema's handbook). Another, and probably the main reason to make it short, is
because of rule 6: Standard OFM EH mechanisms are excellent for services with
strictly predefined service roles, preferably, static. In our case (the CTU example),
when complex compositions are handled by an agnostic composition controller
dynamically, standard tools must become part of a more complex Error Management
solution, as we will see further. Now, we will quickly touch upon some of the most
common realizations, and if you are familiar with the basics, please proceed to the
complex Exception Handler.

Policy-based handling
This classic example involves a Mediator (but it can be BPEL or the whole of SCA),
as presented in the following figure. We will use the Oracle illustration to clarify the
concept, and we are quite sure that you will find many other examples if you are not
already familiar with mediator policies.

Chapter 8

[459]

SCA policy-based fault handling

Following are the implementation steps that explain the approach taken in the
preceding figure:

1.	 Create the SCA project used to transfer orders from OrderDB to any file
location. You will need two PartnerLinks (adapters): one for reading DB,
extracting the Order data, and updating the status field (Logical Delete)
and another for FileWriter as presented in the preceding figure. Feel free
to implement your own XSDs (for database and file-based orders) and a
simple table structure; just a couple of fields will suffice. Set the polling
frequency to 10 seconds or any other duration of your choice. Set the statuses
for (N)ew, (P)olling and (R)ead Orders accordingly; you will need them for
the select criteria.

2.	 Add a mediator initially with sequential operations and one transformation,
for instance, changing the order ID. Use the current dateTime() for
timestamp elements. Deploy and test the application. Everything should be
fine, calm, and simple.

Taking Care – Error Handling

[460]

3.	 Let's emulate the error while operations are sequential (3). Any method will
do if you are running it on Unix chmod 444 on the destination file folder;
simply assign the OrderID initially defined as xs:integer in the message
XSD, any string value in DB, and so on. Redeploy and test the application.
You will see the dull and simple red-marked status Failed on the SOA
Dashboard for Recent Instances. Recent Faults and Rejected Messages will
inform you that Exception occurred when.... Go to the Flow Trace and
check what the reason was, which you already know. The main point here is
that we can't do much about it; we cannot even Retry or perform any other
action, and Recovery actions are unavailable.

4.	 Copy the following two files to the project folder (or any other location,
including MDS, but then change the references for fault-bindings.xml
and fault-policies.xml in composite.xml as explained earlier).

The following is the first file that contains the Fault Policy XML definition:
<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
 <faultPolicy version="2.0.1" id="SendOrderFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <Conditions>
 <faultName>
 <condition>
 <action ref="ora-human-intervention"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

Chapter 8

[461]

In the second file, we performed the binding for the policy ID
SendOrderFaults:

<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/
faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <component faultPolicy="SendOrderFaults">
 <name>SendOrderToFile</name>
 </component>
</faultPolicyBindings>

5.	 Go to the Mediator and change routing to Parallel. Now we have to redeploy
and test the application again.

6.	 Fix the error's cause (chmod 777 or modify message element in Trace Flow).
Go to Enterprise Manager and Fault and Rejected Messages and see that
the Recovery Actions options are available now. Select Retry for the process
with the Recovery Needed status and confirm your choice. Open the Trace
Flow after its completion and see that the problem is as good as gone.

Well, we did a Retry operation manually; so much for automation you say! This is
because for this action, we selected ora-human-intervention. Guess what ora-retry
would do? You will have plenty of additional parameters to set: Retry count, Retry
interval, and what would be the next action if a Retry fails/succeeds (action chaining)?

The ora-terminate option is similar to human intervention; it's a simple realization,
and no parameters are really needed. We can also rethrow the fault or replay the
scope. No doubt, the most powerful option is ora-java, which allows you to execute
any Java class defined in the related element as shown in the following code:

javaAction className="somepackage.someClass"

Generally, all that you should do is describe an error's condition and declare the
action (reference to action) for this condition. The condition will be tested against
the fault code, part of fault message/payload, and so on. See the following examples:

•	 $fault/*:reason/text();
•	 $fault/ctx:errorCode/text();
•	 ora:getFaultAsString();

•	 $fault.payload

•	 $fault.code

Taking Care – Error Handling

[462]

The list is not complete; you have great freedom when it comes to selecting error
sources in addition to the standard $fault. Conditions/faults can be (and actually
shall be) grouped into Business, Technical, and so on, with the desired level of
details. For instance, refer to the following bullet list:

•	 The $fault.code="WSDLReadingError" error is purely a technical error, but
it is in fact related to the remote API availability, that is, the error is related to
service edges on North/South. When $fault.code="3220", it indicates the
standard ORA-03220 code, which is a problem related to the data quality (we
got NULL instead of something meaningful). Necessary automated actions can
be clearly defined for these situations.

•	 A fault (raised by your application) that is displayed with $fault.
payload="Client with bad credit history" is a business fault
(not really a fault, but the condition is still critical). Although the temptation
to put this kind of fault on the ora-human-intervention resolution is high,
it is better if you devise an automated solution; it's not that hard.

The last step is to associate all policies with the SOA composite application or
individual component (BPEL or Mediator as in the Policy-based handling section)
using fault binding. It would be either <composite faultPolicy=…> or <component
faultPolicy=…>, where you list all your individual policies, associated with the
component/composite name.

In addition to this, you have great flexibility for declaring <Properties> in
the property set within your policies in order to support your complex actions;
please see the syntax in the Oracle documentation.

Oh! the possibilities. They are truly boundless. Honestly, the OFM policy-based
Exception Handling Framework is the second best thing in OFM after BPEL;
this mechanism is extremely powerful. You can employ any category of Faults
(embedded, default, or declared), assess (test) faults as you want, group them
under any types (technical or functional), create new or employ existing actions
for resolutions, chain actions within any fault, associate the actions returnValue
parameter with any other following action (another form of action chaining), declare
property sets for your actions (highly useful for Java Actions, but for others as well),
and finally, centralize your policies using bindings. Applied to Mediator as in the
earlier example, which generally acts as a mini-ESB within SCA; you will have an
excellent realization of Policy Centralization. What else can you wish for?

Chapter 8

[463]

Please look closely at rules 6, 9, and especially 5 when it comes to Metadata
Centralization. Before building complex policies for agnostic controllers, you must
be 110 percent sure that all possible scenarios are accounted for, all composition
members and their roles are identified, and all appropriate resolutions are detected:

1.	 Even in static composition controllers, due to BPEL's easy-to-implement
ways of services' invocation, you could have long chaining of synchronous
and asynchronous task-orchestrated services. Some of them can have
parallel flows, spawning subsequent parallel flows; some sync BPELs can
call async BPELs comprising JMS adapters with triggered dehydrations
causing callbacks in separate threads so that you lose your request-response
correlations; third-party components can propagate faults incorrectly; and so
on and so forth. In dynamic composition controllers, without understanding
the initial situation, your analysis will be even worse. So, quite soon all
your Policy Centralization will be centralized around a single ora-human-
intervention, as it is the only option to keep control.

2.	 The simplicity of default fault actions can be deceptive. Regarding the
preceding point, we could have different use cases for seemingly identical
throw-versus-reply and reply-with-fault. Please see the Oracle
documentation for more details.

3.	 The endless policy-based exception handling possibilities multiplied on
endless Java capabilities of the ora-java action can lead to disaster if applied
uncontrollably. A Java guru can decide to put all the handling scenarios into
Java action. Quite soon, business logic will silently sneak into this handler as
well, and why not? It's fast, simple, and understandable for all Java coders.
Do we need to explain where the catch is? (Refer back to Chapter 1, SOA
Ecosystem – Interconnected Principles, Patterns, and Frameworks; check all the
principles and the initial CTU's SOA status.)

4.	 The policies are preloaded on startup for best performance. That's surely a
decent thing to do. Therefore, we have two concerns here: naturally, your
policy size matters (and not always positively), and secondly, you have to
restart/redeploy your application every time you update your policies.
This is another reason to perform the service-error mapping exercise we
started with results presented in an Excel spreadsheet.

Yet again, OFM fault policies are brilliant and the concerns expressed in the
preceding points should not prevent you from using them for static compositions.
Just follow the proposed rules and generic SOA principles/patterns.

Taking Care – Error Handling

[464]

Compensative transactions
The compensative transaction feature is proprietary for long running transactions, and
thus, it's incorporated into BPEL. Like with most Oracle BPEL features, it is presented
graphically; thanks to this, it's quite well known and widely used. Probably, we should
not waste your time here by explaining the obvious, but as long as the Compensative
Transaction SOA pattern is involved, a brief walkthrough should be in order.

The classic example (and you can find plenty of them) is based on SCA's booking
application: while planning your vacation, you consequently book a hotel, a flight,
and a car. If a car is not an option, you still have no reason to cancel your vacation,
flight, and hotel reservation (the error resolution action would be Continue). Now,
if there are no rooms available (you should start earlier this year) and living in a
tent hardly makes your spouse happy, you definitely have to cancel your flight and
consider another destination (we hope that you can).

So what do we know? Refer to the following bullet points:

•	 We are aware of the blue double-arrow icon (like the one on your remote
control) on the left-hand side of the BPEL scope. It is second from the bottom,
named Add Compensation Handler.

•	 We know that we are not in the same atomic transaction: ACID rollback is
not possible.

•	 As rollback is not possible, physical delete (as opposite to insert, the so-called
business rollback) will be implemented, probably as a separate BPEL scope
or additional process call: invoke the "ClearBooking". Thus, some more
effort is required from us. Our Entity services must have the full set of basic
operations: add<..>, get<..>, delete<..>.

Chapter 8

[465]

In the preceding figure, we performed compensation to scope the BookTicket
element, that is, <compensate scope=" BookTicket"/>, in the booking task
service. This service is a static composition controller with three scopes dedicated
to three different bookings explained in the previous points. As you understand,
to the modularity, every type of booking is a separate service (could be BPEL). You
can keep insert and delete operations for every booking type in one service or
present them as different BPEL processes if you want to maintain them in a single
SCA. In this case, you can connect them to the master controller using Mediators
(HotelReservation, BookTicket, and CarRent) and apply (optional) Policies
to Mediators as well, as in the previous example. Thus, in the preceding figure,
we connected to the BookTicketService mediator, WSDL, for reservation and
cancellation (from the compensation sequence). Do not forget to extend your master
controller with the Catch(All) exception handler for technical errors provided by
composition members, and we are done.

The realization of the Compensative Transaction SOA pattern by the Ora BPEL
compensation handlers is elegant and intuitive, and you can always rely on the
business rollback feature in your static composition controllers.

Exception handling in OSB
Now, we have to look at the standard handlers available on service edges, usually
maintained on OSB as Business/Proxy services. The fault handler is one of the three
pillars (together with request and response) on which OSB stands. For handling any
abnormal situation, you have the same activities as you have in happy flows (refer to
the following figure). Thus, everything we said about the mapping exercise during
the error analysis phase is true here as well.

Taking Care – Error Handling

[466]

After catching the error, you can analyze the content of the fault message (the same
$fault/ctx:errorCode or any other part of it) and act accordingly; route to the
predefined destination, update the message content (for instance, Message Tracking
Data), and perform the service callout to EJB or another service.

As we are discussing the cooperation of service edges (the composition member's
endpoints) and composition controller, we do not have much freedom here at
OSB, especially at the South end (see the figure from the Maintaining Exception
Discoverability section again). We should be very careful with individual handlers,
as they can be quite off from the entire composition logic; technically, we should
be concerned about three main things:

•	 Log the caught error (the first step in the preceding figure) properly.
•	 Update the message tracking information in the XML container to help the

service broker with error resolution. We can even perform the conversion of
the error code if necessary, but this will usually require SR lookup.

Chapter 8

[467]

•	 Depending on the service location and use case, we can try basic recovery
operations such as Retry (see the following figure) on Business Service,
which is under the Transport tab. Despite its simplicity, the Retry operation
must be applied with extra care, after the analysis of fault types. For instance,
we can double the transaction if the service in not idempotent and our
timeout interval is not adjusted according to the processing time.

Maintaining service policies on OSB

As the name service edge denotes, here we have to apply a lot of message handling
and security policies as well. Not all of them are directly EH-related, but all of them
contribute to the composition's resiliency. Another thing that is apparent from the
preceding figure is that they are different policies from what we discussed while
explaining SCA EH. Well, complete Policy Centralization is not really achievable in
OFM, and we have already mentioned that; however, we are quite capable to maintain
the desired level of centralization per SOA framework. At least two policy types are
essential for the OSB implementation: WSM and standard (almost) WS-Policies. You
can see a list of the available default policy resources in the preceding screenshot;
they are applicable for Business and Proxy services (see the Policy tab).

Taking Care – Error Handling

[468]

Two WS-Policies are contributing a lot to EH in general: WS-Addressing and
WS-ReliableMessaging. Despite all the differences with SCA's fault-handling
policies, the mechanism of binding them to the WSDL has a lot of similarities.
A discussion on practical WS-Policy implementation is a bit out of the scope of
this chapter, but you could find good explanations in Web Service Contract Design
and Versioning for SOA, Thomas Erl, Prentice Hall (Chapters 16 and 17) in addition
to the Oracle OSB documentation.

Complex exception handling
Before we discuss the essential steps in exception handling in an agnostic
composition controller implemented in the CTU SOA farm, we will mention the
importance of clear and consistent identification of all fault messages related to
certain process instances. You could use a standard Ora ECID for this purpose
in addition to the initial Java-based labeling process instance at the beginning
of every BPEL:

1.	 Go to the Receive activity tab at the top and select Edit after a right-click.
2.	 In the Properties tab, click on the green cross and select tracking.ecid from

the drop-down list. Assign it to the variable of your choice. Use it within
your Message Tracking Records Object.

We will start with recalling the structure of the composition controller (async Service
Broker). Basically, it has two parts (if we omit the standard initialization): acquiring
the execution plan and looping through EPs elements. Thus, we should have three
exception scopes: sequentially, one for master loop and one for the EP endpoint, and
one generic outer handler for the entire process. (In your version, you can implement
additional handlers for every new scope.) For all cases, you can declare a generic
SBFault and use it with fault variables based on the Message Tracking Record type
(see the declaration in the following figure).

When the entire process fails, we can employ standard catches: one for SBFault
and the master, CatchAll; however, in any of these handling sequences, we cannot
really fix the problem. All that we have to do is identify at what nested level the
error occurred (master or subcontroller; this should be visible in message tracing
records) and assign status code in the Message Header and MTR objects. After this,
we perform the Audit (depending on the Audit level of the current invocation) and
return to the composition initiator (client, using Invoke).

Chapter 8

[469]

When the extraction of the execution plan fails, we should invoke ErrorManager for
the first time; see the following figure:

The number of actions required is still limited as we are not in EP's traversing mode
yet. If SB is acting as a master composition controller, actions such as Retry and
Cancel (after several retries) would be appropriate. If we are in a subcontroller, then
the Continue resolution is quite acceptable, depending on the business logic.

Taking Care – Error Handling

[470]

Prevention measures are more important here than just getting the possible
resolutions; we should have redundant EP storage implementation as we mentioned
it in the rules: DB- and File-based. ExecutionLookupService should encapsulate
these two approaches.

Finally, the EP execution could fail because of error(s) occurred during the execution
in the main tasks loop. This is the place where the first table in the chapter will
be exceedingly handy. Most importantly, not only primitive suggestions will be
returned, but also the entire Message payload after the error-compensation process,
instantiated by ErM. Thus, for keeping SB truly generic, two main blocks must be
implemented for the main loop scope:

•	 The invocation of ErM with the entire payload and descriptive SBFault from
the Catch handler (see the next figure, part 1)

•	 Updating the MTR object and processing flags in the message header after
receiving the response and updating the payload (see the next figure, part 2)

Providing a list of possible combinations in the second part can be extremely long,
as you can see from the following figure; therefore, please consider only some of
the logical outcomes:

•	 When the RETRY resolution is returned, we should:
°° Increment the loop counter
°° Check the new payload received from EH and update the

current task's payload accordingly

•	 When CONTINUE is suggested, we should check the following:
°° Are we continuing with ROLLBACK (this is an agnostic composition

controller used everywhere) or a regular task?
°° Is it the last task in a loop, and do we have to summarize all

executions (such as calculate orders and grand totals)?

•	 When CANCEL is received:

°° Stop execution

Chapter 8

[471]

Certainly, we should have other resolution options such has ROLLBACK, ROLLBACK_
FAILED, and ROLLBACK_DONE. If we are in the first task in the loop, then we probably
do not need to perform any rollback. One really important thing to understand here
is that we cannot put any error-specific execution logic into our agnostic composition
controller; it will just break the whole idea. This big case logic in the second part of
the following figure is only setting the flags and MTR/MH assignments.

Only the invocation of services with standard contracts through the Adapter Factory is
allowed here. Resolution and execution logic is completely abstracted and centralized
in Enterprise Repository and provided in the form of XML execution plans by the
Service Inventory Endpoint. It is implemented as a database with a friendly interface
that will allow you to apply new execution policies without SCA redeployment.
Proper testing and other governance procedures will be applied later.

Fault handling logic in Agnostic Composition Controller

Taking Care – Error Handling

[472]

If SB fault-catch scenarios are clear, we can now look into the internal Error Manager
architecture, presented as SCA (refer to the next figure). We have five main blocks
completely aligned with our generic requirements that are expressed in the first
paragraph of this chapter:

1.	 We employ Oracle's Composite Sensors to monitor ErM's incoming and
outgoing messages. This information will be available for search and analysis
of the Instances page of the SB SOA composition application in the Oracle
Enterprise Manager Fusion Middleware Control Console. From the following
figure, you can see what elements we decide to concatenate in the Sensor's
expression. Bear in mind that all these elements must be parts of the payload.
Thus, as mentioned earlier, ECID could actually be part of the ProcessName
element. Assigning a Sensor for an outgoing message is much simpler: it's
an ErM Response. Here, we are not using Mediator as the central component
of the handler; all inbound messages are going to the BPEL process, which
will help us with dispatching faults to other components, thereby fulfilling
generic requirements.

2.	 For error code conversions, a resolution action's lookup, and the extraction of
compensation workflows, we have to call ServiceInventoryEndpoint. If the
first task is optional, as it can be handled by Domain Value Maps (DVM) in
SCA Mediators, the second and third are the core of Error Manager.

3.	 It would be prudent to notify Ops or other involved parties as part of
the resolution action. This part is implemented as NotificationService,
employing the whole bunch of Oracle communication adapters.

4.	 When the resolution action is identified, it will be passed back to the caller.
If the resolution is complex and requires a new instance of Service Broker
(as a compensative EP), then we assign the extracted EP to the new Process
Header's container and invoke an async SB.

5.	 Our last resort is the manual resolution that is used when automation is
not possible, number of retries has exceeded, or we get a critical error
during rollback.

Chapter 8

[473]

Complete Error Manager SCA for Agnostic Composition Controller

Sensors are another nice feature in OFM SCAs, and we encourage you to use them
actively, although with some limitations applied (such as the payload as the only
source); please see the Oracle documentation. Thus, we can go directly to the main
feature here: ServiceInventoryEndpoint (see the next figure).

In the following figure, you can see the developer's version of this service, presenting
a typical versioning strategy around Oracle SCAs. We do this on purpose, as you
may remember. Initially, when we started with the Service Broker implementation
(Chapter 3, Building the Core – Enterprise Business Flows and Chapter 4, From Traditional
Integration to Composition – Enterprise Business Services) and relied only on standard
Oracle fault handlers, we implemented ExecutionPlanLookupService for
happy paths only. Now we have to consolidate the Service Repository DB (from
Chapter 5, Maintaining the Core – the Service Repository) under a unified endpoint for
consolidated EP and the extraction of resolution actions'. Ideally, this should be
that one entity service with all the required operations (Java is a good choice for
this type, and if functional decomposition is required, we will apply it later); for
now, we can implement the BPEL process with an additional DB adapter, wrapping
ExecutionPlanLookupService.

Taking Care – Error Handling

[474]

For this DB adapter, the set of parameters provided by EH and MTR is employed
in the simple SELECT, as presented in the next figure. Needless to say, ESR DB
records are completely based on the first table in this chapter.

For better resiliency, we should add another adapter for files to extract execution
plans and resolution actions stored in XML FSO. With the RAC DB and NAS-based
FSO in a clustered environment, this type of realization will be truly bulletproof.

We leave it to you to count how many SOA patterns we covered in the preceding
paragraph. Surely, the presented implementation is not really suitable for production,
and we offered it only for demonstrating the capabilities of Oracle SCA.

Chapter 8

[475]

Now, we should look inside the main ErM dispatcher, the BPEL process that
will handle different recovery scenarios (see the next screenshot). From the error
handling perspective, it can also be divided into three main areas where the faults
will be accounted for: request parameter initialization, a call to Audit service, and
the ServiceInventoryEndpoint invocation (see the next figure, part 2). This entire
process will also be covered; all that we can do here is perform proper logging. The
whole design will be kept as simple as possible for better resiliency, and we must
assume that any disaster happened during compensative actions can be fixed either
manually or by ART, which is implemented externally (rule 15, Proactive Automated
Error Management).

Manual Recovery (see the next figure, part 3) is a typical SCA Human Task Service
component with standard outcomes. All configuration parameters around it are
pretty basic, and we will not focus on it here. Again, in the Oracle documentation,
it is explained very clearly.

Fault handling scenarios in Error Manager

Taking Care – Error Handling

[476]

The last two scopes of this BPEL dispatcher within ErM that we should mention here
are as follows:

1.	 The first is the ServiceInventoryEndpoint invocation scope (see the
next figure). This is where we actually invoke the service explained
in the previous figure.

2.	 With a positive outcome from the previous step, we invoke Service Broker
to execute compensative transactions. (See the next figure.)

The compensation outcome (or resolution action if the case is simple) with modified
payload is returned to the master controller. In some complex cases, we can put a
lot into compensation EP(s) in order to return to a consistent state, and all that the
master controller needs to do is finalize its activities, that is, exit gracefully. Adapter
poller will start with another complex composition in time, based on the new (or as
good as new) data's state.

Chapter 8

[477]

This is it! We have shortly demonstrated how Oracle's standard fault-handling
tools can be employed for fixing errors in a static composition (and not only
policy-based framework is really powerful for all cases) and how we can reuse
an agnostic composition controller to handle errors in dynamic compositions.

Finally, we have to look at how we can use external solutions for proactive
monitoring and automated recovery.

Taking Care – Error Handling

[478]

Automated recovery concepts
Combining the design rules and patterns from Chapter 3, Building the Core – Enterprise
Business Flows, Chapter 4, From Traditional Integration to Composition – Enterprise
Business Services, and Chapter 5, Maintaining the Core – the Service Repository,
and from this one, we can assume the following:

1.	 The Service Repository with all the service metadata elements is properly
maintained. We have clear associations between services, endpoints, and
Audit messages under the roof of processes. Simply put, every process has
a distinct service invocations footprint. Technically, it can be presented as a
master tModel for a task-orchestrated service if we look at the UDDI analogy.

The preceding assumption is too bold. In dynamic compositions, the
sequence of service invocations and even the number of invocations
(that is, footprint) can be different for the same abstractly defined
process. The key here is to watch out for the services with specific
service roles, sometimes ignoring low-level composition members.

2.	 Auditing a sequence is strictly observed, which means that we can always
find records in logs according to the declared design rules. Simply put, we
can always reconstruct the process path from the logs in the exact way as
we see it in the Oracle SCA Enterprise Management Console (instances).

3.	 Every service (Entity or Task) is clearly documented in ESR in terms of
execution policy, performance, and consumed resources. Generally, from
practical tests and business requirements, we should know that an end-to-
end time of 700 ms for this service is acceptable, but 1200 ms is not.

4.	 Our unified composition descriptors (EPs and routing slips) are redundantly
implemented by ESR and FSO/NAS. They are critical for any type of
composition controllers (dynamic or static), and redundant implementation
of this part in not expensive if we decide to keep the XML EP definitions as
files in parallel with DB storage (which is SAN/RAC-based).

5.	 In Chapter 4, From Traditional Integration to Composition–Enterprise Business
Services, in the A simplified Message Broker implementation section, we learned
that the design and deployment of a simple service broker for most of our
compositions (and definitely for all compensative compositions as well) is
absolutely achievable outside of OFM.

Chapter 8

[479]

6.	 Our log monitoring tools (Oracle BAM, Nagios, and so on) can control
individual service runtime metrics and task service footprints in general.
BAM connectors are explained in the next chapter.

7.	 Obviously, we have our original message logged (orange step 1; refer to
the figure from the Maintaining Exception Discoverability section), as well as
optionally, the message with header and tracing records at the moment our
composite application crashes.

Why is the crash record with message payload optional? Because we
simply cannot count on it. If we can, then the first and second lines
of defense discussed previously will be more than enough. However,
how many times in complex compositions do messages just disappear
without trace? At best, you can only have a record indicating that a
response was sent from the composition member that never reached
the destination. This is exactly the situation we are discussing here,
and our primary goal is to keep the business running and buy some
time for Ops to find the root cause.

Regarding the last position, proactive monitoring and fault prevention generally
means that you collect and analyze technical and business data for an extended
period of time and analyze them against different thresholds, which are specific to
individual processes at the time of execution. You already have a comprehensive
list of WLS/SOA MBean attributes to monitor. After completing your homework
(sorry, we do not have enough space here to explain the meaning of every attribute),
you will learn that, for instance, Hogging Thread Count indicates we have some
threads that take too much time; we can assume that they will never be returned
(send an alert when you have more than 10 of these). What should you do? Increase
the thread pool, maybe? Yes, it might help, but only a little and for a short period of
time. If you start getting this error after deploying a new composite, most probably
we will have an indication stating that it is poorly designed and not misconfigured.

Therefore, technical monitoring must be combined with functional monitoring to
select a proper action; bare minimum policies should be as follows:

•	 Every abstract process must be monitored according to the SLA of the total
execution time. That's it! From start to stop (from the composition's initiation
until its delivery to the ultimate receiver), we must have two minutes
(set your number here), not more. Simple isn't it? Yes, if you assure that
start/stop indications are clearly provided to Audit (Canonical Expressions
in logging) and that the execution time can vary, depending on business
hours. Let your developers wonder about record subjects and log
consolidation, and data cleansing will not be so simple.

Taking Care – Error Handling

[480]

•	 Monitor the process footprint as a collection of individual invocations
according to the composition member's records in Service Repository.
Obviously, there should be no misses in the process log, and all entries
and exits of individual services must be according to the SLA.

•	 The last and obvious thing is that we should have no Error or Exception
clauses in the process log.

Frankly, if all conditions for technical and functional logging are met, all business
compositions with related compensation logic are recorded in SR. The standard
Oracle BAM will perform monitoring gracefully, so triggering the recovery action
is just a matter of passing the initial message to any composition controller, with a
new composition plan as a parameter (this can be a dynamic EP, static BPEL/SCA,
standalone PL/SQL, or a Java function—whatever you can fire using IoC or NDS).

Some more side notes. Why should we consider an external simple Service Broker
(or message broker) for ART if we can follow the Redundant Implementation SOA
pattern for the entire OFM stack?

Well, it is always interesting to see how top management's opinion changes about
absolute necessity for the business to have HA with 99.95% availability (4,38 hours
downtime per year), when you explain in figures that moving to this presents
from 95% (18 days) will double the investments into infrastructure (and quite often
more than double). Most importantly, the Redundant Implementation pattern
prevents you from HW malfunctions, not from OFM misconfigurations (one of the
top OWASP risks from the previous chapter), poorly designed service, or a single
illogical business rule.

Combining all the preceding factors, the basis for ART can be presented as a simplified
block diagram (refer to the next figure) with three generic parts:

•	 Log Collectors (deep green) are part of the adapter framework with
individual adapters for your custom logs, WSL/SOA Infra logs, and BPEL
schema in particular. With every new source added, you have to implement
a new adapter. Most of these adapters already exist in OFM, so the trick here
is to consolidate your own formats that exist in OFM. This is not always
straightforward; BPEL logs have two records (entry and exit) for SCA
components, where you could have one record with two related columns
in your logs.

Chapter 8

[481]

•	 The granularity of the records depends on the Trace/Audit level you have
in your system. The completeness of your data is the key factor to lend
precision to your analysis. A bit of data cleansing is sometimes required
before analysis; with this, you update and enhance incomplete records such
as assuming a component's exit time as the entry time of the next component
in the invocation chain. The complexity of this process can be quite high,
depending on the complexity of your compositions. A rule engine (custom,
Oracle, or any other) is employed for making decisions based on functional
policies and SLA metrics that are stored in ESR.

•	 The final results are delivered into the last component, usually a Report
schema with a clean log that contains conclusions and resolution suggestions.
This data is consumed by any dashboards, consoles, and reporting tools, both
standard and custom. This is also the source for a dedicated process that will
be responsible for performing complex recovery actions and compensations.
The simple implementation can be the Adapter (on SCA, the BPEL or
Mediator will do) checking for the resolution flag and the name of the
process/composition to execute. A Java process reading AQ will increase the
resiliency as it will comply with design rules 9 and 15. Needless to say that
most of the operations in the technical and functional monitoring described
in the preceding bullet list shall be performed on the DB side to make it
more simple, fast, and resilient (less components involved); Oracle DB works
perfectly well with AQs and is the top choice for BAM and Oracle BI.

Taking Care – Error Handling

[482]

Summary
We would like to remind you about the statement we made at the beginning of
Chapter 3, Building the Core – Enterprise Business Flows. Yes, OSB (the ESB SOA
composite pattern from Oracle) is probably the only pattern you need in your SOA
infrastructure. Maybe your business does not need long running asynchronous
processes; it also could be that your security requirements are soft, and two core
security policies implemented in OSB by default will suffice. A number of service
artifacts can be insignificant, and you can survive without Central Repository;
however, if your business applications do not need proper exception handling,
please check the pulse of your business—maybe it's already dead!

Whatever framework is described in Chapter 1, SOA Ecosystem – Interconnected
Principles, Patterns, and Frameworks, will be responsible for your core business
operations; exception handling will be an essential part of it. If you, as an enterprise
SOA architect (and we assume that you are), are involved in the resolution of critical
situations around apps that are delivered by your team, then carefully designed
logging and EH will save you from a lot of trouble (and not only technical). Make
it proactive and preventive using the patterns and rules explained in this chapter
and most of these situations will be avoided.

This chapter concludes the CTU architectural and technical example started in
Chapter 3, Building the Core – Enterprise Business Flows. In the next and last chapter,
we will discuss the most complex SOA patterns and their realizations in support
of the distribution and analysis of events, parallel in-memory processing, and the
readiness of Oracle Cloud.

Additional SOA
Patterns – Supporting

Composition Controllers
SOA is a form of distributed computing, or more precisely, an architectural approach
to establish it. It is maintained on heterogeneous environments by means of API
standardization and canonicalization of service activities by service messaging/
state messaging. The ability to arrange the service composition dynamically and
in an agnostic way is arguably the main benefit of this architectural model, as
demonstrated in all the previous chapters. This is where the money is. About 80
percent of all SOA patterns are focused on achieving composition-centric SOA
characteristics (among others mentioned in Chapter 1, SOA Ecosystem – Interconnected
Principles, Patterns, and Frameworks) directly:

•	 Implementing Service Inventory and maintaining a dependable
Service Registry

•	 Minimizing the Service Adapter layer and avoiding transformations
•	 Abstracting services and maintaining their state, even for completely

stateless services
•	 Allowing service invocations in an agnostic way

Additional SOA Patterns – Supporting Composition Controllers

[484]

We have been working on all of this attentively in the previous chapters to provide
you with a blueprint of the working solution. Now you have all the essential
components to implement a business-driven, composition-centric solution right
away. This is suitable not only for Order Management (as an alternative you can go
for OSM, Oracle Service Management/Order Management at http://docs.oracle.
com/cd/E35413_01/doc.722/e35415/cpt_overview.htm but also for Telecom and
getting another silo, where you will implement all special cases as custom cartridges
and integrate them into your Service Inventory using OFM/AIA). At the very least,
it will be quick. Maybe, in addition to this, it will be telecom-specific with about
40 percent coverage of real telecom needs. Mind you, it's not bad at all; it totally
depends on your business/IT strategy.

Still, something quite important is missing in this picture, something that's not
directly connected to any SOA pattern in the public catalog but essential in terms
of practical realization. In the previous chapter, we mentioned several technical
monitoring tools, but business monitoring must be in place as well. Oracle BAM
is an obvious choice from the Oracle stack and is not related to any pattern but is
capable of addressing this requirement. While discussing the Adapter framework
and fault handling, we tapped into the Event Driven Messaging pattern several
times and presented working solutions, employing this pattern. Here, we will
look at conventional OFM ways of event utilization and discuss their benefits
and limitations. These limitations could have very profound effects on the overall
performance of an SOA solution; the next topic for this chapter will teach us how
to boost performance using the Service Grid pattern and its Oracle realization:
Coherence. Some other HA patterns will be discussed as well.

In the final part of the chapter, we will talk about the relations between SOA
composition patterns and cloud implementation patterns, mainly focusing on aspects
related to converting the Service Composition Broker into the Cloud Broker. The Cloud
Broker's responsibilities such as cloud Resource Balancing with an Elastic Resource
Capacity management, cloud services' consolidation and aggregation, and Burst
In and Burst Out, are derived from the agnostic controller's features; we have to
highlight them in order to avoid the pitfalls that SOA met in its early days. There is no
magic in the cloud; it is a form of distributed computing with principles based on SOA
(among others). We'll discuss this, but our introduction will be short as it is not the
subject of this book.

Processing complex events
We are glad to see that the number of publications that oppose EDA and SOA have
considerably reduced in recent years, but still there are some who believe that these
technologies differ.

http://docs.oracle.com/cd/E35413_01/doc.722/e35415/cpt_overview.htm
http://docs.oracle.com/cd/E35413_01/doc.722/e35415/cpt_overview.htm

Chapter 9

[485]

Even the word extending is a bit too exuberant to describe the relations between SOA
and EDA in general (again, being practical and factual, we do not participate in
any discussions of that kind). Why is there, then, such a statement seen so often in
publications related to OFM? Well, because in the case of OFM, it is quite true.
The following concepts in Oracle SCA are not exactly new but were
not established from the very beginning:

•	 Establishing sensors in BPEL to detect events
•	 Emitting (signaling) events using BPEL (via Invoke | Interaction

Type | Event) or Mediator by subscribing to them (Mediator)
•	 Consuming emitted events

As you may have noticed, we have been discussing the implementation of SOA
patterns on a wide range of Oracle products and sometimes even avoiding using
particular products, striving to maintain the vendor-neutrality SOA characteristic
(yes, still using the Oracle platform). Maybe it is too late to mention this in the last
chapter, but there is more than one way to skin a cat, and SCA/BPEL is just one of
the ways to establish EDN. We have already discussed the DB-based EDN in detail,
speaking about the optimization of adapters' layer, and now we are about to glimpse
the Oracle CEP EDN.

So, what do we have in terms of EDA/EDN apart from SOA Suite and Service Bus?
As always, Oracle has several options to offer, depending on your technology stack:

•	 Oracle Event Processing (Version 11.1.1.7 at the time of writing this):
This is a standalone solution for building applications to filter, correlate,
and process events in real time. It is generic and suitable for designing
an all-purpose SOA infrastructure.

•	 Business Event System (BES): This is part of the Fusion Application.
Although it is not an atomic EDN in the common sense, its emitted events
are a significant type of composition activations (initiations), and they
have considerable impact on the ABCS/SB design. If you have OEBS as the
centerpiece of your infrastructure (a mix of silo and SOA), then it is inevitable
that you will have to handle it.

•	 Oracle Real-Time Decisions (RTD): This is a rule-based recommendation
engine that is most commonly used as part of the decision solution in Siebel
E-Commerce Suite. This tool is interesting because of the prediction it brings
into the analysis of a runtime event. This option makes its highly attractive
for its integration with eligibility and entitlement servers (Oracle) in up sales
and customer retention solutions, for instance, in telecom for ad insertions
and VOD-personalized recommendations.

Additional SOA Patterns – Supporting Composition Controllers

[486]

In addition to this, in the chapters dedicated to adapters and exception handling,
we demonstrated how to capture and process different kinds of events in a
product-agnostic way. Obviously, these examples were related to business
and error events only and processing was quite simple, although, very common.
If we step aside from the telecommunication/logistic primers in previous chapters,
the magnitude of EDN tasks will definitely be wider. Thus, some analysis will be
carried out in order to clarify the requirements and clearly position the EDN stack
in SOA frameworks.

Initial analysis
Traditionally, we will start with the analysis in a vendor-agnostic way,
and we would like to repeat the basic things here again just to summarize
the facts from previous examples and clarify the EDN-SOA hierarchy. Please get
back to our SOA metadata taxonomy that is visualized in the Managing Service
Repository section in Chapter 5, Maintaining the Core – the Service Repository. An event
is the next thing that follows an object, indicating the object's change of state.
That's it! It's not just some faceless and abstract "occurrence on the input receptor",
as someone may describe it. Sorry, but occurrence of what? The event has always
happened on (or around) something solid, and when it happens, object(s) can be
serialized in their transportable form: a message. It is not always required though,
and we will describe when it will be.

In the Event Processing documentation (http://docs.oracle.com/cd/E28280_01/
doc.1111/e14476/overview.htm), Oracle provides examples of possible events,
including the following:

•	 Communication events: These are based on the fact of message/transport
container reception. The object is a transport container.

•	 Machine events: Usually (in Oracle realization), these are handled by
Java-embedded devices; some on ME for small devices without complete
Java support (pacemakers or microwave microcontrollers, for instance); some
on SE, such as the ones installed on high-speed communication gateways in
datacenters that handle service edges; and some on communication events
mentioned in the preceding point. For telecom, a good example of such events
would be booting/starting STBs or cable modems with the TR-69 device
management protocol's support when devices' changes of state are emitted
to the auto communication server (ACS). It is obvious that in this case,
the object is a device itself.

http://docs.oracle.com/cd/E28280_01/doc.1111/e14476/overview.htm
http://docs.oracle.com/cd/E28280_01/doc.1111/e14476/overview.htm

Chapter 9

[487]

•	 Security events: These are derived from the preceding points and are an
object's AA request to change its privilege status (I want to invoke... I
want to participate); these are usually detected on the Service Gateway's
edge. Equally, all other objects' alterations related to all security patterns
from Chapter 7, Gotcha! Implementing Security Layers, can be included in this
event type.

•	 Environmental events: These include infrastructural events such as WLS
node up/down and basic environments such as temperature/pressure shift
and so on.

•	 Business logic events: Generally, all events are associated with business
objects' change of state in our entity services.

Surely, the list is not complete, but we believe that even a short enumeration clearly
indicates the master object behind each of them. At first glance, the list looks obvious,
so why have we mentioned these items? This is because we would like to analyze the
common regularities associated with these event types. At least two of them can be
easily spotted.

Machine, environmental, and communication (at the service edges) events are most
commonly synchronous or asynchronous requests. We must receive a transportable
form of the object (EBM/ABM) in order to react to changes on a remote component/
layer. Signals from the embedded Java or hardware sensors are also object-based, as
they transport information about certain changes in an object (for example, the pulse
is changed, the device is booting, the OSGi container is initiated, and so on). These
requests are typically produced (emitted) by a composition initiator (or just the initial
sender in simple cases).

Security and business logic events can also be propagated by a request from the
current object handler, where the change occurred. The object handler is not exactly
the application-object owner (or entity service) that could be any of the current
composition members, processing EBO according to business logic (or security policy
logic in the case of security, or both). In this case, when we have complex compositions
(business logic) or lots of environmental data (security logs) to analyze, we have to deal
not only with the object itself, but with the object's environment as well (please see the
figure in Chapter 5, Maintaining the Core – the Service Repository, in the Message section).
Simply put, some changes can go undetected or even misinterpreted if we only take
into account a single object's visible changes without the object's context. Ultimately,
some complex changes can be registered only by analyzing the context's information
during an extended period of time, and this is true for environmental events as well.
Thus, the time-driven object-handling activation (after event recognition) is the second
type of event-driven service activity initiation. The main difference with request-driven
realization is that for time-driven activation, we need a special type of service agent.

Additional SOA Patterns – Supporting Composition Controllers

[488]

These agents were depicted in the figure in the Automated recovery concepts section
in Chapter 8, Taking Care – Error Handling, and so we can count at least three major
agent groups:

•	 Event collectors
•	 Event aggregators
•	 Event analyzers

The first type of agent group most commonly is a set of individual adapters/sensors,
collecting object change metrics from various sources; we use different colors (deep
green) to indicate that they have little potential of being reused. You will have to
add a new adapter for every new source; the Adapter Factory pattern with universal
adapters has limited application here due to performance and reliability constraints.

Indeed, as mentioned earlier, a reflection attack involves two separate handshake
sessions, and the service agent running on Security Perimeter must analyze the
broad session context to detect it. Additional agents must be employed in order to
analyze logs' repeatable patterns or irregularities. For business services, the agent
must control service invocation footprints to check for invocation misses, belated
responses, or certain response code (as was mentioned during our ART discussion).

The last two agents' types can be combined in one Event Aggregator;
this is how it is done in AIA Foundation Pack (refer to the Development Guide
DevGuide Version 11.1.1.6.3). This aggregation model can be used for relation- and
time-based aggregation (usually both). Naturally, data cleansing and normalization
will be required, so both transformation patterns will be involved. Events
aggregation should provide the following:

•	 Synchronization of an entity, providing a single, holistic view of the entity
•	 Consolidation of several fine-grained events into a single,

coarse-grained event
•	 Merging of duplicates of the same event

Aggregation is probably the most difficult part of event filtering because correlations
between disparate event streams from event collectors and the necessity to analyze
a data block for an extended period of time is not always obvious. Declaring the
constrained collections against the available data, so-called data patterns, is one of the
possible techniques that requires Metadata Centralization in the way we described
it in chapters dedicated to metadata taxonomy and exception handling (Chapter 5,
Maintaining the Core – the Service Repository, and Chapter 8, Taking Care – Error Handling),
and the involvement of Rule Engine. As RE is necessary, Rule Centralization is also
obligatory for the second type of event service agents, and this is true not only for a
time-driven event but for request-driven event processing as well.

Chapter 9

[489]

As an immediate conclusion of these analyses, we can point out Rule
Engine as an essential part of EDN; consequently, a set of service agents
(SCA decision services) are linked to RE, which in turn implements the
Rule Centralization pattern (at least for event processing purposes).
This RE-SR-SA implementation model is highly flexible because of its
decoupled realization. At the same time, the role of RE in EDN is so
crucial that sometimes EDN can be entirely based on the RE alone.
For instance, one of the leaders of commercial rule management,
namely, Blaze Advisor RE (from FICO) with a highly advanced
Structural Rules Language (SRL) and an enhanced concept of data
patterns is in fact a combination of RE, Workflow Engine (so-called
RuleFlow), and EDN. Although this product is brilliant, we cannot
describe this concept as very flexible because several SOA principles
are not really supported. If the nature of your events and their object
sources is broader than just the calculation of taxes/pensions, please
consider separating EDN layers and agent groups.

Event consolidation, filtering, and aggregation serve the following two
main purposes:

•	 Identification of the business (complex or compound) event from a
series of time- or correlation-related basic events

•	 Recognition of consumers' event subscribers of these business event(s)

Needless to say, event message delivery must be strongly conducted to
Idempotent Activity settings for Partner Link (if you are using BPEL). It not only
affects the performance (when set to false), but can also be undesirable from the
business perspective (resending the same notification twice if set to true by default
after restarting the faulty process.) In any case, resending the same notification is
not a good idea. We will return to the application of reliable messaging in EDN
a bit later; now, it would be prudent to demonstrate the handling of temporal
and business-correlated basic events, and their aggregation and recognition as a
compound business event using RE. As a theoretical background, we will refer to
the classic publication Formal Semantics For Composite Temporal Events in Active DBS,
Iakovos Motakis, Carlo Zaniolo, UCLA/Cambridge Technology Partners Publication.
This publication introduced the Event Pattern Language (EPL).

Processing Object Context in business logic events
For practical purposes, we would like to revisit the logistic example we
demonstrated earlier, now with the example of a shipping company.

Additional SOA Patterns – Supporting Composition Controllers

[490]

The shipping company has a number of vessels, transporting cargo on various
routes with multiple port calls. (Again, how many objects have we just listed here?
Count carefully.) Port calls could have several different purposes such as loading,
unloading, bunkering, maintenance, and so on (quite often combined). Some
customers (cargo owners) would like to be informed only about schedules for certain
routes with certain port call types in selected ports, performed by certain types of
vessels. Business reasons could be different, and some of them are as follows:

•	 A customer is looking for the shortest delivery time, without any
transshipment

•	 A customer (such as US Ministry of Defense, for instance) wants to deliver
special cargo without entering certain ports in certain countries

•	 Obviously, the vessel must be appropriate, for instance, you cannot load a
caterpillar heavy duty truck on any Ro-Ro vessel; sometimes vessels that
have decks with adjustable heights will be necessary

•	 Obviously, a customer's port of destination must have unloading as the
port-call property; otherwise, it serves no purpose

This is just a tiny part of the business rules; the complete one will require three
pages, where some conditions will be technically unrelated to the Schedule
object, such as the nationality of the crew or the last three ports where the crew
members embarked. A change in any of these conditions could lead to publishing/
propagating the schedule to the customer or revoking it: port-call purpose change,
removing port call in restricted area, and so on. The purpose of detecting and
analyzing the Object Context is clearly visible from this example:

Chapter 9

[491]

Rules are a source of information for Rules Engine to make decisions
regarding messages' trading partners and actions. Rules are based on the
following available information:

•	 Basics Event (BE), provided by Business Application (BA). BA can
provide a Business Event's description directly in some cases.

•	 Sender ID (Sender's BA TP code).
•	 Object reference and Object Context.

The Rules Engine mechanism is explained using the following examples:

Business Case Message, Basics Events, and Business Application statuses
Case 1 BE: Port call ETA has been changed for voyage

<voyage id>

BA Sender: BA1
BA Operation: UPDATE, a basic event pattern
Message Code: Schedule, a generic message

Case 2 BE: Port call purpose has been changed for port
call <port call id>

BA Sender: BA1
BA Operation: UPDATE, a complex event pattern
Message Code: Schedule, a generic message

Case 3 BE: Port call has been changed for cargo unit
<cargo id>

BA Sender: BA1
BA Operation: UPDATE, a basic event pattern
Message Code: Cargo, a generic message

Case 1 – basic event type
We can combine solutions for these use cases in two main groups, based on the
event's type:

•	 The execution of a simple event expression will be sufficient in this case
•	 Using this information, Rule Engine will select all TPs that are bounded to

this rule unconditionally and with no historical retrospective, such as DWH
and corporate portal

•	 The rule is simple; select the TPs bounded to this message and BE

Additional SOA Patterns – Supporting Composition Controllers

[492]

Cases 2 and 3 – complex event type
•	 This is the same BE, but TP here is interested only in port calls for one

or many ports in the voyage.
•	 TP maintains its own application database messages received from

BA-sender (complete decoupling). In this case, an operation on the Rule
Engine side should be performed, namely, extracting/parsing historical
information about a business object, such as the previous port name of
the voyage and the previous ETA of the port call or previous vessel.

Realization of business cases using event processing
(Rule Engine)
To do business with a shipping company, the Trading Partner (TP)
must be provided with Schedule object(s) and should be compliant with the
following composite conditions:

•	 All voyages with the POL PORTCODE_A <and>
•	 ALL PODs in certain COUNTRY_ID <and>
•	 With two certain PODs in TRADE_AREA

These conditions are rather obvious, as TP must have a port with goods waiting
to load (POL) and all the trade ports for unloading goods (PODs) according to
the carrier's schedule. In addition to this, some more operational conditions must
be applied:

•	 A port call must not be canceled (some kind of suspension status that
is undecided)

•	 A voyage must be in the public distribution state (available for booking,
that is, the vessel is on a commercial route and is not going for maintenance)

Let's see how these five conditions can be interpreted using basic events on the
sender's side in terms of DB CRUD operations:

•	 Adding a port call to the voyage using INSERT on the TP side
•	 Updating port call information, which includes operations that depend on

conditions based on TP rules, in the following manner:
°° DELETE FOR ALL ports in the voyage if POL PORTCODE_A is removed

(simply, TP is not interested in the voyage without its port of loading)
°° INSERT FOR ALL ports in the voyage if POL PORTCODE_A is

added and POLs
°° Are in the TP's area of interest (opposite to the previous point; the

entire voyage will be provided if the TP's port of loading added)

Chapter 9

[493]

°° INSERT FOR SINGLE port if new POD is added in the TP's area
of interest (simple adding new port of discharge)

°° DELETE FOR SINGLE port if the POD belongs to the TP's area
of interest

°° Removed from voyage (opposite to previous point)
°° DELETE FOR ALL ports in the voyage for previous condition

if removed

POD was the last port in the TP's area of interest, which means that the
voyage had one POL and one POD. Two messages should be provided
in this case: one for single port and the other for the entire voyage.

•	 Deleting a port call from the voyage using DELETE on the TP side for one
or more voyages in the list.

You can see from the analysis of the preceding operation that updating the port call
information is the most complex task and requires historical retrospective. The Event
Processor (such as Rule Engine (RE), for instance) will need to have information
about the previous ports in voyages to make the decision regarding using Insert,
Update, or Delete operations provided in Message Header to TP. The Insert and
Delete operations do not reflect physical operations on the BA side. As long as the
message body provided by TP cannot contain new and old information at the same
time, previous information about the key values must be provided in the Message
Header's Object Context part. This fact was explained in Chapter 5, Maintaining the
Core – the Service Repository, dedicated to metadata taxonomy, where we linked ESR
taxonomy to the message structure.

The preceding realization can be physically presented as a two-level rule.
Here, we have a conjunction of a single entity with disjunctions.

<root> voyage must have POL1[and]

<level one> POD must be in PODn1,PODn2…PODm1,PODm2

For the second use case, we have additional realization requirements, as follows:

•	 The number of keys needed for resolving TP can be more than one.
•	 To be effective, RE (if we use Rule Engine) should execute as many rules

as possible in one go. It can be achieved by:
°° Using an effective cost-based parsing ruleset and indexes.
°° Reducing the number of rules applied to one complex event pattern.
°° Composite events signatures can be invoked. Signature composition.

Additional SOA Patterns – Supporting Composition Controllers

[494]

•	 Rules' tasks (or references to the tasks) and expected values should be stored
in ESR ruleset tables. Consequently, they can be part of the execution plan,
but the performance could be affected. Furthermore, we will see how CQL
could address this issue.

•	 Rules' validation could be based on the evaluation of XPath expressions.
As mentioned in the preceding bullet item, performance can be affected
negatively here as well.

Based on these two samples, RE can be briefly described as a mechanism that works
on the already mentioned Event Pattern Language (EPL) semantics and principles.
An EPL-based Rule Engine comprises the following components:

•	 Components and basic events (as in case 1):
Insert(RName), Update(RName), Delete(RName); RName is the Object Ref

•	 Simple Event expressions (basic event plus the condition of the basic event,
by default, "ALL"):
evntkind(RName(X), <condition-expression>)

•	 Actions; they refer to the action performed on the rule. According to
architectural rule 1, you cannot perform backward lookups on RE actions
from MB/SB but can perform forward lookups from BA.

•	 EPL Modules (MB RE rulesets) or collection of rules. This collection
is indexed.

•	 Any module has two parts: the first is the declaration of the basic monitored
events and the second is a list of rules, which will be applied to the
declarative part. Declaration of basic monitored events is part of the Object
Context and provided by BA. Rules are stored on the MB RE side and linked
to the BE code and associated with BE's basic events:

 Begin Ruleset
 Begin declaration
 Monitor Insert(CARGO)
 End declaration
 Begin Rule
 CompareWith(EventSatisfaction,
 Apply(valueOf mhs:< XPath–to–key-element>)
 End Rule
 End Ruleset
 EventSatisfaction -> POD_CODE
 where
 declarations shall be provided by BA
 and
 rules extracted from Rule DB by RE on MB/SB side

Chapter 9

[495]

Event expressions could be of the following types:

•	 Immediate sequence
•	 Star sequence
•	 Conjunction
•	 Disjunction
•	 Negate

Some of these expressions were demonstrated in the case 2 sample.

Additional constructs can be derived from the following expressions:

•	 Any (for the rule ALL)
•	 Relaxed sequence
•	 Prior operator

The EPL RE semantic will also require the presence of event tables and event
histories on both sides (MB RE and BA); this is crucial for the Trading Partner
Business Event's interpretation, and not only for TP recognition. To avoid
exponential blow up during ruleset invocation satisfaction, predicates must be
presented for every rule-execution in MB RE. This can be explained by presenting
the rule-parsing tree:

Additional SOA Patterns – Supporting Composition Controllers

[496]

The preceding figure is the decision tree with meta-rules expressions for the sample
in case 3. The decision nodes of the tree are numbered according to the post-order
traversal sequence. Sequences 2 and 3 will potentially require historical information
for the referenced object via the Object Context. Declaring this, we have to convert
the tree-parsing model to a 3D composite event matrix of parameterized events,
where parameters are separate object references to the same object at different
time stages and coexisting objects; see the description of the Object Context:

We believe that even if oversimplified, this complex business case is descriptive
enough to understand the 3D nature of complex business events. Every business object
such as a consolidated Voyage Schedule can only be seen in the following scenarios:

•	 In the context of other supporting business objects, such as ports, port calls
and their purposes, vessels, and crew

•	 With an object's historical retrospective (history of the port calls, crew shifts,
and so on)

•	 It can also be seen as an unbounded set of uncorrelated object data streams
registered by event interceptors

In this matrix, we have the following properties of parameterized events,
which comprise the Object Context XSD part:

•	 Stage: This is the historical indicator on the time axis for the object entity.
Theoretically, it can be endless, but at present, DB practice can have new
and old values.

•	 ParameterName: This is how a parameter is identified as an object's property.

Chapter 9

[497]

•	 Value: This is the parameter's actual value.
•	 CodeName: This is the class name key reference that is identified using keys,

namely, PORT_CODE, VESSEL_CODE, and GARGO_ID.
•	 BusinessName: This is the business meaning of PORT_CODE, such as POD,

POL, Port of Destination, Port of Origin, and so on. You need it for your
own sake—the context of the message must be human readable.

•	 ParameterType: This is an optional, scalar (string, number, or byte),
or composite data/object (array, CSV list, or vector) type.

•	 Order: This is optional. As long as a parameterized event can be an array,
vector, or sequence of basic types, this index will represent the position
of an individual element in the sequence.

Technically speaking, you can see the object context as a form of name-value pairs
array with some additions for historical retrospection; we discussed it earlier in
Chapter 5, Maintaining the Core – the Service Repository, while talking about Message
Header. Here, in the following figure, you can see the simplified version of this
complex type that is suitable for events propagation (or, more correctly, basic
events' notifications). The following structure is essential in order to understand
the event-type repository of Oracle Event Processing:

Additional SOA Patterns – Supporting Composition Controllers

[498]

The propagated object context along with other MH elements will be used for
aggregation, correlation, and filtering TP-Subscriber recognition; see the
following figure:

This block diagram is strictly functional, and its only purpose is to summarize the
actions that RE and EDN agents have to perform in order to initiate the predefined
orchestrated process (upper part) or deliver the event notification to the ultimate
receiver(s) (lower part). For further reference, please be aware that the receiver could
be anything, for instance, Nagios, as mentioned earlier, or Oracle BAM, as we will
demonstrate later. Actually, we are missing one crucial design rule here and will
return to it: formalizing the EDN requirements.

You will have certainly noticed some references to the DB operations in the
figures and drawings. This is normal for Oracle with its immense DB legacy, and
consequently, with its own realization of the CEP query language in addition to
the already mentioned SRL and EPL: the CQL. This is a continuous version of the
traditional SQL with constructs for supporting the streaming of data, and it is an
essential part of Oracle's. Event Processing Suite (http://docs.oracle.com/cd/
E28280_01/apirefs.1111/e12048/toc.htm).

Thus, take a look at the figure in the Realization of business cases using event processing
(Rule Engine) section that describes the 3D nature of complex events as a parallel
flow of events (or basic event-indicating tuples, from left to right), combined with the
required processing sequence (see the lower part of the previous figure; it is just one
of the possible processing routines around TP recognition).

http://docs.oracle.com/cd/E28280_01/apirefs.1111/e12048/toc.htm
http://docs.oracle.com/cd/E28280_01/apirefs.1111/e12048/toc.htm

Chapter 9

[499]

There you will see the old SQL-like approach (including the oldies but goodies GROUP
BY, ORDER BY, JOIN, and HAVING) perfectly match the parallel processing of disparate
event streams that are enforced with the following CQL query clauses:

•	 MATCH_RECOGNIZE

•	 XSTREAM (and IStream, DStream, and RStream in relation to stream
operators)

•	 Built-in window queries for stream-to-relation operations
•	 Also, surely, XMLTable operations on the Oracle XMLType data, using XPath

clauses that are similar to the EPL meta-code snippet shown previously

So, you have all the necessary means to fulfill core EDN tasks (collect, aggregate,
correlate, and analyze) using CQL for all types of data (by location: streams, and DB)
and with all types of relations (time-based or CorrId/CorrSet-based, or both); the
MATCH_RECOGNIZE clause is probably one of the most powerful options here. Frankly
speaking, this clause is not an exclusive invention of CQL; it's quite common for all
EPL types of languages. Look at Esper for instance; it has also superseded the old
10g MODEL clause in 12c RDBMS, so you can use it in regular SQL statements as some
form of case.

To avoid possible confusion, we have to give very short explanations
here. Firstly, there is no contradiction between EPL and CQL
here; you will find them both in the Oracle EDN documentation:
http://docs.oracle.com/cd/E23943_01/dev.1111/
e14301/toc.htm. Simply put, EPL is the old-fashioned way
of defining filtering, recognition, and so on. Rules (in Chapter 5,
Maintaining the Core – the Service Repository, we advised to keep the
structure and format in XML for better portability) and CQL are
the modern query-based workhouse, performing all of the heavy
work or aggregation, correlation, and matching. Both require a
dedicated processor. Now what? Yes! You are right. The second
figure in this chapter with the decision-parsing tree is in fact pretty
close to the branch and bound method from discrete programming
and combinatorial optimization. We cannot stress enough how
important it is for real-life event processing (in the e-commerce era,
classic problems such as MAX-SAT, TSP, and NNS were not just
theoretical exercises; they were means to generate money—even
Oracle's EDN examples are mostly stock-related); understanding
these subjects is highly desirable for efficient EDN implementation,
but unfortunately, this subject deserves a separate book.

http://docs.oracle.com/cd/E23943_01/dev.1111/e14301/toc.htm
http://docs.oracle.com/cd/E23943_01/dev.1111/e14301/toc.htm

Additional SOA Patterns – Supporting Composition Controllers

[500]

To be consistent, we would like to repeat the previously mentioned EPL meta-
code snippet using CQL and take into account some additional requirements we
expressed earlier, such as loading the ramp type and port of discharge in a certain
area. This statement is still oversimplified as the actual number of parameters and
conditions is substantial. Some may think that the logistic primer is not completely
relevant for this kind of demonstration (Oracle uses stock trade events), where
the time window and PREV clauses are not really needed. Surely, telecom with
event-detection abilities based on customer experience could be more appropriate
for setting up a quicker event-handling process; however, if you think about it, a
large shipping company with 300 vessels for 4,000 cargo units each, hundreds
of booking offices, and thousands of clients will desperately need the voyage
schedule optimization based on the event's recognition for up and downstream:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- Root: Defining the CQL Processor. Note: EPL processor has
the similar root-->
 <processor>
 <!-- Processors name declaration: Abstract reference -->
 <name>voyageSchedulerProcessor</name>
 <!—Here goes the main block: Rules -->
 <rules>
 <!—Declaring the view , partitioning it by port call purpose-->

 <view id="recentPortVoyageUpdateEvents" schema="cusip mbid srcId
bidQty ask askQty seq">
 <![CDATA[
 Select voypc.voy_code,
 voypc.port_voy_code, voypc.port_name,
 voypc.call_purpose, voypc.call_duration,
 voypc.call_status, voypc.port_terminal_type
 from filteredStream[partition by call_purpose]
]]>
 </view>
 <!-- Here goes the query, based on the view, declared above -->
 <!-- We using the patterns and MATCH_RECOGNIZE here for DEFINING the
types of ports, purposes and loading facilities -->

Chapter 9

[501]

 <!-- we want to identify according to Customer preferences and inform
him accordingly -->
 <!-- This statement is for demonstration purposes only -->
 <query id="detectScheduleByPOD">
 <![CDATA[
 SELECT *
 FROM recentPortVoyageUpdateEvents
 MATCH_RECOGNIZE (
 MEASURES
 A.port_voy_code as port_voy_code,
 B.call_status as call_status,
 C. port_terminal_type as port_terminal_
type
 PATTERN (A+ (B+ C+))
 DEFINE
 A as (A.port_voy_code = "<CLIENTS_POL>" and
A.call_purpose ="<LOAD_ONLY_CODE>"),
 B as (B. voy_code = A. voy_code and (B.port_voy_
code="<CLIENTS_POD1 >" or B.port_voy_code="<CLIENTS_POD2 >"),
 C as (A.voy_code = C.voy_code and C.port_
terminal_type = "<REQUIRED_RAMP_TYPE>"
) as voypc
]]>
 </query>
 </rules>
 </processor>
</n1:config>

In the preceding example, we partitioned the input stream (just one of the
available streams; we have many of them, such as the one for cargo, for instance,
and coming from booking offices) filteredStream using a port call purpose in
order to separate loading and discharge port registrations. To detect the complex
event and report on it (providing the available schedule details to the client),
we use the following:

•	 The PATTERN of three main variables—the certain POL followed by one
or more PODs with correct ramp types

•	 Define the tuple's correlations

The statement can be further optimized by declaring SUBSET for a collection of PODs,
DURATION, and INCLUDE TIMER EVENTS. For more details, please see the clause
syntax at http://docs.oracle.com/cd/E12839_01/doc.1111/e12048/pattern_
recog.htm, and you will find a lot of examples at http://docs.oracle.com/cd/
E15523_01/doc.1111/e14476/examples.htm.

http://docs.oracle.com/cd/E12839_01/doc.1111/e12048/pattern_recog.htm
http://docs.oracle.com/cd/E12839_01/doc.1111/e12048/pattern_recog.htm
http://docs.oracle.com/cd/E15523_01/doc.1111/e14476/examples.htm
http://docs.oracle.com/cd/E15523_01/doc.1111/e14476/examples.htm

Additional SOA Patterns – Supporting Composition Controllers

[502]

Communication and machine events
Some may say that just sending the change notification with the description of an
event could be enough for the customer. Yes, sometimes it is. Interestingly, event
description is an object itself, as explained in Chapter 5, Maintaining the Core – the
Service Repository, while discussing the SBDH-compliant message structure. Thus, if
in your design you are following the patterns related to canonical service messaging
(messaging metadata, state messaging, canonical schema), then the event notification
message could be an EBM without an EBO, with only the SBDH part with an object
context part, if necessary.

The Message Tracking Data can be omitted as well. Here, we can refer to the
point we discussed in Chapter 6, Finding the Compromise – the Adapter Framework.
If an events notification consumer can process the request (or control the possible
composition based on this event), then only the message header will suffice. If not,
we should instead put some effort in the events source side to construct a complete
EBO/EBM; otherwise, we will have to pull the object from the client side. This is
the general design rule, and we have demonstrated earlier in Chapter 6, Finding the
Compromise – the Adapter Framework, how to follow it in the "Integration of OeBS/
BES -> OFM use case"; however, unfortunately even with a relatively small EBM
in telecom, it is not always possible to avoid the object's polling. Talking about
communication events, we would like to refer to one of the highest authorities on
this subject: CISCO. Refer to the following quote from the SNMP events notification
at http://www.cisco.com/c/en/us/support/docs/ip/simple-network-
management-protocol-snmp/7244-snmp-trap.html:

Trap-directed notification can result in substantial savings of network and agent
resources by eliminating the need for frivolous SNMP requests. However, it is
not possible to totally eliminate SNMP polling. SNMP requests are required for
discovery and topology changes. In addition, a managed device agent cannot send a
trap, if the device has had a catastrophic outage.

SNMPv1 traps are defined in RFC 1157 with the following fields:

•	 Enterprise: This identifies the type of the managed object that generates
the trap

•	 Agent address: This provides the address of the managed object that
generates the trap

•	 Generic trap type: This indicates one of the numbers of generic trap types
•	 Specific trap code: This indicates one of the number of specific trap codes

http://www.cisco.com/c/en/us/support/docs/ip/simple-network-management-protocol-snmp/7244-snmp-trap.html
http://www.cisco.com/c/en/us/support/docs/ip/simple-network-management-protocol-snmp/7244-snmp-trap.html

Chapter 9

[503]

•	 Time stamp: This provides the amount of time that has elapsed between the
last network reinitialization and generation of the trap

•	 Variable bindings: This refers to the data field of the trap that contains PDU.
Each variable binding associates a particular MIB object instance with its
current value

In SNMPv2c, a trap is defined as NOTIFICATION and formatted differently compared
to SNMPv1. It has these parameters:

•	 sysUpTime: This is the same as a time stamp in the SNMPv1 trap
•	 snmpTrapOID: This is the trap identification field
•	 VarBindList: This is a list of variable bindings

SOA on SNMP traps? Yes, why not! We believe that nobody here at the final chapter is
under the illusion that SOA is only SOAP (or REST). The concept of EDN is just one of
the many patterns under the roof of service orientation; SNMP as a transport protocol
works just fine for communication, in addition to the traditional TR-69 telecom.

Just look at the fields from the previous specification and compare them with the
elected SBDH elements we proposed earlier. It is also needless to say that here we are
also dealing with objects and notifications based on the objects' changes, not just with
some occurrences. The technical monitoring solution discussed in Chapter 8, Taking
Care – Error Handling, will be incomplete without handling SNMP notifications from
network devices. Oracle Event Processing Suite is highly suitable for aggregating all
types of events: Business/Functional and SNMP Traps notifications.

Fast events + Big Data
Yes, this simple equation leads us to something that Oracle branded as Fast Data
(http://www.oracle.com/us/solutions/fastdata/index.html), and this is just
a logical outcome of what we have learned so far:

•	 We provide most (if not all) of the basic data required for the complex event
identification process, as the object context in the form of key-value (or name-
value) pairs. The CQL with its MATCH_RECOGNIZE and data PATTERN definition
allows us to do practically everything with inbound key-value event streams;
however, the main point of the following bullets is that we have something to
rely on in terms of data model standardization, even in such a simple form as
key-value pairs.

•	 Oracle's own NoSQL DB is also a key-value-based, robust, and high
performing database. Actually, you can configure almost any DB to be your
events store as usual; it's all about the available driver that you should declare
in the <driver-name> element. You just have to remember that sometimes
this kind of integration could affect the performance, which is highly
important for CEP.

http://www.oracle.com/us/solutions/fastdata/index.html

Additional SOA Patterns – Supporting Composition Controllers

[504]

•	 As a logical continuation of the first two points in addition to the inline
events stream processing, we have the possibility to record and then
playback events using Oracle's CEP/CQL capabilities. This option is
very powerful, and you can consider it in additional queues and topics.

Thus, Oracle EPN Suite provides us with a truly powerful arsenal using which
we can process events in FIFO style from streams of various sorts—including
memory caches—pile up events in the intermediary storage (NoSQL, the most
popular, or in traditional RDBMS), and reprocess them at our convenience at any
given time interval.

There are two main technical reasons to use this approach. Some systems have to
deal with so many events that that we simply cannot predict the message format,
representing even a basic event. Downcasting any incoming object context and
describing the event to the key-value pairs that are suitable for NoSQL storage
should not impose huge difficulties. Naturally, we also cannot predict events'
occurrence or their frequency, so the correlation and aggregation of dispersed events
will require enormous computing resources and memory in particular (yes, Oracle
has the answer to these high demands as well, but we will touch upon HW triad and
the Exalytics In-Memory machine in particular a bit later). Here again the NoSQL
storage comes to the rescue.

So, what do we solve here? The scalability problem, of course. Secondly, the ability
to record, store, and replay (aggregate and correlate) is the cornerstone for truly
parallel and distributed processing. That's all fine, some can say, but as long we are
dealing with event notification messages, why not use the traditional JMS instead?
Indeed, JMS is one of the sources/adapters in Oracle EPN and can be configured in
quite a traditional way within the wlevs config file (EPN config.xml) for multiple
consumers (20 in the following example for a Voyage cargo-handling event):

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/
application">
 <jms-adapter>
 <name>cargoBooking2VoyageJMSAdapter</name>
 <event-type> cargoBooking </event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <connection-jndi-name>jmsConnectionFactory</connection-jndi-
name>
 <destination-jndi-name>distributedQueue</destination-jndi-
name>
<session-transacted>true</session-transacted>
 <concurrent-consumers>20</concurrent-consumers>
 </jms-adapter>
</wlevs:config>

Chapter 9

[505]

Several points must be kept in mind when employing the JMS queue for the
discussed solution.

Apparently, message sequencing is our concern, as we cannot guarantee the
correct sequence of events, especially in the multiconsumer queue. Of course,
the CQL MATCH_RECOGNIZE pattern construct is directly responsible for recognizing
the sequence of consecutive events (or tuples) in the input stream. We have
demonstrated it in the CQL statement described previously and links to the
documentation are also available. Also, Oracle CEP provides several ways to
configure JMS adapters (both inbound and outbound). For instance, the inbound JMS
adapter receives map messages from a JMS queue and automatically converts them
into events by matching the property names with a specified event type. We can
optionally customize this conversion by writing our own Java class to specify exactly
how we want the incoming JMS messages to be converted into one or more event
types. We will talk about event partitioning a bit later.

From this point, we can pass events data to the processor <processor> as
demonstrated in the previous CQL code snippet with MATCH_RECOGNIZE. That's all
good, but as we know, the problem with JMS in the default configuration is that if we
took out the message for processing and fail for some reason, we will not have any
possibilities to recover this event. What's even worse is that, by doing this, we most
probably would have already sent the acknowledgment message to a JMS events
provider. So, with this approach, the third "-ility" is now in question: reliability.
It is true that in some scenarios, you really can tolerate event losses, but if you
don't, it will be better to use an intermediary storage for such events.

On second thoughts, not everything is exactly well with JMS in terms of scalability
either. Yes, it is multiconsumer alright, thanks to the concurrent-consumers
property; however, by handling large and extra-large event streams through JMS,
we will (most probably) employ the MapMessage interface (http://docs.oracle.
com/javaee/7/api/javax/jms/MapMessage.html). This is the standard way for
name-value pairs, but we have to remember that the allocation of JVM memory heap
by this class is rather aggressive, that is, the total allocated memory could be almost
twice as big as the actual message size.

So, we have to keep that in mind while planning the EPN horizontal scaling
and contemplate garbage collector activities when JVM memory is depleted or
too fragmented; this will consume almost all of the processor time. Just have an
additional 30 percent of processor time available and keep them symmetrical. Here,
the Oracle EPN clustered deployment model will be really handy (http://docs.
oracle.com/cd/E14571_01/doc.1111/e14301/scalconfig.htm).

http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oracle.com/cd/E14571_01/doc.1111/e14301/scalconfig.htm
http://docs.oracle.com/cd/E14571_01/doc.1111/e14301/scalconfig.htm

Additional SOA Patterns – Supporting Composition Controllers

[506]

Establishing it will require you to copy your default server directory and rename the
new subfolders into something more meaningful in the CEP domain root. You can
create several copies (epnserver1, epnserver2, epnserver3,… epnserverN) and
modify the config file (<DOMAIN_HOME>/ epnserver1/config/config.xml), setting
correct values for <netio> and <sslnetio> (usually 9001 and 9011 for related tags)
and edit the content of the <cluster> section according to the Oracle documentation
(not much, just four elements). These modifications in config.xml must be done
for all servers (ports on the same physical box must be different, of course), and the
domain must be restarted.

One certain advantage of the JMS approach (compared to DB storage) is that it's
relatively easy in terms of new application deployment and infrastructure support,
but some changes should be made to the CEP application itself in order to make
them truly scalable and highly available at the same time; establishing the clustered
servers in the domain is only the beginning:

1.	 Now we have parallel subscribers (or actual processors), and we have to
propagate a notification to them simultaneously from our adapter, depending
on the processing conditions. To do so, we have to change the JMS type from
distributedQueue to distributedTopic (that is, we will replace the JMS
queue with Topics) on both sides, including the one at the provider end. This
change will ensure that all consumers will be notified about all the events.
We will also need to define an event's partition criteria at our JMS adapter
configuration file. In fact, it is a form of scalability dispatcher-broadcaster, also
providing HA and it's implemented by com.oracle.cep.cluster.hagroups.
ActiveActiveGroupBean for each BroadcastGroup member. Thus, the jms-
adapter section of our CEP application config file must be extended right after
the destination-jndi-name tag. Also, remember that you do not have to be
exceedingly elaborate in defining the dispatching conditions. Our processor
will handle the main tasks about filtering, matching, and aggregation; here,
we need to just define something suitable to split the group workload, similar
to Content-Based Routing (SOA and EAI patterns). In our cargo-handling
example, area_code of the Booking Office would suffice:
<destination-jndi-name>distributedTopic</destination-jndi-name>
 <message-selector>${CONDITION}</message-selector>
 <bindings>
 <group-binding group-id="ActiveActiveGroupBean_group1">
 <param id="CONDITION"><your_condition_1></param>
 </group-binding>
 <group-binding group-id="ActiveActiveGroupBean_group2">

Chapter 9

[507]

 <param id="CONDITION"><your_condition_2></param>
 </group-binding>
 </bindings>

Consequently, the server's config.xml file must be updated accordingly
with ActiveActiveGroupBean identifications in the <group> element:

<cluster>
 <server-name>epnserver1</server-name>
 <multicast-address><your_server_ip></multicast-address>
 <groups>cargoHandlingDeploymentGroup, ActiveActiveGroupBean_
group1 </groups>
 <enabled>true</enabled>
</cluster>

As you can see from the preceding examples, we are moving in
two-by-two formation here: four hosts (servers) in two notification
groups and two servers in each of these groups as primary and secondary.
The event input has two selector conditions in the message selector section.
With more than one host in the notification group, GroupBean makes sure
that only the primary node gets the event notification message. If the primary
node is down, the next in line will be promoted as primary:

Events Source Events Consumer

ActiveActiveGroupBean_group1

epnserver2

epnserver1

ActiveActiveGroupBean_group2

epnserver4

epnserver3

Additional SOA Patterns – Supporting Composition Controllers

[508]

2.	 Perfect! We have parallel logical processors and active-active physical
server clusters and dispatchers that are capable of routing the message to
the primary (or secondary in case of a failover) node. We have reached a
certain degree of parallelism, but we still do not have HA. What is missing?
Yes, we still have a single JMS adapter with a single queue listener. Oracle
EPN handles this beautifully. We just have to add a similar HA adapter into
our application's assembly descriptor and assign failover properties, which
could be just a single time-based parameter or a combination of time and the
event's primary key; refer to the following example:
<wlevs:adapter id="HAcargoBookingAdapter " provider="ha-inbound">
 <wlevs:listener ref="cargoBookingChannel" />
 <wlevs:instance-property name="keyProperties"
value="cargoID"/>
 <wlevs:instance-property name="timeProperty"
value="bookingTime" />
</wlevs:adapter>

With many parameters to correlate, you can assign an entire class as an
instance property. The outbound adapter is configured in a similar way;
for more details, please see the Oracle EPN documentation. For brevity,
we also skipped configuration details for channels and listeners.
Compared to JMS's configuration routines, the DB intermediate store will
require at least one more in addition to the inbound event's source adapter;
however, the data source and store provider must be configured first:

<data-source>
 <name>VoyBookEvt</name>
 <connection-pool-params>
 <initial-capacity>30</initial-capacity>
 <max-capacity>80</max-capacity>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:derby:bookingevents;create=true</url>
 <driver-name>org.apache.derby.jdbc.EmbeddedDriver</driver-
name>
 </driver-params>
</data-source>
<rdbms-event-store-provider>
 <name>event-rdbms-provider</name>
 <data-source-name> VoyBookEvt </data-source-name>
</rdbms-event-store-provider>

Chapter 9

[509]

To record the events in DB, we need to specify what type of events
we want to record for the adapter. Please note that in addition to the adapter,
we can use the processor stream and event beans for event recording:

 <wlevs:event-type-repository>
 <wlevs:event-type type-name=" cargoBooking ">
 <wlevs:properties>
 <wlevs:property name=" cargoID " type=" long" />
 <wlevs:property name=" bookingTime "
type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <adapter>
 <record-parameters>
 <dataset-name>bookingRecPlay</dataset-name>
 <event-type-list>
 <event-type> cargoBooking </event-type>
 </event-type-list>
</adapter>

In this case, it's a cargoBooking event, and this event could be one of the
many defined events in the event type repository at the beginning of the
configuration file. Actually, the <event-type-list> part is optional in
adapter declaration, and if the event type list is omitted, all types of events
will be recorded for further playback.

3.	 And now the playback itself. It's configured in the <playback-parameters>
group and is actually pretty similar to <record-parameters>; here again,
we can use various components for playback events. In the following code,
we are adding the playback functionality to the stream, and it must be the
downstream node from the recording component (which is absolutely logical):
<stream>
 <name>cargoBookingStream</name>
 <playback-parameters>
 <dataset-name> bookingRecPlay </dataset-name>
 <event-type-list>
 <event-type> cargoBooking </event-type>
 </event-type-list>
 <provider-name> event-rdbms-provider </provider-name>
 </playback-parameters>
 </stream>

Additional SOA Patterns – Supporting Composition Controllers

[510]

Surely, we should be aware of the events type we want to stream from the
store (the same cargoBooking as we recorded earlier); naturally, it should
be the same event provider with the same dataset.

4.	 Finally, some more fine-grained tuning of this event processing setup.
In the <stream> configuration presented previously, we will play all the
recorded event types from our event-type list (or all events if this list is
omitted). In addition to this, for recorder and player, we can assign the time
internals in which we want to record and consequently replay the events
using the <time-range> group. In the following example, events will be
recorded/replayed from 09:00 until 18:00 on February 18:
<time-range>
 <start>18-02-2014:09:00:00</start>
 <end>18-02-2014:18:00:00</end>
</time-range>

Here, we have some differences between the recorder and player.
This configuration group is optional and can be omitted; however, without
it, the player will play all the recorded events, but the recorder will not
record the events at all. To record events, you will have to explicitly start the
recording using the Visualizer console or the command-line admin utility.
Alternatively (but not at the same time), you can define the duration of the
recording/playback as follows:

<time-range>
 <start>18-02-2014:09:00:00</start>
 <duration>09:00:00</duration>
</time-range>

As you can see, this definition is similar to the previous one.

For brevity, we will not discuss other parameters related to store policy, playback
speed, threads, event batching during the recording time, streaming parameters,
and so on. We will touch upon caching in a related session as it has a certain
significance for SOA pattern realization.

In the previous paragraphs, we analyzed different event processing and delivering
options and practically demonstrated how Oracle EPN Suite can contribute to your
CEP/EDN infrastructure, in addition to the previously discussed event-handling
techniques. Let us now repeat our usual exercise and clarify the roles of SOA
patterns in EDN.

Chapter 9

[511]

EDN in the SOA stack – a practitioner's
approach
We have to admit that for SOA Suite developers and architects (especially from the
old BPEL school), the Oracle Event Processing platform could be a bit outlandish.
This could be the reason why some people oppose service-oriented and event-driven
architecture, or see them as different architectural approaches. The situation is
aggravated by the abundance of the acronyms flying around such as EDA EPN, EDN,
CEP, and so on. Even here, we use EPN and EDN interchangeably, as Oracle calls it
event processing, and generically, it is used in an event delivery network.

The main argument used for distinguishing SOA and EDN is that SOA relies
on the application of a standardized contract principle, whereas EDN has to deal
with all types of events. This is true, and we have mentioned this fact before.
We also mentioned that we have to declare all the event parameters in the
form of key-value pairs with their types in <event-type-repository>; this is
perfectly aligned with what we presented in Chapter 5, Maintaining the Core – the
Service Repository, as a lightweight SOA taxonomy and visualized as possible
implementation of the Message Header’s Object Context. We also mentioned that
the reference to the event type from the event type repository is not mandatory
for a standard EPN adapter, but it's essential when you are implementing a
custom inbound adapter in the EPN framework, which is an extremely powerful
Java-based feature. As long as it's Java, you can do practically everything! Just follow
the programming flow explained in the Oracle documentation; see the EP Input
Adapter Implementation section:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.bea.wlevs.ede.api.EventProperty;
import com.bea.wlevs.ede.api.EventRejectedException;
import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSink;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.util.Service;
import java.lang.RuntimeException;
public class cargoBookingAdapter implements RunnableBean,
StreamSource, StreamSink
{
 static final Log v_logger = LogFactory.
getLog("cargoBookingAdapter");
 private String v_eventTypeName;
 private EventType v_eventType;

Additional SOA Patterns – Supporting Composition Controllers

[512]

 private StreamSender v_eventSender;
 private EventTypeRepository v_EvtRep = null;
 public cargoBookingAdapter(){
 super();
 }
 /**
 * Called by the server to pass in the name of the event
 * v_EvTypee to which event data should be bound.
 */
 public void setEventType(String v_EvType){
 v_eventTypeName = v_EvType;
 }
 /**
 * Called by the server to set an event v_EvTypee
 * repository instance that knows about event
 * v_EvTypees configured for this application
 *
 * This repository instance will be used to retrieve an
 * event v_EvTypee instance that will be populated
 * with event data retrieved from the event data file
 * @param etr The event repository.
 */
 @Service(filter = EventTypeRepository.SERVICE_FILTER)
 public void setEventTypeRepository(EventTypeRepository etr){
 v_EvtRep = etr;
 }
 /**
 * Executes to retrieve raw event data and
 * create event v_EvTypee instances from it, then
 * sends the events to the next stage in the
 * EPN.
 * This method, implemented from the RunnableBean
 * interface, executes when this adapter instance
 * is active.
 */
 public void run()
 {
 if (v_EvtRep == null){
 throw new RuntimeException("EventTypeRepository is
not set");
 }
 // Get the event v_EvTypee from the repository by using
 // the event v_EvTypee name specified as a property of
 // this adapter in the EPN assembly file.
 v_eventType = v_EvtRep.getEventType(v_eventTypeName);
 if (v_eventType == null){
 throw new RuntimeException("EventType(" + v_eventType
+ ") is not found.");

Chapter 9

[513]

 }
 /**
 * Actual Adapters implementation:
 *
 * 1. Create an object and assign to it
 * an event v_EvTypee instance generated
 * from event data retrieved by the
 * reader
 *
 * 2. Send the newly created event v_EvTypee instance
 * to a downstream stage that is
 * listening to this adapter.
 */
 }
 }
}

The presented code snippet demonstrates the injection of a dependency into the
Adapter class using the setEventTypeRepository method, implanting the event
type definition that is specified in the adapter's configuration.

So, it appears that we, in fact, have the data format and model declarations in an
XML form for the event, and we put some effort into adapting the inbound flows to
our underlying component. Thus, the Adapter Framework is essential in EDN, and
dependency injection can be seen here as a form of dynamic Data Model/Format
Transformation of the object's data. Going further, just following the SOA reusability
principle, a single adapter can be used in multiple event-processing networks and
for that, we can employ the Adapter Factory pattern discussed earlier (although it's
not an official SOA pattern, remember?) For that, we will need the Adapter Factory
class and the registration of this factory in the EPN assembly file with a dedicated
provider name, which we will use further in applications, employing the instance of
this adapter. You must follow the OSGi service registry rules if you want to specify
additional service properties in the <osgi:service interface="com.bea.wlevs.
ede.api.AdapterFactory"> section and register it only once as an OSGi service.

We also use Asynchronous Queuing and persistence storage to provide reliable
delivery of events aggregation to event subscribers, as we demonstrated in the
previous paragraph. Talking about aggregation on our CQL processors, we have
practically unlimited possibilities to merge and correlate various event sources,
such as streams:

<query id="cargoQ1"><![CDATA[
 select * from CragoBookingStream, VoyPortCallStream
 where CragoBookingStream.POL_CODE = VoyPortCallStream.PORT_CODE
 and VoyPortCallStream.PORT_CALL_PURPOSE ="LOAD"
]]></query>

Additional SOA Patterns – Supporting Composition Controllers

[514]

Here, we employ Intermediate Routing (content-based routing) to scale and
balance our event processors and also to achieve a desirable level of high availability.
Combined together, all these basic SOA patterns are represented in the Event-Driven
Network that has Event-Driven Messaging as one of its forms.

Simply put, the entire EDN has one main purpose: effective decoupling of event
(message) providers and consumers (Loose Coupling principle) with reliable event
identification and delivering capabilities. So, what is it really? It is a subset of the
Enterprise Service Bus compound SOA pattern, and yes, it is a form of an extended
Publish-Subscribe pattern.

Some may say that CQL processors (or bean processors) are not completely aligned
with the classic ESB pattern. Well, you will not find OSB XQuery in the Canonical
ESB patterns catalog either; it's just a tool that supports ESB VETRO operations
in this matter. In ESB, we can also call Java Beans when it's necessary for message
processing (we demonstrated this in Chapter 4, From Traditional Integration to
Composition – Enterprise Business Services); for instance, doing complex sorts in
Java Collections is far easier than in XML/XSLT, and it is worth the serialization/
deserialization efforts. In a similar way, EDN extends the classic ESB by providing
the following functionalities:

•	 Continuous Query Language
•	 It operates on multiple streams of disparate data
•	 It joins the incoming data with persisted data
•	 It has the ability to plug in to any type of adapter
•	 It has the ability to plug to any type of adapters

Combined together, all these features can cover almost any range of practical
challenges, and the logistics example we used here in this chapter is probably
too insignificant for such a powerful event-driven platform; however, for a more
insightful look at Oracle CEP, refer to Getting Started with Oracle Event Processing
11g, Alexandre Alves, Robin J. Smith, Lloyd Williams, Packt Publishing. Using exactly
the same principles and patterns, you can employ the already existing tools in your
arsenal in the way we demonstrated in Chapter 6, Finding the Compromise – the Adapter
Framework (exactly as we did for this shipping company). The world is apparently
bigger, and this tool can demonstrate all its strength in the following use cases:

Chapter 9

[515]

•	 As already mentioned, Cablecom Enterprise strives to improve the overall
customer experience (not only for VOD). It does so by gathering and
aggregating information about user preferences through the purchasing
history, watch lists, channel switching, activity in social networks, search
history and used meta tags in search, other user experiences from the
same target group, upcoming related public events (shows, performances,
or premieres), and even the duration of the cursor's position over certain
elements of corporate web portals. The task is complex and comprises many
activities, including meta tag updates in metadata storage that depend on
new findings for predicting trends and so on; however, here we can tolerate
(to some extent) the events that aren't processed or are not received.

•	 For bank transaction monitoring, we do not have such a luxury. All online
events must be accounted and processed with the maximum speed possible.
If the last transaction with your credit card was at Bond Street in London,
(ATM cash withdrawal) and 5 minutes later, the same card is used to
purchase expensive jewellery online with a peculiar delivery address,
then someone should flag the card with a possible fraud case and contact
the card holder. This is the simplest example that we can provide. When
it comes to money laundering tracking cases in our borderless world—the
decision-parsing tree from the very first figure in this chapter—based on all
possible correlated events will require all the pages of this book, and you will
need a strong magnifying glass to read it; the stratagem of the web nodes and
links would drive even the most worldly wise spider crazy.

For these mentioned use cases, Oracle EPN is simply compulsory with some spice,
like Coherence for cache management and adequate hardware. It would be prudent
to avoid implementing homebrewed solutions (without dozens of years of relevant
experience), and following the SOA design patterns is essential.

Let's now assemble all that we discussed in the preceding paragraphs in one final
figure. Installation routines will not give you any trouble; just install OEPE 3.5,
download it, install CEP components for Eclipse, and you are done with the client/
dev environment. The installation of the server should not pose many difficulties
either (http://docs.oracle.com/cd/E28280_01/doc.1111/e14476/install.
htm#CEPGS472). When the server is up and running, you can register it in Eclipse (1).
The graphical interface will support you in assembling event-handling applications
from adapters, processor channels, and event beans; however, knowledge of
the internal organization of an XML config and application assembly files (as
demonstrated in the earlier code snippets) is always beneficial.

http://docs.oracle.com/cd/E28280_01/doc.1111/e14476/install.htm#CEPGS472
http://docs.oracle.com/cd/E28280_01/doc.1111/e14476/install.htm#CEPGS472

Additional SOA Patterns – Supporting Composition Controllers

[516]

In addition to the Eclipse development environment, you have the CEP server web
console (visualizer) with almost identical functionalities, which gives you a quick
hand with practically all CQL constructs (2).

Parallel Complex Events Processing

Chapter 9

[517]

High service performance combined
with High Availability
Extracting the highest possible performance in events processing or in any
distributed computing systems for that matter can be achieved only if we can
leverage data caching. A new layer called data grid as a distributed in-memory
processing fabric must be established around most I/O and processor-consuming
frameworks and service resources, primarily around ESB and databases. Regarding
service resources and DB in particular, the clustering technique has been around for
quite a long time; therefore, we doubt that your mission-critical DBs are not installed
on RAC using SAN and so we will not dwell into it.

To serve HA and high-performance purposes, this fabric must satisfy certain criteria:

•	 Data Grid/fabric partitioning around a resource-consuming framework
must be dynamic and automatic; that is, you should be able to add new
servers into the cluster, automatically change the partition, and consequently,
data replication and the processing workload.

•	 The amount of data distributed around every grid node must be configurable.
•	 The aggregate data throughput of the fabric is linearly proportional to the

number of servers.
•	 The in-memory data capacity and data-indexing capacity of the fabric is

linearly proportional to the number of servers.
•	 The aggregate I/O throughput for disk-based overflow and disk-based

storage of data is linearly proportional to the number of servers.
•	 Partitioning must provide load balancing and a configurable level of

data redundancy to maintain the required level of data resiliency
(usually, zero tolerance to data losses).

•	 As every node should maintain data management (I/O processing) at
the proportional level, the scalability rate must be close to the linear and
directly proportional to the number of nodes in a data grid cluster.

•	 As a logical outcome from the preceding points, the more nodes in the grid,
the more resilient the fabric would be.

•	 Another logical outcome is that the number of served clients
(task submitters) is proportional to the number of nodes in the grid.
Proportion must be linear, of course.

•	 Clients (task submitters) must see this fabric through a unified interface,
completely decoupling the client from the fabric's size/complexity.

Additional SOA Patterns – Supporting Composition Controllers

[518]

•	 The fabric load balancer must work well with other load balancers in
the environment.

•	 To increase resilience, each grid node server must back up a configurable
amount of data from other servers.

•	 Load balancing and workload distribution is an essential part of the
fabric's architecture, and they should not represent SPOF either. Thus,
hub-and-spoke or single message, or the workload broker pattern is not
applicable here. All dispatchers must be redundant and interconnected to
provide maximum resilience.

As you may have already noticed, all these characteristics are properties of the
Oracle Coherence product, which is based on the distributed Java cache specification
and is essential to implement the last two use cases.

If we look at the SOA patterns catalog again, we will probably find only one pattern
related to the requirements of this distributed fabric: Service Grid. Generally, it is
related to the replication of service state deferrals, that is, the BPEL dehydration DB,
which is highly important to replicate the following:

•	 The MDS store
•	 The SOA infrastructure dehydration store
•	 Audit and process cubes

Although it's highly important, it's only a small part of what Coherence can
provide; this SOA pattern is only the tip of the iceberg as we have lots of service
components patterns that are employed for maintaining a declared list of Coherence
characteristics. In a similar way, you can see the Observer pattern as the low-level
architectural pattern, supporting EDN at the service component level. Here, we have
several patterns that support data caching, serialization, replicating, and processing.
Before touching on them, let's briefly look at the roots of Coherence.

At the very basic level, Coherence uses the idea of a HashMap (java.util) as
probably the fastest way of storing, sorting, and retrieving data with two main
functions around the data object: put(key,..) and get(key,value). So, as you
can see, like in the previous chapter, once again we are dealing with key-value pairs
that make the whole idea highly universal and suitable not only for EDN, but for all
kinds of data implementation processes, for NoSQL in particular. We can combine
multiple entry keys into logical storage units, so-called buckets.

Chapter 9

[519]

Coherence takes this idea further by representing partitions that are stored
on single or multiple cache servers. It also provides mechanisms for taking
the key-value pairs of buckets/entry from the local cache and distributing them
between the partitions. Thus, Coherence in general is a distributed implementation
of java.util.hashmap.

How do we distribute objects? We had this technique long before SOA was
developed (CORBA and RMI; look at the classic Java Distributed Computing, Jim
Farley, O'Reilly Media), and this is the serialization we mentioned here a countless
number of times. Well, you can say that serialization is quite a heavy process, and
actually, we have confirmed it many times as well. It is slow and serialized objects
can be large; how can we optimize memory utilization, especially considering the
problems associated with the already mentioned MapMessage interface?

In addition to classic serialization, Coherence provides two additional extensions
for object distribution:

•	 The ExternalizableLite interface with two main methods, readExternal
and writeExternal. It performs a bit of data compression to optimize
memory utilization.

•	 The other is Portable Object Format (POF), which is a more advanced
ExternalizableLite implementation.

Of course, compression comes with a cost; it requires some more processing power,
and the implementation is not always simple; however, it is worth all the effort:

•	 POF supports the ability to automatically apply indexes to the classes.
This ability solves one-third of the generic distributed cache tasks which
includes indexing, Partitioning, and replication.

•	 POF supports interoperability between multiple languages, that is, it's not
just Java anymore; you can use C# and some other languages, including
.NET and C++. That's a really big advantage of Coherence.

•	 What's even bigger about Coherence POF is that it allows you to version
data. It is hard to overstress this feature. If data grid is the fabric, stretched
around at least three products (OSB, SOA Suite, and Oracle EP) and three
frameworks (EBS, EBF, and ABCS), then we expect it to run 24/7 and not
jeopardize but support our new deployments. POF supports multiple
versions of the same object in the memory, and most importantly, these
versions will be used by the same service without data conflicts.

Additional SOA Patterns – Supporting Composition Controllers

[520]

The last advantage is possible because of the key-value nature of HashMap. Imagine
that Version 1 of App1 uses Object Version 1 with tree fields/properties and App1
Version 2 has the same Object with four fields. When Object Version 2 is serialized,
it will be presented with all the fields; however, when it is deserialized for Version 1
of App1 to provide updates in the old application, the extra pieces of data (fields 4, 5,
and so on), POF will create the extra bucket as a byte array for extra fields in V2
and squeeze them into it without reading/parsing and then add it to the stream.
When the Object is serialized again, this portion will be added back to Object
Version 2, so we will maintain consistent backward compatibility.

So now let's see how Coherence addresses two other main fabrics' tasks: Partitioning
and Distribution. Coherence supports several Distribution models, and the most
obvious one is direct replication (fast read / slow write), which is the first thing
that comes to mind. We must remember that for data/object consistency, all our
replications must be synchronous. If we have two grid nodes with two replicated
data objects each (objects are different on single node, but nodes are identical; this
is a complete replication), we have to synchronize each object between the two
nodes every time the objects get updated. The problem with this method becomes
obvious when we move to more nodes and more objects. Synchronous objects'
synchronization soon will consume all our HW resources.

Well, actually lots of Distributed Caches (fast write / slow read) work on that model.
With Coherence, we have better options: the Partitioned Cache. Let's not keep all
the objects in one node, but partition it. If we have four data objects, then let's split
them equally between two nodes (Obj1 and Obj2 on Node1, which is the primary
for these objects and Obj3 and Obj4 on Node2 with the same rules). For resiliency
backup, copies of objects 1 and 2 will be stored on Node2 and vice versa. They will
be synchronized when the master object data is updated. Thus, we considerably
reduced the number of synchronous replications in the Coherence fabric.

When Node1 goes down, Node2 will be promoted as the primary for all objects,
which is basically the first model with a single node. The extreme implementation
of this method would be one node per single primary and backup object. Coherence
allows you to configure this replication model according to your realities; it is
always a trade-off between performance, resilience, and cost. The good news is that
Coherence takes care of proxy layers between task submitters and task processors,
and data indexing and internal buckets' synchronization. Of course, Coherence
is also responsible for promoting backup nodes to the primary when the master
node(s) become unavailable.

Chapter 9

[521]

So, we have a highly performing Replicated Cache and very scalable Partitioned
Cache. We have the third model that is devised to combine the best sides of both:
Coherence Near Cache and the fastest possible access to MRU and MFU data. In
this approach, every node has a local cache store of limited size and a large backend
store. Imagine that a submitter is working with Node2 and holding the master
object Obj2; at a certain moment Obj3 will be required. Coherence will transport
Obj3 from its master node (Node3, for instance) and put it into a smaller local cache
(for example, MFU). If a service changes (invalidate) Obj3 at its main location,
its updated replica will be propagated to the local cache of Node2. Thus, the local
cache keeps a local snapshot of the distributed information. There are several cache
invalidation strategies that are completely configurable:

•	 If your business can tolerate a proportion of the objects becoming
temporarily out of date, then you can use the fastest strategy known
as Listen None strategy, ideal for data with a slow rate of change.

•	 If your most recently used data is also the most frequently used one,
that is, your application is only interested in the data stored in the local
cache, then Listen Present is the best strategy.

•	 Listen All strategy is the heaviest, but it covers all the possible scenarios
in backend caches.

•	 If you do not know which of the last two strategies is best for you, choose
Listen Auto; it will dynamically switch between Listen Present and Listen
All based on the cache's statistics.

As you can see, Coherence provides a lot of functionalities and is probably the most
advanced distributed cache system in the market. Apparently, just one SOA pattern
mentioned in the catalog must be supported by a number of underlying patterns,
actually implement indexing, Partitioning, and replication in various forms, suitable
for all possible user scenarios.

Luckily, Coherence is not only one of the most complex Oracle products, but it is
also arguably the best documented one, thanks to the Coherence Incubator Project
(https://java.net/projects/cohinc/) and to all who contributed to it, providing
practical examples of various implementation patterns. We urge you to read and
try the published materials. Here, we will just mention the basic patterns that are
available for implementation, as the title of this book requires.

Additional SOA Patterns – Supporting Composition Controllers

[522]

The following table includes Coherence Object Distribution patterns:

Pattern Problem Implementation
The
Messaging
pattern

We need an absolutely reliable
SPOF and ultrafast store-and-
forward messaging network
without a central hub (as in
Hub-and-Spoke) as a potential
bottleneck.

Coherence from the moment of
its creation has been a message
distribution system that is capable of
supporting queues and topics.
The advantage of this pattern
implementation is that in Coherence,
you do not need to wrap objects
into messages, that is, you can skip
serialization operations; you use the
same distributed infrastructure around
your applications without establishing
a new one.
Although the main purpose of
Coherence is different than just being
a distributed hubless SAF, some of
us who experienced troubles with
the original WLS will agree that
SAF greatly appreciates this pattern
implementation. Old JMSes and AQs
can definitely perform the same task
cheaply in all ways; still, this pattern is
the foundation of the next one.
One word of caution, which is common
for all object distribution patterns: plan
the distribution path carefully between
your nodes and place the aggregation
nodes close to the processing nodes for
better throughput.

Chapter 9

[523]

Pattern Problem Implementation
The Event
Distribution
pattern
(EDN)

If you want something
done fast, do it yourself
and do it in cache. If your
service component can put
the updated object into a
distributed cache, then it
would be the fastest way
possible to propagate the
event notification. Thus,
the need for cache in events
processing is justified.

Yes, Coherence is the cache we need
and the change of objects' state will not
go unnoticed with a properly arranged
invalidation strategy (if you do not
know which one to use, go for Listen
Auto). Remember the last figure from
the previous paragraph? Coherence
is the closest companion of Oracle
Event Processing and can provide the
following:

•	 Five types of channels for files,
errors, and all types of caches,
both local and distributed.

•	 Guaranteed delivery of events.
No events losses.

This pattern sets the necessary
infrastructure for the next pattern
in line.

The Push
Replication
pattern

How can you keep all the
objects in all the Grid nodes
synchronized in the most
fastest and reliable way? How
can you propagate the changes
from one cluster to another?

As the name suggests, data is pushed
from the place where changes occurred
to all the nodes that are configured to
be notified. This is a bit more than a
pattern; it's an entire framework within
Coherence that provides the following
types of object pushes:

•	 active-passive
•	 active-active
•	 hub-and-spoke
•	 multi-master
•	 centralized replication

We touched upon some of these
aspects while discussing the three
possible distribution models and ways
of data invalidation.

Additional SOA Patterns – Supporting Composition Controllers

[524]

The following table includes Coherence Object Processing patterns:

Pattern Problem Implementation
The
Command
pattern

An operation on a certain
object that should be executed
possibly several times (or
none) must be represented
as an executable object called
Command in the context of the
object's data. Command must
clearly provide a method for
executing the task.

This is a distributed version of the classic
Command pattern, and the code presented
in the incubator is quite self explanatory.
The executable method provided by the
Command interface simply called execute,
which requires a single parameter:
ExecutionEnvironment. This is where
the context is encapsulated, and Context
Manager is responsible for maintaining it.
To be distributable and replicable within
the data grid, context and command objects
must be serializable
(ExternalizableLite or
PortableObject would be even better).
This pattern does not always return a
value back to the task submitter (client).
If a return value is expected, the Functor
pattern must be allied. This pattern is an
extension of Command and should be
omitted for brevity.

Processing
pattern

The previous pattern
(Command) is responsible for
creating an executable object
based on the data object's
context (as depicted in the
3D composite event matrix's
figure, for instance), but this
is just a prerequisite (although
critical) for distributed
computing. We must make
sure that the client will see
the fabric as one big computer
with a unified way to submit,
start, pause, and resume the
predefined task with the
associated data object. This
processing framework must
seamlessly support not only
computers assembled into the
Coherence grid, but also the
ones that are plugged using
Coherence Extend (TCP or JMS
connectors to remote systems).

Coherence as a virtually unlimited
distributed network of data storage buckets
and associated data processing nodes
represents the possibility of asynchronously
processing (almost) everything that is called
or run by Java. This pattern allows the
client to use the fire-and-forget submission
model for the predefined object (with the
data structure declared in the key-value
form and standard executable method). This
pattern is capable of reporting back to the
sender about the task submission's outcome
to keep the submitter informed about the
progress of the execution. Based on the
status (or even without it), the submitter
has the ability of canceling the processing if
submission doesn't reach the final stage of
processing. Due to the asynchronous nature
of the execution, the client has the ability
to disconnect from the processing grid and
connect later to collect the results or even
delegate it to another client. The last option
is possible because the client will decide on
the ID that is associated with submission.

Chapter 9

[525]

There are more patterns in the incubator (https://java.net/projects/cohinc/),
including Coherence Commons (similar to Apache Commons) that holds lots
of useful utilities. However, of all the patterns, the Processing pattern is arguably
of paramount importance and is available for implementation on Coherence.
This pattern is so full of functionalities and covers so many requirements that
sometimes it is very rightfully called a framework. This pattern will require the
following components:

•	 Submission dispatchers, polling the individual submission from local
submission caches and registering them on Dispatch Controller, which
in turn passes this registration to logging.

•	 A registered and logged task passed to the task dispatcher. The client is
notified about the submission's outcome.

•	 The task dispatcher dispatches the task (executable submissions with the
implementation of the Task interface) to the Task processor. Here, we can
have different variations of the tasks. If a submission contains Java runnables
and callables, it will be executed locally by LocalDispatcher, but this is
not desirable due to limited distribution capabilities. The task can also be
resumable, which means that it can be suspended during the execution.

•	 TaskProcessor is the actual worker that executes the task. TaskProcessor
is assigned according to TaskDispatchPolicies, which could be simple
Round-robin or Attribute Matching. The last type is purely content-based
routing/mediation.

•	 The submission's result is returned to the SubmissionResult cache.

Although very schematic, this sequence is quite complete to recognize the
resemblance with patterns we implemented using SOA Suite in Chapter 3, Building
the Core – Enterprise Business Flows; please see the figure with the block diagram for
Composition Controller with Business Delegate and Service Locator. Exactly as
with Service Broker / Business Delegate patterns, follow the ensuing steps:

1.	 First of all, we decouple the consumer and actual worker.
2.	 We use the dynamic execution capability (here in Java).
3.	 We can postpone the execution until a certain event has occurred.
4.	 We can route our object conditionally or unconditionally to the

predefined TaskProcessor (Service) and we use an external policy for
the Task-Process association.

https://java.net/projects/cohinc/

Additional SOA Patterns – Supporting Composition Controllers

[526]

Coherence empowers these patterns with the highest resiliency and top processing
speed. Its distribution model is based on event mappings and notifications,
and it fully supports multithreading. All of this makes it a perfect companion
for Oracle EPN.

Here, we would like to discuss two most common types of Coherence
implementations, and we will traditionally start with the classic OSB and
Coherence integration.

Coherence and OSB
In simpler cases, if our business service returns something close to static or if, as we
mentioned above, our service consumer can tolerate the not really up-to-date result
object, and if in addition to that (optionally), service operations are quite expensive,
then we can configure our business service to cache results.

Node Manager

Coherence
Server 1

Cache

Node Manager

Coherence
Server 2

Coherence Cluster

Cache

WLS Admin
Server

Node Manager
Client

M eansb

Consumer

SOAP/REST

SOAP/REST

Pipes

Proxy
Service

WLS Domain

OSB JVM

Coherence
JVM

Result
Cache

Provider

Inbound Outbound

WSDL

Business
Service

WSDL

Chapter 9

[527]

Cached results can be configured for time-to-live (TTL), so after the cache result
expires, the next call will result in updating the cache with a fresh result by executing
the business service. The cached result is stored on a separate Coherence JVM, so
it does not take any resources from OSB JVM and can be distributed/partitioned
between the Coherence nodes. Although these machines are completely separated,
WebLogic Administration Server can still control Coherence servers on individual
machines using its own node manager client, which is connected to individual node
managers on each Coherence machine.

To establish this integration, you can follow the ensuing steps:

1.	 Configure startup arguments in the server's Start tab as described in the
OSB documentation (http://docs.oracle.com/cd/E17904_01/doc.1111/
e15867/configuringandusingservices.htm#OSBAG1413), and best
practices at http://docs.oracle.com/cd/E14526_01/coh.350/e14510/
bestpractices.htm.

2.	 Now we have to configure the business service for caching in Coherence.
Go to Advanced Properties in Message Handling configuration and check
Supported for Result Caching. Also set expiration time at the bottom of the
page. If nothing special is part of your requirements, you can set it according
to the default setting. You can also preset the fixed interval or establish
something that is more business-oriented using the XPath expression, which
is linked to expiration timestamps in your SBDH-compliant message header.

3.	 As you remember, distributed cache is a partition of key-value pairs. So, we
need to link the cached data to our object key, which could be a part of our
Message Header, that is, $body/*:CTUMessage/*:MessageHeader/. Put
your XPath expression in the Cache Token Expression field.

Using this configuration, you can considerably reduce the number of business
service invocations and provide the output much faster.

http://docs.oracle.com/cd/E17904_01/doc.1111/e15867/configuringandusingservices.htm#OSBAG1413
http://docs.oracle.com/cd/E17904_01/doc.1111/e15867/configuringandusingservices.htm#OSBAG1413
http://docs.oracle.com/cd/E14526_01/coh.350/e14510/bestpractices.htm
http://docs.oracle.com/cd/E14526_01/coh.350/e14510/bestpractices.htm

Additional SOA Patterns – Supporting Composition Controllers

[528]

Coherence and event processing
Now, we will approach a more complex realization that is related to CEP. So, we can
move the data object whenever and wherever we want to, and we can execute the
methods, thanks to the Coherence Processing pattern. However, being essentially
a distributed cache, Coherence is not really at its best when it comes to continuous
aggregation, that is, accumulating and filtering data for an extended period of time.
It will be quite right to call Coherence processing stateless, and that's logical as it
will be quite difficult to replicate and partition stateful object/processing nodes.
Yes, Coherence has EntityAggregators, which is built-in and customizable, but
their main purpose is to reduce the number of entities in the cache, combining and
aggregating the identical ones (by their attributes) in order to reduce the cache size
and provide the result. Aggregators are constantly updating entities, but not in a
time-based aggregation manner. Also, we must keep in mind the limited ways of
accessing distributed cache, that is, we do not have adapters in the common sense;
that's not the purpose of Coherence.

Event Processing at the same time is very good for time-based continuous
aggregation of different streams; aggregations can be incrementally evaluated and
grouped by values. We have quite an efficient adapter framework with abilities
to implement custom adapters within adapter factories. The downside of the
Oracle EDN is that we have no way to make our continuous aggregation parallel.
Something that is going on in an isolated JVM for quite some time cannot be
really replicated unless we perform the same operations exactly in another JVM.
Operations are highly stateful. If we fail, we will have to start all over again,
and all the previous results are wasted (if we are processing using CEP alone).

The natural approach here would be the combining benefits of both products in
one form of MapReduce patterns (read http://www.cs.stanford.edu/people/
ang//papers/nips06-mapreducemulticore.pdf and http://highlyscalable.
wordpress.com/2012/02/01/mapreduce-patterns/; these articles are really good),
where roles will be distributed as follows:

•	 Coherence (Map):
°° Entity aggregation using key affinity/no-entity duplicates
°° Entity indexing
°° Maintaining the highest resilience through Partitioning and backup
°° Supporting partition transactions and preparing results for the

final aggregation
°° A handy publishing mechanism

http://www.cs.stanford.edu/people/ang//papers/nips06-mapreducemulticore.pdf
http://www.cs.stanford.edu/people/ang//papers/nips06-mapreducemulticore.pdf
http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/
http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

Chapter 9

[529]

•	 Oracle Event Processing (Reduce):

°° Continuous aggregation and grouping
°° CQL provides great flexibility for adjustments and declarative

modifications
°° Coherence provides some sort of consistent entity views; therefore,

if we fail, we can restart our analysis again without losing events

Surely, the presented implementation types (the second one is very
schematic; please see the Oracle documentation for details on implementation,
http://docs.oracle.com/cd/E14571_01/doc.1111/e14301/cache.htm)
are not the only ones possible in OFM. Coherence can be highly beneficial for caching
Oracle DB data (as any data). Coherence also provides a mechanism called CohQL to
query the cache, SQL-style. In other words, we have plenty of means to implement
the data grid in our SOA infrastructure around all the runtime frameworks with
embedded tools for integration and data manipulation.

Monitoring service activities
Moving down the line of SOA patterns that are used in core technology frameworks,
we finally come to Business Activity Monitoring; this term was proposed by Gartner
during the earlier years of SOA development. Actually, this term has no relation to
any recognized SOA pattern (with the exception of UI Mediator, but very remotely),
but every Oracle-technology-related book (related or not related to SOA) has a
chapter dedicated to BAM.

http://docs.oracle.com/cd/E14571_01/doc.1111/e14301/cache.htm

Additional SOA Patterns – Supporting Composition Controllers

[530]

You can find them a lot in chapter 19 of the book by Lucas Jellema, which has
already been recommended. It's quite typical that you will find guidance on BAM
somewhere around the final chapters of this book. Quite interestingly, it contradicts
the common corporate purchase practice; usually, BAM is purchased first and
implemented in the end.

Why is that? It's quite obvious; top managers love the dashboards full of colorful
3D pie charts, but development teams have to go a very long way before something
really useful becomes available for visualization, and that has nothing to do with
BAM. Those of us who remember the earlier versions of BAM could also be rather
hesitant. It was built on the Microsoft platform with lots of bugs and integration
problems with core Oracle SOA products, and worked with the IE browser only.
It does not always leave happy memories (and we are not discussing the license
costs compared to other products here).

Oracle's early BAM problems and dependence on Microsoft have long gone, and
now if you are contemplating using a monitoring tool for your SOA/BI portfolio,
the Oracle BAM can be a good alternative to Nagios, for instance. Again, as its main
purpose is very straightforward, that is, to construct reports and visualize them in
a push-based manner (no manual refreshes should be required), it does not provide
any pattern as a solution to any problem; however, it is arguably the best candidate
to complete the extremely powerful triad:

•	 Complex Event Processing on Oracle EPN
•	 Events/message distribution, aggregation, and reliable replication by

Oracle Coherence
•	 Business events' reporting by Oracle BAM

Frankly, if any of your business cases is similar to the banking, logistic, or telecom
examples discussed earlier, this triad with all the available patterns will cover most
of your needs (or all in our experience). BAM in this case from the earliest 11g build
provides a web-based graphical environment for establishing a completely codeless
implementation of reports and dashboards to monitor different KPIs, primarily
business-related ones. This high usability, together with the fact that there are no
complex SOA patterns associated with this product alone, simplifies our task by
presenting this functionality in this paragraph, as we do not have room here for
providing drag-and-drop cookbook screenshot demonstrations.

If you return to the figure that presents the WLS SOA console in OFM's introductory
chapter for a moment, you will see that simplicity starts with the combined
installation of SOA Suite, where the BAM server will be installed in one go,
with the whole bundle (of course, you can exclude it from the installation).

Chapter 9

[531]

It runs on its own WebLogic server (in our case, bam_server1 by default), and it is
controlled from the same administration console/OFM control in the same way as
other servers are controlled. The Oracle BAM server is a collection of the components
Oracle BAM Active Data Cache (Oracle BAM ADC), Oracle BAM Report Cache,
Oracle BAM Enterprise Message Sources (EMS), and Oracle BAM Event Engine. All
BAM object definitions and reports will be stored in the OFM DB repository, created
during the installation. As long as object data is involved, we have two sides of BAM
connectivity; naturally, it has APIs for data producers (SOAP and RMI) and data
consumers, who will use the BAM DB schema, like with ODI. In fact, Oracle Data
Integrator can be both; a data provider for reporting and data consumer of BI data.

When you start bam_server and log in to the BAM web application, http://<your_
BAM_host>:<your_BAM_port>/OracleBAM/default.htm, you will see four main
buttons that lead to the console responsible for all aspects of the BAM dashboard's
life cycle. The architect's console is the most interesting to us, as its name denotes.
The architect's console is responsible for creating BAM data objects on which all our
reports will be based. Every type of BAM and OFM integration will start from this
console. Let's quickly walk through the possible BAM integration use cases.

Direct integration of BAM and BPEL
The direct integration of BAM and BPEL is the most common use case and also the
most frequently demonstrated one in any SOA/OFM cookbook. It is also the most
ineffective rule-breaking implementation as it directly violates the Loose Coupling
SOA principle. Let's see why. First, let's look at Chapter 3, Building the Core – Enterprise
Business Flows, where we discussed the SCA Service Broker and were particular about
declaring a comprehensive process name at the beginning of the BPEL flow. The next
step should be to assign the runtime variables, including the process name. If we
need to monitor SCA BPEL instances in BAM, it would be best to inject BPEL Sensor
(http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bp_sensors.htm).
To complete this part, we need to perform the following steps:

1.	 Check our connection with the BAM server. If we do not have any, it is
time to create one: File | New | Connections | BAM Connections.

2.	 Go to the BAM Architect and declare the data object that we need to
populate for our report (http://docs.oracle.com/cd/E21764_01/
integration.1111/e10224/bam_data_objects.htm). Different types of
data objects are explained at http://docs.oracle.com/cd/E25054_01/
dev.1111/e10224/bam_adapter.htm#BABHCHCE.

3.	 Back in SCA, in the BPEL structure console, locate the node for sensor
variables and create a BAM sensor, give it an appropriate name, and set
the target variable.

http://<your_BAM_host>:<your_BAM_port>/OracleBAM/default.htm
http://<your_BAM_host>:<your_BAM_port>/OracleBAM/default.htm
http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bp_sensors.htm
http://docs.oracle.com/cd/E21764_01/integration.1111/e10224/bam_data_objects.htm
http://docs.oracle.com/cd/E21764_01/integration.1111/e10224/bam_data_objects.htm
http://docs.oracle.com/cd/E25054_01/dev.1111/e10224/bam_adapter.htm#BABHCHCE
http://docs.oracle.com/cd/E25054_01/dev.1111/e10224/bam_adapter.htm#BABHCHCE

Additional SOA Patterns – Supporting Composition Controllers

[532]

After this, we are ready to configure the sensor's actions. In the Structure window,
select the sensor's actions and create a new one for BAM when the Sensor Action
window appears. Then, set the action name and select BAM DO created in the BAM
architect, and also provide the operations (Insert) and keys. XSLT mapping is
available at this stage for adjusting BPEL action data sources to BAM DO.

Technically speaking, this is it; we are done with the integration. In the next few
steps, you will deploy the application, test it, and verify that instances of data objects
are pumping into BAM. Finally, in the BAM active studio, you can assemble a
beautiful report with a pie chart and everything. The main point here is that we have
a direct connection between BPEL and BAM, and although it is perfectly operational,
it is not exactly what we want in production, especially for events monitoring.

BAM gives us several other options for data feed, and you can spot some of them
right away in the BAM Architect. Before you create a new data object, please look
at the drop-down list at the top. In addition to the first option discussed earlier, we
have Enterprise Message Sources, External Data Sources, and Alerts. The first one
denotes JMS, which is extremely versatile; however, in addition to listening to JMS,
we have a synchronous way of getting data to BAM Active Data Cache and BAM
Web Services. Thus, we have many ways to get data for dashboards, including a
completely vendor-neutral way.

The BAM and JMS connection
So, how can we set up JMS as a BAM data channel? Before creating any sensor,
please proceed to the SOA Domain Admin console and create Connection Factory
and a new Queue (BAMSensorQueue) in SOAJMSModule (in WLS Domain Structure,
go to Services | Messaging | JMS Modules. Then, create a new JMS System Module
Resource, set the JNDI name as jms/BAMConnectionFactory, and so on). To create
a new sensor for its actions, set Publish Type as JMS Queue. The steps for creating
a sensor variable are similar to the previous example. After deployment and testing
using either the SoapUI or EM console, you will find the message in the previously
configured JMS. Now, you can return to the BAM Architect and create a new object
according to your input (it could be the same as the previous one for test purposes),
but now select Enterprise Message Sources from the list on the top. Set the correct
values in the EMS section: JMS Message Type as Text, Operation as Insert (actually,
you can perform all the CRUD operations on your objects); then, set the JNDI and
queue names as you created them in WLS.

For more administrative details that are not part of the SOA patterns, please refer
to http://docs.oracle.com/cd/E23943_01/dev.1111/e10224/bam_ent_msg_
sources.htm. Here, you will find that Oracle Messaging is supported, and the
sources could be JMS providers from IBM, Apache ActiveMQ, and Tibco.

http://docs.oracle.com/cd/E23943_01/dev.1111/e10224/bam_ent_msg_sources.htm
http://docs.oracle.com/cd/E23943_01/dev.1111/e10224/bam_ent_msg_sources.htm

Chapter 9

[533]

Summarizing all of the preceding points, we can see three main advantages of this
connectivity method when compared to the previous one:

•	 Vendor neutrality (as long as we can use JMS)
•	 Complete decoupling between the provider and consumer, allowing

BAM to balance its processing workload more effectively
•	 Asynchronous message exchange allows us to use relatively big objects

Advanced XML formatting in EMS will allow you to map virtually any JMS
payload to your data object, but here we would like to advise you to avoid excessive
transformations and even simplify (flatten or remove the hierarchy) your messages
for better performance and reports aggregation. Really, in most of the cases, you
need just a bunch of fields to satisfy the imaginative taste of your managers. Surely,
you can also log all the failed messages. If an asynchronous exchange pattern is not
suitable for your needs, you can employ the WebService API.

BAM and the webservice API
BAM provides a set of web services (WS) for a synchronous data feed:

•	 http://host_name:7001/OracleBAMWS/WebServices/
DataObjectOperationsByID?WSDL

•	 http://host_name:7001/OracleBAMWS/Services/DataObject/
DataObjectOperations.asmx?WSDL

•	 http://host_name:7001/OracleBAMWS/WebServices/
DataObjectOperationsByName?WSDL

Here, 7001 is a port by default. For testing, you can start with the first one,
DataObjectOperationsByID (without WSDL), by opening it in your browser.
The rules of invocation are fairly simple, but strict; if you do not want to get
401 or 403 as a response, please follow them and also refer to the documentation:

•	 The names of elements in your payload that you paste into the XML
payload should be exactly as the field of your data object

•	 The SOAP action can be from basic CRUD (see on the top), but formatted
according to the namespace as http://xmlns.oracle.com/bam/insert

•	 HTTP authentication must be enabled, and you should provide your
OFM username/password

Just press invoke, and see what you will get in the BAM Architect in Active Data
Cache. You can perform these kinds of tests without a data provider, just by using
a WS test page.

Additional SOA Patterns – Supporting Composition Controllers

[534]

Finally, you can refer to the figure from the EDN in SOA the stack – a practitioner's
approach section and replace the Event-Driven Business component with BAM,
which is connected to EDN using JMS. This will conclude this block diagram
evolution and this section.

SOA as a cloud foundation
We would like to conclude this book in the same way we started it, presenting a
roadmap for the implementation of SOA patterns / SOA standards, but now, we
will try to link SOA and Cloud patterns in order to see the dependencies, which
is important for practical implementation. Exactly as in Chapter 1, SOA Ecosystem
– Interconnected Principles, Patterns, and Frameworks, we do not intend to show all
patterns' relations (at the time of writing this book, in the patterns catalog, we
have 39 Design and 13 Compound Cloud patterns), but only those that support
the main subject of this book: (Agnostic) Composition Controllers, as enablers of
the Composability principle. In the case of cloud, following this particular SOA
principle is not enough to fulfil cloud's promises. SOA is just one of the cloud
enablers, although an essential one. Other enablers are as follows:

•	 Virtualization (literally, of any resources, namely, network, OS, service,
DB, and so on)

•	 Grid computing (Oracle covers this)
•	 Clustering technology (Oracle covers this)

What are these cloud promises? Exactly as in SOA's case, it refers to money but
now with a capital "M", and again as 14 years ago, we (or some of us) are caught in
the same love-hate cycle. In addition to shortening the delivery cycle and reducing
operational costs, heralds of "Mighty Cloud" declared the era of operating income
boost through extended business opportunities harvesting, based on Fast Event
Processing on Big Data (that is a big opportunity), and so on. Are these promises
hollow? Not at all. Are they all achievable? Partly. Can they all be fulfilled today?
Hardly (or simply put, no! Sorry). What is the Oracle contribution to it? Well, some
say that Oracle is lagging behind the leading Cloud providers. Maybe it seems
so, but we must bear in mind that Oracle's cloud approach is probably the most
overwhelming and therefore the most complex approach for implementation.

Don't get me wrong; a relatively simple remote file storage is an absolutely valid
form of cloud provisioning (please look for PaaS, IaaS, SaaS, and other *aaS Cloud
Delivery models in any sources; The Cloud Computing: Concepts, Technology &
Architecture, Thomas Erl could be a good start). The hosting companies that
are reliably providing us with remote computing resources have been around for
quite a while, even before the invention of the SOA term.

Chapter 9

[535]

Now some can call it "Private Cloud", and the line between the cloud and remote
datacenter is really thin (both of them can store data remotely, provide computing
resources, virtualize them, and are both accessible via the Internet. VPN could
apply). So what are the distinctive cloud promises?

•	 Generally, computing resources today are vast but unevenly loaded. At the
same time, speaking about a single enterprise, IT resources (SW and HW) are
usually provisioned according to average workload estimates (one/five year
forecasts). The Average Order Handling system designed for 25K orders daily
will have a hard time during peak loads (100K after an aggressive advertising
campaign), so the SLA will be broken with rather unpleasant consequences. It
would be nice to have the possibility to delegate the processing dynamically to
order service instances available on remote resources.

•	 Following the logic presented in the preceding point, the management can
reconsider the resource allocation estimation model, setting it for the next
period not average but minimal requirements for on-premise application
farm. The application farm on cloud will be allocated gradually, depending
on the current requirements. Internal resources will keep business
knowledge in-house, and HW expenses will be replaced by monthly fees
with the Pay-As-You-Go option.

•	 Just scaling our service-bound resources (horizontally mostly, but vertically
as well) between on-premise and cloud is just one part of dynamic resource
provisioning/allocation. A similar mechanism should exist inside the cloud
and between clouds, if one cloud is not enough. This flexible provisioning and
ability to maintain redundant implementations considerably improves HA.

In addition to runtime dynamic resources provisioning and (re)allocation, we expect
the following:

•	 Test/development environments' provisioning are always a headache for
non-IT companies (actually, for IT as well). We need at least three of them
per Prod, where the last one, Operation Readiness Test, must be equal to
production. If provided too early, they will waste resources, and if too late,
they will affect the quality of our tests. We must have the ability to choose
what configuration we want to install (better, and in a friendly way) and
access the resources automatically in a matter of minutes (in complex cases,
a couple of hours).

•	 Resource provisioning should be rapid, and relocation (local2cloud or
cloud2cloud) should be as simple (to us) as copying a file. This service
relocation must be non-disruptive, which means that service consumers
should not notice the relocation of production resources.

Additional SOA Patterns – Supporting Composition Controllers

[536]

Talking about service and service runtime environment, we would like to stress
the fact that we are not discussing the reallocation of a synchronous *.jar service
file from one jboss/deploy folder to another. Let's get back to Chapter 8, Taking
Care – Error Handling, to the figure under the Error-handling design rules section; we
would like to see the relocation of a task-orchestrated service in the context of all
SOA runtime frameworks, and that's not a small thing. Even replication of a VM
with a complete OFM installed is a bit bigger than just copy and paste.

Here, we are discussing cloud patterns in direct relation to the Oracle
SOA technology stack. Supporting very important patterns such
as Elastic Network Capacity, Elastic Disc Provisioning, Bare-Metal
Provisioning, and so on, are out of the scope of this chapter, as they are
lying either on Resource Abstraction and Control Layers or the Physical
Resource Layer. Cloud ecosystems are based on atomic and compound
patterns and mechanisms, which are a bit broader than patterns and act
as a technology-centric foundation for the patterns' applications.

How can these cloud undertakings be satisfied? From the bottom to the top, number
five is quite difficult to implement even within the same vendor's environment, but
virtually impossible between different cloud providers. Yes, vendor lock-in in the
case of cloud is one of the biggest risks and the more stateful services we have across
our SOA Frameworks, the more difficult it would be to establish Non-Disruptive
Resource Relocation. This promise will be fulfilled when we will be able to move
our most complex task-orchestrated services running in production from one cloud
provider to another in a matter of hours, not months. Alas, at the moment of writing
this book, we are far from it.

Number four, Rapid Resource Provisioning, is generally tamed by Oracle for DB,
Coherence, and EDN environments across all the required frameworks by creating
complete HW and SW ecosystems as preintegrated Exadata, Exalogic, and Exalytics
with lots of Cloud/SOA supporting appliances (http://www.oracle.com/us/
products/engineered-systems/index.html). At last, Sun Microsystems together
with Oracle made John Gage's prediction true; it was quoted in 1984 that "the
network is the computer". In our opinion, it was a truly brilliant decision to combine
such an inventive force into one power, but some can say that it was an act of
desperation as well. Considering the number of products in the OFM bundle
(Chapter 2, An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory)
and the complexity of multilayering a configuration (partly discussed in Chapter 8,
Taking Care – Error Handling); it was just natural to provide a preconfigured that
is tuned for best-performance platforms for enterprises with a shortage of
skillful IT personnel.

http://www.oracle.com/us/products/engineered-systems/index.html
http://www.oracle.com/us/products/engineered-systems/index.html

Chapter 9

[537]

It comes at a cost, of course, but here is an opportunity to deploy these
engineered systems in cloud data centers and provide multitenant access with
the Pay-As-You-Go option. Oracle sends a clear message; investments in the Global
Cloud Infrastructure will be expanded in the coming years (November 2013).
These intentions are supported by the following facts:

•	 The Cloud Multitenant Environment Compound pattern is based on resource
sharing, pooling, and reservation and Application Server side Pooling and
Reservation are quite well covered by WLS clusters and work managers.
Isolated Trust Boundaries is another pattern that supports this environment,
and it can partly rely on the Oracle Service (API) Gateway, partly because its
main purpose is to provide AAA operations and other SOA Security patterns
discussed in Chapter 7, Gotcha! Implementing Security Layers, at the service
level, but not the network. Most importantly, Oracle DB 12c Enterprise
Edition has now introduced a new multitenant architecture, supporting DB
resources' sharing and consolidation.

•	 In addition to its own SDN development efforts, in January 2014, Oracle
acquired Corente for getting into software-defined networking. Corente's
products include Cloud Services Exchange, which establishes trusted
network services between public or private cloud data centers and any
location over any IP network (according to a press release). This is a very
strong move towards a complete implementation of the Isolated Trust
Boundaries pattern and establishment of flexible and high-performing
VM-2-VM networks. Technically, it concludes all the necessary prerequisites
for complete SOA Platform virtualization.

To ensure that the implementation of the cloud is right on the money (see the
next figure), SOA, as one of the enablers, must heavily contribute to Autonomy,
Abstraction, and Loose Coupling of the application resources that are deployed on
the cloud platform. As mentioned, task-orchestrated services have to be redundantly
predeployed for automatic scaling, as the runtime non-disruptive relocation could be
rather complicated. However, if we can assemble a complex composition at runtime
using Composition controllers (Service Brokers) from Chapter 3, Building the
Core – Enterprise Business Flows, and Chapter 4, From Traditional Integration to
Composition – Enterprise Business Services, this task will be quite attainable. Individual
composition members, entity and utility, and even reasonably sized atomic
task services can be provisioned dynamically from clouds and between clouds.
Composition controller, which is positioned on-premise and combined with the
HW Load balancer can effectively distribute the service workload between local and
cloud resources; it is implemented in the cloud and can be part of cloud balancing
and Burst In/Out compound patterns for SCA/OSB resources (still, HW balancers
should be considered first for atomic resources).

Additional SOA Patterns – Supporting Composition Controllers

[538]

The implementation of Coherence will not require a dedicated Composition Controller
as a processing pattern can help you reach the required level of grid distribution
between the cloud and local infrastructure. Service Perimeter Guard, which is essential
for all cloud delivery models, will help you establish the Isolated Trust Boundaries for
multitenant environments. The last one is conditional for a private cloud, but it must
be planned carefully anyway, as you should establish cross-domain (or department)
separation for the same enterprise. By the way, the Oracle API gateway is quite good
for throttling and balancing the workload as well, but again, HW LB is more suitable
for balancing.

Legend: Cloud
patterns

SOA
patterns

Private Resources can
be co-allocated with

Public

Workload
Distribution

Workload
Distribution

Burst In/Out Burst In/Out Burst In/Out

Composition
Controller

Composition
Controller

Pay-Per-Use
Monitor

Pay-Per-Use
Monitor

Cloud
provisioning

Model
Identification

Data/Operation
Sensitivity

Service
Perimeter

Guard

Service
Perimeter

Guard

API Management
SDN

Shared
Resources

Service
Composition and

Orchestration

Enterprise
Service Bus

Private CloudHybrid Cloud Private Cloud

Isolated
Trust

Boundary

Isolated
Trust

Boundary

Isolated
Trust

Boundary

Automated
Scaling Listener

Automated
Scaling Listener

Automated
Scaling Listener

Other patterns Other patternsOther patterns

Pay-as-You
Go

Pay-as-You
Go

Enterprise
Service

Repository/
Registry

Enterprise
Service

Repository/
Registry

Cloud and SOA Patterns implementation roadmap

Chapter 9

[539]

Dynamic Service Brokering, Composition Controlling, and Service Resource
metering would not be possible without Enterprise Repository, and the
realization of Oracle SR for a Fusion application hosted on Oracle Cloud
(http://fusionappsoer.oracle.com) should be the starting point for any
integration/interoperability activities between Oracle Cloud and your local SOA
platform. There you can obtain a preconfigured Cloud Service WSDL (for instance
for the order, select ADF Service for the Type, and search for the orders. Select
Purchase Order, and look at the bottom of the Detail tab for WSDL). Well, we got
WSDL and all XSDs. We also have out-of-the-box security policies (wss_username_
token_over_ssl_client_policy) that we can extend or create on our own, and we
have full SAML support. So, now we can go to JDeveloper and create any complex
process using this information in Partner Links. This would be the fastest way to
establish service interoperability on Oracle Cloud and later employ them in on-
premise Dynamic Composition controllers.

Summary
Complex Event Processing on Event-Driven Networks, In-Memory grid, and
parallel processing with the following entity aggregation are not isolated standalone
technologies that can be evaluated versus / instead of a service-oriented approach
but parts and supporting blocks of SOA in a broad prospective. Similar to the cloud
methodology and mechanisms, the Cloud Service / Resource Broker is not someone
who is trying to upsell you the remote hosting services, which are provided by the
company two blocks away.

SOA and Cloud are quite interconnected, complementing each other with atomic
and transportable units of work at one side (genuine SOA) and virtually unlimited
distributed computing resources (Service Grid and Canonical Resources SOA
patterns, which are provided by cloud) at another.

With recent developments, Oracle can practically provide all the necessary building
blocks for all implementation tiers and frameworks, both on-premise and offsite.
Complex silo-like applications, such as Salesforce, are now available on cloud.
They can be easily integrated with the local Oracle SOA Suite, or clouds from other
vendors can be linked to Oracle Cloud Farm with not much effort. This approach
will allow you to boost your processing right away without making any significant
investments in your local infrastructure, paying as you go. For those who already
have corporate data centers with service infrastructures of any level of maturity,
a more gradual pattern-based approach would be wiser. Just remember where
we started; each pattern is the answer to a particular, repeatable, and identifiable
problem. Identify your problem first.

http://fusionappsoer.oracle.com

Index
A
ABCS 111, 234
ABCS framework. See Application Business

Connector Services framework
ABM 108
ABO 108
Abstract Factory 208, 211
abstraction

level 27
access control lists (ACL) 115
Account Receivable (AR) 340
Acknowledge message 220
Acknowledge object 220
Adapter Facade Proxy 253
Adapter framework

automation environment 339, 340
DB Adapter, implementing 373-377
DB Transport Adapter 377-383
Dynamic Adapters, implementing 377-383
EJB, exposing through OSB 368-372
establishing 134, 135, 365-368
logistic primer 338-343
optimizing 326-338
technical infrastructure 339, 340

adapters 211, 236
Advanced Queuing. See AQ
Aggregation 488
Agile developing approach 14
Agnostic Composition Controller

cons 257
improving 205, 206
pros 257
Service metadata, used for 268-271

agnostic controller
dynamic compensations 192-194

AIA 102
AIA Foundation Pack (FP) 103
Application Business Connector

Services framework 66-69
Application Business Message. See ABM
Application Business Object. See ABO
Application Development Framework

(ADF) 95
Application Integration

Architecture. See AIA
application project store 303, 304
Application Server (WLS) 93
AQ 91, 116
Assign value 190
Asynchronous Agnostic Composition

Controller
about 174-176, 240
Business Delegate (main dispatcher) 241
execution plan, extraction 241
extending 184-186
main tasks, loop 244
parameter, initiation 242
physical implementation essentials 176-183

Asynchronous Queuing 129
asynchronous services 58
AtLeastOnce element 53
AtMostOnce element 53
Atomic Transaction Coordinators (ATC) 57
attacks

about 404
forced browsing 412
identity spoofing 405

[542]

JavaScript injection 411
JSON injection 411
reflection attacks 405
reply attack 405
schema poisoning 412
SQL injection 406-410
XPATH injection 410

authentication
about 395-397
decision, based on DNS name

resolution 398
decision, based on Referer field 398
File Access Race Condition, code 399
least privilege violation 399
password system exploits, code 397
protocol 397
single-factor authentication 398

auto communication server (ACS) 486
automated deployment framework 81
Automated Recovery Tool

(ART) 97, 426, 443
automated testing framework 81
Automatic Diagnostic Repository

(ADR) 450

B
BAM

about 88, 97, 428
and JMS connection 532, 533
and WebService API 533

BAM, direct integration 531, 532
Basics Event (BE) 491
BES 340, 485
Big Data 503-510
BPEL, direct integration 531, 532
BPEL fault management 458, 464, 465
BPEL Sensor

URL 531
BPR 111
broken authentication 400
Business Activity coordination protocol 58
Business Application (BA) 491
Business Delegate

URL 206

Business Event System. See BES
business logic (BL) 64
business logic events

about 487
object context, processing 490, 491

Business Process Recognition 235

C
Canonical Data Model (CDM) 26
canonical expression pattern 134, 336
canonical protocol pattern 134, 336
Canonical Resources 130
canonical schema pattern 134, 336
CAVS 112
Centralized realization

about 305
Cross-Domain Utility layer 307, 308
Domain Repository 305-307
Enterprise Service Repository 309

Chief Architecture Office (CAO) 156
class explosion 207
Coherence

and event processing 528, 529
and OSB 526, 527

Coherence Incubator Project
URL 521

Coherence Object Distribution
Event Distribution pattern (EDN) 523
Messaging pattern 522
patterns 522
Push Replication pattern 523

Coherence Object Processing
Command pattern 524
Processing pattern 524

COM 158
Command pattern 524
Communication event 502, 503
Compensation Service Transactions 138
Complex Event Processing

(CEP) 123, 428, 445
complex events

initial analysis 486
processing 484, 485

complex event type 492

[543]

composability 16, 35, 36
Composition Controller

about 56, 150
working 150, 151

Composition/Process, entity model 313
consolidation 21
content transformation 190
Continuous Integration (CI) framework 132
Contract semantics 284
CoordinationContext 55
Cross-domain Utility layer 307, 308
Cross-site scripting. See XSS
CTU

automation environment 154, 155
business goals and obstacles 155, 156
history 153, 154
technical infrastructure 154

custom relations management
(CRM) 90, 158

custom service
invoking 246, 247

D
database (DB) structure 19
Data Confidentiality

URL 390
data layer 95
Data Origin Authentication

URL 390
data warehouses (DWHs) 32
DB Adapter

implementing 373-376
DB-centric fusion application

endpoint, handling 357-365
events, filtering 348-351
events registration 344-348
message construction 351-353
message, parsing 354-357
refactoring 344

DB Transport Adapter
using 377-383

Decentralized realization
about 303
application project store 303, 304

decision service 196

Decorator pattern 208
DELETE FOR ALL ports 492
DELETE FOR SINGLE port 493
deliver message 229, 236
DeMilitarized Zone (DMZ) 144
design framework 83
design rules 306
Diagnostic Framework (DFW) 449
digital signature (DSS) 101
Directory Server 417
DNS name resolution

authentication decision based on 398
Domain Repository 305-307
domain value maps (DVM) 140, 192, 193
Dynamic Adapters

implementing 377-383
dynamic compensations, agnostic

controller 193, 194
Dynamic Monitoring Service (DMS) 451
dynamic Orchestration platform

about 150-152
CTU history 154-156
telecommunication enterprise facts 153
telecommunication primer 152

dynamic service invocations
lightweight taxonomy, creating for 310

E
EBF

about 110, 204
SOA patterns 157

EBM 103-106, 331
EBMHeader 106, 107
EBO 103, 104, 316, 342
EBS 107, 111
EBS framework. See Enterprise Business

Services framework
EDN

functionalities 514
using 511-514

EHO5 418
EHO6 418, 419
EJB

exposing, through OSB 368-373

[544]

empty catch block
vulnerability code 393

endpoint
handling 357
handling, Dequeue used 359, 360
handling, Enqueue used 358

EndpointHandler function 359
enrich operation 235, 252
enterprise application integration (EAI)

team 19
Enterprise Business Flow. See EBF
Enterprise Business Flows framework 73-75
Enterprise Business Message. See EBM
Enterprise Business Object. See EBO
Enterprise Business Services. See EBS
Enterprise Business Services

framework 76-78
enterprise-centric assets 16
Enterprise Manager (EM) console 161
Enterprise Service Bus. See ESB
Enterprise Service Repository. See ESR
Enterprise Service Repository / Inventory

framework 79-82
entity model

Composition/Process 313
Message 316, 317
Object 312
Rules 314, 315
Service/Task 312
SQL implementation 319
XML implementation 320, 321

entity types
about 301
relations 302

environmental events 487
EP 375
Error code property 439
Error description property 439
error-handling design rules 441-445
error handling vulnerabilities

about 391, 392
dissimilar exceptions handling, code 395
Empty catch block, code 393
inappropriate cleaning, code 395
information leakage, code 393

missing error handling, code 393
NullPointerException catching, code 394
Return inside finally block, code 394
uncaught exception, code 393

ESB
challenges 234-236

ESR 309, 375
Event Distribution pattern (EDN) 523
Event Driven Architecture (EDA) 93
Event expressions types 495
Event Pattern Language (EPL) 494
event processing

and Coherence 528, 529
used, for realization of business 492-501

Event Processing documentation
URL 486

events
filtering 348, 350
registering 344-348
types 427

ExactlyOnce element 53
exception discoverability 433-437
exception handling

complex 468-477
in OSB 465-468

exception shielding
about 101
URL 390

Execution Context ID (ECID) 436, 451
Execution Plan. See EP
Extended Data Interchange. See XDI
Extensible Resource Identifier (XRI) 89
extracted business object. See EBO
Extreme Transaction Processing 89

F
Factory Method pattern 208
Fast Data

URL 503
Fast events 503-510
Fault/Errors Handling (EH) framework 425
fault management

about 447
frameworks 458
technical monitoring for 448-451

[545]

fault management, frameworks
BPEL fault management 464, 465
OSB error-handling 465-468
Policy-based handling 458-463

File Access Race Condition
vulnerability code 399

file system objects (FSO) 87
filtering 235
Financial management 90
FindBugs

URL 394
forced browsing

code 412
forEach looping 74
Foundational framework 83
Framework property 437
frameworks. See SOA, frameworks
Front Controller

URL 217
Functional Decomposition 165
Fusion Middleware layer 97
Fusion Order Demo (FOD) 28

G
Generic Adapter

invoking 248
GetAResInvData service 340
getResultStream function

demonstrating 333
GoF

URL 209
governance framework 81, 83

H
HA

about 95
high service performance,

combining with 517-526
Hadoop Data File System (HDFS) 117
High Availability. See HA
high service performance

combining, with HA 517-526
Human capital management 90

I
identity management

protection 414, 415
identity spoofing

code 405
IDM 415
implementation framework 83
inappropriate cleaning

vulnerability code 395
Incident Packaging System (IPS) 451
inference cycle 125
information leakage

vulnerability code 393
Information System Architecture. See ISA
Infrastructure as a Service (IaaS) 155
injection 399
in-only pattern 46
in-optional-out pattern 46
InOrder element 53
in-out pattern 46
insecure direct object references 401
INSERT FOR ALL ports 492
INSERT FOR SINGLE port 493
Inventory Endpoint

calling 268
ISA 102
ITIL

URL 85

J
Java API for XML Web

 Services. See JAX-WS
Java Business Integration (JBI) standard

(JSR-208) 99
Java Connector architecture (JCA) 87
Java message service (JMS) 87
JavaScript injection

code 411
JavaServer Faces (JSF) 95
JAXB 41
JAX-WS 41
JDBC 449

[546]

JMS connection
and BAM 532, 533

Jolokia
URL 455

JProfiler
URL 394

JSON injection
code 411

JTA 449
JVM 449

L
least privilege violation

vulnerability code 399
lightweight service bus 136
lightweight taxonomy

creating, for dynamic service
invocations 310

List of Values (LOV) 195
Load Balancers (LB) 110
location 189
loose coupling 24, 26

M
Machine events 486, 502
maintainability 266
MapMessage interface

URL 505
MapReduce patterns

URL 528
master data management (MDM) 147
Maven

URL 133
Mean Time Between Failure (MTBF) 22
Mediator

about 209
using, as static router 194
using, for process discoverability 198, 199

Mediator, as dynamic router
limitations 186-191
usage 186-191

mep 189
MEP 42, 46, 235
message

about 39

constructing 351-353
parsing 354-357

Message Broker
cons 230, 231
implementing 218-221
pros 230, 231
URL 216

Message Broker, implementing
deliver 229
receiving 218-226
transformation 227, 228

message constructor
implementing 352, 353

message constructor functions
XXCU.XXCU_COMMON_UTIL_XML.

close_xml_tag 353
XXCU.XXCU_COMMON_UTIL_XML.

get_attribute 353
XXCU.XXCU_COMMON_UTIL_XML.

open_xml_tag 353
XXCU.XXCU_COMMON_UTIL_XML.

print_xml_tag 353
Message, entity model 316, 317
Message Exchange Pattern. See MEP
MessageHeader element 225
MessageHeader Java object 220
Message Header (MH) 316
MessageHeader object 219
message identification 234
Message Oriented Middleware (MOM) 116
message screening 100, 419, 420
Messaging pattern 522
Metadata Definition

URL 300
Metadata Services (MDS) 133, 140
mex:GetMetadata 52
mex:Location element 52
mex:Metadata 52
mex:MetadataReference 52
missing error handling

vulnerability code 393
missing function-level access control 403
ModelMapper

URL 335
Multitenant Access 94

[547]

N
Nagios

URL 428
Native Data Format Translator (NDFT) 127
non-functional requirements (NFRs) 22
normalized message router (NMR) 99
NullPointerException

catching 394

O
OAAM 88, 417
OAM 417
OASIS 44
object context

processing, in business logic
events 489, 491

Object, entity model 312
Object Modeling and Design framework 70
object-oriented programming (OOP)

about 14
URL 208, 209

Object-relational mapping (ORM) 87
OEBS 340
OES 417
OeSSO 417
OFA 371
official endpoint pattern 337
OFM 429
OFM Server Engine 449
OIA 416
OID 417
OIF 417
OIM 416
OLAP 27
OLTP 27
Online analytical processing. See OLAP
Online transaction processing. See OLTP
OOP
OPAM 417
Open standards

for SOA taxonomy 280-285
operate task 253
Operation property 438

Operations and Business System
Support. See OSS/BSS

Operation-specific semantics 284
Optimal Flexible Architecture. See OFA
Oracle Access Manager. See OAM
Oracle Adaptive Access

Manager. See OAAM
Oracle API server

requisites 144
Oracle Application Integration

Architecture 88
Oracle Application Server

(OAS) 91, 118-123
Oracle BPEL Process Manager 149
Oracle Cloud

URL 539
Oracle Communications Converged

Application Server (OCCAS) 148
Oracle Communications Marketing

and Advertising (OCMA) 148
Oracle Communications Order and Service

Management. See OSM
Oracle Communications Services

Gatekeeper (OCSG) 148
Oracle database 113-117
Oracle Data Integrator (ODI) 88
Oracle Diagnostic Logging (ODL) 450
Oracle E-Business Suite. See OEBS
Oracle EDN documentation

URL 499
Oracle Enterprise (API) Gateway

performance, requisites 422, 423
vendor-neutral (generic), requisites 421

Oracle Enterprise Repository 142
Oracle Enterprise Single

Sign-On. See OeSSO
Oracle EPN Suite 504
Oracle Event Processing 485
Oracle Identity Analytics. See OIA
Oracle Identity Federation. See OIF
Oracle Identity Manager. See OIM
Oracle Integration Server (OIS) 91
Oracle InterConnect 91

[548]

Oracle Internet Directory. See OID
Oracle JRockit Mission Control

URL 394
Oracle OSR

UDDI taxonomy (V.3), using 285-296
Oracle Privileged Account

Manager. See OPAM
Oracle Real-Time Decisions (RTD) 485
Oracle Repository's taxonomy

exploring 271-278
Oracle Role Manager 88
Oracle Rule Engine 124, 125
Oracle Security Token Service. See OES
Oracle Service Bus. See OSB
Oracles Event Processing Suite

URL 498
Oracle SOA

development roadmap 86-90
frameworks 95
technology 85, 86
technology layers 95, 96

Oracles Reference Architecture 96, 97
Oracle Virtual Directory (OVD) 417
Oracle Web Service Manager. See OWSM
Orchestrated services

common parts, segregation 162-164
Orchestration pattern

about 149
and embedded Java 199, 200

OrderHeader element 29
Order lines 159
Order Management

URL 484
Order Management (OM) 156
OSB

about 132
and Coherence 526, 527
EJB, exposing through 368-373
Proxy, implementing on 211-216

OSB error-handling 465-468
OSS/BSS 158
OSTS 417
out-in pattern 46
out-only pattern 46

out-optional-in pattern 46
OWASP

about 399
URL 389

OWSM 99

P
password system exploits

vulnerability code 397
Pattern-Oriented Software

Architecture. See POSA
pay-per-use (PPU) 267
Platform as a Service (PaaS) 94, 155
point-to-point (P2P) 155
Policy Centralization SOA pattern 60
policy enforcement points (PEP) 231
policy fault handling 458
Portable Object Format (POF) 519
POSA 203
Pre-build Integration Packs (PIPs) 103
primitive 56
Process Abstraction 137
Process Centralization 137, 165
process discoverability

Mediator, using for 198, 199
ProcessHandler factory 227
Processing pattern 524
Process semantics 284
Procurement 90
Product catalog 161
Project Portfolio management 90
protocol adapters

routing to 254, 257
Proxy

about 206-211
implementing, on OSB 211-216

Proxy Server 417
Push Replication pattern 523

Q
queues 449

[549]

R
receive 234
Receive-Transform-Deliver (RTD) 110, 209
recovery

concepts 478-481
RedHat

URL 260
Referer field

authentication decision based on 398
reflection attacks

code 405
Reindeer Rudolph Delivery. See RRD
relational database management system

(RDBMS) 90
reliability 266
Reliable Messaging (RM) 49, 130
Remote Method Invocation (RMI) 20
replay attack

code 405, 406
Replication Server 417
repository 16
Repository Creation Utility (RCU) 129
request for informations (RFIs) 15
request for proposals (RFPs) 15
return inside finally block

vulnerability code 394
reusability 30, 266
risks

about 399
broken authentication 400
Cross-site request forgery (CSRF) 403, 404
Cross-site scripting (XSS) 400, 401
injection 399
insecure direct object references 401
Insecure direct object references 401
missing function-level access control

vulnerability 403
security misconfiguration 402
sensitive data exposure 403

robust in-only pattern 46
robust out-only pattern 46
RRD

history 339

Rule Centralization 130
Rule Engine endpoint

and decision service 194-197
Rule Engine (RE) 204
Rule Language (RL) 125
Rules, entity model 314, 315
Runtime Discoverability analysis

about 296, 298
Runtime lookup 298-300

Runtime lookup 298-300

S
SAX parsing routine 223
SBDH 52, 235
SBDH compliant construct

URL 317
schema poisoning

code 412
Security events 487
security framework 81
security perimeter (SP) 100
sensitive data exposure 402, 403
sequence 49
Service

creation 130-132
developing 132, 133
governing 143

service abstraction 26-30, 109
service activities

monitoring 529-531
Service Agent 259
service autonomy 31, 32, 109
Service-Aware Interoperability

Framework (SAIF) 45
Service Broker 56
Service Bus

setting up 138, 139
Service Callback 59
Service catalog 161
Service Component Architecture

(SCA) 93, 137
service composability 35-38, 109
service composition visual development

(SCA) 131

[550]

service consumer 39
Service Data Objects (SDO) 87
Service Delivery Platform (SDP) 148
service discoverability 33-35, 109
service endpoint interface (SEI) 41
Service Engines (SEs) 98
serviceEngine type 190
Service, entity model 310
Service facade 259
Service Gateway (SG) 389
Service Grid 130
Service Inventory

establishing 157, 240
initial analysis 158-161
initial solution summary 161

Service invocation
about 245
custom service, invoking 246, 247
Generic Adapter, invoking 248

Service Loose Coupling 109
Service metadata

used, for Agnostic Composition
Controller 268-271

service normalization pattern 337
Service Orchestration Engine 92
Service-Oriented Architecture. See SOA
Service-Oriented Computing (SOC) 18
Service Refactoring 165
Service Repository

about 98
Centralized realization 305
Decentralized realization 303
entity types 301
managing 321-323
objectives 264, 266
Open standards, for SOA

taxonomy 280-285
Oracle Repository's taxonomy,

exploring 271-279
Runtime Discoverability analysis 296, 298

Service Repository, objectives
maintainability 266
performance 267
reliability 266
reusability 266

Service Request 158

Service Request Input 159
service reusability 30, 31, 109
Service Role property 437
service statefulness 32, 33
Service Statelessness 109
Service/Task, entity model 312
Service Type property 438
Set Top Box (STB) 158
simple authentication protocol

vulnerability code 397
single-factor authentication

vulnerability code 398
skip translator 128
SLA 20
SNMP events notification

URL 502
snmpTrapOID parameter 503
SNMPv1 traps

defining 502
SOA

about 11, 483
attacks 405
benefits 15
characteristics 12-18
defining 11
goals 15
risks 399
URL 208
vulnerabilities 391

SOA Big Bang 102
SOA, Cloud foundation 534-539
soa.composite.trail 452
soa.config 452
soa.db 452
SOA, frameworks

about 62-65
Application Business Connector Services

framework 66-69
Enterprise Business Flows

framework 73-75
Enterprise Business Services

framework 76-78
Enterprise Service Repository / Inventory

framework 79, 80
Object Modeling and Design

framework 70, 71

[551]

XML Modeling and Design
framework 71-73

SOA Manifesto
URL 12

SOA patterns
associating, with OFM standard tools 426
URL 532

SOA patterns, EBF
about 157
asynchronous agnostic Composition

Controller 174-183
detailed analysis pattern 162-174
Service Inventory, establishing 157-161

SOA patterns, EBS 231, 233
SOAP Fault message 20
SOA principles

about 21-23, 109
abstraction, level 27
loose coupling 24-26
service abstraction 26, 27, 109
service autonomy 31, 32, 109
service composability 35-38, 109
service discoverability 33, 34, 109
Service Loose Coupling 109
service reusability 30, 31, 109
Service Statelessness 109
Standardized Service Contract 109
service statefulness 32

SOA Repository Artifact Model
and Protocol. See S-RAMP

SOASchool SOA Architect
URL 259

SOA, technology
about 38-40
Web Services (WS) 40, 41
WS-* extensions 42
WS transports 41
XML 40

soa.wsdl 452
Software as a Service (SaaS) 155
Solution Deployment Descriptor (SDD) 89
SPC 158
SQL implementation, service taxonomy 319
SQL injection

code 406-410
S-RAMP 44, 45

Standard Business Document
Header. See SBDH

standardized service contract 23, 24, 109
startsWith translator 128
State Repository 138
Store and Forward (SAF) service 119
Structural Rules Language (SRL) 489
Supply chain management 90
surroundedBy translator 128
Synchronous Composition Controller 233
sysUpTime parameter 503

T
Table Recreation Script (TRS) 138
tactical goals 19
taskDomain 189
Taxonomy 264
telecommunication enterprise

facts 153
telecommunication primer 152
terminated By translator 128
threads 448
TMForum

URL 158
TOGAF

URL 85
TOM 158
toString() function 220
total cost of ownership (TCO) 14
transactional properties variation

examples 376
transformation 227-250
translation engine 126
triple-A support 101

U
UDDI hierarchy

about 289
bindingTemplate 289
businessEntity 289
businessService 289

UDDI taxonomy (V.3)
in Oracle OSR 285-296

uncaught exception
vulnerability code 393

Uniform Resource Identifier (URI) 247

[552]

V
Validate Semantic operation 190
validation

about 250, 251
enrich operation 252
operate task 253

VarBindList parameter 503
VETRO pattern 66
Video on Demand (VoD) 328
v_originalBody variable 241
vulnerabilities

about 391
error handling vulnerabilities 391, 392

W
WebService API

and BAM 533
Web Services. See WS
Web Services Description

Languages. See WSDL
Web Services Description Language

Version 2.0. See WSDL 2.0
Work Manager 119, 120
WS 20, 40
wsa:Action property 47
wsa:FaultTo property 47
wsa:From property 47
wsa:MessageID property 47
wsa:RelatesTo property 47
wsa:ReplyTo property 47
wsa:To property 47
WS-Addressing

about 47
W3C 47

WS-Coordination 54, 55
WSDL 20, 45

wsdl:binding element 54
WSDL 2.0 45
WS-* extensions 42
WS-MetadataExchange 51
WS-Policy 53, 60
WS-ReliableMessaging 49
WSRM. See WS-ReliableMessaging
WS-* standards 56-62
WS transports 41, 42

X
XDI 216
XML 40, 126
XML-based artifacts 213, 214
XML Encryption

URL 390
XML implementation, Execution

Plan 320, 321
XML Modeling and Design

framework 71, 72
XML Signature

URL 390
XPATH injection

code 410
xsd:any element 29
xsd:string data type 29
XSS 400
XTP. See Extreme Transaction Processing
XXCU.XXCU_COMMON_UTIL_XML.

close_xml_tag function 353
XXCU.XXCU_COMMON_UTIL_XML.

get_attribute function 353
XXCU.XXCU_COMMON_UTIL_XML.

open_xml_tag function 353
XXCU.XXCU_COMMON_UTIL_XML.

print_xml_tag function 353

Thank you for buying
Applied SOA Patterns on the Oracle Platform

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle SOA Governance 11g
Implementation
ISBN: 978-1-84968-908-3 Paperback: 440 pages

Successfully implement SOA governance using
Oracle SOA Governance Suite 11g with the help
of practical examples and real-world use cases

1.	 Understand SOA governance including its
key concepts, goals, and objectives, and how
to implement these using the Oracle SOA
Governance Suite.

2.	 Execute an SOA maturity assessment in order
to capture the SOA governance challenges
specific to your organization.

Oracle SOA Suite 11g Developer's
Cookbook
ISBN: 978-1-84968-388-3 Paperback: 346 pages

Over 65 high-level recipes for extending your Oracle
SOA applications and enhancing your skills with
expert tips and tricks for developers

1.	 Extend and enhance the tricks in your Oracle
SOA Suite developer arsenal with expert tips
and best practices.

2.	 Get to grips with Java integration, OSB message
patterns, SOA Clusters, and much more in this
book and eBook.

3.	 A practical Cookbook packed with recipes for
achieving the most important SOA Suite tasks
for developers.

Please check www.PacktPub.com for information on our titles

Oracle SOA Suite 11g
Performance Tuning Cookbook
ISBN: 978-1-84968-884-0 Paperback: 328 pages

Over 100 recipes to get the best performance from
your Oracle SOA Suite 11g infrastructure

1.	 Tune the Java Virtual Machine to get the best
out of the underlying platform.

2.	 Learn how to monitor and profile your Oracle
SOA Suite applications.

3.	 Discover how to design and deploy your
application for high-performance scenarios.

4.	 Identify and resolve performance bottlenecks
in your Oracle SOA Suite infrastructure.

Oracle SOA Infrastructure
Implementation Certification
Handbook (1Z0-451)
ISBN: 978-1-84968-340-1 Paperback: 372 pages

Successfully ace the 1ZO-451 Oracle SOA
Foundation Practitioner exam with this hands
on certification guide

1.	 Successfully clear the first stepping stone
towards becoming an Oracle Service Oriented
Architecture Infrastructure Implementation
Certified Expert.

2.	 The only book available to guide you through
the prescribed syllabus for the 1Z0-451 Oracle
SOA Foundation Practitioner exam.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: SOA Ecosystem – Interconnected Principles, Patterns, and Frameworks
	The characteristics, goals, and benefits of SOA
	An example of architecting for tactical goals
	SOA principles
	Standardized service contract
	Loose Coupling
	Service abstraction
	Service reusability
	Service autonomy
	Service statefulness
	Service discoverability
	Service composability

	SOA technology concept
	XML
	Web Services (WS)
	WS transports
	Need for the WS-* extensions

	SOA standards
	Methodology and governance
	Interconnected WS-* standards

	SOA frameworks
	The Application Business Connector Services framework
	The Object Modeling and Design framework
	The XML Modeling and Design framework
	The Enterprise Business Flows framework
	The Enterprise Business Services framework
	The Enterprise Service Repository / Inventory framework

	SOA Service Patterns that help to shape a Service inventory

	Summary

	Chapter 2: An Introduction to Oracle Fusion – a Solid Foundation for Service Inventory
	The Oracle SOA technology platform
	The Oracle SOA development roadmap – past, present, and future
	Oracle SOA frameworks and technology layers
	Oracle SOA Foundation – methodology
	Enterprise Business Object
	Enterprise Business Message
	Enterprise Business Services
	Application Business Object and Message

	Oracle SOA foundation – runtime backbone
	The Oracle database
	The Oracle application server
	The Oracle Rule Engine
	Oracle transformation and translation engine

	How Oracle products compose the SOA framework
	Service creation – Object and XML Design frameworks
	Service development – automated test and deployment
	Establishing the adapter framework
	Providing orchestration – enterprise business flows
	Setting up Service Bus – enterprise business services
	Discovering enterprise – enterprise service repository
	Service governing – monitoring, error handling, and recovering
	Securing service interactions – Security Gateway

	Summary

	Chapter 3: Building the Core – Enterprise Business Flows
	Oracle SOA's dynamic Orchestration platform
	The telecommunication primer
	Basic facts about the telecommunication enterprise
	History of CTU
	Technical infrastructure and automation environment
	Business goals and obstacles

	Oracle Enterprise Business Flows SOA patterns
	Establishing a Service Inventory
	Initial analysis
	A summary of the initial solution

	Detailed analysis – functional decomposition
	Asynchronous agnostic Composition Controller
	Extending the asynchronous agnostic Composition Controller

	Usage and limitations of a Mediator as a dynamic router
	Dynamic compensations in a simple agnostic controller
	The Rule Engine endpoint and decision service
	Using Mediator for process discoverability

	The Orchestration pattern and embedded Java

	Summary

	Chapter 4: From Traditional Integration to Composition – Enterprise Business Services
	The Dynamic Service Collaboration platform
	Improving the Agnostic Composition Controller
	The Proxy design pattern and its relatives
	Implementing a basic Proxy on OSB

	From Message Broker to Service Broker
	A simplified Message Broker implementation
	Receive
	Transform
	Deliver

	Oracle Enterprise Business Service's SOA patterns
	Detailed analysis – functional decomposition
	Short summary

	Establishing a Service Inventory
	Asynchronous Agnostic Composition Controller
	Business Delegate (main dispatcher)
	Execution plan extraction
	Parameter initiation
	Main tasks loop

	Service invocation
	Invoking custom services
	Invoking Generic Adapter

	Transformation
	Validation

	Summary

	Chapter 5: Maintaining the Core – Service Repository
	Flexible taxonomy for Service Repository
	General objectives
	Service metadata for Agnostic Composition Controller
	Exploring the Oracle Repository's taxonomy
	Open standards for the SOA taxonomy
	The UDDI taxonomy (V.3) in Oracle OSR

	Runtime Discoverability analysis
	Runtime lookup

	Entity types
	Entity types' relations

	Decentralized realization
	The application project store

	Centralized realization
	Domain Repository
	The Cross-domain Utility layer
	The Enterprise Service Repository

	Creating a lightweight taxonomy for dynamic service invocations
	Service as an entity model
	Object
	Service/Task
	Composition/Process
	Rules
	Event
	Message
	The SQL implementation of the service taxonomy (example)
	The XML implementation of Execution Plan

	Managing Service Repository
	Summary

	Chapter 6: Finding the Compromise – the Adapter Framework
	Optimizing the Adapter Framework
	Logistic primer
	Basic facts about the company

	Initial analysis
	Refactoring the DB-centric Fusion Application
	Events registration
	Events filtering
	Message construction
	Message parsing
	Endpoint handling

	Establishing the Adapter Framework
	Exposing EJB through OSB
	Traditional DB Adapter implementation
	Dynamic Adapters implementation and DB Transport Adapter

	Summary

	Chapter 7: Gotcha! Implementing Security Layers
	Where are we now?
	Initial analysis
	Common SOA vulnerabilities
	Common SOA risks
	Attack types

	Risk mitigation design rules
	Identity management – defending credentials verification systems
	Exception shielding – preventing an information leakage
	Message screening – preventing injection attacks

	Oracle Enterprise (API) Gateway
	Vendor-neutral (generic) requirements
	Performance requirements

	Summary

	Chapter 8: Taking Care – Error Handling
	Associating SOA patterns with OFM standard tools
	Initial analysis
	Common requirements
	Maintaining Exception Discoverability

	Error-handling design rules

	Basis for proactive Fault Management
	Technical monitoring for proactive Fault Management

	OFM Fault Management frameworks
	Policy-based handling
	Compensative transactions
	Exception handling in OSB

	Complex exception handling
	Automated recovery concepts
	Summary

	Chapter 9: Additional SOA Patterns – Supporting Composition Controllers
	Processing complex events
	Initial analysis
	Processing Object Context in business logic events
	Communication and machine events
	Fast events + Big Data

	EDN in the SOA stack – a practitioner's approach

	High service performance combined with High Availability
	Coherence and OSB
	Coherence and event processing

	Monitoring service activities
	Direct integration of BAM and BPEL
	The BAM and JMS connection
	BAM and the webservice API

	SOA as a cloud foundation
	Summary

	Index

