

Asterisk 1.6

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2009

Production Reference: 1160909

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-62-4

www.packtpub.com

Cover Image by Raghuram Ashok (raghuram.ashok@gmail.com)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Credits

Authors
David Merel

Barrie Dempster

David Gomillion

Reviewer
Justin Thomas Zimmer

Acquisition Editor
Louay Fatoohi

Development Editor
Swapna V. Verlekar

Technical Editors
Conrad Sardinha

Neha Patwari

Copy Editor
Sanchari Mukherjee

Indexer
Rekha Nair

Hemangini Bari

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Ashwin Shetty

Proofreader
Chris Smith

Graphics
Nilesh Mohite

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

About the Authors

David Merel is the founder and CEO of Thinkbright LLC a local/long distance
telephone company as well as a cutting-edge Voice over IP carrier, providing
businesses of all sizes with sophisticated and low cost VoIP solutions.

David started Thinkbright (www.thinkbright.net) in 2005 and continues to manage
the company and its employees, all of whom are dedicated IT professionals. David
acts as the company's chief architect, continually designing new technologies that
have added significant revenues to the company's operations. During his many years
at Thinkbright, David has worked with the latest Voice over IP technology, including
all VoIP equipment from major manufacturers such as Cisco, Polycom, Grandstream,
and Aastra. He also works with customers ranging from small businesses to
Fortune 500 companies, and interacts with system integrators and IT consultants
who call Thinkbright on a daily basis for assistance with all the VoIP solutions that
Thinkbright offers. Thinkbright manages its own PBX system, providing customers
with PBX features such as Auto Attendants, Waiting Rooms, and Ring Groups,
or assists customers in managing their own PBX network while providing these
customers with the service for incoming and outgoing calls.

David has many years of experience with Trixbox and Asterisk, and has installed
countless custom configurations and deployments using those solutions. He also
reviewed Trixbox 2.6, which is an excellent complimentary book to Asterisk 1.6.

David earned a Bachelor of Arts triple majoring in Philosophy, Politics, and
Law from SUNY Binghamton. David holds a CCNA (a Cisco Certified Network
Associate) certificate and is proficient in over 10 programming languages and
databases, various operating systems, VoIP and related protocols, and other
business applications.

I would like to thank Samantha Brinn and Tony Shi who have
helped in producing this book. Samantha Brinn, who assisted in
much of the grammatical and style editing, and Tony Shi who
conducted research on many of the Asterisk installation steps
discussed in the book.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Barrie Dempster is currently employed as a Senior Security Consultant for
NGS Software Ltd, a world-renowned security consultancy well known for its
focus in enterprise-level application vulnerability research and database security.
He has a background in Infrastructure and Information Security in a number of
specialized environments such as financial services institutions, telecommunication
companies, call centers, and other organizations across multiple continents. Barrie
has experience in the integration of network infrastructure and telecommunication
systems requiring high-caliber secure design, testing, and management. He has been
involved in a variety of projects from the design and implementation of Internet
banking systems to large-scale conferencing and telephony infrastructure, as well as
penetration testing and other security assessments of business-critical infrastructure.

David Gomillion currently serves as Director of Information Technology for
the Eye Center of North Florida. There he orchestrates all of the technological
undertakings of this four-location medical practice, including computers, software
(off-the-shelf and custom development), server systems, telephony, networking, as
well as specialized diagnostic and treatment systems. David received a Bachelor's of
Science in Computer Science from Brigham Young University in August, 2005. There
he learned the theory behind his computer experience, and became a much more
efficient programmer. David has worked actively in the Information Technology
sector since his freshman year at BYU. He has been a Networking Assistant, an
Assistant Network Administrator, a Supervisor of a large Network and Server
Operations unit, a Network Administrator, and finally a Director of Information
Technology. Through his increasing responsibilities, he has learned to prioritize
needs and wants, and applies this ability to his Asterisk installations.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

About the Reviewer

Justin Thomas Zimmer has worked in the contact center technology field for
over 10 years. During this time, he has performed extensive software and computer
telephony integrations using both PSTN and IP telephony. His current projects
include system designs utilizing open source soft switches over more traditional
proprietary hardware-based telephony, and the integration of these technologies
into market-specific CRM products.

As the Technical Partner of Unicore Technologies out of Phoenix, AZ, Justin is
developing hosted contact center solutions for the low-end market. Unicore's
solutions present contact centers with low startup costs in a turbulent economy,
and allow those centers to scale their business while maintaining a consistent and
familiar user interface.

He has worked on countless software user manuals and instructional guides for
both internal and customer usage. He has reviewed the book, FreePBX published by
Packt Publishing.

He has also worked on The Hopewell Blogs—a science fiction adventure novel that
will be released chapter by chapter online and available in print once the final
chapter has been released.

I'd like to thank the countless community contributors who have
provided enough online documentation to make this book as
accurate and helpful as possible. And I'd like to thank my wife
Nicole for putting up with the extra hours spent reviewing this book,
as well as my boys Micah, Caden, and daughter Keira for giving up
some of their daddy-time for this project.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents
Preface 1
Chapter 1: Introduction to Asterisk 7

What is Asterisk? 7
What's new in Asterisk 1.4? 8
What's new in Asterisk 1.6? 9

Asterisk is a PBX 9
Extension-to-Extension calls 9
Line trunking 10
Telco features 10
Advanced Call Distribution 11
Call Detail Records 11
Call recording 12
Call parking 12
Call barging 13

Asterisk is an IVR system 13
Asterisk is a call center system 13
Asterisk is a voicemail system 14
Asterisk is a Voice over IP (VoIP) system 14
Asterisk 1-2-3 16
Asterisk scalability 18
Asterisk does not run on Windows 19

Is Asterisk a good fit for me? 19
Trade-offs 19

Flexibility versus ease of use 19
Graphical versus configuration file management 20

Calculating total cost of ownership 21
Return on Investment 22

Summary 23

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[ii]

Chapter 2: Making a Plan for Deployment 25
The Public Switched Telephony Network (PSTN) 25

Connection methods 25
Plain Old Telephone Service (POTS) line 26
Integrated Services Digital Network (ISDN) 26
T1 or E1 27
Voice over IP connections 28

Determining our needs 29
Terminal equipment 31

Types of terminal devices 31
Hard phones 31
Soft phones 35
Analog adapters 36
Another PBX 37

Choosing a device 38
Features, features, and more features… 38
Determining true cost 39
Compatibility with Asterisk 40
Sound quality analysis 40
Usability issues 41

Recording decisions 41
How much hardware do I need? 42
Choosing the extension length 43
Preparing a test environment 46
Summary 46

Chapter 3: Installing Asterisk 47
Preparing to install Asterisk 47
Obtaining the source files 48
Installing DAHDI 49
Installing LibPRI (optional) 49
Installing Asterisk 50
Getting to know Asterisk 54
Summary 56

Chapter 4: Configuring Asterisk 57
DAHDI interfaces 58

system.conf 58
Lines 59
Terminals 63

chan_dahdi.conf 63
Lines 68
Terminals 68

SIP interfaces 70
IAX interfaces 74

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[iii]

Voicemail 77
Music on hold 80
Queues 81
Conference rooms 83
Summary 84

Chapter 5: Creating a Dialplan 85
Creating a context 85
Creating an extension 87
Creating outgoing extensions 92
Advanced Call Distribution 96

Call queues 96
Call parking 100
Direct Inward Dialing (DID) 101

Automated attendants 103
System services 106
Summary 109

Chapter 6: Quality Assurance 111
Call Detail Records 112

Flat-file CDR logging 112
Database CDR logging 113

Monitoring calls 116
Recording calls 118
Legal concerns 119
Summary 120

Chapter 7: Making Asterisk Easy to Manage 121
Trixbox 122
CentOS 122
Trixbox preparation and installation 122
What is FreePBX? 124

FreePBX preparation and installation 125
FreePBX System Status Dashboard 131

Tools 132
Setup 133
Trixbox maintenance section 135
Reports 136
Asterisk Recording Interface 137
Flash Operator Panel (FOP) 137
Flash operator configuration files 139

Web MeetMe 139
Setting up and accessing Web MeetMe through Trixbox 140

Flexibility when needed 143

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[iv]

A simple one-to-one PBX 143
Extensions 144
Trunks 145
Routes 146

Summary 147
Chapter 8: What is asterCRM? 149

Installing asterCRM 150
Automatic installation 151
Manual installation 151

Introducing asterCRM 157
Import 157
Statistic 158
Extension 158
Customer 159
Dialer 159
System 159
Survey 160

Summary 160
Chapter 9: Case Studies 161

Small office/home office 161
The scenario 161
The discussion 162
The configuration 162

system.conf 163
chan_dahdi.conf 163
musiconhold.conf 164
voicemail.conf 164
modules.conf 165
extensions.conf 165

Conclusions 166
Small business 167

The scenario 167
The discussion 167
The configuration 168

system.conf 168
chan_dahdi.conf 169
musiconhold.conf 169
agents.conf 169
queues.conf 170
sip.conf 171
meetme.conf 172
voicemail.conf 172
extensions.conf 173

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[v]

Conclusions 178
Hosted PBX 178

The scenario 178
The discussion 179
The configuration 179

system.conf 179
chan_dahdi.conf 179
musiconhold.conf 180
sip.conf 180
voicemail.conf 181
extensions.conf 182

Conclusions 185
Summary 185

Chapter 10: Maintenance and Security 187
Backup and system maintenance 187

Backing up configurations 188
Backing up voice data 191
Backing up log files 191

Backup scripts 192
Time synchronization 195

Adding it all to cron 195
Back up Asterisk with FreePBX 196
Back up Asterisk with Trixbox 197
Rebuilding and restoring the Asterisk server 197
Disaster Recovery Plan (DRP) 198

Asterisk server security 199
Internal access control 199

Host security hardening for Asterisk 201
Integrity checker 202
Rootkit detection 202
Automated hardening 202
Role Based Access Control (RBAC) 203

Network security for Asterisk 204
Firewalling the Asterisk protocols 204

SIP (Session Initiation Protocol) 205
H.323 206
IAX 206
The Real-Time Transport Protocol (RTP) 206

Controlling administration of Asterisk 207
Asterisk scalability 208

Load balancing with DNS 209
Support channels for Asterisk 210

Mailing lists 211

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[vi]

Forums 211
Internet Relay Chat (IRC) 212
Web sites 212
Digium 212

Summary 213
Index 215

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface
Asterisk is a powerful and flexible open source framework for building feature-rich
telephony systems. As a Private Branch Exchange (PBX), which connects one or more
telephones, and usually connects to one or more telephone lines, Asterisk offers very
advanced features, including extension-to-extension calls, queues, line trunking,
call distribution, call detail rerecords, and call recording. This book will show you
how to build a telephony system for your home or business using this open source
application. Asterisk 1.6 takes you step-by-step through the process of installing and
configuring Asterisk. It covers everything from establishing your deployment plan
to creating a fully functional PBX solution. Through this book you will learn how to
connect employees from all over the world as well as streamline your callers through
Auto Attendants (IVR) and Ring Groups.

This book is all you need to understand and use Asterisk to build the telephony
system that meets your need. You will learn how to use the many features that
Asterisk provides you with. It presents example configurations for using Asterisk
in three different scenarios—for small and home offices, small businesses, and
hosted PBX.

Over the course of ten chapters, this book introduces you to topics as diverse as
the Public Switched Telephony Network (PSTN), Voice over IP Connections
(SIP / IAX), DAHDI, LibPRI, through to advanced call distribution, automated
attendants, FreePBX, and asterCRM.

With an engaging style and excellent way of presenting information, this book makes
a complicated subject very easy to understand.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[2]

What this book covers
Chapter 1: Introduction to Asterisk introduces you to Asterisk and goes over certain
basics such as its capabilities and features, requirements, scalability, and cost of
deployment. In addition, it covers the trade-offs of Asterisk, its benefits, and how to
determine whether it can fit your needs.

Chapter 2: Making a Plan for Deployment goes over the planning of equipment needed
such as phones and adapters, the phone service you will use to power your Asterisk
server such as PSTN lines or a SIP service from a VSP. Other planning such as
hardware requirements and conducting a sound quality analysis are covered as well.

Chapter 3: Installing Asterisk shows you how to install Asterisk using the source files.
A step-by-step tutorial will take you through the entire process.

Chapter 4: Configuring Asterisk shows you how to connect your Asterisk server with
either your phone service (through PSTN or SIP, among others) as well as how to
deploy some basic PBX features such as queues, voicemail, and music on hold. Other
advanced features such as faxing, video conferencing, and using conference rooms
are also covered in this chapter.

Chapter 5: Creating a Dialplan focuses on creating your dialplan that determines
how your calls are routed through the Asterisk server. You will learn how to create
extensions, distribute calls in an orderly manner using queues, and present callers
with a greeting using automated attendants (IVR).

Chapter 6: Quality Assurance tells us everything regarding monitoring calls,
recording calls, and capturing detailed call logs. Here you learn how to install
and use these features.

Chapter 7: Making Asterisk Easy to Manage shows you how to integrate third-party
applications that make Asterisk easily manageable all through a web-based interface.
The chapter will show you how to install FreePBX as well as give you an overview of
its capabilities.

Chapter 8: What is asterCRM? tells us about a useful business application—a
customer relationship management system (CRM) called asterCRM. Given its
open source nature, Asterisk is compatible with many other business open-source
applications. This chapter goes over installing and using this application, which can
help streamline your business operations.

Chapter 9: Case Studies discusses several case studies to give you real-world
examples of how one would deploy Asterisk. The examples will give a summary of
the deployment as well as the asterisk configuration code used to carry it out.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[3]

Chapter 10: Maintenance and Security is an important chapter as it focuses on keeping
your Asterisk system running smoothly as well as keeping it secure. The chapter
covers security precautions, network deployment recommendations, as well as
maintenance tips such as backups and preparing disaster recovery plans.

What you need for this book
Even though this book will provide you with step-by-step instructions, it is best if
the reader has a basic understanding of Linux and its commands. For implementing
Asterisk, you will need a PC with a P4 CPU or higher, 1 or 2 GB of RAM, and a hard
drive of no less than 60 GB, 7200 RPM. Please note that it is possible to run Asterisk
on lesser requirements; the configuration mentioned is simply a recommendation.

Who this book is for
This book is aimed at anyone who is interested in building a powerful telephony
system using the free and open source application, Asterisk, without spending
thousands of dollars buying a commercial and often less flexible system.

This book is suitable for the novice and those who are new to Asterisk and
telephony. Telephony or Linux experience will be helpful, but not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Asterisk provides a number of defaults and
we can configure additional ones in the /etc/asterisk/indications.conf file."

A block of code is set as follows:

[default]
mode=files
directory=/var/lib/asterisk/music-on-hold
random=yes

Any command-line input or output is written as follows:

#!/bin/bash

$ tar xjvf asterisk_backup.tar.bz2

$ cp -R etc/asterisk /etc/asterisk

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
installed you will find the Backup & Restore module located under the Tools
section of the GUI ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/8624_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk
In this chapter, we will look at what Asterisk is and what it can do for us. As we
explore features, we can make note of what features will help us to accomplish
our goals.

What is Asterisk?
This is a fascinating question—what exactly is Asterisk? There are a number of
answers, all of which are accurate.

First, Asterisk is a symbol which is denoted as *. The symbol represents a wildcard
in many computer languages. This gives us an insight into the developers' hopes
for Asterisk. It is designed to be flexible enough to meet any need in the
telephony realm.

Second, Asterisk is an open source software package. Hundreds, if not thousands,
of developers are working every day on Asterisk, extensions of Asterisk, software
for Asterisk, and customized installations of Asterisk. A big portion of the product's
flexibility comes from the availability of the source code. This means, we can modify
the behavior of Asterisk to meet our needs.

Finally, and most importantly, Asterisk is a framework that allows selection and
removal of particular modules, allowing us to create a custom phone system.
Asterisk's well-thought-out architecture gives flexibility by allowing us to
create custom modules that extend our phone system, or even serve as drop-in
replacements for the default modules.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[8]

What's new in Asterisk 1.4?
Since the last edition of this book, Asterisk has come out with two major
releases—1.4 and 1.6. The new features of Asterisk 1.4 are as follows:

Pass through ITU standard T.38 fax calls: Asterisk now supports the
passthrough of fax transmissions to a fax machine.
IM support for Jabber and Google Talk: IM software that supports the
Jingle protocol can now be connected to Asterisk.
Whisper paging: This is a new feature of call barging, which allows a user to
listen-in on a phone conversation and speak. However, the person listening
into the conversation cannot hear the conversation. This feature allows an
assistant to talk to someone else in the same office when they're on a call.
For example, conveying time-sensitive or important information without
the person on the other end hearing what’s being said.
Improved sound prompts (English, French, and Spanish): Digium
re-recorded all the sound prompts and included higher quality sound files.
Generic jitter buffer: In the past, the jitter buffer was developed just for
the IAX protocol. In this new release, Asterisk now supports other VoIP
protocols such as SIP and TDM interfaces.
Shared Line Appearance: This feature mimics the traditional PBX Key
Systems, allowing subscribers to share external lines (VoIP, ISDN, PSTN),
and also provides status monitoring of the shared line. When a user places
an outgoing call using such an appearance, all members belonging to that
particular SLA group are notified of this usage. They are also blocked from
using this line appearance until the line goes back to idle state or the call is
placed on hold.
Built-in voicemail system: In the past, you could either store voicemail as
files on the Asterisk server or on an external database. Now voicemail can be
retrieved through IMAP on any IMAP-compliant storage system. One benefit
of this is unified messaging. This means you can now read a message in your
email client and once it is marked read, you will see the MWI (Message
Waiting Indicator) switched off on your phone.

For a complete list of changes since Asterisk 1.2, visit:
http://svn.digium.com/svn/asterisk/tags/1.4.0/CHANGES.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[9]

What's new in Asterisk 1.6?
Most of the changes in Asterisk 1.6 are enhancement changes that improve the
reliability and scalability of Asterisk. The new features of Asterisk 1.6 are:

New Bridge feature: In this release, a new Bridge action has been created,
which allows a user to connect two existing channels. This functionality will
enable the use of advanced features such as in-call announcements and call
center monitoring, by a third party.
Improved NAT support and support for STUN: This provides improved
connectivity capability with phones located behind a router or firewall.
Improved reporting: A new call event logging capability was developed to
give a more complete tracking of events that take place during a call. This
will provide more details than traditional CDR (Call Detail Recording) and
allow more granular tracking and auditing.
Support for asynchronous events: This enables modules in Asterisk to
communicate with each other across a cluster. For example, MWI events
could be allowed to be distributed among multiple Asterisk servers. This
means it is now possible to have SIP endpoints registered to a different
server rather than the one holding their mailboxes.

For a complete list of changes since Asterisk 1.4, visit:
http://svn.digium.com/svn/asterisk/tags/1.6.0/CHANGES.

Asterisk is a PBX
Asterisk is a Private Branch Exchange (PBX). A Private Branch Exchange (PBX) can
be thought of as a private phone switchboard connecting to one or more telephones
on one side, and usually connecting to one or more telephone lines on the other. This
is usually more cost effective than leasing a telephone line for each telephone needed
in a business.

Extension-to-Extension calls
First, as a PBX, Asterisk offers extension-to-extension calls. This means users can
dial from one phone to another phone. While this seems obvious, elementary phone
systems are available (often referred to as Key Systems) that support multiple phones
and multiple lines, and allow each phone to use any line.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[10]

In operation, the handsets do not have individual extensions that can be dialed,
and so there is no way to initiate a call from one handset to another. These systems
can usually be identified by having a blinking light for all outgoing lines on every
telephone. Unlike Key Systems, Asterisk allows for extension-to-extension calls,
allowing directed internal communications.

Handsets

Modems

Public Switched
Telephone Network

(PSTN)
Fax Machines

PBX

In the previous diagram, each extension (meaning everything to the left of the PBX)
can connect to any other extension by dialing it directly. This means if a modem were
to send a fax to a local fax machine, it would be done by creating a direct connection
between the devices through the PBX.

Line trunking
Secondly, Asterisk offers line trunking. In its simplest form, line trunking simply
shares access to multiple telephone lines. These telephone lines are usually used to
connect to the global telephone network, known as the Public Switched Telephone
Network (PSTN). However, they can also be used as private lines for other
phone systems.

These connections can be a single analog trunk, multiple analog trunks,
or high-capacity digital connections that allow multiple concurrent calls to
be carried on a single connection.

Telco features
Asterisk supports all of the standard features we would expect from any telephone
company (or telco). Asterisk supports sending and receiving caller ID and even
allows us to route calls based on the caller ID. Using caller ID with the PSTN
requires us to subscribe to that feature with our PSTN connection provider.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[11]

As expected, Asterisk also supports other features such as call waiting, call return
(*69), distinctive ring, transferring calls, call forwarding, and so on. These basic
features and more are provided by Asterisk.

Advanced Call Distribution
Asterisk can receive a phone call, look at attributes of the call, and based on that
make routing decisions. If enough information is not supplied by our PSTN
connection provider, we can ask the caller to input the information using a
touch-tone phone.

Once we make a decision on how to route a call, we can send it to a single extension,
a group of extensions, a recording, a voicemail box, or even a group of telephone
agents who can roam from phone to phone. We can use call queues to serve our
customers more effectively while maintaining operational efficiency.

This flexibility gives us the ability to move from having just a phone system, to
creating powerful solutions that are accessed through the telephone. Advanced Call
Distribution (ACD) empowers us to serve our customers in the best way possible.

One major differentiating factor between Asterisk and other PBX systems that
support ACD is that Asterisk does not require the purchase of a special license to
enable any of these features. For example, the limit on how many calls can be
queued at a time is determined only by the hardware we use.

Call Detail Records
Asterisk keeps complete Call Detail Records (CDR). We can store this information
in a flat file or preferably a database for efficient look up and storage. Using this
information, we can monitor the usage of the Asterisk system, looking for patterns
or anomalies that may have an impact on business.

We can compare these records to the bill that the phone company sends out.
They allow us to analyze call traffic, say to run a report to find the ten most
commonly-dialed phone numbers. We can also determine the exchange that
calls us most frequently so that we can target our marketing to the right area.

Moreover, we can look at the time duration of each call. We can count the number of
calls a specific agent answers and compare it with the average. There are many uses
of this feature.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[12]

Using this information, we can also identify abuses of our long-distance calling
service. Employees all around the world misuse long-distance call facilities provided
by employers. Asterisk gives us the tools to detect possible misuse. The importance
of calling records should not be underestimated. This information is invaluable for
a variety of business functions. As many countries operate a national do-not-call
list, we can quickly determine if we have called anyone on the list to ensure that
our verification and checking processes are adequate.

Call recording
Asterisk gives us the ability to record calls that are placed through the PBX. We can
use this to provide training material, as examples of calls that went badly or went
well. This can also be used to provide call content to satisfy customers or partners,
which could potentially be helpful in a legal situation. It's important to consider
this feature when setting up your Asterisk service, as you may have substantial
hardware and storage issues to address if your PBX is destined to handle and
record a substantial number of calls.

Asterisk provides this feature and it is up to us to determine if it is legal, appropriate,
and helpful to use in particular circumstances.

Call parking
For users still used to the old Key Systems, call parking is a great feature that
allows you to take a call, place it into a parked slot, and then allow another person
in the office to pick up that line by accessing the slot. This process mimics the old
Key System approach where you pick up a call, place the caller on hold, and then
communicate the line number to another person in the office. Instead of a line
number, call parking will give an employee a slot number, which if dialed will allow
you to pick up that parked call. The slot number will be communicated to the user
transferring the caller into call parking, which is accessed by dialing the call parking
feature code.

For example, let's say you receive a call in the front office, but you need to check on
something in the back. You don't want to transfer the call to the back office because
if nobody is there then the caller might end up in voicemail before you reach the
phone. Call parking allows you to place the caller into a parked slot. A slot number
will be communicated to you. Now you can take your time to go to the back office,
pick up a phone, and dial the slot number. Once it is dialed, you will be reconnected
with the caller.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[13]

Call barging
This is an excellent feature for managers who are training new employees or for
those who want to conduct quality assurance. Call barging allows a user to listen
to another conversation currently in progress on the Asterisk server. Through
Whisper mode, a manager can even communicate to his employee without the
remote user hearing the conversation. This allows the manager to coach the
employee on a live call without the customer knowing it.

Asterisk is an IVR system
Interactive Voice Response (IVR) revolutionizes just about every business it
touches. The power and flexibility of a programmable phone system gives us the
ability to respond to our customers in meaningful ways.

We can use Asterisk to provide 24-hour service while reducing the workload for our
employees at the same time. Asterisk allows us to play back files, read text, and even
retrieve information from a database. This is the type of technology you come across
in telephone banking or bill payment systems. When you call your bank, you hear
a variety of recordings and issue commands usually using a touch-tone telephone.
For example, you may hear greetings and status messages, along with the messages
asking you to type in your account number and other personal information or
authentication credentials. You will also often hear personalized information such
as your last few transactions or your account balance, which will be retrieved from
a database. Systems such as this can be and have been implemented using Asterisk.

Asterisk is a call center system
Through the use of queues, call detail records, and its open source nature, Asterisk
has become a popular choice among call centers. Queues allow call centers to handle
calls in a controlled fashion by placing callers in a holding pattern until an agent is
free to take the call. Music on hold can be customized to play messages that further
help advertise a company's products or services while the caller is waiting. Other
features such as approximate wait time, position in line, and ability to play an IVR
with options (such as allowing a caller to leave a voicemail) are some of the
enhanced features a call center will need.

Call detail records can also aid call centers as they contain data that can be sorted
and put together by queue statistic applications. Some of these open source statistic
applications can identify strengths and weaknesses in a call center's routing
strategies. For example, the call detail records can record when a caller has hung up
and left the queue before an agent has answered the call. This data can be useful as it
can identify average wait time and how often callers become impatient and hang up.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[14]

Asterisk, being open source has also opened doors for other open source call center
applications to be developed for it. For example, today you will find many CRM and
predictive dialing applications working with Asterisk.

Asterisk is a voicemail system
Asterisk has a fully-functional voicemail system included. The voicemail system is
surprisingly powerful. It supports voicemail contexts so that multiple organizations
can be hosted from the same server. It supports different time zones so that users
can track when their phone calls come in. It even provides the option to notify
the recipient of new messages through email. In fact, we can even attach the
message audio.

Asterisk is a Voice over IP (VoIP) system
Asterisk gives us the ability to use the Internet Protocol (IP) for phone calls, in
tandem with more traditional telephone technologies.

Choosing to use Asterisk does not mean that we can use only Voice over Internet
Protocol (VoIP) for calls. In fact, many installations of Asterisk do not use it at all.
But each of those systems has the ability to add Voice over IP easily, any time, and
with no additional cost.

Most companies have two networks—one for telephones and the other for
computers. What if we could merge these two networks? What would the savings
be? The biggest savings are realized by reducing the administrative burden for
Information Technology staff. We can now have a few experts on computing and
networking. As telephony will run on a computer and over our IP network, the
same core knowledge will empower our staff to handle the phone system.

We will also realize benefits from decreased equipment purchasing in the long
run. Computer equipments get progressively cheaper while proprietary phone
systems seem to remain nearly constant in price. Therefore, we may expect the cost
for network switches, routers, and other data network equipments to continue to
decrease in price.

In most current phone systems, extensions can only be as far away as the maximum
cabling length permitted by the telephone system manufacturer. While this seems
perfectly reasonable, sometimes we would like it not to be so. When using VoIP we
can have multiple users using the same Asterisk service from a variety of locations.
We can have users in the local office using PSTN phones or IP phones, we can have
remote VoIP users, we can even have entire Asterisk systems operated and run
separately but with integrated routing.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[15]

One way to slash overhead cost is to reduce the amount of office space required.
Many businesses use telecommuting for this purpose. This often creates a
problem—which number do we use to reach a telecommuter? Imagine the
flexibility if telecommuting employees could simply use the same extension
when at home as when in the office or even when using their mobile.

VoIP allows us to have an extension anywhere we have a reasonably fast Internet
connection. This means employees can have an extension on the phone system at
home if they have a broadband connection. Therefore, they will have access to all
of the services provided in the office, such as voicemail, long distance calling, and
dialing other employees by extension.

Just as we can bring employees into the PBX from their homes, we can do the
same for remote offices. In this way, employees at multiple locations can have
consistent features accessed exactly the same way, helping to ease the burden of
training employees.

But this is not all that VoIP can give us. We can use an Asterisk server in each
office and link them. This means each office can have its own local lines, but
office-to-office communications are tunneled over the Internet. The savings to
be realized by avoiding call tolls can be significant. But there's more.

Office A Office B

Internet
or

Private Network

Office C

Once we have our offices linked in such a way, we can handle calls seamlessly,
irrespective of which office the employees are in. For instance, if a customer calls
Office A to ask about their account, and the accounting department is in Office B,
we simply transfer the call to the appropriate person in the other office. We don't
have to care about where that other office is. As long as they have a reliable
Internet connection, they don't even have to be in the same country.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[16]

We can route calls based on cost. If it is more cost effective, we can send our calls
to another office, where the remote Asterisk server will then connect them with the
regular phone network. This is commonly referred to as toll bypass.

Another benefit of linking our phone systems together is that we can route calls
based on time. Imagine we have two offices in different time zones. Each office will
probably be open at different times. In order to handle our customers effectively, we
can transfer calls from a closed office to the one that is open. Again, as we are using
an Internet connection to link the offices, there is no additional expense involved in
doing so.

By linking our offices together using VoIP, we can increase our customer service
while decreasing our expenses—a true win-win situation.

The existence of all these options doesn't necessarily mean we should be using
them. With the versatility of Asterisk, we may use or ignore options as it suits our
requirements. If we were to use every single line type and feature that Asterisk
supports, it could lead to a very complicated and difficult-to-administer system. We
should choose the subset that fits our requirements and would function well within
our current communications setup.

Asterisk 1-2-3
Setting up Asterisk and working with configuration files without a database is not
intended for a beginner. Originally, Asterisk was not considered an off-the-shelf
PBX. However, in recent years all of this has changed.

 For those who are looking for an off-the-shelf Asterisk PBX system, Digium created
the Asterisk Appliance, a feature-rich PBX solution that's easy to install and manage.
The Asterisk Appliance allows users to use traditional analog lines as well as a VoIP
service provider.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[17]

For those who are just beginners, there is a packaged solution called Trixbox CE
(www.trixbox.org). Trixbox CE offers a free single CD installation that installs
Linux, Asterisk, a database (MySQL), as well as an easy-to-use web-based interface
to create and manage your PBX settings. The installation takes approximately 30-60
minutes and once complete, you have a VoIP server ready to go. However, if you
want to connect traditional analog lines to your server, you will need to purchase
an FXS/FXO card. Please note that for connecting standard POTS (Plain Old
Telephone Service) lines to your Asterisk PBX, you will need to purchase an FXO
expansion card called Fonality.

For those of you who are a bit more technically inclined and desire to install each
piece of Asterisk individually, you may still want an easy-to-manage interface for
your deployment. FreePBX is an easy-to-use GUI (graphical user interface) that
controls and manages Asterisk (www.freepbx.org).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[18]

Another great resource for those interested in FreePBX is the book called FreePBX 2.5
Powerful Telephony Solutions. You may also visit:

http://www.packtpub.com/freepbx-2-5-powerful-telephony-solutions

Asterisk scalability
In the past, Asterisk was not a solution for those requiring 100 SIP devices or more.
However, in recent years major releases have dramatically increased reliability,
scalability, and capacity. Today Asterisk servers can support hundreds of extensions
and up to 240 simultaneous calls. For example, Asterisk Business Edition has been
tested to handle up to 240 simultaneous calls without any issues. However, it being
computerized, the speed, capacity, and reliability is fully dependent on the parts
that make up the system. For this reason, ensure you have enough hard drive space,
RAM, and CPU power to run your Asterisk server. Those of you who will be using a
VoIP service provider for origination (receiving incoming calls) and also termination
(outgoing calls) supporting SIP/IAX devices on remote networks, please ensure you
have enough bandwidth from your ISP.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[19]

Asterisk does not run on Windows
At one point, Asterisk had a demonstration CD that worked with Windows.
However, Asterisk offered direct from Digium does not run on the Microsoft
platform. Asterisk requires near real-time access to system resources. It also requires
hooks into certain resources. Actually, Asterisk is built to use Linux, the open source
*NIX operating system.

AsteriskWin32 (http://www.asteriskwin32.com) is an open source project that
has managed to get Asterisk 1.2.26.2 compiled for Windows. However, it is highly
recommended that you stick with Linux as you will find more support for it in the
Asterisk community.

Is Asterisk a good fit for me?
Looking at what Asterisk is and is not, the natural question follows—is Asterisk
right for me? This is a vitally important question that should be given serious
consideration. Let's take a moment and look at some of the considerations we
must explore before we commit to using Asterisk.

Trade-offs
There are a series of trade-offs we must consider with Asterisk. Choosing Asterisk
will lock us into certain choices, while others will be available whether we install an
Asterisk server or not. We will now examine some of these trade-offs so that we can
gauge the impact they have on us.

Flexibility versus ease of use
Asterisk is a very powerful framework into which we can install almost anything.
We can configure each piece of Asterisk to the minutest detail. This gives us an
amazing amount of flexibility.

This flexibility comes with a price. Each of these details must be researched,
understood, and tried. Each change we make affects other parts of the phone
system, whether for good or bad. Asterisk is not an easy-to-use platform,
especially for a beginner.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[20]

There is a learning curve, but it is one that can be surmounted. Many developers
have become experts in telephony and many telephony experts have mastered server
administration. But each of us must decide what we expect from our phone system.
I like to think of it in three major categories, as outlined in the following table:

Description Solution
I want to plug in the telephone system and
never think about it again. I want to call
someone when things are not working. I do
not plan to add anything to the system once
it is set up.

A proprietary phone system is probably
your best bet. Many offer a pre-configured
system, and when changes are made, a
certified consultant will be required.

I don't know much about phone systems,
but I want to learn. I need a phone system
soon. I'd like to have flexibility and
additional features, and may change the
configuration of my phone system from
time to time.

Either use a packaged version of Asterisk
or have a consultant build a customized
Asterisk server. Learn to use Asterisk. Build
a couple of Asterisk servers just to explore.
Add features as necessary.

I want to learn and build my own phone
system. I am interested in creating a custom
solution for my problems. I am willing
to accept the responsibility if something
doesn't work, and take the time to figure
out why.

Build an Asterisk server from the ground
up. Much will be learned in the process, and
the result will be an extremely powerful
business tool.

Of course, these are not distinct categories. We each fall into a continuum. It is
important to realize that Asterisk, as great as it is, is not the right solution for
everybody. Like any technology we implement, we must consider its impact on the
business. We must also decide whether it will become something useful that enables
us to work better, or whether it will require too much maintenance and other work
to make it an efficient addition. This depends entirely on our purposes and the other
technology we have that requires our attention.

Graphical versus configuration file management
Asterisk currently uses plain text files to configure most options. This is a very
simple way to create, back up, and modify configurations for those who are
comfortable with command-line tools.

Some PBX systems offer a GUI to update the configurations. Others don't allow the
configuration to be changed except by dialing cryptic code on telephone handsets.
Still others cannot be configured at all, except by certified technicians who receive
the required software and cables from the phone system manufacturer.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[21]

A few good open source tools are being created to ease the management of Asterisk.
However, to get the full ability to customize Asterisk, editing of text files is still
required. To help get used to this method of configuration, this book focuses on
the text files without relying on any GUI package.

Calculating total cost of ownership
Asterisk is distributed as free, open source software. The only costs involved with
Asterisk are hardware, right? Well, maybe not.

As we have been discussing, Asterisk is very flexible. Determining how to use the
flexibility in the best way can quickly become a huge time sink. Compatible handsets
are also not free. If we are going to use the G.729 protocol, which compresses VoIP
traffic by a factor of eight while maintaining excellent voice quality, we will also
have to pay licensing fees.

With commercial phone systems, the costs are typically higher than with Asterisk.
However, they are a fixed, known constant. Depending on the way we use Asterisk,
costs can vary greatly.

The total cost of owning Asterisk can also include downtime. If we choose to support
Asterisk on our own, and have to work to try to get Asterisk back up after a failure,
there is an opportunity cost involved in the calls we should have received. This is
why we should choose to support our phone system internally only if we have the
appropriate resources to back that up.

Total Cost of Ownership (TCO) is not an easy calculation to make. It involves
assumptions of how many times it will break, how long it will take us to get it up
and running, and how much the consultants will charge us if we hire their services.

TCO is useful only when comparing phone systems to each other. The following
elements should be included when comparing TCO of multiple phone systems:

Procurement cost: This is the cost to buy the PBX. In the case of Asterisk,
it is only the cost of the hardware; other systems will include an element
of licensing.
Installation cost: This is the cost to configure and deploy the PBX. Some
companies choose to do the deployment in-house. In such instances, there
is still a cost, and to enable fair comparisons it should be included.
Licensing cost (one-time): This is the cost of any one-time licensing fees.
Some PBX systems will require a license to perform administration,
maintenance, connection to a Primary Rate ISDN line (PRI), and so on.
In Asterisk, this would include the G.729 licensing cost, if required.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Introduction to Asterisk

[22]

Annual support cost: This is the estimated cost of ongoing maintenance.
Of course some assumptions will have to be made. In order to keep
the comparison fair, the same assumptions should be carried over
between vendors.
Annual licensing cost: Some phone systems will have an annual cost to
license the software on the handsets as well as a license to be able to connect
those handsets to the PBX.

When we have created the table, we can calculate the TCO for one year, two years,
and so on. We can then evaluate our business and decide what costs we're willing to
incur for our phone system.

Return on Investment
The cost of owning a phone system is only one piece of the Return on Investment
(ROI) puzzle. ROI attempts to quantify an expenditure's effect on the bottom line,
usually used to justify a large capital outlay.

Just as an example, one phone system that I installed went into an existing business.
Its existing phone system had an automated attendant that had the unfortunate habit
of hanging up on customers if they pressed the 0 key, or if they didn't press any key
for 5 seconds.

What was the ROI for moving to a new phone system? Not having angry customers
who got hung up is a hard value to calculate. According to one of the owners of the
business, that value was infinite. That made the cost of Asterisk very easy to justify!

ROI is basically the TCO subtracted from the quantification of the benefit (in money)
to the business. Therefore, if we calculated that a new phone system would save
$5000 and cost $4000, the ROI would be $1000.

Another interesting calculation to make, which is also categorized as ROI, is the time
for the cost to be recouped. This calculation is the one that I find helpful in making a
business case for Asterisk.

Suppose a phone system costs $5000 to install. Using toll bypass, you can save a net
$500 per month. In 10 months, the cost of installing the system will be swallowed up
in the savings.

These are simple examples, but ROI can help to justify replacing an existing phone
system. By having these numbers prepared before proposing to replace the phone
system, we can have a more professional appearance and be more likely to succeed
in starting our Asterisk project.

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[23]

Summary
Asterisk is a powerful and flexible framework, based on open source software. It
can be used to create a customized PBX for almost any environment. However, it is
not always the best choice for reasons we have just explored. We must consider this
carefully in order to be confident that Asterisk is the right choice for our situation.
Moreover, we should also ensure that the time and money invested in setting up the
Asterisk service is a worthwhile outlay.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for
Deployment

Now that we have chosen Asterisk to meet our needs, we need to determine our
course of action. We will go through some common requirements, discuss the most
common choices for solutions, and finally make an informed decision. As we go
along, we should make notes to help us on our way.

The Public Switched Telephony Network
(PSTN)
Most of the telephones in the world are connected to a vast network, enabling any
telephone to reach any other. This network is called the Public Switched Telephony
Network (PSTN). The phones that are on this network are reachable by dialing a
number, which may include country codes, area codes, and telephone numbers.

While there are instances in which interconnection with the PSTN is inappropriate,
most users of telephones have the expectation that they can reach the world at large.
Therefore, we will consider interconnection to the PSTN as a requirement.

Connection methods
There are a number of different methods to connect to the PSTN. Each has
advantages and disadvantages, most of which we will touch on. As pricing varies
depending on city or country, exact pricing will not be given. Pricing should be
researched based upon the location of the Asterisk server.

We will handle each connection method one at a time.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[26]

Plain Old Telephone Service (POTS) line
Probably the most common connection to the PSTN is a POTS line. This is an analog
line provided by a telephone carrier. Each POTS line can carry only one conversation
at a time.

For small installations, POTS lines are usually the most cost effective when
connecting directly to our Local Exchange Carrier (LEC), a term used to refer to any
company providing local telephone service. Eight lines is usually the point at which
we should seriously look at another technology for our connection.

POTS lines from our LEC require a Foreign eXchange Office (FXO) interface to be
usable in Asterisk. We will focus on Digium's offerings, namely the FXO module on
a TDM410. Each TDM410 can use up to four modules. Therefore, if we have one line,
we will have three empty module slots on the card.

Integrated Services Digital Network (ISDN)
ISDN is an all-digital network that has been available for over a decade. It is
available in two major versions—Basic Rate Interface (BRI) and Primary Rate
Interface (PRI).

ISDN divides a line into multiple channels. Each channel can contain either
payload (Bearing, or B channel) or signaling (Data, or D channel). A BRI has three
channels—one D channel and two B channels. Therefore, two phone calls can be in
progress at a time on a single BRI. A PRI has 24 channels—one D channel and 23 B
channels, resulting in up to 23 simultaneous calls.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[27]

ISDN is not limited to voice alone. Each channel can carry 64k of data, if so
configured with the LEC. This gives ISDN a lot of flexibility over POTS lines,
as the channels can be reconfigured between voice and data on the fly.

With its separate D channel, ISDN is able to do things POTS cannot, such as setting
custom caller ID, receiving dialed number information, on-the-fly redirection of calls,
and a host of other cool features. Of course, all of these features require cooperation
from the LEC, which is not always forthcoming.

BRI does not have high penetration in the United States market. Some accuse LECs
of vicious pricing, while others claim consumers are to be blamed for fearing new
technology. Either way, the result is the same—if we call our LEC and request a BRI,
they will assume it is for data.

On the other hand, PRI is widely used in the US. It is the connection of choice for
larger installations. PRIs are actually delivered over T1 connections, a proven and
usually very reliable technology.

T1 or E1
Technically speaking, when ordering service from an LEC, we order a DS1, which
is delivered over a line referred to as T1. However, this detail is usually overlooked.
Therefore, we will refer to it in its vernacular—T1.

A T1 is a line with 24 channels. Each channel can contain a call. Therefore, a T1
can contain an additional call when compared with a PRI. In Europe, E1s are more
common. In comparison to T1, they have 32 channels instead of 24. T1s signal the
call through Robbed Bit Signaling, also referred to as CAS (Channel Associated
Signaling) or flat T1. What this means is that a bit is robbed from time to time, as
information needs to flow about the connection. While this is usually imperceptible
to the human ear, it can be deleterious to data connections.

Using a T1 to deliver both data and voice is common. Some of the 24 channels are
designated to be used for data and others are used for voice. There may even be
unused channels. LECs are able to offer lower pricing when bundling services in this
way, as a few channels may be used for voice, others for an Internet connection, and
yet others could be used for a private data connection to another office.

LECs are able to send information about the number that was dialed at the
beginning of the call. In this way, one advantage of the PRI has been matched by
T1s. If we intend to have about 8 to 12 lines as well as a data connection, a T1 can be
a good choice.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[28]

An excellent telephony interface card to connect your Asterisk to a T1/E1 connection
is the Digium TE122. Today T1 connections can be split to accommodate data and
voice. For example, your provider can offer 12 channels of voice as well as a data
connection for your computers all on a single T1. The TE122 can support both modes
and direct the voice channels to your Asterisk, while separately directing your data
connection to the underlying Linux operating system, thus eliminating the need for
an external router.

Voice over IP connections
In recent years, a new way to connect to the PSTN has cropped up. Companies are
using PRIs, T1, and other technologies to connect to the PSTN, and then reselling
those connections to consumers. The users connect to the companies offering these
connections through Voice over IP technologies. By doing so, we can skip dealing
with LECs completely.

This service is called origination and termination. Through these services, we can
receive a real telephone number with the area code, depending on what the provider
has access to. Not all providers can offer numbers in every locality. This means
that our number could be long distance from our next-door neighbor, yet local to
someone in the next state. However, the advantage of this is that the provider will
route most of the calls over their VoIP infrastructure and will then use the PSTN
when they get to their most local point at the receiving end. This can mean that long
distance charges are dramatically reduced. If we call a variety of countries, states, or
cities it can be worthwhile to research a provider that offers local PSTN access to the
areas we call the most.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[29]

The rates per minute are usually very attractive. Often, long distance is at the same
rate as local calls. One thing to watch out for is that some providers charge for
incoming minutes much like on a cellular telephone, and some providers also
charge for local calls.

Today there are VoIP carriers offering unlimited US packages for those running
Asterisk. However, one thing to watch out for with unlimited packages is that the
carrier usually restricts the number of simultaneous calls you can make or receive.
When you inquire about an unlimited package be sure to ask how many channels
you are receiving for origination and termination.

Another thing to be aware of is that some providers require you to use their Analog
Terminal Adapter (ATA). This means that they will send you a box that you plug
into the Internet, which uses Voice over IP. Then, you have a POTS line to connect
a phone (or Asterisk) to. However, today many VSPs (VoIP Service Providers) are
offering BYOD (Bring Your Own Device) in which they provide you with the SIP
or IAX settings. Once you have these settings you can connect them to your
Asterisk deployment.

Voice over IP makes sense in many installations. But for the quality to be acceptable,
a reliable Internet connection with low latency is required. Another thing to watch
out for is jitter. Jitter refers to the variation in latency from packet to packet. Most
protocols can handle latency a lot better if it is constant throughout the call.

A good candidate for Voice over IP is a site where interruptions in service will not
endanger life and will not irreparably harm the company. While VoIP providers
strive to achieve very high availability, we also have to rely on the Internet at large
and our VoIP provider's ISP, as well as our own ISP.

If our telecommunication needs are such that periodic downtime is tolerable,
VoIP will probably be our least expensive option. It requires less hardware in our
Asterisk system as well, increasing the savings. In order to use VoIP with Asterisk,
all we need is a system capable of Internet access. We don't require any specialized
telephony hardware.

Determining our needs
Now that we have examined some of the options, we need to determine what our
needs are. Requirements will vary quite a bit from site to site. Something to keep
in mind is that, although the previous choices are distinct, they can be mixed in an
Asterisk installation. We can have VoIP providers and POTS lines, as well as a PRI
if we desire. It's very common to have this type of setup. For example, if we have an
office in another country, we can call them using VoIP but all local calls could use
POTS. It is important to understand the calls our system will be making and where

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[30]

they will be going, so that we can arrange for the necessary services and ensure
that the calls are routed accordingly. If we have an existing telephony system, we
can take a look at the calls it's making just now and our current costs so that we can
determine what technologies will be of most use to our system's users.

Now is the time to begin documenting what our plan is. If Asterisk is to replace an
existing system, then we should start by writing down all the current lines coming
into our incumbent PBX. Once that is done, we need to look at our requirements.

First, we need to determine how many lines are needed. Telephone providers can
generate a usage report that will tell us the maximum concurrent connections we
have experienced in the last month. While they are able to do this, many providers
are not very happy to run such a report. However, without that information we have
nothing to gauge our needs other than gut feelings.

If we need more channels than we have, someone will get a busy/congested signal.
Therefore, we should plan to have the maximum number of channels we have
used plus a reasonable cushion. 125 percent of our current maximum is usually
a reasonable cushion, this allows for instant 20-25 percent growth so that we can
accommodate a sudden increase in calls without the system failing over, causing
busy signals. If we do increase calling to this level for a relatively long period,
we must consider an increase in lines to prevent congestion. These numbers are a
guideline and they can change depending on circumstances. In a call center where
the main business purpose is to make and receive calls, 150 percent may be a more
satisfactory figure. We also should take into account the time it takes to get new lines
set up from our local operator. If a significant event that generates a large number
of calls occurs, we should have the capacity to handle this or be able to increase the
capacity quickly.

Now that we have a number of lines, we need to determine the technology to use
for each line. VoIP is usually the cheapest, especially for long-distance calls. PRI is
usually the most reliable, and for incoming calls is often cheaper than VoIP.

While pricing the options, we need to remember that POTS lines usually have a
single phone number only, while a PRI can have hundreds of phone numbers. If
we are a business that receives only a few calls, but needs the calls to have different
phone numbers, then a PRI probably makes the most sense. Also, with a PRI we can
trunk more effectively, which may become essential.

Although a PRI can have hundreds of phone numbers, there is a charge for each
number each month. Called DID (Directed Inward Dialing) numbers, these virtual
numbers are usually sold in blocks of 10-20. If we do not order enough to begin
with, it is usually not difficult to get new DIDs ordered. Often they can be available
the same week, depending on the phone company. We assign these numbers to
individual devices or groups of devices ourselves, once we have them allocated.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[31]

This means we can decommission or reallocate numbers as necessary. We may have
campaign DIDs that are reassigned to different groups depending on the current
campaign, personal DIDs for key staff, or our main DID, which would probably be
assigned to a group of people responsible for handling these calls.

We should take this opportunity to write down what lines we want, what
phone numbers we need, and get quotes if it differs from the currently installed
PSTN connections.

Terminal equipment
Now that we have decided on our PSTN interconnection, we need to decide on
our internal connections. Our PBX can have modems, fax machines, hardware and
software telephones, and other PBXs connected. We will refer to all these different
machines as terminal equipment.

Types of terminal devices
There are four major types of terminal equipment—hard phones, soft phones, analog
adapters, and PBXs. We will cover each type briefly.

Hard phones
The term hard in hard phones is the short form of hardware. Hardware phones are
physical devices that act as a telephone handset. Hard phones are available for POTS
(as used in the typical household) or VoIP. Hard phones will typically deliver the
highest quality among types of terminal equipment. The most popular hard phones
in the market today are:

Grandstream GXP Series

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[32]

Linksys SPA Series

Aastra 57 Series

Cisco IP Phones (7940 & 7960)

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[33]

Polycom SoundPoint Series

Voice over IP uses various protocols depending on the handset, PBX, and the
requirements. The major protocols supported by Asterisk are as follows.

H.323
The first protocol we will be looking at is H.323. Formally known as ITU-T
Recommendation H.323, Packet-based multimedia communications systems, this is a
suggestion on how to accomplish conferencing over IP, which includes voice, video,
and data. This recommendation actually came at about the same time as SIP but has
been more widely implemented.

The H.323 standard enjoys full backward compatibility. Currently H.323v5 is out,
and v6 is being discussed. Each new release keeps all the pieces of the previous
version. This gives a clear upgrade path and some assurance that the equipment
won't be quickly antiquated.

H.323 equipment is widely available. From gateways to telephone handsets, all of
the needed equipment is relatively easy to find. Most of the telephone handsets are
full-featured because the H.323 protocol has a robust feature set.

While the H.323 standard was not designed for wide area networks, a whole set of
rules allowing cross-domain addressing have been created. A system for reporting
Quality of Service (QoS) back to a server has also been developed, allowing such
information to be used to route future calls.

Finally, H.323 as a standard supports call intrusion. New endpoints can be added
dynamically to any conference (that is, a call) at any time.

Asterisk support for H.323 is not built in. Instead, an additional package,
asterisk-oh323, must be installed. After installation, H.323 handsets and
gateways can be addressed much like any other channel in Asterisk.

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[34]

SIP
The Session Initiation Protocol (SIP), is another method of signaling VoIP calls. SIP
is a part of the default installation of Asterisk.

Most of the new VoIP equipment supports SIP. SIP has a number of advantages.
One such advantage is that the code is smaller. The reason for this is that SIP only
supports very basic features. All advanced features are supported through separate
Internet standards. Another reason for its small footprint is that, as features are
deprecated, the code to implement them is ousted.

Another advantage of SIP's design is its modular nature. As such, extending the
protocol is easier to do. It also scales better and was designed with a large network
in mind.

SIP seems to be the future of VoIP. There are many features that H.323 has, but are
not available on SIP. This includes handset conference control, better Media Gateway
definitions, and data sharing. However, SIP is a very good protocol for simple phone
calls. Also, as we are using Asterisk, conferences are controlled by Asterisk, not the
handsets. Asterisk is a clear Media Gateway, and when used as such, the ambiguity
in SIP is not an issue.

IAX
The Inter-Asterisk eXchange (IAX) protocol is a protocol created by the
programmers who brought us Asterisk. Due to the limitations of SIP and H.323,
they chose to create a new de facto standard that would allow Asterisk servers to
accomplish many things that are simply impossible with the other standards. They
also support some features that are extremely difficult to do in SIP and H.323.

First, IAX pierces Network Address Translation (NAT) easily. Most firewalls and
home Internet gateways use NAT, as well as some service providers. SIP and H.323
have worked hard to develop standards to allow them to break through the different
types of NAT. However, IAX can work through most NAT devices right out of
the box.

IAX is more configurable than the other protocols when dealing with Asterisk. As
the source code is available, we can modify it if we so desire, and then submit those
changes to be evaluated for inclusion in future versions of Asterisk. As IAX is not
currently an Internet standard per se, there is no standard body to work through,
allowing more rapid improvement and growth.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[35]

IAX supports the trunking of calls. This means that multiple calls can be combined
through a single stream. Through the trunking capability, a significant amount of
bandwidth can be saved by not having the overhead of multiple streams.

IAX connections between servers support the switch command with which
information on how a call is routed can be efficiently shared between Asterisk servers.

IAX supports a large number of codecs. Any codec supported in Asterisk can be
used with channels of this type.

As IAX is an Asterisk-created protocol, there are not many handsets and gateways
available. However, as time passes, more and more devices are supporting the
IAX protocol.

Just as a note, we sometimes see IAX and IAX2 differentiated. IAX2 has been merged
into IAX, and IAX has been deprecated. Thus, if a device claims to support IAX2, it
should really be supporting IAX.

Soft phones
Much as hard phones are phones implemented in hardware, soft phones are phones
implemented in software. Using all the same protocols available to hard phones,
soft phones are far less expensive to implement. By using the general-purpose
computing resources of a personal computer, the expensive proposition of
replacing all telephones in a building can be avoided.

Before going further, we should recognize that most hard phones are in reality soft
phones combined with bit of special-purpose hardware. The computing power of
a hard phone is not as vast as that of a PC, and unlike a PC, is specially tuned for
carrying voice. Thus, we should not dismiss the use of hard phones immediately.

The sound quality experienced on a soft phone will depend greatly on the available
resources on the PC, the quality of the software used, and the quality of the data
network between the PC and our Asterisk server.

Soft phones will have a hard time being accepted by some users. In addition to the
political issue of having people use their computer to talk on the phone, we also have
to address disaster planning. If we lose power, keeping a computer up that draws in
excess of 400 watts will be far more difficult and costly than keeping power to a hard
phone that draws 15 watts, especially for prolonged outages.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[36]

The most significant advantage of the soft phone is cost and portability. In most
businesses, desks contain a computer and phone at least. If you can remove the
phone there is an obvious reduction in hardware costs. There are a variety of soft
phone products available and most operating systems come with a basic soft phone
package by default. Also the portability aspect of a softphone can be very appealing
to companies that have employees who travel a lot. Imagine you're staying in a hotel
that offers high speed access. Simply open your laptop, put on your headset, and
you're able to make as well as receive calls as if you were in the office. There are also
a variety of open source products available. Some companies such as Counterpath
(www.counterpath.com) and Zoiper (www.zoiper.com) offer free clients for
Windows, Linux, and Mac.

 X-Lite 3.0 Zoiper 2.0

If you decide to go with a softphone also be sure to invest in a decent headset with
noise cancellation. Headsets that have their own DSP and are USB driven are a good
choice. This removes most audio processing resources from the PC so that other
work done on the PC does not affect voice quality. The choice of product, soft or
hard, is equally important as the PBX. You must be sure that the users will use the
device and be sure that it will be reliable and supportable.

Analog adapters
Dedicated communication devices such as modems and fax machines are still very
prevalent in business today. Although these devices could be replaced with more
modern, reliable, and faster technologies, the new technologies have not yet
been embraced.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[37]

Therefore, in order to use these existing technologies, analog adapters allow
companies to continue using legacy devices such as traditional fax machines. An
analog adapter usually consists of an Ethernet jack with which the device will
connect to your network and an FXS port (telephone jack) which will connect to
your traditional communication device (such as a fax machine).

Another common use of an analog adapter is to connect a cordless phone for those
requiring mobility around the office. Granted there are WIFI SIP phones in the
market, often users will find that the WIFI signals interfere with other frequency
emitting devices. Such interference can cause distortion or the calls to drop.

One issue with analog adapters is their use with traditional fax machines. For years
the reliability of faxing over an adapter was poor at best. Today analog adapters are
becoming equipped with T.38 capability. This protocol allows regular faxes to be sent
over UDP. The use of T.38 dramatically improves the reliability of faxing. However,
keep in mind—your VSP as well as your PBX must also support T.38 in order for the
fax to be transmitted using this protocol. As of version 1.4, Asterisk now supports
T.38 negotiation for SIP users and the related pass through of UDPTL T.38 data.
Please note that Asterisk currently cannot terminate T.38 calls or act as a T.38 PSTN
gateway without external support.

One extra note about faxing—Asterisk supports receiving and sending faxes
through an add-on called SpanDSP. With this Asterisk can receive a fax and turn it
into a TIFF file. This TIFF file can then be further processed to become a PostScript
or PDF file and be emailed to the proper recipient. Another notable fax detection
solution is NVFaxDetect. The installation of this add-on is not covered here, as
it is changing rapidly.

These communication devices are usually supported for legacy reasons. We
should continually strive to reduce outdated technologies and replace them with
up-to-date solutions.

Another PBX
We can connect PBXs together to provide services to users hosted on another PBX.
We can use SIP, PRI, T1, H.323, or IAX to connect the PBXs.

If we are connecting multiple Asterisk PBXs, we should use IAX. The IAX protocol
has a number of features with this specific use in mind, such as the ability to have
multiple conversations trunked into the same UDP stream yielding greater efficiency.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[38]

Choosing a device
Now that we have seen the broad offerings of terminal devices, we will see how
difficult it can be to choose one to meet our needs. After choosing a type of device,
we have to choose a manufacturer and model. This task can be daunting. Let's
take a few minutes and discuss how we will make the best decision based on the
available information.

Features, features, and more features…
As we review available phone handsets, we will be inundated with all the features
that manufacturers can throw at us. These lists are overwhelming, even to the most
seasoned experts. It is very difficult to compare two handsets solely on features, as
some features have different names.

Determining the usability of a particular phone handset should be a straightforward
process. This process has four major steps—requirement elicitation, prioritization,
and documentation, followed by handset testing.

Requirement elicitation
This is the brainstorming step. We should go to each user and determine what his or
her needs are. We ask the user what features he or she uses on the current phone. We
observe the person working for a period of time to get a good sampling of what he or
she actually does.

We should then go to the user's manager and see what a person in that position
is expected to do. We add these features to our list. While this list will be unique
to each user, many will be very similar. We should see patterns of usage emerge
between groups of employees.

Requirement prioritization
In this step, we take our requirements list from the previous step and, working
with the user and manager, determine which features are used most, which are
most important to that user's role in the organization, and which features are simply
nice to have. We should also attempt to recognize any deficiencies in the current
technology. Changes are often embraced if the change adds value to the user by
making a task easier or in some cases removing a task entirely. It's important that
we recognize all nuances of the current system in order to provide the user with a
replacement that will suit them.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[39]

We should then create a quantitative scale for each feature. For example, if we were
working with an operator, a Transfer button would be a value of 10, while a Do Not
Disturb button will probably be a value of 1. If we had a phone handset with both of
these abilities, then we add these scores together and it would score an 11. By putting
numbers on the required features, we can come up with a quantitative answer to a
very subjective issue.

Requirement documentation
This step is the most important of all of the steps so far, especially for consultants. We
take the list of requirements and their weights, and write them in a short document.
We then have the user and the manager sign it to indicate their agreement.

This may seem a little formal for picking a telephone handset, but it is an effective
method of communicating expectations and plans between you, the implementer,
and the users. This can help in preventing surprises or differing recollections of what
was promised.

Phone testing
This is the final step. After comparing the available handsets against the document
we created in the previous step, we choose the highest scoring handset. We then take
a handset of that type to the user and have him or her use it (if we have a test system
installed by this point) or at least sign off on it conceptually.

Again, this is an opportunity to ensure our users' expectations are reasonable, that
commitments are clearly defined, and that our users are kept informed during the
decision-making process. It can also help us get a buy-in from the users as we make
the major adjustments that will invariably accompany a new phone system.

Determining true cost
When we look at which handsets to compare our requirements document with, the
issue of cost also will have to be looked at. Before we offer a handset that would not
be possible under our project budget, we should determine that the handset meets all
of the requirements of the business, which includes the element of cost.

The issue of cost is not as simple as looking at the retail price of a handset. Each type
of phone will have multiple types of cost. These costs will usually fall into one of the
following categories:

Handset cost: This is the easiest cost to determine. It is the actual amount of
money that will have to be spent to acquire the telephone.

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[40]

Port cost: This cost is the element of what the phone connects to on the other
end. For instance, on a VoIP phone this could be a portion of the cost of a
new network switch that supports Quality of Service (QoS) to enable reliable
voice communications.
Headset cost: If a phone will require a headset, then we should consider
the cost of that headset as we choose the phone. Different connectors are
available depending on the model.
Software license cost: Some phones will require the purchase of G.729
license. Other phones may require a license for the software on the phone
(usually referred to as firmware). We should not fail to consider this cost
while computing the cost of the phone.
Installation cost: The time required to install different phones differs. This
time translates into cost.

By considering each of these factors for each different handset, we get an idea about
the true cost of each particular phone. With all of these costs defined, we can see
which phones are within our budget and which are simply too expensive.

Compatibility with Asterisk
Not all handsets interoperate equally with Asterisk. Referring to the Asterisk Users
Mailing List archive, we can ensure that no serious incompatibilities have been
discovered. Also, a Wiki is available at http://www.voip-info.org. A vast array
of useful information about Asterisk is available there. This site is searchable and is
constantly updated.

We do not have to select a single protocol for all VoIP phones. Instead, we can
mix and match protocols to our best advantage, thanks to the flexibility and power
of Asterisk.

Sound quality analysis
Sound quality is a very subjective thing. Each user will have a personal threshold
between acceptable and unacceptable.

Each phone will have a varying sound quality. The variables that can affect the
quality of a call are staggering. Network latency can significantly affect sound
quality, but so can configurations of the phone. Determining what the cause of low
sound quality is can be difficult to do.

Build quality from a manufacturer can also affect quality. When wide variations are
allowed from one phone to the next, the result is usually inconsistent from handset
to handset. Thus, we have to choose a manufacturer we can trust.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[41]

While there is no absolute, the quality of sound on telephone handsets, from highest
to lowest, is usually as follows—analog hard phone, VoIP hard phone, analog soft
phone, VoIP soft phone. If you are doing a comparison between different handsets,
the main things to pay attention to are the amount of background noise (or hiss),
distortion, drop outs, popping, and highly digitized voice. If we have users who are
extremely sensitive to sound quality, analog will probably be our best bet. For those
users who are a little more forgiving, VoIP allows us to use one network for our
phones and computers.

When determining what terminal equipment to use, we need to consider the sound
quality of each device and match it against the needs and expectations of our users,
and weigh that with the cost of that device as compared to the budget.

Usability issues
The world's most advanced VoIP handset is absolutely useless if our users cannot
figure out how to use it. As we decide what equipment to provide for our users,
we should consider where they are at in the continuum of technological awareness.
While VoIP hard phones with context-sensitive buttons are useful for most users,
some people find the interface confusing and frustrating.

This is one big issue that we need to address in the handset testing that we do
after eliciting the requirements that our user has for a new phone. We have a
duty to ensure that our users can use the handsets we choose. We must be careful
not to assume that they will figure it out, as doing so often causes hurt feelings
and resistance to change. The success of Asterisk will be largely measured by the
response of our users.

Recording decisions
It is time to decide what kinds of terminal equipment we will use with Asterisk. First,
we should make a list of all users of our phone system. Based on the requirements
we get from them and their supervisors, we should decide what type of device to
use, whether it is a hard phone or a soft phone. Next, we should determine a
protocol to use. Finally, determine a brand and a model of phone to use.

We should take the time to write this down. This list should be provided to the
decision makers, and kept up-to-date as changes occur, which they inevitably will.
Again, doing so will keep everybody informed and rein in the expectations to keep
them reasonable.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[42]

How much hardware do I need?
This is probably one of the questions most frequently asked by those who are new to
the world of Asterisk. The answer depends largely on what we are going to do with
our system.

Conversations that bridge between codecs (called transcoding) take maximum
power to handle. Voice over IP conversations seem to take a little more processing
power than straight Time-Division Multiple-Access (TDM) calls. Having our server
run scripts to find information will take more power than if we define everything
statically. How many different conversations we have going at a time will affect
how much horsepower we need our server to have as well as the features we use.

Do you see the complexity of answering this question? We have to figure out what
we are going to use before we can figure out how big a server we will need. That
said, there are some good rules of thumb we can start off with.

First, while we can run an Asterisk server on an old Pentium 90 with 64 MB of RAM,
why would we want to? We are creating a robust phone system. We do not have to
pay to license the use of the software and we do not have to pay per extension. We
can go spend some of the money we saved and buy a decently powerful server.
Most would recommend that a small deployment should have a CPU of at least
2.4 GHz and 512 MB RAM; the hard drive space is not as important but typically
120 GB would suffice. The hard drive space greatly depends on how many voicemail
messages you want to allow users to store on the server as well as whether you want
to record incoming or outgoing conversations. Voicemails and recordings are stored
on the server, and without limitation or careful planning you can run out of space.
For larger deployments you might want to get a Dual CPU solution as well as an
increase in RAM (that is, 2 to 3 GB RAM). As we select the components for
our server, we need to remember that we are not building an email server or a
web server. We are creating a PBX that people are going to expect to be running
all the time. We should select a stable chipset, with an up-to-date BIOS, and match
it with other current high-quality components. By using high-quality components,
we increase the likelihood of ending up with a high-availability phone system.

On another note, we should select a server with as much redundancy as possible. A
RAID-1 controller could save our phone system in the event of a hard drive failure.
A pair of RAID-1 controllers that are mirrored could save our phone system in the
event of a controller failure or a PCI slot failure. A server with redundant power
supplies will help us in the event of power failure or a power supply failure. Of
course, our phone system should be on an Uninterrupted Power Supply (UPS). This
is not only for protection from power failures; it will also protect from spikes, and
often even lightning.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[43]

Depending on the reliability requirements, we might need a redundant server. There
are hardware devices that will detect if a PRI is down, and automatically failover.
Then again, for most installations, this is overkill.

The most important lesson to keep in mind is that people have grown to depend on
phone systems. We should not skimp on hardware, as doing so could cost us dearly
in the long run. With the unique pricing structure of Asterisk, all we will have to pay
for is any additional hardware to get increased reliability and capacity.

Along with hardware, the question often asked is—which distribution of Linux
should I use? If you already have experience with some distribution of Linux, you
should be able to make Asterisk work with that distribution. Asterisk is very flexible
and has been built with commonly available dependencies, and any distribution of
Linux should work. That said, some distributions will require more effort to enable
some features such as automatically starting Asterisk when the server boots. As each
distribution treats startup scripts differently, most distributions will require a minor
amount of tweaking.

Also check the wiki at http://www.voip-info.org for more information on the
distribution you intend to use. It has up-to-date notes on compatibility problems,
caveats, known issues, and often workarounds for those issues.

Choosing the extension length
While creating our phone system, we will need to create a set of extensions.
Although Asterisk has no such requirement, all these extensions should probably
have the same length to give comfort to our users. We must determine the length
that we will use for all of our extensions.

When creating extensions, it is often advantageous to group certain extensions
together. For example, all sales extensions could be in 200s, support in 300s,
management in 100s, and so on. Or we could go further and say that all first-tier
support will be in 3100s, the second-tier support in 3200s, third-tier support in 3300s,
and so on.

We should keep in mind that it is easier to add extensions when there is an available
number than it is to renumber all extensions in a building, because we have filled
up all of our available dial strings. For instance, suppose we chose 1-digit extensions
and have the following phone list:

0—Operator
1—Reception desk
2—Break room

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[44]

3—Conference room
4—John
5—Sally
6—Jennifer
7—Fax machine
8—Voicemail Access
9—Outgoing calls

This system will work fine until we add another extension. When we add another
extension, we will have to give new extension numbers to all of our users.

Now consider the following phone list:

1000000—Kitchen
2000000—Bedroom
3000000—Office
8000000—Voicemail

In this house, for someone in the kitchen to call the office (think "Dinner's ready, will
you please leave that computer and come eat?!"), the user has to dial seven digits to
accomplish what could have been done with one.

Therefore, we need to be smart about how long we make our extensions. Often, if we
are replacing a phone system, we should just adopt the numbering already in place
to make the transition a little easier for our users. Some phone systems may not have
had extension numbers before, such as old analog key systems. All lines were simply
visible from all stations. In such instances, we should be sensitive to the new learning
that will have to take place and make the length of the extension number as small
as possible.

We also need to consider some special instances. First, most people do not want an
extension that begins with a 0. Simply put, nobody likes to be a nothing and having a
leading 0 for anybody but the operator makes them feel emotionally put down. Also,
we should reserve all extensions beginning with a 9 as outgoing telephone calls.
Add to that the need to provide services such as call recording, conferencing, and
voicemail access. We will give all such services a prefix, such as 8. Thus, we see that
we have already lost 30 percent of all of the available extensions.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[45]

A good rule of thumb in computing is to take what we believe we will use and triple
it, and then round up. Thus, if we believe that at the height of our system, we will
have 100 users, we should assume that we will have 300 users. If we believe we will
never have more than 10 users, we should assume 30.

With this in mind, here is a table of what we will need:

Expected number of
extensions

Our assumed number
of extensions

Length to use for
extensions

2 7 1
22 70 2
222 700 3
2222 7000 4

Keep in mind when reading this chart that it is much easier to have people dial an
extra digit than it is to make them learn all new extension numbers. Thus, if we are
a border case, we should go ahead and move on up to the next extension length.

Another idea that we can take advantage of is using an extension that gives a lot
of information about the destination. Take for instance, a corporation with seven
locations. The first digit in the extension could designate the location. Then the
second digit can designate the department, and the remaining digit(s) can designate
which member of the group is sought. Thus, knowing the structure and an extension
can give an idea of where that person is and what he or she does.

In some environments, such information is not desirable. For instance, in a college
campus, some employees work very late at night. If the extension gives their precise
location, stalking and threats of physical harm can prove problematic. Therefore, we
need to be sensitive to such concerns.

One alternative to these layouts is to use the last few digits of a phone number to
refer to each extension. This can work very well if all of such digit strings are unique.
However, it can cause problems. Suppose we chose a 4-digit extension and have the
phone numbers 555-1234 and 777-1234. Which one is extension 1234? Or suppose
we use 7 digit extensions and have (800) 555-1234 and (866) 555-1234. Which one is
extension 5551234? Thus, some organizations have moved to a full 10-digit extension
length. While this allows 1010 extensions, it can cause some users to complain about
usability and convenience.

With the flexibility of Asterisk, we can choose many different ways to allocate
extensions, all of which will influence our decision on extension length. We must
balance our users' expectations along with our desire to leave room to grow. By
doing so, we can create extensions that are easy to maintain and user friendly.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making a Plan for Deployment

[46]

Preparing a test environment
Before you deploy a production environment, it is always best to have a test
environment available to test settings, try out new software or patches, or simply
to practice your Asterisk skills.

For this environment, you can go with an inexpensive solution such as PIII
512 MB PC or better. Another solution is to use a virtual environment in which your
PC can virtually host another operating system within itself. An excellent and free
virtualization software is VMWARE Server edition (www.vmware.com/products/
server/). This software will easily allow you to load ISO files or boot from a CD
and install a complete Asterisk system on your local PC.

One thing to keep in mind about test environments is that they are often used
for testing functionality. However, quality testing will prove difficult if your test
environment is not of the same make as your production environment. For example,
virtualization software often requires a great amount of memory and will be sharing
system resources with other applications running on your PC. Therefore, calls placed
through these deployments may often be degraded in quality.

Summary
Now that we have decided to use Asterisk, we must make a plan. This chapter has
looked at the different types of hardware and solutions that an Asterisk system
needs, namely:

What technology we use to connect to the PSTN
What technology or technologies we use to connect our handsets to Asterisk
What server hardware we will use
How we will architect our extensions to be easy to use while also allowing
for the growth we can realistically expect
How to prepare a test environment for Asterisk

As we draw our plan, we must address each of these options before moving on to
the next stage, the installation of the Asterisk software, which we will cover in the
next chapter.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Asterisk
We're making great time! Together, we have selected Asterisk to meet our needs,
created a plan to define how our phone system will act, and we are ready to begin
installing Asterisk.

Preparing to install Asterisk
In order to install Asterisk, we will need a computer with Linux installed. It's a
good idea to ensure your system is up-to-date, for instance, by using the yum
tool. Once we have installed our distribution of choice, we need to make sure we
have a few additional packages installed. The required extra packages over a base
installation are:

Bison, and associated -devel (1.0.X only) gcc
Kernel-source
Libtermcap-devel
ncurses, and associated -developenssl, and associated -develzlib, and
associated -devel

Once we have installed these packages, we are ready to install Asterisk. We should
not run an X server or any windowing software on our Asterisk machine, as the
resources it consumes are almost guaranteed to delay our voice processing, and
therefore negatively impact our sound quality. So, you may save a little time and
disk space by choosing not to install any such frontend.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Asterisk

[48]

One note here—we should prepare to manage our server. We must keep in mind
that we will not be able to rely on graphical tools on the server to manage users, file
systems, and other aspects of the day-to-day maintenance that all the systems will
need. Unless particularly comfortable with command-line configuration, you should
probably consider installing a web-based set of tools such as Webmin, available at
www.webmin.com in order to configure Linux. The graphical configuration options for
Asterisk that are available are mostly web based. So, we may at some point decide to
install these under a web server too, in order to enable graphical configuration.

The commands used to install Webmin are as follows:

wget http://voxel.dl.sourceforge.net/sourceforge/webadmin/webmin-1.470-
1.noarch.rpm

rpm -U webmin-1.470-1.noarch.rpm

Once webmin is installed, the default address to access webmin from your browser is
https://<IP of Asterisk server>:10000.

Obtaining the source files
The very first step we must undertake is to obtain the source files. When obtaining
the source code, we have two major choices. We can either download the latest
version through Digium's web site from http://www.asterisk.org/downloads
or use svn to obtain the latest stable release. The maintainers of Asterisk have been
doing a good job of keeping the stable releases available on the FTP servers, so we
will use this method.

The commands we issue to download Asterisk's source files are:

mkdir -p /usr/src/asterisk

cd /usr/src/asterisk

wget http://downloads.asterisk.org/pub/telephony/asterisk/asterisk-
1.6.1-current.tar.gz

wget http://downloads.asterisk.org/pub/telephony/asterisk/asterisk-
addons-1.6.1-current.tar.gz

wget http://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/
dahdi-linux-complete-current.tar.gz

wget http://downloads.digium.com/pub/libpri/libpri-1.4-current.tar.gz

The download may take anywhere from about one minute on an extremely fast
connection, to a couple of hours on a slow connection. When the download is
complete, we will need to unpack the tarballs.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[49]

For unpacking the tarballs, you will want to issue a tar -xvzf [name of file]
(without the brackets):

tar -zxf dahdi-linux-complete-current.tar.gz

tar -zxf asterisk-1.6.1-current.tar.gz

tar -zxf libpri-1.4-current.tar.gz

tar -zxf asterisk-addons-1.6.1-current.tar.gz

In the next three sections, we'll compile and install the source distributions
we've just downloaded. Note that we should install DAHDI first, then LibPRI,
and finally Asterisk.

Installing DAHDI
The DAHDI sources are contained in /usr/src/dahdi-linux-complete-VERSION
4. Type the following to install DAHDI:

cd /usr/src/asterisk/dahdi-linux-complete-VERSION

make all

make install

This will take about one to two minutes, depending on the speed of your machine.
When it is finished, it should drop us back at the command prompt. If the last
message states that there is a failure, we will have to do some detective work in
order to determine the cause. The most common issues experienced will be
resolved by meeting the dependencies listed earlier in this chapter.

DAHDI contains drivers created for Asterisk that are necessary to use Digium's
telephony hardware. It also includes a number of libraries that Asterisk depends
on, whether we use Digium's hardware or not.

If we want to have Asterisk start up at boot time, we should issue the command:

make config

Installing LibPRI (optional)
If you are using E1 cards, you need to install LibPRI. If you do want to use LibPRI
make sure you compile and install it before you compile Asterisk.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Asterisk

[50]

Next, we will compile and install the sources contained in /usr/src/libpri. We
will do this by typing:

cd /usr/src/asterisk/libpri-VERSION
make clean
make
make install

This process should take less than a minute. Again, we know it is complete when we
are dropped back at the command prompt.

LibPRI provides the libraries required for using Primary Rate ISDN (PRI) trunks, as
well as a number of other telephony interfaces. Even if we do not have a PRI line at
this time, it is a good idea to install it, as it will not create any conflicts.

Parts of the Asterisk code depend on the libraries included in the LibPRI package.
Therefore, any time we install LibPRI, we should recompile Asterisk.

Installing Asterisk
Now, it is time to actually install Asterisk, contained in /usr/src/asterisk. We will
do this by typing:

cd /usr/src/asterisk/asterisk-VERSION
make clean

This installs the runtime and some utilities, as well as libraries of Asterisk PBX.
It creates the actual PBX, which may depend on (that is, use) the components we
installed earlier.

Through the following commands, Asterisk will now provide a menu in which you
can choose which options to install (audio files, voicemail storage, codecs, and so on).

./configure
make menuselect
make
make install

At this point, it is probably wise to install some sample configuration files so that we
can acclimatize ourselves to Asterisk's structure. This is done by running:

make samples

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[51]

This creates a sample DAHDI.conf in /etc, and sample configuration files in
/etc/asterisk. When we change directories to /etc/asterisk, we should
see the following files:

adsi.conf: This file contains the configuration for Analog Display Services
Interface (ADSI).
adtranvofr.conf: This file contains the configuration for using Adtran's
Voice over Frame Relay.
agents.conf: This file contains the configuration for using agents, as
in a call center. This allows us to define agents and assign them IDs
and passwords.
alarmreceiver.conf: This file configures the alarm receiver application. We
will not be changing the values from their default settings.
alsa.conf: This file contains configuration variables for the console's sound
card. We will not be using this.
asterisk.adsi: This file contains Asterisk's default ADSI script. This will be
executed from the telephone if we use ADSI hardware.
asterisk.conf: This file sets certain variables for Asterisk's use, most of
which we will not need to change. It basically tells Asterisk where to look for
certain files and executable programs.
cdr_manager.conf: This file configures CDR for call management.
cdr_odbc.conf: This is the configuration file for using an ODBC database
connection to store our CDRs.
cdr_pgsql.conf: This configuration file allows us to use a PostgreSQL
database to store our CDR records.
cdr_tds.conf: This is the configuration file for using FreeTDS, allowing
connections to Microsoft SQL and Sybase.

enum.conf: This file configures the use of ENUM, which allows us to resolve
telephone numbers over DNS. Thereby, allowing us to route calls to an IP
instead of going over the Public Switched Telephone Network (PSTN).
extconfig.conf: With this file, we can choose to load our queues through
the database engine.
extensions.conf: This file configures the behavior of Asterisk. We will be
working with this file extensively.
features.conf: This file contains options for call parking, as well as a few
miscellaneous features such as the pickup extension, used for picking calls in
each pickup group.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Asterisk

[52]

festival.conf: This file sets parameters for Festival, which is an open
source program that allows our server to speak text. This is completely
optional, and we will not go into configuring this, as Asterisk already
includes recordings of the phrases we will need our server to say.
iax.conf: This file configures our Voice over IP (VoIP) conversations using
the Inter-Asterisk Exchange protocol (IAX).
iaxprov.conf: This allows for simple provisioning of Digium's S101I, also
known as IAXy.
indications.conf: This is where we configure certain behaviors of our
phone system, such as ring cadences and tones, enabling us to provide the
sounds our users are used to, regardless of what country they are from. We
can also mimic their previous phone system.
logger.conf: This file sets up the type of logging we will be using. The
defaults work for most people.
manager.conf: This file configures remote access to the Asterisk Call
Manager. This will be of utmost importance when we discuss Graphical User
Interfaces (GUIs).
meetme.conf: This configuration file sets up simple conference rooms. We
can optionally define passwords for the conferences too.
mgcp.conf: This file configures Media Gateway Control Protocol (MGCP).
This is a protocol used by some VoIP hardware, mainly from Cisco.
modem.conf: This file sets certain variables to allow us to use selected
modems with Asterisk. Please note that not many modems are supported,
and as most modems are only half duplex they will not perform very well.
modules.conf: This configuration file selects which Asterisk modules will
be started up. We can enable or disable features of our PBX by changing
configuration parameters here.
musiconhold.conf: This configuration file creates Music On Hold (MOH)
instances and defines what music they will play. At this time, it only
supports playing MP3s, and only if we install mpg123.
osp.conf: We can configure the Open Settlement Protocol subsystem of
Asterisk with this file.
oss.conf: This configuration is much like alsa.conf, and we will not be
using it.
phone.conf: This file allows us to use some Linux telephony interfaces such
as the LineJack by Quicknet. We will be focusing on Digium's hardware
offerings instead.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[53]

privacy.conf: This file allows us to configure privacy options.
queues.conf: This configuration file allows us to create queues for callers to
go through, allowing us to handle burst call volumes in an intelligent way.
We can also create an escape to allow callers to dial their way out of the line.
res_config_odbc.conf: This file sets the configuration for storing our
settings in an ODBC database.
res_odbc.conf: This is another piece of configuration for storing our
settings in an ODBC database.
rpt.conf: This file allows us to use a radio repeater.
rtp.conf: This configuration file sets the ports to use for Real Time Protocol
(RTP). Note that the numbers listed are UDP ports.
sip.conf: This configuration file defines Session Initiation Protocol (SIP)
users and their options. We can also set global options for SIP, such as what
address to bind to, what port to use, and what timeouts we are going to
impose. SIP is a different protocol for Voice over IP.
skinny.conf: This file configures the skinny VoIP protocol, which is used by
many of the Cisco phones.
telecordia-1.adsi: This is another sample ADSI script.
voicemail.conf: This configuration file creates voicemail users and some
global options for Comedian Mail, Asterisk's voicemail system.
vpb.conf: This file configures VoiceTronix hardware. We will be focusing on
Digium's hardware offerings.
chan_dahdi.conf: This file configures DAHDI telephony interface settings.
We will be using this to configure Digium's hardware offerings. Digium's
hardware is what allows us to communicate with the PSTN.

As you can see, there are quite a few configuration files. Any particular installation of
Asterisk may only use a few of these files, but they are all included so that we have
the flexibility to use different features and may expand our services easily.

If we wish for Asterisk to start at boot time, we can configure it to do so by typing:

make config

This will create a script to start the Asterisk PBX after the DAHDI startup procedures
have been completed. In Red Hat Linux, this script is placed in /etc/init.d and set
to execute when entering the run level we are currently in (which should be 3).

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Asterisk

[54]

Getting to know Asterisk
Now that we have installed Asterisk, there are some basic behaviors of Asterisk that
we need to explore.

First, the major configuration files that need to be modified are in /etc/asterisk,
with the exception of DAHDI.conf, which is in /etc. Each file that ends in .conf
is a configuration file, which sets parameters for some specific part of Asterisk, as
described in the previous section.

The layout of these configuration files is generally simple. Most configuration files
will have a variable name, followed by => and its value. For instance, if there were a
variable called cat, which was to be set equal to Garfield, it would look like this:

cat => Garfield

In most configuration files, the variables stay set until they are either undefined or
set to a new value. You must be careful in what order you set variables, as they may
have inherited a different setting than you anticipate. Therefore, I suggest we set
all needed values for every single instance, in case we make changes in future that
would break a set of lines in our configuration. This will make more sense later.

We should probably take a few minutes and look through all of the .conf files
in /etc/asterisk. Most of the files are commented pretty well. We will be
going through the key files step-by-step in the next chapter, but having a general
knowledge of what is in there might help us.

If you are planning to use FreePBX or you're using a packaged out of the box
software such as Trixbox, it is important not to modify any .conf file that is not
named XXX_custom.conf. If you use either of the above, any changes you make
directly in the .conf files will be overwritten when you apply your changes in
the GUI. However, any file ending in xxx_custom.conf will not be overwritten
(for example, extensions_custom.conf).

Next, how do we start Asterisk? It's really pretty simple. If you set Asterisk to start at
boot time, you can reboot. If not, the command to start Asterisk is asterisk. When
starting Asterisk, there are a number of command-line arguments we can specify.
The most commonly used are –c, which gives us a console connection, and –v, which
gives us a verbose output, with more vs giving us more information about activities,
status, and errors. When I start Asterisk from the command line, I usually use:

 # asterisk –cvvvvv

This gives me a console connection with plenty of debugging information.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[55]

If Asterisk starts at boot time, we can reconnect to the Asterisk console by typing
asterisk –r, and we can specify a level of verbosity. So, when I reconnect, I often
use asterisk –rvvvvv.

Although the Asterisk console may not look like much, it is a wonderful tool for
checking the status of Asterisk, as well as diagnosing problems. We can type help to
get a list of commands.

One very useful ability of the console is to issue a reload. This is done by:

CLI> reload

This command will re-parse the configuration files and update the changes in most
of the modules of Asterisk.

There are some parts of Asterisk that require a restart in order to reflect changes. In
order to restart Asterisk, we must first choose when we will be restarting. We have
three main choices:

now: This option stops all calls in progress, immediately stops Asterisk, and
starts it again.
gracefully: This option does not stop calls in progress, but does not allow
any new calls to be started. When all calls that are in progress are completed,
the server will restart. Be careful, as a hung channel will basically disable
your server.
when convenient: This is my favorite option. This option does not end any
calls in progress, and allows new calls to start as usual. When there are
no calls in progress, the server will restart. This means that incoming and
outgoing calls are not interrupted except for the short period of time in which
Asterisk is actually restarting. This would not work, of course, on high-load
servers, as there may never be a time when there are no calls in progress. It
will also not work if a channel is stuck, meaning the server thinks it has a call
in progress, but it does not.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Asterisk

[56]

We restart Asterisk using:

CLI> restart <choice>

For instance, if we wanted to restart now, we would type:

CLI> restart now

Now is a good time to play around with the console interface. Get comfortable
with it. Experiment with the Tab key to autocomplete commands, and try different
verbosity levels to see what information is displayed for each.

I cannot stress enough that now is the time to play with the server. If it is going to
be broken by a mistake, it is better that the mistake be made before calls are going
through it. If Asterisk stops working, we can go back to the beginning of this chapter
and reinstall with minimal time.

Summary
In this chapter, we installed Asterisk and several packages such as DAHDI and
LibPRI. The configuration files that we use to set up various aspects of our PBX
system have been introduced, as has the Asterisk console. Before our system
is ready for use, we need to configure Asterisk for our hardware and other
operational requirements, which we'll do in the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk
So far, we have decided to use Asterisk to meet our needs, created a plan, prepared a
server, and installed Asterisk and its supporting libraries. Now we have come to the
more artistic part of any open source solution—configuration. We get to choose how
to use Asterisk's power and flexibility to meet our real-world needs.

While the order in which we proceed makes sense, it is not necessary that we follow
it precisely. We can configure the pieces in any order we want. The only issue we
may encounter is that if we have not completely configured one part of Asterisk, the
PBX may not start, or may start without full capabilities. This is not a real problem,
as we are still configuring and will be testing our PBX later.

Thus, if we become unsure about how to proceed in one section, it may be best to
move on, and configure the next part. Then, we can go back to where we left off. We
often need a little bit of time to digest some information.

What we will now do is step through the different technologies we're going to use,
and the configuration files that we need to modify in order to follow the plan that
we laid out in Chapter 2, Making a Plan for Deployment. Be sure to have the planning
worksheets handy so that we are sure what we need to do.

Before modifying the configuration files, we should make a backup
copy of each.

We can create a backup copy of the stock configuration files by changing to
the /etc/asterisk directory and making a copy of the files. For instance, if
we wanted to make a copy of the chan_dahdi.conf file and call the copy
default-chan_dahdi.conf, we would type:

$ cp chan_dahdi.conf default-chan_dahdi.conf

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[58]

We could proceed to copy each file in the /etc/asterisk directory in this manner.
However, if we overlook this backup step, the originals are of course available in
Asterisk's source, under the /usr/src/configs subdirectory. By saving a copy
of the default file, we can make any changes we wish to the configuration files
without having to worry about trying to remember what the default file contained.
If we have made extensive configuration changes ourselves, we may want to be
sure that there is a backup copy of our modifications before we perform any other
extensive changes.

DAHDI interfaces
For this section, you need the details of the analog lines and terminals that you set
out in Chapter 2. For our DAHDI interfaces, we will be modifying two configuration
files: /etc/dahdi/system.conf and /etc/asterisk/chan_dahdi.conf.

system.conf
As we know, the system.conf file is in /etc/dhadi. We can modify it in a text
editor of our choice.

As we make changes to this file, we will have to force the DAHDI drivers to re-read
the configuration files in order to detect the changes. If our system is configured to
start the DAHDI hardware at boot time, we can accomplish this by running:

$ /etc/init.d/dahdi stop

$ /etc/init.d/dahdi start

However, if we decide not to start DAHDI interfaces at boot time, we can implement
our changes as we go by running:

$ dahdi_cfg

In order to get more information, it is often helpful for us to use verbose flags. The
more instances of v we use, the more verbose the output will be. So, we may wish
to use:

$ dahdi_cfg –vvv

Changes to the system.conf file will not take effect until we
have restarted the drivers.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[59]

There are a couple of global options that can be set in the system.conf file. First,
there's loadzone, which defines country-specific preferences, such as what pitch a
dial tone should have. Also, there's defaultzone, which tells DAHDI which zone
to use as default if none is specified. For each of these, the value is the two-letter
country code. Supposing we are in the United States, our system.conf file
could contain:

loadzone = us
defaultzone = us

Asterisk provides a number of defaults and we can configure additional ones in
the /etc/asterisk/indications.conf file. Members of the Asterisk community
have also contributed sections that we can add for particular countries, which can be
found by using a search engine, as the Asterisk users list is archived.

In this file, we have two major classes of devices. First, we have lines. This refers to
all of the connecting links we have to the PSTN. Then, we have all of our terminals,
which refer to modems, telephone sets, cordless phones, fax machines, war dialers,
or any other analog devices we may wish to use.

Lines
Each line can have many different types, and which type we use depends on what
services our telephone company is providing. In the United States, two common
choices are PRI and POTS lines, also known as analog lines.

In previous chapters, we made a list of all the lines we have coming into our
building. We also selected which lines we would be tying to Asterisk. As we are only
discussing the configuration of a PBX, we will ignore any lines not tied to Asterisk;
however, you should keep the documentation for your future reference.

In the system.conf file, we need to identify the signaling we will be using. As these
are lines to the PSTN, we will be using FXS signaling. If you remember, we learned
that FXO devices are what we need to connect to the PSTN. But here we define the
signaling Asterisk is to use, not the type of device. The signaling will be exactly
opposite to the device type.

For each Digium channel (that is a port on a TDM400P or X100P), we have to define
the following:

fxsks=1

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[60]

Note that we are defining three very crucial pieces of information here. First, we
specify signaling, which is FXS as this interface is an FXO device. Secondly, we
designate the protocol. This depends on the phone line that we use. Usually, we can
use Koolstart (ks). Other options are Loopstart (ls) and Groundstart (gs). Finally, we
set the channel number to 1. This depends on the order in which our system detects
the modules. Thankfully, if we configure the values incorrectly and run ztcfg, we
will see an error message like the following:

$ dahdi_cfg

dahdi_chanconfig failed on channel 1: Invalid argument (22)

Did you forget that FXS interfaces are configured with FXO signalling

and that FXO interfaces use FXS signalling?

As we can derive from the error message, this is not an uncommon problem. It is no
big deal, we just know that our system believes that channel 1 has the opposite type
of signaling to what we defined. We can go back into our system.conf and switch
the signaling. This can help us determine the order in which our system is loading
the DAHDI interfaces if we are unsure.

If we have a PRI or a T1 coming in, either from the telephone company or a channel
bank, then our configuration will be a bit different. We define each T1 as being a
span. For each of these spans, we need to specify the following details:

Span number: This is an arbitrary number that we assign to each T1. The T1
connected to the first port should be 1, the second T1 connected should be 2,
and so on.
Timing: This is an integer that represents the order in which we rely on it
for synchronizing our timing. 0 means that we will not use this span for
synchronization, 1 indicates it is our primary source, 2 indicates that it is our
first backup timing source, 3 indicates it is our second backup timing source,
and so on.
Line Build Out (LBO): This integer represents the length of the cable. Valid
options are:

0 db or 0-133 feet (if you are unsure, try this)
133-266 feet
266-399 feet
399-533 feet
533-655 feet
-7.5 db
-15 db
-22.5 db

•

•

•

°
°
°
°
°
°
°
°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[61]

Framing: This information is specific to our connection. While we should be
able to get this information from our telephony provider, many users have
reported difficulty in finding anybody at the telephone company willing and
able to provide this information. Therefore, it is convenient that there are
only a few options.
For a T1, the valid options are:

d4, also known as superframe or sf
esf

For an E1, the possibilities are:
cas

css

Coding: This information is also specific to our particular line, and again
should be available from our connection provider.
For a T1, it could be:

ami

b8zs

For an E1, we could have:
ami

hdb3

crc4: added to ami or hdb3 to enable CRC-4 checking

So, supposing we have a PRI in the US, using ESF framing and B8ZS coding, we
would have:

span=1,1,0,esf,b8zs

Note that generally, D4 and AMI go together, as well as ESF and B8ZS go
together. Deviations from these pairings are extremely rare and often based on
misconfiguration. Also, if you know that your circuit is a PRI, then most likely the
framing and coding are ESF and B8ZS. This provides a few rules of thumb when you
have a circuit you cannot get any information on.

•

°

°

°

°

•

°

°

°

°

°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[62]

Now that we have defined the span, we must configure channels for use. In order
to do this, we use statements of the form <device>=<channel>. Here, <channel>
can be a single number representing a specified channel, a comma-separated list of
channels, or a range, using a hyphen between the first and last channels. For a T1,
some common options for <device> are:

e&m: This will work irrespective of implementation, such as Immediate,
Wink, or Feature Group D.
fxsls: This is used with many channel banks, referred to as "loopstart".
fxsgs: This is used with many channel banks as well, referred to as
"groundstart".
unused: This tells DAHDI to ignore the channel, for instance when only a
fractional T1 is delivered by the telephone company.
bchan: Also known as "indclear". This tells DAHDI not to perform
any conversion.
dchan: Also known as "fcshdlc". This tells DAHDI to perform HDLC
encoding and decoding on the bundle, and send it through this device.

A full list of the possible devices is contained in the sample configuration file, or in
/usr/src/dahdi/system.conf.sample. Continuing with our example of a PRI in
the US, we would have:

bchan=1-23
dchan=24

If we had two identical PRI lines coming in, the entire system.conf file would look
like the following:

First incoming PRI
span=1,1,0,esf,b8zs
bchan=1-23
dchan=24

Second incoming PRI
span=2,2,0,esf,b8zs
bchan=25-47
dchan=48

loadzone=us
defaultzone=us

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[63]

The configuration for a channel bank will be very similar. Supposing we had a
single channel bank using ESF framing and B8ZS coding, and Groundstart lines
on channels 49, 50, 51, and 52, then we would have:

Channel bank to PSTN
span=3,0,0,esf,b8zs
fxsks=49-52

Terminals
Just as our configuration of the lines depends on the capabilities of our telephone
provider, as we configure our terminals, we must keep our equipment in mind.
Our settings in /etc/dahdi/system.conf for our terminal devices will be directly
related to the type of equipment we are using.

As our analog terminal devices will be using an FXS device to connect, Asterisk
must use FXO signaling to communicate. Therefore, if we have a TDM400P with FXS
modules, we would use fxoks signaling. Assuming this is our second port to load
during ztcfg, the entry in system.conf will be:

fxoks=2

We can also connect our Asterisk server to a channel bank or another phone system.
This is done just as it was for defining lines. We must first designate a span (in the
same format as before) and then configure the individual channels.

For instance, suppose we have a channel bank that has 4 FXO ports and 20 FXS ports.
Imagine it is using ESF framing and B8ZS coding. Thus, we could have:

Channel bank to PSTN and Terminal Devices
span=3,0,0,esf,b8zs
fxsks=49-52
fxoks=53-72

No problem, right? Remember that as we make mistakes, when we run dahdi_cfg we
will get some useful error messages. The more verbose the output, the more likely we
are to get a hint as to what is causing any of the problems we may experience.

chan_dahdi.conf
Now that we have configured /etc/dahdi/system.conf, we have our telephony
devices starting. If our FXO or FXS device is not starting yet, we need to go back to
the previous section, as this is one of the few configuration files that depend on the
success of another. Until we have our interfaces loading, we will not have much
success in /etc/asterisk/chan_dahdi.conf.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[64]

This configuration file is read by Asterisk. Therefore, to read changes made to
this file, we can issue a reload in the Asterisk console. DAHDI will not have to
be restarted to apply any changes we make in chan_dahdi.conf.

At the top of our file, we will see a [channels] section. In fact, that is the only
section we will have. At the beginning, we will set certain characteristics that we
want to be consistent between all of our lines and terminals. We must exercise great
care when working with this file. When we set any variable, it stays in force during
all of the later channel declarations until we set it otherwise. For those of us who
program, it is much like a switch statement without a break statement at the end of
each case—sometimes useful, always dangerous!

Each of these settings that we discuss can be reset at any point in the file, whether for
incoming or outgoing interfaces. As we reset it while defining one interface, all of the
following lines will have the same setting. Therefore, it behooves us to group lines of
similar configuration together so that we won't need to reset variables as often.

Not every setting will be needed for every channel. In fact, most installations
probably don't even use half of the settings available. However, we should go over
all of the possibilities, as every installation is a little bit different, and one of these
settings might be just what we need.

As there are so many options that must be set, we will go through them in list format
as follows:

Language: This is the default language to use. The default is en for English.
context: This is how we tell Asterisk which context to put new calls in. The
default value is default.
switchtype: This is used only for PRI. The valid options are:

4ess: AT&T's 4ESS protocol
5ess: Lucent's 5ESS protocol
dms100: Nortel DMS100
euroisdn: EuroISDN
national: National ISDN 2 (default)
ni1: Old National ISDN 1

pridialplan: This setting is only occasionally used for PRI connections.
The options are:

unknown

private

local

national

international

•

•

•

°

°

°

°

°

°

•

°

°

°

°
°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[65]

overlapdial: This setting decides whether or not to send overlapping digits
while dialing. Valid options are "yes" and "no". However, please note that
most PRI implementations will use enbloc dialing. Hence, its best to leave
this as "no" unless instructed otherwise.
signalling: This setting chooses the signaling method. Valid options are:

em: E&M signaling
em_w: E&M Wink
featd: Feature Group D, Adtran style
featdmf: Feature Group D, US
featb: Feature Group B, US
fxY-ZZ, where Y can be o or s (this will be the same as
in system.conf), and ZZ can be ks for Koolstart, gs for
Groundstart, or ls for Loopstart
pri_cpe: PRI signaling, Customer Premises Equipment
(CPE) side
pri_net: PRI signaling, Network side
sf: SF Signaling
sf_w: SF Wink
sf_featd: SF Feature Group D, Adtran style
sf_featdmf: SF Feature Group D, US
sf_featb: SF Feature Group B

prewink: Prewink time, defaults to 50 ms.
preflash: Preflash time, defaults to 50 ms.
wink: Wink time, defaults to 150 ms.
flash: Flash time, defaults to 750 ms.
start: Start time, defaults to 1500 ms.
rxwink: Receiver wink time, defaults to 300 ms.
rxflash: Receiver flash time, defaults to 1250 ms.
debounce: Debounce, defaults to 600 ms.
usedistinctiveringdetection: Set this to "yes" for our FXO interface if our
phone company sends us a distinctive ring.
usecallerid: Set this to "yes" if we wish to use caller ID. Note that this may
cause a delay between rings and the pickup of calls by Asterisk, as Asterisk
will have to wait for caller ID information to be available. If our installation
cannot handle this, then we will have to set it to "no".

•

•

°

°

°

°

°

°

°

°

°

°

°

°

°

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[66]

hidecallerid: Set this to "yes", if we wish to mask our caller ID on outgoing
phone calls.
callwaiting: Set this to "yes" to enable call waiting on FXO devices.
restrictcid: This sends caller ID as Automatic Number Identification
(ANI) only, and is not available for the user.
usecallingpres: This toggles whether we want to use the caller ID
presentation for outgoing calls that the calling switch is sending.
callwaitingcallerid: This sets if we support caller ID for call waiting.
threewaycalling: This sets if we support three-way calling.
transfer: Here we can decide if we're supporting flash-hook transfers.
The use of this feature requires three-way calling.
cancallforward: Set this to "yes" if we want to be able to forward calls.
callreturn: Whether or not to support *69 for call return.
mailbox: Here we set the voicemail number of the mailbox. If this is set to a
valid voicemail number, and that account has a new message, then our user
will hear a stutter dial tone when he or she picks up the phone. If there is
more than just one context for voicemail, we can specify it as user@context.
echocancel: This variable can be set to "yes", "no", or a number defining how
many taps to cancellation (needs to be a power of 2).
echocancelwhenbridged: This sets whether we want to cancel echo when
the circuit is purely Time Division Multiplexing (TDM). Usually, echo
canceling is unnecessary; however, the sample configuration has it set
to "yes".
echotraining: This variable can be "yes", "no", or "800". It has been reported
on the user's list that a setting of 800 fixes most of the echo experienced on
TDM400P and X100P interfaces.
relaxdtmf: This setting can help if Asterisk keeps detecting voice as
DTMF (digits).
Gain settings:

txgain: In dB. This sets the TX gain, default of 0.0.
rxgain: In dB. This sets the RX gain, default of 0.0.

group: We can assign groups to our lines. This allows rollover when making
outgoing calls.
callgroup: This is a ring group.
pickupgroup: This is a pickup group. If another phone in your pickup group
rings, you can pick it up by dialing *8#.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

°

°

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[67]

immediate: This sets if we want calls picked up immediately, or if we want
to provide a dial tone. The default is "no", which means that we will provide
a dial tone, read digits, and complete the call.
callerid: We can set the caller ID number to "asreceived" or override it with
a specific number. "asreceived" only makes sense on trunk lines.
amaflags: This affects the recording of CDRs. It can be set to "default",
"omit", "billing", or "documentation".
accountcode: We can tie channels to account codes for billing purposes.
adsi: We can set this to "yes", if we have ADSI-compatible handsets.
busydetect: This can be set to "yes" to try to find whether lines are hung up
or busy.
busycount: This variable sets how many busy tones to hear before hanging
up a channel. The default value is 4, but increasing this may prevent some
seemingly random hang ups.
callprogress: This variable sets whether or not to use the call progress
detection algorithms.
progzone: Used in conjunction with callprogress. Set this to "us" for the
United States.
musiconhold: Sets which class of music on hold to use.
PRI idle extension: This group of settings can be used to more effectively use
channels on a PRI line. It is often used to multilink through PPP.

idledial: Sets the extension to dial from the idle line.
idleext: Sets the extension to dump the idle line to.
minunused: Sets minimum number of channels to leave unused.
minidle: Sets minimum number of channels to leave in the idle extension.
jitterbuffers: Default is 4. This is designed to smooth out jitter.
cadence: Defining custom ring cadences. Defining any here will cause the
default cadences to be turned off.
channel: This can be a channel or range of channels. These channels must
match those defined in /etc/dahdi/system.conf.

While there are many options available, we will only need a few of them. We can set
most of them once without the need to set them again. Usually, the defaults work
fine, but at least we know that if we're unhappy with the way our phone system acts,
we can easily configure it to perform the way we wish it to.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[68]

For /etc/asterisk/chan_dahdi.conf, we have the two major divisions of devices,
as we had in system.conf, namely lines and terminals. The definitions are the same
as before.

Lines
Once we have set the previous options, all we have to do is define the channel
number. It is best to set the signaling method within sight of the channel definition
so that problems are easier to debug. Supposing we have an FXO device on
channel 1, which we want to call group 1, we would have the following lines
in our /etc/asterisk/chan_dahdi.conf file:

signalling=fxs_ks
context=default
group=1
channel=1

Grouping these four lines close together in the file will make it easier to troubleshoot
any problems in the future.

Suppose we have two PRIs, as we did in the example in the Lines section of
system.conf. Our channel definitions could look like the following:

; incoming PRI
callerid=asreceived
context=default
switchtype=dms100
signalling=pri_cpe
group=2
channel=>1-23
channel=>25-47

By putting both of the incoming PRIs together, we saved ourselves some typing. As
long as we're happy with both trunks being in the same group, there is no reason
why we should have to redefine the variables.

One note on security is that we need to be careful what context we put our incoming
calls into. If we place them in a context that can dial long distance, then people can
relay telephone calls through our server.

Terminals
When defining the channels that our terminal devices connect to, we need to
remember to take into consideration more specific details about the uses of the
channel. For instance, analog handsets will be unable to send caller ID information,
so setting callerid=asreceived does not make much sense.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[69]

Furthermore, here is where we have to remember if we are using ADSI devices.
While it may be tempting for us to turn on adsi=yes for all lines, it tends to make
users angry when they hear some of the high-pitched beeps that sometimes are
emitted during conversations. Therefore, we should only enable ADSI on phones
that are ADSI compatible.

An example configuration for an FXS device on channel 2 might be:

signalling=fxo_ks
context=longdistance
callerid="My Name Here"<(850) 555-5555>
adsi=no
callgroup=1
pickupgroup=1
channel=2

As you can see, this phone does not support ADSI, has the correct caller ID set,
and has been placed in the call group 1, so that the user can pick up any calls for
terminals in the same group. Also, we need to take notice that the line channel=2
appears last.

We can repeat this process for all of the channels we need to define. Lines through
channel banks will be configured the same. In keeping with our previous example,
suppose we have a channel bank with 4 FXO devices, and 20 FXS devices. The
section would look like the following:

; channel bank configuration
; fxo devices
signalling=fxs_ks
context=default
group=1
callerid=asreceived
channel=49-52
;fxs devices
signalling=fxo_ks
context=longdistance
group=
callerid="John"<1234>
channel=53
callerid="Jacob"<2345>
channel=54
callerid="Jingleheimer"<3456>
channel=55
callerid="Smith"<4567>
channel=56
callerid="My Company"<(555) 555-5555>
channel=57-72

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[70]

Notice that I have not given a value for group in the longdistance context. This
moves these channels to be outside a group. In this instance, I don't feel using a
group number would be appropriate, as each phone may be for different functions,
and so on.

As you can see, the only different piece of information for each of the lines
in the channel bank is the caller ID. This makes it very convenient to define
all of the channels. We now have plenty of information to configure all of our
DAHDI terminals.

SIP interfaces
Session Initiation Protocol, or SIP, is a standardized Voice over IP (VoIP) protocol.
This protocol relies heavily on the RTP, which uses UDP ports in the TCP/IP stack.
It presents addresses in much the same format as email, as user@domain.

We configure this protocol by editing /etc/asterisk/sip.conf. This file has a
number of settings in a [general] section, followed our definitions of users.

There is a whole host of options that we can set. These options include:
context: Sets the default context for calls coming into the server. These calls
can be from our users, or if we are connected to the Internet, they can be from
anywhere. Just to be on the safe side, we should not set this to be a context
that can call long distance. The default is "default".
realm: Sets the realm of the server. As we discussed earlier, the calls are
addressed like email, in that the format is user@domain. This variable is how
we set the domain part. This could be your host name or a domain name. If
we enter nothing, it will work, and will set our realm to "asterisk", but we
really should set this to our domain name.
port: Sets the UDP port to listen on for connections. The default is 5060, and
we shouldn't change this unless we have a really good reason.
bindaddr: Specifies the IP address that we want the SIP service to bind to.
Keep in mind that if a machine has multiple IP addresses, we can specify that
it binds to all by using 0.0.0.0 as the bindaddr. Also keep in mind that if we
ever change the IP of the server, we will have to adjust this variable, unless
we use the 0.0.0.0 address. It may be a good idea to only bind where you
expect SIP traffic, for added security.
srvlookup: Determines if DNS SRV lookups are enabled. SRV records
in DNS are a way to allow other Internet users to point to our SIP server
without having to know its host name. This also allows us to be able to
change SIP servers without updating everybody's address. We can think of
this in the same vein as a DNS MX record. We should set this to "yes".

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[71]

pedantic: If we have Pingtel phones, we should set this to "yes". This enables
pedantic checking for multiline formatted headers.
tos: This is the QoS setting. We can choose to specify a numerical value,
or use the keywords "lowdelay", "throughput", "reliability", "mincost", or
"none". We should probably set this to "lowdelay", as users are typically
pretty annoyed by pops, cracks, and other inconsistencies in voice
conversations.
maxexpiry: This is the maximum length in seconds that we allow incoming
registrations to stay valid. We should set this to something reasonable. The
default is "3600", meaning registrations will time out after one hour.
defaultexpiry: This is the default length in seconds that we set for
incoming registrations. The default is "120", or 2 minutes.
notifymimetype: We can override the MIME type in SIP NOTIFY messages.
We should not modify this unless we absolutely have to.
videosupport: We can set this to "yes" to allow video support in SIP.
Asterisk is currently known to support H.261 and H.263 video; however,
since Asterisk 1.4, H.263p and H.264 are also now supported.
musicclass: Here we can set the default music-on-hold class for all SIP calls.
The default is "default".
amaflags: We have the same choices here as for amaflags in chan_dahdi.
conf—"default", "omit", "billing", or "documentation".
accountcode: We can set the account code to use for calls from this SIP user.
This can help with billing.
language: This is the default language for SIP users. We can set this to that of
the country where the server is, and then override this setting for any users
with a different language. The default is "en".
relaxdtmf: Just as in the chan_dahdi.conf file, we can relax the handling of
DTMF in SIP. This can be useful if Asterisk is detecting digits pressed in the
middle of voice conversations.
rtptimeout: Here we configure how long a period of inactivity will time out
calls. We set this to the number of seconds the RTP stream has to have no
activity before Asterisk will terminate the call. The default setting is 60.
rtpholdtimeout: Here we can configure the hold timeout in seconds. We set
this to a value greater than the rtptimeout. The default setting is 300.
externip: Here we set the external IP address of the Asterisk server. This is
very useful for piercing through NAT and some firewalls. This address will
be placed on outbound SIP messages.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[72]

localnet: Here we define all of the internal IP addresses. This tells
Asterisk which SIP messages to use the external IP on, and which ones
need the internal IP address. You will list the address range in the format
<network>/<subnet>. For example, 192.168.1.0/255.255.255.0.
register: Here we can tell Asterisk to register with a SIP provider or
service. An example of this would be: register => john:johnspassword@
sipprovider.com. Optionally, we can specify the port of the remote server
to use (if it is different from the default 5060) and the extension to drop all
calls into. If we were to specify these, and we wanted to use port 5061 and
place all incoming calls into extension 9999, it would look like: register =>
john:johnspassword@sipprovider.com:5061/9999.
codecs: Now we must define what encoders/decoders (codecs) we will
allow. This is done through a series of allow and disallow statements. First,
we should disallow all codecs by using the statement disallow=all. Then
we can enable codecs one at a time by typing allow=ulaw, allow=ilbc,
and so on, in order to allow all of the codecs we wish to use. The order
in which we enable the codecs will be the order in which Asterisk tries to
negotiate them.

Now that we have configured the global options, we must define our users. As we
do so, we can use most of the previous settings, as well as a few new options. Note
that in the general section, the order of allowed codecs mattered; however, as we
define our users, order will not guarantee the order of negotiation. The following
is a list of the options available to us as we define users:

type: There are three major types of users:
user: This connection is only permitted to send calls to us.
peer: We are permitted to send calls to this connection.
friend: This connection is both a user and a peer.

username: Sets the username for authentication.
secret: Sets the password used for authentication.
md5secret: MD5 hash of <user>:asterisk:<secret> for more
secure authentication.
fromuser: Overrides caller ID, and is required by Free World Dialup (FWD).
callerid: Sets the caller ID. An example would be: callerid=My Name
<1234>. It's usually a good idea to set fromuser and callerid to the
same string.
host: Sets the host address of the user. This can either be a static address or
the keyword "dynamic".

•

•

•

•

°

°

°

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[73]

defaultip: Used with host=dynamic. This sets the default IP for when the
extension has not registered.
nat: Sets whether or not this SIP device is behind a NAT firewall.
mailbox: Sets the mailboxes to check for messages for this user. This can be
just the mailbox ID, or the mailbox ID followed by @contextname.
qualify: How many milliseconds the device can be unreachable before
considering it as down.
canreinvite: We should set this to "no" if one of the devices is behind a
NAT. When two devices start having a conversation, they try to reinvite each
other, thereby skipping the Asterisk server. This is good to keep the load
down, as well as to lower the number of hops required in the network, but if
Asterisk is how we get through the NAT, the reinvite may not work.
call-limit (in older asterisk versions this is called incominglimit): We can
set the maximum number of calls a device can initiate at a time. Setting this
to "1" will disable the ability to do three-way calls or transfers on some
SIP phones.
dtmfmode: This sets the DTMF mode. The choice we make depends on the
hardware we're using. The valid options are "rfc2833", "info", and "inband".
callgroup and pickupgroup: These can be set as they were in
chan_dahdi.conf.
Security: We can use the keywords "permit" and "deny" to provide some
level of security. Order matters, as the last matching rule will be the
one followed.
deny: Lists IP addresses to deny. If we issue a deny=0.0.0.0/0.0.0.0, then
all attempts are denied. If we issue a deny=192.168.1.0/255.255.255.0,
then all connection attempts from the class C space of 192.168.1.0 are denied.
permit: Lists IP addresses to permit. By default, all IP addresses are
permitted. If we used deny 0.0.0.0, then we will now have to list all IPs and
blocks of IPs that we should allow.

Now that we have gone through the options, let's look at some examples. Suppose
we have already set all of the general options. We have three users—one for all
incoming SIP calls, one for calling out of FWD, and one for a SIP handset.

[sip_incoming]
type=user

[FWD-out]
type=peer
secret=mypassword

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[74]

username=myusername
fromuser=myusername
host=host.provider.com

[1000] ;this is the extension of the handset
type=friend
context=longdistance
username=1000
callerid=My Name <1000>
host=dynamic
defaultip=192.168.1.100
secret=2manysecrets
nat=no
canreinvite=yes
dtmfmode=info
outgoinglimit=1
incominglimit=2
mailbox=1000
disallow=all
allow=ulaw
amaflags=default
accountcode=company123

As you can see, the definitions can be as short as one line (assuming we defined
our default context in the general section) or as long as we need them to be. Now,
we need to edit our SIP configuration file for our needs. Take a look at the terminal
devices that we listed in Chapter 2, Making a Plan for Deployment where we selected
SIP as our protocol. We now have enough knowledge to be able to create a user for
each one of them.

IAX interfaces
Asterisk provides another VoIP protocol, much like SIP, called Inter-Asterisk
eXchange, or IAX. This protocol is easier to work with for many reasons, as we
discussed in Chapter 2. For this section, we will need all of the terminal device
details for which we selected IAX as the protocol.

Just as the name suggests, IAX is well-suited to connecting multiple Asterisk servers
together. At this point in our work with Asterisk, this is not what we need, as we are
limiting ourselves to one server. When we link multiple servers together, this feature
will become useful.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[75]

Following the pattern established, the IAX protocol is configured in /etc/asterisk/
iax.conf. Just like the SIP file, it has a number of general settings, followed by
settings for each individual user.

First, we will discuss options for the [general] section. They include:

port: Set the port to listen on. The default is 4569, which we should not
change without a very good reason.
bindaddr: Set the IP address to bind to. By default, it will bind to 0.0.0.0,
meaning all available IP addresses.
amaflags: Just as for SIP and DAHDI interfaces, we can set amaflags
for IAX.
accountcode: As for SIP and DAHDI interfaces, we can set an account code
to be used for billing purposes.
language: We can specify a language. If it is omitted, Asterisk will default
to English.
bandwidth: We can specify a level of bandwidth. This will automatically set
which codecs can and cannot be used. The valid choices are "low", "medium",
and "high".
Codec selection: Just as in sip.conf, we can disallow all codecs, and only
allow the codecs that we want to permit. If we use allow=all, it is the same
as using bandwidth=high.
jitterbuffer: This allows us to configure our jitter buffer. We should leave
it at jitterbuffer=no unless our network is unusually jittery because of the
added latency that using buffers will typically create.
trunkfreq: We can set the number of milliseconds between trunk messages.
The default of 20 ms should be good enough for most installations.
register: Just as in sip.conf, we can register with a remote server.
If our username is "johndoe", and our password is "foo", and we want
to register with "reallycoolhost.com", then the statement would be:
register=>johndoe:foo@reallycoolhost.com.
tos: Here we set our TOS bits. Valid choices are "lowdelay", "throughput",
"reliability", "mincost", and "none". Usually "lowdelay" is desirable.

Now that we have set our options in the general section, we need to define users.
We can see that it is very similar to the way we configured SIP. One difference
between the SIP and IAX protocols is that IAX will support RSA public/private key
encryption, along with the MD5 and plaintext authentication methods. If we choose
to use RSA authentication, then we must put the keys in /var/lib/asterisk/
keys/. All public keys must end with .pub, while private keys will end with .key.

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[76]

There are a few options that can be set per user entry, in addition to the settings
already mentioned. They include:

type: Just as in SIP, we can have "user", "peer", or "friend".
auth: Can be "md5", "plaintext", or "rsa".
inkeys: Name of the key file or files to use, with a colon between each
acceptable public key for RSA-encrypted authentication.
outkey: Name of the private key file to use for RSA-encrypted authentication.
secret: The password to use.
notransfer: If set to "yes", this will disable IAX's ability to use native transfers.
Security: Much like the allow/disallow pair for codec selection, we can use
permit/deny directives for IAX connections.

deny: List of all IP addresses and blocks to disallow access
from. If we enter "0.0.0.0/0.0.0.0", then all access will be
blocked.
permit: List of all IP addresses (as individual
addresses or blocks) to permit access from. If we enter
"192.168.1.100/255.255.255.255", then the user at
192.168.1.100 will be permitted access.

qualify: We set this to "yes" when we want to make sure a user's device is
connected before attempting to send calls to it.
trunk: We set this to "yes" to use IAX trunking. Trunking refers to putting
multiple phone calls in the same stream to save the overhead of packaging
each conversation individually. If we will often have multiple conversations
in progress with the same host (that is another Asterisk server uses this
account), then it is a good idea to set trunk=yes.

Now we have enough information to create all of our IAX users, so we will go
through an example. Suppose we have a user who will be on extension 2000,
with a password of 2000iscool. This is a hardware IAX phone, and as such,
will be dynamic and of the friend type. The user will be permitted to make
long-distance telephone calls, and their telephone will send the correct caller ID
name and number, and we will trust it. This user is only permitted to connect
from our local subnet, which is the class C address of 192.168.1.0.

[2000]
type=friend
secret=2000iscool
host=dynamic
defaultip=192.168.1.200

•

•

•

•

•

•

•

°

°

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[77]

callerid=asreceived
context=longdistance
deny=0.0.0.0/0.0.0.0
permit=192.168.1.1/255.255.255.0

We can now go through our listed devices and make similar entries for any of our
terminal devices of the type of IAX.

Voicemail
Asterisk provides a voicemail program called Asterisk Mail. Using
etc/asterisk/voicemail.conf, we can configure global options for
our voicemail system as well as define different voicemail boxes.

In the configuration file, we first have our general options:

[general]

The first setting we get to decide on is how to write the voice files as they are
recorded. The default is usually fine:

format=wav49|gsm|wav

Formats that don't match the codec of the call will require transcoding and all
applicable licenses. For a system designer looking to minimize transcoding, making
sure the voicemail will record in the applicable formats that are allowed for the calls
will be beneficial.

Next, we get to set up email notification. Asterisk mail will allow us to notify users
of new messages through email, and optionally, we can attach the voice files directly
to the message. This is the reason we select wav49 as the format in the previous code,
as most computers will be able to play the files. We choose the email return address
and whether we will attach the voicemail to the email with serveremail and attach
respectively. We can also choose the display name that the email comes from, by
setting fromstring. If we need to, we can also override the email sending program,
in the mailcmd variable.

serveremail=asterisk@mydomain.tld
fromstring=Asterisk PBX
attach=yes
mailcmd=/usr/bin/sendmail -t

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[78]

Now we need to set some limits on messages. We will define maxmessage, which is
the maximum length, in seconds, of a voicemail message. The variable minmessage
is similar, in that it is the minimum length, in seconds, of a voicemail message. We
also set maxgreet, which is the maximum length our users can record for a greeting,
again measured in seconds. Through maxsilence, we set how many seconds of
silence we accept before ending the recording. Thus, we could set:

maxmessage=180
minmessage=3
maxgreet=45
maxsilence=5

These are not the only variables for controlling the general behavior of Asterisk Mail.
We also have:

skipms: This defines the number of milliseconds to move ahead or back
when fast forwarding and rewinding the message.
maxlogins: This sets how many failed attempts users can have in one session
before being disconnected.
silencethreshold: This allows us to configure what the system will
consider to be silence. For the silence threshold, the smaller the number,
the lower ambient noise will have to be before it is recognized as silence.

To continue our example, we could have:

skipms=2000
maxlogins=3
silencethreshold=128

There are more options available for us to change the body of the email, notify
external programs of new voicemail messages, change our character set, and a
whole host of other options. However, the default settings should work in most
installations. If they do not meet our needs, we can configure them at any time.

Now that we have configured the general options, we have the option of creating
time zone messages. This is how we let Asterisk Mail know what it should say when
telling users about when messages arrived. For instance, if we lived in the Central
time zone, we would have:

[zonemessages]
central=America/Chicago|'vm-received' Q 'digits/at' IMp

Each time zone is defined in /usr/share/zoneinfo/. Just find a city in the desired
time zone to define the zone message.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[79]

The following is a larger example of zone messages:

[zonemessages]
madrid = Europe/Paris|'vm-received' Q 'digits/at' R
paris = Europe/Paris|'vm-received' Q 'digits/at' R
sthlm = Europe/Stockholm|'vm-recieved' Q 'digits/at' R
europa = Europe/Berlin|'vm-received' Q 'digits/at' kM
italia = Europe/Rome|'vm-received' Q 'digit/at' HMP
eastern = America/New_York|'vm-received' Q 'digits/at' Imp
central = America/Chicago|'vm-received' Q 'digits/at' Imp
pacific = America/Los_Angeles|'vm-received' Q 'digits/at' IMP

Finally, we have to define actual mailboxes. We have to place each mailbox in a
context. This context should be the same as the context that the user's extension will
appear in, and if possible, the voicemail box should be the same as the extension of
the user. The format for the configuration line is: voicemailbox => password,usern
ame,emailaddress,pageraddress,options.

We can use one or more options for each user. Some of the options to be aware of are:

tz: This sets the time zone, as defined in [zonemessages] in the
previous code
attach: This tells Asterisk Mail whether this particular user wants to have
their voicemail file attached to the email
saycid: This can make Asterisk Mail say the caller ID of the caller who left
the message
operator: This allows us to define whether the caller can press 0 to get an
operator while leaving a message

Each option is separated by the pipe (|) symbol.

So, if we wanted to have a normal voicemail box for extension 1000, with a password
of 1234, and accepting all of the defaults, and not sending email, we would have the
following line in voicemail.conf:

1000 => 1234,Example Mailbox

Now, suppose we wanted to set up a little more of an advanced example. Suppose
Joe User on extension 1001 with a password of 123456789 has an email address
of juser@domain.tld, no pager, and lives in the Central time zone. He wants his
voicemail message attached to his email, wants Asterisk Mail to speak the caller ID,
and wants his callers to be able to press 0 for an operator. His voicemail box line
would look like the following:

1001 => 123456789,Joe User,juser@domain.tld,,tz=central|attach=yes|
saycid=yes|operator=yes

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[80]

Great! We have just configured a fully-functional voicemail box. In a similar fashion,
we can now create all of the voicemail boxes we need.

Music on hold
Using music on hold, Asterisk enables us to stream MP3 or WAV files to any
handset or line. These streams are commonly used for music on hold and for
the music played while people are waiting in a queue. Each stream is configured
in /etc/asterisk/musiconhold.conf.

Asterisk gives us the flexibility of defining multiple instances of MOH, referred to as
classes. Each class can use a different directory of audio files and a different mode.
For our purposes, we will only be using the mode called files. This mode allows
us to use Asterisk's native players to stream music on hold.

Using Asterisk's native player also allows us to have our music on hold in various
formats that Asterisk supports. Our PBX will determine the best format to play.
Therefore, transcoding may be avoided if we create our music-on-hold files in the
format our channels are in.

There are two main directives we need to be aware of:

Mode: This refers to the mode we previously discussed. We will be using
files, meaning we will use Asterisk's native player.
Directory: This simply points Asterisk to the directory holding the
music-on-hold files.

If we choose to shuffle the music-on-hold media files, we can simply add the
directive called random and set it to yes.

A typical music-on-hold class would look like the following:

[default]
mode=files
directory=/var/lib/asterisk/music-on-hold
random=yes

That's all there is to it! We have now defined two different classes of music. Now, we
need to put in an entry for each different stream of audio files we want our phone
system to have.

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[81]

Please note that using MP3 files can add an extra burden to your systems resources
(CPU, and so on). For this reason many users today are using WAV files, and some
even use GSM. A great utility to convert your audio files to WAV or GSM is "SoX".
SoX is a sound file format converter found on most Unix systems. If your trying to
convert your MP3 to WAV you will need to use mpg123 or lame.

Converting MP3 to WAV:

mpg123 -w example.wav example.mp3

Converting Wav to GSM:

sox example.wav -r 8000 -c1 example.gsm resample -ql

Queues
As we discussed in Chapter 2, queues give us a logical place to put callers until
we are ready to answer the calls. Queues are a very flexible and powerful tool to
improve customer service, and better utilize our personnel.

When we edit /etc/asterisk/queues.conf, the first sections we will have are
[general] and [default]. Neither of them is used yet.

Below these headings, we come to where we will define our queues. For simplicity's
sake, I recommend we name the queue according to the main extension that will
represent it. For instance, if on our worksheet we entered that the queue would be
dialed from extension 1000, I would define the queue as follows:

[1000]

Now we need to set the parameters for the queue. First, we set the music that
the callers will hear until their call is answered. This is done by setting the music
variable as follows:

music = q1000

We are stating that the queue should play the music indicated in the q1000 class of
MOH, as defined in musiconhold.conf. Each queue can have its own music, or it
can use the default MOH.

Next, we define an announcement, if we wish to have one. This will play an audio
file to the agent when he or she answers the queued call. We might find this helpful
if we have agents answering multiple queues, to tell them which queue the calls
come from as they answer the calls. If we use this, be sure that we have a file in
/var/lib/asterisk/sounds/<promptfilename>.<extension> that works:

announce = <promptfilename>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[82]

Notice that we do not need to use the extension in the configuration file as Asterisk
will recognize valid files. However, even though we don't have to put the extension
in the filename in the configuration file, it must still have the correct extension in the
/var/lib/asterisk/sounds directory.

Now we need to define our strategy. We should have decided this on our worksheet.
For example, if we wanted to use the ringall strategy, we would enter:

strategy = ringall

If we do not define a strategy, Asterisk will default to ringall.

The following are different ring types one can use for a queue:

ringall: Rings all available agents until one answers
roundrobin: Take turns ringing each available agent
leastrecent: Rings the agent who was least recently called by this queue
fewestcalls: Rings the agent with fewest completed calls from this queue
random: Rings a random agent
rrmemory (round robin with memory): Remembers where we left off the last
ring pass

We may now define an escape context. We have not yet explored the full meaning of
a context, but will be doing so soon. If we checked the box indicating that our users
should be able to escape, we will call the context by the name of this queue, followed
by the word out. Therefore, for this example, it would be:

context = 1000out

Now we get to set the timeout. This is how long each handset will ring before
the queue will consider the call unanswered. We should set this to be the longest
reasonable time that we expect our agents to take to pick up the phone. In our case,
our agents do not use headsets, but answer questions on the computer. Therefore,
they should be given 15 seconds to answer the phone before we assume that they
are away from their desk.

timeout = 15

Next, we define the amount of time we wait before trying all of the extensions again.
As our company handles many calls, and we want our customer to have the shortest
possible wait time, we will define it to be 0 seconds.

retry = 0

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[83]

Now we can set a limit on how many calls will be enqueued. As we want to allow
every caller to enter the queue, we will set this to 0.

maxlen = 0

On our worksheet, we decided if we wanted to announce callers' positions in the
queue, along with an estimate of how long they can expect to be kept in the queue.
First, we enter how often we want these announcements. As I want it to happen every
two minutes, I will set it to 120 seconds. If I wanted to have no announcements,
I would enter 0.

announce-frequency = 120

Now we set whether or not to give estimates of waiting time when the current queue
position is announced. Valid options are yes, no, and once, meaning the queue
application will announce the position only once, when the caller first enters the
queue. As I do want to announce their estimated wait time, I enter:

announce-holdtime = yes

Next, we can define filenames for the announcement. As the defaults work for us, we
will not change them. If we started serving people who spoke a different language,
we could change the recordings to use each user's native tongue.

Finally, we define our members. We have a bit of flexibility in defining this. We can
either define them as being agents in the queue, or we can hardcode the members to
be handsets. As we want to do things right, we will define the members to be agents.

member => Agent/007
member => Agent/777

Notice that this only means that we have two members assigned to the queue, agent
007 and agent 777, as defined in agents.conf.

We can now go on and define other queues, in exactly the same way as above. There
is no built-in limit to the number of queues we can define. It depends only on the
resources of the server.

Conference rooms
We now configure our conference rooms. These are defined and configured using the
file /etc/asterisk/meetme.conf.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Configuring Asterisk

[84]

This file is among the simplest configuration files we will encounter. When we open
the file we see something like the following:

;
; Configuration file for MeetMe simple conference rooms
; for Asterisk of course.
;
[rooms]
;
; Usage is conf => confno[,pin]
;conf => 1234
;conf => 2345,9938

As you can see, we have only to define the conference number. We have the option
of creating a PIN, to give some level of security to the conference room. In the
previous configuration file, two conference rooms were created. The first had no
password set, and is conference number 1234. The second, conference 2345, will
require that people enter the password of 9938 before they can join the conference.

For ease of administration, I suggest we start off using the same conference number
as the extension that we're going to call it. As we move around the configuration files
we see the advantage of using an extension number as name, especially when trying
to troubleshoot a configuration.

Summary
This chapter has walked us through the process of configuring the key parts of
Asterisk needed by most PBX setups. We looked at settings for:

chan_dahdi.conf and DAHDI (system.conf)
Session Initiation Protocol, SIP (sip.conf)
Asterisk's homebrew protocol, Inter-Asterisk eXchange, IAX (iax.conf)
Voicemail (voicemail.conf)
Music on hold (musiconhold.conf)
Call queues (queues.conf)
Conference rooms (meetme.conf)

The next step, as we discover in the next chapter, is to create a dialplan to tell
Asterisk how to handle any particular incoming call.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan
Congratulations! We have now installed Asterisk and configured most of your new
open source phone system. Some readers may now be asking, "Are we there yet?".
Well, quit whining—it's not far now and we have already come a good way. Let's
pause for a moment and review the plan that we created in Chapter 2, Making a Plan
for Deployment, where we should have decided what extensions and services we'll
provide. Relax, the hard part is behind us, and now we might even start having fun!

In this chapter, we are going to create a full dialplan together. What is a
dialplan? Asterisk is a powerful and flexible solution for many different
telephony needs. Did you ever wonder how we use all of these features? This
is how. At this point, programming experience may well give you an advantage,
but it is by no means essential.

When calls come into the switch, we tell Asterisk step-by-step how to handle the call.
Steps can be as simple as playing a sound file to running a customized script. We are
limited mostly by our imaginations at this point.

We define all the steps we want Asterisk to perform in our extensions.conf file, in
the customary location /etc/asterisk.

Before we begin, we need to set priorityjumping=yes in the [general] section of
extensions.conf. This will allow the tips and tricks in this chapter to work with
Asterisk 1.6.x.

Creating a context
What is a context? Simply said, a context is a group of extensions. Each extension must
exist within a context. There is more to contexts than grouping extensions though.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[86]

In our extensions.conf file (or any included files), a context is denoted by square
brackets "[]", as shown:

[mycontext]
. . .

So, if a context is a group of extensions, why do we need more than one? Let's
think for a minute. Not all employees should be able to dial every phone. Would
you trust your 16-year-old intern with the ability to dial international calls? I
wouldn't. Also, do you want your president to be bothered by customers in the
waiting room who use a courtesy phone and misdial? We could find that hazardous
to our continued employment.

Certain extensions are hidden or made inaccesible from other extensions by context.
This gives us some level of security. It also allows us to host multiple phone systems
on a single server.

Imagine you have two businesses on the same phone system, each with only two
handsets. It'd be a pain to have each dial four digits to reach the other handset. We
can use contexts to treat each company as if it were on a separate server.

Something very important about contexts is we can include other contexts through
the use of the include directive. This means all extensions in an included context are
available. The value of this may not be immediately apparent, but soon we will see
the full power of this tool.

Suppose we have some context named bob. If we wanted bob to include default,
then we would have the following in our extensions.conf:

[bob]
include => default

This single line placed in any context gives that context the ability to dial any
extension in the default context, as well as all contexts included in the default
context. This means that if the default context included the foo context, then
anybody in the bob context could dial extensions in the foo context.

Suppose we had the following in our extensions.conf file:

[foo]
exten => 1,1,Playback(tt-monkeys)
include => bar

[bar]
exten => 1,1,Playback(tt-weasels)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[87]

Now I know that we haven't yet discussed the definition of extensions. That's OK.
All we need to know is that extension 1 in foo will play back a file that sounds like
monkeys, and extension 1 in bar will play back a file that says, "weasels have taken
over our phone system".

If we are in context foo and press 1, which file will play? This shows us the danger
of include. We should be careful not to include multiple matches for the same
extension. If we do include multiple contexts, the first included context with a
match will win. Consider the following file:

[foobar1]
include => foo
include => bar

[foobar2]
include => bar
include => foo

If we are in context foobar1 and press 1, we will hear monkeys, while if we are in
context foobar2 and press 1, we will hear weasels. While this can trip the unwary,
we will use it to our advantage later on.

Creating an extension
We all have a good idea about what an extension is. On our legacy PBX, each handset
was an extension. Pretty simple, right?

While conceptually simple, there is a little wrinkle. If all we want to do is provide a
few handsets, then there's one extension per phone. But Asterisk can do much more!
We need to think of an extension as a group of commands that tells Asterisk to do
some things. As amorphous as that may be, it's true.

An extension can be tied to one handset, a queue, groups of handsets, or
voicemail. An extension can be attributed to many different areas of the system.
If you're familiar with programming terms, perhaps you could say that extensions
are polymorphic.

To go further, extensions can be used to provide access to other applications, sound
files, or other services of Asterisk. Extensions are important to the magic of Asterisk.

Now that we know why we create extensions, let's think about how we create them.
Again, they are in the extensions.conf file, or any files that you include from there.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[88]

We may decide to break up files such as extensions.conf into
multiple configuration files. A common example of this is when we
create large groups of extensions and choose to give each its own file.
This also applies to the other configuration files we use.

The general format for a line in the extensions.conf file is:

exten => extensionnum,priority,action

Let's take a closer look. Each line begins with the command exten. This is a directive
inside Asterisk. You do not change this for each extension.

Next, we have the extension number. Each extension has a unique number. This
number is how Asterisk knows which set of commands to run. This extension can be
detected in three major ways. First, the phone company may send it in with the calls,
as is the case with DID numbers. Users can enter an extension using their touch-tone
keys. Finally, there are a few special extensions defined. Some of these are:

s: start extension. If no other extension number is entered, then this is the
extension to execute.
t: timeout extension. If a user is required to give input, but does not do so
quickly enough, this is the extension that will be executed.
i: invalid extension. If a user enters an extension that is not valid, this is the
extension that will be executed.
fax: fax calls. If Asterisk detects a fax, the call will be rerouted to this extension.

Then we have the priority. Asterisk will start at priority 1 by default, complete the
requested command, and then proceed to priority n+1. Some commands can force
Asterisk to jump to priority n+101, allowing us to route based on decisions, such as
if the phone is busy.

Finally, we have the action. This is where we tell Asterisk what we want to do. Some
of the more common actions we may want to perform are:

Answer: This accepts the call. Many applications require that the call be
answered before they can run as expected.
Playback(filename): This command plays a file in .wav or .gsm format. It
is important to note that the call must be answered before playing.
Background(filename): This command is like Playback, except that it
listens for input from the user. It too requires that the call be answered first.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[89]

Goto(context,extension,priority): Here, we send the call to the
specified context, extension, and priority. While useful, this can be a bad
style, as it can be very confusing to us if something goes wrong. However, it
can be a good style if it keeps us from duplicating extension definitions, as
moves, adds, or changes would only have to be updated in one place.
Queue(queuename|options): This command does what it seems like it
should. It places the current call in the queue, which we should have
already defined in the queues.conf file.
Voicemail(extension): This transfers the current call to the voicemail
application. There are some special options as well. If we preceed the
extension with the letter s, it skips the greeting. When we place the letter
u before the extension, it uses the unavailable greeting, and b uses the
busy greeting.
VoicemailMain: This application allows users to listen to their messages, and
also record their greetings and name, and set other configuration options.
Dial(technology/id,options,timeout): This is where we tell Asterisk
to make the phone ring, and when the line is answered, to bridge the call.
Common options include:

t: Allow the called user to transfer the call by pressing the
key.
T: Allow the calling user to transfer the call by pressing the
key.
r: Indicate ringing to the calling party.
m: Provide music on hold to the calling party.
H: Allow the calling party to hang up by pressing the * key.
g: Go on in the context if the destination hangs up.

While this list is not exhaustive, it should be enough to get us started. Suppose we
just want to make a DAHDI phone ring, which is on interface 1, and we are going to
work completely in the default context. Our extensions.conf file would look like:

[default]
exten => s,1,Dial(dahdi/1)

Pretty simple, right? Now, imagine we want to transfer to the voicemail of user 100 if
someone is on the phone. As Dial sends you to priority n+101 when the line is busy
or not available, all we have to do is define what we want to do. Our dialplan would
look like:

[default]
exten => s,1,Dial(dahdi/1)
exten => s,102,Voicemail(b100)

•

•

•

•

•

°

°

°

°

°

°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[90]

Great! We have some of the functionality that users have come to expect. But are
you happy yet? The problem is that a phone could ring for years before someone
picks it up.

So, for our next exercise, suppose we want to transfer the call to voicemail when the
phone is not answered in 30 seconds. So, obviously, we're going to have to use the
option in Dial to define a time-out. Our dialplan would have something like:

[default]
exten => s,1,Dial(dahdi/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)

All we're doing is telling Asterisk how to handle the call, in a step-by-step way.
It is important to think about all scenarios that a call can go through, and plan for
them. Just to reiterate a point I made earlier, planning ahead will save us hours of
debugging later.

Suppose we want to send anyone who is in a place where they shouldn't be to user
0's voicemail, which will be checked periodically by the receptionist.

[default]
exten => s,1,Dial(dahdi/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)
exten => t,1,Voicemail(s0)

All right, we're getting somewhere now! At least we know each call will be
handled in some way. What about faxes? Suppose we have only one fax machine
(or a centralized fax server) on DAHDI interface 2, then our dialplan should look
similar to:

[default]
exten => s,1,Dial(dahdi/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)
exten => t,1,Voicemail(s0)
exten => fax,1,Dial(dahdi/2)

Congratulations! We now have a working phone system. May be not the most
interesting yet, but we're making great progress. Don't worry, our phone system
will grow in features.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[91]

Now, to create a list of useful extensions, we need to define a set of commands for
each handset we have. Suppose we have three SIP phone users—1001-1003, with
extensions 1001-1003. Our default context would look like:

[default]
exten => 1001,1,Dial(SIP/1001|30)
exten => 1001,2,Voicemail(u1001)
exten => 1001,102,Voicemail(b1001)

exten => 1002,1,Dial(SIP/1002|30)
exten => 1002,2,Voicemail(u1002)
exten => 1002,102,Voicemail(b1002)

exten => 1003,1,Dial(SIP/1003|30)
exten => 1003,2,Voicemail(u1003)
exten => 1003,102,Voicemail(b1003)

exten => i,1,Voicemail(s0)
exten => t,1,Voicemail(s0)
exten => fax,1,Dial(dahdi/2)

For every extension we add, the length of extensions.conf will grow by four lines
(three lines of code, and one line of whitespace). This is not very easy to read, and it
is very easy to make mistakes. There has to be a better way, right? Of course there is!

We can use macros to define common actions. We will create a special macro context.
The name of these contexts always starts with macro-. Suppose we want to call this
one macro-normal. We would have:

[macro-normal]
exten => s,1,Dial(${ARG2}|30)
exten => s,2,Voicemail(u${ARG1})
exten => s,102,Voicemail(b${ARG1})

Now, to create the same three extensions, we would have:

exten => 1001,1,Macro(normal|1001|SIP/1001)
exten => 1002,1,Macro(normal|1002|SIP/1002)
exten => 1003,1,Macro(normal|1003|SIP/1003)

So now, each extension we add requires only one extra line in extensions.conf.
This is much more efficient and less prone to errors. But what if we knew that any
four-digit extension beginning with a 1 would be a normal, SIP extension?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[92]

Here it is time for us to discuss Asterisk's powerful pattern-matching capabilities. We
can define extensions with certain special wildcards in them, and Asterisk will match
any extension that fits the description.

Using the underscore (_) character warns Asterisk that the extension number will
include pattern matching. When matching patterns, the X character represents
any number (0 to 9), the Z character will match the numbers 1 to 9, the N character
represents numbers 2 to 9, and the period (.) represents a string of any number
of digits.

Also, we can use certain variables in our dialplan. One such variable is ${EXTEN},
which represents the extension that was used.

So, for this example, we could use the following definition:

exten => _1XXX,1,Macro(normal|${EXTEN}|SIP/${EXTEN})

This one line of code has now defined 1000 extensions, from 1000 to 1999. All we
have to do is ensure that our voicemail user, extension, and SIP user are all the same
number. Pretty cool, huh?

Note that if we wish to modify the behavior of all extensions, all we have to do is
modify the macro. This should help us quite a bit as we tweak Asterisk to fit our
business needs.

Creating outgoing extensions
With this dialplan, we have only catered for incoming calls. Of course we will want
to create extensions to dial out.

How these outgoing extensions look depends on the plan we made earlier. It also
depends on how you want the switch to act for your users. We always want to make
it as similar to any old system as possible to reduce the need to retrain users.

Most phone systems require a user to dial a certain digit to designate the call as one
that has a destination outside the switch. In our legacy PBX, we accessed outgoing
lines by dialing a 9. To copy this behavior, we could do something like:

[outgoing]
exten => _9.,1,Dial(dahdi/g1/${EXTEN:1})

Notice that we are using pattern matching as we did before. Also notice that we used
g1 as the DAHDI interface. This is a good use for a group. This simply means "any
free interface in group 1". Thus, if we put all of our outgoing lines in group 1, when
we dial an outside number, we do not have to guess which channel is free.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[93]

Remember that the variable EXTEN represents the extension that we are in. If a user
dials 95555555, then EXTEN is equal to 95555555. By using ${EXTEN:1}, we instruct
Asterisk to strip the first (leftmost) digit. Thus, ${EXTEN:1} equals 5555555. If we
wanted to strip the two leftmost digits, it would be ${EXTEN:2}.

Many discount long distance carriers will charge the same for local calls as long
distance. In a case like that, we would want to make sure that local and toll-free calls
went out on lines connected to the local telephone company, while calls destined for
long distance locations should go out through our discount carrier. For this example,
we will assume that the discount carrier is DAHDI group 1, and the local telephone
company is DAHDI group 2.

[outgoing]
exten => _9N.,1,Dial(Zap/g2/${EXTEN:1})
exten => _91.,1,Dial(Zap/g1/${EXTEN:1})

Therefore, if the number dialed is preceded with a 9 and a 1, then the call will go out
through our DAHDI group 1 lines, and if it does not have a 1, it will go out through
our group 2 lines.

What if we had used the following?

[outgoing]
exten => _9X.,1,Dial(Zap/g2/${EXTEN:1})
exten => _91.,1,Dial(Zap/g1/${EXTEN:1})

Notice that this is a problem. When we dial 9, followed by 1, we have two statements
that match. When you start Asterisk, you will notice that the system parses the
extensions.conf (and included files) and immediately reorders all of the extensions
before building a database file. Therefore, it is ambiguous as to which statement it
will execute.

While this method is technically functional, it is not the best way to do it. A better
way would be:

[outgoing]
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1})

This does not allow for medium distance dialing. It also does not handle the case of
all lines being busy in one of the groups. Let's see how we could take care of that:

[outgoing]
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _9NXXXXXX,2,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXXXXX,2,Dial(Zap/g2/${EXTEN:1})

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[94]

This is getting much better, but what when all of our lines are busy for both groups?
We should probably notify the user that their call didn't go through because all lines
are in use. We could do something like this:

[outgoing]
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _9NXXXXXX,2,Dial(Zap/g1/${EXTEN:1})
exten => _9NXXXXXX,3,Congestion
exten => _91NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXNXXXXXX,3,Congestion
exten => _91NXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXXXXX,3,Congestion

Imagine a phone switch, in which all extensions were exactly four digits long. How
would this knowledge affect our outgoing lines? Perhaps the fundamental question
is whether we really need to dial the 9 at all. While people generally expect to dial a 9
at work, they do not seem to care to do so from home. May be we should do this:

[outgoing]
exten => _NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _NXXXXXX,2,Dial(Zap/g1/${EXTEN:1})
exten => _NXXXXXX,3,Congestion
exten => _1NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _1NXXNXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _1NXXNXXXXXX,3,Congestion
exten => _1NXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _1NXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _1NXXXXXX,3,Congestion

There is a drawback to this configuration. If you are using DAHDI interfaces, and
people are touch-tone dialing, Asterisk will have to wait for a timeout period to
complete dialing some four-digit extensions. The reason for this is simple. Any
extension number that partially matches the beginning of the patterns above will
have to be held to see if more digits are coming. However, SIP and IAX phones do
not seem to suffer the same issue.

Because of this issue, from here we will assume that all outgoing calls are preceded
with the digit 9.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[95]

We have already discussed that contexts can provide security for outgoing phone
calls, but this example fails to describe such security. Suppose you have two groups
of employees, those who may make toll calls, and those who may not. All employees
have an individual handset. The most logical choice is to make two contexts:

[longdistance]
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _9NXXXXXX,2,Dial(Zap/g1/${EXTEN:1})
exten => _9NXXXXXX,3,Congestion
exten => _91NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXNXXXXXX,3,Congestion
exten => _91NXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXXXXX,3,Congestion

[local]
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _9NXXXXXX,2,Dial(Zap/g1/${EXTEN:1})
exten => _9NXXXXXX,3,Congestion

We simply place each handset into one of the two contexts, based upon what
numbers we want them to be able to dial. While this would work, we duplicated
three lines between the contexts. Remember when we discussed contexts, and I
mentioned that we can use the include directive? Here's a good place to do so.
So now, we have:

[longdistance]
exten => _91NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXNXXXXXX,3,Congestion
exten => _91NXXXXXX,1,Dial(Zap/g1/${EXTEN:1})
exten => _91NXXXXXX,2,Dial(Zap/g2/${EXTEN:1})
exten => _91NXXXXXX,3,Congestion
include => local
[local]
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _9NXXXXXX,2,Dial(Zap/g1/${EXTEN:1})
exten => _9NXXXXXX,3,Congestion

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[96]

Let's take a quick look at what we have. We can now place handsets in the local or
longdistance context. This gives us a good bit of security, but there is one small
problem. Do you see it? If we put our users into either context, they cannot dial
internal extensions. Assuming we allowed calling our local extensions in the
default context, we should update the local context like so:

[local]
exten => _9NXXXXXX,1,Dial(Zap/g2/${EXTEN:1})
exten => _9NXXXXXX,2,Dial(Zap/g1/${EXTEN:1})
exten => _9NXXXXXX,3,Congestion
include => default

By so doing, we give access to the extensions for the local context. We also
give access to the default context for those in the longdistance context because
longdistance includes local, which in turn includes default.

Thus, we must be very careful about what we include. When we include any context,
we are in turn including all contexts it includes. It is easy to include our way out of
the security we set up.

Advanced Call Distribution
What exactly is Advanced Call Distribution? Many phone systems tout this feature,
but most do not adequately define what it means. Basically, it refers to using call
queues, parking calls for another user to answer, and Direct Inward Dialing (DID).

So that we keep our focus, we will look at each of these elements individually.

Call queues
In Chapter 4, Configuring Asterisk, we configured call queues through the /etc/
asterisk/queues.conf file. As we go through how we're going to use our queues,
we may decide we want to change the way our queues are configured. There is
absolutely no problem with changing the configuration so that it more accurately
reflects our needs. Just remember that we need to issue a reload on the Asterisk
console, or type #asterisk –r –x reload at the command line.

The power and flexibility of other ACD systems can be matched or exceeded by
Asterisk. As we evaluate our needs, we should remember that configuring a single
aspect of Asterisk sometimes requires changes to more than one file. For example,
queues will be configured both in the queues.conf file and the extensions.conf
file. As we have already discussed the queues.conf file in Chapter 4, we will discuss
how to set up extensions.conf to give us the desired result.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[97]

When dealing with call queues, we need to think about the two types of users we
have. First, we have the caller who calls in and waits in the queue for the next agent.
We can think of this person as our customer. Next, we have the agents who work the
queue. We can think of these people as our users.

As a business, we have to decide what we want our customers' experience to be. Our
call queue can make it sound like a phone is ringing. Or we can use music on hold
while the customer waits. We can also announce call position and estimated wait
time if we want to.

When we place customers in a queue, we use the Queue application. To place a caller
in the queue named bob, we would use something like:

exten => 1000,1,Queue(bob)

Suppose we have an operator's extension. As Ollie the operator may have more than
one call at a time, we decide to give him a call queue. His calls are always about a
minute long. The customers waiting for him are going to be there because they got
lost in a system of menus. His queue will be named operator.

In this instance, we will choose to have the customer hear the ring, so they will
believe they are about to be helped. The sound of ringing should not last more
than about a minute. We will not announce call queue length because our
customer should not know that he or she is in a queue.

The entry for this queue would be:

exten => 0,1,Queue(operator|tr)

Notice our use of options. Options for the queue application include:

t: Allow the user to transfer the customer.
T: Allow the customer to transfer the user.
d: This is a data-quality call.
H: Allow the customer to hang up by hitting *.
n: Do not retry on timeout. The next step in the dialplan will be executed.
r: Give the customer the ringing sound instead of music on hold.

Thus, we told the Queue application to make the customer hear the ring, and the user
(Ollie) the ability to transfer calls (as he's the operator).

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[98]

Now, suppose we have Rebecca, the receptionist at SIP phone 1006. When Ollie goes
to the bathroom, we want our poor lost customers to be routed to her. So we could
use the following in our extensions.conf file:

exten => 0,1,Queue(operator|trn)
exten => 0,2,Dial(SIP/1006)

Now, Rebecca had better answer this. Until she does, the phone will continue to ring.
Notice that this call will never end up in Rebecca's voicemail, as it is not transferred
to her extension, but instead dials her phone directly.

We have adequately addressed the customer's experience. But now we need to look
at how our users will join and leave the queue. Previously, we discussed the power
and flexibility of using agents in queues. As with most things in Asterisk, there
are many ways we can associate members to queues. The three main ways
are—statically, dynamically, and by using agents.

Our first option is to have members statically assigned to the queue. In order to do
this, we use the member directive in the queues.conf file. This is most helpful when
we have a queue with fixed members, such as a switchboard queue.

Our second option is to allow members to log in dynamically. We do this through
the AddQueueMember application. An example of this would be:

exten => 8101,1,AddQueueMember(myqueue|SIP/1001)

Whenever anybody dials extension 8101, the telephone handset SIP/1001 would be
added to the queue named myqueue. All that we would have to do is define a login
extension for every member of every queue.

What happens when this member no longer wishes to be in the queue? We use the
RemoveQueueMember application, like this:

exten => 8201,1,RemoveQueueMember(myqueue|SIP/1001)

With this configuration, whenever anybody dials extension 8201, the telephone
handset at SIP/1001 is removed. Again, we would have to define a logout extension
for each member of the queue.

Suppose we did not wish to define a login and logout extension for each member.
We have the option of leaving off the interface (SIP/1001 in the previous example)
and having Asterisk use our current extension. While this is very useful, Asterisk
does not always use the right value. However, if it works for all extensions that
need to be in the queue, we would only have to define one login and one logout
per queue. The code would look like:

exten => 8101,1,AddQueueMember(myqueue)
exten => 8201,1,RemoveQueueMember(myqueue)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[99]

This is better than having to define a login and logout for each member of each
queue, but sometimes users are not good at remembering multiple extensions to
dial. The AddQueueMember application will jump to priority n+101 if that interface
is already a member of the queue. Therefore, we could define an extension like:

exten => 8101,1,Answer
exten => 8101,2,AddQueueMember(myqueue)
exten => 8101,3,Playback(agent-loginok)
exten => 8101,4,Hangup
exten => 8101,103,RemoveQueueMember(myqueue)
exten => 8101,102,Playback(agent-loggedoff)
exten => 8101,105,Hangup

When we define it this way, a user dialing extension 8101 is logged in if not already
a member of the queue, or logged out if in the queue. Also, we added a confirmation
to the action, so that the user can know if they are now in or out of the queue. Notice
that before we could use the Playback application, we had to answer the call. If we
have a lot of these, we could define a macro extension, like:

[macro-queueloginout]
exten => s,1,Answer
exten => s,2,AddQueueMember(${ARG1})
exten => s,3,Playback(agent-loginok)
exten => s,4,Hangup
exten => s,103,RemoveQueueMember(${ARG1})
exten => s,104,Playback(agent-loggedoff)
exten => s,105,Hangup
. . .
[default]
exten => 8101,1,Macro(queueloginout|queue1)
exten => 8102,1,Macro(queueloginout|queue2)
exten => 8103,1,Macro(queueloginout|queue3)

And thus we see that using a macro will save us five lines in our extensions.conf
for every queue after the first. This is how we can add queue members dynamically.

Our final option for adding queue members is by using Asterisk's agent settings. We
were able to define agents in /etc/asterisk/agents.conf. We create an agent by
defining an ID and a password, and listing the agent's name.

In the queues.conf, we could define agents as members of queues. Calls will not
be sent to agents unless they are logged in. In this way, queues can be both dynamic
and static—they are static when we do not change the members of the queues, but
dynamic when calls will go to different handsets based upon which agents are
logged in.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[100]

There are two main types of agents in this world. There are the archetypical large
call center agents who work with a headset and never hear rings, and there are the
lower-volume agents whose phone rings each time a call comes in. Asterisk has the
flexibility to handle both types of agents, even in the same queue.

First, imagine a huge call center that takes millions of phone calls per day. Each
agent is in multiple queues, and we have set each queue to use an announcement at
the beginning of calls to let the agent know which queue the call is coming in from.
As employees arrive for their shift, they sit down at an empty station, plug in their
headset, and log in. Each employee will hear music in between calls, and then hear a
beep, and the call will be connected. To accomplish this, we use the line:

exten => 8001,1,AgentLogin

Through the normal login, the call is kept active the whole time. The agents will
logout by hanging up the phone. This allows large call centers to be quieter, as
the distraction of ringing phones will be removed. It also allows for more efficient
answering of lines, as the time required to pick up the phone is eliminated.

When our users arrive at work and wish to log in, they call extension 8001, where
they are prompted for their agent ID, password, and then an extension number
at which they will take calls. This is how Asterisk knows how to reach them. Our
agents can log out when using AgentCallbackLogin by going through the same
procedure as for login, with the exception that when they are prompted for their
extension, they press the # key.

It may be a good idea for us to review agents.conf. If we defined autologoff, then
after the specified number of seconds of ringing, the agent will be automatically
logged off. If we set ackcall to yes, then agents must press the # key to accept calls.
If we created a wrapuptime (defined in milliseconds), then Asterisk will wait that
many milliseconds before sending another call to the agent. These options can help
us make our phone system as user friendly as we want it to be.

Through the use of call queues, we can distribute our incoming calls efficiently and
effectively. We have plenty of options, and can mix and match these three ways of
joining users to queues.

Call parking
In many businesses across the United States, an operator can be heard announcing
"John, you have a call on line 3. John, line 3." In Asterisk, we don't really have lines
the way analog PBXs do. Our users are accustomed to not having to transfer calls,
especially when they may not know exactly where John is.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[101]

Asterisk uses a feature known as call parking to accomplish this same goal. Our
users will transfer calls to a special extension, which will then tell them what
extension to call in order to retrieve the call. Then our users can direct the
intended recipient to dial that extension and connect to the call.

In order to be able to use this feature, we must define our parking lot. This is done
in the /etc/asterisk/parking.conf file. In this file, there are only a few options
that we will need to configure. First, we must create the extension that people are to
dial in order to park calls. This can be whatever extension is convenient for us. Then
we will define a list of extensions on which to place parked calls. These extensions
will be what users dial to retrieve a parked call. Next, we will define what context
we want our parked calls to be in. Finally, we will define how many seconds a call
remains parked before ringing back to the user who parked it. Here is an example:

[general]
parkext => 8100
parkpos => 8101-8199
context => parkedcalls
parkingtime => 120

These settings would mean that we can park calls by dialing 8100, and the call will
be placed in extensions 8101 through 8199, giving us the ability to have up to 99
parked calls at any given time. The calls will be in the context called parkedcalls,
which means we should be careful to include it in any context where users should
be able to park and retrieve calls.

When our users transfer a call to extension 8100, they will hear Asterisk read out the
extension that the call has been placed on. They can now make a note of it and notify
the appropriate co-worker of the extension to reach the calling customer on. If the
call is not picked up within the given parkingtime, then the call will ring back to
the user who parked the call.

By using call parking, we can help our users by providing a feature similar to that
of previous generations of PBXs. This also allows users to collaborate and redirect
callers to other users who are better equipped to handle our customers' needs.

Direct Inward Dialing (DID)
Suppose we work at a healthcare company with over 100 employees. We have two
PRI lines coming in, and only three switchboard agents to handle incoming calls. As
a healthcare company, we schedule many appointments, answer questions about
prescriptions, and help patients with billing questions. These three agents are
always busy.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[102]

Now suppose the IT guy's wife calls in to ask if he wants sprouts or mash with his
dinner. Do we want our switchboard agents to have to answer the call, find out who
it is and what they want, and then transfer the call, or would we rather want the IT
guy's wife to call her husband directly?

This is where Direct Inward Dialing (DID) comes in handy. DID is a service
provided by phone companies where they send an agreed-upon set of digits,
depending on the number the customer dialed. For most phone companies, the sent
digits will be the full ten-digit number (in the United States). But this can be as small
as the last digit.

All right, so the phone company is sending digits. What are we going to do with them?
Imagine you have a PRI coming in to your office, and only ten phone numbers—a
block from (850) 555-5550 to 5559. Your phone company has agreed to send you only
the last digit dialed, which will be from 0 to 9, because you are guaranteed for this to
be unique. Asterisk can route calls based on this DID information.

If we have our PRI line's channels defined to go into a context called incoming, this
context could look like:

[incoming]
s,1,Goto(default,s,1)
i,1,Goto(default,s,1)
t,1,Goto(default,s,1)

0,1,Goto(default,1234,1)
1,1,Goto(default,2345,1)
2,1,Goto(default,3456,1)
3,1,Goto(default,4567,1)
4,1,Goto(default,5678,1)
5,1,Goto(default,6789,1)
6,1,Goto(default,7890,1)
7,1,Goto(default,1111,1)
8,1,Goto(default,1111,1)
9,1,Goto(default,1111,1)

There are a few things we should notice about this. First, we handled the error cases.
What if a glitch at the phone company results in four digits being sent? We cannot
allow a simple mistake on their end to interrupt our ability to receive phone calls.

Secondly, we are using Goto statements. We've briefly discussed how they can be
both good and bad. In this case, if a user moves from one extension to another by
using Goto, we have to update it only in the default context.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[103]

Finally, we are allowed to send multiple incoming DIDs to the same extension, if we
so desire, as in the last three lines shown in the previous code. This might be useful if
extension 1111 is the operator, and we do not yet have the number 7, 8, or 9 assigned
to a user.

Of course, in real life this is going to get much more complicated, as phone numbers
will probably come in with the full ten digits. But the concept is the same—we can
define extensions based upon information that the phone company sends when the
call is established.

By using DIDs, we can cut down on bottlenecks and give direct access to certain
extensions. This tool of Asterisk helps make our phone system fast, efficient, and
friendly to our users and customers.

Automated attendants
Any time we call a large company, we are greeted by a computer voice, asking us to
route our call based on what we want or need. We are all familiar with call menus.
While we won't get into a philosophical debate about how good or bad they are, we
will talk about how to make them.

Suppose we want to create a menu of options such as, "For a billing question, press
1, to request a configuration change press 2 ….". Now suppose you press 1, and you
hear the option, "For help reading your statement, press 1, if you wish to dispute a
charge, press 2, …". This is just a standard phone tree, with which most users are
comfortable. Asterisk knows which extension to execute based upon what context
we are currently in.

Suppose that your customer service representatives are on SIP/1000, and the
manager whom you wish to handle all disputes is on SIP/1001. Then, you have
technicians on SIP/1002 and SIP/1003. Our configuration file could look like:

[mainmenu]
exten => s,1,Answer
exten => s,2,DigitTimeout(5)
exten => s,3,ResponseTimeout(30)
exten => s,4,Background(welcome)
exten => s,5,Background(options)

exten => 1,1,Goto(billing,s,1)
exten => 2,1,Dial(SIP/1002&SIP/1003)

[billing]
exten => s,1,Answer
exten => s,2,DigitTimeout(5)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[104]

exten => s,3,ResponseTimeout(30)
exten => s,4,Background(billingoptions)

exten => 1,1,Dial(SIP/1000)
exten => 2,1,Dial(SIP/1001)

There are some very important points to make here. It is good to define your digit
and response timeouts each time you are going to give an option to the user. This
makes your dialplan easier to understand and maintain. Also, notice that we must
use the Answer command before being able to play back files. Remember that
Background allows for user input to be captured during the file, while Playback
does not.

Also notice that we issued the Answer command in the billing menu as well. If
we knew that nobody could ever get into the billing menu without having passed
through the main menu, we could probably leave the command out. However, it
does not have any serious adverse consequences, and by leaving it in, we are able to
offer a direct line to the billing department, if we ever choose to do so.

Suppose we want to have users to be able to dial any extension at any time. All we
have to do is use the magical include => default in each of the contexts. This can
cause the same delay in dialing that we discussed previously in the section Creating
outgoing extensions, so it should be used with care. Also, users sometimes mash
buttons at random, and may stumble across random extensions, frustrating the user.
Some organizations have chosen to have users press a specific digit to be able to dial
extensions directly to deal with these problems.

On another design note, most customers do not like being trapped for long periods
of time in menu systems. Care should be taken to ensure menus do not get too deep.
Also, it is easier for customers if you don't give too many options in one level.

Care must also be taken in selecting invalid and timeout responses. But most
importantly, we have to do something. Leaving a customer in limbo with nowhere
to go and no prompts to get them there is not a friendly move.

Let's build on our previous system with these concepts in mind. Of course, the
prompts would be updated to suggest using the new features. For the purpose
of this example, let's assume our receptionist is on SIP phone 1004.

[mainmenu]
exten => s,1,Answer
exten => s,2,DigitTimeout(5)
exten => s,3,ResponseTimeout(30)
exten => s,4,Background(welcome)
exten => s,5,Background(options)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[105]

exten => 1,1,Goto(billing,s,1)
exten => 2,1,Dial(SIP/1002&SIP/1003)
exten => 3,1,Goto(dialbyext,s,1)

exten => t,1,Goto(s,1,1)
exten => i,1,Goto(s,1,1)

exten => 0,1,Dial(SIP/1004)

[billing]
exten => s,1,Answer
exten => s,2,DigitTimeout(5)
exten => s,3,ResponseTimeout(30)
exten => s,4,Background(billingoptions)

exten => t,1,Goto(billing,s,1)
exten => i,1,Goto(billing,s,1)

exten => 1,1,Dial(SIP/1000)
exten => 2,1,Dial(SIP/1001)
exten => *,1,Goto(mainmenu,s,1) ; escape to the previous menu

exten => 0,1,Dial(SIP/1004)

[dialbyext]
exten => s,1,Answer
exten => s,2,DigitTimeout(5)
exten => s,3,ResponseTimeout(30)
exten => s,4,Backgroud(enterextension)

exten => i,1,Playback(invalid)
exten => i,2,Goto(dialbyext,s,1)

exten => t,1,Playback(imsorryididntgetthat)
exten => t,2,Goto(dialbyext,s,1)

exten => *,1,Goto(mainmenu,s,1)

exten => 0,1,Dial(SIP/1004)

include => default

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[106]

This is a pretty good system. We can build whatever we need using these concepts.
Each menu system will be different, based on your needs. The menu system is easy
to update according to your changing needs. As a reminder, when you have updated
the dialplan, you can refresh it by executing the reload command at the console.
This command does not interrupt calls that are currently in progress.

We should take a moment and discuss what a good menu is and what a bad menu
is. We should put our most commonly chosen option first. We should not confuse
our customers with too many choices. We should have errors that take you back one
step, instead of all the way to the beginning of the menu. We should give an operator
who can help people if they get lost. Finally, we should strive not to have our menu
any deeper than four steps.

If we keep these design principles in mind, our automated attendant can be the
best employee we've ever had. No demands, never sick, and always cheerful and
ready to help!

System services
We have talked about how to create contexts, extensions, and how to make our
system powerful. Some of the ideas we have discussed will be useful in some
situations, yet not applicable in others. All of them work together to make Asterisk a
flexible solution for many different needs. There are still other uses that we won't get
into, as the need for them is less frequent.

There are some basic system services that we have not yet discussed. In Chapter 4,
we configured our voicemail users. Asterisk also includes an application called the
directory that reads the voicemail configuration and allows callers to look up an
extension based on the user's last name. In the section Creating an extension earlier
in this chapter, we saw how to send calls to voicemail. How do users retrieve
messages? How do we use this directory?

exten => 8000,1,VoicemailMain(@default)
exten => 8888,1,Directory(default)
exten => 8888,2,Goto(1)

As you can see, providing access to the directory (extension 8888) and voicemail
(extension 8000) is easy. But priority 2 of extension 8888 may seem odd. This is in
here because the directory seems to crash from time to time. By setting priority 2 to
place the user back into the directory, the failure is almost transparent to our users.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[107]

In priority 1 of extension 8000, we tell Asterisk to send people to voicemail in the
default context. If we have only one context, we can usually get away without
defining the context. However, it is better to be safe. In the directory application,
we must define what context to use, which we specified as default. Both of these
contexts should match the context listed in the voicemail.conf file.

When our users call the directory, they will be prompted to enter the first three
letters of the person's last name. Pulling from the voicemail.conf file by default,
Asterisk will search for all matches. If users have recorded their name (option 0, 3 in
VoicemailMain), then Asterisk will play the file where the person speaks their name,
otherwise, Asterisk will spell the complete name out. When it finds the person our
user is looking for, they press 1. Asterisk immediately tries to dial that person.

Here we need to talk about naming our contexts. If our voicemail context is called
foo, then Asterisk will try to dial extension@foo. However, if our extensions are all
defined in a context called bar, then the directory will fail. Therefore, we must make
sure that the contexts in voicemail.conf (where we define the voicemail entry) and
the contexts in extensions.conf (where we define the extension) match.

Now suppose we want to record prompts for our menus. Asterisk can play standard
Windows .wav files. However, getting the files recorded and into the phone system
may not be the most convenient thing to do. Therefore, we can create a simple
extension to allow us to record a prompt. We will allow users to input a four-digit
name for the file so that they can record many prompts before having to sort them.
The prompts will be stored in /tmp, and be recorded as .wav files. Let's assume we
have files called enter4digits and record-instructions, as well as a file called
1toaccept2torerecord3torecordanother.

exten => 8200,1,Goto(record,s,1)

[record]
exten => s,1,Answer
exten => s,2,Read(RECORD|enter4digits|4)
exten => s,3,Playback(record-instructions)
exten => s,4,Record(/tmp/recording-${RECORD}|wav)
exten => s,5,Wait(2)
exten => s,6,Playback(/tmp/recording-${RECORD})
exten => s,7,ResponseTimeout(10)
exten => s,8,Background(1toaccept2torerecord3torecordanother)

exten => 1,1,Hangup
exten => 2,1,Goto(s,3)
exten => 3,1,Goto(s,2)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Dialplan

[108]

This little context will give us the option of recording whatever custom prompt we
want, in a .wav format. We could add a timeout extension and an invalid extension if
we so desire, just as we have done in other contexts.

Another great service that Asterisk provides is conferencing. We configured
meetme.conf in Chapter 4 so that we could have conference rooms. For users to be
able to enter the conference rooms, we must create an extension giving us access.

Suppose we have 10 conference rooms, which we want to place on extensions
8900 to 8909. We also named our conferences 8900 to 8909 in meetme.conf. Our
extensions.conf should contain:

exten => 8900,1,MeetMe(8900)
exten => 8900,2,Goto(default,s,1)

exten => 8901,1,MeetMe(8901)
exten => 8901,2,Goto(default,s,1)

exten => 8902,1,MeetMe(8902)
exten => 8902,2,Goto(default,s,1)

. . .

exten => 8909,1,MeetMe(8909)
exten => 8909,2,Goto(default,s,1)

If we use a little bit of variable magic, we can get these lines down to:

exten => _890X,1,MeetMe(${EXTEN})
exten => _890X,2,Goto(default,s,1)

So, we see that by making our MeetMe conference number the same as the extension
number that users dial to join, our lives are made a little bit easier. Also, by having
all our conferences in a block of 10 or 100, we are able to use pattern matching to
make our extensions.conf shorter.

Another service we may wish to have is a MusicOnHold extension. It will do nothing
but play the music on hold that is currently running. This can be a useful tool for
the administrator to check if the music is even running, or to check the volume on a
handset. In order to add a MusicOnHold extension, we would add something like:

exten => 8010,1,MusicOnHold(default)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[109]

This extension will play the music that is playing on hold in the default class, as
configured in the musiconhold.conf file. It will only end when the caller hangs
up the phone. But we need to remember that it is not like the background music of
some phone systems, in that it does tie up the line that is listening to the music. If
calls come in while a user is listening to the music on hold, they will go through the
normal procedure for a phone being busy.

Summary
In this chapter, we have looked at how to create a dialplan for our Asterisk system.
We looked at how to set up:

Contexts
Extensions for incoming calls
Extensions for outgoing calls
Call queues
Call parking
Direct Inward Dialing
Voicemail
An automated phone directory
Conference rooms

Although this list of available services is not exhaustive, it is certainly enough to get
our phone system up and running. There are many more options available to us,
which we will try out as we work through various case studies later in this book.
These case studies will give us the full configuration of some Asterisk installations
for fictitious companies. We will be able to view the configuration files and keep
those parts that help us meet our particular needs.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Quality Assurance
The world has changed quite a bit in the last 150 years. Over this time, the telephone
system has been invented, improved, and automated. Telephone switches no longer
refer to people sitting in a large room connecting wires between the appropriate
jacks. Flexible and powerful telephone service has moved from a dream to an
expectation in large businesses, and for most of us it is a necessity.

Today, telephone systems are the lifeblood of business. They are how we take
orders, acquire supplies, and even call for emergency assistance. With the increase
in prominence of telephones, the expectations of telephone users have increased
proportionally.

Not only have the technological expectations for telephone systems increased
dramatically, but consumers are expecting more and more out of the businesses they
call. Customers expect to be helped quickly and professionally. They want to know
everything in a matter of minutes. Roads do not hold the only rage our society is
facing today. As a business we have a variety of questions relating to our telephone
system such as:

How are our personnel handling angry callers?
Are our employees answering the calls in a reasonable amount of time?
Do we have any workers using the phone system for personal calls when
they should be doing their job?

We will never be able to make sure everybody does what they are supposed to
do all of the time. What we will be able to do at the end of this chapter is perform
spot-checks on how we are doing on customer service, and make sure our phone
service isn't being used for unauthorized purposes. Ultimately, it comes down to a
matter of trust; however, some people do not know better because they haven't been
fully trained. Most will always act honorably; however, some just cannot and should
not be trusted. We will try to find out who is who.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Quality Assurance

[112]

Call Detail Records
When we talk about security, what images come to mind? May be a big, burly guard?
Perhaps a bunch of guys in green, carrying machine guns? Do we imagine a person
with a metal-detecting wand? Or do we think of thick glass window panes?

All of these are security features. It is just that some are a little more
intrusive than others. Each time we increase security, we become a little
bit less friendly. We all have to decide how far we are willing (and able)
to go.

In the continuum of security, Call Detail Records are the least intrusive. No special
usernames or passwords have to be remembered. No fear of big brother breathing
down your customers' and users' necks need be felt. We are simply doing the
same thing telephone companies do—tracking what calls were made, when they
were made, how long they lasted, where they came from, and a few other bits of
information. This information is then available for us to review at our leisure.

Asterisk gives us a few options on how we track this information. The two major
choices are flat-file logging and database logging.

Flat-file CDR logging
By default, Asterisk includes a module called cdr_csv. Right out of the box, Asterisk
logs all calls coming in and going out. The information for these calls is placed in a
Comma Separated Value (CSV) file. This CSV file is located in var/log/asterisk/
cdr-csv. All information is available in Master.csv, and some channels can be
configured to send some information to other files as well.

The benefit of using a CSV file is the simplicity. Right after compiling and installing
Asterisk, this method will work. No additional configuration is required. Also,
no additional network traffic is generated, and no additional services have to be
installed on our server.

When using the CSV form of CDR, we will see lists and lists of values. They are not
very easy to parse, so here is the format, in the order in which they appear:

account code: As determined by the channel (for DAHDI) or the user
(for IAX and SIP)
source: The source of the call
destination: The destination of the call
destination context

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[113]

caller ID
channel: The channel of the source
destination channel: If applicable
last application: The last application run on the channel
last application argument: The last argument to the last application on
the channel
start time: The time the call commenced
answer time: The time the call was answered

end time: The time the call ended
duration: The difference between start time and end time
billable seconds: The difference between answer time and end time, which
must be less than the duration
disposition: Either ANSWERED, NO ANSWER, or BUSY
amaflags: As set for the channel or user, like account code
uniqueid: A unique call identifier
userfield: A user field set by the SetCDRUserField command

We see that there are many items of information logged for each and every call. We
can compare the billable seconds with our phone bill at the end of the month to make
sure they're close. We can look at the destination and figure out if the calls were
authorized. This gives us enough information to answer most questions we may
have about a phone call.

While we have enough information to answer questions, finding that answer is not
very easy. We would have to scan through the entire file to try to find anything. If we
are going to use an accounting package or reporting software, CSV may be exactly
what we need. However, if we wish to use it in a more ad hoc sort of way, it is not
very readable.

Database CDR logging
If we wish to read our CDR logs, it is most easily accomplished when the records are
sortable. The easiest way to do this is to store our CDR records in a database.

Even in this, Asterisk gives us choices. Included with Asterisk is support for
PostgreSQL databases. In order to be able to install this, we must first have the
postgresql-devel package installed on our system. If you have to install this
package, you'll need to reinstall Asterisk. The automake system will automatically
detect that we have the capability to use PostgreSQL and compile that module for us.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Quality Assurance

[114]

Aside from the development packages we have installed, we will also need a
PostgreSQL server somewhere in our network. It can be the same machine as the
Asterisk server, but it doesn't necessarily need to be. In fact, it probably makes sense
to have only one such database server on our network, and we don't want to tie up
too much of our PBX's resources with database maintenance and storage.

There is a script in /usr/src/asterisk/contrib/scripts/ called postgres_cdr.
sql, which creates the correct table structure for us. This script should be run from
the database server.

If we get an error message while rebuilding that says something like "cannot find
-lz", then we need to install zlib-devel.

Now that we have set up our database and installed the CDR module, we must
configure Asterisk to use the correct database. In order to do this, we need to edit
/etc/asterisk/cdr_pgsql.conf. All of the configuration variables are in the global
section. Our file should look like the following:

[global]
hostname=dbserver.mydomain.tld
port=5432
dbname=asterisk
password=supersecret
user=asteriskuser

Once we have these variables set, the next time we restart Asterisk, all CDR records
will be logged in the database.

If PostgreSQL is not our database of choice, we can use MySQL. This is not a
part of the normal distribution of Asterisk. But as we have already installed
asterisk-addons, we should already have the ability to use MySQL for
CDR logging.

Before we compile, we need to make sure that we have mysql-devel installed.
First, we need to decide which version we're going to use. Because of some license
quibbles, MySQL version 4.0 and later is not in the automatic package distribution
chain. Instead, if we do need to download it, we will have to get it directly from
www.mysql.com. However, the older version (3.x) will work with Asterisk and hence,
you may wish to take a look at the differences between what version 3 offered and
what later versions give us.

Other than the development package mentioned, we will also need a MySQL server
somewhere in our network. Just as with PostgreSQL, we can choose to have it on the
same server as Asterisk, but for the same reasons, we probably shouldn't.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[115]

Next, on the database server, we need to create the database with a user and a table
for the CDR data. We do this by running the following code:

mysqladmin create database asteriskcdrdb

mysql

mysql> GRANT ALL PRIVILEGES
 -> ON asteriskcdrdb.*
 -> TO asteriskcdruser
 -> IDENTIFIED BY 'changethis2yourpassword';

mysql> USE asteriskcdrdb;
mysql> CREATE TABLE cdr (
 -> uniqueid varchar(32) NOT NULL default '',
 -> userfield varchar(255) NOT NULL default '',
 -> accountcode varchar(20) NOT NULL default '',
 -> src varchar(80) NOT NULL default '',
 -> dst varchar(80) NOT NULL default '',
 -> dcontext varchar(80) NOT NULL default '',
 -> clid varchar(80) NOT NULL default '',
 -> channel varchar(80) NOT NULL default '',
 -> dstchannel varchar(80) NOT NULL default '',
 -> lastapp varchar(80) NOT NULL default '',
 -> lastdata varchar(80) NOT NULL default '',
 -> calldate datetime NOT NULL default '0000-00-00 00:00:00',
 -> duration int(11) NOT NULL default '0',
 -> billsec int(11) NOT NULL default '0',
 -> disposition varchar(45) NOT NULL default '',
 -> amaflags int(11) NOT NULL default '0'
 ->);

That's all there is to it! We only have to do this once, so it's really not so bad. Next,
we have to modify the /etc/asterisk/cdr_mysql.conf file to correctly reflect
our choices.

[global]
hostname=ourdbserver.ourdomain.tld
dbname=asteriskcdrdb
password=changethis2yourpassword
user=asteriskcdruser
port=3306
userfield=1

The next time we restart Asterisk, our CDR information will be stored in the MySQL
database. What does that give us? We now have the ability to use a number of very
powerful tools to search our CDR records to find trends and patterns.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Quality Assurance

[116]

Monitoring calls
Slightly less friendly than recording the information about a call is enabling the
ability to monitor calls in real time. This allows us to listen in to a conversation as it
happens, so that we may see how our customers are being treated.

The application to use to monitor a DAHDI channel is called DAHDIBarge. It can only
accept one command-line argument, which is the number of the channel to listen in
on. If we do not pass DAHDIBarge an argument, it will prompt us to enter one. The
channel numbers it requests are the same channel numbers given in system.conf
and chan_dahdi.conf.

Suppose we had four outgoing DAHDI channels, numbered 1 through 4. We could
have something like this in our extensions.conf file:

exten => 8700,1,DAHDIBarge
exten => 8700,2,Hangup
exten => 8701,1,DAHDIBarge(1)
exten => 8701,2,Hangup
exten => 8702,1,DAHDIBarge(2)
exten => 8702,2,Hangup
exten => 8703,1,DAHDIBarge(3)
exten => 8703,2,Hangup
exten => 8704,1,DAHDIBarge(4)
exten => 8704,2,Hangup

This way, extension 8700 would give us access to any DAHDI channel; whether it is
an FXO or FXS interface does not matter. Then, extensions 8701 through 8704 would
give access to each of the outgoing interfaces.

Monitoring calls used to only be available via DAHDI (earlier known as Zaptel).
However, in recent releases of Asterisk, call monitoring is now available for SIP
channels. The application to use to monitor a SIP channel is called ChanSpy.

In order to use ChanSpy, the following format can be applied in your
extensions.conf file: ChanSpy([<chanprefix>][,<options>]).

For example:

exten => 556,1,ChanSpy(scan)

The following are list of options available when executing ChanSpy:

- b: Only spy on channels involved in a bridged call.
- g(grp): Match only channels where their ${SPYGROUP} variable is set to
contain grp in an optional, delimited list.

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[117]

- q: Don't play a beep when beginning to spy on a channel, or speak the
selected channel name.
- r[(basename)]: Record the session to the monitor spool directory. An
optional base for the filename may be specified. The default is chanspy.
- v([value]): Adjust the initial volume in the range from -4 to 4. A negative
value refers to a quieter setting.

Since 1.4:

- w: Enable 'whisper' mode, so the spying channel can talk to the
spied-on channel.
- W: Enable 'private whisper' mode, so the spying channel can talk to the
spied-on channel but cannot listen to that channel.

Since 1.6:

- o: Only listen to audio coming from this channel.
- X: Allow the user to exit ChanSpy to a valid single digit numeric extension
in the current context or the context specified by the SPY_EXIT_CONTEXT
channel variable. The name of the last channel that was spied on will be
stored in the SPY_CHANNEL variable.
- e(ext): Enable 'enforced' mode, so the spying channel can only monitor
extensions whose name is in the ext delimited list.

The following actions may be performed when using ChanSpy:

Dialing # cycles the volume level.
Dialing * will stop spying and look for another channel to spy on.
Dialing a series of digits followed by # builds a channel name to append to
<chanprefix>. For example, run ChanSpy(Agent) and dial 1234# while
spying to jump to channel Agent/1234.

While these extensions are useful, there is a danger, and we must consider security.
Clearly, we do not want just any employee to be able to listen to calls that are in
progress. And more than that, we really don't want our customers to be able to
accidentally listen to calls that are in progress.

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Quality Assurance

[118]

A good way to handle this problem is to create a separate context just for monitoring
extensions. Then, designate a single telephone handset that will be able to do
nothing but monitor extensions. This handset should be the only phone in the
monitoring context, and the monitoring context should not be included in any other
context. Keep that handset under lock and key. Not only will this keep people from
overhearing embarrassing or confidential information, it will also go a long way
towards fostering trust with the employees.

Recording calls
The last of all of the quality assurance methods we will discuss is the call recording
capability of Asterisk. This is highest on the Big Brother chart because phone
conversations can be archived forever and reviewed on demand. Therefore, an
employee's entire telephone history can be called up at any time.

This feature can be accessed from a number of different sources. First, we can
configure specific call queues to record calls. This is done in the queues.conf file,
for each individual queue. We set it thus:

[100]
. . .
monitor-format = wav
monitor-join = yes

The first line tells Asterisk to record the conversation in the .wav format. This is the
best choice because it is most compatible with other operating systems. As archived
conversations can be burned to CDs, compatibility is a high priority. The second
line tells Asterisk to join the two files (in and out) into one file. If we do not do this,
we will only hear half of the conversation. In order to take advantage of this feature,
we must have soxmix installed on our Asterisk server. The Red Hat packages that
contain sox are missing soxmix. Therefore, in order to install soxmix on Red Hat
Linux, we need to do so from source.

All calls coming into the queue will be recorded. The name of the file will be the
unique ID that Asterisk generates for every call. If we wish to change this, we can do
so by adding something like the following in extensions.conf:

exten => 100,1,SetVar(MONITOR_FILENAME=${DATETIME}-${CALLERID(num)})
exten => 100,2,Queue(100)

This will record all calls coming through the queue named 100 in .wav format. We
are then free to encode them into MP3 format if we wish to save space.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[119]

Aside from recording calls in queues, we can also monitor arbitrary calls through the
use of the dialplan. The name of the application that records a channel is Record. In
order to start recording, we call the application as follows:

exten => 200,1,Record(${TIMESTAMP}${CALLERID(num)}-${EXTEN}.wav)
exten => 200,2,Dial(SIP/1001)

With just one line of code in our dialplan, we can start monitoring calls. If we want,
we could even insert this line into our macro definitions for standard extension
types. Or, we could do something like the following:

[incoming]
exten => _.,1,Record(${TIMESTAMP}${CALLERID(num)}-${EXTEN}.wav)
exten => _.,2,Playback(thiscallmaybemonitoredorrecorded)
exten => _.,3,Goto(default,${EXTEN},1)

In three lines of code, we have enabled recording for all incoming phone calls. We
have even notified our customers that the call may be recorded. We have the power.
Should we use it?

Legal concerns
This is not legal advice. Only a qualified attorney can advise you on
your particular situation.

It is very important to note that, just because we can monitor calls, doesn't mean
we should, or even that it would be legal to do so. Many states in the United
States of America are two-party or all-party states. This means that all parties to a
conversation must know that a call is being recorded for it to be admissible in court.

More than that, there are privacy laws in place to protect everyone. Only a careful
study of all applicable laws can tell us if we are in the clear. We should never record
any phone calls until we have spoken to a lawyer.

For those of you hosting a PBX server, you might just want to play it safe and restrict
call recording or monitoring. However, there are alternative solutions for those
who wish to individually record conversations indepent of the Asterisk server.
Counterpath softphone products such as X-Lite has a call recording option, which
will save the recordings to your local computer and in WAV format. There is also a
hard phone solution through the Polycom 650/670 IP phone where you can plug in
a USB memory stick into the phone. Once plugged in you can enable call recording
and your conversation will be saved directly to the memory stick.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Quality Assurance

[120]

But aside from the legal issues, there are also moral issues. Maybe it depends on our
intent when we call. Are we recording the calls to help our employees improve? Are
we recording the calls so that we have an accurate representation of what was agreed
upon? Or are we recording calls to try to trap someone, or to pull information out of
calls to be used out of context later?

Summary
As we have seen in this chapter, Asterisk gives us the power to:

Record call information (CDR)
Monitor conversations (ChanSpy)
Record the conversations themselves

The purpose of these capabilities is to provide us with options for using our system
effectively. It is our responsibility to use these powers appropriately.

There is no point recording all calls if you are never going to use those recordings.
Similarly, a database is an overkill if you have no real interest in your calling history.

However, there are many reasons to use these features. For instance, to produce
reports or answer questions that other users or departments have regarding the
telephone system. The users of the system will know more about what they will need
in order to carry out their day-to-day duties, which is why we spend time figuring
out exactly what they need early in the deployment plan—to ensure the system
provides everything that is needed.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy
to Manage

Now that we have covered the basics, you have probably noticed that Asterisk by
itself may not be so easy to manage due to the nature of its flat file (CONF files)
structure. For example, if you delete an extension, you are likely to find yourself
opening multiple CONF files to remove references and settings pertaining to
that extension.

The good news is that there are free open source applications that have been
developed. These implement a GUI for Asterisk, as well as a relational database
(MySQL), which stores your settings and updates the CONF files automatically.

One such application is called FreePBX and can be downloaded from
www.freepbx.org. FreePBX also packages several other applications such as
a voicemail portal for accessing voicemail and extension settings, and an operator
panel to monitor and oversee who is on the phone. It also provides other useful
utilities such as a call detail report interface to retrieve call records as well as
identify calling patterns and traffic growth. Later in this chapter, we will
go over the different sections and applications belonging to FreePBX.

There are also all-in-one open source solutions that build and set up your operating
system, Asterisk service, database server, web server, and much more, all within an
hour or less. One of the most popular of these solutions is Trixbox CE.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[122]

Trixbox
As we discussed when introducing Asterisk, flexibility is a primary focus. Asterisk
can be used for a variety of different purposes and each available feature can be
tailored to the specific needs of any organization. Trixbox retains some of the
flexibility and adds a massive amount of convenience and ease of use. It offers
web-based configuration, web access to voicemail, reporting, and other functions,
which we will cover shortly. All these functions can be added to your own Asterisk
installation as they are all based on existing Asterisk tools. The real benefit of Trixbox
is that you don't have to set these up manually to make them work together. Trixbox
installs and sets up the base configuration for all of the tools it provides.

It's extremely easy to set up and use. The downside to this is that you lose some of
the flexibility. For example, you can't choose which OS to base your Asterisk system
on and you can't fully customize the configuration, which becomes a hindrance in
larger Asterisk installations.

CentOS
Trixbox is designed around the CentOS distribution of Linux. CentOS is built
from the Red Hat Enterprise source packages. It has a relatively small core team
of developers that concentrate on packaging the OS without Red Hat's proprietary
components. The main focus of CentOS is to provide a freely available operating
system with the packages and features needed at enterprise level, without the cost
associated with the base distribution—Red Hat Enterprise Linux. However, CentOS
does offer a range of commercial support, which is invaluable to most enterprises
and thus is an option we can consider.

CentOS isn't the focus of this chapter and it doesn't really have too much bearing on
our use of Trixbox other than knowing basically how to use and update it. We will
focus on the setup and maintenance of Trixbox and the features it provides for us. If
we decide to use Trixbox, it would be beneficial to spend time getting to know CentOS.

Trixbox preparation and installation
Trixbox recommends a minimum of a 2.4 GHz processor and 512 MB of RAM.
However, given the decline in price of hardware components as well as your
possible need to enable certain resource-demanding features such as call recording,
you might want to get 2 GB of RAM and if possible, a Dual-Core CPU. The amount
of RAM required has a direct correspondence with how heavily used the system will
be. As Trixbox is Asterisk with a few other services added, we can pretty much scale
it similarly. We do have to consider extra resources for the additional services we
have running, such as the web server and the MySQL server.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[123]

Trixbox comes in an ISO image that can be burned and installed as a full OS.
The ISO installs a modified CentOS system automatically and sets up the necessary
Trixbox services.

We can obtain the ISO from http://www.trixbox.org/downloads.

After downloading and burning the image to disk, reboot the target machine with
the Trixbox CD in the drive, and wait for the prompt, which should look like
the following:

boot: _

If at this point we hit Enter, the installer will start and begin to install CentOS with
Trixbox on the first primary hard disk. It's very important to ensure that this disk is
the disk we want to use and that no important data is held there, as all data will be
lost. From this point onwards, installation is entirely automatic. We can now leave
it for a few minutes while it prepares the machine, installs the OS and the necessary
programs for Trixbox—including Asterisk, MySQL, Apache, and so on. It's a good
time to gather the documents we need to configure Asterisk, such as our lists of
extensions and our service provider account details. We'll need the same information
as in the previous chapters, where we set up Asterisk manually. However, now we
don't need to worry so much about Asterisk's configuration syntax as we have a
friendly GUI-based setup system that takes care of most things.

Installation of Trixbox is extremely simple and as long as all of our hardware has
Linux support, there should be little issue getting the system installed.

We can configure advanced options and modify the kernel boot parameters
if necessary by hitting any one of the keys from F1 to F5 at the boot prompt
(this usually isn't necessary). F5 is of particular note as this runs the CD as a
rescue disk, which we can use to repair a machine that refuses to boot.

Also, if we have problems getting the OS installed from the CD, we can enter
linux mediacheck at the boot prompt to confirm the integrity of the installation
disk. This is something worth doing to ensure that the ISO was burnt properly
rather than waiting for it to break during installation.

When the system has finished installing, it should reboot and leave us at the login
prompt. We should log in as root and change the default system passwords. The
commands we need to run are:

passwd ;to change our root password

passwd-maint ;to change the maint user's password for the Asterisk

 Management Portal

passwd-meetme ;to change the Web MeetMe user's password

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[124]

It's important we change these passwords as soon as possible, to ensure that we don't
deploy the system with default passwords, in order to avoid the risk of a possible
security breach.

After we have the passwords set, it's time to ensure that we can access the machine
over the network. Firstly, we should check if the machine has picked up an IP
address at boot. We should check if we have an IP at login, but to be absolutely sure,
we should run ifconfig and check that an IP address has been assigned to our
required network interface.

ifconfig eth0 | grep "inet addr"

This should show a line containing our IP address. If no IP address is shown or
we want to set a static IP for the Asterisk box, which is often more useful, then we
can run system-config-network. In this case, we will have to input the network
settings for the machine, namely the IP address we want to use, the subnet mask,
default gateway, and DNS server.

system-config-network ;Enter IP details

/etc/init.d/network restart ;Apply the changed settings

IP addressing
As we may have SIP clients and as we access Trixbox CE using a
web browser, it is usually beneficial to have the Trixbox CE machine
configured with a static IP, or if we are using DHCP, to ensure the
address is reserved so that it doesn't change. This ensures we can
always find the server without reconfiguring clients.

What is FreePBX?
Trixbox is an excellent solution for those who want to get an Asterisk solution up
and running fast. However, for those who wish to choose their own OS or have the
flexibility of deciding what applications and services to install, you might want to
go with FreePBX. FreePBX is an easy-to-use GUI (Graphical User Interface) that
controls and manages Asterisk. For a while, Trixbox used to bundle FreePBX as the
primary configuration interface for Trixbox. Even today much of the source code that
Trixbox uses for its PBX settings is based on FreePBX. Therefore, as we go forward
in exploring the FreePBX GUI, Trixbox users can easily follow as the interfaces
belonging to these two solutions are almost identical.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[125]

FreePBX preparation and installation
As mentioned, FreePBX gives you the flexibility of choosing your OS. Given that
CentOS is one of the most popular OS distributions for Asterisk, we will demonstrate
the preparation and installation of FreePBX based on CentOS 5.1. To make things
easier, the instructions below will also recap installing Asterisk.

1. Install CentOS, enabling the following packages:
DNS Server
Web Server
Mail Server
MySQL Database
Development Tools

Use the following code to enable these packages:
yum install nano
reboot

2. Edit network settings: Most installations have their network settings set to
DHCP by default. As we do not want the internal IP address of our server to
change, its best to statically assign an IP address.
nano /etc/sysconfig/network
HOSTNAME=internal.hostname.DOMAIN.com (Set your internal hostname
name here)

Press Ctrl+X to save, Y to confirm.
nano /etc/sysconfig/network-scripts/ifcfg-eth0
IPADDR=192.168.1.20
NETMASK=255.255.255.0
GATEWAY=192.168.1.1
NETWORK=192.168.1.0

Note that the above information is just an example. You should replace the
address above with address settings that match your network.
Press Ctrl+X to save, Y to confirm.
echo "options {" >> /etc/named.conf
echo " directory \"/var/named\";" >> /etc/named.conf
echo " dump-file \"/var/named/data/cache_dump.db\";" >> /etc/
named.conf
echo " statistics-file \"/var/named/data/named_stats.txt\";" >> /
etc/named.conf

°

°

°

°

°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[126]

echo "};" >> /etc/named.conf
echo "include \"/etc/rndc.key\";" >> /etc/named.conf

service named start

chkconfig named on

nano /etc/resolv.conf

search internal.DOMAIN.com (Set your internal domain name here)
nameserver 192.168.1.5
nameserver 127.0.0.1

nano /etc/hosts

127.0.0.1 internal.hostname.DOMAIN.com (Set your internal hostname
name here)
127.0.0.1 asterisk1.local
127.0.0.1 localhost

Press Ctrl+X to save, Y to confirm.
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -F
iptables -X

/etc/init.d/iptables save

service network restart

3. To Update:
yum -y update

4. To Disable Selinux:
echo "selinux=disabled" > /etc/selinux/config
reboot

5. Install dependencies and extra packages:
yum install e2fsprogs-devel keyutils-libs-devel krb5-devel libogg
libselinux-devel libsepol-devel libxml2-devel libtiff-devel
gmp php-pear php-pear-DB php-gd php-mysql php-pdo kernel-devel
ncurses-devel audiofile-devel libogg-devel openssl-devel mysql-
devel zlib-devel perl-DateManip sendmail-cf sox

cd /usr/src
wget http://easynews.dl.sourceforge.net/sourceforge/lame/lame-
3.97.tar.gz
tar zxvf lame-3.97.tar.gz

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[127]

cd lame-3.97
./configure
make
make install

6. Install Asterisk and FreePBX:
cd /usr/src

wget http://downloads.asterisk.org/pub/telephony/asterisk/
asterisk-1.6.1-current.tar.gz wget http://downloads.asterisk.org/
pub/telephony/asterisk/asterisk-addons-1.6.1-current.tar.gz wget
http://downloads.digium.com/pub/telephony/dahdi-linux-
complete-current.tar.gz
wget http://downloads.digium.com/pub/libpri/libpri-1.4-current.
tar.gz
wget http://mirror.freepbx.org/freepbx-2.5.0.tar.gz

tar zxvf asterisk-1.6.1-current.tar.gz
tar zxvf asterisk-addons-1.6.1-current.tar.gz
tar zxvf dahdi-linux-complete-current.tar.gz
tar zxvf libpri-1.4-current.tar.gz
tar zxvf freepbx-2.5.0.tar.gz

cd /var/lib/asterisk/sounds
wget http://downloads.digium.com/pub/telephony/sounds/asterisk-
extra-sounds-en-gsm-current.tar.gz
tar zxvf asterisk-extra-sounds-en-gsm-current.tar.gz

cd /usr/src/dahdi-linux-complete-CURRENT

make
make install
make config
/sbin/ztcfg

echo "/sbin/ztcfg" >> /etc/rc.d/rc.local

cd /usr/src/libpri-1.4-CURRENT

./configure
make menuselect
make
make install

cd /usr/src/asterisk-1.6.1-CURRENT

useradd -c "Asterisk PBX" -d /var/lib/asterisk asterisk
mkdir /var/run/asterisk
mkdir /var/log/asterisk

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[128]

chown -R asterisk:asterisk /var/run/asterisk
chown -R asterisk:asterisk /var/log/asterisk
chown -R asterisk:asterisk /var/lib/php/session/

nano +231 /etc/httpd/conf/httpd.conf

Change User apache and Group apache to User asterisk and Group asterisk.

Ctrl+X to save, Y to confirm.
nano +329 /etc/httpd/conf/httpd.conf

Change AllowOverride None to AllowOverride All.

Press Ctrl+X to save, Y to confirm.
./configure
make
make install

/etc/init.d/mysqld start

cd /usr/src/freepbx-2.5.0

mysqladmin create asterisk
mysqladmin create asteriskcdrdb
mysql asterisk < SQL/newinstall.sql
mysql asteriskcdrdb < SQL/cdr_mysql_table.sql

mysql

GRANT ALL PRIVILEGES ON asteriskcdrdb.* TO asteriskuser@localhost
IDENTIFIED BY ‘SOMEPASSWORD';
GRANT ALL PRIVILEGES ON asterisk.* TO asteriskuser@localhost
IDENTIFIED BY ‘SOMEPASSWORD';
flush privileges;

\q

mysqladmin -u root password ‘SOMEPASSWORD'

cd /usr/src/asterisk-addons

./configure
make
make install

cd /usr/src/freepbx-2.5.0

./start_asterisk start

yum install php-pear-DB
yum install php-mysql

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[129]

./install_amp --username=asteriskuser --password=SOMEPASSWORD

echo "/usr/local/sbin/amportal start" >> /etc/rc.local

chkconfig httpd on

chkconfig mysqld on

Open your browser and type http://ipaddressofpbx/admin.

Click on the red bar in FreePBX.

7. Fix ARI password:
nano -w /var/www/html/recordings/includes/main.conf.php

$ari_admin_password = "SOMEPASSWORD";

Press Ctrl+X to save, Y to confirm.

8. Configure Sendmail:
nano /etc/mail/sendmail.mc

define(`SMART_HOST', `relay.DOMAIN.com)dnl

MASQUERADE_AS(`pbx.DOMAIN.com')dnl

FEATURE(`masquerade_envelope')dnl

Press Ctrl+X to save, Y to confirm.
make -C /etc/mail

9. Edit sip_nat.conf for proper NAT:
nano /etc/asterisk/sip_nat.conf

localnet=192.168.1.0/255.255.255.0
externhost=pbx.DOMAIN.com (Set your external hostname name here)
externrefresh=10
fromdomain=DOMAIN.com (Set your external domain name here)
nat=yes
qualify=yes
canreinvite=no

Press Ctrl+X to save, Y to confirm.

10. Add extra codecs to config:
nano /etc/asterisk/sip_custom.conf

allow=gsm

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[130]

allow=h261
allow=h263
allow=h263p
videosupport=yes

Press Ctrl+X to save, Y to confirm.
nano /etc/asterisk/iax_custom.conf

allow=gsm
allow=h261
allow=h263
allow=h263p
videosupport=yes

Press Ctrl+X to save, Y to confirm.
asterisk -rx reload

11. Edit voicemail config:
nano /etc/amportal.conf

If the web interface on your PBX will be accessible on the internet:
AMPWEBADDRESS=pbx.DOMAIN.com (Set your external hostname name here)

If the web interface on your PBX will be accessible only on your
internal network:
AMPWEBADDRESS=internal.hostname.DOMAIN.com (Set your internal
hostname name here)

Press Ctrl+X to save, Y to confirm.
Or if your users will NOT have access to the web interface:
nano /etc/asterisk/vm_email.inc

Remove Visit http://AMPWEBADDRESS/cgi-bin/vmail.cgi?action=
login&mailbox=${VM_MAILBOX} to check your voicemail with a web
browser.\n.

Press Ctrl+X to save, Y to confirm.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[131]

nano /etc/asterisk/vm_general.inc
serveremail=pbx@DOMAIN.com ; Who the e-mail notification should
appear to come from
fromstring=DOMAIN PBX ; Real name of email sender

Press Ctrl+X to save, Y to confirm.

12. Fix MOH directory:
ln -s /var/lib/asterisk/moh /var/lib/asterisk/mohmp3

asterisk -rx reload

13. Open your browser and type http://ipaddressofpbx.

It's done!

FreePBX System Status Dashboard
Now that our system is installed, base passwords are set, and we have network
connectivity, we can begin to configure the server to perform its role. This is done by
using the web management utilities the system provides, and in some cases when
necessary by modifying the underlying Asterisk configuration files.

We will take a look at the functionality provided with the web interface and then
follow an example setup, which will create a working Asterisk server with a single
PSTN line and a single SIP extension.

The first place we want to look is most likely the FreePBX System Status
Dashboard, which allows us to configure most of the features of the Asterisk
system in an eye-pleasing and user-friendly fashion. With this interface, we can
manage everything including extensions, ring groups and trunks, our MySQL
database, and even report generation by the system.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[132]

To get to the FreePBX System Status Dashboard, open a web browser and type
http://<AsteriskIP>/admin in the address bar (use the IP address we set earlier).
Once this is entered, you will be prompted to enter a username and password. By
default, the username is "maint" and the password is "password". After you log in,
you should be presented with a screen like this:

Tools
This section is where we can maintain the system, check the status of services,
perform maintenance tasks such as backup and restore, as well as access
third-party add-ons.

System Status: This page shows the current status of the system. It should
show whether or not Asterisk, cron, secure shell, and the web server are
running. It will also give us a brief overview of how many channels are active
as well as how many extensions and trunks are connected. There is even a
System Statistics section showing an overview of the systems resources.

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[133]

Print Extensions: This section creates a printable list of names and
extension numbers.
Asterisk CLI: This interface will give you the ability to send Asterisk
commands directly through the GUI.
Asterisk API: If you have custom applications or are using third-party
clients, which need to communicate with Asterisk, this section will allow
you to create and assign privileges to Asterisk.
Backup & Restore: You can configure a regular backup schedule to ensure
that you have a copy of your Asterisk and FreePBX configuration, voicemail,
and CDR records. You can also restore a previous backup, in case of data loss
or a major configuration fault. Backups are stored on the file system at /var/
lib/asterisk/backups. You should make it a point to maintain an offline
copy of important backups.
Asterisk Log Files: This section will allow you to see the last 2000 lines of the
Asterisk debug log. This can prove very useful when trying to troubleshoot
issues with the Asterisk service.
Asterisk Info: This is overview information that focuses on Asterisk. We
can see information about SIP, Zaptel, and IAX usage as well as version, and
system information for the Asterisk service. This section can prove invaluable
in troubleshooting, as this section also specifies the IP address of a connected
extension as well as its latency.

Setup
Under this section, we will find the relevant pages for configuring our extensions,
lines, trunks, conferences, and other Asterisk features.

Inbound Routes: Here, we can configure how incoming calls from the PSTN
are handled. We can route them to a receptionist, extension, ring group, IVR,
or queue.
Extensions: We would use this section to add an extension. The information
we would provide would be—the protocol in use (for example, SIP), the
extension number, password, the user's full name, and whether or not we
would like to record incoming and/or outgoing calls for this extension. In
this section you can also specify other parameters such as outbound caller ID,
which defines what phone number will appear to the person you are calling.
This obviously is simpler and more intuitive than modifying the Asterisk
configuration files directly. Although we do lose a little bit of flexibility in
how these extensions are added, we can make up for this with some
hand-hacking as required. We can also configure voicemail for the
extension here if we wish.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[134]

Ring Groups: If we need a group of extensions to ring together or in a given
pattern, as covered in a previous chapter, we need to set up ring groups. This
section lets us create groups and detail the extensions that we would like
to have in these groups. Ring groups are often used when you have a large
number of agents and a moderate call volume. Therefore, a ring group is
used when there is an expectation that the caller will be answered within 60
seconds or less. If for whatever reason all agents are busy or the maximum
wait time is exceeded, this section will also allow you to specify a failover
destination in which you can choose to fail over the call to another ring
group, queue, extension, voicemail box, IVR, or any other FreePBX module.
Queues: If we expect large volumes of calls, we will need to queue them and
this section is where we configure our queues. In order to configure a queue,
we provide the ID, name, password, CID prefix, and available agents. We can
also add on-hold music and set other queue options such as announcements
and their frequency. Similar to ring groups, here also we can define a failover
destination if need be.
IVR: An IVR can be used for failover when a queue is at capacity or an
extension isn't available. Some companies simply like to offer callers a
greeting in which they can choose the department or extension they desire
without the need of a receptionist. The caller can even be routed to a
company directory.
Trunks: This allows us to add a variety of trunk types such as SIP and IAX
to our system, much as we did in previous chapters. A nice wizard-based
system will prompt us for all the necessary parameters such as trunk type,
name, DIDs, and so on.
Outbound Routes: We should now be aware whether calls to different places
should be routed over different providers. For example, we may have a local
service and a VoIP server where we use VoIP for international calls and the
local service for local and national calls. In this section, we can configure dial
patterns to ensure we route calls over the most efficient and cost-effective line.
On hold Music/System Recordings: We can record, upload, and manage
our various audio files for use with the system. You can create multiple hold
music categories, which comes in handy when creating queues and having
different hold music for different queues. The system will accept either WAV
or MP3. However, it is recommended to use WAV files.
General Settings: Here we can configure settings such as the number to
dial for an outside line and a fax machine extension or email address. In this
section, we can also define whether we can use the company directory option
to search by first name, or last name, or both. In this section you can also
specify Asterisk dial command options such as allowing callers who don't
have a transfer button to initiate a transfer through the # key.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[135]

Time Conditions: In this section, we can specify different time periods and
then route callers to different destinations depending on either the time, day,
week, or month. For example, a company can play one IVR during 9 A.M. to
5 P.M. and then a different IVR after these hours.

Trixbox maintenance section
For those using Trixbox, the maintenance page can be accessed through
http://<AsteriskIP>/maint and to directly get to the PBX settings section
(almost identical to the FreePBX interface) enter http://<AsteriskIP>/admin.

This section offers a great deal of useful applications developed by the Trixbox CE
team. These applications are not normally found in FreePBX.

Endpoint Manager: This section enables administrators to easily discover
VoIP phones on the network and configure them with an extension. Trixbox
also acts as a TFTP server, so all you need is the make, model, and MAC
address of the VoIP phone. Then just specify the extension you want to
assign to that phone. Once all this is completed, simply point your VoIP
hardware towards the IP address of the Trixbox server and your device
will download all the settings necessary to register an extension.
Config Edit: This section lets us access the configuration files for Asterisk
and CentOS through a web-based editor. For example, we can edit
Asterisk.conf, resolv.conf, and any other files in the /etc directory.
This becomes useful when we find an area of the GUI that doesn't fit our
requirements for customizing the system and have to edit the relevant
configuration file by hand.
phpMyAdmin: This gives us access to the web-based MySQL management
tool phpMyAdmin. This tool is extremely useful for TrixBox CE as much of
the configuration and logs are held in a MySQL database. We can back up
the databases, run SQL queries to view or modify the existing databases,
and even add databases of our own.
Sysinfo: This page gives an overview of the current system state—covering
network, memory and hard disk utilization, as well as some system specifics.
Packages: This section allows you to easily browse and install updates or
patches for CentOS or Trixbox.
BackUp: Trixbox has created its own backup and restore utility. The utility
will allow you to schedule backups, define what you want to backup, and
even specify remote backup parameters through FTP.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[136]

Bulk Extensions: This tool is very handy especially when administrators
are migrating an existing infrastructure to Trixbox. If you have a large
number of extensions, adding them one by one can take a great deal of time.
Therefore, to make things easier, this section will allow administrators to set
up extensions in bulk by using spreadsheets containing the basic information
needed to create an extension. As most administrators keep spreadsheets of
their employees as well as extensions, this process can save them hours
of work.

The following third-party applications are bundled in both FreePBX and Trixbox:
Reports, ARI, and FOP.

Reports
This section is very useful and enables us to view reports by date, view full call logs,
compare calls, as well as monitor monthly and daily traffic. Your custom report
results can be downloaded to an Excel spreadsheet or PDF. This function is provided
by the Areski Asterisk-stat tool (http://areski.net/asterisk-stat-v2/).

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[137]

Asterisk Recording Interface
Asterisk Recording Interface (ARI) is a user portal for users to easily view and listen
to their voicemail, call monitor logs and recordings, and allow them to change their
own common PBX settings (call forward and voicemail passwords). This application
is created from original work based on ARI from Littlejohn Consulting.

Flash Operator Panel (FOP)
This panel is extremely useful as it shows us all extensions, conferences, and queues
with details of their status. We can use this to get a current overview of system
usage. It's a Flash-based real-time interface to the system state. It can also be used
to hang up, transfer, and originate calls through drag-and-drop, as well as provide
pop-up functionality where the customer's details appear on screen according to
their CLI details. All this can be protected so as to restrict agents' access to every
function of the panel.

It's quite an intuitive interface, so most actions are taken with button clicks and
mouse movements. For example, dragging a free channel to a bridged channel
will allow us to barge into the existing call. Operators can also use this panel with
drag-and-drop functionality in order to transfer calls from one extension to another.
Imagine you want to transfer a call; through this panel you can simply drag the call
from one extension to another extension without even lifting your phone's handset.
This function is created by Asternic (http://www.asternic.org/).

A quick rundown of the Flash Operator Panel features is as follows:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[138]

At a glance you can see:

Which extensions are busy, ringing, or available
Who is talking and to whom (CLID, context, priority)
SIP and IAX registration status and reachability
MeetMe room status (number of participants)
Queue status (number of users waiting)
Message Waiting Indicator and count
Parked channels
Logged-in agents

You can perform these actions:

Hang up a channel
Transfer a call leg through drag-and-drop
Originate calls through drag-and-drop
Barge in on a call using drag-and-drop
Set the caller ID when transferring or originating a call
Automatically pop up a web page with customer details
Click-to-dial from a web page
Mute/Unmute MeetMe participants

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[139]

Flash operator configuration files
The Flash Operator Panel (FOP) can be configured by editing the configuration files
that are shipped with it. They can be found in the /var/www/html folder and can
also be accessed from the Asterisk Management Portal.

The files include:

•	 op_astdb.cfg

•	 op_buttons.cfg

•	 op_buttons_additional.cfg

•	 op_buttons_custom.cfg

•	 op_server.cfg

•	 op_style.cfg

op_server.cfg is the most important for initial setup. It contains the main FOP
configuration, including the IP address of the Asterisk service, the username and
password for accessing FOP, as well as any debug settings that should be applied.
You can also configure your available conferences here. The other files can be used
to add customized settings such as extra buttons for the system and modifications
to the style of the FOP.

Web MeetMe
Web MeetMe is a web-based frontend to the MeetMe add-on for Asterisk. It allows
us to monitor and control conferences.

MeetMe can be accessed through a web interface in which a user will enter
their email address and password. Once authenticated, the user will be given the
options to create a conference, delete or edit a conference, and monitor a conference
(for those who are moderators). Moderators can listen into a conference, see an
overview of participants, as well as mute or kick out participants. Creating a
conference is pretty simple. All you need to do is specify a conference number
(often one is randomly generated for you), a user PIN (for your participants), a
moderator PIN (for the administrator or leader of the conference), and the time
and date when the conference will be held.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[140]

There are several other options available such as the ability to invite participants,
where the system will send out an email containing the conference information.

Currently WebMeetme 3.0 is pre-installed in PBX in a Flash which also uses FreePBX
as the administration GUI.

For more information on PBX in a Flash, visit http://pbxinaflash.net/.

Alternatively, you can download and install MeetMe separately by going to:
http://sourceforge.net/projects/web-meetme/.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[141]

Setting up and accessing Web MeetMe through
Trixbox
Web Meet-Me 3 is included in Trixbox 2.4 (2.3.0.4 and above) but does require a few
steps to be done before it will work properly.

In order to set up an extension to dial into for meetings please follow this example.

Under the Tools section, go to Custom Destination (you may have to download this
module from the Module admin section also found under Tools).

In the Custom Destination field below, enter the following:

custom-meetme3,s,1

Enter meetme in the Description field. Then click on the Submit Changes button
followed by the Apply Configuration Changes button.

Now go to Misc Applications (you might have to install this module as it is not
installed by default). Click on Add Misc Application. In the Description field, enter
whatever you want.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[142]

meetme would be a good description. In the Feature Code field, put the extension
you want users to dial to get into conferences. Then for Destination, select Custom
Destinations and choose meetme from the drop-down list.

Then log in to MeetMe using the URL: http://YourServer/web-meetme and add a
conference. There are two pre-configured users:

• Admin
Username: wmm@localhost
Password: wmmpw

• Standard user
Username: tim@localhost
Password: 1234

Log in with one of the accounts and click on Add Conference. Give it a name
and conference number. This is the number you will need when you dial into the
extension created in the Misc Applications. Click on the Add Conference button.

Now dial the extension you created in the Misc Applications step. You should be
prompted for your conference number.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[143]

Flexibility when needed
We have looked at a few graphical configuration tools that add a lot of convenience
and ease of use to the Asterisk system. As with any GUI, the focus is clarity, ease of
use, and intuitive design. When we take a powerful command-line or service-based
application and add a GUI to it, there is often a loss of flexibility. As Asterisk holds
flexibility as one of its most important aspects, this may seem like a major downside
to Trixbox/FreePBX.

However, we can still get under the skin and make up for some of the shortcomings
in the graphical interfaces. As we have seen in the Trixbox Management Portal, you
are provided with a direct link to the text configuration files—a testament to the fact
that the GUI is merely a layer upon a powerful underlying system.

If we find that there are inadequacies in the GUI for us, we can edit these files by
hand in order to get the functionality we need. However, there is one major caveat
with this—we must ensure that we are attentive to the automatic settings produced
by the GUI and ensure that any alterations we make are going to be compatible with
the GUI, or else we risk breaking the interface entirely. This can be quite a hindrance
if our system is to become complicated. In order to customize Asterisk further,
Trixbox offers a tool called Configuration Editor, which will allow administrators
to make changes directly in the CONF files. As mentioned earlier, you have to be
careful what you edit, as the GUI can easily overwrite your settings. In order to
make Trixbox more customizable, you will notice that there are configuration files
labeled with _custom.conf; any edits within these files will be loaded into Asterisk
and will not be overwritten by the GUI. For example, a common file used for most
customizations is extensions_custom.conf.

A simple one-to-one PBX
Now that we have an overview of how the main features of the Trixbox/FreePBX
system are customized, we can create a simple PBX for handling a single line and
extension for a home user. We can also take the knowledge of call routing gained
from previous chapters and apply it to Trixbox/FreePBX. All of the concepts remain
the same, we just apply them differently, and the result is virtually indistinguishable.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[144]

Extensions
Firstly, we will configure our extensions by opening the PBX Settings section
(Trixbox) or going to the FreePBX Dashboard. Click on Setup and find Extensions on
the lefthand side. Then configure the extension screen as follows (you may wish to
change some settings to fit your own needs):

After we have configured the extension, click on Add Extension on the bottom
right hand corner of the screen. This sets up extension 200 for a SIP-based phone.
We need to click on the red bar that appears afterwards, to apply the changes to
the system.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[145]

Trunks
We can now add the trunk for our PSTN interface. We do so by clicking on Trunks
on the lefthand side, clicking on Add ZAP Trunk (we can add other trunk types as
discussed in previous chapters, such as SIP and IAX), and then configuring the trunk
as follows (while here, we may also want to delete the default trunk g0):

In the Outbound Caller ID field, we would place our own phone number. Again
remember to click on the red bar afterwards. It's important to note that when we
make calls, there is often no check made against the caller ID number we present, so
we could present anything here. We must verify that it's completely accurate or we
may lose the ability for our contacts to recognize us and call us back. This can often
be used to our advantage when we want to control the number we present. Also note
that defining outbound caller ID here will force this caller ID on all extensions that
use this Trunk. For those who might have different extensions requiring different
caller IDs, it is best to leave this field blank and specify the outbound caller ID with
the desired caller ID on an extension-by-extension basis.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Making Asterisk Easy to Manage

[146]

Routes
Now that we have extensions and trunks, we require incoming and outgoing calling
routes so that calls get to their correct destinations.

Firstly, create an incoming route by clicking on Inbound Routes and configuring it
as follows:

Then click on Submit Changes and the red bar to confirm.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[147]

We also require outgoing routes so that we can route our calls through the trunk that
we have set up. Do this by clicking on Outbound Routes and then configuring it as
shown in the screenshot that follows. You can modify the dial pattern here and can
add alternative routes with differing patterns.

We should now be able to make and receive calls from our system over the PSTN.
We should also have a working voicemail.

Summary
In this chapter, we have seen that Asterisk can easily be managed through a GUI.
This makes it possible even for those with less technical skills to manage and make
changes to Asterisk. It is important for those learning Asterisk to manually try
installing Asterisk first and then manually add third-party applications. Trixbox
is a great resource once you have mastered Asterisk on a stand-alone basis.

Another benefit with installing your own Asterisk build is the ability to host some
of the services we have seen (such as FOP, ARI, and so on) on separate servers. This
enables you to spread the load as well as the data. Therefore, if you expect significant
growth or are starting with an already medium to large organization, you should
consider building your Asterisk system from scratch.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

What is asterCRM?
Now that we have covered installing a GUI to easily manage your Asterisk server,
it's time to leverage the power of Asterisk with other business applications. A
common business tool found in most businesses today is a Customer Relationship
Management (CRM) system. Through this application, businesses can keep track
of their customers, log activities, and streamline business operations. As most
interactions with clients are often performed over the phone, it would be extremely
useful to link CRM and Asterisk together.

An excellent open source application that bridges Asterisk and CRM together
is asterCRM. asterCRM is an open source software application for call centers based
on Asterisk. By connecting with Asterisk through the ami port using TCP protocol,
asterCRM can work together with any system based on Asterisk. asterCRM,
having adopted the advanced technology "AJAX", allows users to implement
all the functions of a call center just by using a browser with a pop-up screen
containing client information, Click to Dial, Call Record/Monitor, Speed Dial,
and so on. Working with the basic needs of a call center, asterCRM provides CRM
functions such as the management of user information, customer calling history, call
recordings, and statistics management.

The application is actually combined with other applications in the form of a business
suite called asterCC. The suite also packages asterBilling, which is a real-time billing
solution for Asterisk. It could be used for a hosted callshop or to conduct Asterisk PBX
billing. The suite is also available as an out of the box ISO solution similar to Trixbox,
which installs and configures Asterisk, FreePBX, and asterCC automatically. asterCC
manuals and software can all be downloaded from http://astercc.org/downloads.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

What is asterCRM?

[150]

The following is a screenshot of the asterCRM interface:

The following is a screenshot of the asterCRM interface with a pop-up display and
customer call history:

Installing asterCRM
The following is a list of instructions to install asterCC. Before you begin, please
ensure you have the following installed on your Linux OS:

httpd
mysql
mysql-devel

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[151]

mysql-server
php (or php4)
php-mysql
php-gd

You can easily install the previous modules using yum.

Automatic installation
An auto-install script was created to make the installation quick and easy. In order
to install asterCC using this nifty script just go to the main directory of the extracted
asterCC and run the install.sh file.

Once completed, update the Asterisk dialplan for barge. If you want to use
the barge function in asterCRM, add the following line to Asterisk's
extensions.conf file. If you use any other extensions file in FreePBX,
it could be extensions_custom.conf.

[astercc-barge]
exten => _X.,1,NoOP(${EXTEN})
exten => _X.,n,meetme(${EXTEN}|pqdx)
exten => _X.,n,hangup

Manual installation
Please follow steps 1 to 9:

1. Download and unzip the source files.
Note that we will be assuming your WEB root is /var/www/html.
We will begin by entering the following commands through the
Linux command line:

 #cd /var/www/html

 #wget http://astercc.org/download/astercc-0.12-beta.zip

 #unzip astercc-0.12-beta.zip

 #mv astercc-0.12-beta astercc

The explanation of each folder and file is listed as follows:
/var/www/html/astercc/astercrm # main directory and PHP
 scripts of astercrm

/var/www/html/astercc/asterbilling # main directory and PHP
 scripts of asterbilling

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

What is asterCRM?

[152]

/var/www/html/astercc/sql # sql to create database
 tables

/var/www/html/astercc/script # astercc daemon and some
 other script files

/var/www/html/astercc/index.html #guide page

/var/www/html/astercc/astercc_full_logo.png #logo

Please note that it is highly advised that the whole script directory be moved
to a more secure location such as /opt and out of the WEB root directory.

2. Create the MySQL database and tables.
Please note that we create the database named astercc, which is used
for both asterCRM and asterBilling. asterCRM needs MySQL 4.1 or
higher versions.
You can use whatever database name you want, but be sure to use your
configuration to replace yourmysqluser and yourmysqlpasswd.
The following commands are to be entered through the Linux command line:

 #mysqladmin -uyourmysqluser -pyourmysqlpasswd create astercc

 #mysql -uyourmysqluser -pyourmysqlpasswd astercc < /var/www/html/
 astercc/sql/astercc.sql

3. Update /etc/asterisk/manager.conf to enable manager connections.
In order to allow connections to Asterisk from a different server as well as to
allow locally installed applications to communicate with Asterisk, you will
need to add something like the following to the manager.conf file:

The following example is for those who installed asterCC
on the same server as the Asterisk service.

enabled = yes
port = 5038
bindaddr = 0.0.0.0
;displayconnects = yes

;the following line could be changed by yourself
[astercc]
secret = astercc
read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user
deny=0.0.0.0/0.0.0.0
; if you want to run astercc on another server
; use your astercc ip to replace 127.0.0.1 or add a new line
permit=127.0.0.1/255.255.255.0

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[153]

4. Update the Asterisk dialplan for barge.
Follow this step only if you want to use the barge function in asterCRM. This
will allow you to listen into a call that is currently in progress.
Add following line to Asterisk's extensions.conf (for FreePBX, you would
use extensions_custom.conf):
[astercc-barge]

exten => _X.,1,NoOP(${EXTEN})

exten => _X.,n,meetme(${EXTEN}|pqdx)

exten => _X.,n,hangup

5. Create the directories and move the daemon scripts:
The following commands are to be entered through the Linux command line:

 #mkdir -p /opt/asterisk/scripts/astercc

 #mv /var/www/html/astercc/script/* /opt/asterisk/scripts/astercc

 #chmod +x /opt/asterisk/scripts/astercc/eventsdaemon.pl

 #chmod +x /opt/asterisk/scripts/astercc/eventdog.sh

 #chmod +x /opt/asterisk/scripts/astercc/astercc

 #chmod +x /opt/asterisk/scripts/astercc/astercctools

 #chmod +x /opt/asterisk/scripts/astercc/dialer.pl

 #chmod +x /opt/asterisk/scripts/astercc/cdr_move.pl

 #chmod +x /opt/asterisk/scripts/astercc/asterrc

 #chmod +x /opt/asterisk/scripts/astercc/astercclock

 #chmod +x /opt/asterisk/scripts/astercc/asterccdaemon

 #chmod +x /opt/asterisk/scripts/astercc/asterccd

6. Modify the config file.
For asterCRM, modify /var/www/html/astercc/astercrm/astercrm.
conf.php to fit your configuration.
For asterCC, modify /var/www/html/astercc/asterbilling/
asterbilling.conf.php to fit your configuration.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

What is asterCRM?

[154]

7. Start Asterisk and daemon.
There are two daemon modes you can choose: astercc mode or
eventsdaemon (can be used for asterCRM only) mode.

astercc mode (can be used for both asterCRM and asterBilling):
Try to start astercc:
Modify /opt/asterisk/scripts/astercc/astercc.conf
(mainly database setting and AMI setting) to fit your configuration.
Run asterCC from /opt/asterisk/scripts/astercc/astercc for
testing it.
The following lines should appear on the Linux command line:
Connecting to mysql database on 127.0.0.1:

Database connection successful.

Connecting to asterisk on 127.0.0.1 port 5038:

Asterisk socket connection successful.

Check asterisk username & secret:

Success

Monitor Start

If you can read the previous lines, then congratulations! Your
astercc works well. Press Ctrl+C to exit.

If the previous lines are not displayed on the Linux command
line and you get an error, then please check your database/AMI
configuration in the astercc.conf file.
Start astercc (default settings):
Modify /var/www/html/astercrm/astercrm.conf.php; set event
type to curcdr /opt/asterisk/scripts/astercc/astercc -d.
Start up astercc daemons when the system boots up.
Please note that this option only applies to Red Hat-release systems.
If you want astercc daemons to start automatically when you boot
your machine, then enter the following commands through the Linux
command line:
cp /opt/asterisk/scripts/astercc/asterccd /etc/rc.d/init.d

chmod 755 /etc/rc.d/init.d/asterccd

chkconfig --add asterccd

°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[155]

It's advisable to configure your astercc to restart once everyday. It's
not necessary, but it's good for the operation of your astercc. For
example, if you want to restart astercc at midnight everyday, write
the following line as root:
crontab -e

Add a new line:
0 0 * * * /etc/rc.d/init.d/asterccd restart

The first "0" denotes minutes and the second "0" denotes hours.

eventsdaemon mode (can be used for asterCRM only):
Try to start eventsdaemon:
Modify/opt/asterisk/scripts/astercc/eventsdaemon.pl
(mainly database setting and AMI setting) to fit your configuration.
The following line should appear on the Linux command line:
Message: Authentication accepted

If you can read the previous line, then congratulations! Your
eventsdaemon works well. Press Ctrl+C to exit.
If the previous line is not displayed on the Linux command
line and you get an error, then please check your database/AMI
configuration in eventsdaemon.pl.
Start eventsdaemon (default settings):
Modify astercrm.conf; set event type to event
/opt/asterisk/scripts/astercc/eventsdaemon.pl -d.
At some point, it may be desirable to delete unwanted events from
the database table. The eventsdaemon mode is also designed for this.
Please check eventsdaemon.pl for the log_life parameter.
In order for eventsdaemon to be loaded everytime your server starts,
add the following shell to your start-up file:
opt/asterisk/scripts/astercc/eventdog.sh >> /etc/rc.d/
rc.local

°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

What is asterCRM?

[156]

8. Set file and folder access.
For asterCRM:

 # chmod 777 /var/www/html/astercc/astercrm/upload

 # chmod 777 /var/www/html/astercc/astercrm/astercrm.conf.php

If Asterisk and asterCRM are running on the same server, you can make a
soft link to the asterCRM web directory for listening to monitored records
online using the following command:

 # ln -s /var/spool/asterisk/monitor/ /var/www/html/astercc/
 astercrm/monitor

For asterBilling:
 # chmod 777 /var/www/html/astercc/asterbilling/upload

9. Web browsing—accessing asterCC using your web browser.
In order to access the asterCC guide, visit http://YOUR-WEB-SERVER-AD-
DRESS/astercc.
For asterCRM,
visit http://YOUR-WEB-SERVER-ADDRESS/astercc/astercrm.
The default login is admin/admin.
For asterBilling, visit
http://YOUR-WEB-SERVER-ADDRESS/astercc/asterbilling.
Please note that there are two login interfaces in asterBilling: user mode and
manager mode. The default setting is manager mode.
You can access the user interface through http://YOUR-WEB-SERVER-AD-
DRESS/astercc/asterbilling/login.php.
You can access the manager interface through http://YOUR-WEB-SERVER-
ADDRESS/astercc/asterbilling/manager_login.php.
You can change the default login mode in asterbilling.conf.php by using
the useindex parameter.
You can also move the astercrm and asterbilling directories to any path
where your web server is allowed access.
Log in with admin/admin
Set your first booth through asterBilling:

1. Go to the "Reseller" section and add a reseller.
2. Go to the "Group" section and add a group belonging to the reseller.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[157]

3. Go to the "Clid" section and add a CLID for this group. Then the
account in Asterisk with a matching CLID will be billed as a user in
this group.

4. Go to the "Account" section and add an account. The "usertype" could
be "groupadmin" and belongs to the group you just added.

5. Go to the "Rate to Customer" section and add some rates for the group.
If you don't select reseller or group, the rate will be the default rate
which is applied to resellers/groups.

6. Log in under the group admin account.
7. Try making a call using the IP phone with the CLID. You should be

able to see the calling and billing message in the box.

Introducing asterCRM
Now that we have installed asterCRM, we will go through the different sections of
the application and explain their functions.

Import
In this section, you can import and upload client information from Excel or CVS files.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

What is asterCRM?

[158]

Statistic
Through the statistic section, you can pull up Call Detail Records (CDRs), or trunk
information, as well as access calls that have been monitored.

Extension
The extension tab is used to manage the users of the asterCRM system
(the astercrm_account table). Here we can also bind an asterCRM account to an
Asterisk extension. You can also add groups and users through this section.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[159]

Customer
You can manage the information about a client by adding, deleting, modifying, and
exporting data. You can also associate phone numbers with a client to allow a
pop-up display to appear when your client calls. This section also gives you access
to all calls placed to and from your client.

Dialer
The dialer section allows you to define settings for a predictive dialer. A predictive
dialer can go through a list of numbers and when someone answers the phone,
an IVR can be played to them. This can be a very powerful tool when trying to
communicate a message or an advertisement campaign to all of your clients.
Predictive dialers are often used to reach out to a large audience using an IVR.
If the caller is interested and selects an option from the menu, then the call is
transferred to an agent.

System
The system section allows you to see the call status of a given extension. You can also
listen in to the call, hang up the call, or just see who is on the line.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

What is asterCRM?

[160]

Survey
In this section, you can set up surveys that you can then use in marketing campaigns
through your predictive dialer. This is an excellent way to collect data and
information from your client base.

Summary
As we have seen, Asterisk can be used with third-party business applications such
as CRM solutions. In this chapter, we used the asterCC suite. However, there are
many other open source CRM applications that are equally popular. For example,
SugarCRM (http://www.sugarcrm.com/crm) is another popular CRM application,
which can be integrated with Asterisk. SugarCRM was also once bundled with
Trixbox releases, but it needs to be downloaded separately today. If you search the
Trixbox forums, you will find step-by-step instructions for installing SugarCRM with
Trixbox. The main idea here is to understand that Asterisk is very adaptable and can
be used with many types of business applications.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies
Up to this point, we have worked through the setting up of a new phone system
based on Asterisk. Our system has been developed with our specific needs in mind
and has configurations and features enabled to fit our particular purposes. Often
we will find ourselves wondering if we're making full use of the magic of Asterisk,
and perhaps the best way to find new tricks is to examine examples of working
phone systems.

What follows in this chapter are typical examples of just a few such systems. Each
section will be devoted to one type of system. First, we will give a brief overview
of the type of customers involved before we mention some pointers to remember
as we decide what they need and how best to accomplish our task. Finally, we will
go through the configuration files, one at a time. Each configuration file will be
annotated, and we will briefly discuss why some of the choices are particularly
good for the given scenario.

Small office/home office
This is a common setup for Asterisk. In very small installations, Asterisk can be
used to give us the features we need from an expensive PBX system at small office
prices. Using Asterisk as a phone system for a home office gives the small business
a big-business sound and feel.

The scenario
For our first example, we will join David in his home. An avid programmer and
all-round geek, he's decided he wants to have his very own phone system in his
house. As he is often busy and unable to answer the phone, the system must have
voicemail. He has recently moved into an older home and only has one incoming
line from the telephone company.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[162]

David has a new baby in the home and is very concerned about safety. He lives out
in the middle of nowhere, and loses power pretty regularly. He only has phones in
the office, kitchen, and master bedroom.

Finally, David would like to have music on hold for people who call in. As he is
starting a new business, he wants to present a professional image to the callers
he places on hold while finishing a call with another client or simply completing
household tasks.

The discussion
First, Asterisk could be an appropriate choice here. As David is a programmer, he
will be comfortable managing his own phone system. For home users who are not
technically minded, Asterisk may not be a good fit, unless they are supported by a
larger IT department at their employer.

Secondly, to meet David's requirements, we will have to use POTS lines. As he
moved into an older house, running cable will be very difficult. Also, as he lives in
an area prone to power failures, having the Asterisk server provide power to the
telephones is a good thing, as this will require only one UPS.

Giving David voicemail and music on hold will be very simple. In fact, the thing to
notice here, as with many SOHO configurations, is the lack of any other requests.
This means we will not need to configure SIP, IAX, H.323, parking, menus, or any
other advanced feature.

As he has three handsets and one incoming line, we will be using a Digium TDM31B
card. This is a hardware TDM device that has three FXS ports and one FXO port.
Also, as he has such low requirements, that is all calls will be directly bridged on
TDM interfaces, he will be able to add Asterisk to his email server, which is already
running Linux on a Dell PowerEdge 400 SC.

The configuration
Here are our configuration files for David. We should note that his server has been
set up as we have previously discussed, including mpg123. Also, his house has
home-run telephone wiring, meaning all telephone jacks terminate at the same closet.

Any files not listed here are left as default. If we did not install the default files,
we may do so at any time by changing to the /usr/src/asterisk directory and
executing make samples.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[163]

system.conf
The content of this file is as follows:

fxoks=1-3 ; 3 fxs modules, on channels 1-3
fxsks=4 ; 1 fxo module on channel 4
loadzone=us
defaultzone=us

We should remember that FXS modules use FXO signaling, and FXO modules use
FXS signaling. Also, we should always put our FXS modules on lower port numbers
because of some reported inconsistencies when putting an FXO module on channel 1
of a TDM card.

chan_dahdi.conf
The content of this file is as follows:

[trunkgroups]
[channels]
language=en
usecallerid=yes ; He subscribes to CID
hidecallerid=no
callwaiting=no ; but not call waiting...
usecallingpres=yes ; NOTE: this does not always work right, but when
 ; it does, it is quite useful
transfer=yes
cancallforward=yes
callreturn=yes
echocancel=yes
echocancelwhenbridged=no
echotraining=800 ; he had echo until he set the train time to 800

; FXO Interface
context=default ; all calls go to the "default" context
signalling=fxs_ks ; we use FXS signaling for our FXO device
group=1 ; we are placing the outgoing line in a group
channel=>4

; FXS Interfaces
context=outgoing ; All phones in the house may dial long distance
signalling=fxo_ks ; we use FXO signaling for FXS devices
group=2 ; we are putting all internal phones in a group
pickupgroup=2 ; this is so we can pick calls from other lines
callgroup=2 ; which may not be useful in this instance, but
 ; should not hurt anything
channel=>1-3 ; We select the channels

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[164]

A few things we should notice are:

We usually don't want to enable echo cancellation when calls are bridged.
This can especially cause a problem with modem and fax communications.
Also, we can modify the echo training period to the best value for our
particular installation using a process of trial and error.
We are not segregating the phones based on where they can call. It may
be tempting to put all of the incoming and outgoing extensions in a single
context; however, it is not wise to do so from a security standpoint. Thus, we
have a blend of security and simplicity.

musiconhold.conf
The content of this file is as follows:

[classes]
default => quietmp3:/var/spool/asterisk/defaultMOH,-z

Here we have our music on hold configuration. Notice that we only have one class,
which we called default. Also, we have chosen to shuffle our files so that the system
doesn't always start with the same song. In small installations, it is very important
to remember this because it is not very impressive if a customer calls frequently and,
every time, they are greeted with exactly the same music on hold selections.

voicemail.conf
The content of this file is as follows:

[general]
format=wav49|gsm|wav
serveremail=asterisk@davidscomputer.com
attach=yes ; voicemail messages will be attached to emails
skipms=3000
maxsilence=10
silencethreshold=128
maxlogins=6 ; David's wife isn't so good with passwords...

[zonemessages]
central=America/Chicago|'vm-received' Q ‘digits/at' IMp

[default]
1 => 1234,David Gomillion,david@mydomain.tld,pager@mydomain.
tld,tz=central

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[165]

We have only one time zone, which is Central in the United States. We also have
only one voicemail box. Asterisk can do a lot more, but in this instance, no more
is needed.

The configuration choices we made at the beginning of the file are pretty much
standard, except for the server's return email address. This should be set to
something meaningful, if we are going to have users who will reply to these
messages. However, in this instance, this is just a fake (but informative) address
because David simply won't try to reply to these email notifications.

modules.conf
The content of this file is as follows:

[modules]
autoload=yes
noload => pbx_gtkconsole.so ;don't load stuff we won't need
noload => pbx_kdeconsole.so
noload => chan_sip.so
noload => chan_iax.so
noload => chan_iax2.so
noload => chan_skinny.so
noload => chan_mgcp.so
noload => res_agi.so
noload => app_intercom.so
load => chan_modem.so
load => res_musiconhold.so

[global]
chan_modem.so=yes

In our modules.conf file, we have disabled all of the VoIP protocols that we will not
be using. This will help increase the security of our server, as this keeps ports closed
that have no need to be open. We have also firewalled all of the ports on the server
except those needed for other servers.

extensions.conf
The content of this file is as follows:

[general]
static=yes
writeprotect=no

[globals]
TRUNK=Zap/g1

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[166]

TRUNKMSD=1

[outgoing]
exten => _9.,1,Dial(${TRUNK}/${EXTEN:${TRUNKMSD}}) ;if we dial 9,
 ; send to trunk
include => default

[default]
exten => s,1,Dial(Zap/g2,30) ; dial all extensions for 30
 ; seconds
exten => s,2,Voicemail(u1) ; send to VM if we don't pick up
exten => s,3,Hangup
exten => s,102,Voicemail(b1) ; send to VM if we are busy
exten => s,103,Hangup

exten => 0,1,Dial(Zap/g2) ; if we dial 0, ring all phones
exten => 1,1,Dial(Zap/1) ; if we dial 1, ring the office
exten => 2,1,Dial(Zap/2) ; if we dial 2, ring the bedroom
exten => 3,1,Dial(Zap/3) ; if we dial 3, ring the kitchen
exten => 8,1,VoicemailMain(s1) ; press 8 to check messages
 ; without requiring password

exten => i,1,Goto(s,1) ; if we are in an invalid or timed-out
exten => t,1,Goto(s,1) ; state, go to s,1 in this context

This is our entire dialplan. We can see that it is very simple—each phone has an
extension, and there is an extension for all phones. Only incoming calls are going
to go to voicemail if a phone is busy or not answered.

We will notice that any number that is dialed with 9 as the first digit will
automatically be sent out through the trunk. This is a very simple example of how
a single pattern can accomplish many tasks. As we are not very concerned about
securing the trunk from internal extensions, it is alright to use this simple method
of trunk access.

Conclusions
As we can see, Asterisk configurations can be very simple. Creating a PBX for a few
extensions is easy. Moreover, it illustrates some points that we will also see later in
configuring some other PBX systems.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[167]

Small business
Small businesses make up a large portion of the IT market. These customers are
unlike any others; they need upscale features with limited resources. It is very
common for small businesses to require advanced features while needing to keep
costs down. It's also common for small businesses to want to appear larger and more
established than they are to increase customer confidence. Asterisk can be a great
solution for small businesses as it suits these needs well.

The scenario
ACMEsoft is a software engineering firm with 40 employees. According to recent
usage studies by their telephone company, they usually use about 18 lines, with their
peak at 22 lines last month. They have a number of hosted extensions from the local
telephone company (often referred to as Centrex service), which they have been
using for years. As their five-year contract with the telephone company is up for
renewal, they wish to replace the expensive hosted service with an in-house solution.

They will be contracting with us to provide the deployment, ongoing support, and
maintenance of their new phone system.

ACMEsoft employs four first-tier support engineers, two second-tier support
personnel, and one third-tier support specialist. Each member of each tier has
similar talents and can handle the same calls.

They employ a receptionist, an operator, and an administrative assistant. There
are 20 programmers, five testers, four project managers, and one person in the
shipping department.

The discussion
Asterisk is an appropriate choice for ACMEsoft. Asterisk provides all of the features
common to Centrex solutions. As they have no illusions of having an in-house tech to
administer Asterisk, only our knowledge set is in question. As we are professionals
who specialize in using Asterisk, we will be able to make it work according to
ACMEsoft's expectations.

Asterisk is a powerful alternative to the more expensive hosted solutions. When
using Centrex service, each extension must have an analog line. These lines are
expensive to install, move, and maintain.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[168]

With the current usage statistics, a PRI line makes the most sense. The reason for
this is that we will need less than 23 concurrent lines. PRI allows us to use advanced
signaling; also, echo is less likely with a PRI than with POTS lines. PRI is often
cheaper than having 23 separate POTS lines coming in to our server. Therefore, for
this installation, PRI makes the most sense.

With Centrex service, each extension usually gets a unique phone number so that it
may be reached from the outside world. In order to have the same feature, we will
be using Directed Inward Dialing (DID) numbers. Usually purchased in blocks of 20,
each number can be mapped to an extension, group of extensions, or a service, such
as conferencing or voicemail. These numbers are generally inexpensive.

In this example, we will assume that the phone company will provide the full ten-
digit phone number for each phone call. This is a very common configuration, which
should be available from any phone company. We should always request the full ten
digits in case we have the same last four digits for two telephone numbers coming
into our system.

For our connection to the PSTN, we will be using Digium's T100P. This T1 card
supports ISDN signaling and integrates well with Asterisk. For our handsets, we
will be using Polycom's SoundPoint IP320 SIP phones.

The support personnel will be organized into queues; each level of support will have
one queue. The operator will also have a queue, as he often receives multiple calls
simultaneously.

The configuration
These are the configuration files for ACMEsoft's PBX. These files assume we have
already set up our server as previously discussed.

system.conf
The content of this file is as follows:

#incoming PRI 1
span=1,1,0,esf,b8zs
bchan=1-23
dchan=24
loadzone = us
defaultzone=us

We are using ESF framing and B8ZS coding. In the United States, these are very
common for PRIs.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[169]

chan_dahdi.conf
The content of this file is as follows:

switchtype=national
context=incoming
signalling=pri_cpe
group=1
channel => 1-23

Note that DAHDI and many other CPE devices refer to the "NI2" protocol as shown
in the switchtype setting. If your PRI carrier tells you to use "NI2" for the protocol,
do not put "NI2" as the value. Make sure its set to national as indicated above.

Here we are setting channels 1 through 23 (the channels that take actual calls;
channel 24 is for signaling) to be in group 1, and we are telling incoming calls
to go to the context called incoming in the dialplan.

musiconhold.conf
The content of this file is as follows:

[classes]
default => quietmp3:/var/spool/asterisk/defaultMOH,-z

Here we have a general music on hold instance, called default.

agents.conf
The content of this file is as follows:

[agents]
ackcall=yes
wrapuptime=0
musiconhold => default
updatecdr=yes
;Tier 1
group=1
agent => 1111,0596,John Smith
agent => 1209,0522,William Krandal
agent => 0186,1129,Lindsey Cramer
agent => 0416,0106,Stephanie Lewis
;Tier 2
group=2
agent => 2345234,3489,Likes Longnum
agent => 5692,4989,Smitty Rodriguez

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[170]

;Tier 3
group=3
agent => 1,1,Forgets Ownname
;Operator
group=4
agent =>0,1234,Operator Console

Notice that we can have variable agent IDs. This is usually not a very good idea, as
having consistent lengths for IDs is easier to support. However, politics will often
dictate whether the length can be standardized.

queues.conf
The content of this file is as follows:

[general]

[default]

;
;Tier 1 Support Queue
[Q110]
music=default
strategy=leastrecent
maxlen=0
context=default
member => Agent/@1

;
;Tier 2 Support Queue
[Q120]
music=default
strategy=ringall
maxlen=0
context=default
member => Agent/@2

;
;Tier 3
[Q130]
music=default
strategy=leastrecent
maxlen=0
context=default
member => Agent/@3

;
;Operator Queue

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[171]

[Q100]
music=default
strategy=ringall
maxlen=0
context=default
member => Agent/@4

Notice that each queue has its own section. We have configured each queue to have
no limit as to length. We will be using some nifty options in the extensions.conf
file to limit how long callers will be on hold, as setting the options upon entrance
seems to be more reliable than setting them in the queues.conf file.

sip.conf
The content of this file is as follows:

[general]
context=default
port=5060
bindaddr=0.0.0.0
disallow=all
allow=ulaw

[101]
type=friend
context=local
callerid=ACMEsoft Operator<555-555-1234>
host=dynamic
secret=mypass101
dtmfmode=inband
mailbox=101

[102]
type=friend
context=longdistance
callerid=Sharon Stone<555-555-1235>
host=dynamic
secret=mypass102
dtmfmode=inband
mailbox=102

[111]
type=friend
context=default
callerid=John Smith<111>
host=dynamic
secret=mypass111
dtmfmode=inband
mailbox=111

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[172]

As you can see, a clear pattern is emerging in this file. We simply copy and paste
these configurations to create all 40 extensions needed. As we have all matching
phones, we know that the DTMF mode will be the same for all of them. Also, as we
are providing voicemail to all of our users, that will also be similar from user to user.

We should also take care to put our users in the proper context. Our first-level
support agent can only call internal extensions, our operator can dial local and
toll-free numbers, and our administrative assistant can dial long distance.

The rest of this example assumes that we have created the rest of the necessary
entries; for the sake of brevity, they have been omitted here.

meetme.conf
The content of this file is as follows:

[rooms]
conf => 850
conf => 851
conf => 852
conf => 853
conf => 854
conf => 855
conf => 856
conf => 857
conf => 858
conf => 859

Here we have created ten conference rooms, with no passwords assigned.

voicemail.conf
The content of this file is as follows:

[general]
format=wav49|gsm|wav
serveremail=asterisk@mydomain.com
attach=yes
maxmessage=180
minmessage=3
maxgreet=60
skipms=3000
maxsilence=10
silencethreshold=128
maxlogins=1

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[173]

fromstring=The Greatest PBX IN THE WORLD!!!

[zonemessages]
eastern=America/New_York|'vm-received' Q ‘digits/at' IMp
central=America/Chicago|'vm-received' Q ‘digits/at' Imp

[default]
100 => 100,Operator Queue Mailbox,,tz=central
101 => 123,Operators Mailbox,,tz=central
102 => 674,Patty Smalley,,tz=central
111 => 38594,John Smith,,tz=eastern ;Support Department works by
 ; ETZ
112 => 65413,William Krandal,,tz=eastern
113 => 654,Lindsey Cramer,,tz=eastern
114 => 0106,Stephanie Lewis,,tz=eastern

As we can see, configuring voicemail is simple. The important thing to remember
is that whatever we set the name to determines whether an extension will match an
entry in the directory. Also, the context in voicemail should always match the context
in extensions.conf.

extensions.conf
The content of this file is as follows:

[general]
static=yes
writeprotect=no

#include macros.incl
#include incoming.incl
#include outgoing.incl
#include default.incl
#include dialext.incl

[globals]
TRUNK=Zap/g1
TRUNKMSD=1

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[174]

This is our entire extensions.conf file. By using the #include feature, we are able
to make our configuration files much easier to read, and much easier to maintain. We
should remember to keep the filenames easy to read and logical. As all of these files
are included in the extensions.conf file, they will not get separate sections in
this chapter.

;macros.incl
;#included into extensions.conf
[macro-stdexten]
;
; Standard extension macro:
; ${ARG1} - Extension (we could have used ${MACRO_EXTEN} here as
; well)
; ${ARG2} - Device(s) to ring
;
exten => s,1,Dial(${ARG2},20) ; Ring the interface, 20
 ; seconds maximum
exten => s,2,Goto(s-${DIALSTATUS},1) ; Jump based on status

exten => s-NOANSWER,1,Voicemail(u${ARG1}) ; If unavailable, send to
 ; voicemail
exten => s-NOANSWER,2,Goto(default,0,1) ; If they press #, go to
 ; Operator

exten => s-BUSY,1,Voicemail(b${ARG1}) ; If busy, send to voicemail
 ; with busy message
exten => s-BUSY,2,Goto(default,0,1) ; If they press #, go to
 ; Operator

exten => s-CHANUNAVAIL,1,Voicemail(u${ARG1})
exten => s-CHANUNAVAIL,2,Goto(default,0,1)

exten => s-.,1,Goto(s-NOANSWER,1) ; Treat anything else as no
 ; answer

exten => a,1,VoicemailMain(${ARG1}) ; If they press *, send to
 ; VoicemailMain

[macro-novm]
exten => s,1,Dial(${ARG1},30) ;ring the interface for 30 seconds
exten => s,2,Goto(default,s,1)
exten => s,102,Goto(default,s,1)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[175]

Notice that we have a macro to set up all of the extensions we will be creating.
This will save us a ton of work later on, as well as make our configuration files
very readable.

;incoming.incl
;#included from extensions.conf
[incoming]
exten => 5555551234,1,Goto(default,100,1) ;Main number rings to
 ; Operators
exten => 5555552345,1,Goto(default,110,1) ;Direct number to Support
exten => 5551110001,1,Goto(default,111,1) ;Direct line to
 ; Extension 111
exten => 5551110002,1,Goto(default,112,1) ;Direct line to
 ; Extension 112
exten => 5551110003,1,Goto(default,113,1) ;Direct line to
 ; Extension 113
. . .
exten => s,1,Goto(default,100,1);
exten => t,1,Goto(default,100,1);
exten => i,1,Goto(default,100,1);

Notice that we handle all incoming calls via this file. Here we define our DIDs and
where we want them to ring. We also make sure to create intelligent rules in case the
DID information is mangled by our phone company before Asterisk can decode it. In
this case, we are sending the calls to our operator.

; outgoing.incl
;#included from extensions.conf
[local]
ignorepat => 9
exten => _9NXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91800XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91866XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91877XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91888XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => default

[longdistance]
ignorepad => 9
exten => _91NXXNXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => local

[trunkdial]
exten => _9.,1,Dial(${TRUNK}/${EXTEN:${TRUNKMSD}})
exten => _9.,2,Congestion(5)
exten => _9.,3,Hangup

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[176]

Notice what we have done here—we created a general context called trunkdial,
which we use to dial any calls going over the trunk lines. Why is this helpful? If we
were to add a new trunk group, we could add only one line. If we were to use the
standard method of having each line above dial, then we would have to add
six lines for each new trunk group.

This example assumes we will have no users placed directly in the trunkdial
context, such as in the sip.conf file. For security reasons, we must be careful
that we do not ever place a user explicitly in the trunkdial context.

;default.incl
;#included in extensions.conf
[default]
exten => s,1,Goto(default,100,1)
exten => t,1,Goto(default,100,1)
exten => i,1,Goto(default,100,1)

; Operator queue, Operator Console, and Receptionist Phone
exten => 100,1,Answer
exten => 100,2,Queue(Q100||||240) ; only allow 4 minutes in queue
exten => 100,3,Voicemail(u100) ; then send to VM
exten => _10[12],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Support Tier 1
exten => 110,1,Answer
exten => 110,2,Queue(Q110||||240) ; allow 4 minutes in queue
exten => 110,3,Goto(default,100,1) ; then send to Operator
exten => _11[1-4],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Support Tier 2
exten => 120,1,Answer
exten => 120,2,Queue(Q120||||240) ; allow 4 minutes in queue
exten => 120,3,Goto(default,100,1) ; then send to Operator
exten => _12[12],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Support Tier 3
exten => 130,1,Answer
exten => 130,2,Queue(Q130||||240) ; allow 4 minutes in queue
exten => 130,3,Goto(default,100,1) ; then send to Operator
exten => 131,1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Programmers, extensions 200-219
exten => _2[01]X,1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[177]

;Testers, extensions 251-255
exten => _25[1-5],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Project Managers, exts 301-304
exten => _30[1-4],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Shipping Department, ext 191, doesn't need voicemail
exten => 191,1,Macro(novm,SIP/${EXTEN})

exten => 800,1,Answer
exten => 800,2,VoicemailMain

exten => _85X,1,Answer
exten => _85X,2,MeetMe(${EXTEN})

exten => 888,1,Goto(dialext,s,1)

Notice that we are able to create 20 extensions for our programmers in a single line.
This is the power of Asterisk's pattern matching, coupled with the flexibility of
macros. We can use tricks like this one by grouping similar extensions together.

;dialext.incl
;#included from extensions.conf
[dialext]
include => default
exten => s,1,Answer
exten => s,2,DigitTimeout(5)
exten => s,3,ResponseTimeout(20)
exten => s,4,Background(pleaseenterextension) ; "Please enter the
 ; extension of the party you are calling."

exten => 9,1,Directory(default) ; press 9 for the directory
exten => 9,2,Goto(dialext,9,1)

exten => 0,1,Goto(default,100,1) ; send to operator as a
 ; courtesy if they press 0

exten => i,1,Playback(privacy-incorrect)
exten => i,2,Goto(dialext,s,1)

exten => t,1,Goto(dialext,i,1)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[178]

This small context allows users to dial anybody in the company, and also to access
the corporate directory. The directory that reads the voicemail.conf file allows
access to any extension in the company. By doing so, a "backdoor" line can be
established that points directly to this extension, allowing us to no longer need
direct phone numbers for each extension.

Conclusions
Asterisk has proved itself again as a powerful solution for real-world problems. By
taking advantage of the feature set that Asterisk provides, we are able to create a
server that has the features of a Centrex system. The savings that ACMEsoft will
experience are very real and will pay for the system with a short ROI.

Hosted PBX
Asterisk is not limited to being able to service only one company. With a little
finesse, we can configure Asterisk to handle multiple companies without the need
to be aware of the others' presence. Although our example will deal with multiple
companies on one site, there is no reason the same principles could not be applied
over a high-speed data network.

The scenario
Al's Computer Depot was a very large computer retailer in the early 1990s, back
when computers were fun and profitable. Unfortunately, Al got a bit too used to
very high margins on computer sales, and has moved out of the computer selling
business. He and his team have moved into consulting. As a consulting firm, 90%
of the employees are traveling at any time.

Al's wife operates a small boutique selling Asian knock-off wallets. As most of
the offices are empty all of the time, Al decided to let her have an office to run her
business from. And with such a business, Sue needed a telephone line, but it would
be no good to have the line answered by someone from Al's Computer Depot
(the name wasn't changed as Al didn't want to buy new stationary when he went
into consulting).

After this experience, Al decided to sublease more offices, requiring the tenants to
purchase the telephone service from him. And so, Al's phone system is configured
to allow multiple businesses on the same server.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[179]

We will be considering three separate businesses as follows:

Al's Computer Depot
Sue's Collectibles
AutoAuction Listings

The discussion
Asterisk is perfect for this scenario. The flexible feature set will allow enough
features for potential tenants, while being able to be scaled down for the smaller
businesses who only need one line, like Sue's Collectibles.

We will be using SIP hardphones and a PRI line for PSTN interconnection. This will
give us flexibility to change quickly when tenants come and go.

The configuration
Once again assuming we have properly installed Asterisk, the following files will
configure our server for Al.

system.conf
The content of this file is as follows:

#incoming PRI 1
span=1,1,0,esf,b8zs
bchan=1-23
dchan=24
loadzone = us
defaultzone=us

Again, we use ESF framing and B8ZS coding, as they are very common for PRIs in
the United States.

chan_dahdi.conf
The content of this file is as follows:

switchtype=national
context=incoming
signalling=pri_cpe
group=1
channel => 1-23

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[180]

Here we are setting channels 1 through 23 (the channels that take actual calls;
channel 24 is for signaling) to be in group 1, and we are telling incoming calls
to go to the context called incoming in the dialplan.

musiconhold.conf
The content of this file is as follows:

[classes]
default => quietmp3:/var/spool/asterisk/defaultMOH,-z

Here we have a general music on hold instance, called default.

sip.conf
The content of this file is as follows:

[general]
context=default
port=5060
bindaddr=0.0.0.0
disallow=all
allow=ulaw

[al100]
type=friend
context=al-ld
callerid=Al Getrich<800-555-1234>
host=dynamic
secret=badpassword
dtmfmode=inband
mailbox=100@al
accountcode=al
. . .
[sue1]
type=friend
context=sue-ld
callerid=Sue Getrich<555-555-5555>
host=dynamic
secret=anotherbadpassword
dtmfmode=inband
mailbox=1@sue
accountcode=sue

[aa100]

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[181]

type=friend
context=aa-ld
callerid=Auto Auctions<555-777-1234>
host=dynamic
secret=1234
dtmfmode=inband
mailbox=100@aa
accountcode=aa

Here we see three of the many SIP extensions that are defined. Notice that two of
the users, namely aai100 and al100, both have mailboxes of 100, and both will be
extension 100. As they are in different contexts, though, this will not be a problem.

Also, we should be sure to put each of the SIP users into the correct account codes.
By doing so, we can correctly bill calls made to the party who made them. There
are many billing solutions available for Asterisk; however, we focus on what can
be done with the default setup here.

voicemail.conf
The content of this file is as follows:

[general]
format=wav49|gsm|wav
serveremail=asterisk@mydomain.com
attach=yes
maxmessage=180
minmessage=3
maxgreet=60
skipms=3000
maxsilence=10
silencethreshold=128
maxlogins=1
fromstring=The Greatest PBX IN THE WORLD!!!

[zonemessages]
central=America/Chicago|'vm-received' Q ‘digits/at' Imp

[al]
100 => 100,Al Getrich,,tz=central
. . .

[sue]
1 => 1,Sue Getrich,,tz=central

[aa]
100 => 1234,Auto Auctions,,tz=central

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[182]

This is a sample of how the voicemail.conf file will look, with one sample from
each company. As we can see, configuring voicemail is simple. The important thing
to remember is that whatever we set the name to determines when an extension
will match an entry in the directory. Also, the context in voicemail should always
match the context in extensions.conf. This allows each company to have its own
directory, if it so chooses.

extensions.conf
The content of this file is as follows:

[general]
static=yes
writeprotect=no

#include macros.incl
#include al.incl
#include sue.incl
#include aa.incl
#include outgoing.incl

[globals]
TRUNK=Zap/g1
TRUNKMSD=1

This is our entire extensions.conf file. By using the #include feature, we are
able to make our configuration files much easier to read and maintain. We should
remember to keep the filenames easy to read and logical. As all of these files are
included in the extensions.conf file, they are not given separate sections in
this chapter.

;macros.incl
;#included into extensions.conf
[macro-stdexten]
;
; Standard extension macro:
; ${ARG1} - Extension (we could have used ${MACRO_EXTEN} here as
; well)
; ${ARG2} - Device(s) to ring
;
exten => s,1,Dial(${ARG2},20) ; Ring the interface, 20 seconds
 ; maximum
exten => s,2,Goto(s-${DIALSTATUS},1) ; Jump based on status

exten => s-NOANSWER,1,Voicemail(u${ARG1}); If unavailable, send to
 ; voicemail

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[183]

exten => s-NOANSWER,2,Goto(default,0,1) ; If they press #, go to
 ; Operator

exten => s-BUSY,1,Voicemail(b${ARG1}) ; If busy, send to
 ; voicemail with busy
exten => s-BUSY,2,Goto(default,0,1) ; If they press #, go to
 ; Operator

exten => s-CHANUNAVAIL,1,Voicemail(u${ARG1})
exten => s-CHANUNAVAIL,2,Goto(default,0,1)

exten => s-.,1,Goto(s-NOANSWER,1) ; Treat anything else as
 ; no answer

exten => a,1,VoicemailMain(${ARG1}) ; If they press *, send to
 ; VoicemailMain

[macro-novm]
exten => s,1,Dial(${ARG1},30) ; ring the interface for 30
 ; seconds
exten => s,2,Goto(default,s,1)
exten => s,102,Goto(default,s,1)

We can actually reuse these macros from the previous example; this is why macros
are so powerful. By defining things generically enough, we are able to reuse the same
configuration in many different scenarios.

;al.incl
;#included from extensions.conf
[al]
exten => 8005551234,1,Goto(al,100,1) ;AL's direct number
exten => 100,1,Macro(stdexten,100@al,SIP/al100) ;AL's extension

Notice that we can handle incoming calls and internally dialed extensions. Here
we define our DIDs and where we want them to ring. We also define failover
behavior in case of bad information from our phone company. Finally, we define
the extensions for Al's own business directly in this file.

One somewhat interesting side effect of this method is that if we dial the full
ten-digit number from a telephone, it will route it internally, instead of hopping
off to the PSTN and then coming back in. Of course, if we dial a 9, then we will
still use the trunk rules.

;sue.incl
;#included from extensions.conf
[sue]
exten => 5555555555,1,Goto(sue,1,1) ; Sue's direct number

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Case Studies

[184]

exten => 1,1,Macro(stdexten,100@sue,SIP/sue1) ; Sue's extension
. . .

;aa.incl
;$included from extensions.conf
[aa]
exten => 8005551234,1,Goto(al,100,1) ; Only phone number for A A
exten => 100,1,Macro(stdexten,100@aa,SIP/al100) ; Only AA extension

Here we have the other two businesses. We have chosen to configure them in much
the same way as we did for Al. Each business will be in its own configuration file.

;outgoing.incl
;#included from extensions.conf
[al-local]
ignorepat => 9
exten => _9NXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91800XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91866XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91877XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91888XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => al

[al-ld]
ignorepad => 9
exten => _91NXXNXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => al-local

[sue-local]
ignorepat => 9
exten => _9NXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91800XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91866XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91877XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91888XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => sue

[sue=ld]
ignorepad => 9
exten => _91NXXNXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => sue-local

[aa-local]
ignorepat => 9
exten => _9NXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91800XXXXXXX,1,Goto(trunkdial,${EXTEN},1)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[185]

exten => _91866XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91877XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
exten => _91888XXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => aa

[aa-ld]
ignorepad => 9
exten => _91NXXNXXXXXX,1,Goto(trunkdial,${EXTEN},1)
include => aa-local

[trunkdial]
exten => _9.,1,Dial(${TRUNK}/${EXTEN:${TRUNKMSD}})
exten => _9.,2,Congestion(5)
exten => _9.,3,Hangup

Here we used the same trunkdial context as in the previous example for exactly the
same reasons. However, with all these different outgoing contexts, the complexity of
adding extensions would simply keep increasing.

Each company has a unique set of outgoing contexts so that only its extensions are
included. This helps to ensure that the correct extension is reached when extensions
exist in more than one context, such as extension 100 existing in contexts aa and al.

Compared to our previous example, this system offers fewer features for our users.
We do not have conferences, we cannot get to the directory, and we must call our
own extension and press the * key to get to our voicemail. However, these features
can be activated at will, or even as customers pay to have them added.

Conclusions
Asterisk has again been used to fulfill a different need in a phone system. By taking
advantage of contexts, we have been able to create multiple virtual phone servers
with only one server, one PRI line, and one set of configuration files.

Summary
After looking at these case studies, I hope you have been able to spot common
features in what we are trying to implement in each different situation. We can
learn from these implementations and apply many of the same strategies when
we encounter users with similar needs.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security
Now that we have an Asterisk server installed and running, we should consider the
maintenance and security of the server. There are a number of aspects involved here
and we will cover each in turn. As the Asterisk server is going to be the central hub
of our phone system, the importance of securing and maintaining it is obvious, as
without it we lose our primary means of communication.

This chapter also looks at scalability issues, which are important to keep Asterisk
running at high loads. Finally, the last section takes a look at how to get support from
the community, and how to stay abreast of Asterisk developments. Keeping up with
what's going on in the Asterisk world can be a very useful way to stay prepared for
potential problems before they happen, as well as providing a helping hand should
things go wrong.

Backup and system maintenance
One of the most important aspects of maintaining a system is the update or patch
management process. It's vital that we keep our system up to date in order to reduce
bugs and ensure that any security vulnerabilities in our software are fixed as soon as
possible. When updating our Asterisk server, there are three main areas to maintain:

The Asterisk service itself
The various components that Asterisk depends on (DAHDI, LibPRI, festival,
and so on)
The host OS and any supplementary tools installed (OpenSSH, mpg123,
and so on)

When we discussed setting up the Asterisk server, we covered installing from the
CVS source repository, which is an easy way to keep Asterisk up to date, as you can
continually download the latest version.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[188]

If we were to manage all applications as source packages only, we would need to go
through the steps given in the installation chapter for each component as updates are
released. However, when we factor in the updates for the tools of the host operating
system and any other tools we use, this can become tedious and error prone quite
quickly as these extras aren't contained in the Asterisk CVS repository. It is at this
point that we should consider a package management system to ensure we keep
everything up to date automatically, reducing our administrative burden. The
options we have for this are dependent on the Linux distribution we decided
to use.

Examples are:

APT: Used by Debian (and ported to many other distributions such as
Red Hat). Visit http://www.debian.org/doc/manuals/apt-howto/
index.en.html.
Portage: Used by Gentoo. Visit http://www.gentoo.org/doc/en/
handbook/handbook-x86.xml?part=2&chap=1.
URPMI: Used by Mandrake. Visit http://www.urpmi.org.
Yum: Used by YellowDog/CentOS. Visit http://linux.duke.edu/
projects/yum/. Yum is the command you will use in Trixbox installations.

Each of these is documented on its respective site. In order to ensure our system
remains well maintained, we must become familiar with the package management
tools at our disposal.

Backing up configurations
In the installation chapter, we briefly touched on backups and mentioned making
a copy of the configuration files before editing them. This is good administrative
practice and will protect us from any mistakes we make in the configuration files.
However, it will not protect our configuration if the system were to be compromised
or if we were to lose the media containing the configuration. It also doesn't take into
account any data the system holds that we might lose.

Asterisk configurations can become quite involved over time and we invest a lot
of time in setting these up. Repeating this work would be far from desirable in
the event of system failure. For this reason, we should keep offline copies of the
configuration files.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[190]

 read only = no
 list = no
 auth users = username
 secrets file = /etc/rsyncd/asterisk

The /etc/rsyncd/asterisk file would contain our username and password pair.
This and the /etc/rsyncd.conf file would be on the backup server, which we
would also install and run rsyncd on.

We could then run the following command on the Asterisk box in order to back up
the configurations:

$ rsync --verbose --compress --progress --recursive --times --perms

 --nodelete /etc/* backupserver:asterisk_backup

This would copy everything from the /etc/ directory on the Asterisk server to the
/home/adminuser/asterisk_backups directory on the backup server.

Added security
If we install SSH on the backup server, then we could run the previous
command over an encrypted SSH tunnel, by altering the command as follows:
$ rsync --rsh=/usr/local/bin/ssh --verbose --compress –
progress

 --recursive --times --perms --nodelete /etc/*

 backupserver:asterisk_backup

We could also back up to a tape drive attached to the Asterisk server by
using the tar utility, which requires no configuration files as it is completely
command-line driven:

$ tar --verbose -j --create /etc/*

The -j option compresses the files and subfolders under /etc/ using bzip2 for
efficient storage.

If we want to use an archive file instead of a tape drive, we add the
--file (or -f) parameter:

$ tar --file=asterisk_backup.tar.bz2 --verbose -j --create /etc/*

We could automate these processes by adding the relevant command lines to cron.
For example:

$ crontab -e

 0 2 * * 0 tar --file=asterisk_backup.tar.bz2 --verbose –j

 --create /etc/*

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[191]

This would back up the configuration files at 02:00 every Sunday morning.
It may be worth studying cron if we are unfamiliar with it to ensure we
understand its capabilities.

Backing up voice data
We would also want to ensure we had backups of the saved data that we have in
our spool directory. This is where our hold music and voicemail is located. We
would almost certainly want to restore this in the event of a system failure,
especially when we have referenced audio files in our configuration files and
hence, they are required for Asterisk to function properly. The default location of
the spool directory is /var/spool/asterisk. Hence, we should add it to our
backup commands.

Using rsync:

$ rsync --verbose --compress --progress --recursive --times –perms

 --nodelete /etc/* /var/spool/asterisk backupserver:asterisk_backup

Using tar:

$ tar --file=asterisk_backup.tar.bz2 --verbose -j --create /etc/*

 /var/spool/asterisk

This would ensure our backups contain all of our configuration and voice data that is
necessary for a complete restoration of the Asterisk server.

Additional considerations
We may also want to back up other data and log files if we have
additional applications installed with the Asterisk server, such
as Webmin.

Backing up log files
It is important to ensure that any logs we have are backed up too, and we can do this
by adding /var/log/asterisk to the commands. It may not always be necessary
to keep log files. However, we may have to keep these if we have a data retention
policy or are under regulations that require log and data to be kept.

Policies
If we are under a regulation or policy such as Sarbanes-Oxley or HIPAA,
then we will have clearly defined rules for log retention and may have to
ensure compliance of the Asterisk backups.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[192]

Backup scripts
In order to back up the system effectively, it's important that we back up the
 system incrementally so that we can go back to previous points in time, for
example, before a disaster happened or before a configuration change that caused
problems. The scripts that follow allow us to do so by keeping copies of our
configurations and data on a backup server, and running these daily means we
can go back and restore any date's configuration if necessary.

The following scripts allow us to back up our files to a backup server running an
SSH daemon. They can be used as is (with the obvious change to the backup_server
variable) or as a starting point for a backup system. The files are commented enough
to make them self-explanatory. They use a combination of tar and scp to archive the
files and copy them off the server. Alternatively, you could use rsync by following
the guidelines shown earlier.

First, here is the backup.cron script:

#!/bin/bash

######################################
Backup script for asterisk
######################################
This script is designed to make
a copy of all important config
and data files, which will then
be copied to a backup server
running an ssh daemon
######################################
Usage: backup.cron, no
arguments required.
######################################

edit variable below to contain your
backup server user and hostname as
well as directory location
backup_server="username@backupserver:/path/to/backups"
date='date +%Y-%m-%d'

Remove old backups to keep from filling the disk with junk
rm /backup/*.tar.gz -f

Backup the /etc/ directory
tar cfz /backup/asterisk-configs-${date}.tar.gz /etc

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[193]

Backup the voicemail directory
tar cfz /backup/asterisk-vm-${date}.tar.gz /var/spool/asterisk/
voicemail

Rotate the logs for Asterisk
/usr/sbin/asterisk -rx 'logger rotate'

mv /var/log/asterisk/debug.0 /tmp/debug.${date}
mv /var/log/asterisk/messages.0 /tmp/messages.${date}
mv /var/log/asterisk/event_log.0 /tmp/event_log.${date}

Backup log files
tar cfz /backup/asterisk-astlogs-$date.tar.gz /tmp/*.${date}

Remove unnecessary files
rm -f /tmp/*.${date}

Copy all archives to our backup server.
scp -B /backup/*-configs-${date}.tar.gz $backup_server
scp -B /backup/*-vm-${date}.tar.gz $backup_server
scp -B /backup/asterisk-astlogs-* $backup_server
scp -B /backup/asterisk-phonecfg-* $backup_server

Next, let's see monitor_mix.cron:

#!/bin/bash

##
Shell script to handle phone monitoring
files. This script will be run at night
and maybe at lunch. It will use soxmix
to mix the in and out components of the
conversation, delete the in and out com-
ponents, and then use lame to encode the
mixed wav file into an MP3
##
Usage: monitor_mix.cron, no arguments
required
##

edit variable below to contain your
backup server user and hostname as
well as directory location
backup_server="username@backupserver:/path/to/backups"
date=`date +%Y-%m-%d`

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[194]

Clear previous backup files prepare folder
structure for backup set.
rm /backup/monitor -rf
mkdir /backup/monitor
mkdir /backup/monitor/${date}
chmod -R 700 /backup/monitor

For each conversation in the monitor directory
soxmix the two parts of the conversation
together and convert to mp3.
cd /var/spool/asterisk/monitor
for i in 'ls *-in.wav'
do
 basename='basename $i -in.wav'
 echo $basename

 # soxmix "in" and "out" files
 soxmix $i $basename-out.wav $basename.wav
 rm -f $i
 rm -f $basename-out.wav

 # convert resulting wav to mp3
 lame --resample 16 -m m -b 32 -h --cbr $basename.wav $basename.mp3

 # Remove unnecessary files
 rm -f $i
 rm -f $basename-out.wav
 rm -f $basename.wav

done

Put newly created mp3s in local backup directory
mv *.mp3 /backup/monitor/${date}

Copy mp3s to our backup server running an sshd
scp -B -r /backup/monitor/* $backup_server

We could also restart the Asterisk service every night in order to resolve any
channels that may have hung. This may not be possible if the system sees high usage
during the night, but is useful in situations where we have channels hanging often.

Finally, let's see asterisk_restart.cron:

#!/bin/bash
/etc/init.d/asterisk stop
/etc/init.d/dhadi restart
/etc/init.d/asterisk start

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[195]

Time synchronization
As our Asterisk system retains logs of calls and also makes routing decisions based
on time, it is important to have the system clock synchronized. We can do this with
Network Time Protocol (NTP). This is very easy to use. Just install the ntpdate
program, which you will most likely find in your distribution's package management
system (yum, urpmi, apt, or any other). Then run the script shown next. If we have
a local time server (for instance, if we have other time-dependent services such as
Kerberos authentication installed), we should use that.

The timesync.cron NTP script is as follows:

#!/bin/bash
ntpdate pool.ntp.org # replace pool.ntp.org with local time server
/sbin/hwclock –-systohc # sync the hardware clock

Adding it all to cron
The four files we have created can be added to our crontab to ensure that they are
run periodically. We can do this by first running:

$ crontab –e

Then creating the following entries (replacing /path/to with the location of
our scripts):

30 01 * * * /path/to/backup.cron
59 23 * * * /path/to/monitor_mix.cron
00 01 * * * /path/to/asterisk_restart.cron
00,15,30,45 * * * * /path/to/timesync.cron

This ensures that our backup.cron, monitor_mix.cron, and asterisk_restart.
cron scripts are run every night and that our time is synchronized every 15 minutes.

As we are running these commands non-interactively, that is we are using scp
in batch mode, we must ensure that the scp command can authenticate with the
backup server. In order to do this, we should use SSH keys instead of passwords
for authentication by running the following commands:

$ ssh-keygen -t dsa ; accept all defaults by pressing enter at each

 ; prompt

$ ssh username@backupserver 'cat >> ~/.ssh/authorized_keys'

 < ~/.ssh/id_dsa.pub ; enter password when prompted

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[196]

Back up Asterisk with FreePBX
FreePBX has made the entire backup process much quicker and easier, all because
of a module accessible through the GUI. By default, it might not be installed in
FreePBX, so you will first need to install it through the Module Admin section.
Once installed, you will find the Backup & Restore module located under the
Tools section of the GUI.

In the previous screenshot, you will see that you have the ability to create multiple
backup operations quickly and easily. First, you will specify a name to easily identify
the backup operation. Next, you need to specify what parts of Asterisk you wish to
back up. For example, you might want to have a daily schedule that backs up system
configuration, but for voicemails you might want to set up a separate schedule for
once a week or once a month as each backup can be very large. The last part of the
interface allows you to specify the days, months, and the time you want your backup
to run. If you want to create an immediate backup, select "Now" from the drop-down
menu labled Run Backup.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[197]

Back up Asterisk with Trixbox
Much like FreePBX, Trixbox also has a backup module, which is built into Trixbox
and is accessible under the maintenance section (<yourip>/maint section). Much
like FreePBX, the same settings are available to you in order to specify date and time
as well as what parts of Asterisk you want backed up. The major difference is that
Trixbox also has the option to specify a remote destination for the backup through FTP.

Rebuilding and restoring the Asterisk server
If the unthinkable happens and we lose our server due to hard disk failure or if we
have to rebuild our server because of a system compromise, we need to know exactly
how to get the server back online as fast as possible to minimize downtime.

There are a number of steps involved in this:

1. We rebuild the server, by following the instructions in the installation
chapter. We follow the same process exactly up to the point of configuration.
As we have a backup of the configuration files, we can skip this part and
replace the files with our backups later.

2. We replace the configuration files. We identify the latest usable backup, from
which we extract the /etc/ directory. We then replace the operating system's
configuration files we need and replace the /etc/asterisk directory. This
ensures we have our previous configuration.

 #!/bin/bash

 $ tar xjvf asterisk_backup.tar.bz2

 $ cp -R etc/asterisk /etc/asterisk

We follow a similar process for any other configuration files we wish
to restore.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[198]

3. For data and logs, we follow the same process as in step 2, but this time we
restore the /var/spool/asterisk and the /var/log/asterisk directories
to their original locations as required, as well as any other areas of the system
we have backed up.

4. Permissions are the last thing that we need to ensure so that Asterisk can
read and write to the files necessary to function.

At this point, we are able to restart the Asterisk server and verify that the system
works properly by testing whether we can make and receive calls and checking
that all features of the system are functioning as they were previously. We could
also ensure that no errors appear, after which it can be reintroduced back to its
production environment.

Disaster Recovery Plan (DRP)
If during installation, we document as much as possible and create a valid DRP,
we will be able to get our Asterisk server back online with minimal disruption and
effort. As Asterisk is most likely an essential line of communication to partners and
customers, downtime is an extremely important aspect to consider and creating a
DRP should be addressed long before any disaster occurs.

Even something simple such as logging the installation process and documenting
how to restore from backups is enough for at least a basic DRP, although it is
recommended that we go further and create a full plan for not only the Asterisk
server but also all other mission-critical services. We could also possibly have a
layer of fault tolerance built into the system.

Our plan must take into account at least the following:

Notification of any outage or data loss
Times when outage of the Asterisk service would be most detrimental to
the organization
Responsibility for getting the service restored
Estimated time scale for restoration of service
Location of backups and other necessary files
Vendor support contact details
Detailed restoration instructions, which would include:

Restoring the service
Restoring all data
Restoring all configurations
Reimplementing backup procedures

•
•

•
•
•
•
•

°
°
°
°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[199]

Asterisk server security
Before we cover external security and think of putting the Asterisk server onto our
production network, we must consider the internal security of the system to ensure
that it fits with our security policy and meets good security practice at least.

Internal host security can be achieved in a variety of ways and there are many
applications and tools that we can use to aid us in this. We will not discuss all of the
tools and add-ons we can use for generic system security. However, we will cover
basic operating system hardening with Asterisk in mind, as well as the further steps
we can take to ensure that the Asterisk system is running as securely as possible.

It is also important to consider the physical security of the Asterisk system.
We may want to have it under lock and key along with our other important
infrastructure devices.

Internal access control
One of the most important and most overlooked aspects of host-level security is
physical security. Our Asterisk server is a communication channel and most likely
carries some confidential information. Be sure to have it as segmented from other
non-essential and non-confidential systems as is reasonably possible.

In any multi-user system, internal Discretionary Access Control Lists (DACLs) are
essential for security, and Linux as an OS has Unix foundations for these control
lists. There are a variety of permissions that go far beyond read, write, and execute.
However, focusing on these is enough for our purposes and will help us maintain
a secure system. As a rule, we would have no one but administrators accessing
the Asterisk server, because our users operate the system transparently from their
telephony devices—either a handset or a software telephone. No direct access to the
system is usually required. This is assuming that our Asterisk system is installed on a
machine on its own that provides no other services, which is not always the case but
is highly recommended.

Installing the Asterisk service on a dedicated machine offers the following benefits:

Resources are dedicated to Asterisk and are therefore easier to monitor:
We know if Asterisk requires extra resources
Badly performing services don't affect Asterisk

The attack surface of the machine is reduced:
There are fewer avenues for remote attack if the Asterisk
service is the only way in

•

°

°

•

°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[200]

Maintenance of the system is easier:
We don't have to check Asterisk updates for compatibility
with other services and vice-versa
A system's reliability and uptime are inversely proportional
to the number of services and users it provides for
There won't be downtime of the Asterisk service while
unrelated services or components are updated, modified,
or removed

We should ensure that the Asterisk service has access to the directories it requires to
perform its function. The permissions mentioned here are not the default, but create
a more secure setup, and we should test that our Asterisk service functions properly
after making these changes. The default permissions on the directories listed are
usually 755 and, for the files, 530. The directory locations listed below are the
default directories and permissions for an Asterisk install on Debian; consult your
asterisk.conf file to confirm their exact locations on your distribution.

The key directories are:

1. /etc/asterisk: The configuration files for Asterisk are here. The
Asterisk service requires read access to this directory so that it can read its
configuration as it loads up and prepares itself for use. It won't need write
access, as we will modify these files outside Asterisk and let Asterisk read
them as it needs them.

2.	 /usr/lib/asterisk/modules: Asterisk has a variety of add-ons and
different functionality provided by modules, which are shared libraries
that Asterisk can load as needed. They are stored in this directory, and read
access is all that's required. We don't require write or execute access as these
modules aren't executed directly, but are loaded by an already running
program (the Asterisk binary).

3.	 /var/lib/asterisk: This folder contains required files such as public keys
for services. Read access is required so that Asterisk can read and present
these keys to service providers. Write access is not required as when new
keys are added or keys change, we would modify them manually.

4.	 /usr/share/asterisk/: This contains common files such as sounds. Again
only read access is required so that Asterisk can load and play the sounds
when necessary.

5.	 /var/spool/asterisk: This is the spool directory for storage of voicemail
messages and other data. Here read/write access is required. Asterisk
stores this data in real time and therefore, needs to constantly write to this
directory. We wouldn't manually edit anything here usually, although we
may occasionally delete old data.

•
°

°

°

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[201]

6.	 /var/run/asterisk: Asterisk stores the PID of the currently running service
here, and so it requires read/write access.

7.	 /var/log/asterisk: Asterisk keeps a variety of log files here and requires
read/write access to continually log information and errors related to the
Asterisk service.
The following short script will set the permissions outlined above:

 #!/bin/bash
 # Sets minimum permissions required for Asterisk's key directories
 # Modify directory locations based on your /etc/asterisk.conf file

 # Make files root owned and asterisk grouped so that a compromise
 # of the asterisk user doesn't allow write access to the
 # config files

 chown -R root:asterisk /etc/asterisk /usr/lib/asterisk/
 /usr/share/asterisk/ var/spool/asterisk /var/run/asterisk
 /var/log/asterisk

 # Give owner (root) r/w/x and give group (asterisk) r/x

 chmod 750 /etc/asterisk /usr/lib/asterisk/ /usr/share/asterisk/
 /var/spool/asterisk /var/run/asterisk /var/log/asterisk

 #Additional write access for asterisk group on necessary
 #directories

 chmod 770 /var/spool/asterisk /var/run/asterisk /var/log/asterisk

If you have more Asterisk add-ons installed, the permissions of those files and
directories will also be likely to require modification to increase security.

Host security hardening for Asterisk
When we have our basic DACLs in order, we can consider a number of other
methods for keeping the Asterisk system secure.

There are several tools that can be installed and used to improve security on
Asterisk, and describing the options for many of them would take up entire
bookshelves of their own. Here, we will discuss some of the simpler tools for
keeping you informed on how secure your system is.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[202]

Integrity checker
We could install Tripwire or another file integrity checker to monitor the checksums
(hash values calculated from a file's contents) in order to ensure that the contents
of a file haven't changed. This helps by informing us whenever a file changes; more
specifically, it focuses on binary files. Hence, if an attacker succeeded in altering
the Asterisk binary or one of the modules, you would know about it. You can also
monitor other operating system files (netstat, ps, top, and so on) in order to ensure
that they haven't been tampered with. The security offered in this is knowing which
things have changed without your approval in the event of a system compromise.

Checksums
A checksum is calculated by running a file's binary contents through a
known algorithm, giving a constant value as long as the file contents do
not change (the filename has no relevance with the sum). This is used
by tools such as Tripwire to determine if a file has changed.

Rootkit detection
Rootkits are tools installed by attackers in order to gain control of the system. They
modify binary files, change kernel system calls, and use a variety of other evasion
techniques such as covert communication channels. All this is in aid of keeping the
attacker hidden so that we don't know they have compromised us, leaving them free
to plunder the system and use our resources as they see fit. A rootkit detection tool is
useful as it helps us find these rootkits and quite often helps remove them. The two
most notable tools are rkhunter and chkrootkit.

For more information on rkhunter, visit http://www.rootkit.nl/.
For more information on chkrootkit, visit http://www.chkrootkit.org/.

Automated hardening
We can also use a tool such as Bastille, which will help us harden areas of the system
outside of Asterisk. We can implement a host-based firewall and modify other
system settings to increase security. Bastille has a wizard-based interface, which asks
the user a series of questions, and then creates and applies a security policy based on
the given answers. It requires very little knowledge of the underlying system and is a
generous boost to the overall security of the Asterisk host.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[203]

There is a plethora of other tools to choose from; however, these are very common
and very easy to use and are almost essential to a secure system. Installing and using
these at a minimum provides the knowledge of what's going on within our system,
which is an important part of knowing how secure we are.

Role Based Access Control (RBAC)
It's long been known that the traditional DACL, which is prevalent in many OSs
including Windows and Linux BSD as well as other Unix-based systems is not the
only way nor the best way to separate system access. RBAC is not an entirely new
idea, and it has been around for a long time, but doesn't see much usage due to
being quite difficult to implement.

Asterisk is a very complicated system, which performs a variety of functions, so
it can be very difficult to create a workable access control list for access to system
resources. RBAC works by not having a single root or administrative user, but
instead splitting all tasks to only those users in the system that require them.

RBAC can be provided on Linux by using RSBAC (Rule Set Based Access Control)
found at http://www.rsbac.org. You can use Adamantix, which is a distribution
that has this already fully implemented, and there are configurations of the system
available to set up Asterisk.

For more information on Adamantix, visit http://www.adamantix.org.

SELinux
SELinux is a patch for the Linux kernel produced by the NSA for their
purposes, and it is described as experimental. It is, however, used on a
variety of production networks as an implementation of the Mandatory
Access Control theory.

The good news for Asterisk administrators, however, is that there is a pre-written
script for SELinux downloadable from http://www.coker.com.au/selinux/ if you
use Debian. The policy is also available for other distributions such as Gentoo, where
you will find it within Portage.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[204]

Network security for Asterisk
As many of the protocols Asterisk supports are used over a TCP/IP network, we
need an understanding of how to control and firewall these correctly in order to
ensure that we only let the necessary traffic pass through.

Our firewall will most likely be on a box separate from our Asterisk installation and
placed at the network perimeter (we may also have a host-based firewall to which
different rules may apply). In order to define the required rules, I won't detail how to
configure a specific firewall product, but provide the details necessary to configure
any device we have protecting our Asterisk installation.

These rules would apply to any device, be it iptables on a Linux machine, a
commercial firewall such as Microsoft ISA server or checkpoint, PIX, and so on.
The product in use isn't the main issue, the protocol rules that are required are.
We can then take these generic rules and apply them to any firewall device we
decide to install.

Firewalling the Asterisk protocols
When it comes to security, firewalls have traditionally been the most important
mechanism for protecting internal company assets. For your Asterisk
implementation and more specifically the VoIP elements of this system,
this is an important consideration.

VoIP protocols are among the most complex in common use and require a great
deal of forethought before we can go ahead and deploy Asterisk on our production
network. We must consider which solutions we will use and which providers can
supply them for us. In order to ensure the network is securely set up, we should
have a thorough understanding of the protocols that we'll use so that we can
firewall effectively.

It is often difficult to firewall VoIP protocols and there are many extensive
documents detailing various scenarios, so here we will discuss the basic needs
of a protocol for firewalling.

Probably the three most common protocols used by VoIP communications today
are SIP, H.323, and IAX. The choice of protocols used for our VoIP communications
depends entirely on which protocol our vendor supports and which protocol our
contacts use.

We will cover SIP, H.323, and IAX here. We have covered these protocols
from a technical perspective in previous chapters and we will now see how
to firewall these effectively and why IAX is much easier to maintain from a
network-control perspective.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[205]

SIP (Session Initiation Protocol)
Now there is a variety of firewalls that have SIP support built-in. All of the
rules required to allow the protocol through the device are available and all
that is needed is for the relevant switch to be flicked. If we have such a firewall
(examples are BorderWare, Cisco PIX/ASA products, and ISA server), then our
job is done. If, however, we have to define our own firewall rules, a little more
work will be required. If we have a traditional firewall, which is a border control
mechanism for two networks (usually the LAN and the Internet), then it is relatively
straightforward.

We will require:

Incoming connections on port 5060 (UDP and TCP) to the Asterisk machine
in order to receive SIP calls
Outgoing connections on port 5060 (UDP and TCP) from the Asterisk server
in order to make SIP calls

If we have Network Address Translation (NAT) between our Asterisk server and the
clients accessing it, then things get a little more complicated. In order to get such a
setup working, it is suggested that we get a SIP Proxy that supports NAT, which will
allow Asterisk to use SIP without difficulty.

The reasoning behind this is that NAT is a hack that was created in order to increase
the lifetime of the IPv4 address space. NAT works by taking the internal address
(one that isn't Internet routable) and modifying packets sent out so that they use
one of the NAT gateway's external addresses. The NAT gateway then takes the
returning packets (addressed to it) and rewrites them for the original client based
on information held in a lookup table. This works well for most single socket
applications (a socket being a pair of IP addresses and ports).

In SIP's case, this will not work as SIP requires a distinct address for the SIP client
and when we use NAT this is obviously not the case, as multiple clients use the same
address. The Internet Engineering Task Force (IETF, www.ietf.org) maintains the
Internet drafts that detail exactly how to get SIP working through a NAT device.
The best advice, however, is for us to use a SIP Proxy or attempt to route our SIP
service through a router without NAT, that is, to basically give Asterisk one of our
publicly accessible IPs. Depending on our placement of the Asterisk server this may
be a viable solution. With IAX, we can link multiple Asterisk servers, so this gives us
added options when it comes to server placement.

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[206]

H.323
H.323 has a similar problem to SIP as it is also designed to require distinct IP
addresses and the same advice applies—if we can have the H.323 server on a public
IP then it may be easier to maintain it, as long as we firewall it effectively. If we have
control of both ends of the communication, we can set up a VPN between the two
sites, which solves this problem and ensures end-to-end encryption.

In order to firewall H.323, we need to permit incoming and outbound connections on
TCP port 1720 and UDP ports 5000-5014.

IAX
IAX is a lot more straightforward than either H.323 or SIP as it was designed with
the limits imposed by NAT in mind. You can easily allow this traffic through your
firewalled NAT with minimal fuss.

IAX uses UDP port 4569 for outbound and inbound communication. The old IAX
protocol, mentioned in an earlier chapter and succeeded by the current IAX (IAX2),
used UDP port 5036.

IAX is also more powerful than either H.323 or SIP and has several features that
make VoIP administration and use much easier. For example, it has enhanced
signaling capabilities and separates signaling and data more effectively. Also, as
IAX is not a standard and therefore has no standards body monitoring the decision
process, modifications can be made more easily.

The Real-Time Transport Protocol (RTP)
RTP is the protocol often used to carry the audio data in a VoIP conversation. It is
a standard developed by the IETF (Internet Engineering Task Force). It can also be
used to carry video data and is designed specifically to handle this sort of real-time
data. It attempts to guarantee that the data will be transmitted and received in a
short period of time. Obviously latency in voice conversations can be a problem, so
RTP avoids this latency as much as possible and concentrates on timely delivery
of data.

In order to allow RTP to function, we would have to allow the UDP ports 10000 to
20000 inbound and outbound from our Asterisk server.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[207]

Controlling administration of Asterisk
As we have set up Asterisk to access files owned by the root user and Asterisk group,
this means that the Asterisk service can read and write only to the files it requires.
We, however, may have to perform additional maintenance tasks such as adding
extensions, creating new voicemail boxes, and so on.

As Asterisk configuration is managed by modifying flat files, this is done by logging
in to the server with an interactive session, at the local console or remotely. In order
to follow best practice, we wouldn't log in directly as the root user, but more likely as
the Asterisk user. If we did need to edit any files that the Asterisk user doesn't have
privileges for, then we would switch user to root using the su command:

$ su -

Password:[root password]

We could also implement Sudo and give it access to our Asterisk user account.
Either way would log in as root indirectly. In order to ensure that no one else can
log in as root across the network, we should configure our remote access mechanism
to disallow root logins. The most common remote access method for managing
an asterisk server would be SSH and the most common implementation would be
OpenSSH (for more information on OpenSSH, visit http://www.openssh.com/),
which can be configured to prevent root login by editing the relevant directive in the
configuration files:

$ cat >> "PermitRootLogin No" >> /etc/ssh/sshd_config

We could also secure our remote access further by using the internal firewall (set up
earlier by Bastille) to allow access only from our administrative team's IP addresses.
This would prevent external attackers and internal users from making unauthorized
connections to the Asterisk server.

Sudo
Sudo allows us to give restricted administrator access to selected users,
but be warned that it is quite easy to misconfigure and give away more
access than you intend.
For example, giving someone Sudo access to vim gives them the ability to
write to all files as root and to execute a root shell from within vim. Most
likely, this is not desirable!
For information, visit http://www.courtesan.com/sudo/.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[208]

For those using FreePBX or Trixbox, the GUI is another piece you will want to
protect. First, you have to decide if you wish to have your GUI accessible to the
public Internet. Apache, which operates most open source GUI's for Asterisk, will
operate over TCP port 80. It's best practice not to open this port to the outside
world. However, if you must, then you might want to consider changing the port
to something other than 80, such as 8085, among others. The reason for this is that
hackers have applications that scan the Internet for those using Trixbox and other
Asterisk GUI's, and once they detect a server they try to attack it to gain access. Their
basic method is of course scanning on port 80. Hence, if you change your port to
something other than 80 you're less likely to be detected from someone generally
scanning IP addresses. Information on changing the port on Apache can be found
in your httpd.conf file located in /etc/httpd/conf/.

Also keep in mind that after changing your port number you will need to
access your GUI using that new port number within the URL, such as
http://<yourIP>:8085/admin.

Asterisk scalability
As the Asterisk server is most likely highly critical to business, we want to ensure that
restoring from backups rarely happens and in the event of losing a machine when an
administrator isn't available, we have some sort of failover system in place. In order to
achieve this, we apply redundancy and load-balancing techniques to ensure that our
infrastructure has the resources to handle the data it needs to process.

In the event of a component failing, we would like to ensure that we don't lose
services. Ideally, the users of the system should never know there was any failure
and the administrator should get the failed system back online or replace it at the
next convenient moment. This sort of forward planning is essential for maintaining
a service that will be used as extensively as Asterisk often is.

Take the example of the 24-hour call center. If we have a business that relies on the
telephony system in order to generate revenue, then the loss of that service is a loss
of revenue. Being a 24-hour service, there may not always be an administrator on
site—there may be periods where there is only "on call" cover. It would be a waste of
resources to have all of the users idle while they wait on an administrator to possibly
be wakened and then ferried to the site in order to get the system back up and running.

A single point of failure is not only undesirable but can also have a severe negative
impact on the profitability of the business. There is also the chance that if our usage of
the Asterisk system outgrows current resources, then the Asterisk machine has to be
taken offline while it is upgraded. We could avert this by having scalability built into
our design from the outset to ensure that the system can grow with business demand.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[209]

As Asterisk can't be installed onto a cluster, we require load balancing and
scalability that can be implemented without the use of clusters, which isn't as
hard as it might seem.

Load balancing with DNS
One of the most common ways to load-balance a system is to use DNS, the Domain
Naming System. This has the ability to "round robin" replies to queries in order to
spread load between different machines.

One of the largest DNS load balancing systems that we all have most likely used is
the Google search engine.

$ dig google.com +short

216.239.37.99

216.239.57.99

216.239.39.99

$ dig google.com +short

216.239.57.99

216.239.39.99

216.239.37.99

$ dig google.com +short

216.239.39.99

216.239.37.99

216.239.57.99

As we can see, each time the command to look up the IP of the Google server is
run, it returns a different IP than the first IP, so that clients accessing it are spread
between all of the IPs in the pool and no single machine gets overloaded. You can
also add addresses to the pool and remove them without affecting the client, which
means this system will scale well to allow many users to access what appears to be
just one service.

The advantage of using round-robin DNS is that the server hardware behind the
service has no direct bearing on how the system can be scaled, as we have the option
of adding and removing servers. For instance, if we were to suddenly grow, then
we could add in more servers or replace/upgrade existing servers leading to very
simple scalability. There is also some redundancy inherent in this system; if your
client can't contact the first server, it will then attempt to contact the second server.
This means that the loss of a server doesn't bring the entire system to a halt, it merely
slows it down slightly.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[210]

Caching
As clients cache the IPs they get from DNS, when they find a working
IP, the slow-down incurred will be negligible. However, it is highly
recommended to remove problematic machines or addresses from the pool.

The example we look at here uses A records; however, it is increasingly common
to see round-robin implementations for SRV records. SRV records are used to
locate a service within a domain. For example, in Microsoft's Active Directory
implementation, SRV records are used to locate domain controllers and we
would use them to locate our routing service providers in our Asterisk setup. The
functionality of round robin doesn't differ for the record you request. However, you
still create a pool of IPs in your DNS implementation. The two most commonly used
implementations of DNS, Microsoft DNS and BIND (versions above 4.9.7), support
SRV records and round-robin SRV records.

For example, to set up multiple SRV records for our SIP implementation, we would
add the following to our DNS zone:

sipa IN A 10.1.1.1

sipb IN A 10.1.1.2

sipc IN A 10.1.1.3

sip IN CNAME sipa.example.com

 IN CNAME sipb.example.com

 IN CNAME sipc.example.com

_sip._udp.example.com. IN SRV 20 0 5060 sip.example.
com.

This sets up three SIP servers for us (sipa, sipb, and sipc) and one _sip._udp
SRV record. Whenever the SRV record is requested, one of these three SIP servers
will be returned.

Support channels for Asterisk
As an open source project, we would expect Asterisk to have at least some basic
community support that we could rely on. Asterisk does have this and it has quite a
bit more as well. It has mailing lists, forums, and IRC as well as official support from
Digium. We don't always require commercial support. However, if running Asterisk
is not our core responsibility or if we have other constraints, then having paid
technical support on hand can be a resource we would welcome.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[211]

Mailing lists
There are a few mailing lists available for unofficial Asterisk support, by far the
most active being provided by Digium itself. They are frequented by Digium staff
as well as Asterisk users and are probably the best source of information when
it comes to quick opinions or support from the community. They are found at
http://lists.digium.com/mailman/listinfo.

The USERS mailing list is the best choice for support issues.

There is also the VOIPSEC mailing list provided by www.voipsa.org, which isn't
Asterisk-centric as its main focus is VoIP security on a wider scale. However,
as Asterisk is one of the most common VoIP solutions, it is a topic of frequent
discussion on the list and topics such as firewalling protocols or encrypted
communication are directly relevant to anyone responsible for the security of
an Asterisk installation.

We may not decide to use these mailing lists as a support mechanism; however, it
is worth having a "lurk" and reading through them at least, to give an insight into
how other people are using Asterisk and the problems and issues they come across.
Such experiences are invaluable in ensuring we do not repeat others' mistakes and
will help in increasing our knowledge of Asterisk and associated technologies.
The VOIPSEC list for instance has become the focal point of VoIP security and is
often the first outlet for information that has an impact on the security of a VoIP
implementation.

Forums
You can also obtain some support from the Digium forums, which can be found at
http://forums.digium.com/. However, they aren't as busy as the other support
available—the mailing lists and IRC being most popular.

Trixbox and FreePBX also have a very extensive forum containg a great deal
of information on both the GUI as well as Asterisk; they even have sections for
VoIP hardware.

Trixbox fourm can be found at http://www.trixbox.org/forum.

FreePBX forum can be found at http://www.freepbx.org/forums.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Maintenance and Security

[212]

Internet Relay Chat (IRC)
Asterisk has a lively community support mechanism provided by its IRC channel.
This can be found on the Freenode network, which is a network that almost entirely
comprises of support channels for free and open source software.

In order to access this, download a suitable IRC client. mIRC, X-Chat, irssi, and
chatzilla are commonly used clients, and most have the address for the Freenode
(irc.freenode.net) servers in their default configuration. Once connected to
Freenode, join #asterisk. This channel is much like the Digium mailing list, in
that it focuses on the discussion of the use and administration of Asterisk. It is also
frequented by the same people that use the mailing lists—developers, administrators,
and users.

Web sites
You can also obtain a great deal of information on Asterisk as well as other SIP
applications and hardware from Voip-Info (http://www.voip-info.org). They
have a very impressive collection of information on hardware devices, VoIP service
providers, as well as information on both commercial and open source applications
for Asterisk.

For those looking for easy-to-follow video tutorials and step-by-step instructions
on configuring devices for Asterisk and using GUI's such as Trixbox and
FreePBX, you will want to check out ThinkBright, which is a VoIP business
service provider, but also hosts a free video tutorial section. They can be found
at http://www.thinkbright.net/support/.

IRC becomes a valid support mechanism when we need quick short answers to our
problems or a quick sanity check on something we intend to do. It is often difficult
to solve complex problems on IRC, especially those that require long detailed
explanations or which extend over large portions of our configuration files. It's often
easier to explain such matters in an email to a list. However, IRC is good for quick
replies and for question and answer sessions, so it shouldn't be overlooked.

Digium
Digium provides a variety of services relating to the installation and running of
Asterisk, from email and telephone support to on-site support contracts. We should
evaluate the need and benefit of this as we decide which kind of support we need.
For example, if we have a full-time Asterisk administrator or team, we probably
wouldn't require much support; maybe email support for occasional troubles,
but the mailing lists could possibly provide enough.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[213]

If, however, we are employed as a single administrator in an SME, we would benefit
from having official support mechanisms on hand, although in reality the spread of
support is usually the other way around, with SMEs winging it and larger companies
having too much support. We also have to consider cost; unofficial community
support will obviously be cheaper than paid commercial support. We should
evaluate our needs carefully and ensure that we have the necessary support in
place to maintain our Asterisk system.

Summary
The phone system of any modern business is something that, if it works well, should
be almost invisible to its users. We want them to take it for granted, and to use its
features without thinking. It's inevitable and even desirable that our users should
come to depend on the services the system offers. Naturally therefore, we want
to minimize any disruption to the system, and to make sure that, in the event of a
failure, normal service can be resumed as smoothly and quickly as possible.

In this chapter, we've looked at how to be prepared for such an eventuality,
by performing regular and systematic backups. We also looked at making a
Disaster Recovery Plan, which can help to minimize the time taken to get the
system back online.

Of course, the best way to minimize disruption from service outages is to prevent
them from happening in the first place. To this end, we have looked at how to make
Asterisk more robust and how to harden it against attack.

Not all failures are the result of malicious activity, however, and we've also
covered a few issues that you should consider in order to make Asterisk scale well.
Finally, the community support channels are invaluable in keeping your Asterisk
system well maintained and running efficiently, as well as providing help should
you ever get stuck. The last section of this chapter was devoted to coverage of these
various channels.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Index
Symbols
key 100
- b option 116
-c command line argument 54
- e(ext) option 117
- g(grp) option 116
-o option 117
-q option 117
- r[(basename)] option 117
- v([value]) option 117
-v command line argument 54
-w option 117
-x option 117
<device>, options

bchan 62
dchan 62
e&m 62
fxsgs 62
fxsls 62
unused 62

 rsyncd.conf file 189

A
Advanced Call Distribution

about 96
call parking 100
call queues 96
DID 101

Analog Terminal Adapter. See ATA
announce-frequency variable 83
announce-holdtime variable 83
announce variable 81
ARI 137
asterCC

about 149

downloading 149
installing 150, 151
manual installation 151-157
prerequisites 150

asterCRM
about 149
customer section 159
dialer section 159
extension section 158
import section 157
interface 150
statistic section 158
survey section 160
system section 159

asterCRM installation
automatic installation 151
manual installation 151

Asterisk. See also Asterisk 1.6, features
Asterisk

about 7
Appliance 16
Asterisk 1.4, comparing 8
Asterisk 1.6, comparing 9
Asterisk Mail 77
backup 187
basic behaviors 54
call centre system 13
cdr_csv module 112
Comedian Mail, voicemail program 77
conference rooms 83
configuration files 50
configuring 57, 58
considerations 19
deployment, planning 25
downloading, commands 48
FreePBX 18

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[216]

hardware requirements 42
IAX interfaces 74
installing 47, 50
IVR system 13
MP3, streaming files to handset 80
music on hold 80
PBX 9
PBX, differentiating 11
preparing, to install 47
protocols, supported 33
queues 81
reload 55
restart 55
restarting, options 55, 56
sample configuration files 51
scalability 18
security 199
server security 199
SIP interfaces 70
starting 54
starting with 54
support channels 210
system maintenance 187
Trixbox CE 17
unable, to run on Windows 19
voicemail 77
voicemail system 14
VoIP system 14-16

Asterisk, considerations
ROI 22
TCO, calculating 21
trade-offs 19

asterisk-addons distribution 114
asterisk_restart.cron script 194
Asterisk 1.4, features

built-in voicemail system 8
generic jitter buffer 8
improved sound prompts 8
ITU standard T.38 fax calls, passing through

8
Jabber and Google Talk, IM support 8
shared line appearance 8
whisper paging 8

Asterisk 1.6, features
asynchronous events support 9
improved NAT support 9
improved reporting 9

new bridge 9
STUN support 9

Asterisk as PBX
Advanced Call Distribution (ACD) 11
call, recording 12
call barging 13
call parking 12
CDR 11
extension-to-extension calls 9, 10
line trunking 10
telco features 11

Asterisk backup
with FreePBX 196
with Trixbox 197

Asterisk deployment
hardware requirements 42
planning 25
terminal devices, choosing 38-41
terminal devices, types 31

Asterisk installation
adsi.conf file 51
agents.conf file 51
alarmreceiver.conf file 51
alsa.conf file 51
asterisk.adsi file 51
asterisk.conf file 51
cdr_manager.conf file 51
cdr_odbc.conf file 51
cdr_pgsql.conf file 51
cdr_tds.conf file 51
chan_dahdi.conf file 53
DAHDI, installing 49
enum.conf file 51
extconfig.conf file 51
extensions.conf file 51
features.conf file 51
festival.conf file 52
iax.conf file 52
iaxprov.conf file 52
indications.conf file 52
LibPRI 50
LibPRI, installing 49
logger.conf file 52
manager.conf file 52
meetme.conf file 52
mgcp.conf file 52
modem.conf file 52

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[217]

modules.conf file 52
musiconhold.conf file 52
osp.conf file 52
oss.conf file 52
phone.conf file 52
prereqisites packages 47
prerequisite packages 47
privacy.conf file 53
procedure 50
queues.conf file 53
res_config_odbc.conf file 53
res_odbc.conf file 53
rpt.conf file 53
rtp.conf file 53
sip.conf file 53
skinny.conf file 53
source files 48
source files, obtaining 48
steps 47-50
telecordia-1.adsi file 53
voicemail.conf file 53
vpb.conf file 53
Zaptel 49

Asterisk protocols, firewalling
H.323 206
IAX 206
RTP 206
SIP 205

Asterisk Recording Interface. See ARI
Asterisk scalability

about 208
load balancing, with DNS 209, 210

Asterisk server
rebuilding 197, 198
restoring 197, 198

Asterisk server security
about 199
asterisk.conf file 200
DACLs 199
directories 200
host security 201
internal access control 199
network security 204
permissions, script 201

Asterisk service
installing 199, 200

AsteriskWin3 19

ATA 29
automated attendants 103-106

B
backup.cron script 192, 193
backup and system maintenance, Asterisk

backing up with FreePBX 196
backing up with Trixbox 197
backup schedule 189
backup scripts 192
configuration backup 188, 190
DRP 198
log files backup 191
package management system 188
server, rebuilding 197
server, restoring 198
timesync.cron NTP script 195
time synchronization 195
voice data backup 191
voice data backup, rsync used 191
voice data backup, tar used 191

backup scripts 192
asterisk_restart.cron script 194
backup.cron script 192
monitor_mix.cron script 193

Bastille 202
bchan, <device> option 62
BRI, basic rate interface 27
Bring Your Own Device. See BYOD
BYOD 29

C
call centre system, Asterisk 13
Call Details Recording. See CDR
call parking

about 12, 100, 101
example 12

call queues 96-100
calls

monitoring 116
recording 118

calls, monitoring 116
ChanSpy, executing options 116, 117
ChanSpy, using 116
DAHDIBarge, using 116

calls, recording 118

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[218]

accessing 118
queues.conf file, using 118

CAS 27
case study

hosted PBX 178
small business 167
small office/home office 161

case study, small business
configuration, extensions 174

CDR
about 9, 11, 112
CSV file, benefit 112
CSV file, order 112, 113
database logging 113-115
features 112
flat-file logging 112, 113
uses 12

CDR 112
cdr-csv module 112
flat-file CDR logging 112
security scenario 112

cdr_csv module 112
cdr_pgsql.conf 114
CentOS 122
chan_dahdi.conf, DAHDI interfaces

about 63
accountcode option 67
amaflags option 67
busycount option 67
busydetect option 67
cadence option 67
callerid option 67
callgroup option 66
callprogress option 67
callreturn option 66
callwaitingcallerid option 66
callwaiting option 66
cancallforward option 66
channel option 67
context option 64
debounce option 65
echocancel option 66
echocancelwhenbridged option 66
echotraining option 66
flash option 65
group option 66
hidecallerid option 66

idledial option 67
idleext option 67
immediate option 67
jitterbuffers option 67
language option 64
lines 68
lines, grouping 68
mailbox option 66
minidle option 67
minunused option 67
musiconhold option 67
overlapdial option 65
pickupgroup option 66
preflash option 65
prewink option 65
pridialplan option 64
progzone option 67
relaxdtmf option 66
restrictcid option 66
rxflash option 65
rxwink option 65
signalling option 65
start option 65
switchtype option 64
terminals 68, 69
threewaycalling option 66
transfer option 66
usecallerid option 65
usecallingpres option 66
 usedistinctiveringdetection option 65
wink option 65

Channel Associated Signaling. See CAS
channels 62
checksum 202
chkrootkit 202
Comedian Mail, voicemail program

about 77
configuring 77
format 77
message length, limiting 78
time zone messages, defining 78
voicemail.conf 77
voicemail box, example 79

communication devices, terminal
equipment 36

conference rooms
configuring 84

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[219]

conf files
about 54
sample files 51

configuration files, samples 51
connection methods, PSTN

E1 27
ISDN 26
POTS line 26
T1 27
VoIP connection 28, 29

context
about 85
creating 86, 87

context variable 82
CRM 149
Customer Relationship Management

System. See CRM

D
DACLs 199
DAHDI

installing 49
DAHDI interfaces

chan_dahdi.conf 63
system.conf 58

database CDR logging 113
dchan, <device> option 62
device, terminal equipment

Asterisk compatibility 40
choosing 38-41
cost determination, handset cost 39
cost determination, headset cost 40
cost determination, installation cost 40
cost determination, port cost 40
cost determination, software license cost 40
phone testing, feature 39
requirement documentation, feature 39
requirement elicitation,feature 38
requirement prioritization, feature 38, 39
sound quality, analyzing 40, 41
usability issue 41

dialplan
Advanced Call Distribution 96
automated attendants 103
context, creating 85, 86
creating 85
extension, creating 87, 88

outgoing extensions, creating 92-94
system services 106

DID 101, 102
DID numbers 30
Digium 212
Direct Inward Dialing. See DID;
Discretionary Access Control Lists. See

DACLs
DRP 198

E
e&m, <device> option 62
extension

common actions 88, 89
creating 87-91
fax calls 88
invalid extension 88
start extension 88
timeout extension 88

extension length
expected numbers 45
1-digit, choosing 43
another extension, adding 44
choosing 43
example 44
expected numbers 45

F
files mode, music on hold 80
Flash Operator Panel. See FOP
flat-file CDR logging 112
FOP

about 137
features 138
functions 138

Foreign eXchange Office. See FXO
forums 211
FreePBX

about 121, 124
downloading 121
flexibility 143
FreePBX System Status Dashboard 131
installing 125
prerequisites 125
Web MeetMe 139

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[220]

FreePBX installation
about 125
ARI password, fixing 129
Asterisk, installing 127
CentOS, installing 125
codecs, adding to config 129
extra packages, installing 126
FreePBX, installing 127, 128
MOH directory, fixing 131
network settings, editing 125, 126
Selinux, disabling 126
Sendmail, configuring 129
sip_nat.conf, editing 129
voicemail config, editing 130

FreePBX System Status Dashboard
about 131
ARI 137
Flash operator configuration files 139
FOP 137
getting 132
reports section 136
setup section 133
tools section 132
Trixbox maintenance section 135

FXO 26
FXO signaling 63
fxsgs, <device> option 62
fxsls, <device> option 62

H
H.323 33, 206
hard phone, terminal equipment

Aastra 57 Series 32
Cisco IP Phones (7940 & 7960) 32
Grandstream GXP Series 31
H.323 protocol 33
IAX protocol 34
Linksys SPA Series 32
SIP 34

hardware phone. See hard phone, terminal
equipment

hardware requirements
CPU 42
Pentium 90 42
RAID-1 controller 42
redundant server 43
stable chipset 42

UPS 42
hosted PBX, case study

chan_dahdi.conf file 179
conclusions 178, 185
configuration 179
extensions.conf file 182-185
musiconhold.conf file 180
planning 179
sip.conf file 180, 181
system.conf file 179
voicemail.conf file 181

host security, Asterisk
file integrity checker 202
integrity checker 202
RBAC 203
rootkit detection 202
system areas, harderning 202
Tripwire 202

I
IAX 206
iax.conf 75
IAX interfaces

about 74
accountcode option 75
amaflags option 75
bandwidth option 75
bindaddr option 75
global options 75
jitterbuffer option 75
language option 75
port option 75
register option 75
tos option 75
trunkfreq option 75
user entry options, setting 76

IAX protocol
about 34
advantages 35
global options 75
interfaces 74
users, defining 76

installing
asterCC 150
DAHDI 49
LibPRI 49

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[221]

Integrated Service Digital Network. See
ISDN

Inter-Asterisk eXchange. See IAX protocol
Interactive Voice Response. See IVR system
Internet Relay Chat. See IRC
IRC 212
ISDN

about 26, 27
BRI 27
channels 26
PRI 27

IVR system 13

J
jitterbuffer option, IAX interfaces 75

K
Key Systems 9

L
legal concerns 119
LibPRI

about 50
installing 49

Local Exchange Carrier (LEC) 26

M
mailing lists

about 211
USERS mailing list 211
VOIPSEC mailing list 211

maxlen variable 83
meetme.conf 83
member variable 83
Message Waiting Indicator. See MWI
monitor_mix.cron script 193, 194
MP3, streaming files to handset 80
music on hold

about 80, 81
directory directive 80
Mode directive 80

musiconhold.conf 80
music variable 81
MWI 8

N
Network Address Translation (NAT) 34
network security, Asterisk

about 204
Asterisk protocols, firewalling 204
configuration management 207, 208

ntpdate program 195

O
outgoing extensions

creating 92-96

P
PBX

about 9
communication devices 36
hard phone 31
soft phone 35

Plain Old Telephone Service. See POTS
line

postgres_cdr.sql script 114
PostgreSQL 114
POTS line

about 17, 26
FXO, requiring 26

POTS line, connection method 26
PRI 27, 50
Primary Rate ISDN. See PRI
Private Branch Exchange. See PBX
PSTN

about 10, 25
E1 connection method 27
ISDN 26
needs, determining 29, 30
POTS line 26
T1 connection method 27
VoIP connection 28

Public Switched Telephone Network. See
PSTN

Q
QoS 33
Quantity of Service. See QoS
queues

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[222]

about 81
members, defining 83
music, setting 81
queues.conf 81
ringall strategy, using 82
ring types, using 82
variables 81

queues.conf 81

R
RBAC 203
Real-Time Transport Protocol. See RTP
reload 55
reports section, FreePBX System Status

Dashboard 136
restart, Asterisk

about 56
options 55

retry variable, queues.conf 82
Return on Investment. See ROI
rkhunte 202
ROI 22
Role Based Access Control. See RBAC
rootkit 202
RTP 206

S
sample configuration files 51
scalability 18
SELinux 203
Session Initiation Protocol. See SIP;
setup section, FreePBX System Status

Dashboard
extensions 133
general settings 134
inbound routes 133
IVR 134
on hold music/system recordings 134
outbound routes 134
queues 134
ring groups 134
time conditions 135
trunk 134

simple PBX
creating 143
extensions, configuring 144

incoming route, creating 146
outgoing route, creating 147
routes 146, 147
trunks, configuring 145

SIP
about 34, 205
advantage 34
configuring 70
global options 70
interfaces 70
users, defining 72

sip.conf 70
SIP interfaces

about 70
accountcode option 71
amaflags option 71
bindaddr option 70
call-limit option, defining 73
callerid option, defining 72
callgroup option, defining 73
codecs option 72
configuring 70
context option 70
defaultexpiry option 71
defaultip option, defining 73
deny option, defining 73
dtmfmode option, defining 73
externip option 71
fromuser option, defining 72
global options, configuring 70, 71
host option, defining 72
language option 71
localnet option 72
mailbox option, defining 73
maxexpiry option 71
md5secre option, defining 72
musicclass option 71
nat option, defining 73
notifymimetype option 71
pedantic option 71
permit option, defining 73
pickupgroup option, defining 73
port option 70
qualify option, defining 73
realm option 70
relaxdtmf option 71
rtpholdtimeout option 71

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[223]

rtptimeout option 71
secret option, defining 72
srvlookup option 70
type option, defining 72
username option, defining 72
videosupport option 71

small business, case study
about 167
agents.conf file 169
chan_dahdi.conf file 169
conclusions 178
configuration 168
extensions.conf file 173-177
meetme.conf file 172
musiconhold.conf file 169
planning 167
queues.conf file 170
scenario 167
sip.conf file 171, 172
system.conf file 168
voicemail.conf file 172

small office/home office, case study
chan_dahdi.conf file 163, 164
conclusions 166
configuration 162
extensions.conf file 165, 166
modules.conf file 165
musiconhold.conf file 164
planning 162
scenario 161
system.conf file 163
voicemail.conf file 164

soft phone, terminal equipment
about 35, 36
advantage 36

source files
downloading, commands 48
obtaining 48

span
coding 61
framing 61
Line Build Out (LBO) 60
number 60
timings 60

spans 60
strategy variable 82
su command 207
sudo, Asterisk access restriction 207

support channels, Asterisk
about 210
Digium 212
forums 211
IRC 212
mailing lists 211
web sites 212

system.conf, DAHDI interfaces
configuring 59
line, channels 62
lines 59
signaling, identification 60
terminals 63

system maintenance, Asterisk
about 187
areas 187

system services
about 106
conference rooms 108
voicemail 107

T
T1, defining as span 60
TCO

about 21
annual licensing cost 22
annual support cost 22
installation cost 21
licensing cost 21
procurement cost 21

telephone systems 111
terminal equipment

about 31
analog adapter 36
analog adapter, disadvantage 37
analog adapter, use 37
another PBX 37
device, choosing 38
selecting, to use 41
types 31
types, hard phone 31
types, soft phone 35

test environment
preparing 46

timeout variable, queues.conf 82
timesync.cron NTP script 195

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[224]

time synchronization
about 195
fles, adding to crontab 195

tools section, FreePBX System Status
Dashboard

about 132
Asterisk API 133
Asterisk CLI 133
Asterisk info 133
Asterisk log files 133
backup & restore 133
print extensions 133
system status 132

Total Cost Of Ownership. See TCO
trade-offs

about 19
flexibility, versus usage ease 19, 20
graphical, versus file management

configuration 20
Tripwire 202
Trixbox

about 122
features 122
installing 123, 124
prerequisites 122

Trixbox maintenance section
backup 135
bulk extensions 136
config edit 135
endpoint manager 135
packages 135
phpMyAdmin 135
sysinfo 135

U
Uninterrupted Power Supply (UPS) 42
unused, <device> option 62
USERS mailing list

mailing lists 211

V
voicemail

attach option 79
global options, configuring 77, 78
maxlogins 78
operator option 79

saycid option 79
silencethreshold 78
skipms 78
tz option 79
zone messages, example 79

Voice over Internet Protocol. See VoIP
system, Asterisk

Voice Service Providers. See VSPs
VOIPSEC mailing list

mailing lists 211
VoIP system, Asterisk

about 14-16
cost, slashing 15
cost based calls, routing 16
networks, merging 14
phone linking, benefit 16

VSPs 29

W
Web MeetMe

about 139, 140
accessing, through Trixbox 141, 142
setting up 141

web sites 212

X
X-Chat 212
X-Lite 119

Z
zapata.conf. See Zaptel
Zaptel

channels, configuring 62, 68
configuring 58
global options 59
installing 49
interfaces 58
lines, device class 59
T1, <device> options 62
T1, defining as span 60
terminals, device class 63
zapata.conf, lines 68
zapata.conf, options 64
zaptel.conf 58

zaptel.conf. See Zaptel

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Thank you for buying
Asterisk 1.6

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Asterisk 1.6, Packt will have given some of the money
received to the Asterisk project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

FreePBX 2.5 Powerful Telephony
Solutions
ISBN: 978-1-847194-72-5 Paperback: 292 pages

Configure, deploy, and maintain an enterprise-class
VoIP PBX

1. Fully configure an Asterisk PBX without
editing the individual text-based
configuration files

2. Add enterprise-class features such as voicemail,
least-cost routing, and digital receptionists to
your system

3. Secure your PBX against intrusion by managing
MySQL passwords, FreePBX administrative
accounts, account permissions, and
unauthenticated calls

Asterisk Gateway Interface 1.4 and
1.6 Programming
ISBN: 978-1-847194-46-6 Paperback: 220 pages

Design and develop Asterisk-based VoIP telephony
platforms and services using PHP and PHPAGI

1. Develop voice-enabled applications utilizing
the collective power of Asterisk, PHP, and the
PHPAGI class library

2. Learn basic elements of a FastAGI server
utilizing PHP and PHPAGI

3. Develop new Voice 2.0 mash ups using the
Asterisk Manager

4. Add Asterisk application development skills
to your development arsenal, enriching your
market offering and experience

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

trixbox CE 2.6
ISBN: 978-1-847192-99-8 Paperback: 344 pages

Implementing, managing, and maintaining an
Asterisk-based telephony system

1. Install and configure a complete VoIP and
telephonic system of your own; even if this is
your first time using trixbox

2. In-depth troubleshooting and maintenance

3. Packed with real-world examples and case
studies along with useful screenshots and
diagrams

4. Best practices and expert tips straight from the
Community Director of trixbox, Kerry Garrison

AsteriskNOW
ISBN: 978-1-847192-88-2 Paperback: 204 pages

A practical guide for deploying and managing
an Asterisk-based telephony system using the
AsteriskNOW Beta 6 software appliance

1. Install an Asterisk-based telephony system fast

2. Build an office PBX using AsteriskNOW

3. Learn the AsteriskGUI web management
interface

4. Configure IP phones and connections

5. Configure and use the conferencing system

6. Write your own applications for Asterisk

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction to Asterisk
	What is Asterisk?
	What's new in Asterisk 1.4
	What's new in Asterisk 1.6
	Asterisk is a PBX
	Extension-to-Extension calls
	Line trunking
	Telco features
	Advanced Call Distribution
	Call Detail Records
	Call recording
	Call parking
	Call barging

	Asterisk is an IVR system
	Asterisk is a call center system
	Asterisk is a voicemail system
	Asterisk is a Voice over IP (VoIP) system
	Asterisk 1-2-3
	Asterisk scalability
	Asterisk does not run on Windows

	Is Asterisk a good fit for me?
	Trade-offs
	Flexibility versus ease of use
	Graphical versus configuration file management

	Calculating total cost of ownership
	Return on Investment

	Summary

	Chapter 2: Making a Plan for Deployment
	The Public Switched Telephony Network (PSTN)
	Connection methods
	Plain Old Telephone Service (POTS) line
	Integrated Services Digital Network (ISDN)
	T1 or E1
	Voice over IP connections

	Determining our needs

	Terminal equipment
	Types of terminal devices
	Hard phones
	Soft phones
	Analog adapters
	Another PBX

	Choosing a device
	Features, features, and more features…
	Determining true cost
	Compatibility with Asterisk
	Sound quality analysis
	Usability issues

	Recording decisions

	How much hardware do I need?
	Choosing the extension length
	Preparing a test environment
	Summary

	Chapter 3: Installing Asterisk
	Preparing to install Asterisk
	Obtaining the source files
	Installing DAHDI
	Installing LibPRI (optional)
	Installing Asterisk
	Getting to know Asterisk
	Summary

	Chapter 4: Configuring Asterisk
	DAHDI interfaces
	system.conf
	Lines
	Terminals

	chan_dahdi.conf
	Lines
	Terminals

	SIP interfaces
	IAX interfaces
	Voicemail
	Music on hold
	Queues
	Conference rooms
	Summary

	Chapter 5: Creating a Dialplan
	Creating a context
	Creating an extension
	Creating outgoing extensions
	Advanced Call Distribution
	Call queues
	Call parking
	Direct Inward Dialing (DID)

	Automated attendants
	System services
	Summary

	Chapter 6: Quality Assurance
	Call Detail Records
	Flat-file CDR logging
	Database CDR logging

	Monitoring calls
	Recording calls
	Legal concerns
	Summary

	Chapter 7: Making Asterisk Easy to Manage
	Trixbox
	CentOS
	Trixbox preparation and installation
	What is FreePBX?
	FreePBX preparation and installation
	FreePBX System Status Dashboard
	Tools
	Setup
	Trixbox maintenance section
	Reports
	Asterisk Recording Interface
	Flash Operator Panel (FOP)
	Flash operator configuration files

	Web MeetMe
	Setting up and accessing Web MeetMe through Trixbox

	Flexibility when needed

	A simple one-to-one PBX
	Extensions
	Trunks
	Routes

	Summary

	Chapter 8: What is asterCRM?
	Installing asterCRM
	Automatic installation
	Manual installation

	Introducing asterCRM
	Import
	Statistic
	Extension
	Customer
	Dialer
	System
	Survey

	Summary

	Chapter 9: Case Studies
	Small office/home office
	The scenario
	The discussion
	The configuration
	system.conf
	chan_dahdi.conf
	musiconhold.conf
	voicemail.conf
	modules.conf
	extensions.conf

	Conclusions

	Small business
	The scenario
	The discussion
	The configuration
	system.conf
	chan_dahdi.conf
	musiconhold.conf
	agents.conf
	queues.conf
	sip.conf
	meetme.conf
	voicemail.conf
	extensions.conf

	Conclusions

	Hosted PBX
	The scenario
	The discussion
	The configuration
	system.conf
	chan_dahdi.conf
	musiconhold.conf
	sip.conf
	voicemail.conf
	extensions.conf

	Conclusions

	Summary

	Chapter 10: Maintenance and Security
	Backup and system maintenance
	Backing up configurations
	Backing up voice data
	Backing up log files
	Backup scripts

	Time synchronization
	Adding it all to cron

	Back up Asterisk with FreePBX
	Back up Asterisk with Trixbox
	Rebuilding and restoring the Asterisk server
	Disaster Recovery Plan (DRP)

	Asterisk server security
	Internal access control

	Host security hardening for Asterisk
	Integrity checker
	Rootkit detection
	Automated hardening
	Role Based Access Control (RBAC)

	Network security for Asterisk
	Firewalling the Asterisk protocols
	SIP (Session Initiation Protocol)
	H.323
	IAX
	RTP—The Real-Time Transport Protocol

	Controlling administration of Asterisk

	Asterisk scalability
	Load balancing with DNS

	Support channels for Asterisk
	Mailing lists
	Forums
	IRC (Internet Relay Chat)
	Web sites
	Digium

	Summary

	Index

