
M A N N I N G

Oliver Drobnik

Bringing together the digital and physical worlds

www.allitebooks.com

http://www.allitebooks.org


Barcodes with iOS

www.allitebooks.com

http://www.allitebooks.org


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.allitebooks.com

http://www.allitebooks.org


Barcodes with iOS
BRINGING TOGETHER

 THE DIGITAL AND PHYSICAL WORLDS

OLIVER DROBNIK

M A N N I N G

Shelter Island

www.allitebooks.com

http://www.allitebooks.org


For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are 
printed on paper that is at least 15 percent recycled and processed without the use of elemental 
chlorine.

Manning Publications Co. Development editor: Sean Dennis
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 761 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617292156
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

www.allitebooks.com

http://www.allitebooks.org


v

brief contents
1 ■ Barcodes, iOS, and you 1

2 ■ Media capture with AV Foundation 18

3 ■ Scanning barcodes 48

4 ■ Passbook, Apple’s digital wallet 70

5 ■ Generating barcodes 97

6 ■ Getting metadata for barcodes 133

7 ■ Putting barcodes in context 172

appendix A ■ History of the UPC 205

appendix B ■ GTIN prefix ranges 212

appendix C ■ GS1-128 application identifiers 217

 

 

 

 

 

 

 

 

www.allitebooks.com

http://www.allitebooks.org


 

 

 

 

 

 

 

 

 

www.allitebooks.com

http://www.allitebooks.org


vii

contents
preface xi
acknowledgments xiii
about this book xv
about the cover illustration xvii

1 Barcodes, iOS, and you 1

1.1 The evolution of barcodes 3

One dimension: laser 4 ■ Two dimensions: CCD 5 ■ Versatility 
is winning 6 ■ Where are the bars? 6

1.2 Barcode symbologies in iOS 6

1D barcodes in iOS  7 ■ 2D barcodes in iOS 13 ■ So many 
choices: which barcode should I use? 16

1.3 Summary 16

2 Media capture with AV Foundation 18

2.1 Introducing AV Foundation 19

www.allitebooks.com

http://www.allitebooks.org


CONTENTSviii

2.2 Building a camera app 20

AV Foundation setup 22 ■ Building the camera UI 24
Selecting capture devices 25 ■ Media capture session 28
Showing live video preview 29 ■ Authorizing camera access (or 
not) 32 ■ Toggling the video light 34 ■ Taking pictures to the 
camera roll 36 ■ Supporting rotation of device and UI 39
Switching between camera devices 41 ■ Implementing autofocus 
and tap-to-focus 44

2.3 Summary 46

3 Scanning barcodes 48

3.1 Metadata detection in AV Foundation 49

3.2 Building a QR Code scanner 49

Reusing camera code 51 ■ Creating and configuring the metadata 
output 53 ■ Wiring up the metadata objects’ delegate 54
Creating a barcode scan delegate 55 ■ Marking detected barcodes 
on preview 58 ■ Building an optimal scanning UI 61
Tweaking capture device settings 65 ■ Opening a scanned web 
address in Mobile Safari 67

3.3 Summary 68

4 Passbook, Apple’s digital wallet 70

4.1 Barcodes in Passbook 71

4.2 Producing digital passes for your users 72

Requesting a certificate for signing passes 72 ■ Preparing signing 
certificates 76 ■ Constructing passes 78 ■ Pass creation 
takeaways 88

4.3 Validating passes 88

Building a ticket-verifier app 90 ■ Reusing barcode scanner 
code 90 ■ Serverless pass validation 92 ■ Pass validation 
takeaways 94

4.4 Summary 95

5 Generating barcodes 97

5.1 Producing barcodes for display or print 98

Thoughts on barcode size 99 ■ QR Code error correction 99

www.allitebooks.com

http://www.allitebooks.org


CONTENTS ix

5.2 Generating 2D barcodes 100

Building a QR Code Builder app 101 ■ Introducing Core 
Image 101 ■ Project setup for Core Image 104 ■ Generating QR 
Codes with Core Image 107 ■ Copying the QR Code to the 
pasteboard 109 ■ Private APIs for Aztec and PDF417 codes 111
Printing barcodes with AirPrint 112 ■ Saving trees with the iOS 
Printer Simulator 114 ■ Custom drawing with 
UIPrintPageRenderer 115 ■ AirPrint paper selection 118 ■ QR 
Code Builder app summary 118

5.3 Generating 1D barcodes 119

Building a Serial Number Tag app 119 ■ Introducing 
BarCodeKit 120 ■ Adding BarCodeKit to your project 121
Setting up the Serial Number Tag app’s UI 124 ■ Generating 1D 
barcodes with BarCodeKit 126 ■ AirPrint and roll-feed 
printers 128 ■ Serial Number Tag app summary 131

5.4 Summary 131

6 Getting metadata for barcodes 133

6.1 Modern networking with NSURLSession 134

File downloads with NSURLSessionDownloadTask 135 ■ Building a 
Music Collection app 137 ■ Asynchronous Core Data updates 138
Presenting the barcode scanner modally 140 ■ Using 
NSURLSessionDataTask to call RESTful web 
APIs 142 ■ Authenticating API requests with OAuth 149
Adding DTOAuth to your project 151 ■ Configuring the OAuth 
consumer 152 ■ Implementing the UI for OAuth authorization 154
Connecting barcode scanning and metadata retrieval 156

6.2 Unit-testing network operations 159

Introducing NSURLProtocol 159 ■ Implementing a custom URL 
scheme with NSURLProtocol 160 ■ Stubbing NSURLRequest 
responses with DTURLProtocolStub 163 ■ Stubbing 
NSURLSession requests with DTURLProtocolStub 166 ■ How to 
test asynchronous completion handlers 168 ■ Shifting to test-
driven development 169

6.3 Summary 170

7 Putting barcodes in context 172

7.1 Understanding multiple layers of context 173

www.allitebooks.com

http://www.allitebooks.org


CONTENTSx

7.2 Building a YardSale app 174

Creating the outside-the-store experience 176 ■ Implementing the 
in-store user interface 181

7.3 Geofencing store locations 183

Introducing region monitoring 183 ■ Monitoring an unlimited 
number of regions 184 ■ Updating monitored regions based on 
user location 186 ■ Notifying users when entering a monitored 
region 189

7.4 Enhancing the in-store UI with iBeacons 194

Introducing the iBeacon system 195 ■ iBeacon monitoring at a 
glance 196 ■ Making any app emit an iBeacon 197
Determining distance to iBeacons with ranging 198 ■ Adding an 
in-store barcode scanner 201

7.5 Summary 204

appendix A History of the UPC 205

appendix B GTIN prefix ranges 212

appendix C GS1-128 application identifiers 217

index 221
 



xi

preface
When Apple released the first beta of iOS 7 at WWDC 2013, I scoured through the API

changes looking for anything out of the ordinary. That’s when I noticed the unex-

pected addition of new APIs pertaining to barcodes. 

 At that time, barcodes were little more than visual noise to me, a necessity of mod-

ern commerce but of no value to me as a consumer or app developer. Why would

Apple devote precious resources to implementing functionality for that? 

 Several third-party libraries for barcode scanning were available at that time. Some

were commercial offerings too expensive for casual use. Others were open source

projects requiring a great deal of work to understand or implement in your own apps.

By adding support for barcodes within the iOS SDK, Apple made the technology acces-

sible to all developers equally. Apple was sending a message: barcodes are important to us.

 This paradigm shift inspired me to learn all I could about barcode technologies. I

began to research the barcode types supported by iOS and their capabilities and limi-

tations, and all the new related iOS APIs. 

 A mere month after WWDC 2013, I was contacted by Manning. They’d found me via

my blog (cocoanetics.com) and inquired if I would be interested in writing an iOS

book for them. They could not have contacted me at a more perfect moment! I was

willing, able, and inspired to write, for more than a year, the book you’re now holding. 

 June 2014 marked the 40-year anniversary of the first barcode being scanned at a

point of sale. In other words, barcodes are a nearly ubiquitous, mature technology.

The UPC you’ll find on all products sold in your supermarket was just the beginning.

http://www.cocoanetics.com


PREFACExii

Just look at any Apple product box. You’ll find several barcodes on the stickers offer-

ing additional information such as the device’s serial number.

 Since October 2013, all iPhones can be used to scan barcodes. Together with

always-on mobile internet and built-in device sensors, this enables a new breed of

product-centric apps that weren’t feasible before. 

 After reading this book, you’ll be able to build the exciting new apps that are

bringing together the digital and physical worlds.



xiii

acknowledgments
I am thankful to ...

 Erica Sadun, who—four years ago at a developer conference in Seattle—put the

notion into my head that someday I could be a book author too. When I got the oppor-

tunity to provide technical feedback for several of her books, I found that my commen-

tary was both welcome and highly relevant. This has inspired my writing ever since. 

 Scott Meyers, for asking me on behalf of Manning if I would consider writing a

book. He supported my idea of writing a “vertical book,” slicing through several differ-

ent technologies, as opposed to writing a “horizontal book,” covering only a single

technology. I could have chickened out at several points before we signed the book

contract, but Scott’s trust in me—which was entirely based on a few blog articles I had

sent him as samples—kept me in the game.

 Bert Bates at Manning, who taught me how to shift from writing blog articles to

designing instructive book chapters. I had arrived at my own “tutorial style” over sev-

eral years of writing blog tutorials at cocoanetics.com, and initially there was doubt

that my style would work for a Manning book. Bert believed in me and convinced the

powers that be that my style was perfect for an advanced-level Manning book. He also

gave me a ton of instructional tools that I am using to this day, even in blog posts.

 Sean Dennis, my development editor at Manning, who guided me through giving

the book a professional structure and feel. Often he would play dumb and nagged me

to explain something better. At first I cringed, but after having made the changes, I

always found that Sean’s suggestions had made the book much better as a whole. It

www.cocoanetics.com


ACKNOWLEDGMENTSxiv

was also Sean who suggested I use Discogs for the networking chapter’s sample app,

being an audiophile himself.

 The people who contributed to BarCodeKit: Andy Qua, Jaanus Siim, Brendan

Duddridge, and most importantly Geoff Breemer. BarCodeKit is the key ingredient

that made chapter 5 possible. I also thank Geoff Breemer for migrating this book’s

sample source code to Swift. This book’s code listings are all in Objective-C, but

because of Geoff’s work you get the free bonus of seeing how it looks in Swift, too.

 All the other people at Manning who helped polish this book into its published

form, in particular Andy Carroll, my copyeditor, and Katie Tennant, my proofreader,

for making me sound like a brilliant native English speaker. Also my technical proof-

reader, Gregory Hill, for helping me eliminate several embarrassing mistakes in the

source code.

 The following reviewers, who read the manuscript at various stages of its develop-

ment and who provided invaluable feedback: Arif Shaikh, Brent Stains, Chris Davis,

Emre Kucukayvaz, Gavin Whyte, Jim Amrhein, Jim Matlock, Johan Pretorius, Mark

Janssen, and Subhasis Ghosh.

 René Swoboda and Roland Moser, who believed in me when I pitched them the

ProductLayer.com product information service for a startup, the idea for which came

to me as a result of researching barcodes. Their enthusiasm made me realize that I

wasn’t alone in my vision: mobile apps that interact with physical products via bar-

codes will be highly relevant.

 My colleagues Stefan Gugarel (cameo in figure 3.1) and René Pirringer, for taking

on the majority of client consulting work in our company while I was working on this

book. They allowed me to concentrate on building sample apps and writing book

chapters while sitting next to them in our basement office, which I lovingly started to

refer to as “the mine.”

 My father, Klaus Drobnik, for passing on to me a passion for engineering, struc-

tured analysis of complex topics, and teaching. And, of course, for all the other things

he did for me, growing up, that I could never thank him enough for. In his role as

head of our family business, I thank him for having my back while writing has kept me

from contributing to our company’s bottom line.

 Last but not least, I wish to thank Apple, Inc. The iPhone SDK and the subsequent

App Store revolution allowed me to reinvent myself as a full-time self-employed soft-

ware developer and blogger of technical tutorials. And now I’m even a published

author! Apple enabled me to boldly go where I had never gone before.

http://www.productlayer.com/


xv

about this book
This book is intended for intermediate-level iOS developers who know their way around

Xcode and have built a few apps already. This allows me to provide instructions in a

terse, tutorial-like style, as readers of my blog, cocoanetics.com, have come to appreci-

ate. By focusing on a more experienced audience, I don’t have to waste your time with

iOS development basics that are well covered in other books.

Roadmap

The topic of barcodes serves as the common thread running through the chapters of

this book, but you can dive into specific chapters to learn about particular technolo-

gies. Here’s a quick overview of what you will find in each of the chapters.

 Chapter 1 introduces you to the barcode types that are natively supported starting

with iOS 7. You’ll become a barcode guru and be able to hold your own in any conver-

sation about barcodes, their promises, and their limitations. If you like a good story,

flip to appendix A, which recounts the curious history of the mother of all barcodes:

the UPC.

 Chapter 2 gives you a solid introduction to AV Foundation media capture. You’ll

become familiar with the components of this framework, which we’ll use to build a

camera app.

 Chapter 3 introduces you to the metadata detectors for scanning barcodes, build-

ing on the camera preview from chapter 2. At this point, you’ll have a reusable bar-

code scanner that you can employ in all your apps.

www.cocoanetics.com


ABOUT THIS BOOKxvi

 Chapter 4 deals with Apple’s main reason for pushing forward with barcode sup-

port in iOS: Passbook. You’ll learn how to generate Passbook tickets with Ruby and

how to validate them in an iOS app without the need for server infrastructure.

 Chapter 5 looks at how you can generate your own barcodes for display on devices

and how you can print them to physical media via AirPrint. You’ll learn about the use

of Core Image for generating QR Codes and BarCodeKit for all kinds of 1D barcodes.

 Chapter 6 dives into retrieving metadata for scanned barcodes, in particular how

to use NSURLSession for creating a web service wrapper. The second half of this chap-

ter is about creating a custom NSURLProtocol and how to stub network requests for

unit testing without the need to call an actual server over the internet.

 Chapter 7 then rounds out the book by adding contextual information about the

user who’s scanning barcodes. Core Location and iBeacons let you magically adapt

your app’s UI to your user’s needs.

 Three appendixes provide additional background and other useful information.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it

from ordinary text. Code annotations accompany many of the listings, highlighting

important concepts. In some cases, numbered bullets link to explanations that follow

the listing.

 Source code for all working examples in this book is available for download from

the publisher’s website at www.manning.com/BarcodeswithiOS.

Author Online

Purchase of Barcodes with iOS includes free access to a private web forum run by Man-

ning Publications, where you can make comments about the book, ask technical ques-

tions, and receive help from the author and from other users. To access the forum

and subscribe to it, point your web browser to www.manning.com/BarcodeswithiOS.

This page provides information on how to get on the forum once you are registered,

what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the author can take

place. It is not a commitment to any specific amount of participation on the part of the

author, whose contribution to the book’s forum remains voluntary (and unpaid). We

suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

http://www.manning.com/BarcodeswithiOS
http://www.manning.com/BarcodeswithiOS


xvii

about the cover illustration
The figure on the cover of Barcodes with iOS is captioned “Girl from Split, Croatia, Dalma-

tia.” The illustration is taken from the reproduction published in 2006 of a nineteenth-

century collection of costumes and ethnographic descriptions entitled Dalmatia by Pro-

fessor Frane Carrara (1812–1854), an archaeologist and historian, and the first director

of the Museum of Antiquity in Split, Croatia. The illustrations were obtained from a

helpful librarian at the Ethnographic Museum (formerly the Museum of Antiquity),

itself situated in the Roman core of the medieval center of Split: the ruins of Emperor

Diocletian’s retirement palace from around AD 304. The book includes finely colored

illustrations of figures from different regions of Croatia, accompanied by descriptions

of the costumes and of everyday life.

 The girl on the cover is wearing a richly embroidered vest over a white linen shirt,

and an embroidered apron over a long, colorfully striped skirt. She is holding a fan in

her hand, and a kerchief on her head and coral beads around her neck complete the

outfit. The elaborate and colorful embroidery on her costume is typical for this region

of Croatia. 

 The author chose this illustration for the cover because the vertical lines on the

girl’s skirt reminded him of a barcode pattern. That’s what happens when you

research and write about barcodes for a prolonged period of time: you start seeing

barcode patterns everywhere!

 Dress codes have changed since the nineteenth century and the diversity by

region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants

of different continents, let alone different towns or regions. Perhaps we have traded



ABOUT THE COVER ILLUSTRATIONxviii

cultural diversity for a more varied personal life—certainly for a more varied and fast-

paced technological life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the

computer business with book covers based on the rich diversity of regional life of two

centuries ago‚ brought back to life by the pictures from this collection.



1

Barcodes, iOS, and you

In the past, if you wanted to add barcode scanning to your apps, you had to either

fight your way through open source projects or license a commercial barcode-

scanning library. None of those projects were written in Objective-C, documenta-

tion was lacking, and commercial solutions required payment of license fees for

each downloaded copy of your app. All of these issues made barcode scanning

impractical for all but the most skilled iOS developers, and too expensive to make

economic sense for free or low-cost apps.

 When Apple added Passbook to iOS 6, they built in the ability to display bar-

codes on Passbook passes. With iOS 7, Apple made these APIs public and added the

This chapter covers

■ Why the nexus of barcodes and mobile 

technologies is creating new, exciting 

opportunities for app makers

■ The barcode symbologies in iOS you should 

know about

■ The distinctions between 1D and 2D barcodes

■ A brief history of the UPC/GTIN, the mother of 

modern barcodes

www.allitebooks.com

http://www.allitebooks.org


2 CHAPTER 1 Barcodes, iOS, and you

ability to scan barcodes. This allowed them to add barcode-scanning functionality to

several of their first-party apps:

■ The Passbook app lets you add new passes to your device by scanning special QR

Codes.

■ The iTunes app has the ability to redeem iTunes credits by scanning a voucher.

■ The Apple Store app has an in-store UI that lets you scan the barcodes of accesso-

ries for unassisted checkout (see figure 1.1).

In June 2014, the mother of all barcodes, the UPC, celebrated its 40th anniversary. This

makes it an incredibly well understood and ubiquitous technology. Throughout these

four decades, different usage scenarios prompted the development of a variety of bar-

code symbologies that were more or less all informed by the UPC. Apple selected from

these the most prevalent and useful kinds of barcodes to support in iOS 7. Support for

a few additional barcode symbologies was added in iOS 8. To grasp the full potential of

these differing symbologies—as they’re relevant to you in iOS app development—

you’ll learn which purposes they’re best used for.

 This introductory chapter will give you a solid understanding of barcode technol-

ogy. Seeing how the multitude of symbologies relate to each other should alleviate any

anxiety you might feel right now. You’ll no longer shiver in fear from not knowing the

difference between UPC, EAN, GTIN, Code 25, Code 39, Code 93, and Code 128. A brief

Figure 1.1 Barcode scanning in the Apple Store app



3The evolution of barcodes

history of the UPC/GTIN will prove illuminating. Not only has its long history been

quite amusing at times, this background will aid greatly in your appreciation of the cur-

rent state of the GTIN. You’ll become a barcode guru and be able to hold your own in

any discussion about barcodes.

 In order to appreciate the power of the barcode, we’ll first take a look at how they

evolved. Beginning with the UPC, more and more barcode symbologies evolved over

time because their predecessors had been designed to solve very specific problems. If

you know how to tell them apart—just from glancing at them—you’ll know if you’re

looking at an opportunity for a new app.

1.1 The evolution of barcodes

The first barcode in wide use was the Universal Product Code (UPC), combining the

semantic meaning of a 12-digit number with a machine-readable scheme for repre-

senting this number as a series of bars. It was designed only for automated handling of

physical products and was therefore limited to representing numerical product codes.

Appendix A will walk you through the history of the UPC and how it became the GTIN,

as it’s referred to nowadays by people in the know. Figures 1.2a and 1.2b show some

examples of how barcodes have changed over the years.  

Japan adopts the EAN and calls it JAN

Code 39 boasts ability to encode

alphanumeric characters

Code 128 supports full ASCII

out of the box

Code 93 improves on Code 39, not quite

reaching the versatility of Code 128 

EAN adds additional leading digit to UPC

to support multiple countries outside USA 

Interleaved 2 of 5 code is invented for

marking corrugated shipping containers

and casino tickets

UPC is announced by the Ad Hoc

Committee, UPCC formed

to oversee it  

12345678901234

1972

1973

1977

1978

1952
Bull’s-eye code is the spiritual ancestor

of the UPC

1974

1981

1982

Barcodes!

Barcodes!

Barcodes!

9638 5074< >781617 2921569 >

4252610 488462 040748 7

Figure 1.2a Timeline of barcodes



4 CHAPTER 1 Barcodes, iOS, and you

Having overcome the hurdle of enabling a machine to recognize visual markings

with a laser beam, a plethora of other kinds of barcodes started to appear, all with

more-or-less specific fields of application. For example, the post office found that

adding markings to mailed items would allow them to automatically sort the items.

Luggage for airline travel was similarly tracked with numeric codes. Other industries

had their own standards that worked better for them.

 A combination of several bars that make up an individual character or digit is often

called a symbol. The set of symbols available for a specific barcode standard is referred

to as its symbology. All these different symbologies can be read with a laser beam. 

1.1.1 One dimension: laser

Think of a laser beam as cutting out a horizontal slice of the vertical code bars. As the

beam moves over the symbol (see figure 1.3), it measures the relative time it spends

scanning dark bars and light spaces. A lookup table is then used to decode individual

characters from those times.

 The line of the laser beam is also the

reason why these kinds of barcodes are

referred to as being one-dimensional (1D).

 If you have more-complex encoding

schemes, you can also represent letters

and special characters. Some 1D barcode

types were created to represent short texts.

 The long-recognized major advantage

of 1D barcodes is that they can be decoded

extremely reliably even when the items

1991 PDF417 stacks lines, making it the

first 2D barcode

1994

QR Code initially used for tracking

automotive parts, gains notoriety for

encoding web addresses 

1995
Aztec Code has a square

bull's-eye for centering 

2005
UPCC and EAN organizations merge,

forming GS1 International 

2009
GS1 renames UPC/EAN/JAN barcodes

to GTIN, hoping to end the confusion 

1994

Data Matrix Code has high readability

and is used for marking small items,

like electronics components

Figure 1.2b Timeline of barcodes

88462 040748 7

Figure 1.3 A laser needs to cross all bars of a 1D 

barcode for scanning



5The evolution of barcodes

tagged with such codes are moving at high speed. Some schemes even employ check-

sums to recognize when something is misread and increase this reliability.

 The second advantage of 1D barcodes is cost. Because the technology has been

around for 40 years now, the necessary components (laser diode and decoding elec-

tronics) have become cheap and reliable. This makes them ideally suited for high-

volume deployment as well as for use in environments where you need to scan a

great many codes in quick succession. 

1.1.2 Two dimensions: CCD

The charge-coupled device (CCD) was invented at AT&T Bell Labs by Willard Boyle and

George E. Smith in 1969. This is the chip at the heart of any kind of digital camera.

Curiously, the technology for CCDs was invented around the time the first 1D barcode

was introduced, but it took decades to develop CCDs to the point where they could

compete with the accuracy of their technically much simpler predecessors.

 A CCD is essentially a matrix of pixels that reads different binary values for each

pixel depending on the light intensity shining on it. As a result, a CCD can read bar-

codes just like a laser beam can if you have a sufficient number of pixels (a.k.a. resolu-

tion). Because the CCD pixels are laid out in two dimensions, CCDs are also able to

recognize a new kind of barcode, the two-dimensional (2D) barcode.

 Freed of the limitations of one dimension, 2D barcodes usually consist of small

rectangles laid out to form a square grid. Figure 1.4 shows such a barcode.

 Initially CCDs didn’t have the necessary resolu-

tion, nor did CPUs have the decoding power,

required for barcode recognition. A CPU essen-

tially needs to look at each individual frame of

video coming from the CCD and look for patterns

that constitute a code. Significant advances in elec-

tronics and computer vision were necessary to be

able to do that.

 As with all computer technology, Moore’s Law

worked its magic on CCDs to eliminate these hur-

dles over time. Modern smartphones have resolu-

tions measured in megapixels, which are more

than sufficient for scanning 1D and 2D barcodes.

 There are only two reasons why laser-based

scanners are still more widely used at supermarket

checkouts than CCD-based scanners: First, CCD hardware is more complex and expen-

sive than laser scanners. And second, CCDs were limited in how many frames per sec-

ond of video they could capture. If you moved the scanned code too quickly, all a

decoder saw were blurred images, and it would be unable to recognize any barcodes.

Modern CCDs are capable of sufficiently fast shutter speeds that the blurriness of indi-

vidual frames is much less of an issue. 

Figure 1.4 A CCD camera can 

“see” the squares that make up 

a 2D barcode.



6 CHAPTER 1 Barcodes, iOS, and you

1.1.3 Versatility is winning

Imagine setting up a competition for accuracy and speed between laser- and CCD-

based scanners, of course using the latest and greatest models. The test scenario is a

checkout stand at a supermarket. The contestants are professional cashiers with years

of experience scanning products. Whoever scans 1,000 products first, distributed

among 100 shopping carts each, will be the winner.

 Who do you think will win? Laser or CCD?

 I’d still bet on the laser winning this race because of its history and the fact that it’s

been optimized for exactly these kinds of high-speed scenarios. But any relevant dif-

ference in technical ability or cost will continue to melt away in the coming years.

 One disadvantage of laser-based scanners remains: they will never be able to scan

2D barcodes, whereas CCD scanners are more versatile. There are many scenarios

where versatility trumps speed. Consider yourself and your cellphone: you’re never

going to compete for speed with a professional cashier, but having the ability to scan

barcodes might be a very welcome function in your pocket.

 All modern smartphones have a camera built in for taking photos. With a bit of soft-

ware intelligence, all those cameras gain the ability to scan barcodes at no extra cost. 

1.1.4 Where are the bars?

You might wonder why I’m referring to the two-dimensional technology as “2D bar-

codes” even though there are no bars in sight. All 1D barcodes really do have bars rep-

resenting a code; most 2D barcodes have small squares. It would be grasping at straws

to argue that squares are really bars that are very fat and not very tall.

 This technical inaccuracy is why the hyper-precise Apple engineers refer to these

codes as machine-readable codes. But despite the logic of this term, nobody so far has sug-

gested a term for 2D barcodes that has stuck and found wide usage.

 Other terms you’ll sometimes hear—like “QR Code”—refer to a single member of

the family of 2D barcodes and thus are just as inaccurate. If you wanted to be extra-

precise, the correct technical description would be something like “machine-readable

codes that use markings forming a matrix grid.”

 You’ll probably agree that “2D barcode” is still the best option, however inaccurate

it may be. It simply rolls off the tongue better. 

1.2 Barcode symbologies in iOS

There are far too many types of 1D and 2D barcodes to cover all of them in this book.

This book is about Apple’s support for barcodes, so we’ll only look at the types of bar-

codes that the operating system actually supports. Apple added general barcode sup-

port in iOS 7 and added support for a few more symbologies in iOS 8. Figure 1.5 gives

a categorized overview of all supported symbologies in iOS.           

 We won’t go into the details of how the individual symbologies are constructed.

This overview will give you the basics you need to understand the supported barcode

types, their abilities, and where they’re primarily used.



7Barcode symbologies in iOS

1.2.1 1D barcodes in iOS           

Barcodes are said to have one dimension if there’s a single line (such as a line traced

by a scanner’s laser) that can cross all lines of the symbol. iPhones don’t have a built-in

laser for scanning, but the single-line scanning can be emulated with the camera. The

AV Foundation framework scans multiple horizontal and vertical lines on the images

coming from the camera and recognizes a 1D barcode as soon as one scan line crosses

all bars of the code.

1D

2D

Numbers Alphanumeric

Arbitrary data

GTIN family

Squares

Code 39

Code 39 mod 43

Code 93

Code 93 (full ASCII)

Code 39 (full ASCII)

Code 39 mod 43 (full ASCII)

Code 128
Code 25 / ITF-14

Shortened Standard

Stacked lines

EAN-13EAN-8

UPC-AUPC-E

9638 5074< > 781617 2921569 >

4252610 4 88462 040748 7

12345678901234

PDF417 QR Data MatrixAztec

BARCODES

BARCODES

Barcodes!

Barcodes!

BARCODES

Barcodes!

Barcodes!

Figure 1.5 Barcode types supported in iOS



8 CHAPTER 1 Barcodes, iOS, and you

THE GTIN FAMILY

The first commercial barcode, the Universal Product Code (UPC), was announced—

after much deliberation—in a press release in April 1973. The first-ever product car-

rying a UPC code in its packaging was scanned in June 1974. It was a 10-pack of

chewing gum, now on display at the Smithsonian in Washington, DC. If you’re inter-

ested in the curious history of how this came to be, please turn to appendix A, where

I tell the whole story.

 The GS1 organization (www.gs1.org) maintains the standards related to the Global

Trade Item Number (GTIN). There are several symbologies that belong to this family, all

of them representing a product code and all using the same kind of barcode symbols:

■ UPC-A—The classic first product barcode (12 digits). GS1 refers to it as GTIN-12.

■ UPC-E—A narrower version for compressed product numbers (8 digits).

■ EAN-13—The classic European barcode with a thirteenth digit; in Japan it’s

referred to as the Japanese Article Number (JAN) (13 digits). GS1 refers to it as

GTIN-13.

■ EAN-8—A narrower version of the EAN for compressed product numbers (8 dig-

its). GS1 refers to it as GTIN-8. 

These variations are illustrated in figure 1.6.

Standard GTIN Shortened product numbers

EAN-13 EAN-8

UPC-A UPC-E

US products

Non-US products

781617 2921569 > 9638 5074< >

88462 040748 7 4252610 4

Figure 1.6 The four members of the GTIN family of barcodes

www.gs1.org


9Barcode symbologies in iOS

For the narrower symbologies, product numbers that contain several zeros in the mid-

dle can be compressed by suppressing the string of zeroes. This requires a manufac-

turer prefix that ends in zeroes (by special request from GS1) as well as a product

number that’s prefixed with zeros. Manufacturers love to use these for products with

little space on the packaging.

 All product codes represented by barcodes of the GTIN family expand to 13-digit

numbers. UPC-A (the “classic” code used in the USA) just gets an extra zero as a pre-

fix. Uncompressing UPC-E and EAN-8 to 13 digits is slightly more complicated, but

still possible.

NOTE Paper magazines often have an additional barcode next to the GTIN.
This is used to encode the issue number with EAN-2 or the price with EAN-5.
Those extra barcodes are currently not supported by iOS and are ignored
when scanning the EAN-13.

Of these 13 digits, the rightmost is the check digit. After scanning, the check digit must

match a calculation based on the other numbers; if it doesn’t match, the scan is con-

sidered corrupted.

 The first digit is not directly encoded as bars, but is represented by a certain pat-

tern of odd and even bars. Thus US GTINs always use the same pattern, tied to the pre-

fix 0, whereas international GTINs have 9 other patterns to choose from. When

scanning a barcode, the scanner infers the leading digit from the pattern of odd and

even symbols.

 The left half of GTINs contain the manufacturer prefix, which is assigned by GS1.

The organization responsible for the manufacturer’s country assigns those prefixes

based on the table reproduced in appendix A. For example, a company located in

Taiwan would have its manufacturer prefix assigned by GS1 Taiwan, and it would

have a 470 prefix.

 After that, each manufacturer decides on the numbers they assign to their prod-

ucts. If they were to assign a very low number, with several leading zeroes, this would

allow for the number compression in UPC-E and EAN-8.

 The International Standard Book Number (ISBN) is a variant of the GTIN-13 used for

books and book-like publications. In this case, the fixed prefix 978 or 979 replaces the

manufacturer prefix, and the remaining digits are assigned by national ISBN agencies.

ISBNs have their own check digit, which is calculated differently than the one in the GTIN.

 The International Standard Music Number (ISMN) is a unique number for the identi-

fication of all notated music publications from all over the world. It uses a fixed prefix

of 9790. ISMNs are also assigned by national agencies.

 The third kind of special GTIN-based numbering scheme is the International Stan-

dard Serial Number (ISSN), used for printed or electronic periodical publications. They

share the 977 prefix and are assigned by national centers of the ISSN organization,

which is independent of GS1.



10 CHAPTER 1 Barcodes, iOS, and you

NOTE There are several additional GTIN prefix ranges used for products that
are packaged in stores, like cheese or meat. Also, you can infer the country
that a product manufacturer is located in from these prefixes. For more
details, refer to the table “GTIN-13 prefixes” in appendix B. 

CODE 39 AND CODE 39 MOD 43

Code 39 was developed by Dr. David Allais and Ray Stevens of Intermec (now a subsid-

iary of Honeywell Scanning and Mobility) in 1974 to overcome the limitation of the

just-released UPC-A, which was only able to represent digits. They saw the promise of

automating identification and data capture, but wanted to be able to represent letters

as well.

 Code 39 is also known as Alpha39, Code 3 of 9, Code 3/9, Type 39, USS Code 39,

and USD-3. Its name derives from it initially being able to represent 39 different

characters (plus a symbol to represent start and stop)—generally only uppercase

letters. With the help of control characters, it can also represent the full ASCII set

of characters.

 Another advantage that Code 39 has over GTIN is that it can be used for any length

of text. But as the number of characters increases, so does the width of the barcode

representation. Figure 1.7 shows several Code 39 examples that represent a device

model number and its serial number in scannable form.

 The plain version of Code 39 doesn’t have a checksum to detect scanning errors. A

variant of Code 39 does have such a check digit, involving a modulo 43 operation; it’s

referred to as Code 39 mod 43. iOS supports both variants.

 A human-readable version of the represented text is usually displayed beneath the

code, with an asterisk representing the start/stop character.

NOTE Because Code 39 is as old as the UPC, virtually all existing barcode
scanners are able to read Code 39 codes. 

CODE 93

Code 93 is a descendant of Code 39, developed by Intermec eight years after its prede-

cessor, in 1982. Its design goal was to reduce the horizontal space required to repre-

sent the text and improve error detection by adding a checksum. Figure 1.8 shows

examples of the two codes.

GTIN-12/UPC-A:

Identifies the product at

POS for checkout.

You can identify this as a

UPC because there are

12 digits shown. 

 Code 39:

Encodes model identifier,

hardware revision, and

unique serial number.

It simplifies adding this

device to a corporation’s

hardware inventory.

Figure 1.7 Netgear combines a UPC with three Code 39s to simplify adding this router device to a cor-

porate tech inventory-tracking system.



11Barcode symbologies in iOS

The origins of the name are unknown—there’s nothing in the standard with the num-

ber 93. Maybe it’s just a play on the name of its predecessor. By placing the 9 in front,

it sounds newer, bigger, and better. That’s marketing for you.

 Code 93 at its core has 43 characters and 5 special characters. Like Code 39, it can

represent all 128 ASCII characters with the help of control characters. This feature was

tacked on to Code 39 by reusing codes, but in Code 93 dedicated control characters

are used.

 The main benefit of Code 93 is that if you scan such a code with iOS, you get the

ASCII characters decoded, whereas with Code 39 you have to find the control

sequences and do the decoding yourself. 

CODE 128

Code 128 was developed in 1981 by Computer Identics Corporation, and its name ref-

erences the fact that it can represent the full 128 characters of the ASCII code.

 Data density in Code 128 is comparable to Code 93, and the features are quite sim-

ilar. Figure 1.9 shows a sticker from an Apple product box where you can see two Code

128 symbols representing supplementary information about the device.

 Code 128 has a more sophisticated mechanism for extending the range of charac-

ters—it uses three different sets of character codes specified by control characters.

Those character sets are referred to as 128A, 128B, and 128C.

 Code 128 has a mechanism that allows it to save horizontal space. The 128C symbol

set allows two neighboring digits to be encoded in one code symbol. This compression

Code 39

Code 39 mod 43

Code 93 (full ASCII)

Code 39 (full ASCII)

Code 39 mod 43 (full ASCII)

BARCODES

BARCODES

Barcodes!

Barcodes!

Code 93

BARCODES

Barcodes!

Figure 1.8 Code 93 is an optimized ver-

sion of Code 39, developed by the same 

company, Intermec.

www.allitebooks.com

http://www.allitebooks.org


12 CHAPTER 1 Barcodes, iOS, and you

mechanism was added to reduce the distance that the laser would have to travel when

scanning such a code, which could become rather long.

 This code was adopted by GS1 to represent supplementary product information

like product weights, dimensions, expiration dates, and so on. Multiple pieces of

information like this can be contained in a single barcode. When used in this context,

the concrete application of the Code 128 specification is referred to as GS1-128.

 This standard defines multiple “application identifiers” to specify the meanings of

values following them. The full list of identifiers is reproduced in appendix C. In

human-readable captions, GS1-128 barcodes indicate application identifiers by enclos-

ing them within parentheses. This is how you can easily identify a GS1-128 barcode. 

CODE 25 AND ITF-14

Dr. David Allais invented Code 25 at Intermec in 1972, before the previously

mentioned Code 39 and Code 93, also credited to him. This makes Code 25 the oldest

barcode symbology supported by iOS. In 1998 Eastman Kodak Company patented the

use of Code 25 for marking film canisters for automatic processing in film

development machines.       

 The barcode can only encode pairs of digits. The first digit is encoded in five bars,

and the second digit is encoded in five spaces interleaved with the bars. There are two

widths for bars and spaces. The encoding table is constructed such that there will always

be two wide spaces and bars for one pair of digits. It’s because of this that the code got

its original name: Interleaved 2 of 5, sometimes abbreviated as ITF and more commonly

referred to as Code 25 (see figure 1.10).

GTIN-12/UPC-A:

Identifies the product at POS for checkout.

You can identify this as a UPC because

there are 12 digits shown.

Code 128:

Encodes Part Number and Serial Number. The latter is

needed to get support for this Apple device. 

Figure 1.9 Apple prefers to use Code 128 for supplementary information.



13Barcode symbologies in iOS

 As one of the oldest barcode types in use

today, Code 25 has a few flaws. Besides being

limited to encoding only even numbers of

digits, it doesn’t have marker bars to indicate

to a reading device where the bars start and

where they end. This can cause incomplete

reads. Also, there’s no built-in error check-

ing or correction.

 Despite those flaws, Code 25 was chosen by GS1 to represent 14-digit GTINs. The

predominant use is for marking shipping boxes that contain multiple identical prod-

ucts. Because there are always 14 digits to be represented, the even-numbers-only lim-

itation is a non-issue. A check digit adds protection for incorrect scans. As an

additional measure for battling incomplete scans, so-called bearer bars were added.

Those are meant to abort the scan if the scan line doesn’t cross all bars, for example, if

the scan angle is too steep.

 For printing on labels, only the horizontal bearer bars (above and below) are

required by the standard. For printing on corrugate boxes, vertical bearer bars (left

and right) are also recommended to even out the printing plate pressure. Figure 1.11

shows an ITF-14 barcode with both vertical and horizontal bearer bars.        

 GS1 International refers to this scheme as ITF-14 and lists it as an important stan-

dard on equal footing with its other standards. It’s probably for this reason that Apple

added support for both ITF-14 and “classic” Code 25 with iOS 8.

1.2.2 2D barcodes in iOS

A problem of barcodes encoding text strings of variable length is that there’s a maxi-

mum useful width for the markings, which is dictated by what they’re printed on. You

can’t put a longer string onto an envelope than fits on the paper. The obvious solution

for this, represented by PDF417, is to wrap the single scanning dimension onto multiple

lines. Such a stacked linear code can be read by specialized (and thus more expensive)

laser-based scanners.

 When there’s no single line that can cross all parts of a barcode in one scan, the

code is referred to as 2D, and as a rule of thumb you need a camera to read this digital

content. Several barcode symbologies were designed to form two-dimensional

squares, most notably QR and Aztec.

 Apple added support for the PDF417, QR, and Aztec barcode types to iOS so it

could represent modern digital boarding passes and tickets in Passbook.

Figure 1.11 An example 

of an ITF-14 barcode

12345678901234

Figure 1.10 An example of 

an Interleaved 2 of 5 code



14 CHAPTER 1 Barcodes, iOS, and you

PDF417

PDF417 was invented by Dr. Ynjiun P. Wang at Symbol Technologies in 1991. This com-

pany was founded in 1975, a mere two years after the initial UPC was announced, with

a primary goal of pursuing the blooming retail- and inventory-management market.

 The name PDF417 is in no way related to Adobe’s Portable Document Format (PDF),

which uses the same acronym. This similarity in name often confuses people first dealing

with it. In this case, PDF417 is short for por-

table data file. The barcode consists of sym-

bols that contain 4 bars and spaces each,

with each symbol being 17 units long,

hence the 417. An example is shown in fig-

ure 1.12.

 The greatest advantage of PDF417 is

that you can decide how wide and how

high each individual line should be. And

although it’s being patented, PDF417 is fully in the public domain and is thus free of

all usage restrictions, licenses, and fees. Thanks to these features, PDF417 has become

the 2D barcode of choice for a great variety of use cases.

 PDF417 is one of the formats accepted by the United States Postal Service for print-

ing postage. More than 200 airlines have settled on using it as the Bar Coded Board-

ing Pass standard since 2005. It’s also used by package services and on ID cards. 

QR CODE

You’ve probably seen a QR Code before: a large

square made up of small squares, with larger

squares in three of its corners. See figure 1.13 for

an example. Those squares are used by scanners

to align themselves on the code and determine

its orientation.

 In contrast to PDF417, the QR Code never had

roots in the one-dimensional space—it was

designed from the ground up to be read by CCDs.

Toyota’s subsidiary Denso Wave, an automotive

components manufacturer, invented the QR Code

in 1994 for tracking parts around car factories.

 QR Codes can represent any kind of data with

great density. As the length of encoded data

grows, so does the square area of the code, or the individual squares inside the code

shrink. This means that the data density is only limited by the resolution of the scanner

camera. The individual squares making up a QR Code are also referred to as modules. 

 The QR Code gained popularity outside of the auto industry when it was used to

encode website addresses, mostly in print media and advertising. For a long time it

was derided as being a Japanese fad, but now almost all phones have the ability to

read QR Codes.

Figure 1.12 An example of the PDF417 2D bar-

code

Figure 1.13 An example of a QR Code



15Barcode symbologies in iOS

 Because QR Codes can represent any data, use cases range from encoding vCards

to audio files. For example, a QR Code sticker on a box could contain an audio

recording of verbal instructions for visually impaired people.

 There’s no universal standard for how certain kinds of complex data should be

represented in a QR Code—it’s agnostic to what data you want to put in it.

 QR Codes embed multiple error-correction symbols, which make them extremely

resilient. See chapter 5, section 5.1.2, for an explanation. 

AZTEC CODE

The Aztec Code was invented in 1995 by Andrew Longacre, Jr., and Robert Hussey. It

was published by Automated Industry Machines (AIM) two years later. Its original pur-

pose inside this company is not publicly known.

 You can differentiate Aztec Codes from QR

Codes by looking at the number of concentric

squares. Aztec has one square in the center (see

figure 1.14), whereas QR Codes contain multiple

squares (see figure 1.13).

 The name of the code derives from the cen-

tral square bull’s-eye being reminiscent of an

Aztec pyramid. Of course, the Aztec Code has

built-in error correction as well.

 This code is also one of the three barcode types

that can be used on boarding passes following the

Bar Coded Boarding Pass standard. (The two oth-

ers are QR Code and Data Matrix.) On top of that,

the Aztec Code is used by a great number of rail-

way companies for digital train tickets.

 Just like with the QR Code, you can represent any kind of data with Aztec Codes, so

it’s a matter of developer preference which of the two you use to represent your data. 

DATA MATRIX

Dennis Priddy of International Data Matrix, Inc., invented the Data Matrix barcode

in 1994 and submitted it as a public domain standard to AIM (Association for Auto-

matic Identification and Mobility) to promote widespread use.    

 Data Matrix is a very compact code that retains a high scan rate even if printed

very small or with low contrast between dark and light blocks. The US Electronic

Industries Alliance (EIA) recommends using Data Matrix for labeling small elec-

tronic components.

 Similar to QR Codes, there are data redundancy and error correction provisions

built into the specification. Because of this, Data Matrix symbols with scratches, tears,

holes, and stains can be successfully read without data loss, even if more than 20% of

the symbol were to become damaged and unreadable.

 Data Matrix can be read at lower contrast ratios than most barcode symbologies,

which is a helpful feature for environments where symbols may be obscured by grease,

Figure 1.14 An example of an Aztec 

Code



16 CHAPTER 1 Barcodes, iOS, and you

dirt, paint and chemical coatings, and when the

symbology is applied to metal and other reflec-

tive surfaces (see figure 1.15).

 GS1 International promotes the use of Data

Matrix in labeling health care products. The

same application identifiers that were defined for

Code 128 (see appendix C) can also be used in

Data Matrix Codes, but will take up less space due

to compaction and the use of two dimensions.    

 Apple added support for scanning Data

Matrix Codes in iOS 8.

1.2.3 So many choices: which barcode should I use?

Out of the large number of different barcode

symbologies, Apple chose to support the ones that make most sense for mobile appli-

cations. If you’re building apps to read existing codes, it’s very likely that one of the

barcodes we’ve already discussed has you covered:

■ Physical products, all items that are scanned at the point of sale: GTIN family

■ Relatively short alphanumeric texts, serial numbers: Code 93 or Code 128

■ Digital tickets, boarding passes, loyalty cards, PassKit: PDF417, QR Code, or Aztec

Code

■ Arbitrary data in a square space: QR Code or Aztec Code

■ Arbitrary data using less height than width: PDF417

iOS, beginning with version 7, can generate bitmaps of all the 2D barcodes we’ve dis-

cussed, and it provides scanning ability for all the 1D and 2D barcodes we’ve covered.

To fill the niche of generating 1D barcodes, I created a library dubbed BarCodeKit.

This commercial library is available to readers of this book at no charge. You’ll find

all the details about this in chapter 5, which covers generating barcodes for display

and print. 

1.3 Summary

2014 marked the 40-year anniversary of the first widely used barcode, which eventually

became the GTIN. Its original goal was to increase the efficiency of the grocery indus-

try by enabling automatic product identification at the point of sale, and it fulfilled

this goal many times over as the entire world adopted it. Most barcode symbologies

are ISO standards at the lowest technical level; GS1 is in charge of defining the seman-

tic meaning of content represented as GTINs and Code 128.

 Other industries had different needs, and this led to the development of barcode

symbologies that could represent alphanumeric characters. Code 39 is the oldest

among the barcode types supported by iOS; Code 93 and Code 128 are more

advanced symbologies.

Figure 1.15 An example of a Data 

Matrix Code



17Summary

 The advancements in digital image processing gave rise to a new kind of barcode

using more than one dimension. Small, inexpensive cameras on a chip, called CCDs,

were able to scan 2D barcodes as well as the older 1D barcodes, which initially could

only be scanned with a laser beam. As it became standard for smartphones to have a

camera built-in, this put a potential barcode scanner in everyone’s pocket.

 Before the rise of the mobile phone, barcodes were only useful in places that had

scanning equipment installed. Point-of-sale (POS) systems had bulky cash registers

with built-in laser scanners and a database for looking up price information. But these

technologies are now available in modern smartphones. Not only can users now scan

barcodes with a device they’re already carrying with them, but always-on internet con-

nectivity and device sensors detect the user’s current context and add degrees of util-

ity that have never been possible before.

 These are the key takeaways for this chapter:

■ Barcodes are a tried-and-true technology, with the most widely used form—the

UPC—being more than 40 years old.

■ Previously barcodes required laser-based scanners found in factories or at the

point of sale. Today camera-equipped mobile phones are able to read them

with ease. This opens up new usage scenarios with app users being able to inter-

act with the physical world.

■ One-dimensional (1D) barcodes encode numbers or alphanumeric characters

on a single line. Two-dimensional (2D) barcodes are able to encode arbitrary

data on a grid forming a square.

■ The international GS1 organization oversees the semantic implementations of

barcodes in the context of commerce. See appendixes B and C for details of the

semantics that they manage. GS1 unified the previously used UPC, EAN, and JAN

codes and numbering schemes into the GTIN.

■ Apple began to integrate barcode technologies in iOS 7, adding only a few bar-

code-related APIs to iOS 8. Beginning with iOS 7, you don’t need any third-party

software to add barcode scanning to your apps. This book will equip you with all

you need to know to create barcode-enabled apps.



18

Media capture
 with AV Foundation

To be able to scan barcodes with the iPhone camera, you need to understand two

things: AV Foundation’s media capture functionality and its metadata detector.

 Most iOS developers have little reason to familiarize themselves with AV Founda-

tion. The usual kinds of apps have no need to capture audio or video. Even less often

do developers need to manipulate or compose media. But this knowledge is a

requirement for the barcode scanning this chapter is devoted to, so we’ll run through

a tutorial on AV Foundation and its components pertinent to media capture.

This chapter covers

■ Introducing media capture in AV Foundation

■ How video frames flow through the AV Foundation 

components to a preview layer

■ Configuring cameras and toggling device features

■ Implementing autofocus and tap-to-focus

■ Capturing still images

■ Handling UI rotation



19Introducing AV Foundation

 Chapter 3 will build on this foundation and add the actual barcode scanning via AV

Foundation’s metadata detector.

2.1 Introducing AV Foundation

AV Foundation is Apple’s framework for working with audiovisual media. Initially it

contained only functions for dealing with audio media, most notably AVAudioPlayer

and AVAudioRecorder, which are still available today. The earliest traces of AV Founda-

tion date back to iPhone OS 2.2 and OS X 10.7.

 When iOS 4 was released in the summer of 2010, Apple added a plethora of new

APIs for handling video media. AV Foundation rests on the lower-level frameworks

Core Audio, Core Media, and Core Animation (see figure 2.1). Of these, both Core

Audio and Core Media are C-based; Core Animation and AV Foundation provide

comfortable Objective-C APIs that make working with them an order of magnitude

more convenient. 

 These additions for video content found their way into OS X 10.7 (Lion), which

was first unveiled at an event Apple titled “Back to the Mac” in the fall of 2010.

This suggests that Apple made media handling on the mobile platform a priority

but also gave developers on OS X access to the rich media functionality. Why

wouldn’t they?

 AV Foundation is vast. As of iOS 7 there are 78 public headers. With its richness and

multitude of applications, AV Foundation is deserving of a book in its own right, but

much of it is outside of what you’ll need for barcode scanning. 

PRO TIP Cmd-click on any class name or constant in your code to jump
straight to the header file where it’s defined.

We’re only interested in the parts of AV Foundation that let you access the camera and

scan barcodes, so we’ll focus on AVCapture functionality in this chapter. In the next

chapter, we’ll add AVMetadataOutput for barcode recognition.

AV Foundation

Core Audio Core Media Core Animation

Objective-C APIs

C APIs Objective-C APIs

Figure 2.1 AV Foundation rests on three lower-level frameworks.



20 CHAPTER 2 Media capture with AV Foundation

2.2 Building a camera app

Imagine you’re tasked with building the next awesome camera app for the iOS App

Store. Building it will give you a solid understanding of AV Foundation’s media cap-

ture functionality.

NOTE This chapter’s sample project works on iOS 6 or higher. Because the
iOS simulator doesn’t have any camera devices, you’ll need to run it on a
physical iOS device.

Your camera app (see figure 2.2) will have the fol-

lowing features:  

■ Show a live preview of the camera image

■ Support interface rotation as you rotate the

device

■ Switch between multiple camera devices (if

available)

■ Ask the user for permission to access the

camera (if required)

■ Take a picture and save it to the camera roll

■ Toggle the torch (video light) on and off

■ Select a focus point by tapping

■ Switch back to continuous autofocus if sub-

ject changes

Dual platform: iOS and OS X

Apple is developing AV Foundation in parallel on OS X and iOS, with only minor differ-

ences between the two. For example, on OS X you can find a class to grab video from

your desktop display, including mouse clicks. So far Apple hasn’t felt it necessary to

provide similar functionality for iOS. This class is visible in the AVCaptureInput.h

header file, but it’s marked as not available on iOS. 

Apple provides exactly the same headers for AV Foundation on both iOS and OS X,

and the NS_AVAILABLE macro is used to mark items available for the individual plat-

forms. If a class is not available, it’s marked as NA; otherwise you’ll see the minimum

OS version supporting it.

For example, the AVCaptureSessionPresetPhoto constant is available beginning

with iOS 4.0 and OS X 10.7, as you can see in this excerpt from AVCaptureSession.h:

AVF_EXPORT NSString *const AVCaptureSessionPresetPhoto
NS_AVAILABLE(10_7, 4_0);

This is the quickest way to determine whether something is available for iOS or

OS X, should you ever want to check for a specific constant, class, or method. 

Figure 2.2 The finished camera app



21Building a camera app

To build this app, you’ll use classes and methods of AV Foundation that support

media capture, whose names are collectively prefixed with AVCapture. Figure 2.3

shows an overview of the basic building blocks at your disposal.

 You’ll start by selecting a camera device, for which you’ll create a device input. This

will be added to a capture session. To get a live preview of the camera image, you’ll

add a preview layer. Finally, to take pictures, you’ll add a still image output. The

AVCaptureSession acts as a central manager that establishes and controls the connec-

tions between its inputs and outputs. 

 The number of moving parts involved in capturing media might seem daunting,

but you’ll see how it all fits together as you build the camera app. 

AVCaptureDevice

AVCaptureDeviceInput ports AVCaptureInputPort

Video

AVCaptureInputPort

Meta

AVCaptureSession

inputs

outputs

AVCaptureStillImageOutput

connections

AVCaptureConnection

inputPorts

output

AVCaptureConnection

inputPorts

initWithDevice:

startRunning:

stopRunning:

AVCaptureVideoPreviewLayer

session connection

Preview

Camera!

I’m the manager!

addInput:

addOutput:

Figure 2.3 AV Foundation components involved in media capture

www.allitebooks.com

http://www.allitebooks.org


22 CHAPTER 2 Media capture with AV Foundation

2.2.1 AV Foundation setup

Some initial setup is required before you can dive into media capture:

1 Create a new app project from the Single View Application template.

2 Rename the root view controller to DTCameraPreviewController.

3 Link in the AV Foundation framework.

4 Add the AV Foundation framework header import to your precompiled header.

5 Add private instance variables to hold onto references for often-used AV Foun-

dation objects.

Let’s look at each of these steps in detail.

 First, create a new app project by selecting File > New Project and choosing the

Single View Application template (see figure 2.4). This template has the fewest unnec-

essary files while still having a storyboard for you to customize.

 Next, rename the ViewController class to DTCameraPreviewController, and

adjust the class name in the storyboard. Make sure that it still builds and runs.

PRO TIP The fastest way to rename a class is to select the class name in the
source file while it’s open in the editor and then select Edit > Refactor >
Rename from the menu bar. This renames the .h and .m files and updates all
interface builder files referencing them.

The third step is to link in the AV Foundation framework. In your app target, under

Build Phases, add AVFoundation.framework (see figure 2.5). This is a dynamic

Figure 2.4 Creating a new single-view application



23Building a camera app

framework (as you can tell from the yellow toolbox icon) that’s preinstalled on all

iOS devices. Adding this in the Link Binary With Libraries build phase allows the

linker to resolve references to AV Foundation symbols at link time.

 Next you need to add the AV Foundation framework header to your precompiled

header (PCH) file. Xcode optimizes the building of the app binary by creating a fast

index of the precompiled header contents; during the build, it uses this index to

quickly look up system symbols, classes, and methods.

 This way, you don’t have to repeat the same imports for system headers in all the

source files where you make use of the symbols. There’s less to type, your code is

shorter, and builds go much faster ... isn’t that great? 

 Add the import for the AV Foundation header to your Camera-Prefix.pch, as follows:

#ifdef __OBJC__
#import <UIKit/UIKit.h>
#import <Foundation/Foundation.h>
#import <AVFoundation/AVFoundation.h>

#endif

You can also safely remove the UIKit and Foundation imports from class headers that

you create via Xcode templates. Those imports are redundant, and besides cluttering

up your source files, they slow down your builds, because Xcode has to compile these

headers every time it encounters an import for them.

 Finally, you need to add several instance variables to DTCameraPreviewController

to give you easy access to the AV Foundation instances you’re currently using. Put

them in the implementation file to make them private. Classes outside of the preview

controller never need to access these variables, and this way of hiding them from the

outside world makes for simpler and cleaner headers. You can prefix them with an

underscore to visually mark them as internal:

Figure 2.5 Linking the target with AVFoundation.framework



24 CHAPTER 2 Media capture with AV Foundation

 
@implementation DTCameraPreviewController
{

AVCaptureDevice *_camera;
AVCaptureDeviceInput *_videoInput;
AVCaptureStillImageOutput *_imageOutput;
AVCaptureSession *_captureSession;

}

With this setup in place, you’re ready to dive into media capture with AV Foundation. 

2.2.2 Building the camera UI

Now that you’ve created a single-view app, you have an empty Main.storyboard file.

You next need to set up a few basic user interface (UI) elements that will allow you to

interact with the example camera app. The UI calls for a camera preview that covers

the entire display. Layered on top of it, there should be a dimmed bar that contains

three buttons: Switch Cam (to switch cameras), Snap! (to take a picture), and Torch

(to toggle the torch on and off).

 You haven’t created the specialized DTVideoPreviewView yet, so leave the base view

empty for now. An empty class string for the base view means that it defaults to UIView.

The shaded bar at the bottom is 60 pixels high, and it has a black background color

with 20% alpha. This creates a good contrast between the button text and the back-

ground, so that the user can more easily recognize the buttons.

 Add three buttons to the shading bar and name them Switch Cam, Snap!, and

Torch, from left to right (see figure 2.6). Add sufficient autolayout constraints to the

buttons and the shaded bar to keep the bottom of the bar aligned with the bottom of

the view and all buttons in their relative places. The UI layout should survive device

rotation later in this chapter.  

 Connect the three buttons to one action and one outlet each. 

 It’s good practice to do a quick test of the actions after connecting them like this.

Add an NSLog statement for each action handler and launch the app:

- (IBAction)snap:(UIButton *)sender {
NSLog(@"Snap!");

}

- (IBAction)switchCam:(UIButton *)sender {
NSLog(@"Switch Cam");

}

- (IBAction)toggleTorch:(UIButton *)sender {
NSLog(@"Torch");

}

If everything is connected correctly, then tapping the individual buttons will log the

corresponding text. 

Current
capture

device Video input for 
the device

Still
image

output
Capture session manages 
connections between 
inputs and outputs



25Building a camera app

2.2.3 Selecting capture devices

The AVCaptureDevice class provides class methods for retrieving media capture

devices for a given media type. You specify the media type with the AVMediaTypeVideo

or AVMediaTypeAudio constants. Other media types are also defined in the AVMedia-

Format.h header, but they aren’t used for media capture.

NOTE Never rely on your assumptions about the capture hardware available
for specific devices. Use the methods to query the system for what devices are
actually available.

Figure 2.6 Camera UI storyboard



26 CHAPTER 2 Media capture with AV Foundation

Current iOS devices provide devices for capturing video or audio media. The iPhone 5,

for example, provides an AVCaptureDevice for both the front- and back-facing cameras

and the microphone. For the camera app, we’ll use only the video capture hardware.

 Open the DTCameraPreviewController.m implementation file. This is where you’ll

add most of the code for interacting with AV Foundation. You need to add a

_setupCamera method to set up the media capture stack. This will contain code for

initializing various components of AV Foundation for media capture.

 First, you need code to retrieve the default capture device for the AVMediaTypeVideo

media type. Usually this will be a camera pointing away from the user. Add this code to

_setupCamera:

_camera = [AVCaptureDevice defaultDeviceWithMediaType:
                    AVMediaTypeVideo];

Quickly adding action and outlet connections

The fastest way to create an IBAction and IBOutlet for UI elements in Interface

Builder is by enabling the assistant editor. In automatic mode (while showing a

storyboard in the left pane) the assistant editor shows the header of the matching

view controller class in the right pane. Ctrl-drag the UI element from the left canvas

to the right editor, and choose whether to create an action or an outlet as shown.

Ctrl-drag to create outlet or action



27Building a camera app

The preceding code will retrieve the AVCaptureDevice, which you can think of as the

camera hardware itself. In order to use it with your system, you have to connect it

somehow, like you’d connect a physical camera via a USB cable. The job of the cable is

taken on by AVCaptureDeviceInput (see figure 2.7). 

 To create a device input for the default camera, you initialize it with the device.

The following code should also be added to _setupCamera:

NSError *error;
_videoInput = [[AVCaptureDeviceInput alloc]     

     initWithDevice:_camera error:&error];

if (!_videoInput) {
NSLog(@"Error connecting video input: %@",
    [error localizedDescription]);

return;
}

Plugging device input (the cable) into the device (the camera) might not always work,

as evidenced by the existence of an error parameter. On OS X this fails if an app tries

to access the iSight camera while another app is already recording video from it. On

iOS devices, such a scenario is extremely unlikely, because iOS lets only the foreground

app access media devices. Still, it’s safer to deal with the error case. If the connection

fails, the result is nil and the error variable will be filled with the reason for the fail-

ure. The preceding example simply aborts the setup, but in a production app you

might want to inform the user about the failure, possibly providing a way to retry later.

 There’s no other (publicly visible) link between the capture device and the device

input besides passing the camera in the -initWithDevice: method. Calling this

method causes the device input class to set up the available ports. You can think of ports

as strands in the metaphorical USB cable. Each port can transport a single stream of

AVCaptureDevice

AVCaptureDeviceInput ports AVCaptureInputPort

Video

AVCaptureInputPort

Meta

initWithDevice:

Camera!

Figure 2.7 The capture device is plugged into the device input.

Variable receives a 
reference to error object 
if there’s a problem

Create a device 
input for camera

Bail out of setup 
method if there’s 
a problem



28 CHAPTER 2 Media capture with AV Foundation

media data. On the iPhone 5, one input port provides an AVMediaTypeVideo stream

and another provides an AVMediaTypeMetadata stream, regardless of which camera

device you inspect. 

 In practice, you’ll probably never need to deal with the ports individually. The sys-

tem hands you a device that it knows supports the media type you’re interested in, so

you can simply rely on that.

PRO TIP Code defensively. If a method provides an NSError ** output param-
eter, check the result and handle the potential problem gracefully. 

2.2.4 Media capture session

The AVCaptureSession class is the central manager for a media capture session. Typi-

cally you only need a single one. It has inputs and outputs to plug in devices, and it

takes care of connecting compatible inputs and outputs (see figure 2.8). 

 Some input or output objects might not be suitable for a session, so you have to ask

it for permission to plug in the object with the -canAddInput: method. Add this code

to _setupCamera:

_captureSession = [[AVCaptureSession alloc] init];

if (![_captureSession canAddInput:_videoInput]) {
NSLog(@"Unable to add video input to capture session");
return;

}

[_captureSession addInput:_videoInput];

When you add any input or output to a capture session, it checks which connections

are reasonable and establishes these as instances of AVCaptureConnection. It would

make little sense, for example, to connect an output writing a video file with the meta-

data stream from a camera, so that connection wouldn’t be made.

AVCaptureDeviceInput

AVCaptureSession

Waiting for inputs and outputs to connect ...

inputs I’m the manager!

addInput:

Figure 2.8 The capture session manages everything.

Create media capture 
session (using default 
AVCaptureSessionPresetHigh)

Check if input can 
be added to session

Bail out of setup 
method in case 
of problems



29Building a camera app

 For the most part, you can rely on these automatic connections on iOS. But should

you feel the need to establish these manually, AVCaptureSession provides the

-addConnection: and -removeConnection: methods.

Any AVCaptureConnection has multiple inputPorts and a single outputPort or

videoPreviewLayer. The output port and preview layer can never be connected at the

same time.

 So far, there’s no video preview, nor is there any output capture device. That also

means there are no connections yet in the session. 

2.2.5 Showing live video preview

Apple provides the AVCaptureVideoPreviewLayer, which taps into the internal video

stream from the camera and displays a high-fidelity video preview. Because it’s a

CALayer subclass, the preview layer is the one item that AV Foundation gets from Core

Animation. In order to make the preview layer play nicely with the other UIView hier-

archy, you can wrap it in its own UIView. This lets the preview layer work much better

with autoresizing masks and autolayout. 

 To set this up, create a new DTVideoPreviewView class deriving from UIView. In the

header, define a property allowing access to the video preview layer:

@interface DTVideoPreviewView : UIView

@property (readonly) AVCaptureVideoPreviewLayer *previewLayer;

@end

The implementation of this class sets a black background and specifies an autoresiz-

ing mask so that both dimensions follow the superview’s lead. The +layerClass

method is overwritten to return an AVCaptureVideoPreviewLayer. This makes sure

that the layer class backing this view will be a video preview layer instead of the default

CALayer. The -previewLayer method simply passes the reference on, typecast for

future convenience:

@implementation DTVideoPreviewView

- (id)initWithFrame:(CGRect)frame {
self = [super initWithFrame:frame];
if (self)
{

[self _commonSetup];
}
return self;

}

- (void)awakeFromNib {

Wrap AVCaptureVideoPreviewLayer 
so that it plays nicely with UIKit 
frame animations and autolayout

Creates an accessor to receiver’s
main layer, typecast to correct

class for convenience

Called if instance is 
created from code

Called when loaded 
from NIB file



30 CHAPTER 2 Media capture with AV Foundation

[self _commonSetup];
}

+ (Class)layerClass {
return [AVCaptureVideoPreviewLayer class];

}

- (void)_commonSetup {
self.autoresizingMask = UIViewAutoresizingFlexibleHeight |
UIViewAutoresizingFlexibleWidth;
self.backgroundColor = [UIColor blackColor];
[self.previewLayer

    setVideoGravity:AVLayerVideoGravityResizeAspectFill];
}

- (AVCaptureVideoPreviewLayer *)previewLayer {
    return (AVCaptureVideoPreviewLayer *)self.layer;
}

@end

Having DTVideoPreviewView in your project lets you add the live video preview wher-

ever you can put a view in Interface Builder. Note that the _commonSetup method is

executed regardless of whether this object is instantiated from code via initWith-

Frame: or from a NIB.

 Now open your storyboard and set the class of the DTCameraPreviewController

root view to DTVideoPreviewView (see figure 2.9).

In DTCameraPreviewController, add the following -viewDidLoad method, which sets

a new instance variable (_videoPreview) to a DTVideoPreviewView reference after

the view hierarchy is loaded from the storyboard:

- (void)viewDidLoad {
[super viewDidLoad];

NSAssert([self.view isKindOfClass:[DTVideoPreviewView class]],
    @"Wrong root view class %@ in %@",

 NSStringFromClass([self.view class]),
 NSStringFromClass([self class]));

Specify use of video 
preview layer class

Setup performed when 
view is created in code or 
when loaded from NIB

Specify aspect fill to 
avoid side bars on iPad

Pass through typecast 
for convenient access

Figure 2.9 Changing the root view to be a video preview

Assert that you have
correct root view class



31Building a camera app

_videoPreview = (DTVideoPreviewView *)self.view;
[self _setupCamera];

}

With this in place, you can now add the final piece to _setupCamera to connect the

preview layer to the capture session:

_videoPreview.previewLayer.session = _captureSession;

Now you have the first AVCaptureConnection established, connecting the video port

of the AVCaptureDeviceInput with the preview layer (see figure 2.10).

To start the flow of data, you call -startRunning on the session when the view controller

is presented. To make your app a good iOS citizen, add a corresponding -stopRunning

when the view controller is dismissed:

- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];

[_captureSession startRunning];
}

Save reference to 
preview view into a 
new instance variable

Call camera 
setup method

AVCaptureDeviceInput ports AVCaptureInputPort

Video

AVCaptureSession

inputs

AVCaptureConnection

inputPorts

startRunning:

stopRunning:

AVCaptureVideoPreviewLayer

session connection

Preview

I’m the manager!

addInput:

Figure 2.10 The first connection between a video input port and the preview layer

Start session so that 
you see video instead 
of black rectangle

www.allitebooks.com

http://www.allitebooks.org


32 CHAPTER 2 Media capture with AV Foundation

- (void)viewDidDisappear:(BOOL)animated {
[super viewDidDisappear:animated];

[_captureSession stopRunning];
}

Run the app on your iOS device, and you should see a live video feed ... unless you’re

testing on a device that was sold in China. There the law requires that the user con-

sent to any app accessing the camera. 

2.2.6 Authorizing camera access (or not)

There are some situations where camera access might require user authorization, or

access to the camera might have been disabled through device restrictions. You have

to take charge of the authorization process as part of your app’s user experience. Fail-

ure to do so might leave your app unusable and only display an empty rectangle where

the user might expect the video preview.

Authorization for audio input is necessary on all iOS devices. Up until iOS 7, authori-

zation for access to video input was only required for devices sold in China. Apple fig-

ured that it would be beneficial for users’ privacy to extend this requirement, so

beginning with iOS 8, apps require user authorization to access the video camera as

well. The authorization request dialog looks the same as the requests for accessing the

user’s location or microphone (see figure 2.11). 

 You don’t have to do anything about this—the dialog will be presented in any case.

But because the user might disallow camera access, you should be aware that this will

probably make some functionality in your app impossible. You should disable func-

tionality that won’t work without the camera and inform the user that it’s their choice.

If you don’t disable camera functionality when camera access is denied, your code will

progress without a problem but all video images will be black. 

 

 

 

Stop session when 
view controller 
disappears

Disabling camera access

The most common way to disable access to the camera is via Settings > General >

Restrictions > Enable Restrictions.

For configuring multiple iOS devices in a school or business environment, there’s also

the Apple Configurator utility (https://itunes.apple.com/us/app/apple-configurator/

id434433123). This tool builds a profile specifying available device features for

“supervised” devices. This has the same restrictions available on a single iOS device,

along with a plethora of additional configuration options.

https://itunes.apple.com/us/app/apple-configurator/id434433123


33Building a camera app

Add a new method that’s called from -viewDidLoad instead of -setupCamera. This

checks the authorization status first, and only sets up the camera once the authoriza-

tion status has been determined:

- (void)_setupCameraAfterCheckingAuthorization {
if (![[AVCaptureDevice class] respondsToSelector:
@selector(authorizationStatusForMediaType:)]) {
[self _setupCamera];

return;
}

AVAuthorizationStatus authStatus = [AVCaptureDevice
authorizationStatusForMediaType:AVMediaTypeVideo];

switch (authStatus) {
    case AVAuthorizationStatusAuthorized: {

    [self _setupCamera];
    break;

    }

    case AVAuthorizationStatusNotDetermined: {
    [AVCaptureDevice requestAccessForMediaType:
    AVMediaTypeVideo completionHandler:^(BOOL granted) {

Authorization alert iOS 7: Only in China

iOS 8: All apps

All apps Per-app cam restriction 

Figure 2.11 Camera+ asking a Chinese iOS 7 user for camera authorization

For iOS 6, assume 
authorization

B

Request status 
of authorization

Access granted; 
set up camera

Access status 
unknown; 
request accessC



34 CHAPTER 2 Media capture with AV Foundation

    dispatch_async(dispatch_get_main_queue(), ^{
    if (granted) {

    [self _setupCamera];

    ...

    [_captureSession startRunning];
    } else {

    [self _informUserAboutCamNotAuthorized];
    }

    });
    }];
    break;

    }

    case AVAuthorizationStatusRestricted:
    case AVAuthorizationStatusDenied: {

    [self _informUserAboutCamNotAuthorized];
    break;

    }
}

}

This code also works on iOS 6. The AVCaptureDevice doesn’t have an -authorization-

StatusForMediaType: selector in that version, so you can skip right to camera setup in

that case B.

 If the authorization status is AVAuthorizationStatusNotDetermined, you request

access for the video media type C, and only if the completion handler comes back

with a positive result do you set up the camera. 

 If access is restricted or denied, or the completion handler comes back negative, you

need to inform the user that their choice makes camera functionality not possible E.

An -_informUserAboutCamNotAuthorized helper method displays an alert view to that

effect.

 Note the dispatch_async to the main thread D. This is needed because the com-

pletion handler will be called on a background queue, but you want the methods con-

tained in the dispatch block to be executed on the main thread.

 If the authorization status is restricted or denied, there’s nothing you can do about

that from inside your app. All you can do is inform the user that this app requires autho-

rization to be granted from the Settings app. If you call the access request method with

the status being restricted or denied, the completion handler will be executed right

away with granted being NO and no authorization dialog being shown. The dialog ask-

ing for permission only appears if the current authorization state is undetermined. 

2.2.7 Toggling the video light

Video capture devices have a number of features that might vary quite a bit between

devices and device generations. In this section you’ll add a video light, a.k.a. “torch,”

to your camera. A torch isn’t a typical feature for a still image camera, but adding one

The completion handler 
is called on a background 
thread. This dispatches 
execution back to the 
main queue.DUpdate UI

buttons

Start capture 
session

Access not granted; 
inform user

E



35Building a camera app

will demonstrate how to query available features from a capture device. Also, in chap-

ter 3 you’ll find the light useful for scanning barcodes in dimly lit places.

 The AVCaptureDevice has a -hasTorch method that you can query, and you can

use this to hide the Torch button on cameras that have no LED flashlight, like the

user-facing camera. The following method adjusts the visibility of the Torch button

based on the currently selected camera. Note the use of the Torch button outlet that

you connected earlier:

- (void)_setupTorchToggleButton {
if ([_camera hasTorch]) {

    self.toggleTorchButton.hidden = NO;
} else {

    self.toggleTorchButton.hidden = YES;
}

}

In section 2.2.2 you added a dummy implementation for the three actions linked with

three buttons in Interface Builder. Now you need to add the actual code to toggle the

torch feature. This method demonstrates how to query for the availability of a device

feature as well as how to lock it while making configuration changes:

- (IBAction)toggleTorch:(UIButton *)sender {
if ([_camera hasTorch]) {

    BOOL torchActive = [_camera isTorchActive];

    if ([_camera lockForConfiguration:nil]) {
    if (torchActive) {

    if ([_camera isTorchModeSupported:AVCaptureTorchModeOff]) {
    [_camera setTorchMode:AVCaptureTorchModeOff];

    }
    } else {

    if ([_camera isTorchModeSupported:AVCaptureTorchModeOn]) {
    [_camera setTorchMode:AVCaptureTorchModeOn];

    }
    }

    [_camera unlockForConfiguration];
    }
}

}

Your camera app now doubles as flashlight app! If you tap the Torch button, you turn

on the video light. Tap it again to turn it off. 

Capture device tells you if 
there’s a torch available

Capture
device

knows if
torch

 is active
Need to lock capture 
device for changing 
settings; without this 
there’s an exception

Toggle torch on
if supported

Toggle torch off
if supported

Unlock configuration 
when done

Beware of AV exceptions!

You must lock a capture device before and unlock it after making configuration chang-

es to it. Trying to change the configuration without locking will cause AV Foundation

to trigger an exception.



36 CHAPTER 2 Media capture with AV Foundation

2.2.8 Taking pictures to the camera roll

Now you get to take pictures! Let’s fill in the action method for the Snap! button. 

 To take pictures, you need to add an AVCaptureStillImageOutput class to your

capture session. This is the last piece to the video capture puzzle (see figure 2.12).

(continued)

Trying to set an unsupported value on a property of the capture device is equally bad.

For every configuration property foo, there’s a corresponding -isFooSupported
method, which you can find in the SDK documentation. 

Exceptions are bad for the user experience: they terminate your app. 

AVCaptureDevice

AVCaptureDeviceInput ports AVCaptureInputPort

Video

AVCaptureInputPort

Meta

AVCaptureSession

inputs

outputs

AVCaptureStillImageOutput

connections

AVCaptureConnection

inputPorts

output

AVCaptureConnection

inputPorts

initWithDevice:

startRunning:

stopRunning:

AVCaptureVideoPreviewLayer

session connection

Preview

Camera!

I’m the manager!

addInput:

addOutput:

Figure 2.12 The completed AV capture puzzle



37Building a camera app

In figure 2.12 the media streams from the capture device (top left) and flows through

the device input into the capture session. The session manages the capture connec-

tions between inputs and outputs. At the bottom, the media data flows into the still

image output as well as the video preview layer.

 The following code shows the complete _setupCamera implementation containing

all the previously explained camera setup steps. It also adds a still image output to the

capture session:

- (void)_setupCamera {
_camera = [AVCaptureDevice

    defaultDeviceWithMediaType:AVMediaTypeVideo];

if (!_camera) {
    [self.snapButton setTitle:@"No Camera Found"

    forState:UIControlStateNormal];
    self.snapButton.enabled = NO;
    [self _informUserAboutNoCam];
    return;
}

NSError *error;
_videoInput = [[AVCaptureDeviceInput alloc] initWithDevice:_camera

error:&error];

if (!_videoInput) {
    NSLog(@"Error connecting video input: %@",

    [error localizedDescription]);
    return;
}

_captureSession = [[AVCaptureSession alloc] init];

if (![_captureSession canAddInput:_videoInput]) {
    NSLog(@"Unable to add video input to capture session");
    return;
}

[_captureSession addInput:_videoInput];

// [self _configureCurrentCamera];

_imageOutput = [AVCaptureStillImageOutput new];

if (![_captureSession canAddOutput:_imageOutput]) {
    NSLog(@"Unable to add still image output to capture session");
    return;
}

[_captureSession addOutput:_imageOutput];

_videoPreview.previewLayer.session = _captureSession;
}

Method to configure 
current camera will 
be implemented later

Add still 
image output

Ask capture 
session if input 
can be addedBail out if there 

is problem

Connect still 
image output

Set session to
be previewed



38 CHAPTER 2 Media capture with AV Foundation

You need a reference to the current capture connection to take a still image. This

helper method finds and returns it:

- (AVCaptureConnection *)_captureConnection {
for (AVCaptureConnection *connection in _imageOutput.connections) {

    for (AVCaptureInputPort *port in [connection inputPorts]) {
    if ([port.mediaType isEqual:AVMediaTypeVideo]) {

    return connection;
    }

    }
}

return nil;
}

With this setup in place, you can fill in the -snap: action. This is the second method

you need to replace in the previous dummy implementation from section 2.2.2:

- (IBAction)snap:(UIButton *)sender {
if (!_camera) {

    return;
}

AVCaptureConnection *videoConnection = [self _captureConnection];

if (!videoConnection) {
    NSLog(@"Error: No Video connection found on still image output");
    return;
}

[_imageOutput
    captureStillImageAsynchronouslyFromConnection:videoConnection
    completionHandler:^(CMSampleBufferRef imageSampleBuffer,

    NSError *error) {
    if (error) {

    NSLog(@"Error capturing still image: %@",
    [error localizedDescription]);

    return;
    }

    NSData *imageData = [AVCaptureStillImageOutput )
    jpegStillImageNSDataRepresentation:
    imageSampleBuffer];

    UIImage *image = [UIImage imageWithData:imageData];
    UIImageWriteToSavedPhotosAlbum(image, nil, nil, nil);
}];

}

Returns 
connection of first 
video input port

Returns nil if no 
capture connection 
was found

Method called when 
Snap! button is tapped

No camera,
so no photos

possible

Get capture
connection

from helper
method

No connection found, so there’s no video
connection to capture still images from

Asynchronous
image capture B

Bail out of
completion

handler if
there’s a
problem

Convert
sample

buffer to
JPEG

image
data C

Create 
an image 
out of the 
data blob

D

Save image to
camera roll



39Building a camera app

For capturing still images, you need a reference to the AVCaptureConnection that’s

feeding your still image output. AVCaptureSession doesn’t provide a method to get

connections, so you have to iterate through the image output connections, as demon-

strated by the _captureConnection helper method shown earlier. Capture connec-

tions have multiple inputs, so you’re looking for the one that has the video stream. 

 The actual photography occurs when you call the awkwardly named -capture-

StillImageAsynchronouslyFromConnection: completionHandler: B. After a few

milliseconds, the completion handler will be called, providing a reference to a sample

buffer.

The CM prefix of CMSampleBufferRef tells you that it’s coming from the depths of

Core Media, which AV Foundation rests on. This sample buffer contains the actual

pixels of a frame of the video stream.

 You don’t need to worry about converting this buffer data into a JPEG image—

that’s taken care of by the +jpegStillImageNSDataRepresentation: class method of

AVCaptureStillImageOutput C. This gives you the actual JPEG data, which can easily

be transmuted into a UIImage for saving to the user’s camera roll D.

NOTE UIImageWriteToSavedPhotosAlbum asks for user permission the first
time it’s called, much like camera authorization. The additional function
parameters let you specify a callback method to handle the user’s response. If
you were to make a real-life photo app, you’d also have to deal with the user
taking a picture but then denying access to the camera roll. 

2.2.9 Supporting rotation of device and UI

If you run the camera app at this point, you should be able to take pictures. The

default setting for iPhones is to support both landscape orientations and the one por-

trait orientation where the home button is at the bottom. But if you rotate to land-

scape, you’ll find that both the preview image as well as the photos taken aren’t

rotated with the interface orientation as you would expect. To fix this, you also need

to update the video connection orientation when the phone is rotated.

Camera sound

The still image capturing method also makes a camera-shutter sound. Apparently

there have been incidents of people sticking their camera apps where they don’t

belong, so some governments mandate that you shouldn’t be able to disable the

camera sound on mobile phones. If you can, you should abide by these rules, but if

you absolutely need to eliminate the sound, there’s a way to do that: you can employ

AVCaptureVideoDataOutput, which lets you grab individual video frame sample

buffers and then convert them to images.



40 CHAPTER 2 Media capture with AV Foundation

 In real life, you’ll probably want to keep the system default of

UIInterfaceOrientationMaskAllButUpsideDown for iPhone and iPod touch, and

UIInterfaceOrientationMaskAll for iPad. For demonstration purposes, let’s

override -supportedInterfaceOrientations to allow all orientations, even upside-

down portrait:

- (NSUInteger)supportedInterfaceOrientations {
    return UIInterfaceOrientationMaskAll;
}

AV capture connections allow you to specify a video orientation, and you’ll want to set

this in sync with the current view controller’s interface orientation. Because interface

orientation and video orientation are two different enums, you’ll need to implement

a function to convert between them. In the sample code, you’ll find this function in

DTAVFoundationFunctions.m:

AVCaptureVideoOrientation
DTAVCaptureVideoOrientationForUIInterfaceOrientation(

    UIInterfaceOrientation interfaceOrientation) {

switch (interfaceOrientation) {
    case UIInterfaceOrientationLandscapeLeft:

    return AVCaptureVideoOrientationLandscapeLeft;

    case UIInterfaceOrientationLandscapeRight:
    return AVCaptureVideoOrientationLandscapeRight;

    default:
    case UIInterfaceOrientationPortrait:

    return AVCaptureVideoOrientationPortrait;

    case UIInterfaceOrientationPortraitUpsideDown:
    return AVCaptureVideoOrientationPortraitUpsideDown;

}
}

The following method iterates through the video connections and updates the video-

Orientation where relevant, using the preceding helper function to determine the

correct video orientation for the given interface orientation parameter. Grouping

these updates together in a helper method allows you to call it where necessary, like

before a rotation and after switching cameras:

- (void)_updateConnectionsForInterfaceOrientation:
    (UIInterfaceOrientation)interfaceOrientation {
AVCaptureVideoOrientation captureOrientation =      

    DTAVCaptureVideoOrientationForUIInterfaceOrientation(
    interfaceOrientation);                            

for (AVCaptureConnection *connection in _imageOutput.connections) {
    if ([connection isVideoOrientationSupported]) {

    connection.videoOrientation = captureOrientation;
    }
}

Convert interface 
orientation into 
video orientation

Update orientation on 
all video connections



41Building a camera app

if ([_videoPreview.previewLayer.connection
    isVideoOrientationSupported]) {

    _videoPreview.previewLayer.connection.videoOrientation =
    captureOrientation;

}
}

The update method in the preceding code iterates over all capture connections of the

still image output object to update the video orientation where possible. The same is

done for the view preview layer’s capture connection. Note the repeated pattern of

inquiring -isVideoOrientationSupported and only making the change if the answer

is YES.

 Finally, you need to call the orientation update method right before a rotation ani-

mation occurs:

- (void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)
    toInterfaceOrientation

    duration:(NSTimeInterval)duration {
[super willRotateToInterfaceOrientation:toInterfaceOrientation

duration:duration];

[self _updateConnectionsForInterfaceOrientation:
    toInterfaceOrientation];

}

Now you can launch the app to see that the video orientation stays in sync with the

interface orientation.

2.2.10 Switching between camera devices

You’ll be hard pressed to find a current iOS device that has only a single camera. At the

time of writing, only the fifth-generation iPod Touch has a single FaceTime camera. All

other devices supported by iOS 6 and up—except for the Apple TV—have two cameras.

 The process for switching cameras is similar to the process for configuring devices.

You have to call -beginConfiguration up front and end the configuration activities

with -commitConfiguration.

Update 
orientation for 
video preview

Orientation and performance

Changing the video orientation of a capture connection has no impact on perfor-

mance. AV Foundation avoids rotating sample buffers and instead adds metadata to

the video streams indicating the video orientation. Apple says so in Q&A QA1744

(https://developer.apple.com/library/ios/qa/qa1744/).

The same is true for pictures saved to the camera roll and for images that users

upload to websites. The orientation information is stored in an EXIF header in the

image file. If you encounter user-uploaded images on the web that are awkwardly

rotated by 90 degrees, this is often because the website didn’t properly handle the

EXIF orientation value. 

www.allitebooks.com

https://developer.apple.com/library/ios/qa/qa1744/
http://www.allitebooks.org


42 CHAPTER 2 Media capture with AV Foundation

 Let’s implement a helper method to determine if there is indeed an alternative to

the current camera available:

- (AVCaptureDevice *)_alternativeCamToCurrent {
if (!_camera) {
    return nil;
}

    NSArray *allCams = [AVCaptureDevice
    devicesWithMediaType:AVMediaTypeVideo];

for (AVCaptureDevice *oneCam in allCams) {
    if (oneCam != _camera) {

    return oneCam;
    }
}

return nil;
}

To inform the user about which camera is currently selected, you can update the text

on the camera-switching button accordingly:

- (void)_setupCamSwitchButton {
AVCaptureDevice *alternativeCam = [self _alternativeCamToCurrent];

if (alternativeCam) {
    self.switchCamButton.hidden = NO;

    NSString *title;

    switch (alternativeCam.position) {
    case AVCaptureDevicePositionBack:
    title = @"Back";
    break;

    case AVCaptureDevicePositionFront:
    title = @"Front";
    break;
    case AVCaptureDevicePositionUnspecified:
    title = @"Other";
    break;

    }

    [self.switchCamButton setTitle:title
   forState:UIControlStateNormal];

    } else {
    self.switchCamButton.hidden = YES;
    }
}

The action method for switching cameras is called whenever the user taps on the

camera-switching button. This is the third and last of the action methods you need

to replace from section 2.2.2:

 

No current
camera

Return first 
camera different 
from current one

No alternative
cameras
present



43Building a camera app

 

 

- (IBAction)switchCam:(UIButton *)sender {
[_captureSession beginConfiguration];

_camera = [self _alternativeCamToCurrent];

// [self _configureCurrentCamera];

for (AVCaptureDeviceInput *input in _captureSession.inputs) {
    [_captureSession removeInput:input];

}

    _videoInput = [AVCaptureDeviceInput deviceInputWithDevice:_camera
error:nil];

    [_captureSession addInput:_videoInput];

    [self _updateConnectionsForInterfaceOrientation:
    self.interfaceOrientation];

    [_captureSession commitConfiguration];

[self _setupCamSwitchButton];
[self _setupTorchToggleButton];

}

Just like you had a method for showing the Torch button only when a torch was avail-

able, you also have such a method for the camera switch button, albeit one that’s

slightly more complex. The -position property of a camera lets you update the but-

ton title to read “Bottom” or “Front” to match the camera position. This is done in the

_setupCamSwitchButton helper method (see sample code).

 Switching the camera involves removing all previous -inputs from the capture ses-

sion, adding a new input for the alternative camera, and updating the resulting video

connections for the current interface orientation.

 Both the _setupCamSwitchButton and _setupTorchToggleButton methods for

updating the UI buttons need to be called in multiple places so that the UI always reflects

the capabilities of the current camera. The sample code (in DTCameraPreviewCon-

troller.m) calls these methods in -_setupCameraAfterCheckingAuthorization and

-viewWillAppear: in addition to the -switchCam: action. If you aren’t sure where to

add these, check the sample code.

NOTE If you turn on the torch on a back-facing camera and switch to a front-
facing camera, the torch is disabled automatically, because the video light
would be facing the wrong direction. There is no flash/torch for the front-
facing camera. 

Lock running session for 
making configuration changes

Method to configure 
current camera will 
be implemented later

Remove all 
old inputs

Commit changes to 
session configuration

Helper methods for updating 
buttons for capabilities of 
newly selected camera



44 CHAPTER 2 Media capture with AV Foundation

2.2.11 Implementing autofocus and tap-to-focus

The last feature of this chapter’s camera app to implement is tap-to-focus coupled

with automatically switching back to continuous autofocus if the subject area changes.

 The default capturing cameras on iOS devices—cameras pointing away from the

user—generally support autofocus. The FaceTime camera—the camera pointing

toward the user—doesn’t. There are three autofocus modes:

■ AVCaptureFocusModeContinuousAutoFocus

■ AVCaptureFocusModeAutoFocus

■ AVCaptureFocusModeLocked

The continuous autofocus mode is the default; in this case the camera focuses auto-

matically when needed. The noncontinuous option will focus on the current focus

point; once focus has been found, it changes to the locked mode.

 To enable subject-area change monitoring, there’s a new method (shown in the

following code snippet) to configure the current camera. This method is called from

_setupCamera and _switchCam:, and it enables this feature if it’s supported. Enabling

subject-area change monitoring is a rare exception to the rule of having to inquire

about an ability before using it—in this case, there’s no method available to do that.

Monitoring the video stream for significant changes is not a function performed by

the video capture hardware but rather is done by the OS itself:

- (void)_configureCurrentCamera {
if ([_camera isFocusModeSupported:AVCaptureFocusModeLocked]) {

    if ([_camera lockForConfiguration:nil]) {
    _camera.subjectAreaChangeMonitoringEnabled = YES;

    [_camera unlockForConfiguration];
    }

}
}

Once subject-area change monitoring is enabled, iOS sends an AVCaptureDevice-

SubjectAreaDidChangeNotification whenever there’s a substantial change of what’s

visible to the camera. You can subscribe to this notification in -viewDidLoad, as this is

where you already put some setup code previously. At the same time, you can install a

tap-gesture recognizer for detecting a tap-to-focus gesture:

- (void)viewDidLoad
{

[super viewDidLoad];

NSAssert([self.view isKindOfClass:[DTVideoPreviewView class]],
 @"Wrong root view class %@ in %@",
 NSStringFromClass([self.view class]),
 NSStringFromClass([self class]));

Helper
method to
configure

current
camera

Subject-area change
monitoring makes sense
only if autofocus lock is

supported by camera

Enable subject-area
change monitoring on
current camera device



45Building a camera app

_videoPreview = (DTVideoPreviewView *)self.view;

[self _setupCameraAfterCheckingAuthorization];

UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]
    initWithTarget:self           
    action:@selector(handleTap:)];

[self.view addGestureRecognizer:tap];                     

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
[center addObserver:self                                       

 selector:@selector(subjectChanged:)                    
 name:AVCaptureDeviceSubjectAreaDidChangeNotification

 object:nil];                                          
}

The code to unsubscribe from the subject-area change notifications goes into the class

dealloc method:

- (void)dealloc {
[[NSNotificationCenter defaultCenter] removeObserver:self];

}

The method that’s called on the notification sets the autofocus mode back to continu-

ous, if supported:

- (void)subjectChanged:(NSNotification *)notification {
if (_camera.focusMode == AVCaptureFocusModeLocked) {

    if ([_camera lockForConfiguration:nil]) {
    if ([_camera isFocusPointOfInterestSupported]) {
    _camera.focusPointOfInterest = CGPointMake(0.5, 0.5);
    }

    if ([_camera isFocusModeSupported:
    AVCaptureFocusModeContinuousAutoFocus]) {

    [_camera setFocusMode:
    AVCaptureFocusModeContinuousAutoFocus];

    }

    NSLog(@"Focus Mode: Continuous");
    }

}
}

Note the focusPointOfInterest property on the camera device, which gets set to a

point (0.5, 0.5) B. The reason for this is that the focus point needs to be specified as

a percentage rather than in points. The default setting is the center of the video image:

50% of the width and 50% of the height.

Install 
tap-to-focus 
gesture

Subscribe to subject-
area change notification

Only switch back to 
continuous mode if 
AF is currently locked

Restore 
focus 
point of 
interest 
to centerB

Switch back to 
continuous AF



46 CHAPTER 2 Media capture with AV Foundation

 You can use the preview layer’s -captureDevicePointOfInterestForPoint:

method to convert the tap coordinates from the preview layer’s coordinate system to

the capture device’s point of interest:

- (void)handleTap:(UITapGestureRecognizer *)gesture {
if (gesture.state == UIGestureRecognizerStateRecognized) {

    if (![_camera isFocusPointOfInterestSupported] ||
    ![_camera isFocusModeSupported:                           

    AVCaptureFocusModeAutoFocus]) {              
    NSLog(@"Focus Point Not Supported by current camera");

    return;
    }

    CGPoint locationInPreview =                                    
    [gesture locationInView:_videoPreview];                     
    CGPoint locationInCapture =                                     
    [_videoPreview.previewLayer                                 
    captureDevicePointOfInterestForPoint:locationInPreview];

    if ([_camera lockForConfiguration:nil]) {
    [_camera setFocusPointOfInterest:locationInCapture];
    [_camera setFocusMode:AVCaptureFocusModeAutoFocus];

    NSLog(@"Focus Mode: Locked to Focus Point");

    [_camera unlockForConfiguration];
    }

}
}

You don’t need to remove the tap gesture recognizer when switching the current cam-

era. Instead, the tap-handler method checks whether tap-to-focus is possible by look-

ing for the availability of both the focus point and the focus-once-then-lock mode

AVCaptureFocusModeAutoFocus. 

 With this code in place, the camera app launches in continuous autofocus mode. If

the user taps on the screen, the default focus point in the center of the screen is

moved to the tap location. The device will focus on this point and then lock focus. If

the subject area changes—causing the subject-area change notification to be sent—

then autofocus is switched back to continuous mode.

NOTE The built-in iOS camera app makes a distinction between a normal tap
and a long press. Try to emulate this behavior as an advanced exercise. 

2.3 Summary

Your camera app now has all the features promised at the start of this chapter. There

are many more configuration properties available on AVCaptureDevice that you could

use to further enhance your photo app. You could try adding support for the available

flash modes, depending on which ones the current camera supports. An advanced

exercise would be to capture video instead of still images. For this you’d need to use

Require both 
focus point and 
autofocus.

Convert tap location from layer coordinates
to capture device coordinates.

Sets new focus 
point. This 
change doesn’t 
yet trigger 
focusing.This focuses once

and then changes
to locked mode.



47Summary

AVCaptureMovieFileOutput to send video output to a file, and you’d need to add an

audio input so that your videos have sound as well.

 There are several key takeaways for this chapter:

■ Start a capture session with -startRunning. A corresponding -stopRunning

doesn’t hurt if the view controller goes away.

■ Enclose configuration changes for a running capture session between -begin-

Configuration and -commitConfiguration.

■ Enclose setting changes for capture devices in -lockForConfiguration: and

-unlockForConfiguration.

■ Always inquire from the device whether a setting is supported before setting it.

■ Camera focus points are specified as percentages and they relate to the

capture device’s coordinate system. Use the provided methods (such as

-captureDevicePointOfInterestForPoint:) to convert from view coordi-

nates to device coordinates.

You’ve now learned how to fit together the pieces of AV Foundation necessary for cap-

turing media. This gives you a solid basis for adding barcode recognition in chapter 3.



48

Scanning barcodes

The previous chapter introduced you to capturing media with AV Foundation. You

learned about the components of AV Foundation that allow you to take a video stream

from the device’s cameras and display it in a preview layer and capture media to files.

 In this chapter you’ll learn how to add the AV Foundation metadata detector to

this video stream, and have it report back about barcodes it has detected.

 

 

 

This chapter covers

■ How to scan barcodes with AV Foundation’s 

metadata detector

■ Optimizing scanning performance and user 

experience

■ UI considerations for different kinds of barcode-

scanning scenarios

■ Navigating around common barcode-scanning 

pitfalls



49Building a QR Code scanner

3.1 Metadata detection in AV Foundation

In chapter 2 you built a camera app and encountered one kind of AV capture output,

AVCaptureStillImageOutput. Other outputs allow you to write to audio or video files,

and they’re set up the same way as the still image output.

 For scanning barcodes, you’ll use the AVCaptureMetadataOutput component. As

you can infer from the name, this is also part of AV media capture, it’s an output, and

it has something to do with metadata. This isn’t data that describes actual pixels or

audio samples. Rather it’s metadata about the picture, describing things that you can

see in the video image.

 iOS 6 was the first iOS version supporting such metadata, and the first kind of meta-

data to be delivered by AV Foundation was information about human faces found on

video frames. iOS 7 added the ability to read barcodes via the same mechanism. You

can configure one metadata output to simultaneously detect barcodes and faces,

although I have yet to see a sensible use case for that, apart from producing illustra-

tions for this book (see figure 3.1).

 Next you’ll add a barcode detector to the camera app from the previous chapter. 

3.2 Building a QR Code scanner

Your project for this chapter is to build a scanner app for deciphering 2D barcodes. If

the decoded code contains a web address, the app will switch to Mobile Safari to show

Figure 3.1 One face and two barcodes (2D on left and 1D on right) detected and marked



50 CHAPTER 3 Scanning barcodes

the web page. This will teach you how to set up and configure a metadata output to

plug into the media capture stack from the previous chapter.

 Your QR Scanner app (see figure 3.2) will have the following features:

■ Functions from the camera app: switch cameras, toggle the torch, live preview,

tap-to-focus

■ Detect and decode PDF417, Aztec, and QR Codes

■ Visually mark boundaries of detected codes

■ Limit the active scanning area with a viewfinder

■ Find URLs in the decoded barcode data and open them with Mobile Safari

■ Optimize the video stream for better detection performance

Figure 3.3 should remind you of figure 2.3, with a couple of differences: In the lower-

left corner of this figure, AVCaptureStillImageOutput has been replaced with

AVCaptureMetadataOutput. Additionally, you specify a metadataObjectsDelegate to

receive callbacks whenever metadata objects (such as barcodes) are detected.

Figure 3.2 The finished QR Scanner app



51Building a QR Code scanner

3.2.1 Reusing camera code

Almost all the code you wrote in chapter 2 for the camera app can be reused as a start-

ing point for this project. Start a new project—again a single-view application—and

copy the following files to it:

■ DTAVFoundationFunctions.h and .m

■ DTCameraPreviewController.h and .m

■ DTVideoPreviewView.h and .m

AVCaptureDevice

AVCaptureDeviceInput ports AVCaptureInputPort

Video

AVCaptureInputPort

Meta

AVCaptureSession

inputs

outputs

AVCaptureStillImageOutput

Your delegate

connectionsmetadataObjects
Delegate

AVCaptureConnection

inputPorts

output

AVCaptureConnection

inputPorts

initWithDevice:

startRunning:

stopRunning:

AVCaptureVideoPreviewLayer

session connection

Preview

Camera!

I’m the manager!

Gets informed about all
detected metadata objects 

addInput:

addOutput:

Figure 3.3 AV Foundation components involved in barcode scanning

www.allitebooks.com

http://www.allitebooks.org


52 CHAPTER 3 Scanning barcodes

You’ll use DTCameraPreviewController as the root view controller of your app. You can

delete the ViewController generated by the template because you won’t be using it.

To set up AV Foundation, add the AVFoundation.h import to the PCH file, and add

AVFoundation.framework to the Link Binary with Libraries build phase.

 In the storyboard, change the root view controller’s class name to DTCamera-

PreviewController and the root view’s class name to DTVideoPreviewView. The app

will be a full-screen video preview. Add buttons for toggling the torch and switching

the camera, as in the previous chapter, and make the appropriate connections to the

view controller header’s outlets and actions (see figure 3.4). A couple of constraints

will keep the buttons in place if the device is rotated.

 After these setup steps, the app should build and run showing a full-screen preview

of the camera video. You should be able to switch cameras and toggle the torch if you

hooked up the buttons correctly. Tap-to-focus should work as before: tap to focus on a

point on the preview, and move the device to unlock the focus and switch back to con-

tinuous autofocus. 

Figure 3.4 QR Scanner storyboard setup



53Building a QR Code scanner

3.2.2 Creating and configuring the metadata output

The next thing you need to do is add a setup method for the metadata output to

DTCameraPreviewController.m. This setup method will create a barcode scanner and

configure it to look for specific types of barcodes. This method will ensure that all the

barcode types you’re looking for are also reported by availableMetadataObject-

Types as being supported:

- (void)_setupMetadataOutput {
_metaDataOutput = [[AVCaptureMetadataOutput alloc] init];
_metaDataQueue = dispatch_get_main_queue();
[_metaDataOutput setMetadataObjectsDelegate:self

    queue:_metaDataQueue];

if (![_captureSession canAddOutput:_metaDataOutput]) {
    NSLog(@"Unable to add metadata output to capture session");
    return;
}

[_captureSession addOutput:_metaDataOutput];

NSArray *barcodes2D = @[AVMetadataObjectTypePDF417Code,
    AVMetadataObjectTypeQRCode,

    AVMetadataObjectTypeAztecCode];
NSArray *availableTypes = [_metaDataOutput

    availableMetadataObjectTypes];

if (![availableTypes count]) {
    NSLog(@"Unable to get any available metadata types, "\

    @"did you forget the addOutput: on the capture session?");
    return;
}

NSMutableArray *tmpArray = [NSMutableArray array];

for (NSString *oneCodeType in barcodes2D) {
    if ([availableTypes containsObject:oneCodeType]) {

    [tmpArray addObject:oneCodeType];
    } else {
    NSLog(@"Weird: Code type '%@' is not reported as supported "\

    @"on this device", oneCodeType);
    }

}

 if ([tmpArray count]) {                       
    _metaDataOutput.metadataObjectTypes = tmpArray;

}                                            

_metaDataOutput.rectOfInterest = CGRectMake(0, 0, 1, 1);
}

Create a
new

metadata
output

GCD queue on which
delegate method is called

Set self as delegate, using the
specified GCD queue. The main

queue is used for simplicity.

Connect
metadata
output if
possible

Connect metadata 
output to capture 
session

B

The 2D
barcode
types to

detect

Extra sanity
check; there

should be
metadata

types
available Extra defensive 

coding; only 
adds supported 
types, logs 
unsupported

Only types reported 
as available are 
scanned for

Default
rect of

interest is
entire
video

(you’ll
reduce

this later)



54 CHAPTER 3 Scanning barcodes

You can call this _setupMetadataOutput method as the last statement in your

_setupCamera method, which you’ve copied as part of DTCameraPreviewController.m

from the camera project. This ensures that the entire AV Foundation media capture

stack is set up before you add the metadata output to it. You don’t need to do anything

about the AVCaptureStillImageOutput that’s also set up there; it doesn’t hurt to have

both outputs active.

NOTE While I was writing this book, I forgot to call -addOutput: on the newly
created metadata output B, so -availableTypes was nil. The available types
depend on what kind of content is available on the capture device’s input ports.
It’s better to have too much sanity-checking code in your apps than too little. 

3.2.3 Wiring up the metadata objects’ delegate

You already specified that self should be acting as the metadata objects’ delegate and

also set the GCD queue on which the delegate method will be executed on. The dele-

gate method will be called multiple times per second to deliver recognized metadata

objects. To simplify this example, the GCD queue is set to be the main queue. 

PRO TIP If you plan to do more extensive work inside the delegate method,
you should create and use a private background queue for delegate messages
to be delivered on. Don’t forget to dispatch_async back to the main queue
for all interactions with UIKit and code that’s synced via the main thread.
Proper thread behavior is critical for a well-behaved app.

The AVCaptureMetadataOutputObjectsDelegate protocol contains only a single

method. As of iOS 7, two kinds of metadata object classes are supported, both sub-

classes of AVMetadataObject:

■ AVMetadataFaceObject represents a human face.

■ AVMetadataMachineReadableCodeObject represents a “machine-readable code”:

a barcode.

For scanning barcodes, you’ll deal with only the latter subclass. 

 Both subclasses derive common properties from AVMetadataObject, such as

bounds, which describes a perpendicular box around the metadata object. For the most

part, you’ll want to get at the properties that are added in the AVMetadataMachine-

ReadableCodeObject implementation, which necessitates a typecast. 

 The following snippet demonstrates iterating over the metadata objects and

logging-encountered barcode objects. Here you can see object polymorphism in

action—all metadata objects derive from AVMetadataObject, but individual instances

can be either of the concrete subclasses of that:

- (void)captureOutput:(AVCaptureOutput *)captureOutput
didOutputMetadataObjects:(NSArray *)metadataObjects
    fromConnection:(AVCaptureConnection *)connection {
for (AVMetadataObject *obj in metadataObjects) {

Iterate over 
all detected 
metadata objects



55Building a QR Code scanner

    if ([obj isKindOfClass:
    [AVMetadataMachineReadableCodeObject class]]) {

    AVMetadataMachineReadableCodeObject *barcode =    
    (AVMetadataMachineReadableCodeObject *)obj;

    NSLog(@"Seeing type '%@' with contents '%@'",
    barcode.type,
    barcode.stringValue);

    } else if ([obj isKindOfClass:                       
    [AVMetadataFaceObject class]]) {         

    NSLog(@"Face detection marking not implemented");
    }
}

}

iOS is able to detect up to four QR or Aztec codes in parallel. PDF417 is considered to

be a stacked linear code and is grouped with the other 1D codes in the detection

engine. Even if there are multiple 1D barcodes visible to the scanner, you only get one

delivered to the delegate method. 

 You can configure the metadata output to detect 1D and 2D barcodes at the same

time, but the preceding limits are unaffected by this. In this case, you get 0 or 1 1D

barcodes, plus 0–4 2D barcodes in the passed array.

 In practical use, you won’t be interested in getting the entire list of all detected

barcodes multiple times per second. Rather, you’ll want to be able to set a scan dele-

gate and have this be notified when a new barcode appears in view for the first time. 

3.2.4 Creating a barcode scan delegate

To ensure that the scanner view controller is reusable in subsequent chapters, as well

as in your own apps, you need to avoid putting any app-specific logic into it. Rather,

you want to create a delegate protocol that defines the methods that will notify the

object you designate as the delegate. This protocol definition goes above the @imple-

mentation in DTCameraPreviewController.h:

Check if it’s
a barcode

object
Typecast to gain 
access to specialized 
properties of 
barcode objects

The type string
of the barcode,

such as
org.iso.QRCode

The string value of the
 barcode, such as http://www.cocoanetics.com

Ignore face 
metadata objects

Detecting faces and barcodes simultaneously

To detect faces and barcodes simultaneously, you add AVMetadataObjectTypeFace
to the metadataObjectTypes array. 

iOS delivers both kinds of metadata objects on separate calls to the delegate method.

This means the calling class has to determine which of these calls it’s dealing with

each time: faces or barcodes. Otherwise it would wrongfully assume that no longer

having a face object in the passed array meant that the face had disappeared. If you

were marking the metadata objects on screen, you’d see those shapes flicker as the

markings switched repeatedly between faces and barcodes.

http://www.cocoanetics.com


56 CHAPTER 3 Scanning barcodes

@class DTCameraPreviewController;

@protocol DTCameraPreviewControllerDelegate <NSObject>
@optional
- (void)previewController:(DTCameraPreviewController *)

    previewController
    didScanCode:(NSString *)code

    ofType:(NSString *)type;
@end

A delegate property goes with the protocol definition; it can be any NSObject as long

as it’s tagged as implementing the protocol mentioned in the angle brackets:

@property (nonatomic, weak) IBOutlet
    id <DTCameraPreviewControllerDelegate> delegate;

iOS doesn’t keep track of individual barcodes, like it does for faces. Instead, each time

the metadata objects’ delegate method is called, each visible barcode is represented

by a new instance of AVMetadataMachineReadableCodeObject. To keep track of indi-

vidual barcodes, you’ll have to create identifiers for them. Otherwise, you might end

up calling your delegate every time a particular barcode is encountered, whereas you

really only want to know about the very first time (see figure 3.5). 

You can use the following items to create an identifier:

■ The type property—The type string of the barcode

■ The stringValue property—The decoded contents of the barcode in string form

■ A sequential number—To keep track of multiple barcodes with the same type and

contents

The following snippet shows a variant of the metadata objects’ delegate method that’s

able to keep track of multiple barcodes and report when they appear and disappear.

_visibleCodes is a new private instance variable that preserves the reported barcodes

from one call of the delegate method to the next:

Define class 
name so it 
can be used in 
the protocol

Specify method
as optional;

check at runtime
if delegate

implements it

View controller
passes itself as

reference

Contents of the 
scanned barcode

The type string of the scanned barcode

I see it!

Metadata

objects'

delegate

Scan

delegate

method

I see it!

Metadata

objects'

delegate

I see it!

Metadata

objects'

delegate

Barcode

becomes

visible 

Barcode

no longer

visible 

Only on first

appearance

Figure 3.5 The scan delegate should be called only once.



57Building a QR Code scanner

- (void)captureOutput:(AVCaptureOutput *)captureOutput
didOutputMetadataObjects:(NSArray *)metadataObjects
    fromConnection:(AVCaptureConnection *)connection {
NSMutableSet *reportedCodes = [NSMutableSet set];
NSMutableDictionary *repCount = [NSMutableDictionary dictionary];

for (AVMetadataMachineReadableCodeObject *obj in metadataObjects) {
    if ([obj isKindOfClass:

    [AVMetadataMachineReadableCodeObject class]]) {
    NSString *code = [NSString stringWithFormat:@"%@:%@",

    obj.type, obj.stringValue];

    NSUInteger occurencesOfCode = [repCount[code]
    unsignedIntegerValue] + 1;

    repCount[code] = @(occurencesOfCode);
    NSString *numberedCode = [code stringByAppendingFormat:@"-%lu",

    (unsigned long)occurencesOfCode];

    if (![_visibleCodes containsObject:numberedCode]) {
    NSLog(@"code appeared: %@", numberedCode);

    if ([_delegate respondsToSelector:
    @selector(previewController:didScanCode:ofType:)]) {

    [_delegate previewController:self           
    didScanCode:obj.stringValue

    ofType:obj.type];      
    }

    }

    [reportedCodes addObject:numberedCode];
    }
}

for (NSString *oneCode in _visibleCodes) {   
    if (![reportedCodes containsObject:oneCode]) {  

    NSLog(@"code disappeared: %@", oneCode);    
    }                                              
}                                            

_visibleCodes = reportedCodes;
}

Creates a
mutable set

to take on
codes that

this pass of
the method
is reporting

Dictionary to count
occurrences of a

type + stringValue

Get the number of
times this code was
reported before in

this loop

If it wasn’t 
previously visible, 
has now appeared

Inform scan delegate
about appearance of

this code

Check which previously 
seen barcodes have 
disappeared

Barcode identifier overkill?

Assigning identities for all barcodes—even if you only ever plan to support scanning

1D barcodes—might feel like overkill. But Apple has been known to enhance existing

APIs, and you shouldn’t assume current limits to be set in stone. 

In the future, Apple might enhance its barcode detector to scan multiple 1D barcodes,

or new barcode types might be printed next to GTINs (such as EAN-2 or EAN-5). Then

you’ll be glad that your code is smart enough to deal with multiple 1D barcodes being

reported to you. 



58 CHAPTER 3 Scanning barcodes

3.2.5 Marking detected barcodes on preview

Enabling your scanner to detect and mark multiple barcodes on the video preview is a

nice trick. As you tilt the device and the preview video changes, the detected barcodes

should be marked with a shape that hugs the barcode outline.

 All metadata objects report a bounds rectangle, which is perpendicular and has

edges parallel to the preview view. Metadata objects for 2D barcodes also report the

detected corners of the barcode (see figure 3.6). The detector for 1D barcodes works

with multiple scan lines and is therefore only able to report the corners of the success-

ful scan line.

 It would have been nice if Apple provided the corners for 1D barcodes as well as

for 2D barcodes. But since they don’t, you can only show off the marker tracking with

the currently supported 2D barcode types: PDF417, QR, Data Matrix, and Aztec.

 Coordinates in metadata objects always use the video coordinate system, which has

values between 0 and 1 (a percent value). Also, depending on the device, the origin

might differ. To convert from video to view coordinates, you can employ the rect-

ForMetadataOutputRectOfInterest: method found on the preview layer. This cre-

ates a copy of the barcode metadata object, but with bounds and corners in the

coordinate system of the preview layer, which is ideally suited for creating shapes to

display on top of the preview.

 The following helper function gives you a Quartz CGPath that hugs the corners of

the barcode. Put this into DTAVFoundationFunctions.m. Note that because CGPath is a

Core Foundation object, this method will return a +1 reference that you’ll have to

release after use:

Bounds

CornersCorners

Bounds

Figure 3.6 Bounds versus corners



59Building a QR Code scanner

CGPathRef DTAVMetadataMachineReadableCodeObjectCreatePathForCorners(
AVCaptureVideoPreviewLayer *previewLayer,

AVMetadataMachineReadableCodeObject *barcodeObject) {
AVMetadataMachineReadableCodeObject *transformedObject =
(AVMetadataMachineReadableCodeObject *)
[previewLayer transformedMetadataObjectForMetadataObject:

    barcodeObject];

CGMutablePathRef path = CGPathCreateMutable();

CGPoint point;
CGPointMakeWithDictionaryRepresentation((__bridge CFDictionaryRef)

transformedObject.corners[0],
&point);

CGPathMoveToPoint(path, NULL, point.x, point.y);

CGPointMakeWithDictionaryRepresentation((__bridge CFDictionaryRef)
transformedObject.corners[1],
&point);

CGPathAddLineToPoint(path, NULL, point.x, point.y);

CGPointMakeWithDictionaryRepresentation((__bridge CFDictionaryRef)
transformedObject.corners[2],
&point);

CGPathAddLineToPoint(path, NULL, point.x, point.y);

CGPointMakeWithDictionaryRepresentation((__bridge CFDictionaryRef)
transformedObject.corners[3],
&point);

CGPathAddLineToPoint(path, NULL, point.x, point.y);

CGPathCloseSubpath(path);

return path;
}

To show these paths, you’ll use one CAShapeLayer per barcode. To keep track of these

shapes, you can add a mutable dictionary instance variable, _visibleShapes, to the

list of private instance variables.

 When a new barcode appears, you check this visible shapes lookup dictionary to

see if you already have a shape layer for it. If you do, you just update the path shown

by this layer. If not, you’ll have to create one and configure the drawing parameters.

When a barcode is no longer visible, you’ll also need to remove the appropriate mark-

ing shape:

- (void)captureOutput:(AVCaptureOutput *)captureOutput
   didOutputMetadataObjects:(NSArray *)metadataObjects

    fromConnection:(AVCaptureConnection *)connection {
NSMutableSet *reportedCodes = [NSMutableSet set];
NSMutableDictionary *repCount = [NSMutableDictionary dictionary];

Create copy of metadata 
object with preview 
layer coordinates

Mutable CGPath to 
add corner points to

Property contains dictionary 
representation of point

Add
first

point

Add second point

Add third point

Add fourth point

Close path

Returns a +1 reference



60 CHAPTER 3 Scanning barcodes

for (AVMetadataMachineReadableCodeObject *obj in metadataObjects) {
    if ([obj isKindOfClass:

    [AVMetadataMachineReadableCodeObject class]]
    && obj.stringValue) {

    NSString *code = [NSString stringWithFormat:@"%@:%@",
    obj.type, obj.stringValue];

    NSUInteger occurencesOfCode = [repCount[code]
    unsignedIntegerValue] + 1;

    repCount[code] = @(occurencesOfCode);
    NSString *numberedCode = [code stringByAppendingFormat:@"-%lu",

   (unsigned long)occurencesOfCode];

    if (![_visibleCodes containsObject:numberedCode]) {
    NSLog(@"code appeared: %@", numberedCode);

    if ([_delegate respondsToSelector:
    @selector(previewController:didScanCode:ofType:)]) {

    [_delegate previewController:self
    didScanCode:obj.stringValue

    ofType:obj.type];
    }

    }

    [reportedCodes addObject:numberedCode];

    CGPathRef path = 2((ch02_26b1))
    DTAVMetadataMachineReadableCodeObjectCreatePathForCorners(

    _videoPreview.previewLayer, obj);

    CAShapeLayer *shapeLayer = _visibleShapes[numberedCode];

    if (!shapeLayer) {
    shapeLayer = [CAShapeLayer layer];
    shapeLayer.strokeColor = [UIColor greenColor].CGColor;
    shapeLayer.fillColor = [UIColor colorWithRed:0

    green:1
    blue:0

    alpha:0.25].CGColor;
    shapeLayer.lineWidth = 2;

    [_videoPreview.layer addSublayer:shapeLayer];
    _visibleShapes[numberedCode] = shapeLayer;

    }

    shapeLayer.frame = _videoPreview.bounds;
    shapeLayer.path = path;

    CGPathRelease(path);
    } else if ([obj isKindOfClass:

    [AVMetadataFaceObject class]]) {

Barcode might contain 
empty stringValue

Get corner CGPath
from helper function

Get previous
shape layer

for this code

If no shapes
are found,
this is new

shape

Create new shape layer and 
configure drawing parameters

Add shape layer
as sublayer of
video preview Add shape layer to 

lookup dictionary

Update frame to match 
video preview bounds

Set barcode
corner shape on
the shape layer

Release +1 
reference to CGPath



61Building a QR Code scanner

    NSLog(@"Face detection marking not implemented");
    }
}

for (NSString *oneCode in _visibleCodes) {
    if (![reportedCodes containsObject:oneCode]) {

    NSLog(@"code disappeared: %@", oneCode);

    CAShapeLayer *shape = _visibleShapes[oneCode];  
    [shape removeFromSuperlayer];                   
    [_visibleShapes removeObjectForKey:oneCode];    

    }
}

_visibleCodes = reportedCodes;
}

This completes your code for the metadata object delegate.

 Apple exposes the decoded barcode data as a stringValue; there’s no access to

the raw decoded data. So it might happen that you get a detected barcode, but the

string value is nil. This might occur if somebody encoded arbitrary bytes into a QR

Code, and on decoding it, iOS is unable to convert it into an NSString. Such metadata

objects are quite useless as there’s no way to retrieve the original data. You can safely

ignore these as you loop through the detected barcodes. 

3.2.6 Building an optimal scanning UI

At this point in the creation of your QR Scanner app, you have the scanning basics

working. Now it’s time to optimize the user interface. You should ask yourself four

questions:

■ Which types of barcodes do I want to detect?

■ What situations will my users be in when they scan a barcode?

■ Will there be many barcodes next to each other?

■ What cues will inform the user that they should scan a barcode?

Asking these questions is necessary, because different answers will result in different

optimal user interfaces for scanning. 

 QR Codes are most often encountered on large posters. Standard QR Codes are so

ugly (in the eyes of creatives) that you’ll rarely find more than one on an advertise-

ment. A typical scanning situation would be a user scanning a code from across the

subway tracks while waiting for a train.

 In contrast, users will typically scan 1D barcodes off a product that’s right in front

of them. There might be multiple 1D codes in close proximity, like a GTIN, a product

model code, and a serial number if it’s a box for a consumer electronics device.

 Your users should be getting UI cues to inform them that they’re expected to point

the active camera at a code for scanning. 

Remove shape layer 
for disappeared 
barcodes



62 CHAPTER 3 Scanning barcodes

 For scenarios involving many codes next to

each other, you’ll want to reduce the active scan-

ning area and show a box to inform the user that

only inside this box will a code be recognized.

There are also some capture device settings that

are beneficial only for particular scenarios. We’ll

cover these in the next section.

 Let’s assume that your QR Scanner app is

meant for scanning codes close by, like from the

pages of this book, and you expect multiple codes

in close proximity. This means that you don’t

want the entire preview to be active for scanning,

but rather a much smaller part of it so that you

can precisely target one code among several. 

 The UI in figure 3.7 consists of a custom UIView

that draws four corners, and a UILabel that you

place on top of the overlay and anchor in place

with autolayout constraints.

 To build this UI, create a new UIView subclass to

represent the interest box—the marked area where

barcodes will be scanned in. Name it DTVideo-

PreviewInterestBox. This code overwrites the

-drawRect: method to draw the four corner marks:

#define EDGE_LENGTH 10.0

@implementation DTVideoPreviewInterestBox

- (void)drawRect:(CGRect)rect {
CGContextRef ctx = UIGraphicsGetCurrentContext();

[[UIColor redColor] setStroke];

CGFloat lineWidth=3;
CGRect box = CGRectInset(self.bounds, lineWidth/2.0, lineWidth/2.0);

CGContextSetLineWidth(ctx, lineWidth);

CGFloat minX = CGRectGetMinX(box);
CGFloat minY = CGRectGetMinY(box);

CGFloat maxX = CGRectGetMaxX(box);
CGFloat maxY = CGRectGetMaxY(box);

CGContextMoveToPoint(ctx, minX, minY + EDGE_LENGTH);  
CGContextAddLineToPoint(ctx, minX, minY);              
CGContextAddLineToPoint(ctx, minX + EDGE_LENGTH, minY);  

Length of lines 
in corners

Drawing method for 
contents of view 
draws four marks for 
corners of the view

Bottom-left 
corner

Figure 3.7 Reduced scan area for bet-

ter targeting



63Building a QR Code scanner

CGContextMoveToPoint(ctx, minX, maxY - EDGE_LENGTH);  
CGContextAddLineToPoint(ctx, minX, maxY);             
CGContextAddLineToPoint(ctx, minX + EDGE_LENGTH, maxY);

CGContextMoveToPoint(ctx, maxX - EDGE_LENGTH, minY);   
CGContextAddLineToPoint(ctx, maxX, minY);              
CGContextAddLineToPoint(ctx, maxX, minY + EDGE_LENGTH); 

CGContextMoveToPoint(ctx, maxX - EDGE_LENGTH, maxY);    
CGContextAddLineToPoint(ctx, maxX, maxY);               
CGContextAddLineToPoint(ctx, maxX, maxY - EDGE_LENGTH);

CGContextStrokePath(ctx);
}

@end

In Interface Builder, you add a new view of this class on top of your preview view,

as shown in figure 3.8. Add a label on top of that, and anchor everything in place

with autolayout constraints so that when the device is rotated, all views are still cen-

tered. Limit the width and height of the interest box to 200 points. (You’ll get the

current size and location of this view in the next code snippet to configure the active

scan area.) 

 The ideal place to retrieve the interest box view’s coordinates in DTCameraPreview-

Controller is in the viewDidLayoutSubviews method, which is called whenever the

view hierarchy has been laid out: after the initial display and after each rotation. A helper

method retrieves the current view coordinates of the interest box in relation to the

Top-left 
corner

Bottom-right 
corner

Top-right 
corner

Figure 3.8 Adding a scan finder



64 CHAPTER 3 Scanning barcodes

preview, converts them to video coordinates, and sets these coordinates as the new

rectOfInterest on the metadata output:

- (void)_updateMetadataRectOfInterest {
if (!_captureSession.isRunning) {

    NSLog(@"Capture Session is not running yet, "\
    @"so we wouldn't get a useful rect of interest");

    return;
}

CGRect rectOfInterest = [_videoPreview.previewLayer
    metadataOutputRectOfInterestForRect:
    _iBox.frame];

_metaDataOutput.rectOfInterest = rectOfInterest;
}

- (void)viewDidLayoutSubviews
{

[super viewDidLayoutSubviews];

[self _updateMetadataRectOfInterest];
}  

Capture session 
must be running

Get frame from 
interest box and 
convert to video 
coordinates

Set as new rectangle 
of interest for 
metadata output

Scanning 1D barcodes

For detecting 1D barcodes, iOS employs scan lines. If one such scan line intersects

with all the bars of a barcode, then it detects the code.

Depending on your device, there will be at least two scan lines in the horizontal and

vertical centers of the rectangle of interest. Depending on the CPU power of the de-

vice your app is running on, there may be additional scan lines. On the iPhone 4—

the oldest iPhone supported by iOS 7—only the center scan lines are used.

Apple’s Technical Note TN2325 (https://developer.apple.com/library/ios/tech-

notes/tn2325/) mentions that the additional scanning lines are also disabled if you

enable 2D barcode scanning together with 1D barcodes. This is another reason why

it might be better to optimize the UI for scanning either 1D or 2D barcodes.

If you don’t reduce the rectangle of interest for detection, the user might be confused

if a barcode isn’t detected near the edges of the preview window. This could occur if

a barcode is fully visible in the preview but is too far to the side to be crossed by one

of the scan lines. On consumer electronics labels, you’ll often find multiple 1D bar-

codes in close proximity to each other. If this is your usage scenario, you might want

to adjust the shape of the rectangle of interest for scanning 1D barcodes to be as

wide as the preview but not very tall, and then display a red line along the horizontal

center. This informs the user that 1D barcodes are scanned with this “laser,” and

they’re able to precisely target individual barcodes.

In any case, you should test the scanning user experience with an iPhone 4 (if you

support iOS 7), because it’s generally lacking the additional scan lines. 

https://developer.apple.com/library/ios/technotes/tn2325/
https://developer.apple.com/library/ios/technotes/tn2325/


65Building a QR Code scanner

3.2.7 Tweaking capture device settings

There are several configuration options on iOS device cameras that help with barcode

scanning performance and user experience. These are the most useful:

■ Capture session preset—Determines the video quality and format delivered to the

session by the capture device

■ Active video format—Impacts the number of pixels in each video frame that the

system has to work with

■ Video zoom factor—Sends extra pixels to the detector that the CCD picks up but

that are “zoomed out” by default

■ Smooth autofocus—Prevents the nervous bobbing of the autofocus; focus is

smoothly adjusted as you’d want it for recording video

■ Autofocus range restriction—Restricts the range over which AF is adjusted, for

scanning close up

Let’s look at some of these in more detail.

 The capture session preset determines the active video format flowing from the

capture device, via the input, through the session’s connection to the metadata out-

put. The higher the quality preset, the more pixels are available for the barcode detec-

tor. If you don’t set a session preset, the default is AVCaptureSessionPresetHigh,

which is one level below AVCaptureSessionPresetPhoto. Using the photo preset

instead of the default preset dramatically increases the number of pixels in the video

stream, causing the detector to do much more work. The scanning results of using the

photo preset are indistinguishable from using the default setting, but the drain on the

battery is much greater due to higher CPU usage.

BARCODE GURU TIP If you have a special use case in which you’re displaying
the scanner UI for a long continuous time, you should experiment with even
lower-quality presets to reduce battery drain. For most scenarios, the default
high setting is the sweet spot for barcode scanning.

The capture session preset and the capture device’s active video format go hand in

hand. If you set a preset, iOS knows which video format works best for the device. If you

don’t set a preset or format, the default preset of the capture session is used. The session

then sets the active format when you add the capture device input. If you set the active

format directly, this causes the session preset to change to AVCaptureSession-

PresetInputPriority. 

 Fairly recent iOS devices have CCDs that can capture more pixels than are actually

used by the media capture pipeline. Instead of passing on the original pixels, the video

image is slightly shrunken, and this reduced-size version is sent to the capture device

class. The scale factor used can be queried via the videoZoomFactorUpscaleThreshold

property of the active video format. 

 For scanning barcodes close to the device, you can set the camera’s video zoom fac-

tor to a value between 1 and the upscale threshold. This results in a zoomed-in part of



66 CHAPTER 3 Scanning barcodes

the video being used, sort of like using a magnifying glass. But you don’t want to

overdo it—with video that’s too zoomed-in, it becomes difficult to target an individual

barcode on a page. If the upscale threshold is greater than 1, you can increase the

zoom factor, but no further than 125%. For older devices that don’t scale the video,

this has no effect because the upscale threshold is 1.

 The default mode for autofocus is to quickly change the focus several times until

the picture is sharp. If the user is concentrating on targeting a barcode, this wild “bob-

bing” motion might cause discomfort. Newer iOS devices support smooth autofocus,

where the focus is adjusted gradually. This was introduced by Apple as being benefi-

cial for recording video, where the focus bobbing would be detrimental when moving

from near focus to far focus or vice versa. For barcode scanning, smooth autofocus is a

welcome feature because it removes an unnecessary form of visual noise.

 Finally, if you know that your users are going to scan only nearby barcodes, you can

restrict the autofocus range. This makes finding the focus much quicker, because iOS

doesn’t have to go through the entire focus range to determine the point where the

image is in focus.

 The following code snippet contains all the configuration optimizations for scan-

ning nearby barcodes:

- (void)_configureCurrentCamera
{

NSError *error;
if (![_camera lockForConfiguration:&error]) {

    NSLog(@"Unable to lock current camera for config: %@",
    [error localizedDescription]);

    return;
}

_camera.subjectAreaChangeMonitoringEnabled = YES;

if ([_camera isSmoothAutoFocusSupported]) {    
    _camera.smoothAutoFocusEnabled = YES;         
}                                              

if ([_camera isAutoFocusRangeRestrictionSupported]) {
    _camera.autoFocusRangeRestriction =                  
    AVCaptureAutoFocusRangeRestrictionNear;              
}

_camera.videoZoomFactor =                                 
MIN(_camera.activeFormat.videoZoomFactorUpscaleThreshold,

   1.25);                                                  

if ([_camera isLowLightBoostSupported]) {                   
    _camera.automaticallyEnablesLowLightBoostWhenAvailable = YES;
}                                                          

[_camera unlockForConfiguration];
}

Always lock
camera for

configuration
when making

changes Bail out 
in case 
of error

Get notified if
subject area
changes, for

disabling
focus lock

Prevent focus 
bobbing

Restrict autofocus range for
scanning nearby barcodes

Send more pixels
to image outputs

Activate low-
light boost if

necessary

Unlock configuration 
when done



67Building a QR Code scanner

3.2.8 Opening a scanned web address in Mobile Safari

Your scanning app so far marks 2D barcodes when they appear within the interest box.

You’ve also optimized the scanning experience for nearby 2D barcodes. To wrap up

this example, you need to do something with the decoded QR Codes.

 In the app, the scanner view controller is the root of the storyboard. Storyboards

unfortunately have no facility to connect an outlet defined in the app delegate, but

the NIB loader will set the window’s rootViewController property to the root view

controller defined by the storyboard. Then you can grab a reference and set the scan

delegate, as shown in the following code B.

 To get the web address from the detected code’s stringValue, you can employ an

NSDataDetector. If you configure it for NSTextCheckingTypeLink, it will detect many

kinds of URLs, including email addresses:

@interface AppDelegate () <DTCameraPreviewControllerDelegate>
@end

@implementation AppDelegate
{

NSDataDetector *_urlDetector;
}

- (BOOL)application:(UIApplication *)application
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

    DTCameraPreviewController *previewController =
    (DTCameraPreviewController *)self.window.rootViewController;

    previewController.delegate = self;

    _urlDetector = [NSDataDetector dataDetectorWithTypes:       
    (NSTextCheckingTypes)NSTextCheckingTypeLink

    error:NULL];  

    return YES;
}

Whenever the scanner controller detects a new barcode, you want to hear about it.

You need to implement the previewController:didScanCode:ofType: method from

your scanner delegate protocol:

- (void)previewController:(DTCameraPreviewController *)previewController
    didScanCode:(NSString *)code
     ofType:(NSString *)type {

   NSRange entireString = NSMakeRange(0, [code length]);
   NSArray *matches = [_urlDetector matchesInString:code

    options:0     
    range:entireString];  

   for (NSTextCheckingResult *match in matches) {

Private interface tagged with
promise to implement protocol

Instance variable to 
hold detector for 
URLs in strings

Scanner
view

controller
is root view

controller
of window

B

Set
delegate

to self

Configure URL
detector

Contents of the 
scanned barcode

B

Type of the 
scanned barcodeFind all

URLs in
string

C



68 CHAPTER 3 Scanning barcodes

    if ([[UIApplication sharedApplication] canOpenURL:match.URL]) {
    NSLog(@"Opening URL '%@' in external browser",

    [match.URL absoluteString]);
    [[UIApplication sharedApplication] openURL:match.URL];

    break;
    }
    else {

    NSLog(@"Device cannot open URL '%@'",
    [match.URL absoluteString]);      

    }
   }
}

@end

In the code parameter B, you receive the entire string contents of a scanned barcode.

The URL detector C is tasked with finding contained URLs, and if one is found, you

call openURL: to have iOS open it in Mobile Safari.

 Congratulations! You’ve now built your own QR Scanner app. Any HTTP or HTTPS

URLs will be opened by Mobile Safari, because it’s the system-provided handler for

these URL schemes.

3.3 Summary

Building a QR Code scanner taught you how to plug a metadata output into your AV

Foundation video pipeline. All this knowledge is applicable to both 2D and 1D barcodes,

Ask iOS if there’s
an application

that can handle
this URL

Have system open the URL
with the app registered for

the URL scheme

Prevent
additional
URLs from

opening
Log URLs that 
system doesn’t 
know how to handle

Other QR Code contents

This example demonstrates only the most basic use case for scanning QR Codes:

URLs. Any URL with a scheme supported by the iOS device will work. For example,

http:// URLs are opened by Mobile Safari.

There are many different kinds of barcode content that can be represented with text-

based QR Codes. Many kinds of content have become de facto standards because

of their use by Japan’s NTT DOCOMO and the open source Zebra Crossing project.

All of these types use text tags followed by the field values:

Documentation is scarce, but you can infer the structure of the tags by generating

some codes with the Zebra Crossing QR Code generator (http://zxing.appspot.com/

generator/).  

■ Calendar event ■ Phone number

■ Contact information ■ Text message (SMS)

■ Email address ■ URL bookmark with title

■ Geolocation ■ WiFi network access setup

http://zxing.appspot.com/generator/
http://zxing.appspot.com/generator/


69Summary

with slight variations. Depending on your intended usage scenario, there are a few

adjustment screws you’ll want to turn to make the experience for your users delightful.

 You’ve seen how the metadata objects’ delegate works, how to filter the events, and

how to mark the corners of 2D barcodes. (Because of the different ways that 1D bar-

code detection is implemented, you can’t get nice corners for 1D barcodes.) You also

restricted the rectangle of interest to facilitate easier targeting of one barcode among

several. Finally, you optimized the camera settings for better scanning results.

 These are the key takeaways of this chapter:

■ AVCaptureMetadataOutput plugs into your AVCaptureSession for detecting

faces and 1D and/or 2D barcodes.

■ The delegate object implementing the AVCaptureMetadataOutputObjects-

Delegate’s method receives an array of all detected barcodes multiple times

per second.

■ You can mark detected 2D barcodes via the reported corners. This won’t work

for 1D barcodes because 1D detection uses scan lines.

■ You can specify a rectOfInterest to limit the area of the video frame where

barcodes are detected.

■ You can optimize the UI and camera settings for the scanning usage scenario so

that the user will know what to do with the video preview. Some camera settings

can enhance the scanning performance and user experience.

In the next chapter, you’ll explore creating Passbook passes and reuse the barcode

scanning code developed in chapters 2 and 3 to build a pass-verification app. 



70

Passbook,
 Apple’s digital wallet

We have all come into contact with small documents that provide some benefit if

we present them to the right person at the right time in the right location. Such

documents include movie tickets that allow you to enter the movie theater, coupons

that entitle you to receive a promotional discount for certain products, membership

cards that let you enter the gym, loyalty cards for collecting loyalty points at the

supermarket chain where you faithfully shop, or tickets for planes, trains, ships, or

other vehicles providing transportation. Long before the digital revolution, those

micro-documents were usually printed on paper with varying measures to prevent

somebody from creating illicit copies.

This chapter covers

■ Barcodes: the technology that makes Apple’s 

Passbook system possible

■ Micro-documents as a convenient digital 

alternative to paper tickets and plastic cards

■ Creating Passbook tickets with Ruby

■ A method for validating Passbook tickets 

without a server



71Barcodes in Passbook

 Consider, for example, tickets for a sold-out concert. The concert organizer might

go as far as embedding holograms in the paper the tickets are printed on to make sure

that there’s no way for counterfeiters to produce their own tickets.

 Apple, being constantly on the lookout for ways to enrich the lives of their custom-

ers, saw this plethora of micro-documents and developed Passbook as a digital alterna-

tive. The mobile phone has already replaced the wristwatch as a timekeeper. Passbook

aims to make your wallet obsolete as well, or at least its function as a repository of

paper tickets, membership cards, and other things you carry around besides cash.

NOMENCLATURE The name Passbook is used by Apple as the umbrella term for
all the pieces of this system. Passbook micro-documents are embodied by files
with the extension .pkpass. Those files can represent different kinds of tick-
ets, coupons, cards, and so on. For the sake of simplicity, these are all com-
monly referred to as passes. The iOS APIs for interacting with passes from
within your apps are grouped in the PassKit.framework. The Passbook.app
comes preinstalled on all iPhones since iOS 6 and provides access to all the
passes users have on their device.

In the past, Apple had a reputation for developing technologies without considering

the requirements of existing corporate systems. Passbook, first introduced in 2012 as

part of iOS 6, was the first drastic departure from this methodology. Apple published

everything companies needed to produce digital passes on their own systems—no

Macs required. Because of this openness, most major companies have begun to offer

Passbook passes as an option when delivering digital passes by email.

 The goal of this chapter is to give you a basic understanding of how passes are cre-

ated, and then to demonstrate in a sample app how you can validate passes you create

without requiring an impressive server setup.

4.1 Barcodes in Passbook

Physical micro-documents—we’ll call them “passes” for short—can contain human-

readable information that a person can look at to determine the validity of the pass.

But this activity becomes impractical at larger scales for several reasons: 

■ A ticket might look alright but could be counterfeit.

■ It takes too long to manually type in a membership number printed on a mem-

ber card.

■ Such manual data transfer is prone to copying mistakes.

■ Customers might prefer to not use their loyalty card if it means they’re holding

up the queue.

The creators of paper passes and plastic cards now often add a barcode to allow for

automated scanning. These pieces of paper or plastic essentially now serve as a

medium to transport the barcode.



72 CHAPTER 4 Passbook, Apple’s digital wallet

 When Apple designed Passbook, they evaluated which kinds of barcodes would

be feasible. The core requirement was that scanners needed to be able to scan the

barcode from the device’s display. This is something that laser-based scanners can’t

do well because of reflection on iPhone glass displays. As a result, Apple decided to

support only 2D symbologies for Passbook, as those are generally scanned with CCD-

based scanners. 

4.2 Producing digital passes for your users

After reading this chapter, you might get hired by a chain of movie theaters that needs

your help in implementing a Passbook-based ticket flow. But for this example we’ll

scale down the scenario a bit. You are, more than likely, the owner of a state-of-the-art

home movie theater (a.k.a. your TV). The size of your sofa puts a natural limit on the

number of friends who can come over and attend a VIP movie night, so you do what

every venue owner does: you create tickets with assigned seat numbers and the date

and time of the movie night.

 The point of this exercise is to demonstrate the workflow required to create valid

tickets and distribute them. In all of its communication, Apple is promoting Passbook

as something for large corporations with extensive server infrastructure to implement.

Because of this, you might be harboring some fear that you need to have server-side

skills. But this isn’t the case. Once you’ve wrapped your head around the simple

beauty of the pkpass format, you’ll lose this worry and instead begin to see many other

usage scenarios you’ll want to explore.

 The first two steps of the process are rather tedious, but you only need to do them

once for the type of pass you want to create. You need to sign into your Apple devel-

oper account and create a digital certificate to sign your passes with. Once you have

this setup step out of the way, you can begin to create valid passes. We’ll explore pass

validation afterward.

4.2.1 Requesting a certificate for signing passes

In the Passbook system, the role of the non-fakable hologram on paper tickets is taken

on by a digital signature. A few initial setup steps are required to produce signatures

that iOS and the Passbook app will accept as valid. These steps might seem like a lot of

work, but you only need to execute them once per type of pass you want to sign.

 Sign into the iOS Dev Center (https://developer.apple.com/devcenter/ios/) and

go to the Certificates, Identifiers & Profiles section.

 The identifier represents a certain type of pass that you’re going to create. Use a dif-

ferent identifier for coupons than for movie tickets. 

 In the Identifiers section, shown in figure 4.1, you can create a new identifier for

your passes. The description is only visible to you, and you should identify it so that

you can tell it apart from the other pass types you might create in the future. For this

example, use “VIP Movie Night” for the description. The identifier needs to start with

pass. followed by reverse domain notation, as you would use for an app identifier.

https://developer.apple.com/devcenter/ios/


73Producing digital passes for your users

Enter the ID pass.com.yourcompany.vipmovie, substituting your domain or com-

pany name for yourcompany.

 On the confirmation screen that’s displayed next, verify that both values are cor-

rect. I once made the mistake of entering a duplicate pass prefix, with the effect that

the signing failed with weird error messages.

Figure 4.1 Creating a pass type identifier

Different passes, different type identifiers

You can have as many pass types as you need. For example, you could issue loyalty

cards to your clients and also one-off coupons with a promotional discount. Those

would be two different types.

For every different type of pass, you should configure a pass type identifier first and

then request a signing certificate for it. When interacting with passes via the PassKit

APIs, you can determine which type of pkpass you’re looking at by checking its pass-
TypeIdentifier property. 



74 CHAPTER 4 Passbook, Apple’s digital wallet

Next, you’ll create a signing certificate that exactly matches the identifier. Still on the

Certificates, Identifiers & Profiles page, enter the Certificates section. Under Produc-

tion, click on the plus button (+) at the top right to get the certificate Select Type

screen (see figure 4.2). There select the Pass Type ID Certificate option, which allows

you to “Sign and send updates to passes in Passbook.” While you’re here, there’s also a

convenient link for downloading the Worldwide Developer Relations Certificate

Authority. Download this before clicking Continue.

 On the following screen (see figure 4.3), pick the pass type identifier that you want

to configure the certificate for. Here you can see that Apple prefixes all your pass type

IDs with your team ID to make them even more unique.

 This screen is followed by an explanation of how to create a certificate request via

the Keychain Access app. The subsequent screen contains an upload form for the cer-

tificate request file you’ll create next.

Figure 4.2 Creating a signing certificate



75Producing digital passes for your users

The easiest method for creating SSL certificates on a Mac is via the Keychain Access

app. In that app, select Keychain Access > Certificate Assistant > Request a Certificate

From a Certificate Authority (see figure 4.4).

Figure 4.3 Creating a certificate for a pass type identifier

SSL certificates

SSL certificates employ an asymmetric scheme for encryption and digital signing.

They consist of a pair of public and private keys. Data encrypted/signed with the pri-

vate key can only be decrypted/verified with the public key.

You need to keep your private key secret but supply the public key with signed docu-

ments to allow verification of your signature.

Figure 4.4 Use Certificate Assistant to create a private/public key pair



76 CHAPTER 4 Passbook, Apple’s digital wallet

Fill in your Apple ID email address and your name as the common name. Even though

the placeholder text states it’s required, you should leave the CA Email Address field

empty. Choose the Saved to Disk option to write the CA signing request to a file. When

you click Continue, a private key is stored in your keychain and the public part is pre-

pared to be sent to the Apple certificate authority for signing. The filename for this

file doesn’t matter.

 Upload the signing request file via the upload form, and after a few seconds the

signed request is ready (see figure 4.5).

 Apple signed the public key part of your certificate, and back on your Mac the public

key rejoins the private key in your keychain to form a complete key pair. Look in the My

Certificates section in Keychain Assistant to see the private key listed below its certificate

and the info showing that the certificate is valid and trusted (see figure 4.6).

 The finished certificate is signed with Apple’s Worldwide Developer Relations Inter-

mediate Certificate, which depends on the Apple Inc. Root Certificate. Both can be

downloaded from the Apple CA page (http://www.apple.com/certificateauthority/),

although the latter is usually preinstalled on Macs. 

4.2.2 Preparing signing certificates

You’ll sign your passes with the openssl command-line tool. This tool doesn’t have the

ability to get the certificate from the OS X keychain where you stored it in the previous

Figure 4.5 Your certificate is ready.

http://www.apple.com/certificateauthority/


77Producing digital passes for your users

section, so you first need to export the certificate into a file and convert it into a for-

mat that the utility can work with.

OpenSSL needs three pieces for the signing process, which you’ll save in a working

folder with specific names for simplicity:

■ The WWDR (Worldwide Developer Relations) intermediate certificate, down-

loaded from Apple and saved as AppleWWDRCA.cer

■ The pass type certificate, saved as passtypecert.pem

■ The signing key matching the pass type certificate, saved as passtypecertkey.pem

Figure 4.6 Finished certificate in keychain

OpenSSL

OpenSSL is a collaborative project developing a robust, commercial-grade, full-featured

and open source toolkit. It provides a plethora of functions for working with SSL cer-

tificates, decoding and encoding data, creating and validating cryptographic hashes,

and much more.

You can access the openssl utility from the Terminal command line, and it’s also

available from many modern programming languages, such as Ruby and Python.

Apple doesn’t provide OpenSSL to developers. Instead, a comprehensive set of cryp-

tography functions is packaged in the CommonCrypto.framework available on both

Apple platforms. 



78 CHAPTER 4 Passbook, Apple’s digital wallet

Keychain Access doesn’t allow you to directly export separate private and public keys

for the pass type certificate, so you must first export the pair into a p12 file and then

use OpenSSL to create the distinct files. 

 In Keychain Access, select the certificate, right-click on it, and select the export

option. Choose the p12 format, and leave the password for the exported file blank

(see figure 4.7). 

 In Terminal, change into the directory where you placed the p12 file and run the

following commands:

openssl pkcs12 -in passtypecert.p12 -clcerts -nokeys \
-out passtypecert.pem -passin pass:

openssl pkcs12 -in passtypecert.p12 -nocerts -out passtypecertkey.pem \
-passin pass: -passout pass:12345

For a public key, security is irrelevant, but for the private key file you might want to spec-

ify a strong password, especially if you’re going to be creating passes on a web server. The

WWDR intermediate certificate in CER format is already in a format that you can use. 

4.2.3 Constructing passes

Passes are usually created on a web server. In the case of a movie theater chain, it

would be the ticketing system that creates paper tickets or allows customers to print

their own paper tickets at home.

 Figure 4.8 shows the steps involved in creating a Passbook pass.

 For our example VIP Movie Night scenario, you’ll create the tickets with a Ruby

script. Ruby on Rails is one of the predominant modern frameworks for developing

web applications, and Ruby is also the scripting language of choice for most iOS devel-

opers. Passbook is not in any way dependent on Apple hardware or software.

Figure 4.7 Export pass type certificate as p12 file

Copy public key 
into PEM file, 
blank password

Copy private key into 
pem file, with password



79Producing digital passes for your users

Ruby comes preinstalled on your Mac with OS X, so no setup is required. Ruby pro-

vides OpenSSL out of the box and also has great support for JSON, which is the format

used for making passes.

CONFIGURING THE PASS BUILD SCRIPT

The following Ruby code snippets are all part of the makepass.rb script, which you’ll

find in the source code for this book.1 Put the script file in the directory where you

prepared the certificates. This script is intentionally simplistic to demonstrate the bare

essentials for building a pass. It has no command-line parameters—you’ll have to edit

the script to change the contents of any pass fields.

 You can configure all details for the pass by modifying the variable assignments at

the top of the Ruby script:

passTypeIdentifier = "pass.com.drobnik.vipmovie"
teamIdentifier = "Z7L2YCUH45"
organizationName = "Cocoanetics Cinema"
logoText = "Cocoanetics"
description = "VIP Movie Night Sofa Seat"
eventDate = Time.new(2014, 8, 13, 16, 0, 0, "+02:00")

1 For source code, see www.manning.com/BarcodeswithiOS.

Zip it all up and change

extension to .pkpass 

WWDR intermediate

certificate 

Pass-signing 

certificate 

Pass-signing certificate

private key 

Create digital signature

file for manifest

Create

manifest.json

Depends on

chosen pass type

icon.png,

background.png,

logo.png, etc. 

Collect artwork

as PNG files

This pass should

be about ... 

Assemble

pass.json file

Figure 4.8

Pass creation flow

Pass type identifier
configured on portal Team identifier 

from member 
center

Name of organization 
(doubles as a fallback 
relevancy message)

Text to display
next to the
logo image

Description 
of the pass, 
used for 
VoiceOver

Event date
construction

with time
zone offset

www.manning.com/BarcodeswithiOS


80 CHAPTER 4 Passbook, Apple’s digital wallet

seat = "1A"
event_latitude = 14.5877
event_longitude = 48.0528

serialNumber = Time.now.to_i.to_s
passFileName = serialNumber + ".pkpass"
eventDateString = eventDate.utc.strftime("%Y-%m-%dT%H:%M:%SZ")

The most important things to check and possibly adjust are the team identifier and the

pass type identifier. Those need to match your signing certificate or you can’t produce a

valid signature. You can look up your team identifier in the Apple developer member

center (https://developer.apple.com/membercenter). You might also remember

from figure 4.3 that Apple combines both of these identifiers for an even more unique

pass type identity; this is the signing identity that the certificates need to match.

 The eventDateString—the event time from the general pass info formatted as a

W3C string—doubles as the relevantDate, which is logical for an event ticket that’s

relevant at the time of the beginning of the event. This date needs to be complete

with hours and minutes—seconds are optional. The locations array contains the

geocoordinates of the event location—you should replace them with the location

where the pass will be relevant. For testing, the GPS coordinates of your sofa would

work well.

 Beginning with iOS 7, you can also add an array of beacons to specify iBeacon iden-

tifiers. iBeacons are small, battery-powered devices that emit an identifier via Blue-

tooth. For example, a bus could have an iBeacon next to the driver, and this would

cause bus tickets to be shown on the device’s lockscreen.

 Let’s take the Ruby script for a spin now that all certificates and keys are present

and you’ve adapted the pass details to your liking. In Terminal, change into the work-

ing directory where you put the certificate files and the edited Ruby script:

cd ~/Desktop/MyPass
chmod +x makepass.rb
./makepass.rb

Running the script will dynamically create the pass.json file containing the pass

details, the manifest.json file that contains the checksums of the pass files, and a signa-

ture file with the cryptographic signature of the manifest. The pieces will be zipped up

into a .pkpass file in the same directory. 

 If you double-click on the .pkpass file, OS X will show a preview. You can also

inspect the pass.json file to see the beautiful JSON reflecting the details you set up in

the Ruby script. Figure 4.9 shows the pass.json file compared to the front and back of

the pass as displayed by QuickLook preview on OS X.

On your sofa, all
seats are front row

Geographic 
location of 
the event

Use current
Unix

timestamp
as pass serial

number

Serial number is 
used for filename 
with extension

Dates represented
in W3C format

Change directory 
to working folderMake script

executable

Run it

https://developer.apple.com/membercenter


81Producing digital passes for your users

This pass has several generally applicable elements at the top, and the eventTicket

key groups fields that are specific to this pass being an event ticket. The relevancy

information in relevantDate and locations specifies conditions that make this pass

{
  "formatVersion": 1,
  "barcode": {
    "format": "PKBarcodeFormatQR",
    "messageEncoding": "iso-8859-1",
    "message": "TICKET:2014-01-17T10:00:00Z,1A,1415040549|
    9bdd53d031ad9744f509f5b00f9b8f4ee2ddfe13"
  },
  "passTypeIdentifier": "pass.com.drobnik.vipmovie",
  "serialNumber": "1415040549",
  "teamIdentifier": "Z7L2YCUH45",
  "organizationName": "Cocoanetics Cinema",
  "logoText": "Cocoanetics",
  "description": "VIP Movie Night Sofa Seat",
  "relevantDate": "2014-01-17T10:00:00Z",
  "locations": [
    {
      "longitude": 48.0528,
      "latitude": 14.5877
    }
  ],
  "eventTicket": {
    "headerFields": [
      {
        "key": "seat",
        "label": "Seat",
        "value": "1A"
      }
    ],
    "primaryFields": [
      {
        "key": "name",
        "value": "VIP Movie Night"
      }
    ],
    "secondaryFields": [
      {
        "key": "location",
        "label": "Location",
        "value": "Oliver's Home Movie Theater"
      }
    ],
    "auxiliaryFields": [
      {
        "key": "date",
        "label": "Event Date",
        "dateStyle": "PKDateStyleMedium",
        "timeStyle": "PKDateStyleShort",
        "value": "2014-01-17T10:00:00Z"
      }
    ],
    "backFields": [
      {
        "key": "phone",
        "label": "For more info",
        "value": "800-1234567890"
      },
      {
        "key": "terms",
        "label": "TERMS AND CONDITIONS",
        "value": "Free popcorn and drink at entrance. Please
        arrive sufficiently early to pick your seat and allow show
        to start on time."
      }
    ]
  }
}

Front of pass preview

Back of pass preview

Time and places where

this pass is relevant

Figure 4.9 Pass preview compared to pass.json



82 CHAPTER 4 Passbook, Apple’s digital wallet

relevant for display on the iPhone lock screen. Apple doesn’t publish the exact algo-

rithm for determining when a pass should be shown on the lock screen, so you’ll have

to trust them to do so in a manner useful to the user.

 The following sections walk you through the Ruby script so that you can under-

stand the process of assembling passes. 

CHECKING AND LOADING SIGNING CERTIFICATES

Once the pass details have been set up, the Ruby script loads and checks the three cer-

tificates needed to perform the signing of the manifest. They’re in begin/rescue/end

blocks so they’ll gracefully fail should one of the certificates be missing or faulty. To

keep things simple, the names of the three files are hardcoded:

begin                                                    
rootCertFile = File.read('AppleWWDRCA.cer')            
rootCert = OpenSSL::X509::Certificate.new rootCertFile  

rescue => err                                            
puts "Cannot load root certificate: #{err}"            
exit 1                                                 

end                                                      

begin
certificate = OpenSSL::X509::Certificate.new     

File.read('passtypecert.pem')          
rescue => err

puts "Cannot load signing certificate: #{err}"   
exit 1                                           

end                                                

begin

privateKeyFile = File.read('passtypecertkey.pem')          
privateKey = OpenSSL::PKey::RSA.new privateKeyFile, '12345'

rescue => err                                                
puts "Cannot load private signing key: #{err}"             
exit 1                                                     

end                                                          

ADDING A BARCODE

The barcode is generated for you based on the contents of the barcodeMessage key.

We want to be able to validate tickets without having to ping a server, so we’ll add

some extra secret “salt” to the message and create an SHA1 hash as a signature.

Because we’re the only ones who know the value of the salt, nobody else can create

tickets with a correct barcode message signature. The following code snippet is a con-

tinuation of makepass.rb:

barcodeMessage = "TICKET:#{eventDateString},#{seat},#{serialNumber}"
salt = "EXTRA SECRET SAUCE"
barcodeMessageSignature = Digest::SHA1.hexdigest barcodeMessage + salt

Check/load WWDR 
certificate

Check/load signing 
certificate

Check/load private 
signing key 

String with
the ticket infoA secret string

to “salt” the
hash

Create SHA1 hash of message and salt



83Producing digital passes for your users

barcodeMessage = barcodeMessage + "|#{barcodeMessageSignature}"

barcode = {                         

"format" => "PKBarcodeFormatQR",   
"messageEncoding" => "iso-8859-1"  

}
barcode["message"] = barcodeMessage  

Passbook supports the three most-used 2D barcode symbologies: QR, Aztec, and

PDF417 (see section 1.2.2 for details about their differences). Generally speaking, all

three types can encode arbitrary strings. If you can spare the space and are free to

choose, I recommend QR or Aztec Codes, as these have built-in error correction and

are recognized faster and more reliably. PDF417 is more compact and thus better

suited for passes with lots of info on the front.

The data content of the barcode is completely independent of the other content of

the pass. It’s up to you whether you want to encode all the pass details in the barcode

or whether you only encode a serial number there and then look up the information

needed for validation from your server.

 As you can see in the previous code snippet, you specify the contents, barcode type

to use, and character encoding when creating the JSON file for the pass. When iOS or

OS X displays the pass, it renders a barcode symbol according to this information. 

ASSEMBLING THE PASS DETAILS

You configured the pass details at the top of the Ruby script (near the beginning of

section 4.2.3). 

 The contents of the pass are assembled in a Ruby hash, the equivalent of a dictionary

in Objective-C. This can easily be transformed into a JSON file. The first few entries are

taken from variables you set up earlier; a few of the fields change less frequently and have

hardcoded values. You may also customize these to your needs with your text editor:

headerFields = [{                  
    "key" => "seat",                 
    "label" => "Seat",               
    "value" => seat                  

}]                                 

Combine
message

with SHA1
signature Specify contents, 

type to use, and 
character encoding 
for the barcode 

Barcode character encoding

The ISO-8859-1 message-encoding format (also known as Latin 1) is the de facto

standard for most barcode readers. This is why Apple suggests you use this as the

character encoding for the contents of the pass barcode.

You can specify any character encoding scheme supported by NSString in the

messageEncoding value of the barcode dictionary in pass.json.

Header fields at 
top right of pass



84 CHAPTER 4 Passbook, Apple’s digital wallet

primaryFields = [{               
    "key" => "name",              
    "value" => "VIP Movie Night"   

}]                               

secondaryFields = [{                       
    "key" => "location",                      
    "label" => "Location",                   
    "value" => "Oliver's Home Movie Theater"  

}]                                          

auxiliaryFields = [{                 
    "key" => "date",                   
    "label" => "Event Date",           
    "dateStyle" => "PKDateStyleMedium", 
    "timeStyle" => "PKDateStyleShort",
    "value" => eventDateString        

}]                                   

backFields = [{                                                 
    "key" => "phone",                                             
    "label" => "For more info",                                   
    "value" => "800-1234567890"                                   

},                                                            
{                                                             

    "key" => "terms",                                              
    "label" => "TERMS AND CONDITIONS",                            
    "value" => "Free popcorn and drink at entrance. " +            

"Please arrive sufficiently early to pick your seat " +
"and allow show to start on time."                     

}]                                                              

pass = {              
"formatVersion" => 1

}                     

pass["barcode"] = barcode

pass["passTypeIdentifier"] = passTypeIdentifier    
pass["serialNumber"] = serialNumber                
pass["teamIdentifier"] = teamIdentifier            
pass["organizationName"] = organizationName        
pass["logoText"] = logoText                        
pass["description"] = description                  

pass["relevantDate"] = eventDateString     
pass["locations"] = [{                     

    "longitude" => event_longitude,                   
    "latitude" => event_latitude                    

}]                                          

Primary fields 
below header fields

Secondary fields 
below primary fields

Auxiliary fields below 
secondary fields

Fields on
back of pass

Create a hash to 
contain pass info

Add barcode 
info to hash

Add meta info 
from earlier 
defined variables

Add relevancy 
info to hash



85Producing digital passes for your users

pass["eventTicket"] = {                      
"headerFields" => headerFields,           
"primaryFields" => primaryFields,         
"secondaryFields" => secondaryFields,     
"auxiliaryFields" => auxiliaryFields,      
"backFields" => backFields                

}                                           

passJSON = JSON.pretty_generate(pass)
passSHA1 = Digest::SHA1.hexdigest passJSON

ADDING ARTWORK TO THE PASS

At this point, the JSON string for the pass is complete, but it yields rather boring visu-

als, as you can see on the left side of figure 4.10. To spice it up and brand it, you can

add a number of images to the pass. Their exact use on the pass depends on its type,

and some experimentation might be required. For each image, you’ll also need to

include the Retina version, denoted by the @2x filename:

■ icon.png and icon@2x.png are the icons to display in the Mail app. Without

this, iOS rejects the pass.

■ thumbnail.png and thumbnail@2x.png are small images to add beside the pass

details.

■ strip.png and strip@2x.png are background images to place behind the thumb-

nail. These can’t be combined with the background.

■ background.png and background@2x.png are background images that get

blurred and placed over the entire area of the pass. These can’t be combined

with the strip image.

Figure 4.10 shows the dramatic difference you get from adding artwork files. Because the

background image is blurred anyway, you can get away with a smaller-resolution image.

Assemble the pass 
fields in event 
ticket hash

Create pass
JSON string
for output

to file
Get SHA1 of 
pass JSON for 
manifest 

Thumbnail

Background
(blurred)

Logo

Figure 4.10 What a difference a few PNGs make ...



86 CHAPTER 4 Passbook, Apple’s digital wallet

LOOKING FOR DESIGN LOVE The artwork to produce these results is included in
the Passbook folder in the book’s example code. Please forgive my unprofes-
sional choice of art—I’m a developer and not a designer. Passes you plan to dis-
tribute to actual users should receive the loving care of a design professional.

To prevent somebody from tampering with a pass by replacing artwork files, they’re also

featured in the pass manifest. This is likely a gesture by Apple to give pass issuers a

greater feeling of security and thus inspire trust in the platform. At validation time, if

the signature is valid, then neither the JSON nor the resources could have been altered.

 The following Ruby code from makepass.rb scans the current directory for suitable

resources and determines the SHA1 checksum for each:

possibleResources = ['icon.png', 'icon@2x.png',        
'thumbnail.png', 'thumbnail@2x.png',    
'strip.png', 'strip@2x.png',           
'logo.png', 'logo@2x.png',            
'background.png', 'background@2x.png']

resources = possibleResources & Dir['*']

manifest = {"pass.json" => passSHA1}

zipCommand = ["zip", "-
   q", passFileName, "pass.json", "signature",
                                        

"manifest.json"]             

resources.each do |resource_file|
file = File.open(resource_file, "rb")
contents = file.read                  

contents_SHA1 = Digest::SHA1.hexdigest contents

manifest[resource_file] = contents_SHA1
zipCommand << resource_file             

end

manifestJSON = JSON.pretty_generate(manifest)

manifestFile = open("manifest.json", "w")
manifestFile.write(manifestJSON)          
manifestFile.close                       

passFile = open("pass.json", "w")   
passFile.write(passJSON)           
passFile.close                     

After this, both the manifest and pass JSON files have been written to disk. The mani-

fest.json file has the SHA1 checksums for all files to prevent tampering. 

Files that 
are possible 
in pkpass

Filter
possible

resources
with actual

files in folder
First file is 
the JSON

Keep track 
of files to 
put in zip

Iterate over
resources

Load file contents 
into variable

Get resource
SHA1

Add resource file and 
SHA1 to manifest hash

Create manifest
JSON string

Write manifest 
to disk

Write pass 
file to disk



87Producing digital passes for your users

SIGNED, SEALED, DELIVERED

In the last step in makepass.rb, the manifest JSON gets digitally signed and the result is

output to a standalone signature file. Then all the files belonging to the pass get

zipped up into a .pkpass file:

signature = OpenSSL::PKCS7.sign(certificate, privateKey,    
    manifestJSON,                   
    [rootCert],                     
    OpenSSL::PKCS7::BINARY |        
    OpenSSL::PKCS7::DETACHED).to_der

signatureFile = open("signature", "wb")
signatureFile.write signature           
signatureFile.close                     

system(*zipCommand)

The signature is output in binary DER format into a detached file. Note that the root-

Cert is also included. iPhones usually don’t have the WWDR intermediate certificate

installed, so it needs to be present inside the signature file so that the chain of trust (see

figure 4.11) can be validated on the user’s device.

 Instead of using the convenient Ruby script provided, you can also perform all the

steps manually. For sake of completeness, here are the Terminal command equiva-

lents for signing and zipping the pkpass file:

openssl smime -binary -sign -certfile AppleWWDRCA.cer \
    -signer passtypecert.pem \
    -inkey passtypecertkey.pem -in manifest.json -out signature \
    -outform DER -passin pass:12345

zip -q ticket.pkpass manifest.json pass.json signature *.png

Create 
signature

Write signature 
to disk

Execute zip 
command

Pass type certificate key:

passtypecertkey.pem

Pass type certificate:

passtypecert.pem

WWDR CA certificate:

AppleWWDRCA.cer

Manifest file:

manifest.json

OpenSSL sign

Detached binary

PKCS7 signature:

signature
Figure 4.11

Passbook chain of trust

Create manifest
signature in

binary
detached DER

format

Zip up manifest, pass file,
signature, and all PNGs

into .pkpass file



88 CHAPTER 4 Passbook, Apple’s digital wallet

This manual approach requires you to create the pass and manifest JSON files by

hand, which is as tedious as it is error prone. I think you’ll agree that editing a few val-

ues in the makepass.rb script is much more convenient.

4.2.4 Pass creation takeaways

At this point, you’re able to produce a batch of passes with different seat numbers for

your VIP Movie Night event. By modifying the Ruby script, you can set the event date,

specify the correct latitude and longitude of your sofa, and adjust the seat assignments.

Adding images makes your passes much prettier. You should also make sure your

iPhone will accept one such pass as valid to check that the creation was successful.

 Some key takeaways:

■ Passbook aims to make carrying tickets, passes, coupons, and vouchers on your

iPhone quite convenient.

■ Apple made the technology totally independent of any Apple hardware or soft-

ware to facilitate it becoming the de facto standard.

■ The certificate used for signing passes needs to be created in your Apple iOS

developer account.

■ For devices to be able to verify the signature, the WWDR intermediate certificate

needs to be included.

■ A manifest contains the SHA1 hashes of all artwork images and the pass.json file.

■ This manifest is cryptographically signed to prevent tampering with the pass

details or any artwork.

The procedure for creating a pass might seem a bit daunting at first. But once you

work through this complexity, you’ll start seeing possible usage scenarios everywhere

you look. 

4.3 Validating passes

You counted the seats on your sofa as seating for your VIP Movie Night. You set a loca-

tion, date, and time for the event. You produced valid digital Passbook tickets for the

event. You emailed these tickets to your guinea pigs ... um, friends. Now you need to

Debugging passes

The OS X preview app will happily show you passes even if they have errors. Besides

the signature being valid, there are a number of other conditions that need to be met

for iOS to accept a pass. For example, passes require an icon image when sending

them via email or else iOS will reject them.

To ensure that your pass creation is OK, mail yourself a pass file. Connect your iP-

hone to your Mac via USB and open the Xcode Organizer’s console view. When you

open the email with the pass, you’ll see in the log if there are any problems with the

pass. If iOS lets you add the pass to Passbook, you know it’s OK. 



89Validating passes

be able to verify tickets at the door to the venue

(a.k.a. your living room). This section will teach

you how to use the barcode scanning code you

built in chapters 2 and 3 and build an app for

doing that.

 Several validation checks occur when a user

adds the pass to their pass library. iOS will

silently refuse to add any invalid passes, so if the

pass is inside the Passbook library, it hasn’t been

modified or otherwise tampered with. Addi-

tional validation levels (see figure 4.12) depend

on your usage scenario. A big chain of movie

theaters might want to check the ticket info

against their ticket server.

 If you had a big chain of movie theaters,

you’d have your development department build

an app that you could install on a number of

iOS devices. Those ticket-checking devices

would be used by the employees checking tick-

ets at the door. They’d check paper tickets visu-

ally as they have always done, and they’d scan

Passbook tickets with the app. This app would

check the ticket and indicate whether they

should let the ticket holder enter.

 You probably don’t have a department doing

the developing for you, so you’ll do this your-

self. You also won’t have an army of ushers, but

you might be able to delegate that job to your

children. Another key difference between this

scenario and real life is that you don’t have a

ticketing server with a web API that you could check scanned tickets against.

 For this reason, a cryptographic signature was included in the barcode message in the

previous section. This signature ensures that only you can create valid passes for your

event—no server required! Another benefit of this serverless approach is that it’s

extremely fast. Imagine the long queue of people holding popcorn and cola, all of

them wanting to get to their seats. The faster you can determine the eligibility of each

visitor, the better. In an ideal implementation, the checking of a ticket would be as fast

as glancing at a paper ticket.

 The last of the validation steps depends on your usage scenario. For a small

venue—like your living room—you can easily see if somebody has a duplicate seat

assignment. Other scenarios might keep track of which seats have already been

scanned and flag duplicates this way. Movie theaters in the United States usually won’t

have assigned seating because of the hassle and cost of enforcing it.

Manifest signature

valid?

Files match

manifest?

Checked by

iOS when 

adding pass

Checked by

app at venue

entrance

Pass JSON

valid?

Check barcode

message format ok

Barcode message

signed correctly?

Check ticket server

(optional)

Check ticket

sanity

Figure 4.12 Validating passes on multi-

ple levels



90 CHAPTER 4 Passbook, Apple’s digital wallet

 In the following section you’ll create a serverless app for checking tickets and have

it output the event details and assigned seats for valid tickets. 

4.3.1 Building a ticket-verifier app

You’re now back on iOS terra firma and have finished your excursion into the world of

cross-platform scripting with Ruby. This section demonstrates the serverless validation

approach on iOS. You’ll see that the Ruby cryptographic functions—which use

OpenSSL—have equivalents in iOS in the CommonCrypto.framework.

 Your ticket-verifier app will have these features:

■ It will have a single-screen UI for hassle-free scanning at the venue entrance.

■ It will scan QR, Aztec, and PDF417 codes.

■ It will only accept tickets with a properly formatted barcode message.

■ It will verify cryptographic signatures in barcode messages.

■ It will reject tickets if their encoded event time differs by more than one hour

from the current time.

■ It will show the event details and seat number in case of success, or an alert

detailing the reason for failure.

The finished ticket-verifier app scanning a valid ticket is shown in figure 4.13. 

4.3.2 Reusing barcode scanner code

The QR Code scanning app you developed in chapter 3 has all the pieces you need

for the ticket-verifier app. It’s already set up for scanning the three 2D barcode sym-

bologies supported by iOS and Passbook. It was developed in a reusable manner

(nice interfaces, delegation, proper prefixes), so it provides a great starting point.

Let’s get started.

Figure 4.13 Passbook 

ticket-verifier app



91Validating passes

Create a new Xcode project, and from the QR Scanner project copy these files to the

new project:

■ DTAVFoundationFunctions.h and .m

■ DTCameraPreviewController.h and .m

■ DTVideoPreviewInterestBox.h and .m

■ DTVideoPreviewView.h and .m

You’ll also reuse the Main.storyboard file, which has a full-screen video preview with a

focus box. Make the focus box a bit wider in Interface Builder (see figure 4.14), so

that it’s more convenient for targeting those rather wide PDF417 barcodes.

 As is usual when using the iPhone camera, you’ll need to add AVFoundation

.framework in the Link Binary with Libraries build phase.

 For the sake of simplicity, the UI will be generated from the storyboard. The scan-

ning logic for this app will be in the app delegate. The following addition to AppDele-

gate.m grabs a reference to the scan preview view controller and sets itself as a

delegate. This causes the delegate callback for when a new barcode has been detected

to call into the app delegate for processing:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

DTCameraPreviewController *previewController =
(DTCameraPreviewController *)self.window.rootViewController;
previewController.delegate = self;

return YES;
}

Figure 4.14 Making the scan box wider

Scanner view
controller is root view

controller of window
Set scan
delegate

to self
(app

delegate)



92 CHAPTER 4 Passbook, Apple’s digital wallet

4.3.3 Serverless pass validation

To validate the barcode message signature, you need a way to get a hex representation

of a string’s SHA1 hash. Here’s such a helper method, which uses CommonCrypto

.framework. This framework is automatically linked with all apps via the System

dynamic library, so you don’t need to add it to the linking build phase but only import

the header for using it:

#import <CommonCrypto/CommonCrypto.h>

- (NSString *)_SHA1ForString:(NSString *)string {
NSData *data = [string dataUsingEncoding:NSUTF8StringEncoding];
uint8_t digest[CC_SHA1_DIGEST_LENGTH];

CC_SHA1(data.bytes, (CC_LONG)data.length, digest);

NSMutableString *output = [NSMutableString stringWithCapacity:
    CC_SHA1_DIGEST_LENGTH * 2];           

for (int i = 0; i < CC_SHA1_DIGEST_LENGTH; i++) {             
    [output appendFormat:@"%02x", digest[i]];                      
}                                                              

return output;
}

The following code snippet shows two helper methods for reporting to the user either

a valid pass or what went wrong validating one. The latter’s basic functionality is

achieved with a UIAlertView:

- (void)_reportValidTicketDate:(NSDate *)date seat:(NSString *)seat {
NSDateFormatter *formatter = [[NSDateFormatter alloc] init];      
[formatter setDateStyle:NSDateFormatterShortStyle];              
[formatter setTimeStyle:NSDateFormatterShortStyle];               
NSString *msgDate = [formatter stringFromDate:date];              
NSString *msg = [NSString stringWithFormat:@"Seat %@\n%@", seat,

    msgDate];

alert = [[UIAlertView alloc] initWithTitle:@"Ticket Ok"  
    message:msg              

    delegate:self            
    cancelButtonTitle:@"Ok"            
    otherButtonTitles:nil];           

[alert show];                                           
}

- (void)_reportInvalidTicket:(NSString *)msg {
alert = [[UIAlertView alloc] initWithTitle:@"Invalid Ticket"

    message:msg
    delegate:self

    cancelButtonTitle:@"Ok"
    otherButtonTitles:nil];

[alert show];
}

Add this to imports 
at the top

Convert
NSString

to NSData

A byte array 
to receive the 
output SHA1 hashCalling the C

function for
creating the

SHA1 hash

Make a hex representation
of output hash

Format
ticket

date to
suit the

device
locale

Alert states
the formatted
date and seat
number from

ticket

Show alert
view with
message



93Validating passes

Now for the scan delegate method. This method checks the validity of the pass on sev-

eral levels, and if it reaches the bottom, it reports a valid pass. You want to ignore new

barcodes while an alert is still showing to prevent multiple alerts from stacking on top

of each other:

- (void)previewController:(DTCameraPreviewController *)previewController
    didScanCode:(NSString *)code

    ofType:(NSString *)type {
if ([alert isVisible]) {             

    return;                               
}                                    

if (![code hasPrefix:@"TICKET:"]) {   
    return;                                
}                                     

NSArray *components = [code componentsSeparatedByString:@"|"];

if ([components count] != 2) {
    NSLog(@"Ticket without Signature ignored");
    return;

    }

    // server-less verification
    NSString *salt = @"EXTRA SECRET SAUCE";
    NSString *details = components[0];
    NSString *saltedDetails = [details stringByAppendingString:salt];
    NSString *signature = components[1];
    NSString *verify = [self _SHA1ForString:saltedDetails];

    if (![signature isEqualToString:verify]) {                    
    [self _reportInvalidTicket:@"Ticket has invalid signature"];
    return;                                                    

    }                                                             

NSString *ticket = [details substringFromIndex:7];          
NSArray *comps = [ticket componentsSeparatedByString:@","];  
NSString *dateStr = comps[0];                                
NSString *seat = comps[1];                                   
NSString *serial = comps[2];                                 

NSDateFormatter *parser = [[NSDateFormatter alloc] init];
parser.dateFormat = @"yyyy-MM-dd'T'HH:mm:ssZZZZ";        
NSDate *date = [parser dateFromString:dateStr];          

NSTimeInterval intervalToNow = [date timeIntervalSinceNow];

if (intervalToNow < 3600) {                                    
[self _reportInvalidTicket:@"Event on this ticket is more than "

    "60 mins in the past"];             
     return;                                                          
}                                                               

Don’t handle if 
alert showing

Barcode message must 
have this prefix to be 
considered

Divide
message

and
signature

at pipe
character

Ignore ticket 
without signature

Use the
same salt
string as
in Ruby

script
String for check hash

consists of details and salt

Create 
verification 
hash via 
helper 
method

Check if
verification

hash
matches

Separate 
ticket 
details

Parse UTC
date with date

formatter

Determine
time interval

between ticket
date and

current time

Ticket date
is too far

in the past



94 CHAPTER 4 Passbook, Apple’s digital wallet

if (intervalToNow > 3600) {                                     
    [self _reportInvalidTicket:@"Event on this ticket is more than "  

    "60 mins in the future"];            
    return;                                                           
}                                                               

[self _reportValidTicketDate:date seat:seat];
}

These checks—if statements with a return—weed out tickets that aren’t valid for the

current event. These checks are performed on top of the checks that iOS already

made when the user added this pass to the device. You could say that Apple’s checks

pertain to the pass’s syntax, whereas you’re responsible for verifying the pass’s seman-

tics. This is natural, because only you know under which circumstances you would

want to consider a pass to be valid.

 And you’re done! 

 Now, with the Ruby script, generate a pass with an event time that’s no more than 60

minutes away. Send this to your iPhone by email and add it to Passbook. Open up the

pass so that the barcode is visible. Then scan this pass with the verifier app, and it should

be reported as valid. Change the event’s time to be further away, and the pass should be

reported as being too far in the future.

 Here are some suggestions as to how you could further improve this ticket-verification

solution:

■ Detect duplicate seat assignments by tracking which seat numbers have been

filled.

■ Configure specific events and validate tickets against these instead of using the

current time.

■ Improve the user interface by replacing the alert views with something nicer.

■ Communicate scanned tickets to a server-based API. 

4.3.4 Pass validation takeaways

The sample app you built in this chapter demonstrates a simple way of validating Pass-

book passes without a server. You’ll usually want to be able to verify passes as quickly as

possible while the user is holding out the iPhone for you to scan. There is little room

for delay or for not being able to scan a pass because you lack an internet connection.

 Even nowadays with ubiquitous 3G/LTE internet, there are places where connectiv-

ity is limited or utterly demolished by the sheer number of iPhones around. At large

conferences promising free WiFi, people often bring their own wireless hotspots

(a.k.a. MiFis) and multiple iOS devices, and these often overwhelm the limited WiFi

frequencies and destroy the organizer’s WiFi network. Time slots on 3G antennas are

even more likely to get overloaded by too many devices being in close proximity to

each other, such as in a sports stadium.

 You should evaluate your real-world scenario and determine whether you abso-

lutely need server connectivity or if you can validate tickets first and then upload the

Ticket date
is too far in

the future

Report valid 
ticket details



95Summary

scan info to your server later on. The serverless verification technique discussed in this

chapter might save your life (as an iOS developer).

 These are the key verification takeaways:

■ Being able to quickly verify tickets as they are being presented is important for

avoiding “traffic jams” at the venue entrance.

■ If your usage scenario involves many iOS developers in close proximity, then

plan for times without connectivity.

■ Using a secret “salt” phrase together with a cryptographic hash at both creation

and verification time is a powerful technique for validating passes without a

server.

■ Providing an enterprise-level pass-verification app can be fun as well as lucrative. 

4.4 Summary

In this chapter we focused on two major aspects of Passbook, both of which related to

barcodes. You’ve learned how to create signed Passbook passes on any platform that

has Ruby, and you built a verification app that checks those passes at the entrance to

your venue.

 iOS also includes view controllers and methods you can use to access the passes in

the user’s pass library that match your developer prefix. These APIs are grouped

within the PassKit.framework. With this framework’s methods, users can add passes

Creating passes for other companies

Many people have ideas for Passbook-based solutions that involve creating passes

for clients or users. I asked Apple about an app where one user would create an IOU

for a friend. This would be a coupon stating that user A owes a sum of money to user

B. User B could redeem this coupon at a later stage in exchange for user A returning

the money. Apple stated categorically that they would not approve such an app.

Apple’s review guidelines state thus:

23.3 Passes must be signed by the entity that will be distributing the pass

under its own name, trademark, or brand or the App will be rejected and

Passbook credentials may be revoked

Apple’s rule would require user A to have a developer account and signing certificate

so that he can distribute the IOU pass in his own name.

As this chapter has demonstrated, it would be easy to create valid passes for—say—

Coca Cola. Logos and suitable artwork can be come by with ease. If Apple allowed

everybody to create passes for anyone, this would quickly erode trust in Passbook.

The suggested workaround is that if a company wants to implement Passbook, they

should register a developer account. If you’re contracting for them, they can add you

as a team member. This way you could take care of their Passbook type identifier and

certificate on their behalf.



96 CHAPTER 4 Passbook, Apple’s digital wallet

to their pass library without leaving your app. Imagine a boarding pass app that lets

the user add passes for flights. Or that allows the user to pick a seat during online

check-in. This app could communicate with the airline’s server and update the pass

with the new seat number. Apple refers to this kind of app as a companion app.

 Another feature that we didn’t cover is the ability of passes to contain a web API

URL where apps can register for push notifications. This allows you to push any

updates to passes to the individual users. This goes hand in hand with Apple’s Push

Notification service for updating passes. Read the documentation on Apple’s website

for all the features of Passbook and PassKit.

 I hope that you’re beginning to see the promise of Passbook, and that it doesn’t

have to be only for big corporate uses. With the information in this chapter, you can

come up with your own usage patterns. Your knowledge of Passbook and barcode

scanning will allow you to innovate at both ends.

 But Apple’s Passbook system couldn’t exist without system-level support for display-

ing barcodes. In the next chapter we’ll look at how iOS generates 2D barcodes.



97

Generating barcodes

Half of your world already has barcodes on it. The other half has only been waiting

for you to finish this chapter, so that you can remedy the barcode vacuum wherever

you might encounter it. This chapter will teach you how to generate barcodes for

display and print. With this knowledge under your belt, you’ll be able to extend

your scannable barcode universe virtually without limit.

 The ability to print barcode stickers was long the domain of large corporations or

supermarkets who could afford to buy special printers for this purpose. Nowadays

companies like Brother offer label printers that print to inexpensive thermal-paper

rolls for less than $100. Those make the physical printing of barcodes attainable for

everybody. In turn, Apple added AirPrint support for such label printers in iOS 7.

Wireless printing of single stickers from any iOS device is a huge convenience.

This chapter covers

■ Producing 2D barcodes for display and print 

with Core Image

■ Printing sheets of barcodes with AirPrint

■ Saving paper with the AirPrint Printer Simulator

■ Generating 1D barcodes with BarCodeKit

■ Printing to AirPrint roll-feed printers



98 CHAPTER 5 Generating barcodes

 For example, users could catalog their personal library and keep track of their

books by adding stickers stating, “This book is the property of ...” and a serial number

barcode. Another app might let you keep track of the contents of moving boxes—you

could keep track of what you put into which box, and then the app would create a

manifest listing the boxes and their contents. A barcode sticker affixed to each box

would link the box back to the matching manifest.

 A whole new world of creative and productive label apps is waiting to be created by

iOS developers.

5.1 Producing barcodes for display or print

In chapter 4 you created digital passes that included one of three different kinds of 2D

barcodes. In that chapter it was sufficient to include a pass’s content and type in the

pkpass JSON file. The barcode shown when presenting the pass was generated on the

fly by Passbook via the Core Image framework.

 Passbook passes are meant to be scanned off device screens by CCD-based scanners

or cameras. The reflectivity of the glass display plays tricks on laser-based scanners,

which are still widely used for scanning 1D barcodes. This is the official reason for the

lack of 1D barcode support in iOS.

To be able to generate 1D barcodes despite the lack of official support, I developed

BarCodeKit, a commercial framework that you can use to generate the most common

types of 1D barcodes. Readers of this book—as a thank you—receive a free license to

use BarCodeKit for their projects.

 Printing on iOS happens via AirPrint, which may initially seem somewhat difficult to

grasp because of the many options for simplified printing of objects such as images and

attributed strings. You’ll learn how to customize the rendering of content for print.

Besides traditional sheet-based printers, there are now roll printers that are particularly

well suited for printing barcode stickers. We’ll look at printing sheets of QR Code stickers

in the first half of this chapter, and individual serial number stickers in the second half. 

Requesting enhancements

Apple is an engineering-driven company with limited engineering resources. If you

wish for native support of 1D barcode generation in a future iOS version, please

pause right now and file an enhancement request on Apple’s bug reporter website

(https://bugreport.apple.com).

If you do file such an enhancement request, mention rdar://14767897 as the origi-

nal request for 1D barcodes, which will allow the Apple engineer dealing with your re-

quest to count it as a vote on the earlier request.

The bug reports and enhancement requests that gather the most votes—a.k.a.

dupes—have higher priority when Apple is putting together the feature set for the next

major iOS version.

https://bugreport.apple.com


99Producing barcodes for display or print

5.1.1 Thoughts on barcode size

When printing barcodes, you should consider the distance from which people will typ-

ically scan them. A 1D serial number sticker would typically be scanned from a short

distance. The minimum bar width a printer is able to output sets a lower limit on how

small you can print 1D barcodes.

 People scanning a QR Code on a poster might be much further away; for example,

the poster might be on the other side of the subway tracks. If the QR Code on such a

poster is too small, you’ll be putting people’s lives in danger if they have to lean over

the tracks to scan the code.

 As a rule of thumb for QR Codes, the width of the printed code should be no less

than a tenth of the scanning distance for low-complexity codes. The size of the code

needs to increase as complexity and error correction increase. For the highest-

complexity codes, you want the width to be at least a quarter of the scanning dis-

tance. If you put a QR Code with a diameter of 30 centimeters (about 12 inches)

into your office window, the maximum distance from which people could scan it is

about 3 meters (about 10 feet). 

5.1.2 QR Code error correction

QR Codes can have one of four error-correction levels, which determines the level of

redundancy spread over the area of the code:

■ L—7%

■ M—15% (iOS default)

■ Q—25%

■ H—30%

The higher the redundancy level, the more a code can be covered or damaged while

retaining its scannability.

 In figure 5.1 the content on the left was encoded four times with identical scaling

factors—only the redundancy level was modified. You can see that the size needed

increases with redundancy, and thus complexity.

L - 7% M - 15%

Q - 25% H - 30%

L

7%

M

15%

Q

25%

H

30%

Figure 5.1 QR Code 

error-correction levels



100 CHAPTER 5 Generating barcodes

BARCODE GURU TIP The error-correction level used is indicated in the QR

Code by the two squares (referred to as modules) next to the lower-left center-
ing mark, as shown in figure 5.1. Two black modules in this space indicate the
lowest level of error correction; if this space is void of modules, that indicates
the highest level of error correction. If you commit this to memory, you can
impress your friends by being able to tell them which error-correction level
was used just by glancing at a code on a poster.

Error-correction levels L and M are recommended for general marketing use. Levels

Q and H should be preferred in industrial scenarios, where keeping the code clean or

undamaged might be a challenge.

 For engineers, the error-correction level is a means to increase reliability. For

designers, it’s an opportunity for branding. Often

you’ll see parts of QR Codes replaced with a com-

pany logo or graphics, as in figure 5.2. For this

example, which is based on an H-level complexity

QR code, I counted off 10 modules from each

side toward the center, and placed my photo

within that boundary. 

 Other possible customizations include round-

ing off edges between modules, changing colors,

and sprinkling in tiny graphical accessories. As

long as there’s sufficient contrast between mod-

ules and enough information visible, the code

can still be scanned. QR Codes are an astonish-

ingly robust technology to be able to withstand

such an onslaught of design. 

5.2 Generating 2D barcodes

iOS 7 introduced generators for the three 2D barcode types supported in Passbook. Of

these, only the generator for QR Codes is a public API that you can use in App Store

apps. The other two—Aztec and PDF417—work just as well, but they’re undocu-

mented and thus considered private. I know this because I emailed the responsible

frameworks evangelist at Apple.

 But let’s not hang our heads in sadness over this. Of the bunch, QR Codes are by

far the most widely used and most versatile. QR Codes can be used to represent any

kind of data, but their most prevalent use is for containing a website address. 

 You probably have a stack of printed business cards that—unfortunately—lack a

scannable QR Code with your website address. How much more convenient would it be

if recipients of your cards could open your home page by simply scanning your card? 

 Manually copying a URL from a business card into your browser’s address bar is so

last century.

Works!

Figure 5.2 Adding a personal touch to 

a marketing QR Code



101Generating 2D barcodes

5.2.1 Building a QR Code Builder app

Let’s build an app to fix your business cards. You’ll configure and preview a QR Code

for your home page on the iOS device screen. You probably have many business cards

that need to be QR-enhanced, so we’ll focus on printing an entire sheet of identical

QR Code stickers that you can stick on the blank backs of your cards.

 The QR Code Builder app will have the following features:

■ The user can enter a website URL into a text field.

■ The app will generate a QR Code as the characters are input and display a live

preview.

■ The user can adjust the error-correction level with a slider.

■ The user can copy the image to the pasteboard with a long-press gesture.

■ The app will print the configured QR Code to a sheet of stickers.

The finished QR Code Builder app will look like figure 5.3. 

5.2.2 Introducing Core Image

At their core, images consist of colored pixels. Depending on the color space, they

might have different numbers of “channels,” most commonly red, green, blue, and

alpha. Usually one byte is used per channel. The size in bytes for such a bitmapped

image is calculated as width x height x bytes_per_channel x number_of_channels. 

 Core Graphics—a.k.a. Quartz—represents such bitmapped images as CGImage

instances. The Core Graphics framework is written in pure C, meaning that it’s impossible

to use CGImage instances directly with UIKit. Apple created UIImage as an Objective-C

wrapper class around CGImage to bridge the gap. UIImage instances usually carry a

CGImage in their belly that contains the actual image data.

Figure 5.3 Finished QR 

Code Builder app with 

printed output



102 CHAPTER 5 Generating barcodes

When manipulating images in UIKit or Quartz, you never get the benefit of the GPU.

That’s why Apple created Core Image as a framework for manipulating images in real

time with the full benefit of hardware acceleration by the graphics processor.

 In Core Image you don’t deal with individual pixels but rather with manipulation

steps. Each such step, represented by a CIFilter, is a recipe for manipulating images

represented by CIImage instances. If you chain multiple manipulation steps, Core

Image compiles those down to a single GPU program, called a shader. When you

request the final output of such a filter chain, the initial input is loaded on the GPU,

the compiled shader is run, and you receive the resulting output. Figure 5.4 shows a

CGImage being turned into a CIImage, the chained filters doing their work on that,

and a new CGImage being created via a CIContext.

 CIImage instances can be created from a wide variety of sources. Static images will

usually come from CGImage instances. You can also pass CVPixelBuffer instances if

you want to handle live video coming from an AVCaptureDevice (see chapter 2).

 Most Core Image filters have an inputImage parameter for supplying the source

image. One category of Core Image filters—the so-called generators—don’t, because they

themselves are able to generate images. Generators can serve as input for other filters,

Empty image, solid color, bitmap data,

CGImage, CVPixelBuffer, OpenGL texture

One or more filters

can be chained

CIImage

inputImage

CIFilter

CIFilter

outputImage createCGImage:fromRect:

CIImage

CGImage UIImage

CIContext

Figure 5.4 Core Image filter chain



103Generating 2D barcodes

or you can simply poll their output. For example, you can use CIConstantColor-

Generator for creating images consisting of a single solid color or CICheckerboard-

Generator for creating an image with a checkerboard pattern. 

 Let’s try out a simple Core Image generator by creating an 8 x 8 checkerboard suit-

able for display with a UIImageView. Note the use of CIColor for specifying colors and

CIVector for specifying an x-y offset. Those are the typical immutable parameter

objects used by Core Image. Values are specified as NSNumber objects:

CGFloat scale = [UIScreen mainScreen].scale;

CGRect bounds = self.imageView.bounds;
bounds.size.width *= scale;            
bounds.size.height *= scale;            

CGFloat oneSquareWidth = bounds.size.width/8.0;
CIColor *darkColor = [CIColor colorWithRed:0 green:0 blue:0];
CIColor *lightColor = [CIColor colorWithRed:0.9 green:0.9 blue:0.9];
CIVector *originOffset = [CIVector vectorWithCGPoint:CGPointZero];

CIFilter *filter = [CIFilter filterWithName:@"CICheckerboardGenerator"];
[filter setValue:@(oneSquareWidth) forKey:kCIInputWidthKey];
[filter setValue:originOffset forKey:kCIInputCenterKey];
[filter setValue:darkColor forKey:@"inputColor0"];
[filter setValue:lightColor forKey:@"inputColor1"];

CIContext *context = [CIContext contextWithOptions:nil];
CGImageRef cgImage = [context createCGImage:filter.outputImage

fromRect:bounds];
UIImage *image = [UIImage imageWithCGImage:cgImage           

scale:scale                 
orientation:UIImageOrientationUp];

CGImageRelease(cgImage);

self.imageView.image = image;

Generators output CIImage instances via their outputImage method. To use one with

UIKit, you need to render it into a CGImage by means of a CIContext. As you can see in

the preceding example, Core Image doesn’t have any knowledge of the device’s con-

tent scale, which would be 2 for Retina displays. Because of this, you need to double

the size of the generated image and then specify this scale in the method that makes a

UIImage out of the CGImage.

 This should give you enough information about the general workings of Core

Image generators. You’ll be using the specialized Core Image filters that generate 2D

barcodes next.

Get content 
scale from main 
device screen

Scale checkerboard bounds 
accordingly (Core Image 
works with actual pixels)

Prepare
filter

parameters

Create
generator

and set
parameters Plain Core 

Image context 
is sufficient

Render
Quartz

image via
the context

Wrap Quartz image into
a UIKit image object,

setting the scaleCreation method returns a +1 reference,
so you need to release the Quartz image



104 CHAPTER 5 Generating barcodes

5.2.3 Project setup for Core Image

Now that you understand the basics of Core Image, let’s take advantage of this knowl-

edge and implement the QR Code Builder app for producing QR Codes. 

 Start a new Xcode project from the Single View Application template. As you can

see in figure 5.5, I named the sample app QRBuilder. Add the CoreImage.framework to

the app target’s Link Binary With Libraries build phase, as shown in figure 5.5.

To add the corresponding import to the prefix header file and make Core Image

available throughout the app, put the following into your QRBuilder-Prefix.pch file:

#ifdef __OBJC__
#import <UIKit/UIKit.h>
#import <Foundation/Foundation.h>
#import <CoreImage/CoreImage.h>

#endif  

Barcode scanning in Core Image

In iOS 8, Core Image’s CIDetector gained the ability to scan rectangles and QR

Codes. Up until iOS 7, it could only be used to detect faces. Core Image is designed

to work with static images, so this is more of a novelty than of practical use for bar-

code scanning. It would be frustrating for users to have to retake pictures until they

finally detect a barcode. 

Figure 5.5 Link app with Core Image

Framework autolinking

The LLVM compiler is able to automatically link most common system frameworks

without you having to link or import anything. The Link Frameworks Automatically build

setting is enabled by default for new projects.



105Generating 2D barcodes

For the basic UI of the QR Code Builder app, you’ll need to add the following items to

the storyboard, with the standard spacing suggested by Interface Builder:

■ Add a UIImageView sized 160 x 160 points to the top left of the view, and set the

view mode to Center. This will display the QR Code preview.

■ Add a UISlider below it. Use the inspector to configure the minimum value

as 0, the maximum value as 3, and the current value as 0. This will allow users

to set the error-correction level.

■ Add a UITextField below that, and add placeholder text to show that users will

enter a URL here. Set the URL keyboard type and disable autocorrection. This is

where users will enter the QR Code contents.

Figure 5.6 shows these three UI controls making up the user interface. You can also

configure the autolayout constraints so that elements stretch together with the view.

All elements are positioned such that, if the keyboard shows, they remain visible.

 Create three outlets in ViewController.h to connect to the three UI elements you

just added to the storyboard by Ctrl-dragging them from Interface builder onto the

(continued)

Any iOS app includes UIKit, and its UIImage.h header references Core Image, so you

don’t need to manually import the header. This is also why the autolinking feature

can add Core Image for you. Nevertheless, it’s good to know what’s going on behind

the scenes and how to include frameworks manually if necessary.

Figure 5.6 Set up the basic user interface.



106 CHAPTER 5 Generating barcodes

Assistant Editor view showing the view controller’s header file (see figure 5.7). These

new outlet properties will allow you to interact with these elements from inside the

view controller’s implementation.

 With the same Ctrl-drag technique, add and connect an IBAction for the slider’s

Value Changed action and another IBAction for the text field’s Editing Change

action in ViewController.m (see figure 5.8). Those fire every time there’s a change in

the slider’s position or text is entered into the text field.

 This concludes the basic app setup. These controls will give you the input values

for generating your QR Code. 

Figure 5.7 Ctrl-drag to create and connect outlets.

Figure 5.8 Ctrl-drag to create and connect actions.



107Generating 2D barcodes

5.2.4 Generating QR Codes with Core Image

The Core Image generator for producing QR Codes is CIQRCodeGenerator. You create

the generator object, set the contents in the inputMessage parameter, and retrieve

the CIImage from the outputImage property:

NSString *text = @"A message";
NSData *data = [text dataUsingEncoding:NSUTF8StringEncoding];
CIFilter *code = [CIFilter filterWithName:@"CIQRCodeGenerator"];
[code setValue:data forKey:@"inputMessage"];
[code setValue:@"H" forKey:@"inputCorrectionLevel"];
CIImage *output = code.outputImage;

The inputCorrectionLevel parameter specifies the error-correction level for output

QR Codes. If you omit this parameter, the generator defaults to the 15% level (M). All

the error-correction levels mentioned in section 5.1.2 are available for this parameter. 

 The CIImage that comes out of the generator is not yet usable with UIKit. It first

needs to be rendered and scaled. 

SCALING QR CODES

The generator creates an image with a module size of 1 pixel. There’s no parameter to

increase the module size coming out of CIQRCodeGenerator, so you need to scale

those tiny QR Codes to a more useful size.

 A CIImage isn’t a finished image but rather a recipe that’s executed when you render

the image into some context. There’s a method to make a UIImage from a CIImage, but

if you set this on a UIImageView, you’ll find that it gets blurry as it’s scaled up. iOS gives

you no control over the interpolation that happens in the Core Image filter chain.

 The best way around this limitation is to render the CIImage into a CGImage of

same size first. Then you can scale the resulting CGImage and disable interpolation on

the CGContext. The following convenience method does that for you:

- (UIImage *)_scaledImageFromCIImage:(CIImage *)image
  withScale:(CGFloat)scale {

CIContext *ciContext = [CIContext contextWithOptions:nil];
CGImageRef cgImage = [ciContext createCGImage:image

      fromRect:image.extent];
CGSize size = CGSizeMake(image.extent.size.width * scale,

    image.extent.size.height * scale);
UIGraphicsBeginImageContextWithOptions(size, YES, 0);
CGContextRef context = UIGraphicsGetCurrentContext();

Convert the barcode
message to UTF-8 data.Create the

QR Code
generator.

Set the data as 
a parameter.

Set the error-
correction

level; defaults
to “M” if
omitted.

Retrieve the generated
output image.

Create
Core

Image
context

Create CGImage by
rendering the

CIImage into the
CIContext

Calculate
scaled-up size

Begin new 
image context, 
opaque and 
with automatic 
content scale

Retrieve
CGContext

for drawing
with Quartz



108 CHAPTER 5 Generating barcodes

CGContextSetInterpolationQuality(context, kCGInterpolationNone);
CGAffineTransform flip = CGAffineTransformMake(1, 0, 0, -1, 0,

    size.height);
CGContextConcatCTM(context, flip);
CGRect bounds = CGContextGetClipBoundingBox(context);
CGContextDrawImage(context, bounds, cgImage);
UIImage *scaledImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(cgImage);
return scaledImage;

}

HOOKING UP THE INTERACTIVE CONTROLS

The preceding method goes into ViewController.m, together with the code shown

next, which updates the QR Code preview on several occasions—when the view is

first shown and whenever the slider is moved or the text field contents are changed:

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];
[self _updateBarcodePreview];

}

- (void)_updateBarcodePreview {
NSString *text = self.textField.text;
NSData *data = [text dataUsingEncoding:NSUTF8StringEncoding];
CIFilter *code = [CIFilter filterWithName:@"CIQRCodeGenerator"];
[code setValue:data forKey:@"inputMessage"];

NSUInteger errorCorrLevel = roundf(self.slider.value);
switch (errorCorrLevel) {

    case 0:
    [code setValue:@"L"

    forKey:@"inputCorrectionLevel"];
    break;

    default:
    [code setValue:@"M"

    forKey:@"inputCorrectionLevel"];
    break;

    case 2:
    [code setValue:@"Q"

    forKey:@"inputCorrectionLevel"];
    break;

    case 3:
    [code setValue:@"H"

    forKey:@"inputCorrectionLevel"];
    break;

}

Disable interpolationFlip coordinates
so that upper

side of QR Code
has two boxes

Get current
drawing bounds

Draw temporary 
CGImage into the 
new context

Retrieve
UIImage from
image context

Release image
context

Release
temporary

CGImage

Update QR Code 
with initial content

Set error-correction 
level based on slider 
position



109Generating 2D barcodes

CGSize originalSize = code.outputImage.extent.size;
CGSize maxSize = self.imageView.bounds.size;
NSInteger scale = truncf(MIN(maxSize.width/originalSize.width,

maxSize.height/originalSize.height));
UIImage *scaledImage = [self _scaledImageFromCIImage:code.outputImage

    withScale:scale];
self.imageView.image = scaledImage;

}

- (IBAction)sliderChanged:(UISlider *)sender {
[self _updateBarcodePreview];

}

- (IBAction)textFieldChanged:(UITextField *)sender {
[self _updateBarcodePreview];

}

@end

Launch the app now and enter a web address in the text field. If you move the slider

from left to right, you’ll see the generator adding additional complexity to the pre-

view image. This is the additional redundancy for the higher error correction. 

5.2.5 Copying the QR Code to the pasteboard

Generating and previewing the QR Code is nice, but if you can’t get the code out of

the app, it gets old quickly. We’ll add the ability to long-press the preview image to

copy it to the device pasteboard. This way the user can configure a QR Code and then

copy/paste it into another app.

 Create a subclass of UIImageView named DTBarcodeImageView with the following

implementation:

@implementation DTBarcodeImageView

- (instancetype)initWithFrame:(CGRect)frame {
self = [super initWithFrame:frame];
if (self) {

    [self _commonSetup];
}
return self;

}

- (void)awakeFromNib {
[self _commonSetup];

}

Find a 
scale factor 
that fits in 
image view 
bounds

Update QR 
Code when 
slider is moved

Update QR Code 
for changes to 
text field



110 CHAPTER 5 Generating barcodes

- (void)_commonSetup {
UILongPressGestureRecognizer *longPress =               
[[UILongPressGestureRecognizer alloc] initWithTarget:self

action:@selector(handleLongPress:)];
[self addGestureRecognizer:longPress];                   
self.userInteractionEnabled = YES;

}

- (BOOL)_hasBarcodeSet {  
if (self.image) {       

    return YES;             
}                       
return NO;             

}                         

- (BOOL)canBecomeFirstResponder {
return [self _hasBarcodeSet];  

}                                

- (BOOL)canPerformAction:(SEL)action withSender:(id)sender {
if (action == @selector(copy:)) {  

    return [self _hasBarcodeSet];       
}
return [super canPerformAction:action withSender:sender];

}

- (void)copy:(id)sender {
[[UIPasteboard generalPasteboard] setImage:self.image];

}

- (void)handleLongPress:(UILongPressGestureRecognizer *)gesture {
if (gesture.state == UIGestureRecognizerStateBegan) {

    if (![self _hasBarcodeSet]) {  
    return;                    

    }                             
    [self becomeFirstResponder];
    UIMenuController *menu =

    [UIMenuController sharedMenuController];      
    [menu setTargetRect:self.bounds inView:self];      
    [menu setArrowDirection:UIMenuControllerArrowLeft];
    [menu setMenuVisible:YES animated:YES];           
}

}

@end

In Interface Builder (see figure 5.8), change the class name for the image view to

DTBarcodeImageView. No other changes are necessary. 

 If you push down on the image view (see figure 5.9), the context menu appears,

offering a friendly Copy option. Click on it to copy the barcode image to the paste-

board. To verify that this worked, switch to any other app that lets you paste images,

such as the Mail app when you begin a new email. Pasting there from the pasteboard

should reveal the same barcode you configured in your QR Code Builder app. 

Install long-press
gesture recognizer

Enable user interaction; 
image views have this 
disabled by default

Convenience
method to

determine if an
image is set

Can only become 
first responder if 
there is image 
content

Determine if Copy
context menu action

should be possible

Put current
image contents
into the global

pasteboard

Ignore long-press if 
there’s no image set

Becoming first
responder

makes iOS show
context menu on

next run loop

Configure 
context menu



111Generating 2D barcodes

At this point, the image copied to the pasteboard is the same as the one displayed in

the image view. For some use cases you might find it desirable to put a larger-scale bar-

code image on the pasteboard. To do this you’d have to hold onto the CIImage com-

ing out of the Core Image generator and then produce a larger-scale image for this

purpose. You shouldn’t have any trouble implementing this on your own. 

5.2.6 Private APIs for Aztec and PDF417 codes

If you want to be bold and experiment with creating the two private types shown in fig-

ure 5.10, you can. You only have to replace CIQRCodeGenerator with CIAztecCode-

Generator or CIPDF417BarcodeGenerator in the ViewController.m QRCode view pre-

view update. Remove the inputCorrection parameter, because this isn’t supported for

these codes.

 For apps that you plan to put on the App Store, you have to stick to the public

CIQRCodeGenerator. Enterprise apps, on the other hand, can make use of these pri-

vate barcode types because they don’t have to be approved by the app review team.

 I have a strong feeling that Apple will make these public as soon as it’s convenient

for them. You can help them along with their decision by sending them an enhancement

Figure 5.9 QR Code Builder 

app showing Copy menu

CIQRCodeGenerator CIAztecCodeGeneratorCIPDF417BarcodeGenerator

Figure 5.10 One public and two private 2D barcode generators



112 CHAPTER 5 Generating barcodes

request. If you find a strong use case in an enterprise scenario, be sure to mention this

to Apple.

NOTE In iOS 8, Apple added a Core Image generator for Code 128,
CICode128BarcodeGenerator. Until Apple adds documentation for it, you
should also consider it a private API. 

5.2.7 Printing barcodes with AirPrint

Displaying your QR Code on the device’s screen is a nice first step, but printing it on

something physical can make it much more useful. This section will show you how to

print a grid of QR Codes on a sheet of paper or stickers.

There are two main ways that allow the user to pick a printer and options: UIPrint-

InteractionController and UIActivityViewController. The former takes the user

straight to the print options. The latter displays the Print button next to other activi-

ties like copying or sharing the item over social networks.

 If you choose the Print button on an activity view controller, iOS will also present

the print options from the print interaction controller. Think of the activity view as an

extra option allowing the user to perform other activities besides printing on a

selected item.

 Of these, UIPrintInteractionController is the simpler view controller—you

always use the shared instance you get from the +sharedPrintController method.

When you use this controller, you need to specify what to print. There are four ways to

do that, as shown in figure 5.11.

 iOS is able to do a good job of representing most common file types on paper. You

can simply pass one printItem or an array of printItems to iOS and have the operat-

ing system take care of the layout and drawing. Let’s try this first.

 

 

 

No more printer drivers

The big idea behind AirPrint is that it eliminates the need for printer drivers altogether.

Any iOS device and any modern Mac are able to print to any AirPrint-enabled printer.

Even though the prefix “Air” suggests something wireless, the AirPrint protocol works

just as well over an Ethernet connection.

Printer companies are able to license AirPrint for zero cost. There’s no better deal

than free, and this is why most printer vendors are adding it to their new models. Of-

ten AirPrint can also be added by means of a free firmware update.

Apple maintains a list of all certified printer models in their knowledge base (http://

support.apple.com/kb/HT4356). Those models have gone through a testing proce-

dure to ensure that the AirPrint protocol has been implemented correctly. 

http://support.apple.com/kb/HT4356
http://support.apple.com/kb/HT4356


113Generating 2D barcodes

With Interface Builder, add a new Print button to the right of the QR Code preview.

Connect that to a new print: action in ViewController.m:

- (IBAction)print:(id)sender {
UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputGrayscale;
printInfo.jobName = @"QR Codes";
printInfo.duplex = UIPrintInfoDuplexNone;

UIPrintInteractionController *printController =     
    [UIPrintInteractionController sharedPrintController];
printController.printInfo = printInfo;
printController.showsPageRange = NO;
printController.printingItem = self.imageView.image;

void (^completionHandler)(UIPrintInteractionController *,
    BOOL, NSError *) =                  

    ^(UIPrintInteractionController *printController,          
    BOOL completed, NSError *error) {                      

    if (!completed && error) {                                
    NSLog(@"FAILED! Error in domain %@ with code %ld",      

    error.domain, (long)error.code);                  
    }                                                         
};                                                       

[printController presentAnimated:YES             
    completionHandler:completionHandler];

}

iOS does its best to

print it nicely

Best method if you want to

be in charge of layout and

drawing of pages

Apple provides:

UISimpleTextPrintFormatter

UIMarkupTextPrintFormatter

UIViewPrintFormatter

UIPrintInteractionController

printingItem
Single NSData, NSURL,

UIImage, ALAsset object

printingItems
Array of NSData, NSURL,

UIImage, ALAsset objects

printPageRenderer
Object is called to render

each page

printFormatter
Single formatter is called

to fill all pages 

Pick

one

Figure 5.11 Four ways to specify what to print

Create printInfo
object to take on
hints for AirPrint

Grayscale is
good enough
for QR Code

Set a job name for user’s benefit 
(the default is the app name)No duplex

printing
necessary for
a single item Get shared 

print 
interaction 
controller

No range
selection

necessary for
a single item

Set current
preview image as

the print item

Completion 
handler 
logs an 
error if 
there was 
a problem

Show print
interaction controller



114 CHAPTER 5 Generating barcodes

You should give AirPrint some hints about what you’re trying to do by specifying prop-

erties in a UIPrintInfo object as needed. This enables iOS to select the best paper and

optimal color settings for your print job. 

5.2.8 Saving trees with the iOS Printer Simulator

Apple provides a Printer Simulator app that prints to PDF, allowing you to test how

your code will print without wasting any trees. It’s included in the Hardware IO Tools

for Xcode package available on the Apple developer downloads portal (https://

developer.apple.com/downloads/index.action). You can launch it via the Xcode >

Open Developer Tool > Printer Simulator menu option. As long as the Printer Simula-

tor is running on any Mac in your WiFi network, all the simulated printers will be visi-

ble to any simulated or physical iOS device.

 Figure 5.12 shows the Printer Simulator app in use. The yellow border you see

around printed pages marks the nonprintable area that printers typically have. This

example came out somewhat blurry because of the small preview image being scaled

up to the page size. In real life you’d send a higher-resolution image or create a cus-

tom page renderer, as we’ll do in the next section.

Figure 5.12 Simulated sample app printing to simulated inkjet printer

https://developer.apple.com/downloads/index.action
https://developer.apple.com/downloads/index.action


115Generating 2D barcodes

Various kinds of printers are available for testing printing, as you can see in figure 5.13.

You can also “load” different kinds of simulated printing media into the simulated print-

ers by clicking on the Load Paper toolbar button. 

 The simulated label printer in the bottom left of figure 5.13 will be important in

the second half of this chapter, where you’ll be printing individual labels. For label

printers, the 2” Roll and 4” Roll options simulate endless rolls where the cut length is

relevant. The other options simulate precut stickers.

 The iOS Printer Simulator is a great tool that lets you try out many different combi-

nations of printers and output media. Nevertheless, I advise you to try printing on a

physical printer before you ship an AirPrint-enabled app to the App Store. 

5.2.9 Custom drawing with UIPrintPageRenderer

Apple provides several specialized subclasses of UIPrintFormatter for laying out sim-

ple text, attributed strings, and views. We won’t be looking at those because our ulti-

mate goal is to print a grid of QR Codes. 

Figure 5.13 Simulated media options in iOS Printer Simulator



116 CHAPTER 5 Generating barcodes

 To render a sheet of QR Codes, we’ll create a specialized page renderer that deter-

mines how many pages there are and how to render each page for a given index.

Although UIPrintFormatter is a public API, Apple discourages developers from sub-

classing UIPrintFormatter themselves. Instead, you should customize a UIPrint-

PageRenderer for custom printing. Pages can either be completely custom-drawn or

you can specify print formatters to be used if you want to mix custom-drawing with

pages containing only text.

 There are four relevant rectangles on each page: 

■ paperRect always has a (0,0) origin and specifies the media size for the sheet of

paper being printed on. 

■ printableRect specifies the actual area on the page that the printer is physi-

cally able to print on.

■ headerHeight and footerHeight specify the heights of the header and footer

respectively. By default, these heights are set to zero, but if you set them to a

greater value, their custom drawing methods are called.

Figure 5.14 shows where these rectangles are located on a piece of print media.

 All previously mentioned rectangles are measured in points, and 1 point equals 1/72

of an inch. You can calculate the number of points in a print of a given size by multiplying

-drawContentForPageAtIndex:inRect:

-drawFooterForPageAtIndex:inRect:

-drawHeaderForPageAtIndex:inRect:

footerHeight

headerHeight

printableRect

paperRect

Figure 5.14 UIPrintPageRenderer methods and properties



117Generating 2D barcodes

the print size in inches by 72. If you’re using centimeters, multiply the size in centimeters

by 72 and then divide the result by 2.54. Here are two preprocessor macros to simplify

the math for you:

#define IN_TO_POINTS(in) in*72.0
#define CM_TO_POINTS(cm) cm*72.0/2.54

For this example, we don’t care about the header or footer so we won’t set a height for

either. To further simplify the example, we’ll assume fixed label sizes. You’ll position

the labels relative to the paperRect’s origin (top left). You’ll likely need to adjust the

following measurements to fit your own sticker sheets:

#define MARGIN_TOP_CM 1.0
#define MARGIN_LEFT_CM 1.0
#define LABEL_WIDTH_CM 1.5
#define LABEL_HEIGHT_CM 1.5
#define MARGIN_AROUND_IMAGE_CM 0.125

With these measurements defined, you can implement the method for drawing the

page content in QRCodeSheetRenderer as follows:

- (void)drawContentForPageAtIndex:(NSInteger)pageIndex
    inRect:(CGRect)contentRect {

CGRect labelRect = CGRectMake(CM_TO_POINTS(MARGIN_LEFT_CM),
    CM_TO_POINTS(MARGIN_TOP_CM),      
    CM_TO_POINTS(LABEL_WIDTH_CM),     
    CM_TO_POINTS(LABEL_HEIGHT_CM));   

while (1) {
    [self drawLabelInRect:labelRect];
    labelRect.origin.x += CM_TO_POINTS(LABEL_WIDTH_CM);
    if (CGRectGetMaxX(labelRect)>=CGRectGetMaxX(contentRect)) {

    labelRect.origin.x = CM_TO_POINTS(MARGIN_LEFT_CM);  
    labelRect.origin.y += CM_TO_POINTS(LABEL_HEIGHT_CM);
    if (CGRectGetMaxY(labelRect)>=CGRectGetMaxY(contentRect)) {

    break;                                                   
    }                                                          

    }
}

}

You need something to draw, so let’s add an image property to the QRCodeSheet-

Renderer header. You can set this image to be repeated on all stickers:

@interface QRCodeSheetRenderer : UIPrintPageRenderer
@property (nonatomic, strong) UIImage *image;
@end

Now you can implement the method for drawing individual labels:

- (void)drawLabelInRect:(CGRect)labelRect {
CGContextRef ctx = UIGraphicsGetCurrentContext();
CGContextSaveGState(ctx);
CGContextSetInterpolationQuality(ctx, kCGInterpolationNone);
CGFloat imageMargin = CM_TO_POINTS(MARGIN_AROUND_IMAGE_CM);
CGRect imageRect = CGRectInset(labelRect, imageMargin, imageMargin);

First label
is at top

left of
sheet

Draw label
in the

calculated
rectangle

Go to 
label to 
the right 
of the 
current 
one

At end of row,
go back to

first column
and next row Once printable rect has

been filled, you’re done

Disable
interpolation to
get crisp, scaled

code modules

Calculate
inset

rectangle
 for QR

 Code image



118 CHAPTER 5 Generating barcodes

[self.image drawInRect:imageRect];
CGContextRestoreGState(ctx);

}

As you can see, there’s nothing out of the ordinary in the drawing code. You’re using

the same functions and methods you’ve always used for drawing the contents of cus-

tom views. UIPrintPageRenderer takes care of setting up the graphics context to fit

the points-based coordinate system on each sheet of print media. You don’t have to

learn any new functions for drawing on paper.

 Compared to a view’s drawRect:, you can think of the inset printable region as the

clipping rectangle. Only what you draw inside of that area will appear on paper. Some

printers are able to print photos with no borders, but your code still needs to assume

that there will be a margin that can’t be reached by your drawing operations. 

5.2.10 AirPrint paper selection

By default, AirPrint selects the paper to be used based on the specified outputType

and device locale. If you specified that you’ll be printing photos, the output size

defaults to an appropriate small photo size like 4 x 6 inches or A6. The general and

grayscale output types default to US-letter or A4 format.

 The print interaction controller can have a delegate with a method for inquiring

about paper size. Print interaction delegate objects can implement one or more meth-

ods of the UIPrintInteractionControllerDelegate protocol. The simplest imple-

mentation uses a UIPrintPaper class method to select an optimal paper from the list

of papers the printer provides. The following code snippet informs the print interac-

tion controller that the app would prefer US-letter-sized paper for output. As before,

the size is specified in points:

- (UIPrintPaper *)printInteractionController:
(UIPrintInteractionController *)printInteractionController

choosePaper:(NSArray *)papers {
CGSize requiredSize = CGSizeMake(8.5 * 72, 11 * 72);
return [UIPrintPaper bestPaperForPageSize:requiredSize

    withPapersFromArray:papers];
}

Paper and tray selection through AirPrint is opaque to developers. Newly certified

printers are required to have paper sensors so that they can accurately report what

kind of media they have loaded. Apple’s philosophy with AirPrint is to unburden the

user from having to wade through many screens of printer settings. Instead, you—on

behalf of the user—make a few assertions about ideal paper size and output type, and

AirPrint does the rest. 

5.2.11 QR Code Builder app summary

Your QR Code Builder app is now feature-complete, as far as this chapter is concerned.

You can configure a QR Code for a web address and then print a sheet of copies. 

Draw QR Code into 
the calculated 
rectangle



119Generating 1D barcodes

 There are many enhancements you could make to the app, such as encoding a

vCard for your business as the code data. You could also implement a view for config-

uring the positions and sizes of stickers on specific sticker sheets. Such a view would

have to be called before showing the print interaction controller, because the print

interaction controller triggers the actual printing.

5.3 Generating 1D barcodes

With iOS 7 and 8, Apple only supports the generation of 2D barcodes via Core Image,

so I created BarCodeKit to fill this niche until Apple adds 1D barcode generators to

the operating system. There’s no shortage of application scenarios where you might

want to display or print 1D barcodes. One example I’ve encountered is an app for

beer connoisseurs that lets users scan the GTIN barcode on a bottle of beer to track

which bottles they have in their collection or have tasted. The app displays the GTIN

barcode on the details page for each beer—a crisply rendered barcode looks much

nicer than a photo. 

 Previous sections in this chapter introduced you to AirPrint for getting user-

generated content into the physical world. Whereas you’ll generally want to print a

larger number of identical QR Codes on a sheet of stickers, 1D barcodes are typically

serial numbers or product codes that you’ll want to print one at a time. This makes their

production an ideal use case for the

new breed of roll-feed printers. They

allow you to output a single sticker

from the roll without having to waste

an entire sheet of stickers.

 Label printers have dropped in

price to below $100, which makes

them an inexpensive convenience to

keep around. Some AirPrint-enabled

models, like the Brother QL-710W

(see figure 5.15), feature built-in

WiFi, which makes it easy to hook

them into your wireless network for

printing from your iOS devices. In

this section you’ll learn how to gener-

ate 1D barcodes and how to support

roll-feed printers over AirPrint. 

5.3.1 Building a Serial Number Tag app

Imagine that you have an inventory system—like one you’d find in a corporation’s IT

department—where each computer gets a unique serial number. Those inventory num-

bers let the system keep track of hardware assigned to individual employees and also keep

track of issues afflicting particular machines in the corporation’s help-desk software.

Figure 5.15 Brother QL-710W WiFi label printer



120 CHAPTER 5 Generating barcodes

 The app you’ll build next will produce a single serial number barcode sticker to

affix to one machine. You want to implement the following features:

■ Allow the user to enter a numeric serial number into a text field

■ Encode the serial number as a Code 93 barcode

■ Show a preview of the serial number sticker on the screen as you type

■ Print a single sticker on a roll-feed printer over AirPrint

The finished Serial Number Tag app is shown in figure 5.16. 

5.3.2 Introducing BarCodeKit

When I began to research material for this book, I looked for open source projects

that would produce 1D barcodes on iOS. Jeff LaMarche created CocoaBarCodes for

OS X, which was last updated in May 2009. Chris Zelenak forked the project and

implemented basic support for iOS, mostly by commenting out Mac-specific code.

This project was abandoned in January 2013.

 This prompted me to start a fresh project. My design goals for BarCodeKit were to

build it using modern object-oriented methodologies, use ARC, and make sure it was

simple to extend. Three volunteers and I gradually enhanced BarCodeKit to support

the most commonly used 1D barcode symbologies. Besides all the 1D barcode types

that iOS (italic in this list) can scan, many more are supported:

■ Codabar ■ GTIN family: EAN-8, EAN-13, UPC-A, UPC-E, EAN-2, EAN-5

■ Code 11 ■ Interleaved 2 of 5, ITF-14

■ Code 39 (plain, modulo 43, full ASCII) ■ MSI

■ Code 93 ■ Pharmacode One Track

■ Code 128 ■ Standard 2 of 5

■ Facing Identification Mark (FIM)

Figure 5.16 Finished Serial 

Number Tag app with one print-

ed label



121Generating 1D barcodes

The BarCodeKit source is included with the other source code for this book

(www.manning.com/BarcodeswithiOS). Open the Xcode project and run the iOS

demo (shown in figure 5.17) to try out the various barcode types and settings.

 To the outside world, BarCodeKit is a commercial library that costs €150 to license

per developer. But because I want to thank you for reading this book, you get a free

license. As long as you own a copy of this book, you may use BarCodeKit in all your

apps at no charge. 

5.3.3 Adding BarCodeKit to your project

To start on the Serial Number Tag app, create a new iOS app project based on the Sin-

gle View Application, and name it SerialSticker. 

 The next step is to add BarCodeKit as a dependency to your project and link in its

static library target to make its functionality available to your app. Create a new group

to take on external references via File > New Group, and name it Externals. Drag Bar-

CodeKit.xcodeproj from the BarCodeKit folder in the sample code into this group

(see figure 5.18). 

 When you add a file to a project like this, it won’t ask if you want to add a copy of

the file or add a reference to it. The default for project files is to add a reference. Proj-

ect files often have relative references to other resources and source files, so it

wouldn’t make much sense to add a copy of the xcodeproj to your project, because

that would break those relative paths. Dropping the project file reference into your

project makes it a subproject. 

 Click on the SerialSticker root in the Xcode project navigator to reveal the targets

and build settings in the right pane. In the SerialSticker target, under Build Phases,

Figure 5.17 BarCodeKit 

iOS demo app

www.manning.com/BarcodeswithiOS


122 CHAPTER 5 Generating barcodes

click on the plus button to reveal possible frameworks and libraries you can link to

your app (see figure 5.19). Add the libBarCodeKit.a static library for iOS.

Figure 5.18 Making BarCodeKit a subproject

Figure 5.19 Linking with the BarCodeKit library for iOS



123Generating 1D barcodes

When building your app, Xcode checks to see if all dependencies have been built

before building the app itself. From this reference to the iOS static library, the build

system knows that it needs to build the product of the subproject first. You can easily

verify this by building the app now (Cmd-B). In the build log you’ll see that BarCodeKit

(iOS) gets built first and the SerialSticker target follows suit (see figure 5.20).

 Even though you never explicitly specified that the static library would be needed at

link time, it still gets built in time. This is why it’s called an implicit dependency. Xcode infers

it. If you wanted to be explicit about this necessity, you could add an explicit dependency in

the Target Dependencies build phase, but modern Xcode has made this obsolete.

 When linking in static libraries containing Objective-C code, you need to give the

linker a hint indicating that. The -ObjC linker flag does that. Most importantly, this

flag enables the linker to also load categories from the static library. Without this set-

ting, the linking build phase would fail because in BarCodeKit there’s a category on

UIImage. The -ObjC linker flag is added in the app target’s Build Settings tab in the

Other Linker Flags line (see figure 5.21).

Figure 5.20 Implicit dependency built before app itself

Figure 5.21 Adding the -ObjC linker flag



124 CHAPTER 5 Generating barcodes

You tell Xcode where it can find the BarCodeKit header files by specifying this location

in the target’s build settings, on the User Header Search Paths line (see figure 5.22).

Select the recursive option so that Xcode will look for headers in this folder and all

its subfolders. 

SETTING THE USER HEADER SEARCH PATHS The User Header Search Paths set-
ting is relative to the location of the app’s project file. In the book’s sample
code, you get to it by going up one folder to the samples root and back down
one folder into BarCodeKit. Depending on your project setup, the Bar-
CodeKit sources might be in a different location. Adjust the path accordingly.

I recommend adding imports for larger framework or library headers to the prefix

header file because this speeds up compilation and saves you from having to repeat

the import in every class you’re using it from. Put the following in your SerialSticker-

Prefix.pch file:

#ifdef __OBJC__
#import <UIKit/UIKit.h>
#import <Foundation/Foundation.h>
#import "BarCodeKit.h"

#endif

After these setup steps are complete, you’re ready to use BarCodeKit functionality to

generate 1D barcodes. 

5.3.4 Setting up the Serial Number Tag app’s UI

Your Serial Number Tag app needs a UI so that you can enter the serial number in a

UITextField, view a preview in a UIImageView, and have a UIButton to push for print-

ing the sticker.

Figure 5.22 Specifying the header search path



125Generating 1D barcodes

Position those three UI elements in Interface Builder as shown in figure 5.23. Set the

image view’s content mode to Center. Set the text field’s placeholder, and change the

keyboard to the Number Pad option.

 You need IBOutlets in the ViewController.h header for the field and image views

so that you can manipulate them from code. Open the header in Assistant Editor and

Ctrl-drag them to the header to make them outlets (see figure 5.24).

 Similarly, Ctrl-drag from the button and text fields (see figure 5.25) into the View-

Controller.m implementation file to create IBActions. The control event type for the

button should be Touch Up Inside. You want to get all changes for the text field, so pick

Value Changed.

Figure 5.23 Basic UI for the Serial Number Tag app

Figure 5.24 Connecting Serial Number Tag app outlets



126 CHAPTER 5 Generating barcodes

Do a quick test to see if everything is connected correctly by adding two quick NSLog

statements, as follows. The editor will show filled bullets to the left of the method pro-

totypes to indicate the connection:

- (IBAction)print:(UIButton *)sender {
NSLog(@"Print pushed");

}

- (IBAction)textFieldChanged:(UITextField *)sender {
NSLog(@"New value: %@", sender.text);

}

If you type in the text field, you should get output after each typed number and a sin-

gle log entry if you click on the Print button. Now you’re ready to start converting the

serial number into a barcode. 

5.3.5 Generating 1D barcodes with BarCodeKit

Barcodes in BarCodeKit are all concrete subclasses of BCKCode. With the previous

setup out of the way, you can create a Code 93 from the text field’s contents. The fol-

lowing snippets all go into ViewController.m. 

 Let’s start with a convenience method that gets you the current barcode:

- (BCKCode *)_currentBarcodeFromTextField {
NSError *error;
BCKCode93Code *code = [[BCKCode93Code alloc]           

    initWithContent:self.textField.text
    error:&error];             

Figure 5.25 Connecting Serial Number Tag app actions

Create new 
Code 93 object



127Generating 1D barcodes

if (!code) {                               
    NSLog(@"%@", [error localizedDescription]);
}                                          

return code;
}

BCKCode doesn’t have a built-in graphical representation because it’s essentially only a

string of bars and spaces. To get an image representation, you use a category method

on UIImage that takes an optional dictionary of rendering options. The single most

important rendering option is BCKCodeDrawingBarScaleOption, which defaults to 1.

This is the number of points representing each barcode module.

 Now you can add some code to refresh the barcode preview when the view control-

ler loads the first time and whenever something is typed into the text field:

- (void)viewDidLoad {
    [super viewDidLoad];

self.textField.text = @"1234567890";
[self _updatePreviewImage];

}

- (void)_updatePreviewImage {
BCKCode *barcode = [self _currentBarcodeFromTextField];

if (!barcode) {
    self.imageView.image = nil;
    return;
}

NSInteger barScale = BCKCodeMaxBarScaleThatFitsCodeInSize(barcode,
    self.imageView.frame.size,

     nil);       
NSDictionary *options = @{BCKCodeDrawingBarScaleOption: @(barScale)};
UIImage *image = [UIImage imageWithBarCode:barcode options:options];
self.imageView.image = image;

}

- (IBAction)textFieldChanged:(UITextField *)sender {
[self _updatePreviewImage];

}

The BCKCodeMaxBarScaleThatFitsCodeInSize convenience function determines the

maximum bar scale at which the resulting image will still fit in the specified space. By

only using integer values for the bar scale, you ensure that entire pixels are always

painted with the bars. Otherwise you’d get anti-aliasing effects, causing the bars to be

blurry and possibly even unscannable. This is the same reason you disabled scaling for

the preview imageView when setting up the UI in Interface Builder. 

 At this point you can build and run the sample app. Type in various serial numbers

and observe how the preview barcode is updated constantly. You’ll also find that you

Log error if the text field 
contents are invalid for 
producing a code object

Set initial value 
for text field

Call preview refresh 
method after view 
is loaded

Remove previous 
preview image if 
there was a problem

Determine
maximum bar
scale at which

the preview
image still fits

the image
view

Create
rendering

options
dictionary

Create image from
the barcode using

the rendering
optionsSet generated

image on the
preview image

view
Call preview refresh method

after text field is modified



128 CHAPTER 5 Generating barcodes

can enter a limited range of nondigit characters. As explained in chapter 1, Code 93

can represent these characters as well. 

5.3.6 AirPrint and roll-feed printers

A single serial number barcode should identify a single machine in our imagined

inventory system, and it makes no sense to fill an entire sheet of stickers with copies of

a single code, as you did for the QR Code Builder app. Rather, this is the perfect use

case for specialized sticker printers.

 AirPrint has been supporting roll-feed printers since iOS 7. Two kinds of stickers

are supported: endless rolls and die cut. The former needs to get info from you as to

where to cut between stickers; the latter usually has paper sensors telling you the cor-

rect size of the individual precut labels.

 In contrast to the QR Code Builder app, which rendered a whole page of stickers,

you’ll implement a page renderer for the Serial Number Tag app that knows how to

render a single sticker. Create a new BarCodeStickerRenderer class as a subclass of

UIPrintPageRenderer. You’ll need a property to set the barcode instance and a conve-

nience method that will tell you the cut length if it’s an endless label roll:

@interface BarCodeStickerRenderer : UIPrintPageRenderer

@property (nonatomic, strong) BCKCode *barcode;

- (CGFloat)cutLengthForRollWidth:(CGFloat)width;

@end

To determine the cut length, you can use an approach similar to the way you deter-

mined the optimal bar scale for the preview:

- (NSInteger)numberOfPages {
return 1;

}

- (CGFloat)cutLengthForRollWidth:(CGFloat)width {
CGSize fitSize = CGSizeMake(CGFLOAT_MAX, width);
NSUInteger barScale =

    BCKCodeMaxBarScaleThatFitsCodeInSize(self.barcode,
    fitSize,      
    nil);          

NSDictionary *options = @{BCKCodeDrawingBarScaleOption: @(barScale)};
CGSize neededSize = [self.barcode sizeWithRenderOptions:options];

return neededSize.width;
}

You’ll call cutLengthForRollWidth: later from the view controller. 

Barcode object to be 
printed is set on this 
property

Convenience method to 
determine cut length 
for the barcode

One sticker 
on one page

Don’t care about width; 
the roll width becomes 
the height to fit

Determine maximum 
bar scale that fits

Determine output
size with this scaleWidth of the output 

size is the cut length



129Generating 1D barcodes

 Now let’s add the print rendering of the label to complete the BarCodeSticker-

Renderer class implementation. This print-rendering method will again determine

the output size of the barcode because the cutLengthForRollWidth: function will

only be called if the printer actually requires it.

 Even though you might be returning an integer cut length from cutLengthFor-

RollWidth:, the stepper motor of the label printer might not be able to reach all val-

ues for the cutting operation, so the paperRect might have a smaller non-integer

value for the width or height. AirPrint reduces the cut-length value to the next smaller

reachable value, so you have to round up the value to ensure that you arrive at the

same bar scale in the methods shown in the previous and following code snippets:

- (void)drawContentForPageAtIndex:(NSInteger)pageIndex
inRect:(CGRect)contentRect {

CGSize fitSize = self.paperRect.size;              
fitSize.width = ceilf(fitSize.width);              
fitSize.height = ceilf(fitSize.height);            
NSUInteger barScale =

    BCKCodeMaxBarScaleThatFitsCodeInSize(self.barcode,
    fitSize,
    nil);

NSDictionary *options = @{BCKCodeDrawingBarScaleOption: @(barScale),
    BCKCodeDrawingReduceBleedOption: @(YES)};

CGSize barcodeSize = [self.barcode sizeWithRenderOptions:options];
CGPoint origin = CGPointMake((self.paperRect.size.width -  

    barcodeSize.width)/2.0,          
    (self.paperRect.size.height -     
    barcodeSize.height)/2.0);        

CGContextRef ctx = UIGraphicsGetCurrentContext();
CGContextTranslateCTM(ctx, origin.x, origin.y);
[self.barcode renderInContext:ctx options:options];

}

Here you’re not producing a UIImage first, but are rendering straight to the current

context. Barcodes created with BarCodeKit can display caption text below the bars, so

you can’t simply disable interpolation. If you did, you’d get ugly artifacts around the

caption text when scaling the image instead of it looking crisp.

 Internally, AirPrint uses vector-based graphics contexts. By rendering into such a

context directly—without a detour via an image—the barcode bars become vector

rectangles and the caption text is added as vector glyphs. This produces crisp output

regardless of the actual resolution.

 You can now wire up everything in ViewController.m:

- (CGFloat)printInteractionController:
(UIPrintInteractionController *)printInteractionController

cutLengthForPaper:(UIPrintPaper *)paper
{

BarCodeStickerRenderer *renderer = (BarCodeStickerRenderer *)

Page size might be 
less than cut length, 
so round up

Option for
reducing bleed

improves
fidelity of
output on

thermal
printers

Calculate
origin to

center
barcode on

paper

Position 
context 
translation 
matrix to 
center 
barcode

Render barcode 
directly into the 
graphics context



130 CHAPTER 5 Generating barcodes

printInteractionController.printPageRenderer;

return [renderer cutLengthForRollWidth:paper.paperSize.width];
}

- (IBAction)print:(UIButton *)sender {
UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputGrayscale;
printInfo.jobName = @"Code93 Sticker";
printInfo.duplex = UIPrintInfoDuplexNone;
printInfo.orientation = UIPrintInfoOrientationLandscape;

BarCodeStickerRenderer *renderer = [[BarCodeStickerRenderer alloc]
                                     init];
renderer.barcode = [self _currentBarcodeFromTextField];            

UIPrintInteractionController *printController =
   [UIPrintInteractionController sharedPrintController];
printController.printInfo = printInfo;
printController.showsPageRange = NO;
printController.printPageRenderer = renderer;
printController.delegate = self;

void (^completionHandler)(UIPrintInteractionController *,
    BOOL, NSError *) =

^(UIPrintInteractionController *printController,
    BOOL completed, NSError *error) {
    if (!completed && error) {

    NSLog(@"FAILED! due to error in domain %@ with error code %ld",
    error.domain, (long)error.code);

    }
};

[printController presentAnimated:YES
    completionHandler:completionHandler];

}

The -print: method—called when the user taps on the Print button—is virtually

identical to the one for producing the QR Code sheets. The only differences are a dif-

ferent job name, the orientation is rotated to landscape, and the BarCodeSticker-

Renderer is used instead of QRCodeSheetRenderer (compare to section 5.2.9).

Call cut-length method
implemented in the

sticker renderer

Rotate printing 
to landscape

Set up sticker
renderer

Thermal bleeding

Thermal-label printers employ heat for printing. The heat radiates outward from the

area where it’s applied, and as a result, a one-point line will always be slightly wider

than one point of white space. This effect is called bleeding.

If you don’t compensate for this effect, small barcodes will become unscannable be-

cause the ratio between bars and spaces would be too irregular. BarCodeKit has an

option to reduce the width of printed bars: BCKCodeDrawingReduceBleedOption. 



131Summary

5.3.7 Serial Number Tag app summary

This completes our second sample app for this chapter, focusing on printing a single 1D

barcode to a roll-feed printer. Many usage scenarios become possible when you can out-

put a single label or sticker. The serial-number-barcode scenario happens to fit with the

theme of this book, but you can probably imagine several other uses for such barcodes.

 BarCodeKit fills the niche of 1D barcode generation until Apple adds such func-

tionality to the iOS SDK, which I hope they’ll do eventually. To learn more about the

various kinds of barcodes you can produce with BarCodeKit, please look at the online

documentation (https://docs.cocoanetics.com/BarCodeKit/), which also lists the

class names of the various barcode symbologies supported. 

5.4 Summary

Core Image has fallen behind AV Foundation—covered in chapters 2 and 3—in

regard to the number of supported barcode symbologies. This makes the interaction

between physical items and mobile users somewhat lopsided. This chapter tried to

remedy this situation by emphasizing the ease of barcode generation—in particular,

on iOS devices—for display or print.

 As more mobile users get used to scanning barcodes, it will increasingly make

sense in various scenarios to help users interact with the physical world by attaching

barcodes to different items. This chapter helps you fuel this fortuitous circle. What sit-

uations can you think of where you could simplify a workflow by adding barcodes?

 These are the key barcode-generation takeaways:

■ You can generate a great variety of one-dimensional barcodes with the free Bar-

CodeKit library.

■ Two-dimensional barcode generation is covered by Core Image, particularly QR

Codes.

■ Check the Core Image documentation to determine which barcode symbolo-

gies are documented. Those are the ones that are App Store–legal. Others

might technically exist, but you use them at your own risk or outside of App

Store distribution.

■ All printing under iOS, whether to sheets or rolls, is done via AirPrint.

■ Inexpensive roll-feed printers allow you to print individual barcode stickers

with a minimum of waste.

■ You can’t specify a specific output medium with AirPrint. Instead, you specify

the purpose and target output size, and AirPrint selects the best print medium

for you.

■ Custom print layouts let you make the best use of the medium and help you

avoid empty borders, such as if your layout is for US-letter size, but your user

prints to European A4 paper.

This chapter and the one before it dealt directly with barcodes in iOS to give you an

understanding of barcodes in general, how to scan them, and how to produce them.

https://docs.cocoanetics.com/BarCodeKit/


132 CHAPTER 5 Generating barcodes

The remaining two chapters of this book will dive into technologies that don’t directly

relate to barcodes but that—as you’ll see—are highly relevant to barcode apps: retriev-

ing metadata for scanned barcodes and leveraging information about the situational

context of the app user.



133

Getting
 metadata for barcodes

When you scan a barcode on a product, you end up with a GTIN (Global Trade

Item Number). As an engineer, you might be marveling at the beauty of those

digits, but your users will want more interesting benefits from having scanned

the bars.

 A traditional point-of-sale (POS) system has a local database mapping GTINs to

products and their prices. But having a mobile barcode scanner in your pocket and

the ability to retrieve product metadata over the internet gives you a leg up on POS.

This chapter covers

■ Modern networking with NSURLSession

■ Updating Core Data databases asynchronously

■ Presenting a barcode scanner modally, and 

using unwind segues

■ Calling RESTful web services

■ Unit testing web service wrappers



134 CHAPTER 6 Getting metadata for barcodes

Having barcode scanning and internet connectivity together in a mobile device enables

a new breed of apps that can be as niche-specific as they are product-centric.

 When Apple introduced iOS 7, they gave networking a major overhaul by introduc-

ing NSURLSession. Prior to that, you had to create and configure requests individually,

and you only had a global cache to work with. URL sessions take on most of the config-

uring work and have their own session-local caching. As an added bonus, you can per-

form downloads outside of your app (a.k.a. “out-of-process”) with an iOS background

downloading daemon.

 If you support barcode scanning in your app, you have to require at least iOS 7.

And having iOS 7 as a minimum deployment target for your app means that you can

also make full use of the goodness found in Apple’s new networking APIs.

 Whether you’re a seasoned iOS developer or you only started developing apps after

iOS 7 was introduced, you’re on the same footing as everybody else when it comes to

modern networking APIs. The only difference might be that the seasoned pro has an

appreciation of why the new APIs are so much more comfortable, comparing how diffi-

cult networking was in the past with how much simpler it is now.

6.1 Modern networking with NSURLSession

Strictly speaking, there’s more to the umbrella term “networking” than we’ll cover in

this chapter. Here we’ll focus on performing HTTP-based downloads and uploads as

opposed to communicating with other devices or dealing with iCloud. Those are also

interesting topics, but they’re quite tangential to the purpose of this book, which is to

enable you to build exciting niche-specific, product-centric apps that use barcodes to

identify physical items.

 The centerpiece of the new style of networking, introduced in iOS 7, is NSURLSession.

This class is usually created based on one of multiple predefined NSURLSession-

Configuration instances. Those determine the setting presets for the session. Think of

the URL session object as the manager of multiple network tasks. It provides factory

methods that create three kinds of tasks: 

■ NSURLSessionDownloadTask—Downloads a file from a web server

■ NSURLSessionUploadTask—Uploads a file to a web server

■ NSURLSessionDataTask—Implement a custom HTTP communication, such as

for raw data transfers

You can mix and match those to your heart’s content (see figure 6.1). As long as the

session lives, every task you create from its factory methods will get its settings from

the session and be managed by the session. These settings determine whether

requests should be performed over cellular radios, which HTTP cookie policy to use,

timeout values, and whether or not responses should be cached. You configure those

settings once on the URL session, and each task you create for it inherits them.   



135Modern networking with NSURLSession

6.1.1 File downloads with NSURLSessionDownloadTask

Let’s look at how simple it is to download a file from a web address with NSURLSession. 

 The following code snippet is part of the SimpleDownload sample app that you can

find in the book’s source code. This app has a text field for a URL and a button to start

the download. This is the action method linked to the button:

- (IBAction)download:(id)sender {
NSURLSessionConfiguration *conf = [NSURLSessionConfiguration

    defaultSessionConfiguration];
NSURLSession *session = [NSURLSession

    sessionWithConfiguration:conf];         
NSURL *URL = [NSURL URLWithString:self.urlField.text];
NSURLRequest *request = [NSURLRequest requestWithURL:URL];

NSURLSessionDelegate

NSURLSession

NSURLSessionUploadTask NSURLSessionDownloadTask

NSURLSessionConfiguration

NSURLSessionDataTask

Can be

performed by

system daemon

Figure 6.1 NSURLSession components

When we were young ...

Before iOS 7, you had to work with NSURLConnection objects for everything. You had

to implement a class to be the delegate and then assemble multiple NSData objects

into the total file. There were some synchronous and asynchronous convenience

methods, but if you wanted to get the download progress or needed to deal with au-

thentication, those tasks were far from convenient.

Many smart software engineers built networking wrappers to work around those

shortcomings, such as ASIHTTPRequest by Ben Copsey, MKNetworkKit by Mugunth

Kumar, AFNetworking by Matt Thompson, and DTDownload by yours truly.

NSURLSession and its related session tasks promise to make those libraries all but

obsolete, much as barcode functionality since iOS 7 is making third-party scanning

libraries obsolete.  

Get default configuration
and create a session with it.

Create a
request

from the
URL in the
text field.



136 CHAPTER 6 Getting metadata for barcodes

NSURLSessionDownloadTask *task =              
    [session downloadTaskWithRequest:request        

    completionHandler:^(NSURL *location,        
    NSURLResponse *response,
    NSError *error) {       

    if (error) {                                                 
    NSLog(@"download error: %@", [error localizedDescription]);
    return;                                                   

    }                                                            

    NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;
    if (![httpResponse isKindOfClass:[NSHTTPURLResponse class]]) {  

    NSLog(@"Not a HTTP response!");                             
    return;                                                     

    }                                                               

    NSDictionary *headers = [httpResponse allHeaderFields];
    NSString *contentType = headers[@"Content-Type"];      
    if (![contentType hasPrefix:@"image"]) {              

    NSLog(@"Not an image!");                           
    return;                                             

    }                                                     

    NSData *data = [NSData dataWithContentsOfURL:location];
    dispatch_async(dispatch_get_main_queue(), ^{             

    UIImage *image = [UIImage imageWithData:data];         
    self.imageView.image = image;                          

    });                                                       
}];

[task resume];
}

The basic process illustrated in this example is to create an NSURLRequest for the

NSURL you want to download. Then you create an NSURLSession with one of the three

predefined configurations:

■ defaultSessionConfiguration—Uses default settings, for most common tasks

allowing caching

■ ephemeralSessionConfiguration—Specifies settings for tasks not needing

caching or cookies

■ backgroundSessionConfiguration—Specifies settings to allow out-of-process

downloading

The biggest portion of the preceding code does various kinds of error checking. First,

if there’s a transmission error due to an invalid URL or a timeout, you bail out of the

completion handler. Next you check that you received an HTTP response. Conceiv-

ably—if you used a different protocol than HTTP—you might not be getting an

NSHTTPURLResponse instance here, and trying to access the allHeaderFields prop-

erty would cause an exception. By coding defensively you can verify that you have the

Create a 
download task 
with a completion 
handler

Log error
and bail if
something

went wrong

Make sure it’s an
HTTP response (only

NSHTTPURLResponse
has a property to

access HTTP headers).

Proceed 
only if you 
received an 
image file.

Load data right
away because
the file will be
deleted at end

of block.

Create image 
from data and 
set it on the 
image view 
(on main 
thread).

All tasks are created in 
suspended state. This starts 
the newly created data task.



137Modern networking with NSURLSession

correct class. Then, from the header fields, you get the content type (MIME type) of

the response, and you check to make sure that you indeed received an image.

 If the download occurred without issues, the downloaded file will be available at

the location URL parameter, but only until the completion block returns. Because of

this, you’ll want to either load the data into memory—as done here—or move the file

to a more permanent location.

 The last step inside the completion handler block is to switch to the main thread

and set the image as the content of the image view. If there’s no valid image data, the

imageWithData: would return nil and nothing would happen. 

 All tasks are created in a suspended state, so the last line of the method resumes

the task to get the download rolling. 

 This is about all you need to know about basic networking as it should be done

from iOS 7 onward. Next we’ll query a REST-based JSON web API using NSURLSession-

DataTask. 

6.1.2 Building a Music Collection app

Most people have some sort of music collection at home. If they started collecting

before the advent of iTunes, there’s usually a sizable number of CDs sitting on a shelf.

Hard-core audiophile enthusiasts (including my development editor) swear by the

audio quality of their vinyl LP collections. 

 Let’s build an app for those “niche users” to help them catalog and organize their

collections. Adding items to a collection by scanning them is much more convenient

than having to enter all those details by hand. Our data will be provided by Discogs

(www.discogs.com), a massive database of information about music, artists, and media

collected by music enthusiasts. This app will teach you the best practices for creating a

reusable wrapper around a RESTful web service.

 Our Music Collection app will have the following features:

■ The user can tap on a plus button to show the barcode scanner.

■ When a barcode is detected, the barcode scanner is hidden and a new row

appears in the app’s list of music media, initially showing the GTIN.

■ Discogs is queried asynchronously, and if a result is found, the row is updated

with the retrieved information.

■ An Edit button toggles the table view into deletion mode to remove items.

■ Music media is sorted into sections by genre. Inside the genre, they’re sorted by

title.

■ Tapping on an item will open the related Discogs page.

The finished app will look like figure 6.2 (CDs not included).

 Because of the size of the sample app, I won’t reproduce all source code in this

chapter. Rather, I’ll highlight specific portions of interest. Please look at the book’s

sample code to see it all working together. 

www.discogs.com


138 CHAPTER 6 Getting metadata for barcodes

6.1.3 Asynchronous Core Data updates

The main view of the Music Collection app consists of a table populated by a fetched

results controller. This is powered by a Core Data stack consisting of these ingredients:

■ DiscogsModel.xcdatamodeld—Core Data data model defining a Release entity

■ Release class—Represents Release instances

■ MediaListViewController—Contains the setup for the Core Data stack and

fetched results controller

Figure 6.2 Music 

Collection app

Discogs

The main reason why I chose Discogs as the data source for this example is that all

Discogs data is licensed under the Creative Commons CC0 license. This license plac-

es no restrictions on what you can do with the data, making it ideal for use in mobile

applications even if you plan to make money with them.

Discogs is getting its crowd-sourced data from audiophile enthusiasts. When building

and testing the sample app, you’ll inevitably encounter barcodes that can’t be found

through a simple Discogs search. 

The main reason for this is that some barcodes have been entered with spaces where

the elongated marker bars are, and the Discogs API isn’t smart enough to ignore

these spaces. For a professional app, you might want to also query for the GTIN vari-

ant including spaces, if the first query doesn’t yield a result.

Another reason—albeit much rarer—can be that the “release” embodied by the CD

in your hand has not been added to Discogs yet. In this case, you have a chance to

return the favor and give back to Discogs by adding the missing info. 



139Modern networking with NSURLSession

Please refer to the sample code’s MediaListViewController.m file to see the lazy instanti-

ation of the objects involved in -fetchedResultController and -managedObject-

Context. These lazy initialization methods store their results in two private instance

variables, and on subsequent calls those are returned. The NSFetchedResultsController

watches the Release entity and keeps the table view in sync with it. It’s configured to sort

the entities by genre, title, and artist, with the genres also being the section titles. 

 The managed object context (MOC) uses the NSMainQueueConcurrencyType so

that it’s usable from UIKit methods, which are usually only to be used on the main

thread. For this example, you probably could get by using the MOC for all purposes,

including updates. But if you had an API call resulting in a sizable number of updates,

then doing this work on the main thread would be a performance bottleneck—the

user would experience pauses and jerkiness while scrolling the table view if the

updates were taking place at the time.

 Being performance-conscious, you want to avoid doing work on the main MOC

wherever possible. The following helper method creates a temporary child MOC, and

once the updates are done, it lets them bubble up to the main MOC. This offloads the

work to a background thread, leaving more CPU time on the main thread for UIKit:

- (void)_performDatabaseUpdatesAndSave:
(void (^)(NSManagedObjectContext *context))block {

NSParameterAssert(block);
NSManagedObjectContext *tmpContext = [[NSManagedObjectContext alloc]

initWithConcurrencyType:NSPrivateQueueConcurrencyType];  
tmpContext.parentContext = _managedObjectContext;                 

[tmpContext performBlock:^{
   block(tmpContext);

   if ([tmpContext hasChanges]) {
   NSError *error;
   if ([tmpContext save:&error]) {

   dispatch_async(dispatch_get_main_queue(), ^{
   NSError *error;
   if (![_managedObjectContext save:&error]) {

   NSLog(@"Error saving main context: %@",
   [error localizedDescription]);

   };
   });

   } else {
   NSLog(@"Error saving tmp context: %@",

   [error localizedDescription]);
   }

   }
}];

}

With the preceding method in place, you can perform asynchronous updates with ease.

The method returns right away, because the update occurs on the private background

queue of the temporary worker context. When it’s done, the changes bubble up to the

Assert that this method is
only called with non-nil block

Create child
MOC with the
main MOC as

the parent
context

Work on
temporary

context needs
to happen on

its private
queue

Call the block doing updates 
and pass temporary context

Saving the temporary context 
pushes changes up to main MOC

Saving the main 
MOC writes 
changes to 
persistent store



140 CHAPTER 6 Getting metadata for barcodes

main queue MOC and are saved there asynchronously as well. Using this helper method

is straightforward, as shown in the following code snippet:

[self _performDatabaseUpdatesAndSave: ^(NSManagedObjectContext *context) {
// do asynchronous work on the passed context

}];

PERFORMANCE TIP If you find yourself inserting many new entities at once,
then the asynchronous pattern presented in this section might still cause
noticeable pauses in the UI because Core Data locks all contexts while it’s writ-
ing to the persistent store. This means that the main MOC—used for updating
the UI—has to wait to retrieve information. In this case, you should change
the approach to save the worker context every couple of rows, and also save
the main MOC more often. Saving smaller chunks will make these context
locks less noticeable.

The temporary creation of child MOCs is a very lightweight process. Another interest-

ing use for them is as a way to implement transactions in Core Data. Any modifications

to the context are only “committed” if you call the save method. If the context is dis-

carded without saving, the changes are “rolled back” (they never make it to the parent

MOC). In a Core Data–driven app, you could implement the save/cancel functionality

with that approach. If users tap the Save button, the child context is saved; if they tap

Cancel, it’s discarded.

 You’ll see this asynchronous update method put to good use in the next section,

where you’ll use it to update scanned barcodes with metadata from Discogs. 

6.1.4 Presenting the barcode scanner modally

When the user wants to add a new CD or LP to their collection, they tap the plus button

in the upper-left corner of the app. There you present the barcode scanner view con-

troller you created in chapters 2 and 3. Two things will lead to the scanner’s dismissal:

the user either scans a barcode or taps the Cancel button.

 One minimal change is required to DTCameraPreviewController for using it mod-

ally. You need to stop it from detecting barcodes while it’s being dismissed. You only

want the first barcode detection to trigger the dismissal, whereas the detection delegate

could be called multiple times during the dismissal animation, which would cause iOS

to emit warnings about you trying to dismiss one view controller multiple times.

 If you inspect the sample source, you’ll find the addition of an _isDisappearing

instance variable that’s set to YES in viewWillDisappear:. This allows you to ignore

barcode detection callbacks from AV Foundation during the dismissal.

 The source code reused from earlier projects is grouped within the Copied Code

group in the sample project. The main storyboard embeds the scanner view controller

inside a navigation controller, as shown in figure 6.3. A modal presentation segue

leads from the plus button on the root view controller to the barcode scanner. The

simplest way to get this into a new project is to copy and paste it from an existing proj-

ect’s storyboard editor to the storyboard editor of the new project.



141Modern networking with NSURLSession

Set the identifier of the modal segue to showScanner because you need to set the scan

delegate when it’s shown. This is done in MediaListViewController, which governs

the main app view with the list of music media in your collection:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
if ([segue.identifier isEqualToString:@"showScanner"]) {

    UINavigationController *nav = (UINavigationController *)
    segue.destinationViewController;

    DTCameraPreviewController *preview = (DTCameraPreviewController *)
    nav.viewControllers[0];

    preview.delegate = self;
}

}

The destinationViewController of this segue is a navigation controller that has the

scanner view controller at the first position of its viewControllers. This lets you

retrieve a reference to DTCameraPreviewController and set the delegate to self.

 Dismissing a presented view controller is also called unwinding. You can add a

dummy unwind action method to the same view controller to enable the creation of

an unwind segue in the storyboard editor:

- (IBAction)unwindFromScannerViewController:(UIStoryboardSegue *)segue {
// intentionally left black

}

Having a method with such a signature enables the creation of unwind segues. Back in

the storyboard editor you can now Ctrl-drag from the Cancel Bar Button Item onto the

Exit option, as shown in figure 6.4. A popup menu lets you select the dummy method.

Figure 6.3 Music Collection storyboard



142 CHAPTER 6 Getting metadata for barcodes

 Making this connection creates a new

unwind segue that appears underneath

the green Exit symbol. Click on it and set

the identifier to unwind, as shown in fig-

ure 6.5. This allows you to trigger it from

code as well.

 At this point you can already cancel the

scanner by tapping the Cancel button, with

no extra code required. 

 In the next section we’ll create a wrap-

per class for the Discogs search API to fill in

some more interesting information on the

scanned item. 

6.1.5 Using NSURLSessionDataTask to call 

RESTful web APIs

Representational State Transfer (REST) is the name-child of Roy Fielding, who coined

the term in 2000 for his doctoral dissertation. There’s a lot of boring theory behind it,

but for our purposes, you only need to know that web services are said to be RESTful if

they adhere to these conventions:

■ Methods share a common base URI (API endpoint).

■ Entities and methods have distinct paths relative to the API endpoint.

■ Standard HTTP methods are used for interacting with entities (GET, PUT, POST,

DELETE).

■ Data is represented in a common internet media type, such as JSON.

RESTful web APIs are ideally suited for mobile applications because they make use of

the same mechanisms used for retrieving web pages in your mobile browser or

uploading a file to a website. You don’t need to encode/decode between specific

transport formats; you just need to perform simple HTTP requests. When data is

returned to you—for example, as a result of doing a search—it’s most commonly in

Figure 6.5 Setting the unwind segue identifier

Figure 6.4 Connecting the unwind segue



143Modern networking with NSURLSession

JavaScript Object Notation (JSON). As you’ll see in this section, all the building blocks

for calling RESTful web APIs are provided for you since iOS 7.

 For the purposes of the Music Collection app, you’ll create a DTDiscogs wrapper

around the Discogs search method (http://www.discogs.com/developers/#page:

database,header:database-search). The wrapper’s method will abstract the calling of

the web API, verify the response, and call a completion handler. The DTDiscogs class

(whose interface definition is shown in the following code snippet) will represent Dis-

cogs, and it will have a search method that searches by GTIN. (There are other search

options offered by Discogs, but we’re only interested in finding items by barcode.)

typedef void (^DTDiscogsCompletion)(id result, NSError *error);

@interface DTDiscogs : NSObject

- (void)searchForGTIN:(NSString *)gtin            
    completion:(DTDiscogsCompletion)completion;

@end

The DTDiscogs wrapper class abstracts away the network request that performs the

actual calling of the web API, as illustrated in figure 6.6—you don’t want to have to cre-

ate data tasks and the associated checking code for every individual API method. The

Define type for
the completion

handler

Search for releases on 
Discogs database by GTIN

Dicogs RESTful API

Might take a sec...

searchForGTIN:...

Return error

Completion

block

Yes

Return result
No

Wrapper method

I'm a web server!

DTDiscogs

Build URL with

query parameters 

Perform

HTTP GET

Receive and

check response

Errors?

Figure 6.6 Discogs wrapper flow

http://www.discogs.com/developers/#page:database,header:database-search
http://www.discogs.com/developers/#page:database,header:database-search


144 CHAPTER 6 Getting metadata for barcodes

paradigm communicated by the method signature is that you pass a GTIN, and in a

short while your completion block will be called. Then you’ll get either a nil error

and an object passed as result, or if something went wrong there will be an NSError

with details about what went wrong.

 Let’s dive into the implementation of the DTDiscogs wrapper class, which you’ll

find in DTDiscogs.m in the Music Collection app.

 At the top, there are a couple of definitions:

#define API_ENDPOINT @"http://api.discogs.com"
#define URLENC(string) [string \                         

stringByAddingPercentEncodingWithAllowedCharacters:\  
    [NSCharacterSet URLQueryAllowedCharacterSet]];          
NSString * const DTDiscogsErrorDomain = @"DTDiscogs";

All operations on the Discogs web API are reachable through URLs relative to the Dis-

cogs API endpoint. Parameters need to be added to the URL as a query. The following

helper method constructs the full method URL, adding and URL-encoding parameters

as needed:

- (NSURL *)_methodURLForPath:(NSString *)path
    parameters:(NSDictionary *)parameters {

NSURL *endpointURL = [NSURL URLWithString:API_ENDPOINT];

if ([parameters count]) {
    NSArray *sortedKeys =                                     

    [[parameters allKeys]                         
    sortedArrayUsingSelector:@selector(compare:)];

    NSMutableArray *tmpArray = [NSMutableArray array];

    for (NSString *key in sortedKeys) {
    NSString *value = parameters[key];
    NSString *encKey = URLENC(key);   
    NSString *encValue = URLENC(value); 

    NSString *tmpStr = [NSString stringWithFormat:@"%@=%@",  
    encKey, encValue];                    

    [tmpArray addObject:tmpStr];                             
    }
    path = [path stringByAppendingFormat:@"?%@",     

    [tmpArray componentsJoinedByString:@"&"]];  
    }

}
return [NSURL URLWithString:path      

    relativeToURL:endpointURL];  
} 

In case of errors, you’ll want to return an NSError with a message describing what

went wrong. The following helper method creates such an error with the suitable

error domain, code, and message:

Common base URI 
of all Discogs API 
operations

Macro to shorten code 
needed to URL-encode 
a parameter

Error domain string for returning
result-checking errors

Convert 
endpoint URI 
string to URL

Sort parameter 
dictionary keys to 
get consistent order

URL-encode parameter 
name and value

Add key/value pairs 
to temp array

Append combined 
query string to path

Return constructed 
method URI



145Modern networking with NSURLSession

- (NSError *)_errorWithCode:(NSUInteger)code
message:(NSString *)message {

NSDictionary *userInfo;
if (message) {

    userInfo = @{NSLocalizedDescriptionKey : message};
}
return [NSError errorWithDomain:DTDiscogsErrorDomain

 code:code
userInfo:userInfo];

}

The implementation for searchForGTIN:completion: is relatively short because the

grunt work is performed in another internal method. This division allows you to easily

add additional wrapper methods to the DTDiscogs class. All you have to do is specify

the method path and suitable parameters:

- (void)searchForGTIN:(NSString *)gtin
    completion:(DTDiscogsCompletion)completion {

NSParameterAssert(gtin);                         
NSParameterAssert(completion);                   

if ([gtin length]==13 && [gtin hasPrefix:@"0"]) {
    gtin = [gtin substringFromIndex:1];                
}                                                  

NSString *functionPath = @"/database/search";
NSDictionary *params = @{@"type": @"release",  

    @"barcode": gtin};        

[self _performMethodCallWithPath:functionPath
    parameters:params           
    completion:completion];     

}

URL encoding

You can only have certain characters inside a website address, because characters

like the equal sign, question mark, and ampersand are imbued with specific mean-

ings. You have to escape such characters if you want to pass them via the query por-

tion of the URL.

Prior to iOS 7, you had to go down to the Core Foundation level and call CFURL-
CreateStringByAddingPercentEscapes to make strings URL-safe. Apple listened

to developers who wished for a more elegant solution and added the URLQuery-
AllowedCharacterSet class method to NSCharacterSet, as well as a suitable cat-

egory method to NSString for escaping all characters in a string that are not part of

the passed character set.

These “percent escapes” consist of a percent sign followed by two hex digits. For ex-

ample, a space (ASCII code 32) is represented as %20, with hex 20 being the same

as decimal 32. This process of substituting characters with escape sequences—to

make them URL-safe—is also commonly referred to as URL encoding. 

Assert that all 
parameters 
are non-nil

GTIN-13 converted to 
UPC if applicable

Path of
 the search

function
relative to API
endpoint URI

Create dictionary 
with function 
parametersCall the method

that does
actual work



146 CHAPTER 6 Getting metadata for barcodes

For the purposes of the Music Collection app, you’re searching releases by GTIN. Dis-

cogs defines a “release” as “a particular physical or digital object released by one or

more Artists.” This is why the type parameter is release, and the barcode search

parameter is the GTIN you’re looking for.

The NSURLSession for the data task comes from a property accessor. The session

object is instantiated “lazily” as soon as the accessor method is accessed the first time.

The designated initializer, -init, calls the secondary initializer, taking a configuration

parameter passing the standard ephemeral configuration. This is the ideal session

configuration for API calls, which usually have no use for local caching:

@implementation DTDiscogs {
NSURLSession *_session;                    
NSURLSessionConfiguration *_configuration;

}

- (instancetype)initWithSessionConfiguration:                      
    (NSURLSessionConfiguration *)configuration {

self = [super init];

if (self) {
    _configuration = configuration;
}

return self;
}

- (instancetype)init {
// use ephemeral config, we need no caching
NSURLSessionConfiguration *config =                              

    [NSURLSessionConfiguration ephemeralSessionConfiguration]; 
return [self initWithSessionConfiguration:config];

}

- (NSURLSession *)session {
if (!_session) {

Barcode guru tip

Many web services—including Discogs—might not find items if you’re searching for

GTIN-13 barcodes. In particular, if they’re U.S.-centric or have data from a time before

the grand unification, you’ll have to search for UPCs instead.

A UPC (12 digits) is represented as GTIN-13 by appending a leading 0. So if you see

a 13-digit barcode with a leading zero, you can trim it off and search for the UPC in-

stead. This approach is compatible with barcodes from outside the U.S. because

there numbers other than zero are used as leading digits.

Private instance 
variables

Secondary initializer
taking configuration

Store-passed 
configuration 
reference in ivar

Default initializer 
for normal 
operation

Ephemeral
configuration

used by default
Lazy creation 
method for 
session



147Modern networking with NSURLSession

    _session = [NSURLSession sessionWithConfiguration:_configuration];
}

return _session;
}

Having a secondary initializer will allow you to customize the URL session configura-

tion for unit testing later in this chapter. But for now you can use the default initializer

with the default ephemeral configuration.

 The method doing the actual work is too long to display in a single listing, so we’ll

first look at the overall structure and then zoom in on the processing code. The

method first gathers the necessary ingredients to make the network request, and then

it processes the response inside the request’s completion block:

- (void)_performMethodCallWithPath:(NSString *)path
parameters:(NSDictionary *)parameters

    completion:(DTDiscogsCompletion)completion {
NSURL *methodURL = [self _methodURLForPath:path               

    parameters:parameters];            
NSURLRequest *request = [NSURLRequest requestWithURL:methodURL];
NSURLSessionDataTask *task = [[self session]                     

    dataTaskWithRequest:request            
    completionHandler:^(NSData *data,      

NSURLResponse *response, 
NSError *error) {   

    NSError *retError = error;
    id result = nil;

    if (retError) {
    completion(nil, retError);

    return;
    }

    //

    completion(result, retError);
}];

[task resume];
}

NSURLRequest embodies the method, headers, timeout, and other values relevant to

the HTTP request. To specify a different HTTP method than the default GET, you would

instead create an NSMutableURLRequest, which offers setHTTPMethod: for changing it. 

 The first error checked for is the one reported in the data task’s completion-

Handler. Those errors always relate to networking problems. For example, the inter-

net connection might be down or the API endpoint URL might not be resolving.

Construct
calling URL with

helper method

Create URL
request;

default
HTTP verb

is GET

Create data task for
the URL session

Check for transport 
error, such as no 
network connection

Insert processing 
and error-checking 
of response here

Call completion 
block, passing 
result or error

Task is created suspended, 
so this starts it



148 CHAPTER 6 Getting metadata for barcodes

 After various processing and error-checking steps, the completion block is called,

passing the result or error. Because all URL session tasks are created in a suspended

state, you need to resume the task to have it perform the network request. 

 The following listings are all inserted into the marked location in the previous list-

ing. Note that all these code snippets use the previously defined helper method for

creating an NSError before calling the completion block, passing it, and then bailing

out of the block via return.

 First you check if the response came from the correct host. If you use OpenDNS for

your network, you’ll get a status 200 response coming from www.website-unavailable

.com, which is in lieu of a DNS resolution error. Granted that’s a rather unlikely occur-

rence, but it doesn’t hurt to have this check in place:

NSString *calledHost = [methodURL host];
NSString *responseHost = [response.URL host];

if (![responseHost isEqualToString:calledHost]) {
NSString *msg = [NSString stringWithFormat:

   @"Expected result host to be '%@' but was '%@'",
   calledHost, responseHost];

retError = [self _errorWithCode:999 message:msg];
completion(nil, retError);
return;

}

The URL-loading system also supports dealing with protocols other than HTTP. Because

of this, the response parameter is of class NSURLResponse. To make sure that you got

an HTTP response—including HTTP status code and headers—you perform the follow-

ing check:

if (![response isKindOfClass:[NSHTTPURLResponse class]]) {
NSString *msg = @"Response is not an NSHTTPURLResponse";
retError = [self _errorWithCode:999 message:msg];
completion(nil, retError);
return;

}

NSHTTPURLResponse is a subclass of NSURLResponse, providing these HTTP-specific

properties for your inspection. You want to be certain that the response has the cor-

rect class before you typecast the response object to NSHTTPURLResponse and access

properties.

 You always expect the response to be in JSON format, and Discogs will always return

a JSON dictionary containing the results or an error message. If the content type isn’t

“application/json” or can’t be parsed, then something must have gone wrong:

NSHTTPURLResponse *httpResp = (NSHTTPURLResponse *)response;
NSDictionary *headers = [httpResp allHeaderFields];
NSString *contentType = headers[@"Content-Type"];

if ([contentType isEqualToString:@"application/json"]) {

www.website-unavailable.com
www.website-unavailable.com


149Modern networking with NSURLSession

result = [NSJSONSerialization JSONObjectWithData:data
    options:0
    error:&retError];

}

You parse the JSON response in any case. When you inspect the HTTP headers, you

have to consider the HTTP status code. Only codes below 400 mean that you got a suc-

cessful method result. Otherwise the parsed JSON will contain the error message:

if (httpResp.statusCode >= 400) {
NSString *message = result[@"message"];

retError = [self _errorWithCode:httpResp.statusCode
    message:message];

result = nil;
}

completion(result, retError);

The final statement calling the external completion block concludes this extensive

error checking and processing. Note that this code just forwards the parsed JSON

response as opposed to creating custom model objects from it. For a larger app, you

might want to do this as part of your API wrapper, but for this small example I prefer

this form, as it simplifies filling in the Core Data fields in the next section. 

6.1.6 Authenticating API requests with OAuth

Initially Discogs didn’t require authentication on their search endpoint. But by far the

largest group of applications using the Discogs API were MP3-tagging applications that

would hammer the Discogs search API with mostly nonsensical search terms found in

pirated music filenames and metadata, resulting in an extraordinary waste of

resources. So the decision was made to require user authentication on calls to the

search function. Discogs chose OAuth 1.0a for their authentication.

 OAuth has these main goals:

■ To know which application is making API requests

■ To know on behalf of which user these requests are made

■ To know if the user has authorized the application to make those requests

■ To ensure that the requests have not been spoofed or otherwise tampered with

■ To facilitate an authentication flow where the application doesn’t have to save

the username and password

There are two common versions of OAuth that you may encounter. Version 1.0a is the

original standard, with the appended a denoting that it was slightly modified to work

around a security problem.

Error message is 
in parsed JSON 
dictionary

Reset result after getting 
the error message

Call completion block, 
passing result or error



150 CHAPTER 6 Getting metadata for barcodes

The “classic” OAuth 1.0 authentication flow has three steps, or legs, which is why it’s

also referred to as three-legged OAuth (see figure 6.7).

 Of these three steps, the first and last are HTTP POST requests that you can perform

without user interaction. The second leg presents a web view by loading a page from

the website. There the user has to log into the service and authorize your app. The

web service will then redirect to a callback URL that you can catch so you know when

the web view is no longer needed.

What is OAuth 2.0?

OAuth 1.0 requires elaborate construction of an authorization header that contains a

cryptographic signature. The community found that this requirement was a big hassle

and difficult to get right. The HTTPS protocol already provides end-to-end encryption,

so it was felt that there was no longer a need for a signature. 

OAuth 2.0 is different from OAuth 1 in many ways, and these versions are not com-

patible with each other. This is why versions 1 and 2 continue to coexist. That’s all

you need to know about OAuth 2.0 at this point.

HTTP POST

Responds with

request token

Redirection passes

verifier code

Returns new access token

to replace request token

Leg 1
Ask for

request token

HTTP GET

Web service checks

consumer key

Show WebView with

authorization URL

App can make

authorized requests 

User enters credentials

on authorization page 

Web service checks

verifier code, etc.

HTTP POSTAsk for

authorization token 

User grants

access to app 

Leg 2

Leg 3

Figure 6.7 Three-legged OAuth flow



151Modern networking with NSURLSession

6.1.7 Adding DTOAuth to your project

Because Discogs uses OAuth 1.0a for their authentication, you’ll need to implement

this in your DTDiscogs wrapper. DTOAuth is an open source project (available on

GitHub: https://github.com/Cocoanetics/DTOAuth) that contains all the code nec-

essary to add OAuth 1.0a support to your app.

 Due to the complexity of the cryptographic signature, I’m providing the DTOAuth

component with the Music Collection sample code in the Externals folder. You’ll

include it as a subproject and link the static library target from it into your app binary

to access its functionality.

 Create an Externals subfolder in your proj-

ect structure, and copy the contents of the

DTOAuth project there. Then add a reference

to DTOAuth.xcodeproj in the app project. Fig-

ure 6.8 shows the referenced Xcode subproj-

ect inside the Music Collection project.

 Having an Xcode project referenced as a

subproject gives you access to all its targets.

Add the static library target both as a depen-

dency and in the linker build phase, as

shown in figure 6.9. This tells Xcode that your app needs to be rebuilt if there’s a

change in the DTOAuth project. The linker build phase merges the compiled object

code from inside the libDTOAuth_iOS.a static library with your app binary.

 To enable Xcode to find the DTOAuth headers inside the subproject, you need to

add the folder where you put the DTOAuth source code to your User Header Search

Paths build setting: ${SOURCE_ROOT}/Externals/DTOAuth. Choose the recursive

option so that the indexer will also look in subfolders of this location. 

How to get rid of the dreaded web view

OAuth was designed to work in the scenario where website A wanted to access user

data on website B, so the designers saw nothing wrong with redirecting the user to a

web page on B for the authorization step, and having the successful authorization re-

direct back to A. But this requirement to present the authorization page in a web view

feels anachronistic when modern apps have great native user interfaces.

One attempt at a solution was the invention of xAuth by Twitter, which sticks with

OAuth 1.0a for requests made on behalf of users. In xAuth, the username and pass-

word are simply added to the first leg’s authorization header. But this presents a trust

problem, because any app that gets hold of the user’s credentials could impersonate

the user. This is why Twitter now only grants xAuth privileges to a very few and select

app vendors, like Apple.

So the general answer is that you can’t get rid of the web view in the second leg of

OAuth 1 unless somebody at the service you’re trying to access owes you a favor. 

Figure 6.8 DTOAuth subproject

https://github.com/Cocoanetics/DTOAuth


152 CHAPTER 6 Getting metadata for barcodes

6.1.8 Configuring the OAuth consumer

To participate in OAuth, you need to create an application on the Discogs developer

website (https://www.discogs.com/settings/developers). Your app is referred to as

the consumer ; take note of the consumer key and consumer secret values. In terms of

nomenclature, the key is generally public and will be passed around, whereas the

secret is kept private and is used for signing stuff. You should take care to never post

your pair to a public source code repository, because this would enable somebody with

malicious intent to impersonate your app when talking to the service.

 The authentication flow state information is encapsulated in DTOAuthClient;

DTDiscogs requires an instance of it for signing web API HTTP requests. This instance

will be created in a lazy property accessor method.

 First up, you need a property definition in the DTDiscogs header. Here are the two

additions you have to make:

extern NSString * const DTDiscogsErrorDomain;

@class DTOAuthClient;

typedef void (^DTDiscogsCompletion)(id result, NSError *error);

Figure 6.9 DTOAuth added as dependency

Tells compiler that 
DTOAuthClient is a valid 
type name without having 
to import the header

https://www.discogs.com/settings/developers


153Modern networking with NSURLSession

@interface DTDiscogs : NSObject

- (instancetype)initWithSessionConfiguration:(NSURLSessionConfiguration *)
    configuration;
- (void)searchForGTIN:(NSString *)gtin completion:(DTDiscogsCompletion)
    completion;

@property (nonatomic, strong) DTOAuthClient *oauthClient;

@end

Moving on to the DTDiscogs implementation, you need an import for DTOAuthClient.h,

and then you can create a lazy property initializer (shown in the following code) that

takes care of setting up the consumer the first time the property is accessed. When ini-

tializing the OAuth client object, you have to pass the consumer key and secret to it. It

also needs to know the base URLs for the three legs, as these can be different from service

to service:

- (DTOAuthClient *)oauthClient {
    if (!_oauthClient) {
    _oauthClient = [[DTOAuthClient alloc]

    initWithConsumerKey:@"mDOtjNkiAPSklsVSIrbF"
    consumerSecret:@"UvXUCTOgyHKCFEnZpzDUhOofaDsZQMyA"
    ];

    _oauthClient.requestTokenURL = [NSURL URLWithString:
    @"http://api.discogs.com/oauth/request_token"];

    _oauthClient.userAuthorizeURL = [NSURL URLWithString:
    @"http://www.discogs.com/oauth/authorize"];

    _oauthClient.accessTokenURL = [NSURL URLWithString:
    @"http://api.discogs.com/oauth/access_token"];

    }

    return _oauthClient;
}

Now you need to add an Authorization header to all your Discogs API requests. At the

beginning of the _performMethodCallWithPath:parameters:completion: method,

add the following code, which adds the Authorization header if the OAuth client pos-

sesses a valid access token (that is, if isAuthenticated is true):

- (void)_performMethodCallWithPath:(NSString *)path
    parameters:(NSDictionary *)parameters
    completion:(DTDiscogsCompletion)completion

{
NSURL *methodURL = [self _methodURLForPath:path

    parameters:parameters];
NSMutableURLRequest *request =

    [NSMutableURLRequest requestWithURL:methodURL];

if ([self.oauthClient isAuthenticated])

Lazily initialized property 
for the OAuth client object

Replace with your own
consumer key

Replace
with your

own
consumer

secret

Base URL for first
leg (request token)

Base URL for second
leg (authorization)

Base URL for
third leg

(access token)

Check if
OAuth client

object has
valid access

token



154 CHAPTER 6 Getting metadata for barcodes

{
    NSString *authHeader =

    [self.oauthClient authenticationHeaderForRequest:request];
    [request addValue:authHeader forHTTPHeaderField:@"Authorization"];
}

...

This is all you need to do within the DTDiscogs wrapper class to add OAuth. Next you

need to hook up the search function to the barcode scanner and, if necessary, carry

out the OAuth flow. 

6.1.9 Implementing the UI for OAuth authorization

You want to show the OAuth authorization web view (second leg) at the latest possible

moment—after the user has successfully scanned a barcode and before you execute

the search on Discogs. The flowchart in figure 6.10 illustrates the decision about

whether or not carrying out the OAuth flow is required.

 When the scanner view controller finds a valid GTIN, it calls the delegate method

and is dismissed with a slide-out animation. During this animation, you can’t present

any new view controller, such as the DTOAuthWebViewController provided for the sec-

ond leg by DTOAuth. You have to delay handling the scanned code until the dismissal

animation has ended.

 Right after triggering the presentation or dismissal of a view controller, you can get

a reference to the responsible transition coordinator. This coordinator offers a

Create contents for
Authorization header

Add header to request

Show barcode

scanner

Show web view

for authorization

Search Discogs

Request token

Authorize token

Update release

Delegate callback

on successful scan

Yes

Approved!

No
Authenticated?

1

2

3

User

interaction

Figure 6.10 To OAuth or not to OAuth



155Modern networking with NSURLSession

method to animate something in parallel with the animation and also provides a

handy completion block that you can use.

 The following code is called by the DTCameraPreviewController when a new bar-

code is scanned, showing how the handling of the scanned code is delayed until the

transition animation has completed:

- (void)previewController:(DTCameraPreviewController *)previewController
    didScanCode:(NSString *)code ofType:(NSString *)type {

[previewController performSegueWithIdentifier:@"unwind" sender:self];
[self.transitionCoordinator animateAlongsideTransition:NULL

    completion:^(id<UIViewControllerTransitionCoordinatorContext>
    context) {                                       

    [self _handleScannedCode:code];                                    
}];                                                              

}

You create a helper method that carries out the OAuth flow on the right side of the

flowchart in figure 6.10. Each step has a completion handler, and if the step was suc-

cessful, the next step is carried out. Interspersed are abort conditions that cancel the

flow as soon as one step fails:

- (void)_authenticateAndThenPerformBlock:(void (^)(void))block {
[_discogs.oauthClient requestTokenWithCompletion:^(NSError *error) {

    if (error) {
    NSLog(@"Error requesting token: %@",   

    [error localizedDescription]);
    return;                             

    }                                       

    dispatch_async(dispatch_get_main_queue(), ^{
    DTOAuthWebViewController *webView =                         

    [[DTOAuthWebViewController alloc] init];                 
    UINavigationController *nav =                               

    [[UINavigationController alloc]                          
    initWithRootViewController:webView];                 

    [self presentViewController:nav animated:YES completion:NULL];

    NSURLRequest *request = [_discogs.oauthClient            
    userTokenAuthorizationRequest];  

    [webView startAuthorizationFlowWithRequest:request       
    completion:^(BOOL isAuthenticated, NSString *verifier) {

    [self dismissViewControllerAnimated:YES completion:NULL];

    if (!isAuthenticated) {                    
    NSLog(@"User did not authorize app");    
    return;                                  

    }                                          

    [_discogs.oauthClient authorizeTokenWithVerifier:verifier  
    completion:^(NSError *error) {                           

Dismiss scanner via
named unwind segue

Nothing (NULL) to animate 
alongside the animation

Handle 
code after 
transition 
is over

Start first leg

Cancel flow if 
first leg failedDispatch to

main queue
for following

UIKit
interaction

Create web
view controller
for second leg

Get HTTP request
for second leg

Start
second leg

Dismiss web
view controller Cancel flow if second 

leg failed or user didn’t 
authorize the app

Start
third leg



156 CHAPTER 6 Getting metadata for barcodes

    if (error) {                              
    NSLog(@"Unable to get access token: %@",

    [error localizedDescription]);    
    return;                                 

    }                                         

    block();
    }];

    }];
    });
}];

}

If you make it to the very bottom of the code, then all three legs were successful and

the passed block can be executed. This is where you can execute the Discogs search

following the OAuth authorization flow. 

6.1.10 Connecting barcode scanning and metadata retrieval

You can now fill in the _handleScannedCode: method. This method first creates a new

blank Release object in the database via the following helper method:

- (Release *)_insertNewReleaseWithGTIN:(NSString *)GTIN {

// create a new Release object and fill in barcode
Release *release = [NSEntityDescription

    insertNewObjectForEntityForName:@"Release"
    inManagedObjectContext:_managedObjectContext];

release.barcode = GTIN;
release.genre = @"Unknown";

NSError *error = nil;
if (![_managedObjectContext save:&error]) {

    NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
    abort();
}

return release;
}

The error handling in this example is intentionally crude. Aborting the entire applica-

tion is frowned on in real-life apps.

 If the user is already authorized, then you can search Discogs and update the new

Release object right away. If not, this will have to wait until after successful comple-

tion of the authorization flow:

- (void)_handleScannedCode:(NSString *)code {
Release *release = [self _insertNewReleaseWithGTIN:code];

if ([_discogs.oauthClient isAuthenticated]) {
    [self _performSearchAndUpdateRelease:release];

Cancel flow if 
third leg failed

At this point, all went 
well; execute the block

Create a new
Release object

and fill in barcode

Check if
authentication
is still required

Perform search 
and update 
right away



157Modern networking with NSURLSession

} else {
    [self _authenticateAndThenPerformBlock:^{

    [self _performSearchAndUpdateRelease:release];
    }];
}

}

The helper method _performSearchAndUpdateRelease: queries Discogs and—if

there was a hit—updates the freshly inserted Release object:

- (void)_performSearchAndUpdateRelease:(Release *)release {
[_discogs searchForGTIN:release.barcode completion:^(id result,

                NSError *error) {         
    if (error || ![result isKindOfClass:[NSDictionary class]]) {

    return;                                                 
    }                                                          

    NSDictionary *dict = (NSDictionary *)result;  
    NSArray *results = dict[@"results"];          
    if (![results count]) {                       

    return;                                    
    }                                              

    // always use first result
    NSDictionary *theResult = results[0];                  
    [self _updateRelease:release fromDictionary:theResult]; 
}];

}

The update code is grouped in _updateRelease:fromDictionary:, and it uses the

background-context update paradigm introduced earlier:

- (void)_updateRelease:(Release *)release
    fromDictionary:(NSDictionary *)dict {
[self _performDatabaseUpdatesAndSave:

    ^(NSManagedObjectContext *context) {
    Release *updatedRelease = (Release *)    
       [context objectWithID:release.objectID];

    NSString *title = dict[@"title"];
    NSString *artist = nil;
    NSRange rangeOfDash = [title rangeOfString:@"-"];

    if (rangeOfDash.location != NSNotFound) {
    artist = [[title substringToIndex:rangeOfDash.location]       

    stringByTrimmingCharactersInSet:                   
    [NSCharacterSet whitespaceAndNewlineCharacterSet]]; 

    title = [[title substringFromIndex:rangeOfDash.location+1]   
    stringByTrimmingCharactersInSet:                    
    [NSCharacterSet whitespaceAndNewlineCharacterSet]];  

    }

Execute
authentication

flow
Perform search, and

update after
authorization succeeds

Search Discogs
for the GTIN.

Bail out if there 
was a problem.

Check if there were 
search results.

Updated new 
Release from first 
search result

Get version of 
the Release for 
temp context

Split title 
field into 
title and 
artist



158 CHAPTER 6 Getting metadata for barcodes

    updatedRelease.title = title;                           
    updatedRelease.artist = artist;                        
    updatedRelease.genre = [dict[@"genre"] firstObject];    
    updatedRelease.style = [dict[@"style"] firstObject];    
    updatedRelease.format = [dict[@"format"] firstObject];  
    updatedRelease.year = @([dict[@"year"] integerValue]);  
    updatedRelease.uri = dict[@"uri"];                      

    }];
}

NSManagedObjects—like the Release object passed as a parameter here—can only be

used with the managed object context they came from. But you can get a copy of the object

suitable for another context via the MOC’s objectWithID: method. The managed object’s

objectID property is the only one you can safely access from another thread. Inside the

block of the update method, you’re on the private queue of the worker context.

 Discogs returns album title and artist behind the “title” key of the result dictionary.

You then need to separate the values at the dash character and trim off any remaining

whitespace. The genre, style, and format values are arrays from which you always take

the first value.

 _performDatabaseUpdatesAndSave takes care of saving the changes. It first saves

the worker context and then also saves the main MOC. This, in turn, triggers an update

on the fetched results controller, which then configures the table view row for this

entity with the new values. 

 MediaListViewController configures cells with incomplete information to display

the GTIN and “No info found.” As soon as the title property of the shown Release

object becomes non-nil, the labels are populated accordingly. Figure 6.11 shows this

progression from prototype cell to complete entry. 

Update values 
in the Release 
object

Type

Year

CD
1980

Prototype

cell in

storyboard

GTIN from

barcode

scanner

Info from

Discogs
Figure 6.11 Filling in the 

blanks from Discogs



159Unit-testing network operations

We haven’t gone into how the table view rows are configured for every Release—

that’s typical boilerplate code that you’re likely very familiar with. Please refer to the

MediaListViewController.m sample code to see how this is set up. 

6.2 Unit-testing network operations

In the previous section, you created a class that wraps the Discogs web service API. In

pro parlance, such a class is also referred to as a unit, because it has a minimum of

external dependencies. Really, the only things it depends on, outside of the network-

ing code, are classes and types defined in Apple’s frameworks. In other words, it’s a

perfect candidate for unit testing.

 Generally speaking, you want to create a sufficient number of tests to make sure

that assumptions made about a unit hold true even if code inside the unit is changed.

The header of a class is like a contract you make with people who use the class, so I

like to keep the headers as simple as possible and also to add lots of commentary

about what parameters are valid. Unit tests are a form of such comments that can be

automatically tested by a machine.

 Imagine that your API wrapper class is used by a larger team of developers and

that you refactor some crucial bits, accidentally changing some behavior that another

team member is relying on. A unit test that tests such an assumption would flag this

change and save you from the embarrassment of checking faulty code into the shared

source repository.

 Manually testing all areas of an app under development grows tedious even for the

most patient human being. Unit tests are usually performed by a machine—a build

server or your own Mac—with unfaltering precision and endurance. 

 Now let’s get down to brass tacks and create some unit tests for DTDiscogs. 

6.2.1 Introducing NSURLProtocol

The difficult part of testing anything to do with networking is that network connectiv-

ity might change from one run of unit tests to the next. This presents a bit of a prob-

lem. If your unit tests work one time because the remote server is reachable, but they

fail subsequently because the internet connection is down, this can be a source of

stress for you as a developer. You don’t want unit tests to fail just because the environ-

ment changed.

NOTE Testing how a unit interacts with the environment is a different kind of
test: an integration test. This might also be an interesting thing to test, but in
this section we’re exclusively looking at ensuring that a unit is and will keep
working flawlessly.

The actual network operation happens deep under the hood of Apple’s URL-loading

system. Even with modern networking via NSURLSession, Apple is building on the

tried and true networking foundations that remain the same. In the flowchart in fig-

ure 6.12, the DTDiscogs piece is the system under test, but triggering a search will



160 CHAPTER 6 Getting metadata for barcodes

cause an execution cascade through several system classes. The part where there’s

communication via the internet is where it becomes fragile.

 An NSURLRequest represents a request to be made via any TCP/IP-based network

connection. It can be for any kind of protocol as expressed by the request’s URL

scheme. When the connection is to be established, the operating system will query all

installed NSURLProtocol subclasses to find one that’s willing and able to accommo-

date the request. The system provides only two: NSAboutURLProtocol, which handles

requests for the about: URL scheme, and NSCFURLProtocol, which handles all http:

and https: requests. The default behavior is that the system-provided NSCFURL-

Protocol will win the fight and be the one to perform the actual communication

with the internet. 

 The great thing is that this system can be adapted and extended by developers. You

can install a protocol for your own foobar: scheme or replace the system’s handling

of HTTP requests. 

6.2.2 Implementing a custom URL scheme with NSURLProtocol

Let’s create a custom NSURLProtocol. In this section we’ll implement one to handle

the foobar: URL scheme. Whenever there’s an image referenced by a URL like foo-

bar://oliver.jpg, our app should load this from the app bundle instead of the inter-

net. This LocalImageProtocol example project will implement the foobar: custom

URL scheme for use with a UIWebView.

DTDiscogs

Internet

NSURLSession

NSURLSessionDataTask

NSURLRequest

NSURLProtocol

Here be

dragons!

Figure 6.12 The internet as a variable



161Unit-testing network operations

 First you need to create an NSURLProtocol subclass and name it LocalImage-

Protocol. You need to implement the class method by which the system will ask your

class if it’s interested in handling requests:

+ (BOOL)canInitWithRequest:(NSURLRequest *)request {
if ([request.URL.scheme isEqualToString:@"foobar"]) {

    return YES;
}

return NO;
}

The second class method you need to implement is one that makes requests canoni-

cal. The point of it is to transform multiple variations of a URL, which all refer to the

same resource, into the same canonical URL. This is only really used if you allow cach-

ing, because you’d want to cache each retrieved resource only once, with the canoni-

cal URL being the cache key. In our example, we won’t worry about this cache

deduplication, so we can simply return the original request:

+ (NSURLRequest *)canonicalRequestForRequest:(NSURLRequest *)request {
return request;

}

If your class responded to the +canInitWithRequest: affirmatively, the system will

create an instance of your class to handle the specific request. On this instance, you

have a property referencing the request, as well as a client property that more or

less represents the NSURLConnectionDelegate. You implement the -startLoading

method to carry out the actual work, and communicate with this delegate, informing

it about the various stages as you carry them out. 

 Note the use of NSURL’s resourceSpecifier in the following code for retrieving

the filename. Because you don’t have any host and path components in the foobar

URL, the entire string after the scheme becomes the resource specifier:

- (void)startLoading {
NSString *fileName = [self.request.URL resourceSpecifier];
NSBundle *bundle = [NSBundle mainBundle];
NSString *imagePath = [bundle pathForResource:fileName  

    ofType:nil];         

if (imagePath) {
    [self _sendImageAtPath:imagePath];
}
else {

    [self _sendError];
}

}

Only interested in 
foobar: requests

iOS should try other 
protocol handlers

Get requested 
filename

Determine image 
filename in app bundle; 
type is part of name

Send image 
to the client

Inform client 
about the error



162 CHAPTER 6 Getting metadata for barcodes

If there’s no image in the app bundle with this resource name, you’ll send an error to

the object that has been registered as being interested in progress and status updates

from the loading process, also called the URL-loading client. In this case, you also have

to implement the -stopLoading method, even if it does nothing. Without this dummy

implementation, there will be an exception stating that this method is only imple-

mented in the abstract superclass:

- (void)stopLoading {
// nothing to do, but still needs to be implemented

}

The method to handle the error case is just as simple:

- (void)_sendError {
NSDictionary *info = @{NSLocalizedDescriptionKey:        

 @"Cannot find file in app bundle"};  
NSError *error = [NSError                                   

    errorWithDomain:NSStringFromClass([self class])  
    code:999 userInfo:info];                          

[self.client URLProtocol:self didFailWithError:error];
}

Finally, you implement the _sendImageAtPath: helper method that sends the found

image to the URL-loading client and messages the appropriate methods of the NSURL-

ProtocolClient protocol to inform the client about the start, received data, and fin-

ish of the loading process:

- (void)_sendImageAtPath:(NSString *)imagePath {
NSHTTPURLResponse *response = [[NSHTTPURLResponse alloc]

    initWithURL:self.request.URL
    statusCode:200
    HTTPVersion:@"1.1"
    headerFields:nil];

[self.client URLProtocol:self
    didReceiveResponse:response )
    cacheStoragePolicy:NSURLCacheStorageNotAllowed];

NSData *data = [NSData dataWithContentsOfFile:imagePath];
if ([data length]) {                                    

    [self.client URLProtocol:self didLoadData:data];          
}                                                       

[self.client URLProtocolDidFinishLoading:self];
}

If you wanted to, you could also add HTTP headers, such as to specify a content type,

but this example works fine without them. 

Create 
an error

Send error to URL-
loading client

Simulate an
HTTP response.

The URL
is reused.

Success is communicated 
with status code 200.Doesn’t matter,

so use 1.1.

You don’t need to
send any HTTP

headers as part of
the response.

Send response 
to URL-loading 
client.

Load file data 
and send it to 
client.

Inform client about 
end of loading.



163Unit-testing network operations

 The protocol implementation is now finished. To install it for use by the URL-loading

system, add this line to your app delegate:

[NSURLProtocol registerClass:[LocalImageProtocol class]];

If you run the LocalImageProtocol sample

app, you’ll see a web view loading an HTML

string with an embedded image (see fig-

ure 6.13). This image is loaded from the app

bundle via the foobar:Oliver.jpg URL because

now there’s a protocol to handle it.

 This technique can be used to imple-

ment any kind of URL protocol. In the fol-

lowing section, we’ll build a mechanism for

stubbing network requests with it. 

6.2.3 Stubbing NSURLRequest responses with 

DTURLProtocolStub

In the Music Collection app, you’ll find

DTURLProtocolStub, which works much like

LocalImageProtocol but with a few more

bells and whistles. Like the app in the previ-

ous section, it’s a simple subclass of NSURL-

Protocol. Instead of repeating the

explanation of how it works, let’s do some-

thing more exciting: eliminate the internet

as a variable by simulating network requests. 

 Test stubs are programs that simulate the

behavior of components that a module undergoing tests depends on. In this case the

tested module is the DTDiscogs wrapper class, and the component it depends on is

the Discogs web service. By specifying a variety of canned answers, you can create unit

tests covering all sorts of scenarios, including those that are extremely rare in real life.

 The DTURLProtocolStub class, which is provided as part of the Music Collection

sample app, lets you stub HTTP network requests. To use this class in your own unit

tests, copy the headers and implementation files for DTURLProtocolStub and DTURL-

ProtocolResponse to your project, and make sure that the .m files are compiled for

the unit test target. 

FINDING THE UNIT TEST SOURCE CODE All the code mentioned in this section—
along with a few more tests—can be found in DiscogsQueryTests.m, which
contains the Music Collection app unit tests. 

Figure 6.13 LocalImageProtocol sam-

ple app



164 CHAPTER 6 Getting metadata for barcodes

Let’s assume you have a component that depends on a GET request to www.apple.com.

You want to test one scenario where the response works with an HTTP status code of 200

(OK). Then you want to see that your code works correctly if—however unlikely—you

get a code of 404 (Not Found). 

 The stubbing class is designed to provide canned responses based on criteria you

define. Those criteria are specified in a test block that receives a reference to the

NSURLRequest object for which the loading should occur. The test block can inspect

properties of the URL request, like the URL, and if it returns YES the response should

be returned. Specify a NULL test block to have the response always be delivered.

 Having imported the stub header, you can add code to simulate the successful

request. Response tests are executed for each request in the same order they were reg-

istered with the DTURLProtocolStub class. The following example installs a stub for

requests to the Apple domain:

- (void)testFakeApple {
NSString *string = @"Hello, I am Apple. Really! ;-)";        
[DTURLProtocolStub addPlainTextResponse:string statusCode:200

    forRequestPassingTest:^BOOL(NSURLRequest *request) {               
    NSString *host = request.URL.host;              
    if ([host isEqualToString:@"www.apple.com"]) {

    return YES;                                  
    }                                               
    return NO;                                     

    }];                                                        

NSURL *URL = [NSURL URLWithString:@"http://www.apple.com"];    
NSURLRequest *request = [NSURLRequest requestWithURL:URL];     
NSHTTPURLResponse *response;                                   
NSError *error;                                                
NSData *data = [NSURLConnection sendSynchronousRequest:request

    returningResponse:&response
    error:&error];

NSString *responseString =                           
    [[NSString alloc] initWithData:data                   

    encoding:NSUTF8StringEncoding];  
NSString *contentType = response.allHeaderFields[@"Content-Type"];

XCTAssertEqualObjects(string, responseString,     
    @"wrong response string");      

XCTAssertEqual(response.statusCode, 200,         
    @"Status should be 200");             

XCTAssertEqualObjects(contentType, @"text/plain",  
    @"wrong content type");         

}

This unit test uses a convenience method of DTURLProtocolStub that provides a plain

text response for all requests to the www.apple.com URL. A complete test case method

incorporates several unit test assertions to determine if the result is indeed what was

expected.

Provide canned
response with content

type “text/plain”

Return this
response only

for calls to
domain

www.apple.com

Execute
synchronous
URL request

Convert 
response data 
to string

Get content type
from response

headers

Assertions to 
determine if all 
went as expected

www.apple.com
www.apple.com


165Unit-testing network operations

 All methods on DTURLProtocolStub are class methods, because you have no refer-

ence to the individual protocol object instance that the system will create for the

NSURLRequest. You need to install the stubbing protocol class in the -setUp method

of your test case class:

- (void)setUp {
[super setUp];

[NSURLProtocol registerClass:[DTURLProtocolStub class]];
[DTURLProtocolStub removeAllResponses];

[DTURLProtocolStub setMissingResponseBlock:^(NSURLRequest *request) {
    XCTFail(@"No response configured for request to %@", request.URL);    
    return (NSError *)nil;                                              
}];                                                                 

}

This setup method is called before

each individual test case method.

Because of this, you need to remove

the responses left over from the previ-

ous test. The +setMissingResponse-

Block: method warns you if you forgot

to provide a response for a specific sce-

nario. Figure 6.14 shows the test-

FakeApple unit test passing because all

assertions on the URL response object

are passing.

 For the scenario where the call to Apple needs to return a 404 instead, you specify

the appropriate response:

NSString *string = @"404 Not Found";
[DTURLProtocolStub addPlainTextResponse:string statusCode:404

    forRequestPassingTest:NULL];

If you pass NULL for the test block, this 404 response is sent for all requests. This is more

convenient if you only have a single stubbed response. You have both tools at your dis-

posal: the fine chisel (fine-grained test blocks) to target a variety of requests all getting

different responses, or the heavy hammer (a NULL test block) that responds with the

same content regardless of the request. Use the one that best suits the task at hand.

 Another good test to have is one that checks how the URL connection (and your

error handling) would deal with an offline internet connection:

NSError *offlineError = [NSError errorWithDomain:@"NSURLErrorDomain"
    code:-1009

    userInfo:nil];
[DTURLProtocolStub addErrorResponse:offlineError

    forRequestPassingTest:NULL];

Registers the stub handler
for URL-loading system

Remove 
responses left 
over from 
previous test 
case setUp

Install warning for missing responses

Figure 6.14 Fake Apple unit test passing



166 CHAPTER 6 Getting metadata for barcodes

In real life—outside of unit testing—iOS messages the connection:didFailWithError:

delegate method for a variety of transport errors, including -1009 for an offline connec-

tion. The preceding convenience method lets you specify the NSError that will be

returned to the delegate. Which error this is doesn’t usually matter unless your error-

checking code relies on a specific error code or message.

NOTE Don’t confuse HTTP errors with connection/transport errors. Even an
HTTP status code 404—for a web page that can’t be found—is considered to be
a successful connection. Connection or transport errors, on the other hand, occur
if there’s no internet connection, if DNS can’t resolve the host name, or if the
connection times out. Successful connections result in didFinishLoading and
unsuccessful ones in didFailWithError:.

DTURLProtocolStub has one more trick up its sleeve: you can record the individual

NSURLRequest before it’s treated with a response. This is useful if you want to make

sure that the URL has been constructed in a certain way by your wrapper class.

 Place the following code into your test case setUp to have subsequent requests

added to an array. This enables you to inspect the requests after the simulated net-

work operations to assert that only those that you expected were added:

_recordedRequests = [NSMutableArray array];
[DTURLProtocolStub setBeforeRequestBlock:^(NSURLRequest *request) {

[_recordedRequests addObject:request];
}];

You’ve seen DTURLProtocolStub in action for “classic” NSURLConnection-based net-

working. Next we’ll look at how to use it together with NSURLSession. 

6.2.4 Stubbing NSURLSession requests with DTURLProtocolStub

Before iOS 7, installing a protocol handler would always affect all network connections.

In iOS 7 and later, NSURLSession doesn’t use the global protocol registry. Instead, the

list of active NSURLProtocol classes is kept by NSURLSessionConfiguration instances. 

 In section 6.1.5 you used the default ephemeral session configuration to perform the

Discogs query. You might also remember creating a secondary initializer for DTDiscogs

that takes a session configuration as a parameter. This was done deliberately to allow you

to modify the list of protocol handlers.

 The MusicCollection unit tests implementation has the following helper method

that modifies the session configuration to install your protocol stubbing class:

- (NSURLSessionConfiguration *)_testSessionConfiguration {
NSURLSessionConfiguration *config =

[NSURLSessionConfiguration ephemeralSessionConfiguration];

Fresh array for the 
recording is created each 
time setup is called

Block gets executed
before stubbed

response is sent

Add response
to array



167Unit-testing network operations

config.protocolClasses = @[[DTURLProtocolStub class]];

return config;
}

The test case -setUp creates a fresh instance of DTDiscogs in an instance variable that

uses this configuration:

NSURLSessionConfiguration *config = [self _testSessionConfiguration];
_discogs = [[DTDiscogs alloc] initWithSessionConfiguration:config];

This causes all subsequent searchForGTIN:completion: calls to be handled by the

protocol stubber, allowing you to specify a variety of responses for all the test cases you

can dream up. Because the responses coming from Discogs are JSON, there’s a conve-

nience method to have the response data come from a file path. Having the JSON

come from files is much more convenient than having to specify the JSON as long

strings in your unit test code.

 Instead of configuring a single cover-all response like in the previous section, we’ll

now set up a cascade of tests and responses where each subsequent test is broader than

the previous one. The following three code snippets form the _setupProtocol-

StubForSearch setup method, which can be reused for several test cases.

 The first code snippet configures a successful response to a search for a specific

Queen album by GTIN. The response data comes from a JSON file inside the unit test

bundle:

NSString *path = [self _pathForResource:@"search_success"   
ofType:@"json"];            

[DTURLProtocolStub addResponseWithFile:path statusCode:200
forRequestPassingTest:^BOOL(NSURLRequest *request) {

if (![request.URL.path isEqualToString:@"/database/search"]) {
return NO;

}

NSArray *queryParams = [request.URL.query
componentsSeparatedByString:@"&"];

if (![queryParams containsObject:@"barcode=077774620420"]) {
return NO;

}

return YES;
}];

If the test for the first response doesn’t match, then a second test returns a “not

found” response to a search request:

path = [self _pathForResource:@"search_not_found"           
    ofType:@"json"];                        

[DTURLProtocolStub addResponseWithFile:path statusCode:200
forRequestPassingTest:^BOOL(NSURLRequest *request) {

Get path of JSON file 
inside test bundle 
via helper method

Request must be 
for the search 
function of the API

Request must 
contain a query 
parameter with 
the correct GTIN

Get path of JSON file 
inside test bundle 
via helper method



168 CHAPTER 6 Getting metadata for barcodes

    if ([request.URL.path isEqualToString:@"/database/search"]) {
    return YES;

    }

    return NO;
}];

If the API function URL points to an incorrect path on the Discogs server, it will

respond with a “resource not found” error, with status code 404. We’ll use this as the

final response for all requests not handled by the previous two tests. This way you can

also test whether the code can deal with this occurrence:

path = [self _pathForResource:@"resource_not_found"
 ofType:@"json"];

[DTURLProtocolStub addResponseWithFile:path statusCode:404
forRequestPassingTest:NULL];

All three JSON files can be found in the Music Collection project. They were created by

saving the responses Discogs sent for these scenarios. Having them as files is much

more convenient than constructing NSDictionary instances and then encoding these

as JSON. 

6.2.5 How to test asynchronous completion handlers

The DTDiscogs wrapper is constructed so that when you call the search method, you

pass a completion block. This block will be called after the networking operations and

subsequent validation are finished. That means it will be executed on a separate back-

ground queue and might also take a short while to complete.

 Unit tests are executed on the main queue, so you need a way to pause execution

until the completion block is called. Otherwise the test case would continue on and

finish while the completion block is still executing. This pause mechanism is provided

by Grand Central Dispatch (GCD) in the form of semaphores. 

 You create a semaphore in -setUp amongst the other initialization code you want

to execute for each test:

_requestSemaphore = dispatch_semaphore_create(0);

Two helper methods call two semaphore functions. Their only purpose is to provide a

name describing what they’re used for:

- (void)_waitForRequestToFinish {
dispatch_semaphore_wait(_requestSemaphore, DISPATCH_TIME_FOREVER);

}

- (void)_signalThatRequestIsDone {
dispatch_semaphore_signal(_requestSemaphore);

}

In practice, you wait on the semaphore right after the call to the search function.

Inside the completion block, you unlock the semaphore as a last action. 

Request must 
be for the 
search function 
of the API

Halt current thread 
until request signals 
that it’s done

Call at end of async block 
to unlock the semaphore



169Unit-testing network operations

 Here’s the unit test for the scenario where a Queen album is found:

- (void)testSearchQueen {
[self _setupProtocolStubForSearch];

[_discogs searchForGTIN:@"077774620420"
    completion:^(id result, NSError *error) {

    XCTAssertNil(error, @"There should be no error");        
    XCTAssertNotNil(result, @"There should be a response");   

    XCTAssertTrue([result isKindOfClass:[NSDictionary class]], 
    @"Result should be a dictionary");          

    NSArray *results = result[@"results"];                    
    XCTAssertEqual([results count], 1, @"One result expected");

    NSDictionary *lastResult = [results lastObject];           
    NSString *title = lastResult[@"title"];                   

    XCTAssertEqualObjects(title, @"Queen - Queen",             
    @"Title is wrong");                  

    [self _signalThatRequestIsDone];
    }];

[self _waitForRequestToFinish];
}

6.2.6 Shifting to test-driven development

In this chapter we first developed the DTDiscogs unit, and then we implemented unit

tests for it. I can’t give you more than a few thoughts on the broad subject of unit testing,

but I wanted to show you how to deal with the tricky bits relevant to our subject matter:

eliminating the internet as a variable in your test setup, and testing asynchronous code. 

 The basic approach to unit testing—which I demonstrated in this chapter—is to

create the implementation first and then create unit tests for it. The unit tests nail

down the assumptions you make about your code’s output. Should you ever change

your implementation to give different output, you’d notice this through failing unit

tests. Unit tests serve as coal mine canaries in this regard.

 Another approach I often take is to implement new unit tests for bugs I fix. This

makes sure that I’ll never undo a fix for an already-fixed bug while fixing a new one.

As apps grow more complex, you’re bound to lose the ability to foresee all the side

effects that new code or changes will have on all other areas.

 The reverse approach is to write the test first, knowing full well that it’s failing.

Then you implement the minimum behavior that will allow the test to pass. Then

write another failing test, rinse, and repeat. This approach is referred to as test-driven

because the creation of tests drives the implementation of features.

 The main advantage of test-driven development (TDD) is that you don’t have to

think up appropriate unit tests for all branches in your implementation code after the

fact. Once you have a working program, you’ll most likely also have a reasonable set of

unit tests. 

 Whichever of these styles better suits your taste is up to you. But however you decide,

unit tests will help you create better code—you can never have too many of them. 

Helper method for 
setting up the cascade 
of search results

Various
assertions

that should
be met for

test to pass

Unlock semaphore 
when the completion 
block is done

Main thread execution waits here 
until semaphore is released 



170 CHAPTER 6 Getting metadata for barcodes

6.3 Summary

You now know that your users can scan barcodes on mobile devices that are connected

to the internet by means of 3G cellular data or WiFi networking. Now you can start

thinking about interesting usage scenarios. Can you think of a situation where it

would be orders of magnitude more convenient to scan a product barcode than to

enter multiple bits of information?

 This chapter’s sample app demonstrated how you can use barcode scanning to let

a user add music media to a collection. As a Core Data–based app, it displayed the

music collection in a table list view, governed by a fetched-results controller. It intro-

duced modern networking embodied by NSURLSession and demonstrated how to cre-

ate a convenient wrapper class around the Discogs web service API.

 You’ve learned a method for offloading Core Data updates to a temporary worker

context, and you’ve also seen how unwinding segues are created and used. These are

two skills that are tangential to the main goal of this chapter—retrieving metadata for

scanned barcodes—but they’re nevertheless quite useful to know.

 In the section on unit testing, we explored a technique for stubbing server

responses for NSURLConnection and NSURLSession. For both of them, you can install a

custom NSURLProtocol to dish out responses. Then you saw how to synchronize test

execution and asynchronous completion handlers by using a dispatch semaphore. 

 These are the key takeaways for this chapter:

■ NSURLSession-based networking and barcode scanning were both introduced

in iOS 7.

■ You can create a URL session with the most suitable of three default configura-

tions: default, ephemeral, or background.

■ Use NSURLSessionDownloadTask for downloading files and NSURLSession-

UploadTask for uploading.

■ Avoid performing update operations on a main-queue-based managed object

context. This can lead to UI stuttering.

■ NSURLSessionDataTask, in combination with the ephemeral configuration, is

ideal for web API calls because you typically don’t need any result caching there.

■ You should abstract the network operations for interacting with a RESTful ser-

vice into a wrapper class.

■ You should check for all possible kinds of errors when dealing with the result of

a web API call.

■ You should unit test any networking wrapper code you write. Whether you pre-

fer to code first and then formulate tests or follow TDD is up to you. But you can

never have too many unit tests.

■ Simulating network responses eliminates the internet as a variable and also lets

you test how your code can deal with a greater variety of responses.



171Summary

This chapter elaborated on using the always-on internet of modern smartphones to

retrieve metadata based on scanned barcodes. In the next and final chapter of this

book, you’ll see how you can use the user’s current geographic and semantic context

to further enhance your barcode-scanning apps. 



172

Putting
 barcodes in context

Modern smartphones are uniquely aware of the current context a user is in.

Whether you’re moving or standing still, or whether you’re inside a moving car—it

feels totally natural to be able to open the Maps app and see your current position

on the planet indicated by a pulsating blue dot. 

 Apple has an uncanny ability to pick the most beneficial technological advance-

ments to be added in each new iOS version, for users as well as developers. The

Core Location framework has been part of the iPhone operating system since the

first version, but it was originally limited to getting user location by means of WiFi

and cell tower triangulation. A three-axis accelerometer was also on board to allow

the device to detect its own orientation so that it could rotate the UI to match. 

This chapter covers

■ Taking advantage of your user’s context to 

create “magic”

■ Geofencing locations with Core Location

■ Determining semantic location with iBeacons



173Understanding multiple layers of context

 On the second-generation iPhone 3G, Apple added a GPS receiver that further

increased the accuracy of Core Location. But because Core Location beautifully

abstracts determining the device location, there were almost no changes to the

public APIs. The same can be said about the third-generation iPhone 3GS, which

added a magnetometer allowing iOS to rotate maps to face the direction the user

is looking.

 Another generation later, with the iPhone 4, Apple added a three-axis digital gyro-

scope sensor, providing additional accuracy when detecting rotation. Are you beginning

to see the trend?

 As more sensor chips are added to the device, it knows more about the user and

about the surroundings the user is in. This is commonly referred to as the user context.

On your Mac, a context menu is a popup menu showing only activities that make

sense in the context you point the arrow at. On mobile devices, apps can (and should)

provide similar functionality and only present users with information or actions that

are relevant to the context they’re presently in.

 This chapter introduces the two major functionalities found in Core Location: geo-

graphic context from the user’s geolocation and semantic context from tracking and rang-

ing iBeacons. The difference between these two will soon become clear as we look at

how you can use these to better serve your customers. 

7.1 Understanding multiple layers of context

Let’s assume for a moment that you’re inside an Apple Store. Your iPhone can infer

this from your geographic location, because you’re within a certain radius of the

store. Your iPhone is strongly receiving the signal from an iBeacon, which indicates

that you must be standing close to the table displaying iPads.

 I’d like to point out two further levels of context that are provided by barcodes.

First, the Apple Store app lets you scan barcodes found on various products, such as

an accessory cable. This indicates that you have a specific interest in such a product,

which is another piece of context. In the case of Apple, you can pay for the cable with

your iTunes account and walk out of the store without ever having to talk to a genius.

This is a great feature to offer to customers who are either shy or in a hurry.

 Most electronic products have a second barcode—besides the GTIN product

code—showing the device’s serial number. If you scan a MacBook’s GTIN, your con-

text would be “any such model of MacBook.” But if you scanned the serial number on

the MacBook’s box, your context would be a single unique device. This specific device

has unique properties, like tech specs or when AppleCare runs out. You could build

an inventory-tracking app that maintains a database of all the serial numbers of your

company’s devices. Then you could assign specific pieces of equipment to individual

employees, and track who in your company is using what.

 In the sample app for this chapter, we’ll look at three of the four levels of context

(depicted in figure 7.1), because both barcode-related contexts work the same way,



174 CHAPTER 7 Putting barcodes in context

technically speaking. Besides, several previous chapters have already taught you how

to add a modal view controller with a barcode scanner to your apps.

 As British writer Arthur C. Clarke put it, “Any sufficiently advanced technology is

indistinguishable from magic.” (Profiles of the Future, 1962) The situational awareness

emerging from the iPhone’s built-in sensors is the main ingredient you can use to

delight your users and create “magic” in your apps. You might not be able to antici-

pate all your user’s needs, but anticipating a few more than your competitor’s apps

might make a big difference to your bottom line. 

7.2 Building a YardSale app

Until now, people selling off things they don’t need anymore have done so the “tradi-

tional way”—yard sales, garage sales, and the like. Those one-person flea markets

often have a treasure trove of goodies, but interested buyers might never know about

them if they don’t happen to pass by the home of the seller at the right time. There

has to be an app for that.

At which

geographic

location? 

 

At which

semantic

location?  

Core Location 

iBeacon 

For example, Apple Store

in San Francisco 

Which

product code?

iPad

Barcode

scanning            +

1

For example, on the table

with the iPads 
2

For example, an iPad Air 32 GB

Wifi with a model-specific

barcode on the box 

3

3

2

1

4

For example, a specific

serial number

on the box 

4Customer is

looking at a specific

Apple iPad box

Figure 7.1 Multiple layers of context 



175Building a YardSale app

 Let’s assume that you’re working for a startup that aims to establish “yard sales as a

service” to conquer this untapped market. People having a yard sale would sign up

with your company as sellers, submit the dates they’re holding a sale, and enter a list

of products and the prices they’re offering those items at. A free app, which you’re

tasked to develop, should be put on the App Store to help drive prospective customers

to those sellers. 

 Your company could sell packs of iBeacon devices to your users or guide them to

one of the many companies that sell iBeacons. Any beacon adhering to Apple’s iBea-

con standard can be used for this purpose, including virtual (software) iBeacons.

Apps running on devices capable of Bluetooth LE can emit an iBeacon. We’ll use this

software-based option for testing the sample app so that you don’t have to rush out to

buy a hardware iBeacon.

 The finished YardSale app will have these features:

■ The app will feature a list of currently active yard sale locations and show them

on a map.

■ If a user taps on one of the location pins, they’ll see the sale’s name in a callout

bubble.

■ Tapping on the callout accessory will show the in-store UI for this yard sale.

■ The user can easily “leave” the store by tapping a Close button.

■ If the app is inactive and the user walks into the vicinity of a yard sale, they will

get a notification about the sale.

■ When the app is active or becomes active because of the user tapping on the

notification action, the in-store UI will also be shown.

■ The in-store UI shows a list of products grouped by the table they’re on (to

enable multitable yard sales).

■ If an iBeacon is received more strongly than any others, only the table associ-

ated with this beacon is shown.

■ The in-store UI displays a button allowing the user to scan a barcode on an item

for sale, and after scanning an alert will show the layers of context.

In contrast to our previous sample apps, this one doesn’t just have just one interface,

but two: one for outside of stores and one for inside, as shown in figure 7.2. Plus, there

will be notifications outside of the app, which could be counted as a sort of minimalis-

tic UI for your app. The purpose of the YardSale app is to demonstrate how you can

take advantage of the user’s context to decide which of these user interfaces will most

benefit the user. 

 

 

 

 



176 CHAPTER 7 Putting barcodes in context

7.2.1 Creating the outside-the-store experience

No matter how many physical store locations you have, there will always be a “whole

world” outside of the stores. The user interface you’ll develop in this section will aim

to provide information to your users that’s beneficial when they’re out and about. At

its simplest, the UI will show a map with pins showing the locations of yard sales. This

will allow the user to look up the closest sale locations.

 Let’s get started building this part of the YardSale app.

 Create a new app project using the Single View Application template, and call it

“YardSale.” Using the refactor tool, rename the ViewController class with a more

descriptive name: MapViewController. This will be both the root view controller of

your application and the controller for the map.

 For showing the map and pins, you’ll use MKMapView provided by the MapKit

framework. In the main storyboard, add a new map view as a subview of the previous

root view that the Xcode template set up for you. Add constraints to pin the sides of

the subview flush with the sides of its superview. The top should be aligned with the

Figure 7.2 The finished YardSale app



177Building a YardSale app

top layout guide so that the map doesn’t extend under the status bar. This way the

map will always resize correctly if you rotate the device.

 For setting the annotations on the map, you need an outlet. Open MapViewCon-

troller.h in the assistant editor and Ctrl-drag the map view onto it to create an IBOut-

let, as shown in figure 7.3.

 In order to reference methods and classes from the MapKit framework, add it to

your target’s Link Binary With Libraries build phase. I recommend that you add the

main headers for Apple frameworks to the precompiled header file (PCH). This

speeds up compilation and makes all symbols available for all your source files. For

MapKit.framework the header to add is MapKit.h. You can look at the YardSale sam-

ple app contained in this book’s sample code to see this.

 For this demo, the locations will come from a property list that has the following

four values for each sale: 

■ The geolocation of the yard sale, coded as latitude and longitude

■ The name of the yard sale

■ A unique identifier to identify each yard sale

In the plist, those yard sale locations are represented as dictionaries, but inside the app

you’ll want to convert them into proper objects of type SalePlacemark. By deriving from

MKPlacemark, you can directly use the SalePlacemarks as map view annotations. 

 The SalePlace class extracts these values from the surrounding dictionary and

puts them into the appropriate instance variables. Because MKPlacemark already has a

property to take on the location, you can pass it through to the dedicated initializer:

- (instancetype)initWithDictionary:(NSDictionary *)dictionary {
CLLocationCoordinate2D coord;                             
coord.latitude = [dictionary[@"Latitude"] floatValue];    
coord.longitude = [dictionary[@"Longitude"] floatValue];   
self = [super initWithCoordinate:coord

                  addressDictionary:nil];

Figure 7.3 Adding an outlet for the map view

Create location struct
from dictionary valuesCall

superclass’s
existing

initializer
taking the

geocoordinate



178 CHAPTER 7 Putting barcodes in context

if (self) {                            
    _name = dictionary[@"Name"];           
    _identifier = dictionary[@"Identifier"];
}
return self;

}

You’re using the existing placemark subclasses in the API. CLPlacemark in Core Location

is a place with a radius and an address dictionary. MKPlacemark—found in the MapKit

framework—is a subclass of CLPlacemark, adding the methods of the MKAnnotation pro-

tocol. This means you can use those placemarks as model objects for adding annotations

to a map view. 

 In the YardSale app, the handling of the plist is encapsulated in the YardSaleMan-

ager class. A private helper method loads the list of sale locations from the plist, con-

verting them to SalePlace instances:

- (void)_loadAnnotations {
NSString *path =[[NSBundle mainBundle] pathForResource:@"Locations"

    ofType:@"plist"];       
NSArray *locs = [NSArray arrayWithContentsOfFile:path];         
NSMutableArray *tmpArray = [NSMutableArray array];              
for (NSDictionary *oneLoc in locs) {                            

    SalePlace *place = [[SalePlace alloc] initWithDictionary:oneLoc];  
    [tmpArray addObject:place];                                      
}                                                               
_annotations = [tmpArray copy];

}

It’s very tempting—especially in a small app like this one—to place such model-

related code in the view controller where you’re using it. But as you’ll see, you’ll also

need to access those placemarks from the app delegate, so it’s smarter to have a dedi-

cated model controller class like YardSaleManager. Once it’s instantiated, you can

pass a reference to it to all objects needing to interact with the sales places.

 This instantiation of the yard sale manager instance is done in the first method

that’s called when your app launches. The storyboard has no reference to the app del-

egate, which would allow you to set an outlet on the MapViewController. But because

you know that the map view controller will be set as the rootViewController of the

app’s window, you can get the reference from there:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

_saleManager = [YardSaleManager new];
MapViewController *vc =                                            

   (MapViewController *)self.window.rootViewController;                
NSAssert([vc isKindOfClass:[MapViewController class]],

    @"Root VC is not a MapViewController!");          
vc.yardSaleManager = _saleManager;
return YES;

}

Set additional 
instance variables

Get path to plist
file in app bundle

Convert 
places 
dictionaries 
into sale 
places

Store immutable copy 
of the array in ivar

Create model
controller instance

Get 
reference 
to map view 
controller

Assert your 
assumption that 
root VC is what 
you expectHand model controller reference

to map view controller



179Building a YardSale app

You can now place your pins on the map, ideally right before the MapViewCon-

troller’s view will become visible. But you can’t put it in viewWillAppear:, because

this method will also be called if the in-store UI is being dismissed. In real life you’d

need further logic to prevent double-setting the same annotations and to handle

updating. But for this sample app we’re foregoing such complexities:

- (void)viewDidLoad {
[super viewDidLoad];
NSArray *annotations = _yardSaleManager.annotations;
[self.mapView addAnnotations:annotations];
[self.mapView showAnnotations:annotations animated:YES];

}

With this code in place, your app should load the placemarks from the app bundle

and show them as red pins on the map.

 If you tap on one of the red pins, a callout bubble is shown. Its contents stem from

the values of the title and subtitle properties returned from SalePlace:

- (NSString *)title {
return [NSString stringWithFormat:@"%@'s Yard Sale", _name];

}

- (NSString *)subtitle {
return @"Cool Offers";

}

You also want to be able to enter a sale location via an accessory button in the form of

an info button on the right side of the callout bubble (see figure 7.4). Tapping this

button should show the in-store UI with information and actions specific to this partic-

ular site.

Get all annotations
from manager Add 

annotations 
to map

Zoom to fit all annotations

Figure 7.4 Apple’s 

yard sale



180 CHAPTER 7 Putting barcodes in context

Make the MapViewController the delegate of the map view by connecting the dele-

gate outlet with the view controller in Interface Builder. The following MKMapViewDel-

egate method lets you customize the annotation pins:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
    viewForAnnotation:(id<MKAnnotation>)annotation {

if ([annotation isKindOfClass:[MKUserLocation class]]) {
    return nil;                                                
}                                                       

Getting your home coordinates

Please replace the “Oliver” sale place and coordinates in Locations.plist with your

own location. For your testing, you can also add a few places near your current loca-

tion. The locations in the YardSale app’s property list are almost certainly too far

away from you for reasonable testing.

A quick way to find an address’s geographic coordinates is to search for them on

Google Maps. Note the decimal numbers in the address bar—those are the latitude

and longitude degrees of the address. Copy them to the latitude and longitude fields

in the property list.

Getting coordinates with Google Maps

Another way to find geographic coordinates, which is slightly more involved but also

more suitable for iOS developers, is to run the GetLocation sample app, which you

can find with the book’s source code. This displays your current geolocation together

with a reverse-geocoded address for your present location. 

Preserve blue dot
for the user location



181Building a YardSale app

MKPinAnnotationView *pav =                              
    [[MKPinAnnotationView alloc] initWithAnnotation:annotation

    reuseIdentifier:nil];     
pav.canShowCallout = YES;

UIButton *detailButton =                              
    [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
pav.rightCalloutAccessoryView=detailButton;
return pav;

}

If you implement this delegate method, it’s important to exclude the annotation rep-

resenting the user’s current location. Otherwise it would also get a red pin, confusing

users who are expecting to seeing a blue pulsating dot for their current location.

 Finally, to trigger the segue to the in-store UI, you need to implement another del-

egate method that’s called as soon as the user taps on the info button for a callout:

- (void)mapView:(MKMapView *)mapView
annotationView:(MKAnnotationView *)view
calloutAccessoryControlTapped:(UIControl *)control {

[mapView deselectAnnotation:view.annotation animated:YES];
[self performSegueWithIdentifier:@"ShowSalePlace" sender:view];

}

The aforementioned segue doesn’t exist yet. You’ll implement the in-store view con-

troller next. 

7.2.2 Implementing the in-store user interface

You want to show users information relevant to yard sales they’re visiting, whether vir-

tually, when they tap on the callout, or physically, when they come close to the place of

the sale. For this purpose, you’ll implement a table view controller that shows in-store

information.

 The transition from map to in-store UI could either be a modal segue or push

segue. I chose the modal option here because then the map remains underneath the

sliding-in view controller. This gives the user a clue that in order to return to the map,

they need to “exit” the store.

 Add a new UITableViewController subclass to the project and call it InStore-

ViewController. In Interface Builder, add this new view controller embedded in a

navigation controller. This will give you a navigation bar on which to mount the Close

button (see figure 7.5).

 There’s no UI element in the MapViewController to which you could connect a

segue, so instead you can connect it to the Manual option under Triggered Segues, as

shown in figure 7.6. Doing so creates a new segue that you set to the “modal” segue

type. To be able to call it from your code, give it an identifier of ShowSalePlace.

Create new default red
pin annotation view

Enable
showing

 of callout
bubble

 from pin
annotation

Create
default info

button

Set button 
as the right 
accessory of the 
callout bubble

Hide info 
bubble

Show in-
store UI



182 CHAPTER 7 Putting barcodes in context

Add a dummy unwinding method to the MapViewController. This lets you connect

the Close bar button to the green Exit icon. (Please refer to section 6.1.4 for an expla-

nation of unwind segues.)

 You’ve now created a segue that you can call programmatically via its identifier,

and you’ve also set it up so that the modal view controller is dismissed when the Close

button is tapped. In fact, you’re already performing the segue in reaction to the call-

out bubble’s accessory button being tapped.

 You need to pass the relevant SalePlace to the InStoreViewController. This is

done in prepareForSegue:sender:, which is called right before the segue animation

happens. The in-store view controller has a salePlace property to receive it:

 

 

 

Figure 7.5 Adding the in-store UI

Figure 7.6 Adding the in-store UI segue



183Geofencing store locations

 

 

 

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
if ([segue.identifier isEqualToString:@"ShowSalePlace"]) {

    UINavigationController *nav = [segue destinationViewController];
    InStoreViewController *vc = nav.viewControllers[0];
    vc.salePlace = [sender annotation];

}
}

You’re passing the MKAnnotationView as the sender of the segue when calling it from

code (see the code snippet at the end of section 7.2.1). The annotation view object

has an annotation property that references the SalePlace object belonging to it.

Sometimes you see developers “abusing” the sender method to directly pass the

model object, but I frown on this practice because in UIKit nomenclature the sender

parameter is supposed to be the control triggering some activity, not a model object.

 To demonstrate that you’re showing the correct yard sale with your in-store view

controller, you can set the title in viewWillAppear: to the SalePlace title:

self.navigationItem.title = self.salePlace.title;

This completes the UI work for both views that the YardSale app will provide. The app

launches in “global view” showing the map of pins. If you tap on a pin, a callout shows

more details and an info button. Tapping on this shows the in-store UI modally. Tap-

ping on the Close button dismisses it. 

 The next step is to show the in-store UI if the user gets close to a yard sale. 

7.3 Geofencing store locations

You want your app to alert users when they come close to a listed yard sale, even if the

YardSale app isn’t active. Apple’s rule is that apps may not run in the background and

use up the battery. There are exceptions to this rule that the developer can request for

specific use cases. Receiving background location updates is one of them.

 Fortunately, you don’t need to manually monitor the current location to compare

it with yard sale locations. In iOS 4, Apple introduced region monitoring, also often

referred to as geofencing. You can register up to 20 circular regions, and iOS will wake

your app to inform it if one of those regions has been entered or exited. iOS does this

tracking at a fraction of the energy cost it would take if you were to do it manually. 

7.3.1 Introducing region monitoring

A CLCircularRegion, used for monitoring, is defined by a geographic center (latitude/

longitude) and a radius (in meters) around those coordinates. To monitor for one such

region, you create a CLLocationManager, set a delegate to receive updates, and start

monitoring for it:

 

This is only relevant for
the segue with the
correct identifier.

Destination is the 
navigation controller.

In-store UI is the first of 
the navigation controller’s 
view controllers.Set the annotation

as the salePlace.



184 CHAPTER 7 Putting barcodes in context

 

 

_locationMgr = [[CLLocationManager alloc] init];
_locationMgr.delegate = self;
CLLocationCoordinate2D coord =                            

CLLocationCoordinate2DMake(37.332057, -122.0315941};
CLCircularRegion *region =                      

[[CLCircularRegion alloc] initWithCenter:coord
    radius:100     

    identifier:@"Apple HQ"];  
[_locationMgr startMonitoringForRegion:region];

It might take a while for iOS to determine the status of this region. But when it does, your

delegate object receives a call to locationManager:didDetermineState:forRegion:.

This state can be CLRegionStateUnknown, CLRegionStateInside, or CLRegionState-

Outside. You can coerce the location manager to update the region state right away with

the requestStateForRegion: method. 

7.3.2 Monitoring an unlimited number of regions

In our yard sale scenario, you want to have thousands of sellers as clients. How can you

work around Apple’s limit of only monitoring 20 regions with a single app?

 The trick is to only register for monitoring the 10 yard sale locations closest to the

current location of the user. If the user moves by a certain distance, you can update

the registrations. This achieves the same effect as if you were monitoring all yard sales

at the same time, albeit much more efficiently.

 To determine the 10 candidate regions, you need to sort the locations by distance

from a given point, and then only return the 10 closest ones. YardSaleManager gets a

new method for this purpose:

- (NSArray *)annotationsClosestToLocation:(CLLocation *)location {
NSArray *sorted = [[self annotations] sortedArrayUsingComparator:

              ^NSComparisonResult(SalePlace *pl1, SalePlace *pl2) {
CLLocationDistance dist1 =                                     

[location distanceFromLocation:pl1.location];              
CLLocationDistance dist2 =                                    

[location distanceFromLocation:pl2.location];              
return [@(dist1) compare:@(dist2)];                           

}];                                                             
NSRange range = NSMakeRange(0, MIN(10, [sorted count]));
return [sorted subarrayWithRange:range];                

}

The next several code pieces in this section are from the _updateMonitoredRegions-

ForLocation: method, which you can inspect in AppDelegate.m in the YardSale sam-

ple code.

Create location 
manager and 
store it in ivar

Set self to
be recipient
of delegate

messages

Create 
coordinate 
struct for 
Apple HQ

Create circular
region around

coordinate

Tell location manager 
to monitor this region

Sort sale 
places by 
distance 
from given 
location

Return first 10 
locations, or all if 
there are less than 
10 items in array



185Geofencing store locations

 The following helper method receives the current user’s location and then

updates the monitored regions according to plan. First, you check if region monitor-

ing is supported at all:

if (![CLLocationManager isMonitoringAvailableForClass:
 [CLCircularRegion class]]) {

NSLog(@"Monitoring not available for CLCircularRegion");
return;

}

Then you retrieve the 10 closest yard sale places and get a list of their identifiers.

Regions you’re still interested in aren’t touched because they’re already being moni-

tored. Monitoring is stopped for regions that are now too far away from the user:

NSArray *sales = [_saleManager annotationsClosestToLocation:loc];
NSMutableArray *identsToMonitor =                                    

[[sales valueForKeyPath:@"@unionOfObjects.identifier"] mutableCopy];

for (CLRegion *region in _locationMgr.monitoredRegions) {
    if ([identsToMonitor containsObject:region.identifier]) {  

    [identsToMonitor removeObject:region.identifier];      
    }                                                        
    else {                                          

    [_locationMgr stopMonitoringForRegion:region];
    }                                               
}

After this loop, you have a list of region IDs that you still need to start monitoring. You

also need to determine the maximum distance that one of these regions is away from

the user’s location:

CLLocationDistance maxDistance = 0;
for (SalePlace *onePlace in sales) {

CLLocationDistance dist =
    [loc distanceFromLocation:onePlace.location];
maxDistance = MAX(dist, maxDistance);

if (![identsToMonitor containsObject:onePlace.identifier]) {
    continue;                                                   
}                                                          

CLCircularRegion *region =                                 
    [[CLCircularRegion alloc] initWithCenter:onePlace.coordinate  

    radius:100                
    identifier:onePlace.identifier];

region.notifyOnExit = NO;
[_locationMgr startMonitoringForRegion:region];

}

Get closest 10 yard sales
Get IDs to

monitor via
key-value

coding (KVC)
operator

Iterate over
currently

monitored
regions

Already 
monitoring 
this; remove 
it from to-
do list

Not interested in
this any more

Increase max distance 
if this place is further 
away.The region

is no longer
on your to-

do list.

Create circular region
for yard sale place.

You don’t care
about exit

notifications.

Register 
monitoring for 
this region.



186 CHAPTER 7 Putting barcodes in context

Knowing the maximum distance that a monitored region is away from the user allows

you to defer location updates until the user has traveled a significant distance. This

allows iOS to refrain from waking up your app for each minor movement. Half the dis-

tance between the user and the farthest away monitored region is a good compromise:

[_locationMgr
allowDeferredLocationUpdatesUntilTraveled:maxDistance/2.0

    timeout:CLTimeIntervalMax];

You can specify a distance or a time interval or both for the preceding method. The

CLLocationDistanceMax and CLTimeIntervalMax constants let you specify that you

don’t want to limit this dimension.

 You don’t want to wait too long before knowing the monitored regions’ state, so you

want to trigger a state update right after updating the regions to be monitored. As of

iOS 7.1, there’s an issue with requesting a state update too soon after removing moni-

tored regions—the monitoring would fail altogether. A workaround for this issue is to

wait for at least 0.1 seconds. The following code waits for 0.2 seconds just to be safe:

dispatch_after(dispatch_time(DISPATCH_TIME_NOW,
(int64_t)(0.2 * NSEC_PER_SEC)),

dispatch_get_main_queue(), ^{
for (CLRegion *oneRegion in

_locationMgr.monitoredRegions) {
[_locationMgr requestStateForRegion:oneRegion];

}
});

You now have a convenient method for updating the monitored regions. The next

thing to do is call it if there’s been movement by the user. 

7.3.3 Updating monitored regions based on user location

Like other sensors, users need to authorize access to their location information. Up

until iOS 7, the first time an app requested location updates, a dialog would ask the

user for permission. As of iOS 8, the app has to explicitly request authorization, and

Apple split the permission into two parts: 

■ Only when the app is active and showing its UI, dubbed “when in use” 

■ “Always,” even when the app is in the background

This gives users the cozy feeling that they’re in control of which apps get which level

of access. For example, a POI search app would only ever require when-in-use

authorization.

 The user might deny this access, or location services might be disabled through

settings or by company policy. You can add the following helper method to deal with

those possible authorization scenarios—it’s called right after the app launches:

- (void)_enableLocationUpdatesIfAuthorized {
CLAuthorizationStatus authStatus =       

    [CLLocationManager authorizationStatus];
Get current 
authorization status



187Geofencing store locations

if (authStatus == kCLAuthorizationStatusRestricted ||
    authStatus == kCLAuthorizationStatusDenied) {

    [self _informUserAboutNoAuthorization];
    _locationMgr = nil;                    
    return;                                 
}                                      

#if __IPHONE_OS_VERSION_MAX_ALLOWED > __IPHONE_7_1              
if (authStatus == kCLAuthorizationStatusAuthorizedWhenInUse) {

    [self _informUserAboutBackgroundAuthorization];               
}                                                            

#endif                                                          

// initialize location manager
if (!_locationMgr) {                            

    _locationMgr = [[CLLocationManager alloc] init];
    _locationMgr.delegate = self;                    

if __IPHONE_OS_VERSION_MAX_ALLOWED > __IPHONE_7_1                 
    if ([_locationMgr                                          

    respondsToSelector:@selector(requestAlwaysAuthorization)]) {
    [_locationMgr requestAlwaysAuthorization];                    

    }                                                                
#endif                                                             

    [_locationMgr startMonitoringSignificantLocationChanges];
}

}

If you encounter a denied or restricted authorization status, you should tell the user

that you can’t provide app functionality dependent on location. For the denied status,

the user can simply enable location services for your app in the Privacy section of the

Settings app. For the restricted status, the user can’t do anything but complain to the

IT department (or parents) who made this policy decision.

User has specifically denied or
disabled location services for this app

Device
policy has

disabled
location
services

Only option is 
to inform user

On iOS 8,
location
updates

may be too
restricted

Create location 
manager if there 
is none yet

On iOS 8,
always

request;
gets ignored

if already
authorized

Only interested if there’s a
significant change in location

Compiling with iOS 7 and iOS 8 SDKs

This code compiles with both the iOS 7 and iOS 8 SDKs because the __IPHONE_OS
_VERSION_MAX_ALLOWED precompiler macro hides all code that the earlier SDK would

complain about. This technique is particularly useful if you want to support new SDK

features without breaking the build for your colleagues who might still use an older

Xcode version.

Apps that were built with the iOS 8 SDK can still execute on iOS 7 devices if the de-

ployment target build setting permits it. In order to prevent an “unrecognized selec-

tor” crash from calling a nonexistent method, you should ask if the object

respondsToSelector:.



188 CHAPTER 7 Putting barcodes in context

Your app requires access to the user’s location while the app is not active in order to

update the monitored regions, so you can tell the user that if you only have when-in-

use authorization. The helper methods showing the respective UIAlertViews aren’t

shown here.

 You get one chance to state your reason for need-

ing location access when the authorization alert

pops up (see figure 7.7). iOS 7 appends the contents

of your NSLocationUsageDescription info.plist key

to the dialog. You can also localize your message by

putting it into the localized InfoPlist.strings files

instead. iOS 8 adds two new such keys for the two

kinds of authorization: NSLocationWhenInUse-

UsageDescription and NSLocationAlwaysUsage-

Description. For backward compatibility with iOS 7,

all three strings should be present. The iOS 7 autho-

rization is equivalent to the “always” authorization in iOS 8.

 Monitoring significant location changes instead of normal location updates also

reduces unnecessary battery drain. This works fine on physical devices, but I found that

there are some problems with getting the iOS simulator to report those. As a work-

around—while testing your app on Simulator—you can replace the startMonitoring-

SignificantLocationChanges line with the following to get a similar update profile:

_locationMgr.distanceFilter = 1000;
_locationMgr.desiredAccuracy = kCLLocationAccuracyKilometer;
[_locationMgr startUpdatingLocation];

Regardless of which kind of location updates you choose (normal, significant, or

deferred), they always get reported to the same CLLocationManagerDelegate

method:

- (void)locationManager:(CLLocationManager *)manager
    didUpdateLocations:(NSArray *)locations {

CLLocation *location = [locations lastObject];
if (location.coordinate.longitude               
    != _mostRecentLoc.coordinate.longitude ||        
    location.coordinate.latitude                    
    != _mostRecentLoc.coordinate.latitude) {         

    _mostRecentLoc = [locations lastObject];          

    [self _updateMonitoredRegionsForLocation:location];
}

}

A location might be reported multiple times, so you keep the most recent one stored

in the _mostRecentLoc ivar and only update regions if a newly reported location is

different.

 In addition to updating the monitored regions when the location changes, you

also want to update whenever the app becomes active. This occurs if it returns from

Get most recent 
location

Compare with 
previous location

Update monitored 
regions for this 
location

Figure 7.7 Location access dialog 

with custom reason



189Geofencing store locations

being backgrounded and also after the user reacts to the authorization dialog. If

there’s a most recent location stored in the ivar, you can also call the update method:

- (void)applicationDidBecomeActive:(UIApplication *)application {
[self _enableLocationUpdatesIfAuthorized];
if (_mostRecentLoc) {

    [self _updateMonitoredRegionsForLocation:_mostRecentLoc];
}

}

If the user leaves the app via the home button and changes the authorization in the

privacy settings, this delegate method is where you should react to this. This method is

also called following the app’s launch. This is why you call _enableLocation-

UpdatesIfAuthorized here. This enables location updates if you have sufficient

authorization, or it outputs the appropriate warning alerts to tell the user that certain

app features won’t work until “always” authorization is granted.

 By monitoring significant location changes in combination with deferred updates,

you keep battery drain to a minimum while keeping the list of monitored yard sale

locations updated. This creates the effect of being able to monitor a virtually unlim-

ited number of circular regions with only minimal battery drain. 

7.3.4 Notifying users when entering a monitored region

The main purpose of this app is to alert users if they enter the vicinity of a yard sale,

even when the YardSale app isn’t running. You can achieve this by sending a location

notification as soon as a region’s state changes to “inside.” You need to be able to get

the SalePlace to correspond to a given identifier, so YardSaleManager gets another

helpful method:

- (SalePlace *)salePlaceForIdentifier:(NSString *)identifier {
NSPredicate *predicate =

    [NSPredicate predicateWithFormat:@"identifier == %@", identifier];
NSArray *matches =

    [[self annotations] filteredArrayUsingPredicate:predicate];
return [matches firstObject];

}

There should only ever be a single SalePlace with a given identifier. Because the

method for filtering an array using a predicate returns an array, you return only the

first object.

 Before iOS 8, users couldn’t prevent local notifications from appearing. Some

apps, particularly games, abused this free reign to annoy users. Thankfully, Apple is

unifying the privacy settings for remote and local notifications. As of iOS 8, your app

gets its own privacy section in Settings where the user can modify location authoriza-

tion as well as notification settings.

 But you still have to support iOS 7 devices, so some extra code is necessary to avoid

crashing when calling methods defined in the iOS 8 SDK. The following helper

method should be called right after app launch to let iOS know the kinds of notifica-

tions you plan to send:



190 CHAPTER 7 Putting barcodes in context

 

- (void)_authorizeLocalNotifications {
#if __IPHONE_OS_VERSION_MAX_ALLOWED > __IPHONE_7_1

UIApplication *app = [UIApplication sharedApplication];
if ([app respondsToSelector:                  
    @selector(registerUserNotificationSettings:)])
{

    UIUserNotificationSettings *settings =                   
    [UIUserNotificationSettings settingsForTypes:             
    UIUserNotificationTypeAlert|

       UIUserNotificationTypeSound categories:nil];
    [app registerUserNotificationSettings:settings];

}
#endif}

The first time the app is launched on iOS 8, it takes a few seconds for the user to

approve of your app sending notifications. The first-ever call to registerUserNotifi-

cationSettings: causes an authorization alert to pop up. You get a chance to react to

the given authorization inside the following app delegate method:

#if __IPHONE_OS_VERSION_MAX_ALLOWED > __IPHONE_7_1
- (void)application:(UIApplication *)application

    didRegisterUserNotificationSettings:
    (UIUserNotificationSettings *)notificationSettings {

if (!notificationSettings.types) {                     
    // nothing allowed                                      
    return;                                                  
}                                                      

if (_mostRecentLoc) {                                   
    [self _updateMonitoredRegionsForLocation:_mostRecentLoc];
}                                                       

}
#endif

This delay only occurs the first time. Subsequent calls to the registration method cause

an immediate callback. So—on iOS 8—this is the best place to put all code requiring

knowledge of the user’s authorization choices. In the YardSale app, you want to update

the monitored regions’ state and notify the user of any nearby yard sales.

 The next helper method constructs and sends a local notification. Those work and

look much like remote push notifications. Depending on the user’s preference,

they’re either shown as a top banner or an alert. The user can also opt to include or

exclude them in the Notification Center.

 Because of the notification unification in iOS 8, this helper method contains some

code that modifies the local notification based on the current notification settings.

Failure to do so causes the notification to be ignored by the system, and the resulting

log message scolds you for it.

Only include this 
code if building 
with iOS 8 SDK.

Avoid
crashing on

iOS 7 devices
where this

selector
doesn’t exist.

Build notification 
settings to 
include text alerts 
and sounds.

Register the
notification

settings with
iOS.

Only include this 
code if building 
with iOS 8 SDK

User denied all 
notification types

Some action that 
was waiting for the 
user’s decision



191Geofencing store locations

 The parameter for specifying a delay is useful when testing the code for simulating

a user triggering the notification action:

- (void)_sendLocalNoteForSalePlace:(SalePlace *)place
    afterDuration:(NSTimeInterval)duration {

if ([_lastNotifiedSaleID isEqualToString:place.identifier]) {
    return;
}                                                            
UIApplication *app = [UIApplication sharedApplication];
BOOL shouldAddMsg = YES;  
BOOL shouldAddSound = YES;

# if __IPHONE_OS_VERSION_MAX_ALLOWED > __IPHONE_7_1
if ([app respondsToSelector:                    
    @selector(currentUserNotificationSettings)]) {

    UIUserNotificationSettings *settings =         
    [app currentUserNotificationSettings];       

    if (!settings.types) {
    return;            

    }                     
    if (!(settings.types & UIUserNotificationTypeAlert)) { 

    shouldAddMsg = NO;                                
    }                                                    
    if (!(settings.types & UIUserNotificationTypeSound)) {

    shouldAddSound = NO;                              
    }                                                   
}

#endif
NSString *msg = [NSString stringWithFormat:@"%@ is closeby!",

    place.title];                                 
UILocalNotification *note = [[UILocalNotification alloc] init];
note.alertAction = @"Visit";
if (shouldAddMsg) {         

    note.alertBody = msg;         
}                           
if (shouldAddSound) {                              

    note.soundName = UILocalNotificationDefaultSoundName;  
}                                                   
note.fireDate = [[NSDate date] dateByAddingTimeInterval:duration];
note.userInfo = @{@"SaleID": place.identifier};
_lastNotifiedSaleID = place.identifier;
[app scheduleLocalNotification:note];

}

You’ll need the SalePlace identifier later on for identifying which yard sale the user

wants to execute the action for, so you put it in the location notification’s userInfo

dictionary. Instead of using the standard system sound, you can also specify the

name of a CAF sound file contained in your app bundle. How about the sound of a

cash register?

Bail out if user has
been notified for

this region.

Default is
to include
sound and
text alert.

This code is only 
included if building 
with iOS 8 SDK.

Check that
iOS 8 methods

exist before
executing it.

Retrieve current 
user-notification 
settings.

Bail out
because no
notification

types are
specified.

Toggle text 
alert if not 
permitted.

Toggle alert 
sound if not 
permitted.

Build the
notification

message text
with the sale

place title.

Create new local notification.

Set name of button
when shown in

alert style.

Set the notification 
message if desired. Use system 

default sound 
if desired.

Set the fire
date of the

notification.
Add sale place 
identifier for 
later reference.

Remember place identifier to
prevent duplicate notification.Hand the configured 

notification off to 
the system.



192 CHAPTER 7 Putting barcodes in context

  Apple provides instructions for how to convert sound files into a format appropri-

ate for use as notification sounds.1

 In the following method, which gets called when the state of a monitored region is

updated, you want to avoid sending the same notification multiple times. A new ivar,

_lastNotifiedSaleID, keeps track of the last sale place you sent a location notifica-

tion for. You’ll send the notification as soon as the region-monitoring callback method

tells you about the boundary crossing:

- (void)locationManager:(CLLocationManager *)manager
    didDetermineState:(CLRegionState)state

    forRegion:(CLRegion *)region {
switch (state) {

    case CLRegionStateUnknown: {             
    NSLog(@"Unknown %@", region.identifier);
    break;                                

    }                                         
    case CLRegionStateInside: {

    NSLog(@"Inside %@", region.identifier);
    SalePlace *salePlace =                                     

    [_saleManager salePlaceForIdentifier:region.identifier];
    [self _sendLocalNoteForSalePlace:salePlace

    afterDuration:0];        
    _lastNotifiedSaleID = region.identifier;
    break;

    }
    case CLRegionStateOutside: {              

    NSLog(@"Outside %@", region.identifier);
    break;                                 

    }                                          
}

}

To test this contraption, make sure that you have your current home location set up in

the locations file. Set the duration to 5 seconds. This way you can launch the app and

press the home button to send it to the background. When it sees that you’re already

inside your home location, it will schedule a local notification 5 seconds in the future,

as shown in figure 7.8. The notification style for this screenshot has been switched to

alert style because the banner style doesn’t show the

action button text.

 If the user taps on the Visit button in the alert-style

notification or taps on the notification banner, iOS

will return control to your app. If it was suspended in

the background, then it gets awoken; if it was termi-

nated, it gets relaunched. In both cases, a method on

the application delegate is called, which gives you an

opportunity to react to the user’s response.

1 See “Registering, Scheduling, and Handling User Notifications” in the “Local and Remote Notification Pro-
gramming Guide”: http://developer.apple.com/library/ios/documentation/NetworkingInternet/Concep-
tual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html.

Only log 
identifier if a 
region’s state 
is unknown

Get sale 
place 
object via 
the region’s 
identifier

Send local 
notification after 
specified delay

Only log 
identifier of 
regions the user 
is outside of

Figure 7.8 Alert-style local notifica-

tion

http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html


193Geofencing store locations

 You add a new method to the MapViewController so that you can trigger the show-

ing of the in-store UI from the app delegate:

- (void)showInStoreUIForSalePlace:(SalePlace *)place {
MKAnnotationView *view = [self.mapView viewForAnnotation:place];
[self performSegueWithIdentifier:@"ShowSalePlace" sender:view];

}

The preceding method simulates tapping on the annotation pin accessory button,

allowing the prepareForSegue:sender: method to retrieve the annotation from the

sender parameter and pass it to the in-store view controller. With this method you can

trigger the “visit” from within the app delegate.

 In the app delegate, the following helper method presents the in-store UI for a

given store ID. This also makes sure that you’re not trying to present the modal view

controller twice. A friendly message welcomes the user to the store:

- (void)_showSalePlaceForIdentifier:(NSString *)identifier {
MapViewController *vc =

    (MapViewController *)self.window.rootViewController;
if (vc.presentedViewController) {  

    // In-Store VC already showing
    return;                            
}                                 
SalePlace *salePlace =                         

    [_saleManager salePlaceForIdentifier:identifier];
NSString *msg = [NSString stringWithFormat:@"Welcome to %@",

    salePlace.title];                              
UIAlertView *alert = [[UIAlertView alloc]                    

    initWithTitle:@"Glad to see you!"           
    message:msg                               
    delegate:nil                               
    cancelButtonTitle:@"Ok"                    
    otherButtonTitles:nil];                   

[alert show];                                               
[vc showInStoreUIForSalePlace:salePlace];

}

Once you’ve scheduled the location notification, it will “fire” at the given time. What

happens then depends on whether or not the app is currently active in the fore-

ground and whether it’s running on an iOS 7 or 8 device (see table 7.1).

Table 7.1 Receiving a location notification

App state iOS 7 (and earlier) iOS 8

Foreground Receive application: didReceive-
LocalNotification: immediately

Receive application: didReceive-
LocalNotification: immediately

Get the annotation view for
the pin belonging to the sale

place’s annotation object.

Pretend to have triggered
the segue from this pin.

Bail out if there’s already 
a store showing.

Get
SalePlace
instance

matching
identifier

parameter.

Show
welcome
message.

Present the 
store UI.



194 CHAPTER 7 Putting barcodes in context

To cover all four scenarios, you need to implement the two application delegate meth-

ods, as follows:

- (void)application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification {
NSString *saleID = notification.userInfo[@"SaleID"];
[self _showSalePlaceForIdentifier:saleID];

}

#if __IPHONE_OS_VERSION_MAX_ALLOWED > __IPHONE_7_1
- (void)application:(UIApplication *)application

handleActionWithIdentifier:(NSString *)identifier
forLocalNotification:(UILocalNotification *)notification
completionHandler:(void(^)())completionHandler {
NSString *saleID = notification.userInfo[@"SaleID"];
[self _showSalePlaceForIdentifier:saleID];
completionHandler();

}
#endif

If the app is already in the foreground while sending this local notification, no alert or ban-

ner is shown. Instead, iOS calls the application:didReceiveLocalNotification: dele-

gate method right away. This means that if you’re entering a yard sale region while walking

around with the map showing, the app will also move into the in-store UI. One might frown

on such unexpected activity by the app, but it’s quite likely that users would rather see

information about the yard sale they just stumbled on. For the rare case that a user still

wants to peruse the map—to find other nearby sales—there’s the Close button.

 You’ve now covered all scenarios inside and outside the app. Whether users react

to a local notification or navigate to a yard sale by means of the map, they’ll still end

up seeing the in-store UI.

7.4 Enhancing the in-store UI with iBeacons

The framework in charge of everything related to a user’s location is Core Location.

Over the years, Apple has enhanced it and also made the technology backing it faster,

more energy-efficient, and more accurate. The location on Earth is put together by

triangulating cell towers and WiFi networks and—where the data can be received—

with meter-accurate geopositioning from GPS and GLONASS satellites.

Background Receive application: didReceive-
LocalNotification: after user taps 

on action and app becomes active

Receive application: handle-
ActionWithIdentifier: for-
LocalNotification: completion-
Handler: after user taps on action and 

app becomes active

Table 7.1 Receiving a location notification (continued)

App state iOS 7 (and earlier) iOS 8

Get sale place identifier
from notification
userInfo payload

Show in-
store UI

This code is only 
included if building 
with iOS 8 SDK

Get sale place 
identifier from 
notification 
userInfo 
payload

Show in-
store UI

Call provided 
completion handler



195Enhancing the in-store UI with iBeacons

But those technologies aren’t able to help users navigate inside a store or shopping

mall. Without the aid of satellites, location accuracy is within hundreds of meters. For

this scenario, some genius at Apple invented iBeacons.

7.4.1 Introducing the iBeacon system

Rather than trying to supplement the accuracy of geolocation, iBeacons provide a

semantic context to your app. They piggyback on top of Bluetooth Low Energy (BTLE)

advertisements. BTLE, also known as Bluetooth 4.0, has only its name in common with

earlier Bluetooth versions. It’s a brand new standard aiming to be extremely power

efficient. BTLE peripherals send out advertisement packets with identifiers telling

interested listeners what kinds of services they offer. Those listening devices can then

establish a connection to transfer bursts of data.

 Ingeniously, iBeacon doesn’t need any connection to work, because all necessary

information is transmitted inside the advertisement packet: a beacon UUID, and a minor

and major value. Thanks to this trick, it’s extremely energy efficient to listen for iBeacon

advertisements. For the same reason,

you can get hardware iBeacons for

around $30 each that run on a button

battery for more than a year. All these

need to do is send the iBeacon advertise-

ment packet every couple of seconds.

Very little energy is used for these trans-

missions because their range is only a

couple of meters(see figure 7.9).

 One interesting iBeacon usage sce-

nario has to do with Passbook. Imagine

a bus company sticking an iBeacon

device next to the front doors of all

their buses. If they add the beacon

The dangers of using local notifications for UI flow

In the method that deals with monitored region state updates, you’re always send-

ing a local notification regardless of application state. This allows you to specify a

delay so that you can press the home button and see the notification arrive for test-

ing. It also allows you to demonstrate various scenarios of your app reacting to lo-

cal notifications.

In a production app, you should only send the local notification if the app is in the

background. If a user of iOS 8 hasn’t authorized your app to send notifications, this

would disable the functionality of showing the in-store UI while the app is in the fore-

ground. To avoid this problem, you want to show the in-store UI without detouring via

the local notification. The YardSale app features this modification. 

Figure 7.9 Two hardware iBeacons compared to 

iPhone



196 CHAPTER 7 Putting barcodes in context

identifier as a relevancy criteria to their Passbook tickets, then iPhones can show the

bus ticket on the lock screen when you get close to entering the bus. Passbook sup-

ports semantic and geographic locations as relevancy criteria.

 For the YardSale app, you could use iBeacons to find out which table at a yard sale

the user is closest to. That’s assuming that you want to support multitable yard sales or

flea markets.

 There are two styles of interaction with iBeacons: 

■ Monitoring—This is eerily similar to monitoring geolocations, which was dem-

onstrated in the previous section. It uses the same methods—the only differ-

ence is how you construct the region to be monitored. 

■ Ranging—This measures the signal strength being received from individual

beacons to determine an approximate distance between them and the user. 

7.4.2 iBeacon monitoring at a glance

For monitoring, instead of using a CLCircularRegion you use a CLBeaconRegion:

NSUUID *uuid = [[NSUUID alloc] initWithUUIDString:
             @"C70EEE03-8E77-4A57-B462-13CB0A3ED97E"];

CLBeaconRegion *beacon = [[CLBeaconRegion alloc]
                          initWithProximityUUID:uuid
                                    identifier:@"YardSale Beacon"];

[_locationMgr startMonitoringForRegion:beacon];

If you build with the iOS 7 SDK, you’ll always be able to construct a beacon region, but

that doesn’t mean that the current device is able to monitor for beacon regions. Use

the isMonitoringAvailableForClass: class method of CLLocationManager to deter-

mine if monitoring is available for CLBeaconRegion.

 There are three variants of the initializer method available, depending on how

narrowly you want to specify the beacon to be monitored. The primary beacon identi-

fier is a universally unique identifier (UUID). In addition, you have two 16-bit integer

values—the major and minor values. For example, if all Apple Stores shared the same

UUID, the major value could identify the store location and the minor value could

identify a semantic location inside each store. The preceding code only monitors for

beacons with a particular UUID, regardless of the major and minor values, but those

other variants will let you restrict to a specific major value or a specify a major and

minor combination.

Generating a UUID

If you ever need to generate a UUID for your own purposes, there’s a simple solution:

in Terminal, just type uuid and press Enter. You’ll get a freshly generated UUID.



197Enhancing the in-store UI with iBeacons

iBeacons aren’t monitored via the traditional Core Location technologies. Instead,

they require that Bluetooth be active. If you try to monitor a beacon region with Blue-

tooth turned off, the user will get an alert from the system recommending that they

turn on Bluetooth “for greater accuracy.”

 The 20-region limitation of Core Location doesn’t differentiate between circular

georegions and beacon regions. You could be monitoring 10 yard sale locations and 10

different beacon regions. For the purposes of the YardSale app, you have no use for bea-

con monitoring because you want to know about a nearby sale place, even when the user

is 100 meters away. Bluetooth doesn’t reach that far. Instead of beacon monitoring,

we’ll implement iBeacon ranging for the times when the user is already inside a yard

sale area. 

7.4.3 Making any app emit an iBeacon

Any app can act as an iBeacon while it’s in the foreground. Remember when you built

a ticket-verifier app in chapter 4? If you’d made this app an iBeacon emitter and

added the beacon’s UUID to the movie ticket passes, those tickets would have popped

up on your guests’ lock screens as soon as they came close to the person at the door

wanting to check their tickets.

 I’m assuming that you haven’t bought a bunch of hardware beacons yet, so creat-

ing a software iBeacon is very useful when testing app scenarios involving iBeacon

monitoring or ranging. The BeaconEmitter app included in this book’s source code

contains an implementation for you to use.

 Emitting a beacon is slightly complicated because Core Bluetooth requires sepa-

rate authorization. Also, you should only try to trigger actions with Bluetooth powered

on. You can see the relevant code in the BeaconEmitter app’s ViewController.m. The

_startAdvertising method also constructs a CLBeaconRegion, but only for generat-

ing the peripheral data dictionary:

- (void)_startAdvertising {
NSString *UUIDString = self.UUIDTextField.text;          
NSInteger major = [self.majorTextField.text integerValue];
NSInteger minor = [self.minorTextField.text integerValue];
NSUUID *UUID = [[NSUUID alloc] initWithUUIDString:UUIDString];
CLBeaconRegion *region =                              

    [[CLBeaconRegion alloc] initWithProximityUUID:UUID
    major:major    
    minor:minor    

    identifier:@"FooBar"];

NSDictionary *beaconPeripheralData =
    [region peripheralDataWithMeasuredPower:nil];
[_peripheralManager startAdvertising:beaconPeripheralData];

}

Get UUID, 
major, and 
minor values 
from text fields

Create
NSUUID

object
from
UUID

string

Create beacon 
region with 
these valuesIdentifier can’t be nil, 

but is inconsequential

Use region’s 
helper method 
to construct 
peripheral data 
dictionary

Start advertising 
this iBeacon



198 CHAPTER 7 Putting barcodes in context

The beacon region object isn’t needed after calling peripheralDataWithMeasured-

Power:. The power parameter on this method will allow you to specify a custom RSSI

value, and setting it to nil uses a reasonable default. The peripheral data dictionary

contains Apple’s iBeacon service ID, your UUID, the major and minor values, and the

RSSI value. Nothing more to see there.

 iOS will automatically pause these beacon advertisements a few seconds after the

user sends the app into the background via the home button. Unfortunately, this can’t

be changed, even by specifying any of the two background modes related to Blue-

tooth. Apple is rather stubborn when it comes to conserving power. Using such a soft-

ware iBeacon requires the app to remain running in the foreground. 

7.4.4 Determining distance to iBeacons with ranging

Geofencing via geographic coordinates reliably informs you about nearby yard sale

locations. But when on the premises or inside the store, you want to show the informa-

tion that’s relevant to semantic locations at this sale place. Imagine that your yard sale

location has multiple tables or participants, and you put a hardware beacon on each

table. Ranging is the process whereby iOS will report to you the relative signal strength

at which iBeacons are currently being received. If you’re closer to one beacon than

another, you’ll be receiving it at a greater signal strength.

 Various kinds of hardware beacons might emit their signals at different strengths,

so some allow you to calibrate by giving you a Received Signal Strength Indication

(RSSI) value. This value—measured in decibels—is the strength at which a device

would receive the signal at a given distance. But to keep things simple, let’s assume

that all your software beacons are sending at the same strength. 

 The iPhone 4S and later versions, and iPad 3 and later, have Bluetooth 4.0 chip-

sets. Run the provided BeaconEmitter app on a few of your older iOS devices for test-

ing iBeacon ranging. Leave the UUID and major values as they are, and modify the

minor value to be the table number. Minor 1 would be table number 1; minor 2, table

number 2; and so on.

 There’s always the possibility that Bluetooth isn’t available because either the user’s

device is too old or it’s disabled. The default in-store view shows five sections, one for

each table. In these sections there will be 10 products each. If the _filteredTable ivar

is -1, then you want to show all table view sections. Otherwise, you show only the cor-

responding section. This way, iBeacon causes the list of products to be filtered down to

the ones that are currently relevant for the user’s semantic location.

 The contents of the table view are intentionally very simple. Their sole goal is to

show you that the data changes as you come close to different beacons:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
return NUMBER_TABLES;

}

- (NSInteger)tableView:(UITableView *)tableView
    numberOfRowsInSection:(NSInteger)section {



199Enhancing the in-store UI with iBeacons

if (_filteredTable == -1 || section == _filteredTable) {
    return 10;                                               
}                                                       
return 0;

}

The same technique shows section headers only when needed:

- (NSString *)tableView:(UITableView *)tableView
    titleForHeaderInSection:(NSInteger)section {

if (_filteredTable == -1 || section == _filteredTable) {
    return [NSString stringWithFormat:@"Table %ld", (long)section+1];
}
return nil;

}

The row cells only show a sequential product number and which section they belong to:

- (UITableViewCell *)tableView:(UITableView *)tableView
    cellForRowAtIndexPath:(NSIndexPath *)indexPath {

UITableViewCell *cell = [[UITableViewCell alloc]
    initWithStyle:UITableViewCellStyleDefault
    reuseIdentifier:nil];

cell.textLabel.text =
    [NSString stringWithFormat:@"Product %ld on table %ld",

    (long)indexPath.row+1,
    (long)indexPath.section+1];

return cell;
}

Now that we’ve got the boring part out of the way, you can implement a location man-

ager to take care of beacon ranging. You can have as many CLLocationManager

instances as you like, so it’s quite practical to have one dedicated to in-store beacon

ranging that’s only activated while InStoreViewController is showing:

- (void)viewDidLoad {
[super viewDidLoad];
NSUUID *uuid = [[NSUUID alloc]                                 

    initWithUUIDString:@"C70EEE03-8E77-4A57-B462-13CB0A3ED97E"];
_inStoreRegion = [[CLBeaconRegion alloc]                            

    initWithProximityUUID:uuid
                                identifier:@"In-Store"];     

_filteredTable = -1;
}

Right before the view controller’s view appears, you create a dedicated location man-

ager and start ranging, if available:

- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];
self.navigationItem.title = self.salePlace.title;

Show 10 rows in table 
view section if this 
section index is equal 
to the filter variable or 
if no filter is active (-1)

Otherwise, hide this 
section’s rows

Specify same UUID as the
BeaconEmitter sample
app is configured with

Beacon region will be needed
in multiple places, so it’s

stored in an instance variable
Default is to show all
sections of table view

Set title to 
show that this 
is a specific 
store



200 CHAPTER 7 Putting barcodes in context

if (![CLLocationManager isRangingAvailable]) {
    NSLog(@"Ranging not available");               
    return;                                        
}                                             
_beaconManager = [[CLLocationManager alloc] init];            
_beaconManager.delegate = self;                               
[_beaconManager startRangingBeaconsInRegion:_inStoreRegion];   

}

The preceding code starts the ranging for all iBeacons belonging to the given CLBea-

conRegion. Let me stress again that how narrowly you define this region determines

which beacons are considered to be part of it. For this example, all beacons sharing

the UUID make up the in-store beacon region, regardless of major and minor values.

 What goes up must come down. So you stop ranging and tear down the ranging

manager if the view controller is going away:

- (void)viewWillDisappear:(BOOL)animated {
[super viewWillDisappear:animated];
[_beaconManager stopMonitoringForRegion:_inStoreRegion];
_beaconManager.delegate = nil;
_beaconManager = nil;

}

A helper method groups the actions you need to do when the filter for your product

table view changes:

- (void)setFilteredTable:(NSInteger)table {
if (table != _filteredTable) {

    _filteredTable = table;
    // refresh table sections with animation
    NSIndexSet *indexSet =

    [NSIndexSet indexSetWithIndexesInRange:
    NSMakeRange(0, NUMBER_TABLES)];

    [self.tableView reloadSections:indexSet
    withRowAnimation:UITableViewRowAnimationAutomatic];

}
}

If there are any problems with ranging the beacons, a CLLocationManagerDelegate

method is called. You want to deal with any errors gracefully and reset the filter on

your table:

- (void)locationManager:(CLLocationManager *)manager
rangingBeaconsDidFailForRegion:(CLBeaconRegion *)region

           withError:(NSError *)error {
NSLog(@"%@", [error localizedDescription]);
[self setFilteredTable:-1];

}

Continue only if 
ranging is available 
on this device

Create dedicated beacon-
ranging manager

Clean up beacon 
ranging

Continue only if ranging is 
available on this device

Create dedicated
beacon-ranging manager



201Enhancing the in-store UI with iBeacons

CORE BLUETOOTH HANGING IN IOS 7.1 On iOS 7.1 there are some circumstances
that can cause Core Bluetooth to hang internally, effectively causing all rang-
ing to fail. The only fix is to restart the device. 

More often than not, ranging works perfectly and iOS calls another delegate method,

passing it an array of CLBeacon objects. Those possess the raw RSSI value and also a

CLProximity value specifying whether the distance is unknown, near, immediate, or

far. This array also contains beacons that have recently disappeared with no distance

info. Those you need to filter out. The remaining beacons get sorted by signal

strength and the minor value is what you’ll filter the table by:

- (void)locationManager:(CLLocationManager *)manager
    didRangeBeacons:(NSArray *)beacons

    inRegion:(CLBeaconRegion *)region {
NSPredicate *pred =                                             

    [NSPredicate predicateWithFormat:@"rssi < 0 AND proximity > 0"];
beacons = [beacons filteredArrayUsingPredicate:pred];            
if (![beacons count]) {     

    [self setFilteredTable:-1];  
    return;                      

}                          
NSSortDescriptor *sort =

    [NSSortDescriptor sortDescriptorWithKey:@"rssi" ascending:NO];
beacons = [beacons sortedArrayUsingDescriptors:@[sort]];     
CLBeacon *beacon = [beacons firstObject];
NSInteger closestTableNumber = [beacon.minor integerValue];
[self setFilteredTable:closestTableNumber];

}

For testing the beacon ranging functionality, you can place two iOS devices with the

BeaconEmitter app running at opposite corners of a room. Have one configured to

minor value 0 and the other to minor value 1. While no beacon is active, the YardSale

app will show five table view sections. Once you start a software iBeacon, you’ll only

see this one. If you have multiple iBeacons active, the YardSale app will always show

the table view section corresponding to the closer beacon.

 iBeacon ranging supposedly consumes more power than monitoring because iOS

needs to determine the signal strengths. Also, it doesn’t work in the background,

unlike beacon monitoring. If you send the YardSale app into the background by press-

ing the home button, the ranging updates are paused. But ranging is more useful

when the app is active anyway. You wouldn’t want to bother your user with push notifi-

cations every time they got to a different shelf in your store. 

7.4.5 Adding an in-store barcode scanner

The final feature we’ll add to the YardSale app brings us back to barcode scanning. Sec-

tion 6.1.4 explained how to add a modal barcode scanner view controller to your app.

Here we’ll repeat the process to let the user get information about a specific product. 

Remove
beacons that

have
disappeared.

No beacons being 
received; show all tables.Sort

beacons
by signal
strength.

Get first 
beacon; 
this is the 
closest.

This beacon’s
minor value is

table index.
Filter products to only

show this table.



202 CHAPTER 7 Putting barcodes in context

 You’ve done this before, and you can look at the YardSale app’s code to see it fully

implemented. Here’s the list of steps involved in adding the barcode scanner to the

YardSale app:

1 Open the MusicCollection app project.

2 Copy all classes from the Copied Code group into your YardSale app project.

3 Copy the navigation controller and camera preview controllers to your story-

board.

4 Add a scan button as the right bar button item of the in-store view controller.

5 Connect a modal segue from this button to the copied navigation controller.

6 Give this new segue the ShowScanner identifier.

7 Add a dummy unwind method to InStoreViewController.m.

8 Connect the scanner view controller’s Cancel button to the unwind method.

9 Set the identifier for the new unwind segue to unwind.

10 Set the scannerDelegate property of the scanner in prepareForSegue:sender:.

11 Implement the delegate method for when a barcode has been scanned.

The two methods mentioned in steps 7 and 10 look like this:

- (IBAction)unwindFromScannerViewController:(UIStoryboardSegue *)segue {
// intentionally left black

}

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
if ([segue.identifier isEqualToString:@"ShowScanner"]) {

    UINavigationController *nav = [segue destinationViewController];
    DTCameraPreviewController *vc = nav.viewControllers[0];
    vc.delegate = self;
}

}

The dummy unwind method only serves the purpose of allowing you to create an

unwind segue in Interface Builder and to give it an identifier for calling it program-

matically. The complete YardSale app storyboard is shown in figure 7.10.

 Finally, the implementation for reacting to a scanned barcode dismisses the modal

barcode scanner and shows an alert giving details about the context:

- (void)previewController:(DTCameraPreviewController *)previewController
    didScanCode:(NSString *)code ofType:(NSString *)type {

[previewController performSegueWithIdentifier:@"unwind" sender:self];
NSString *msg;
if (_filteredTable>=0) {                           

    msg = [NSString stringWithFormat:@"Scanned '%@' "  
    "from table %ld "                           
    "%@", code, (long)_filteredTable+1,          
    _salePlace.title];                            

}                                                  

Dismiss scanner by calling the
unwind segue by identifier

Filter is active; 
mention table 
in message



203Enhancing the in-store UI with iBeacons

else {                                          
    msg = [NSString stringWithFormat:@"Scanned '%@' "

    "at %@", code,                           
    _salePlace.title];                         

}
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Scanned!"

    message:msg           
    delegate:nil            

    cancelButtonTitle:@"Ok"          
    otherButtonTitles:nil];          

[alert show];                                                       
}

While this example just shows an alert, a real-life app could do something more inter-

esting with the multiple layers of context information. You know which store the user

is in, which semantic location inside the store the user is next to, and which specific

item the user is interested in.

 Apple trusts their customers enough to let them purchase small value accessories

this way from within the Apple Store app while at a physical Apple store. As more

developers become aware of these context-sensing capabilities, there are many more

“magical” uses waiting to be discovered. 

Figure 7.10 Complete YardSale app storyboard

No filter active; just 
mention sale place title

Show 
alert



204 CHAPTER 7 Putting barcodes in context

7.5 Summary

Core Location lets you monitor two kinds of regions: geographic regions defined by a

center and radius, and semantic regions defined by iBeacons. You can’t monitor more

than 20 regions at one time. The technique presented in this chapter allows you to

monitor a virtually unlimited number of yard sale locations by dynamically updating

the monitored georegions if the user moves significantly.

 In additional to region monitoring for iBeacons, you can also request ranging for

them. This uses more energy than beacon region monitoring, but it also gives you an

indication about how far individual beacons are away from the user. This information

can be useful in determining different contexts that you can present information and

actions for as the user moves around the store.

 Additional context information can come from allowing the user to scan barcodes

in your store. Combining these multiple levels of context can give you insight into

what the user might currently be most interested in. If your users get a sense that your

app is “smarter” than others, they’ll be more delighted to use it. Ask yourself, what

information or actions would be most useful to me in this context?

 These are the key takeaways for this chapter:

■ Use geographic region monitoring to make your app aware of nearby physical

stores.

■ Local push notifications are a good way to alert the user, even if your app is

inactive.

■ While the user is inside a physical store, employ iBeacon ranging to determine

a semantic location.

■ Let the user interact with physical products by providing a barcode scanner.

■ Optimize the displayed information and possible actions for a combination of

multiple levels of context.

■ Deal gracefully with disabled authorization, non-available monitoring or rang-

ing, and errors.

■ Apple introduced several authorization changes for background location

updates and sending local notifications. Unless you choose to only support iOS

8, make sure you test your solution under both iOS 7 and iOS 8.

You’ve reached the end of this book, but hopefully not the end of your exploration of

barcodes. You learned about barcodes, as well as several iOS technologies that are of

great utility when working with barcodes. Possessing this knowledge, you can now

rightfully claim the title of “iOS Barcode Guru.”

 I love barcodes so much there’s even one on the back cover of this book! Keep

your eyes peeled and you’ll begin to notice barcodes everywhere, metaphorically

screaming at you to create apps so your users can put them to good use.



205

appendix A
History of the UPC

When getting acquainted with barcodes used for tagging products, you’ll come

across a plethora of abbreviations. Some of these are names of barcode symbolo-

gies, and others are names of companies or organizations. Barcodes representing

product numbers have had several different names over the course of their history,

and multiple organizations have developed and maintained the related standards.

Most people find this quite confusing initially.

 This section provides an overview of the development of the very first barcode,

the Universal Product Code (UPC). This brief history includes several informative

as well as amusing lessons, and it also reveals the connections between several

actors, standards, and organizations.

 While your colleagues will still be confused as to the difference between UPC-A,

EAN-13, and GTIN, you’ll be able to confidently play the part of the barcode guru

when discussing barcodes for use in your company or apps. 

A.1 Bull’s-eye origins

An old saying goes “war is good for business.” Indeed, the United States experienced

an unprecedented economic upturn during the Second World War (1939–1945) as

soldiers were removed from their normal workplace to fight abroad, and jobs at

home were filled by the formerly unemployed. 

 The grocery industry was forced to take a hard look into how it could scale its

processes to cope with the increased demand. One day in 1940, an enterprising

grocery executive visited the Engineering College at Drexel University in Philadel-

phia. He hoped to challenge them to develop a method for automating product

identification at checkout, possibly gaining a commercial advantage over his com-

petitors, with academia doing the research at low cost.

 Drexel University declined the challenge. But Bernhard Silver, a graduate stu-

dent there at the time, overheard the request and brought the idea to his friend Joe



206 APPENDIX A History of the UPC

(Norman J.) Woodland. Silver and Woodland saw an opportunity for inventing some-

thing revolutionary, and they went to work.

 Automating anything in the middle of the twentieth century meant using physical

machinery, so they needed to develop some marking scheme or identifier that could be

affixed to products and that could be “read” by a machine. Once the item was identi-

fied, changing the price charged at the checkout counter would be an easy second step.

 Joe Woodland had a stroke of genius when he absentmindedly ran his fingers

through the sand on a beach. He realized that by varying the thickness of lines, he could

represent different numbers, much like in Morse code but with more “symbols” than

just a dot and a dash. Woodland had learned Morse code when he was a Boy Scout.

 The two friends continued to work on their technology for nine more years. They

applied for a US patent in 1949, and it was granted as US 2612994 A in 1952 (see fig-

ure A.1). 

A.2 Startup story

The patented approach was to have circular lines around a center point printed in

reflective ink. The reasoning behind this was that you could scan such symbols in any

direction, always arriving at the same result. This design was reminiscent of a dart

board, which earned it the unofficial name bull’s-eye symbol. 

 Even though Woodland tried hard to find investors for this technology, he had no

tangible success. The proof-of-concept experimental system that Silver and Woodland

Figure A.1 Patent US 2612994 A is the earliest documented barcode.



207Startup story

installed in the back room of a grocery store didn’t convince anybody. Finally, the

Philco company bought the patent from them for $15,000, equivalent to $132,000 in

today’s dollars.

 It might have been a lack of marketing or the lack of practical applications for

their solution, but the bull’s-eye symbol remained unused for several decades. 

Military efficiency improving the grocery industry

The US grocery industry continued to improve their distribution channels and became

quite efficient in the early 1960s. Manual work remained the single most-limiting factor

slowing their growth:

■ The labor cost of retail checkout was a major cost factor. About 40% of labor

expenditures went to checkers and baggers.

■ Inventory tracking remained a manual process. Cash registers were only able to

track the amount paid and which of five or six departments the item was from.

■ The high rate of errors and slow transaction speed of humans caused a lot of

problems. Retailers and manufacturers all had their own product codes, and

these had to be manually copied and translated on invoices and other forms.

Several independent projects were started during the 1960s to address these issues

and improve productivity at checkout. The US military employed many contractors to

develop related technologies to increase efficiency. The Kroger Company of Cincin-

nati, Ohio, realized this and sponsored a high-tech conference in 1966. Their aim was

to educate military contractors about the grocery distribution environment. Technol-

ogies originally developed for military logistics could also improve efficiency in the

grocery industry and save costs.

 Among the attendees of this conference was RCA, which had purchased the bull’s-

eye barcode patent from Philco a few years earlier. RCA formed a partnership with

Kroger to develop a laser-based scanner prototype by 1968. This prototype was used to

analyze the performance of various configurations of checkout machines in their

Princeton, New Jersey, laboratory. 

Confusion in numbers

Getting a grip on the basic technology of using a laser to read barcodes was the first

hurdle. The second was the need to agree on a common scheme for identifying

products. With individual retailers, grocery manufacturers, the National Association

of Food Chains (NAFC), and the Grocery Manufacturers Association (GMA) all hav-

ing ideas and concerns, there was no common ground nor leadership to establish-

ing a standard.

 Manufacturers, being the first in the product chain, already had case codes that they

wanted to reuse as part of the code, resulting in rather wide barcode symbols with 11 or

more digits. Retailers, on the other hand, worried about wasting too much packaging

space with barcode symbols. They favored a standard of 7 digits or fewer.



208 APPENDIX A History of the UPC

 With all this disagreement, the groups agreed on one thing: to form the Ad Hoc

Committee on a Uniform Grocery Product Code in August 1970. The committee’s goal

was to create a standard for numbering as well as machine-readable representation.

CEO-driven development

Fortunately, the arguing trade association members had the wisdom take a back seat

and let a dozen key grocery manufacture and retail executives form this committee

themselves. The committee selected Burt Gookin, CEO of H.J. Heinz Company, to be

chairman, and McKinsey and Company were hired to manage the project.

 McKinsey took a rather scientific approach to the problem. They developed a

model that allowed participants to measure and evaluate the economic impact of dif-

ferent proposals. Having a fact-based common evaluation framework allowed the

industry see that this would eventually benefit everybody.

 Airplane travel at this time still involved good food and lots of beverages, so the

folk tale is that on a flight back from a West Coast brainstorming session, the members

of the Ad Hoc Committee realized the solution to the numbering dilemma: a study

done by the GMA had shown that 95% of products sold in the United States had five

or fewer numerical characters in their case code, so they would assign a 5-digit prefix

to each manufacturer, and let the manufacturer select another 5 digits, forming a 10-

digit code. Later an 11th digit was added to distinguish between 10 different number-

ing ranges. 

 Another smart move was that no single executive from the committee claimed

responsibility for this idea. Rather, McKinsey presented the approach to hundreds of

companies, and all but two readily stated in writing that they’d support it. Had this

approach come from a single person or company, there might have been severe back-

lash, due to fears that a competitor might gain an unfair advantage. Presenting it as

the best-of-breed idea that the entire committee had come up with prompted an

almost-universal “us too” response.

 At the May 1971 Supermarket Industries trade show, the Ad Hoc Committee pre-

sented the general agreement on a coding format—a major milestone. 

Making it machine-readable

The second part of this undertaking was still missing—the numbers of the coding for-

mat would have to be made readable by machines in order to allow for automation. Over

the two years following the 1971 announcement, companies busily worked on their pro-

posals for the committee. This ended in a three-day meeting held in January 1973, where

each contender got a 20 minute slot to present its approach.

 The two strongest contenders turned out to be RCA bull’s-eye code and IBM’s solu-

tion. The circular code still seemed to have the upper hand because of the omnidirec-

tional readability and an existing laser-based scanning technology. Also, IBM—being

extremely secretive about under-development projects—had not shown anything pub-

lic before this time.



209UPC plus EAN equals GTIN

 Originally, IBM had stated that it wasn’t interested in participating. But IBM’s

George J. Laurer had recognized a fatal flaw in RCA’s symbol. Printing it on product

packages would often smear the circles in the direction of the paper feed. This ren-

dered the code unreadable. Laurer’s barcode design was linear, and you could orient

the code such that the smearing during printing would elongate the lines slightly but

preserve readability. Woodland, who was employed by IBM at this time, provided valu-

able input. When IBM’s Senior VP Bob Evans made the presentation, he said this: 

I know you may have concerns about what computer could keep up with scanning this

symbol in a store checkout.

He then reached into his pocket and produced a disk containing schematics for

microcircuits and continued: 

Each circuit on this disk is equivalent to a moderate size existing computer. If IBM were

to develop a system, we would put one of these circuits in each checkstand.

Evans spoke these words after Intel had created the 4004 processor in 1971 and 8008

processor in 1972. Intel’s cofounder Gordon E. Moore had observed that the number

of transistors in CPUs would double in number every two years. This statement was

given the name “Moore’s Law” in 1970. 

 The computer revolution had just begun and made IBM’s barcode feasible. 

And the winner is ...

As with the number format, the Ad Hoc Committee didn’t want to make it sound like

IBM was the winner of the contest, and conversely everybody else a loser. They slightly

modified IBM’s design by trimming off the tops of the code’s longer marker lines.

They also wanted somebody neutral to evaluate the proposal. 

 MIT in Cambridge performed the evaluation and recommended changing the

numbers at the bottom to the OCR-B font. They argued that in a few years, the bars

would not be needed any more, because computers would probably be able to read

the numbers directly by then. 

 Finally, after three years, the Universal Product Code (UPC) was announced in a press

release in April 1973. The winner was everybody.

 The first UPC-marked item ever scanned was a 10-pack (50 sticks) of Wrigley’s Juicy

Fruit chewing gum, which is on display at the Smithsonian Institution’s National

Museum of American History in Washington, DC. This historic event took place on

June 26, 1974.

 Joe Woodland of IBM was honored with a National Medal of Technology in 1992

for “inventing the barcode.”

A.3 UPC plus EAN equals GTIN

Shortly thereafter, the Uniform Product Code Council (UPCC) was formed to oversee

the administration of the UPC system. It was founded as a not-for-profit standards

organization.



210 APPENDIX A History of the UPC

 Three years later, a European counterpart to the UPCC was formed, the European

Article Numbering (EAN) Association based in Brussels, Belgium. To further increase

the range of numbers the barcode could represent, a 13th digit (12 plus the check

digit) was added. What followed was a meteoric rise in the adoption of the UPC/EAN

code around the world. 

 At this point, the term UPC was colloquially used to refer to the UPC barcode, the

UPC product number, and the UPC organization. The same happened in Europe,

where the EAN abbreviation could refer to the EAN barcode, the EAN product num-

ber, or the EAN organization.

 In 1978 Japan joined the EAN and adopted the EAN for use in Japan, calling it the

Japanese Article Number (JAN). Originally founded by 12 European countries, the EAN

was joined by many countries outside of the European continent. For many years, the

European and US organizations worked alongside each other until in 1990 they

signed a formal agreement to jointly manage the standard.

 Fifteen more years passed before the UPCC and EAN Association decided to merge.

EAN was renamed to GS1 International, and the UPCC became GS1 US. This merge

greatly reduced the confusion over the many different organizations being in charge

of the same numbering and barcode standards. The true origins of the GS1 name are

shrouded in mystery. 

 The second simplification step occurred in 2009 when the UPC/EAN/JAN codes

were renamed to Global Trade Item Number (GTIN). GS1 would love it if you’d only refer

to their product barcodes as GTINs from here on, but because the other names were in

use for over 40 years, you’ll still see UPC and EAN used colloquially. 

 As of the UPC’s 40th anniversary in 2013, GS1 International has a presence in 111

countries, and it standardizes many other things—mostly related to commerce—

besides the barcode. 

 Most barcode standards are actually being maintained by the International Stan-

dards Organization (ISO) at the lowest technical level. GS1 bases its standardization

work on these ISO standards, but it adds the semantics necessary for using these bar-

codes in the context of commercial communication. This is why the GS1 tagline reads,

“The global language of business.” 

BARCODE GURU TIP Use the name GS1 to refer the standards organization.
When referring to product numbers or barcodes, call them GTINs. 

A.4 Barcodes in the mobile age

Other industries had different needs, and this led to the development of barcode sym-

bologies that could represent alphanumeric characters. Code 39 is the oldest among the

barcode types supported by iOS; Code 93 and Code 128 are more-advanced symbologies.

 The advancements in digital image processing gave rise to a new kind of barcode

using more than one dimension. Small, inexpensive cameras on a chip, called CCDs,

were able to scan 2D barcodes as well as the older 1D barcodes, which initially could



211Summary

only be scanned with a laser beam. As it became standard for smartphones to have

built-in cameras, this put a potential barcode scanner in everyone’s pocket.

 Before the rise of the mobile phone, barcodes were only useful in places that had

scanning equipment installed. Point of sale (POS) systems had bulky cash registers

with built-in laser scanners and a database for looking up price information. But these

technologies are now available in modern smartphones. Not only can users now scan

barcodes with a device they’re already carrying with them, but always-on internet con-

nectivity and device sensors detect the user’s current context and add degrees of util-

ity that have never been possible before.

A.5 Summary

2013 marked the 40-year anniversary of the first widely used barcode, which eventually

became the GTIN. Its original goal was to increase the efficiency of the grocery indus-

try by enabling automatic product identification at the point of sale, and it fulfilled

this goal many times over as the entire world adopted it. Most barcode symbologies

are ISO standards at the lowest technical level; GS1 is in charge of defining the seman-

tic meaning of content represented as GTINs and Code 128.

 These are the key takeaways for this barcode overview:

■ Barcodes are a tried-and-true technology, with the oldest commercial form—

the UPC—being more than 40 years of age.

■ Previously barcodes required laser-based scanners found in factories or at the

point of sale. Today camera-equipped mobile phones are able to read them

with ease. This opens up new usage scenarios where users can interact with the

physical world.

■ One-dimensional (1D) barcodes encode numbers or alphanumeric characters

on a single line. Two-dimensional (2D) barcodes are able to encode arbitrary

data on a grid forming a square.

■ The international GS1 organization oversees the semantic implementations of

barcodes in the context of commerce. See appendixes 2 and 3 for such seman-

tics that they manage. GS1 unified the previously used UPC, EAN, and JAN codes

and numbering schemes into the GTIN.

Apple began to integrate barcode technologies in iOS 7, adding only a few barcode-

related APIs to iOS 8. Beginning with iOS 7, you don’t need any third-party software for

adding barcode scanning to your apps. This book equips you with all you need to know

to create barcode-enabled apps.



212

appendix B
GTIN prefix ranges

Table B.1 shows the GTIN-13 prefix ranges related to 13-digit GTINs. An invisible

leading zero is assumed for 12-digit UPCs. The countries mentioned in this table

are not necessarily the country of manufacture, but the prefixes are assigned by the

GS1 country organization to manufacturers from this country.

 Ranges marked “restricted distribution”—defined by member organization

(MO)—are valid in nonglobal contexts, such as the context of a store. For example,

prefix 220 could be used for adding ad hoc barcodes to freshly packed produce.

Table B.1 GTIN-13 prefixes

Prefix range Used by

000–019 United States and Canada

020–029 Restricted distribution (MO defined)

030–039 United States

040–049 Restricted distribution (MO defined)

050–059 Coupons

060–139 United States and Canada

200–299 Restricted distribution (MO defined)

300–379 France and Monaco

380 Bulgaria

383 Slovenia

385 Croatia

387 Bosnia and Herzegovina



213APPENDIX B GTIN prefix ranges

389 Montenegro

390 Kosovo

400–440 Germany

450–459 Japan

460–469 Russia

470 Kyrgyzstan

471 Taiwan

474 Estonia

475 Latvia

476 Azerbaijan

477 Lithuania

478 Uzbekistan

479 Sri Lanka

480 Philippines

481 Belarus

482 Ukraine

484 Moldova

485 Armenia

486 Georgia

487 Kazakhstan 

488 Tajikistan

489 Hong Kong SAR

490–499 Japan

500–509 United Kingdom

520–521 Greece

528 Lebanon

529 Cyprus

530 Albania

531 Macedonia

535 Malta

Table B.1 GTIN-13 prefixes (continued)

Prefix range Used by



214 APPENDIX B GTIN prefix ranges

539 Ireland

540–549 Belgium and Luxembourg

560 Portugal

569 Iceland

570–579 Denmark, Faroe Islands, and Greenland

590 Poland

594 Romania

599 Hungary

600–601 South Africa

603 Ghana

604 Senegal

608 Bahrain

609 Mauritius

611 Morocco

613 Algeria

615 Nigeria

616 Kenya

618 Côte d'Ivoire

619 Tunisia

620 Tanzania

621 Syria

622 Egypt

623 Brunei

624 Libya

625 Jordan

626 Iran

627 Kuwait

628 Saudi Arabia

629 United Arab Emirates

630–639 Antarctica

Table B.1 GTIN-13 prefixes (continued)

Prefix range Used by



215APPENDIX B GTIN prefix ranges

640–649 Finland

690–699 China, The People’s Republic

700–709 Norway

729 Israel

730–739 Sweden

740 Guatemala

741 El Salvador

742 Honduras

743 Nicaragua

744 Costa Rica

745 Panama

746 Dominican Republic

750 Mexico

754–755 Canada

759 Venezuela

760–769 Switzerland and Liechtenstein

770–771 Colombia

773 Uruguay

775 Peru

777 Bolivia

778–779 Argentina

780 Chile

784 Paraguay

786 Ecuador

789–790 Brazil

800–839 Italy, San Marino, and Vatican City

840–849 Spain and Andorra

850 Cuba

858 Slovakia

859 Czech Republic

Table B.1 GTIN-13 prefixes (continued)

Prefix range Used by



216 APPENDIX B GTIN prefix ranges

860 Serbia

865 Mongolia

867 North Korea

868–869 Turkey

870–879 Netherlands

880 South Korea

884 Cambodia

885 Thailand

888 Singapore

890 India

893 Vietnam

894 Bangladesh

896 Pakistan

899 Indonesia

900–919 Austria

930–939 Australia

940–949 New Zealand

950 GS1 Global Office

951 Global Office (EPCglobal)

955 Malaysia

958 Macau

960–969 Global office (GTIN-8s)

977 Serial publications (ISSN)

978–979 Bookland (ISBN)

980 Refund receipts

981–984 Coupon identification for common currency areas 

99 GS1 coupon identification

Table B.1 GTIN-13 prefixes (continued)

Prefix range Used by



217

appendix C
GS1-128

 application identifiers

GS1 maintains the GS1-128 standard, which defines the semantics for use on top of Code

128 encoding. GS1-128 barcodes—found on more and more products—can contain a

great variety of data. Each piece of information is tagged with an application identifier

specifying its semantic meaning. Table C.1 lists the various application identifiers.

 This list specifies the decimal position in numbers in an interesting way. For exam-

ple, 310y is the application identifier for product net weight in kg. The y can be any

digit from 0 to 9, and the integer that follows is to be divided by 10 to the power of y.

For example, a net weight of 22.7 kg could be coded as 3101 000227, 3102 002270,

3103 022700, or 3104 227000.

Table C.1 GS1-128 application identifiers

AI Description Data format

00 Serial shipping container code (SSCC-18) 18 digits, numeric

01 Shipping container code (SSC) 14 digits, numeric

02 Number of containers 14 digits, numeric

10 Batch number 1–20 alphanumeric

11 Production date 6 digits: YYMMDD

13 Packaging date 6 digits: YYMMDD

15 Sell by date (quality control) 6 digits: YYMMDD

17 Expiration date 6 digits: YYMMDD

20 Product variant 2 digits



218 APPENDIX C GS1-128 application identifiers

21 Serial number 1–20 alphanumeric

22 HIBCC quantity, date, batch, and link 1–29 alphanumeric

23x Lot number 1–19 alphanumeric

240 Additional product identification 1–30 alphanumeric

250 Second serial number 1–30 alphanumeric

30 Quantity each —

310y Product net weight (kg) 6 digits

311y Product length/1st dimension (meters) 6 digits

312y Product width/diameter/2nd dimension (meters) 6 digits

313y Product depth/thickness/3rd dimension (meters) 6 digits

314y Product area (square meters) 6 digits

315y Product volume (liters) 6 digits

316y Product volume (cubic meters) 6 digits

320y Product net weight (pounds) 6 digits

321y Product length/1st dimension (inches) 6 digits

322y Product length/1st dimension (feet) 6 digits

323y Product length/1st dimension (yards) 6 digits

324y Product width/diameter/2nd dimension (inches) 6 digits

325y Product width/diameter/2nd dimension (feet) 6 digits

326y Product width/diameter/2nd dimension (yards) 6 digits

327y Product depth/thickness/3rd dimension (inches) 6 digits

328y Product depth/thickness/3rd dimension (feet) 6 digits

329y Product depth/thickness/3rd dimension (yards) 6 digits

330y Container gross weight (kg) 6 digits

331y Container length/1st dimension (meters) 6 digits

332y Container width/diameter/2nd dimension (meters) 6 digits

333y Container depth/thickness/3rd dimension (meters) 6 digits

334y Container area (square meters) 6 digits

335y Container gross volume (liters) 6 digits

336y Container gross volume (cubic meters) 6 digits

Table C.1 GS1-128 application identifiers (continued)

AI Description Data format



219APPENDIX C GS1-128 application identifiers

340y Container gross weight (pounds) 6 digits

341y Container length/1st dimension (inches) 6 digits

342y Container length/1st dimension (feet) 6 digits

343y Container length/1st dimension (yards) 6 digits

344y Container width/diameter/2nd dimension (inches) 6 digits

345y Container width/diameter/2nd dimension (feet) 6 digits

346y Container width/diameter/2nd dimension (yards) 6 digits

347y Container depth/thickness/height/3rd dimension (inches) 6 digits

348y Container depth/thickness/height/3rd dimension (feet) 6 digits

349y Container depth/thickness/height/3rd dimension (yards) 6 digits

350y Product area (square inches) 6 digits

351y Product area (square feet) 6 digits

352y Product area (square yards) 6 digits

353y Container area (square inches) 6 digits

354y Container area (square feet) 6 digits

355y Container area (square yards) 6 digits

356y Net weight (troy ounces) 6 digits

360y Product volume (quarts) 6 digits

361y Product volume (gallons) 6 digits

362y Container gross volume (quarts) 6 digits

363y Container gross volume (gallons) 6 digits

364y Product volume (cubic inches) 6 digits

365y Product volume (cubic feet) 6 digits

366y Product volume (cubic yards) 6 digits

367y Container gross volume (cubic inches) 6 digits

368y Container gross volume (cubic feet) 6 digits

369y Container gross volume (cubic yards) 6 digits

37 Number of units contained 1–8 digits

400 Customer purchase order number 1–29 alphanumeric

410 Ship to/deliver to location code (EAN13 or DUNS code) 13 digits

Table C.1 GS1-128 application identifiers (continued)

AI Description Data format



220 APPENDIX C GS1-128 application identifiers

411 Bill to/invoice location code (EAN13 or DUNS code) 13 digits

412 Purchase from location code (EAN13 or DUNS code) 13 digits

420 Ship to/deliver to postal code (single postal authority) 1–9 alphanumeric

421 Ship to/deliver to postal code (multiple postal authority) 4–12 alphanumeric

8001 Roll products width/length/core diameter 14 digits

8002 Electronic Serial Number (ESN) for cellular phone 1–20 alphanumeric

8003 UPC/EAN number and serial number of returnable asset 14 digit UPC +1–16 alphanumeric 

serial number

8004 UPC/EAN serial identification 1–30 alphanumeric

8005 Price per unit of measure 6 digits

8100 Coupon extended code: number system and offer 6 digits, numeric

8101 8101 coupon extended code: number system, offer, end 

of offer

10 digits, numeric

8102 Coupon extended code: number system preceded by 0 2 digits, numeric

90 Mutually agreed between trading partners 1–30 alphanumeric

91 Company internal information 1–30 alphanumeric

92 Company internal information 1–30 alphanumeric

93 Company internal information 1–30 alphanumeric

94 Company internal information 1–30 alphanumeric

95 Company internal information 1–30 alphanumeric

96 Company internal information 1–30 alphanumeric

97 Company internal information 1–30 alphanumeric

98 Company internal information 1–30 alphanumeric 

99 Company internal information 1–30 alphanumeric

Table C.1 GS1-128 application identifiers (continued)

AI Description Data format



221

index

Numerics

1D barcodes
alphanumeric text 16
Code 128 11–12
Code 39/Code 39 mod 43 10
Code 93 10–11
defined 4–5
generating

BarCodeKit 120–121
Code 25 6–7, 12–13
creating barcode 126–128
Data Matrix 6–7, 15–16
ITF-14 6–7, 12–13
printing with AirPrint

128–130
Serial Number Tag app 

overview 119–120, 131
setting up project 121–124
support for 119
UI for app 124–126

GTIN family 8–10
lack of support in iOS 98
scanning of 64

2D barcodes
Aztec Codes 15
Data Matrix 15–16
defined 5
generating

Aztec Codes 111–112
copying image to 

pasteboard 109–111
Core Image 

framework 101–104
error correction 

adjustments 108–109

PDF417 codes 111–112
printing to Printer Simula-

tor app 114–115
printing with AirPrint

112–114, 118
QR Code Builder app 

overview 101
QR Codes 107
rendering sheet of QR 

Codes 115–118
scaling image 107
setting up project 104–106

PDF417 14
QR Code 14–15

A

Ad Hoc Committee on a 
Uniform Grocery Product 
Code 208

AFNetworking 135
AIM (Association for Automatic 

Identification and 
Mobility) 15

AIM (Automated Industry 
Machines) 15

AirPrint
drivers and 112
paper size 118
printing with 112–114, 118, 

128–130
roll-feed printers and

128–130
Allais, David 10
allHeaderFields property 136

App Store 2, 111
Apple Configurator utility 32
ASIHTTPRequest 135
Association for Automatic Iden-

tification and Mobility. See 
AIM

Automated Industry Machines. 
See AIM

AV (AV Foundation)
AVAuthorizationStatusNot-

Determined 34
AVCaptureConnection 

class 28, 31, 39
AVCaptureDevice class 25, 34
AVCaptureDeviceInput 

class 27, 31
AVCaptureDeviceSubject-

AreaDidChangeNotifica-
tion constant 44

AVCaptureFocusModeAuto-
Focus constant 44, 46

AVCaptureFocusModeContin-
uousAutoFocus mode 
constant 44

AVCaptureFocusMode-
Locked mode 44

AVCaptureMetadataOutput 
constant 49–50

AVCaptureMetadataOutput-
ObjectsDelegate protocol 54

AVCaptureSession class
21, 28, 39

AVCaptureSessionPresetHigh 
constant 65

AVCaptureSessionPreset-
InputPriority constant 65



INDEX222

AV (AV Foundation) (continued)
AVCaptureSessionPreset-

Photo constant 20, 65
AVCaptureStillImageOutput 

class 36, 39, 49
AVCaptureVideoDataOutput 

class 39
AVCaptureVideoPreview-

Layer class 29
AVMediaTypeAudio 

constant 25
AVMediaTypeMetadata 

constant 28
AVMediaTypeVideo 

constant 25
AVMetadataFaceObject 

class 54
AVMetadataMachineRead-

ableCodeObject class 54, 56
AVMetadataObject class 54
AVMetadataObjectTypeFace 

constant 55
AV Foundation framework

autofocus 44–46
camera authorization 32–34
capture devices 25–28
device rotation support 39–41
live video preview 29–32
media capture sessions 28–29
metadata detection 49
overview 19–20
sample app using 20–21
setting up 22–24
switching between 

cameras 41–43
taking pictures 36–39
tap-to-focus 44–46
UI for app 24
video light 34–36

availableMetadataObjectTypes
53

Aztec Codes
generating 111–112
overview 15

B

background state 194
backgroundSession-

Configuration 136
BarCodeKit 119–121, 131
barcodes

1D
Code 128 11–12
Code 25 6–7, 12–13
Code 39/Code 39 mod 43 10

Code 93 10–11
Data Matrix 6–7, 15–16
defined 4–5
GTIN family 8–10
ITF-14 6–7, 12–13

2D
Aztec Code 15
defined 5
PDF417 14
QR Code 14–15

CCD and 5
deciding on barcode type 16
history of 3–4
laser reading 4–5
Passbook app and 71–72
terminology for 6
versatility and 6

BCK (BarCodeKit)
BCKCode class 126
BCKCodeDrawingBar-

ScaleOption constant 127
BCKCodeDrawingReduce-

BleedOption constant 130
BCKCodeMaxBarScaleThat-

FitsCodeInSize function 127
beginConfiguration method 41
bleeding 130
Bluetooth 197

advertisements, BTLE 195
Boyle, Willard 5
BTLE (Bluetooth Low 

Energy) 195
bug reports 98
bull’s-eye symbol 206

C

CA (Core Animation)
CALayer class 29
CAShapeLayer class 59

calendar event, in QR Codes 68
camera

authorization for 32–34
autofocus 44–46
capture devices 25–28
device rotation support 39–41
live video preview 29–32
shutter sound 39
switching between 41–43
taking pictures 36–39
tap-to-focus 44–46
video light 34–36

captureDevicePointOfInterest-
ForPoint method 46

captureStillImageAsynchro-
nouslyFromConnection 
method 39

capturing images
autofocus 44–46
camera authorization 32–34
capture devices 25–28
device rotation support 39–41
live video preview 29–32
media capture sessions 28–29
overview 20–21
setting up 22–24
switching between 

cameras 41–43
taking pictures 36–39
tap-to-focus 44–46
UI for app 24
video light 34–36

CCD (charge-coupled device)
overview 5
Passbook app and 72

certificates, signing
loading and checking 82
preparing 76–78
requesting 72–76

CFURLCreateStringByAdding-
PercentEscapes 
function 145

CG (Core Graphics, Quartz)
CGContext class 107
CGImage class 101, 103
CGPath class 58

character encoding 83
charge-coupled device. See CCD
check digit 9
CI (Core Image)

CIAztecCodeGenerator 
class 111

CICheckerboardGenerator 
class 102

CICode128BarcodeGenerator 
class 112

CIConstantColorGenerator 
class 102

CIContext class 103
CIDetector class 104
CIImage class 102–103, 107
CIPDF417BarcodeGenerator 

class 111
CIQRCodeGenerator 

class 107
CL (Core Location)

CLCircularRegion class 183
CLLocationDistanceMax 

constant 186



INDEX 223

CL (Core Location) (continued)
CLLocationManager 

class 183, 196, 199
CLPlacemark class 178
CLRegionStateInside 

constant 184
CLRegionStateOutside 

constant 184
CLRegionStateUnknown 

constant 184
CLTimeIntervalMax 

constant 186
Cmd-click shortcut 19
CMSampleBufferRef 39
CocoaBarCodes 120
Codabar 120
Code 11 barcodes, support in 

BarCodeKit 120
Code 128 barcodes

GS-128 application 
identifiers 217–220

overview 11–12
support in BarCodeKit 120

Code 25 barcodes 6, 12–13
Code 39/Code 39 mod 43 

barcodes
overview 10
support in BarCodeKit 120

Code 93 barcodes
overview 10–11
support in BarCodeKit 120

commitConfiguration 
method 41

CommonCrypto.framework
90, 92

connection errors 166
contact information, in QR 

Codes 68
contacts 68
context, layers of 173–174
Core Data framework 138–140
Core Image framework 101–104

generators 102
Core Location framework

172–173
coupons 70, 212
Creative Commons license 138
cryptographic signature 89
current location 180

D

Data Matrix barcodes 6, 15–16
debugging 88
defaultSessionConfiguration 136

delegate methods 54
dependencies 123
digital cameras 5
Discogs 137–138, 143, 152
dispatch_async 54
drawRect method 62
Drexel University 205
drivers, printer 112
DTDownload 135
DTOAuth project 151
DTURLProtocolStub

stubbing 
NSURLRequest 163–166

stubbing NSURLSession
166–168

E

EAN (European Article Num-
bering) Association 210

barcode 8, 120
Eastman Kodak Company 12
EIA (Electronic Industries 

Alliance) 15
Electronic Serial Number. See 

ESN
email address, in QR Codes 68
encoding URLs 145
encoding, character 83
ephemeralSessionConfiguration

136
error correction, QR Code

99–100, 108–109
ESN (Electronic Serial 

Number) 220
European Article Numbering 

Association. See EAN 
Association

exceptions, avoiding 35
explicit dependencies 123

F

faces, detecting 55
FIM (Facing Identification 

Mark), support in 
BarCodeKit 120

focusPointOfInterest 
property 45

footerHeight 116
foreground state 193
frameworks, linking 104

G

GCD (Grand Central 
Dispatch) 168

generating barcodes
1D

BarCodeKit 120–121
Code 25 6–7, 12–13
creating barcode 126–128
Data Matrix 6–7, 15–16
ITF-14 6–7, 12–13
printing with AirPrint

128–130
Serial Number Tag app 

overview 119–120, 131
setting up project 121–124
support for 119
UI for app 124–126

2D
Aztec Codes 111–112
Core Image 

framework 101–104
creating QR Code 107
error correction 

adjustments 108–109
outputting to Printer Simu-

lator app 114–115
PDF417 codes 111–112
printing with AirPrint

112–114, 118
QR Code Builder app 

overview 101
rendering sheet of QR 

Codes 115–118
setting up project 104–106

general discussion 98
QR Code error 

correction 99–100
size considerations 99

Geofencing
monitoring unlimited number 

of regions 184–186
notifying users 189–195
overview 183
region monitoring 183–184
updating monitored 

regions 186–189
geographic context 173
geolocation in QR Codes 68
Global Trade Item Number. See 

GTIN
GMA (Grocery Manufacturers 

Association) 207
Gookin, Burt 208
GPS receiver 173



INDEX224

Grand Central Dispatch. See 
GCD

Grocery Manufacturers Associa-
tion. See GMA

GS1 International 8, 210
GS1-128 application 

identifiers 217–220
GTIN (Global Trade Item 

Number)
BarCodeKit support 120
history of 209–210
overview 8–10
prefixes 10, 212–216
variations of 8

gyroscope sensor 173

H

hasTorch method 35
headerHeight 116
health care products 16
history of UPC

creation of idea 205–206
experimental system 206–207
GTIN history 209–210
Kroger Company 

influence 207
machine-readability 208–209
numbering standard 207–208
overview 209

Hussey, Robert 15

I

IB (Interface Builder)
IBAction 26, 106, 125
IBOutlet 26, 125

iBeacons 80
determining distance

198–201
emitting 197–198
monitoring for 196–197
overview 194–196
See also  ranging, determining 

distance to
IBM 209
identifier 72
images, bitmap

channels, color 101
copying to pasteboard

109–111
manipulation steps 102
scaling 107

implicit dependencies 123

inputCorrectionLevel 
parameter 107

inputPort property 29
integration testing 159
Interleaved 2 of 5 barcodes 12

support in BarCodeKit 120
International Standard Book 

Number. See ISBN
International Standard Serial 

Number. See ISSN
International Standards Organi-

zation. See ISO
iOS

Dev Center 72
OS X and 20
requesting enhancements 98
supported technologies

Aztec Code 15
Code 128 11–12
Code 25 6–7, 12–13
Code 39/Code 39 

mod 43 10
Code 93 10–11
Data Matrix 6–7, 15–16
GTIN family 8–10
ITF-14 6–7, 12–13
PDF417 14
QR Code 14–15

__IPHONE_OS_VERSION_MAX
_ALLOWED macro 187

ISBN (International Standard 
Book Number) 9, 216

ISO (International Standards 
Organization) 210

ISO-8859-1 encoding 83
ISSN (International Standard 

Serial Number) 9
isVideoOrientationSupported 

method 41
ITF-14

bearer bars 13
ITF-14 barcodes 6, 12–13, 120
iTunes app 2

J

JAN (Japanese Article 
Number) 210

barcode 8
jpegStillImageNSDataRepresen-

tation method 39

K

Kroger Company 207
KVC (key-value coding) 185

L

laser reading 4–5
Latin 1 encoding 83
Laurer, George J. 209
light, camera 34–36
linking frameworks 104
live video preview 29–32
LLVM compiler 104
local notifications 195
location, current 180
Longacre, Andrew 15
loyalty cards 70

M

machine-readable codes 6
magnetometer 173
managed object context. See 

MOC
manufacturer prefix 9
MapKit framework 176
media capture sessions

18, 28–29
member organization. See MO
membership cards 70
messageEncoding value 83
metadata detection 18, 49
metadata retrieval

asynchronous Core Data 
updates 138–140

authenticating requests with 
OAuth 149–151

barcode scanner 
functionality 140–142

calling RESTful web 
APIs 142–149

DTOAuth project 151
Music Collection app 

example 137
NSURLSessionDownloadTask

135–137
overview 134–135, 156–159
setting up OAuth 

consumer 152–154
UI for OAuth 

authorization 154–156
metadataObjectTypes array 55



INDEX 225

MIT 209
MK (MapKit)

MKAnnotation class 178
MKMapView class 176
MKPlacemark class 177

MKNetworkKit 135
MO (member 

organization) 212
MOC (managed object 

context) 139
modules 14
Moore’s Law 209
Morse code 206
movie tickets 70
MSI barcodes, support in 

BarCodeKit 120

N

NAFC (National Association of 
Food Chains) 207

networking
metadata retrieval

asynchronous Core Data 
updates 138–140

authenticating requests with 
OAuth 149–151

barcode scanner 
functionality 140–142

calling RESTful web 
APIs 142–149

DTOAuth project 151
Music Collection app 

example 137
NSURLSessionDownload-

Task 135–137
overview 134–135, 156–159
setting up OAuth 

consumer 152–154
UI for OAuth 

authorization 154–156
unit testing

custom URL scheme
160–163

NSURLProtocol 159–160
overview 159
stubbing NSURLRequest 

responses 163–166
stubbing NSURLSession 

requests 166–168
test-driven 

development 169
testing asynchronous com-

pletion handlers 168
notification sounds 191

NS (Foundation)
NS_AVAILABLE macro 20
NSAboutURLProtocol 160
NSCFURLProtocol 160
NSCharacterSet class 145
NSData class 135
NSError class 144
NSHTTPURLResponse 

class 148
NSLocationAlwaysUsage-

Description constant 188
NSLocationUsageDescription 

constant 188
NSLocationWhenInUseUsage-

Description constant 188
NSMutableURLRequest 

class 147
NSString class 145
NSURLConnection class 135
NSURLProtocol class

159–161
NSURLProtocolClient 

class 162
NSURLRequest class

147, 160, 163–166
NSURLResponse class 148
NSURLSession class

134, 166–168
NSURLSessionConfiguration 

class 134
NSURLSessionDataTask 

class 134, 142–149
NSURLSessionDownloadTask 

class 134–137
NSURLSessionUploadTask 

class 134

O

OAuth
authenticating requests

149–151
creating UI for 

authorization 154–156
DTOAuth project 151
setting up consumer 152–154

OpenSSL 77
openssl command 76
openURL method 68
OS X 20
outputPort 29

P

paperRect 116
pass type identifier 80
Passbook app

1D barcodes and 98
barcode support in 1, 71–72
digital passes

adding artwork 85–86
adding barcode 82–83
adding details to 83
creating 79–82
loading certificate 82
overview 88
packaging 87–88
preparing signing 

certificate 76–78
requesting signing 

certificate 72–76
iBeacons and 195
purpose of 71
validating passes

barcode scanner code 90
creating app 90
overview 88–90, 94–95
serverless pass 

validation 92–94
passTypeIdentifier property 73
pasteboard, copying image 

to 109–111
PCH (precompiled header) 

files 23, 177
PDF417 codes

generating 111–112
overview 14

Pharmacode One Track, support 
in BarCodeKit 120

Philco 206–207
phone numbers, in QR 

Codes 68
.pkpass files 71
POS (point-of-sale) 133
position property 43
precompiled header files. See 

PCH files
prefix ranges, GTIN

10, 212–216
printableRect 116
Printer Simulator app, 

downloading 114–115
product metadata retrieval

asynchronous Core Data 
updates 138–140

authenticating requests with 
OAuth 149–151



INDEX226

product metadata retrieval 
(continued)

barcode scanner 
functionality 140–142

calling RESTful web 
APIs 142–149

DTOAuth project 151
Music Collection app 

example 137
NSURLSessionDownloadTask

135–137
overview 134–135, 156–159
setting up OAuth 

consumer 152–154
UI for OAuth 

authorization 154–156

Q

QR Codes
contents 68
error correction 99–100, 

108–109
generating 107
overview 14–15
terminology 6

Quartz framework 101

R

ranging, determining distance 
to 198

See also  iBeacons, determining 
distance

RCA 207–208
Received Signal Strength 

Indication. See RSSI
rectangle of interest 64
region monitoring 183–184
Release class 138
REST (Representational State 

Transfer) 142–149
roll-feed printers 128–130
root certificate 76, 87
rootViewController property 67
rotating device 39–41
RSSI (Received Signal Strength 

Indication) 198

S

Safari 67–68
“salt” phrase 95
scaling barcode image 107

scan lines 64
scanning barcodes

barcode scan delegate 55–57
capture device settings 65–67
configuring metadata 

output 53–54
creating UI 61–64
marking detected barcodes on 

preview 58–61
metadata detection 49
metadata object delegate

54–55
opening web address in 

Safari 67–68
reusing camera code 51–52

semantic context 173
semaphores 168
serverless pass validation 92–94
setHTTPMethod 147
shaders 102
shutter sound, camera 39
signing certificates

loading and checking 82
preparing 76–78
requesting 72–76

Silver, Bernhard 205
size considerations 99
Smith, George E. 5
smooth autofocus 66
sounds, notification 191
SSL certificates 75
Standard 2 of 5 barcodes, 

support in BarCodeKit 120
Stevens, Ray 10
stubbing 163–168
subprojects 121
supportedInterfaceOrientations 

method 40
switching between cameras

41–43
symbology, barcode 4

T

tap-to-focus 44–46
TDD (test-driven 

development) 169
team identifier 80
terminology for barcodes 6
testing, integration 159
testing, unit

custom URL scheme 160–163
NSURLProtocol 159–160
overview 159

stubbing NSURLRequest 
responses 163–166

stubbing NSURLSession 
requests 166–168

test-driven development 169
testing asynchronous 

completion handlers 168
text messages, in QR Codes 68
thermal bleeding 130
tickets 70

U

UI (UIKit)
UIActivityViewController 

class 112
UIImage class 101
UIImageWriteToSaved-      

PhotosAlbum function 39
UIInterfaceOrientation-

MaskAll constant 40
UIInterfaceOrientation-

MaskAllButUpsideDown 
constant 40

UIPrintFormatter class 115
UIPrintInfo class 114
UIPrintInteractionController 

class 112
UIPrintInteractionCon-

trollerDelegate 
protocol 118

UIPrintPageRenderer 
class 115–116, 118

UIPrintPaper class 118
UIView class 29

UI (user interface)
creating for app 24
for scanning app 61–64

Uniform Product Code Council. 
See UPCC

Uniform Resource Locators. See 
URLs

unit testing
custom URL scheme 160–163
NSURLProtocol 159–160
overview 159
stubbing NSURLRequest 

responses 163–166
stubbing NSURLSession 

requests 166–168
test-driven development 169
testing asynchronous 

completion handlers 168
universally unique identifier. See 

UUID



INDEX 227

UPC (Universal Product Code)
BarCodeKit support 120
history of 2–5

creation of idea 205–206
experimental system

206–207
GTIN history 209–210
Kroger Company 

influence 207
machine-readability

208–209
numbering standard

207–208
overview 209

variations of 8
UPCC (Uniform Product Code 

Council) 209
URL bookmark with title, in QR 

Codes 68
URLQueryAllowedCharacterSet 

method 145
URLs (Uniform Resource 

Locators)
encoding 145
finding in string with data 

detector 67–68
opening in Safari 67–68

user context
Geofencing store locations

monitoring unlimited num-
ber of regions 184–186

notifying users 189–195

overview 183
region monitoring 183–184
updating monitored 

regions 186–189
iBeacons

determining distance
198–201

emitting 197–198
monitoring for 196–197
overview 194–196

layers of context 173–174
User Header Search Paths 

setting 124
user interface. See UI
UUID (universally unique 

identifier) 196

V

validating digital passes
barcode scanner code 90
creating app 90
overview 88–90, 94–95
serverless pass validation

92–94
video

light 34–36
live preview 29–32

videoPreviewLayer 29
videoZoomFactorUpscale-

Threshold property 65

W

Wang, Ynjiun P. 14
web addresses 67–68
web APIs, REST 142–149
WiFi network access setup, in 

QR Codes 68
Woodland, Joe 205, 209
Wrigley’s Juicy Fruit chewing 

gum 209
WWDR (Worldwide Developer 

Relations) 77–78, 87

X

xAuth 151

Y

YardSale app
in-store UI 181–183
outside the store UI 176–181
overview 174–175
store barcode scanner

201–203

Z

Zebra Crossing project 68



Oliver Drobnik

B
arcodes are a universal way to track and share informa-
tion, appearing on everything from cereal boxes to shop 
windows. Starting with iOS 7, Apple has added native 

features for building apps that scan, display, and print bar-
codes, eliminating the need for third-party libraries.

Barcodes with iOS teaches you how to effectively use barcodes 
in your iOS apps. You’ll master Apple’s new barcode frame-
works while you explore real-world examples that integrate 
code scanning and generation and metadata retrieval into your 
apps. Along the way, you’ll pick up numerous best practices 
for bringing together the physical and digital worlds. 

What’s Inside

●  Learn about all barcode formats supported by iOS

●  Native barcode scanning with AV Foundation
●  Using Core Image and BarCodeKit to produce 
   a wide range of barcodes
●  Printing to sheets and labels with AirPrint
●  Retrieving metadata for products with 
   NSURLSession and NSURLProtocol
●  Harnessing context information from 
   Core Location and iBeacons

This book is written for readers with a working knowledge of 
Objective-C and iOS app development.

Oliver Drobnik is an independent consultant specializing in 
custom iOS and Mac development.

To download their free eBook in PDF, ePub, and Kindle formats, owners 
of this book should visit manning.com/BarcodeswithiOS

$39.99 / Can $45.99  [INCLUDING eBOOK]

Barcodes with iOS

iOS DEVELOPMENT

M A N N I N G

“Highly relevant 
    and inspiring.”
—Jim Matlock, IBM

“All you need to know, 
    in a single book.” 

—Johan Pretorius
Next Step Design

“A great book for both 
beginning and seasoned 

     developers.”—Christopher W. H. Davis, Nike 

“A must-have book.” 
—Arif Shaikh

Sony Pictures Entertainment

“A unique resource with 
lots of valuable information. 

Code examples are clear 
and precise.”—Gavin Whyte

Commonwealth Bank of Australia

SEE  INSERT


	Barcodes with iOS
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the cover illustration
	Chapter 1: Barcodes, iOS, and you
	1.1 The evolution of barcodes
	1.1.1 One dimension: laser
	1.1.2 Two dimensions: CCD
	1.1.3 Versatility is winning
	1.1.4 Where are the bars?

	1.2 Barcode symbologies in iOS
	1.2.1 1D barcodes in iOS
	1.2.2 2D barcodes in iOS
	1.2.3 So many choices: which barcode should I use?

	1.3 Summary

	Chapter 2: Media capture with AV Foundation
	2.1 Introducing AV Foundation
	2.2 Building a camera app
	2.2.1 AV Foundation setup
	2.2.2 Building the camera UI
	2.2.3 Selecting capture devices
	2.2.4 Media capture session
	2.2.5 Showing live video preview
	2.2.6 Authorizing camera access (or not)
	2.2.7 Toggling the video light
	2.2.8 Taking pictures to the camera roll
	2.2.9 Supporting rotation of device and UI
	2.2.10 Switching between camera devices
	2.2.11 Implementing autofocus and tap-to-focus

	2.3 Summary

	Chapter 3: Scanning barcodes
	3.1 Metadata detection in AV Foundation
	3.2 Building a QR Code scanner
	3.2.1 Reusing camera code
	3.2.2 Creating and configuring the metadata output
	3.2.3 Wiring up the metadata objects’ delegate
	3.2.4 Creating a barcode scan delegate
	3.2.5 Marking detected barcodes on preview
	3.2.6 Building an optimal scanning UI
	3.2.7 Tweaking capture device settings
	3.2.8 Opening a scanned web address in Mobile Safari

	3.3 Summary

	Chapter 4: Passbook, Apple’s digital wallet
	4.1 Barcodes in Passbook
	4.2 Producing digital passes for your users
	4.2.1 Requesting a certificate for signing passes
	4.2.2 Preparing signing certificates
	4.2.3 Constructing passes
	4.2.4 Pass creation takeaways

	4.3 Validating passes
	4.3.1 Building a ticket-verifier app
	4.3.2 Reusing barcode scanner code
	4.3.3 Serverless pass validation
	4.3.4 Pass validation takeaways

	4.4 Summary

	Chapter 5: Generating barcodes
	5.1 Producing barcodes for display or print
	5.1.1 Thoughts on barcode size
	5.1.2 QR Code error correction

	5.2 Generating 2D barcodes
	5.2.1 Building a QR Code Builder app
	5.2.2 Introducing Core Image
	5.2.3 Project setup for Core Image
	5.2.4 Generating QR Codes with Core Image
	5.2.5 Copying the QR Code to the pasteboard
	5.2.6 Private APIs for Aztec and PDF417 codes
	5.2.7 Printing barcodes with AirPrint
	5.2.8 Saving trees with the iOS Printer Simulator
	5.2.9 Custom drawing with UIPrintPageRenderer
	5.2.10 AirPrint paper selection
	5.2.11 QR Code Builder app summary

	5.3 Generating 1D barcodes
	5.3.1 Building a Serial Number Tag app
	5.3.2 Introducing BarCodeKit
	5.3.3 Adding BarCodeKit to your project
	5.3.4 Setting up the Serial Number Tag app’s UI
	5.3.5 Generating 1D barcodes with BarCodeKit
	5.3.6 AirPrint and roll-feed printers
	5.3.7 Serial Number Tag app summary

	5.4 Summary

	Chapter 6: Getting metadata for barcodes
	6.1 Modern networking with NSURLSession
	6.1.1 File downloads with NSURLSessionDownloadTask
	6.1.2 Building a Music Collection app
	6.1.3 Asynchronous Core Data updates
	6.1.4 Presenting the barcode scanner modally
	6.1.5 Using NSURLSessionDataTask to call RESTful web APIs
	6.1.6 Authenticating API requests with OAuth
	6.1.7 Adding DTOAuth to your project
	6.1.8 Configuring the OAuth consumer
	6.1.9 Implementing the UI for OAuth authorization
	6.1.10 Connecting barcode scanning and metadata retrieval

	6.2 Unit-testing network operations
	6.2.1 Introducing NSURLProtocol
	6.2.2 Implementing a custom URL scheme with NSURLProtocol
	6.2.3 Stubbing NSURLRequest responses with DTURLProtocolStub
	6.2.4 Stubbing NSURLSession requests with DTURLProtocolStub
	6.2.5 How to test asynchronous completion handlers
	6.2.6 Shifting to test-driven development

	6.3 Summary

	Chapter 7: Putting barcodes in context
	7.1 Understanding multiple layers of context
	7.2 Building a YardSale app
	7.2.1 Creating the outside-the-store experience
	7.2.2 Implementing the in-store user interface

	7.3 Geofencing store locations
	7.3.1 Introducing region monitoring
	7.3.2 Monitoring an unlimited number of regions
	7.3.3 Updating monitored regions based on user location
	7.3.4 Notifying users when entering a monitored region

	7.4 Enhancing the in-store UI with iBeacons
	7.4.1 Introducing the iBeacon system
	7.4.2 iBeacon monitoring at a glance
	7.4.3 Making any app emit an iBeacon
	7.4.4 Determining distance to iBeacons with ranging
	7.4.5 Adding an in-store barcode scanner

	7.5 Summary

	appendix A: History of the UPC
	A.1 Bull’s-eye origins
	A.2 Startup story
	Military efficiency improving the grocery industry
	Confusion in numbers
	CEO-driven development
	Making it machine-readable
	And the winner is ...

	A.3 UPC plus EAN equals GTIN
	A.4 Barcodes in the mobile age
	A.5 Summary

	appendix B: GTIN prefix ranges
	appendix C: GS1-128 application identifiers
	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


