
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

Beginning Java® Programming

introduction . xxii

chaPter 1 A General Introduction to Programming . 1

chaPter 2 Getting to Know Java . 11

chaPter 3 Setting Up Your Development Environment 41

chaPter 4 Moving Toward Object‐Oriented Programming 61

chaPter 5 Controlling the Flow of Your Program . 129

chaPter 6 Handling Exceptions and Debugging . 171

chaPter 7 Delving Further into Object‐Oriented Concepts 221

chaPter 8 Handling Input and Output . 261

chaPter 9 Working with Databases in Java . 307

chaPter 10 Accessing Web Sources . 347

chaPter 11 Designing Graphical Interfaces . 463

chaPter 12 Using Object‐Oriented Patterns . 557

index .619

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

Beginning

Java® Programming

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

Beginning

Java® Programming
The OBjecT-OrienTed ApprOAch

Bart Baesens

Aimée Backiel

Seppe vanden Broucke

www.allitebooks.com

http:///
http://www.allitebooks.org

Beginning java® programming: The Object-Oriented Approach

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-73949-5

ISBN: 978-1-118-73951-8 (ebk)

ISBN: 978-1-118-73935-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or

108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-

rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and speciically disclaim all warranties, including

without limitation warranties of itness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is

sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-

vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the

publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred

to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-

lisher endorses the information the organization or Web site may provide or recommendations it may make. Further, read-

ers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work

was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to

media such as a CD or DVD that is not included in the version you purchased, you may download this material at

http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013948012

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-

marks or registered trademarks of John Wiley & Sons, Inc., and/or its afiliates, in the United States and other countries,

and may not be used without written permission. Java is a registered trademark of Oracle, Inc. All other trademarks are

the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned

in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http:///
http://www.allitebooks.org

To my lovely wife Katrien and kids, Ann-Sophie,

Victor, and Hannelore. To my parents and

parents-in-law.

—Bart

To my parents my siblings, Karen, Jocelyn, and

Matthew; and my greatest supporter Jing.

—Aimée

To Xinwei, my parents, and sister.

—Seppe

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

aBout the authors

Professor Bart Baesens is a professor at KU Leuven (Belgium) and a lecturer at the University

of Southampton (United Kingdom). He has been teaching courses on programming for more than 10

years. His research focuses on big data and analytics, customer relationship management, web ana-

lytics, fraud detection, and credit risk management. His indings have been published in well‐known

international journals and presented at top international conferences. He is also the author of the

books Credit Risk Management: Basic Concepts (Oxford University Press, 2008) and Analytics in a

Big Data World (Wiley, 2014). His research is summarized at www.dataminingapps.com. He also

regularly tutors, advises, and provides consulting support to international irms.

aimée Backiel is a PhD researcher in applied economics at KU Leuven in Belgium. Her focus of

research is survival analysis, a statistical modeling technique. She was irst introduced to Java in

2003 while studying mathematics at the University of Southern Maine. After working some years

in data analysis and assessment, she followed up with an Object-Oriented Programming course at

KU Leuven, earning a perfect 20/20 for the electronic agenda system she pair‐programmed with

a partner. Currently, she incorporates Java daily in her own research. In addition, she leads basic

programming exercise sessions for students of various disciplines, giving her insight into teaching

and learning Java from the ground up and providing a multitude of practical examples for learners

who may or may not be technically oriented. Her background provides a balance between a theo-

retical foundation and an applied business‐oriented approach.

sePPe vanden Broucke is a PhD researcher in the Department of Decision Sciences and

Information Management at KU Leuven. His interest in programming began when he was six

years old, starting with languages such as BASIC and Logo. Throughout the following years, Seppe

gained experience in a large number of languages, including PHP, Python, Ruby, and Java. He is

applying the latter extensively in his day‐to‐day research activities in order to extract knowledge

and insights from business-process-oriented data. His research interests include business process

management, process mining, data mining, and machine learning. His work has been published

in well‐known international journals and presented at top conferences. Seppe has also contrib-

uted to and participated in a number of open-source projects. His research is summarized at

www.dataminingapps.com, and his personal page is located at www.seppe.net.

http://www.dataminingapps.com
http://www.dataminingapps.com
http://www.seppe.net
http:///

http:///

Project editor
Kelly Talbot

technical editors
Andres Almiray
Alan Williamson
Christian Ullenboom

Production manager
Kathleen Wisor

copy editor
Kezia Endsley

manager of content development &
assembly
Mary Beth Wakeield

marketing director
David Mayhew

marketing manager
Carrie Sherill

Professional technology & strategy
director
Barry Pruett

Business manager
Amy Knies

associate Publisher
Jim Minatel

Project coordinator, cover
Patrick Redmond

Proofreader
Kathy Pope, Word One

indexer
John Sleeva

cover designer
Wiley

cover image
©istockphoto.com/rrocio

credits

http:///

http:///

acknowledgments

this Book would not have Been PossiBle without the support and assistance of many dedi-

cated, helpful, bright, and supportive individuals. Therefore, the authors wish to acknowledge the

contributions and assistance of various colleagues, friends, and fellow Java lovers to the writing of

this book.

This book is the result of many years of teaching programming courses and working with Java in a

research context. We irst would like to thank our publisher, Wiley, for accepting our book proposal

less than one year ago. Next, we would like to thank our editor, Kelly Talbot, for the excellent col-

laboration, close follow‐up, and timely replies to the many email exchanges we had, as well as the

copy, technical, and other assistant editors for the many comments and positive feedback relayed to

us, which immensely improved the quality of this book. We are also grateful to the active and lively

Java community for providing various user fora, blogs, online lectures, and tutorials, which proved

very helpful.

We would also like to acknowledge the direct and indirect contributions of the many colleagues, fel-

low professors, students, researchers, and friends with whom we have collaborated during the past

10 years.

Last but not least, we are grateful to our partners, parents, and families for their love, support, and

encouragement. We hope the readers will enjoy the book and welcome any feedback or suggestions

for improvement.

Bart Baesens

Aimée Backiel

Seppe vanden Broucke

January 2015

http:///

http:///

contents

INTRODUCTION xxii

chaPter 1: a general introduction to Programming 1

The programming process 2
Object-Oriented programming: A Sneak preview 5
programming errors 6

Syntax/Compilation Errors 6

Runtime Errors 6

Logic/Semantic Errors 7

principles of Software Testing 7
Software Maintenance 8

Adaptive Maintenance 8

Perfective Maintenance 8

Corrective Maintenance 8

Preventive Maintenance 9

principles of Structured programming 9

chaPter 2: getting to know Java 11

A Short java history 12
Features of java 13
Looking Under the hood 13

Bytecode 14

Java Runtime Environment (JRE) 15

Java Application Programming Interface (API) 16

Class Loader 17

Bytecode Veriier 18

Java Virtual Machine (JVM) 18

Java Platforms 19

Java Applications 19

Standalone Applications 19

Java Applets 20

Java Servlets 20

Java Beans 21

java Language Structure 21
Classes 22

http:///

xvi

cOnTenTS

Identiiers 22

Java Keywords 22

Variables 23

Methods 23

Comments 24

Naming Conventions 26

java data Types 27
Primitive Data Types 27

Literals 28

Operators 29

Arithmetic Operators 29

Assignment Operators 30

Bitwise Operators 31

Logical Operators 32

Relational Operators 34

Arrays 34

Type Casting 37

Summary 40

chaPter 3: setting uP Your develoPment environment 41

integrated development environments 42
Coding in Text Editors 42

Choosing an IDE 46

Eclipse 47

NetBeans 47

IntelliJ IDEA 47

Continuing with One IDE 47

installing eclipse on Your computer 48
Downloading and Installing Eclipse 48

Using Eclipse 50

chaPter 4: moving toward oBJect‐orIented
proGrammInG 61

Basic concepts of Object‐Oriented programming 62
classes and Objects in java 63

Deining Classes in Java 63

Creating Objects 71

Storing data: Variables 76
Instance Variables 76

Class Variables 80

http:///

xvii

cOnTenTS

Final Variables 82

Variable Scope 87

deining Behavior: Methods 91
Instance Methods 91

Class Methods 94

Constructors 95

The Main Method 100

Method Argument Passing 109

java Se Built‐in classes 115
Classes in the java.lang Package 115

Classes in the java.io and java.nio Packages 117

Classes in the java.math Package 118

Classes in the java.net, java.rmi, javax.rmi, and
org.omg.CORBA Packages 118

Classes in the java.awt and javax.swing Packages 118

Classes in the java.util Package 118

Collections 119

Other Utility Classes 126

Other Classes and Custom Libraries 127

chaPter 5: controlling the flow of
Your Program 129

comparisons Using Operators and Methods 130
Comparing Primitive Data Types with
Comparison Operators 130

Comparing Composite Data Types with
Comparison Methods 132

Understanding Language control 135
Creating if-then Statements 135

Nesting if-then Statements 137

Creating for Loops 138

What Is an Enhanced for Loop? 143

Nesting for Loops 146

Creating while Loops 148

What Is a do while Loop? 152

Comparing for and while Loops 156

Creating Switches 156

Comparing Switches and if-then Statements 161

Reviewing Keywords for Control 162

Controlling with the return Keyword 162

http:///

xviii

cOnTenTS

Controlling with the break Keyword 163

Controlling with the continue Keyword 164

Specifying a Label for break or continue Control 164

Reviewing Control Structures 168

chaPter 6: handling excePtions and deBugging 171

recognizing error Types 172
Identifying Syntax Errors 172

Identifying Runtime Errors 175

Identifying Logical Errors 176

exceptions 180
Common Exceptions 181

Catching Exceptions 187

debugging Your Applications 195
Using a Debugger Tool 195

Using a Logging API 200

Testing Your Applications 210
Summary 219

chaPter 7: delving further into
oBJect‐orIented ConCepts 221

Annotations 222
Overloading Methods 222
The this KeyWord 224
information hiding 229

Access Modiiers 230

Getters 231

Setters 232

class inheritance 240
The Keyword super 241

Method Overriding 243

Polymorphism 243

Static Binding 244

Dynamic Binding 244

The Superclass Object 245

Abstract Classes and Methods 246

packages 251
interfaces 252
garbage collection 259

www.allitebooks.com

http:///
http://www.allitebooks.org

xix

cOnTenTS

chaPter 8: handling inPut and outPut 261

general input and Output 262
input and Output in java 266
Streams 268

Byte Streams 269

Character Streams 275

Buffered Streams 276

Data and Object Streams 278

Other Streams 281

Scanners 281
input and Output from the command-Line 283
input and Output from Files 290

Java NIO2 File Input and Output 291

The Path Interface 291

The Files Class 293

Checking Existence 293

Legacy File Input and Output 304

A Word on FileUtils 305

conclusion 305

chaPter 9: working with dataBases in Java 307

covering the Basics of relational databases 308
Accessing relational databases from java 315

Java Database Connectivity (JDBC) 315

SQLJ 321

ensuring Object persistence 324
Hibernate 325

Object-Oriented Database Access from Java 341

comparing java database Access Technologies 343
What’s Ahead 344

chaPter 10: accessing weB sources 347

A Brief introduction to networking 348
Web Services 360

RPC and RMI 360

SOAP 364

REST 366

Accessing Web Services and Sources with java 368

http:///

xx

cOnTenTS

Accessing SOAP Services 368

Installing JAX‐WS 368

Accessing SOAP Services with JAX‐WS Without WSDL 369

Accessing SOAP Services with JAX‐WS with WSDL 395

Accessing REST Services 406

Accessing REST Services Without Authentication 408

Accessing REST Services with Authentication 421

Screen Scraping 449

Screen Scraping Without Cookies 451

Screen Scraping with Cookies 453

creating Your Own Web Services with java 457
Setting Up an HTTP Server 457

Providing REST Services 461

chaPter 11: designing graPhical interfaces 463

covering the Basics of gUis in java 464
Highlighting the Built‐In GUI Libraries 464

Abstract Window Toolkit (AWT) 464

Swing 464

Standard Widget Toolkit (SWT) 465

JavaFX 465

Other Toolkits and Libraries 466

Choosing a GUI Library 466

Building with Containers and Components 467

Looking at the Full Picture 472

comparing Layout Managers 473
FlowLayout 474

BorderLayout 476

GridLayout 478

GridBagLayout 482

CardLayout 486

BoxLayout 489

GroupLayout and SpringLayout 493

Absolute Positioning (No Layout Manager) 494

Understanding events 496
Introduction to Events 496

Event Listeners 497

On Threading and Swing 514

closing Topics 524
Best Practices: Keeping Looks and Logic Separated 524

http:///

xxi

cOnTenTS

Let’s Draw: Deining Custom Draw Behavior 525

Visual GUI Designers: Making Life Easy? 540

JavaFX: The Road Ahead? 545

chaPter 12: using oBJect‐orIented patterns 557

introduction to patterns 558
Object‐Oriented patterns 558

Creational Patterns 559

Singleton Pattern and Static Utility Class 559

Service Provider Pattern and Null Object Pattern 565

(Abstract) Factory Pattern 566

Structural Patterns 568

Adapter Pattern 568

Bridge Pattern 570

Decorator Pattern 571

Façade Pattern 574

Composite Pattern 575

Type Pattern and Role Pattern 583

Behavioral Patterns 591

Chain‐of‐Responsibility Pattern 591

Observer Pattern and Model‐View‐Controller Pattern 592

Iterator Pattern 605

Visitor Pattern 607

Template Method Pattern 610

Strategy Pattern 612

helpful Libraries 614
Apache Commons 614

Google Guava 615

Trove 615

Colt 615

Lombok 616

OpenCSV 616

HTML and JSON Libraries 616

Hibernate and Other JPA‐Compliant Libraries 617

Joda‐Time 617

Charting Libraries 617

3D Graphics Libraries 617

Financial Libraries 618

INDEX 619

http:///

introduction

congratulations! By picking up this book you have made the irst step in your voyage toward
learning Java. Java is a programming language with a long history, starting with its inception in
1991, when it was still named “Oak,” through the irst public release (Java 1.0) in 1995 and the
newly released Java 8. Its “write once, run anywhere” approach, together with robust language fea-
tures and numerous libraries led to a spectacular adoption rate. Java is one of the most popular lan-
guages in use today, and has been especially successful in enterprise and business environments.

Note, however, that Java is not without its criticism (no programming language is). You might have
picked upon the often-repeated criticism that Java is verbose, unsecure, suffering from a slow release
cycle, and that it is fading in popularity compared to the interest in new, more exciting languages
(Ruby, Erlang, and Haskell, to name a few) by the computer science and programmer communities.
The reality, however, tells a different story. Java remains widely taught in schools and universities
and is regarded as the language of choice in many organizations. The introduction of Java 7 in 2011
made many tasks simpler, and the availability of many seasoned and stable libraries, tools, and
feature‐complete IDEs is unmatched by the ecosystem found around other languages. In 2014, Java
8 introduced lambda expressions to streamline code and a reengineered date and time interface that
simpliies and improves the internationalization of applications. Java’s strong architectural founda-
tions make the language ideally suited for both newcomers and experienced programmers who want
to expand their knowledge of Object-Oriented Programming.

Before reaching the end of this book, you will agree that being proicient in Java is a strong skill to
possess indeed. We aim to get you started and up to speed as quickly as possible, without making
sacriices in terms of depth and breadth of topics. The goal is not to guide you in simply adding
yet another (or irst) language to your repertoire, but also to familiarize you with Java’s underlying
approach toward robust and structured Object-Oriented Programming. As you will see, Java’s
“verbosity” makes it ideally suited to teach programming best practices in an explicit manner.
Providing step‐by‐step explanations together with many examples—inspired by real‐life environ-
ments rather than toy exercises—will help you quickly appreciate Java’s design and usefulness, and
learn that programming in Java can even be great fun!

who this Book is for

Java is a great language to learn for both new and experienced programmers. As such, this book
is geared towards a broad audience, including practitioners, analysts, programmers, and students
wanting to apply Java in a pragmatic context. It doesn’t matter whether you are new to program-
ming and have chosen Java as a place to start or whether you come in from another programming
language; Java is a great choice. Many books exist on the topic of Java (just look at the shelf where
you found this book!), but we feel that existing offerings reuse the same approach to demonstrate

http:///

xxiii

inTrOdUcTiOn

concepts. Therefore, you will not ind the archetypical (and honestly, completely useless) “Hello
World” example in this book. Instead, we delve into concrete, thought‐out examples that illustrate
how Java can be useful and used in real life. Whether you are an analyst struggling with spreadsheet
formulas to perform a somewhat advanced calculation (there has to be a smarter way, right?), a stu-
dent wondering how your future employer is using Java, or a hobbyist programmer trying to keep
track of stock quotes or a book database, this book aims to familiarize you with all the necessary
concepts.

toPics covered in this Book

The topics discussed in this book can, broadly speaking, be outlined in the following three
categories. First is a general introduction to programming and Java. The irst chapters briely
discuss programming in general, before moving on to a high‐level description of Java’s history and
language features. We also make sure to set up everything you need to get started with Java.

The second part deals with Object-Oriented Programming in Java. The goal is to help readers acquire a
strong knowledge of how Object-Oriented Programming works and how Java programs are structured.

The third part is more focused and practical, and shows how you can leverage Java to talk to data
sources (such as iles, databases, and even web services) and how you can create a graphical user
interface around your program logic.

Note that we have not structured the book around the aforementioned three parts. Instead of split-
ting the book into “theoretical” and “practical” parts, we chose to introduce new concepts step‐by‐
step as they are needed so that you can quickly move on to examples and exercises. The best way to
learn is by doing, and this saying particularly holds true when learning to program.

In Chapter 1, we provide a brief general introduction to programming geared toward newcomers
and novice programmers. In Chapter 2, we start introducing Java by providing an overview of the
language’s history, the different technological components that make up the language, the general
language structure, and data types. At that point, you will know enough to get started, so that in
Chapter 3, we will guide you toward setting up your development environment and trying out some
basic examples and exercises. In Chapter 4, we introduce Object-Oriented Programming basics;
low‐control statements are covered in Chapter 5. At that point, you will be able to create simple
but functional programs. Chapter 6 explains how to catch errors and debug your programs, which
will come in handy as you start using resources and coding more advanced programs. At this point,
you will have all the necessary components to start looking at some more advanced Object-Oriented
Programming concepts in Chapter 7. After this, you’ll be ready to tackle more complex interactions
with iles, external sources, and users. In Chapter 8 you will look at dealing with ile‐based input
and output, including how to load iles, perform basic operations, and save the results back to disk.
Chapters 9 and 10 build on this by explaining how to interact with databases and web sources. At
this point, you will be itching to move away from command‐line based applications, and Chapter
11 explains in-depth how to build graphical user interfaces. Chapter 12 concludes the theory by
providing an overview of some common architectural patterns (best practices, if you will) used by
seasoned Java developers.

http:///

xxiv

inTrOdUcTiOn

By the end of this book, you will have gained a strong knowledge of Java’s internals, you will know
what is meant by Object-Oriented Programming, know how to debug and deal with errors in your pro-
grams, know how to handle ile‐based input and output, talk to databases, talk to web services, make
a full‐ledged graphical application, and be familiar with some common and well‐known programming
“patterns,” which are best practices to structure and organize a program’s architectural setup.

toPics not covered in this Book

This book is not a reference manual. The goal is to get readers acquainted with the basics of Java
and Object-Oriented Programming to use within practical applications, not to provide a full over-
view of Java’s API. As such, given the scope of this book, there are some concepts that are not dis-
cussed in detail. However, we have taken care to avoid elements you can live without at this point in
your Java career.

Working with generics in Java, for example, is not discussed explicitly, but instead explained briely
where needed (when we talk about collections in Java, such as lists or sets, for example). Working
with generic classes can be daunting for novice Java programmers, and the Object-Oriented
Programming concepts discussed sufice to cover the multitude of use cases. That said, familiarizing
yourself with generic types after going through this book should not prove dificult.

Other topics that are not discussed in-depth include networking in Java (socket programming), multi‐
threaded and concurrent programming, relection, and the lambda expressions introduced with Java
8. Networking aspects, however, are dealt with from a “higher‐level” view. We discuss how to interact
with web services, which provides a great starting point for practitioners to load data coming from
the web. Concurrent, multi‐threaded programming is a beneicial practice when performance and
speed becomes an issue in applications, but for most use cases in a practical context, Java performs
just ine without having to deal with multi‐threading. Additionally, programming in a concurrent
fashion introduces some particular challenges and “gotchas” that are unit for beginning Java pro-
grammers to deal with. Relection is a part of the Java API that allows programmers to examine and
“relect” on Java programs while they are running and perform changes to programs while they are
being executed. While very helpful in some cases, it also is out of scope for a beginner’s book on Java.
Finally, the recently released Java 8 introduces some new concepts, most notably lambda expressions.
Java 7 also provides functionality to work with so‐called “anonymous classes,” which are ad hoc
implementations of a base class without a speciic name or deinition. Other than the fact that these
classes can appear somewhat verbose, they are perfectly ine to use instead of lambda expressions
(which provide the same functionality in a more concise manner) and are still widely used. We do,
however, provide short notes on developments within Java 8 whenever appropriate.

Finally, Java is composed of a certain number of “technologies” (also called platform compo-
nents). The “standard” Java is denoted as “Standard Edition” (SE), and is the one we tackle here.
An Enterprise Edition (EE) also exists, as well as a number of extensions to develop embedded and
mobile applications (Embedded Java and Java ME), applications for smart TVs (Java TV), and
graphic‐intensive applications (Java FX and Java 2D). We do not discuss these extensions in this book,
as they have no place in a beginner’s book on Java. Readers wanting to apply Java in these speciic
areas should, however, be ready to move on to these more focused topics after reading this book.

http:///

xxv

inTrOdUcTiOn

conventions

This book applies a number of styles and layout conventions to differentiate between the different
types of information.

trY it outs What Are They?

This book comes with many code examples and exercises that introduce and explain new concepts
step‐by‐step. These are called “Try It Outs” and can be executed directly while reading the chapters or
revisited at a later time. Each Try It Out is followed by a How It Works, which is designed to help you
understand exactly what’s happening in the Try It Out exercise.

In addition to providing extensive examples in the form of Try It Outs, you will also encounter frequent
tips, hints, advice, and background information, which are formatted like this:

NOTE Tips, hints, advice, and background information are formatted like this.
Reading these segments can help to make concepts clearer. You may also
notice a Warning or Common Mistakes heading on these boxes to bring your
attention to particular things you should avoid.

Discussions that extend beyond a short tip or note will look a little bit different.

sideBar

We use this format to explain concepts that require more than a simple note.
The details are not necessary to the understanding of the book but offer a more
complete discussion on a particular topic.

Finally, program code within this book is formatted in two ways. The irst way is as code type:
(/* Like this comment */). Variables (like iAmAVariable) appear in italic code type.

Larger code blocks look like the following:

public class NoHelloWorld {
 public static void main(String[] args) {
 System.out.println("This is not an Hello World program...");
 }
}

NOTE Eclipse is the Integrated Development Environment (IDE) we will be
using throughout this book. Don’t worry what this means for now. Everything
you need to set up in order to follow along is explained in Chapter 3.

http:///

xxvi

inTrOdUcTiOn

All these styles are designed to make sure it’s easy for you to know what you’re looking at while you
read.

source code

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source-code iles that accompany the book. All of the source code used in
this book is available for download at www.wrox.com. Once at the site, simply locate the book’s title
(either by using the Search box or by using one of the title lists) and click the Download Code link
on the book’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may ind it easiest to
search by ISBN; this book’s ISBN is 978-1-118-73949-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you ind an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time you will be helping us provide even
higher-quality information.

To ind the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and ix the problem in
subsequent editions of the book.

P2P.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system on which you can post messages relating to Wrox books and related technologies and inter-
act with other readers and technology users. The forums offer a subscription feature to e-mail you

www.wrox.com/dynamic/books/download.aspx
www.wrox.com/dynamic/books/download.aspx
www.wrox.com/misc-pages/booklist.shtml
www.wrox.com/misc-pages/booklist.shtml
www.wrox.com/contact/techsupport.shtml
www.wrox.com/contact/techsupport.shtml
http://www.wrox.com
http://www.wrox.com
http:///

xxvii

inTrOdUcTiOn

topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will ind a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order
to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions speciic to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

how to read this Book

This book is mostly designed as a hands‐on tutorial and tries to keep you practicing and trying
out new concepts as quickly and often as possible. As mentioned before, you will ind Try It Outs
throughout this book where you will ind step‐by‐step instructions for working with Java.

You will notice that we alternate between chapters that are more theoretical in nature (such as
what Object-Oriented Programming is) and chapters that are more practical (such as how to
read in a ile and do something with it). As such, the preferred way to go through this book when
you’re reading it the irst time is to work your way from beginning to end. Think of this book as
a tour through Java. We do not visit every nook and cranny—you don’t need to examine each and
every small detail—but you do want to get the big picture, enabling you to get proicient with Java
as quickly as possible without taking dangerous shortcuts by explaining concepts in a haphazardly
manner. Whenever you encounter a practical chapter that seems less useful, however, you are
free to skip it and return to it later. That said, we have clearly separated the chapters to match a
speciic set of topics, so readers revisiting this book will have no trouble immediately navigating
to the right spot.

http://p2p.wrox.com
http:///

xxviii

inTrOdUcTiOn

Given the nature of programming, it is unavoidable that you will run across some examples in
earlier chapters that includes a concept that will be explained in a later section. We always indicate
these forward references in a clear manner and tell you “not to worry about this until Chapter X.”
Trust us on this; these elements will be covered later.

As you proceed, remember the best way to learn is to try out things on your own, extend projects,
and create new ones. The Try It Out exercises provide examples throughout the text for you to
start programming with a lot of guidance. As your knowledge and conidence build, try creating
your own simple programs to complete tasks that are interesting for you. This way, you will put the
concepts you’ve learned to use and start to see how Java can work for you.

get in touch

We have tried to make this book as complete, accurate, and enjoyable as possible. Of course, what
really matters is what you, as the reader, think of it. Please let us know your views by getting in
touch. The authors welcome all feedback and comments.

Bart Baesens

Aimée Backiel

Seppe vanden Broucke

January, 2015

www.allitebooks.com

http:///
http://www.allitebooks.org

Beginning

Java® Programming

http:///

http:///

A general introduction to
programming

what You will learn in this chaPter:

 ➤ The key steps in a programming process

 ➤ The different types of programming errors

 ➤ The key principles of software testing

 ➤ The different types of software maintenance

 ➤ The key principles of structured programming

wrox.com code downloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 1
download and individually named according to the names throughout the chapter.

Developing good and correct software is a very important challenge in today’s business
environment. Given the ubiquity and pervasiveness of software programs into our daily
lives, the impact of faulty software is now bigger than ever. Software errors have caused
light crashes, rocket launch errors, and power blackouts, to name a few examples. Hence,
it is important to design high-quality, error-free software programs. This chapter covers the
fundamental concepts of programming. First, it elaborates on the programming process. The
next section provides a sneak preview of object-oriented programming. This is followed by a
short discussion on programming errors. The basic principles of software testing and software
maintenance are also discussed. The chapter concludes by giving some recommendations
relating to structured programming. You will revisit many of these ideas in future chapters,
with a more hands-on approach.

1

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

2 ❘ chApTer 1 A GenerAl IntroductIon to ProGrAmmInG

the Programming Process

A program (also referred to as an application) is a set of instructions targeted to solve a particular
problem that can be unambiguously understood by a computer. To this end, the computer will
translate the program to the language it understands, which is machine language consisting
of 0s and 1s. Computers execute a program literally as it was programmed, nothing more and
nothing less. Programming is the activity of writing or coding a program in a particular pro-
gramming language. This is a language that has strict grammar and syntax rules, symbols, and
special keywords. People who write programs are commonly referred to as programmers or
application developers. The term software then refers to a set of programs within a particular
business context.

An example of a programming exercise is a program that calculates the body mass index (BMI) of
a person. The BMI is calculated by dividing a person’s weight in kilograms by the square of his or
her height in meters. A person is con-
sidered overweight if his or her BMI
is over 25. A BMI calculator program
then requires the weight and height as
inputs and calculates the associated
BMI as the output. This is illustrated in
Figure 1-1. This BMI example is used
to demonstrate the steps in the software
development cycle.

Programs are typically written using a
step-by-step approach, as follows:

 1. Requirements gathering and analysis

 2. Program design

 3. Program coding

 4. Translation to machine language

 5. Testing and debugging

 6. Deployment

 7. Maintenance

Because our environment is continuously evolving,
software, too, is often continually reviewed and
adapted. Therefore, these steps are often represented
as a cycle, as shown in Figure 1-2, rather than as a
ladder.

The irst step is to make sure you understand the problem
in suficient detail. This means analyzing the problem
statement carefully so you fully grasp all the require-
ments that need to be fulilled by the software program.
This may involve Q&A sessions, interviews, and surveys

figure 1-1

Inputs

Height

PROGRAM BMI

Weight

Output

figure 1-2

Requirements

Maintenance

Deployment

Testing Translation

Coding

Design

http:///

The programming process ❘ 3

with business experts who have the necessary subject matter expertise. Even if you are programming
for yourself, taking the time upfront to consider all the demands you want your program to meet will
limit the amount of changes required later in the process. At the end of this step, it is important to know
what the input to the program will receive and what output it should give. In the BMI example, you will
need to know whether the height will be measured in meters or feet and the weight in kilos or pounds.
You would also want to determine whether the output should be just the BMI results or also a message
stating whether or not the person is overweight.

Once you have a thorough understanding of the business problem, you can start thinking about
ways to solve it using a computer program. In other words, which processing steps should take
place on the input(s) in order to give the desired output(s)? The procedure needed to solve the
problem is also often referred to as the algorithm. When working out an algorithm, common sense
and creativity both play an important role. A irst useful step in designing an algorithm is plan-
ning the application logic using pseudo-code or lowcharts. Pseudo-code is a type of structured
English but without strict grammar rules. It is a user-friendly way of representing application
logic in a sequential, readable format. It allows the problem statement to be broken into manage-
able pieces in order to reduce its complexity. Following is an example of pseudo-code for the BMI
case. A lowchart represents the application in a diagram, whereby the boxes show the activities
and the arrows the sequences between them. Table 1-1 presents an overview of the most important
lowchart construction concepts. Figure 1-3 then gives an example of a lowchart for the BMI case.
Both pseudo-code and lowcharts can be used concurrently to facilitate the programming exercise.
A key advantage of lowcharts when compared to pseudo-code is that they are visual and thus
easier to interpret.

ask user: height
ask user: weight
if height = 0 or weight = 0:
error: "Incorrect input values"
return to beginning (ask height and weight)
end if
x = weight / (height * height)
message: "Your BMI is ",x

Table 1-1 is an overview of the most important lowchart modeling concepts.

taBle 1-1: Key Flowchart Modeling Concepts

flowchart sYmBol meaning

A terminator shows the start and stopping points of

the program.

An arrow shows the direction of the process low.

A rectangle represents a process step or activity.

continues

http:///

4 ❘ chApTer 1 A GenerAl IntroductIon to ProGrAmmInG

flowchart sYmBol meaning

A diamond indicates a decision point in the process.

This symbol represents a document or report.

This rhombus represents data used as inputs/outputs

to/from a process.

This cylinder represents a database.

taBle 1-1: (continued)

A next step is to code the program in a particular programming language. The choice of the lan-
guage will depend on the programming paradigm and the platform adopted (such as hardware,
operating system, or network).

Once the source code of the program has been written, it will be given to a translator to translate it
to machine language (0s and 1s) so that it can be executed and solve the business problem.

figure 1-3

Start
Ask user height

and weight

Display error

message

Yes

No

weight = 0

or

height = 0

Compute

BMI

Display

BMI
Stop

During application development, it is important that every program is intensively tested to avoid any
errors. Often, in programming, errors are called bugs. Various types of errors exist and an entire
chapter is devoted to this topic. Programming tools frequently have debugging facilities built in to

http:///

Object-Oriented programming: A Sneak preview ❘ 5

easily track bugs down and correct them. It is possible to debug your program without the use of
such tools, but in either case, you should follow a structured and systematic review to be sure you’ve
identiied any bugs before your program is deployed.

Once a program has been thoroughly tested, it can be deployed. This means that the program will
be brought into production and actively used to solve the business problem. Remember, users of
your software don’t usually understand as much about programming as you. Try to keep them in
mind throughout the process to make this deployment step as seamless as possible.

Finally, programs should be maintained on an ongoing basis. There are many reasons for regular
maintenance, namely correcting newly discovered bugs, accommodating changing user needs, pre-
venting erroneous user input, or adding new features to existing programs.

It is important to note that programming is not a strict, sequential, step-by-step process. Quite to
the contrary, it often occurs as an iterative process, whereby the original business problem is reined
or even reformulated during the coding process.

oBJect-oriented Programming: a sneak Preview

In object-oriented (OO) programming, an application consists of a series of objects that ask services
from each other. Each object is an instance of a class that contains a blueprint description of all the
object’s characteristics. Contrary to procedural programming, an object bundles both its data (which
determines its state) and its procedures (which determines its behavior) in a coherent way. An example
of this could be a student object having data elements such as ID, name, date of birth, email address,
and so on, and procedures such as registerForCourse, isPassed, and so on. A key difference
between OO and procedural programming is that OO uses local data stored in objects, whereas pro-
cedural programming uses global shared data that the various procedures can access directly. This has
substantial implications from a maintenance viewpoint. Imagine that you want to change a particular
data element (rename it or remove it). In a procedural programming environment, you would have
to look up all procedures that make use of the data element and adapt them accordingly. For huge
programs, this can be a very tedious maintenance exercise. When you’re using an OO programming
paradigm, you only need to change the data element in the object’s deinition and the other objects can
keep on interacting with it like they did before, minimizing the maintenance.

OO programming is the most popular programming paradigm currently in use. Some examples of
object-oriented programming languages are Eiffel, Smalltalk, C++, and Java.

The following code example demonstrates how to implement the BMI example in Java. Contrary to
the procedural programming example, it can be clearly seen that the data (weight, height, and
BMI) is bundled together with the procedures (BMICalculator, calculate, and isOverweight)
into one coherent class deinition.

public class BMICalculator {
 private double weight, height, BMI;

 public BMICalculator(double weight, double height){
 this.weight = weight;
 this.height = height;
 }

http:///

6 ❘ chApTer 1 A GenerAl IntroductIon to ProGrAmmInG

 public void calculate(){
 BMI = weight / (height*height);
 }

 public boolean isOverweight(){
 return (BMI > 25);
 }
}

Programming errors

A programming error is also referred to as a bug, and the procedure for removing programming
errors is called debugging. Debugging usually has the following three steps:

 1. Detect that there is an error.

 2. Locate the error. This can be quite time consuming for big programs.

 3. Solve the error.

Different types of programming errors exist and are explored in the following sections.

syntax/compilation errors
A syntax or compilation error refers to a grammatical mistake in the program. Examples are a
punctuation error or misspelling of a keyword. These types of errors are typically caught by the
compiler or interpreter, which will generate an error message. Consider the following Java example:

 public void calculate(){
 BMI = weight / (height*height),
 }

The statement that calculates the BMI should end with a semicolon (;) instead of a comma (,),
according to the Java syntax rules. Hence, a syntax error will be generated and displayed. Syntax
errors are usually easy to detect and solve.

runtime errors
A runtime error is an error that occurs during the execution of the program. Consider the following
piece of Java code to calculate the BMI:

 public void calculate(){
 BMI = weight / (height*height);
 }

If the user enters a value of 0 for height, a division by zero occurs. This creates a runtime error
and will likely crash during execution. Another example of a runtime error is an ininite loop into
which the program enters at execution. During the design of the program, it is important to think
about possible runtime errors that might occur due to bad user input, which is where the majority
of bugs will originate. These errors should be anticipated as much as possible using appropriate
error-handling routines, as we will discuss later.

http:///

principles of Software Testing ❘ 7

logic/semantic errors
Logic or semantic errors are the hardest to detect since the program will give an output and not
generate an error. However, the output that is given is incorrect due to a formula being incorrectly
programmed. Consider the BMI example again:

 public void calculate(){
 BMI = (weight*weight) / height;
 }

This routine is clearly erroneous since it calculates the BMI as (weight*weight)/height instead of
weight/(height*height). These errors cannot be detected by compilers or interpreters.

PrinciPles of software testing

In order to avoid software errors (and their impact), a program should be thoroughly tested for
any remaining errors before it is brought into production. The main purpose of testing is veriica-
tion and validation of the software build. Veriication aims at answering the question as to whether
the system was built correctly, whereas validation tries to determine whether the right system was
built. The quicker an error is found during development, the cheaper it is to correct it. As illustrated
in Figure 1-4, the cost of testing typically increases exponentially, whereas the cost of missed bugs
decreases exponentially with the amount of testing conducted. The optimum testing resources can
then be found where both curves intersect.

figure 1-4

Cost of missed

bugs Cost of testing

Optimum

Undertesting Overtesting

Amount of testing

A irst basic way of testing is to desk-check the program by using paper and pencil. The manual
calculations and output can then be contrasted with the program calculations and output. It is
especially important to consider extreme cases and see how the program behaves. Of course, this
only works for small-scale programs; more sophisticated procedures might be needed for bigger
programs.

http:///

8 ❘ chApTer 1 A GenerAl IntroductIon to ProGrAmmInG

Static testing procedures test the program not by executing it, but by inspecting and reviewing the
code and performing detailed walk-throughs. It is aimed at veriication. On the other hand, dynamic
testing procedures test the program by executing it with carefully selected test cases. It is thus more
related to validation. The test cases can be chosen according to a white box or black box strategy.
In white box testing, they are selected by thorough inspection of the source code of the program;
for example, by making sure all the branches in an if-then-else selection are covered, boundary
conditions for loops are veriied, and so on. One popular approach is to intentionally inject faults
in the source code, which then need to be tracked down in a follow-up step. Black box testing con-
siders the program as a black box and does not inspect its internal source code. One example is a
procedure that tries to test all possible input parameter combinations. It is especially important to
also test what happens when impossible values are entered (such as a negative value for weight and
height, value of 0 for height, missing value for gender, and so on). Obviously, this becomes compu-
tationally infeasible in case many inputs are present and intelligent sampling procedures could be
adopted to test as many useful input combinations as possible.

Software development typically has two phases of testing. Alpha testing is done internally by the
application developers before the software is brought to the market. In beta testing, the software is
given to a selected target audience and errors are reported back to the development team.

software maintenance

Software is always dynamically evolving, even after delivery. Maintenance is the activity of adjusting
the program after it has been taken into production. This is done to boost its performance, solve any
remaining errors, and/or accommodate new user requirements. Maintenance typically consumes a large
part of the overall software development costs (up to 70% or more according to some estimates). This
can be partly explained by the fact that much of the software people work with today is relatively old
(legacy software) and has been maintained on an ongoing basis. This section covers the four main types
of maintenance. They are categorized according to their intended goals.

adaptive maintenance
Adaptive software maintenance refers to modifying a program to accommodate changes in the envi-
ronment (both hardware and software). An example of this is a new Windows release with new fea-
tures added (which can also be used by the program) and old features removed (which can no longer
be used by the program).

Perfective maintenance
This refers to enhancing a program to support new or changed user requirements. Consider again
the BMI example. When the user wants to be able to enter height in feet units and weight in pound
units, this is a perfective maintenance operation.

corrective maintenance
Corrective maintenance aims at inding errors during runtime and ixing them. A further distinction
can be made here between emergency ixes (which need to be solved as quickly as possible due to
their critical relevance) and routine debugging (which is less urgent).

www.allitebooks.com

http:///
http://www.allitebooks.org

principles of Structured programming ❘ 9

Preventive maintenance
Preventive maintenance aims at increasing software maintainability in order to prevent future
errors. A popular example here was the Y2K problem, where companies massively anticipated date
calculation errors in their software programs at the end of the previous century. Another example
concerns the transition of many countries from their own independent currency toward the Euro.
One important activity to facilitate preventive maintenance is documentation. This means that
the application is extended with various comments that are not executed by the compiler, but that
indicate the meaning of the various data elements, procedures, and operations in order to facilitate
future maintenance.

Among the four types of maintenance, perfective maintenance typically takes the main share of all
maintenance efforts (it can even be more than 50%), followed by adaptive, corrective, and preven-
tive maintenance.

The major causes of maintenance problems are unstructured code, lack of documentation, excessive
user demand for changes, lack of user training and understanding, and high user turnover. Many
organizations have standard procedures for maintenance, which typically start with the formal il-
ing of a change request specifying the modiications needed to the software. Depending on the sever-
ity of the request and the change management strategy adopted by the organization, these change
requests can be grouped and dealt with at ixed time stamps, or treated immediately.

PrinciPles of structured Programming

To inish this introductory chapter, this section discusses some of the basic principles of structured
programming.

A irst important concept is stepwise reinement. Programs should be designed using a top-down
strategy where the problem statement is subdivided into smaller, more manageable subproblems.
These subproblems can be further broken down into smaller subproblems until each piece becomes
easy to solve. This strategy should decrease the program development time and its maintenance
cost.

Documentation is another important concept. It provides invaluable clariication for complex pro-
gramming statements, which will again facilitate future maintenance operations. Every program-
ming language offers facilities to include documentation lines that are ignored by the compiler or
interpreter but can be easily read and understood by programmers.

Also of key importance is to assign meaningful names to programming concepts such as variables.
Instead of naming a variable i or j without any explicit interpretation, it is much better to use stu-
dent or course, which immediately indicate their meanings.

By incorporating these principles into your programs, you will improve your own work and at the
same time make it possible for others (or even yourself—it’s not always easy to remember what you
meant by varX months later) to update and continue using your software. After all, the goal is to
create something useful that people will want to keep using.

That being said, let’s immerse ourselves further into the wonderful world of Java programming and
continue with the next chapter!

http:///

http:///

what You will learn in this chaPter:

 ➤ The history of Java

 ➤ The key features of Java

 ➤ How the Java technology works

 ➤ The key components of the Java Runtime Environment (JRE) and

how they collaborate

 ➤ The different types of Java platforms and applications

 ➤ The relationship between Java and JavaScript

 ➤ The basic concepts of the Java language structure

 ➤ The primitive Java data types and how they are used

wrox.com code downloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 2
download and individually named according to the names throughout the chapter.

Before you get your hands wet trying your irst Java program, you need to learn some basic

concepts relating to the Java architecture and language semantics. The chapter starts by pro-

viding a bird’s eye overview of Java’s history, its key features, and the underlying technology.

The chapter then zooms into the Java Runtime Environment (JRE), which is the software

environment in which Java programs are executed. This will be followed by a discussion of

various types of Java applications, such as standalone applications, applets, servlets, and

Java beans.

2
getting to Know java

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

12 ❘ chApTer 2 GettInG to Know JAvA

The chapter then covers the basic concepts of the Java language structure. You will read about vari-
ous concepts such as classes, identiiers, Java keywords, variables, methods, comments, and naming

conventions in depth. After that, you’ll learn about Java data types. First, the various primitive data

types will be covered, followed by a discussion of literals, operators, arrays, and type casting. The

BMI example introduced in Chapter 1 is used to demonstrate and clarify the new concepts. This

chapter is a very important one because it lays the foundation for all subsequent chapters. Many of

the concepts that are introduced here will be elaborated on in later chapters.

a short Java historY

In 1991, Sun Microsystems funded the research project called “Green” to design a program-

ming language to be used in intelligent consumer electronic devices, like televisions, VCRs, and

washing machines. Since home appliance processor chips change on a continuous basis, the

programming language used needed to be extremely portable. Existing programming languages

such as C++ were clearly not suitable. Often, the embedded language was tied closely to the

appliance processor, and a new language needed to be developed. This new language was origi-

nally termed Oak (referring to the tree that was outside the main developer’s, James Gosling’s,

window), but was quickly renamed Java. The use of Java for home appliance applications turned

out to be initially unsuccessful, but the emergence of the Web gave it a new future. In 1994, the

irst Java-enabled web browser HotJava was developed. A year later, Netscape incorporated Java

support into its web browser. Other companies quickly followed and Java’s popularity rapidly

rose. Sun released Java 1.0 to the public in 1995. In 2007, Sun made Java’s core code available

as open source under the terms of the GNU General Public License (GPL). In 2009, Sun was

acquired by Oracle, which is currently continuing the development of Java. Table 2-1 gives an

overview of the major releases, together with some key characteristics. Note that the versions

were originally referred to as JDKs (Java Development Kits) and later rebranded into J2SE

(Java 2 Platform, Standard Edition).

taBle 2-1: Characteristics of Major Java Releases

maJor release date keY characteristics

JDK 1.0 1996 First stable version of Java

JDK 1.1 1997 Inner classes; Java beans; JDBC; RMI; Just in Time (JIT) compiler for

Windows platforms

J2SE 1.2 1998 Swing classes; Java IDL; Collections

J2SE 1.3 2000 Java platform debugger architecture (JPDA); JavaSound; HotSpot JVM

J2SE 1.4 2002 Regular expressions; IPv6 support; image I/O API; non-blocking I/O

(nio); XML parser and XSLT processor

J2SE 5.0 2004 Generics; annotations; autoboxing; enumerations; varargs; for each

loop

Java SE 6 2006 Improved GUI support; improved web service support

http:///

Looking Under the hood ❘ 13

Java SE 7 2011 New ile I/O capabilities; support for new network protocols

Java SE 8 2014 Lambda expressions; new date and time API

Java SE 9 2016

(expected)

Money and currency API

features of Java

The key characteristics of the Java programming language that have made it so popular include the
following:

 ➤ Simple: Java omits some of the vaguely deined features of C++. It has facilities for

automatic garbage collection to automatically release unused memory while a program

is running. It also includes a rich predeined set of packages (such as for mathematics,

statistics, database access, GUI design, and so on) that can be easily reused by application

developers. Its syntax looks very similar to C/C++, making it easy for experienced pro-

grammers to learn and use.

 ➤ Platform independent and portable: By using a hybrid compilation/interpretation approach,

Java programs can be executed in a networked environment with different hardware plat-

forms and architectures. This also makes Java applications extremely portable, effectively

realizing the “write once, run everywhere” philosophy.

 ➤ Object-oriented: Java implements the object-oriented programming paradigm by grouping

data and operations into classes and/or objects.

 ➤ Secure: Java has many facilities to guarantee security in a networked environment. It

imposes various types of access restrictions to (networked) resources and carefully super-

vises memory allocation. It allows code to be downloaded over a network and executed

safely in the conined spaces of memory. It also foresees extensive capabilities for conigur-

ing security levels.

 ➤ Multi-threaded: Java delivers the power of advanced multi-threaded capabilities to the devel-

oper in an environment without complexity. More speciically, Java code can be run concur-

rently as multiple threads in a process, in order to improve its execution performance.

 ➤ Dynamic: Java allows code to be added to libraries dynamically and then can determine

which code should run at execution time. It also foresees a strict separation between interface

and implementation.

The remainder of this book explores each of these features in much greater detail.

looking under the hood

In this section, we will take a look under the hood of Java. We will discuss Java bytecode, the Java

Runtime Environment (JRE), and Java platforms and applications.

http:///

14 ❘ chApTer 2 GettInG to Know JAvA

Bytecode
Given the proliferation of hardware platforms and/or machine architectures available in today’s net-
worked environment, the Java developers aimed at coming up with a cross-platform solution that
would not require developing expensive compilers to compile Java source code to machine code for
every possible target platform. In order to accomplish this goal, Java introduced a hybrid approach
to run programs by combining both compiler and interpreter technology. First, every Java source
program (BMI.java) is compiled into an intermediate language called bytecode (BMI.class), which is
platform independent. During this compilation step, errors in the code can be reported. Java bytecode
is not native machine code, so it cannot be run as such on a host computer. Instead, the bytecode will
be parsed by a platform-speciic interpreter in order to run it on a particular architecture, such as

on Windows, Linux, Mac OS, Sun Solaris, and so on. Interpreters have been developed for various

platforms. All of them are implementations of the Java virtual machine (JVM). The bytecode can then

be considered as machine code for the JVM. The JVM is basically a virtual CPU complete with its

own operation codes. Irrespective of which platform you are on, the bytecode is the exact same. The

JVM is then a separate process that runs on top of a native processor. Figure 2-1 illustrates the byte-

code for a Windows 8 platform generated for a Java program based on the BMI calculator example.

 static double BMI;

 public BMIcalculator();
 Code:
 0: aload_0
 1: invokespecial #12 // Method java/lang/Object."<init>":()V
 4: return

 public static void main(java.lang.String[]);
 Code:
 0: ldc2_w #20 // double 60.0d
 3: putstatic #22 // Field weight:D
 6: ldc2_w #24 // double 1.7d
 9: putstatic #26 // Field height:D
 12: invokestatic #28 // Method calculateBMI:()V
 15: getstatic #31 // Field java/lang/System.out:Ljava/io/PrintStream;
 18: new #37 // class java/lang/StringBuilder
 21: dup
 22: ldc #39 // String Your BMI is
 24: invokespecial #41 // Method java/lang/
 // StringBuilder.
 // "<init>":(Ljava/lang/String;)V
 27: getstatic #44 // Field BMI:D
 30: invokevirtual #46 // Method java/lang/StringBuilder.append:
 (D)Ljava/lang/StringBuilder;
 33: ldc #50 // String .
 35: invokevirtual #52 // Method java/lang/StringBuilder.append:
 (Ljava/lang/String;)Ljava/lang/StringBuilder;
 38: invokevirtual #55 // Method java/lang/StringBuilder.toString:
 ()Ljava/lang/String;
 41: invokevirtual #59 // Method java/io/PrintStream.println:
 (Ljava/lang/String;)V
 44: return

http:///

Looking Under the hood ❘ 15

 public static void calculateBMI();
 Code:
 0: getstatic #22 // Field weight:D
 3: getstatic #26 // Field height:D
 6: getstatic #26 // Field height:D
 9: dmul
 10: ddiv
 11: putstatic #44 // Field BMI:D
 14: return
}

When compared to a pure interpreter technology, errors are detected during compilation time
instead of during execution time. When compared to a pure compiler technology, the portability
is better since this setup essentially implements a “write once, compile, run everywhere” strat-
egy so that every platform with a Java Virtual Machine can run Java bytecode. This is espe-
cially relevant in a networked (Internet) environment with many host systems having their own
speciic platform.

Interpreter
Compiler

BMI.java

public class BMIcalculator {

....

double weight;
double height;
double BMI;

BMI.class

Interpreter

Interpreter

Windows

Mac OS

Sun Solaris

figure 2-1

Java runtime environment (Jre)
The Java Runtime Environment (JRE) is the software environment in which Java programs run. It

consists of various components, as depicted in Figure 2-2.

The next subsections elaborate on the following components:

 ➤ Java API (Application Programming Interface)

 ➤ Class loader

 ➤ Bytecode veriier

 ➤ Java Virtual Machine (JVM)

http:///

16 ❘ chApTer 2 GettInG to Know JAvA

java Application programming interface (Api)

The Java Application Programming Interface (API) is the set of prepackaged, ready-made Java com-
ponents grouped into libraries. It provides programmers with many useful capabilities. Some popu-
lar API libraries are listed in Table 2-2.

taBle 2-2: Example Libraries from the Java API

Java liBrarY functionalitY

Java.awt; Java.swing Support for creating graphical user interfaces (GUIs)

Java.applet Functionality to create applets

Java.beans Functionality to create Java beans

Java.io Support for I/O through iles, keyboard, network, and so on

Java.lang Functionality fundamental to the Java programming language

Java.math Mathematical routines

Java.security Security functions

Java.sql Support for accessing relational databases by means of SQL

Java.text Text support

Java.util Various programming utilities

Javax.imageIO Support for image I/O

Javax.xml Support for XML handling

Java Runtime Environment (JRE)

Java Virtual Machine (JVM)

Java API

Class loader
Bytecode verifier

Java.applet
Java.io
Java.math
Java.util
...

Interpreter

Garbage collector

Just in Time (JIT) compiler

Threads and synchronization

figure 2-2

http:///

Looking Under the hood ❘ 17

Many of these libraries are discussed and used in later chapters of this book. When developing new
Java applications, it is important to consider the API to see if you can use some of the functionalities
that are already implemented. This saves you from having to program every aspect yourself, and it
can also make your program more recognizable and usable to other programmers. The API is lex-

ible and open, which means that new packages or libraries can be added to it on an ongoing basis.

class Loader

The class loader locates and reads the *.class iles needed to execute the Java program and loads

the bytecodes into memory. To safeguard a secure execution, it can assign different portions

(namespaces) of memory to locally versus remotely obtained classes. Classes are typically assembled

into libraries that are stored physically in JAR (Java Archive) iles. The libraries may have been writ-

ten by the user or obtained externally. In order to locate the classes, the class loader will irst ind

the corresponding libraries and then load the classes as they are needed by the program (called on-

demand loading). The class loader basically has three subcomponents:

 ➤ Bootstrap class loader

 ➤ Extensions class loader

 ➤ System class loader

The bootstrap class loader loads the core Java libraries located in <JAVA_HOME>/jre/lib. The con-

tents of this directory in the JRE7 environment are shown in Figure 2-3.

figure 2-3

http:///

18 ❘ chApTer 2 GettInG to Know JAvA

You can clearly see the different *.jar iles

that will be considered (charsets.jar,

deploy.jar, and so on).

The extensions class loader loads the

classes from the extensions directory

<JAVA_HOME>/jre/lib/ext. Figure 2-4

shows the contents of the extensions direc-

tory in a JRE7 environment.

Again, you can clearly see the different

JAR iles available: access-bridge-64.

jar, localedata.jar, and so on.

Finally, the system class loader loads the code from

the locations speciied in the CLASSPATH environment

variable, which is deined by the operating system.

The latter provides the path to all physical directories

where the system class loader can look for Java iles.

It can be found in Windows 7 and Windows 8 by

going to the Control Panel System and Security

System, Advanced System Settings Advanced tab

Environment Variables. Figure 2-5 shows the window

from a Windows 7 operating system, but Windows 8

looks very much the same.

Bytecode Veriier

The bytecode veriier checks to make sure the byte-

codes are valid without breaching any of Java’s secu-

rity rules. It pays special attention to type checking all

the variables and expressions in the code and ensures

that there is no unauthorized access to memory. Note

that when a Java program is invoked, you can choose to disable the bytecode veriier (which will

make it run slightly faster), enable it only for code that was downloaded remotely from the network,

or enable it for all the code. Once the code is veriied, it will be offered to the Java Virtual Machine

(JVM) for interpretation.

Java Virtual Machine (JVM)

The Java Virtual Machine (JVM) can be considered an abstract computer machine capable of execut-

ing bytecode on a particular hardware platform. It constitutes the heart of the “write once, run every-

where” philosophy. Various JVM implementations have been provided for various hardware and/or

operating system environments. The most popular JVM is HotSpot produced by Oracle. It is available

for Windows, Linux, Solaris, and Mac OS X. A key component of the JVM is the interpreter respon-

sible for interpreting the bytecode instructions. The garbage collector cleans up unused memory to

improve the eficiency of the program. The JVM typically also includes facilities for multithreading

and synchronization, whereby a Java program can be executed in one or more parallel execution paths

(threads) scheduled on one or more CPUs, hereby signiicantly accelerating its execution time.

figure 2-5

figure 2-4

www.allitebooks.com

http:///
http://www.allitebooks.org

Looking Under the hood ❘ 19

The interpreter may monitor how often each bytecode instruction is executed and hand over the
frequently executed instructions (also called hot spots) to the Just in Time (JIT) compiler, which is
also an environment-speciic component. The JIT compiler will then compile the bytecode of these

hot spots into native, more eficient machine code so they can be executed by the JVM directly (just

in time) instead of having to interpret them. In this way, frequent code will be compiled and less fre-

quent code will be interpreted. The user can set the threshold to determine whether a piece of code

is considered frequent or not. This feature substantially improves the execution time of the program

at runtime, especially when it is executed multiple times. Although this is not recommended, the JIT

compiler option can also be turned off.

Java Platforms
A Java platform or edition consists of a JRE with a speciic set of libraries for a speciic application

environment. Table 2-3 gives an overview of the most important Java platforms.

taBle 2-3: Java Platforms

Platform keY characteristics

J2SE (Java 2 Platform, Standard

Edition)

Core Java platform designed for applications running on

desktop PCs

J2EE (Java 2 Platform, Enterprise

Edition)

Design, development, assembly, and deployment of busi-

ness applications

J2ME (Java 2 Platform, Micro

Edition)

Design of small, embedded applications in consumer

devices (such as mobile phones)

Java Card Design of small Java applications that run on smart cards

JavaFX Design of Rich Internet Applications (RIAs)

As discussed, this book predominantly focuses on the J2SE platform.

Java applications
In this section, we will discuss various types of Java applications such as standalone applications,

Java applets, Java servlets, and Java beans.

Standalone applications

A standalone application is one that can run

on its own without needing to be embed-

ded in a particular host environment (such

as a web browser). Standalone applications

only need a JVM to execute. They can be

command-line applications or graphical user

interface (GUI) applications. A command-

line application uses the command prompt

for the input and output. This is illustrated in

Figure 2-6. figure 2-6

http:///

20 ❘ Chapter 2 GettInG to Know JAvA

A GUI application uses graphical components to facili-
tate the input and output of the program. An example
GUI for calculating BMI is shown in Figure 2-7.

Java applets

An applet is a Java application that’s typically embed-
ded in an HTML page and run by the client web
browser. Applets run in a sandbox, which is a con-
ined space in memory that guarantees their execution

is secure. Applets can make use of the full expres-

sive power of the Java language. They are deined in

HTML by means of the <applet> tag, as follows:

<Applet>

</Applet)

They were typically used for graphics and rich interfaces but are not that popular anymore due to

some recent security exploits. Their functionality has been replaced more and more by JavaScript

and HTML 5. In fact, applets are no longer supported by many tablets or other mobile devices.

Java Servlets

Servlets are part of the J2EE platform and are small Java applications that run on a Java-enabled

Application server. Servlets can read and process data (originated from, for example, an HTML form)

sent by the client browser through HTTP. They can interact with a server database, invoke web services,

or call other servlets or server-side functionality. The results can then be communicated back to the client

browser in a variety of formats (such as in HTML, XML, Word, and so on). Servlets are used in an envi-

ronment where they may process multiple requests simultaneously. This is visualized in Figure 2-8.

figure 2-7

Servlet

Web server

Databases

Client

Client

Client

figure 2-8

http:///

Java Language Structure ❘ 21

Java Beans

A Java bean is a reusable software component that can be visually manipulated in a builder tool.
These tools allow beans to be customized by setting their properties and specifying how they react
to events.

Java language structure

This section provides a brief overview of the Java language structure. Many of the concepts
addressed will then be further elaborated on in subsequent chapters. Let’s consider the following
running example of a Java program calculating BMI to illustrate the discussion.

public class BMICalculator {

 // declare variables
 double weight;
 double height;
 double BMI;

 public BMICalculator(double w, double h) {
 weight = w;
 height = h;
 }

 public double calculateBMI() {
 return weight / (height * height);

 }

 // This is our main method.
 public static void main(String[] args) {
 BMICalculator calculator = new BMICalculator(60, 1.70);
 double bmi = calculator.calculateBMI();

 // print BMI to screen
 System.out.println("Your BMI is " + bmi + ".");
 }

}

Before you start discussing this example in more detail, let’s quickly note a few things. First, note
that Java is a form-free language and does not require special indentation. Any statement can start
at any place of indentation. Also, extra whitespace, tabs, and new lines are ignored by the compiler.
The program can thus be formatted in many ways. To improve the readability of your code, it is
highly recommended that you use a consistent formatting style. This book always formats the code
according to convention. This makes it easy to read and also helps you get used to a standard for-
matting style.

The program contains several statements, each ending with a semicolon (;). A statement performs
a speciic action and can span multiple lines. The bytecode corresponding to this program was

http:///

22 ❘ Chapter 2 GettInG to Know JAvA

presented earlier in the “Bytecode” section
of this chapter. Figure 2-9 shows the output
after executing this program in Java.

classes
In Java, all code is grouped into classes. A
class is thus a code container. The deinition

of the class starts with an access modiier

(public in this case), which speciies which

classes have access to it (you will learn about

this later more extensively). This is followed

by the keyword class and the name of the

class (BMICalculator). Every class deini-

tion is enclosed within brackets {}. It has both variables (weight, height, and BMI) and methods

(BMICalculator, calculateBMI, and main). The main method is a special method since it is the

entry point of program execution. In other words, when the class BMICalculator is run by the Java

Runtime Environment, it will start by executing the main method. Note that not every Java class

should have a main method.

identiiers
An identiier is a name of a language element. This can be a class, variable, or method. In the

BMI example, the following are identiiers: BMICalculator, weight, height, BMI, main, and

calculateBMI. Use these naming conventions when deining identiiers:

 ➤ In theory, an identiier can have an unlimited length, although practically it needs to be less

than 64k of Unicode characters and digits, but it cannot begin with a digit. Although tech-

nically it is possible to start an identiier with a currency sign ($) or punctuation character

(such as _), it is highly discouraged since it will decrease the readability of the code.

 ➤ An identiier cannot be equal to a reserved keyword, null literal, or boolean literal.

Just like C, Java is case sensitive. So the identiiers bmi, Bmi, and BMI are all different according

to Java. Hence, it is important to carefully check your spelling and capitalization. When creating

identiiers, make sure to use full words instead of abbreviations as much as possible, unless the

abbreviations can be unambiguously interpreted. This will facilitate the understanding and future

maintenance of the code. In the BMI example, it’s more intuitive to work with height, weight,

and BMI, rather than h, w, and b. Imagine if you added new functionality to the calculator that

accepted the measurement of a person’s waist. It would be even more dificult to keep track of

what w meant.

Java Keywords
Table 2-4 lists the 50 keywords of Java. All these keywords have a special reserved meaning in Java

and thus cannot be used as identiiers. The BMI example uses the following keywords: public,

class, static, void, and double.

fIGure 2-9

http:///

Java Language Structure ❘ 23

taBle 2-4: Java Keywords

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

variables
As stated earlier, every class deinition consists of both variables and methods. A variable is a name for a

memory location that stores a speciic value. This value may change during program execution, which is

why it’s called a “variable.” The BMICalculator class starts by deining the following variables:

// declare variables
double weight;
double height;
double BMI;

The weight, height, and BMI variables are deined using the data type double, which represents a

loating point number. Other data types exist in Java and will be covered in a subsequent section. In

Java, variables must always be deined in a class.

methods
As discussed earlier, a method is a piece of code within a class deinition, and it performs a speciic

kind of functionality. Just as with a class, every method deinition is enclosed within brackets {...}.

In the BMICalculator example, three methods have been deined—BMICalculator, CalculateBMI,

and main. Consider the main method:

public static void main(String[] args) {
 BMICalculator calculator = new BMICalculator(60, 1.70);
 double bmi = calculator.calculateBMI();

 // print BMI to screen
 System.out.println("Your BMI is " + bmi + ".");
}

http:///

24 ❘ Chapter 2 GettInG to Know JAvA

As stated earlier, the main method is the main entry point of program execution. So, it is the irst

method that runs when executing the class BMICalculator. The irst line, called the method decla-

ration, contains several keywords. We’ll discuss these in much greater length in later chapters, but

for now, we will briely introduce those you see here.

 ➤ public: This method can be accessed by other classes and/or methods without restriction.

 ➤ static: This method does not need an object.

 ➤ void: This method does not return any value.

 ➤ (String[] args): This is a conventional way to refer to the arguments of the method. In

this case, the method takes an array of strings as its input parameter.

Now you will investigate what is actually happening inside the main method. The method starts

by assigning the values of 60 and 1.70 to the variables of weight and height, respectively. In later

chapters, you will allow the user to interactively enter the weight and height using either the console

or a graphical user interface. It then continues by calculating the BMI by calling another method

called calculateBMI. The calculateBMI method then looks as follows:

// method calculating BMI
public static void calculateBMI(){
 BMI = weight/(height*height);
}

It calculates the BMI as BMI = weight/(height*height). The main method then prints the BMI to

the screen using the following statement:

System.out.println("Your BMI is " + BMI +".");

You will learn the exact meaning of this statement later. To conclude this subsection, remember that

all methods in Java must be deined in a class.

comments
Java has several ways of adding comments to program code. Remember, comments are needed to

improve code readability and facilitate future maintenance operations. They are not executed when

the Java program runs. One way of including comments is as follows:

// This is our main method.

Using //, you create a line comment that runs until the end of the line. Block comments span mul-

tiple lines and can be deined using the delimiters /* ... */, as follows:

/* Here, we call the method calculateBMI which will
 * calculate the BMI
 */

A very handy feature is the Javadoc tool, which is a documentation generator developed by Oracle

and comes as part of the core JDK. It produces HTML documentation from Java source code and

http:///

Java Language Structure ❘ 25

allows for various pieces of documentation to be hyperlinked together. Reconsider the BMI example
as follows:

/** This class allows you to calculate the <u> BMI </u> using the inputs:
 *
 * weight;
 * height.
 *
 * See Wikipedia for
 * more information.
 * @author Bart Baesens
 */
public class BMICalculator {

 // declare variables
 static double weight;
 static double height;
 static double BMI;

 // This is our main method.
 public static void main(String[] args){
 weight=60;
 height=1.70;

 /* Here, we call the method calculateBMI which will
 * calculate the BMI
 */
 calculateBMI();

 // print BMI to screen
 System.out.println("Your BMI is " + BMI +".");

 }

 // method calculating BMI
 public static void calculateBMI(){
 BMI = weight/(height*height);
 }
}

This is essentially the same code as before, except that a header has been added, as follows:

/** This class allows you to calculate the <u> BMI </u> using the inputs:
 *
 * weight;
 * height.
 *
 * See Wikipedia for
 * more information.
 * @author Bart Baesens
 */

This header adds Javadoc HTML documentation to the class deinition. Javadoc comments are

enclosed between /** ... and */. Remember the HTML tags ... , and ...

http://en.wikipedia.org/wiki/Body_mass_index
http://en.wikipedia.org/wiki/Body_mass_index
http:///

26 ❘ Chapter 2 GettInG to Know JAvA

represent text in bold face and underlined, respectively.
The HTML tag ... deines an unordered

list with the items speciied as You

can add a link to the Wikipedia page with BMI infor-

mation using the HTML tag

You can then use the @author tag to credit the pro-

grammer. Part of the Javadoc generated from this pro-

gram is shown in Figure 2-10.

Note that at the top of the page, you will ind the

information included in the program. Next to the

information we added, Javadoc will also generate

some documentation by default, like the ields (vari-

ables) and methods of the class deined. As you will

see later, some integrated development environments

(IDEs) such as Eclipse generate Javadoc HTML doc-

umentation code by default.

It is highly recommended that you use a consistent

documentation style. Consider providing comments

at the top of the class, explaining what the class does

and naming the author, and also adding comments to

each variable and method deinition to clarify their

meaning. This is especially important with large-scale projects, where many Java classes are simul-

taneously being programmed by multiple developers.

naming conventions
Various Java communities have introduced naming conventions for identiiers. These are not strictly

enforced, so your code will compile successfully even if you don’t comply. However, you will improve

the readability and future maintenance of your Java programs if you follow these conventions. A very

popular naming convention originally suggested by Sun Microsystems is explained in Table 2-5.

taBle 2-5: Java Naming Convention

identifier convention good examPles Bad examPles

Class UpperCamelCase: The irst letter of each word is

capitalized.

BMICalculator

Student

MyProgram

bmiCalculator

STUDENT

myProgram

Variable lowerCamelCase: The irst letter is lowercase

and the irst letters of all following words are

capitalized.

myHeight;

myWeight;

height;

weight;

MyHeight;

myheight;

Height;

WEIGHT;

Method lowerCamelCase: The irst letter is lowercase and

the irst letters of all following words are capitalized.

main

calculateMyBMI
Main

CalculateBMI

figure 2-10

http:///

Java Data types ❘ 27

Java data tYPes

Java is a strongly typed language. This means that every variable should irst be carefully declared

upfront before it can be used. You already saw examples of this in the BMIConstructor class, as

follows:

// declare variables
double weight;
double height;
double BMI;

The data type of a variable speciies the kind of values it can be assigned. For example, the weight,

height, and BMI variables are declared as double variables, so they can only be assigned loating-

point numbers from a speciic range. A data type tells the compiler how much memory to allocate

to a variable, the format in which it will be stored, and the operations that can run on it. Although

a variable can change value during program execution, its type always remains ixed. A distinction

can be made between primitive and composite data types. A primitive data type is a basic building

block supported by Java. On the other hand, a composite data type is composed of primitive data

types using a composition construct. The following sections elaborate on both of these data types.

Primitive data types
Java supports eight built-in primitive data types. Table 2-6 deines each of these and speciies the

range and default value. If the user has not initialized a variable, the compiler will automatically

assign the default value. Note that the ranges and default values are uniform and do not depend on

the underlying machine architecture on which the Java program runs.

taBle 2-6: Java Primitive Data Types

tYPe definition minimum maximum default

byte 8-bit signed integer -128 127 0

short 18-bit signed integer 32,768 32,767 0

int 32-bit signed integer -231 231 0

long 64-bit signed integer -263 263-1 0L

float Single-precision 32-bit IEEE

754 loating point number

1.40239846x10-45 3.40282347x1038 0.0f

double Double-precision 64-bit IEEE

754 loating point number

4.9406564581246544

x10-324

1.79769313486231570

x10-308

0.0d

boolean One bit of information; lag

indicator

false true false

char Single 16-bit Unicode character ‘\u0000’ (or 0) ‘\uffff’ (or 65,535) ‘\u0000’

http:///

28 ❘ Chapter 2 GettInG to Know JAvA

NOTE Beginning with Java 8, some changes have been introduced. The data
type int can also be used to deine an unsigned integer from 0 to 232-1. The
data type long can be used to deine an unsigned integer between 0 and 264-
1. If your application doesn’t require negative values, this will offer you a larger
range of valid positive numbers.

You may think that strings (such as name = "Bart Baesens") are lacking in Table 2-6. In fact, as
we will discuss later, Java does not have a built-in string type. It offers special facilities to work with
strings. Note that the default value for the long data type is 0L. The L stands for long and is capital-
ized to avoid confusion with the number one (l versus 1). Likewise, the default values for loat and

double end with f and d, respectively.

It is important to deine each variable using the appropriate data type. In fact, limiting the range

of a variable can serve as very useful documentation to better understand its meaning during code

inspection and/or maintenance. Furthermore, it can also help save memory if a variable is deined as

byte instead of int (since byte is four times smaller than int).

literals
A literal is a value assigned to a variable of a speciic type. An example of this is:

weight = 60;
height = 1.70;

In this example, the equals sign (=) is used as an assignment operator to assign the literals 60 and

1.70 to the variables weight and height, respectively.

Here are some other examples of literals:

boolean overweight = true;
short age = 38;
character initial = 'B';

Note that literals of type long, float, and double can end with the letters L/l, F/f, and D/d,

respectively. Floating point literals can also be expressed in scientiic notation using E or e. This

is illustrated here:

Double bmi = 24.2;
Double bmi = 24.2d;
Float bmi = 0.242e2;

Character literals (char) are always enclosed in single quotes and may contain any Unicode charac-

ter (see www.unicode.org for more details). An example of this is as follows:

char gbPoundUniSymbol = '\u00A3';
char gbPoundSymbol = '£';
char dollarUniSymbol = '\u0024';
char dollarSymbol = '$';

www.allitebooks.com

www.unicode.org
http:///
http://www.allitebooks.org

Java Data types ❘ 29

There are also some characters, called escape characters, that have a special meaning. They are used
for displaying text in speciic ways, either for inserting tabs or enters where desired, or by display-

ing a character that’s normally reserved for code syntax. For example, we just discussed that the

single quote (') indicates the beginning and end of a char literal. But what if you want to use the (')

character in your code? You can do so by putting a backslash (\) before it. Some of the more com-

mon escape characters are listed in Table 2-7.

taBle 2-7: Escape Characters in Java

shortcut notation meaning unicode

\b Backspace \u0008

\t Tab \u0009

\n Linefeed \u000A

\r Carriage return \u000D

\'' Quote mark \u0022

\' Apostrophe \u0027

\\ Backslash \u005C

In order to improve code readability, you can use underscores (_) anywhere within literals of a

numeric data type. Just like a space in a sentence, they break up a number into smaller parts to

make it easier to read and verify it. Consider this example:

long creditCardNumber = 1234_4567_8901L;

operators
Operators perform data manipulations on one or more input variables (called operands). For exam-

ple, in the expression 2+3, the operands are 2 and 3, and the operator is +. In terms of the number

of operands, a distinction can be made among unary operators (one operand), binary operators (two

operands), and ternary operators (three operands). In terms of the operations performed, a distinc-

tion can be made among the following:

 ➤ Arithmetic operators

 ➤ Assignment operators

 ➤ Bitwise operators

 ➤ Logical operators

 ➤ Relational operators

arithmetic Operators

Arithmetic operators perform basic mathematical operations on numerical values. The most popular

ones are listed in Table 2-8.

http:///

30 ❘ Chapter 2 GettInG to Know JAvA

taBle 2-8: Arithmetic Operators

arithmetic oPerator examPle meaning result

+ 4+2 Addition 6

- 4-2 Subtraction 2

* 4*2 Multiplication 8

/ 4/2 Division 2

% 8%3 Modulo (remainder after integer division) 2

Most of these operators are probably very familiar to you already. Addition, subtraction, multiplica-
tion, and division are used in everyday calculations. It is worth noting at this point that while they
operate in the way you understand and expect, the answer is not always exactly what you’re looking
for. In other cases, the way data is stored as binary numbers cannot accurately represent non-whole
numbers. For this reason, operations on loating point numbers often result in a number that’s very

close to what you expect, but with several digits after the decimal point. This is simply due to the

fact that these decimals are approximations. For example, if you multiply 1.3 times 0.01, the answer

would be 0.013. However, when you ask Java to calculate 1.3f*0.01f, the result is 0.12999999. Of

course, this rounds to the 0.013 you are expecting, so the operation is the same.

Sometimes the problem is not with rounding, but due to the data type being used. To illustrate

this, imagine you have two integers, 5 and 2. If you add them together, you expect 7 (and this is

what Java will return as well). However, if you divide 5 by 2, you already know the answer is 2.5.

However, Java is using integers, so the result of integer operations must be an integer. Therefore,

Java evaluates 5/2 = 2. The remainder is not included in the result.

This is where the modulo operator comes in. It will calculate the remainder in division. So, while

5/2 = 2 (and the remainder of 1 was ignored), 5%2 = 1 (here is that remainder of 1). Between the

two operators, you have the complete solution. It’s interesting to note that the modulo operator

is often used to check whether a number is even or odd. For an even number, %2 will result in 0,

whereas for an odd number, %2 will result in 1.

In Java, expressions are evaluated following the usual mathematical order of operations. This means

in terms of precedence, the operators (*), (/), and (%) are processed before the operators (+) and (-).

For example, the expression 4+6*2 will be evaluated to 16. To change the order of processing, you

can use parentheses to indicate which operations should be evaluated irst. The expression (4+6)*2

will consequently be evaluated to 20. When you use more than one operator with the same level of

precedence, the expression will be evaluated from left to right. The expression 6+2+4+5*6 will thus

be equivalent to (((6+2) +4)+(5*6)), or 42.

assignment Operators

The assignment operator assigns values to a variable. In previous examples, you read about the (=)

operator, which assigns a value to a variable. Table 2-9 lists some important assignment operators.

http:///

Java Data types ❘ 31

taBle 2-9: Assignment Operators

assignment oPerator examPle meaning result

= weight = 85; Assign the value 85 to the variable weight 85

+= weight += 2; Same as weight = weight + 2; 87

-= weight -= 2; Same as weight = weight - 2; 85

*= weight *= 2; Same as weight = weight * 2; 170

/= weight /= 2; Same as weight = weight / 2; 85

%= weight %= 2; Same as weight = weight % 2; 1

++ weight++; Same as weight = weight + 1; 2

-- weight--; Same as weight = weight - 1; 1

Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operations on the operands. The operands can
be of type long, int, short, char, or byte. To illustrate these operators, consider the following Java
integer variables and their bitwise representation. Note the preceding 1 in int c indicates that it is a
negative number:

 ➤ int a = 40; //binary a: 0010 1000

 ➤ int b = 122; //binary b: 0111 1010

 ➤ int c = -12; //binary c: 1111 0100

Table 2-10 shows the bitwise operators and some examples of how they are used.

taBle 2-10: Bitwise Operators

Bitwise oPerator meaning examPles result

& Bitwise AND operator: Puts a 1 bit in the

result if both input operands have a 1 bit

at the given position.

a&b; a: 0010 1000

b: 0111 1010

r: 0010 1000

| Bitwise OR operator: Puts a 1 bit in the

result if one of both input operands have a

1 bit at the given position.

a|b; a: 0010 1000

b: 0111 1010

r: 0111 1010

continues

http:///

32 ❘ Chapter 2 GettInG to Know JAvA

Bitwise oPerator meaning examPles result

^ Bitwise exclusive OR (XOR) operator: Puts

a 1 bit in the result if one of the operands,

but not both, has a 1 bit at the given

position.

a^b; a: 0010 1000

b: 0111 1010

r: 0101 0010

~ Unary bitwise inverse operator: Changes

every 1 bit to 0 and every 0 bit to 1.

~a a: 0010 1000

r: 1101 0111

>> Signed right shift operator: Shifts the left

operand to the right by the number of bits

speciied. The left digits of a positive number

are then illed with 0s, while the left digits

of a negative number are illed with 1s. This

preserves the original sign of the number,

hence the name “signed right shift.”

a>>2

c>>2

a: 0010 1000

r: 0000 1010

c: 1111 0100

r: 1111 1101

>>> Unsigned right shift operator: Shifts the

left operand to the right by the speciied

number of bits. The left digits are always

illed with 0s, regardless of the sign, hence

the name “unsigned right shift.”

a>>>3

c>>>3

a: 0010 1000

r: 0000 0101

c: 1111 0100

r: 0001 1110

<< Left shift operator: Shifts the left operand

to the left by the number of bits indicated.

The right digits are then illed with 0s.

Since only the right side is illed, it is not

possible to ill with 1s or 0s to ensure a

positive or negative number. Therefore

there is no distinction between a “signed

left shift” and an “unsigned left shift.”

a<<2

c<<2

a: 0010 1000

r: 1010 0000

c: 1111 0100

r: 1101 0000

Logical Operators

A logical operator returns a Boolean result based on the Boolean result of one or more expressions.
For this reason, they may also be called Boolean operators. Logical or Boolean operators are always
evaluated from left to right. Consider, for example, the following expressions and their Boolean
results. Table 2-11 then illustrates the evaluation of the logical operators that can be used in Java on
these expressions.

 ➤ A: 3 > 2 (True)

 ➤ B: 2 < 1 (False)

taBle 2-10 (continued)

http:///

Java Data types ❘ 33

taBle 2-11: Logical Operators

logical oPerator meaning examPles result

&& Conditional AND operator: True if both

operands are true.

A && B False

|| Conditional OR operator: True if at least

one operand is true.

A || B True

^ Bitwise and Logical XOR operator: True if

one, and only one, operand is true.

A ^ B True

! Unary NOT operator: True if the operand is

false.

!A False

The truth tables for these Boolean operators are illustrated in Table 2-12. Table 2-12 assumes two
operands that may be either true or false, as indicated by the irst and second column.

taBle 2-12: Truth Table for Logical Operators

oPerand 1 oPerand 2 and or xor not (oPerand 1)

True True True True False False

True False False True True False

False True False False True True

False False False False False True

The bitwise AND (&) and OR (|) operators can also be used with Boolean operands. However, there

is a difference between the conditional and bitwise operators. If the irst operand evaluates to false,

the conditional AND operator (&&) will not consider the second operand, since it already knows the

outcome will be false. This is often referred to as short-circuiting behavior. The bitwise AND opera-

tor (&) always evaluates both operands. Similarly, if the irst operand evaluates to true, the condi-

tional OR operator (||) will no longer evaluate the second operand, since it already knows that the

outcome will be true. The bitwise OR operator (|) always evaluates both operands.

This means that using the conditional (&&) and (||) operators can lead to more eficient program

executions. But that is not the only reason to use the conditional operators. If evaluating an expres-

sion may lead to an error, taking advantage of the short-circuiting feature can prevent this by ignor-

ing the error-prone expression in cases where the error would occur. For example, trying to divide

a number by 0 will cause an error. So you could use the conditional AND (&&) to irst check if the

number is not zero and then check the result of dividing by it only if it is, in fact, not zero. If it is

zero, the second expression will not be evaluated.

http:///

34 ❘ Chapter 2 GettInG to Know JAvA

relational Operators

Relational operators are usually binary operators. They check the relationship between two oper-
ands that are usually numbers or at least can be represented as numbers. They typically return a
Boolean value. Consider the following variables:

int a=4;
int b=9;
int c=4;

Table 2-13 illustrates the relational operators that can be used in Java.

taBle 2-13: Relational Operators

relational oPerator meaning examPles result

> Greater than: Veriies whether operand 1 is strictly

bigger than operand 2.

a > b False

>= Greater than or equals: Veriies whether operand

1 is strictly bigger than or equal to operand 2.

b > a True

< Less than: Veriies whether operand 1 is strictly

lesser than operand 2.

c < b True

<= Less than or equals: Veriies whether operand 1 is

strictly lesser than or equal to operand 2.

b < a False

== Equal: Veriies whether operand 1 is equal to

operand 2.

a == c True

!= Not equal: Veriies whether operand 1 is not equal

to operand 2.

a != b True

arrays
An array is a composite variable holding a ixed amount of values of a speciic type (such as int,

long, char, float, double, and so on). When an array is declared, the data type it will contain is

set. When it is initialized, the number of elements must be set as well. An array has a ixed number

of elements that are accessed by an index, which points to the nth element of the array. It’s important

to note that the irst element of the array has an index of 0. To begin working with arrays, consider

the following statement:

float[] weightArray;

This deines a variable called weightArray, which is an array of loating point numbers. Note the

square brackets ([]), which denote that the variable is an array. Although not recommended, an array

can also be declared as follows:

float weightArray[];

http:///

Java Data types ❘ 35

The array can then be initialized using the new operator, as follows:

weightArray = new float[5];

The array now has space to store ive loating numbers—the irst num-

ber is stored at index position 0 and the last number is stored at index

position 4. The values stored initially will be the default values for the

data type, which is 0.0 for loat. Figure 2-11 gives a visual representa-

tion of the array in this initialized state.

You can now populate the array as follows:

weightArray[0] = 85f;
weightArray[1] = 72f;
weightArray[2] = 68f;
weightArray[3] = 94f;
weightArray[4] = 78f;

Remember the letter f is added at the end of each of the numbers to

indicate that they are loating point numbers. The weightArray popu-

lated with the speciied loats is visualized in Figure 2-12.

Initializing and populating the array can both be done more concisely,

as follows:

float[] weightArray = {85f, 72f, 68f, 94f, 78f};

This way, the data type is given, the array is indicated with the square brackets ([]), the name is given

as weightArray, and the size is set based on the number of elements given between the brackets ({}).

The following Java program illustrates how arrays can be used to calculate the BMI for a set of ive

people.

public class BMIcalculator {

 // This is our main method.
 public static void main(String[] args){

 // initialize the three arrays as each having 5 elements

 float[] weightArray = new float[5];
 float[] heightArray = new float[5];
 float[] BMIArray = new float[5];

 // assign the values to the weight array
 weightArray[0] = 85f;
 weightArray[1] = 72f;
 weightArray[2] = 68f;
 weightArray[3] = 94f;
 weightArray[4] = 78f;

 //assign the values to the height array
 heightArray[0] = 1.74f;

figure 2-11

weightArray

index

0 1 2 3 4

weightArray

index

0 1 2 3 4

85 72 68 94 78

figure 2-12

http:///

36 ❘ Chapter 2 GettInG to Know JAvA

 heightArray[1] = 1.80f;
 heightArray[2] = 1.90f;
 heightArray[3] = 1.84f;
 heightArray[4] = 1.88f;

 //compute the BMIs and store in the BMIArray
 BMIArray[0] = weightArray[0]/(heightArray[0]*heightArray[0]);
 BMIArray[1] = weightArray[1]/(heightArray[1]*heightArray[1]);
 BMIArray[2] = weightArray[2]/(heightArray[2]*heightArray[2]);
 BMIArray[3] = weightArray[3]/(heightArray[3]*heightArray[3]);
 BMIArray[4] = weightArray[4]/(heightArray[4]*heightArray[4]);

 // print the BMIs to the screen
 System.out.println("The BMI of person 1 is: " + BMIArray[0] + ".");
 System.out.println("The BMI of person 2 is: " + BMIArray[1] + ".");
 System.out.println("The BMI of person 3 is: " + BMIArray[2] + ".");
 System.out.println("The BMI of person 4 is: " + BMIArray[3] + ".");
 System.out.println("The BMI of person 5 is: " + BMIArray[4] + ".");
 }
}

The output of the Java program is:

The BMI of person 1 is: 28.075043.
The BMI of person 2 is: 22.222223.
The BMI of person 3 is: 18.836565.
The BMI of person 4 is: 27.76465.
The BMI of person 5 is: 22.06881.

Multidimensional arrays are arrays where the elements are arrays themselves. A popular example of
this is a matrix. Consider the following Java class:

public class MatrixExample {

// declare and initialize the matrix

// This is our main method.
public static void main(String[] args){
 int[][] matrix={{1, 2, 4},{2, 6, 8},{10, 20, 30}};
 // print some of the matrix numbers to the screen
 System.out.println("Element at row 0 and column 1 is: " + matrix[0][1] + ".");
 System.out.println("Element at row 2 and column 2 is: " + matrix[2][2] + ".");
 System.out.println("Element at row 2 and column 1 is: " + matrix[2][1] + ".");
 System.out.println("Element at row 1 and column 0 is: " + matrix[1][0] + ".");
 }
}

The matrix variable is an array of an array of integer numbers. It is immediately initialized during
declaration. The output of this program will be as follows:

Element at row 0 and column 1 is: 2.
Element at row 2 and column 2 is: 30.

http:///

Java Data types ❘ 37

Element at row 2 and column 1 is: 20.
Element at row 1 and column 0 is: 2.

Note that the matrix variable is an array of equal size arrays, each having three elements. This does
not necessarily need to be the case. You can also create arrays of unequal sized arrays, as follows:

public class MatrixExample {

 // declare and initialize the matrix
 static int[][] weirdMatrix={{1, 2},{2, 6, 8},{10}};

 // This is our main method.
 public static void main(String[] args){

 // print some of the matrix numbers to the screen
 System.out.println("Element at row 0 and column 1 is: " +
 weirdMatrix[0][1] + ".");
 System.out.println("Element at row 2 and column 2 is: " +
 weirdMatrix[2][0] + ".");
 System.out.println("Element at row 2 and column 1 is: " +
 weirdMatrix[1][2] + ".");
 }
}

The output of this program is now:

Element at row 0 and column 1 is: 2.
Element at row 2 and column 2 is: 10.
Element at row 2 and column 1 is: 8.

Here, you are accessing each element directly using the weirdMatrix[1][2] notation, but there are
also loop structures that are often used to iterate through the elements of an array somewhat auto-
matically. These are discussed in Chapter 5, and arrays will be revisited there.

type casting
Type casting refers to converting a value from a speciic type to a variable of another type. Booleans

cannot be converted to numeric types. For the other data types, two types of conversion can be con-

sidered: widening conversion (implicit casting) and narrowing conversion (explicit casting). Before

we discuss these further, remember the hierarchy of primitive data types as follows (from high preci-

sion to low precision): double, float, long, int, short, and byte.

A widening conversion is when a value of a narrower (lower precision) data type is converted to a

value of a broader (higher precision) data type. This causes no loss of information and will be per-

formed by the JVM implicitly. An example is as follows:

static int a = 4;
double x = a;

In this example, an integer variable a with value 4 is promoted to a higher-order double data type

without loss of information. Although this code will successfully compile, it is good programming

practice to explicitly mention the casting as follows:

http:///

38 ❘ Chapter 2 GettInG to Know JAvA

static int a = 4;
double x = (double) a;

In Java, the following widening conversions are possible:

 ➤ From a byte to a short, an int, a long, a float, or a double

 ➤ From a short to an int, a long, a float, or a double

 ➤ From a char to an int, a long, a float, or a double

 ➤ From an int to a long, a float, or a double

 ➤ From a long to a float or a double

 ➤ From a float to a double

A narrowing conversion is when a value of a broader (higher precision) data type is converted to a
value of a narrower (lower precision) data type. This will typically involve loss of information. An
example of this is as follows:

static float b = 6.82f;
int y = b;

Because of Java’s strict type checking, this code will not compile and an error will be generated, as
follows:

Type mismatch: cannot convert from float to int

Here, the casting is not done implicitly by the JVM and should be made explicit by the programmer
using the following statement:

int y = (int) b;

In Java, the following narrowing conversions are possible:

 ➤ From a byte to a char

 ➤ From a short to a byte or a char

 ➤ From a char to a byte or a short

 ➤ From an int to a byte, a short, or a char

 ➤ From a long to a byte, a short, a char, or an int

 ➤ From a float to a byte, a short, a char, an int, or a long

 ➤ From a double to a byte, a short, a char, an int, a long, or a float

To conclude, consider the following TypeCastingExample class in Java:

public class TypeCastingExample {

 // This is our main method.
 public static void main(String[] args){
 int intA = 4;

www.allitebooks.com

http:///
http://www.allitebooks.org

Java Data types ❘ 39

 float floatB = 6.82f;
 //Widening conversion
 double doubleX = (double) intA;

 //Narrowing conversion
 int intY = (int) floatB;

 // print out the values
 System.out.println("The value of intA is: " + intA +".");
 System.out.println("The value of floatB is: " + floatB +".");
 System.out.println("The value of doubleX is: " + doubleX +".");
 System.out.println("The value of intY is: " + intY +".");
 }
}

The output of this program is:

The value of intA is: 4.
The value of floatB is: 6.82.
The value of doubleX is: 4.0.
The value of intY is: 6.

Observe how narrowing the conversion of the loating point number 6.82 caused the loating point

to be dismissed. Consider the following example:

public class AnotherTypeCastingExample {

 public static void main(String[] args){

 float x = 3/9;
 float y = (float) 3/(float) 9;
 float z = (float) 3/9;

 System.out.println("The value of x is: " + x +".");
 System.out.println("The value of y is: " + y +".");
 System.out.println("The value of z is: " + z +".");
 }
}

The output of this program is:

The value of x is: 0.0.
The value of y is: 0.33333334.
The value of z is: 0.33333334.

Let’s now discuss why Java gives this output. For the irst expression, float x = 3/9;, Java con-

siders both operands as integers and thus uses integer division. The result of this is zero, and Java

will then do the widening conversion to float, yielding a zero loating number. For the second

expression, float y = (float) 3/(float) 9;, Java will irst perform the widening conversion

for the values 3 and 9, and then do the loating point division and assign the result to the loating

point variable y. For the third expression, float z = (float) 3/9;, Java will irst do a widening

conversion to the value 3, and then do an (implicit) widening conversion to the value 9. It will then

perform the loating point division and assign the desired value to the loating point variable z.

http:///

40 ❘ Chapter 2 GettInG to Know JAvA

summarY

This inishes this introductory chapter on getting to know Java. Remember, we started by discussing

the history of Java, its key features, and how the Java technology works. This was followed by an

overview of the key components of the Java Runtime Environment (JRE) and how they collaborate.

Also the different types of Java platforms and applications were highlighted. The chapter was con-

cluded by discussing the basic concepts of the Java language structure, together with the primitive

data types.

http:///

what You will learn in this chaPter:

 ➤ How and where to start programming

 ➤ What Integrated Development Environments are

 ➤ How to install Eclipse IDE for your own use

 ➤ How to begin using Eclipse for Java programming

wrox.com code downloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 3
download and individually named according to the names throughout the chapter.

The irst two chapters provided you with some background and a theoretical foundation

for basic programming in Java. So that you can get started programming right away, this

third chapter takes a short detour from Java concepts to give you a development environ-

ment to start coding. In this book, Eclipse is the development environment used. However,

it is by no means the only or even the best environment. This chapter covers some of

the most commonly used development platforms, so you’ll be familiar with them if you

encounter a different environment in use on a project you join in the future. You may also

like to try the different options to see which is most comfortable for your personal use. In

order to provide consistency throughout this book, the following chapters assume you are

using Eclipse when giving directions related to the environment. There is no reason the

concepts you read in the later chapters cannot be implemented in the environment of your

choice.

 3
Setting Up Your Development
environment

www.wrox.com/go/ beginningjavaprogramming
www.wrox.com/go/ beginningjavaprogramming
http:///

42 ❘ Chapter 3 SettInG uP Your develoPment envIronment

Because of the focus, this chapter is more technical, as it includes download and installation instruc-
tions and far less concept or theory about Java or basic programming. If you have been program-
ming in Java or another language, you probably already have a preferred development environment.
It should not be dificult for you to continue using that while following the exercises in this book,

even if it is not Eclipse. Just note that the igures and instructions are based on how Eclipse looks

and functions.

This chapter is organized in two main sections: introduction to Integrated Development Environments

and installing Eclipse. In the introduction, you’ll look at programming in basic text editors and

command‐line execution and in more advanced Integrated Development Environments (IDE), such

as Eclipse, NetBeans, and IntelliJ IDEA. The second section focuses on one commonly used IDE,

Eclipse, including how to download and install it and set it up for the irst time. At the end of the

installation section, you will practice using Eclipse by creating a small program, so you can compare

programming in an IDE to programming with text editors and the command line. If you already

have a development environment, and do not need or want to investigate others, you can skip this

chapter. If you are brand new to programming, this chapter should help you get started with your

irst coding experience.

integrated develoPment environments

Integrated Development Environments (IDEs) are applications that offer programmers facilities for

developing software. IDEs include tools that support all aspects of software development, including

creating, debugging, compiling, and running the code. Typically, IDEs check your code for syntax

errors, as you type not so different from how spelling and grammar check works in word processing

programs. Debugging support allows you to move slowly and methodically through your program

to ind errors. IDEs also keep track of your many projects and programs, and the iles associated

with them, so you can easily organize your work.

Most of the features provided by IDEs are available as stand‐alone tools, but IDEs integrate several

programming components into one user‐friendly interface. An Integrated Development Environment

is not required for programming. However, in order to create and compile Java programs of your

own, you need the Java Development Kit (JDK). If you don’t have it already, you can download

the latest version from Oracle’s website at http://www.oracle.com/technetwork/java/javase/

downloads/index.html. Make sure you choose the most recent release of the JDK that is appropri-

ate for your operating system. Oracle offers the JDK for Linux (32 or 64 bit), Mac OS, Solaris, and

Windows (32‐ or 64‐bit). If you’re using a Windows machine and aren’t sure if it’s 32‐bit or 64‐bit,

you can right‐click on My Computer and check Properties (or go to Control Panel System and

Security System). You should see the system type listed there. The Windows JDK you download

from Oracle includes an installer, which will lead you through the installation step‐by‐step. If you

need more instructions for another system or want a more detailed explanation, installation guides

are available on the Oracle website.

coding in text editors
Once you have installed the Java Development Kit, you can begin coding with simple text editors,

like Notepad, which you already have on your computer. You will try this as your irst exercise,

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http:///

Integrated Development environments ❘ 43

before learning about the different IDEs available. You learned in Chapter 1 about source code and
byte code. When you think of programming or coding, you are thinking about writing source code.
Since you’re learning basic programming in Java, you must type statements using the speciic lan-

guage and structure that Java prescribes. Source code doesn’t look exactly like writing you’d read in

a newspaper, but it’s relatively readable to humans, particularly those who have learned Java basics.

It’s essentially text, and for that reason, you can write it in a text editor like Notepad or any similar

program.

After you’ve written the source code, a Java compiler can translate what you’ve written into

machine‐readable byte code. That’s one of the features that your newly installed JDK offers. Once

your code has been compiled, you can run the program. In the irst exercise, you’ll go through these

three steps to create, compile, and run your irst Java application.

trY it out Creating Your First Java application in Notepad

In this exercise, you code a very simple Java program in a text editor, then compile and run it from the

command window of your computer.

 1. Open Notepad or a similar text editor and start a new text ile. On Windows 7 and earlier, you can

open Notepad by opening the Start menu. Then under All Programs, ind the Accessories folder.

In Windows 8, you can access the Apps screen by clicking the down arrow at the bottom of your

screen.

 2. Enter the following code in your text ile:

/**
* This is a simple Java application.
* It prints a short statement to the standard output.
*/

class MyFirstApplication {
 public static void main(String[] args){
 System.out.println("I've coded, compiled, and run my first Java program!");
 }
}

Be aware that Java code is case‐sensitive, so pay attention to upper‐ and lowercase letters as you

type. MyFirstApplication, myfirstapplication, MyFIRSTApplication, and so on are all dif-

ferent names.

 3. Save the ile as MyFirstApplication.java (as before, watch for capitalization and be consistent

between the name of your class and the ilename). Save your ile as a text document with the *.txt

extension. If you do not specify the encoding, the platform default converter is used. For this exer-

cise, save the ile in a location that you can easily ind. You should end up with something like

Figure 3-1 when you go to save.

 4. Close Notepad and open a command window. In Windows 7 and earlier, you can click Start

Run, then type cmd and press Enter. On a Windows 8 machine, you can go back to the Apps screen

and scroll to the Windows System section where you will ind the command prompt.

http:///

44 ❘ Chapter 3 SettInG uP Your develoPment envIronment

 5. Note the drive that is shown when the command window opens; this is your current directory. You
can move your new Java ile to this location or change your current directory to the location where

you saved your ile. To change the current directory, type cd followed by the location path (the

example shown here will not be identical to your own path), and then press Enter:

cd C:\Users\n12063\MyFiles

 6. You can verify that your ile is in the current directory by typing dir and pressing Enter. This will

show you the contents of the current directory. If you can see MyFirstApplication.java in the

list, you’re ready to proceed.

 7. Next, you want to instruct your Java compiler to compile your program. To do so, you need to

point to the compiler’s location and then instruct it to compile your Java ile. Your Java compiler

is called javac and is located in the bin folder of your JDK; it depends on where you irst installed

the JDK. Navigate to the right folder and ind the location path, then enter it exactly in the com-

mand prompt to tell Windows where to ind your Java compiler. Start with a quotation mark,

enter the location of the bin folder, then type \javac and another quotation mark. Finally, add a

space and the name of your java ile. Press Enter. It should look something like this:

"C:\Program Files\Java\jdk1.8.0_25\bin\javac" MyFirstApplication.java

 8. You can type dir again to see if the newly compiled MyFirstApplication.class ile is there. If you

see both MyFirstApplication.java and MyFirstApplication.class, you’re ready to continue.

figure 3-1

http:///

Integrated Development environments ❘ 45

 9. You’re ready to run your program now. Enter the following prompt and press Enter:

java -cp . MyFirstApplication

 10. You should end up with something like Figure 3-2 in the end.

How It Works

Here’s how it works:

 1. In Java, source code is saved in .java iles that may contain one or more classes or other types

that you will learn more about later in this book, such as interfaces, enums, and annotations. Each

source code ile can contain at most one public access type and any number of non‐public types.

When your compilation unit contains a public access type, like the public class in this exercise, both

the type and the .java ile must have the same name. You declared a public type with the name

MyFirstApplication and stored it in a .java source code ile called MyFirstApplication.java.

 2. The irst few lines of code start with /** and end with */. These are special symbols that indi-

cate a block comment. Comments are not compiled or executed, so they allow you to provide

figure 3-2

http:///

46 ❘ Chapter 3 SettInG uP Your develoPment envIronment

information to humans that can be ignored by the computer. Here, a comment is used to indicate
the purpose of the class. Single‐line comments begin with // and function the same way.

 3. Next, you have a class declaration class MyFirstApplication, and you’ll ind the body of the class

between curly brackets: { and }.

 4. First in your class is the declaration of your main method: public static void main (String[]

args). Remember from Chapter 2 that the main method is the entry point for execution. When a

program runs, it will start from the main method.

 5. Inside the main method, between an inner set of curly brackets, you ind the statements to be

executed. In this small example, there is only one statement: System.out.println("I've coded,

compiled, and run my first Java program!");. This statement prints the text you see

between parentheses to the standard output.

 6. The last two lines contain the closing bracket of the main method and the closing bracket of the

class.

 7. Now, the command prompts need to be explained. First, the cd prompt changes the current direc-

tory so the .java ile can be located.

 8. The dir prompt simply displays the current contents of the directory. You used it to check if the

.java and .class iles were located in the current directory.

 9. Then you pointed Windows to your Java compiler, called javac, and instructed it to com-

pile your .java ile. This may be confusing, because you need to irst locate your compiler.

However, if the compiler was located in the current directory, you could have just typed javac

MyFirstApplication.java, and it would ind both without needing the whole path.

 10. Finally, you used the java -cp prompt to run your program. This executes the program as

explained in Steps 1–6. You should have seen the text I've created, compiled, and run my

first Java program! printed to the command window after you pressed Enter.

You may have already encountered some dificulties in the previous Try It Out. If you typed the

program yourself, it’s possible you introduced some small typos that prevented your code from

properly compiling or running. You may have had trouble accessing the correct directory for reading

or writing your iles. Integrated Development Environments can make this easier as they allow you

to write, compile, and run in the same place. They also check for errors as you type and remind you

when you misspell something or forget a punctuation mark. In the next sections, you learn about

some different IDEs and what they offer you as a developer.

choosing an ide
IDEs offer many tools and conveniences compared to coding in text editors and compiling from

the command line. Due to the popularity of Java, you can choose from dozens of IDEs. This book

introduces three: Eclipse, NetBeans, and IntelliJ IDEA. Why these three? First, they are very popu-

lar, which means it’s easier to ind support from online communities. Second, they are all available

as open source software, so you can download and use them for free. (IntelliJ IDEA does have a

paid Ultimate Edition, which offers enhanced support for some more advanced features.) Finally,

http:///

Integrated Development environments ❘ 47

all three are available on Windows, Mac OS, Linux, and Solaris, so most readers should be able to
use any of them. In fact, they offer very similar functionality, so your choice may come down to per-
sonal preference or what the people around you are using. In the rest of this section, you look a little
closer at each IDE.

eclipse

Eclipse Foundation (https://eclipse.org/home/) offers an online cloud‐based platform and

the more common desktop version, referred to as a workbench. The workbench contains several

perspectives, each of which offers multiple views and tools to the developer. Eclipse Platform 4.4,

called Luna, was released in 2014 and includes support for Java 8. Platform 4.8 (Mars) is planned

to be released in mid‐2015. Eclipse is offered under the open source Eclipse Public License. Eclipse

is associated with IBM, so it was adopted early by a huge IBM community and had the resources of

the computing giant behind its development. These early advantages made it one of the most popu-

lar IDEs available, but others are gaining popularity. Orion is the cloud‐based platform that allows

developers access and to edit their code from any browser. Because it is web‐based, initial support is

focused on web client languages like JavaScript, CSS, and HTML. Java development is possible, but

you will ind better features in Eclipse’s desktop workbench.

NetBeans

NetBeans (https://netbeans.org/) is a modular environment where each module provides some

functionality for the developer. In this way, the environment can be expanded to meet the demands of

each project. Because NetBeans is a part of Oracle, the owner of the Java platform, it is considered the

oficial IDE for Java 8. NetBeans IDE 8.0 was released in 2014, and the 9.0 release is not yet scheduled,

as of the writing of this book. NetBeans is offered under a dual license of Sun’s Common Development

and Distribution License and the GNU General Public License. Because of its start as an open source Sun

project, NetBeans was more slowly adopted in the beginning; however, that is changing.

IntelliJ IDea

IntelliJ IDEA (https://www.jetbrains.com/idea/), offered by JetBrains, was devel-

oped more recently than Eclipse or NetBeans, irst appearing in 2001. The most current

IntelliJ IDEA 14 was released in November 2014. One difference with this IDE is they sell an

Ultimate Edition in addition to the open source Community Edition. It is available at vary-

ing prices for different categories of users (you can see the different licensing options at

https://www.jetbrains.com/idea/buy/license-matrix.jsp). For programming beginners, the

premium features are probably not necessary; the Community Edition should be more than sufi-

cient to get you started.

Continuing with One IDe

It’s probably not easy to choose an IDE right now. After all, you’ve only been briely introduced to

three popular choices, and if you’ve never programmed before, you probably don’t even know what

you’re looking for in a development environment. However, for cohesiveness in this book, from this

point forward only one IDE will be used. All the exercises, igures, and instructions you’ll ind in the

other chapters are based on the Eclipse IDE. This is not to say that Eclipse is better than the others,

but it will be easier for you to follow if everything in this book remains consistent.

https://eclipse.org/home/
https://netbeans.org/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/buy/license<2010>matrix.jsp
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/buy/license-matrix.jsp
http:///

48 ❘ Chapter 3 SettInG uP Your develoPment envIronment

If you have a preference for one of the other IDEs, already have one installed on your computer, or
work in a company or group that expects you to use their choice, you can still follow along with the
exercises on another platform. Some of the images and instructions won’t entirely match what you
see on your screen, but the code will be the same and the process will be quite similar.

On the other hand, if you proceed with Eclipse now and want to try the others later, they all offer
facilities to transfer projects from one platform to the other. There are many help resources devoted
to assisting users of other environments to quickly learn their way around a new environment. The
skills you develop programming in Eclipse are transferable to other environments.

installing ecliPse on Your comPuter

In this second section of this chapter, you learn how to download and install Eclipse. Before inish-

ing, you’ll have a chance to try out the Eclipse environment and compare the experience to coding

in a plain text editor. If you already have Eclipse or another IDE running on your machine, this may

be redundant. In that case, you may want to proceed to the next chapter, where you can start right

away with Object‐Oriented Programming.

Earlier in this chapter, there were instructions for downloading and installing the Java Development

Kit (JDK) from Oracle. In order to program in Java, whether compiling code from your text editor

or using an IDE, you need the JDK. Be sure you have installed it before you continue. You need it to

develop Java programs in Eclipse.

downloading and installing eclipse
If you do not have Eclipse on your computer, you can follow these instructions to download and

install it. Eclipse 4.4.1 (Luna release) includes support for Java 8, so it’s recommended that you use

this or a later version. If you have an older version of Eclipse, you can update to Luna by following

these instructions. If you must continue using Eclipse 4.3.2 (Kepler), you can ind a Java 8 patch that

offers preliminary Java 8 support. You can download the standard Eclipse platform from Eclipse

packages that bundle some additional components.

The standard Eclipse platform is suficient to complete the exercises in this book and offers enough func-

tionality for most beginner programmers. You can download it from http://download.eclipse.org/

eclipse/downloads/. Make sure you choose the most recent build date under Latest Release. Click on

the build name, and you should see a list of Eclipse SDK options, as shown in Figure 3-3. As with the

JDK, you’ll have to choose the version that matches your operating system. Click on the corresponding

(http) under the column heading Download to access the download site. Your download may begin auto-

matically, or you may need to press the green arrow to download the compressed ile.

If you prefer to download a package, Eclipse IDE for Java Developers offers some extra tools for

developers. You can download a package from http://eclipse.org/downloads/. Figure 3-4

shows you where to look for the Java Developer package. There is a drop‐down to select your oper-

ating system. Once you choose the correct platform, click on the link for the correct version.

Once you have downloaded the ZIP (compressed) ile, you need to unzip (decompress) it. Inside the

decompressed folder, you should see the icon for starting Eclipse. The icon from the Luna release is

shown in Figure 3-5.

http://download.eclipse.org/eclipse/downloads/
http://download.eclipse.org/eclipse/downloads/
http://eclipse.org/downloads/
http:///

Installing eclipse on Your Computer ❘ 49

figure 3-3

figure 3-4

figure 3-5

You can create a shortcut to this ile on your desktop or in your Start Menu to make it easier to ind

and open Eclipse. When you’re ready to proceed, open the eclipse.exe ile to start the program.

When you open Eclipse, it will ask you where you want to store your workspace. This is a folder

where all your projects are stored. You can check a box to save that location as the default and not

have to conirm the location every time you open Eclipse. If you work with different workspaces,

http:///

50 ❘ Chapter 3 SettInG uP Your develoPment envIronment

such as one for work and one for personal use, you might want to leave this box unchecked and
select the appropriate workspace each time you open Eclipse.

using eclipse
After you choose your workspace, Eclipse opens to the Welcome screen, shown in Figure 3-6, by
default. From here you can link to some introductory materials for Eclipse, including tutorials,
samples, and an overview of features and updates. Take your time exploring. When you’re ready,
you can close the Welcome screen by pressing the white “x” next to the Welcome tab or by clicking
the arrow in the top‐right corner to proceed to your workbench.

figure 3-6

Your workbench should look similar to the workbench shown in Figure 3-7, from the Eclipse

IDE for Java Developers of the Luna release. It is divided into several views, which give you

access to different information and tools. The views can be thought of as sub‐windows, where

one activity or display is contained. A perspective groups together a particular set of views nec-

essary or helpful for a particular task. By default, you are shown the Java perspective, which is

a collection of views used when programming in Java. In this perspective, you’ll see the Package

Explorer on the left, the Code Editor in the center, the outline of the current class on the right

(with the task list above it if you’re using the Java developer package), and a series of tabs at the

bottom.

http:///

Installing eclipse on Your Computer ❘ 51

In the Window menu, you can change the perspective, for instance the Debug perspective includes the
views linked to the debugging facilities in Eclipse. You can close or minimize views by clicking the x or ‐ in

the top‐right corner of each view, similar to how you close and minimize windows in the Windows operat-

ing system. You can add other views by selecting Show View from the Window menu (see Figure 3-8). You

can rearrange the views in your workbench by clicking and dragging on the title bar of the view.

One recommendation for customizing your Java perspective is to remove the Package Explorer and

replace it with a Project Explorer. The two look very similar in that they show you a list of your

projects and the packages and classes included in them. However, the Project Explorer will display

a red “x” on classes that have unresolved errors. This makes it much easier to spot code that needs

your attention, especially when you start working with multiple classes in the same project.

To close the Package Explorer, you can just click the white “x” in the top‐right corner of the Package

Explorer tab. You’ll notice when you close it, your Code Editor will stretch to ill the space. To add the

Project Explorer, click Window and choose Show View. If Project Explorer is displayed there, you can

select it. If not, click Other and you’ll ind it in the General folder. When you open the Project Explorer, it

will take the place of the Package Explorer, and the Code Editor will shrink back to the center again.

Java programs are organized in a project hierarchy in Eclipse, as depicted in Figure 3-9. Projects

are the top‐level folder. You should use one project for each program you are working on. Projects

are divided into packages that keep related Java classes together. Packages are a Java construct that

serves not only to organize your class iles, but also allows you to specify a speciic class based on its

figure 3-7

http:///

52 ❘ Chapter 3 SettInG uP Your develoPment envIronment

figure 3-8

figure 3-9

Project

Folder
Other
Files

Java
Class FilesPackage

package location. You can have several classes with the same name, but by referring to its package,
you can distinctly identify one class. Projects can also contain folders that can be used to store other
non‐class iles, such as text or image iles associated with your program.

http:///

Installing eclipse on Your Computer ❘ 53

You are now ready to start your irst project in Eclipse. The following exercise takes you through

the process step‐by‐step, to help you get acquainted with Eclipse and how its projects are organized.

You’ll follow very similar steps in every exercise that follows in this book.

trY it out Creating Your First Java application in eclipse

In this exercise, you create a very simple Java program. You will code, compile, and run it all within the

Eclipse development environment.

 1. Open Eclipse and select the workspace you want to use. This is where your project will be saved by

default.

 2. Go to File New Java Project to create a new project. You will see a New Java Project window,

like the one shown in Figure 3-10, to input information about the project.

figure 3-10

 3. Type MyFirstJavaProject for the project name.

 4. Leave the default settings for the remaining ields. Check that the execution environment is the

most recent Java. JavaSE‐1.8 is the most recent as of the printing of this book.

 5. Click Finish to create your project. You should see the project appear in your Project Explorer (or

Package Explorer if you did not change the view).

http:///

54 ❘ Chapter 3 SettInG uP Your develoPment envIronment

 6. If you double‐click on the project name or press the small arrow to the left of the project, you will

see the contents of the project folder. Right now, it contains a folder called src, which stands for

source, and the JRE System Library for the Java release attached to this project, JavaSE‐1.8, in the

book examples. The src folder is still empty since you have not created any source iles yet.

 7. Create a package to organize your source iles. This step is not necessary, as putting class iles

directly into the src folder will place them in a default package. However, using this default pack-

age is discouraged. As you develop larger programs, it will become more important to use packages.

Add a package by right‐clicking on the project or src folder, as shown in Figure 3-11, or choosing

File New Package.

figure 3-11

 8. A New Java Package window, like the one shown in Figure 3-12, will appear. Indicate which

project this package belongs to and the name of the package. The source folder should say

MyFirstProject/src; it may automatically enter this or you may need to enter it yourself. You

can also ind the correct project location using the Browse button. Name the package myPackage

and press Finish. You should see the package appear under the src folder in your project. The

square package icon will be white, indicating that it is empty.

http:///

Installing eclipse on Your Computer ❘ 55

 9. Now you need to create a new class. As with the package, you can do this multiple ways. You can
right‐click on the project name, the src folder, or package and select New Class, as shown in

Figure 3-13. You can also choose File New Class. In either case, a New Java Class window will

appear, where you enter information about your class, as shown in Figure 3-14.

figure 3-12

figure 3-13

http:///

56 ❘ Chapter 3 SettInG uP Your develoPment envIronment

 10. Enter MyFirstApplication as the class name. Make sure the source folder refers to the correct proj-
ect and the package refers to the correct package. You can leave the Modiier set to Public and the

Superclass set to java.lang.Object. None of the checkboxes need to be checked. You will learn

much more about these concepts as you continue through the book. Press Finish to create your class.

 11. You should see some code already written in the Code Editor. Also, the view should now include the

tab MyFirstApplication.java, the source ile for your irst class. If some of your checkboxes were

checked, you might have more code automatically provided than what is shown in Figure 3-15.

 12. Below the package myPackage; line, type /** and press Enter. You should see a blue comment

block appear with space for you to enter comments about your class. It may include the @author

information if your computer has some user information saved. You can delete or edit this if you

like. Add a comment describing your class after one of the * symbols. It should look something like

this:

/**
* This is a simple Java application.
* It prints a short statement to the standard output.
*/

 13. Below this comment, you will see public class MyFirstApplication {, then a blank line and }. In

between the two curly brackets, where the blank line is, you can add the code for your class. This is

a very small program, so you only need a main method. Add it so the class looks like the following:

figure 3-14

http:///

Installing eclipse on Your Computer ❘ 57

public class MyFirstApplication {
 public static void main(String[] args){
 System.out.println("I've coded, compiled, and run my first Java program!");
 }
}

figure 3-15

 14. Save your iles. Again, there are multiple ways of doing this. Choose File Save or press Ctrl+S to

save the class you are currently working on. Choose File Save All or press Ctrl+Shift+S to save

all the open classes. Notice that unsaved iles have an asterisk (*) next to their name in the Code

Editor tab. Once they are saved, this * will disappear. You can see an example of this in the top‐

left corner of Figure 3-16.

 15. You’re ready to run your program now. Go to Run Run to compile and run your application.

If you have not saved your iles, Eclipse will warn you and offer to save them for you. You can

check the box to instruct Eclipse to always save your iles before running. After the program runs,

you should see a new Console tab displayed in the bottom view. This is where standard output is

printed in Eclipse. The bottom view will look something like Figure 3-17.

http:///

58 ❘ Chapter 3 SettInG uP Your develoPment envIronment

How It Works

Here’s how it works:

 1. In Eclipse, every Java project is stored in its own location, referred to conveniently as a project.
You created your irst project called MyFirstJavaProject to store all the components required for

the project in this exercise.

 2. Next, you created a package. A package acts as a folder for related class iles.

 3. You created a class and placed it inside this package. The irst line of your class reads package

myPackage; and indicates where the class is located. The word package is a keyword in Java, so it

is shown in a bold purple font to highlight it.

 4. After the package declaration, there are a few lines of code that start with /** and end with */.

These are special symbols that indicate a block comment. Comments are not compiled or executed,

figure 3-16

figure 3-17

http:///

Installing eclipse on Your Computer ❘ 59

so they allow you to provide information to humans that can be ignored by the computer. Here,
comments are used to indicate the purpose of the class. Single‐line comments begin with // and

function the same way. In Eclipse, unlike in very basic text editors, comments are colored to set

them apart from other parts of the code. Block comments are displayed in blue while single‐line

comments are displayed in green.

 5. Next you have a class declaration public class MyFirstApplication, and you’ll ind the body

of the class between curly brackets { and }. The public modiier indicates that classes outside

the package can access this class. This concept was introduced in Chapter 2 but will be covered in

more detail in Chapter 4.

 6. The irst statement in your class is the declaration of your main method: public static void

main (String[] args). Remember from Chapter 2 that the main method is the entry point for

execution. When a program runs, it will start from the main method. Sometimes you will see a

notiication from Eclipse that it is searching for the main method before it can run a program. You

may also see an error if the main method cannot be found. You should always check to be sure

that your program has a main method (if you want to run it) and that the declaration is correct and

complete. It should always start: public static void main (String[] args){.

 7. Inside the main method, between an inner set of curly brackets, you ind the statements to be

executed. In this small example, there is only one statement: System.out.println("I've coded,

compiled, and run my first Java program!");. This prints the text you see between the

parentheses to the standard output. In Eclipse, the standard output is the console.

 8. The last two lines contain the closing bracket of the main method and the closing bracket of the

class.

 9. Unlike the exercise using the command window, Eclipse manages the compilation and execution

of your program for you. When you click Run, the .java source ile is compiled to a .class

machine‐readable ile. After compilation, the program is executed.

 10. After execution, you should have seen the text I've created, compiled, and run my first

Java program! printed to the Console tab in the bottom view of your workbench.

 11. If there were any errors, you can simply edit the class ile in the Code Editor view and re‐run the

program. Also, if there were typos or other mistakes, Eclipse can often highlight these the way a

word processing program will show you misspellings and grammatical errors. The code checker

and the seamless integration of coding, compiling, and executing are some of the many beneits a

new programmer will enjoy when using an IDE compared to command‐line programming.

In addition to the menu bar and right‐click options, Eclipse has a row of buttons you can use for

many common operations. Some of the buttons are shown in the next few igures with a short

description of what they do. The irst set of buttons on the far left are from the File menu. The irst,

an icon of a window with a yellow plus sign, allows you to create new projects, packages, classes,

and so on. The next looks similar but shows some details inside the window icon; this is for creating

new graphical components. The icon of a single loppy disk is the equivalent of choosing File Save.

The icon of a stack of three loppy disks is the equivalent of choosing File Save All. The last one in

this panel, an icon of a printer, is for printing. These icons are shown in Figure 3-18.

http:///

60 ❘ Chapter 3 SettInG uP Your develoPment envIronment

The second button panel includes some different display options for the Code Editor view. The third
panel includes a bug icon for debugging your programs, a green play button for running your pro-
grams, and one other button for running external tools. The irst two, debug and run, are most use-

ful at this point. This panel is shown in Figure 3-19.

figure 3-18

figure 3-19

figure 3-20

Five more buttons that you might ind useful are in the next two panels, shown in Figure 3-20. The

new package button has an icon that matches the package icon in the Project Explorer, which is a

small brown square with a cross through it. Next to it is a green circle with a C and a plus sign; this

is a shortcut to create a new class. You can change it from a class to another type with the drop‐

down arrow beside it. The yellow folder with a blue ball and a green ball is for opening classes (or

other types). If you are using the IDE for Java Developers, there’s a yellow folder with a white box

in it; this is for opening a task. Finally, there is an icon of a yellow lashlight, which opens the search

window.

Now that you’ve had a tour of Eclipse, you’re prepared to continue with the rest of this book. In the

following chapters, there will be many exercises to demonstrate Object‐Oriented Programming con-

cepts in Java. They are written with the Eclipse IDE in mind, so you can refer back to this chapter if

you need a refresher on some of the basic technical aspects of creating programs in Eclipse. You can

also ind a wealth of resources online from Eclipse if you’re having trouble with something. Also, as

stated earlier, if you prefer to use another development environment, you will still be able to follow

along, but the instructions intended for Eclipse won’t exactly match your IDE. The many platforms

available, including NetBeans and IntelliJ IDEA as well as many others, are often similar enough

that you can easily adapt from one to the other.

http:///

4
Moving toward Object‐
Oriented programming

what You will learn in this chaPter:

 ➤ What is Object‐Oriented Programming and why it is useful

 ➤ How to work with classes and objects and the differences between

them

 ➤ How variables are deined and what is meant by their scope

 ➤ How methods are deined and what is meant by their scope

 ➤ Some of the frequently used standard classes

wrox.com code downloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 4
download and individually named according to the names throughout the chapter.

Now that you’re familiar with programming in general, understand Java’s general concepts, and have
set up your development environment, it’s time you delve into Java for real. Chapter 2 highlighted
the fact that Java is an object‐oriented programming language, meaning that objects, with their

data variables and methods, are irst‐class citizens in Java and that deining a well-thought‐out class

architecture is the foundation of any solid program or application you will develop.

This chapter is organized as follows. The irst section provides a general overview of the basic

concepts of the object‐oriented programming paradigm. Next, it discusses how to work with

classes and objects in Java. This is then further explored in the following sections, which

explain in more detail how to deine data (variables) and behaviors (methods) for classes. The

inal section in this chapter provides an overview of helpful built‐in classes in Java SE, which

will be used throughout this book as well.

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

62 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

Basic concePts of oBJect‐orIented proGrammInG

As you saw in Chapter 1, object‐oriented programming is a programming paradigm where concepts

in the program are represented by “objects.” Each object is an instance of a class, which can be seen

as a “blueprint” or template of the object’s characteristics. Contrary to procedural programming,

these characteristics include data—attributes or variables describing the object’s state—and behav-

iors—methods or procedures describing the actions an object can perform.

A simple example can help explain this. Imagine you are developing an application to keep track of

courses and student registrations. In procedural programming, your irst task would be to come up

with an appropriate data structure to represent the concepts you are dealing with. You thus might

deine two lists—one for holding the students and one for holding the courses. Each list would con-

tain a dictionary of values representing a single student or course. This might look as follows:

STUDENTS = [
 {id : 'S0001', last: 'Demmick', first: 'Larry', birthdate: '1989-05-13'},
 {id : 'S0002', last: 'Newandyke', first: 'Freddy', birthdate: '1991-01-05'},
 ...
]

COURSES = [
 {id : 'C00A', name: 'Introduction to Java'},
 {id : 'C00B', name: 'Advanced Data Base Management'},
 ...
]

Pay no attention to the syntax being used here—it’s just pseudo‐code to illustrate the point. The fol-

lowing step deines a series of operations—procedures—that you want to perform on your concepts.

For example, you’ll need a procedure to add a student:

procedure add_student(i, n, fn, bd) {
 STUDENTS += {id : i, name: n, firstname: fn, birthdate: bd}
}

Similar procedures can be created to add courses and to remove or modify students and courses.

You also might want to keep track of which students registered for which courses. Multiple pos-

sibilities exist as to how to approach this: you can either add a list of course IDs to each student

(representing the courses the student registered for), or a list of student IDs to each course (repre-

senting the students registered for this course). Another way to do this is to create an additional data

structure—REGISTRATIONS—to keep track of registrations.

Procedural programming has substantial drawbacks from a maintenance viewpoint. For one, when

the deinition of a data structure changes, all procedures using this structure need to be reviewed

and updated accordingly. Second, when data structures are linked, care needs to be taken that the

state of the program is kept valid at all times. When deleting a course in this example, for instance,

you’ll also need to ensure that all registrations for this course are removed as well. The greatest

drawback comes from the fact that all data is stored in global structures, which are accessible to all

procedures. For large programs, it becomes unwieldy to keep track of which procedures are using

which structures, how they modify them, and what effect a change in one procedure or data struc-

ture will have in other parts of the program.

http:///

Classes and Objects in Java ❘ 63

When using an object‐oriented programming paradigm, objects encapsulate only local data, which

is by default accessible only by the object itself. Rather than having to think about data and code as

two separate concepts, an object‐oriented program merges the two in the concept of an object. This

increases understanding (analysts and programmers can consider objects of interest without inter-

nalizing the workings of the complete program) and ease of maintenance.

To realize the latter, object‐oriented programming applies two concepts known as encapsulation

and information hiding. One of the greatest sources of errors in programs is when some parts of the

program are interfering with other parts. Indeed, it is easy to see that, in this course administration

example, the addition of more procedures and data will quickly lead to so‐called spaghetti code,

where it becomes very complex to follow the trace of execution as data can jump from one part to

another in the program. Object‐oriented programming resolves this issue by encapsulating both

data and behavior within an object.

However, this in itself is not suficient to guarantee maintainable programs, as you also

need to prevent an object’s data from being directly accessible by other objects. Therefore,

object‐oriented programming also emphasizes the concept of information hiding, where an

object’s data can by default be accessed only by methods contained in the same object. When

data elements of one object need to be used by another object, the latter must call a publicly

accessible method of the former, basically requesting the “owning object” to perform a change

to its data. As such, object‐oriented programming encourages programmers to place data where

it is not directly accessible or modiiable by the rest of the system. Instead, the data is accessible

through methods, which can also include checks and safeguards to make sure the requested

change is permitted by the owning object.

Object‐oriented programming also deines concepts to help with structuring programs so that

they can be easily extended and evolved. These concepts are polymorphism, which is the ability

to treat objects of different types in a similar manner, and inheritance, which is a concept to

allow for extending objects and enabling code reuse. You will revisit these concepts in more detail

in Chapter 8, when you delve deeper into object‐oriented concepts. For now, you’ll see how the

object‐oriented concepts you have seen so far—the classes, objects, variables (data), and methods

(behavior)—are used in Java.

classes and oBJects in Java

Now that you have gained knowledge on the basics of Java, it is time to move on to the topics that

make Java an object‐oriented language: classes and objects. The following sections will guide you

through the concept of a class, which serves as a declaration, or blueprint, for objects, which can be

instantiated from classes.

deining Classes in Java
As discussed in Chapter 2, Java is a “pure” object‐oriented programming language, meaning

that there are no standalone constants, variables, or functions. It is not possible to deine such

standalone elements, and everything is thus accessed through classes and objects. Before version

5 of Java, primitive types (such as int and double) were not represented as objects, a decision

made by Java’s designers for performance reasons. Due to this, Java was not considered to be a

http:///

64 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

autoBoxing

Autoboxing is an automatic conversion made by the Java compiler between primi-
tive types and their corresponding wrapper classes. For example, converting a
double to a Double is called boxing, and converting a Double back to a double is
called unboxing.

For each primitive type, there is an associated wrapper class available:

 ➤ boolean wrapper class: Boolean

 ➤ byte wrapper class: Byte

 ➤ char wrapper class: Character

 ➤ float wrapper class: Float

 ➤ int wrapper class: Integer

 ➤ long wrapper class: Long

 ➤ short wrapper class: Short

 ➤ double wrapper class: Double

 ➤ void wrapper class: Void

The void wrapper class does not actually hold a value but is a representation for
the void return type.

The mechanism of autoboxing entails that it is perfectly ine to write code like this:

Double d1 = 5.4;
double d2 = new Double(3.3);

You might be wondering if it makes sense to use the primitive types’ wrapper
classes instead of the default keywords. The best practice, however, is simply to
use the primitive keywords and the wrapper classes only when you need to, that
is, when you want to access a primitive variable as an object. Later in this chapter,
when you read about Java’s collection types, you will see a typical use case where
this is necessary.

pure object‐oriented programming language. However, Java 5 introduced a concept called auto-

boxing, where programmers can access primitive types as if they were instances of their wrap-

per class.

In Chapter 2, you read an overview on Java’s language structure, including the syntax for classes,

methods, and variables, and the different types in Java. Don’t worry if you don’t recall all the

details, as you will revisit these concepts again in the following sections and learn about them

step‐by‐step.

http:///

Classes and Objects in Java ❘ 65

You’ll now convert the example of the course administration system to an object‐oriented Java pro-

gram. The irst thing you need to do is deine the concepts—the blueprints, templates, and types—

that will be used in your application. These are the classes. In this example, you can introduce two

class deinitions: one for a Course and one for a Student.

trY it out Course and Student Classes

To create some simple Java classes representing students and courses, follow these steps:

 1. If you haven’t opened a project in Eclipse, or just prefer to follow along and create a new one, you

should do so by navigating to File New and then selecting Java Project in Eclipse. A dialog win-

dow will open asking you to ill in a project name. Choose CourseAdministration. You can then

press Finish to create the project.

 2. You will create two classes within the src folder: Course.java and Student.java. You do so by

right‐clicking the src folder in the package explorer in Eclipse and then selecting New Class. A

window will pop up asking you to ill in some details. The number of options offered might seem

a bit daunting at irst, but remember that the only necessary element you need to provide is the

class name. All other aspects can be modiied directly in the class’ source code, or changed by mov-

ing the class around. Let’s start with the Student class. In the wizard screen, you should enter the

class name without the .java sufix, as Eclipse will add this for you (you will receive a warning

when you do add the ile sufix). Do not pay attention for now to the "The use of the default

package is discouraged" warning. You’re just starting out, and can thus afford to be a bit

sloppy. You will learn about packages later.

 3. The Student.java ile is created and opened in the Eclipse code editor (if it is not, you can double‐

click the ile to open it in the Eclipse editor), showing a bare‐bones class deinition:

public class Student {

}

 4. Edit Student.java to look like the following:

class Student {
 int id;
 String firstName;
 String lastName;
 int birthYear, birthMonth, birthDay;
}

 5. Save your ile. You have now created a bare‐bones class deinition for the Student concept,

containing variables for the ID, irst name, last name, and date of birth. (For now, you’ll use a

combination of three integers to represent the date of birth. There is also a Date class that will be

discussed later.)

 6. Similarly, create a Course.java class with the following source code:

class Course {
 int id;
 String name;
}

http:///

66 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

How It Works

Now take a look at how it works.

 1. In Java, classes are stored in .java iles, which should bear the same name as the class that is
deined in them. In the irst two steps, you initiate a new Java project in Eclipse and add two class
source iles using the wizard: Course.java and Student.java.

 2. The student and course classes are deined by declaring some variables, such as id, firstName,
and birthYear. You remove the public declaration Eclipse has automatically added to the class
source, as you will learn about access modiiers (such as public) later.

 3. This is all you do for now. You’re not actually running or executing anything yet. Feel free to
experiment, however, by adding more variables you can think of using the primitive types you saw
in Chapter 2 to familiarize yourself with the syntax (Eclipse will provide errors or warnings when
you make a mistake).

If you’ve followed along with the Try It Out, you will have noticed that a class deinition looks pretty
straightforward at this point:

class CLASSNAME {
 // VARIABLE DEFINITIONS
}

That is, class deinitions start with the keyword class, followed by the class name. Java imposes
almost no restrictions on which characters or names you can use for class names, except for the fact
that class names should start with a letter, the underscore character (“_”) or a dollar sign (“$”). The
following names can all be valid class names:

 ➤ Course

 ➤ Student

 ➤ _

 ➤ abcde

 ➤ Number0

 ➤ $DOLLAR$

 ➤

 ➤

Remember, as discussed in Chapter 2, keywords are not valid class names, meaning that class, true,
null, and so on are not accepted as class names.

In general, however, it is a very good idea not to go overboard when deining classes and to stick to
(western) alphabetical characters only. If you recall the section on naming conventions in Chapter 2,
you will remember that you format class names in UpperCamelCase (meaning that each word in the
class name starts with a capital letter). This is the widely accepted convention in the Java community,
and one this book follows as well.

http:///

Classes and Objects in Java ❘ 67

NOTE By the way, you might have tried to create a class named “ ” in
Eclipse, only to have it show up as an empty ile with Eclipse throwing a warn-
ing about character encodings. The reason for this is that Eclipse by default
uses a subset of all possible characters for source code, called Cp1252. While
this subset contains most Western characters, it does not contain Chinese,
Japanese, Thai, or other characters found in non‐Western languages. This
implies that it is also not possible to include code such as this:

System.out.println("The word for student in " +
 "Chinese and Japanese is written in the " +

 "same way: ");

If you want to use all characters in Eclipse source code, you will need to
open the Preferences window, navigate to General Workspace, and then
select Other: UTF‐8 under Text File Encoding. This will ensure that Eclipse
saves your source iles with Unicode encoding, and will thus allow you to use
Unicode class names and output. (Unicode is a gigantic character set support-
ing and containing almost all character glyphs in use by humanity today; see
www.unicode.org for more details.)

Before you rush off to the preferences to change this setting, keep in mind,
however, that changing the source ile encoding is generally a bad idea. The
reason for this mainly stems from portability and compatibility. Not all oper-
ating systems and Java versions support Unicode equally well, meaning that
Unicode characters that look and open ine on your workstation (with your ver-
sion of Eclipse) might not show up correctly on other people’s machines.

But what if you just came up with a killer application and want to target the
Chinese market? Surely, it should be possible to translate your program? When
that happens, you have two ways to make this work. The irst is to change your
source ile encoding (and deal with portability issues as they pop up). The sec-
ond way is to use “escape” Unicode characters, like so:

System.out.println("The word for student in " +
 "Chinese and Japanese is written in the " +
 "same way: \u5B66\u751F");

To escape a Unicode character, you write a backslash (\), followed by the low-
ercase letter u, followed by four hexadecimal (0‐9, A‐F) characters represent-
ing the code point of the character. You can ind tables and websites helping
out with this task online. One such example that allows you to look up charac-
ters is: http://www.fileformat.info/info/unicode/char/search.htm

As a inal note, you might have tried one of these code samples in Eclipse to
see if the text appears in the output, only to see two question marks (??) or
garbled text appearing where the Unicode characters should be. The reason
behind this is that not only does your editor need to enable support for saving
Unicode iles, your console—which runs the program—must also be able to

continues

http://www.unicode.org
http://www.fileformat.info/info/unicode/char/search.htm
http:///

68 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

The class’ body is surrounded by curly brackets, { and }. Within this body, you deine the variables
(the data) and the methods (the behaviors) of the class. Variable deinitions start with a variable
type, followed by one or more variable names, followed by a semicolon (used at the end of each
statement in Java). Here are some examples:

 ➤ int id;

 ➤ String firstName, lastName;

 ➤ double discountPercentage;

Observe the use of the comma (,) as a shorthand to deine variables of the same type. That is, you
could also write String firstName, lastName; as:

String firstName;
String lastName;

Recall the naming convention of writing variable names in lowerCamelCase, whereby each word
in the variable name is capitalized, except for the irst one, which starts with a lowercase letter.
This convention helps to distinguish variables from class names. Note that this convention is not as
widely adhered to as CamelCase for class names. That is, you might ind code that uses snake_case
(using underscores) as well.

You will learn about variable deinitions in a little more detail later. For now, you’ll continue look-
ing into the basic class deinition, and seeing how you extend it to add method deinitions:

class CLASSNAME {
 // VARIABLE DEFINITIONS
 // METHOD DEFINITIONS
}

The following Try It Out shows you how to add some simple methods to the Student and Course
classes.

show them. By default, neither the Eclipse console nor the Windows console
offers support for this (showing Unicode code characters in GUI applications,
however, will work). On Linux—another operating system—the console does
support Unicode character output.

This all being said, I’m sure you will agree that character encodings,
Internationalization, and Unicode is a complex affair. In fact, this is not a
problem with Java itself. Java actually provides very solid Unicode support
compared to most other programming languages. This problem plagues all
aspects of computing, programming, and software engineering. Computers
in the 80s did not deal with languages other than English and thus supported
only a very small, basic set of characters, the effects of which still have an
impact on programming languages today. As such, I will keep things simple
throughout this book and work with basic Western characters only.

continued

http:///

Classes and Objects in Java ❘ 69

trY it out adding Methods to the Course and Student Classes

You will use the Student class deinition to add a number of methods.

 1. Open the Student.java class you deined in the previous Try It Out in Eclipse, or create a blank
class if you haven’t done so already.

 2. Modify the class deinition so that it looks as follows:

class Student {
 int id;
 String firstName;
 String lastName;
 int birthYear, birthMonth, birthDay;

 boolean isBirthday() {
 // Return true if it's the student's birthday today.
 return false;
 }

 void giveWarning(boolean isFinalWarning) {
 // You should study harder!
 }

 int numberOfFriends() {
 // Return the number of friends the student has.
 return 0;
 }
}

How It Works

Now take a look at how it works.

 1. In the source code of this class, you have now added three method deinitions: for isBirthday,
giveWarning, and numberOfFriends, respectively.

 2. Each of these methods starts with a return type (boolean, int, or void when no return type is
expected), the name of the method, and a number of arguments the method takes as inputs.

 3. The method bodies do not look particularly interesting as of now, and just return a value immedi-
ately or do nothing.

 4. Again, you’re not running this code yet, but feel free to add more method deinitions for the Student
and Course classes. If you’re up to it, you can also try adding some code to the method bodies.

Again, if you’ve followed along with the Try It Out, you’ll recognize the same pattern showing up
for each method deinition. That is, methods start with a return type, followed by the name of the
method, and then a number of arguments the method takes as inputs (for example, the isFinal-
Warning argument for the giveWarning method). Just as with variables, recall that method names
are written in lowerCamelCase. The method’s “body” is surrounded by curly brackets, { and }, just
as for classes. Note that this creates a hierarchy: methods are deined within the class body, and the
code for the method itself is deined within the method body.

http:///

70 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

Methods can return any kind of type, meaning that the following can all be valid method deinitions:

 ➤ String nickname(){ /* ... */ }

 ➤ int numberOfPartiesWentTo(){ /* ... */ }

 ➤ Student bestFriend(){ /* ... */ }

 ➤ String[] listOfFavoriteCountries(){ /* ... */ }

When a method returns something, you need to specify the return value by using a return state-
ment in the method’s body. Even when a method does not return anything, you need to explicitly
specify this fact by using the void keyword in the method’s deinition, as shown, for example, in the
giveWarning method in the Try It Out.

A method takes an arbitrary number of arguments. Arguments are separated by commas (,), and for
each argument, the type needs to be speciied. Even when a method takes no arguments, the paren-
theses () need to be added to the method name. Some examples:

 ➤ void drinkBeer(int nrOfGlasses){ /*...*/ }

 ➤ int numberOfCoursesPassed(boolean onlyIncludeFirstTry) { /*...*/ }

Take some time to get acquainted with these concepts and familiarize yourself with basic class dei-
nitions. Feel free to add more classes (Teacher and CourseRoom are ine examples) and come up
with some variables and methods for them.

Schematically, a class deinition with a variable and methods can be represented as shown in Figure 4-1.

figure 4-1

class Student

intid boolean isBirthDay()

void giveWarning(Boolean intidWarning)

int numberOfFriends()

String firstName

String lastName

int birthYear

int birthMonth

int birthDay

You now know how to deine the “blueprints” for these concepts, but you haven’t seen yet how to
instantiate these blueprints. That is, how do you create objects from the blueprints you deined? The
next section explains how to do so.

http:///

Classes and Objects in Java ❘ 71

NOTE Recall that the basic class deinition, for now, looks as follows:

class CLASSNAME {
 // VARIABLE DEFINITIONS
 // METHOD DEFINITIONS
}

You might be wondering if this ordering is strict, meaning whether the classes
really have to start with variable deinitions irst, followed by method deini-
tions. The answer is no. For example, it is perfectly okay (syntactically) to write
a class like the following:

class Student {
 boolean isBirthday() {
 // Return true if it's the student's birthday today.
 return false;
 }

 int id;

 void giveWarning(boolean isFinalWarning) {
 // You should study harder!
 }

 String firstName;

 int numberOfFriends() {
 // Return the number of friends the student has.
 return 0;
 }

 int birthYear, birthMonth, birthDay;
 String lastName;
}

While neither Eclipse nor Java will care about this, you—the programmer—
should. Stylistically, this code scores badly. It’s hard to follow and will only
serve to confuse you and others later. Therefore, it’s best to stick to the
convention of “variables irst, methods next.” In addition, keep in mind that
code is read more often than written, no matter the language it is written in.
Therefore, it is always a good idea to keep program code as clean, organized,
structured, and readable as possible, as well as to follow common conventions
and commenting where necessary.

creating objects
You have seen how to deine simple classes in Java. Remember that classes are like blueprints
or prototypes from which objects are created. For example, you deined the class Student as
a concept having a name, an ID, and some methods describing its behavior, but you have not
yet created an actual student. Now that you have deined the class, however, you can create, or

http:///

72 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

instantiate, hundreds of students, each with their own properties. In object‐oriented programming

terms, you say that you want to create a student object that’s an instance of the class of objects

known as Student.

Objects are created using the new keyword. For example, to create a new student, you would simply

write the following statement:

new Student();

Of course, just creating a student in itself does not help you much, as you need to have a way to

access this particular object later on. How do you do so? By simply assigning the newly created stu-

dent to a variable, of course:

Student myFirstStudent = new Student();

Now you can use the myFirstStudent variable to access the irst student later. You might be won-

dering why the parentheses appear at the end of student. It’s not a method deinition, right? So, why

not just write:

Student myFirstStudent = new Student; // Incorrect!

The reason is that when you instantiate a class, you are in fact actually calling a special method

of the class called a constructor. Since it is a method, it can take a number of arguments. For

example, you might have deined the class so that you immediately need to pass a name for the

new student:

Student myFirstStudent = new Student("Sophie", "Last Name");

In fact, this is a better way to deine the class, as it doesn’t make much sense to allow program-

mers to deine students who do not have a name. Since you are just getting started with classes

and objects, however, you can be a bit sloppy in the name of learning. Don’t worry, you will

return to constructors later in this chapter. For now, the classes can be instantiated without any

arguments.

NOTE Observant readers might wonder why the Student class deinition does
not contain a constructor method to create a new Student, even when this
method does not take any arguments. For all the other methods, you see that
you have written, for example:

int numberOfFriends() {
 // Return the number of friends the student has.
 return 0;
}

So where is the constructor method? The answer is that you do not have to
deine it. When you do not supply any constructor method, Java will be smart
enough to know that it should just create a new Student object with all its vari-
ables set to the default values when you write:

Student myFirstStudent = new Student();

You will explore constructors in more detail later in this chapter.

http:///

Classes and Objects in Java ❘ 73

Now that I am talking about constructors and Student objects being created without a name, it’s
a good time to emphasize another important aspect, namely the fact that the name you give your
Student variable has nothing to do with the variables of the Student. An example will help to illus-
trate this. Say you deine a student as follows:

Student marc = new Student();

Even though the variable is named marc, this does not mean that the firstName variable of this
object must be equal to marc. Of course, it makes sense to use marc as a variable name for the
student named Marc, and no one in their right mind would use sophie as a variable name for the
student named Marc, but there is nothing prohibiting you from doing so. The name of the Student
variable is just a handle to refer to the Student object itself, and has nothing to do with the inter-
nals of that object.

The following Try It Out will show you how to create some students in the example course adminis-
tration program.

trY it out Creating Student Objects

You will use the Student class deinition as a blueprint to create a number of Student objects. If you
have not followed along with the previous Try It Outs, you should create a Student class now with the
following content:

class Student {
 int id;
 String firstName;
 String lastName;
 int birthYear, birthMonth, birthDay;

 boolean isBirthday() {
 // Return true if it's the student's birthday today.
 return false;
 }

 void giveWarning(boolean isFinalWarning) {
 // You should study harder!
 }

 int numberOfFriends() {
 // Return the number of friends the student has.
 return 0;
 }
}

 1. Add the following main method to the Student class deinition as follows. Note the use of the new
keyword to create objects:

public static void main(String[] args) {
 Student firstStudent = new Student();
 Student secondStudent = new Student();
 firstStudent.id = 1;
 firstStudent.firstName = "Marc";

http:///

74 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 secondStudent.id = 2;
 secondStudent.firstName = "Sophie";

 System.out.println("The student object referred to "+
 "by the variable secondStudent has the first "+
 "name: "+secondStudent);
}

 2. You should now be able to run the Student class from Eclipse and observe the output given on the
console.

How It Works

Now take a look at how it works.

 1. The new keyword is used to create objects, which you will use to create a bunch of students. Note the
use of the dot (.) operator in this code to access (read and write) the Student objects’ variables.

 2. As Java is a fully object‐oriented program, however, you need to ind an appropriate place to create

the students. Loose scripts cannot exist in Java, meaning that you have to create the students inside

a method deinition of a class.

 3. To actually execute, that is, run the program, you add a so‐called main method to the Student class.

As Java has no way of knowing which particular method you want to use as the entry point of the

program, a special method exists—the so‐called main method—that serves exactly this purpose.

 4. When running this program from Eclipse, Java will call the class’ main method. The main method

will create some students, set their variables, and print some information to Eclipse’s console.

 5. You might be wondering what the public and static keywords are doing before the main method

deinition. Don’t worry about these too much for now. You will see what static does later on in this

chapter and learn about the role of public in Chapter 8. For now, just keep in mind that the main

method must be public, static, return nothing (void), and take a single argument: an array of

strings, String[]. The name of the argument can be changed, but by convention, args is used. The

reason for this is that this method argument will contain the list of arguments that was passed to Java.

 6. Note that, generally speaking, mixing in this main method with the student class deinition is not

a good idea. Ask yourself the following: is a student responsible for creating some students? The

answer is, of course, no.

 7. As such, you can also put this program logic somewhere else. The question is then, of course,

where? Think about this, which class of objects should be responsible for the behavior of creating

some students? You might come up with different answers. For example, you might say, “I just

want my program to create some students.” So what you can do is add a class, called MyProgram,

to hold a single main method:

class MyProgram {
 // I am the program managing your Student and Course objects.

 public static void main(String[] args) {
 Student firstStudent = new Student();
 Student secondStudent = new Student();
 firstStudent.id = 1;
 firstStudent.firstName = "Marc";

http:///

Classes and Objects in Java ❘ 75

 secondStudent.id = 2;
 secondStudent.firstName = "Sophie";

 System.out.println("The student object referred to "+
 "by the variable secondStudent has the first "+
 "name: "+secondStudent.firstName);
 }
}

 8. The behavior of managing students is now cleanly separated from the behavior a student itself
exposes. Later, you might want to create an Administrator class to perform this sort of manage-
ment, but for now, all you want to do is run this simple example program, so the current way of
doing things is ine to illustrate the idea.

Figure 4-2 represents the creation of objects from classes, schematically.

figure 4-2

class Student Student myFirstStudent

new Student()

new Student()

intid boolean isBirthDay()

void giveWarningBoolean

int numberOfFriends()

String

String lastName

int birthYear

int birthMonth

int birthDay

intid = 1

String

String lastName

int birthYear =

int birthMonth

int birthDay =

boolean isBirthDay()

void giveWarning(Boolean

int numberOfFriends()

Student mySecondStudent

intid = 2

String

String lastName

int birthYear =

int birthMonth

int birthDay =

boolean isBirthDay()

void giveWarning(Boolean

int numberOfFriends()

You have now seen how to create simple class deinitions in Java, containing variables and methods.
By now, you should grasp the differences between classes and objects, and should be able to deine
classes and to instantiate them. You’ve been taken on a quick tour through the concepts of classes
and objects in Java, so now that you get the bigger picture, you can take a step back and learn more
about variables and methods, with all their intricacies, which is exactly what you will do in the fol-
lowing sections.

http:///

76 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

storing data: variaBles

In the previous section, I deined the simple class outline as follows. A class contains a block of vari-
able deinitions (data) and methods (behaviors), like so:

class CLASSNAME {
 // VARIABLE DEFINITIONS
 // METHOD DEFINITIONS
}

You will now zoom in further on the aspect of deining variables within a class. Speciically, this
section discusses:

 ➤ Instance variables: Variables that will be used to hold data of objects.

 ➤ Class variables: Variables that are not bound to an object but instead belong to the class as
such, that is, to the blueprint of the object.

 ➤ Final variables: Variables that—after their initial assignment—cannot be modiied.

Finally, I will also devote some words to the topic of variable scope. A scope of a variable is the
context in which it’s deined. This means that, depending on how you deine a variable, it will affect
where and how this variable can be accessed.

instance variables
In object‐oriented programming, an instance variable is a variable that’s deined in a class (as you

have done before for firstName and lastName in the Student class, for instance). Instance vari-

ables are also commonly referred to as member variables or ields of a class.

Instance variables belong to objects, meaning that each object of the class keeps a separate copy of

this variable. Let’s illustrate this idea with an example: instance variables can be introduced by sim-

ply deining them in the class body. Let’s say you want to create a class for the concept of a book.

The bare‐bones class then looks like this:

class Book {

}

(Feel free to follow along in Eclipse.) An empty class it not much fun to work with, so you need to

think of some data. Well, since books have a title and an author, you might want to deine some

variables to represent this. Since a book can have multiple authors, you might even want to deine

this data aspect as a composite data type. Perhaps something like the following:

class Book {
 String title;
 String[] authors;
}

http:///

Storing Data: Variables ❘ 77

NOTE If you were thinking, “Wouldn’t it be a good idea to abstract authors
away into a separate class, say, Author?”, you would be absolutely right,
although it depends on the complexity you foresee your program having
to deal with. Can you imagine keeping author information nicely separated
with authors having their own data (irst name, last name, and birth date) and
behaviors? Then yes, it makes sense to create an Author class. If you are plan-
ning on keeping a simple string to represent author information for books (like
you are doing here), the simple solution is ine.

To paraphrase the famous quote from Einstein, “Everything should be made as
simple as possible, but no simpler.”

Now, you have already seen how to create some Book objects, that is, some books. For example, you
might write a piece of code doing something like the following:

Book book1 = new Book();
book1.title = "Beginning Java";
book1.authors = new String[]{
 "Bart Baesens",
 "Aimee Backiel",
 "Seppe vanden Broucke"
};

Book book2 = new Book();
book2.title = "Catcher in the Rye";
book2.authors = new String[]{"J. D. Salinger"};

This code creates two book objects—book1 and book2—and sets their title and author variables.
As you can observe, each book object keeps its own copy of the title and author variables, which
can be accessed and modiied independently.

That is all you need to know to get the idea about what instance variables are all about. They are
basically just a part of the class blueprint, and get instantiated for each object you deine belonging
to that class.

As a reminder, however, recall that you can deine multiple variables of the same type by separating
them with commas, like so:

int a, b, c;

In fact, this not only works for instance variables, but works for any variable you deine no matter
where and no matter of which type (it does not have to be a primitive type). For example, the code
sample to create the two books could also be rewritten like so:

Book book1, book2; // Define two empty Book objects

book1 = new Book(); // Set first book
book1.title = "Beginning Java";
book1.authors = new String[]{

http:///

78 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 "Bart Baesens",
 "Aimee Backiel",
 "Seppe vanden Broucke"
};

book2 = new Book(); // Set second book
book2.title = "Catcher in the Rye";
book2.authors = new String[]{"J. D. Salinger"};

Every instance variable you deine defaults to a particular value, depending on the variable type. For
instance, you might wonder what happens if you ask for the title of a book, without specifying a title irst:

Book book3 = new Book();
// Oops, forgot to set title...
System.out.println("Title equals: "+book3.title);

The answer is that “Title equals: null”. For variables with a class type, the default value is a special
keyword representing emptiness, null. Since String is a non‐primitive class, its default value is thus

null. Remember, as discussed in Chapter 2, the default values, per data type, are:

 ➤ For boolean: false

 ➤ For byte: 0

 ➤ For short: 0

 ➤ For int: 0

 ➤ For long: 0L

 ➤ For float: 0.0f

 ➤ For double: 0.0d

 ➤ For char: \u0000 (the null character)

 ➤ For String or any object: null

Note that these default values apply only to ields (instance variables). That means if you try to be

clever and add the following to the code snippet:

Book book;
System.out.println("Now, book equals: "+book);
book = new Book();
System.out.println("And now, book equals: "+book);

Eclipse will complain about the book variable not being initialized. This can be ixed like so:

Book book = null;
System.out.println("Now, book equals: "+book);
book = new Book();
System.out.println("And now, book equals: "+book);

The same applies for other variables you deine that are not instance variables:

int a = 0;
System.out.println("int a equals"+a);

http:///

Storing Data: Variables ❘ 79

NOTE You might have tried to execute this code snippet to see something
like the following appearing on‐screen:

Now, book equals: null
And now, book equals: Book@709fa12f

What’s going on with this Book@709fa12f (your output will differ and return
a different part after the @)? The reason for this is that all Java objects have
a built‐in method to return their so‐called “String representation,” which can
be extended by programmers to provide a friendly output for an object, that
is, a String that textually represents the object (don’t worry about the specif-
ics of this too much for now; you will get back to this later). The key aspect to
know here is that, when no extension is provided by the programmer, Java will
just resort to showing the class name (Book), followed by an @, followed by the
hexadecimal representation of the object’s hashcode.

Hashcodes are an advanced Java concept and are used to provide a quick
integer representation for an object, which can be used as a quick check to
see if two objects are equal (they have the same hashcode). Again, the way
a hashcode is calculated can be extended by the programmer. If this is not
done, then the hashcode corresponds to the internal address of the object
in memory, although the particular default behavior may vary from one JVM
implementation to another.

Finally, you might be wondering what happens when you try to access an object’s
ield (instance variable) when an object was not created irst, such as done here:

Book book = null;
System.out.println("Now, book title equals: "+book.title);

Eclipse will allow you to execute this code, but the program will quickly crash
with the following message:

Exception in thread "main" java.lang.NullPointerException
 at Book.main(Book.java:XX)

Not surprising, because accessing a variable of something that doesn’t
exist is sure to give problems. In this code sample, it’s easy to see where
the problem lies (Eclipse will even put up a warning regarding this foolish
behavior), but in larger programs, it is a common pattern for methods to
create objects, or return null in case something failed. When this object is
then accessed (or passed on to another method, perhaps) without explicitly
checking for null, a NullPointerException error will pop up as soon as
you try to access a variable or method of this object, as the following code
sample illustrates:

Book giveMeABook() {
 //return new Book(); ––> Sorry, no books available for now
 return null; // Return null instead
}

continues

http:///

80 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

This code also immediately illustrates that you are not forced to use the default values for instance
variables. For example, you can modify the Book class to assign defaults to the title and author
variables:

class Book {
 String title = "Unknown Title";
 String[] authors = new String[]{"Anonymous"};
}

And, combining this with the knowledge on how to deine multiple variables of the same type in one
go, you can add:

class Book {
 String title = "Unknown Title";
 String[] authors = new String[]{"Anonymous"};
 int yearReleased = 2014, copiesSold = 0;
}

With this knowledge under your belt, you might be wondering, as each object keeps its own copy of
instance variables, is there also a way to deine a common variable, something that’s shared between
all objects belonging to the same class? Indeed there is . . .

class variables
In object‐oriented programming, a class variable, also denoted as a static variable, is a vari-

able that’s been allocated “statically”—meaning that this variable is shared between all objects

(instances) belonging to this class. Further, since class variables belong to the class blueprint, it is not

necessary to create objects to be able to access and modify class variables. It is sometimes argued

that class variables do not really adhere to “pure” object‐oriented programming principles. Other,

stricter programming languages, such as Scala, do not allow them, for instance. That said, this is

not to be regarded as a shortcoming of Java, as we will see that class variables can come in handy in

many cases. However, it is best not to overuse them.

Book myNewbook = giveMeABook();

// Forgot the check for null?
System.out.println("Title equals: "+myNewBook.title);
// This will give an error

NullPointerException errors are a prevalent problem when programming in
Java, and oftentimes it is hard to track down the root cause behind them as you
have to track down where and why a particular object has not been instantiated
(i.e., the variable equals null). Therefore, it is a good idea either to program
defensively and always check for null when retrieving an object and before
moving on with using the object, or to program in such a way that only in a lim-
ited number of cases a null variable is passed from one part of your program to
another.

continued

http:///

Storing Data: Variables ❘ 81

I’ll explain this by providing an example. Let’s modify the Book class so it looks as follows:

class Book {
 static int maxAmountOfPages = 500;

 String title = "Unknown Title";
 String[] authors = new String[]{"Anonymous"};
 int yearReleased = 2014, copiesSold = 0, nrOfPages = 1400;
}

Note the static keyword in front of the maxAmountOfPages class variable. This variable denotes
the maximum amount of pages you currently support for books, which could be used in combi-
nation with the nrOfPages instance variable to check whether you can publish a given book, for
instance. Although the number of pages is different for each book you deine, the maximum amount
of pages the printers support is a global property throughout all Book objects, is deined as a class
variable, and is thus accessible by all Book objects.

A code sample illustrating this concept might look like this:

Book superLargeBook = new Book();
superLargeBook.title = "Super Large Boring Book";

System.out.println("I have a book here with the title: "+superLargeBook.title);
System.out.println("Written by: "+superLargeBook.authors);
System.out.println("Released in: "+superLargeBook.yearReleased);
System.out.println("With number of pages: "+superLargeBook.nrOfPages);

System.out.println("However, we only support books with max. pages: "
 +superLargeBook.maxAmountOfPages);

Running this code outputs:

I have a book here with the title: Super Large Boring Book
Written by: [Ljava.lang.String;@1271ba
Released in: 2014
With number of pages: 1400
However, we only support books with max. pages: 500

NOTE You might have spotted the following line:

Written by: [Ljava.lang.String;@1271ba

And wondered what’s up with this. This isn’t the default Anonymous author you
set! The reason for this behavior is again due to the way Java derives a String
representation of composite types, which is not very user friendly in this case.
There are two ways to resolve this issue. The irst is to loop through the array
and show each element one by one (you will look at looping constructs in the
next chapter). The second way is to use so‐called “Collection” classes, which
are similar to arrays in the sense that they hold a bunch of information, but are
also much more lexible and eficient. In addition, their String representation
looks much friendlier. You will learn about collections later in this chapter.

mailto:Ljava.lang.String;@1271baAndwonderedwhat%E2%80%99supwiththis.Thisisn%E2%80%99tthedefaultAnonymousauthoryouset!Thereasonforthisbehaviorisagainduetotheway
mailto:Ljava.lang.String;@1271baAndwonderedwhat%E2%80%99supwiththis.Thisisn%E2%80%99tthedefaultAnonymousauthoryouset!Thereasonforthisbehaviorisagainduetotheway
mailto:Ljava.lang.String;@1271baAndwonderedwhat%E2%80%99supwiththis.Thisisn%E2%80%99tthedefaultAnonymousauthoryouset!Thereasonforthisbehaviorisagainduetotheway
mailto:Ljava.lang.String;@1271baAndwonderedwhat%E2%80%99supwiththis.Thisisn%E2%80%99tthedefaultAnonymousauthoryouset!Thereasonforthisbehaviorisagainduetotheway
http:///

82 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

However, for the last line, when accessing the static variable, Eclipse complains about the fact that
"The static field superLargeBook.maxAmountOfPages should be accessed in a static

way". What is meant by this? Well, it means that it’s generally preferred to access and modify static
variables not by accessing them through an object variable, but by using the class name directly, like
so:

Book.maxAmountOfPages = 2000; // Let's increase the max amount of pages
System.out.println("We now support books with max. pages: "
 +Book.maxAmountOfPages);

Accessing and modifying static variables in this manner has two beneits. First, you do not need
to create an object in order to access the static variable. Second, this way makes it clear to
readers that the variable being accessed is a static one, without them needing to read the class
deinition. Finally, speaking of class deinitions, it’s generally a good idea to deine class vari-
ables before deining instance variables when you write classes, just to keep things clean and
readable.

Static variables are oftentimes used to deine so‐called constants: variables whose values will never

change during the execution of a program. However, as you have seen, it is perfectly okay to change

the maximum amount of pages by setting a new value to Book.maxAmountOfPages. If you want to

keep variables ixed during the program’s execution, you need to consider another concept: inal

variables.

final variables
In Java, inal variables are variables that can be initialized only once, either directly when deining

the variable, or later in one of the class methods. Once a value has been given to the variable, how-

ever, it cannot be modiied any longer.

You can see an example of a inal variable by returning to the book class and modifying it a little, so

the complete class looks as follows:

class Book {
 final String title = "Unknown Title";
 String[] authors = new String[]{"Anonymous"};

 int yearReleased = 2014, copiesSold = 0, nrOfPages;

 public static void main(String[] args) {
 Book superLargeBook = new Book();
 superLargeBook.title = "Super Large Boring Book";
 superLargeBook.nrOfPages = 1400;
 }
}

Note the change to the title variable, as it now has the final property. To keep things simple for

now, I have also removed the static variable and have put some testing code in a main method, so

you can execute this class.

http:///

Storing Data: Variables ❘ 83

NOTE The previous testing code snippets can also be placed in the main
method of Book, but remember that it is generally not a good idea to “pollute”
classes representing real‐world concepts with main methods. Alternatively,
you may also create a MyProgram class and put the code snippets in its main
method, similar to what you did in the course administration example earlier in
this chapter.

However, Eclipse will refuse to compile this code, as it complains that you cannot give the title
variable a new value (“Super Large Boring Book”), as it has already received its value at the time
of creating the object (“Unknown Title”). To get this code to work, you might be inclined to make
title a blank inal variable, like so:

class Book {
 final String title;
 final String[] authors;

 final int yearReleased, nrOfPages;

 int copiesSold = 0;

 public static void main(String[] args) {
 Book superLargeBook = new Book();
 superLargeBook.title = "Super Large Boring Book";
 superLargeBook.nrOfPages = 1400;
 }
}

Note that I have also reworked some other variables, as it makes sense that the title, authors, num-
ber of pages, and the release date never change for a book (not taking into account reprints and
other such intricacies at the moment). Hence, it makes sense to set these to read‐only.

However, you will notice that Java will still complain about the title and nrOfPages assignments

and refuse to compile this code fragment. Why? Especially when the following code (you can put

this somewhere in the main method) does in fact work:

final int a;
a = 5;

The reason lies in the fact that title, authors, yearReleased, and so on are class variables,

whereas the a integer is just a local variable. Remember that when you initialize an object, Java will

assign default values to the instance and class variables for which no value was set. For inal vari-

ables, on the other hand, Java will not set an initial value and will force you, the programmer, to

explicitly provide an initial value. For local variables inside our main method, we can deine a blank

variable and initialize it later (before using it), as seen above, but for instance and class variables,

this remark entails that we cannot do the following:

class Book {
 final String title;
}

http:///

84 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

If we try to do this, Java will warn that we have not initialized the title variable.

Given this point, it might occur to you that inal class variables are, for now, pretty useless. You
have found no way to create books with a given initial title that’s kept as a read‐only variable. To

resolve this, you need to understand another concept: object constructors. Don’t worry, you will

learn about these a few pages later, and you will revisit inal class variables there as well.

There is, however, another way that inal variables come in handy, and that is when you use them in

combination with static variables. Change the Book class again to look like the following:

class Book {
 final static int MAX_AMOUNT_OF_PAGES = 500;
 final static int MIN_AMOUNT_OF_PAGES = 50;

 String title;
 String[] authors;

 int yearReleased, nrOfPages;
 int copiesSold = 0;

 public static void main(String[] args) {
 Book superLargeBook = new Book();
 superLargeBook.title = "Super Large Boring Book";
 superLargeBook.nrOfPages = 1400;

 System.out.println("Check if your book has a correct amount of pages...");
 System.out.println("- Minimum amount: "+Book.MIN_AMOUNT_OF_PAGES);
 System.out.println("- Maximum amount: "+Book.MAX_AMOUNT_OF_PAGES);
 System.out.println("- Your book: "+superLargeBook.nrOfPages);
 }
}

Note the two final static variables at the top of the class body. This pattern is very heavily used

by Java programmers to deine constants, meaning that you desire to set the maximum and mini-

mum amount of pages only once (they are inal), and also to keep them shared by all objects (they

are part of the class blueprint). Note by the way that Java has a const keyword, but it currently

remains unused.

Also observe the change in naming convention when declaring constants with final static vari-

ables. Instead of writing in lowerCamelCase, you name them using CAPITALIZED_UNDERSCORE_

SEPARATED form. Again, this is not required, but it’s a widely followed convention by Java

programmers to indicate constant variables.

There is one inal (no pun intended) important remark I need to make regarding inal variables.

Remember that I have stated that inal variables can only be initialized once, and then keep their

value. For primitive types, the effects of this are easy to grasp—a inal integer set to the number

ive remains ive for the remainder of its life. However, for more complex types, such as objects, the

story is a little more complicated. Consider the following example:

class Book {
 final static int MAX_AMOUNT_OF_PAGES = 500;
 final static int MIN_AMOUNT_OF_PAGES = 50;

http:///

Storing Data: Variables ❘ 85

 String title;
 String[] authors;

 int yearReleased, nrOfPages;
 int copiesSold = 0;

 public static void main(String[] args) {
 final Book superLargeBook = new Book();
 superLargeBook.title = "Super Large Boring Book";
 superLargeBook.nrOfPages = 1400;

 // Change the amount of copies sold
 superLargeBook.copiesSold += 1000;
 }
}

Note how superLargeBook is inal. However, later on, you have to modify the number of copies
sold for this object. How is this possible when the code declared this object as inal? After all, you
should not be able to change it, right? The reasoning here is that inal affects the number of times a
variable may be initialized, or set. It does not mean that all the ields of an object (when the variable
represents an object) will become “frozen” as well.

To illustrate the difference, the following code shows what you cannot do:

class Book {
 final static int MAX_AMOUNT_OF_PAGES = 500;
 final static int MIN_AMOUNT_OF_PAGES = 50;

 String title;
 String[] authors;

 int yearReleased, nrOfPages;
 int copiesSold = 0;

 public static void main(String[] args) {
 final Book superLargeBook = new Book();
 superLargeBook.title = "Super Large Boring Book";
 superLargeBook.nrOfPages = 1400;

 // Change the amount of copies sold

 superLargeBook.copiesSold += 1000;

 // Assign a new book
 superLargeBook = new Book(); // EEK!
 }
}

Eclipse throws an error, telling you that you are not allowed to assign a new book (or any other
existing book) to the superLargeBook variable.

The same reasoning holds for composite types (arrays). The following code again shows an example:

final int[] numbers = new int[]{1,2,3};

http:///

86 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

numbers[0] = 10; // This is okay

int[] newNumbers = new int[]{10,20,30};
numbers = newNumbers; // This is not okay

There is one case, however, that’s a little bit special, namely Strings. As you have seen, Strings are
not a primitive type in Java, and are, in fact, objects like any other. You might thus try something
like the following:

final String myString = "Hi there";
myString = "bye";

However, this approach will not work, as this is actually a shorthand notation for the following:

final String myString = new String("Hi there");
myString = new String("bye");

When writing this piece of code, it becomes clear why you cannot do it this way. However, when
you are particularly observant, you might say, since String is a class and I create String objects,
surely the actual value of the String object must be stored somewhere, probably as an array of
char’s. The answer is that, indeed, a String object keeps an internal representation of the actual
textual value, but it cannot be publicly accessed or modiied. This is done for performance reasons.
But wait—why then can you execute the following:

String myString = "a";

myString = "b";
myString += "cde";

Again, the reason is that this is shorthand and Java helps you out. In fact, this code actually corre-
sponds to:

String myString = new String("a");
myString = new String("b");
myString = new String(myString + "cde");

This immediately provides you with the reasoning behind the fact that changing Strings in Java are
an intensive, relatively slow operation. For a few modiications, this does not matter, but when you
have to modify a String many thousands of times, it is advisable to look at other text‐representing

classes, such as StringBuilder—more about this later.

NOTE Variables are not the only elements that can be deined as being inal.
Methods can also be set as being inal—meaning that they cannot be over-
ridden or hidden by subclasses. Classes can also be set to inal, meaning that
they cannot be subclassed at all.

Don’t worry about what subclassing and subclasses mean at this point, as I
will explain them when we talk about advanced object‐oriented concepts in
Chapter 8. Just remember for now that “inal” can serve as a way to allow for

continues

http:///

Storing Data: Variables ❘ 87

variable scope
A very important aspect when working with variables in Java—and, in fact, other programming
languages as well—is their scope. Without knowing anything about variable scope, trying to access
variables can get confusing once the compiler starts yelling at you for making a mistake. Consider
the following simple class with two methods:

class ScopeTest {
 void makeA() {
 int a = 5;
 }

 void readA() {
 System.out.println("The value of a is: "+a);
 }
}

If you try to enter this in Eclipse, you’ll get an error telling you that the variable a cannot be
resolved. The reason for this is scope. A variable’s scope is basically the context in which the vari-
able is known. Depending on where a variable is declared, you will be able or unable to access this
variable. The following “levels” of scope can be deined:

 ➤ Local variables: Variables that are declared inside a method or block.

 ➤ Parameter variables: Variables that are declared as a method argument or a loop variable.

 ➤ Instance variables: Variables that are declared in the class deinition.

stricter and more secure coding (in fact, many of Java’s built‐in classes are inal
so they cannot be tampered with).

A common misconception exists that says that declaring classes or methods as
inal helps to speed up execution. The explanation behind this oftentimes follows
a reasoning such as, “Well, since the compiler knows this method will never be
modiied or extended by subclasses, it must be able to optimize on this.” This
perception, however, is incorrect, as the Java JIT compiler does no such thing. In
fact, declaring classes and methods inal can be a great burden when program-
ming, as they limit the options for code reuse and extending functionality of exist-
ing classes. Of course, there are good reasons to declare a class or method inal,
when you want to guarantee that classes and methods remain immutable (mean-
ing that they cannot be extended or modiied by other classes).

For instance variables, however (as seen here), the reasoning is so dissimilar
that it’s almost confusing that we use the same final keyword. Not only is set-
ting a variable to inal a great way to enforce a read‐only variable, which occurs
more often than you might think (many variables are read‐only), it also does
help the compiler to optimize your program. As a inal variable keeps the same
value after initialization, the compiler is able to cache (store) this value to per-
form quick checks on this variable whenever it’s asked to.

continued

http:///

88 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

These levels of scope are ordered so that variables that are deined in a higher level can be accessed from
lower‐level locations. To give the simplest example, instance variables (highest level) can be accessed

by all methods inside the class. Method arguments (a parameter variable) can only be accessed by that

method, but not by other methods. This is exactly why the previous example doesn’t work.

Figure 4-3 graphically illustrates the scope of an instance variable (instanceVar), a parameter vari-

able (paramVar), and a local variable (localVarA).

figure 4-3

As the example in Figure 4-3 shows, the instance variable (instanceVar) is accessible by each

method in the class. Parameter variables are accessible only within their methods, and can thus re‐

use the same name throughout different method deinitions. Finally, locally declared variables (such

as localVarA) are accessible only within their method, meaning that method makeB will not be able

to access localVarA.

Note that parameter variables are accessible only within their method or loop. What do I mean by

their loop? I will leave the main explanation regarding loops for the next chapter, but the following

example provides a sneak preview:

class ScopeTest {
 void doTheLoop() {
 String[] names = new String[]{"Alice", "Bob", "Mia", "Marcus"};
 for (int i = 0; i < names.length; i++) {
 System.out.println("Name number "+i+" equals: "+names[i]);
 }
 System.out.println("The value of i is now: "+i); // Will not work
 }
}

Again, you have one class deinition, with one method, taking no arguments this time. Inside the

method, you have one local variable (names) followed by a so‐called for loop. Don’t concern your-

self with the speciics of this construct for now, just understand that this code basically says, “For an

integer i going from 0 but not including the number of names. That is, for i equal to 0, 1, 2, and 3,

do whatever’s inside this block.” What is important to know, however, is that the variable i is only

available within the for block, which is why the last println statement in the previous code snippet

will throw an error in Eclipse, as i is no longer accessible at this point. Another point to note is that

the names variable is also accessible from within the loop block. Again, this illustrates the basic rule

http:///

Storing Data: Variables ❘ 89

saying that variables that are declared at a higher level (locally in the method) can be accessed by a
lower level (a loop block within the method).

I close this section on variable scope—and variables in general—with a number of important remarks.
First, you might be wondering what happens whenever variables deined in different locations (that is,
at a different level of scope) clash in terms of naming. For example, consider the following example:

class ScopeTest {
 int a = 5;
 void printA() {
 int a = 10;
 System.out.println("The value of a is now: "+a);
 }
}

What will show up when the method printA is called? Again, remembering that rule that higher‐
level variables can be accessed from lower‐level locations provides some guidance here, as accessing

a variable will “bubble up” from the current scope. This means that Java will irst try to access the

variable locally, and then move outward until looking for instance variables or static class variables

bearing the requested name. This means that in the previous example, the local variable gets pre-

cedence and the result displaying on the screen will thus be 10. This concept is known as “variable

shadowing” (consider the local variable to overshadow the higher‐level ones). Keep this in mind

when naming variables. Note also that Eclipse will provide subtle formatting and coloring hints to

indicate which variable is being accessed.

NOTE What if you really wanted to access the instance variable and not the local
variable in this example, without renaming one of them? In that case, you have to
explicitly tell Java you want the instance variable, using the keyword this, like so:

class ScopeTest {
 int a = 5;
 void printA() {
 int a = 10;
 System.out.println("The value of INSTANCE VARIABLE " +
 "a is now: "+this.a);
 }
}

And when a is a class variable, remember to use the class name:

class ScopeTest {
 static int a = 5;
 void printA() {
 int a = 10;
 System.out.println("The value of INSTANCE VARIABLE " +
 "a is now: "+ScopeTest.a);
 }
}

For now, it is best to stick to clear, unambiguous naming; you will return to
learn about the keyword this in-depth in a later chapter.

http:///

90 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

Another important remark concerns the fact that local and parameter variables are forgotten once
their scope is exited, meaning that method arguments will disappear once you exit the method (this
allows you to use the same variable name for arguments throughout different methods), just as local
variables will be discarded once the compiler steps out of its block (a method or loop body). To illus-
trate this once more, consider the following:

class ScopeTest {
 void scopeTest(int a) {
 int b = a + 10;
 for (int c = 0; c < 10; c++) {
 int d = c + 3;
 b = b + 1;
 }
 }
}

Try to work out what is happening here. Variable d (local variable) is only accessible within the loop
block. Variable c (parameter variable) is initialized for each iteration of the loop and is only acces-
sible within the loop body. Variable b (local variable) is discarded after the method is exited but is
accessible in the whole method. Variable a (parameter variable) is also discarded after the method is
exited and is accessible in the whole method, but it’s passed as a method argument.

NOTE If you want to do so, note that you can also arbitrarily create your own
scope blocks, different from class, method, or loop bodies. This is done simply
by wrapping a piece—a block—of code in curly brackets: { and }. For example,
the previous code snippet can be extended as such:

class ScopeTest {
 void scopeTest(int a) {
 int b = a + 10;
 for (int c = 0; c < 10; c++) {
 int d = c + 3;
 {
 int e = d + 3;
 }
 // e not accessible here
 b = b + 1;
 }
 // c not accessible here
 {
 int c = 3;
 }
 // c also not accessible here
 }
}

While this is an often forgotten tidbit of Java that can come in handy to struc-
ture complex pieces of code, it’s best not to rely on this feature too much.
When you ind yourself putting large amounts of code in blocks like this, it is
probably a good idea to try to separate some behavior into multiple methods
or classes to split things up.

http:///

Deining Behavior: Methods ❘ 91

This concludes the discussion of scope and the overview of different types of variables. You now
know how to declare instance variables (member variables or ields), class (static) variables, and inal
variables, and are aware that variables are deined within a speciic scope or context, which deter-
mines how they can be accessed.

The next section turns your attention to the other big part of classes: behavior as deined through
methods. Just as with variables, there are different types of methods, but many of the aspects you
learned here will return.

defining Behavior: methods

Recall once more the simple class outline as follows. A class contains a block of variable deinitions
(data) and methods (behavior), like so:

class CLASSNAME {
 // VARIABLE DEFINITIONS
 // METHOD DEFINITIONS
}

Or, to be more speciic:

class CLASSNAME {
 // FINAL CLASS VARIABLE DEFINITIONS
 // CLASS VARIABLE DEFINITIONS
 // FINAL INSTANCE VARIABLE DEFINITIONS
 // INSTANCE VARIABLE DEFINITIONS

 // METHOD DEFINITIONS
}

This section discusses in full the concept of class behavior, as deined through its methods.
Speciically, you will see:

 ➤ Instance methods: Methods that are accessible by objects.

 ➤ Class methods: Methods that are not bound to an object but instead belong to the class as
such, that is, to the blueprint of the object.

 ➤ Constructors: A special method that governs how a class is instantiated; you have already
read about this method.

 ➤ The main method: A special method deinition that can be used to run your application.

Finally, you will also learn about argument passing. You have seen how methods can take argument
variables to use within the method’s body. The way variables are passed to methods can be a little
bit daunting in Java at irst—and can introduce subtle bugs when you’re not aware—so it makes
sense to learn about this in a separate section.

instance methods
Just as with instance variables, an instance method (or a member method) is a method that’s acces-
sible only through objects belonging to that class—meaning that they can be accessed only through
an initialized object.

http:///

92 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

A simple example can help to explain this. Suppose you create a Dog class with one method, bark,
like so:

class Dog {
 void bark() { // Instance method
 System.out.println("Woof!");
 }
}

Since bark is an instance method, you irst need to create an object to call it, like so:

Dog myDog = new Dog();
// Call the instance method on the object myDog:
myDog.bark();

That’s all there is to deining instance methods. As a reminder, however, recall that methods always
return a type or void if they don’t return anything. The following example modiies the Dog class to
illustrate this once again:

class Dog {
 boolean isSitting;

 String getBarkSound() {
 return "Woof!";
 }

 boolean isSitting() {
 return isSitting;
 }

 void sit() {
 isSitting = true;
 }

 void stand() {
 isSitting = false;
 }
}

NOTE Note that the sit, stand, and isSitting methods neatly illustrate the
concept of encapsulation, meaning that data in a class (the isSitting vari-
able) should be accessed through instance methods (myDog.sit()), instead
of directly accessing its variables (myDog.isSitting = true). When you learn
about advanced object‐oriented programming concepts in Chapter 8, you
will see how to effectively block accessing instance variables directly, forcing
the use of methods.

Recall that methods returning something (that is, methods that do not return void) always need to
include a reachable return statement in their body. Note that you can also place return statements
in void methods. In this case, the return statement does not actually return something, but just

http:///

Deining Behavior: Methods ❘ 93

exits the method. For example, if you want to exit out of the sit method before sitting down, you
can change this method as follows:

void sit() {
 if (isSitting)
 return; // Exit out method if already sitting
 isSitting = true;
}

This will especially come in handy for governing the control low of your program. This aspect will

be discussed in detail in the next chapter.

Recall that methods can also take one or more arguments. Consider, for example, the following

method declarations:

 ➤ void giveCookie(Cookie cookie) { /*...*/ }

 ➤ void chaseDog(Dog dog) { /*...*/ }

 ➤ void lickPerson(Person person, int nrLicks) { /*...*/ }

 ➤ void giveNickNames(String[] nickNames) { /*...*/ }

 ➤ void giveNickNames(String... nickNames) { /*...*/ }

The last example in this listing will look unfamiliar to you, and it uses a construct called varargs

(variable arguments). Basically, the last two methods are equivalent in the sense that the nickNames

variable will be available as an array of strings in the method body, for instance:

void giveNickNames(String... nickNames) {
 System.out.println("You have given me "+nickNames.length+" names");
}

The way these two methods are called, however, differs. In the irst case (String[] nickNames), the

method is called using an array of strings as an argument, as you’d expect:

String[] newNames = new String[] {"Puppers", "Droopy"};
myDog.giveNickNames(newNames);

In the second case, however (String... nickNames), you can just supply an arbitrary number of

strings (including none at all), like so:

myDog.giveNickNames("Puppers", "Droopy");
// Or any other amount of strings:
myDog.giveNickNames("Puppers", "Droopy", "Tissues", "Clifford");
myDog.giveNickNames();

Varargs can provide a handy way of avoiding having to pass an array explicitly. However, keep in

mind that the varargs argument (the one with the three dots, ...) must always be the last method

argument, and only one varargs argument can be deined for a method. With arrays, on the other

hand, you are free to deine any number of arguments in any order you want. To illustrate:

 ➤ method(String... s1): Allowed

 ➤ method(String... s1, String s2): Not allowed

http:///

94 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 ➤ method(String... s1, int s2): Not allowed

 ➤ method(String... s1, String... s2): Not allowed

 ➤ method(String... s1, Dog... dogs): Not allowed

 ➤ method(String[] s1): Allowed

 ➤ method(String[] s1, String s2): Allowed

 ➤ method(String[] s1, String[] s2): Allowed

 ➤ method(String[] s1, String[] s2, Dog[] dogs): Allowed

 ➤ method(int i1, String[] s1, int i2): Allowed

 ➤ method(int i1, String[] s1, String... s2): Allowed

 ➤ method(int i1, String... s1, String[] s2): Not allowed

You don’t have to memorize this list (or these rules), as Eclipse will simply warn you when you
deine a method incorrectly.

class methods
Just as you’ve seen for class variables, a class method, also denoted as a static method, is a method
that has been deined statically, meaning that this method is shared between all objects (instances)
belonging to the class. Again, as class methods belong to the class blueprint, it is not even necessary
to create objects to be able to use them.

I’ll illustrate this concept with another example from the realm of pets. This time, let’s deine a Cat
class as follows:

class Cat {
 static String preferredFood() {
 return "Fish";
 }
}

Note the static modiier in front of the method declaration is similar to what you’ve seen with static
variables. preferredFood is deined as a blueprint method, returning the preferred food for all cats.
Just as for instance methods, it is possible to call class methods through an object:

Cat myCat = new Cat();
System.out.println("A cat's preferred food is: "+myCat.preferredFood());

However, just as for class variables, this is not good practice, and Eclipse will warn you about such
behavior. Again, you should clearly indicate that you’re accessing a static method by using the
class name, instead of the object variable:

System.out.println("A cat's preferred food is: "+Cat.preferredFood());

This also clearly illustrates that you do not have to create an object to use static methods.

http:///

Deining Behavior: Methods ❘ 95

It is important to note that, since class methods operate on the class as a whole (as a blueprint), they
are not able to access instance variables. For example, the following is not allowed:

class Cat {
 String name;

 static void changeName() {
 name = "ANONYMOUS CAT";
 }
}

What you can do, however, is the following:

class Cat {
 static String preferredFood = "fish";

 static String getPreferredFood() {
 return preferredFood;
 }

 static void setPreferredFood(String newFood) {
 preferredFood = newFood;
 }
}

And call this code as follows:

System.out.println("A cat's preferred food is: "+Cat.getPreferredFood());
Cat.setPreferredFood("milk");
System.out.println("A cat's preferred food is now: "+Cat.getPreferredFood());

This last example illustrates the power of combining class variables with class methods, as they
allow you to create class‐global variables that can be changed if necessary.

NOTE Again, you are seeing the concept of encapsulation in prac-
tice here. Whereas earlier you would have accessed the class variable
preferredFood by writing Cat.preferredFood directly, you now neatly use the
getPreferredFood and setPreferredFood methods to do so. Does this mean
you can no longer write Cat.preferredFood = “milk”? The answer is that—
for now—you can, but again, you will see later how you can effectively block
accessing instance variables directly, forcing the use of methods (and prevent-
ing tampering of variables outside their owning class).

constructors
Constructors are special class methods that are used to initialize objects of that class. If you recall

the discussion on inal variables, you might remember that you had—at the time—no way to create

http:///

96 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

Book objects with an initial title that’s kept as a read‐only variable (using final). You might also

recall that when you do the following:

Book myBook = new Book();

You are writing () as if you are invoking a method, because, in fact, you are—namely the construc-

tor method for the class. Constructor methods are deined similarly as instance methods, with the

following differences:

 ➤ Constructors bear the same name as the class in which they are deined.

 ➤ Constructors have no return type, not even void.

In all the classes you have seen so far, you will notice that you did not deine a constructor method.

The reason for this is that Java will automatically assume a “blank” constructor when you do not

deine one, meaning that deining a class like:

Class Book {

}

Is exactly the same as writing:

class Book {
 Book() {

 }
}

So far, this constructor does not really do much. What can they be used for? A constructor is

invoked each time you instantiate (that is, “construct”) a new object using the new keyword.

Most commonly, constructors will initialize default values for the object being created. To illus-

trate this, let’s return to the earlier issue: you aim to deine a variable to hold the title of a book,

but you want to deine this variable so it can be set only once. As such, the following solution

does not sufice:

class Book {
 String title;
}

As there is nothing preventing multiple assignments to title in this case. You have seen that you can

use the final keyword like so:

class Book {
 final String title = "Initial Title";
}

But of course, you would like to make the initial title user‐speciied and different for each book. The

previous solution does not allow you to write:

Book myBook = new Book();
myBook.title = "The Real Title";

http:///

Deining Behavior: Methods ❘ 97

Finally, you have seen that you can remove the initialization of the variable to make it a so‐called

blank inal variable:

class Book {
 final String title;
}

Recall, however, from our discussion regarding inal variables that Java will complain about the fact

that the title instance variable might not be initialized, as you need to explicitly assign a value.

You have seen before that you can solve this by doing something like:

class Book {
 final String title = "";
}

But again, we have no way to change the title variable to the title we actually want to give to a

particular book. That is, Java will complain about doing something like:

Book myBook = new Book();
myBook.title = "The Real Title";

This happens because we have already initialized the title variable to "", preventing it from being

changed again. So how do you deal with this problem? Well, by initializing inal variables inside

your own constructor, like so:

class Book {
 final String title;

 Book() {
 title = "Initial Title";
 }
}

To supply a user‐speciic title, you now can just modify the constructor method so that it takes an

argument. Watch out when naming your constructor arguments. Remember that using local or

parameter variables with the same name as instance variables will take precedence. Hence, you

should modify the constructor like so:

class Book {
 final String title;

 Book(String t) {
 title = t;
 }
}

Now how do you call this constructor? Easily, by providing an argument when creating an object:

Book myBook = new Book("Title of the Book");

Note that you have seen how Java will assume the presence of a blank constructor taking

no arguments when you do not deine one in the class. If you do deine a constructor with

arguments—like you’ve just seen—the constructor taking no arguments will not be available

http:///

98 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

any longer, unless you also explicitly deine it. Meaning that for this example, you can no longer
write:

Book myBook = new Book("Title of the Book"); // This works
Book myBook = new Book(); // This no longer works

You might be confused by the wording of “unless you also explicitly deine it.” Is it possible
to deine multiple constructor methods? Indeed it is; consider, for example, the following class
deinition:

class Book {
 final static int DEFAULT_YEAR = 2014;
 final String title;
 final int releaseYear;
 int copiesSold;

 Book(String t) {
 title = t;
 releaseYear = DEFAULT_YEAR;
 // copiesSold will default to 0
 }

 Book(String t, int r) {
 title = t;
 releaseYear = r;
 // copiesSold will default to 0
 }

 Book(String t, int r, int s) {
 title = t;
 releaseYear = r;
 copiesSold = s;
 }
}

Given everything you’ve seen so far, you should be able to understand this class. Take some time to
igure out what is happening here, and make sure to note the following:

 ➤ Three constructors are available for this class, each taking a different number of arguments.

 ➤ One inal static variable is acting as a constant that will be used as a default initializing value
in one of the constructors.

 ➤ The two other blank inal variables (non‐static) need to be initialized by every constructor.

 ➤ Constructors can also initialize noninal variables.

NOTE Using methods with the same name—but taking different arguments—
is provided by a feature called method overriding. As the name suggests, this
feature is not only available for constructors, but in fact for every method.
Method overriding provides advanced capabilities, so it’s covered in‐depth in
Chapter 8.

http:///

Deining Behavior: Methods ❘ 99

You might be annoyed by the fact that some statements, such as title = t;, are duplicated across
different constructors, while in fact the constructors are forming a hierarchy. Luckily, it is possible
for constructors to call other constructors to perform a piece of the requested initialization, as the
following code snippet shows:

class Book {
 final static int DEFAULT_YEAR = 2014;
 final String title;
 final int releaseYear;
 int copiesSold;

 Book(String t) {
 // Call other constructor:
 this(t, DEFAULT_YEAR, 0);
 }

 Book(String t, int r) {
 // Call other constructor:
 this(t, r, 0);
 }

 Book(String t, int r, int s) {
 title = t;
 releaseYear = r;
 copiesSold = s;
 }
}

Note the use of the keyword this here. I’ve briely mentioned this keyword before when illustrat-

ing how you can use it to refer to the current object (this.title), but here it acts as a way to call

another constructor. Again, don’t worry if this is still a bit overwhelming, as the this keyword will

be revisited later. In fact, for now, I will avoid deining multiple constructors until you are ready to

move a step further, so that you will not run into the intricacies relating to deining more than one

constructor. So for now, just keep in mind that it is possible to create multiple constructors within a

class.

NOTE When you think about the concept of constructors—or if you’re com-
ing from other programming languages such as C++—you might wonder if the
counterpart of destructors also exists. In Java, it does not, as the JVM itself will
keep an eye out for objects that are no longer accessible and should thus be
removed automatically. Consider for example:

Book myBook = new Book("My first book");
myBook = new Book("My second book");
myBook = null;

What happens with the "My first book" object stored in the myBook vari-
able once you assign the second book (a new object) to this variable? Since

continues

http:///

100 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

you have no way to refer to this object anymore (which is now loating around
nameless somewhere in the computer memory), the JVM will automatically
clean up this piece of memory (this is performed by a mechanism called gar-
bage collection) to remove (destroy) the object. The same happens when
assigning null to the variable with the second object. The variable now refers
to nothing, and the second object can also no longer be referenced, and is
thus removed as well.

Whenever the JVM cleans up objects in this manner, it will call a special built‐in
method, finalize(), on them. Programmers can implement their own inal-
ization method if they desire, which comes in handy when objects are utiliz-
ing resources that need to be cleanly closed when they are removed (think,
for example, about open network connections). In practice, however, there is
rarely a need to override the default behavior.

Again, you need to learn how to walk before you can run, so for now, just be
glad about the fact that Java takes care of these cleanup aspects for you. You
do not need to concern yourself with writing destructors.

the main method
Earlier in this chapter, you learned that there exists one special method used as an entry point to
actually execute (run) your program—the so‐called main method.

The main method can be deined in any class, but is always deined as:

public static void main(String[] args) {

}

Meaning that the main method:

 ➤ Is publicly accessible. (public is an access modiier. I have ignored access modiiers for now,

but for the main method, you have to deine it.)

 ➤ Is a static class method, as no objects exist yet when a program is started.

 ➤ Returns nothing (void).

 ➤ Takes one argument, the arguments passed to the program.

Let’s have a closer look at the main method. Suppose you once more deine a simple Book class to

look as follows:

class Book {
 final String title;
 final int releaseYear;
 int copiesSold;

continued

http:///

Deining Behavior: Methods ❘ 101

 Book(String t, int r) {
 title = t;
 releaseYear = r;
 }

 void sell(int nrCopies) {
 copiesSold += nrCopies;
 }

 int nrCopiesSold() {
 return copiesSold;
 }
}

If you now want to create an actual program that can be executed, the simplest way to do so is by
creating a main method within this class, like so:

class Book {
 final String title;
 final int releaseYear;
 int copiesSold;

 Book(String t, int r) {
 title = t;
 releaseYear = r;
 }

 void sell(int nrCopies) {
 copiesSold += nrCopies;
 }

 int nrCopiesSold() {
 return copiesSold;
 }

 public static void main(String[] args) {
 Book firstBook = new Book("First Book", 2004);
 Book secondBook = new Book("Another Book", 2014);
 firstBook.sell(200);
 System.out.println("Number of copies sold of first book is now: "
 +firstBook);
 System.out.println("Title of the second book is: "+secondBook.title);
 }
}

In general, however, it is not good practice to mix a main method with a class deinition relating to
a real‐world concept. As such, it is better to create a separate “controller” class to separate program

logic from class concepts, like so:

// File Book.java:
class Book {
 final String title;
 final int releaseYear;
 int copiesSold;

http:///

102 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 Book(String t, int r) {
 title = t;
 releaseYear = r;
 }

 void sell(int nrCopies) {
 copiesSold += nrCopies;
 }

 int nrCopiesSold() {
 return copiesSold;
 }
}

// File Program.java:
class Program {
 public static void main(String[] args) {
 Book firstBook = new Book("First Book", 2004);
 Book secondBook = new Book("Another Book", 2014);
 firstBook.sell(200);
 System.out.println("Number of copies sold of first book is now: "
 +firstBook);
 System.out.println("Title of the second book is: "+secondBook.title);
 }
}

Some developers like to supply main methods in their class deinitions in larger programs as a quick
way to test if the class is working correctly, without having to run the complete program and go
through a series of steps. This is ine, so long as you keep these “test” mains small and short, for
testing purposes only, and remember that there exist better ways to perform thorough code tests.
This remark does illustrate another aspect, though, namely the fact that a Java project can contain
multiple main methods. In fact, it’s possible to provide a main method in every class you deine. So
how does Eclipse or Java know how to execute which one? To igure this out, you’ll return to the
very irst example context you saw at the beginning of this chapter: the course administration pro-
gram. The following Try It Out will guide you from beginning to end to re‐create the course admin-

istration example, using all of the knowledge you’ve gained so far.

trY it out Course and Student administration revisited

Let’s revisit the course and student administration example you saw earlier, now applying all of the

knowledge you’ve gained so far.

 1. It’s best to create a new project in Eclipse. Remember you can do so by navigating to File New

and then selecting Java Project in Eclipse. A dialog window will open asking you to ill in a project

name, such as CourseAdministrationDoneWell. You can then press Finish to create the project.

 2. Create the Course.java class by right‐clicking the src folder in the package explorer in Eclipse

and then selecting New Class. Deine this class as follows:

import java.util.HashSet;

class Course {
 static int nextId = 0;

http:///

Deining Behavior: Methods ❘ 103

 final int id;
 final String name;
 final HashSet<Student> registeredStudents =
 new HashSet<Student>();

 Course(String n) {
 id = nextId;
 nextId++;

 name = n;
 }

 String getName() {
 return name;
 }

 void registerStudent(Student s) {
 registeredStudents.add(s);
 }

 void unregisterStudent(Student s) {
 registeredStudents.remove(s);
 }

 HashSet<Student> registeredStudents() {
 return registeredStudents;
 }

 int nrOfRegisteredStudents() {
 return registeredStudents.size();
 }
}

 3. Similarly, create a Student class with the following content:

class Student {
 static int nextId = 0;

 final int id;
 final String firstName, lastName;

 Student(String fn, String ln) {
 id = nextId;
 nextId++;

 firstName = fn;
 lastName = ln;
 }

 String getFirstName() {
 return firstName;
 }

 String getLastName() {
 return lastName;
 }

http:///

104 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 void registerForCourse(Course c) {
 c.registerStudent(this);
 }

 void unregisterForCourse(Course c) {
 c.unregisterStudent(this);
 }
 }

 4. Create a Program class containing the main method:

class Program {
 public static void main(String[] args) {
 p("Welcome to the course administration program");
 p("--");
 p("");

 p("Creating two courses...");
 Course courseA = new Course("First Course");
 Course courseB = new Course("Second Course");

 p("- courseA ID is: "+courseA.id);
 p("- courseA name is: "+courseA.getName());
 p("- courseB ID is: "+courseB.id);
 p("- courseB name is: "+courseB.getName());
 p("");

 p("Creating two students...");
 Student student1 = new Student("Alice", "The Student");
 Student student2 = new Student("Bob", "McStudent");

 p("- student1 ID is: "+student1.id);
 p("- student1 name is: "+student1.getFirstName()+", "+
 student1.getLastName());
 p("- student2 ID is: "+student2.id);
 p("- student1 name is: "+student2.getFirstName()+", "+
 student2.getLastName());
 p("");

 p("Registering for courses...");
 student1.registerForCourse(courseA);
 student1.registerForCourse(courseB);
 courseA.registerStudent(student2);

 p("- courseA number of students: "+courseA.nrOfRegisteredStudents());
 p("- courseB number of students: "+courseB.nrOfRegisteredStudents());
 }

 static void p(String l) {
 System.out.println(l);
 }
}

 5. To run this program from Eclipse, make sure the Program class is open and the main method is
active (by putting your cursor inside the method body), and then press the Run button. Eclipse will
show you the name of the class that contains the main method that will be run.

http:///

Deining Behavior: Methods ❘ 105

How It Works

Now take a look at how it works.

 1. You’re creating two new Student and Course classes in a new Eclipse project.

 2. For the Course class, note the use of the nextId variable to automatically use an incrementing coun-
ter to provide IDs for courses. This is a well‐known pattern that you will see show up commonly in

Java code. Also note the use of the HashSet object. A HashSet is a set, storing a bunch of objects

(Student objects, in this case). The HashSet class is built‐in by default in Java, but to enable its use,

you irst have to import it, hence the import statement before deining the class itself. Don’t concern

yourself too much with its usage for now, but make sure you understand the registerStudent and

unregisterStudent methods, which add and remove students to and from the set.

 3. For the Student class, you’re using the keyword this to pass the current student object (meaning

the object the method was called on) to the course object to register or unregister a student, as it is

the course object that keeps a list of registered students.

 4. The Program class contains the main method, and it creates two courses, gives some information

about them, creates two students, and registers them in the courses. The p method just serves as a

shorthand to avoid having to write System.out.println all the time.

 5. You then run this program from Eclipse by invoking the main method in the Program class. Note

that it is possible at this point to create another class containing a main method and run that one in

Eclipse by just making sure the main method you want to run is open in the code editor.

access modifiers

You might have noticed that this code uses courseA.id (directly accessing a vari-

able) and courseA.getName() (accessing a variable through a method) in the Try

It Out. In other examples, you read that it’s generally better to access variables

through methods whenever possible instead of directly accessing variables.

If it is generally recommended to go through methods, then why does Java allow

you to access courseA.id directly? The reason for this is due to the access modiier

being used. Classes, variables, and methods can all take access modiiers. In Java,

four access modiiers exist:

public: For classes, methods, and member variables (class or instance)

protected: Methods and member variables (class or instance) (not for classes)

no modiier: For classes, methods, and member variables (class or instance)

private: Methods and member variables (class or instance) (not for classes)

You have seen one of these (public) already, namely in the main method, where the

inclusion of this access modiier was mandatory:

public static void main(String[] args)

continues

http:///

106 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

For all the other classes, methods, and variables you’ve seen so far, however, I’ve
avoided talking about access modiiers and just supplied no modiier. So what do
these modiiers actually do? You will read an in‐depth discussion about them in

Chapter 8, but for now, just be aware that access‐level modiiers determine which

other classes can use the class, method, or variable the modiier relates to. When no

modiier is supplied, as with these examples, Java will make the class, method, or

variable accessible to the class itself (luckily, this should always be the case, other-

wise the method or variable would not be of much use), and also to classes living in

the same package. So far, you have not dealt with packages, so that each class you

created in Eclipse lives in the so‐called “default package,” and each class can access

the variables from another class.

This default behavior goes against the encapsulation ideology of object‐oriented

programming, and it is a little bit of a pity that this is chosen as the default behav-

ior in Java. For now, you can afford to be a little sloppy, but you will notice that

you start to encapsulate more and more data by wrapping methods around them

when you deine classes, until you arrive at Chapter 7, where you will be introduced

to access modiiers for real—as to prevent direct variable access. One question you

might have at this point is whether it ever makes sense to make a member variable

directly accessible (by supplying no modiier or by making it public). The answer

is very rarely. In most cases, it pays off to keep data hidden within the object and

use methods as guards around it. Only for very simple “data structure” classes

(such as a Point class with x and y variables) is it okay to allow direct access.

The previous Try It Out mentioned that it is possible to add more than one main method to your

Java projects (although they should be contained in different classes, of course). You might be

wondering how Java decides which main method to run when running your programs directly

(without going through Eclipse). The answer is that Java will either rely on a special description

ile, or on the users passing the class name they want to run the main method from explicitly.

If you’re interested in knowing more, you can explore the following Try It Out. The Try It Out

will also show you how to utilize the main method’s single String[] argument, which we’ve

ignored so far.

trY it out Working with program arguments

This exercise demonstrates how to use program arguments.

 1. Create a new Eclipse project and add a single Program class with the following main method:

class Program {
 public static void main(String[] args) {
 p("You have supplied "+args.length+" arguments...");

continued

http:///

Deining Behavior: Methods ❘ 107

 for (int i = 0; i < args.length; i++) {
 p("Argument "+i+" equals: "+args[i]);
 }
 p("");
 }

 static void p(String l) {
 System.out.println(l);
 }
}

 2. When running this code from Eclipse, you will notice that the args variable is empty (the array has
a length of zero).

 3. You’re going to create a so‐called “runnable JAR” ile. JAR stands for Java ARchive, which is

basically the same as a compressed folder (a ZIP ile) containing compiled classes. A runnable

JAR ile is a JAR ile that can be executed. To execute it, right‐click your project folder in Eclipse

and choose Export. Next, navigate to Java and select Runnable JAR File. A wizard will pop up

asking you to select a launch coniguration and an export destination. In the launch conigura-

tion, you can select the class Java should use to run the main method. In this case, select Program

‐ YOURPROJECT (of course, YOURPROJECT represents the name you’ve chosen). If this option does

not appear in the drop down, you might have forgotten to run the main method in Eclipse irst

(see Step 2). As the export destination, you will create a JAR ile somewhere in the desktop (C:\

Users\USERNAME\Desktop\YOURPROJECT.jar, replacing USERNAME with your actual username).

 4. Press Finish to create the runnable JAR, which should then appear on your desktop. Normally, it is

possible to just double‐click this ile to run it (like with normal programs), but since you have not

created a GUI application, you need to run this JAR from the command line. Open a command

window (run cmd.exe in Windows) and execute the following:

cd "C:\Users\USERNAME\Desktop\"
java -jar courseadministration.jar

 5. You should get back the same output as the Eclipse console gave you earlier. Now let’s take a look

at the args variable. Keeping the command‐line window open, execute the following:

java -jar courseadministration.jar Argument1 Argument_2 Argument-3 Argument 4

 6. Take note of the output now. The program will report that you have supplied ive arguments:

Argument1, Argument_2, Argument‐3, Argument, and 4. This immediately shows you that argu-

ments are just strings (hence the String array) coming from what you pass in the program call

(split based on spaces, ‘ ‘). What if you want to include a space in your argument? Then you just

enclose your arguments in double quotes, like so:

java -jar courseadministration.jar "first argument" "second argument"

 7. The inal question that remains is how Java knows which main method to run in a given JAR ile.

This information is stored in a special META‐INF folder inside the JAR ile. This folder contains a

MANIFEST.MF ile, which will in this case contain the following information (you can hunt down

http:///

108 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

this ile yourself by opening YOURPROJECT.jar in an archive manager, such as WinZIP, WinRAR,
or 7‐Zip, but this is by no means required):

Manifest-Version: 1.0
Class-Path: .
Main-Class: Program

 8. Finally, if you want to run a main method from a JAR ile not containing a MANIFEST.MF ile (not

exported as a runnable JAR ile in Eclipse) or want to run another main method, you can do so by

executing the following command:

java -classpath courseadministration.jar Program

How It Works

Now take a look at how it works.

 1. When running programs from Eclipse, the args variable will be empty by default. It is also possible

to supply arguments to programs from Eclipse, but this is a bit involved and generally not required.

 2. In the next steps, you create the runnable JAR. Eclipse will compile your classes, compress them,

and store them in the JAR ile together with a MANIFEST.MF ile.

 3. Next, you run the program from the command line:

cd "C:\Users\USERNAME\Desktop\"
java -jar courseadministration.jar

You should get back the same output as the Eclipse console gave you earlier. The irst command

(cd) navigates to the desktop directory where you saved your JAR. The second command (java)

calls Java and tells it to execute your JAR in the command line. JAR iles can be distributed to

others and run on all platforms where a Java Runtime Environment (JRE) is available.

 4. The next command does the same, but passes in some arguments from the command line to the

program:

java -jar courseadministration.jar Argument1 Argument_2 Argument-3 Argument 4

Why are arguments useful? In most cases—especially for command‐line programs—they sup-

ply coniguration parameters to the program at hand, for example, an argument can indicate the

ilename that should be read in by a program, or an argument can specify an image‐conversion

program indicating the desired quality of the resulting image, and so on. In most cases, however,

you will not need to use program arguments in day‐to‐day programming, as it is oftentimes easier

(and cleaner) to either let your program read in a coniguration ile (you will see how to deal with

ile input and output in a later chapter) or create a GUI to provide coniguration options to users

(GUIs will be dealt with later as well).

 5. The next steps show how Java determines which main method to run from a JAR ile, either by

using a MANIFEST.MF ile (created by Eclipse), or by passing this manually:

java -classpath courseadministration.jar Program

This command will add your JAR ile to the Java classpath (the locations in which Java will look

to ind classes) and then supplies the class name (Program) from which to run the main method.

http:///

Deining Behavior: Methods ❘ 109

method argument Passing
There is one inal point I want to make in regard to the way parameter variables are passed to meth-
ods. Argument passing can be daunting and tricky in Java at irst sight, so I’ve devoted a section to
this concept to get the point across.

To start the discussion, consider the following code:

class Test {
 int a = 4;

 static void increaseInt(int anInt) {
 anInt++;
 }

 public static void main(String[] args) {
 Test t = new Test();
 System.out.println("Instance var a is: "+t.a);
 Test.increaseInt(t.a);
 System.out.println("Instance var a is now: "+t.a);
 }
}

What will this code output?

Instance var a is: 4
Instance var a is now: 4

Even though you have supplied the instance variable to the method, after the method inishes, the
value of this variable remains unchanged. This might lead you to believe that the anInt variable will
be considered as a copy of t.a. In programming jargon, this behavior is called “pass by value.”

This is easy enough to understand until you try the same trick with a non‐primitive data type, such

as arrays:

class Test {
 int[] array = new int[]{1,2,3};

 static void increaseFirstInt(int[] anIntArray) {
 anIntArray[0]++;
 }

 public static void main(String[] args) {
 Test t = new Test();
 System.out.println("First element in array is: "+t.array[0]);
 Test.increaseFirstInt(t.array);
 System.out.println("First element in array is now: "+t.array[0]);
 }
}

The output given now? Completely different:

First element in array is: 1
First element in array is now: 2

http:///

110 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

Is Java going haywire? Not really. . . Some sources might explain this behavior by telling you
that primitive types in Java are passed by value (as seen before), but all other types are passed
by reference, meaning that the argument variable will refer to the same location in memory as
the original variable, and thus, any changes you make in the argument variable will be relected

in the original variable (as they both reference the same location). This explanation, however, is

wrong.

To see why, consider the following slight modiication of this example:

class Test {
 int[] array = new int[]{1,2,3};

 static void increaseFirstInt(int[] anIntArray) {
 anIntArray[0]++;
 }

 static void changeIntArray(int[] anIntArray) {
 anIntArray = new int[] {100,200,300};
 }

 public static void main(String[] args) {
 Test t = new Test();
 System.out.println("First element in array is: "+t.array[0]);
 Test.increaseFirstInt(t.array);
 System.out.println("First element in array is now: "+t.array[0]);
 Test.changeIntArray(t.array);
 System.out.println("First element in array is now: "+t.array[0]);
 }
}

The output is probably different than what you would expect:

First element in array is: 1
First element in array is now: 2
First element in array is now: 2

If Java indeed passes non‐primitive types by reference, the changeIntArray would effectively put a

new integer array in the same memory address the old array was stored in, and the inal line of code

would output 100 instead of 2, but this is not what is happening here. The truth is that all argu-

ments in Java are passed by value. The key thing to understand as well, however, is that Java objects

are internally represented as a reference to a location in memory, and this reference is passed as a

value. That is, the memory address of objects is passed by value.

At irst sight, it seems like this should make no difference, but it does in fact help to igure out what

is happening in this example. Step through the code line by line. First, you create a new variable,

called t, as such:

Test t = new Test();

Try not to think of this variable as containing all information and behavior stored in the Test

object (this helps you understand the difference between classes and objects, but is not the way

Java uses object variables), but just as a piece of paper holding an address in memory, as shown in

Figure 4-4.

http:///

Deining Behavior: Methods ❘ 111

figure 4-4

int[] array {1,2,3}
.......

Memory Address
#000023

Next, you call the following method:

Test.increaseFirstInt(t.array);

t.array is also a non‐primitive type, so once again, try to imagine this variable as a piece of paper

holding an address. When you write t.array, think of Java irst going to the address in memory

written on the piece of paper for t, then retrieving the array variable there, which contains another

address pointing toward the location in memory where the actual data can be found. When you

write t.array[0], you would thus traverse two memory addresses to eventually ind the actual inte-

ger data. Figure 4-5 shows a simpliied view of the basic idea.

figure 4-5

Memory Address
#000023

Memory Address
#000025

Test t int[] t.array

t.array[0]

t object
(general info, such

as length of
following variable

addresses)

array var
=

000025

array[0]
= 1

array[1]
= 2

array[2]
= 3

23 24 25 26 27

The address written on the t.array piece of paper is passed to the increaseFirstInt method by value

(!). This means that you do not pass the piece of paper itself, but instead take another sheet of paper,

write down the same address, and use that piece within the method (a copy of the address is made).

http:///

112 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

Memory Address
#000023

Memory Address
#000025

Test t int[] t.array

Memory Address
#000025

anintArray

(A copy is made to pass
as method argument, but
contains same memory

address reference.)

t object
(general info, such

as length of
following variable

addresses)

array var
=

000025

array[0]
= 1

array[1]
= 2

array[2]
= 3

23 24 25 26 27

anintArray var
= 000025

28

figure 4-6

However, when this method executes the following:

anIntArray[0]++;

It will, of course, point to the same address in memory, as you have created a copy of the piece of
paper, but both contain the same address. This is why the changes are relected in the member vari-

able, even though your second piece of paper (anIntArray) is thrown away once the method exits.

Figure 4-6 depicts this in the simpliied view you’ve been following.

Now let’s take a look at what happens next:

Test.changeIntArray(t.array);

Again, there is the same reasoning. You do not pass the t.array piece of paper itself, but again

make a copy to pass to the changeIntArray method, which is named anIntArray. However, this

method calls:

anIntArray = new int[] {100,200,300};

Meaning that you create a new object and scribble down its address on the copied anIntArray

sheet of paper, overriding the old one, which is different from the one written in t.array. This

means that all the changes you then make to anIntArray will not be relected in the member vari-

able (as the addresses differ). Even more, the object stored in the location referred to by anIntAr-

ray will cease to exist when the method exits, as the piece of paper is discarded, and Java will

detect that the object living at that address can no longer be accessed through any variable, as

shown in Figure 4-7.

http:///

Deining Behavior: Methods ❘ 113

figure 4-7

Memory Address
#000023

Memory Address
#000025

Test t int[] t.array

Memory Address
#000029

anintArray = new
int[] {100,200,300};

(Memory address
reference is overwritten.)

t object
(general info, such

as length of
following variable

addresses)

array var
=

000025

array[0]
= 1

array[1]
= 2

array[2]
= 3

23 24 25 26 27

anintArr
ay var =
000029

anintArr
ay[0] =

100

anintArray
ay[1] =

200

anintArray
ay[2] =

300

28 29 30 31

NOTE Again, it’s important to take special care when dealing with Strings.
Strings are a non‐primitive type, meaning that you might try to write the fol-
lowing code:

class Test {
 String a = "a";

 static void changeString(String s) {
 s = "b";
 }

 public static void main(String[] args) {
 Test t = new Test();
 System.out.println("a is: "+t.a);
 Test.changeString(t.a);
 System.out.println("a is now: "+t.a);
 }
}

But see that the changes you make to the String are not relected in the mem-
ber variable. The reason for this is simple. Remember that assigning (new) val-
ues to a String will always create a new String object. This code is thus equal
to writing:

class Test {
 String a = new String("a");

continues

http:///

114 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

One interesting remark to make in this context is about inal variables. As you have seen, instance
variables and local variables can be declared as being inal to prevent multiple initializations.
Parameter variables can also be inal, meaning that it’s possible to write a method like so:

class Test {
 void editNames(final String[] argNames) {
 // Will not work due to final modifier:
 // argNames = new String[]{"Caesar"};

 // This will work:
 argNames[0] = "Caesar";
 }
}

This completely corresponds with the deinition of inal variables as explained before, keeping in
mind that inalizing a variable is not the same as “freezing” it completely, but it does prevent new
initializations. However, since argNames will be discarded once the method is exited, why would
you even bother to declare a parameter variable as inal? One particularly straightforward reason
is to prevent you from accidentally re‐initializing the variable, to prevent you from overwriting the

address stored on a variable’s piece of paper with a new one. When you actually want methods to

directly modify an object, you in fact want to avoid creating a new object, as the address referenced

by the argument will then change and be discarded once you exit the method. Using final helps

prevent such mistakes.

This concludes the overview on beginning object‐oriented programming in Java. You have covered

a lot of ground. You have seen how to deine classes, with data being represented by instance and

class variables—inal or not—and behavior being represented by instance and class methods. You

have also seen how to deine class constructors, and read about the special main method to execute

your programs.

 static void changeString(String s) {
 s = new String("b");
 }

 public static void main(String[] args) {
 Test t = new Test();
 System.out.println("a is: "+t.a);
 Test.changeString(t.a);
 System.out.println("a is now: "+t.a);
 }
}

As such, modifying the argument variable s will cause a new String object to
be created, which will also cause the address referenced to by that variable to
change, and be different from the original address in t.a.

continued

http:///

Java Se Built‐in classes ❘ 115

The complete class deinition “template” now looks like this:

class CLASSNAME {
 // FINAL CLASS VARIABLE DEFINITIONS
 // CLASS VARIABLE DEFINITIONS
 // FINAL INSTANCE VARIABLE DEFINITIONS
 // INSTANCE VARIABLE DEFINITIONS

 // CONSTRUCTOR METHOD DEFINITIONS
 // INSTANCE METHOD DEFINITIONS
 // CLASS METHOD DEFINITIONS

 // MAIN METHOD DEFINITION (OPTIONAL)
}

The inal section of this chapter guides you through Java’s standard edition built‐in classes and high-

lights some particularly useful ones that will return in many of the following chapters.

Java se Built‐In Classes

Recall from the introduction to Java in Chapter 2 that there are multiple “editions” of Java. The most

widely used edition—the one used here as well—is aptly named Java SE, Standard Edition. This edi-

tion comes with class libraries containing a number of built‐in classes that meet most of your needs

you will encounter while programming. One of them—the HashSet—was already briely discussed in

the last Try It Out, as a simple way to keep a set of objects. This class is part of the so‐called “collec-

tions” class library, which contains a number of other helpful “array alternatives” as well.

The following subsections provide a short tour through all of Java SE’s frequently used built‐in

classes. I’ve organized them by their packages. I still need to discuss packages in-depth, but for now,

just think of them as a way to organize classes using a naming scheme that looks a bit like web

URLs. For example, both the Java HashSet and ArrayList classes are found in the package java.

util. Their full canonical names are java.util.HashSet and java.util.ArrayList, which is all

you need to know for now.

Classes in the java.lang package
The java.lang package contains core classes related to the Java language, including:

 ➤ java.lang.Object: Every class you deine silently inherits all the behavior deined in this class.

This class contains methods such as equals (to perform object equality checks), clone (to make

a copy of an object), and toString (to retrieve a textual representation of an object), which can

be overridden and customized by programmers. Chapter 8 will tell you more about this.

 ➤ java.lang.Exception and all its subclasses: Classes representing errors. Chapter 6 talks

more about exceptions, errors, debugging, and testing.

 ➤ java.lang.String, as well as wrapper classes for all primitive types (java.lang.Integer,

java.lang.Double, and so on).

 ➤ java.lang.StringBuilder: An alternative class for dealing with strings that’s especially

helpful if you need to perform a lot of modiications to a String.

http:///

116 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 ➤ java.lang.System: Class providing system operations.

 ➤ java.lang.Math: Class providing methods to perform basic mathematics.

Other than this, this package also provides a number of classes to deal with complex Java aspects
such as reference management, relection, and process spawning and control. All advanced concepts

which you can safely ignore for now.

The two classes that jump out, however, and that can be very useful are the Math and

StringBuilder classes.

Math contains two static constants (E, the base of natural logarithms, and PI, the ratio of the cir-

cumference of a circle to its diameter), as well as a number of methods—abs, max, min, ceil, floor,

sin, cos, tan, pow, and sqrt—to help out with mathematics when programming.

trY it out Mathematics in Java

Here is a short exercise to begin using mathematics in Java.

 1. Create a MathTester class in Eclipse with the following content:

class MathTester {
 public static void main(String[] args) {
 double num1 = 2.34;
 double num2 = 1.56;

 System.out.println(Math.max(num1, num2));
 System.out.println(Math.min(num1, num2));
 System.out.println(Math.sqrt(num1));
 System.out.println(Math.pow(num1, num2));
 }
}

 2. Run the main method and observe the output.

How It Works

Now take a look at how it works.

 1. The Math class contains a number of methods to help out with mathematics when programming.

Take your time to explore other methods using Eclipse’s context menu.

 2. Since the Math class belongs to the java.lang package, you do not need to write an import state-

ment but can use this class directly.

 3. All of Math’s methods are static, meaning that you do not have to create a Math object to be able

to use its methods. This is a common pattern for “utility” classes in Java, which are classes con-

taining a set of helpful grouped methods that can be statically accessed.

The StringBuilder class represents a mutable sequence of characters, compared to a normal String that

represents an immutable sequence of characters (which is why Java creates a new String object every

time you modify a String). The following Try It Out shows where the StringBuilder can be useful.

http:///

Java Se Built‐in classes ❘ 117

trY it out StringBuilder versus String

Different classes can be used for working with strings. This exercise will help you differentiate two
common classes: String and StringBuilder.

 1. Create a StringTester class in Eclipse with the following content:

class StringTester {
 public static void main(String[] args) {
 String string = "";
 long startTime1 = System.currentTimeMillis();
 for (int i = 0; i < 100000; i++) {
 string += "a";
 }
 long endTime1 = System.currentTimeMillis();

 StringBuilder stringBuilder = new StringBuilder();
 long startTime2 = System.currentTimeMillis();
 for (int i = 0; i < 100000; i++) {
 stringBuilder.append("b");
 }
 long endTime2 = System.currentTimeMillis();

 System.out.println("String took: "+(endTime1-startTime1)+"ms");
 System.out.println("StringBuilder took: "+(endTime2-startTime2)+"ms");
 }
}

 2. Run this piece of code to benchmark the performance of String (100,000 times adding a charac-
ter) with StringBuilder.

How It Works

Now take a look at how it works.

 1. This code benchmarks the performance of the StringBuilder class against normal strings, by per-
forming 100,000 single character concatenations. The example uses a for loop here, which I’ve not
discussed in-depth yet, but the meaning is clear—you simply count from 0 to 100,000.

 2. When running the benchmark, you should get something like the following output. Observe the
drastic difference:

String took: 3231ms
StringBuilder took: 5ms

classes in the java.io and java.nio Packages
The java.io package provides classes to deal with input and output, for instance to deal with read-
ing and writing iles. In Java SE 1.4, New IO (java.nio) was added to optimize performance and to
include a number of new features. Chapter 7 discusses how to deal with iles in detail, and you will
revisit these classes there.

http:///

118 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

classes in the java.math Package
The java.math package provides classes supporting multi-precision arithmetic, such as BigDecimal
and BigInteger. These classes come in helpful in cases where rounding errors, which can occur
when working with normal loat or double types, are unacceptable, e.g., in inancial and scientiic

applications.

Contrary to what logical thinking would imply, the main Math class is found in java.lang and not

in java.math (and is also not duplicated there).

classes in the java.net, java.rmi, javax.rmi, and org.omg.
corBa Packages

The classes contained in java.net allow functionality for networking, talking to web servers,

and other transactions. java.rmi and javax.rmi contain classes dealing with Remote Method

Invocation (RMI), the object‐oriented counterpart of RPC (Remote Procedure Calls). The org.omg.

CORBA package provides a number of complex classes supporting remote communication between

applications using the CORBA RMI protocol, but is not widely used anymore.

The keyword to remember here is “communication.” Providing an in‐depth discussion on net-

work programming is out of scope for this book, but you will see in Chapter 10 how to access web

sources with Java, where these packages and their classes show up again.

classes in the java.awt and javax.swing Packages
The classes contained in java.awt (Abstract Window Toolkit) provide access to a basic set of GUI

(graphical user interface) widgets, as well as classes to provide support for clipboard operations

(copying and pasting) and input devices (mice, keyboards, and the like). Swing —java.swing—pro-

vides a collection of classes that builds on top of the Abstract Window Toolkit to extend GUI sup-

port with more advanced routines.

You will learn about building graphical user interfaces in Java in Chapter 11, where these packages

and their classes are covered in full.

Note that Java 8 also introduces a large update for the so‐called JavaFX technology. JavaFX

describes a series of packages aiming to bring rich, graphical applications to a number of devices

and web browsers, and is intended to replace Swing in the future, although both Swing and

JavaFX will remain in the JRE for some time. Main features of JavaFX include support for mod-

ern 3D graphics and web technologies. On the other hand, building applications with JavaFX

has a steeper learning curve than Swing, so the latter remains the preferred option in most cases

for beginners, and for the development of applications that do not require advanced graphical

capabilities.

classes in the java.util Package
The java.util built‐in classes in Java contain a large number of classes to deal with various data struc-

tures. You will heavily utilize these classes throughout the rest of the book, and as they will no doubt be

the built‐in classes in Java SE you will use the most, it makes sense to discuss them in more detail.

http:///

Java Se Built‐in classes ❘ 119

collections

A large part of the classes contained in the java.util package belong to the Java’s collections
framework (the JCF). The Collections API provides a number of general‐purpose data structures,

which generally can be described as “better alternatives for arrays.” One of these, the HashSet, you

briely encountered in the last Try It Out, as a simple way to keep a set of objects.

To illustrate why Java’s Collections API is so useful, consider this example of how to implement a set

of Strings, using only arrays:

class SetAsArray {
 String[] items;

 SetAsArray() {
 items = new String[] {};
 }

 int indexOf(String item) {
 // Check if item is already present
 for (int i = 0; i < items.length; i++) {
 if (items[i].equals(item)) {
 return i;
 }
 }
 return -1;
 }

 boolean hasItem(String item) {
 return indexOf(item) > -1;
 }

 void addItem(String item) {
 if (hasItem(item)) {
 // Item already present
 return;
 }

 // Make new array
 String[] newItems = new String[items.length + 1];

 // Add existing items
 System.arraycopy(items, 0, newItems, 0, items.length);

 // Add item to new array
 newItems[newItems.length - 1] = item;

 // Set new array
 items = newItems;
 }

 void removeItem(String item) {
 if (!hasItem(item)) {
 // Item not present
 return;
 }

http:///

120 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 // Make new array
 String[] newItems = new String[items.length - 1];

 // Add existing items except item to be removed
 System.arraycopy(items, 0, newItems, 0, indexOf(item)); // First half
 System.arraycopy(items, indexOf(item) + 1, newItems, indexOf(item),
 items.length - indexOf(item) - 1); // Second half

 // Set new array
 items = newItems;
 }

 void showContents() {
 System.out.println("Set contains " + items.length + " elements");
 for (int i = 0; i < items.length; i++) {
 System.out.println(" - Element " + i + ": " + items[i]);
 }
 }

 int size() {
 return items.length;
 }

 public static void main(String[] args) {
 SetAsArray mySet = new SetAsArray();
 mySet.addItem("A");
 mySet.addItem("B");
 mySet.addItem("C");
 mySet.addItem("A");
 mySet.showContents();
 mySet.removeItem("B");
 mySet.showContents();
 mySet.addItem("D");
 mySet.showContents();

 }
}

As shown, the SetAsArray class provides functionality for adding, removing, and looking up
items, as well as for returning the size of the set. This example might look a bit daunting (it uses
a for loop to iterate over the array and the if construct to govern program low, which you’ll

read about in‐depth in the following chapter), but the point is that rolling data structures such as

sets by hand is frustrating, dificult, and time‐consuming. Here is the same main method, using a

HashSet:

import java.util.HashSet;

public class HashSetTester {
 public static void main(String[] args) {
 HashSet<String> mySet = new HashSet<String>();
 mySet.add("A");
 mySet.add("B");
 mySet.add("C");
 mySet.add("A");

http:///

Java Se Built‐in classes ❘ 121

 System.out.println(mySet);
 mySet.remove("B");
 System.out.println(mySet);
 mySet.add("D");
 System.out.println(mySet);
 }
}

Clearly, using Java collections is much more straightforward. Notice again the import statement at
the top, before the class deinition. Contrary to classes located in java.lang, you need to specify
which classes to use in your code when they are outside your current package. You will read about
packages and importing classes in Chapter 8, and Eclipse will help you to igure out which import
statement to include, but the basic idea should be clear from this example.

So which data structures does Java provide out of the box? These are:

 ➤ Lists (classes implementing java.util.List), such as ArrayList and LinkedList, that
provide a user‐friendly alternative to arrays.

 ➤ Stacks (classes implementing java.util.Stack) that keep a stack of objects. A stack is a

last‐in‐irst‐out (LIFO) data structure that allows you to add (push) new objects on top of the

stack and retrieve (pop) objects back out from the stack. As a metaphor, you can compare a

stack to a pile of papers on your desk. New papers (objects) are placed on top of the pile, and

every paper (object) can be taken from the top of the pile as well.

 ➤ Queues (classes implementing java.util.Queue) provide a data structure similar to a stack,

but with the difference that objects are taken from the beginning of the queue (irst‐in‐irst‐

out, FIFO). Double‐ended queues (java.util.Dequeue) are also provided and allow you to

insert and remove objects both at the front and the back.

 ➤ Sets (classes implementing java.util.Set), such as the HashSet and TreeSet, store a set of

objects (that is, a group of objects without duplicates).

 ➤ Maps (classes implementing java.util.Map) provide a simple data structure that associates

values (objects) with a key. That is, it maps keys to values. Think of a map as a dictionary (in

other programming languages, this is the term used for this data structure): the word being

looked up is the key, whereas the description is the value. Just as a real‐life dictionary orga-

nizes words according to the alphabet, maps in Java organize their keys in an eficient man-

ner, so retrieving values is generally very fast.

Maps, lists, and sets are by far the most commonly used collection types in Java. The following Try

It Out shows how they work.

trY it out collections in java

This Try It Out shows how collection types work in Java.

 1. Create a class called CollectionsTester in Eclipse.

 2. Add a main method. Create an ArrayList, HashSet, and HashMap variable and store some items,

so that the class looks like this:

http:///

122 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

class CollectionsTester {
 public static void main(String[] args) {
 ArrayList<String> listOfStrings = new ArrayList<String>();
 listOfStrings.add("first item");
 listOfStrings.add("second item");
 listOfStrings.add("third item");
 listOfStrings.add("fourth item");
 listOfStrings.remove(0); // Remove the first item

 HashSet<Integer> setOfIntegers = new HashSet<Integer>();
 setOfIntegers.add(2);
 setOfIntegers.add(4);
 setOfIntegers.add(2);
 setOfIntegers.remove(2);

 HashMap<String,Integer> mapOfStringToInteger =
 new HashMap<String,Integer>();
 mapOfStringToInteger.put("Alice", 4);
 mapOfStringToInteger.put("Bob", 3);
 mapOfStringToInteger.remove("Alice");

 }
}

 3. Eclipse will complain about the fact that it does not recognize the ArrayList, HashSet, and
HashMap classes. If you mouse over the error, you will see that Eclipse automatically provides a
way to import these classes. The irst option is Import 'ArrayList' (java.util).

 4. Another handy way to automatically resolve missing imports in Eclipse is by navigating to Source
and then selecting Organize Imports. You can also use the helpful keyboard shortcut Ctrl+Shift+O.
After ixing all the errors, the following imports should appear at the beginning of your code:

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;

How It Works

Now take a look at how it works.

 1. The CollectionsTester class shows the use of ArrayList, HashSet, and HashMap classes, that is,
lists, sets, and maps. These are the three collection types you’ll use the most.

 2. The program returns no output, but you can use the get() method to retrieve and show items
from the collections. Take some time to play around with this code fragment to get a feel for the
different methods provided by the collection types. You can use Eclipse’s context menu to browse
around by typing listOfStrings and then looking through the possible methods offered.

You will be using collection types extensively throughout the remainder of this book, and you will
become more familiar with them as you move on. For now, I leave you with two remarks. First, note
that most collection types (sets and lists) in Java implement the Collection interface. You have not

http:///

Java Se Built‐in classes ❘ 123

seen interfaces yet, but what this means is that all of the following methods are available for each of
these classes (as illustrated in the last Try It Out):

 ➤ boolean add(E e): Adds an element; returns true if the collection changed.

 ➤ boolean addAll(Collection<? extends E> c): Adds all elements from the given collec-
tion to this collection; returns true if the collection changed.

 ➤ void clear(): Removes all elements from the collection.

 ➤ boolean contains(Object o): Returns true if the collection contains the given object,
false otherwise.

 ➤ boolean containsAll(Collection<?> c): Returns true if this collection contains all of
the elements in the given collection, false otherwise.

 ➤ boolean equals(Object o): Performs an equality comparison.

 ➤ boolean isEmpty(): Returns true if the collection is empty (contains no elements).

 ➤ boolean remove(Object o): Removes the given element from the collection; returns true
if the collection changed.

 ➤ boolean removeAll(Collection<?> c): Removes all elements in the given collection from
this collection; returns true if the collection changed.

 ➤ boolean retainAll(Collection<?> c): Keeps only the elements in this collection that are
contained in the given collection; returns true if the collection changed.

 ➤ int size(): Returns the number of elements in the collection.

 ➤ Object[] toArray(): Returns an array containing all the elements in the collection.

 ➤ <T> T[] toArray(T[] a): Returns an array containing all the elements in the collection;
the type of the array will be that of the speciied array.

Note that maps use a different set of methods:

 ➤ void clear(): Removes all mappings from the map.

 ➤ boolean containsKey(Object key): Returns true if the map contains the speciied key,
false otherwise.

 ➤ boolean containsValue(Object value): Returns true if the map contains the speciied
value, false otherwise.

 ➤ Set<Map.Entry<K,V>> entrySet(): Returns a set containing Entry objects. Each Entry
object models a key and value pair.

 ➤ boolean equals(Object o): Performs an equality comparison.

 ➤ V get(Object key): Returns the value mapped to the key, or null if the key is not present.

 ➤ boolean isEmpty(): Returns true if the map contains no mappings, false otherwise.

 ➤ Set<K> keySet(): Returns a set containing all the keys contained in this map.

 ➤ V put(K key, V value): Inserts a key/value pair; if the key exists, the value will be
overridden.

http:///

124 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

 ➤ void putAll(Map<? extends K,? extends V> m): Inserts all mappings contained in the
given map in this map.

 ➤ V remove(Object key): Removes a mapping for the given key.

 ➤ int size(): Returns the number of mappings in this map.

 ➤ Collection<V> values(): Returns a collection of all values in the map; note that this func-
tion does not return a set (like keyset() does), as duplicate values may exist in the map.

A second point I want to make at this point is related to so‐called “generics” in Java. When glancing

over the code and method lists, you might be wondering what the use of <T>, <? extends T>, and

<String> in ArrayList<String> indicates. Generics was added to Java in 2004, in Java SE 5 to be

precise. Put briely, generics allow classes and methods to work with objects of various classes, with-

out declaring up front what these classes should be while still retaining compiler safety checks. To

illustrate this, try writing the following in Eclipse:

ArrayList aList = new ArrayList();
aList.add(2);
aList.add("Alice");

This will work, but Eclipse will throw up warnings complaining about the fact that ArrayList should

be parameterized. To explain what this means, try to think about what a list should represent. Basically,

a list class should be able to store a list of objects that all belong to a speciic type. Which type? Well,

when rolling the custom SetAsArray before, you enforced all items to be Strings, but ideally, you

would like to keep this generic, as lists, sets, and maps should be able to contain objects of any type. This

is exactly why the example provides this type when instantiating collection types, like so:

ArrayList<String> aList = new ArrayList<String>();
aList.add(2);
aList.add("Alice");

Initializing collections in this way allows the Java compiler to perform an additional number of type

checks. If you’re following along, you’ll note that Eclipse now displays an error when trying to add

an integer (2) to this list, as the list is only allowed to hold Strings.

Now what if you want your list to hold any kind of object? Then you can just write:

ArrayList<Object> aList = new ArrayList<Object>();
aList.add(2);
aList.add("Alice");

In general, however, it’s best to be as precise as possible when instantiating collections (and other

classes using generics). Not only does this allow Java to perform safety checks for you, but another

reason is that Java will use the class you provided when instantiating the collection to return objects

stored in the collection when retrieving them, for instance:

ArrayList<Object> aList = new ArrayList<Object>();
aList.add(new Dog("Puppers")); // Add a Dog object as the first item
aList.add(2);
aList.add("Alice");

Object item = aList.get(0); // Get first item

http:///

Java Se Built‐in classes ❘ 125

As you can observe, when you want to fetch an item from the list and assign it to a variable, this
variable must be declared as an Object. Even though you know that your irst element belongs to
the Dog class, you will be unable to execute the following code:

//...
Object item = aList.get(0); // Get first item
item.bark();

Java will complain about the fact that there is no bark() method for the Object class. Is there a way
to specify that the item you retrieved is really of the class Dog? The answer is yes, using type casting,
as mentioned in Chapter 2:

//...
Dog item = (Dog) aList.get(0); // Get first item and type cast it
item.bark();

Keep in mind, however, that type casting is generally an unsafe operation and should be avoided.
As such, it’s best to keep your collections as speciic as possible, and use multiple collections to hold
different items whenever necessary. Finally, in case you were wondering, it’s also possible to deine
your own classes using generics in Java, but this is a more advanced aspect of programming in Java I
will not cover in full.

autoBoxing once again

In the beginning of this chapter, you read about the concept of Autoboxing, which
is an automatic conversion made by the Java compiler between primitive types and
their corresponding wrapper classes. For example, converting a double to a Double
is called boxing, and converting a Double back to a double is called unboxing.

Back then, I stated that there was one typical use case where you should know
about autoboxing, and now—as I’ve discussed collections and generics—is the time
to mention this. Generics in Java are always provided as classes. This means that
primitive types cannot be used as generic types and you cannot declare a list as
follows:

ArrayList<int> aList = new ArrayList<int>();

Luckily, using the mechanism of autoboxing, you can just replace the primitive type
with its wrapper class, Integer, like so:

ArrayList<Integer> aList = new ArrayList<Integer>();

Other than keeping this in mind, you do not have to worry about the differences
between int—the primitive type—and Integer—its wrapper class, as Java will
handle all the rest for you. What about an array of integers? Then you just write:

ArrayList<int[]> aList = new ArrayList<int[]>();

continues

http:///

126 ❘ Chapter 4 movInG towArd obJect‐orIented ProGrAmmInG

This declares a list of integer arrays. As arrays are proper, non‐primitive classes, it’s

ine to use them as generic parameters. It’s even possible to deine a list that’s hold-

ing lists of integers, like so:

ArrayList<ArrayList<Integer>> aList =
 new ArrayList<ArrayList<Integer>>();

By combining collections in this manner, it’s easy to deine complex custom data

structures to hold complex information. Don’t go overboard with this however.

When you ind yourself declaring maps of lists of sets, it might be better to abstract

some of this hierarchical complexity by creating some additional classes instead.

Other Utility Classes

Besides collection classes, the java.util package also contains a number of other helpful classes to

provide a great deal of functionality. These include:

 ➤ java.util.Arrays: This class contains a large number of static helper methods to sort

and search arrays. Note, however, that the arraycopy method is part of the java.lang.

System class (you saw this method in the SetAsArray class). The reason for this is that this

method directly performs a memory operation and is thus closer to a “system operation”

than what the methods provided by arrays do. Another reason is the fact that java.util.

Arrays was introduced in Java 1.2, whereas the arraycopy method existed before that

point.

 ➤ java.util.Date: A class to deal with dates and time. While this class provides solid support

for working with dates and time, proper date and time support has been the thorn in the eye

of many Java developers, as this class rapidly ceases to be useful once complex aspects such

as multiple time zones come into play. The class is also not very well designed. For example,

years start counting at 1990, months at 1, and days at 0 (!), which is not very intuitive. This

is exactly why Java SE 8 introduced a new Date and Time API, which is located in its proper

package: java.time. Whenever possible, it is highly advisable to use this class instead of the

older ones.

 ➤ java.util.Calendar: A class that provides methods to convert between a point in time and

a set of calendar ields. This can be helpful to retrieve the year, month, day, and so on for a

given Date object. This class has been updated in Java SE 8 as well, with better support for

internalization.

 ➤ java.util.Currency: A class to represent a currency.

 ➤ java.util.Locale: A class to represent a geographical, political, or cultural region. This

class has been updated in Java SE 8 as well.

 ➤ java.util.Random: A class providing a random number generator.

 ➤ java.util.Scanner: A class providing a text scanner that can parse texts. You will utilize

this class to parse text iles in Chapter 7.

continued

http:///

Java Se Built‐in classes ❘ 127

other classes and custom libraries
There are a number of other built‐in classes in Java SE that I do not cover in-depth here. For

instance, there is java.text, which contains a number of classes to provide parsing routines for

text; java.security, which provides encryption services; and classes to work with sound and

images.

Finally, it is also good to keep in mind that Java has a rich ecosystem of third‐party libraries you

can easily incorporate in your own projects whenever you ind that the built‐in classes do not suf-

ice. Many of these libraries in fact provide alternatives for some of these built‐in classes, providing

better support to deal with dates and times, for instance, or providing alternatives or extensions for

Java’s collection classes. Chapter 12 provides an overview of some of these libraries and shows you

how to include them in your projects.

For now, however, the built‐in classes will guide you through the rest of this book. You have seen

how to get started with object‐oriented programming in Java. You now know how to deine classes,

variables, and methods, and are aware of Java’s built‐in classes, most notably of which being Java’s

collection types. You still have a lot of ground to cover, however. In some of the examples discussed

in this chapter, I already hinted at the for and if constructs to govern the control low of your pro-

gram. In the next chapter, this topic will become your focus of attention.

http:///

http:///

5
Controlling the Flow of
Your program

what You will learn in this chaPter:

 ➤ How to determine if a certain condition is met

 ➤ How to control what a Java program does and when it should do it

 ➤ How to use loops in Java to repeat an action

 ➤ How to determine which control structure to use

wrox.com code downloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 5
download and individually named according to the names throughout the chapter.

Control structures allow a programmer to deine how and when certain statements will be

executed. In other words, if certain conditions are met, speciied behaviors will result. Several

structures exist in Java and other languages, such as loops and if-then statements, which allow

this control to be implemented. This chapter begins by introducing (or re-introducing) some

operators that will be used extensively in control structures. The operators, essentially, allow you

to compare values. In order to make similar comparisons on different data types, some compara-

tive methods will also be introduced. Once you can make these comparisons and assessments,

you can start using them to make decisions. That is where the if-then statement comes in. In its

simplest form, this structure can be read as follows: if some condition is true, then do something.

Next, you will look at for and while loops, and some extensions of these, which allow sections

of code to be repeated based on the conditions you deine. A switch is an alternative structure

that’s similar to an if-then statement, but offers a list of cases that can be deined so each is

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

130 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

handled differently or so groups of cases can be handled the same. Finally, you’ll learn about some
keywords that have speciic uses in guiding the execution of a program.

comParisons using oPerators and methods

You have already seen operators, such as arithmetic operators, in Chapter 2. Operators are based

on mathematical concepts and many will look familiar, even to those unfamiliar with program-

ming. This chapter discusses two types of control operators, comparative and logical, that are

used frequently in control structures. The syntax for operators will differ whether the data type is

primitive or composite. Recall that primitive types include char, boolean, and many numeric rep-

resentations, like int, double, and float. Arrays, strings, and other deined classes are composite

data types.

comparing Primitive data types with comparison operators
Given the importance of operators when deining control structures, this section briely revisits some

of the underlying concepts covered in Chapter 2.

For primitive data types, there are well-deined operators, as outlined in Table 5-1, which can be

used to compare the values of two variables. Equality and relational comparison operators com-

pare the values of two operands for equality, inequality, greater than, or less than. The result of

these expressions is a Boolean true or false. With primitive types, the following expressions are

used for comparison:

 ➤ Equal: ==

 ➤ Not equal: !=

 ➤ Greater than: >

 ➤ Greater than or equal: >=

 ➤ Less than: <

 ➤ Less than or equal: <=

Note that the ! indicates negation. While these operators are used for most primitive data types,

there is an exception; Boolean operands can only be compared with equality operators and not

with relational operators. That is, true cannot be greater than or less than false; however, true

can be equal to true. Other primitive data types can be compared with both equality and rela-

tional operators.

It is important to distinguish a single equal sign (=) from a double equal sign (==). The irst is used

for variable assignment. The variable on the left is assigned the value on the right. For example,

balance = 5000; assigns the value of 5000 to the variable balance. The second is a comparison

operator to test whether two things are equal. For example, balance == 5000; will return true if

the value of the variable balance is 5000 and false otherwise.

http:///

Comparisons Using Operators and Methods ❘ 131

Logical operators, on the other hand, are speciic to Booleans, and are used to combine or negate

one or more conditions. There are three logical operators: AND (&&), OR (||), and NOT (!). If two

or more Boolean operands are joined using the AND operator, all must evaluate to true for the

overall expression to evaluate to true. If they are joined using the OR operator, at least one of them

must evaluate to true in order for the overall expression to evaluate to true. Finally, if the NOT

operator precedes a Boolean operand that evaluates to true, the overall expression will evaluate to

false and vice versa. It evaluates as the opposite of the original expression.

Truth tables are used in logic to show the outcome of Boolean operators on pairs of statements. In

the irst two columns are two statements that can be true or false. In the columns that follow,

operators are listed with their results based on whether the statements are true or false. Table 5-2

is a truth table demonstrating the Boolean operators discussed here—namely NOT, AND, and OR.

taBle 5-2: Boolean Operator Truth Table

P Q !P

not P

P && Q

P and Q

P || Q

P or Q

TRUE TRUE ! TRUE =FALSE True AND True = TRUE True OR True = TRUE

TRUE FALSE True AND False = FALSE True OR False = TRUE

FALSE TRUE ! FALSE =TRUE False AND True = FALSE False OR True = TRUE

FALSE FALSE False AND False = FALSE False OR False = FALSE

In fact, you probably encounter these kinds of logical operators in your everyday life. For example, a

public transit system might follow a certain schedule if the day is Saturday OR a holiday and another

schedule otherwise. In other words, if (day == Saturday || day == holiday), then follow the

weekend schedule. Then it is understood that if it is Saturday or a public holiday or both, the entire

statement is true. On the other hand, you might have a rule that states if a person is over 60 years old

AND they possess a bus card, then their fare is reduced, or if (age > 60 && busCard == true),

taBle 5-1: Control Operators for Primitive Data Types

oPerator Java sYntax english eQuivalent

Equality x == y

x != y
Is x equal to y?

Is x not equal to y?

Relational x < y

x <= y

x > y

x >= y

Is x less than y?

Is x less than or equal to y?

Is x greater than y?

Is x greater than or equal to y?

Logical x && y

x || y

!x

Are x and y both true?

Is x, y, or both true?

Is x false?

http:///

132 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

comparing composite data types with
comparison methods

When you think of the differences between primitive data types, like int, and composite date types,
like String, it should not be surprising that you will need to compare them in different ways. If
asked the question, “Is 5 less than 10?” almost everyone will compare the two numbers in the same
way and respond afirmatively. Although the comparison of char variables is not as immediately

apparent, all possible char values have been assigned a numeric value, allowing them to be ordered

similarly to integers. However, the question, “Is order less than delivery?” is not at all apparent.

Therefore, comparison methods for composite data types must be deined in the class, rather than

using the comparison operators discussed in the previous section.

This early chapter, in addition to the primitive types, includes a discussion on strings and arrays, since

you will encounter both these composite data types frequently. Many more classes will be covered in

later chapters. These classes are well-deined and include comparison methods. It often makes sense

to compare strings relationally, such as putting a list into alphabetical order. For other composite data

types, including pre-existing classes and classes you will create on your own, comparison methods can

be implemented in different ways. You will read about some of these possibilities later in the book.

& and | versus && and ║

This section covered && and ║, the AND and OR operators. There are also bit-

wise operators called & and |, which behave similarly on Boolean operands. The

main difference is that the double symbols && and ║ will irst check the left side

operand and will only check the right side if necessary. So for &&, if the left side

is true, it will check if the right side is also true. If the left side is false, then you

already know the outcome will be false and the right side will not be evaluated.

This is called short circuiting, because like electricity will take the shortest path

(sometimes causing a short circuit if there is another shorter route), these operators

will stop the evaluation early if the answer is already known. This is particularly

useful in avoiding exceptions or errors, when the irst operator must be true in

order to evaluate the second operator. A common example is (x != 0 && 1/x > 1). If

you use & here, and x equals 0, then 1/x will be evaluated, but of course, zero can-

not be a divisor so this would cause an error. Java’s inclusion of the && operator

with short circuiting will prevent this kind of error.

Similarly, for ║, if the left side is true, there is no need to check if the right side is

true, so the result will be true without evaluating the right operand. If, however,

the left operand is false, it will check the right operand. You could use a very simi-

lar example (x == 0 ║ 1/x < 1) to see how the short circuiting can prevent the same

errors when using the OR operand.

then charge a reduced bus fare. Then you require both conditions—a person must be over 60 AND

they must have a bus card—for the entire statement to be true. Regardless of whether a person is 50

years old with a bus card or if they are 62 years old without a bus card, their fare will not be reduced.

http:///

Comparisons Using Operators and Methods ❘ 133

eQuals versus ==

At this point, you might have tried to do something like the following:

String abc = "the letters a, b and c";
if (abc == "the letters a, b and c"){
 System.out.println("Strings are equal");
}

Notice that Java actually prints out that the string abc equals “the letters a, b and
c”. So why do you need to use the equals() method?

The reasoning behind this is a bit tricky. For objects, it is perfectly ine to use ==

and != to compare them, but note that Java will not check whether the two objects

are equal in the sense that they contain the same contents, but rather whether they

reference the same position in memory.

The following code sample shows this in a clearer way:

String abc = "the letters a, b and c";
String xyz = abc;
if(abc == xyz)
 System.out.println("Both refer to the same memory address");

However, in some cases the use of == actually leads to the expected result when

checking the contents of a string. The reason behind this is due to the way the Java

Virtual Machine handles strings. Java makes use of a concept called “interning” to

reduce memory overhead when working with strings. This is particularly tricky if

you try to outsmart the JVM optimizer by instantiating two strings like this:

String abc = "the letters a, b and c";
String xyz = "the letters a, b and c";

if(abc == xyz){
 System.out.println("Refers to same string");
} else {
 System.out.println("Refers to different strings");
}

continues

The String class includes an equality comparison method in the equals() method. This method

will return true for any two strings with a matching sequence of characters and false if there is

any difference in the characters. Consider the following code:

String myString = "I'm a string.";
String anotherString = "I'm a string, too.";
String oneMoreString = "I'm a string.";
myString.equals(oneMoreString); //this will evaluate as TRUE
myString.equals(anotherString); //this will evaluate as FALSE

http:///

134 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

if(abc.equals(xyz)){
 System.out.println("Contents of both strings are same");
} else {
 System.out.println("Contents of strings are different");
}

The interning mechanism in Java is smart enough to detect that these two strings
have the same value and can thus be represented by only one object. Hence, both
== and equals() will evaluate as being true. However, the JVM has its limits in
terms of how smart it is, so the following code sample will not work with ==:

String abc = "the letters a, b and c";
String xyz = "the letters a, b";
xyz = xyz + " and c";

if(abc == xyz) {
 System.out.println("Refers to same string");
} else {
 System.out.println("Refers to different strings");
}
if(abc.equals(xyz)) {
 System.out.println("Contents of both strings are same");
} else {
 System.out.println("Contents of strings are different");
}

In practice, there exist few cases where you want to check whether two objects (and
strings in particular) refer to the same in-memory address compared to checking its
contents. The best practice is thus to make sure to always use equals() when com-
paring string contents.

continued

Similarly, the Arrays class implements a static equals() method. However, the syntax is different,
and if you use the same format as for strings, the result will not be as you expect. When compar-
ing the equality of two arrays, you want to test whether the sequence of elements matches in both
arrays. For that, use this construct: Arrays.equals(array1,array2).

int[] myIntArray = {1,2,3};
int[] anotherIntArray = {1,2,3};
int[] oneMoreIntArray = {2,4,6};
int[] andAnother = {2,1,3};

Arrays.equals(myIntArray, anotherIntArray); //evaluates TRUE
Arrays.equals(myIntArray, oneMoreIntArray); //evaluates FALSE
Arrays.equals(myIntArray, andAnother); //evaluates FALSE

For relational comparisons, the String class implements a compareTo() method from the
Comparable interface. Interfaces are discussed in Chapter 6, but essentially, interfaces are like
class outlines that specify what a class should do, but not how to do it. Comparable is one such
outline that offers methods to compare objects. String’s compareTo() method compares two

http:///

Understanding Language Control ❘ 135

strings lexicographically, similar to how words or phrases would be sorted alphabetically. If
the irst string comes irst alphabetically, the method will return a negative integer, indicat-

ing the irst is less than the second. If the irst operand comes last alphabetically, the method

will return a positive integer, indicating the irst is greater than the second. If the two strings

are equal, the method will return 0. If myString.equals(anotherString) evaluates to true,

then myString.compareTo(anotherString) will return 0. An example using the compareTo()

method follows:

String employee1 = "Addams";
String employee2 = "Brown";
String employee3 = "O'Connor";
String manager = "Brown";

employee1.compareTo(employee2); //evaluates to -1 (negative)
employee3.compareTo(employee2); //evaluates to 13 (positive)
employee2.compareTo(manager); //evaluates to 0

There is not a similarly straightforward approach to comparing arrays relationally, partially because

there is not one single way to rank one set of elements against another. Also, the elements of an

array can be any type of object. You can think of many criteria that might determine which int

array is greater than another: the greatest length, the greatest sum of all elements, the greatest single

element, and so on, and that is only for int arrays. Arrays of more complex objects require even

more unique criteria. Relational comparisons of arrays, like many other objects, must be deined

according to the needs of the program.

understanding language control

This section explores how comparison operators and methods can be used in Java control struc-

tures. These structures include for and while loops, if-then statements, and switches. While each

situation may be better suited to one type of structure, in fact, they are usually interchangeable as

they function much the same way using different constructs. The following sections explain each of

these structures independently and also compare and contrast them.

creating if-then statements
The most fundamental control structure is an if-then statement. Simply put, if a condition is met,

then execute a piece of code. It may also be called branching, since different branches of code are

executed according to the conditional statements. Often a control operator will be used as the condi-

tion in an if-then statement. The most basic syntax is as follows:

if (/*condition*/) {
 /*then execute these statements*/
}

In this case, if the conditions inside the parentheses are evaluated as true, then the statements

between curly brackets will be executed. Otherwise, the program will not execute the statements

and continue just after the last curly bracket, indicating the end of the block.

http:///

136 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

For a concrete example of if-then statements, imagine a banking program that prints a short noti-
ication at the bottom of each ATM transaction receipt according to the remaining balance on the

account. This example prints to the console for simplicity’s sake.

if (accountBalance > 100) {
 System.out.println("Safe balance.");
}

If the value of the variable accountBalance is greater than 100, then output a notiication of "Safe

balance." to the console. If accountBalance is not greater than 100, nothing will happen.

The basic if-then statement can also be extended with the keyword else. This provides an alterna-

tive set of statements to be executed if the condition is not true.

if (accountBalance > 100) {
 System.out.println("Safe balance.");
} else {
 System.out.println("Warning: Low balance.");
}

Now, if accountBalance is greater than 100, the same notiication will be printed. However, if

accountBalance is less than or equal to 100, a different notiication will be printed.

The else keyword can also be followed by a second if statement, which is then evaluated only if

the irst condition is false.

if (accountBalance > 100) {
 System.out.println("Safe balance.");
} else if (accountBalance < 0){
 System.out.println("ALERT: Negative balance!");
} else {
 System.out.println("Warning: Low balance.");
}

The irst if condition is evaluated if accountBalance is greater than 100, at which point the "Safe

balance." notiication will print and nothing further is executed. If accountBalance is not greater

than 100, the second if condition is evaluated. If accountBalance is less than 0, the ALERT will be

printed and nothing further will be executed. If accountBalance is not less than 0, that is, if account-

Balance is between 0 and 100, the warning will be printed, and the end of the statement is reached.

NOTE If there is only a single statement following the if condition, the
curly brackets are optional. It is recommended to use the brackets, even
when unnecessary, both to make it more clear to someone reading the
code and also to improve maintainability. For instance, if you (or another
programmer) later add additional statements to the if-then statement,
you will not risk forgetting to place brackets around the entire block at
that time.

http:///

Understanding Language Control ❘ 137

Nesting if-then Statements

Control structures, such as if-then statements, can also be nested. This means that one if-then state-
ment is inside another if-then statement, as if the outer statement formed a nest for the inner state-
ment. This concept looks something like the following:

if (accountBalance > 0) {
 System.out.println("Safe balance.");
 if (accountDays > 90) {
 System.out.println(savingsAccountOffer);
 }
} else {
 System.out.println("ALERT: Negative balance!");
}

This is an example of nested if-then statements because the if (accountDays > 90) statement is
nested inside the if (accountBalance > 0)statement. This program will irst check if the account

balance is greater than zero. If it is greater than zero, it will print a safe balance notiication and then

check if the account has been active more than 90 days. If this is also true, then an offer to open a sav-

ings account will also be printed. However, if the account balance is not greater than zero, the negative

balance alert will be printed and the accountDays variable will never be evaluated.

This could also be accomplished using the Boolean operators discussed earlier in this chapter. That

approach would look like this:

if (accountBalance > 0 && accountDays <= 90) {
 System.out.println("Safe balance.");
} else if (accountBalance > 0 && accountDays > 90) {
 System.out.println("Safe balance.");
 System.out.println(savingsAccountOffer);
} else {
 System.out.println("ALERT: Negative balance!");
}

You will notice that the "Safe balance" print command is repeated for the irst two if-then state-

ments. That means if you want to adjust the statement that is printed whenever a balance is over

zero, or if you want to add and change any other actions to perform when the balance is greater

than zero, you would have to make those changes in both places.

If you have more than two conditions to evaluate, you can nest deeper than two levels. To maintain

readability, the closing bracket (}) should be lined up vertically with the if keyword it closes.

if (accountBalance > 0) {
 System.out.println("Safe balance.");
 if (accountDays > 90) {
 System.out.println(savingsAccountOffer);
 if (creditAccounts > 1) {
 balanceTransferPossible = true;
 } else {
 sendCreditApplication();
 }
 }

http:///

138 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

} else {
 System.out.println("ALERT: Negative balance!");
}

If you wanted to accomplish the same with Boolean operators, it would require an if-then statement
for every combination of conditions.

if (accountBalance > 0 && accountDays <= 90) {
 System.out.println("Safe balance.");
} else if (accountBalance > 0 && accountDays > 90 && creditAccounts > 1) {
 System.out.println("Safe balance.");
 System.out.println(savingsAccountOffer);
 balanceTransferPossible = true;
} else if (accountBalance > 0 && accountDays > 90) {
 System.out.println("Safe balance.");
 System.out.println(savingsAccountOffer);
 sendCreditApplication();
}
} else {
 System.out.println("ALERT: Negative balance!");
}

This can quickly become unwieldy, irst to program and even more so for maintenance later. For

these reasons, a set of nested if-then statements can often be a better alternative.

creating for loops
Loops, as the name suggests, are structures that cycle through a section of code as long as some con-

dition is met. This allows for repetitive execution without repetitive coding. It reduces redundancy,

which improves the maintainability of code, but perhaps more importantly, it allows for lexibility

since the number of times a program loops can change according to the speciic conditions present

during a certain execution. Imagine you run a small business and have last year’s sales igures and

staff numbers for each month stored in int arrays. You would like to calculate the average sales per

staff member for each month and the total annual sales for the year.

int[] sales2014 = {500,720,515,377,400,435,510,1010,894,765,992,1125};
int[] staff2014 = {7,5,5,5,5,6,6,7,7,8,9,9};
int[] salesPerStaff = new int[12];
int totalSales2014 = 0;

salesPerStaff[0] = sales2014[0]/staff2014[0];
salesPerStaff[1] = sales2014[1]/staff2014[1];
salesPerStaff[2] = sales2014[2]/staff2014[2];
salesPerStaff[3] = sales2014[3]/staff2014[3];
salesPerStaff[4] = sales2014[4]/staff2014[4];
salesPerStaff[5] = sales2014[5]/staff2014[5];
salesPerStaff[6] = sales2014[6]/staff2014[6];
salesPerStaff[7] = sales2014[7]/staff2014[7];
salesPerStaff[8] = sales2014[8]/staff2014[8];
salesPerStaff[9] = sales2014[9]/staff2014[9];
salesPerStaff[10] = sales2014[10]/staff2014[10];
salesPerStaff[11] = sales2014[11]/staff2014[11];

totalSales2014 = sales2014[0]+sales2014[1]+sales2014[2]+sales2014[3]

http:///

Understanding Language Control ❘ 139

+sales2014[4]+sales2014[5]+sales2014[6]+sales2014[7]+sales2014[8]+sales2014[9]
+sales2014[10]+sales2014[11];

You can immediately spot the redundancy in this code. To ind a better solution, simply describe

what it is you would like to do. For every month of the year, divide the sales by the staff and sum

the sales. In order to implement this in Java, you can use a for loop. A for loop executes a block

of code over a range of values. An index variable keeps track of the loop. The standard syntax for a

for loop is as follows:

for (/*Initialization*/; /*Termination*/; /*Increment*/){
 /*execute these statements*/
}

Rather than just a condition as you saw in the if-then statement, for loops require three parts.

Initialization declares the index variable for the loop and its starting value; commonly this is int i = 0.

Termination speciies a stopping criterion, or maximum value for the index variable. Increment indicates

how the index variable should change after each iteration, commonly this is i++, meaning that the value

of i will increase by one after each loop. Alternatively, you can use i– for the increment and a minimum

value in the termination; in this way your looping will count down, rather than up. Finally, all the state-

ments that should be executed during each loop are placed between the curly brackets.

You can implement the previous example in the following for loop:

int[] sales2014 = {500,720,515,377,400,435,510,1010,894,765,992,1125};
int[] staff2014 = {7,5,5,5,5,6,6,7,7,8,9,9};
int[] salesPerStaff = new int[12];
int totalSales2014 = 0;

for (int i=0; i<sales2014.length; i++){
 salesPerStaff[i] = sales2014[i]/staff2014[i];
 totalSales2014 = totalSales2014 + sales2014[i];
}

This for loop starts with an index value of 0 and evaluates salesPerStaff at month 0 and total-

Sales2014 at month 0. At the end of this iteration of the loop, the index increments to 1, and those

same variables are evaluated for month 1 and so on, until month 11. The value of sales2014.

length is the number of elements in the sales2014 array, which is 12. So when the index incre-

ments to 12, it will evaluate i<sales2014.length as false, and the looping will terminate.

There are several beneits to this improved loop implementation. You might notice it is easier to read

and less prone to typing errors than the longer and more tedious version. Recall that loops improve

maintainability and lexibility. Now that you have an example, it might be easier to visualize the

impact of these factors. Easier maintenance means that future changes to the application are easier

to implement. If you needed to change how SalesPerStaff is calculated, you would have to make

12 changes in the irst version versus only one in the for loop. The lexibility of loops is based

on the self-determined termination criteria. In the example, the loop iterates 12 times, because

the array has 12 elements. Now imagine your company begins recording weekly sales instead of

monthly sales, increasing the elements of the sales array from 12 to 52 per year. In the irst version

of the program, the number of statements would increase by the same amount, also increasing the

chance of errors. However, the for loop in the second version would accommodate arrays of any

length without need for manual modiication.

http:///

140 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

You can also leave either the initialization or increment blank in a for loop. In this case, you would
need to specify the variable before the for loop or the increment during the for loop. Following are
two examples that function the same as the previous example, but with a slightly different syntax.

int[] sales2014 = {500,720,515,377,400,435,510,1010,894,765,992,1125};
int[] staff2014 = {7,5,5,5,5,6,6,7,7,8,9,9};
int[] salesPerStaff = new int[12];
int totalSales2014 = 0;

int i = 0; //specify initialization variable here, not before termination
for (; i<sales2014.length; i++){
 salesPerStaff[i] = sales2014[i]/staff2014[i];
 totalSales2014 = totalSales2014 + sales2014[i];
}

int[] sales2014 = {500,720,515,377,400,435,510,1010,894,765,992,1125};
int[] staff2014 = {7,5,5,5,5,6,6,7,7,8,9,9};
int[] salesPerStaff = new int[12];
int totalSales2014 = 0;

for (int i=0; i<sales2014.length;){
 salesPerStaff[i] = sales2014[i]/staff2014[i];
 totalSales2014 = totalSales2014 + sales2014[i];
 i = i + 1; //specify increment here, not after termination
}

It is important to keep your termination condition and increment direction in mind when you are set-
ting up a for loop. You could unintentionally create an ininite loop by having these misaligned. For

example, imagine the following for loop: for (int i = 5; i > 0; i++). Your loop will continue to

repeat indeinitely. The starting value for i is 5, which is greater than 0, and the value of i will continue

increasing as you loop, so it will always remain greater than 0. In general, a termination condition using

> will have an increment using --, and a termination condition using < will have an increment using ++.

Another consideration is how your iterator may be altered within the for loop. It is possible to reas-

sign the value of your iterator as part of the loop, instead of or in addition to the increment expres-

sion. Consider adding a line to the example.

int[] sales2014 = {500,720,515,377,400,435,510,1010,894,765,992,1125};
int[] staff2014 = {7,5,5,5,5,6,6,7,7,8,9,9};
int[] salesPerStaff = new int[12];
int totalSales2014 = 0;

for (int i=0; i<sales2014.length; i++){
 i = i*2; //this line is added
 salesPerStaff[i] = sales2014[i]/staff2014[i];
 totalSales2014 = totalSales2014 + sales2014[i];
}

Here, the value of i is changed as part of the increment and also within the loop. So the loop will be

processed in the following way:

 1. Start at the beginning of the for loop. i=0 and 0 < 12, so the loop is entered.

 2. i=i*2 or i = 0*2 = 0, so the statements are evaluated on the 0 (irst) element of each array.

http:///

Understanding Language Control ❘ 141

 3. At the end of the for loop, i is incremented to i++ or i=1.

 4. Return to the start of the for loop. i=1 and 1 < 12, so the loop is entered a second time.

 5. i=i*2 or i = 1*2 = 2, so the statements are evaluated on the 2 (third) element of each
array.

 6. At the end of the for loop, i is incremented to i++ or i=3.

 7. Return to the start of the loop. i=3 and 3 < 12, so the loop is entered a third time.

 8. i=i*2 or i = 3*2 = 6, so the statements are evaluated on the 6 (seventh) element of each
array.

 9. At the end of the for loop, i is incremented to i++ or i=7.

 10. Return to the start of the loop. i=7 and 7 < 12, so the loop is entered a fourth time.

 11. i=i*2 or i = 7*2 = 14, so the statements should be evaluated on the 14 (ifteenth) element of

each array. However, there are only twelve elements in each array. Here you will run into an

error and the program will be terminated.

In short, a for loop is a control structure that lets you repeat a certain block of code a speciied

number of times. The amount of times can be determined in advance or dynamically, depending on

the situation. When creating a for loop, pay attention to the initialization, termination, and incre-

ment speciied to be sure you are not creating ininite loops or errors at execution.

trY it out Your First for Loop

 To create a simple for loop, follow these steps:

 1. Create a new project in Eclipse. Perhaps call it Chapter5 to keep the exercises organized according

to the chapters in this book.

 2. Create a new class by right-clicking on the src folder in your new project. Select New and then

Class.

 3. In the Name field, enter the name of your class, ForLoop, beginning with a capital letter by

Java convention. In the bottom portion of the New Java Class window, there is a section

that reads: “Which method stubs would you like to create?” You may choose to check the

box next to “public static void main(String[] args)” to automatically create a main

method.

 4. You should automatically have the basis for the class body shown here:

public class ForLoop {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }
}

http:///

142 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

If not, you can type it yourself. You do not need the comments denoted with /** or //. In Eclipse, they
appear as blue or green text. Comments are useful for explaining what the code is doing, but are never
compiled or executed by Java.

public class ForLoop {
 public static void main(String[] args){

 }
}

 5. Recall that the main method provides the starting point and ordering for the execution of your pro-
gram. Inside the main method, create a for loop as follows:

for (int i = 1; i <= 10 ; i++){

}

It should be placed after (String[] args){ and before the next }.

 6. Now insert the statements that will be executed during each loop. On each iteration, you will mul-
tiply the value of i by 2 (doubling it) and then print a string containing the resulting value to the
console. Use the following statements to do so:

int doubled = i * 2;
System.out.println(i + " times two equals " + doubled);

Place these between the { } of the for loop.

 7. Finally, add a print statement to indicate the end of the program. Use the following statement:

System.out.println("End of program");

This time, make sure it is placed after the closing bracket (}) of the for loop, but before the clos-
ing bracket (}) of the main method. This ensures that it will not be repeated on each iteration,
but it will be executed once before the main method concludes.

 8. Your class body should now look like this:

public class ForLoop {

 public static void main(String[] args){
 for (int i = 1; i <= 10; i++){
 int doubled = i * 2;
 System.out.println(i + " times two equals " + doubled);
 }
 System.out.println("End of program");
 }
}

 9. Save the class by clicking the disk icon or selecting File, then Save.

 10. Run the application by clicking the green play icon or selecting Run, and then Run.

http:///

Understanding Language Control ❘ 143

How It Works

Now take a look at how it works.

 1. The application begins by executing the main method, which in this case is the only method.

 2. The irst statement begins with a for loop.

 3. The iterator, named i, begins at value 1 and checks the termination condition. 1 is less than or

equal to 10, so you enter the loop.

 4. In the irst statement inside the loop, a second int, named doubled, is assigned the value of i*2. In

this irst iteration, i = 1, so doubled = 2.

 5. In the next statement of the loop, there is a println command. A line is output to the console that

reads: 1 times two equals 2. Because the command is println instead of print, you can imag-

ine pressing Enter or Return at the end of the string to create a new line.

 6. The program reaches the end of the loop, and because the iteration of the loop is i++, 1 is added to

the value of i. The iterator i is reassigned the value of 1+1 or 2.

 7. The termination condition is evaluated again. Because 2 is still less than or equal to 10, you will go

through the loop again.

 8. The variable doubled is 2*2 or 4 this time.

 9. Another line will be output to the console, this time reading: 2 times two equals 4.

 10. This will continue until i++ = 11 , when the termination condition will evaluate to false and the

loop will not be entered anymore. At that time, the loop will be skipped over and the program will

proceed with the inal statement. One inal line will be output to the console, indicating the end of

the program.

What Is an enhanced for Loop?

There is an alternate form, called an enhanced for loop, that was introduced speciically for arrays

and other iterable objects. Instead of the index initialized as part of the standard for loop, enhanced

for loops use an iterator. Unlike the index of a standard for loop, the iterator does not require ini-

tialization, termination, or increment, as it will automatically iterate through all elements in the array.

Note that rather than an integer index, the iterator is the same type as the elements in the array or

other Iterable object. From the previous example, this second form would be coded as follows:

for (int i: sales2014){
 salesPerStaff[i] = sales2014[i]/staff2014[i];
 totalSales2014 = totalSales2014 + sales2014[i];
}

This can be read in English as, “For each int in the sales2014 array, do the following. . .” The

array can contain other data types or objects.

http:///

144 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

Here’s a second example using strings instead of ints. It follows the same pattern as before, “For
each string in the nameList array, print that string.”

String[] nameList = {"Adam Brown","Betsy Dudley","Carl Frank"};

for (String name: nameList){
 System.out.println(name);
}

Enhanced for loops offer the same functionality of regular for loops with a format that’s easier to
code and read. They do require a data structure that’s iterable, but if you are working with arrays,
they may provide a handy solution for you.

trY it out try It Out: an enhanced for Loop

 To create an enhanced for loop, follow these steps:

 1. Create a new class named EnhancedForLoop, following the process you learned about earlier. You

can continue to use the same Chapter5 project. Create a new class by right-clicking on the src

folder in your project. Select New and then Class.

 2. In the Name ield, enter the name of your class, EnhancedForLoop, beginning with a capital letter

by Java convention. In the bottom portion of the New Java Class window, there is a section that

reads: “Which method stubs would you like to create?” You may choose to check the box next to

“public static void main(String[] args)” to automatically create a main method.

 3. You should automatically have the basis for the class body shown here:

public class EnhancedForLoop {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }
}

If not, you can type it yourself. You do not need the comments, which are denoted with /** or //.

In Eclipse, they will appear as blue or green text. Comments are useful for explaining what the

code is doing, but are never compiled or executed by Java.

public class EnhancedForLoop {
 public static void main(String[] args){

 }
}

NOTE Enhanced for loops allow automatic iteration over arrays and other
iterable objects.

http:///

Understanding Language Control ❘ 145

 4. Recall that the main method provides the starting point and ordering for the execution of your
program. An enhanced for loop will iterate through the elements of an array, but irst you must

declare an array for this:

int[] tenIntegers = {1,2,3,4,5,6,7,8,9,10};

It should be placed after (String[] args){ and before the next }.

 5. Now add the following enhanced for loop immediately after the array declaration.

for (int i : tenIntegers){

}

 6. Now insert the statements that will be executed during each loop. On each iteration, you will mul-

tiply the value of the current array entry by 2 (doubling it) and then print a string containing the

resulting value to the console. Use the following statements to do so:

int doubled = i * 2;
System.out.println(i + " times two equals " + doubled);

Place these statements between the { } of the for loop.

 7. Finally, add a print statement to indicate the end of the program. Use the following statement:

System.out.println("End of program");

This time, make sure it is placed after the closing bracket (}) of the for loop, but before the clos-

ing bracket (}) of the main method. This ensures that it will not be repeated on each iteration,

but it will be executed once before the main method concludes.

 8. Your class body should now look like this:

public class EnhancedForLoop {

 public static void main(String[] args){
 for (int i : tenIntegers){
 int doubled = i * 2;
 System.out.println(i + " times two equals " + doubled);
 }
 System.out.println("End of program");
 }
}

 9. Save the class by clicking the disk icon or selecting File, then Save.

 10. Run the application by clicking the green play icon or selecting Run, and then Run.

How It Works

Now take a look at how it works.

 1. The application begins by executing the main method, which in this case is the only method.

 2. The irst statement creates a new integer array with ten entries.

http:///

146 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

 3. The next statement opens an enhanced for loop, which will iterate through all the entries of the
array. In a regular for loop, the iterator is generally an integer. In an enhanced for loop, it takes
the same type as the array entries. In this case, it is an integer because the array is an int[]. You
use the name of the iterator to refer to the current entry within the loop. In the irst iteration, i

takes the value of the irst entry of the array, in this case 1. On the next iteration, it will take the

value of the next entry, 2.

 4. In the irst statement inside the loop, a second int, named doubled, is assigned the value of i*2. In

this irst iteration, i = 1, so doubled = 2.

 5. In the next statement of the loop, there is a println command. A line is output to the console that

reads: 1 times two equals 2. Because the command is println instead of print, you can imag-

ine pressing Enter or Return at the end of the string to create a new line.

 6. When the program reaches the end of the loop, it will restart the loop with the next entry in the

array. The iterator i is reassigned the value of the second array entry, in this case 2.

 7. The variable doubled is 2*2 or 4 in this iteration of the loop.

 8. Another line will be output to the console, this time reading: 2 times two equals 4.

 9. This will continue until every entry in the array has been used. Then, the program will proceed

with the inal statement. One inal line will be output to the console indicating the end of the

program.

 10. If you executed the for loop in the previous Try It Out exercise, you’ll notice that they pro-

duce the same output. The two types of for loops work in much the same way, but in some

situations one will be preferable to the other. In this enhanced for loop exercise, it was prob-

ably unnecessary to create an array just to list the integers between 1 and 10; a standard for

loop does this simply by incrementing the iterator by 1 on each loop. For an array of strings or

other objects, iterating through the array in an enhanced for loop may be simpler to code and

easier to read.

Nesting for Loops

As you saw with if-then statements, for loops can also be nested. The format is very similar, where

one inner for loop is contained within another outer for loop. The general appearance is as follows:

for (/*Initialization*/; /*Termination*/; /*Increment*/){ //outer loop
 /*execute these statements*/
 for (/*Initialization2*/; /*Termination2*/; /*Increment2*/){ //inner loop
 /*execute these statements*/
 } //close inner loop
} //close outer loop

Because the statements inside the inner for loop can refer to the iterator of both the inner loop and

outer loop, it’s necessary to use different variable names in the initialization of each loop. You’ve

probably noticed that many of the standard for loops shown in this chapter use x as the index

name (and x = 0 as the initialization); this is by no means required, but is often used in practice.

http:///

Understanding Language Control ❘ 147

By using nested for loops, you can iterate through all the entries of this matrix, where the position
(0,0), irst row and irst column, refers to the hours worked by Chris on Monday, and position (1,3),

second row and fourth column, refers to the hours Danielle worked on Thursday. One for loop will

refer to the column and the other will refer to the row.

int[][] hoursWorked = {{3,2,8,2,3},{4,4,4,4,4,4},{5,5,0,5,5}};
String[] employees = {"Chris", "Danielle", "Michael"};
double wage = 8.30;

for (int x = 0; x < hoursWorked.length; x++){ //outer for loop
 System.out.print(employees[x] + " worked ");
 int weeklyHours = 0;

 for (int y = 0; y < hoursWorked[0].length; y++){ //inner for loop
 weeklyHours += hoursWorked[x][y];
 } //close inner for loop

 System.out.println(weeklyHours + " hours at " + wage + " per hour.");
 double weeklyPay = weeklyHours * wage;
 System.out.println("Weekly Pay: " + weeklyPay);
} //close outer for loop

The two-dimensional int array hoursWorked represents the matrix shown in Table 5.3. Each row

is a one-dimensional int array with ive elements. A string array employees stores the names of the

three employees. A double represents the hourly wage paid to employees. Here all employees receive

the same pay, but if they are different, there could be a double array set up similarly to the array for

names.

The outer loop iterates three times, one for each row in the matrix, in other words, once for each

employee. When x = 0, this refers to the irst row of the matrix and the irst element in all the

arrays. Remember, in hoursWorked, the irst element is itself an array. First, you print the employee’s

name to the console. Note, this is a print command, rather than println, so whatever is printed

next will continue on the same line. Then you initialize weeklyHours to zero. This is an important

taBle 5-3: Weekly Hours Worked by Employee

emPloYee mondaY tuesdaY wednesdaY thursdaY fridaY

Chris 3 2 8 2 3

Danielle 4 4 4 4 4

Michael 5 5 0 5 5

Similarly, x and y are often used as index names in nested for loops. You will often encounter the

use of nested for loops to iterate through a matrix of values. Here is an example of that type to

demonstrate the use of nested for loops.

Suppose you run a small business with three employees. You store the hours worked by each

employee in a matrix like the one shown in Table 5-3.

http:///

148 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

step to do inside the outer for loop; this “resets” the value to zero each time you change employee
by incrementing the outer for loop. If you initialize this variable outside of the for loops, like the
wage variable, it will continue adding all the employees’ hours together.

Then the inner for loop begins. One important difference here is the termination condition.
In the outer for loop, you stop when the iterator exceeds the length of the hoursWorked array,
that is, the number of elements or number of employees, which is 3. In the inner for loop, you
stop when the iterator exceeds the length of the irst element of the hoursWorked array, that is

the number of elements in the array, which is the irst element or the number of days in the week

(which is 5).

Inside the inner for loop, you simply add each day’s hours to the total weeklyHours for the current

employee. After the ive iterations for each day of the week, you exit the inner for loop.

Now, you are still inside the outer for loop, but have calculated the hours from the inner for loop.

The weeklyHours value is printed as well as the wage. Since that was a println command, the next

print statement will begin on a new line. The weekly pay is calculated by multiplying the hours by

the wage and this is printed on a new line. This concludes the outer loop, so the program will incre-

ment the value of x by 1 and return to the start of the outer loop. After three iterations, one for each

employee, this part of the program will be done. If you put all of this inside the main method of a

class, it is executable.

creating while loops
A while loop is an alternative loop structure that’s based on meeting a certain condition, rather

than iterating a set number of times. The standard syntax of a while loop is as follows:

while (/*conditional expression*/) {
 /*execute these statements*/
}

Remember the difference between a for loop and an enhanced for loop: the for loop iterator is ini-

tialized in the loop expression, but in an enhanced for loop, an array must be declared somewhere

prior to entering the for loop. A while loop is similar to the enhanced for loop in this way. You

will need to initialize some variable before the while loop that will be evaluated as part of the con-

ditional expression.

When the execution of a program reaches a while loop, it will irst check to see if the conditional

expression evaluates to true. If so, it will enter the loop and execute the statements inside the loop.

When the end of loop is reached, it will return to the conditional expression and check if it still

evaluates to true. If so, the loop will be repeated. It should be clear, then, that evaluation of the

conditional statement should change at some point during the looping process. Otherwise, the loop

iterations will never end. Consider the following code example:

int i = 10;

while (i > 0){
 System.out.println(i);
}

http:///

Understanding Language Control ❘ 149

Here, the integer i is given the value of 10. When the while loop is irst encountered, the condi-

tional expression i > 0 is evaluated: 10 is greater than 0, so the expression is true. The program

outputs "10" to the console, then returns to the start of the while loop again. The conditional

expression i > 0 is evaluated again, but i is still equal to 10 and 10 is greater than 0 so the expres-

sion is still true. Again, you’ll see an output of "10" to the console. This will continue indeinitely,

creating an ininite loop. To prevent this, you can add a statement inside the while loop to alter the

value of the variable i.

int i = 10;

while (i > 0){
 System.out.println(i);
 i = i - 1;
}

This time, the conditional expression 10 > 0 is still true when the while loop is irst encountered.

During the irst iteration, the output "10" will be printed to the console, then int i will be reas-

signed the value i-1 or 9. The conditional expression will be evaluated again to true, so the loop

will be repeated. Now 9 will be output to the console and int i will be reassigned the value 8. This

will continue until i = 0, when the expression will evaluate to false.

It’s possible that your conditional expression is not a variable at all. You will see some classic

examples of while loops in Chapter 7 when dealing with inputs and outputs. For now, it’s enough

to understand that the Scanner class has two methods, hasNextLine() and nextLine(), that can

be used when scanning iles, to determine if a ile still has more lines to be scanned, and to actually

scan the next line, respectively.

int lines = 0;
while (myScanner.hasNextLine()){
 lines++;
}

This code might look like it will count the number of lines in the ile being scanned by myScan-

ner. However, this will actually create an ininite loop like the irst while loop you saw. That’s

because the program never moves past the irst line of the ile. When the loop is irst encoun-

tered, assuming the ile has at least one line in it, the conditional expression hasNextLine() will

evaluate to true. The variable lines will be reassigned the value 0+1 or 1 and the conditional

expression will remain true. In order to ensure that the loop will end and the correct number

of lines will be counted, you have to progress through the lines of the ile using the nextLine()

method.

int lines = 0;
while (myScanner.hasNextLine()){
myScanner.nextLine(); //scan the next line
 lines++;
}

In this way, in each iteration of the while loop, the scanner will scan another line of the ile until the

end of the ile is reached. Then, the conditional expression hasNextLine() will evaluate to false

and the program will not enter the loop again.

http:///

150 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

trY it out Your First while Loop

 To create a while loop, follow these steps:

 1. Create a new class named WhileLoop, following the same process. You can continue to use the

same Chapter5 project. Create a new class by right-clicking on the src folder in your project.

Select New and then Class.

 2. In the Name ield, enter the name of your class, WhileLoop, beginning with a capital letter by

Java convention. In the bottom portion of the New Java Class window, there is a section that

reads: “Which method stubs would you like to create?” You may choose to check the box next to

"public static void main(String[] args)" to automatically create a main method.

 3. You should automatically have the basis for the class body shown here:

public class WhileLoop {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }
}

If not, you can type it yourself. You do not need the comments, which are denoted with /** or //.

In Eclipse, they will appear as blue or green text. Comments are useful for explaining what the

code is doing, but are never compiled or executed by Java.

public class WhileLoop {
 public static void main(String[] args){

 }
}

 4. Recall that the main method provides the starting point and ordering for the execution of your pro-

gram. A while loop requires a variable to be initialized before the loop so that it can be evaluated as

part of the conditional expression. Initialize an integer with the following statement:

int i = 1;

It should be placed after (String[] args){ and before the next }.

 5. Now add the following while loop immediately following the int declaration.

while (i <= 10){
}

 6. Now insert the statements that will be executed during each loop. In each iteration, you multiply

the value of the current array entry by 2 (doubling it) and then print a string containing the result-

ing value to the console. Use the following statements to do so:

int doubled = i * 2;
System.out.println(i + " times two equals " + doubled);

http:///

Understanding Language Control ❘ 151

Place these statements between the { } of the while loop.

 7. Remember, you must alter the value of the variable used in the conditional expression during
the loop to avoid ininite looping. You may add it anywhere within the loop, but keep in mind

that the statements are executed from top to bottom, so if you change the value of i before dou-

bling and printing, you will double and print the new value. Add the following line after the

System.out.println() line, but before the next }.

i++;

 8. Finally, add a print statement to indicate the end of the program. Use the following statement:

System.out.println("End of program");

This time, make sure it is placed after the closing bracket (}) of the while loop, but before the

closing bracket (}) of the main method. This ensures that it will not be repeated in each iteration,

but it will be executed once before the main method concludes.

 9. Your class body should now look like this:

public class WhileLoop {
 public static void main(String[] args) {
 int i = 1;
 while (i <= 10){
 int doubled = i * 2;
 System.out.println(i + " times two equals " + doubled);
 i++;
 }
 System.out.println("End of program");
 }
}

 10. Save the class by clicking the disk icon or selecting File, then Save.

 11. Run the application by clicking the green play icon or selecting Run, and then Run.

How It Works

Now take a look at how it works.

 1. The application begins by executing the main method, which in this case is the only method.

 2. The irst statement initializes an integer, named i, with the value of 1.

 3. The next statement opens a while loop, which will loop based on the value of the integer i initial-

ized in the previous statement.

 4. In the irst statement inside the loop, a second int, named doubled, is assigned the value of i*2. In

this irst iteration, i=1, so doubled=2.

 5. In the next statement of the loop, there is a println command. A line is output to the console

which reads: 1 times two equals 2. Because the command is println instead of print, you can

imagine pressing Enter or Return at the end of the string to create a new line.

 6. The last statement inside the while loop reassigns the value of i to i+1 or i=2.

http:///

152 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

 7. When the program reaches the end of the loop, it will return to the conditional expression to see if
it will enter the loop again. Since 2 is still less than 10, it will loop again.

 8. The variable doubled is 2*2 or 4 in this iteration of the loop.

 9. Another line will be output to the console, this time reading: 2 times two equals 4.

 10. The integer i will be reassigned the value of i+1 or i=3.

 11. This will continue until i=11 and then the conditional expression will evaluate to false. The
while loop will be skipped on this last iteration and the program will continue below the loop.

 12. One inal line will be output to the console indicating the end of the program.

 13. If you executed the for loops in the other Try It Out exercises in this chapter, you’ll notice that

they all produce the same output. For these simple examples, the loops can be used somewhat

interchangeably, with some small adaptations. You will encounter situations in the later chapters

that are more suited to one type of loop over others.

What Is a do while Loop?

There is also an alternate form of a while loop that’s useful in some circumstances. It is called a do

while loop and is very similar to the while loop. As you’ll recall, a while loop starts by evaluating

a conditional statement, much like a for loop begins by checking the termination condition. A do

while loop is different because it will irst execute (“do”) the statements within the loop and then

check the conditional expression (“while”) to see if it should repeat the loop. A standard do while

loop uses the following syntax:

do {
 /*execute these statements*/
} while (/*conditional expression*/);

To demonstrate the difference, consider the small example from the previous section of a while

loop.

int i = 10;

while (i > 0){
 System.out.println(i);
 i = i - 1;
}

Now the same example is presented as a do while loop.

int i = 10;

do {
 System.out.println(i);
 i = i - 1;
} while (i > 0);

http:///

Understanding Language Control ❘ 153

Now imagine you changed the conditional expression from i>0 to i<0. In the example with the
while loop, you would irst check the condition 10<0, which evaluates to false. The loop would

be skipped and the program would continue below the while loop. In the second example with the

do while loop, it would irst execute the loop with i=10, then evaluate the condition 9<0 and ind it

to be false. The do while loop would not be repeated at this point.

A do while loop is useful when you want to ensure statements in the loop are executed at least the

irst time. It can be troublesome if it is possible to cause an error by executing the statements before

checking the conditional expression. Consider the following example, which was used in the for

loop section earlier:

int[] sales2014 = {500,720,515,377,400,435,510,1010,894,765,992,1125};
int[] staff2014 = {7,5,5,5,5,6,6,7,7,8,9,9};
int[] salesPerStaff = new int[12];
int totalSales2014 = 0;

for (int i=0; i<sales2014.length; i++){
 salesPerStaff[i] = sales2014[i]/staff2014[i];
 totalSales2014 = totalSales2014 + sales2014[i];
}

It is possible to implement this with a do while loop instead:

int[] sales2014 = {500,720,515,377,400,435,510,1010,894,765,992,1125};
int[] staff2014 = {7,5,5,5,5,6,6,7,7,8,9,9};
int[] salesPerStaff = new int[12];
int totalSales2014 = 0;
int i = -1;
do {
 salesPerStaff[i] = sales2014[i]/staff2014[i];
 totalSales2014 = totalSales2014 + sales2014[i];
 i++;
} while (i<sales2014.length);

You must ensure that the variable i is initialized with a value that will refer to an element in the

array. In the example, i=-1 will cause an error, as would i=12, because the arrays only have ele-

ments between 0 and 11.

trY it out a do while Loop

 To create a do while loop, follow these steps:

 1. Create a new class named DoWhileLoop, following the same process. You can continue to use the

same Chapter5 project. Create a new class by right-clicking on the src folder in your project.

Select New and then Class.

 2. In the Name ield, enter the name of your class, DoWhileLoop, beginning with a capital letter

by Java convention. In the bottom portion of the New Java Class window, there is a section

that reads: “Which method stubs would you like to create?” You may choose to check the

box next to "public static void main(String[] args)" to automatically create a main

method.

http:///

154 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

 3. You should automatically have the basis for the class body shown here:

public class DoWhileLoop {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }
}

If not, you can type it yourself. You do not need the comments, which are denoted with /** or
//. In Eclipse, they will appear as blue or green text. Comments are useful for explaining what
the code is doing, but are never compiled or executed by Java.

public class DoWhileLoop {
 public static void main(String[] args){

 }
}

 4. Recall that the main method provides the starting point and ordering for the execution of
your program. A do while loop requires a variable to be initialized before the loop so that it
can be evaluated as part of the conditional expression. Initialize an integer with the following
statement:

int i = 1;

It should be placed after (String[] args){ and before the next }.

 5. Now add the following do while loop immediately following the int declaration.

do {
} while (i <= 10);

 6. Now insert the statements that will be executed during each loop. On each iteration, you multiply
the value of the current array entry by 2 (doubling it) and then print a string containing the result-
ing value to the console. Use the following statements to do so:

int doubled = i * 2;
System.out.println(i + " times two equals " + doubled);

Place these statements between the { } of the do while loop.

 7. Remember, you must alter the value of the variable used in the conditional expression during the
loop to avoid ininite looping. You may add it anywhere within the loop, but keep in mind that the

statements are executed from top to bottom, so if you change the value of i before doubling and

printing, you will double and print the new value. Add the following line after the System.out.

println() line, but before the next }.

i++;

http:///

Understanding Language Control ❘ 155

 8. Finally, add a print statement to indicate the end of the program. Use the following statement:

System.out.println("End of program");

This time, make sure it is placed after the closing bracket (}) of the while loop, but before the
closing bracket (}) of the main method. This ensures that it will not be repeated on each itera-
tion, but it will be executed once before the main method concludes.

 9. Your class body should now look like this:

public class DoWhileLoop {
 public static void main(String[] args) {
 int i = 1;
 do {
 int doubled = i * 2;
 System.out.println(i + " times two equals " + doubled);
 i++;
 } while (i <= 10)
 System.out.println("End of program");
 }
}

 10. Save the class by clicking the disk icon or selecting File, then Save.

 11. Run the application by clicking the green play icon or selecting Run, and then Run.

How It Works

Now take a look at how it works.

 1. The application begins by executing the main method, which in this case is the only method.

 2. The irst statement initializes an integer named i with the value of 1.

 3. The next statement opens a do while loop and enters the loop.

 4. In the irst statement inside the loop, a second int, named doubled, is assigned the value of i*2. In

this irst iteration, i=1, so doubled=2.

 5. In the next statement of the loop, there is a println command. A line is output to the console

which reads: 1 times two equals 2. Because the command is println instead of print, you can

imagine pressing Enter or Return at the end of the string to create a new line.

 6. The last statement inside the do while loop reassigns the value of i to i+1 or i=2.

 7. When the program reaches the end of the loop, it will evaluate the conditional expression to see if

it will return to the start of the loop again. Since 2 is still less than 10, it will loop again.

 8. The variable doubled is 2*2 or 4 in this iteration of the loop.

 9. Another line will be output to the console, this time reading: 2 times two equals 4.

 10. The integer i will be reassigned the value of i+1 or i=3.

 11. This will continue until i=11, and then the conditional expression will evaluate to false and it will

not return to the start of the loop. Instead, the program will continue below the loop.

http:///

156 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

 12. One inal line will be output to the console indicating the end of the program.

 13. If you executed the for loops in the other Try It Out exercises in this chapter, you’ll notice that

they all produce the same output. For these simple examples, the loops can be used somewhat

interchangeably, with some small adaptations. You will encounter situations in the later chapters

that are more suited to one type of loop over others.

comparing for and while loops
As you’ve seen through the examples and exercises in the previous sections, for and while loops

can both be used to obtain the same outcome. So how do you know which one to use?

For some problems, this will simply be a matter of preference. Some programmers tend to use for

loops, except when a situation really demands a while loop. Others prefer while loops and include

for loops only when needed. Many programmers, through practice and experience, learn a certain

feeling for which one is best suited for the problem at hand, and you will too.

In general, keep in mind the following points:

 ➤ If you are iterating over a collection, consider a for loop irst.

 ➤ If you know the number of loops in advance, consider a for loop irst.

 ➤ If you don’t know the number of iterations, but the number will depend on a certain condi-

tion, consider a while loop irst.

When making your decision, simplicity and clarity are important considerations. You want a solu-

tion that’s the simplest to code, for your own sake, and clearest to read and understand, for yourself

and others who will have to maintain or reuse your code later.

creating switches
Earlier in this chapter, you learned that if-then statements are one of the basic control structures.

Now you will see switch statements, which function in a similar way to if-then statements, but with

a different syntax. They are particularly useful when you have several else clauses. A switch state-

ment evaluates a single variable and, depending on its value, executes a certain block of code. The

general syntax of a basic switch statement is as follows:

switch (/*variable*/ {
 case 1: /*execute these statements*/; break;
 case 2: /*execute these statements*/; break;
 default: /*execute these statements*/;
}

The variable that’s evaluated can be a primitive byte, short, char, or int, as well as enumerated

types and String. The switch checks the value of the variable for a match in one of the cases. If

they are equal, the statements in that case will be executed.

http:///

Understanding Language Control ❘ 157

Notice the three new keywords in the syntax: case, break, and default. Cases are similar to the
if() and else if() parts of an if-then statement. Each case is labeled with one possible value
the variable might take. If the label matches the value of the variable, the statements that follow
the : for that case will be executed. Cases are evaluated sequentially, from top to bottom. Once
a match is found, all the statements to follow will be executed, even those intended for the other
cases that follow. In order to prevent this from happening, the break keyword is used. The break
keyword is discussed more in detail in the next section, but its purpose is to break out of the
switch and continue with the rest of the program. default is the switch equivalent of the else
clause in an if-then statement. If none of the explicit cases apply to the variable, default will
still apply. Every value will match the default case, so this can be useful to handle unexpected
situations.

Because a switch is organized into cases, it makes sense to use it when you have a inite number of

expected values. Twelve months in a year, for example, could be represented by twelve cases. If the

situation calls for a large range of values, it’s more suited to an if-then statement. Recall the example

concerning bank account alerts, where depending on if accountBalance was less than 0, greater

than 100, or somewhere in between, a message was displayed.

Imagine you want to include a switch in a bookkeeping program that determines the last day of

each month for recording monthly income and expenses. It might look something like this:

int month = 4; // here 4 represents April
int lastDay;
boolean leapYear = false;

switch (month) {
 case 1: lastDay = 31; break;
 case 2: if (leapYear == true) {
 lastDay = 29;
 } else {
 lastDay = 28;
 } break;
 case 3: lastDay = 31; break;
 case 4: lastDay = 30; break;

NOTE Switches were extended in Java 7 to allow the use of strings as switch
variables. To use a string as your variable and label, just include the label in
quotation marks so it is recognized as a string. For example:

char initial;
String myName = "Bob";
switch (myName) {
case "Ann": initial = 'A'; break;
case "Bob": initial = 'B'; break;
case "Claire": initial = 'C'; break;
default: initial = '?'; break;
}

http:///

158 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

 case 5: lastDay = 31; break;
 case 6: lastDay = 30; break;
 case 7: lastDay = 31; break;
 case 8: lastDay = 31; break;
 case 9: lastDay = 30; break;
 case 10: lastDay = 31; break;
 case 11: lastDay = 30; break;
 case 12: lastDay = 31; break;
 default: lastDay = 0;
}

This can even be simpliied because many of the cases result in the same outcome. As mentioned,

cases are evaluated from top to bottom, and until the execution reaches a break keyword, the state-

ments will continue to be executed. Notice how you can lump the months or cases together to treat

a series of cases identically:

int month = 4; // here 4 represents April
int lastDay;
boolean leapYear = false;

switch (month) {
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 case 12:
 lastDay = 31; break;
 case 2:
 if (leapYear == true) {
 lastDay = 29;
 } else {
 lastDay = 28;
 } break;
 case 4:
 case 6:
 case 9:
 case 11:
 lastDay = 30; break;
 default: lastDay = 0;
}

trY it out Creating a switch

 To create a switch, follow these steps:

 1. Create a new class named SwitchClass, following the same process. You can continue to use the

same Chapter5 project. Create a new class by right-clicking on the src folder in your project.

Select New and then Class.

 2. In the Name ield, enter the name of your class, SwitchClass, beginning with a capital letter by

Java convention. In the bottom portion of the New Java Class window, there is a section that

http:///

Understanding Language Control ❘ 159

reads: “Which method stubs would you like to create?” You may choose to check the box next to
"public static void main(String[] args)" to automatically create a main method.

 3. You should automatically have the basis for the class body shown here:

public class SwitchClass {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }
}

If not, you can type it yourself. You do not need the comments, which are denoted with /** or
//. In Eclipse, they will appear as blue or green text. Comments are useful for explaining what
the code is doing, but are never compiled or executed by Java.

public class SwitchClass {
 public static void main(String[] args){

 }
}

 4. Recall that the main method provides the starting point and ordering for the execution of your pro-
gram. A switch statement requires a variable to be initialized before the statement so that it can be
evaluated for each of the cases. Initialize a string with the following statement:

String loanType = "Commercial";

It should be placed after (String[] args){ and before the next }.

 5. In this example, you will use the value of the string to determine how to set the value of a double
variable. In the next line, declare a double variable interestRate. It does not need its value initial-
ized here.

double interestRate;

 6. Now add the switch statement. Remember to use the loanType variable as the conditional
expression.

switch(loanType){

}

 7. Now add your cases inside the switch statement.

case "Residential":
 interestRate = 0.055;
 break;
case "Commercial":
 interestRate = 0.062;

http:///

160 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

 break;
case "Investment":
 interestRate = 0.059;
 break;
default:
 interestRate = 0;

Place these statements between the { } of the switch statement.

 8. Next, add a print statement to show the outcome of the switch cases. Use the following statement:

System.out.println (loanType + " loans have an annual interest rate of "
 + interestRate*100 + "%.");

This time, make sure it is placed after the closing bracket (}) of the switch statement, but before
the closing bracket (}) of the main method.

 9. Your class body should now look like this:

public class SwitchClass {

 public static void main(String[] args) {
 String loanType = "Commercial";
 double interestRate;

 switch (loanType) {
 case "Residential":
 interestRate = 0.055;
 break;
 case "Commercial":
 interestRate = 0.062;
 break;
 case "Investment":
 interestRate = 0.059;
 break;
 default:
 interestRate = 0;
 }

 System.out.println(loanType + " loans have an annual interest rate of "
 + interestRate * 100 + "%.");
 }
}

 10. Save the class by clicking the disk icon or selecting File, then Save.

 11. Run the application by clicking the green play icon or selecting Run, and then Run.

How It Works

Now take a look at how it works.

 1. The application begins by executing the main method, which in this case is the only method.

 2. The irst statement initializes a String, named loanType, with the value of "Commercial".

http:///

Understanding Language Control ❘ 161

 3. The next statement declares a double, named interestRate, but does not initialize it with any value.

 4. Next, a switch statement is opened, using the variable loanType as the conditional expression.
This means it will try to match the value of loanType to the values listed in each of the cases.

 5. Next, the program will evaluate a series of cases, each in the same way. In the irst case, it will com-

pare "Commercial" to "Residential". Because they are unequal, it will move to the next case.

 6. In the second case, it will compare "Commercial" to "Commercial". This time, because the two

strings are equal, it will evaluate the statements associated with this case.

 7. Inside the "Commercial" case, the value of interestRate will be set to 0.062. Then, the break

statement will indicate that the switch statement should be interrupted and no further cases or

statements will be evaluated. Without the break statement, the value of interestRate will be

reassigned to 0.059 and again to 0 following all the statements in the rest of the switch statement.

 8. After leaving the switch statement, the print statement will output a line of text to the console.

The string that will be printed is composed of four parts:

String loanType: Commercial

String: loans have an annual interest rate of

double interestRate*100: 0.062*100 = 6.2

String: %.

Altogether, the output will be: “Commercial loans have an annual interest rate of 6.2%.”

comparing switches and if-then statements
Just like for and while loops are similar structures, switches and if-then statements are also easy

to compare. When you are using a switch, you read it the same way as an if-then statement: if the

value matches the case, then do something. So how do you know when to use each one?

As with the other control structures, there will be situations when either one is appropriate and you

can choose according to your own preference. As you continue coding, your experience will tell you

if a problem would be better solved with a switch or not.

In general, you might consider the following criteria:

 ➤ If you have a single variable that can take multiple values, a switch might be suitable.

 ➤ If you have multiple variables or conditions to consider, you will probably need an if-then

statement.

 ➤ If the value you are considering can have a inite number of values, consider using a switch.

 ➤ If the variable can take any value within a continuous range of numbers, consider an if-then

statement.

As before, try to keep simplicity and clarity in mind whenever you make decisions about how to

code. You want a solution that’s simple for you to code, but also as clear to read and understand as

possible, for yourself and others who will have to maintain or reuse your code later.

http:///

162 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

reviewing keywords for control
Chapter 2 briely covered Java keywords in a more general way. This section reviews keywords used

in control structures. Many of these keywords have already been featured in this chapter, as they

are speciic to the types of control structures you’ve been reading about. Table 5.4 lists the control

keywords and their associated control structures. This section focuses on break, continue, and

return, which are more general and can be found in different kinds of structures.

taBle 5.4: Control Keywords

keYword associated control structure

for for loop

Enhanced for loop

while while loop

do while loop

do do while loop

if if-then statement

else if-then statement

switch switch statement

case switch statement

default switch statement

break General use

continue General use

return General use

The last three keywords—break, continue, and return—all interrupt the execution of the current

block of code. The differences among them is found in what happens after the interruption.

Controlling with the return Keyword

You have seen the return keyword as part of a return statement already, so it may seem strange to

think of it as part of a control structure. You know that a return statement of a method completes

the execution of that method by returning a value. So, whenever a return statement is executed,

that method is stopped, regardless of where in the list of statements it is placed. To imagine how this

can be used for control, take the following example:

//array of employee ID numbers, stored as Strings
static String[] employees;

//method to search for a specified employee ID
static boolean findEmployee(String employeeID){
 for (String emp : employees){

http:///

Understanding Language Control ❘ 163

 if (emp.equals(employeeID)){
 return true;
 }
 }
 return false;
}

As soon as the speciied employeeID is found, the Boolean true will be returned. This will interrupt

the search, whether it is the irst string in the array, the last string, or anywhere in between. In this

way, the low of the program is controlled by the return statement.

It is also possible to use the return statement in the same way, but with a void method. In this case,

the method will be interrupted, but no value will be returned.

import java.util.ArrayList;

static ArrayList<String> employeeList = new ArrayList< >();

//a method to add new Employees to the Employee array
static void addNewEmployee(String employeeID){
 if (employeeList.contains(employeeID)){
 return; //employee already exists
 }
 employeeList.add(employeeID);
}

In this example, if the employee is found in the ArrayList, then there is no need to put her into it.

Therefore, the code returns nothing as soon as the employee is found and then exits the method.

Controlling with the break Keyword

The break keyword also interrupts the execution of the current block of code. You already saw

this keyword used as part of the switch statement. It can also be used, in a similar way, with loop

structures. A break could be thought of as a softer interruption than return, as the method con-

tinues to execute, just in a different place after breaking out of the current block. If break occurs

as part of an iterative loop, the loop containing the break statement will be stopped and it will

not complete any further iterations. In the following example, the use of the break keyword to

exit a loop is shown.

//array of employee ID numbers, stored as Strings
static String[] employees;

//method to search for a specified employee ID
static void findEmployee(String employeeID){
 String myString = employeeID + " was not found.";
 for (String emp : employees){
 if (emp.equals(employeeID)){
 myString = employeeID + " was found.";
 break;
 }
 }
 System.out.println(myString);
}

http:///

164 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

Similar to the last example, as soon as the string is found in the array, if it is found, myString
will be reassigned to indicate the employeeID was found. At that point, the enhanced for loop
containing the break statement will stop looping and the program will resume after the curly
bracket, which closes the for loop block. Then, the inal print statement will be executed. If

myString is never found in the array, the for loop will iterate through all elements of the array,

exit the block in the same place, and then execute the same print statement, but the value of

myString will be different.

Controlling with the continue Keyword

The continue keyword is the softest interruption, because only this particular iteration of the loop

is stopped and the next iteration begins immediately. This is useful if there are statements you want

to execute for only certain elements of an array or in speciic iterations of the loop. To demonstrate,

assume you have an array of Employee objects. Each Employee object has a method isManagedBy()

to check if an ID value refers to the manager of that employee.

static Employee[] allEmployees;
static void printManagedBy(String managerID){
 for (Employee emp : allEmployees){
 if (!emp.isManagedBy(managerID)){
 continue;
 }
 System.out.println(emp.getName());
 }
}

Then the method printManagedBy() will loop through all Employee objects. If the current

Employee is not managed by the ID speciied, the current iteration will stop and the next Employee

will be checked. If the current Employee is managed by the ID, the loop will continue to the print

statement before proceeding to the next iteration.

Specifying a Label for break or continue Control

Both the break and continue keywords can be combined with a label in order to control the low

even more directly. Recall that using the break keyword without a label automatically interrupts the

loop that most closely contains the break statement. If there are two nested for loops, the break

statement would interrupt the inner for loop and resume at the outer for loop. By placing a label

before the outer for loop and including that label in the break statement, you can force the break

to apply to both loops at once.

To include a label in your program, simply choose a name for your label and insert it, followed by

a colon (:), before the section of code you would like to break out of. For example, if you have a

nested for loop and you would like a break in the inner for loop to break out of both for loops,

your label would go before the irst for keyword and the label name would follow the break key-

word. Here’s the syntax for this:

outer: //label to break both for loops
 for (/*Initialization*/; /*Termination*/; /*Increment*/){
 for (/*Initialization*/; /*Termination*/; /*Increment*/){

http:///

Understanding Language Control ❘ 165

 /*execute these statements*/
 break outer; //break with label
 }
 }

The following Try It Out exercise gives you some practice with the break keyword, both with and
without labels.

trY it out Breaking a for Loop

 Follow these steps to create three sets of nested for loops. The irst is a standard for loop, the second

has a break statement added, and the last one includes the break statement with a label.

 1. Create a new class named BreakLoop, following the same process. You can continue to use the

same Chapter5 project. Create a new class by right-clicking on the src folder in your project.

Select New and then Class.

 2. In the Name ield, enter the name of your class, BreakLoop, beginning with a capital letter by

Java convention. In the bottom portion of the New Java Class window, there is a section that

reads: “Which method stubs would you like to create?” You may choose to check the box next to

"public static void main(String[] args)" to automatically create a main method.

 3. You should automatically have the basis for the class body shown here:

public class BreakLoop {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }
}

If not, you can type it yourself. You do not need the comments, which are denoted with /** or

//. In Eclipse, they will appear as blue or green text. Comments are useful for explaining what

the code is doing, but are never compiled or executed by Java.

public class BreakLoop {
 public static void main(String[] args){

 }
}

 4. Recall that the main method provides the starting point and ordering for the execution of your pro-

gram. For this exercise, all the statements you want to execute will be inside the main method.

 5. For the irst nested for loop section, you use the standard syntax you saw earlier in the chapter.

Begin with a print statement to display the area of the program that’s being executed. In each itera-

tion of the nested loops, you will simply print the values for x and y, the variables you are using as

iterators. Type the irst nested for loop as follows:

http:///

166 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

System.out.println("\nLooping with No Break:");
for (int x = 0; x < 3; x++){ //outer loop (x loop)
 for (int y = 0; y < 3; y++){ //inner for loop (y loop)
 System.out.println("x = " + x + " and y = " + y);
 }
}

 6. Now add the second nested for loop section. This will include a break statement, which is exe-
cuted whenever x and y have the same value. Type the second nested for loop as follows:

System.out.println("\nBreak with No Label:");
for (int x = 0; x < 3; x++){//outer loop (x loop)
 for (int y = 0; y < 3; y++){ //inner loop (y loop)
 System.out.println("x = " + x + " and y = " + y);
 if (x == y) { //new conditional expression
 System.out.println("Break out of y loop.\n");
 break; //new break statement
 }
 }
}

 7. Finally, add a third nested for loop section. This time, include both a break statement and a label.
It will be executed under the same condition as the previous section. Type the third nested for loop
as follows:

System.out.println("\nBreak with No Label:");
outer: // new label
for (int x = 0; x < 3; x++) {// outer loop (x loop)
 for (int y = 0; y < 3; y++) { // inner loop (y loop)
 System.out.println("x = " + x + " and y = " + y);
 if (x == y) { // same conditional expression
 System.out.println("Break out of both loops.\n");
 break outer; // new break statement with label
 }
 }
}

 8. All of the preceding for loops should be between the {} of the main method. Your class body
should now look like this:

public class BreakLoop {
 public static void main(String[] args) {
 System.out.println("\nLooping with No Break:");
 for (int x = 0; x < 3; x++) { // outer loop (x loop)
 for (int y = 0; y < 3; y++) { // inner for loop (y loop)
 System.out.println("x = " + x + " and y = " + y);
 }
 }

 System.out.println("\nBreak with No Label:");
 for (int x = 0; x < 3; x++) {// outer loop (x loop)
 for (int y = 0; y < 3; y++) { // inner loop (y loop)
 System.out.println("x = " + x + " and y = " + y);
 if (x == y) { // new conditional expression

http:///

Understanding Language Control ❘ 167

 System.out.println("Break out of y loop.\n");
 break; // new break statement
 }
 }
 }

 System.out.println("\nBreak with No Label:");
 outer: // new label
 for (int x = 0; x < 3; x++) {// outer loop (x loop)
 for (int y = 0; y < 3; y++) { // inner loop (y loop)
 System.out.println("x = " + x + " and y = " + y);
 if (x == y) { // same conditional expression
 System.out.println("Break out of both loops.\n");
 break outer; // new break statement with label
 }
 }
 }
 }
}

 9. Save the class by clicking the disk icon or selecting File, then Save.

 10. Run the application by clicking the green play icon or selecting Run, and then Run.

How It Works

Now take a look at how it works.

 1. The application begins by executing the main method, which in this case is the only method.

 2. The irst statement outputs a line of text to the console indicating that the irst set of for loops are

being executed. They do not include any break statements.

 3. The nested for loops iterate through nine times. During each iteration, the current values for x

and y are printed to the console. This is how a standard nested for loop iterates: First, in the outer

loop, x = 0 and the inner loop will iterate for y = 0, y = 1, and y = 2. When y = 3, the condi-

tional expression on the inner for loop (3 < 3) will evaluate to false, so the inner for loop ends

and the outer for loop iterates to x = 1. Again, the inner for loop will iterate for y = 0, y = 1,

and y = 2. When y = 3, the conditional expression is false again and the inner loop ends. The

outer for loop iterates again to x = 2, and the inner for loop cycles through three values for y

again. Finally, when x = 3, the conditional expression on the outer for loop will be evaluated as

false and both for loops will end. You can see each of these iterations printed to the console.

 4. Another statement is then printed to the console, indicating that the second set of for loops will be

executed with a break statement. The program proceeds to the next nested for loops.

 5. The second set of nested for loops iterates through only six times. During each iteration, the cur-

rent values for x and y are printed to the console. When the break statement is encountered,

another line is output to the console indicating the break. This is how nested for loops with a

break statement iterate: First, in the outer loop x = 0 and in the inner loop y = 0. These values

are printed to the console and then the program checks if x equals y. Since 0 == 0 is true, there is

a line printed to the console and the break occurs. This breaks from the inner loop and proceeds to

the next outer loop iteration. In the outer loop x = 1 and in the inner loop y = 0 again; these are

http:///

168 ❘ Chapter 5 controllInG the Flow oF Your ProGrAm

printed to the console. The program again determines if x and y are equal, and because 0 == 1 is
false, the inner loop iterates to y = 1 and the values are printed to the console again. Checking
again if x equals y, 1 == 1 is now true, so the print statement and break occur a second time.
This breaks from the inner loop and proceeds to the next outer loop iteration. This time, in the
outer loop x = 2 and in the inner loop y = 0. The inner loop will iterate from y = 0 to y = 1
to y = 2, printing the values each time. At this point, x == y or 2 == 2 is true and the break
occurs again. When the outer loop iterates to x = 3, the conditional statement x < 3 becomes
false and the outer loop is ended. You can see all of these iterations and breaks printed to the
console.

 6. Another statement is then printed to the console, indicating that the third set of for loops will be
executed with a break statement and label. The program proceeds to the next set of nested for
loops.

 7. The third set of nested for loops iterates through only once. During the iteration, the current val-
ues for x and y are printed to the console. When the break statement is encountered, another line
is output to the console indicating the break. This is how nested for loops with a break state-
ment and label iterate: First, in the outer loop x = 0 and in the inner loop y = 0. These values
are printed to the console in the irst iteration. Then the program checks if x and y are equal and

evaluates 0 == 0 as true. Therefore, a line is output to the console indicating a break will occur

and the break with label is executed. The program will link the break outer; statement with

the outer: label, and both the inner and outer for loops will be broken. The program then pro-

ceeds to the end of the main method, which has no further statements to execute, so the program

terminates.

reviewing control structures
By now, I hope you have a basic understanding of the most common structures you can use to con-

trol the low of your program. This chapter covered control operators, if-then statements, for loops,

while loops, switches, and keywords that can be used for control.

Recall that Java, like most other programming languages, includes operators, which are based on

mathematical concepts and used to compare values. With Boolean operators, Java offers the double

symbols && and || in addition to the single symbols & and |. These double symbols offer short cir-

cuiting to prevent certain types of errors from occurring. It’s advisable to make use of && for AND

and || for OR in Boolean logic.

The if-then statement is a basic control structure that simply tests a condition, and if it’s true,

executes some statements. It can be expanded with else or else if to allow for executing dif-

ferent statements based on various conditions. Switches operate as sort of a special kind of if-then

statement. A single variable is considered, and its value is matched to cases. If they match, then some

statements will be executed. You read about how to decide between if-then statements and switches.

Both for and while loops are structures that allow repetition or iteration of some statements.

Because they use different syntax, they are each more or less suitable in different circumstances. You

read about some considerations to make when choosing the loop structure for a particular problem.

http:///

Understanding Language Control ❘ 169

Enhanced for loops allow for automatic iteration over iterable objects like arrays. On the other
hand, do while loops offer an alternative syntax to while loops and can allow the irst iteration to

occur before testing the condition.

Finally, you looked at some keywords and how they can also be used to control the low of a

program. Any method will be interrupted and exited when the return keyword is encountered.

In this way, you can inluence how much of a method is evaluated and executed. The break key-

word, with and without a label, can also control how loops and other structures are evaluated

by exiting a loop immediately. The continue keyword works similarly, but by jumping to the

next iteration of a loop.

Because these structures are so common, they will be used throughout the remainder of this book.

This will give you a chance to continue practicing, but it also means it’s important that you feel

comfortable with the ideas in this chapter before continuing. If you can follow the execution of the

programs from the Try It Out and How It Works exercises, you’re probably ready to move on to the

later chapters.

http:///

http:///

6
handling exceptions and
Debugging

what You will learn in this chaPter:

 ➤ What kinds of errors can occur in programming

 ➤ How to ind errors in your program

 ➤ How to handle exceptions that could crash your program

 ➤ How to test your program

wrox.com code downloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 6
download and individually named according to the names throughout the chapter.

You are now midway through this book. You’ve learned the basics of Java and program-
ming already. In the following chapters, you’ll be going more in depth with object‐oriented

programming and interacting with users and data sources outside your Java program. This

chapter is placed in between to offer you the tools and techniques needed to handle many of

the errors that might begin to pop up as your programs start to become more complex. The

chapter is divided into three main sections: types of errors, testing options, and programming

styles. You saw the concepts introduced as early as Chapter 1, but here you will see actual

solutions put into practice with a chance to try them out on your own. By the end of this chap-

ter, you should have developed the skills to avoid errors while you program and to ind and ix

the errors that will still inevitably occur.

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

172 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

recognizing error tYPes

Errors are almost unavoidable when programming. Just as when you are writing an essay and
sometimes make typos or misuse words, you will make occasional mistakes when programming in
Java. These mistakes can be referred to as bugs, errors, or exceptions. Here you will ind them clas-
siied into three main categories: syntax errors, runtime errors, and logical errors. In general, syntax
errors are the easiest to ind and correct while logical errors are the most dificult.

identifying syntax errors
Syntax errors are the programming equivalent of spelling and grammar mistakes in natural
languages. Syntax errors include the following examples:

 ➤ Misspelled class, variable, or method names

 ➤ Misspelled keywords

 ➤ Missing semicolons

 ➤ Missing return type for methods

 ➤ Out of place or mismatched parentheses and brackets

 ➤ Undeclared or uninitialized variables

 ➤ Incorrect format of loops, methods, or other structures

In the following code example, see how many syntax errors you can spot:

public class errors {

 public static vod main(String[] args) {
 age = 30;
 int retirementFund = 10000;
 int yearsInRetirement = 0;
 String name = "David Johnson",
 for (int i = age; <= 65; ++){
 recalculate(retirementFund,0.1);
 }
 int monthlyPension = retirementFund/yearsInRetirement/12
 System.out.printline(name + " will have $" + monthlyPension
 + " per month for retirement."];
 }

 public static recalculate(fundAmount, rate){
 fundAmount = fundAmount*(1+rate);
 }
 }
}

You probably can spot several just by reading the code. The keyword void is misspelled, the decla-
ration of the string name should end with a semicolon instead of a comma, and the print statement
should close with a parenthesis followed by a semicolon. If you have a good eye for it, you could see

http:///

recognizing error types ❘ 173

several others, too. Now, look at what
Eclipse shows you when you enter the
code exactly as it’s typed. If you try
to run the program now, Eclipse will
warn you that there are errors and ask
if you would still like to proceed. See
Figure 6-1.

You can see that Eclipse points out syn-
tax errors as you type, so you can more
easily ind them and ix them immedi-
ately. Errors are indicated in the code
itself by a red underline, and also noted
to the left of the line number as a red
X. If you hover your mouse over the red
X, you will see a pop-up note indicat-
ing what Eclipse thinks the problem is, as shown in Figure 6-2.

figure 6-1

figure 6-2

The note age cannot be resolved to a variable indicates that a variable called age has not
been declared yet. Therefore, you cannot assign it a value. If you click on the red X, a new popup
window appears with possible solutions for the error, if Eclipse has one or more solutions to pro-
pose. See Figure 6-3.

By double‐clicking on the irst solution, Create local variable 'age', the code is automatically

edited to include the variable declaration. You can see that it becomes an int variable, because Eclipse

assumes a value of 30 belongs to an int data type. Also, the red X now shows as a faint white X,

so you can see that the error was resolved. See Figure 6-4. When you save the ile, this white X will

http:///

174 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

disappear. It’s important to note already that the proposed solution will not always be the correct one,
so be careful that you read and understand both the error and the solution before applying it.

figure 6-3

figure 6-4

Following this approach, you can resolve all of the syntax errors in this code.

 ➤ Line 3: Rename type to Errors (class name must match .java ilename).

 ➤ Line 5: Change to void (main method return type is always void).

 ➤ Line 9: Change the comma to a semicolon.

 ➤ Line 10: Change the for loop to for (int i = age; i <= 65; i++).

http:///

recognizing error types ❘ 175

 ➤ Line 18: Set the method return type to void (recalculate method doesn’t return any value).

 ➤ Line 18: Add the parameter data types to double fundAmount, double rate (this also
solves the bug indicated at line 10).

 ➤ Line 13: Add a semicolon at the end.

 ➤ Line 14: Change to println (printline is not correct syntax).

 ➤ Line 15: Change the square bracket to a parenthesis.

 ➤ Line 22: Delete the last closing curly bracket (there was one too many).

After all of these corrections, the syntax errors are resolved and your program can be executed. The
resulting code looks like this:

public class Errors {

 public static void main(String[] args) {
 int age = 30;
 int retirementFund = 10000;
 int yearsInRetirement = 0;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++){
 recalculate(retirementFund,0.1);
 }
 int monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 }

 public static void recalculate(double fundAmount, double rate){
 fundAmount = fundAmount*(1+rate);
 }
}

identifying runtime errors
If you tried running the program after ixing all the syntax errors, you probably already found your
irst runtime error. In the console you’ll ind red text indicating there was an exception in the thread
main. See Figure 6-5. Exception is a Java class including many types of runtime problems. Java
distinguishes exceptions and errors: exceptions can—and should—be managed by the programmer,
while errors are serious problems that reasonable programs are not expected to handle. Here, the
word error is more generally applied.

figure 6-5

http:///

176 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

Luckily, there are clues in the error message that can help you sort out where and why it
happened. First note the type of exception: java.lang.ArithmeticException. Already from
the name, you can see it must be something related to the calculations. Then, speciically it states
“/ by zero,” so somewhere your program has tried to divide by zero, an operation that’s unde-
ined and therefore cannot be computed by Java. In such a small program, you can probably
easily locate where the division is occurring, but in case you need some direction, the error mes-
sage also shows where the error occurred: chapter6.Errors.main(Errors.java:13). In other
words, line 13 in the main thread of the Errors class in the chapter6 package. If you go to line
13, you’ll see the program is trying to divide retirementFund by yearsInRetirement. If you
refer back to the initializations of these two variables, you’ll ind retirementFund = 10000 and
yearsInRetirement = 0. There’s the problem! If you set yearsInRetirement to some other
value, say 20 years, for a person retiring at 65 and living to age 85, you will no longer have a divi-
sion by zero exception.

Division by zero is a classic runtime error example, because the syntax is correct and it is only
during runtime that a problem occurs. Other typical examples that you will no doubt encounter,
if you haven’t already, include null pointer exception, index out of bounds exception, and ile
not found exception. In the next section, you’ll see explanations of the most common exceptions
beginners see.

identifying logical errors
If you’ve run the code that you just ixed, did you notice anything strange? There shouldn’t be any
syntax or runtime errors, so your program should run normally. You should see David Johnson
will have $41 per month for retirement. printed to the console. At irst glance, this seems
ine, but on further inspection, the number is lower than you would expect. In fact, 10,000 divided
by 20 years divided by 12 months is 41 dollars per month. But the program is supposed to be calcu-
lating an annual return rate of 10% for all the years between age 30 and age 65. So what’s going on
here?

This is an example of a logical error. The code compiles and executes without error, but logically
produces the wrong result. Logical errors are perhaps the most dificult to spot, because there’s
nothing to suggest there’s an error unless you know what to expect and compare the actual results
to the expected results. If you are not careful to review what is happening, you may easily miss logi-
cal errors lurking in your code.

So irst try to sort out where this program went wrong. We know the return rate is not being calcu-
lated correctly; this could be a problem in the for loop that is iterating each year or in the recalcu-
late method itself. You can start by testing one recalculate method call and see if it’s working. Add
the following print statement to the main method to check this: System.out.println("100 at 10%
annual interest is: " + recalculate(100,0.1));

But now, there’s already a hint that something isn’t right. See Figure 6-6.

The error hint tells you that you cannot add a void to a string. But the recalculate method
returns a void. You will have to change this. Since the method is calculating a double type, it
makes sense to make the method return a double.

http:///

recognizing error types ❘ 177

 public static double recalculate(double fundAmount, double rate){
 return fundAmount*(1+rate);
 }

figure 6-6

NOTE It’s worth mentioning the rounding error you see here. Doubles are
not appropriate data types for dealing with things where precision is impor-
tant, including money. BigDecimal would be a much more appropriate choice
because it allows the developer control over the rounding of loating point
values. An example of how this program could use BigDecimal is included at
the end of this section.

So you now know the error is in the for loop. You might irst check the initialization and termination
conditions of the loop, just to be sure it’s iterating properly. It should repeat for each year between age
30 and 65 (presumably retirement age). That shouldn’t be a problem. Therefore, it must be in the body
of the for loop. In fact, the change you made to the return type is already a hint as to what needs to
be edited here, too. The method now returns a double, but that double is not used in any way dur-
ing the loop. Therefore, every time the loop is executed, the same retirementFund = 10000 is used
in the calculation again. What you need to do is assign the newly calculated double value to the

That corrects the syntax error, so you can try running the program now. The output should now read:

100 at 10% annual interest is: 110.00000000000001
David Johnson will have $41 per month for retirement.

So the method seems to be calculating correctly now, since 100 + 10% return is 110.

http:///

178 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

retirementFund variable, so the new amount is used in the next calculation. Because the fundAmount
is a double, you also need to change the type of retirementFund to a double as well. If you do this,
you’ll also see an error pop up for the monthlyPension variable, since it uses retirementFund in its
calculation. Change this to a double type also. You can, of course, remove the irst print statement
now that you know the method is calculating correctly. You should end up with something like this.

public class Errors {

 public static void main(String[] args) {
 int age = 30;
 double retirementFund = 10000;
 int yearsInRetirement = 20;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++){
 retirementFund = recalculate(retirementFund,0.1);
 }
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 }

 public static double recalculate(double fundAmount, double rate){
 return fundAmount*(1+rate);
 }
}

The output now, which should make you feel a little more optimistic about potential retirement,
is David Johnson will have $1288.0283555362819 per month for retirement. It is also
possible to reformat the string representation of that double to a more common two‐decimal place

number using a DecimalFormat class. That implementation isn’t important for this chapter, but you

might ind it interesting.

import java.text.DecimalFormat;

public class Errors {

 public static void main(String[] args) {
 int age = 30;
 double retirementFund = 10000;
 int yearsInRetirement = 20;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++){
 retirementFund = recalculate(retirementFund,0.1);
 }

 double monthlyPension = retirementFund/yearsInRetirement/12;

 // create a decimal format with two decimal points
 DecimalFormat df = new DecimalFormat ("0.##");

 // use the df.format() method to format the double
 System.out.println(name + " will have $" + df.format(monthlyPension)
 + " per month for retirement.");

http:///

recognizing error types ❘ 179

 }

 public static double recalculate(double fundAmount, double rate){
 return fundAmount*(1+rate);
 }
}

Precision rounding: Bigdecimal vs. douBle

You’ve seen in this small example that the way doubles are rounded makes them
inaccurate, especially when representing important decimal values, such as money.
There are other classes that will not result in these rounding errors and should be
used in real applications. BigDecimal would be a much better choice because it
offers the developer complete control over how values are rounded. BigDecimal
allows you to specify a scale, or a number of digits after the decimal point, and the
rounding method to use to accomplish this scaling. To illustrate this, have a look
at the same program written with BigDecimal instead of doubles. Remember how
you needed to specify a decimal format to display your double value nicely. With
BigDecimal, you can control the rounding at each calculation, so not only is it dis-
played nicely, but the actual value matches the nice string representation as well.

import java.math.BigDecimal;

public class Errors {

 public static void main(String[] args) {
 int age = 30;
 BigDecimal retirementFund = new BigDecimal("10000.00");
 // set the scale to 2 decimal points
 // and the rounding to round up when the next digit is >= 5
 retirementFund.setScale(2,BigDecimal.ROUND_HALF_UP);
 BigDecimal yearsInRetirement = new BigDecimal("20.00");
 String name = "David Johnson";
 for (int i = age; i <= 65; i++){
 retirementFund = recalculate(retirementFund,new
 BigDecimal("0.10"));
 }

 BigDecimal monthlyPension = retirementFund.divide(
 yearsInRetirement.multiply(new BigDecimal("12")));
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 }

 public static BigDecimal recalculate(BigDecimal fundAmount,
 BigDecimal rate){
 // use BigDecimal methods for arithmetic operations
 return fundAmount.multiply(rate.add(new
 BigDecimal("1.00")));
 }
}

continues

http:///

180 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

excePtions

In the previous section, three kinds of errors were discussed: syntax errors, runtime errors, and logi-
cal errors. These types have been discussed in a more general way as they occur in many settings
outside of Java programming, though as you saw in the examples, they certainly apply to Java as
well. Exceptions are more speciic to programming as they are events that disrupt the execution of a
program. Exceptions can be indications that something went wrong, and they can happen automati-
cally as a result of something Java is unable to complete or can be explicitly thrown when certain
conditions are met. In the following sections, you’ll be introduced to some common exceptions, and
you’ll get to see how to handle them in your own programs.

Actually, because BigDecimal is a class and its value is stored in an instance of the
class, some of the problems with the method return type also disappear. You could
change the recalculate() method so that it updates the value of the BigDecimal
retirementFund instead of returning a BigDecimal.

import java.math.BigDecimal;

public class Errors {

 public static void main(String[] args) {
 int age = 30;
 BigDecimal retirementFund = new BigDecimal("10000.00");
 // set the scale to 2 decimal points
 // and the rounding to round up when the next digit is >= 5
 retirementFund.setScale(2,BigDecimal.ROUND_HALF_UP);
 BigDecimal yearsInRetirement = new BigDecimal("20.00");
 String name = "David Johnson";
 for (int i = age; i <= 65; i++){
 recalculate(retirementFund,new BigDecimal("0.10"));
 }

 BigDecimal monthlyPension = retirementFund.divide
 (yearsInRetirement.multiply(new BigDecimal("12")));
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 }

 public static void recalculate(BigDecimal fundAmount,
 BigDecimal rate){
 // use BigDecimal methods for arithmetic operations
 fundAmount.multiply(rate.add(new BigDecimal("1.00")));
 }
}

continued

http:///

exceptions ❘ 181

common exceptions
There are some exceptions that occur often enough, not just with new programmers, but even with
experienced developers. In this short section, you’ll get to see two in particular that come up all the time:
null pointer exceptions and index out of bounds exceptions. There are explanations and examples
that will help you recognize when, where, and why these exceptions might pop up in your programs.

Null pointer exceptions indicate that the program is trying to access an object that doesn’t exist
yet. Before you can reference a primitive data type, like int, you need to initialize it, which is setting
the value. If you forget to do this, Eclipse will warn you, like it did for other syntax errors. When
you declare a variable of a composite data type, you are actually creating a pointer to an object.
Now, if you declare a variable without assigning an object to point to, you are left with a pointer
to null or, in other words, you are pointing at nothing. Then trying to access that variable’s object
will likely result in a null pointer exception. Usually, if it’s obvious, Eclipse will complain about
this, too. But it is possible that the references are not so straightforward and the problem is not a
syntax error. In that case, you will encounter a null pointer exception. Consider the following
examples, which illustrate these concepts.

public class ExceptionExamples {

 public static void main(String[] args) {
 Person employee;
 printPerson(employee);
 }

 public static void printPerson(Person myPerson){
 System.out.println(myPerson.name + " is " + myPerson.age + " years old.");
 }
}

class Person{
 String name;
 int age;

 Person (){

 }
}

NOTE In some of these examples, you’ll notice that instance variables, name
and age, of a Person object are accessed directly through the myPerson
instance. In Chapter 4, encapsulation and information hiding principles were
introduced, but you’ll see this in much more detail in Chapter 9. It is discouraged
to access variables directly, but instead you should use accessor methods like
getName() to return the person’s name. To keep the examples in this chapter
simple, getter and setter methods are not included in every code example, but
it is good practice to get in the habit of creating these methods to access ields.

http:///

182 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

When you try to reference employee in line 7, Eclipse displays an error reminding you that the vari-
able employee has not been initialized. See Figure 6-7.

figure 6-7

The suggestion offered to initialize the variable will change line 6 to Person employee = null;
Of course, this will lead to a null pointer exception; you can see that just by reading the
code. You can correct it by initializing a new Person object referenced by the employee variable.

public class ExceptionExamples {

 public static void main(String[] args) {
 Person employee = new Person();
 printPerson(employee);
 }

 public static void printPerson(Person myPerson){
 System.out.println(myPerson.name + " is " + myPerson.age + " years old.");
 }
}

class Person{
 String name;

http:///

exceptions ❘ 183

 int age;

 Person (){

 }
}

You probably expect this to lead to a null pointer exception at line 12 now, because you never
initialized the name or age of the Person object referenced by employee. However, if you run this
code, the following line is output to the console: null is 0 years old. This is because Java will
automatically initialize ields of an object to a default value, null for objects and 0 for int, and it is
possible to print these values.

You might be wondering then, how a null pointer exception comes up, aside from actually ini-
tializing a variable to null. One way this can happen, shown in the following code, is when a second
object type JobType is added and a Person object is assigned a JobType object.

public class ExceptionExamples {

 public static void main(String[] args) {
 Person employee = new Person();
 printPerson(employee);

 }

 public static void printPerson(Person myPerson){
 System.out.println(myPerson.name + " is " + myPerson.age +
 " years old and works as a " + myPerson.job.JobName);
 }

}

class Person{
 String name;
 int age;
 JobType job;

 Person (){

 }

}

class JobType{
 String JobName;
 int salaryBand;

 JobType (){

 }
}

http:///

184 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

Now when you try to run this code, you will receive a null pointer exception, as shown in
Figure 6-8.

figure 6-8

This looks very similar to the ArithmeticException you saw in the retirement fund examples.
However, here, because you have more than just the main method, there is some further information
about the location where the exception occurred. You can see from the irst line the type of excep-
tion and that it occurred during the execution of the main method. After that, it’s easier to read
from the bottom up to try to ind the exact cause of the error. During the execution, there was an
error at line 7, when the printPerson() method was called. The execution then jumps to the body
of that method and the exception occurred during line 13 of the printPerson() method. In that
line, the only reference was to myPerson.job.JobName, so you know that the job or JobName was
never initialized for the Person object referenced by myPerson. myPerson references employee from
line 7.

One way to avoid this kind of situation is by requiring initialization as part of the constructor.
Previously, you saw empty constructors for Person and JobType. This means that when you create a
Person object, you do not specify a name, age, or job type. Depending on the system you are creating,
there may be reasons to leave some of these empty when you create a new person. For example, if you
create a Person object as soon as you start a job search, you may only know the job type. On the other
hand, if you create a Person object as soon as someone applies to work at your company, you may only
know their name and age, but not which job you will hire them for (if you hire them at all). However,
if you create a Person object precisely when you hire a person for a speciic job, you’ll have all three
pieces of information at creation. This last situation is implemented here, where all the information
is known and can be initialized in the constructor. In real applications, you may need more than one
constructor to handle different cases, but if you leave some ields null, you will need to handle null
pointer exceptions in other ways. To avoid this, you might decide to create a JobType for every
case, including Interviewee for people who have not yet been hired or NewHire for new employees
who have not been given a speciic JobType. Alternatively, you could have a Boolean method hasJob-
Type() check whether the Person already has a JobType assigned and handle these cases as needed.

public class ExceptionExamples {

 public static void main(String[] args) {
 JobType manager = new JobType("Manager", 6);
 Person employee = new Person("Bob Little", 47, manager);

http:///

exceptions ❘ 185

 printPerson(employee);

 }

 public static void printPerson(Person myPerson){
 System.out.println(myPerson.name + " is " + myPerson.age +
 " years old and works as a " + myPerson.job.JobName);
 }

}

class Person{
 String name;
 int age;
 JobType job;

 Person (String name, int age, JobType job){
 this.name = name;
 this.age = age;
 this.job = job;
 }

}

class JobType{
 String JobName;
 int salaryBand;

 JobType (String name, int band){
 JobName = name;
 salaryBand = band;
 }
}

Another common exception is index out of bounds. This occurs when you have an indexed object,
such as an array, and you try to access an element outside the limits of the array. As you’ve already
seen, arrays are indexed starting from 0, so the last element is one less than the size of the array. For
example, an array of size 5 has elements indexed at 0, 1, 2, 3, and 4. It is important to consider this,
for example, when looping through the elements of an array.

public class IndexExceptionExample {

 public static void main(String[] args) {
 int[] hoursWorked = {7,8,7,9,5};
 int totalHours = 0;

 for (int i = 0; i <= hoursWorked.length; i++){
 totalHours += hoursWorked[i];
 }

 System.out.println("Total Hours = " + totalHours);
 }
}

http:///

186 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

This simple program iterates through an array and adds the total number of hours from each
element together. Then, the total is output to the console. If you try to run it, though, you will
encounter an exception, as shown in Figure 6-9.

figure 6-9

As before, you can track down the exception by the information shown in the error message. First,
you can see that it is an ArrayIndexOutOfBoundsException. The index that’s out of bounds is 5,
and it occurred in line 10 of the program. If you look at line 10, it is the last line of the for loop, so
you know to check the iterator of the for loop. In the code, it was set to start from 0, the lower limit
of the array’s index, and stop at hoursWorked.length, but the length is 5 and the index only goes
to 4. Simply changing the termination condition to i < hoursWorked.length will stop the loop at
4 (since 4 is less than 5) and avoid an out of bounds exception.

public class IndexExceptionExample {

 public static void main(String[] args) {
 int[] hoursWorked = {7,8,7,9,5};
 int totalHours = 0;

 for (int i = 0; i < hoursWorked.length; i++){
 totalHours += hoursWorked[i];
 }

 System.out.println("Total Hours = " + totalHours);
 }
}

Two other common exceptions you might encounter are StackOverFlowError and
OutOfMemoryError. These occur when the program you are running demands more memory than
your machine allows for Java or your IDE. The stack is the part of your memory allocated for
parameters and local variables. This can overlow when you are calling a method recursively or

when two methods call each other. The heap is where objects are allocated in memory. Creating too

many objects, often within an ininite loop, can quickly consume all the available memory. To see

these kinds of errors for yourself, try running the following small applications.

import java.util.ArrayList;

public class EndlessLoop {
 static ArrayList<String> myStrings = new ArrayList<String>();

http:///

exceptions ❘ 187

 public static void main(String[] args) {
 for (int i = 0; i >= 0; i++) {
 myStrings.add("String number: " + i);
 }
 }
}

Depending on your machine and settings, this will sooner or later throw a java.lang.
OutOfMemoryError. The problem is the termination condition of the for loop. The iterator, int i, is ini-
tialized with a value of 0 and increments by 1 with each loop. The loop is supposed to terminate when the
value of i goes below 0, but it will never reach this condition because it is increasing, not decreasing. This
might be easy to spot here, but if your termination condition is dependent on a variable or method result,
you might not immediately see where ininite looping is possible. If you encounter an OutOfMemoryError,
take a look at object creation events, especially inside loops or recursive method calls.

public class EndlessMethodCall {

 public static void main(String[] args) {
 printMe();
 }

 public static void displayMe(){
 printMe();
 }

 public static void printMe(){
 displayMe();
 }
}

Running this program will almost immediately cause a java.lang.StackOverflowError exception
to be thrown. The two methods call each other back and forth without end. If you experience this
kind of error, you should irst look into method calls to see whether you’ve unintentionally created
an ininite loop. A related problem occurs when a method calls itself, something referred to as recur-
sion. Recursion is often a valuable tool, as long as there is an appropriate stopping condition to keep
it from calling itself ininitely, or until an exception is thrown, of course.

It is impossible to cover every possible exception in this book, but with this foundation, you should be
able to begin to deal with them appropriately. If you encounter other exceptions as you are program-
ming, searching online for the name of the exception will help you understand why it is occurring. The
techniques demonstrated in the next section will help you deal with all kinds of exceptions.

catching exceptions
Now that you’ve been introduced to the three main error categories and some common exceptions,
it’s time to start learning how to handle them when you do encounter them. The irst step is a new
structure called a try/catch block. This essentially allows you to try executing a piece of code to
see if an exception is thrown. If none is thrown, the program will proceed normally, but if one is
thrown, you can catch it and speciically indicate what should be done next. This prevents your pro-
gram from crashing and at least allows you to recover some information before it terminates.

http:///

188 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

The general form of a try/catch block looks like this:

try {
 // execute some statements
} catch (Exception exc){
 // statements to handle the exception
} finally {
 // no matter what, do this
}

NOTE While this book refers to these as try/catch blocks, there are in fact
three separate components: try,catch, and finally blocks. You may encoun-
ter any of the following: a try block with (one or more) catch blocks; a try
block with (one or more) catch blocks and a finally block; or, less commonly,
a try block with only a finally block.

Now you can see how they are used by looking again at the retirement fund examples. Recall how
you got a division by zero exception when you tried to divide an int retirementFund by another
int yearsInRetirement, if the latter was given the value 0.

public class Errors {

 public static void main(String[] args) {
 int age = 30;
 int retirementFund = 10000;
 int yearsInRetirement = 0;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++){
 recalculate(retirementFund,0.1);
 }
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 }

 public static void recalculate(double fundAmount, double rate){
 fundAmount = fundAmount*(1+rate);
 }

}

You could enclose the division and print statements inside a try block and add a catch block, like
this:

try {
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");

http:///

exceptions ❘ 189

} catch (ArithmeticException ae){
 System.out.println(ae);
 System.exit(0);
}

The division and print statements will be attempted, but if an ArithmeticException is thrown, the
catch block will catch it. Then the exception will be printed and the program will be terminated.
Of course, you may prefer that the program not be terminated, but continue. You can change the
statements inside the catch block to accomplish this.

try {
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
} catch (ArithmeticException ae){
 System.out.println("Years in retirement should not be 0." +
 "Default value is 20 years.");
 double monthlyPension = retirementFund/20/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
}

Now if you run the program, it will try the original calculation, throw a division by 0 exception,
catch the exception in the catch block, and calculate the monthly pension using another non‐zero

value. This way, the program can execute fully.

You’ll notice though, that the catch block was designed here to catch only exceptions of the

ArithmeticException type. You might have more than one exception type that must be handled.

In older versions of Java, you had two choices: create a separate catch block for each type of excep-

tion or catch all exceptions (or even all throwables, which include errors and exceptions, though this

is not advised) in one generic catch block. Since Java 7, you can catch more than one speciic type of

exception in a single catch block.

try {
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
} catch (ArithmeticException|NullPointerException exc){
 System.out.println("Fields should not be null.");
 System.out.println("Years in retirement should not be 0." +
 "Default value is 20 years.");
 double monthlyPension = retirementFund/20/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
}

You can see that if either of the speciied exceptions is caught, the response in the catch block is

the same. In this particular case, you probably would prefer not to do this, since a null pointer

exception does not mean that the yearsInRetirement needs to be overwritten by the default

value. Therefore, it makes more sense to separate the two exceptions into two separate catch

blocks.

http:///

190 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

try {
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
} catch (ArithmeticException ae){
 System.out.println("Years in retirement should not be 0." +
 "Default value is 20 years.");
 double monthlyPension = retirementFund/20/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
} catch (NullPointerException np){
 System.out.println("Fields should not be null.");
 System.exit(0);
}

Alternatively, you can also use a very generic catch block to catch all throwables, both errors and
exceptions. In practice, it is better to be as speciic as possible, so that you have the best chance at
properly handling any foreseeable exceptions.

try {
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
} catch (Throwable thrown){
 System.out.println(thrown);
 System.exit(0);
}

Thus far, you haven’t seen the finally block in action. A finally block includes the statements
you want to execute regardless of the outcome of the try block. When you try something, if it
throws an exception or not, you still want to make sure certain things are done. You could do this
by adding these statements to both the try and catch blocks, because that would mean they are
executed in either case. However, as you’ve seen so far, it’s best to avoid duplicate code for readabil-
ity and maintainability later. Therefore, it’s better to use a finally block for this. You should note
that a System.exit() call will always immediately terminate the program and, in this case, the
finally block, or anything after the exit call, would not be executed.

try {
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
} catch (ArithmeticException ae){
 System.out.println("Years in retirement should not be 0." +
 "Default value is 20 years.");
 double monthlyPension = retirementFund/20/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
} catch (NullPointerException np){
 System.out.println("Fields should not be null.");
 System.exit(0);
} finally {
 System.out.println("Finally was reached. ");
}

http:///

exceptions ❘ 191

In this example, if the monthlyPension calculation succeeds without any exception, then Finally
was reached. will be printed to the console. If the monthlyPension calculation throws an
ArithmeticExeption, the Finally was reached. will still be printed to the console. If the calcu-
lation throws a NullPointerException, the program will terminate and Finally was reached.
will not be printed. The last case, which perhaps was not considered, is if an exception is thrown but
not one of the ones in the catch blocks, say an IndexOutOfBoundsException. Then the exception
will be thrown, Finally was reached. will be printed to the console, and the unhandled excep-
tion will cause the program to crash.

You will see finally blocks commonly used to ensure that resources, like databases, are closed
whether the update was successful or not. A feature added in Java 7, however, makes this even
easier. The so‐called try‐with‐resources block automatically ensures the resources are closed without

the need for a finally block. You will see more in‐depth examples in the chapter on input and out-

put, but a short example is provided here to demonstrate the similarities and differences with more

traditional try‐catch‐inally blocks.

Some concepts haven’t been covered quite yet, but it is suficient to know that Scanner objects can

be used to scan simple text and parse primitive types or strings. Here it is scanning System.in,

which includes user input to the console. The nextInt() and nextDouble() methods parse ints

and doubles from the text entered by the user. If a user enters the character 5, the nextInt()

method will parse an int with value 5. If a user enters the word employee, this cannot be parsed

using the nextInt() method and an InputMismatchException will be thrown.

First, look at how this was done using try and finally blocks.

import java.text.DecimalFormat;
import java.util.Scanner;

public class Resources {
 Scanner scan = new Scanner(System.in);

 public static void main(String[] args) {
 try {
 System.out.print("Enter the loan amount: ");
 double principle = scan.nextDouble();
 System.out.print("Enter the interest rate: ");
 double rate = scan.nextDouble();
 System.out.print("Enter the loan term (in years): ");
 double years = scan.nextInt();

 double interest = principle*rate*years;
 double total = principle + interest;
 double payment = total/years/12;

 DecimalFormat df = new DecimalFormat ("0.##");
 System.out.println("Monthly payment: $"
 + df.format(payment));
 } catch (Exception exc){
 System.out.println(exc);
 } finally {

http:///

192 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

 scan.close();
 }
 }
}

Note that in order for the scan object to be accessible in both the try and finally blocks, it must
be declared outside either block. Now look at the try‐with‐resources block.

import java.text.DecimalFormat;
import java.util.Scanner;

public class Resources {

 public static void main(String[] args) {
 try (Scanner scan = new Scanner(System.in)){
 System.out.print("Enter the loan amount: ");
 double principle = scan.nextDouble();
 System.out.print("Enter the interest rate: ");
 double rate = scan.nextDouble();
 System.out.print("Enter the loan term (in years): ");
 double years = scan.nextInt();

 double interest = principle*rate*years;
 double total = principle + interest;
 double payment = total/years/12;

 DecimalFormat df = new DecimalFormat ("0.##");
 System.out.println("Monthly payment: $"
 + df.format(payment));
 } catch (Exception exc){
 System.out.println(exc);
 }
 }
}

By adding the declaration and initialization directly to the try block, the resource will automatically

be closed no matter how the rest of the try block completes (with or without exception). Imagine

you come back to this code later and decide to change the System.in scanner to some other user

interface. Simply by changing the resource in the try clause, you are assured that it will be closed

correctly. You can also declare more than one resource, if necessary, simply by separating the

resources with a semicolon. You will see many more examples of this in Chapter 8, where the differ-

ent tools available for reading and writing will be explained fully.

In Java, there are two types of exceptions: checked and unchecked. Speciically, the Exception class

has a subclass called runtime exceptions. Runtime exceptions and any subclasses are unchecked,

while all other types of exceptions are checked. Java requires that checked exceptions be handled,

and you will see this indicated with an error alert in Eclipse or other compilers. Eclipse offers two

possible solutions: declare that the method might throw a particular type of exception or enclose

particular statements in a try/catch designed to handle those exceptions. If you simply add a

throws declaration, you are not handling the exception in any way; you are simply alerting any-

one who might call this method that an exception is possible. In order to handle the exceptions,

you should use a try/catch block. In your main method, the try/catch solution is certainly

http:///

exceptions ❘ 193

appropriate. In other methods, it might be suitable to add the throws declaration and then handle
the exception (with a try/catch block) in the main or other method that calls this method.

In order to demonstrate how this works, consider the next example.

import java.text.DecimalFormat;
import java.util.InputMismatchException;
import java.util.Scanner;

public class ThrowsExceptions {

 public static void main(String[] args) {
 try {
 // store the double[] returned by the scanValues() method
 double[] userValues = scanValues();

 // store the double returned by the calculatePayment() method
 double payment = calculatePayment(userValues);

 // create a decimal format with two places after the decimal point
 DecimalFormat df = new DecimalFormat("0.##");

 // print the calculated payment according to the format above
 System.out.println("Monthly payment: $" + df.format(payment));
 } catch (InputMismatchException ime) {
 // scanValues() method throws InputMismatchException
 // if user's entry cannot be parsed into a double
 System.out.println("You must enter double values. "
 + "Please restart program.");
 // terminate the program
 System.exit(0);
 } catch (ArithmeticException ae) {
 // calculatePayment() method throws ArithmeticException
 // if years == 0
 System.out.println("Years must be greater than 0. "
 + "Please restart program.");
 // terminate the program
 System.exit(0);
 } catch (IndexOutOfBoundsException ioob) {
 // calculatePayment() method throws IndexOutOfBoundsException
 // if double[] has less than 3 elements
 System.out.println("Three doubles are required. "
 + "Please restart program.");
 // terminate the program
 System.exit(0);
 }
 }

 // method asks for and scans three doubles:
 // principle, interest rate, and loan years
 public static double[] scanValues() throws InputMismatchException {
 double[] values = new double[3];
 try (Scanner scan = new Scanner(System.in)) {
 System.out.print("Enter the loan amount: ");
 values[0] = scan.nextDouble();

http:///

194 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

 System.out.print("Enter the interest rate: ");
 values[1] = scan.nextDouble();
 System.out.print("Enter the loan term (in years): ");
 values[2] = scan.nextInt();
 }
 return values;
 }

 // method takes a double[] with three elements
 // and calculates a monthly payment
 public static double calculatePayment(double[] values)
 throws ArithmeticException, IndexOutOfBoundsException {
 double principle = values[0];
 double rate = values[1];
 double years = values[2];
 double interest = principle * rate * years;
 double total = principle + interest;
 return total / years / 12;
 }
}

In this example, there are three methods: main(), scanValues(), and calculatePayment(),
but together they accomplish the same goal as the previous example. You can see how the
throws declaration in the “lower” methods warns that there are possible exceptions, but any
exception is not handled directly there in the method. An exception will be thrown and
caught “higher up” the chain, in the main method, where it is handled by the appropriate
catch block.

This is also where you might encounter try blocks without catch blocks. When a method throws
an exception (to be caught higher up), it will interrupt the execution of the method. Therefore, you
may need a finally block to take care of things, like open resources, before exiting the method.
Consider just the previous scanValues() method. You can see that there are no catch blocks, so
you might use a try/finally here instead of the try with resources. Any exception will be thrown
up, but the scanner will be closed in the finally block before exiting.

 // method asks for and scans three doubles:
 // principle, interest rate, and loan years
 public static double[] scanValues() throws InputMismatchException {
 double[] values = new double[3];
 Scanner scan = new Scanner(System.in);
 try {
 System.out.print("Enter the loan amount: ");
 values[0] = scan.nextDouble();
 System.out.print("Enter the interest rate: ");
 values[1] = scan.nextDouble();
 System.out.print("Enter the loan term (in years): ");
 values[2] = scan.nextInt();
 } finally {
 scan.close();
 }
 return values;
 }

http:///

Debugging Your applications ❘ 195

deBugging Your aPPlications

In the previous section, you debugged a small program while you learned about the kinds of errors,
or bugs, that you will encounter. One technique you saw was using System.out.println() mes-
sages to see what was happening at different points in your program. This is still used a lot, as a
quick‐and‐dirty approach to debugging. But it is not ideal for a number of reasons. For one, it’s not

particularly elegant to ill up your code with print statements. It can be messy and you will not only

have to add them in all the places you want to investigate, but you’ll also have to carefully remove

them afterward. Other debugging approaches offer more lexibility and functionality. In this sec-

tion, you’ll see and use debugger and logger tools to debug better.

using a debugger tool
In the irst part of this chapter, you learned about different kinds of errors or bugs. Because the

example problems were small, it was relatively easy to spot the bugs yourself. As your applications

grow, it may become dificult to track down each bug just by looking through the code and outputs,

and even the error messages may not shed suficient light on the problem. Eclipse and other develop-

ment environments offer debugging tools to support this process. Essentially, a debugger allows you,

the programmer, to execute a program step‐by‐step to see exactly what’s happening at each line.

In order to control the debugging process, you need to set breakpoints on particular lines of code.

When the program hits a breakpoint while running in debug mode, the execution will pause so

you can review the current state of the program and the value of the variables at this point in time.

You can then continue to the next breakpoint. This allows you to see exactly where something goes

wrong.

To illustrate the process of debugging using the debugger tool, start from the small retirement fund

program you saw earlier:

public class Errors {

 public static void main(String[] args) {
 int age = 30;
 double retirementFund = 10000;
 int yearsInRetirement = 20;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++){
 recalculate(retirementFund,0.1);
 }
 double monthlyPension = retirementFund/yearsInRetirement/12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 }

 public static void recalculate(double fundAmount, double rate){
 fundAmount = fundAmount*(1+rate);
 }

}

http:///

196 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

Recall that when running the program at this stage, the result was much lower than expected. You
would like to ind the bug and you’ve narrowed it down to two possibilities. The actual recalcu-
late method might be programmed wrong or the for loop might not be using the method correctly.
Therefore, you can place a breakpoint in each place to see what’s happening there.

To place a breakpoint, move your cursor to the left of the line number you’re interested in. You can
either double‐click there or right‐click and select Toggle Breakpoint. You should see a small dot

appear next to the line number, as shown in Figure 6-10.

figure 6-10

Once your breakpoints are set, all you need to do is open the debug perspective. There are several

ways to do this:

 1. Click the Bug icon.

 2. Click Run and then select Debug.

 3. Right‐click on the .java ile in the navigator, select Debug As, then Java application.

 4. Press F11 on your keyboard.

Eclipse will ask if you would like to switch to the Debug perspective. Select Yes and your layout will

change. See Figure 6-11.

You will still see the Errors class and the outline and console look the same as the normal Java perspec-

tive. In addition, you will see at the top the Debug window and the names and values of the variables

in your program. One thing to keep in mind is that the variables displayed depend on the method your

program is currently inside and how much of that method has already been executed, so you can see the

variables from the main method until just before the for loop, since this is your irst breakpoint.

The program is paused here, waiting for your instructions. To control the execution, you can use the

buttons built into Eclipse or the F5–F8 keys on your keyboard.

http:///

Debugging Your applications ❘ 197

 ➤ Step Into (F5): Executes the current line and moves to the next line. Moves through the pro-
gram step‐by‐step.

 ➤ Step Over (F6): Executes the current method without showing each step in the debugger tool.

Lets the subroutines run in the background, but keeps the debugger in the main routine.

 ➤ Step Return (F7): Finishes executing the current method in the background and returns to the

main routine.

 ➤ Resume (F8): Executes everything until the next breakpoint or the end of the program if there

are no further breakpoints. Does not show everything step‐by‐step.

All of these have buttons in the program as well. You can ind them at the top of the screen. See

Figure 6-12.

figure 6-11

figure 6-12

For this small example, Step Into (F5) is ine to move through each step and check what is happen-

ing to the variables. Watch the variables change as you step into the for loop. First, the variable i

http:///

198 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

(the iterator of the for loop) is added to the list and takes the value 30 (from the age variable). This
is exactly what you should expect. See Figure 6-13.

figure 6-13

Next, the program steps into the recalculate method and the variables associated with the method
are displayed: fundAmount = 10000 and rate = 0.1. See Figure 6-14.

Notice in Figure 6-15 how a variable is highlighted in yellow when its value changes. After the
method body is executed, the result is fundAmount = 11000, just as you would expect for a 10%
increase.

Next, the program returns to the for loop and you can watch the iterator i increase to 31. See
Figure 6-16.

figure 6-14

http:///

Debugging Your applications ❘ 199

figure 6-15

figure 6-16

When you step into the recalculate method again, fundAmount is back to its original 10000, as
shown in Figure 6-17.

So now you can see that the newly calculated fundAmount is not being stored anywhere after the
recalculate method is exited. This leads to the same conclusion as before, that the method should
return a value, and the main method should reuse the returned value.

http:///

200 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

figure 6-17

using a logging aPi
An alternative approach to debugging is using a logger to create log messages about the execution of your
program. There is a built‐in logging API in the java.util.logging package, which you will see here,

but there are also several popular external APIs built for logging that you can try on your own. Logging

allows you to check what’s happening while you’re developing, but it also offers a way to continue to

monitor a program that’s in use. You can conigure your logger to log on different levels, to output to

places other than the console, and to customize the output to whatever is most useful for the application.

There are eight predeined logging levels: Off, Finest, Finer, Fine, Conig, Info, Warning, and Severe. As

the name suggests, the Off level indicates no logging at all. The Finest level is designed for development

and testing and logs the most messages. This is not appropriate for live applications, as the speed slows

considerably with this amount of logging. As you move up through the levels, fewer and fewer messages

are logged. The Finer and Fine levels offer less detailed messages. Info logs messages that give informa-

tion about what is happening in the program, including connections and messages. The Warning level

logs messages that indicate problems, while the Severe level only logs those most concerning problems

that indicate a failure. The beneit of all these levels is that you can set up logging and then adjust the

level depending on the types of messages you need or want to see, without making any changes to your

program. The levels are organized numerically and messages are similarly scored numerically. In this

way, a message with an importance value of 3 will be logged in any level 3 or higher.

There are two main components to a logging system: a logger and a handler. The logger picks up

messages and checks the level of the message against the logging level in place. If the message seems

to it the level (or above), the logger will use a ilter to determine for sure if the message should be

logged. If it passes this more strict ilter, the message is sent to the handler. The handler may also

use a ilter to check the message and a formatter to format the record as it should be written.

The process of logging is designed to offer lexibility, and for that reason, there are a lot of pos-

sibilities in how you set up and use your logger. This section only begins to scratch the surface, so

that you can add a basic logger to your program and access the log messages. To begin logging,

you should create a logger instance, using the getLogger() method, in each class you wish to

http:///

Debugging Your applications ❘ 201

log. Typically, this should be static and inal, indicating that one single logger will be used for all
instances of the class and it will remain unchanged. The logger will automatically include a default
console handler that will print messages to the console. You can create additional handlers yourself.
If you want your log iles to be saved to a text ile somewhere, you can create your own ile handler.

Once your logger and handlers are created, you should create a special method that will essentially set
them up for use. In the example, this is called method logIt(), but you can change the name. Inside
this method, you should instantiate the ile handlers with the path and name of the ile where you
would like to save the log messages. Because IOExceptions are checked exceptions, you need to put
these in a try/catch block to handle the error. Next, you can set the formatter and level for each han-
dler, attach the handlers to the logger, and set the level of the logger. Both the logger and the handlers
can be independently set to their own level. However, if the logger is higher than the handler level, the
handler level will effectively be at the logger’s level, because no lower level messages will be generated
by the logger. In the example, you see two handlers for the same logger. This allows more messages to
be output to one ile while fewer (more important) messages are output to another ile.

Now you are ready to use the logger in your main and other methods. You can call methods from
the Logger class to log the information you’re interested in. The entire list of methods can be found
in the Logger class documentation, but some of the methods you will see are listed here. Each
method also has several parameter choices you can make that impact the results of the log.

 ➤ entering(): Log a method entry.

 ➤ exiting(): Log a method return.

 ➤ log(): Log a custom message.

The example is based on the retirement fund program you’ve been working with. There are now
log messages indicating when the recalculate method is entered and exited, as well as the value
of the fundAmount variable each time it is calculated. Finally, a log message is created if the value
is extremely low, indicating something is wrong with the calculation. And at the end of the main
method, several messages are logged at each level to demonstrate which ones are written by each
handler.

import java.io.IOException;
import java.util.logging.*;

public class LoggerExample {
 // create a Logger instance
 private final static Logger logger =
 Logger.getLogger(LoggerExample.class.getName());

 // create a file handler for fine messages and above
 private static FileHandler finerhandler = null;
 // create a file handler only for config messages and above
 private static FileHandler warninghandler = null;

 public static void logIt() {
 try {
 finerhandler = new FileHandler("src/loggerExample_finer.log", false);
 warninghandler = new FileHandler("src/loggerExample_config.log",false);
 } catch (SecurityException | IOException e) {

http:///

202 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

 e.printStackTrace();
 }

 // attach a basic formatter and set the level
 finerhandler.setFormatter(new SimpleFormatter());
 //this handler will print all messages to its log
 finerhandler.setLevel(Level.FINER);

 // attach a basic formatter and set the level
 warninghandler.setFormatter(new SimpleFormatter());
 //this handler will only print warning and severe messages to its log
 warninghandler.setLevel(Level.CONFIG);

 // attach the handler
 logger.addHandler(finerhandler);
 logger.addHandler(warninghandler);

 // set the level to FINEST
 // (log ALL messages)
 logger.setLevel(Level.FINER);

 }

 public static void main(String[] args) {
 // set up the logger using the logIt() static method above
 // without this, only the default console handler will log
 // with this, the handlers created above will log
 LoggerExample.logIt();

 int age = 60;
 double retirementFund = 10000;
 int yearsInRetirement = 20;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++) {
 recalculate(retirementFund, 0.1);
 }
 double monthlyPension = retirementFund / yearsInRetirement / 12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 if (monthlyPension < 100) {
 // create a log entry (level: SEVERE) indicating a
 // problem with the calculation
 logger.log(Level.SEVERE, "monthlyPension is too low.");
 }

 // create a series of log entries to show which
 // levels are printed to which handler's log
 logger.log(Level.FINEST, "finest detailed message");
 logger.log(Level.FINER, "finer detailed message");
 logger.log(Level.FINE, "fine detailed message");
 logger.log(Level.CONFIG, "configuration message");
 logger.log(Level.INFO, "informational message");
 logger.log(Level.WARNING, "warning message");
 logger.log(Level.SEVERE, "severe message");
 }

http:///

Debugging Your applications ❘ 203

 public static void recalculate(double fundAmount, double rate) {
 // create a log entry (level: FINER) indicating the method entry
 logger.entering("LoggerExample","recalculate");

 fundAmount = fundAmount * (1 + rate);

 // create a log entry (level: INFO) indicating
 // the current value of fundAmount
 logger.log(Level.INFO, "fundAmount = " + fundAmount);

 // create a log entry (level: FINER) indicating the method return
 logger.exiting("LoggerExample", "recalculate");
 }
}

The contents of the iner log ile look like this:

Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: ENTRY
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: RETURN
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: ENTRY
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: RETURN
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: ENTRY
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: RETURN
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: ENTRY
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: RETURN
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: ENTRY
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: RETURN
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: ENTRY
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM LoggerExample recalculate
FINER: RETURN
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
SEVERE: monthlyPension is too low.

http:///

204 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
FINER: finer detailed message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
FINE: fine detailed message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
CONFIG: configuration message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
INFO: informational message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
WARNING: warning message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
SEVERE: severe message

The contents of the conig log ile look like this:

Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample recalculate
INFO: fundAmount = 11000.0
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
SEVERE: monthlyPension is too low.
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
CONFIG: configuration message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
INFO: informational message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
WARNING: warning message
Aug 12, 2014 5:54:43 PM chapter6.LoggerExample main
SEVERE: severe message

Naturally, there are many more messages in the iner log ile, because it includes more levels
(particularly, the entering and exiting messages, which are deined as iner level messages). Also,
note that neither log contains the “inest detailed message” from the main method. This is too
low level for the iner logger to log. You can see again here that the fundAmount is 11000 every
time the method is called, again suggesting that the value is not being stored and used in future
calculations. But you can see for sure that the method is being entered and exited as expected.
This leads to the same conclusion (and ix) as before, but logging allows ongoing monitoring of
live applications. Simply by increasing the level of the logger, you can control how many and what
types of messages are logged.

So far, you’ve only seen the built‐in logger, but Log4j is a popular alternative logger. The Log4j

utility has been in use for 15 years, but Apache Log4j 2 was released in 2014. It offers high perfor-

mance, lexibility, and usability, and is well worth your consideration when deciding on a logging

utility. You can download Log4j 2 at http://logging.apache.org/log4j/2.x/index.html.

http://logging.apache.org/log4j/2.x/index.html
http:///

Debugging Your applications ❘ 205

Log4j has different levels deined than the ones used by the built‐in logger. TRACE is the most

detailed level, followed by DEBUG, INFO, WARN, ERROR, and FATAL, which is the least

detailed level. There is also OFF to turn off logging. The methods differ from the built‐in logger as

well. In the previous example, you saw:

logger.log(Level.INFO, "informational message");

With Log4j, you would write:

logger.info("informational message");

To demonstrate the use of Log4j and compare it to the built‐in logger, this next Try It Out repeats

the previous example.

trY it out Logging with apache Log4j 2

In this exercise, you’ll set up logging in a small program using Apache’s Log4j 2 logging utility.

 1. Download the Apache Log4j 2 from the Apache website.

 2. Attach two .jar iles to the build path of the project you’re working in: log4j-api-2.0.1.jar

and log4j-core-2.0.1.jar.

 3. Create a new class called ApacheLogging.

 4. Import the logger and LogManager from Log4j and create a new logger object for the class.

import org.apache.logging.log4j.Logger;
import org.apache.logging.log4j.LogManager;

public class ApacheLogging {

 static final Logger log = LogManager.getLogger(ApacheLogging.class.getName());

}

 5. Add two methods, main and recalculate, similar to the previous example, but without the log-

ging for now.

 public static void main(String[] args) {
 int age = 60;
 double retirementFund = 10000;
 int yearsInRetirement = 20;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++) {
 recalculate(retirementFund, 0.1);
 }
 double monthlyPension = retirementFund / yearsInRetirement / 12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 if (monthlyPension < 100) {
 System.out.println("monthlyPension is too low.");
 }

http:///

206 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

 }

 public static void recalculate(double fundAmount, double rate) {
 fundAmount = fundAmount * (1 + rate);
 }

 6. Now, replace the System.out.println() statement with a log message: logger.
fatal("monthlyPension is too low.");

 7. Next, add some messages to test the different levels of the logger at the end of the main
method.

 log.trace("finely detailed TRACE message");
 log.debug("detailed DEBUG message");
 log.info("informational message");
 log.warn("warning message");
 log.error("error message");
 log.fatal("fatal message");

 8. Finally, add log messages to the recalculate() method.

 log.entry();
 fundAmount = fundAmount * (1 + rate);
 log.info("fundAmount = " + fundAmount);
 log.exit();

 9. Your class should now look like this:

import org.apache.logging.log4j.Logger;
import org.apache.logging.log4j.LogManager;

public class ApacheLogging {

 static final Logger log = LogManager.getLogger(ApacheLogging.class.getName());

 public static void main(String[] args) {
 int age = 60;
 double retirementFund = 10000;
 int yearsInRetirement = 20;
 String name = "David Johnson";
 for (int i = age; i <= 65; i++) {
 recalculate(retirementFund, 0.1);
 }
 double monthlyPension = retirementFund / yearsInRetirement / 12;
 System.out.println(name + " will have $" + monthlyPension
 + " per month for retirement.");
 if (monthlyPension < 100) {
 log.fatal("monthlyPension is too low");
 }

 // create a series of log entries to show which
 // levels are printed to which handler's log
 log.trace("finely detailed TRACE message");
 log.debug("detailed DEBUG message");
 log.info("informational message");

http:///

Debugging Your applications ❘ 207

 log.warn("warning message");
 log.error("error message");
 log.fatal("fatal message");
 }

 public static void recalculate(double fundAmount, double rate) {
 log.entry();
 fundAmount = fundAmount * (1 + rate);
 log.info("fundAmount = " + fundAmount);
 log.exit();
 }
}

 10. Run your program. Your output should look like this:

David Johnson will have $41.666666666666664 per month for retirement.
13:39:10.511 [main] FATAL chapter6.ApacheLogging - monthlyPension is too low
13:39:10.514 [main] ERROR chapter6.ApacheLogging - error message
13:39:10.514 [main] FATAL chapter6.ApacheLogging - fatal message

 11. You only see these log messages because the default log level is set to Error. You can of course
adjust this, and many other settings. In Log4j, this is done using an .xml coniguration ile.

 12. Create your coniguration ile by opening a new text ile and copying the following .xml code
into it:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
 <Appenders>
 <Console name="Console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>
 </Console>
 </Appenders>
 <Loggers>
 <Root level="error">
 <AppenderRef ref="Console"/>
 </Root>
 </Loggers>
</Configuration>

 13. This code essentially sets the coniguration ile according to the default coniguration. Save the ile
as :Log4j2.xml and place it in the src folder for your project. Here you can change the root level
and output destination.

 14. First, change <Root level="error"> to <Root level="trace">. Run your program and you’ll
see all the error messages output to the console.

14:18:30.719 [main] TRACE chapter6.ApacheLogging - entry
14:18:30.720 [main] INFO chapter6.ApacheLogging - fundAmount = 11000.0
14:18:30.720 [main] TRACE chapter6.ApacheLogging - exit
14:18:30.720 [main] TRACE chapter6.ApacheLogging - entry
14:18:30.720 [main] INFO chapter6.ApacheLogging - fundAmount = 11000.0
14:18:30.720 [main] TRACE chapter6.ApacheLogging - exit
14:18:30.720 [main] TRACE chapter6.ApacheLogging - entry

http:///

208 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

14:18:30.720 [main] INFO chapter6.ApacheLogging - fundAmount = 11000.0
14:18:30.720 [main] TRACE chapter6.ApacheLogging - exit
14:18:30.720 [main] TRACE chapter6.ApacheLogging - entry
14:18:30.720 [main] INFO chapter6.ApacheLogging - fundAmount = 11000.0
14:18:30.720 [main] TRACE chapter6.ApacheLogging - exit
14:18:30.720 [main] TRACE chapter6.ApacheLogging - entry
14:18:30.720 [main] INFO chapter6.ApacheLogging - fundAmount = 11000.0
14:18:30.720 [main] TRACE chapter6.ApacheLogging - exit
14:18:30.720 [main] TRACE chapter6.ApacheLogging - entry
14:18:30.720 [main] INFO chapter6.ApacheLogging - fundAmount = 11000.0
14:18:30.720 [main] TRACE chapter6.ApacheLogging - exit
David Johnson will have $41.666666666666664 per month for retirement.
14:18:30.720 [main] FATAL chapter6.ApacheLogging - monthlyPension is too low
14:18:30.720 [main] TRACE chapter6.ApacheLogging - finely detailed TRACE message
14:18:30.721 [main] DEBUG chapter6.ApacheLogging - detailed DEBUG message
14:18:30.721 [main] INFO chapter6.ApacheLogging - informational message
14:18:30.721 [main] WARN chapter6.ApacheLogging - warning message
14:18:30.721 [main] ERROR chapter6.ApacheLogging - error message
14:18:30.721 [main] FATAL chapter6.ApacheLogging - fatal message

 15. Remember how you set up ile handlers at different levels and with different output iles in the previous
example? You can do the same thing here, in the coniguration ile, by adding and editing appenders,
iles, and loggers. In the coniguration ile, under </Console>, add two new iles to the appenders sec-
tion. In the code here, ApacheLog-Warn is stored at c:/users/n12063/ApacheLogging_Warn.log.
Make sure you use a ilename that indicates a usable location on your own computer.

 <Appenders>
 <Console name="Console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36}
 - %msg%n"/>
 </Console>
 <File name="ApacheLog-Info" filename=
 "c:/users/n12063/ApacheLogging_Info.log">
 <PatternLayout>
 <pattern>[%-5level] %d{yyyy-MM-dd HH:mm:ss.SSS} [%t] %c{1}
 - %msg%n</pattern>
 </PatternLayout>
 </File>
 <File name="ApacheLog-Warn" filename="src/ApacheLogging_Warn.log">
 <PatternLayout>
 <pattern>[%-5level] %d{yyyy-MM-dd HH:mm:ss.SSS} [%t] %c{1}
 - %msg%n</pattern>
 </PatternLayout>
 </File>
 </Appenders>

 16. Next, adjust the loggers section to add these new appenders to the root logger.

<Loggers>
 <Root level="debug">
 <AppenderRef ref="Console" level="fatal"/>
 <AppenderRef ref="ApacheLog-Info" level="info"/>
 <AppenderRef ref="ApacheLog-Warn" level="warn"/>
 </Root>
 </Loggers>

http:///

Debugging Your applications ❘ 209

 17. The full coniguration ile should resemble this:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
 <Properties>
 <Property name="log-path">logs</Property>
 </Properties>
 <Appenders>
 <Console name="Console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36}
 - %msg%n"/>
 </Console>
 <File name="ApacheLog-Info" filename=
 "c:/users/n12063/ApacheLogging_Info.log">
 <PatternLayout>
 <pattern>[%-5level] %d{yyyy-MM-dd HH:mm:ss.SSS} [%t] %c{1}
 - %msg%n</pattern>
 </PatternLayout>
 </File>
 <File name="ApacheLog-Warn" filename="src/ApacheLogging_Warn.log">
 <PatternLayout>
 <pattern>[%-5level] %d{yyyy-MM-dd HH:mm:ss.SSS} [%t] %c{1}
 - %msg%n</pattern>
 </PatternLayout>
 </File>
 </Appenders>
 <Loggers>
 <Root level="debug">
 <AppenderRef ref="Console" level="fatal"/>
 <AppenderRef ref="ApacheLog-Info" level="info"/>
 <AppenderRef ref="ApacheLog-Warn" level="warn"/>
 </Root>
 </Loggers>
</Configuration>

 18. Now, you can run your program again. This time you should get a console output like this:

David Johnson will have $41.666666666666664 per month for retirement.
15:59:15.846 [main] FATAL chapter6.ApacheLogging - monthlyPension is too low
15:59:15.847 [main] FATAL chapter6.ApacheLogging - fatal message

 19. Your log iles should be stored in the designated folders on your computer. If you cannot locate
them, try searching for the names ApacheLogging_Info and ApacheLogging_Warn using your
computer’s search function. You’ll notice that iles created in the src folder don’t automatically
show up in Eclipse. If you place the ile there in Eclipse yourself, your program will write to it dur-
ing execution and you’ll be able to view it from Eclipse.

How It Works

Here’s how it works:

 1. By attaching and importing the Log4j 2 API, you’re allowing your program to use these resources.

 2. Very similarly to the example using the built‐in logger, you created a single static logger object for

use in this class.

http:///

210 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

 3. Using the methods included in Log4j 2, you can create log messages of various importance levels.

 4. Without creating any coniguration ile, there is a default logger that prints messages at the Error
level or higher to the console.

 5. By editing this coniguration ile, you can control which level of messages get printed and where
they will be printed.

 6. In the appenders section, you added two iles. These create log iles in which log messages can be
written. Files require name and ilename ields. In the ilename ile, you should include the path to
the ile. They should also be given a PatternLayout, which speciies how the messages will be for-
matted. In this exercise, they are named according to the level they will be assigned. One of the log
iles is stored in the src folder of the project you are working in. The other will be stored on the
hard drive of the machine, as indicated in the ilename.

 7. In the loggers section, you can add new loggers or you can attach appenders to the root logger.
This is similar to the approach with the built‐in logger, where handlers were added to the logger.

 8. You can control the level of the logger separately from the level of the appenders. Both of these are

set in the loggers section. Here, you have to set the root level to debug, meaning that all log mes-

sages will be accepted by the logger. However, the three appender levels are set to fatal, info, and

warn, so only those set to info and above will be used in the output. Only fatal messages will be

printed to the console. Info level and above will be printed to the ApacheLog_Info.log ile, and

warn level and above will be printed to the ApacheLog_Warn.log ile.

You’ve seen two types of logging utilities, a built‐in version from Java and an open source API from

Apache. Although they function similarly, there may be reasons to choose one over the other. Many

developers are choosing Log4j over the built‐in tool, not only because of its functionality, but because

there are some criticisms of the implementation of the built‐in logger. There are also several other well‐

known loggers that you may want to investigate further. Hopefully, the examples in this section have

provided you with a foundation to begin logging your programs, as well as a basic understanding from

which you can investigate other tools and the other options within the two tools presented here.

testing Your aPPlications

Unit testing is another way you can ensure the completeness and correctness of your applications. It

allows you to develop small test scenarios to check each aspect of your program. This offers some

beneits over debugging from the main method. First, you can begin testing even when only small

parts of your application are written. In fact, some development styles start from test cases and

then write code that will satisfy the test. Compared to debugging from the main method, you can

start testing much earlier in the process and may be able to ind and ix problems early and before

they impact many other areas of the development. Once your test cases are prepared, then any

changes you make to the program later can be checked quickly by running the tests again to see if

you’ve accidentally introduced new errors. Also, professional developers are not usually creating an

entire program; they are working on pieces that will be integrated later. In this case, a main method

doesn’t really make much sense, but test units can provide conidence that the units themselves are

functioning properly before trying to it them together in the end. JUnit is a commonly used testing

framework, which is also included in Eclipse.

http:///

testing Your applications ❘ 211

To begin, you can create a JUnit test case the same way you create a new class. Eventually, you will
create a test case for a class you’ve already developed, but practice with a standalone test case irst.
You create a new JUnit test case under File New JUnit Test Case or by right‐clicking in the

Navigator and selecting New JUnit Test Case. Name your test case JUnitTest. There are check-

boxes next to several methods; select setUpBeforClass(), setUp(), tearDownAfterClass(), and

tearDown() to create auto stubs. Finally, make sure the “Class Under Test” ield is blank, since you

are not testing a class right now. Press Finish to create your test case. You should have a class that

looks like this:

import static org.junit.Assert.*;

import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

public class JUnitTest {

 @BeforeClass
 public static void setUpBeforeClass() throws Exception {
 }

 @AfterClass
 public static void tearDownAfterClass() throws Exception {
 }

 @Before
 public void setUp() throws Exception {
 }

 @After
 public void tearDown() throws Exception {
 }

 @Test
 public void test() {
 fail("Not yet implemented");
 }
}

The text beginning with the @ symbol are called annotations, and these indicate the purpose of speciic

methods. You will see more annotations as you move through later chapters in the book. The difference

between comments and annotations is that annotations can be processed during compilation. Therefore,

you should be careful to use the annotations correctly. There are ive annotations you will see in JUnit

tests: @Test, @BeforeClass, @AfterClass, @Before, and @After. The irst, @Test, annotates each test

method. There is no universally accepted naming convention for test methods, but it makes sense to

name them in a way that makes it clear what you are testing and under what conditions.

The other four annotations allow you to prepare some objects and resources for use before your tests

begin and to close out things appropriately after your tests are inished. The two setup methods, anno-

tated @BeforeClass and @Before, are used to create necessary objects for testing. The irst type, @

BeforeClass, is run once before anything else, and the results will be shared by all the tests. This is

helpful for timely processes like logging into a database. The second type, annotated @Before, runs

http:///

212 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

once before each test, so multiple times in a series of tests. Annotating computationally expensive
processes as @Before will slow your overall testing down. The tear‐down methods actually func-

tion similarly to the finally block of a try‐catch‐inally statement. If you allocate resources using a

@Before method, you will need to release them using an @After method. If you allocate resources

using a @BeforeClass method, you need to release them using an @AfterClass method. Just as the @

BeforeClass runs once before everything else starts, @AfterClass runs exactly once after everything

else inishes. Similarly, @After methods will run after each test. These @After and @AfterClass

methods will run even if there is an exception thrown, just like the finally block.

Assertions are the main component you will use in your JUnit tests. There are several assert meth-

ods that allow you to state what you expect and the tests will check if it’s correct. Any incorrect

assert statement will result in a test failure. Here is a list of some assert methods you might ind

useful in your tests:

 ➤ assertEquals(a, b): Expect a and b to be equal.

 ➤ assertArrayEquals(arrayA, arrayB): Expect all elements in A and B to be equal.

 ➤ assertTrue(a): Expect a to be true.

 ➤ assertFalse(b): Expect b to be false.

 ➤ assertNull(a): Expect a to be null.

 ➤ assertNotNull(b): Expect b to not be null.

 ➤ assertSame(a,b): Expect a and b to reference the same object.

 ➤ assertNotSame(a,b): Expect a and b not to reference the same object.

NOTE The assertEquals() method is slightly different for different data
types. As you have seen previously, some number types like doubles are
not precise due to rounding. To accommodate these shortcomings, the
assertEquals() method for doubles or loats has an additional parameter,
called epsilon, which allows you to choose how different two doubles can be
and still be considered equal values. The format is then: assertEquals(double
a, double b, double epsilon) or assertEquals(1.51, 1.52, 0.01), for
example.

With these concepts, you’re ready to start testing. You can start by declaring some objects that you

will use for the tests. A static Scanner object is used just to symbolize the resources that you might

need for your tests; it is initialized in the setUpBeforeClass() method and closed in the tearDown-

AfterClass() method. Some integers, an array, and an object are also added to compare values

using the assert methods. The ints are initialized in the setup() method. Then using these (and

the other variables created in the test methods), each of the assert methods is demonstrated. The

entire test class looks like this:

import static org.junit.Assert.*;

import java.util.Scanner;

http:///

testing Your applications ❘ 213

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

public class JUnitTest {
 static Scanner scan;
 int myIntA, myIntB, myIntC;
 int[] myArrayA = {0,1,2};
 Object myObject;

 @BeforeClass
 public static void setUpBeforeClass() throws Exception {
 // access resources for use in the tests
 scan = new Scanner(System.in);

 }

 @AfterClass
 public static void tearDownAfterClass() throws Exception {
 // close resources after all tests complete
 scan.close();
 }

 @Before
 public void setUp() throws Exception {
 // assign some values to the variables
 // before beginning each test
 myIntA = 5;
 myIntB = 6;
 myIntC = 7;
 }

 @After
 public void tearDown() throws Exception {
 //nothing needs to be torn down
 }

 @Test
 public void testAssertEquals() {
 // (5 + 1) equals 6
 assertEquals((myIntA + 1), myIntB);
 }

 @Test
 public void testAssertArrayEquals() {
 int[] myNewArray = {0,1,2};
 // the elements in both arrays are 0, 1, and 2
 // order matters: {0,1,2} != {0,2,1}
 assertArrayEquals(myArrayA, myNewArray);
 }

 @Test
 public void testAssertTrue() {

http:///

214 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

 // 7 > 5
 assertTrue(myIntC > myIntA);
 }

 @Test
 public void testAssertFalse() {
 // myArrayA.length == 3, 3 != 4
 assertFalse(myArrayA.length == 4);
 }

 @Test
 public void testAssertNull() {
 // myObject has not been intialized
 assertNull(myObject);
 }

 @Test
 public void testAssertNotNull() {
 String newString = "Hello";
 // newString is intialized
 assertNotNull(newString);
 }

 @Test
 public void testAssertSame() {
 myObject = new Object();
 Object pointerA = myObject;
 Object pointerB = myObject;
 // both pointerA and pointerB reference myObject
 assertSame(pointerA,pointerB);
 }

 @Test
 public void testAssertNotSame() {
 myObject = new Object();
 Object pointerA = new Object();
 Object pointerB = myObject;
 // pointerA is a new Object,
 // pointerB references myObject
 assertNotSame(pointerA,pointerB);
 }
}

Once your test methods are written, you can run the test class the same way you run a normal pro-
gram. You can also specify “Run as JUnit Test” if Eclipse does not automatically recognize it as a
JUnit test and run it appropriately. The JUnit panel will take the place of the Navigator, and you
will see a report of how many tests have been run, the number of errors, and the number of fail-
ures. If there is a failure, you can also see more information about the failure in the Failure Trace.
In Figure 6-18, you can see a comparison of two runs: one with a failure and the other without any
failures. In the failure case, the test method that resulted in failure—testAssertArrayEquals—is
highlighted. Figure 6-18 also shows why it failed: element [1] in the irst array was 1, but in the
second array it was 2.

http:///

testing Your applications ❘ 215

figure 6-18

trY it out testing programs with JUnit test Cases

In this exercise, you develop a JUnit test case for a small program. This will show you how you can use
JUnit testing to ensure your programs are operating as intended.

 1. If you do not already have a project in Eclipse for Chapter 6, create one now.

 2. Create a new class by right‐clicking on the src folder in your new project. Select New and then

Class. Name the class DistanceConverter. Uncheck the box that creates the main method for

you. Click Finish to create the class.

 3. Include the following methods in the body of the DistanceConverter class. Notice that there is no

main method in this class. Therefore, it is not possible to test the methods simply by running the

program.

public static double convertFeettoMeters(double feet){
 return feet * 0.3048;
 }

 public static double convertMeterstoFeet(double meters){
 return meters * 3.2808;
 }

 public static double convertFeettoInches(double feet){
 return feet * 12;
 }

http:///

216 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

 public static double convertInchestoFeet(double inches){
 return inches / 12;
 }

 public static double convertCmtoFeet(double cm){
 return convertMeterstoFeet(cm / 100);
 }

 public static double convertFeettoCm(double feet){
 return convertFeettoMeters(feet) * 100;
 }

 public static double convertCmtoInches(double cm){
 return convertFeettoInches(convertCmtoFeet(cm));
 }

 public static double convertInchestoCm(double inches){
 return convertFeettoCm(convertInchestoFeet(inches));
 }

 4. Now create a JUnit test case by right‐clicking on the DistanceConverter.java ile in the

Navigator. Select New, then JUnit Test Case. The name should be DistanceConverterTest and

the class under test ield should be chapter6.DistanceConverter (chapter6 is the package

name; it may be different if you have used another package). You do not need any auto method

stubs checked. Some of these ields may be illed in for you.

 5. Click Next. If you place a check next to DistanceConverter, test method stubs will be created for

all methods in the class. Click Finish.

 6. Now you should have created a new testing class that looks like this:

import static org.junit.Assert.*;

import org.junit.Test;

public class DistanceConverterTest {

 @Test
 public void testConvertFeettoMeters() {
 fail("Not yet implemented");
 }

 @Test
 public void testConvertMeterstoFeet() {
 fail("Not yet implemented");
 }

 @Test
 public void testConvertFeettoInches() {
 fail("Not yet implemented");
 }

 @Test
 public void testConvertInchestoFeet() {

http:///

testing Your applications ❘ 217

 fail("Not yet implemented");
 }

 @Test
 public void testConvertCmtoFeet() {
 fail("Not yet implemented");
 }

 @Test
 public void testConvertFeettoCm() {
 fail("Not yet implemented");
 }

 @Test
 public void testConvertCmtoInches() {
 fail("Not yet implemented");
 }

 @Test
 public void testConvertInchestoCm() {
 fail("Not yet implemented");
 }

}

 7. Add some class variables that you can use in the tests: double feet, meters, inches, and cm.

 8. Fill in the body of your irst test method, the testConvertFeettoMeters() method, like so:

 @Test
 public void testConvertFeettoMeters() {
 feet = 1;
 meters = DistanceConverter.convertFeettoMeters(feet);
 assertEquals(meters, 0.3048,0.001);
 }

To convert feet to meters, you should give a value for feet and the method will calculate the equiva-
lent in meters. Therefore, in your test case, assign a value to the variable feet. Use the method to
assign a value to the variable meters. Then calculate the equivalent in meters. Use the assertE-
quals() method to make sure the method calculation is equal to your own calculation. Because of
the rounding issues with doubles, the assertEquals()method for doubles has an extra parameter,
called epsilon, where you can indicate how close the two doubles should be to be considered equal.
In this example, using 0.001 for epsilon, you are saying that if the calculated value for meters is
within 0.001 of 0.3048, you should consider them equal.

 9. Try to ill in the rest of the test methods in the same way. Give a value for the irst variable. Use
the method to calculate the second variable. Then compare the expected true conversion to the
method’s return value.

 10. Your test case should resemble this after you’ve illed in all the test methods:

import static org.junit.Assert.*;

import org.junit.Test;

http:///

218 ❘ Chapter 6 hAndlInG excePtIonS And debuGGInG

public class DistanceConverterTest {
 double feet, meters, inches, cm;

 @Test
 public void testConvertFeettoMeters() {
 feet = 1;
 meters = DistanceConverter.convertFeettoMeters(feet);
 assertEquals(meters, 0.3048,0.001);
 }

 @Test
 public void testConvertMeterstoFeet() {
 meters = 1;
 feet = DistanceConverter.convertMeterstoFeet(meters);
 assertEquals(3.281,feet,0.001);
 }

 @Test
 public void testConvertFeettoInches() {
 feet = 1;
 inches = DistanceConverter.convertFeettoInches(feet);
 assertEquals(12,inches,0.001);
 }

 @Test
 public void testConvertInchestoFeet() {
 inches = 12;
 feet = DistanceConverter.convertInchestoFeet(inches);
 assertEquals(1,feet,0.001);
 }

 @Test
 public void testConvertCmtoFeet() {
 cm = 10;
 feet = DistanceConverter.convertCmtoFeet(cm);
 assertEquals(0.3281,feet,0.001);
 }

 @Test
 public void testConvertFeettoCm() {
 feet = 1;
 cm = DistanceConverter.convertFeettoCm(feet);
 assertEquals(30.48,cm,0.001);
 }

 @Test
 public void testConvertCmtoInches() {
 cm = 10;
 inches = DistanceConverter.convertCmtoInches(cm);
 assertEquals(3.9371,inches,0.001);
 }

 @Test
 public void testConvertInchestoCm() {
 inches = 10;

http:///

Summary ❘ 219

 cm = DistanceConverter.convertInchestoCm(inches);
 assertEquals(25.4,cm,0.001);
 }

}

 11. Run the test case by clicking the green play icon or selecting Run, then Run. Ensure that no errors
or failures occur.

How It Works

Here’s how it works:

 1. For each test method, a new method is being tested.

 2. You have supplied one value and the method calculates the second method.

 3. You ind the expected value and enter this as one of the parameters in the assertEquals()
method.

 4. As long as the number you calculated and the number the method calculated are very close
(+/‐ epsilon), the assertEquals() method will pass.

 5. If all eight tests pass, the testing is complete and all methods function as they are designed to.

 6. If there is a failure, you can use the Trace to ind what went wrong. Is there a mistake in your

method or in your own calculation? This is up to you to igure out.

summarY

This concludes the chapter on exceptions and debugging. The techniques you’ve seen in this chap-

ter should help you program with fewer errors and produce applications that function as expected.

Debugging, logging, and testing alone or in combination will not only help you accomplish this for

yourself, but will also demonstrate the correctness to others. When developing professionally, it is

not enough to know that your code works and why, but you need to be able to convince others (col-

leagues, clients, managers, and so on) that it works. As your programs get larger and more complex,

you will ind these techniques more and more valuable.

http:///

http:///

what You will learn in this chaPter:

 ➤ What annotations are

 ➤ What overloaded methods are

 ➤ How to use the this keyword

 ➤ What information hiding or encapsulation is

 ➤ What class inheritance and polymorphism mean

 ➤ What interfaces are and what they do

 ➤ How to organize your classes into packages

 ➤ How garbage is collected in Java

wrox.com code downloads for this chaPter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 7
download and individually named according to the names throughout the chapter.

The irst half of this book covered the basics of Java and Object‐Oriented Programming.

Some of the chapters provided the tools or techniques needed to start building more complex

programs. Building on that foundation, you’re ready to move on to these more advanced

concepts. This chapter expands on Chapter 4 to increase your knowledge of the principles of

Object‐Oriented Programming. The three main topics covered here are information hiding,

inheritance, and interfaces. However, there are also several other ideas that are discussed,

including method overloading, packages, garbage collection, and annotations. After com-

pleting this chapter, you will have the tools you need to create organized and advanced Java

 7
Delving Further into
Object‐Oriented concepts

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

222 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

applications. The rest of the book helps you put object‐oriented principles into practice with increas-

ing functionality.

annotations

Annotations provide metadata about source code that’s not part of the program itself. Unlike com-

ments, which are ignored by the compiler, annotations can provide information for the compiler and

can be processed by some tools to generate code, documentation, or other iles.

Annotations always begin with the @ symbol. The compiler knows to expect an annotation fol-

lowing the @ symbol. You may have already seen some examples of annotations, such as @Test,

@Before, and @After, from the unit testing section in Chapter 6.

Some annotations can replace comments, by providing a more structured format for metadata. This

metadata can then be used to automatically generate documentation for your code. These annota-

tions can be custom‐designed for use by the programmer or for consistency across a department or

company.

Other annotations are predeined in java.lang to be used in speciic circumstances, such as

@Deprecated, @Override, and @SuppressWarnings. @Deprecated indicates that the element, such

as a method or class, has been replaced by an improved alternative and should no longer be used.

Whenever an element marked @Deprecated is used in a program, the compiler will give a warning

so the programmer knows to use an alternative. @Override indicates that a subclass is overriding

an element from its superclass. You will learn more about this later in this chapter. By using the

@Override annotation when you intend to override an element, the compiler will warn you if the

method does not properly override a superclass element. @SuppressWarnings instructs the compiler

to suppress speciic warnings that it would normally generate. You may have seen this suggested as

a solution for warnings appearing in your projects in Eclipse. Java 8 introduced a new annotation

@FunctionalInterface to indicate that the programmer intends to create a functional interface

according to the Java Language Speciication.

Another change in Java 8 is the lexibility to use annotations anywhere a type is used, instead of

only applying to declarations as previous Java versions required. This new lexibility allows better

type-checking analysis, although Java 8 does not provide this type-checking framework itself. One

example of a type annotation is if you were to write a piece of code to ensure that a particular vari-

able is never null. Then you could annotate that variable @NonNull to indicate to the compiler that

this variable will never be assigned to null. The compiler can then check for any discrepancies and

warn you if something remains to be addressed.

overloading methods

As mentioned in the introduction to the chapter, there are several small topics covered here, aside

from the main concepts. This irst section covers the concept of overloading methods. Overloading

simply refers to using the same name for more than one method in the same class. Java, and many

other languages, can determine which method you’re calling as long as the number or type of

parameters is different in each method. This is illustrated with a few examples.

http:///

Overloading Methods ❘ 223

public class Book {
 String title;
 String author;
 boolean isRead;
 int numberOfReadings;

 public void read(){
 isRead = true;
 }

 public void read(){
 numberOfReadings++;
 }
}

If you try this irst example in Eclipse, you’ll see there are errors indicating the read() method is

duplicated. The problem is you have two methods with the same name and neither has any param-

eters. Try the following instead:

public class Book {
 String title;
 String author;
 boolean isRead;
 int numberOfReadings;

 public void read(){
 isRead = true;
 numberOfReadings++;
}

 public void read(int i){
 isRead = true;
 numberOfReadings += i;
 }
}

Now you have one method with the name read() and no parameters and another method with the

name read() and one int parameter. To Java, these are two completely different methods, so you won’t

have any duplication errors. Of course, read(1) will have the same effect as read(), so you might not

see much use for this concept. Alternatively, you could change the name of the methods to readOnce()

and read(int i). You could easily avoid overloading methods at all in this example.

There is one type of method where overloading becomes very convenient: the constructor. This is

because, as you learned in Chapter 4, the name of constructor methods is restricted to the class

name. So if you want to create more than one constructor, you need to use the overloading principle.

In the Book class, you would naturally want a constructor with two String parameters to set the title

and author of the book.

 public Book(String bookTitle, String authorName){
 title = bookTitle;
 author = authorName;
 }

http:///

224 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

You might also need to create a book with an unknown author, perhaps for a publisher who has a
particular book in mind but hasn’t hired an author to write it.

 public Book(String bookTitle){
 title = bookTitle;
 author = "Unknown";
 }

On the other hand, you might have a book proposal from a known author, but you aren’t yet sure
what it will be named.

 public Book(String authorName){
 title = "Unknown";
 author = authorName;
 }

Now you have a problem. You have one kind of “method” called Book(), with one String param-
eter for the title, and another method called Book() with one String parameter for the author’s
name. Java cannot distinguish between these, so it will be considered a duplicate method. You will
have to remove one of these and use one of the remaining constructors, for example, Book myBook
= new Book("Unknown", "Bart Baesens"); to construct a book with unknown title and known
author using the two String parameter constructor.

You could also add a constructor with no parameters if neither the title nor the author is known. Or
you could add constructors with even more parameters:

 public Book(String bookTitle, String authorName, boolean hasBeenRead){
 title = bookTitle;
 author = authorName;
 isRead = hasBeenRead;
 }

 public Book(String bTitle, String aName, boolean hasBeenRead, int read){
 title = bTitle;
 author = aName;
 isRead = hasBeenRead;
 numberOfReadings = read;
 }

You might already notice quite a bit of repetition in these different constructors. You will see a way
to reduce this in the next section by using the this keyword.

the this keYword

This section covers how and why to use the Java this keyword. The this keyword is placed inside
an instance method or constructor in order to refer to the object whose method is being called. This
is perhaps best explained with an example:

public class Person {
 String name;

 public Person(String personName){

http:///

the this Keyword ❘ 225

 this.name = personName;
 }
}

In this simple Person class, each Person has a name, which is stored as a String variable. The
constructor has a String parameter that’s assigned to the Person’s name variable when it is con-
structed. Here, you can read the constructor as “the name variable of this person object being con-
structed should be given the value of the personName String provided as a parameter.”

 public void printName(){
 System.out.println(this.name);
}

If you add an instance method to print the name of a Person object, you can use the this keyword
to identify which name should be printed: “the value assigned to the name variable of this Person
object whose method is being called.”

These examples should illustrate how the this keyword is used. You might be wondering why you would
use it. After all, you could leave it out of the examples and they would function exactly the same way.

public class Person {
 String name;

 public Person(String personName){
 name = personName;
 }

 public void printName(){
 System.out.println(name);
 }
}

As you can see, the use of the this keyword is optional in this situation. It is recommended that you
use it to be explicit and avoid ambiguity, but you could leave it out without impacting your program.
However, there are cases where you must use the this keyword. This is usually when a local vari-
able and an instance variable have the same name. Consider the following example:

public class Person {
 String name;

 public Person(String name){
 name = name;
 }

 public void printName(){
 System.out.println(name);
 }
}

If you try this in Eclipse, you’ll see a warning: The assignment to variable name has no
effect. In this case, because name is a local variable for the constructor method, you will be refer-
ring to this local variable if you refer to name inside the method. Essentially, you are saying the

http:///

226 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

local String name should be assigned the value it already has, and you have done nothing with the
instance variable name of the Person object. You must use the this keyword inside the constructor
to refer to the instance variable name. You are not required to use it in the printName() method,
but it is recommended to avoid ambiguity.

public class Person {
 String name;

 public Person(String name){
 this.name = name;
 }

 public void printName(){
 System.out.println(name);
 }
}

Another case where you may need to use the this keyword is when you have overloaded the con-
structor method and want to explicitly call one constructor from within another constructor.
Imagine, for instance, that sometimes you need to construct a Person object but you do not know
their name. You could create another constructor with no parameters and use the this keyword to
call the one String parameter constructor with a default name.

public class Person {
 String name;

 public Person(){
 this("Unknown");
 }

 public Person(String name){
 this.name = name;
 }

 public void printName(){
 System.out.println(name);
 }
}

Again, you might think the this keyword is not necessary, as for this simple example, you could
make a no‐parameter constructor that assigns the name variable to "Unknown" itself, without using

the this keyword. However, when your constructor is more complex, with several statements and

perhaps some calculations, using the this keyword will limit redundancy, increase readability, and

prevent discrepancies between what different constructors accomplish. The next exercise allows you

to try method overloading using the this keyword.

trY it out Method Overloading

In this exercise, you expand the Person class from the examples to demonstrate the use of method over-

loading and the this keyword.

 1. If you do not already have a project in Eclipse for Chapter 7, create one now.

http:///

the this Keyword ❘ 227

 2. Create a new class by right‐clicking on the src folder in your new project. Select New and then

Class. Name the new class Person. Uncheck the box to create a main method. This class should

look like this:

public class Person {

}

 3. Add the following instance variables to your class:

String name;
LocalDate birthdate;

 4. In order to use LocalDate, you need to import the java.time package. Add the following

statement above your class heading, or click the error notiication and double‐click the import

suggestion.

 5. Add a constructor method to set up new Person objects. Your constructor should accept the one

String parameter for name and three int parameters for the year, month, and day of the birthdate.

Include a statement inside the constructor to convert the ints to a LocalDate type. Assign the val-

ues to the instance variables. Your four‐parameter constructor should look like this:

 public Person (String name, int year, int month, int day){
 LocalDate tempBD = LocalDate.of(year, month, day);
 this.name = name;
 this.birthdate = tempBD;
 }

 6. Overload the constructor by creating a second one with only name. Suppose this is used when you

don’t know someone’s birthdate. Use the this keyword, with default values where needed.

 7. Create a method to calculate someone’s age. LocalDate has a method called now() that returns the

current date. To calculate the period between two dates, use the following statements:

Period p = Period.between(date1, date2);
int age = p.getYears();

 8. Overload the calculateAge() method by adding another method with the same name, but with a

LocalDate parameter to calculate a person’s age on a certain date. Make another one that accepts

three ints for year, month, and day.

 9. Your Person class should look something like this:

import java.time.*;

public class Person {
 String name;
 LocalDate birthdate;

 public Person(String name, int year, int month, int day) {
 this.name = name;
 this.birthdate = LocalDate.of(year, month, day);

http:///

228 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 }

 public Person(String name) {
 this(name, 1900, 1, 1);
 }

 public int calculateAge() {
 Period p = Period.between(this.birthdate, LocalDate.now());
 return p.getYears();
 }

 public int calculateAge(LocalDate date) {
 Period p = Period.between(this.birthdate, date);
 return p.getYears();
 }

 public int calculateAge(int year, int month, int day) {
 Period p = Period.between(this.birthdate,
 LocalDate.of(year, month, day));
 return p.getYears();
 }
}

How It Works

Here’s how this example works:

 1. In the irst constructor method, you used the this keyword to initialize the variables of “this” object being

created. You also used the LocalDate.of() method to assign a date variable from three int values.

 2. In the second constructor, you used the this keyword to use the irst constructor of “this” class,

but you illed in default values for year, month, and day.

 3. In the irst calculateAge() method, you used the LocalDate.now() method to compare a person’s

birthdate (using the this keyword) to the current date. Period and Period.getYears() handled

the calculation for you, as they are deined as part of the date and time facilities added to Java 8.

 4. In the second calculateAge() method, with a LocalDate parameter, you used a similar format

to the irst, but you used a speciied date instead of the current date. You could change the irst

 calculateAge() method to use this one in the following way:

 public int calculateAge() {
 return calculateAge(LocalDate.now());
 }

 5. In the third calculateAge() method, with three int parameters, you used a similar format to the

other two, but this time you called the LocalDate.of() method to get the correct date from the

integers speciied. Again, you could use the second calculateAge() method to rewrite this one in

a simpler and more robust way:

 public int calculateAge(int year, int month, int day) {
 return calculateAge(LocalDate.of(year, month, day));
 }

http:///

Information hiding ❘ 229

 6. Offering these three calculateAge() methods means that other classes using the Person class
can calculate a person’s age based on the date the calculation occurs (how old is the person now?),
based on a given LocalDate (how old was the person when they graduated high school?), and
based on a given date, when the LocalDate class is not available to the other class or program
(how old was the person on a certain year, month, and day?). This functionality may make it more
reusable. By reusing one of the methods inside the others, you help improve maintainability.

information hiding

Information hiding, also referred to as encapsulation, is an object‐oriented practice that hides the

internal representation of objects. The main idea is to make member variables private, so they are

not directly accessible from outside of the class. Accessor methods are created to grant access to

view or modify the values of the variables. This gives the programmer control over how and when

variables can be accessed.

Encapsulation offers several advantages that make it standard recommended practice for all your

classes. First, as already mentioned, you can control the access to variables. For example, consider

the following small program:

import java.math.BigDecimal;

public class Product {
 String productName;
 String productID;
 BigDecimal productPrice;

 public Product(String name, String id, String price) {
 this.productName = name;
 this.productID = id;
 this.productPrice = new BigDecimal(price);
 }

 public String displayString() {
 return "Product " + this.productID + ": " + this.productName
 + " costs " + this.productPrice;
 }
}

public class ProductProgram {
 public static void main(String[] args) {
 Product myWidget = new Product("Widget","WID0001","11.50");
 myWidget.productPrice = new BigDecimal("-5.00");
 System.out.println(myWidget.displayString());
 }
}

In this example, you can create a product with a certain name, ID, and price as expected. However,

after the product is created, anyone can change the price, even to a price that doesn’t make any

sense. It’s best to restrict these changes in some way to avoid these problems, such as negative prices.

http:///

230 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

Related to this idea of limiting access, you can use the accessor methods to check for validity before
changing the variable’s value. If an invalid value is provided, the programmer can decide how to
handle it, for example, by throwing an exception as you saw in the previous chapter. You can also
add some notiications when a change occurs, so the program reacts accordingly.

On the other hand, when retrieving values from variables, you can manage this in different ways

by using your accessor methods. You can provide “read‐only” access to a value by providing meth-

ods to return a defensive copy but not change the value. In the Product program, lots of related

classes might need to know what the price of a product is to calculate sales, tax, or proit igures, for

example. However, only a few, such as a discounting application, should be able to modify it. You

may also want to provide information that is collected or calculated from more than one variable. In

the Product program, you might create an accessor method that adds a tax or fee to the price before

returning the total price.

Finally, encapsulation can improve program maintenance by limiting the impact of changes in one

class on other related classes. In the Product program, you might need to adapt the Product class

later to accommodate more information about products or to change the representation in some

way. However, as long your displayString() still returns a String, the other classes calling this

method continue functioning as expected. If every related class printed the statements based on the

instance variables directly, a change to the Product class would require adaptations to every other

class to ensure the printing methods still functioned properly.

access modiiers
The irst step to restricting access to variables or methods is to adjust the access modiiers.

These were introduced in Chapter 4, where the idea of encapsulation was mentioned but not

explained in full detail. There are four access modiiers that can be applied to methods and

variables in Java:

 ➤ public: Can be accessed by any class

 ➤ protected: Can be accessed by subclasses or classes in the same package

 ➤ no modifier: Can be accessed by classes in the same package

 ➤ private: Can be accessed only from within the same class

You can see the access levels in Figure 7-1.

figure 7-1

public

Class Package Subclass World

protected

no modifier

private

+

+

+

+

+

+

+

−

+

+

−

−

+

−

−

−

http:///

Information hiding ❘ 231

Unlike variables and methods, classes can only be given the public modiier or no modiier.

Encapsulation calls for the member variables (class or instance) to be given only private access, mean-

ing they are only directly accessible from within the same class. Then, the access modiiers of your

accessor methods can be set according to the demands of the program. For example, you might make

an employee’s date of birth readable to everyone with a public accessor method, but restrict changes

to the Employee class with a private accessor method. The Product program might set price changes

to package protected, so subtypes of the Product and a Discounter class in the same package can

adjust the price.

By now you might be wondering what these accessor methods look like. They are commonly

referred to as “getter” and “setter” methods, because they are used to get and set variable values.

For this reason, they are given names like getName() or setPrice(). You’ll look at getters and set-

ters in a bit more detail next.

getters
Getters are used to access variables’ values for viewing only. You should create a getter method for

every private variable. Depending on the access level you want to give to the variable, you can set

the access modiier of its getter method. This is demonstrated with the Product class. The instance

variables are set to private, and public getter methods are added for each one.

import java.math.BigDecimal;

public class Product {
 private String productName;
 private String productID;
 private BigDecimal productPrice;

 public Product(String name, String id, String price) {
 this.productName = name;
 this.productID = id;
 this.productPrice = new BigDecimal(price);
}

 public String getName(){
 return this.productName;
 }

 public String getID(){
 return this.productID;
 }

 public BigDecimal getPrice(){
 return this.productPrice;
 }

 public String displayString() {
 return "Product " + this.getID() + ": " + this.getName()
 + " costs " + this.getPrice();
 }
}

http:///

232 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

If you tried this on your own, you might notice that this causes errors in the ProductProgram class.
This is because once the variables are assigned private access modiiers, the ProductProgram class

can no longer access the variable productPrice directly.

setters
Setters are the methods you use to modify the values of variables. Just like with getters, you

should create setters for every variable. Setters can replace the statements you used to use in

the constructor method. The Product class with the setter methods added is shown in the next

example.

import java.math.BigDecimal;

public class Product {
 private String productName;
 private String productID;
 private BigDecimal productPrice;

 public Product(String name, String id, String price) {
 this.setName(name);
 this.setID(id);
 this.setPrice(price);
 }

 public String getName(){
 return this.productName;
 }

 public void setName(String name){
 this.productName = name;
 }

 public String getID(){
 return this.productID;
 }

 public void setID(String id){
 this.productID = id;
 }

 public BigDecimal getPrice(){
 return this.productPrice;
 }

 public void setPrice(String price){
 this.productPrice = new BigDecimal(price);
 }

 public String displayString() {
 return "Product " + this.getID() + ": " + this.getName()
 + " costs " + this.getPrice();
 }
}

http:///

Information hiding ❘ 233

The setters here are very simple; they don’t include any of the validity checks or access restrictions
that were said to be the main advantages of information hiding. You might start by making setID()
private. It seems logical that a Product’s ID number should not be changeable from outside the class.
Remember, if you want to ensure that a Product’s ID number never changes, you can make that vari-
able inal as well. Now, to deal with the problem identiied in the beginning: negative prices should

not be allowed. You can add a check to see if the price is above 0, or you might store a minimum and

maximum price to compare your price against. The second option is demonstrated in the next version

of the Product class. First, two static variables have been added to indicate the absolute minimum

and maximum prices any product can have. Then another method was added to compare any poten-

tial price to the minimum and maximum to see if it is a valid price. Finally, the setPrice() method

uses the isValidPrice() method to check the price provided. If it is not valid, the method throws an

IllegalArgumentException. Otherwise, the price is set to the provided price.

import java.math.BigDecimal;

public class Product {
 private static BigDecimal minPrice = new BigDecimal("0.00");
 private static BigDecimal maxPrice = new BigDecimal("999.99");
 private String productName;
 private String productID;
 private BigDecimal productPrice;

 public Product(String name, String id, String price) {
 this.setName(name);
 this.setID(id);
 this.setPrice(price);
 }

 public String getName(){
 return this.productName;
 }

 public void setName(String name){
 this.productName = name;
 }

 public String getID(){
 return this.productID;
 }

 private void setID(String id){
 this.productID = id;
 }

 public BigDecimal getPrice(){
 return this.productPrice;
}

 public void setPrice(String price) throws IllegalArgumentException{
 BigDecimal tempPrice = new BigDecimal(price);
 if (!isValidPrice(tempPrice)){
 throw new IllegalArgumentException(price);

http:///

234 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 }
 this.productPrice = tempPrice;
 }

 public boolean isValidPrice(BigDecimal price){
 if (price.compareTo(minPrice)<0){
 return false;
 }
 if (price.compareTo(maxPrice)>0){
 return false;
 }
 return true;
 }

 public String displayString() {
 return "Product " + this.getID() + ": " + this.getName()
 + " costs " + this.getPrice();
 }
}

Now, you just need to adapt your ProductProgram class to use these new methods. You will use the
setPrice() method to change the price of myWidget. Because it can throw an exception, use the
try-catch blocks you learned about in the previous chapter to handle the exception appropriately.
One way you could do this is shown in the next code example.

public class ProductProgram {
 public static void main(String[] args) {
 Product myWidget = new Product("Widget","WID0001","11.50");

 try {
 myWidget.setPrice("-5.0");
 } catch (IllegalArgumentException e){
 System.out.println(e + " is an invalid price.");
 }
 System.out.println(myWidget.displayString());
 }
}

Try running the program with different price values to see what happens. Or better yet, use
unit testing from Chapter 6 to test all the possible cases. You might also have noticed that the
ProductProgram class no longer uses the BigDecimal class because the setPrice() method takes
a String as the parameter. This means that even if you decide later to use a different data type in the
Product class, you would not have to change anything in the ProductProgram class.

try it out Information hiding or encapsulation

In this exercise, you start with a simple Bank Account application and adapt it to apply the principles of
information hiding.

 1. If you do not already have a project in Eclipse for Chapter 7, create one now.

 2. Create a new class by right‐clicking on the src folder in your new project. Select New and then Class.

Name the new class Account. Uncheck the box to create a main method. This class should look like this:

http:///

Information hiding ❘ 235

public class Account {

}

 3. Add two instance variables to the Account class:

 String name;
 BigDecimal amount;

 4. Add a constructor method to set up new Account objects. Your constructor should accept two
String parameters, one for the name and another for the starting amount of the account. Since the
amount variable is a BigDecimal and represents currency, set the scale to two decimal points and
ROUND_HALF_UP for the rounding mode. Your constructor should look like this:

 public Account(String acctName, String startAmount) {
 this.name = acctName;
 this.amount = new BigDecimal(startAmount);
 this.amount.setScale(2, BigDecimal.ROUND_HALF_UP);
 }

 5. Add another new class called AccountManager. This time, check the box that creates the main
method for you (you can also write the main method yourself after creating the class). Click Finish
to create the class. Your AccountManager class should look something like this:

public class AccountManager {

 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }
}

 6. Remove the // TODO comment, and add a statement inside the main method that creates a new
account with the name FirstAccount and amount 10.00.

 7. Add print statements to your main method so the user is given information about the account that
you created. Your main method should look like this:

 public static void main(String[] args) {
 Account myAccount = new Account("FirstAccount","10.00");
 System.out.println("Account Created: " + myAccount.name);
 System.out.println("Balance: " + myAccount.amount);
 }

 8. Now add another statement to change the amount in myAccount to -15.00. Print this new balance
to the console. Your main method should look similar to this:

 public static void main(String[] args) {
 Account myAccount = new Account("FirstAccount","10.00");
 System.out.println("Account Created: " + myAccount.name);
 System.out.println("Balance: " + myAccount.amount);

http:///

236 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 myAccount.amount = new BigDecimal("-15.00");
 System.out.println("New Balance: " + myAccount.amount);
 }

 9. Run the program to see the output.

Account Created: FirstAccount
Balance: 10.00
New Balance: -15.00

 10. Now, make both variables in the Account class private.

 11. Did you notice that this created errors in the AccountManager class? If you hover over the red x,
you can see what the problem is:

The field Account.name is not visible.
The field Account.amount is not visible.

 12. Because these ields are now private, they cannot be accessed from outside the Account class.

Create getter methods in the Account class to allow other classes to access their values.

 public String getName(){
 return this.name;
 }

 public BigDecimal getAmount(){
 return this.amount;
 }

 13. Getter methods allow you to read the values of the variables, but still you cannot modify the values. To be

able to do this, you need to add setter methods to the Account class. A setter can be simple, for example:

 public void setName(String newName){
 this.name = newName;
 }

Or you can add conditions to control what kinds of modiications can be made. For

example:

 public void setName(String newName) {
 String pattern = "^[a-zA-Z0-9]*$";
 if (newName.matches(pattern)) {
 this.name = newName;
 }
 }

In the second example, the matches() method checks to make sure the String contains only

letters and numbers without any symbols. This, or a similar pattern, might be a requirement

for an account’s name. Add one of the getters for the name.

 14. You need to create another setter for the amount. Remember when you directly changed the

amount to -15.00 earlier in this exercise? With a bank account, you probably rarely make a direct

modiication like this, since all the banking transactions will need to be accounted as debits and

http:///

Information hiding ❘ 237

credits. You might ind that your program is more useful with a private setAmount() method only

for use in the constructor and other public withdraw() and deposit() methods to add or subtract

funds from the amount. Inside the methods, you can check for negative balances to make sure the

account is not overdrawn. Add these three methods to your Account class.

 private void setAmount(String newAmount){
 this.amount = new BigDecimal(newAmount);
 }

 public void withdraw(String withdrawal) throws IllegalArgumentException{
 BigDecimal desiredAmount = new BigDecimal(withdrawal);

 //if desired amount is negative, throw an exception
 if (desiredAmount.compareTo(BigDecimal.ZERO) < 0){
 throw new IllegalArgumentException();
 }

 //if the amount is less than the desired amount, throw an exception
 if (amount.compareTo(desiredAmount) < 0){
 throw new IllegalArgumentException();
 }

 this.amount = this.amount.subtract(desiredAmount);
 }

 public void deposit(String deposit) throws IllegalArgumentException{
 BigDecimal desiredAmount = new BigDecimal(deposit);

 //if desired amount is negative, throw an exception
 if (desiredAmount.compareTo(BigDecimal.ZER0) < 0){
 throw new IllegalArgumentException();
 }

 this.amount = this.amount.add(desiredAmount);
 }

 15. Once your setters are in place, rewrite your constructor to use them.

 public Account(String acctName, String startAmount) {
 setName(acctName);
 setAmount(startAmount);
 amount.setScale(2, BigDecimal.ROUND_HALF_UP);
 }

 16. Your complete Account class should look like this:

import java.math.BigDecimal;

public class Account {
 private String name;
 private BigDecimal amount;

 public Account(String acctName, String startAmount) {

http:///

238 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 setName(acctName);
 setAmount(startAmount);
 amount.setScale(2, BigDecimal.ROUND_HALF_UP);
 }

 public String getName() {
 return this.name;
 }

 public BigDecimal getAmount() {
 return this.amount;
 }

 public void setName(String newName) {
 String pattern = "^[a-zA-Z0-9]*$";
 if (newName.matches(pattern)) {
 this.name = newName;
 }
 }

 private void setAmount(String newAmount){
 this.amount = new BigDecimal(newAmount);
 }

 public void withdraw(String withdrawal) throws IllegalArgumentException{
 BigDecimal desiredAmount = new BigDecimal(withdrawal);

 //if desired amount is negative, throw an exception
 if (desiredAmount.compareTo(BigDecimal.ZERO) < 0){
 throw new IllegalArgumentException();
 }

 //if the amount is less than the desired amount, throw an exception
 if (amount.compareTo(desiredAmount) < 0){
 throw new IllegalArgumentException();
 }

 this.amount = this.amount.subtract(desiredAmount);
 }

 public void deposit(String deposit) throws IllegalArgumentException{
 BigDecimal desiredAmount = new BigDecimal(deposit);

 //if desired amount is negative, throw an exception
 if (desiredAmount.compareTo(BigDecimal.ZERO) < 0){
 throw new IllegalArgumentException();
 }

 this.amount = this.amount.add(desiredAmount);
 }
}

 17. Now adapt your AccountManager class to use the getters and setters you’ve created. Notice how you
cannot use the setAmount() method because it is also private. You need to use the withdraw() and

http:///

Information hiding ❘ 239

deposit() methods to change the amount. Since these can throw exceptions, make sure you use a
try-catch block to handle invalid values. Your AccountManager class might look like this:

public class AccountManager {

 public static void main(String[] args) {
 Account myAccount = new Account("FirstAccount","10.00");
 System.out.println("Account Created: " + myAccount.getName());
 System.out.println("Balance: " + myAccount.getAmount());

 try {
 myAccount.withdraw("20.00");
 } catch (IllegalArgumentException e) {
 System.out.println("Invalid Withdrawal");
 } finally {
 System.out.println("New Balance: " + myAccount.getAmount());
 }
 }
}

How It Works

Here’s how it works:

 1. In the irst part of the exercise, the variables in the Account class were public. This allowed you to

read and change them from the AccountManager class.

 2. Because the variables were public, they could be modiied by any class without any checks or vali-

dations. Therefore, you were encouraged to change the variables to private, following the principle

of information hiding.

 3. After the variables were private, they could no longer be accessed by other classes for reading or

writing. You noticed this when the errors appeared in your AccountManager class.

 4. You created public getter methods for each of the variables in the Account class. This allows other

classes to read their values, without being able to modify them.

 5. Next, you created setter methods to modify the values of the variables in the Account class. Some

were public and some were private.

 6. By making private setter methods, you can still restrict the modiications to the same class. The

beneit of using a setter in this case, rather than directly modifying the variable, is that you can add

validations to the method to make sure the changes are allowed. For example, you might want to

prevent an account’s balance from being set to a negative value. Generally these conditions will be

checked with if statements. If the provided parameter is not acceptable, you can handle it in sev-

eral ways. You might throw an exception when an invalid value is provided. You could also simply

exit the method without modifying the variable. Finally, you might modify the variable but in a

valid way. For example, if a String begins with white space, and this is not allowed, you could still

use the part of the String after the white space.

 7. By making public (or other non‐private access modiiers) setter methods, you allow them to be

called from any other class. You can still control what changes are allowed with the same types of

validations mentioned for private setter methods.

http:///

240 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 8. Finally, you used the newly created getter and setter methods to read and modify the variables in a
safer way.

class inheritance

Java classes are organized in a hierarchical inheritance structure. Subclasses are derived from super-
classes. The class Object is the highest-level superclass; it has no parent class above it. All other
classes are either subclasses of Object or subclasses of subclasses of Object. This is illustrated in
Figure 7-2.

figure 7-2

Object

ClassA

ClassA1

ClassA2

ClassB

ClassB1

ClassB1i

ClassB1ii

ClassC

Inheritance represents “is a” relationship. For example, a Student is a Person, so the class Student
could be a subclass of the Person class. An Employee is a Person, too, so Employee could be
another subclass of Person. An undergraduate is a student and a graduate is a student, so you can
create two additional subclasses of the class Student. Staff and Employee might be subclasses of
the class Employee. A possible class hierarchy for this inheritance example is shown in Figure 7-3.

To indicate that a class is a subclass of another class, use the extends keyword in the class declara-
tion, for example, public class Employee extends Person{ }. Variables and methods that are
shared by all types of Persons can be placed in the Person class, and then each subclass can have
specialized variables and methods that are only used by that type or its subclasses. For example,

http:///

Class Inheritance ❘ 241

the Person class might have a String variable called name, which all Person objects will inherit
whether they are graduate students or faculty employees. The Student class might have a double
variable for their grade point average, which both graduate and undergraduate students inherit, but
employees do not. A graduate student might have a String variable to store the title of their thesis.
This would then be inherited by master and doctorate students. At the lowest level of the hierarchy,
a Doctorate student might have a Faculty instance as their advisor, but with no subclasses, this
will not be inherited by any other class.

the Keyword super
Another keyword introduced in this chapter is super. Super is a way of referring to the superclass.
It’s not so different than the this keyword, covered earlier in this chapter. It is used in constructors
to invoke the constructor of the superclass, like the this keyword was used to invoke another con-
structor of the same class. It is also used to access the variables and methods of the superclass, like
the this keyword was used to access the variables of the instance calling the method.

Consider a possible implementation of two of the classes from the Person example: Person and
Employee. Employee is the subclass of Person, and Person is the superclass of Employee.

public class Person {
 private String name;

 public Person(String name){
 this.setName(name);
 }

 public String getName(){
 return this.name;
 }

 public void setName(String name){
 this.name = name;
 }
}

figure 7-3

Object Person

Student

Graduate

Undergraduate

Staff

Bachelor

Associate

Doctorate

Master

Faculty

Employee

http:///

242 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

Remember, your Employee class should extend this Person class. Also, the variables manager and
employeeID are added to the Employee class, since not all Person instances will have a manager,
but all Employee instances will.

public class Employee extends Person {
 private Employee manager;
 private int id;

 public Employee(String name, Employee manager, int empID) {
 super(name);
 this.setManager(manager);
 this.setEmployeeID(empID);
 }

 public Employee getManager() {
 return manager;
 }

 public void setManager(Employee manager) {
 this.manager = manager;
 }

 public int getEmployeeID() {
 return id;
 }

 private void setEmployeeID(int employeeID) {
 this.id = employeeID;
 }

}

Notice how the super keyword is used in the irst statement of the constructor. This means that the

Employee should be constructed as a Person is constructed, then specialized with the manager and id.

Similar to specializing a subclass constructor by irst calling the super constructor, you can also spe-

cialize methods by irst calling a super method. Suppose you want to add a displayName() method

to the Employee class that allows you to format their name badge.

 public String displayName(){
 return "Employee: " + super.getName();
 }

In the displayName() method, you have a specialized method for Employee that calls the method

of the superclass to get some of the necessary information.

You can also access superclass variables using the super keyword. Suppose in your Person class

you have an int variable called id that you use to uniquely identify people in your database. But

you still have the int variable id in the Employee class that you use to store their employee ID. You

might use the following method to return a String with both id numbers:

 public String displayIdentification() {

http:///

Class Inheritance ❘ 243

 return "Person: " + super.id + " has EmployeeID " + this.id;
 }

Of course, now that you know about information hiding, it would be better still to access the ID of
the superclass using a getter.

method overriding
It was mentioned already that subclasses inherit methods from their superclass. This means that if
the Student class has a calculateGPA() method, then Graduate and Undergraduate will have
this method either implicitly or explicitly as well. The subclasses can, however, override the method
with a new, specialized implementation. This is called method overriding. Note, this is not related to
method overloading discussed earlier in this chapter.

Consider the calculateGPA() method from the Student class. The Student class has a double[]
variable called grades that lists all the students’ grades. The calculateGPA()method then just cal-
culates the average of these grades.

 public double calculateGPA() {
 double sum = 0;
 int count = 0;
 for (double grade : this.grades){
 sum += grade;
 count++;
 }
 return sum/count;
 }

Now, suppose graduate students only get credit for grades above a certain minimum, for example
only 80 percent and higher are accepted, and courses with a grade below 80 must be repeated. Then
for the Graduate class, you might want to calculate the GPA based only on those higher grades. To
do this, you can override the calculateGPA() method using the @Override annotation and change
the implementation in the subclass.

 @Override
 public double calculateGPA(){
 double sum = 0;
 int count = 0;
 for (double grade : this.getGrades()){
 if (grade > minGrade){
 sum += grade;
 count++;
 }
 }
 return sum/count;
 }

polymorphism
Polymorphism is a key concept in Object‐Oriented Programming and is closely related to inheri-

tance. Because inheritance models an “is a” relationship, one instance can take on the behaviors and

attributes of more than one class. According to the class hierarchy of the Person example, a Master

http:///

244 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

is a Graduate, a Graduate is a Student, and a Student is a Person, so depending on the particular
functionality desired, Java might consider a particular Master instance as a Master, a Graduate, a
Student, or a Person, because, after all, a Master is still a Person.

Static Binding

Static methods and variables have already been covered in earlier chapters. You know by now that
they do not require or depend on instances of the class. Polymorphism applies to instances rather
than to classes, so static methods can be bound to their implementations at compile time. This is
referred to as static binding or compile‐time binding. Java restricts static methods from being over-

ridden; however, remember from earlier in this chapter that they can be overloaded. Overloaded

methods differ only in the number and type of parameters, as the name is the same. To account for

this possibility, the compiler will check the method signature and parameter types of static methods

to ind the appropriate implementation at compilation.

Dynamic Binding

Dynamic binding, also called virtual method invocation, is the binding used for instance methods

to allow for polymorphism. When a method is overridden, there are multiple implementations that

can be called, depending on the instance in question. Dynamic binding, as opposed to static bind-

ing, means that the binding of instance methods to the appropriate implementation is resolved at

runtime, not at compile time, based on the instance and its type. During execution, the Java Virtual

Machine will irst check the class of the object that the reference object points to for the method

implementation. If it doesn’t exist, the JVM will look to the superclass. It will check the superclass

above that if it still doesn’t ind a match, and so on throughout the class hierarchy. By searching

from the bottom up, the most speciic implementation, or the one from the class lowest in the hierar-

chy, will be the one used.

Consider again the example of the GPA calculation, which calculates the average of all grades for

most Student instances and the average of grades above a threshold for graduate students. Suppose

you create a PersonProgram class to run your main method:

public class PersonProgram {

 public static void main(String[] args){
 Student john = new Master("John Adams");
 john.setGrades(0.75,0.82,0.91,0.69,0.79);
 Student anne = new Associate("Anne Philips");
 anne.setGrades(0.75,0.82,0.91,0.69,0.79);

 System.out.println(john.getName() + ": " + john.calculateGPA());
 System.out.println(anne.getName() + ": " + anne.calculateGPA());
 }
}

You have two Student instances: John is a Master (subclass of Graduate) and Anne is an

Associate (subclass of Undergraduate). To compare easily, assume they both have the same grades

for ive courses. When your main method reaches the print statements, it will irst call the getName()

method for each instance. For John, none of the Master class, the Graduate class, or the Student

http:///

Class Inheritance ❘ 245

class contain a getName() method. Therefore, the Master instance inherits the getName() method
directly from the Person class. Next, it will need to call the calculateGPA() method for John. The
Master class does not contain a calculateGPA() method, but the Graduate class, the superclass of
Master, does. Dynamic binding looks at the type of instance that John is: a Master and, therefore, a
Graduate. Therefore, the calculateGPA() method from the Graduate class is called.

For Anne, the same decision process occurs. There is no getName() method in any of the subclasses,
so the class hierarchy is considered to ind that Anne is an Associate, which is an Undergraduate,

which is a Student, which is a Person, and the getName() method from the Person class is called.

For her GPA, neither Associate nor Undergraduate has a calculcateGPA() method, so the

Student version of the method is called for Anne.

Sure enough, the console output shows two different GPAs, despite having the same grades, because

dynamic method invocation allows different versions of the method to be called depending on the

instance calling it.

John Adams: 0.865
Anne Philips: 0.792

the superclass object
As mentioned in the introduction to inheritance, all classes in Java descend from the class Object.

The Object class has several methods that are, therefore, inherited by every other class. You may

choose to use them directly or override them in your own classes.

 ➤ protected Object clone(): Creates and returns a copy of this object

 ➤ public boolean equals(Object obj): Indicates whether some other object is “equal to”

this one

 ➤ protected void finalize(): Called by the garbage collector on an object when garbage

collection determines that there are no more references to the object

 ➤ public final Class getClass(): Returns the runtime class of an object

 ➤ public int hashCode(): Returns a hashcode value for the object

 ➤ public String toString(): Returns a string representation of the object

The clone()method can be used only if the class is Cloneable. If so, the default clone() method

creates a new object of the same class as the original object and with the same values for its instance

variables. If your original object references another object, the clone will reference the same object.

You may want to override the clone() method to create clones of both objects instead of sharing

the referenced object.

The equals() method was discussed in Chapter 5. It compares two objects for equality. To compare

two objects, this method uses the == operator, which gives the correct answer for primitive data

types. However, for objects, it returns true if the references are equal, meaning the two variables

point to exactly the same object. In most cases, you are more interested if the instance variables’ val-

ues of both objects match. To accomplish this, you should override the equals() method according

to the needs of your class or program. For example, you might consider two Person objects equal

if their social security number is the same. Depending on the class, there might be different possible

http:///

246 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

ways to check for equality, so the purposes of your program will help you determine an appropriate
implementation. Two cars might be equal if they have the same vehicle identiication number (the

same exact car), or you might consider them equal if the make, model, and year are the same (the

same kind of car).

The finalize() method is used as part of garbage collection. There is a brief section on this topic

later in this chapter. It is worth noting that Object’s default finalize() method doesn’t do any-

thing, but it can be overridden to clean up loose ends when an object becomes garbage. Oracle notes

that when and even if the finalize() method is called is uncertain, so it should not be relied upon

to close resources.

The getClass()method cannot be overridden. It will always return a Class object that you can use

to get information about the class, such as the class name, the superclass, or any interfaces it imple-

ments. The Class class has dozens of methods you can use to learn more about a class.

The hashCode() method returns a value representing the object’s memory address by default. By dei-

nition, if two objects are equal, their hashcode must also be equal. Therefore, when you override the

equals() method, you must also override the hashCode() method to maintain this relationship.

The toString() method returns a String representation of an object. The String representation

depends on the object, so you should consider overriding this method in your own classes. The

toString() method is the method called when you print an object, so if you properly override the

toString() method, you can easily print objects in a format useful to you and your program.

abstract classes and methods
Abstract classes cannot be instantiated. They are used as superclasses when you want all instances

to belong to a subclass, but the subclasses share attributes or methods that are better deined in a

superclass. For example, you might have an abstract class called Shape with several subclasses, like

Rectangle, Circle, and Triangle. It might not make sense to be able to create a Shape without

a more speciic type, so you can make Shape abstract and create all shape objects as members of

a subclass. The keyword abstract is used in the class declaration, like public abstract class

Shape { }.

Abstract classes can also have implemented methods and abstract methods. Abstract methods are

declared without an implementation. In the Shape example, you might declare a calculateArea()

method in the Shape class, but allow each subclass to implement it in its own way, since each type

of shape has a different area formula. All abstract methods must eventually be implemented in one

of the subclasses. All classes that contain an abstract method must be abstract themselves. Abstract

methods are declared using the abstract keyword, but instead of opening curly brackets, the dec-

laration is completed with a semicolon, like public abstract double calculateArea();. The

classes for Shape and Circle are shown as examples for the abstract class and method syntax.

public abstract class Shape {
 private String color;

 public Shape(String color) {
 this.setColor(color);
 }

http:///

Class Inheritance ❘ 247

 public String getColor() {
 return this.color;
 }

 public void setColor(String color) {
 this.color = color;
 }

 public abstract double calculateArea();
}

public class Circle extends Shape {
 private double radius;
 private final double PI = 3.14159;

 public Circle(String color, double radius) {
 super(color);
 this.setRadius(radius);
 }

 public double getRadius() {
 return this.radius;
 }

 private void setRadius(double radius) {
 this.radius = radius;
 }

 @Override
 public double calculateArea() {
 return PI * this.getRadius() * this.getRadius();
 }

}

The following exercise will help you practice some of the main concepts associated with inheritance.

try it out Inheritance, Superclasses, and Subclasses

In this exercise, you continue with the Bank Account application from an earlier exercise and adapt it
to apply the principles of inheritance.

 1. Start from the Bank Account application from an earlier exercise. You may want to copy the iles

into a new package to keep both versions separate.

 2. Create two new classes called SavingsAccount and CheckingAccount, which should be subclasses

of the Account class.

 3. Create a constructor in the SavingsAccount class that uses the superclass constructor. Assume

when customers open a SavingsAccount, they receive a bonus of 10 dollars.

 4. Add a private instance variable to the CheckingAccount class that indicates how many signatories

are on the account. Add a getter and setter for it.

http:///

248 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 5. Create a constructor in the CheckingAccount class that also uses the superclass constructor and
adds this instance variable initialization.

 6. Make the Account class abstract, ensuring that all accounts are either SavingsAccounts or
CheckingAccounts.

 7. Override the withdraw() method in the CheckingAccount class to ensure a minimum balance is
maintained in the account. Store the minimum balance required as a static variable. If the with-
drawal is too large, throw an exception, otherwise use the super.withdraw() method.

 8. Override the toString() method from the Object class to print information about Account
instances in the Account class. Override the Account class toString() method to specialize it for
the subclasses in SavingsAccount and CheckingAccount.

 9. Adapt the AccountManager class to try out your new classes and methods. It should look some-
thing like this:

public class AccountManager {

 public static void main(String[] args) {
 Account mySavings = new SavingsAccount("Save001", "10.00");

 try {
 mySavings.withdraw("5.00");
 } catch (IllegalArgumentException e) {
 System.err.println("Invalid Withdrawal");
 }

 Account myChecking = new CheckingAccount("Check002", "10.00", 1);

 try {
 myChecking.withdraw("5.00");
 } catch (IllegalArgumentException e) {
 System.err.println("Invalid Withdrawal");
 }

 myChecking.deposit("500.00");

 try {
 myChecking.withdraw("5.00");
 } catch (IllegalArgumentException e) {
 System.err.println("Invalid Withdrawal");
 }
 }
}

Your Account, SavingsAccount, and CheckingAccount classes should resemble these:

import java.math.BigDecimal;

public abstract class Account {
 private String name;
 private BigDecimal amount;

 public Account(String acctName, String startAmount) {

http:///

Class Inheritance ❘ 249

 this.setName(acctName);
 this.setAmount(startAmount);
 this.amount.setScale(2, BigDecimal.ROUND_HALF_UP);
 System.out.println("Account Created: " + this.getName());
 }

 public String getName() {
 return this.name;
 }

 public BigDecimal getAmount() {
 return this.amount;
 }

 public void setName(String newName) {
 String pattern = "^[a-zA-Z0-9]*$";
 if (newName.matches(pattern)) {
 this.name = newName;
 }
 }

 private void setAmount(String newAmount){
 this.amount = new BigDecimal(newAmount);
 }

 public void withdraw(String withdrawal) throws IllegalArgumentException{
 BigDecimal desiredAmount = new BigDecimal(withdrawal);

 //if desired amount is negative, throw an exception
 if (desiredAmount.compareTo(BigDecimal.ZERO) < 0){
 throw new IllegalArgumentException();
 }

 //if the amount is less than the desired amount, throw an exception
 if (this.getAmount().compareTo(desiredAmount) < 0){
 throw new IllegalArgumentException();
 }

 this.setAmount(this.getAmount().subtract(desiredAmount).toString());
 System.out.println("Withdrawal: " + this);
 }

 public void deposit(String deposit) throws IllegalArgumentException{
 BigDecimal desiredAmount = new BigDecimal(deposit);

 //if desired amount is negative, throw an exception
 if (desiredAmount.compareTo(BigDecimal.ZERO) < 0){
 throw new IllegalArgumentException();
 }

 this.setAmount(this.getAmount().add(desiredAmount).toString());
 System.out.println("Deposit: " + this);
 }

 @Override
 public String toString(){

http:///

250 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 return this.getName() + ": Balance = " + this.getAmount();
 }
}

import java.math.BigDecimal;

public class CheckingAccount extends Account {
 private int numberOfSigs;
 private static final BigDecimal minBalance = new BigDecimal("100.00");

 public CheckingAccount(String acctName, String startAmount, int sigs) {
 super(acctName, startAmount);
 this.setNumberOfSigs(sigs);
 }

 public int getNumberOfSigs() {
 return numberOfSigs;
 }

 public void setNumberOfSigs(int sigs) {
 this.numberOfSigs = sigs;
 }

 @Override
 public void withdraw(String withdrawal){
 BigDecimal desiredAmount = new BigDecimal(withdrawal);

 // if withdrawal would put the balance below the minimum,
 // throw an exception
 if (this.getAmount().compareTo(desiredAmount.add(minBalance)) < 0){
 throw new IllegalArgumentException();
 } else {
 super.withdraw(withdrawal);
 }
 }

 @Override
 public String toString(){
 return "Checking Account " + super.toString();
 }
}

public class SavingsAccount extends Account {

 public SavingsAccount(String acctName, String startAmount) {
 super(acctName, startAmount);
 this.deposit("10.00");
 }

 @Override
 public String toString() {
 return "Savings Account " + super.toString();
 }
}

http:///

packages ❘ 251

How It Works

Here’s how it works:

 1. The Account class was made abstract because all Account instances should belong to one of the
subclasses, either SavingsAccount or CheckingAccount. It was also adapted to include infor-
mation hiding and accessor methods. The rest of the Account class remained unchanged. The
toString() method from the Object class was overridden to allow for convenient printing of
account information.

 2. The SavingsAccount class is very simple; most of the methods are inherited directly from the
superclass. In the SavingsAccount constructor, the super constructor is called irst. The super

constructor must be the irst statement in a subclass constructor method. Next, an additional 10

dollars is deposited into the account as a SavingsAccount bonus. You could also save this bonus

amount as a static variable. The toString() method from the Account class is overridden again

to add the title “Savings Account” in front of the super toString() result.

 3. The CheckingAccount class is more specialized than the SavingsAccount class. The toString()

method of the Account class is similarly overridden to add the title “Checking Account.”

Additionally, two new variables were added: an instance variable to store the number of signatories

(people who can withdraw from the account) and a static variable to store the minimum balance

required in a CheckingAccount. Note that the constructor does not require a minimum balance to

create the account. In order to do this, it would be better to move the minimum balance variable

to the Account class and assign a different value for each subclass, so SavingsAccount minimum

would be 0 and the CheckingAccount would be 100. This would allow the super constructor to

check for the minimum balance while constructing an account instance. The withdraw() method

is also overridden in the CheckingAccount class to check for the minimum balance. If the balance

is suficient, the super.withdraw() method is called.

 4. The AccountManager class now creates two instances, one of SavingsAccount and one of

CheckingAccount. The print statements are simpliied since they can now use the toString()

method. You can see how the withdrawal is rejected when the balance of the CheckingAccount is

too low, but after a large deposit, the withdrawal becomes possible.

pacKages

Packages are a Java construct that function something like folders to organize your classes, but

offer additional features like namespace and access control. Chapter 3 is about using Eclipse and

other development environments. In that chapter, packages were discussed briely. Indeed in your

project directory, packages serve as an organizational tool to keep related classes together and less

related classes separate.

You might even be organizing the exercises in this book into packages by chapter or individual

exercise. If so, you may have already noticed that packages provide unique namespaces that allow

several classes with the same name to exist without conlict as long as they are located in different

packages. This is because the package helps to uniquely identify a speciic class based on where it is

located.

http:///

252 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

This same property allows you to import predeined classes and packages from other projects or

even from other developers. The import statements you’ve used already in some of the exercises

are an example of this. When you started using BigDecimal, instead of doubles, to provide more

 control over rounding of decimal point numbers, you used the following statement at the top of

your class: import java.math.BigDecimal; to import the BigDecimal class from Java’s math

package.

In order for a program to identify a package by name, the program should be executed from

the directory that contains the package, or the CLASSPATH must include the path to the package.

The CLASSPATH tells the Java Virtual Machine where to ind classes and packages when

needed.

interfaces

An interface deines a protocol, or contract, of behavior. It resembles something like a template

for a class, as it speciies what a class must do, but not how to do it. Instead of a public class

ClassName heading, you should use the public interface InterfaceName heading. Interfaces

contain headings for public methods without implementations. These are the same as abstract meth-

ods discussed earlier in the chapter, but because methods in interfaces are necessarily abstract, there

is no need to use the abstract keyword in an interface. Comments should be provided with meth-

ods to make it clear what the method is intended for, especially since there is no implementation

to read.

Interfaces must have either the public access modiier or no access modiier, indicating they are

only accessible within the same package. An interface may have variables only if they are final,

static, and initialized with a constant value.

Similar to a subclass extending a superclass, a class can implement an interface. If a class imple-

ments an interface, it must implement all methods deined in the interface. While a subclass can only

extend one superclass, a single class can implement any number of interfaces. Because the methods

in interfaces are unimplemented, there is no risk of ambiguity, and the class will have one single

implementation for each method. Methods in an interface are implicitly assumed to be public, so the

public access modiier is not necessary for interface methods.

Interfaces can extend one or more other interfaces. Any class implementing an interface must imple-

ment all methods in the interface itself, as well as any interfaces it extends.

Polymorphism applies to interfaces similar to superclasses. If the Shape class implements an inter-

face Measurable, then you could have a variable of type Measurable referencing a Rectangle

object or a variable of type Shape referencing a Circle object. Consider the following Measurable

interface for an example of interface syntax.

/**
* An interface for measuring methods.
*/
public interface Measurable{
 /** Returns the perimeter of an object */
 double calculatePerimeter();

http:///

Interfaces ❘ 253

 /** Returns the area of an object */
 double calculateArea();
}

Then, if Shape implements Measurable, the subclasses of Shape would also implement Measurable.

public abstract class Shape implements Measurable {
 private String color;

 public Shape(String color) {
 this.setColor(color);
 }

 public String getColor() {
 return this.color;
 }

 public void setColor(String color) {
 this.color = color;
 }
}

public class Circle extends Shape {
 private double radius;
 private final double pi = 3.14159;

 public Circle(String color, double radius) {
 super(color);
 this.setRadius(radius);
 }

 public double getRadius() {
 return this.radius;
 }

 private void setRadius(double radius) {
 this.radius = radius;
 }

 @Override
 public double calculateArea() {
 return pi * this.getRadius() * this.getRadius();
 }

 @Override
 public double calculatePerimeter() {
 return 2 * pi * this.getRadius();
 }

}

The following exercise will give you an opportunity to try out interfaces for yourself. While you
work through it, keep in mind the similarities and differences between inheritance and interfaces.
As you gain experience, you’ll see how one or the other might be better suited to certain situations.

http:///

254 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

try it out Implementing Interfaces

To compare and contrast with superclasses, this exercise demonstrates the implementation of interfaces
using the Bank Account examples from earlier.

 1. You may want to create a new package to keep your bank account classes separated from other
account classes you’ve been working on already.

 2. Create a new interface the same way you do a class, but by selecting New Interface instead of
New Class. Name it Accountable.

 3. Add four methods to the Accountable interface:

boolean isValidDeposit();
void deposit();
boolean isValidWithdrawal();
void withdraw();

 4. Write meaningful comments for the interface and each method. If you type /** and press Enter, the
multiple‐line comment block will be generated for you. Your Accountable interface may look like

this:

/**
 * an interface to manage accounting behavior
 */
public interface Accountable {

 /**
 * Returns true if a specified String is a valid amount to deposit.
 * @param deposit: the amount to be deposited
 */
 boolean isValidDeposit(String deposit);

 /**
 * Adds the specified amount to the balance.
 * @param deposit: the amount to be deposited
 * @throws IllegalDeposit
 */
 void deposit(String deposit) throws IllegalDeposit;

 /**
 * Returns true if a specified String is a valid amount to withdraw.
 * @param withdrawal: the amount to be withdrawn
 */
 boolean isValidWithdrawal(String withdrawal);

 /**
 * Subtracts the specified amount from the balance.
 * @param withdrawal: the amount to be withdrawn
 * @throws IllegalWithdrawal
 */
 void withdraw(String withdrawal) throws IllegalWithdrawal;
}

http:///

Interfaces ❘ 255

 5. Create a new class SavingsAccount that implements the Accountable interface. You can
add interfaces in the middle of the New Java Class window, or you can type implements
Accountable yourself after the class is created. If you add it from the window, the necessary meth-
ods will automatically be created for you to implement.

 6. The SavingsAccount class should have two instance variables: name and amount. Follow the prin-
ciple of information hiding. Use the isValid methods to check if a String is numeric and if it can
be represented as a BigDecimal. Before making a deposit or withdrawal, use the isValid methods
to check if the transaction is valid. Override the toString() method to print information about
your accounts. Your SavingsAccount class may look like this:

import java.math.BigDecimal;

public class SavingsAccount implements Accountable {
 private String name;
 private BigDecimal amount;

 public SavingsAccount(String name, String amount) throws IllegalAccount {
 if (isValidDeposit(amount)) {
 this.setName(name);
 this.setAmount(new BigDecimal(amount));
 } else {
 throw new IllegalAccount();
 }
 }

 @Override
 public boolean isValidDeposit(String deposit) {
 BigDecimal temp;
 try {
 temp = new BigDecimal(deposit);
 } catch (Exception e) {
 return false;
 }
 return temp.compareTo(BigDecimal.ZERO) > 0;
 }

 @Override
 public void deposit(String deposit) throws IllegalDeposit {
 if (isValidDeposit(deposit)) {
 this.setAmount(this.getAmount().add(new BigDecimal(deposit)));
 } else {
 throw new IllegalDeposit();
 }
 }

 @Override
 public boolean isValidWithdrawal(String withdrawal) {
 BigDecimal temp;
 try {
 temp = new BigDecimal(withdrawal);
 } catch (Exception e) {
 return false;

http:///

256 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 }
 if (temp.compareTo(this.getAmount()) < 0) {
 return true;
 }
 return false;
 }

 @Override
 public void withdraw(String withdrawal) throws IllegalWithdrawal {
 if (isValidWithdrawal(withdrawal)) {
 this.setAmount(this.getAmount()
 .subtract(new BigDecimal(withdrawal)));
 } else {
 throw new IllegalWithdrawal();
 }
 }

 public String getName() {
 return name;
 }

 private void setName(String name) {
 this.name = name;
 }

 public BigDecimal getAmount() {
 return amount;
 }

 private void setAmount(BigDecimal amount) {
 this.amount = amount;
 }

 @Override
 public String toString() {
 return "SavingsAccount " + this.getName()
 + ": Balance = " + this.getAmount();
 }
}

 7. Create another new class called CheckingAccount. Structure it similarly to the SavingsAccount
class. This time add a minBalance static variable to maintain a minimum balance of 100 dollars in
all checking accounts. Override the toString() method to print information about your accounts.
Your CheckingAccount class may look like this:

import java.math.BigDecimal;

public class CheckingAccount implements Accountable {
 private String name;
 private BigDecimal amount = new BigDecimal("0.00");
 private static BigDecimal minBalance = new BigDecimal("100.00");

 public CheckingAccount(String name, String amount) throws IllegalAccount {
 if (isValidDeposit(amount)) {

http:///

Interfaces ❘ 257

 this.setName(name);
 this.setAmount(new BigDecimal(amount));
 } else {
 throw new IllegalAccount();
 }
 }

 @Override
 public boolean isValidDeposit(String deposit) {
 BigDecimal temp;
 try {
 temp = new BigDecimal(deposit);
 } catch (Exception e) {
 return false;
 }
 if (temp.compareTo(new BigDecimal.ZERO) > 0) {
 if (temp.add(this.getAmount()).compareTo(minBalance) > 0) {
 return true;
 }
 }
 return false;
 }

 @Override
 public void deposit(String deposit) throws IllegalDeposit {
 if (isValidDeposit(deposit)) {
 this.setAmount(this.getAmount().add(new BigDecimal(deposit)));
 } else {
 throw new IllegalDeposit();
 }
 }

 @Override
 public boolean isValidWithdrawal(String withdrawal) {
 BigDecimal temp;
 try {
 temp = new BigDecimal(withdrawal);
 } catch (Exception e) {
 return false;
 }
 if (temp.compareTo(this.getAmount().add(minBalance)) < 0) {
 return true;
 }
 return false;
 }

 @Override
 public void withdraw(String withdrawal) throws IllegalWithdrawal {
 if (isValidWithdrawal(withdrawal)) {
 this.setAmount(this.getAmount()
 .subtract(new BigDecimal(withdrawal)));
 } else {
 throw new IllegalWithdrawal();
 }
 }

http:///

258 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

 public String getName() {
 return name;
 }

 private void setName(String name) {
 this.name = name;
 }

 public BigDecimal getAmount() {
 return amount;
 }

 private void setAmount(BigDecimal amount) {
 this.amount = amount;
 }

 @Override
 public String toString() {
 return "CheckingAccount " + this.getName()
 + ": Balance = " + this.getAmount();
 }

}

 8. Create an AccountManager class to test your interface‐based application. You can reuse parts of

the AccountManager class from the earlier exercise. It may look different from the one here, but

should function in mostly the same way:

public class AccountManager {

 public static void main(String[] args) {
 Accountable mySavings, myChecking;
 try {
 mySavings = new SavingsAccount("Save001", "10.00");
 System.out.println(mySavings);

 mySavings.withdraw("5.00");
 System.out.println(mySavings);

 myChecking = new CheckingAccount("Check002", "10.00");
 System.out.println(myChecking);

 myChecking = new CheckingAccount("Check002", "101.00");
 System.out.println(myChecking);

 myChecking.withdraw("5.00");
 System.out.println(myChecking);

 myChecking.deposit("500.00");
 System.out.println(myChecking);

 myChecking.withdraw("5.00");
 System.out.println(myChecking);
 } catch (IllegalAccount a) {

http:///

Garbage Collection ❘ 259

 System.out.println("Invalid Account Opening");
 } catch (IllegalDeposit d){
 System.out.println("Invalid Deposit");
 } catch (IllegalWithdrawal d){
 System.out.println("Invalid Withdrawal");
 }
 }
}

How It Works

Here’s how it works:

 1. The Accountable interface prescribes the types of behavior an Accountable class should include,
namely deposit and withdraw. Some new exception types were deined to differentiate between the

problems that may occur. The commenting describes the purpose of each method and any param-

eters or exceptions.

 2. The SavingsAccount class implements the methods laid out in the Accountable interface. It also

includes getters and setters for the instance variables and a toString() method for printing.

 3. The CheckingAccount class is very similar to the SavingsAccount class, with a few small changes

to account for the different rules attached to checking accounts, the minimum balance in particu-

lar. It is easy to see how these classes could easily be merged with a minimum balance of 0 for

savings accounts. However, if more differences are expected or more types of accounts might be

added, an interface with implementing classes may be appropriate.

 4. The AccountManager class was organized differently than the previous exercise simply to show an

alternate approach. Here the entire method is inside a try block, with three catch blocks to alert

the user to problems with account creation, depositing, or withdrawing.

garbage collection

Garbage collection is a way to reclaim memory from objects once they are no longer in use. You saw

in Chapter 6 the OutOfMemoryError that’s thrown when there is insuficient heap space for creat-

ing a new object. By removing unused objects from memory, more is available for new and existing

objects. One difference between C++ and Java is that Java incorporates automatic garbage collec-

tion, so the programmer does not need to manage memory as much themselves.

An object is eligible for garbage collection when it is no longer accessible through any variable.

However, if one object refers to another and that object in turn refers to the irst in a cyclical depen-

dency, they may both be eligible for garbage collection. Once an object is eligible for garbage collec-

tion, the garbage collector will eventually remove it from memory.

Recall how when a new object is created, the constructor method is called to initialize it. There is

also a inalize method that’s invoked just before the object is destroyed. This method is built in to

the Object superclass, but you can override it in your classes to perform special actions before an

object is destroyed.

http:///

260 ❘ Chapter 7 delvInG Further Into obJect‐orIented concePtS

To illustrate what is happening with garbage collection, consider the following code snippet.

class PersonManager {
 public static void main(String args[]) {
 Person p1 = new Person("Adam");
 Person p2 = new Person("Robert");
 p1 = p2;
 ...//Rest of program
 }
}

A Person variable p1 is declared and initialized to a newly created Person object with the name
Adam. A second Person variable p2 is declared and initialized to another newly created Person
object with the name Robert. See Figure 7-4.

figure 7-4

Person object
name = “Adam”

Person object
name = “Robert”

p1

p2

figure 7-5

Person object
name = “Adam”

Person object
name = “Robert”

p1

p2

figure 7-6

Person object
name = “Adam”

Person object
name = “Robert”

p1

p2

In the next statement, the variable p1 is reassigned to the reference object of p2. See Figure 7-5.

The Person object with name Adam no longer has any references pointing to it. So it becomes eligible
for garbage collection. See Figure 7-6.

http:///

handling Input and Output

What you Will learn in this chapter:

 ➤ How input and output differ

 ➤ How to handle interaction with users in your programs

 ➤ How to store and load information in iles

Wrox.com code doWnloads for this chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 8
download and individually named according to the names throughout the chapter.

So far, all the programs you’ve been writing throughout the course of this book have operated
more or less on their own, without much interaction with the user at runtime, meaning that
the interaction with the program happened while you were coding it, i.e. specifying all the
tasks the program should perform. Once it ran, however, the program just went its course.

Interaction in programming is described as “input/output” (I/O). Of course, this communica-
tion lows in two directions, one in the form of “output,” which is information the program
provides to outside parties, and the other in the form of “input,” which is information users
provide to the program or information the program reads in from the outside world. It is easy
to imagine a multitude of cases where such functionality could be useful. Imagine a program
asking the user’s name, for instance, or a program asking if it should terminate or ignore an
error when something unexpected happens. These aspects are all covered in this chapter.

Interaction can happen not only between a program and a human end user, but can also
involve other sources of information. Consider, for example, the fact that so far, whenever you
closed and restarted a program, all its previous data values were lost. When writing a budget
tracking application, you cannot expect your users to leave the program running indeinitely
(what if the power goes out?) or expect them to re-enter all the information once they reopen

8

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

262 ❘ Chapter 8 hAndlInG InPut And outPut

the program. As such, you will also deal with ways of handling I/O between your program and data
sources. This chapter covers the most basic of data sources, namely that of a ile.

general input and output

When we talk about input and output in computing, we describe all forms of communication
between a program on the computer and the “outside world,” which includes human end users,
other programs on the same machine, or other programs running on other computers.

Input includes all the data and signals received by the running program. For instance, input can be
sent to a program using input devices such as a keyboard or mouse, or can come from other com-
puters, such as when you use your web browser to load in a speciic web page. Output on the other
hand includes all the signals and data sent from a program. Monitors and printers are prime exam-
ples of output devices, but again, output can involve pure data, such as when your web browser
sends a request to a web server to receive a web page. The latter immediately illustrates that the
same program (a web browser) can involve a series of input and output operations. The same holds
for hardware devices, such as a network card or a modem.

A particular form of I/O we will be taking a closer look at in this chapter is ile I/O, meaning input
and output operations that read and write data to iles stored on your computer. We can skip the
details until we are ready to start dealing with iles in Java, but two aspects are worth mentioning
right now—ile modes and the difference between text and binary iles as they apply to program-
ming languages other than Java.

Let’s start with ile modes. In many programming languages, once you specify a particular ile,
the language requires you to specify a particular mode (which, in many cases, is passed on to the
operating system). Two general modes are fairly obvious: opening a ile for reading and opening
a ile for writing. However, other modes can be speciied as well. The following list provides an
enumeration of such ile modes, together with their common abbreviations used in most program-
ming languages:

 ➤ r: Open a ile for reading only (pointer at beginning of ile).

 ➤ r+: Open a ile for reading and writing (pointer at beginning of ile).

 ➤ w: Open a ile for writing only (pointer at beginning of ile); if the ile does not exist, try to
create it; existing iles will be truncated (made empty).

 ➤ w+: Open a ile for reading and writing (pointer at beginning of ile); if the ile does not exist,
try to create it; existing ile will be truncated (made empty).

 ➤ a: Open a ile for writing only (pointer at end of ile, i.e. append new data at the end of the
ile).

 ➤ a+: Open a ile for reading and writing (pointer at end of ile, i.e. append new data at the end
of the ile).

 ➤ x: Create a ile and open for writing only; fail if ile already exists.

 ➤ x+: Create a ile and open for reading and writing; fail if ile already exists.

http:///

General Input and Output ❘ 263

 ➤ c and c+: Open a ile for writing only or for reading and writing (pointer at beginning of ile);
if ile does not exist, try to create it; existing iles will not be made empty, as opposed to
w/w+, which means that writing data will overwrite existing data.

Don’t panic if this list seems a bit daunting or confusing, as the most important thing for now is to
remember that iles can be opened for reading and writing. For writing, it is important to keep in
mind that you can either empty an existing ile and rewrite over it or keep the existing ile in tact
and append your data to the end. The reason why you don’t need to remember the full list of ile
modes is because the Java ile API makes things simple, as you’ll see later.

The second general concept we highlight here is the difference between text and binary iles. All the
iles on your computer can be categorized into these two formats. The difference lies in how the ile
encodes the data it contains. At the most basic level, both text and binary iles store data as a series
of bits (a series of zeroes and ones). However, in a text ile, the bits represent characters (numbers,
spaces, letters, etc.), while in a binary ile, the bits represent custom data, stored and interpreted
according to a particular format.

When you create a .txt ile using Windows Notepad, for instance, you are creating a text ile. Figure
8-1 illustrates a simple text ile containing two lines of text opened in Notepad. On the right side,
you can see this ile in its hexadecimal representation—a compact representation of the bits stored in
the ile. As you can see, each byte (two hexadecimal characters) maps to exactly one character—54
maps to T and 73 maps to s.

figure 8-1

character encoding

You might be wondering how exactly your computer knows which byte (a series of
eight zeroes and ones) should be mapped to which character. The answer lies in the
concept of standardization. As with every standardization process, many standards
exist, all of which are compatible with one another to varying degrees (ranging from
fully backward-compatible to completely incompatible). In western regions, this

continues

http:///

264 ❘ Chapter 8 hAndlInG InPut And outPut

standardization process started with standards such as EBCDIC (Extended Binary
Coded Decimal Interchange Code), a character encoding scheme used by many IBM
mainframes decades ago, and ASCII (American Standard Code for Information
Interchange), which quickly became the standard in the early days of computing.

However, as time progressed, many vendors were confronted with the limita-
tions of this American-centric standard, as no mapping was provided to repre-
sent accented characters (such as è, ï, and so on) used in non-English languages.
As such, the International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) proposed the ISO/IEC 8859
standard, a collection of character encodings to support European, Cyrillic, Greek,
Turkish, and other languages. As ASCII used only seven out of eight bits provided
in a byte (the remaining bit was sometimes used to calculate a checksum or used
by vendors to map custom characters), the implementation of this standard was
simple. By using the eighth bit, the range of possible characters that could be rep-
resented doubled and could thus include the accented characters. Moreover, this
also ensured that all the ASCII characters could still retain their original position,
which enabled backward-compatibility with existing text iles.

Still, a downside of this approach was that users had to have the correct code
page installed and selected on their system in order to read text iles correctly.
Whereas I might create a text ile following the ISO/IEC 8859-1 convention (west-
ern Latin alphabet), the result will look wrong if you read the ile using ISO/IEC
8859-7 (Greek). In addition, many languages were still not covered by the extend-
ing standards. Consider, for example, Asian regions, where a completely different
standardization process had been followed thus far (the Chinese National Standard
11643). As such, in recent years, the ISO and IEC set out to create another standard
called the Universal Character Set. This standard aims to represent all characters
from the many languages of the world. The implementation comes in the form of
the “Unicode” standard, the latest version of which contains a repertoire of more
than 100,000 characters covering 100 scripts and various symbols. This is the stan-
dard now in use by all modern operating systems and throughout the Web.

Various encodings have been deined in order to map this wealth of characters to
raw bits and bytes in a ile. UTF-8 is the most common encoding format and it uses
one byte for any ASCII character, all of which have the same code values in both
UTF-8 and ASCII encoding (which is great news in terms of compatibility). For
other characters, up to four bytes can be used. (As such, UTF-8 is called a “vari-
able width” encoding.) Next, UCS-2 uses a two-byte code unit for each character,
and thus cannot encode every character in the Unicode standard. UTF-16 extends
UCS-2, using two-byte code units for the characters that were representable in
UCS-2 and four-byte code units to handle each of the additional characters.

This might all seem a bit overwhelming, but the good news is that in recent years,
thanks to the Unicode Consortium, things have become much simpler. The key
takeaways to keep in mind are:

continued

http:///

General Input and Output ❘ 265

Binary iles are much less structured, in the sense that they contain a sequence of bits that are struc-
tured and organized completely according to the whims of the program or programmer who created
the ile. This does not mean, however, that there cannot be some form of standardization behind
such iles. Consider, for example, image formats such as JPG or PNG, which can be opened by many
image-viewing programs. Consider Figure 8-2, which shows a JPG ile of a fractal opened by an
image viewer capable of interpreting this format on the left side and the raw bytes on the right side.

 ➤ When saving iles in the old ASCII standard, you ensure compatibility but can
only store a basic range of characters (ine for English).

 ➤ Otherwise, try to work with UTF-8. This ensures that every ASCII character is still
represented by one byte, and all other characters will take up a few more bytes.

figure 8-2

As you can see in Figure 8-2, the contents of this binary ile cannot be represented as a series of
characters in a meaningful way, although fragments and pieces of text can exist here and there,
representing metadata (where the picture was taken, for instance) or strings. In many cases, many
binary iles will also start with a speciic sequence of bytes (called a “magic number”), denoting
what type of ile it is. JPG iles, for instance, begin with FF D8.

sPecial characters

There's more to text iles than character encodings alone. When dealing with text,
not every character necessarily needs to represent a letter or a number. Consider
for instance a special “character” representing a space or a tab, or a character rep-
resenting a line break (the end of a line). Especially regarding the latter, some dif-
ferences exist between operating systems. On Windows, a line break is represented
by two characters (0D and 0A in hexadecimal). On most Unix-derived operating
systems (such as Linux), a line break is represented by a single character (0A). The
latter also holds for Mac systems, except for older Macs, where 0D is used instead.
Some older operating systems also use ixed line lengths or other characters, but
sufice it to say that this is something not all systems agree on. Luckily, Java helps
correctly detect the end of a line in a text ile, as you will see later.

http:///

266 ❘ Chapter 8 hAndlInG InPut And outPut

input and output in Java

Dealing with input and output in Java—especially when working with iles—is a topic that
beginning Java programmers typically view in a begrudging manner, especially when coming
in from other programming languages and looking up examples that are not yet up to par with
the latest Java versions. Let’s illustrate the reasons behind this with a typical example. Say you
have a simple text ile of a grocery list and want to go through it line by line in your program.
Traditionally, examples, tutorials, and textbooks would have suggested a solution that looks
like the following:

import java.io.BufferedReader;
import java.io.FileReader;

public class ShowGroceries {
 public static void main(String[] args) {
 BufferedReader br = null;
 FileReader fr = null;
 try {
 fr = new FileReader("groceries.txt");
 br = new BufferedReader(fr);
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println("Don't forget to pickup: " + item);
 }
 } catch (Exception x) {
 x.printStackTrace();
 } finally {
 if (fr != null) {
 try {br.close();} catch (Exception e) { e.printStackTrace(); }
 try {fr.close();} catch (Exception e) { e.printStackTrace(); }
 }
 }
 }
}

What is up with this large try-catch block? What is a FileReader? What is a BufferedReader?
At irst sight, dealing with ile input/output in Java seems cumbersome and confusing.

A similar reasoning holds for basic user interaction. You’ve already seen in many examples how to
show output to the user console using System.out:

public class JavaInput {
 public static void main(String[] args) {
 System.out.println("What is your name, user?");
}
}

Reading input given by the user, however, requires a more convuluted setup:

import java.io.BufferedReader;
import java.io.IOException;

http:///

Input and Output in Java ❘ 267

import java.io.InputStreamReader;

public class JavaInput {
 public static void main(String[] args) {
 System.out.println("What is your name, user?");
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 String name;
 try {
 name = br.readLine();
 } catch (IOException e) {
 name = "?";
 e.printStackTrace();
 } finally {
 try { br.close(); } catch (IOException e) { e.printStackTrace(); }
 }
 System.out.println("Welcome, " + name);
}
}

You might be bothered by the presence of the try-catch blocks and the occurrence of the
InputStreamReader, as well as the BufferedReader, which makes another appearance.

Don’t despair, however, as the design choices behind this, together with arcane names such as
InputStreamReader, will all become clear in the following sections. The reason why Java’s input/
output model looks somewhat daunting at irst is because it is based on so-called “I/O streams.” A
stream is simply an abstraction of a particular input source (any kind) or an output destination (also
of any kind), meaning that streams can represent iles, a program console, other programs, memory
locations, or even hardware devices. Depending on the input source or output destination accessed,
streams can support a variety of data formats, such as raw bits and bytes, but also characters, primi-
tive data types, and even complete objects. Some streams will just pass on data, whereas others will
perform some transformations. The key point, however, is that at their core, streams all represent a
sequence of data. While this stream-based model can be somewhat verbose in the beginning, a great
advantage is that they offer a uniied model to deal with input/output, meaning that if you know
how to send output to a stream with a ile as its destination, you also know how to output data to
the user console or to a device stream.

Even better news for beginning Java programmers is that, since Java 7, new features were added
that greatly simplify the examples above. Sadly, these additions have also made the I/O landscape in
Java slightly more chaotic. In Java SE 1.4, a new “Non-Blocking IO” API—oftentimes called NIO
and referred to as “new I/O”—was added to the language to complement the existing I/O facilities.
In Java 7, extensions were added in the form of NIO2 to offer a new, more sensible ile system API.
However, since backward-compatibility is a strong design goal behind Java, existing ile I/O meth-
ods remained supported, so that many code samples, books, tutorials, and real-life code still apply
“legacy I/O” API features. Is this a problem? Not really, except for the fact that you, the beginning
Java programmer, will have to deal with both APIs, hence the illustrating examples above. The gen-
eral recommendation for new projects is to use as much NIO2-based code as possible, but reverting
back to the legacy API where necessary is ine. In fact, the Java language designers foresaw this issue
and created a set of intercompatibility methods to quickly switch between the two, as you will see
later.

http:///

268 ❘ Chapter 8 hAndlInG InPut And outPut

You are now ready to delve into I/O with Java for real and explore the concept of streams in more detail.

streams

We’ve mentioned before that the key abstraction behind I/O in Java is the concept of a stream.
Streams represent a sequence of data as it is read from a source (an input stream) or written to a des-
tination (an output stream). This immediately clariies why you will not deal with ile modes in Java
(opening a ile for reading or writing), as the type of stream (input or output) will determine whether
you want to use a ile as a data source or destination.

We’ve also stated that streams can support different kinds of data, and depending on the data type
they carry, different methods are exposed. For streams carrying textual data, for instance (think
back on text iles), it makes sense to read in a single text line. For streams carrying byte data (raw
bits and bytes), no concept of a “text line” can be deined, so this method does not make sense in
this context. Apart from reading and writing data, streams can also modify or transform data as it
passes through. A common example is an output stream that zips (compresses) the data while writ-
ing it to a ile, in order to reduce the ile size.

NOTE As an example of how the NIO2 API improves ile I/O in Java, consider
the “read a grocery list” example provided earlier. Using NIO2, this code frag-
ment can be rewritten as follows:

import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

public class ShowGroceries {
 public static void main(String[] args) {
 List<String> groceries = new ArrayList<>();
 try {
 groceries = Files.readAllLines(
 Paths.get("groceries.txt"),
 Charset.defaultCharset());
 } catch (IOException | SecurityException e) {
 e.printStackTrace();
 }
 for (String item : groceries) {
 System.out.println("Don't forget to pickup: " + item);
 }
 }
}

Notice the readAllLines method, which removes the burden of having to use
the FileReader and BufferedReader classes.

http:///

Streams ❘ 269

The following sections discuss the various types of streams in more detail.

byte streams
Byte streams represent sequences of data that’s represented at its most basic, raw format, meaning
bytes (eight bits). They form the lowest level of I/O in Java so that all other streams are built on
them.

All byte streams subclass InputStream and OutputStream (inheritance, subclasses, superclasses,
and interfaces were explained in the previous chapter) and always at least provide the following
methods. For InputStream:

 ➤ int read(): Reads the next byte of data from the input stream. Returns -1 if the end of the
stream is reached.

 ➤ int read(byte[] b): Reads some number of bytes from the input stream and stores them
into the array b. Returns the total number of bytes read into the buffer or -1 if there is no
more data because the end of the stream has been reached.

 ➤ int read(byte[] b, int off, int len): Reads up to len bytes of data from the input
stream at offset off into an array b. Returns the total number of bytes read into the buffer or
-1 if there is no more data because the end of the stream has been reached.

 ➤ long skip(long n): Skips over and discards n bytes of data from this input stream. Returns
the actual number of bytes skipped.

 ➤ void close(): Closes this input stream and releases any system resources associated with it.

 ➤ int available(): Returns an estimate of the number of bytes that can be read (or skipped
over) from this input stream without blocking.

 ➤ boolean markSupported(): Tests if this input stream supports the mark and reset
methods.

 ➤ void mark(int readlimit): Marks the current position in this input stream.

 ➤ void reset(): Repositions this stream to the position at the time the mark method was last
called on this input stream.

integers as bytes

You might be surprised by the fact that the read methods in the previous list return
ints and not bytes, which is also a primitive data type and would be a logical sound-
ing choice for a stream-reading and -writing byte. The reason for this is twofold.
First, the byte type in Java is signed, meaning that after conversion to a number, it
represents the range of -128 to 127, which makes calculation more cumbersome when
an unsigned number ranging between 0 and 255 is expected. Furthermore, note that
the read methods return -1 when the end of a stream is reached, which would then
not be able to fall inside the range of an 8-bit range (0 to 255).

continues

http:///

270 ❘ Chapter 8 hAndlInG InPut And outPut

For OutputStream, we get:

 ➤ void write(int b): Writes the speciied byte (represented using an int variable) to this
output stream.

 ➤ void write(byte[] b): Writes the speciied byte array b to this output stream.

 ➤ void write(byte[] b, int off, int len): Writes len bytes from the b starting at offset
off to this output stream.

 ➤ void close(): Closes this output stream and releases any system resources associated with
this stream.

 ➤ void flush(): “Flushes” this output stream, i.e. forces any buffered output bytes to be writ-
ten out.

It’s worth underlining the fact that the close method appears in both the InputStream and
OutputStream classes. It is extremely important to always close streams when you no longer need
them. In fact, this is so important that, even when an error occurs, you should still attempt to close
streams. Keeping streams open can lead to resource leaks, i.e. iles remain opened by the JVM and
take up memory in your program. When the data source or destination is something other than a
ile, the close method of the byte stream class might also be responsible for ensuring that every-
thing is tidied up correcly.

To get you started with byte streams, the following Try It Out shows you how to copy a ile using
FileInputStream and FileOutputStream, two basic byte stream classes aimed at working with iles.

try it out Copying Files with Byte Streams

In this Try It Out, you will copy a grocery list using byte streams.

 1. Create a new project in Eclipse if you haven’t done so already.

 2. In the Eclipse Package Explorer, create a new ile called groceries.txt within the project root
(not in the src folder). See Figure 8-3.

 3. Enter a grocery list in this TXT ile and save it (one item per line). This example uses the following
shopping list:

Very astute readers will note that the short primitive data type would also be ine
to represent a byte, as it ranges from -32,768 to 32,767 and thus has plenty of space
to represent both -1 and 0 to 255. The reason for this is simply because working
with ints is faster than shorts in the JVM (as this 32-bit type maps more closely
to underlying modern hardware), and that int has become sort of a standard
means to hold a byte of data. Secondly, you might also wonder why read returns
-1 instead of throwing an exception when the end of a stream is reached. Again a
good point, and this is due to historic reasons and standardized practices (coming
mainly from the world of the C programming language).

continued

http:///

Streams ❘ 271

apples
bananas
water
orange juice
milk
bread

figure 8-3

 4. Create a FileCopier class with the following contents:

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileCopier {
 public static void main(String[] args) {
 FileInputStream in = null;
 FileOutputStream out = null;
 try {
 in = new FileInputStream("groceries.txt");
 out = new FileOutputStream("groceries (copy).txt");
 int c;
 while ((c = in.read()) != -1) {
 out.write(c);
 System.out.print((char) c);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (in != null) try { in.close(); } catch (IOException e)
 { e.printStackTrace(); }
 if (out != null) try { out.close(); } catch (IOException e)
 { e.printStackTrace(); }
 }
 }
}

http:///

272 ❘ Chapter 8 hAndlInG InPut And outPut

 5. Execute the program. If you refresh your project (right-click and select Refresh or press F5), you
will see that a ile called groceries (copy).txt has appeared. In addition, the copied bytes are
shown on Eclipse’s console.

How It Works

Here’s how it works:

 1. We’re using both a FileInputStream and FileOutputStream class here to open the original
ile as a data source and a new ile as a destination. If the ile does not exist, its creation will be
attempted. If the ile does exist, its contents are overridden, unless you pass true as the second
argument of the FileOutputStream constructor.

 2. Next, we keep reading bytes from the original ile until we reach the end, in which case the
read method will return -1. Inside the while loop, we use the write counterpart method of the
FileOutputStream to write the read byte to the new ile.

 3. We also show the contents as they are copied on the console, so you can follow along as the ile is
being copied (the System.out.print line can be safely removed). To do so, we cannot just print the
int c variable, as doing so would result in a series of numbers as output (you can try this yourself).
Therefore, we irst cast the integer to a character. Note that this is a somewhat crude approach that
assumes that we are dealing with readable, text-based data (which is not necessarily the case when
working with byte streams) and that the original data is stored using a standard ASCII-based encod-
ing. For the sake of this example, these assumptions are not problematic, though.

 4. An IOException is caught in case some error occurs (for instance, when the original ile does not
exist). A finally block closes the streams. Note that closing streams can also throw exceptions,
but we just give up in that case and ignore those.

 5. Note that streams provide an excellent opportunity to make use of a Java 7–speciic feature called
ARM (Automatic Resource Management), also known under the name try-with-resources. As
you saw in Chapter 6, a try-with-resources block is a try statement that declares one or more
resources. These resources will be closed at the end of the code included in the try block. Any
objects that implement the AutoCloseable interface (which includes streams) can be used in such
a try-with-resources block. As such, the previous code can be rewritten as follows:

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileCopier {
 public static void main(String[] args) {
 try (
 FileInputStream in = new FileInputStream("groceries.txt");
 FileOutputStream out = new FileOutputStream("groceries (copy).txt");
) {
 int c;
 while ((c = in.read()) != -1) {
 out.write(c);
 System.out.print((char) c);
 }
 } catch (IOException e) {

http:///

Streams ❘ 273

 e.printStackTrace();
 }
 }
}

The PrintStream class is another interesting example that implements extra methods to allow for
easy output formatting on top of a normal byte output stream:

 ➤ void print(String s): Writes the speciied string to this print stream. Note that this
method is overridden to also accept other primitive types (char, double, etc.).

 ➤ void println(String s): Writes the speciied string to this print stream, but also termi-
nates the line (i.e. starts a new line). Note that this method is overridden to also accept other
primitive types (char, double, etc.).

 ➤ void format(String format, Object... args): This function takes a “format string”
as its irst argument and the variables you want to format as the following arguments. The
format string contains a number of percentage (%) ields representing where, which, and how
variables should be formatted. The most basic conversions are:

 ➤ %d: to format an integer value as a decimal value

 ➤ %f: to format a loating-point value as a decimal value

 ➤ %n: to output a line terminator

 ➤ %x: to format an integer value as a hexadecimal value (less useful)

 ➤ %s: to format any value as a string (effectively calling the toString method)

 ➤ %%: to output a percentage sign

Note that the System.out object we’ve been using to send output to the console is in fact an
example of a PrintStream. It is opened at the start of your program and closed automatically at the
end, so you can use it directly without further management. The following Try It Out shows some
examples of PrintStream’s methods.

try it out Formatting Output with printStream

This Try It Out shows some examples of formatting output with a PrintStream byte stream.

 1. Create a new project in Eclipse if you haven’t done so already.

 2. Create the following class and execute it to see the examples in action:

public class FormattingOutput {
 public static void main(String[] args) {
 /* System.out is a PrintStream, but a PrintStream class
 is a specialization of an OutputStream. The write() method
 is thus available: */
 System.out.write(50); // 50 corresponds to '2'
 System.out.write((int)'\n'); // newline

http:///

274 ❘ Chapter 8 hAndlInG InPut And outPut

 // However, it is much easier to use print and println:
 System.out.print("Text without newline");

 System.out.print("\r\nYou can enter a newline\r\n"
 + "manually, as well as tabs using \t tab \t tab \t ...\r\n"
 + "Backslashes themselves are entered with \\...\r\n");

 System.out.println("println is easier to show a "
 + "string with a newline");

 // The format method can be used to format arguments in a string
 int number = 10;
 double othernumber = 1.134;
 System.out.println("Using + is okay in most cases: " + number
 + ", " + othernumber);
 System.out.format("But format allows for more flexibility: %d, %3.2f %n",
 number, othernumber);
 System.out.format("Another %3$s: %2$+020.10f, %1$d%n",
 number, othernumber, "example");
 }
}

 3. Executing this program shows the following output in the console. Try experimenting with the
print, println, and format methods at your own leisure.

2
Text without newline
You can enter a newline
manually, as well as tabs using tab tab ...
Backslashes themselves are entered with \...
println is easier to show a string with a newline
Using + is okay in most cases: 10, 1.134
But format allows for more flexibility: 10, 1.13
Another example: +00000001.1340000000, 10

How It Works

Here’s how it works:

 1. We’re using the standard System.out PrintStream to illustrate the workings of this class.

 2. Since a PrintStream extends an OutputStream, you can still call the write method on System.out
as well. The code sample does so by irst sending the byte 50 (represented using an int variable and
corresponding to the character 2) and a newline character (by casting it to an int) to System.out.

 3. The workings of the print and println methods should be familiar by now. Note, however, the
use of \n, \r, \t, and \\ within the strings to insert special characters. These special backslash
combinations are called “escape sequences.”

 4. The format method on the other hand is new. As explained above, this function takes a “format
string” as its irst argument and the variables you want to format as the following arguments.

 5. Using this method, numbers can be formatted with advanced formatting parameters. For example,
%3.2f in our code shows “1.134” as “1.13”. The full set of formatting parameters are given by the
example %2$+020.10f, with:

http:///

Streams ❘ 275

 ➤ 2$ denotes the argument index (2). Use this if the variables to be formatted do not follow the
same order as provided in the format string or if you want to output the same variable more
than once.

 ➤ +0 for lags. This is a series of characters including + to specify that a number should be for-
matted with a sign, 0 to specify that 0 is the padding character (if not provided, a space is
used instead), - to specify that padding should be added on the right (the number will be left
aligned), and , to specify that a locale-speciic thousands separator should be used.

 ➤ 20 is the minimum width of the formatted value. The value will be padded if necessary to
obtain this width.

 ➤ .10 is the precision (10). For decimals, this is the mathematical precision of the formatted
value. For %s and other conversions, this is the maximum width of the formatted value, trun-
cated if necessary.

 ➤ f is the actual conversion.

Returning to the ile copy program we introduced before, recall that we’re copying the ile in a raw,
byte-by-byte manner. While this is ine, byte streams actually represent low-level input/output. Since
the grocery list is a text ile containing character data, it might be better to use a higher-level stream
type geared more toward this purpose, namely character streams.

character streams
Character streams translate Unicode characters (used internally within Java) to and from the charac-
ter locale speciied. This stream is equal to a byte stream but adapts to the local character set and is
thus ready for internationalization.

All character streams subclass Reader and Writer, e.g., FileReader and FileWriter. These classes
are not subclasses of the byte stream InputStream and OutputStream classes, but offer a similar set
of methods, e.g., read and write. The next Try It Out reworks the ile copier example to use char-
acter streams instead of byte streams.

try it out Copying Files with Character Streams

In this Try It Out, you will copy a grocery list using character streams.

 1. We will modify the FileCopier class we created earlier. Refer to the earlier Try It Out if you have
not done so already. Make sure the groceries.txt ile is still present.

 2. Edit the FileCopier class to look as follows:

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class FileCopier {
 public static void main(String[] args) {
 try (
 Reader in = new FileReader("groceries.txt");

http:///

276 ❘ Chapter 8 hAndlInG InPut And outPut

 Writer out = new FileWriter("groceries (copy).txt");
) {
 int c;
 while ((c = in.read()) != -1) {
 out.write(c);
 System.out.print((char) c);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

 3. Execute the program. You’ll see that it behaves similarly as before.

How It Works

Here’s how it works:

 1. We’re now using the FileReader and FileWriter classes here to open the original ile as a data
source and a new ile as a destination. If the ile does not exist, the program will attempt to create
it. If the ile does exist, its contents are overridden, unless you pass true as the second argument of
the FileWriter constructor.

 2. The rest of the program is performed very similarly to using byte streams. Note that we’re using
a try-with-resources block to handle the closing of the Reader and the Writer automatically. If
you use a traditional try-catch block, do not forget to add a finally clause when you close the
Reader and Writer.

 3. With our Reader and Writer acting so similarly to our InputStream and OutputStream, you
might be wondering why it makes sense to use character streams in the irst place. The irst differ-
ence lies in the fact that Readers and Writers store characters in the last 16 bits of an int, and
thus support a wider range of characters. Byte streams read and write bytes, that is, they store a
byte in the last eight bits of an int. For this simple English grocery list, the difference is not notice-
able, but once you start adding a wider range of characters, you’ll see that character streams are
the right route to follow. Second, when dealing with text iles, you might often be interested in
working with bigger units than just a single byte (or character), for example to read and show
lines. With Readers and Writers, you can do so, although you irst need to add another stream
type to the mix, as you’ll see in the following section on buffered streams.

Next, note the existance of InputStreamReader and OutputStreamReader to create byte-to-char-
acter bridges when no native character stream class exists to meet your data source/destination (you
will see a situation later on where this becomes useful). The PrintWriter class, inally, is the char-
acter stream counterpart of the PrintStream class.

buffered streams
Most streams in Java are unbuffered, meaning that each write and read request is handled directly
by the operating system. This makes programs less eficient, as every write request to a ile, for
instance, will trigger disk access or some other time-consuming operation. Therefore, buffered

http:///

Streams ❘ 277

streams can be used to wrap around other streams. They provide a dedicated space in memory (a
buffer) to store data in an eficient manner, and will request time-expensive operations only if neces-
sary (such as when the buffer is full and ready to be written to disk).

Four buffer classes exist which can be wrapped around a byte or character input/output stream:
BufferedInputStream, BufferedOutputStream, BufferedReader, and BufferedWriter. The latter
two classes are especially helpful when dealing with text iles, as they allow you to work with data in a
line-oriented manner. The following Try It Out once again shows the ile copier example rewritten.

try it out Copying and Showing Files Line by Line with Buffered Streams

In this Try It Out, you will copy a grocery list using buffered character streams.

 1. You will modify the FileCopier class created earlier. Refer to the earlier Try It Out if you have
not done so already. Make sure the groceries.txt ile is still present.

 2. Edit the FileCopier class to look as follows:

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class FileCopier {
 public static void main(String[] args) {
 try (
 Reader in = new BufferedReader(
 new FileReader("groceries.txt"));
 Writer out = new BufferedWriter(
 new FileWriter("groceries (copy).txt"));
) {
 String line;
 while ((line = in.readLine()) != null) {
 out.write(line + System.lineSeparator());
 System.out.println(line);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

 3. Execute the program. You’ll see that it behaves similarly as before.

How It Works

Here’s how it works:

 1. We’re now using BufferedReader and BufferedWriter classes here to open the original ile as
a data source and a new ile as a destination. Note that these classes wrap around normal Reader
and Writer classes (just as BufferedInputStream and BufferedOutputStream wrap around
InputStream and OutputStream classes).

http:///

278 ❘ Chapter 8 hAndlInG InPut And outPut

 2. Note earlier that we mentioned that you can use InputStreamReader and OutputStreamReader
to create byte-to-character bridges. It is therefore, in theory, possible to write the following:

BufferedReader in = new BufferedReader(
 new InputStreamReader(
 new FileInputStream("groceries.txt")));

But it goes without saying that this is not an eficient nor clear manner to achieve the desired
effect. Therefore, only use InputStreamReader and OutputStreamReader when no other option
is available.

 3. The rest of the program works similarly, but now reads data line by line. Note that the newline
terminator will be stripped from the read line, so we use System.lineSeparator() to add a plat-
form-dependent line ending (\r or \n or \r\n) when writing the line to the output ile. Note that
the system line separator might be different than the one used in the original ile, so this implemen-
tation of our ile copier might not make exact copies in this case (if you do want to create an exact
copy, you can use the read() method, but this will result in the code working more slowly, as now
every character is read, returned, and copied one by one). Note also that the readLine method
returns null when the end of a stream is reached.

NOTE When not using try-with-resources blocks and closing your streams
manually, you might wonder which streams you need to close when wrapping
streams (such as is the case with buffered streams) and in which order. The
answer is simple: just close the topmost stream. The underlying ones will be
closed and tidied up as well.

data and object streams
Data streams support binary input and output of primitive data type values (boolean, char, byte,
short, int, long, loat, and double) as well as String values. They thus offer a simple generic means to
load and store primitive data values. All data streams implement either the DataInput interface or
the DataOutput interface, i.e. DataInputStream and DataOutputStream. Note that these streams
subclass InputStream and OutputStream and are thus a specialization of byte streams.

Object streams are similar to data streams, but allow the serialization of all objects that imple-
ment the Serializable marker interface. The object streams implement either the ObjectInput or
ObjectOutput interfaces (which themselves are subinterfaces of DataInput and DataOutput), i.e.
ObjectInputStream and ObjectOutputStream. Note that these streams subclass InputStream and
OutputStream and are thus a specialization of byte streams.

The following Try It Out shows you how to work with data and object streams.

try it out Working with Data and Object Streams

In this Try It Out, you create a small class to illustrate the workings of an ObjectOutputStream. Note
that an ObjectOutputStream can write primitive data types as well (as a DataOutputStream using the
same method names), but can also serialize objects.

http:///

Streams ❘ 279

 1. Create a class called ObjectOutputStreamTest with the following contents:

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.List;

public class ObjectOutputStreamTest {
 public static void main(String[] args) {
 int number1 = 5;
 double number2 = 10.3;
 String string = "a string";
 List<String> list = new ArrayList<>();
 list.add("a");
 list.add("b");

 try (
 ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("saved.txt"));
) {
 out.writeInt(number1);
 out.writeDouble(number2);
 out.writeBytes(string);
 out.writeObject(list);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

 2. Execute the program and refresh your Eclipse project. A ile called saved.txt should appear with
contents similar to these:

 @$™™™™™ša string¬í sr FileCopier$1ÍÉJ;¹–
\--
xr java.util.ArrayListxÒ&traed;Ça•---------------------------------
I --
sizexpw---
t at bx¬í w @$™™™™™ša stringsr FileCopier$1ÍÉJ;¹
\--
xr java.util.ArrayListxÒ™Ça-------------------------------------- I

sizexpw---
t at bx

How It Works

Here’s how it works:

 1. The ObjectOutputStream class is created as a wrapper around a normal FileOutputStream.

 2. Next, ObjectOutputStream exposes a number of methods, i.e. writeInt, writeDouble, and so
on, to write data to the stream.

http:///

280 ❘ Chapter 8 hAndlInG InPut And outPut

 3. Although you save the data to a ile named saved.txt, the reality is that you are creating a binary
ile and not a text ile, which explains why the text looks all garbled when you try to open it with
a text editor. You are looking at raw binary data representing primitive values and objects, stored
according to a format deined by the JVM.

 4. Things to try: change ObjectOutputStream to DataOutputStream. Which variables can be writ-
ten? Which cannot? Try expanding this class to use ObjectInputStream to read the saved data
back in again. Take care to read the data in the correct order as saved in the ile.

A common use case for using data and object streams is to implement input and output (communi-
cation) between different running programs, for example to send objects or data from one process
to another. This concept is called inter-process communication (IPC). While discussing the details of
IPC is too advanced for a beginner’s book on programming, it is worth knowing that this exists and
can in fact be implemented in various ways:

 ➤ Using a ile: One program writes information to a ile, which is then read out by another pro-
gram. This method is crude, but works and is relatively simple to implement. After reading
through this chapter, you’ll know how to read and write from iles, and the Data and Object
streams mentioned above can be utilized here to read from and write to these iles.

 ➤ Sending a signal: This works only if signaling capabilities are provided by the underlying
operating system. Oftentimes it’s used to send commands instead of larger data.

 ➤ A network socket: A data stream sent over a network interface. Note that this allows the com-
municating programs to also reside on different machines. Chapter 10 provides a basic intro-
duction regarding building web services using Java, which can also be used to enable IPC.

 ➤ A pipe: This is a data stream that allows two-way character-by-character communication,
supported and provided by most operating systems.

 ➤ A message queue: Also provided by the operating system. Similar to a pipe, but messages are
sent in packets rather than streamed character by character.

 ➤ Shared memory: Two programs are given access to the same part of memory.

a Word about serialization

We have stated that objects can be saved and read using ObjectOutputStream
and ObjectInputStream as long as they implement the Serializable marker
interface. We call this a “marker” interface, as the interface does not actually
specify any methods that must be implemented by the class that is to be serialized.
Any object can be serialized, as long as it implements this marker interface and all
its ields can be serialized, meaning that the ields that should be primitive types are
other objects that can be serialized (implementing the Serializable interface).

Note that it is possible to speciiy ields that should not be serialized using the
transient keyword, for instance:

http:///

Scanners ❘ 281

other streams
Finally, a multitude of various other streams exist. Consider for instance AudioInputStream, which
reads in audio-based data (sample frames). Or ZipOutputStream, which implements an output
stream for writing ZIP (compressed) iles. The latter is a subclass of the FilterOutputStream,
which acts as a superclass of other transforming output stream classes as well.

Most of these other streams subclass InputStream and OutputStream, i.e. byte streams, which you
have seen before. Browse through the Java API docs in order to get an overview of all the stream
types included in the standard Java API.

scanners

Earlier, you saw how you can perform advanced output formatting using the format method of the
PrintWriter and PrintStream stream classes. This might have left you wondering: what about
input? If a text ile is formatted in a known manner, how can you easily read out all the data?

In fact, you’ve already seen a few ways to tackle this problem. If you don’t mind your input data
being binary, you can use data or object streams to read in the various data types correctly. If your
data is given as text, you have seen how the BufferedReader class can help read the data line by
line. But what if a line of text contains different fragments you want to parse out?

Luckily, Java provides a simple means to break down input into various fragments—or tokens, as
they are called—and translate them according to their data type. The class that helps you do this is
the Scanner, found under java.util.Scanner. The following Try It Out shows how it works.

try it out Scanning a Grocery List with prices

In this Try It Out, you use the Scanner class to read in text fragments and translate them according to
their data type.

 1. You will continue working in the same project as before. Create a new text ile next to groceries.
txt called grocerieswithprices.txt with the following content:

apples, 5.33

bananas, 4.61

private transitent String secretCreditCardNumber;

The reason why you might want to make ields transient is because they are stored
in an unencrypted format when they're serialized.

Finally, note that you can override two hidden methods: private void readObject
(ObjectInputStream s) and private void writeObject(ObjectOutputStream
s) in order to deine a custom (de)serialization scheme. In most cases, the default
serialization scheme works just ine, though.

http:///

282 ❘ Chapter 8 hAndlInG InPut And outPut

water, 1.00

orange juice, 2.50

milk, 3.20

bread, 1.11

 2. Create a new class called ShowGroceries. First of all, you will take a look at how you would read
out the grocery list and show it without using a Scanner:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class ShowGroceries {
 public static void main(String[] args) {
 try (
 BufferedReader in = new BufferedReader(new FileReader(
 "grocerieswithprices.txt"));
) {
 String line;
 while ((line = in.readLine()) != null) {
 String[] splittedLine = line.split(", ");
 String item = splittedLine[0].trim();
 double price = Double.parseDouble(splittedLine[1].trim());
 System.out.format("Price of %s is: %.2f%n", item, price);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
}

 3. This approach works ine for simple cases, but depending on the nature and structure of your input
text, you might want to resort to a Scanner instead, as follows:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.Locale;
import java.util.Scanner;
import java.util.regex.Pattern;

public class ShowGroceries {
 public static void main(String[] args) {
 try (
 Scanner sc = new Scanner(
 new FileReader("grocerieswithprices.txt"));
) {
 sc.useDelimiter(Pattern.compile("(,)|(\r\n)"));
 sc.useLocale(Locale.ENGLISH);
 while (sc.hasNext()) {
 String item = sc.next();

http:///

Input and Output from the Command-Line ❘ 283

 double price = sc.nextDouble();
 System.out.format("Price of %s is: %.2f%n", item, price);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
}

How It Works

Here’s how it works:

 1. The Scanner class wraps around a BufferedReader in this example, but can also be directly
applied to a string if so desired.

 2. Next, we set the delimiter pattern of the Scanner. A delimiter is a piece of string by which we want
to split up text fragments. By default, the delimiter of a Scanner equals all white-space characters
(newline, a space, a tab), but in our case, we change it to match either a comma followed by a
space (“, “) or a newline (\r\n).

 3. We also set the Locale of the Scanner to English to make sure the decimal prices are read in and
interpreted correctly. Locale is a Java provided class to represent geographical regions. Instead of
instantiating a new object, the class provides a series of static members (themselves Locale objects)
that can be accessed and used directly, such as Locale.ENGLISH or Locale.KOREA. Your computer
might already use English as a default locale, in which case this line can also be removed.

 4. Next, a while loop is iterated over so long as the Scanner is able to feed text fragments. If this is
the case, we know we can immediately read in two pieces of fragments at once—the item and the
price—using the nextDouble method.

 5. Note that we use the Pattern class here to supply a regular expression, a relatively advanced format
that speciies text patterns. Normally, you could also supply the delimiter as a single string, in which
case you might be tempted to try “, “, but this will not work, as the Scanner will then continue to
read text even after the end of a line is encountered, which we do not want in this case. Therefore,
as a general recommendation, it is best to either stick to newline delimiters only, or use a delimiter
that can be easily expressed as a single string, for instance “, “ and put all the data on the same line.

input and output from the command-line

You’ve seen how to use streams to perform input and output operations, e.g., to read and write data
to iles. In the following section, we’ll explore ile I/O a bit deeper, but we irst take a slight detour
in order to show off input and output with the command-line.

Although most programs you run on your computer nowadays offer some sort of Graphical User
Interface (GUI), this has not always been the case. In the old days of computing, programs often-
times only offered text-like communication possibilities, showing their output and taking input from
a so-called “console,” or command-line. Even in modern operating systems, this command-line

http:///

284 ❘ Chapter 8 hAndlInG InPut And outPut

interface is still present under the hood. In Windows, for instance, you can try iring up the cmd.exe
program to get the command prompt shown in Figure 8-4.

figure 8-4

When you execute Java programs in Eclipse, they will also show their output and take their input
from a command-line interface, unless you program in some kind of GUI features. We refer here to
the Eclipse console. Refer back to Chapter 3 if you want to know how you can run Java programs
from the common Windows command-line.

In every console application, three mechanisms exist to communicate with the user. In Java, these
are implemented as the “standard streams,” corresponding to the following:

 ➤ System.in: A byte InputStream to take user input (you might have expected this to be a
character stream, but for historical reasons, this is not the case)

 ➤ System.err: A PrintStream to output error messages

 ➤ System.out: A PrintStream to output normal messages

You can use these streams just as you would use normal Java streams, with the difference, however,
that you don’t need to open or close them. The following Try It Out shows how it works.

trY it out Input and Output from the Command-Line

This Try It Out illustrates the basic use of System.in, System.err, and System.out by means of a
simple greeter application.

 1. Create a single class named ReadName with the following content:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class ReadName {
 public static void main(String[] args) {
 try(
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(System.in));
) {
 System.out.println("What is your name, user?");
 String name = reader.readLine();

http:///

Input and Output from the Command-Line ❘ 285

 if (name.trim().equals(""))
 throw new IllegalArgumentException();
 System.out.println("Welcome, " + name);
 } catch (IllegalArgumentException e) {
 System.err.println("Error: name cannot be blank!");
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
}

 2. Execute the class and watch what happens in Eclipse’s console. Try to enter your name. What hap-
pens when you enter a blank name?

How It Works

Here’s how it works:

 1. System.in, System.out, and System.err all act as normal streams as you’ve seen before. Note,
however, the use of the InputStreamReader class to make a bridge from System.in (a byte stream)
to a BufferedReader, which expects a character stream. Why do we use BufferedReader instead of
BufferedInputStream here? Because we want to use the readLine method to read in a complete line
of user input. This is one of the valid use cases for InputStreamReader. As an alternative, it is also pos-
sible to make use of a Scanner as seen above, in which case the class would look like follows:

import java.util.Scanner;

public class ReadName {
 public static void main(String[] args) {
 try(
 Scanner sc = new Scanner(System.in);
) {
 System.out.println("What is your name, user?");
 String name = sc.nextLine();
 if (name.trim().equals(""))
 throw new IllegalArgumentException();
 System.out.println("Welcome, " + name);
 } catch (IllegalArgumentException e) {
 System.err.println("Error: name cannot be blank!");
 }

 }
}

 2. Note also that we deine two catch blocks: one to catch I/O errors as we’ve done before, and one
to catch our own thrown exception in case the user enters a blank name.

The reason why both normal output and error streams are provided is not native to Java, but is due
to historical reasons and standardization of command-line I/O in modern operating systems. Both
normal output and error streams are provided to allow users to redirect output to a ile, while still
showing error messages on the command line. This concept is not native to Java, but is included for
historical reasons due to the standardization of command-line I/O in modern operating systems.

http:///

286 ❘ Chapter 8 hAndlInG InPut And outPut

An example can help to clarify this. Let’s assume that you want to make a class that accepts lines
from System.in and then shows the reversed line on System.out. When a palindrome is given,
however (a line that reads the same forward or reversed), we’ll also show a toy “warning” on
System.err. When a blank line is given, execution is stopped. The inal class looks like this:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class LineReverser {
 public static void main(String[] args) {
 try(
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(System.in));
) {
 String line = null;
 while (true) {
 line = reader.readLine();
 if (line == null ║ "".equals(line))
 break;
 String reverse = new StringBuilder(line).reverse().toString();
 System.out.println(reverse);
 if (line.equals(reverse))
 System.err.format("The string '%s' is a palindrome!%n", line);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
}

Take some time to execute this
class and familiarize yourself
with the code. Try to enter a pal-
indrome such as “amoreroma”
and see what happens.

Now, we will take this a step
further. Right-click on the
LineReverser class in Eclipse
and choose Export. Next, select
Runnable JAR File. See Figure 8-5.

In the next screen, select
LineReverser as the “launch
coniguration” (this requires
that you ran the class in Eclipse
at least once). Set the Export
Destination to linereverser.
jar on your desktop. figure 8-5

http:///

Input and Output from the Command-Line ❘ 287

figure 8-6

Once this is done, open a command-line window (start cmd.exe on Windows) and navigate to your
Desktop folder. Usually, typing cd %HOMEPATH%\Desktop does the trick, but if not, navigate to
your Desktop folder by using a combination of cd .. and cd foldername commands, as shown in
Figure 8-6.

Next, on the command-line, start your Java program using the command java -jar liner-
everser.jar. The program will start and you will be able to interact with it just as you did from
Eclipse’s console. See Figure 8-7.

figure 8-7

Note how both the standard output and standard error streams are shown on the command-line
by default. However, we can perform a neat little trick now by what is called “stream redirection.”
Let’s say we want to save our reversed lines to a text ile, but we do not want to save the error mes-
sages. In this case, we can execute the following command: java -jar linereverser.jar > out-
put.txt. See Figure 8-8.

figure 8-8

http:///

288 ❘ Chapter 8 hAndlInG InPut And outPut

Note how the error messages are still shown on the console, whereas standard output is now saved
in the output.txt text ile (verify this by opening the ile). Is there a way to redirect error messages
as well? Indeed there is, by using 2>: java -jar linereverser.jar > output.txt 2> error.
txt. Note that > (standard output redirection) can then also be written as 1>. If you want to append
to the end of a ile instead of creating a new one, you can use >> (two arrows) instead of >. Try this
out if you like.

Let us now take this a step further. Create a text ile called input.txt on your Desktop containing
the following:

apple

amoreroma

test

aabbaa

No doubt you can see where this is going; we would like to use the contents of this ile as input
instead of typing the lines ourselves. Again, this is easy, using the < redirection operator, like so:
java -jar linereverser.jar < input.txt. See Figure 8-9.

figure 8-9

Indeed, you can also combine these operators to construct something like this: java -jar liner-
everser.jar < input.txt > output.txt 2> errors.txt.

So far, you’ve been taking input and sending output from and to iles, but it is also possible to redi-
rect the standard streams from one program to another program. To illustrate this, we will use a
standard Windows command-line program called type. This program just shows the contents of a
ile on the standard output. Try it out by typing type input.txt. See Figure 8-10.

figure 8-10

http:///

Input and Output from the Command-Line ❘ 289

Now, how can you send the standard output of the type program to the program? Using > will
not work here, as you’re not sending the output to a ile. Instead, you can use the | operator, called
the pipe, as it pipes the output from one program to another, i.e.: type input.txt | java -jar
linereverser.jar. See Figure 8-11.

figure 8-11

Piping and output redirection are two very powerful features of command-line programs. They
allow for writing simple, one-task-only programs that can then be combined and chained together in
a manner that’s more lexible than what most GUI applications can offer. This aspect forms one of
the key reasons why command-line programs remain useful and used in server environments.

Before we end this section, let us return to Eclipse and Java to highlight a more advanced alternative
of the standard streams, named the Console. This is a class that lives under java.io.Console and
can be accessed through System.console(). This object provides all features the standard streams
have, as well as some other features, such as secure input mechanisms (such as for password entry).
The Console also provides input and output streams that are character streams. A downside of this
technique however is that the Console is not available in all operating systems or environments, so
the recommended approach remains to use the standard streams, unless you really need a feature
Console provides. The following Try It Out shows how to read passwords in a secure manner using
the Console.

trY it out advanced Command-Line Interaction Using the Console

In this Try It Out, we will use System.console() to read in a password in a secure manner.

 1. You will create a single class named GetPassword with the following content:

import java.io.Console;
import java.io.IOException;

public class GetPassword {
 public static void main (String args[]) throws IOException {
 Console c = System.console();
 if (c == null) {
 System.err.println("Console object is not available");
 System.exit(1);
 }

 String username = c.readLine("Enter your username: ");
 char[] password = c.readPassword("Enter your password: ");

http:///

290 ❘ Chapter 8 hAndlInG InPut And outPut

 if (username.equals("admin") && new String(password).equals("swordfish")) {
 c.writer().println("Access granted");
 } else {
 c.writer().println("Oops, didn't recognize you there");
 }
 }

}

 2. Executing this program in Eclipse’s console will not work, as Eclipse does not provide a so-called
“interactive command-line.” You will need to export the class as a Runnable JAR ile like you
did before. Make sure to select GetPassword as the launch coniguration (execute the program in
Eclipse if this does not appear in the list).

 3. Once you have exported the program, you can test it using a Windows command-line. Note that
the characters you type for the password will not appear on the screen. See Figure 8-12.

figure 8-12

How It Works

This class is fairly straightforward, as most methods of System.console() are self-explanatory. The
only thing you need to keep in mind is to irst test whether you can access the console in your environ-
ment by performing a null check. Next, you use the readLine and readPassword methods to get user
input. Note that the latter does not return a string but an array of characters, which you thus convert to
a string to perform the username/password check.

We now turn our attention back to iles and continue our discussion on working with ile I/O in Java
in the following section.

inPut and outPut from files

You’ve already seen some example programs that dealt with iles in Java. The ile copying programs,
for instance, illustrated how you can use byte, character, and buffered streams to get input from and
send output to iles.

However, there’s more to ile I/O than just taking and dropping contents from and into iles. Files
can be checked for existence, deleted, moved, copied, created, can contain metadata of various sorts,
and can be organized into directories, which are also traversable in Java. The following sections
teach you how to handle all of these things.

http:///

Input and Output from Files ❘ 291

Java nio2 file input and output
Recall from the introduction that Java 7 introduced the “NIO2” API to offer a new ile system API.
Existing legacy ile I/O methods remain supported, so that many code samples, books, tutorials, and
real-life code still apply “legacy I/O” API features.

Since newer means better in this case, we will start by applying the NIO2 API toward working with
iles. The central player in NIO2 is the Path type and its little helper class Paths.

the path Interface

On your computer, iles are stored in a way so that they can be easily retrieved and accessed later.
On most ile systems, iles are stored in a hierarchical structure, meaning as a tree. The top of a tree
is called a root node (e.g., C:\) under which a hierarchy of folders can be found. Each folder can
contain other folders or iles.

This implies that all iles on your computer can be identiied by a unique path of traversal through the
tree. For example, on Windows, the “C:\projects\java book\structure outline.txt” path refers
to a text ile that lives in the folder named java book, which in turn lives in the folder projects.

NOTE On Linux, Unix, and BSD, paths use a different separator character,
namely / instead of \. When programming in Java on Windows, you can also
use / instead of \. If you want to retrieve the separator in a programmatic
manner, you can call the following method, which returns a string:

FileSystems.getDefault().getSeparator();

The example we provided illustrated a so-called “absolute” path, meaning that the path started
from the root element in the ile system hierarchy (C:\) and worked its way down from there. A
path can also be “relative.” Relative paths need to be combined with other paths to access a ile. For
example, when the current path is “C:\projects\", the relative path “java book\structure out-
line.txt” would lead you to the ile you had before. The relative path overview.txt would resolve
to “C:\projects\overview.txt” and the relative path "..\movies\vacation.avi” would resolve
to “C:\movies\vacation.avi”. Note the use of "..", which traverses one level up the directory
tree. A single dot (.) in a path refers to the current directory.

Finally, on some systems, ile systems can also support links, apart from iles and folders. A link is a
special ile that serves as a reference to another ile. Operations on these links are automatically redi-
rected to the target location of the link. You don’t need to concern yourself further regarding this
aspect, as they are very uncommon on Windows systems and you won’t use them for most purposes.

In Java, the Path type, found under the java.nio.file package, represents a path in the ile
system. Path objects contain the ilename and directory list used to build the path, and can be used
to examine and work with iles. Creating a path is done by using the get method on the Paths class,
also under java.nio.file, like so:

Path myPath = Paths.get("C:\\projects\\outline.txt");

http:///

292 ❘ Chapter 8 hAndlInG InPut And outPut

Once you have created a Path object, there are a number of methods you can execute on them to
retrieve information about the path. These methods do not require that the ile corresponding to the
path actually exist:

 ➤ String myPath.toString(): Returns the string representation of the Path object. Note
that this method will attempt to perform syntactic cleanup.

 ➤ Path myPath.getFileName(): Returns the ilename or the last element in the Path object.

 ➤ Path myPath.getName(int i): Returns the Path element corresponding to the speciied
index. Note that index 0 does not represent the root, but the element closest to the root.

 ➤ int myPath.getNameCount(): Returns the number of elements in the path.

 ➤ Path myPath.subpath(int i, int j): Returns the subsequence of the Path (not includ-
ing a root element) as speciied by beginning and ending indices.

 ➤ Path myPath.getParent(): Returns the Path of the parent directory of this path.

 ➤ Path myPath.getRoot(): Returns the root of the path.

 ➤ Path myPath.normalize(): Cleans up redundancies from a path and returns the cleaned-
up result. For example, “C:\.\projects\..\movies\vacation.avi” is converted to “C:\
movies\vacation.avi”.

 ➤ Path myPath.resolve(String partialPath): The partial path (not including a root ele-
ment) is added to the original path and the new path is returned. If you pass in an absolute
path, the absolute Path itself will be returned.

 ➤ Path myPath.relativize(Path otherPath): Constructs a new Path object originating
from the original path and ending at the location speciied by otherPath. This returns a rela-
tive Path.

In addition, methods exist to convert a path:

 ➤ URI myPath.toUri(): Converts the path to a string that can be opened by web browsers.

NOTE An important thing to note here is that Path is an interface type, whereas
Paths is a normal class (albeit a very simple one, without a public constructor).
In case you're wondering why the former is an interface, the reason for this is to
allow developers of custom ile systems to be able to implement (or extend) it.

The usage of the s sufix of Path versus Paths is also in line with other
concepts in NIO2, for instance Files (which you'll encounter later on) and
FileSystem versus FileSystems. In fact, calling the get method of Paths is a
shorthand for:

FileSystems // A static utility class containing methods to create
 FileSystem objects
 .getDefault() // Get the default file system FileSystem
 .getPath("C:\\projects\\outline.txt") // Return a Path

http:///

Input and Output from Files ❘ 293

 ➤ Path myPath.toAbsolutePath(): Converts a relative path to an absolute one.

 ➤ Path myPath.toRealPath(LinkOption... options): Returns the real path of an existing
ile. If true is passed in the options parameters, links will be resolved to their real paths (if
the ile system supports links). In addition, relative paths will be converted to absolute ones
and redundant elements will be removed.

the Files Class

Apart from the Path interface, the Files class is the other most important class contained in the
java.nio.file package. This utility class offers a set of static methods for reading, writing, and
manipulating iles and folders (do not be thrown off by the fact that the class itself is named Files
and not FilesAndFolders).

NOTE Similarly to Path with its Paths helper and FileSystem with its
FileSystems counterpart, you might expect Files to contain methods that
return File objects. However, the File class already existed before the advent
of NIO2 (you'll meet it in the legacy ile section ahead), so that all methods in
the Files class that do return an object representing an entity in a ile system
will return it as a Path object, not File.

Checking Existence

The irst and most basic operation you can execute using the Files class is performing checks on
iles and folders. Let’s say you have created a Path object representing a ile or folder. How do you
check whether this path actually exists? Two methods exist (no pun intended) to do so:

 ➤ boolean Files.exists(Path pathToCheck, LinkOption... options)

 ➤ boolean Files.notExists(Path pathToCheck, LinkOption... options)

Ignore the options parameter for now. As we’ve said, this parameter is there to specify how
links should be dealt with. A more interesting question is why two methods are provided.
Couldn’t you just use !Files.exists(path) instead of Files.notExists(path)? The reason
for this is because—when checking the existence of a path—three results can occur: the ile
exists, the ile does not exist, or your program cannot determine the existence, for instance,
when access rules block your program from reaching the path. If both exists and notExists
return false, this means the existence of the path cannot be veriied. If exists returns true, this
means you can safely continue working with this ile, as it exists and can be accessed from your
program.

There are also a number of other methods to check a ile’s status:

 ➤ boolean Files.isReadable(Path pathToCheck): Tests whether a path is readable.

 ➤ boolean Files.isWritable(Path pathToCheck): Tests whether a path is writable.

 ➤ boolean Files.isExecutable(Path pathToCheck): Tests whether a path is executable.

http:///

294 ❘ Chapter 8 hAndlInG InPut And outPut

 ➤ boolean Files.isDirectory(Path pathToCheck): Tests whether the path represents a
directory.

 ➤ boolean Files.isSameFile(Path firstPath, Path secondPath): Tests whether two
paths resolve to the same location, taking into account redundant syntax and links.

NOTE Note that the result of performing a check on a Path is atomic and
might be violated almost immediately after you continue in your code.
Meaning that a ile might be deleted, for instance, after you perform an exis-
tence check and move on with the rest of your code. This aspect can lead to
a particular kind of software bug called TOCTTOU (time of check to time of
use) and can also lead to security problems in serious cases. Therefore, never
assume too strongly that the result of your check will remain absolutely true
throughout the execution of your program, and always be ready to handle
exceptions thrown by the Files methods in a graceful manner.

Deleting Files and Folders

The next operation you can perform using the Files class is a bit more volatile, i.e. deletion. It is
possible to delete both iles and folders, but for folders, the folder needs to be empty before it can be
deleted, otherwise an exception will be thrown. The following code snippet shows how the delete
method works:

try {
 Files.delete(path);
} catch (NoSuchFileException x) {
 // File does not exist
} catch (DirectoryNotEmptyException x) {
 // The directory is not empty
} catch (IOException x) {
 // File permission problem, no access
}

Note that there is also a Files.deleteIfExists(Path pathToDelete) method. This method
works in a similar manner, but will not throw an exception when the ile does not exist. It just does
nothing in that case.

Copying and Moving Files and Folders

Next up, you look at two methods for copying and moving iles:

 ➤ Path copy(Path source, Path target, CopyOptions... options): Copies a source
ile to a target ile. The options specify how the copy is performed. By default, the copy
operation will fail if the target ile already exists (except when both are the same ile),
unless you pass REPLACE_EXISTING as an option. If the ile to copy is a directory, an empty

http:///

Input and Output from Files ❘ 295

directory is created in the target location, but the entries in the directory are not copied. You
will see later how to easily copy over a complete directory using this method.

 ➤ Path move(Path source, Path target, CopyOptions... options): Moves a source
ile to a target ile. The options specify how the move is performed. By default, the move
operation will fail if the target ile already exists (except when both are the same ile), unless
you pass REPLACE_EXISTING as an option. If the ile to copy is a directory, the move will be
successful if the directory is empty. Otherwise, the result of the move depends on the underly-
ing ile system and can throw an IOException in some cases. In that case, a copy should be
performed irst followed by a manual cleanup of the original source directory.

NOTE Note that these methods provide a more straightforward means to
copy and move iles than the stream-based ile copy programs you've seen
before. Again, one of the nice improvements of the NIO2 API.

Reading, Writing, and Creating Files

Next, let’s take a look at how to read, write, and create iles using the NIO2 API. In this chapter,
you’ve already seen how to use stream-based methods to do this, and the NIO2 API will build on
the concept of streams, while also making our lives easier with some helpful methods.

First of all, when you just want to get all bytes or lines from a ile, you can use the following
methods:

 ➤ byte[] Files.readAllBytes(Path path): Reads all the bytes from a ile to a byte array.
This method takes care of opening and closing the ile for you.

 ➤ List<String> readAllLines(Path path, Charset cs): Reads all lines from a ile to a
list of strings. This method takes care of opening and closing the ile for you. The Charset
parameter speciies which character set should be used for decoding the ile. Using Charset.
defaultCharset() or Charset.forName("UTF-8") works best in most cases.

Note, however, that these methods will read the complete contents of a ile at once, and thus will fail
to work when you are dealing with large iles. For small iles, however, this approach is straightfor-
ward and works just ine. As an example, recall the grocery-reading application we showed off in the
introduction. Note that you can completely avoid dealing with streams thanks to the Files class:

import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

public class ShowGroceries {
 public static void main(String[] args) {
 List<String> groceries = new ArrayList<>();

http:///

296 ❘ Chapter 8 hAndlInG InPut And outPut

 try {
 groceries = Files.readAllLines(
 Paths.get("groceries.txt"),
 Charset.defaultCharset());
 } catch (IOException e) {
 e.printStackTrace();
 }
 for (String item : groceries) {
 System.out.println("Don't forget to pickup: " + item);
 }
 }
}

Similarly, two methods exist to write all bytes or lines to a ile:

 ➤ Path write(Path path, byte[] bytes, OpenOption... options): Writes bytes to a
ile. By default, this method creates a new ile or overwrites an existing ile.

 ➤ Path write(Path path, Iterable<? extends CharSequence> lines, Charset cs,

OpenOption... options): Writes lines of text to a ile. By default, this method creates a
new ile or overwrites an existing ile. Don’t be confused by the signature of the lines argu-
ment. In practical cases, this will work with a List<String>, for instance. The Charset
parameter speciies which character set should be used for encoding the ile. Using Charset.
defaultCharset() or Charset.forName("UTF-8") works best in most cases.

You might be wondering what the OpenOptions parameters are for in these methods. These options
are used in various methods and will tell the NIO2 API how you want to open the ile. You can pass
in the following StandardOpenOptions values:

 ➤ WRITE: Opens a ile for write access.

 ➤ APPEND: Appends new data to the end of the ile (use together with WRITE or CREATE).

 ➤ TRUNCATE_EXISTING: Empties the ile before writing (use with WRITE).

 ➤ CREATE_NEW: Creates a new ile or throws an exception if the ile exists.

 ➤ CREATE: Opens the ile or creates it if it does not exist.

 ➤ DELETE_ON_CLOSE: Deletes the ile when the handling stream is closed.

 ➤ SPARSE, SYNC, DSYNC: A set of advanced options that we do not describe in detail here.

If you’ve been paying attention, you’ll notice that these options strongly resemble the ile operation
modes introduced in the beginning of this chapter. In most cases, there’s no need to provide any
options at all, however, as the API will assume sensible defaults when you leave them out (CREATE,
TRUNCATE_EXISTING, and WRITE for the write methods, for instance). When you do supply your
own options, take care not to supply an infeasible combination or a combination that does not
match the operation you’re trying to perform with the method you’re calling.

The methods mentioned so far are ine when you’re dealing with small iles, but when you need to
work with large iles, you cannot store the contents of the ile in memory all at the same time. We
already know how we would approach this problem using buffered character streams:

http:///

Input and Output from Files ❘ 297

Reader fr = new FileReader("groceries.txt");
BufferedReader br = new BufferedReader(fr);

However, the NIO2 API provides a cleaner way to read and write iles (note for instance that we
hardcoded the ilename in the code snippet) using the following two methods:

 ➤ BufferedReader Files.newBufferedReader(Path path, Charset cs): Returns a buffered
character stream to read a text ile in an eficient manner using the given character set to decode.

 ➤ BufferedReader Files.newBufferedReader(Path path): Same as above, but using
UTF-8 as the character set.

 ➤ BufferedWriter Files.newBufferedWriter(Path path, Charset cs, OpenOption...

options): Returns a buffered character stream to write a text ile in an eficient manner
using the given character set to encode. If no options are provided, CREATE, TRUNCATE_
EXISTING and WRITE are used.

 ➤ BufferedWriter Files.newBufferedWriter(Path path, OpenOption... options):
Same as above, but using UTF-8 as the character set.

Note how these neatly work together with the Files and Path types. Once called, you can just use the
BufferedReader and BufferedWriter streams as you’ve seen before. The following code fragment
shows an example using a try-with-resources block, which remains the recommended approach:

Path file = Paths.get("groceries.txt");
try (BufferedReader reader = Files.newBufferedReader(file)) {
 String line = null;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
} catch (IOException x) {
 System.err.println("Something went wrong");
}

Next, if you do not want to use buffered character streams but want to use byte streams instead,
you’ll need to use the newInputStream and newOutputStream methods. They work similarly to the
previous methods, but return InputStream and OutputStream object respectively, which you can
then wrap in BufferedInputStream and BufferedOutputStream objects if you want to obtain a
buffered byte stream.

NOTE You might be wondering why the character stream variant of these
methods return a buffered stream, whereas the byte stream ones return a non-
buffered one. This is mainly due to convention: in cases where you will use a
character stream, using a buffered approach almost always make sense. You
can still obtain an unbuffered character stream if you really need it by using
the InputStreamReader and OutputStreamWriter classes and wrapping them
around the InputStream and OutputStream objects you get with the newIn-
putStream and newOutputStream methods.

http:///

298 ❘ Chapter 8 hAndlInG InPut And outPut

Note that the Java NIO2 API also provides a different method to read and write iles, named
channel I/O, as an alternative to stream-based I/O. Whereas streams read one character or byte
at a time, channels can read or write buffers at a time (and thus avoid the use of a separate buffer-
ing mechanism). In addition, channels exist that allow for more ine-grained seeking within a ile
through a concept called Random Access Files, which permit non-sequential access to iles and
which allow you to map the contents of a ile directly to computer memory. We mention it here for
the sake of completeness, but in most “normal” ile I/O environments, stream-based I/O works
just ine.

Lastly, we can take a look at the methods to create iles. While you might just use one of the earlier
writing functions to open a new ile and immediately close it, it is much cleaner to use the Files.
createFile(Path path) method to create an empty ile. Note that this method will—by default—
throw a permission if a path exists, contrary to the writing methods shown previously, which will
overwrite a ile if it exists. It is thus a good idea to use this method as an extra fail-safe in cases
where this matters. You can also use another method—Files.createTempFile(Path folder,

String prefix, String suffix—to create temporary iles in the speciied folder, using a given
preix, sufix, and a randomized body as a name. Note that you can leave the folder argument out,
in which case the standard temporary-ile directory provided by your operating system will be used.
These methods are helpful to create quick “throwaway” iles.

Reading and Creating Folders

Some path operation methods, such as deletion or copying, can work on iles and folders. But direc-
tories also require an additional set of methods. For example, how would you list all the contents of
a folder?

First of all, though, let’s quickly take a look at creating folders. This can be done using the Files.
createDirectory(Path path) method or the createTempDirectory(Path folder, String
prefix) method in case you want to create a temporary folder (again, the folder argument can
be left out).

You list all the contents of a folder using the Files.newDirectoryStream(Path folder) method.
Note that this method returns an object that implements the DirectoryStream and Iterable
interfaces, so you can loop over this object to read all of the entries. However, since this object
is a stream, don’t forget to close it in your finally block (or use a try-with-resources block as
we’ve been recommending so far). The following example class shows how to list the contents of a
directory:

import java.io.IOException;
import java.nio.file.DirectoryIteratorException;
import java.nio.file.DirectoryStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class ShowDirectory {
 public static void main(String[] args) {
 Path folder = Paths.get("C:\\");
 try (DirectoryStream<Path> stream = Files.newDirectoryStream(folder)) {

http:///

Input and Output from Files ❘ 299

 for (Path entry: stream) {
 System.out.println(entry.getFileName());
 }
 } catch (IOException | DirectoryIteratorException x) {
 System.err.println("An error occurred");
 }
 }
}

Example output:

$Recycle.Bin
BOOTNXT
Documents and Settings
eclipse
hiberfil.sys
MSOCache
pagefile.sys
PerfLogs
Program Files
Program Files (x86)
ProgramData
swapfile.sys
System Volume Information
temp
Users
Windows

Note that this approach returns all the contents of a directory: iles, subdirectories, hidden iles,
and links. If you only need a subset, you can just add checks to the for loop using methods
you’ve seen before. Another way to ilter a directory listing is by using a concept called glob-

bing, using the Files.newDirectoryStream(Path folder, String glob) method. A glob
is a special kind of syntax to specify pattern-matching behavior. An asterisk (*), for instance,
matches any number of characters; a question mark (?) matches exactly one character. Braces
({one,two}) specify a collection of subpatterns, whereas square patterns ([qwerty]) convey a set
or range ([0-9]) of characters. The following method call, for example, only returns DOC, PDF,
and TXT iles:

Files.newDirectoryStream(dir, "*.{txt,doc,pdf}"));

If you only want to retrieve directories, you’ll need to write your own ilter. To do so, you can
create a class implementing the DirectoryStream.Filter<T> interface (and implementing
the accept method) and use this to invoke the Files.newDirectoryStream(Path folder,
DirectoryStream.Filter filter) method. Just using an if (Files.isDirectory(entry))
continue; line might be easier in this case, however.

Recursing Folders

The last operation we’ll take a closer look at involves recursing over the folder tree. When discussing
how to copy, move, or delete paths, we’ve stated that copying folders just creates an empty folder,

http:///

300 ❘ Chapter 8 hAndlInG InPut And outPut

moving folders can fail in some cases, and deleting folders only works when the folder is empty. In
addition, you might be interested in writing a method that looks for a ile or directory in a directory
as well as subdirectories.

For all these tasks, interfaces have been deined by the NIO2 API to do this. The reality, however, is
that implementing all interfaces and setting up everything can be a bit daunting for newcomers. For
instance, to walk over a directory tree, you’ll need to implement FileVisitor<Path> with the pre-
VisitDirectory, visitFile, postVisitDirectory, and visitFileFailed methods. Look up the
Java API docs if you’re interested to learn more.

Instead, the following Try It Out will present a set of alternative recursive methods you can use to
copy, move, delete, and search through directories, which you can use as a starting point in your
own code as well.

try it out Using recursive Operations

In this Try It Out, you implement a set of methods to search, delete, copy, and move complete directo-
ries at once.

 1. In Eclipse, create a class called RecursiveOperations.

 2. First, add a method to delete iles:

 public static void delete(Path source) throws IOException {
 if (Files.isDirectory(source)) {
 for (Path file : getFiles(source))
 delete(file);
 }
 Files.delete(source);
 System.out.println("DELETED "+source.toString());
 }

 3. Next, you need to provide the getFiles method. This helper method returns all iles and subdi-
rectories in a given folder. However, since deletion will only work on empty folders, you want this
method to irst return all directories, followed by all iles to ensure that the delete method irst
goes through all directories as far as possible:

 public static List<Path> getFiles(Path dir) {
 // Gets all files, but puts directories first
 List<Path> files = new ArrayList<>();
 if (!Files.isDirectory(dir))
 return files;
 try (DirectoryStream<Path> stream = Files.newDirectoryStream(dir)) {
 for (Path entry : stream)
 if (Files.isDirectory(entry))
 files.add(entry);
 } catch (IOException | DirectoryIteratorException x) {
 }
 try (DirectoryStream<Path> stream = Files.newDirectoryStream(dir)) {
 for (Path entry : stream)
 if (!Files.isDirectory(entry))

http:///

Input and Output from Files ❘ 301

 files.add(entry);
 } catch (IOException | DirectoryIteratorException x) {
 }
 return files;
 }

 4. Next up, you can deine a copy method in a similar fashion:

 public static void copy(Path source, Path target) throws IOException {
 if (Files.exists(target) && Files.isSameFile(source, target))
 return;
 if (Files.isDirectory(source)) {
 Files.createDirectory(target);
 System.out.println("CREATED "+target.toString());
 for (Path file : getFiles(source))
 copy(file, target.resolve(file.getFileName()));
 } else {
 Files.copy(source, target);
 System.out.println(
 "COPIED "+source.toString()+" -> "+target.toString());
 }
 }

 5. The move method just reuses the copy and delete methods:

 public static void move(Path source, Path target) throws IOException {
 if (Files.exists(target) && Files.isSameFile(source, target))
 return;
 copy(source, target);
 delete(source);
 }

 6. The search method is added as follows, and uses a PathMatcher object to match a ilename to a
provided glob:

 public static Set<Path> search(Path start, String glob,
 boolean includeDirectories, boolean includeFiles) {

 PathMatcher matcher = FileSystems.getDefault().getPathMatcher
 ("glob:" + glob);
 Set<Path> results = new HashSet<>();
 search(start, matcher, includeDirectories, includeFiles, results);
 return results;
 }

 private static void search(Path path, PathMatcher matcher,
 boolean includeDirectories, boolean includeFiles, Set<Path> results) {

 if (matcher.matches(path.getFileName())
 && ((includeDirectories && Files.isDirectory(path))
 ║ (includeFiles && !Files.isDirectory(path)))) {
 results.add(path);

http:///

302 ❘ Chapter 8 hAndlInG InPut And outPut

 }

 for (Path next : getFiles(path))
 search(next, matcher, includeDirectories, includeFiles, results);
 }

 7. Finally, you can add a main class to test these methods:

 public static void main(String args[]) throws IOException {
 // WARNING: TAKE CARE WHEN TESTING THESE FUNCTIONS ON
 // EXISTING FOLDERS ON YOUR SYSTEM

 // Set up test directory
 try {
 delete(Paths.get("C:\\javatest\\"));
 delete(Paths.get("C:\\javatest2\\"));
 } catch(NoSuchFileException e) {}
 Files.createDirectory(Paths.get("C:\\javatest\\"));
 Files.createDirectory(Paths.get("C:\\javatest\\subdir\\"));
 Files.createFile(Paths.get("C:\\javatest\\text1.txt"));
 Files.createFile(Paths.get("C:\\javatest\\text2.txt"));
 Files.createFile(Paths.get("C:\\javatest\\other.txt"));
 Files.createFile(Paths.get("C:\\javatest\\subdir\\text3.txt"));
 Files.createFile(Paths.get("C:\\javatest\\subdir\\other.txt"));

 // Test our methods
 copy(Paths.get("C:\\javatest\\subdir\\"),
 Paths.get("C:\\javatest\\subdircopy\\"));
 System.out.println(search(Paths.get("C:\\javatest"),
 "text*.txt", true, true));
 move(Paths.get("C:\\javatest\\subdircopy\\"),
 Paths.get("C:\\javatest\\subdircopy2\\"));
 System.out.println(search(Paths.get("C:\\javatest\\"),
 "text*.txt", true, true));
 copy(Paths.get("C:\\javatest\\"), Paths.get("C:\\javatest2\\"));

 }

 8. Executing this code yields the following output:

CREATED C:\javatest\subdircopy
COPIED C:\javatest\subdir\other.txt -> C:\javatest\subdircopy\other.txt
COPIED C:\javatest\subdir\text3.txt -> C:\javatest\subdircopy\text3.txt
[C:\javatest\subdir\text3.txt, C:\javatest\text2.txt,
 C:\javatest\subdircopy\text3.txt, C:\javatest\text1.txt]
CREATED C:\javatest\subdircopy2
COPIED C:\javatest\subdircopy\other.txt -> C:\javatest\subdircopy2\other.txt
COPIED C:\javatest\subdircopy\text3.txt -> C:\javatest\subdircopy2\text3.txt
DELETED C:\javatest\subdircopy\other.txt
DELETED C:\javatest\subdircopy\text3.txt
DELETED C:\javatest\subdircopy
[C:\javatest\subdir\text3.txt, C:\javatest\subdircopy2\text3.txt,
 C:\javatest\text2.txt, C:\javatest\text1.txt]

http:///

Input and Output from Files ❘ 303

CREATED C:\javatest2
CREATED C:\javatest2\subdir
COPIED C:\javatest\subdir\other.txt -> C:\javatest2\subdir\other.txt
COPIED C:\javatest\subdir\text3.txt -> C:\javatest2\subdir\text3.txt
CREATED C:\javatest2\subdircopy2
COPIED C:\javatest\subdircopy2\other.txt -> C:\javatest2\subdircopy2\other.txt
COPIED C:\javatest\subdircopy2\text3.txt -> C:\javatest2\subdircopy2\text3.txt
COPIED C:\javatest\other.txt -> C:\javatest2\other.txt
COPIED C:\javatest\text1.txt -> C:\javatest2\text1.txt
COPIED C:\javatest\text2.txt -> C:\javatest2\text2.txt

How It Works

Here’s how it works:

 1. Although the class is relatively large, most of the operations we’ve included follow the same general
reasoning: loop over subdirectories until you cannot go any further, then perform operations on
the included iles.

 2. Two important notes to keep in mind are that the getFiles method irst returns a list of direc-
tories, followed by normal iles, so that deletion can irst clean up the deepest directory before
working its way up. Another interesting aspect is how we use the PathMatcher class to match a
ilename to a glob. The following code snippet can come in handy in other scenarios as well:

Path path = ...;
PathMatcher matcher = FileSystems.getDefault().getPathMatcher("glob:" + glob);
if (matcher.matches(path.getFileName())
 // do something

 3. The “glob:" preix in the getPathMatcher method should be provided by convention to indicate
your pattern is a glob type.

 4. We’ve added a check to prevent copying and moving a source to the same target. What would hap-
pen if you tried to move a directory under one of its subdirectories? Can you imagine ways to pre-
vent this (or deal with this case)?

 5. If you’re interested in knowing how to copy directories using the visitor pattern offered by the
NIO2 API, you can take a look at this example online: http://docs.oracle.com/javase/
tutorial/essential/io/examples/Copy.java.

Other Methods

Finally, there are a number of additional methods in the Files class that can come in handy. First,
metadata methods such as Files.size(Path p)(returns the size of the ile in bytes), Files.
getOwner(Path p, LinkOption... options), and Files.getLastModifiedTime(Path p,
LinkOption... options) can be used to retrieve (and set) metadata. Secondly, functionality exists
to watch a ile for changes. Look up NIO’s WatchService if you ever need this feature. Lastly, we
briely touched on the concept of link. The NIO2 API also provides functionality to create and
modify such links in the ile system, but we skipped an in-depth discussion and refer interested inter-
mediate readers to other sources, such as the Java API docs.

http://docs.oracle.com/javase/tutorial/essential/io/examples/Copy.java
http://docs.oracle.com/javase/tutorial/essential/io/examples/Copy.java
http:///

304 ❘ Chapter 8 hAndlInG InPut And outPut

legacy file input and output
Prior to the Java 7 release, the java.io.File class was the default mechanism used for ile I/O. This
class is still present for reasons of backward-compatibility, but has several drawbacks:

 ➤ Some methods don’t throw exceptions when an error occurs, or do not provide enough infor-
mation to know the root cause behind a failure.

 ➤ Well-deined support for links is lacking.

 ➤ Accessing ile metadata can be dificult and slow.

 ➤ Fetching information over a network introduces scalability issues.

 ➤ Some methods do not work consistently on various operating systems and platforms.

That being said, a great deal of real-life code still uses the legacy ile input and output, so we discuss
it here in brief. Creating a ile object is simple:

File myFile = new File("groceries.txt");

Whenever you can, a good way to deal with methods returning legacy File objects is to imme-
diately convert them to a Path using the myFile.toPath() method. Similarly, the Path interface
deines a toFile() method you can use to get a legacy File object from a Path object.

Operations you wish to execute on a File object (such as checking for existence) are not done
through a helper class like Files did on Path objects, but directly on the File object itself, for
example by calling one of its methods. The following list shows the corresponding File methods for
most of the Files equivalents we’ve discussed:

 ➤ Path.getFileName(...) was File.getName()

 ➤ Files.isDirectory(...) was File.isDirectory(...)

 ➤ Files.isRegularFile(...) was File.isFile(...)

 ➤ Files.size(...) was File.length(...)

 ➤ Files.move(...) was File.renameTo(...)

 ➤ Files.delete(...) was File.delete(...)

 ➤ Files.createFile(...) was File.createNewFile(...)

 ➤ Files.createTempFile(...) was File.createTempFile(...)

 ➤ File.deleteOnExit(...) is now handled by passing DELETE_ON_CLOSE as an option to
Files.createFile(...)

 ➤ Files.exists(...) and Files.notExists(...) was File.exists(...)

 ➤ Path.newDirectoryStream(...) was File.list(...) and File.listFiles(...)

 ➤ Path.createDirectory(...) was File.mkdir(...)

http:///

Conclusion ❘ 305

As an example, the following code fragment shows how to loop over the contents of a directory
using the legacy API:

import java.io.File;

public class ShowDirectory {
 public static void main(String[] args) {
 File folder = new File("C:\\");
 for (File entry : folder.listFiles()) {
 System.out.println(entry.getName());
 }
 }
}

This particular example might appear simple compared to the corresponding NIO2 implementation
(fewer imports are used), but keep in mind the other advantages of NIO2 (reading and writing, for
instance). The NIO2 approach remains the recommended one.

a Word on FileUtils

Java’s ile input/output classes—and the legacy ones in particular—miss some widely used features
that are both somewhat annoying and time consuming to implement yourself, or require a great
amount of exception juggling to implement gracefully. You’ve already seen an example of this in the
form of the implementation of copy, move, and delete operations for whole directories.

When you’re looking for an implementation to properly copy, clean, and move directories or per-
form many other common ile operations, the FileUtils utility class by the Apache Commons
project is worth looking at. In fact, many programmers consider this class so helpful and so essential
that they will include it as a library in any new Java project they set up. Take a look at the follow-
ing website if you’re interested in knowing more or want to download and use the library (add it to
Eclipse’s build path in order to use it): http://commons.apache.org/proper/commons-io/.

One downside of the FileUtils library, however, is that it is built with Java 6 compatibility in
mind, meaning that the legacy File class is used in its method arguments, without Path and Files
being present. If you use the FileUtils library, consider using the previously discussed Path.
toFile() method to keep the rest of your code base NIO-ready.

conclusion

This concludes this chapter on basic input/output with Java and ile input/output. You’ve seen what
is meant by stream-based input/output, learned how to interact with users over the command-line,
and learned how to write and read content to and from iles, using both the NIO2 and legacy API.
As always, don’t be afraid to peruse the Java docs or explore the methods offered by Path and Files
and other classes using Eclipse’s autosuggest functionality. It is a great way to experiment and learn.

This chapter was largely about saving and reading data to and from iles. The next chapter intro-
duces databases, a more advanced and powerful method to store and retrieve information.

http://commons.apache.org/proper/commons-io/
http:///

http:///

9
Working with Databases in Java

What you Will learn in this chapter:

 ➤ Basic concepts of relational databases

 ➤ Key problems when working with relational databases in Java

 ➤ How to use JDBC and SQLJ

 ➤ How to use an object relational mapper like Hibernate

 ➤ How to use object-oriented databases

 ➤ Key advantages and disadvantages of different approaches

Wrox.com code doWnloads for this chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 9
download and individually named according to the names throughout the chapter.

Many Java applications need to either retrieve, update, delete, or store data. In Chapter 8, you
discovered how iles can be used for this purpose. For small applications, it is deinitely possi-

ble to use iles for data storage. However, for larger-scale applications, the ile-based approach

to data storage and management creates several problems. First, since every Java program

needs to explicitly deine the structure of the ile, a strong dependency is created between iles

and Java programs. In other words, the Java program is strongly tied to the physical represen-

tation of the ile. This creates substantial maintenance issues when the iles are being accessed

by multiple Java programs simultaneously. For example, when the physical storage structure of

a ile is changed, such as distributing its content over a network, all Java classes working with

the ile would need to be updated. Likewise, when changing its internal content and/or repre-

sentation, such as by adding, deleting, or changing data elements, changes need to be made to

all the Java programs that access it. Moreover, in a multi-application distributed environment,

many iles will contain duplicate data, which obviously not only implies a waste of storage

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

308 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

space, but also increases the risk of inconsistent data manipulation, in case the data is updated in
one ile but not in other iles. Finally, from an application integration perspective, the ile-based

approach to data management comes with high dificulty and thus substantial cost.

To store and manage data in a more structured way, databases have been introduced. A database

represents a subset of a particular real-world problem and has an intrinsic meaning to a speciic

group of users. It is being managed by a database management system (DBMS). This is a collection

of programs that facilitates the process of deining, constructing, and manipulating databases for

various applications. Throughout the past decades, many different types of DBMSs have been intro-

duced in the industry: hierarchical DBMSs, Codasyl DBMSs, relational DBMSs, object-oriented

DBMSs, object relational DBMSs, and so on. Undoubtedly, the most popular DBMS technology in

use nowadays is the relational DBMS (RDBMS). Various software implementations of RDBMSs

have been provided by leading irms such as Microsoft, Oracle, and IBM. A key characteristic of

an RDBMS is that it stores both data and data deinitions in a comprehensive and transparent way.

This is illustrated in Figure 9-1.

DBMS

Data Catalog

Java Program

Database

figure 9-1

In this chapter, you learn how to access RDBMSs from within Java. First, there is an introduction

or refresher covering the basic concepts of relational database technology. Next, Java Database

Connectivity (JDBC) as a popular application programming interface (API) for accessing tabu-

lar data is discussed. Following that, SQLJ, structured query language combined with Java, and

Hibernate, a popular object relational mapping framework capable of mapping Java objects to rela-

tional databases in a transparent way, are both introduced. Java-friendly object-oriented database

management systems (OODBMS) are presented as an alternative to relational databases. Then you

will ind a brief comparison of these technologies and their place in the business world.

covering the Basics of relational dataBases

A fundamental building block of a relational database is a relational scheme that’s a gathering of

various database tables and related constructs (queries, views, and indexes) describing real-life con-

cepts. It is typically developed during database design and is not expected to change too frequently.

Every relational scheme has one or more relational tables that store information about a particular

http:///

Covering the Basics of relational Databases ❘ 309

item of interest. Table 9-1 shows an example relational table that stores information about
employees.

table 9-1: Employee Relational Table

emPloYeeid name gender dnr

1 Bart Baesens Male 1

2 Aimée Backiel Female 1

3 Seppe vanden

Broucke

Male 1

4 Michael Jackson Male 2

5 Sarah Adams Female 3

The table has four columns, also called attribute types, which specify the employee characteristics
that should be stored. The irst attribute type, EmployeeID, is called the primary key and is unique

for each employee. The table has ive rows, which are also called tuples. Conceptually, a relational

database table corresponds to a mathematical set, which implies that every row is unique and there

are no duplicate rows. Every row consists of a series of values, whereby every value comes from a

speciic type (integer, text, date, and so on) or can also be NULL, which means that the value is

unknown or not applicable. The last column, DNR, is a foreign key that refers to the department

number in the table Department, which is deined as shown in Table 9-2.

taBle 9-2: Department Relational Table

dnr dname daddress

1 ICT Brussels

2 Marketing New York

3 Finance Singapore

4 Accounting Sydney

Note that by using foreign keys, relationships can be established between various tables. As such,

it can be easily seen that in the example, employees Bart Baesens, Aimée Backiel, and Seppe

vanden Broucke work in ICT, whereas Michael Jackson works in Marketing and Sarah Adams

in Finance.

RDBMSs use structured query language (SQL) as the underlying language to both deine and

manipulate the database concepts. In fact, SQL has a subset of instructions to deine data structures,

called data deinition language (DDL), as well as to manipulate data, called data manipulation

language (DML). SQL is a declarative language. Hence, as discussed in Chapter 1, you need only

to specify which data to retrieve, in contrast to procedural languages, where you have to explicitly

declare how to retrieve the data.

http:///

310 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

The SQL DDL needed to deine Tables 9-1 and 9-2 is illustrated in the following code:

CREATE TABLE 'EmployeeSchema'.'Employee' (
 'EmployeeID' INT NOT NULL,
 'Name' VARCHAR(45) NULL,
 'Gender' VARCHAR(45) NULL,
 'DNR' INT NULL,
 PRIMARY KEY ('EmployeeID'),
 INDEX 'DNRForeign_idx' ('DNR' ASC),
 CONSTRAINT 'DNRForeign'
 FOREIGN KEY ('DNR')
 REFERENCES 'EmployeeSchema'.'Department' ('DNR')
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)

CREATE TABLE 'EmployeeSchema'.'Department' (
 'DNR' INT NOT NULL
 'DName' VARCHAR(45) NULL,
 'DAddress' VARCHAR(45) NULL,
 PRIMARY KEY ('DNR'))

The SQL DML instructions allow you to query, insert, update, and delete the data. Some examples

are presented in Table 9-3.

table 9-3: Examples of SQL Queries

sQl QuerY meaning

select * from employeeschema.employee; Select all information from the Employee table.

select name from employeeschema.employee

where dnr=1;

Select the name of all employees working in

department number 1.

select count(*) from employeeschema.
department;

Select the number of departments from the

Department table.

select e.name, d.dname from
employeeschema.employee e, employeeschema.
department d where e.dnr=d.dnr;

Select the names of all employees together

with the names of the departments they work

in.

insert into employeeschema.employee values (6,
“david Peeters”, “male”,2);

Add a new employee to the Employee table.

update employeeschema.employee set dnr=3
where name=”david Peeters”;

Change the department of an employee.

delete from employeeschema.employee where
name=”david Peeters”;

Delete an employee from the Employee table.

In the remainder of this chapter, MySQL is used to demonstrate relational database access

from within Java. MySQL is a popular open-source RDBMS currently maintained by Oracle

(www.mysql.com). It has been very popular in web applications and is also part of the LAMP

(Linux, Apache, MySQL, and Perl/PHP/Python) open-source software stack.

www.mysql.com
http://www.mysql.com
http:///

Covering the Basics of relational Databases ❘ 311

try it out Creating a relational Database in MySQL

This exercise shows you how to create a simple relational database using MySQL.

 1. Download and install the MySQL Community Edition (GPL) from http://www.mysql.com/
downloads/.

 2. Open the MySQL workbench application. See Figure 9-2.

 3. Create a new MyConnection connection by clicking the + button next to MySQL Connections, as
shown in Figure 9-3.

figure 9-2

 4. Open MyConnection and create a schema called Employeeschema. Your screen now looks as
shown in Figure 9-4.

 5. Create two tables—Employee and Department—as shown in Figures 9-5 and 9-6.

 6. Make sure to also create a foreign key relationship between DNR in Employee and DNR in
Department. The SQL DDL corresponding to both these tables is:

CREATE TABLE IF NOT EXISTS 'EmployeeSchema'.'Employee' (
 'EmployeeID' INT NOT NULL,
 'Name' VARCHAR(45) NULL,
 'Gender' VARCHAR(45) NULL,
 'DNR' INT NULL,
 PRIMARY KEY ('EmployeeID'),
 INDEX 'DNRForeign_idx' ('DNR' ASC),
 CONSTRAINT 'DNRForeign'
 FOREIGN KEY ('DNR')

http://www.mysql.com/downloads/
http://www.mysql.com/downloads/
http:///

312 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

figure 9-4

figure 9-3

http:///

Covering the Basics of relational Databases ❘ 313

figure 9-5

figure 9-6

http:///

314 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 REFERENCES 'EmployeeSchema'.'Department' ('DNR')
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB

CREATE TABLE IF NOT EXISTS 'EmployeeSchema'.'Department' (
 'DNR' INT NOT NULL,
 'DName' VARCHAR(45) NULL,
 'DAddress' VARCHAR(45) NULL,
 PRIMARY KEY ('DNR'))
ENGINE = InnoDB

 7. Use an SQL insert statement to add the following tuples to the Department table:

insert into employeeschema.department
values
 (1, 'ICT', 'Brussels'),
 (2, 'Marketing', 'New York'),
 (3, 'Finance', 'Singapore'),
 (4, 'Accounting', 'Sydney');

 8. Use an SQL insert statement to add the following tuples to the Employee table:

insert into employeeschema.employee
values
 (1, 'Bart Baesens', 'Male', 1),
 (2, 'Aimée Backiel', 'Female', 1),
 (3, 'Seppe vanden Broucke', 'Male', 1),
 (4, 'Michael Jackson', 'Male', 2),
 (5, 'Sarah Adams', 'Female', 3);

 9. Your MySQL screen should now look like Figure 9-7.

figure 9-7

http:///

accessing relational Databases from Java ❘ 315

accessing relational databases from Java

Accessing relational databases from Java is not a straightforward exercise. Various issues arise due
to the intrinsic conceptual differences between Java as an object-oriented programming environ-
ment and the database, which is typically based on relational concepts and SQL. The discrepancy
between both environments is often referred to as the impedance mismatch problem.

The irst problem concerns the incompatibility between the data types implemented in Java and the

types available in SQL. Some SQL data types are directly equivalent to a Java type. An example

of this is the SQL INTEGER data type, which is identical to the Java int data type. Other SQL data

types need to be converted. Examples are the SQL CHAR, VARCHAR, and LONGVARCHAR data types,

which can be easily converted to the Java equivalent String data type. For the SQL DATE data type,

a special Java data type, Java.Date, was created.

Another complication is that SQL relations are sets of records with no prior limitation on the

number. Hence, Java needs to foresee a mechanism to appropriately import and handle the results

of SQL queries. One popular approach here is a cursor mechanism that will allow you to iteratively

loop through a set of records and process them one at a time in Java.

A discussion on the various ways of accessing databases from Java, each with their own approach

to dealing with both of these problems, follows. It begins with an introduction to JDBC, which is a

standard database application programming interface (API) available in Java. This is followed by a

discussion of SQLJ, which allows SQL statements to be directly embedded into Java programs.

Java database connectivity (Jdbc)
Every database vendor provides its own application programming interface (API). Hence, when

connecting to a particular database, you need to be aware of the proprietary routines that make up

the particular API. This makes it tedious and dificult to use different databases in an application.

Java database connectivity (JDBC) is a popular standardized application programming interface

(API) that gives database-independent access to tabular data typically stored in relational databases

or Microsoft Excel. It allows you to set up a connection with the database (or tabular data source),

exchange SQL statements (such as CREATE, SELECT, INSERT, UPDATE, and DELETE), and process the

results. A key advantage of JDBC is that it provides an easy access mechanism to various existing

data sources. Moreover, since it is based on Java technology, it is easy to learn and use in your Java

programs. Given its popularity, many database vendors provide support for it, such as Oracle, IBM,

Microsoft, and more. The most recent version is JDBC 4.2 and is included in Java SE 8. The JDBC

classes are implemented using the packages java.sql and javax.sql. There are four types of JDBC

drivers to access the data, as shown in Table 9-4.

table 9-4: JDBC Driver Types

driver tYPe descriPtion

JDBC type 1

driver

JDBC/ODBC bridge. Open Database Connectivity (ODBC) is another standard API

for accessing databases developed by Microsoft. This driver will convert JDBC calls

to client-side ODBC calls, which then communicate with the network database.

continues

http:///

316 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

driver type description

JDBC type 2

driver

This driver converts JDBC calls into client-side API calls, which will then further com-

municate to the network database.

JDBC type 3

driver

This is a 100% Java driver whereby JDBC calls are translated to the protocol

adopted by a separate middleware application server, which then further communi-

cates to the database.

JDBC type 4

driver

This is a 100% Java driver whereby JDBC calls are directly translated into the net-

work protocol used by the database.

From Table 9-4, it is clear that the JDBC type 4 driver is the most powerful. Its workings are further
clariied in Figure 9-8.

Java Application

JDBC Driver Manager

Vendor-Specific JDBC Type 4 Driver

Database

JDBC API

figure 9-8

Table 9-5 describes the core JDBC classes and methods.

taBle 9-5: JDBC Classes and Purpose

JdBc class PurPose

DriverManager Locate the JDBC driver.

Connection Set up a database connection.

Statement Deine a static SQL statement.

taBle 9-4: (continued)

http:///

accessing relational Databases from Java ❘ 317

PreparedStatement Deine a dynamic SQL statement.

CallableStatement Execute stored procedures in the database.

ResultSet Provide a JDBC cursor mechanism.

In the next exercise, you see how these classes can be used to access data from a MySQL database.

try it out accessing a relational Database Using JDBC

 1. Download and install the JDBC driver for MySQL. In my case (working on a Windows 8
computer), I downloaded MySQL Connector/J from http://dev.mysql.com/downloads/
connector/j/5.0.html, which is the oficial JDBC type 4 driver for MySQL. The ile called

mysql-connector-java-5.1.30-bin.jar was then installed in my directory C:\Program Files

(x86)\MySQL\Connector J 5.1.30. Make sure to add the directory C:\Program Files (x86)\

MySQL\Connector J 5.1.30 to the CLASSPATH environment variable. As an alternative, you could

also right-click the project in Eclipse, choose Build Path Conigure Build Path Add External

JARs, and then explicitly add the ile mysql-connector-java-5.1.30-bin.jar.

 2. Create a new project in Eclipse. Perhaps call it Chapter9 to keep the exercises organized according

to the chapters in this book.

 3. Create a new class by right-clicking on the src folder in your new project. Select New Class.

 4. In the Name ield, enter the name of your class, JDBCExample1. In the bottom portion of the New

Java Class window, there is a section that reads, “Which method stubs would you like to create?”

You may choose to check the box next to “public static void main(String[] args)” to automatically

create a main method.

 5. You should automatically have the basis for the class body shown here:

public class JDBCExample1 {

 public static void main(String[] args) {
 // TODO Auto-generated method stub
 }
}

 6. Adapt this class deinition as follows:

import java.sql.*;

public class JDBCExample1 {

public static void main(String[] args) {
 try {
 System.out.println("Loading JDBC driver...");
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("JDBC driver successfully loaded!");
 } catch (ClassNotFoundException e) {
 throw new RuntimeException(e);
 }

http://dev.mysql.com/downloads/connector/j/5.0.html
http://dev.mysql.com/downloads/connector/j/5.0.html
http:///

318 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 String url = "jdbc:mysql://localhost:3306/employeeschema";
 String username = "root";
 String password = "mypassword123";
 String query = "select E.Name, D.DName" +
 "from employee E, department D" +
 "where E.DNR=D.DNR;";
 Connection connection = null;
 Statement stmt=null;

 try {
 System.out.println("Connecting to the MySQL database...");
 connection = DriverManager.getConnection(url, username, password);
 System.out.println("MySQL Database connected!");
 stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 System.out.print(rs.getString(1));
 System.out.print(" ");
 System.out.println(rs.getString(2));
 }
 stmt.close();
 } catch (SQLException e) {
 System.out.println(e.toString());
 } finally {
 System.out.println("Closing the connection.");
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException ignore) {
 }
 }
 }
 }
}

 7. Save the class by clicking the disk icon or selecting File Save.

 8. Run the application by clicking the green play icon or selecting Run Run.

 9. You should receive the following output:

Loading JDBC driver...
JDBC driver successfully loaded!
Connecting to the MySQL database...
MySQL Database connected!
Bart Baesens ICT
Aimée Backiel ICT
Seppe vanden Broucke ICT
Michael Jackson Marketing
Sarah Adams Finance
Closing the connection.

How It Works

The program starts by importing the JDBC package by using the statement import java.
sql.*;.The irst part of the code then sets up the connection with the database. The statement

mysql://localhost:3306/employeeschema
http:///

accessing relational Databases from Java ❘ 319

Class.forName("com.mysql.jdbc.Driver") dynamically loads the MySQL database driver. It is embed-
ded in a try catch block in case exceptions occur. The URL variable contains the location of the database
schema, and the username and password variables store the logon credentials. The query variable is a string
containing the SQL query you want to execute. Note that it is a join query, whereby the Employee and
Department tables are joined. The statement connection = DriverManager.getConnection(url, user-
name, password) establishes a connection to the MySQL database by creating a connection object using
the logon information. In JDBC, all SQL statements are executed within the context of a connection object.
A Java program can have multiple connections to different databases. The statement stmt = connection.
createStatement() creates a statement object for sending SQL statements to the MySQL database. The
statement ResultSet rs = stmt.executeQuery(query); executes the query and stores the result thereof
into the rs object. It’s important to note that in JDBC, all SQL queries are compiled and processed at
runtime. The rs resultset object contains a cursor pointing to a particular row of data in the result. Initially,
it is put before the irst row and can be moved using the method next. The latter returns false when there

are no more rows in the resultset. The while loop, which follows, now navigates through the results of the

resultset. The statement System.out.print(rs.getString(1)); then retrieves the irst element (E.Name)

of the row where the cursor is positioned. The statement System.out.print(" "); then adds some extra

space and is followed by the statement System.out.println(rs.getString(2)); which retrieves the sec-

ond element (i.e. D.DName) of the row where the cursor is positioned and adds a line break. To conclude the

program, the statement and connection objects are properly closed.

In the following example, you will use JDBC to access a MySQL database in combination with user-

provided input.

try it out accessing a relational Database Using JDBC and User Input

In this example, you will allow the user to provide input for the query in the JDBC program.

 1. Create a new class by right-clicking on the src folder in your Chapter9 project. Select New Class.

 2. In the Name ield, enter the name of your class, JDBCExample2. In the bottom portion of the New

Java Class window, there is a section that reads, “Which method stubs would you like to create?”

You may choose to check the box next to “public static void main(String[] args)” to

automatically create a main method.

 3. You should automatically have the basis for the class body shown here:

public class JDBCExample2 {

 public static void main(String[] args) {
 // TODO Auto-generated method stub
 }
}

 4. Adapt this class deinition as follows:

import java.sql.*;
import java.util.*;

public class JDBCExample2 {

http:///

320 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 public static void main(String[] args) {
 int DeptNr=0;
 try {
 System.out.println("Loading JDBC driver...");
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("JDBC driver successfully loaded!");
 } catch (ClassNotFoundException e) {
 throw new RuntimeException(e);
 }

 Scanner keyboard = new Scanner(System.in);
 try {
 System.out.println("Please enter the department number: ");
 DeptNr=keyboard.nextInt();
 } catch(InputMismatchException err) {
 System.out.println("Incorrect input");
 }
 String url = "jdbc:mysql://localhost:3306/employeeschema";
 String username = "root";
 String password = "mypassword123";
 String query="select Name, Gender, DNR" +
 " from employee where DNR=?";
 Connection connection = null;
 Statement stmt = null;
 try {
 System.out.println("Connecting to the MySQL database...");
 connection = DriverManager.getConnection(url, username, password);
 System.out.println("MySQL Database connected!");
 PreparedStatement preparedStatement =
 connection.prepareStatement(query);
 preparedStatement.setInt(1, DeptNr);
 ResultSet rs = preparedStatement.executeQuery();
 while (rs.next()) {
 System.out.print(rs.getString(1));
 System.out.print((" "));
 System.out.print(rs.getString(2));
 System.out.print((" "));
 System.out.println(rs.getInt(3));
 }
 preparedStatement.close();
 } catch (SQLException e) {
 System.out.println(e.toString());
 } finally {
 System.out.println("Closing the connection.");
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException ignore) {
 }
 }
 }
 }
}

 5. Save the class by clicking the disk icon or selecting File Save.

mysql://localhost:3306/employeeschema
http:///

accessing relational Databases from Java ❘ 321

figure 9-9

How It Works

The irst part of the code is similar to the previous example. The only thing that is different is that a Scanner

object is created (using the java.util.* package) to provide input using the keyboard. The DeptNr variable

stores the number of the department for which you want to list the employees. This is accomplished using

a PreparedStatement object. This object can take parameters that are being input using the keyboard or

from a GUI application. In this example, the statement PreparedStatement

preparedStatement = connection.prepareStatement(query); creates a preparedStatement object

based upon the query string variable, which is deined as follows: String query="select Name, Gender,

DNR from employee where DNR=?";. The question mark in the query variable refers to a value that needs

to be speciied before the query can be executed. In this example, this variable will be set to DeptNr (which

was obtained via the keyboard) using the following statement: preparedStatement.setInt(1, DeptNr);.

The prepared statement object can then be executed and the results stored in a resultset object using the fol-

lowing statement: ResultSet rs = preparedStatement.executeQuery();. A while loop can then be

used to navigate through the results of this resultset object as in the previous example.

sQlJ
SQLJ is built on top of JDBC and allows you to embed SQL statements directly into Java programs.

A preprocessor will then translate the SQL statements into Java/JDBC statements, which are then

further compiled by the Java compiler to bytecode. This is illustrated in Figure 9-10.

 6. Run the application by clicking the green play icon or selecting Run Run. Enter 1 for the depart-

ment number.

 7. You will now get the output shown in Figure 9-9.

http:///

322 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

The preprocessor can perform syntax checks, Java/SQL type matching, and verify the query against
the database schema at design time. This will not only result in fewer errors at runtime, but will also
improve the performance of the query. Another key difference with JDBC is that SQL statements are
compiled at runtime.

Note that as illustrated in Figure 9-10, a Java program with embedded SQLJ statements should have
an *.sqlj ilename extension. Both SQLJ and JDBC statements can be used in the same program.

This allows you to combine the beneits of static, pre-compiled SQL offered by SQLJ with the run-

time lexibility offered by JDBC.

The sqlj.runtime and sqlj.runtime.ref packages contain the Java runtime classes and inter-

faces used by SQLJ and should be imported at the start of the program. The JDBC java.sql pack-

age will also be imported to set up the JDBC connection and perform error handling:

import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.sql.*;

A SQLJ program starts by loading a JDBC driver and creating a connection context (similar to a

JDBC connection object) as follows:

 try {
 System.out.println("Loading JDBC driver...");
 Class.forName("com.mysql.jdbc.Driver");
 DefaultContext.setDefaultContext(new DefaultContext(
 "jdbc:mysql://localhost:3306/employeeschema","root","mypassword123"));
 } catch (Exception e) {
 //do something
 }

By default, all SQLJ statements will then be executed within the deined default connection context.

SQLJ statements start with an #sql delimiter and are terminated with a semicolon as follows:

#sql {<sql-statement>};

This allows the SQLJ preprocessor to easily recognize the SQL instructions. The SQLJ statement

itself can span multiple lines and may also include host variables and/or expressions. Host variables

are variables deined within the Java program and can be included in a SQLJ statement preceded by

a colon, such as the following:

MyEmp.sqlj SQLJ Preprocessor Java Compiler

Database

MyEmp.Java MyEmp.class

figure 9-10

mysql://localhost:3306/employeeschema
http:///

accessing relational Databases from Java ❘ 323

 #sql {select EmployeeID, Name
 into :empID,:ename
 from EmployeeSchema.Employee
 where DNR = :dnr };

SQLJ has two types of cursors: iterators and positional iterators. They are always deined at the start

of the Java class ile and not within a class. Remember the Employee table deined earlier:

CREATE TABLE 'EmployeeSchema'.'Employee' (
 'EmployeeID' INT NOT NULL,
 'Name' VARCHAR(45) NULL,
 'Gender' VARCHAR(45) NULL,
 'DNR' INT NULL,
 PRIMARY KEY ('EmployeeID'),
 INDEX 'DNRForeign_idx' ('DNR' ASC),
 CONSTRAINT 'DNRForeign'
 FOREIGN KEY ('DNR')
 REFERENCES 'EmployeeSchema'.'Department' ('DNR')
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)

Let’s now deine a named iterator as follows:

#sql iterator EmpNameIter (int EmployeeID, String Name, int DNR);
class SQLJEx1 {
 void AccessEmpData() throws SQLException {

 EmpNameIter MyNamedIter;
 #sql MyNamedItter =
 {SELECT Name, EmployeeID, DNR FROM EmployeeSchema.Employee };
 }
}

Note that the iterator column names match the table column names. Also observe that the order of

the columns in the SQL statement should not match the order in the iterator statement or table since

data is matched by name and not by position, which is very convenient. You can then access the col-

umns by their name, as follows:

while (MyNamedItter.next()) {
 System.out.println(MyNamedItter.EmployeeID +
 " " + MyNamedItter.Name + " " + MyNamedItter.DNR));
}

The method next retrieves the next row of the iterator and then returns true unless there are no

more rows to be retrieved, in which case it returns false.

A positional iterator deines only the data type of each column and not its name. An example is as

follows:

#sql iterator EmpPosIter (int, String, in);

class SQLJEx2 {
 void AccessEmpData () throws SQLException {
 EmpPosIter MyPosIter;
 #sql MyPosItter =

http:///

324 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 { SELECT EmployeeID, Name, DNR FROM EmployeeSchema.Employee };
 }
}

Observe that the order is the same for the table, iterator, and SQL statement. To retrieve data from a
positional iterator, you must use the FETCH INTO statement and the endfetch() method to verify if
the end of the data has been reached as follows:

while (true) {
 #sql {FETCH : MyPosIter INTO :EmployeeID, :Name, :DNR} ;
 if (MyPosIter.endFetch()) {
 break;
 }
}

As with other database objects, it is important to close every iterator using the close() method to
free the occupied resources.

When compared to JDBC, SQLJ programs are usually more concise and thus easier to debug. As dis-
cussed, SQLJ also allows you to do syntactic and semantic query checking at design time, in contrast
to JDBC where queries are veriied at runtime. Despite its advantages, the SQLJ standard has been

less popular than JDBC in the industry.

pushing complex data processing to the database

SQL is a very powerful database manipulation language that allows complex data-

processing operations in the RDBMS itself. When using JDBC or SQLJ, it is highly

recommended to push as many complex data operations as possible to the database

instead of programming them in Java. Every RDBMS has built-in sophisticated facili-

ties for indexing and caching, which have a huge impact on query performance.

In the irst JDBC example in this chapter, the SQL query performs a join between

two tables. Alternatively, you could opt to retrieve the data from both tables into

the Java program and program the join in Java. However, from a performance

viewpoint, this is highly discouraged as it would create more network trafic and

processing time. Hence, it is of key importance that a Java developer accessing a

RDBMS through JDBC or SQLJ possess a deep understanding of SQL in order to

write high-performing Java database applications!

ensuring obJect persistence

During Java program execution, a distinction can be made between transient objects, which only exist

during program execution, and persistent objects, which need to be permanently stored in a database.

Earlier in this chapter, you learned about the impedance mismatch problem, which refers to the intrin-

sic incompatibility between Java objects and relational SQL tables. To bridge this incompatibility

problem, two solutions can be pursued. A irst solution is to use an object relational mapping (ORM)

framework, which tackles the impedance problem by directly mapping Java objects to relational

http:///

ensuring Object persistence ❘ 325

concepts and vice versa. Every plain old Java object (POJO) or JavaBean that needs to be made persis-
tent can be directly mapped by the ORM to one or more tuples in a relational database without hav-
ing to implement (vendor-) speciic interfaces or classes. The ORM provides full support of all CRUD

(CREATE, READ, UPDATE, and DELETE) database operations. A key advantage of using an object rela-

tional mapper is that it waives the Java developer from fully understanding and mastering all details of

relational database design and advanced SQL query tuning, since all database interactions are directly

handled and optimized by the ORM. This will result in more compact Java code, a potential decrease

in database calls, more eficient queries, and higher portability across database platforms.

A second solution is to abandon the idea of using a relational database and use an object-oriented

DBMS (OODBMS) instead. OODBMSs support the storage of objects rather than relational tuples.

This will allow the storage of all POJOs directly and transparently as objects in an OODBMS with-

out having to perform any translation. Obviously, avoiding all the mapping operations will greatly

beneit the performance of the Java application.

The Java community has introduced various standards for object persistence. The most popular are the

Java Persistence API (JPA) and Java Data Objects (JDO). Both provide a set of rules and guidelines to

make POJOs persistent for both Java SE and Java EE environments using either an ORM, OODBMS, or

another storage format (such as XML). JPA was mainly designed for relational databases, whereas JDO

was more targeted toward OODBMSs, which are less popular in the industry. Hence, given the wide-

spread availability of relational databases, this discussion will continue with JPA. For more details about

JDO, refer to http://www.oracle.com/technetwork/java/index-jsp-135919.html.

JPA was irst developed in 2006. The most recent version, JPA 2.1, was released in 2013. The JPA

API is speciied in the javax.persistence package. To facilitate the mapping between the Java

application and the database (either relational or OO), annotations are used. JPA also includes the

Java Persistence Query Language (JPQL) as an SQL-like standard to deine object-oriented queries

on objects. JPQL queries are also formulated as Select... From... queries but can now return

objects rather than ield values, as is the case in SQL. When using an ORM, the JPQL queries will

be translated to relational SQL queries, whereas when using an OODBMS, the JPQL queries can be

directly executed on the database, thereby increasing the performance of the query. JPQL provides

full support of all OO concepts such as (multiple) inheritance, dynamic binding, polymorphism, and

so on. Example implementations of the JPA standard are:

 ➤ ORM: Hibernate, EclipseLink (formerly Oracle TopLink), and OpenJPA

 ➤ OODBMS: ObjectDB

It is important to keep in mind that JPA was developed after many of the ORMs (such as Hibernate

and TopLink) were already available. The result is one overall, uniform interface that facilitates

switching between different persistence providers.

Two examples to illustrate the use of JPA follow. Hibernate is an example of an ORM implementa-

tion of JPA, and ObjectDB is an example of an OODBMS implementation of JPA.

hibernate
We will start by discussing Hibernate, one of the most commonly used ORMs in the industry. It is

an open-source ORM currently maintained by Red Hat at http://hibernate.org/. It provides

http://www.oracle.com/technetwork/java/index-jsp-135919.html
http://hibernate.org/
http:///

326 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

support for most commercial database platforms such as MySQL, Oracle, Sybase, and so on. Just
like SQLJ, it uses JDBC to communicate to the database. It also includes facilities for transaction
management, concurrency control, caching, and connection pooling. Figure 9-11 gives a high-level
outline of the Hibernate architecture.

Relational

Database

JDBC

Hibernate

Java Application

Black dots: persistent object

White dots: transient object

Hibernate.cfg.xml
XML Mapping File

Annotations

figure 9-11

A irst important building block when creating a Hibernate application is the hibernate.cfg.xml

coniguration ile. This is one application-speciic XML ile containing the essential information to

set up the database connection by specifying the JDBC driver, connection URL, the database user-

name and password, and the Java classes that need to be mapped. The object relational mapping

itself can then be speciied using either an XML ile or annotations. By convention, the XML ile has

the same name as the class that’s to be mapped and is in the same directory. An example employee.

hbm.xml ile providing a mapping of the Java class Employee to the MySQL relational Employee

table could be a follows:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="Employee" table="EMPLOYEE">
 <meta attribute="class-description">
 This class contains the employee detail.
 </meta>
 <id name="id" type="int" column="id">
 <generator class="native"/>
 </id>

http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd
http:///

ensuring Object persistence ❘ 327

 <property name="JEmpID" column="EmployeeID" type="int"/>
 <property name="JName" column="Name" type="string"/>
 <property name="JGender" column="Gender" type="string"/>
 <property name="JDNR" column="DNR" type="int"/>
 </class>
</hibernate-mapping>

This example clearly illustrates how the various class properties are mapped to relational database
columns.

When using annotations, the mapping is directly speciied in the POJO class deinition itself.

Table 9-6 provides an overview of commonly used annotations available in Hibernate. See

http://hibernate.org/ for a comprehensive overview.

table 9-6: Common Hibernate Annotations

annotation descriPtion

@Entity Declares a persistent POJO class.

@Table Allows you to explicitly specify the name of the relational table

to map the persistent POJO class to, in case both names are

different.

@Column Allows you to explicitly specify the name of the relational table

column in case it is different from the persistent POJO class

ield.

@ID Maps a persistent POJO class ield to a primary key of a rela-

tional table.

@Transient Allows you to deine POJO class ields that are transient and

thus should not be made persistent.

As opposed to XML, annotations are directly compiled to bytecode and thus provide better

performance. This is a key reason why most developers nowadays use annotations to perform

the mapping. A disadvantage of both XML and annotations is that the persistence details are

spread across different classes or XML iles instead of being centralized, which may hamper the

maintenance.

Although Hibernate allows you to directly embed SQL queries in Java, it also comes with a new

full-ledged, database agnostic query language called Hibernate Query Language (HQL). HQL is

object-oriented and works with classes and properties instead of tables and columns. It is less ver-

bose than SQL and includes support for inner/outer joins, polymorphism, subqueries, aggregation,

grouping, and ordering. Queries can be formulated by navigating object relations rather than rela-

tional tables. All HQL queries are translated to relational SQL queries at runtime. JPQL is based on

HQL, since JPA was introduced after Hibernate was created.

In the “Try It Out” that follows, you develop your irst Hibernate application.

http://hibernate.org/
http:///

328 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

try it out accessing a relational MySQL Database Using hibernate

In this example, you will be able to access a relational MySQL database using Hibernate.

 1. First, install Hibernate from http://hibernate.org/orm/downloads/. In this example, hibernate
release 4.3.5.final is installed in the directory C:\hibernate-release-4.3.5.Final.

 2. Now add the Hibernate JARs to the build path of the project. Right-click the project, choose
Properties Java Build Path Add Library. Deine a User Library called MyHibernateLibrary

and add the iles from C:\hibernate-release-4.3.5.Final\lib\required, as shown in

Figure 9-12.

 3. Make sure to also add the mysql-connector-java-5.1.30-bin.jar to the Build Path. Your

Eclipse project now looks like Figure 9-13.

figure 9-12

figure 9-13

http://hibernate.org/orm/downloads/
http:///

ensuring Object persistence ❘ 329

 4. Create a ile called hibernate.cfg.xml with the following content:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">
 com.mysql.jdbc.Driver</property>
 <property name="hibernate.connection.url">
 jdbc:mysql://localhost:3306/employeeschema</property>
 <property name="hibernate.connection.username">
 root</property>
 <property name="hibernate.connection.password">
 mypassword123</property>
 <property name="hibernate.connection.pool_size">
 10</property>
 <property name="show_sql">true</property>
 <property name="dialect">
 org.hibernate.dialect.MySQLDialect</property>
 <property name="hibernate.current_session_context_class">
 thread</property>
 <mapping class="Employee" />
 </session-factory>
</hibernate-configuration>

 5. Add the ile to the src directory of your project. Your Eclipse environment now looks like

Figure 9-14.

figure 9-14

http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd
mysql://localhost:3306/employeeschema</property
http:///

330 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 6. Create a new class called Employee.java, as follows:

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Employee {
 private int EmployeeID;
 private String Name;
 private String Gender;
 private int DNR;

 @Id
 public int getEmployeeID() {
 return EmployeeID;
 }

 public void setEmployeeID(int id) {
 this.EmployeeID = id;
 }

 public String getName() {
 return Name;
 }

 public void setName(String name) {
 this.Name = name;
 }

 public String getGender() {
 return Gender;
 }

 public void setGender(String gender) {
 this.Gender = gender;
 }

 public int getDNR() {
 return DNR;
 }

 public void setDNR(int dnr) {
 this.DNR = dnr;
 }

}

 7. Create a class called myDBApp.java, as follows:

import org.hibernate.SessionFactory;
import org.hibernate.Session;
import org.hibernate.cfg.Configuration;
import org.hibernate.Query;

import java.util.List;

http:///

ensuring Object persistence ❘ 331

public class myDBApp {
 public static void main(String[] args) {
 // Create new employee and store in MySQL
 Employee Myemp=new Employee();
 Myemp.setName("Hibernate dude");
 Myemp.setGender("Male");
 Myemp.setEmployeeID(6);
 Myemp.setDNR(2);

 SessionFactory sessionFactory =
 new Configuration().configure().buildSessionFactory();
 Session session=sessionFactory.openSession();
 session.beginTransaction();
 session.save(Myemp);
 session.getTransaction().commit();
 // Retrieve employee data from MySQL
 Query query = session.createQuery("from Employee where EmployeeID = 6");
 List<?> list = query.list();
 Employee emp = (Employee)list.get(0);
 System.out.println(emp.getName());
 System.out.println(emp.getGender());
 System.out.println(emp.getDNR());
 session.close();
 sessionFactory.close();
 }
}

 8. Run the class and inspect its output. It should now look like Figure 9-15.

figure 9-15

http:///

332 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 9. Also inspect the Employee table in MySQL to verify if the new employee has been successfully
added, as shown in Figure 9-16.

figure 9-16

How It Works

 1. It begins with installing all the necessary JARs to use both Hibernate and MySQL. The hiber-
nate.cfg.xml ile contains all the Hibernate coniguration details that will be used by the ses-

sionFactory object to set up a database connection. Note that Hibernate will communicate with

the MySQL database using JDBC. The following properties were set:

hibernate.connection.driver_class: JDBC driver class
hibernate.connection.url: JDBC URL
hibernate.connection.username: database user
hibernate.connection.password: database user password
hibernate.connection.pool_size: maximum number of pooled JDBC connections

 2. By setting the show_SQL property to true, the SQL commands generated by Hibernate are dis-

played in the console. This is very handy for debugging. The dialect property allows you to spec-

ify which SQL language should be used to communicate with the relational database, for example,

Oracle9Dialect, PostgreSQLDialect, SybaseDialect, and so on. Since you are working with a

MySQL database, it was set to MySQLDialect. By setting the hibernate.current_session_con-

text_class property to thread, the Hibernate session is executed in the thread in which it was

created. The <mapping class="Employee" /> statement then deined the class for which you

want to create the mapping to the MySQL database.

http:///

ensuring Object persistence ❘ 333

 3. Then the Employee class was created. It contains the same four attributes as in the MySQL
database: EmployeeID, Name, Gender, and DNR. The mapping to the Employee MySQL table is
performed using the @Entity and @Id annotations. The @Entity annotation is included before
the class deinition and maps the class to the relational MySQL Employee table. The @Id annota-

tion then deines the identiier of the class that will be mapped to the primary key of the MySQL

Employee table. Note that the Java class may have a different name than the MySQL table. In

this case, the @Table annotation can be used to deine the mapping. If no @Table annotation is

used, the name of the class is used, which is ine in this case since it is identical to the name of the

MySQL table. Likewise, the @Column annotation can be used to map Java properties to MySQL

columns. Refer to http://hibernate.org/ for other examples of annotations.

 4. In Step 7 of the Try It Out, the myDBApp class was created to perform some basic database opera-

tions. It starts with creating a new employee object Myemp and setting its characteristics. Then a

sessionFactory object was created, which will in turn allow the creation of a session object.

The latter represents a single-threaded wrapped JDBC connection with the database. Note that

Hibernate often introduces new classes and methods to create both sessionFactory and session

objects, and it is thus recommended to check http://hibernate.org/ regularly for updates.

 5. The session object serves as a factory for creating database transactions. The statement session.

beginTransaction(); initiates a database transaction that represents an atomic unit of database

operations. If needed, multiple transactions per session can be created. The Myemp employee object

will then be made persistent in the MySQL database using the method session.save(Myemp) fol-

lowed by session.getTransaction().commit(). Then the insert is veriied by issuing the HQL

query: Query query = session.createQuery("from Employee where EmployeeID = 6"). The

results of the query are stored in a list object List<?> list = query.list(). The query will return

one result, which will be stored in the object emp as follows: Employee emp = (Employee)list.get(0).

This is followed by retrieving the various attributes and displaying them on the console. The program

inishes by closing the session and sessionFactory objects.

 6. Since the show_SQL property was set to true in the coniguration ile, you can see the SQL state-

ments that are being generated by Hibernate as follows:

Hibernate: insert into Employee (DNR, gender, name, employeeID) values (?, ?, ?, ?)
Hibernate: select employee0_.employeeID as employee1_0_, employee0_.DNR as DNR2_0_,
 employee0_.gender as gender3_0_, employee0_.name as name4_0_
 from Employee employee0_
 where EmployeeID=6

The result of the query is then:

Hibernate dude
Male
2

This is also conirmed by inspecting the table directly in MySQL.

In most applications, Java objects and their corresponding relational tables will be associated using

relationships. Hibernate also has facilities for managing the object relational mapping of these asso-

ciations. Obviously, the mapping depends on the type and the multiplicity of the association.

http://dev.mysql.com/downloads/connector/j/5.0.html
http://hibernate.org/
http:///

334 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

Associations can be implemented as unidirectional or bidirectional depending upon how they are
being used and navigated. A unidirectional association always navigates from a parent object (own-
ing side) to a child object (inverse side), whereas in a bidirectional association, both directions of
navigation are supported. Depending upon the multiplicity, the association can then be qualiied

using the following annotations: @OnetoMany, @ManytoOne, or @ManytoMany. An example of map-

ping a unidirectional many-to-many relationship in Hibernate follows.

try it out Many-to-Many relationship Mapping Using hibernate

In this example, you perform a many-to-many mapping using annotations in Hibernate.

 1. Start by creating a new table called project in MySQL. The table has two attributes—ProjectID

is the primary key and PName contains the name of the project. The SQL DDL for the project table

is as follows:

CREATE TABLE 'project' (
 'ProjectID' int(11) NOT NULL,
 'PName' varchar(45) DEFAULT NULL,
 PRIMARY KEY ('ProjectID')
) ENGINE=InnoDB DEFAULT CHARSET = utf8;

 2. Now assume that there is a many-to-many relationship between the tables employee and project.

In other words, an employee can work on at least 0 and at most m projects, whereas a project is

assigned to at least 0 and at most n employees. This can be visualized in an Entity Relationship

(ER) diagram, as shown in Figure 9-17.

Employee
0...n 0...m

Project

figure 9-17

 3. In order to implement this many-to-many relationship in MySQL, create a new table called works_

on as follows:

CREATE TABLE 'works_on' (
 'EmployeeID' int(11) NOT NULL,
 'ProjectID' int(11) NOT NULL,
 PRIMARY KEY ('EmployeeID','ProjectID'),
 KEY 'works_onProj_idx' ('ProjectID'),
 CONSTRAINT 'works_onEmp' FOREIGN KEY ('EmployeeID')
 REFERENCES 'employee' ('EmployeeID')
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT 'works_onProj' FOREIGN KEY ('ProjectID')
 REFERENCES 'project' ('ProjectID')
 ON DELETE NO ACTION
 ON UPDATE NO ACTION
) ENGINE = InnoDB DEFAULT CHARSET = utf8;

The works_on table has two attributes—EmployeeID and ProjectID—which make up the pri-

mary key and are at the same time foreign keys referring to the primary keys of the Employee and

Project tables, respectively.

http:///

ensuring Object persistence ❘ 335

 4. Now write a Java application that will create POJO objects that will be made persistent in both the
project and works_on tables using Hibernate. Start by creating a new class called Project.java,
as follows:

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Project {
 private int ProjectID;
 private String PName;

 public Project(int ProjectID, String PName) {
 super();
 this.ProjectID = ProjectID;
 this.PName = PName;
 }

 @Id
 public int getProjectID() {
 return ProjectID;
 }

 public void setProjectID(int projectID) {
 ProjectID = projectID;
 }

 public String getPName() {
 return PName;
 }

 public void setPName(String pName) {
 PName = pName;
 }
}

 5. Adjust the Employee class as follows:

import java.util.HashSet;
import java.util.Set;

import javax.persistence.Entity;
import javax.persistence.CascadeType;
import javax.persistence.ManyToMany;
import javax.persistence.JoinTable;
import javax.persistence.JoinColumn;
import javax.persistence.Id;

@Entity
public class Employee {
 private int EmployeeID;
 private String Name;
 private String Gender;
 private int DNR;
 private Set<Project> projects=new HashSet<Project>(0);

http:///

336 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 public Employee(int EmployeeID, String Name, String Gender,
 int DNR, Set<Project> projects) {
 super();
 this.EmployeeID = EmployeeID;
 this.Name = Name;
 this.Gender = Gender;
 this.DNR = DNR;
 this.projects = projects;
 }

 @Id
 public int getEmployeeID() {
 return EmployeeID;
 }

 public void setEmployeeID(int id) {
 this.EmployeeID = id;
 }

 public String getName() {
 return Name;
 }

 public void setName(String name) {
 this.Name = name;
 }

 public String getGender() {
 return Gender;
 }

 public void setGender(String gender) {
 this.Gender = gender;
 }

 public int getDNR() {
 return DNR;
 }

 public void setDNR(int dnr) {
 this.DNR = dnr;
 }

 @ManyToMany (cascade = CascadeType.ALL)
 @JoinTable(name = "works_on", joinColumns =
 { @JoinColumn(name = "EmployeeID") },
 inverseJoinColumns = { @JoinColumn(name = "ProjectID") })

 public Set<Project> getProjects(){
 return this.projects;
 }

 public void setProjects (Set<Project> projects) {
 this.projects = projects;
 }
}

http:///

ensuring Object persistence ❘ 337

 6. Make sure to include the Project class in the hibernate.cfg.xml ile, as follows:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">
 com.mysql.jdbc.Driver</property>
 <property name="hibernate.connection.url">
 jdbc:mysql://localhost:3306/employeeschema</property>
 <property name="hibernate.connection.username">
 root</property>
 <property name="hibernate.connection.password">
 mypassword123</property>
 <property name="hibernate.connection.pool_size">
 10</property>
 <property name="show_sql">true</property>
 <property name="dialect">
 org.hibernate.dialect.MySQLDialect</property>
 <property name="hibernate.current_session_context_class">
 thread</property>
 <mapping class="Employee" />
 <mapping class="Project" />
 </session-factory>
</hibernate-configuration>

 7. Create a new class called myDBApp2 as follows:

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

import java.util.HashSet;
import java.util.Set;

public class myDBApp2 {
 public static void main(String[] args) {
 Set<Project> projects=new HashSet<Project>();
 projects.add(new Project(1,"Hibernate Basic Project"));
 projects.add(new Project(2, "Hibernate Many to Many Project"));

 Employee Myemp=new Employee(7,"Hibernate freak", "Male", 1, projects);

 SessionFactory sessionFactory =
 new Configuration().configure().buildSessionFactory();
 Session session=sessionFactory.openSession();
 session.beginTransaction();
 session.save(Myemp);
 session.getTransaction().commit();

 session.close();
 sessionFactory.close();
 }
}

http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd
mysql://localhost:3306/employeeschema</property
http:///

338 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 8. Run the myDBApp2 class and inspect its output. It should look like Figure 9-18 now.

figure 9-18

figure 9-19

 9. Also inspect the relational tables called employee, project, and works_on in MySQL. You will
see that they look as shown in Figure 9-19, 9-20, and 9-21.

http:///

ensuring Object persistence ❘ 339

figure 9-20

figure 9-21

 10. In these tables, you can see the new employee who is added to the employee table, both new proj-
ects in the project table, and the rows that have been added to the works_on table connecting the
new employee to both new projects.

How It Works

 1. The irst three steps created the tables project and works_on in MySQL. Note that both tables are

empty and will be populated from Java using Hibernate.

 2. Next, the Project Java class was deined. Again, note that the @Entity annotation was included

before the class deinition to specify the mapping to the project MySQL table. The Project class

also has a constructor method with two input arguments—ProjectID and PName. Finally, the @Id

annotation maps the ProjectID property to the primary key of the Project MySQL table.

 3. The Employee class was deined next. It starts with the annotation @Entity and includes a con-

structor method. Note that besides EmployeeID, Name, Gender, and DNR, this method also takes

a set of project objects as input, which are to be assigned to the employee object upon creation.

In other words, during object creation and manipulation, you navigate unidirectionally from the

employee object (owning object) to the project objects (non-owning objects). You could also

deine this in the opposite direction from a project object (owning object) to the employee objects

(non-owning objects) or implement it bidirectionally. In this last case, both objects would be con-

sidered owning objects. Again, the @Id annotation is used to map the EmployeeID property to the

corresponding primary key in the relational Employee MySQL table.

http:///

340 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 4. The many-to-many mapping between Employee and Project is then implemented using the
@ManyToMany annotation. The option cascade=CascadeType.ALL indicates that all data
manipulations of employee objects will be immediately propagated to both the employee and
works_on MySQL tables. For example, if an employee object is removed, then Hibernate will
not only remove the corresponding tuple from the employee MySQL table, but also all refer-
ring tuples from the works_on MySQL table. The @JoinTable annotation then deines the

connection to the join table. It is always speciied in the class representing the owning side,

which in this case is the Employee class. The name property speciies the corresponding join

works_on MySQL table. The joinColumns property connects to the relevant MySQL attribute

of the owning side (Employee) using the @JoinColumn annotation. The inverseJoinColumns

property connects to the relevant MySQL attribute of the non-owning side (Project), again by

using the @JoinColumn annotation. This is then followed by the setter and getter methods for

the project’s attribute.

 5. In Step 6 of the Try It Out, you made sure that the Project class was now also included in the

hibernate.cfg.xml mapping ile.

 6. In the next step, the class myDBApp2 was created. First, a set object projects was deined and two

new project objects were added to it. Then a new Employee object called Myemp was created and

the projects set object was added to it. As in the previous example, a sessionFactory object

was created, which then opened a session object, which in turn started a transaction. The Myemp

object was then saved, the transaction was committed, and the session and sessionFactory

objects were closed.

 7. As in the previous example, since the show_SQL property was set to true in the coniguration ile,

you can see the SQL statements that are being generated by Hibernate as follows:

Hibernate: select project_.projectID, project_.PName as PName2_1_
 from Project project_ where project_.projectID=?
Hibernate: select project_.projectID, project_.PName as PName2_1_
 from Project project_ where project_.projectID=?
Hibernate: insert into Employee (DNR, gender, name, employeeID) values (?, ?, ?, ?)
Hibernate: insert into Project (PName, projectID) values (?, ?)
Hibernate: insert into Project (PName, projectID) values (?, ?)
Hibernate: insert into works_on (EmployeeID, ProjectID) values (?, ?)
Hibernate: insert into works_on (EmployeeID, ProjectID) values (?, ?)

 8. The results can then also be conirmed by inspecting the employee, project, and works_on tables

in MySQL.

NOTE For small-scale, single-user applications, you could also opt to adopt
SQLite (or its Java implementation SQLJet) instead of MySQL. This is an in-process
library implementing a lightweight, self-contained, server-less, zero-coniguration
SQL-based RDBMS. No external client-server based communication (using some-
thing like sockets or ports) is needed since all database communication is handled
directly in the process in which the application runs. The database itself is then
stored in a simple ile that can be easily accessed and moved.

http:///

ensuring Object persistence ❘ 341

object-oriented database access from Java
As mentioned, OODBMs store objects rather than relational tuples. Hence, no mapping is needed to
store Java objects into an OODBMS. Although this may seem conceptually appealing at irst sight,

the success of OODBMSs in the industry has been limited to niche sectors, such as spatial and sci-

entiic applications. One of the reasons often mentioned for this is their intrinsic complexity when

compared to RDBMSs.

In the next exercise, you see how Java can work with ObjectDB, a popular OODBMS, providing

support for all the common database operations (such as transaction management, query processing,

indexing, and so on). This is an example using the JPA and JDO APIs you saw earlier in the chapter.

It is implemented as a single JAR and the database is stored as a single ile.

try it out Working with ObjectDB from Java

In this example, you will use ObjectDB to see how OODBMSs interact with Java directly.

 1. Start by installing ObjectDB from http://www.objectdb.com/object/db/database/download.

In this example, ObjectDB version 2.5.6_04 was installed in the directory C:\objectdb-2.5.6_04.

 2. Continue from your previous Java project, Chapter9, and add the ile C:\objectdb-2.5.6_04\

objectdb-2.5.6_04\bin\objectdb.jar to the build path of the project. Remember, you can do

this by right-clicking the project and choosing Build Path Add External Archives.

 3. Make sure the classes Employee.java and Project.java, as deined in the previous activity, are

still available in the current project.

 4. Create a new class called myDBApp3 as follows:

import javax.persistence.*;
import java.util.*;
public class myDBApp3 {
 public static void main(String[] args) {
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory(
 "C:/objectdb-2.5.6_04/db/employeeadm.odb");
 EntityManager em = emf.createEntityManager();
 em.getTransaction().begin();
 Set<Project> projects=new HashSet<Project>();
 projects.add(new Project(1,"Basic ObjectDB Project"));
 projects.add(new Project(2, "Advanced ObjectDB Project"));
 Employee Myemp=new Employee(1,"Object DB freak", "Male", 1, projects);
 em.persist(Myemp);
 em.getTransaction().commit();
 Query q1 = em.createQuery("SELECT COUNT(emp) FROM Employee emp");
 System.out.println("Total Employees: " + q1.getSingleResult());
 TypedQuery<Project> query =
 em.createQuery("SELECT proj FROM Project proj", Project.class);
 List<Project> results = query.getResultList();
 for (Project proj : results) {
 System.out.print(proj.getProjectID());
 System.out.print(" ");;

http://www.objectdb.com/object/db/database/download
http:///

342 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

 System.out.println(proj.getPName());
 }
 em.close();
 emf.close();
 }
}

 5. Run the myDBApp3 class and inspect its output on the console. It should look like Figure 9-22.

figure 9-22

figure 9-23

 6. Now open the ObjectDB explorer by double-clicking the ile: C:\objectdb-2.5.6_04\

objectdb-2.5.6_04\bin\explorer.exe.

 7. Right-click the Employee Entity Class and choose Open Tree Window. Double-click the Employee

object and the project’s HashSet object. You will now get the results shown in Figure 9-23.

http:///

Comparing Java Database access technologies ❘ 343

How It Works

 1. The class MyDBApp3 starts by importing the JPA javax.persistence.* package.

 2. An EntityManagerFactory object emf is deined for the database in C:\objectdb-2.5.6_04\

objectdb-2.5.6_04\db\employeeadm.odb using a static factory method of the JPA bootstrap

class Persistence. If the database does not exist, which is the case in this example, then a new

one will be created. Note that an URL combined with a username and a password can also be used

when creating the EntityManagerFactory object. The connection to the database is then repre-

sented by the EntityManager object em, which is created by the emf object. The emf object may

create multiple EntityManager objects in case multiple database connections are needed, which

can then be eficiently pooled by the emf object. The method em.getTransaction().begin();

then initiates a database transaction. The next lines of Java code then create two new Project

objects and a new Employee object to which the Project objects are assigned using a HashSet

object called projects. The Employee object is then stored in ObjectDB using the method em.

persist(Myemp); and the transaction is committed by em.getTransaction().commit();. The

Employee object has now been made persistent and can now be queried. Note how easy this is

here, compared to the Hibernate approach where a coniguration ile had to be deined to specify

the mapping details.

 3. In JPA, queries can be implemented using the (old) Query or (new) TypedQuery interface.

The Query interface can be used when the result type of the query is unknown, whereas the

TypedQuery interface is used when a known result type is expected. Note that queries are always

formulated in JPQL.

 4. The statement Query q1 = em.createQuery("SELECT COUNT(emp) FROM Employee emp");

creates a JPQL query object called q1, which counts the number of employees in the Employee

Entity Class in ObjectDB. The result of the query is a single value and is written to the console

using the method System.out.println("Total Employees: " + q1.getSingleResult());.

 5. A JPQL query will now retrieve all Project objects and list them on the console. The statement

TypedQuery<Project> query = em.createQuery("SELECT proj FROM Project proj",

Project.class); creates a TypedQuery object whereby the return type of the query, i.e. Project,

is now explicitly speciied. The statement List<Project> results = query.getResultList();

then executes the query and stores the results in a list of Project objects. A for loop is then used

to iterate through this list and display the relevant information to the console. Finally, the em and

emf objects are closed using the methods em.close(); and emf.close();.

 6. Finally, the object tree for the Employee and Project objects is displayed.

comparing Java database access technologies

In this chapter, you have seen several ways to access databases from Java: JDBC, SQLJ, Hibernate

as an ORM framework example, and OpenDB as an OODBMS example. In the industry, the most

popular approaches currently adopted are JDBC and Hibernate. Despite their intrinsic advantages,

SQLJ and OODBMSs are only seldom used because both are often perceived (rightfully or not) as

complex to work with.

http:///

344 ❘ Chapter 9 worKInG wIth dAtAbASeS In JAvA

For simple applications working with only one database and less than 10 relational tables, it is
advised to use JDBC. It’s quite easy to install and use when compared to Hibernate, which has a
rather steep learning curve and bigger footprint.

Hibernate is typically recommended when working with complex database models consisting of
hundreds of relational tables with complex relationships between them. One of the key beneits of

Hibernate is that it allows the complex underlying database design to be completely abstracted.

Managing all these tables and relationships in JDBC would be a very cumbersome exercise. Since

many professional software development methodologies are object-oriented, another key advantage

of Hibernate is that it provides a straightforward mapping from a conceptual OO model to a Java

application without having to bother with database design issues. Furthermore, Hibernate is a very

portable solution, making it easy to switch to another ORM if desired. However, a key concern that

is often heard by many Java developers working with ORM frameworks in general is that many

ORMs could beneit from further query optimization and tuning, for example, improved indices

and caching. Because of this performance issue, some developers use a mixed approach, using native

SQL for read operations (which typically make up the majority of an application anyway) and

Hibernate for the remaining create, update, and delete operations.

What’s ahead

Nowadays, databases are expanding massively in size. IBM estimates that every day 2.5 quintillion

bytes of data are generated. In relative terms, this means that 90% of the data in the world has been

created in the last two years. New database technologies have been introduced to eficiently cope

with this big data storm. NoSQL (Not only SQL) is one of these newer technologies. NoSQL data-

bases abandon the well-known and popular relational database scheme in favor of a more lexible,

schema-less database structure that more closely aligns with the needs of a big data-generating busi-

ness process. One of its key advantages is that it more easily scales horizontally in terms of storage.

Four popular types of NoSQL database technologies are key-value-based databases, document-

based databases, column-based databases, and graph-based databases. This chapter concludes with

a brief discussion of these technologies.

Key-value-based databases access data by means of keys. In other words, data is stored as a table

with only two columns: a (primary) key and a corresponding value, similar to a dictionary. The

value itself is stored as a meaningless binary large object (blob), and it is the responsibility of the

application to understand its content. An example of a key-value-based database is Amazon’s

Dynamo.

Document-based databases are very similar to key-value-based databases except that the value is

now a document. Various document formats can be supported, such as XML, JSON, BSON, PDF,

Microsoft Word, and others. Unlike in key-value-based databases where the values are unstructured,

a document consists of semi-structured elements speciied using a predeined set of tags. A very

popular example of a document-based database is MongoDB.

Contrary to classical relational databases where the data is stored row by row, column-based data-

bases store data in a column-by-column format. Every column then contains a name, a value, and

a timestamp (which can be used to verify how recent the data is). A column family then groups

http:///

What’s ahead ❘ 345

various columns together, much like a table in a relational database environment. Two popular
examples of column-based databases are Google’s BigTable and Facebook’s Casandra.

Graph databases store database objects using a graph-based format consisting of nodes, properties,
and edges. A node can have 0 or more properties. Nodes are linked by means of edges. Just like
nodes, edges can also have properties. Graph databases can be easily navigated through by hop-
ping from one node to another along the existing edges. Hence, they provide a transparent storage
format for Java objects, which are typically also highly interlinked. Every node in the graph then
corresponds to a Java object—the node properties to the ields of the Java object and the edges to the

associations between the Java objects. A key advantage of graph databases compared to relational

databases is that they are schema-less, meaning that node properties and edges can be dynamically

added. Furthermore, they are more eficient at querying highly interlinked data structures, which

can now be tackled using path traversal through the graph, instead of resource-expensive SQL join

operations as would be the case with an RDBMS. Popular examples of graph databases are Oracle

NoSQL, HyperGraphDB, and Neo4j.

Although the JDBC and JPA speciications were originally developed for relational database access,

some vendors have provided JDBC/JPA access to NoSQL databases. Hibernate has introduced the

Object/Grid Mapper (OGM), which uses its ORM engine to provide Java persistence (JPA) support

for NoSQL databases. It currently supports key-value, document, and graph databases. EclipseLink

also provides JPA support for NoSQL databases.

To summarize, as also illustrated by a recent KDnuggets poll (see http://goo.gl/KCTCoA), SQL is

far from dead, and given its widespread adoption will still remain an important data-manipulation

language for years to come. In fact, despite the name NoSQL, many of the database systems dis-

cussed in this chapter still provide active support for SQL to manipulate the data. Moreover, in

response to the NoSQL stream, some vendors came up with NewSQL database products by equip-

ping traditional RDBMs with facilities to provide the same scalability as their NoSQL counterparts.

A popular example here is Google’s Spanner. Hence from a Java programmer’s perspective, it will

remain important to know the basic concepts of SQL in order to develop high-performing Java data-

base applications.

http://goo.gl/KCTCoA
http://goo.gl/KCTCoA
http:///

http:///

accessing Web Sources

10
What you Will learn in this chapter:

 ➤ How computers communicate with each other over networks and

the Internet

 ➤ What web services are and what the common web service stan-

dards are

 ➤ How to access web services and information on the Internet with

Java

 ➤ How to set up your own web services with Java

Wrox.com code doWnloads for this chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 10
download and individually named according to the names throughout the chapter.

Since its inception, Java has always been merited for its strong networking support, enabling
computers to communicate with each other and transmit information between Java programs
over networks and the Internet. To say it in the words of John Cage—the 21st employee of
Sun Microsystems (where Java originated)—“the network is the computer.” This phrase was
relected in Sun’s philosophy and can be observed in Java as well.

In this day and age, programs rarely behave as an “island,” but communicate instead with a
vast array of other platforms. In fact, you have seen one example of this in the previous chap-
ter on how to communicate with database management systems in Java. This chapter takes
you a step further and shows you how to interact with websites and web services, and how to
create your own web services in Java to provide information to other parties.

Web applications are an incredibly important application area for Java, so much so that entire
books have been devoted to the topic. Thus, this chapter will not be able to cover each and

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

348 ❘ Chapter 10 AcceSSInG web SourceS

every detail regarding networking, web applications, and web services, but it will provide you with
enough information to get started in terms of being able to retrieve information from the web, and
even in making your own programs accessible from the outside world.

This chapter is organized as follows: as each web application builds on top of a networking infrastruc-
ture, the irst section provides a brief, general introduction to computer networks. The goal here is just
to provide you with enough information to bring you up to speed, but it will not cover how to program
so‐called low‐level networking applications in Java. That’s an advanced area of programming entailing
a great deal of complexity. Instead, you can use the higher‐level classes and techniques to abstract away
some of this complexity by using Java’s strong support for interacting with so‐called web services.

A large number of web service technologies exist—each of which differs in terms of complexity,
lexibility, and ease of use. This chapter discusses Remote Procedure Calls (RPC), Remote Method
Invocation (RMI), Simple Object Access Protocol (SOAP), and Representational State Transfer
(REST). After explaining these techniques, you will see how to access such services with Java. Note,
however, that not all information you want to access online will be provided to you in the form of
a neatly packaged web service, so you will also learn how to make Java act as a web browser and
retrieve information from web sources in that way.

Finally, the last section in this chapter shows you how to create your own web services with Java
and make your programs accessible to the outside world. Note that this chapter is one of the harder
ones in this book. As such, don’t be afraid to take your time to explore the different code examples
or skip parts you don’t feel comfortable with yet. Especially if you’ve never worked with web tech-
nologies before, some of the concepts discussed in this chapter can seem a bit daunting at irst.
Additionally, note that this chapter follows a more hands‐on approach than other chapters. As such,
each section immediately guides you through an example program to illustrate the different topics.

a brief introduction to netWorKing

Nowadays, computer networks have become so integrated into our day‐to‐day computing activities that
you rarely think about their complexity. Whenever you surf the web, access social networks, use e‐mail
clients, use smartphone apps, or upload iles on a company’s intranet site, information is being passed
over some sort of computer network. Put simply, a computer network is no more than a series of con-
nected machines that allow devices to exchange data with one another, be it PCs, phones, or servers.

Although this description looks simple enough, computer networks are composed of so many dif-
ferent protocols (a protocol is a standard “agreement” on how to communicate) and services, that it
is just short of amazing that they work and work fast. As an example, consider what happens when
you try to access a website, say, www.wrox.com for example:

 1. You enter www.wrox.com into your web browser, so the browser needs to igure out the IP
address for this site. IP stands for “Internet Protocol.” It’s the core protocol of the Internet,
as it enables networks to route and redirect communication packets between connected
computers, which are all given a so‐called IP address. To communicate with the Wrox web
server, you need to know its IP address. Since the IP address is basically a number, users can-
not be expected to remember all addresses for all websites they want to visit (this would be
the same as remembering a telephone book!). Therefore, your browser sets off to igure out
the correct address for you.

www.wrox.com
www.wrox.com
http:///

a Brief Introduction to Networking ❘ 349

 2. In order to retrieve the IP address for a website, web browsers use another protocol, called
DNS (Domain Name System). First, the web browser will inspect its own cache (its “short-
term memory,” if you will) to see whether you’ve visited this website in the past. If you have,
the browser can reuse the stored address. If not, the browser will ask the underlying operat-
ing system (Windows, for instance) to see whether it knows the address for www.wrox.com.
In case you already know the IP address up front (not likely) and type it in your browser’s
URL bar directly, this address lookup step can, of course, be skipped.

 3. If the operating system is also unaware of this domain, the browser will send a DNS request
to your router, which is the machine that connects you to the Internet and typically keeps its
own DNS cache.

 4. If your router is also unaware of the correct address, your browser will start sending a num-
ber of data packets to known DNS servers, for example, to those maintained by your Internet
service providers. To send these requests, a number of protocols are used on top of each other.
First, IEEE 802.3 (Ethernet) communicates with machines on the same network; IP correctly
routes the request to the IP address of the DNS server; UDP (a “transport protocol”) builds on
top of IP to provide a standardized simple messaging facility; and inally, DNS governs how the
actual DNS request message should look. A simple “tell me the address for www.wrox.com”
message looks like Figure 10-1 if you capture it from the network.

figure 10-1

www.wrox.com
http://www.wrox.com%E2%80%9D
http:///

350 ❘ Chapter 10 AcceSSInG web SourceS

Figure 10-1 shows the “stack” of protocols discussed previously. At the top, you can see
a “frame” message, which describes your message in its most basic “physical” terms—a
series of bytes, 0 and 1 pulses on a wire. Below this, you ind “Ethernet,” which in this
case shows that communication is going on between a Dell laptop and a Cisco router (the
manufacturer information can be derived from a unique identiier which is associated
with every Ethernet device). Under this, you have the Internet Protocol, which shows that
a message is sent from the address 10.33.200.175 (the laptop) to 8.8.8.8 (Google’s DNS
server). The IP protocol includes some basic checksums to make sure the receiver can check
the integrity of the package (errors occur when the transmission is sent over wires). Next,
you see the “User Datagram Protocol” (UDP), which shows that a message is being sent to
port 53, the standard port DNS servers are listening on. Assigning messages a destination
port number provides a simple way for the receiving party to know for which application
the message is intended. The computer also speciies a temporary source port (61796) to
indicate that a reply is expected to be sent to this port. Finally, at the bottom, you ind
the “Domain Name System” (DNS) message, which tells you that this message contains a
query for www.wrox.com.

 5. You’re not out of the woods yet, as the DNS server still has to send back a reply. Again, a
complex message is constructed and sent back, as shown in Figure 10-2.

NOTE The excellent free and open source Wireshark tool is used to capture
and show network packets here.

figure 10-2

www.wrox.com
http:///

a Brief Introduction to Networking ❘ 351

The Ethernet protocol informs you that a message is coming in from the Cisco router back
to the laptop. The IP protocol speciies that the message is coming from address 8.8.8.8 and
back to your address 10.33.200.175. The UDP protocol tells you that the message originates
from port 53 and is destined for port 61796—the one you’re listening on to receive a reply.
The DNS message contains a structured answer, telling you that www.wrox.com is the same
as wrox.com, and that wrox.com has the IP address 208.215.179.178.

 6. All of this was done just to igure out the IP address of www.wrox.com. Your browser can now
establish a connection to 208.215.179.178. Again, a number of protocols are combined to
construct a complex message. You have already seen IEEE 802.3 (Ethernet) and IP. Instead
of UDP, another transport protocol is used on top of this, called TCP (Transmission Control
Protocol). TCP provides a more reliable means of delivering network messages, as it includes
functionality for error‐checking, makes sure that packets are delivered in the right order, and
takes care of resending packets when they are lost in transmission. Finally, HTTP (HyperText
Transfer Protocol) is used to request and receive the web page. Figure 10-3 shows the complete
package the browser sends to request a web page from www.wrox.com (208.215.179.178).

figure 10-3

Figure 10-3 shows the whole stack of protocols at work here. Note the sequence number, the
acknowledgement number, and the checksum in the TCP message, which make sure messages are
delivered correctly and in the right order. Note also that, just as with UDP, TCP uses the ports
mechanism to organize messages. The HTTP message looks like the following:

GET / HTTP/1.1
Host: www.wrox.com
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;

www.wrox.com
wrox.com
www.wrox.com
www.wrox.com
http://www.wrox.com
http:///

352 ❘ Chapter 10 AcceSSInG web SourceS

 q=0.8
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/33.0.1750.154 Safari/537.36
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en-GB;q=0.8,nl;q=0.6

The HTTP request is composed of an HTTP verb (GET) to a location (/) and version speciication
(HTTP/1.1) (the irst line), followed by the number of headers, followed by a blank line to close
the request. Browsers are free to include as many headers as they want to request information
from and send instructions to the web server. Since HTTP will be used throughout the remainder
of this chapter, this simple request message is explained line by line here:

 ➤ GET / HTTP/1.1 denotes that you are performing a GET request for the URL / on
this web server. HTTP/1.1 denotes that you are compatible with version 1.1 of the
HTTP protocol.

 ➤ Since the same web server can host multiple websites, the “Host” header speciies
that you are requesting a web page from www.wrox.com, so the web server knows
from which site it should return a page.

 ➤ The “Connection” header instructs the server to keep the connection open, if pos-
sible. This allows the following HTTP requests to speed up. If this header is not pro-
vided (or the server is not willing to accept keep‐alive connections), a new complete
HTTP transaction will be set up for each request.

 ➤ The “Accept” header informs the web server that the web browser is capable of
receiving the following formats. Web servers can use this information to adapt their
response accordingly.

 ➤ The “User‐Agent” header provides information about the browser and operating sys-
tem the user is using to visit the websites. This is one of the easiest ways for sites to
detect which browser you are using.

 ➤ The “Accept‐Encoding” and “Accept‐Language” headers also inform the web server
about formats and languages the browser accepts. This can be used by the web server
to compress the reply before sending it (as the browser accepts GZIP), for instance,
or to send a translated version of the requested page if the user desires.

NOTE If TCP is so much more reliable than UDP, you might be wondering why
it’s not used by default. For most applications, TCP is the transport protocol of
choice to be used in combination with IP. So commonly, in fact, that the whole
stack of protocols (Ethernet, IP, and TCP) is oftentimes just denoted as TCP/
IP. Then why use UDP? Well, sometimes network applications need to be fast
above all else, so programmers might prefer to use the bare‐bones offerings
of UDP above TCP and are willing to sacriice reliability aspects. Games, for
example, typically apply UDP instead of TCP in order to minimize latency. Lost
packets can then just be dealt with by the application and re‐sent if necessary.

www.wrox.com
http:///

a Brief Introduction to Networking ❘ 353

 7. Next, you receive the following HTTP reply from the web server. The complete protocol
stack is not shown this time (Ethernet, IP, TCP, and HTTP); it just shows the HTTP message
contained within:

HTTP/1.0 302 Found
Date: Fri, 11 Apr 2014 09:45:49 GMT
Server: Apache
Location: http://www.wrox.com/WileyCDA/
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 190
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved here.</p>
</body></html>

HTTP replies are structured mostly in the same manner as an HTTP request. The irst
line indicates the HTTP protocol version the server adheres to (HTTP/1.0), together
with a status message (302) and a textual description of the status (Found). Next, the
server sends a number of headers followed by a newline, followed by the actual contents
of the page, which is the message body. In this case, the server is telling you that your
requested resource (/) was found, but should be retrieved at another location: www
.wrox.com/WileyCDA/. The server was able to adhere to the request to compress the
contents (GZIP), but is unwilling to keep the connection open (“Connection: close”).
Note that the actual contents have been uncompressed to show you what is returned to
the browser.

 8. If you were using an archaic or broken web browser, the browser would display the received
body to the user. The actual body is formatted in HTML (HyperText Markup Language),
which is the standard language used to create web pages. Luckily, your browser is smart
enough to understand the 302 status code, so it ires off another request to the given location:
http://www.wrox.com/WileyCDA/.

 9. Luckily, this time the browser remembers the IP address for www.wrox.com, so it can imme-
diately send a new HTTP request:

GET /WileyCDA/ HTTP/1.1
Host: www.wrox.com
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;
 q=0.8
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/33.0.1750.154 Safari/537.36
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en-GB;q=0.8,nl;q=0.6

www.wrox.com/WileyCDA/
www.wrox.com/WileyCDA/
http://www.wrox.com/WileyCDA/
http://www.wrox.com/WileyCDA/
http://www.wrox.com/WileyCDA/
http://www.wrox.com
http://www.wrox.com
http:///

354 ❘ Chapter 10 AcceSSInG web SourceS

This request looks similar to the previous one, except that now, the location /WileyCDA/ is
accessed. The server now happily replies:

HTTP/1.0 200 OK
Date: Fri, 11 Apr 2014 09:45:50 GMT
Server: Apache
X-Powered-By: SPA
Set-Cookie: JSESSIONID=495BF51CF5892A07BBF54D9F6CA32D48; Path=/
Instance: p4
Vary: Accept-Encoding
Content-Encoding: gzip
Connection: close
Content-Type: text/html;charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- Build: R16B063 -->
<!-- Strand Id: 0229556601 -->

<!-- layout(Wrox Homepage) -->
 <html>
 <head>
 <link rel="canonical" href="http://www.wrox.com" />
 <link href="http://media.wiley.com/spa_assets/R16B063/site/wrox/include/
 style.css" type="text/css" rel="stylesheet" />
 <title>Programming Books, Free Code Downloads, Ebooks, Blogs, Articles,
 Forums - Wrox</title>
 ... LOTS OF HTML CODE ...
</html>
<!-- / layout(Wrox Homepage) -->

Most of the HTML reply is omitted here, as printing the whole thing would take multiple
pages. Just note that the server now replies a 200 status message, indicating the request
could be handled successfully.

NOTE Many other HTTP status codes exist. Most of us are familiar with the
404 (“Not Found”) status code. One other peculiar “error” status code is 418
(“I’m a teapot”), which was added to the standard as a 1998 April Fools’ joke,
but is not expected to be implemented by actual HTTP servers.

 10. The web browser starts interpreting the HTML code and displays the page to the user. The
web browser sees, however, that the page also includes a number of images. For each image,
the browser will have to ire off a new HTTP request. As such, rendering just one web page
might involve a large number of HTTP requests. Modern browsers, such as Firefox and
Chrome, allow you to show a timeline of all requests being made, such as the one shown in
Figure 10-4 for rendering www.wrox.com.

Luckily, browsers are smart and will start rendering the page as soon as information is
coming in, showing images and other visuals as they are retrieved. In addition, as can be
observed from the timeline shown in Figure 10-4, browsers will send a number of HTTP
requests in parallel to speed up the loading process.

www.wrox.com
http://www.wrox.com
http://media.wiley.com/spa_assets/R16B063/site/wrox/include/style.css
http://media.wiley.com/spa_assets/R16B063/site/wrox/include/style.css
http:///

a Brief Introduction to Networking ❘ 355

figure 10-4

http:///

356 ❘ Chapter 10 AcceSSInG web SourceS

With so many protocols, requests, and back-and-forth communication going on, it is nothing short
of amazing that you are able to view a simple web page in less than one second. To standardize
this wealth of protocols, the International Organization of Standardization (ISO) maintains the
so‐called Open Systems Interconnection (OSI) model, which deines aspects of communication into
seven layers, from bottom to top:

 ➤ Layer 1: Physical layer: Includes the Ethernet protocol, but also USB, Bluetooth, and other
radio protocols

 ➤ Layer 2: Data link layer: Includes the Ethernet protocol

 ➤ Layer 3: Network layer: Includes IP (Internet Protocol)

 ➤ Layer 4: Transport layer: TCP and UDP

 ➤ Layer 5: Session layer: Includes protocols for opening/closing and managing sessions. TCP’s
session management is found on this layer.

 ➤ Layer 6: Presentation layer: Includes protocols to format and translate data. This layer also
includes encryption protocols.

 ➤ Layer 7: Application layer: HTTP and DNS, for instance

Not all network communications need to use protocols from all these layers. To request a web page
for instance, layers 1 (physical), 2 (Ethernet), 3 (IP), 4 (TCP), and 7 (HTTP) are involved, but the
layers are constructed so that each protocol found at a higher level can be contained inside the mes-
sage of a lower‐layer protocol. When you request a secure web page, for instance, the HTTP mes-
sage (layer 7) will be encoded in an encrypted SSL or TLS message (layer 6).

The lower the layer you aim for when programming networked applications, the more functionality
and complexity you need to deal with. In Java, for example, it is possible to set up so‐called server
and client “sockets,” which are networking endpoints that deine a TCP/IP, UDP/IP, or raw IP
connection. Once this connection is established, it is up to you, the programmer, to deine how the
actual messages you transmit should look, so that you are then effectively creating a higher‐layered
protocol on top of this.

try it out Creating a Simple Networked application in Java

Now that you have the basics of networking under your belt, take a quick look at how you would
implement the most basic client‐server networking application in Java using a simple example.
Similarly to how HTTP works, you will create a simple request‐reply program using TCP/IP sockets
in Java.

Note that this is the only time when you will be applying Java sockets directly. Earlier in this chapter,
you read that programming this close to the “networking metal” is a complex and challenging task,
and in this Try It Out, you’ll see the reasons why.

 1. Create two classes in Eclipse: TCPServer and TCPClient. Put them in a package called
socketexample.

 2. Write the following source code for the TCPServer class:

http:///

a Brief Introduction to Networking ❘ 357

package socketexample;

import java.io.*;
import java.net.*;

public class TCPServer {
 public static void main(String args[]) {
 // Listen to incoming connections at port 9000
 try (ServerSocket serverSocket = new ServerSocket(9000)) {
 String message = null;
 while (!"STOP".equals(message)) {
 // Accept incoming client
 System.out.println("Waiting for connection...");
 try (// Set up socket for connection with client
 Socket connectionSocket = serverSocket.accept();
 // Set up input stream reader (from client)
 DataInputStream incoming =
 new DataInputStream(connectionSocket.getInputStream());
 // Set up output stream writer (to client)
 DataOutputStream outgoing =
 new DataOutputStream(connectionSocket.getOutputStream());
) {
 // Get the message the client sent
 System.out.println("Waiting for message...");
 message = incoming.readUTF().trim();
 System.out.println("CLIENT SAID: " + message);
 // Send message back
 outgoing.writeUTF("MESSAGE RECEIVED\n");
 if ("STOP".equals(message))
 // Send additional line
 outgoing.writeUTF("SERVER CLOSING DOWN\n");
 // Close output stream to indicate that no more data is to be
 sent
 outgoing.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

 3. For the TCPClient class, the code reads as follows:

package socketexample;

import java.io.*;
import java.net.*;

public class TCPClient {
 public static void main(String args[]) {

http:///

358 ❘ Chapter 10 AcceSSInG web SourceS

 try (// Create a socket connecting to server
 Socket clientSocket = new Socket("localhost", 9000);
 // Set up input stream reader to read keyboard input
 BufferedReader keyboardReader =
 new BufferedReader(new InputStreamReader(System.in, "UTF-8"));
 // Set up input stream reader (from server)
 DataInputStream incoming =
 new DataInputStream(clientSocket.getInputStream());
 // Set up output stream writer (to server)
 DataOutputStream outgoing = new
 DataOutputStream(clientSocket.getOutputStream());
) {
 // Read message from user
 System.out.println("Enter message to send to server: ");
 String message = keyboardReader.readLine();
 // Send message to server
 outgoing.writeUTF(message + '\n');
 // Read the reply from server
 System.out.println("Server replied: ");
 try {
 String reply = incoming.readUTF();
 System.out.print(reply);
 } catch (EOFException eof) {
 // Do nothing... server has closed the connection
 }
 // Close the connection
 clientSocket.close();
 System.out.println("Connection closed gracefully");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

 4. To try out this code, start TCPServer irst, followed by TCPClient. Note that you might get
a warning from your irewall telling you that network activity is being requested by Java.
Naturally, to make the code work, you should allow this. You should be able to type a message
in the TCPClient console window and receive a reply. The output for TCPServer will then read
like so:

Waiting for connection...
Waiting for message...
CLIENT SAID: Hello there server!
Waiting for connection...

Whereas for the client, you will see:

Enter message to send to server:
Hello there server!
Server replied:
MESSAGE RECEIVED
Connection closed gracefully

http:///

a Brief Introduction to Networking ❘ 359

How It Works

Now take a look at the way this code works.

 1. On the server’s side, a ServerSocket is created that will listen for incoming connections on the
local computer (the default) on port 9000, using TCP/IP. (UDP/IP server‐client programs, on the
other hand, are created through another class, DatagramSocket.)

 2. Next, the server performs a loop that accepts a client connection (using a second socket), reads a
message from the client, sends back an acknowledgement, and closes the output stream. If a client
sends a STOP message, the server will stop accepting new connections and will close itself down.
Note that the stream types are matching on both sides of the connection (data input and output
streams). Also note the use of writeUTF and readUTF to make sure the client and server can com-
municate by using the full Unicode spectrum (e.g., also in Mandarin).

 3. On the client’s side, a normal socket is created to connect to localhost (the hostname denoting the
local computer; you can also use the special IP address 127.0.0.1, which also refers to the local
computer). The user is then asked to enter a message, which is sent to the server. Next, as long as the
server is sending back data, the reply to the user is printed out before closing the connection.

 4. If you get a "java.net.BindException: Address already in use: JVM_Bind" exception on the
server’s side, this means that a TCP/IP socket is already listening on port 9000. Make sure you haven’t
started TCPServer multiple times, or try to change the port number in TCPServer and TCPClient to
something else—perhaps there is another program on your computer listening to this port number.

 5. Take some time if you want to experiment with the program and try out some simple modiica-
tions. For instance, try changing the client and server classes to allow the client to send multiple
lines before receiving a reply from the server. To indicate when the client has inished sending its
message, you can use another terminator string (such as a blank newline, like the one used in the
HTTP protocol).

The setup of this example might not seem too dificult to understand, but this example has been kept
deliberately simple. Once more functionality is required, things start getting more complex rather
quickly. For example, you have created a simple request‐reply “protocol” here, which is much simpler
to implement than a program where both the client and the server transmit a number of messages to
each other. In addition, try launching multiple client programs at once. You’ll note how the server is
able to deal with only one client at once, forcing the other one to wait to establish its connection. This
means that, if you run this program in a real‐life setting, one single client can block access to the ser-
vice by just waiting indeinitely to send its message. To overcome this problem, you need to use a mul-
tithreaded setup where multiple connections can be active at once (and dealt with separately in parallel
running threads). Finally, this program is also “blocking,” meaning that when you write something like
reply = incoming.readUTF(), the execution of the program will stop until actual data is received
(this is why you close the outgoing stream explicitly on the server’s side). So‐called “asynchronous”
(non‐blocking) communication is also possible in Java, but is harder to implement correctly.

Luckily, Java comes with a number of libraries and frameworks that help to abstract away a lot of this
complexity, so that you can focus on the task at hand—accessing actual information over the networks
and the Internet.

http:///

360 ❘ Chapter 10 AcceSSInG web SourceS

This concludes the brief introduction to basic networking. From now on, a variety of built‐in Java
classes and libraries will be used to help you access and retrieve information stored on computer net-
works—such as the Internet—which is made accessible in a standardized, structured way.

Web services

This section irst provides a short introduction on web services and how they help to make informa-
tion accessible over the network.

On a conceptual level, web service standards are frequently separated into two large categories.
The irst category can be denoted as “heavyweight” web services, which typically use XML‐based
formats to exchange messages, involving a variety of protocols and standards to pass information,
as well as deine which kinds of information can be accessed and how. For example, a complex web
service may involve the HTTP protocol (which is now used as a transport protocol to pass the actual
message); SOAP, the messaging protocol that encodes messages in XML; WSDL (Web Services
Description Language), a protocol used to describe the functionalities offered by the web service,
and UDDI (Universal Description Discovery and Integration), which can be used to make web ser-
vices discoverable by registering them in a central location.

Due to the complexity of heavyweight web services, a new web service standard, called REST
(Representational State Transfer), has been gaining traction in recent years. REST is built directly
on top of HTTP and is completely stateless and light in terms of bandwidth consumption. It has
been adopted by most websites offering some kind of API. For example, most social networks use a
REST‐based API to handle the communication between the service and mobile apps.

rpc and rmi
RPC stands for “Remote Procedure Call,” and it’s used as a general term to denote any form of
communication between computer programs where one program accesses a routine or procedure in
another program, often over the network. In Object‐Oriented Programming, the term RMI is used,
which stands for “Remote Method Invocation.”

RPC messages are initiated by the client, which sends a message to request the execution of a certain
method to a server, together with the parameters to send to this method. The remote server sends a
response back to the client, which can then be processed. As explained in the Try It Out, “A Simple
Networked Application in Java,” earlier in “A Brief Introduction to Networking” section, RPC calls
can come in two varieties: synchronous (where the client blocks and waits until it receives a reply)
and asynchronous (where the client can continue to execute some tasks while waiting for the reply).
Of course, since communication is performed over a network, you must take special care when
handling failures such as the network going down, without the client knowing if part of the RPC
call was actually executed. If the called method performs data changes on the server’s side, rollback
mechanisms must be provided to undo these changes in the event of a failure.

RPC and RMI have a long history. RPC was originally invented by Sun Microsystems (the same
company from which Java originated) and was ultimately standardized and implemented as the
Open Network Computing Remote Procedure Call. Java also provides built‐in mechanisms to per-
form RMI, called Java RMI. This book will not go into much detail on how Java RMI works, but
the following Try It Out briely shows how it works.

http:///

Web Services ❘ 361

try it out rMI in Java

This exercise will help you see how Java RMI works. You will create a simple server for two basic num-
ber manipulations: addition and subtraction.

 1. Create two classes and an interface: RMIClient, RMIServer, and RMIInterface. Create a package
called rmiexample to hold them.

 2. Start with RMIInterface. This interface deines the methods the server will expose to the client
without specifying the actual code to be executed, just as a normal interface would. The code for
RMIInterface looks like this:

package rmiexample;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RMIInterface extends Remote {
 public int addTwoNumbers(int a, int b) throws RemoteException;
 public int substractTwoNumbers(int a, int b) throws RemoteException;
}

 3. The RMIServer class implements this interface and thus speciies the method body for addTwoNum-
bers and substractTwoNumbers. A main method is also included in this class and it instantiates
an RMIServer object:

package rmiexample;

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.*;

public class RMIServer
 extends UnicastRemoteObject implements RMIInterface {

 public RMIServer() throws RemoteException {
 super();
 }

 public int addTwoNumbers(int a, int b) throws RemoteException {
 System.out.println("addTwoNumbers was called");
 return a + b;
 }

 public int substractTwoNumbers(int a, int b) throws RemoteException {
 System.out.println("substractTwoNumbers was called");
 return a - b;
 }

 public static void main(String args[]) throws Exception {
 System.out.println("Starting server...");

http:///

362 ❘ Chapter 10 AcceSSInG web SourceS

 try {
 // Create registry on local machine running on port 1099
 LocateRegistry.createRegistry(1099);
 System.out.println("RMI registry was created");
 } catch (RemoteException e) {
 System.out.println("RemoteException occurred: ");
 e.printStackTrace();

 }

 RMIServer theServer = new RMIServer();

 // Bind the server instance to the name "RMIServer"
 Naming.rebind("//localhost/RMIServer", theServer);
 System.out.println("RMIServer bound in registry");
 }
}

 4. RMIClient just contains a main method to try out the RMI server:

package rmiexample;

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class RMIClient {
 public static void main(String args[]) throws Exception {
 // Get RMI registry running at the local computer
 Registry registry = LocateRegistry.getRegistry("localhost");
 // Request interface bound on name "RMIServer"
 RMIInterface serverInterface = (RMIInterface) registry.lookup("RMIServer");

 // Execute methods over RMI
 System.out.println(serverInterface.addTwoNumbers(3, 4));
 System.out.println(serverInterface.substractTwoNumbers(10, 3));
 }
}

 5. To try out this code, start the main class of RMIServer irst, followed by RMIClient. If everything
goes right, you should see this on the server’s console:

Starting server...
RMI registry was created
RMIServer bound in registry
addTwoNumbers was called
substractTwoNumbers was called

With the results of the two method calls on the client’s console:

7
7

http:///

Web Services ❘ 363

How It Works

Here’s how it works:

 1. RMIInterface deines the methods the server will expose to the client without actually specifying
the code to be executed, just as a normal interface would. However, unlike normal interfaces, note
that RMI interfaces need to extend the remote interface in order to be used as an RMI service. In
addition, each method you deine in the interface needs to throw a RemoteException exception.

 2. Concerning RMIServer, most of the code should be self‐explanatory, especially the implemen-
tation of the two provided methods. Two important aspects should be noted: irst, the class
should implement the interface you’ve deined earlier. Second, you are extending another class—
UnicastRemoteObject—which is a built-in class that allows you to automatically export a so‐
called “stub” for RMIServer. A stub is basically a bare‐bones version of the RMIServer class that
includes functionality for parameter conversion. Since the server and client code of an RMI pro-
gram can run on different machines with different architectures, they might not agree on the data
representation of different parameters. Consider, for example, 32‐ and 64‐bit machines using dif-
ferent sizes to represent number types. A stub handles the conversion of passed method arguments
and deconversion of returned results automatically. There are two ways to generate stubs: manu-
ally, using the rmic program included in the Java JDK (this would create an RMIServer_Stub.
class ile), or automatically, like you’ve done here by extending UnicastRemoteObject.

 3. Next, take a look at the main method of RMIServer. First, this method uses the LocateRegistry
built‐in class to create an RMI registry running on port 1099. An RMI registry keeps track of the
services provided by an RMI server by binding objects providing methods over RMI to speciic
names. Again, it is possible to start this registry from the operating system (using the rmiregistry
program included in the Java JDK), but you’re taking the programmatic route here. Next, the main
class instantiates an RMIServer object and binds it to the name RMIServer on the local machine,
localhost.

 4. The client (RMIClient) uses the LocateRegistry class to retrieve the registry running on
localhost, and then an interface object is created by looking up the bound object to the name
RMIServer in the registry. Finally, everything is set for methods to be executed on this object, just
as you would with a normal object. The difference, however, is that the method arguments will
now be sent over the network.

Apart from Java RMI, a large number of additional RPC‐based standards and protocols have been
deined throughout the past years, not all of them being speciic to Java, of course. For example, the
Common Object Request Broker Architecture (CORBA) is a standard that was deined by the OMG
(Object Management Group) and enables communication between systems. The reason I mention it
is because it is the only OMG standard that’s been incorporated in Java SE as a built‐in library, with
classes being located in the org.omg.CORBA package. Conceptually speaking, CORBA enables the
same functionality as Java RMI, with the difference that CORBA allows communication between
very diverse systems (i.e., not only between Java programs) running on different architectures, dif-
ferent operating systems, and written using different programming languages. However, CORBA
has been subject to quite a bit of criticism—some of it relating to technical aspects, some of it to
design choices—and the complexity of the standard means that it is not very widely adapted. As

http:///

364 ❘ Chapter 10 AcceSSInG web SourceS

such, I will not discuss it in more detail here, but if you ever hear the name again, you know what it
relates to.

soap
Another RPC‐based protocol that enables accessing objects over a network is called SOAP, and it
was designed as the successor of XML‐RPC (XML‐based RPC). SOAP is quite popular in “enter-
prise” environments as a method to access and provide web services.

SOAP stands for “Simple Object Access Protocol,” although the W3 standards body has dropped
the use of the name as an acronym in a recent revision of the standard in favor of just using
“SOAP” as is. While this protocol is easier to use than CORBA, it can be argued that it is still not
really. . . simple. Recall that the introduction stated that web service technologies are typically
separated into “heavyweight” and “lightweight” categories, and SOAP—like other RPC‐based tech-
nologies—is one of the former. The basic idea behind SOAP is to provide an XML‐based messaging
framework that’s extensible (new features can be easily added), neutral (SOAP messages can travel
on top of HTTP and a variety of other protocols), and independent (can be used independently of
the programming language and architecture used). These aspects make SOAP very versatile, but
the standard is also slower and more verbose than other RPC standards, as XML messages can
grow large quickly. For example, the following code snippet shows a SOAP request to call a method
AddTwoNumbers, which is embedded inside an HTTP request:

POST /mathematicsService HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: *LENGTH*

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/mathematics">
 <m:AddTwoNumbers>
 <m:FirstNumber>3</m:FirstNumber >
 <m:SecondNumber>6</m:SecondNumber>
 </m:AddTwoNumbers>
</soap:Body>

</soap:Envelope>

And the server answers with the following reply:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: *LENGTH*

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

http://www.example.org
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.example.org/mathematics
http://www.w3.org/2001/12/soap-envelope
http:///

Web Services ❘ 365

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/mathematics">
 <m:AddTwoNumbersResult>
 <m:Result>9</m:Result>
 </m:AddTwoNumbersResult>
</soap:Body>

</soap:Envelope>

As you can see from this example, XML—just like HTML—is another markup language that’s used
to encode documents in a format that is both human‐ and machine‐readable. It is similar to HTML
in the sense that documents are formatted as a tree of tags. For example, the following XML docu-
ment describes a simple book listing:

<?xml version="1.0"?>
<books>
 <book>
 <title>My First Book</title>
 <authors>
 <author>
 <firstname>Anton</firstname>
 <lastname>Anonymous</lastname>
 </author>
 </authors>
 </book>
 <book>
 <title>Another Book</title>
 <authors>
 <author>
 <firstname>Anton</firstname>
 <lastname>Anonymous</lastname>
 </author>
 <author>
 <firstname>Bruce</firstname>
 <lastname>McAuthor</lastname>
 </author>
 </authors>
 </book>
</books>

SOAP is often combined with another standard, called WSDL (Web Services Description Language).
WSDL is used to describe the functionalities offered by the web service. You will see more about
WSDL later, when you learn how to access SOAP services with Java.

Java provides excellent functionalities to communicate with SOAP services, as you will see later.
However, the verbosity and “heaviness” of this technique have caused a shift toward simpler proto-
cols in recent years. Traditionally, the Java ecosystem has always been very “XML friendly,” with
many messaging formats and coniguration iles being deined and stored as XML. In recent years,
especially with the rise of “modern” web frameworks such as Ruby on Rails, a shift has been occur-
ring toward simpler architectures, which prefer to use simpler data description languages such as
JSON or YAML. For example, here is how the “books” data structure as provided in the previous

http://www.w3.org/2001/12/soap-encoding
http://www.example.org/mathematics
http:///

366 ❘ Chapter 10 AcceSSInG web SourceS

XML could be represented as a YAML document, which is arguably more readable and deinitely
more concise:

books:
 - title: My First Book
 authors:
 - {Anton, Anonymous}

 - title: Another Book
 authors:
 - {Anton, Anonymous}
 - {Bruce, McAuthor}

However, every technology comes with advantages and disadvantages, and SOAP remains in wide
use, especially in enterprise environments that have a strong need for its versatility.

rest
This section looks at how REST—Representational State Transfer—works. REST is extremely
well suited for basic, ad hoc web services. In addition, as the standard is very tightly coupled
with HTTP, it has become the architecture of choice by “modern” web companies (think of
social networks, for example) to provide APIs with which third‐party developers can develop
applications. In fact, a shift is going on where developers can be seen irst constructing a REST
API (API‐irst development) and then building their own applications and websites around this
API.

One of the biggest differences between REST and SOAP is that SOAP is communication agnostic
(remember that SOAP messages can be transferred on top of HTTP or any other network proto-
col), whereas REST is tightly integrated with HTTP and “embraces” the protocol. In fact, a REST
request looks completely similar to a normal HTTP request:

GET /books/B101 HTTP/1.1
Host: www.example.com

This is a normal HTTP GET request for the URI /books/B101 sent to the host www.example.com.
The server can then respond with a formatted representation of the book with ID B101. Other
HTTP request types—apart from GET—exist. In the previous discussion on SOAP, for example, the
SOAP request message was sent using a POST request type. GET and POST are the most commonly
used HTTP methods. In fact, your browser will typically execute GET requests to request an URL
and will perform POST requests to send web forms to the server. In the context of “RESTful” web
services, however, the following HTTP methods are used, which are typically requested on collec-
tion resources (with an URI such as http://www.example.com/books) or speciic resource elements
(such as http://www.example.com/books/B101 as shown previously):

 ➤ GET: Retrieve a list of resources belonging to a collection, or a formatted representation of
information on a resource element.

www.example.com
http://www.example.com/books
http://www.example.com/books/B101
http://www.example.com
http:///

Web Services ❘ 367

 ➤ PUT: Replace the entire collection with a new one, replace the resource element with a new
one, or create a resource element if its identiier does not exist.

 ➤ POST: Create a new entry in a collection, or create a new entry in a resource element (less
commonly used).

 ➤ DELETE: Delete an entire collection or a resource element.

Unlike SOAP, REST does not have an oficial standard, so different APIs may apply different conven-
tions in terms of how they deal with the HTTP methods listed previously. Additionally, REST does not
specify a formatting language or standard for the actual request and response messages to represent
data, which means that the server may answer the GET /books/B101 query shown previously with a
JSON, YAML, XML or even plain English description of the book. Some developers choose to sup-
port multiple formats, either by using and adhering to the “Accept” header in the HTTP request, or by
adding an extension preix to the requested URI, for example, GET /books/B101.xml.

Nowadays, companies such as Twitter, Facebook, and PayPal are all providing a REST interface
to access their services, information, and functionalities (Facebook calls this their “Graph API,”
but it works the same way). Due to the fact that there is no real REST standard, conventions might
differ among implementations—so you will need to browse through the API documentation of
each service you want to access—but they all agree on using simple HTTP‐based request‐response
communication.

try it out accessing Facebook’s reSt Interface

This small exercise illustrates how RESTful web services are deined on top of simple HTTP requests.

 1. Navigate to http://graph.facebook.com/me with your web browser.

 2. You should receive the following reply:

{
 "error": {
 "message": "An active access token must be used to query information
 about the current user.",
 "type": "OAuthException",
 "code": 2500
 }
}

How It Works

Here’s how it works:

 1. Navigating to http://graph.facebook.com/me with a web browser will result in the browser
executing an HTTP GET request for the /me endpoint.

 2. Facebook uses JSON to format its REST replies.

 3. As can be read from the reply, the server refuses to provide you with any information, as you have
not authenticated yourself irst. Most RESTful web services nowadays use the so‐called “OAuth”
validation technology to perform the authentication step.

http://graph.facebook.com/me
http://graph.facebook.com/me
http:///

368 ❘ Chapter 10 AcceSSInG web SourceS

 4. Luckily, Facebook also provides a “sandbox” where you can play around with their REST API
at https://developers.facebook.com/tools/explorer, which will automatically handle the
authentication for you. Now, execute a GET request on /me?fields=id,name,birthday. The
server responds with something similar to:

{
 "id": "507162275",
 "name": "Seppe Vanden Broucke",
 "birthday": "11/09/1986"
}

 5. Note how you have supplied arguments with your request this time. You provided one fields
argument with content id,name,birthday to specify which ields you want to get back. This
way of passing arguments to REST requests is comparable to method‐argument passing in SOAP
or RMI.

accessing Web services and sources With Java

Now that you know what web services are and how they work, it’s high time you get to see how
you can access them using Java. This section discusses how to access three kinds of web services:
services offered over SOAP, RESTful web services, and web services that are, in fact, not offered as
a web service at all, using a technique called “screen scraping,” for when you really, absolutely want
to get some information out of a website.

accessing soap services
The irst of the three kinds of web services discussed in this section is SOAP. This protocol was
introduced earlier in this chapter. Here you learn how to use it.

Installing JaX‐WS

JAX‐WS Java library will be used to access SOAP services. If you’re using Eclipse with the Java JRE
(that is, you don’t have the JDK installed), you’ll need to perform the following steps to get JAX‐WS
running. If you’re using the JDK, you’re already up and running and can skip the installation steps
below.

 1. Browse to https://jax-ws.java.net and download the ZIP ile offered there (this book
uses jaxws-ri-2.2.8.zip at the time of writing).

 2. This ZIP ile contains a docs folder with documentation, a bin folder with some executables,
a samples folder containing code samples, and a lib folder with the actual library and sup-
port classes, stored in compressed Java Archives (or JAR) iles. Extract the lib folder some-
where you can easily ind it (e.g., on your desktop).

https://developers.facebook.com/tools/explorer
https://jax-ws.java.net
http:///

accessing Web Services and Sources with Java ❘ 369

 3. Open Eclipse and create
a new Java project, e.g.,
SOAPWithJava.

 4. Drag the extracted lib folder
to your Eclipse project, i.e., to
the SOAPWithJava entry in the
package explorer.

 5. Eclipse will ask you how it
should import your iles. You
should copy them in the Eclipse
project to keep things neatly
in one place, as shown in
Figure 10-5.

 6. The package explorer should now list a lib
folder under the SOAPWithJava project.
It’s best to rename this folder jaxws (right‐
click, select Refactor and then Rename). Do
this before you move on to the next step.

 7. You now need to add all the JAR iles
in the jaxws folder to the build path, so
Eclipse and Java know that you want to use
the classes contained in these iles in your
project. You do so by selecting all JAR iles
in jaxws and in the plugins subdirectory,
right‐clicking, and then selecting Add to
Build Path under Build Path, as shown in
Figure 10-6.

 8. The JAR iles will now show up under
“Referenced Libraries” in the package
explorer.

 9. Finally, keep the extracted ZIP ile around,
as you’ll need to use the executables pro-
vided in the bin folder.

You’re now ready to move on with the implementa-
tion of the actual client.

accessing SOap Services with JaX‐WS
Without WSdL

In this section, you irst take a look at how to access web services without using the WSDL
 descriptor ile.

figure 10-5

figure 10-6

http:///

370 ❘ Chapter 10 AcceSSInG web SourceS

To test the examples in this chapter, you’ll need a server that can respond to SOAP queries. To this
end, you’ll be using the services offered by the following website: http://www.webservicex.net.
This website hosts a number of small, working, example web services, and serves over six million
requests a day. The following Try It Out will help you explore the website.

try it out exploring SOap Services

This exercise will let you explore the webservicex.net website and its services to get a feel for how
they work.

 1. Navigate to http://www.webservicex.net in your web browser. You’ll see a page appearing
with a list of web services you can choose from.

 2. In this example, use the “Stock Quote” web service, retrievable at http://www.webservicex
.net/ws/WSDetails.aspx?CATID=2&WSID=9.

 3. The page shown in Figure 10-7 should appear for the “Stock Quote” web service.

figure 10-7

http://www.webservicex.net
webservicex.net
http://www.webservicex.net
http://www.webservicex.net/ws/WSDetails.aspx?CATID=2&WSID=9
http://www.webservicex.net/ws/WSDetails.aspx?CATID=2&WSID=9
http:///

accessing Web Services and Sources with Java ❘ 371

 5. The web service tells you that one parameter, “symbol,” is required to pass to this operation. You
can test the web service using your browser. For example, try typing in IBM and pressing Invoke.
The web service should show the result demonstrated in Figure 10-9.

 4. In the lower pane, you’ll see a list of operations—methods—this web service supports. For the
“Stock Quote” service, only one operation is available: GetQuote. Click this operation to get some
more information about it, as shown in Figure 10-8.

figure 10-8

http:///

372 ❘ Chapter 10 AcceSSInG web SourceS

 6. Finally, the web service also provides an example of a SOAP request‐reply interchange to access
this web service. Let’s take a look at the example request:

POST /stockquote.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.webserviceX.NET/GetQuote"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetQuote xmlns="http://www.webserviceX.NET/">
 <symbol>string</symbol>
 </GetQuote>
 </soap:Body>
</soap:Envelope>

This request message tells you a few things. First, you now know that you should make
a request to the URL /stockquote.asmx at the host www.webservicex.net. Next, you
should also provide a SOAPAction header with the content http://www.webserviceX.NET/
GetQuote. Finally, the XML encoded SOAP message itself contains the GetQuote operation
call with a symbol tag to pass the argument.

If all goes well, the server replies with the following:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

figure 10-9

www.webservicex.net
http://www.webserviceX.NET/GetQuote
http://www.webserviceX.NET/GetQuote
http://www.webservicex.net
http://www.webserviceX.NET/GetQuote
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/
http://www.webserviceX.NET/
http:///

accessing Web Services and Sources with Java ❘ 373

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetQuoteResponse xmlns="http://www.webserviceX.NET/">
 <GetQuoteResult>string</GetQuoteResult>
 </GetQuoteResponse>
 </soap:Body>
</soap:Envelope>

So now you know you can expect a SOAP reply message with a GetQuoteResponse tag con-
taining one internal tag—GetQuoteResult—which you can parse in your program.

 7. Finally, note that the web service also provides a WSDL ile, which you will see later on in a bit
more depth.

How It Works

Here’s how it works:

 1. The http://www.webservicex.net website hosts a number of useful SOAP services, one of which
is the stock quote provider.

 2. Each SOAP service provides a number of “operations.” Think of these as “methods” you can call
on the service. In the case of the stock quote provider, only one operation is provided: GetQuote.

 3. SOAP requests can be sent to invoke a service operation. To do so, a request message needs to
be constructed that will be sent to the service URI (the endpoint). That method must contain a
SOAPAction header with the operation you want to call and a message body containing the param-
eters you want to send to the operation handler. The WebserviceX.NET websites provides example
messages for each of its operations.

 4. If the request succeeds, you know you will receive a reply formatted to the speciications as shown
on the example page. You know you can expect a SOAP reply message with a GetQuoteResponse
tag containing one internal tag: GetQuoteResult. This tag contains a “string”—you can’t be sure
yet how this string is formatted or what information it contains, so you’ll need to take a closer look
at it once you receive SOAP replies in your program.

It’s time to get started and see how you can access this service in Java. Create a class called
ClientWithoutWSDL to do so. From the example in the Try It Out, you know that you will need the
following to access the web service:

 ➤ The hostname of the service. In this case, this is www.webservicex.net.

 ➤ The “endpoint” to which you should send the request using HTTP. For the “Stock Quote”
web service, this is /stockquote.asmx. Together with the hostname, this forms the full end-
point URI: http://www.webservicex.net/stockquote.asmx.

 ➤ The name of the operation you want to invoke. In this case, this is GetQuote. The name of
the operation is also used to construct the SOAPAction header: http://www.webserviceX
.NET/GetQuote.

http://www.webservicex.net
www.webservicex.net
http://www.webservicex.net/stockquote.asmx
http://www.webserviceX.NET/GetQuote
http://www.webserviceX.NET/GetQuote
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/
http://www.webserviceX.NET/
http:///

374 ❘ Chapter 10 AcceSSInG web SourceS

To keep things orderly, you can set up a number of static variables to hold this information, so the
irst iteration of the ClientWithoutWSDL class should look like this:

public class ClientWithoutWSDL {

 private final static String SERVICE_HOST = "http://www.webserviceX.NET/";
 private final static String SERVICE_METHOD = "GetQuote";
 private final static String SERVICE_ENDPOINT = "stockquote.asmx";

 public static void main(String args[]) {

 }

}

Take special care to enter these constants exactly as listed in the code snippet. Note that you should
be using http://www.webserviceX.NET/ and not http://www.webservicex.net/ or www
.webservicex.net. These addresses are case sensitive. The reasons for this will become apparent
later on.

NOTE The Internet is a rapidly changing place, and with a chapter on web ser-
vices, we risk the possibility that websites might no longer work (or have been
changed) by the time you read this chapter. That said, all web resources used
here have been chosen based on the amount of time they have been around
and their maturity (e.g., WebServiceX responds to millions of queries a day).
Keep an eye on the online resources for this book at www.wrox.com to get
notiied in case things break.

Next, you will start creating the actual SOAP request message. To do so, you will use a number of
classes made available under javax.xml.soap:

import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPMessage;

public class ClientWithoutWSDL {

 private final static String SERVICE_HOST = "http://www.webserviceX.NET/";
 private final static String SERVICE_METHOD = "GetQuote";
 private final static String SERVICE_ENDPOINT = "stockquote.asmx";

 private final static String STOCK_SYMBOL = "IBM";

 public static void main(String args[]) {
 try {
 // Create a new SOAP connection
 SOAPConnectionFactory soapConnectionFactory =
 SOAPConnectionFactory.newInstance();
 SOAPConnection soapConnection = soapConnectionFactory.createConnection();

http://www.webserviceX.NET/
http://www.webservicex.net/
www.webservicex.net
www.webservicex.net
http://www.webserviceX.NET/
http://www.wrox.com
http://www.webserviceX.NET/
http:///

accessing Web Services and Sources with Java ❘ 375

 // Send a SOAP Message to SOAP server
 // Send this message to http://www.webserviceX.NET/stockquote.asmx
 SOAPMessage soapResponse = soapConnection.call(
 createSOAPRequest(STOCK_SYMBOL),
 SERVICE_HOST + SERVICE_ENDPOINT);

 // Close the connection
 soapConnection.close();
 } catch (Exception e) {
 System.err.println("Fatal error occurred");
 e.printStackTrace();
 }
 }

 private static SOAPMessage createSOAPRequest(String stockSymbol) {
 // Construct a new SOAP request message
 return null;
 }

}

Now take a look at the changes you’ve made. First, you created a global exception catcher in
the main class to print out any errors that might occur. Using a global exception catcher is
not good practice in general, but it’s ine to create the prototype. Next, you use a class called
SOAPConnectionFactory to instantiate a SOAPConnection object.

There are a number of programming patterns at work here. First, note that you do not call the con-
structor for SOAPConnection directly (using the new keyword), but instead ask the factory class to
instantiate this object for you. “Factories” are a common Object‐Oriented Programming pattern
and are used for a couple of reasons. First, it allows the factory object to keep track of all objects it
has instantiated, providing a centralized means to itemize them and access them later. Second, since
factories take care of the actual instantiation of an object, the factory can decide which subclass is
best suited whenever multiple subclasses are available. Indeed, SOAPConnection is an abstract class,
which is why you cannot instantiate it directly (even if you wanted to do so), so the factory can
decide which actual subclass of SOAPConnection is best suited for your needs.

You can see a similar pattern occurring for the instantiation of the SOAPConnectionFactory object.
Again, you are not constructing this object directly using the new keyword, but instead calling the static
newInstance method to instantiate a factory object. The reasoning behind this is also similar: it allows
the internals of the library to keep track of all the factories that have been created and to select the
proper factory subclass to use. In some cases, you’ll also see the so‐called “Singleton” pattern at work
here, where the newInstance method—or getOrCreateInstance, which would be a better name in
this case—will create a new factory if no factory exists and return the existing factory if it does exist,
effectively only allowing one single instantiation of this class (one single factory). Both the Factory
and Singleton patterns are heavily used design patterns in Object‐Oriented Programming. Chapter 12
provides more insights on object‐oriented patterns, but it’s good to briely mention them here.

Further on in the code, the call method is called on your SOAPConnection object to send a SOAP
request to http://www.webserviceX.NET/stockquote.asmx, the full endpoint URI. You also need
to pass a SOAPMessage object to send, which you create using another—currently empty—method
you’ve added: createSOAPRequest. The stock symbol is passed to this method as an argument, and
a constant is added to set the symbol “IBM.”

http://www.webserviceX.NET/stockquote.asmx
http://www.webserviceX.NET/stockquote.asmx
http:///

376 ❘ Chapter 10 AcceSSInG web SourceS

Let’s now start to ill in the createSOAPRequest method. You can start by creating an empty SOAP
message, so that your code now looks like the following:

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.MimeHeaders;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPMessage;

public class ClientWithoutWSDL {

 private final static String SERVICE_HOST = "http://www.webserviceX.NET/";
 private final static String SERVICE_METHOD = "GetQuote";

private final static String SERVICE_ENDPOINT = "stockquote.asmx";
 private final static String STOCK_SYMBOL = "IBM";

 public static void main(String args[]) {
 try {
 // Create a new SOAP connection
 SOAPConnectionFactory soapConnectionFactory =
 SOAPConnectionFactory.newInstance();
 SOAPConnection soapConnection = soapConnectionFactory.createConnection();

 // Send a SOAP Message to SOAP server
 // Send this message to http://www.webserviceX.NET/stockquote.asmx
 SOAPMessage soapResponse = soapConnection.call(
 createSOAPRequest(STOCK_SYMBOL),
 SERVICE_HOST + SERVICE_ENDPOINT);

 // Close the connection
 soapConnection.close();
 } catch (Exception e) {
 System.err.println("Fatal error occurred");
 e.printStackTrace();
 }
 }

 private static SOAPMessage createSOAPRequest(String stockSymbol)
 throws Exception {
 // Construct a new SOAP request message
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage soapMessage = messageFactory.createMessage();

 // Construct the SOAP "body" with the method arguments
 soapMessage.saveChanges();

 // Print out the request message:
 System.out.println("Sending SOAP request:");
 soapMessage.writeTo(System.out);
 System.out.printf("%n");

http://www.webserviceX.NET/
http://www.webserviceX.NET/stockquote.asmx
http:///

accessing Web Services and Sources with Java ❘ 377

 return soapMessage;
 }
}

Again, the same Factory patterns are being applied here to construct the SOAPMessage object. You
will need to modify this actual message—which you will do in the next step—but you should call the
saveChanges method after you’re done constructing your SOAP request. This seems a bit ad hoc.
Normally, most objects you have worked with so far immediately perform any changes you apply and do
not need to have a special save method called. In some cases, however, complex methods might need to
perform a series of CPU or disk‐intensive operations when performing changes, so that programmers will
wait to execute these steps until the programmer explicitly indicates that they are inished modifying the
object and all intensive steps can be performed. The SOAPMessage object works exactly like this.

NOTE You might be wondering how you can possibly know when programmers
decide that a special saveChanges method needs to be called on the objects
they provide in their libraries. The answer is that you can’t, really. The context
sensitive pop‐ups in Eclipse can provide an indication (if you see a saveChanges
method appearing, it might be a strong indication that you’ll need to call it at
some point), but it’s easy to miss this. Another way to ind this out is by reading
the documentation and API reference for the libraries you use. Finally—and what
will happen in most real‐life situations—it’s also possible to discover this just by
doing. If you forget to call this method, things might not work as expected, but
reported error messages will lead you in the right direction. As always, don’t be
afraid to search around on the Internet to ind an answer for your problem.

You also add a number of statements to print out the constructed SOAP message for inspection by
asking the object to print out its string representation to the output stream System.out, using the
writeTo method.

Finally, note that you have added a throws Exception declaration to your method deinition to
“bubble up” any errors to the try-catch block in your main method. At this point, your code is
runnable, so why not test it? If you run the main method, you’ll see something like this appear:

Sending SOAP request:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/><SOAP-ENV:Body/></SOAP-ENV:Envelope>

Does this mean your code is working? The SOAP message does not seem to contain much. To igure
out what’s going on, take a closer look at the soapResponse object you get back, which is also a
SOAPMessage object, by simply printing out its contents:

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.MimeHeaders;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;

http://schemas.xmlsoap.org/soap/envelope/
http:///

378 ❘ Chapter 10 AcceSSInG web SourceS

import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPMessage;

public class ClientWithoutWSDL {

 private final static String SERVICE_HOST = "http://www.webserviceX.NET/";
 private final static String SERVICE_METHOD = "GetQuote";
 private final static String SERVICE_ENDPOINT = "stockquote.asmx";

 private final static String STOCK_SYMBOL = "IBM";

 public static void main(String args[]) {
 try {
 // Create a new SOAP connection
 SOAPConnectionFactory soapConnectionFactory =
 SOAPConnectionFactory.newInstance();
 SOAPConnection soapConnection = soapConnectionFactory.createConnection();

 // Send a SOAP Message to SOAP server
 // Send this message to http://www.webserviceX.NET/stockquote.asmx
 SOAPMessage soapResponse = soapConnection.call(
 createSOAPRequest(STOCK_SYMBOL),
 SERVICE_HOST + SERVICE_ENDPOINT);

 System.out.println("Received SOAP reply:");
 soapResponse.writeTo(System.out);
 System.out.println("\r\n");

 // Close the connection
 soapConnection.close();
 } catch (Exception e) {
 System.err.println("Fatal error occurred");
 e.printStackTrace();
 }
 }

 private static SOAPMessage createSOAPRequest(String stockSymbol)
 throws Exception {
 // *UNCHANGED*
 }

}

If you run the code again, you’ll see:

Sending SOAP request:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/><SOAP-ENV:Body/></SOAP-ENV:Envelope>

Received SOAP reply:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body>

http://www.webserviceX.NET/
http://www.webserviceX.NET/stockquote.asmx
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http:///

accessing Web Services and Sources with Java ❘ 379

<soap:Fault><faultcode>soap:Client</faultcode><faultstring>
System.Web.Services.Protocols.SoapException:
Server did not recognize the value of HTTP Header SOAPAction: .
 at System.Web.Services.Protocols.Soap11ServerProtocolHelper.RouteRequest()
 at System.Web.Services.Protocols.SoapServerProtocol.RouteRequest
 (SoapServerMessage message)
 at System.Web.Services.Protocols.SoapServerProtocol.Initialize()
 at System.Web.Services.Protocols.ServerProtocolFactory.Create(Type type,
 HttpContext context, HttpRequest request, HttpResponse response,
 Boolean& abortProcessing)</faultstring><detail
 /></soap:Fault></soap:Body></soap:Envelope>

Apparently, the server is not too happy with the message you’ve sent and complains that it
needs a value for the SOAPAction header. Add one to your request message by changing your
createSOAPRequest method to look like this:

private static SOAPMessage createSOAPRequest(String stockSymbol)
 throws Exception {
 // Construct a new SOAP request message
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage soapMessage = messageFactory.createMessage();

 // Construct the SOAP "body" with the method arguments

 // Add a SOAP action header to the request
 // Action: http://www.webserviceX.NET/GetQuote
 MimeHeaders headers = soapMessage.getMimeHeaders();
 headers.addHeader("SOAPAction", SERVICE_HOST + SERVICE_METHOD);

 // Save our changes
 soapMessage.saveChanges();

 // Print out the request message:
 System.out.println("Sending SOAP request:");
 soapMessage.writeTo(System.out);
 System.out.println("\r\n");

 return soapMessage;
}

This piece of code will add the following HTTP header to your request:

SOAPAction: "http://www.webserviceX.NET/GetQuote"

If you followed along with the “Exploring SOAP Services” Try It Out, you already saw this
SOAPAction header in the example provided by WebserviceX.NET. In most cases, the SOAPAction
header combines the hostname with the SOAP operation (GetQuote). Later on in this chapter, you’ll
see how you can use WSDL to provide this information.

If you execute this code once more, you now get a different reply from the server.

Sending SOAP request:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

http://www.webserviceX.NET/GetQuote
http://www.webserviceX.NET/GetQuote
http://schemas.xmlsoap.org/soap/envelope/
http:///

380 ❘ Chapter 10 AcceSSInG web SourceS

<SOAP-ENV:Header/><SOAP-ENV:Body/></SOAP-ENV:Envelope>

Received SOAP reply:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body><GetQuoteResponse xmlns="http://www.webserviceX.NET/">
<GetQuoteResult>exception</GetQuoteResult></GetQuoteResponse>
</soap:Body></soap:Envelope>

You’re making progress, but this is still not the expected reply. The “exception” result seems to
indicate that something went wrong, although the server is not too helpful in detailing exactly what.
Debugging sessions with limited information can get very frustrating quickly, but in this case, you
have a good idea of what’s wrong: your actual SOAP message does not contain any content and is
empty. Let’s start illing it up.

NOTE Remember how you’ve read before that it’s important to use http://
www.webserviceX.NET/ for the SERVICE_HOST variable. Servers can be very
picky about how they parse the SOAPAction header. In this case, using another
capitalization of http://www.webserviceX.NET/ will cause the server to con-
tinue complaining about the SOAPAction header.

Modify your createSOAPRequest method once again to look like this:

private static SOAPMessage createSOAPRequest(String stockSymbol) throws Exception {
 // Construct a new SOAP request message
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage soapMessage = messageFactory.createMessage();

 // Construct the SOAP "body" with the method arguments
 SOAPBody soapBody = soapMessage.getSOAPBody();
 QName bodyName = new QName(SERVICE_HOST, SERVICE_METHOD);
 SOAPBodyElement bodyElement = soapBody.addBodyElement(bodyName);

 SOAPElement soapBodyArgument1 = bodyElement.addChildElement("symbol");
 soapBodyArgument1.addTextNode(stockSymbol);

 // Add a SOAP action header to the request
 // Action: http://www.webserviceX.NET/GetQuote
 MimeHeaders headers = soapMessage.getMimeHeaders();
 headers.addHeader("SOAPAction", SERVICE_HOST + SERVICE_METHOD);

 soapMessage.saveChanges();

 // Print out the request message:
 System.out.println("Sending SOAP request:");
 soapMessage.writeTo(System.out);

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.webserviceX.NET/
http://www.webserviceX.NET/
http://www.webserviceX.NET/
http://www.webserviceX.NET/
http://www.webserviceX.NET/GetQuote
http:///

accessing Web Services and Sources with Java ❘ 381

 System.out.printf("%n");

 return soapMessage;
}

This piece of code will add a body to your SOAP message containing a GetQuote element (SERVICE_
METHOD). Within this XML tag, you add another element—symbol—with your provided stock quote
as the content.

The use of the QName object to add an XML element is a bit peculiar. The reason for this is that the
web service speciies that you need to add a GetQuote element, which looks like this:

<GetQuote xmlns="http://www.webserviceX.NET/">...</GetQuote>

And not just:

<GetQuote>...</GetQuote>

If you use the following piece of code to construct your message:

// Construct the SOAP "body" with the method arguments
SOAPBody soapBody = soapMessage.getSOAPBody();
SOAPElement bodyElement = soapBody.addChildElement(SERVICE_METHOD);
SOAPElement soapBodyArgument1 = bodyElement.addChildElement("symbol");
soapBodyArgument1.addTextNode(stockSymbol);

You get the following request message—which looks okay:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <GetQuote><symbol>IBM</symbol></GetQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

But the server still responds with an “exception” reply. Again, servers can be very picky about how
they parse request messages, so take care to construct messages exactly as indicated by the service
provider.

With your code, however, you now see the following interchange happening:

Sending SOAP request:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>

<SOAP-ENV:Body>
 <GetQuote xmlns="http://www.webserviceX.NET/">
 <symbol>IBM</symbol>
 </GetQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

http://www.webserviceX.NET/">...</
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.webserviceX.NET/
http:///

382 ❘ Chapter 10 AcceSSInG web SourceS

Received SOAP reply:
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetQuoteResponse xmlns="http://www.webserviceX.NET/">
 <GetQuoteResult>
 <StockQuotes><Stock><Symbol>IBM<
 /Symbol><Last>196.40</Last><Date>
 4/16/2014</Date><Time>4:01pm</Time>
 <Change>-
 0.62</Change><Open>197.77</Open><
 High>198.71</High><Low>195.00</Low>
 <Volume>8527415</Volume><MktCap>204.5B<
 /MktCap><PreviousClose>197.02</PreviousClose>
 <PercentageChange>-0.31%</PercentageChange><
 >172.19 - 11.98</AnnRange><Earns>
 14.942</Earns><P-E>13.19</P-E><Name>
 International Bus</Name></Stock></StockQuotes>
 </GetQuoteResult>
 </GetQuoteResponse>
 </soap:Body>
</soap:Envelope>

Great! You seem to be getting something back now. However, as you can observe, this particu-
lar service has chosen to encode its result as one big mess within the GetQuoteResult tag. In
fact, the text included herein is a so‐called “escaped” XML string. Note how all the < and >
characters have been replaced with < and >. Why this particular server is behaving like
this instead of including the XML as is—which would be easier to parse—remains a mystery,
but to parse your result, you’ll need to get out the escaped XML string and then interpret it
again as XML.

NOTE If you’re paying very close attention, you might note that this SOAP
message still looks somewhat different from the example provided at the
WebserviceX.NET website. Most notable is that all your tags start with
SOAP-ENV, whereas the example uses soap. Funnily enough, the server
is not picky regarding this aspect. The reason for this is that a so‐called
“namespace” deinition is explicitly provided in the message. In the exam-
ple provided, this is done by xmlns:soap="http://schemas.xmlsoap.org/
soap/envelope/". In your message, the same namespace is provided, but
with the name SOAP-ENV. A namespace is basically a way to indicate the
following: “Let’s agree to use a set of tags we both know about. You can
ind their deinition and description on this URL, and I’m going to prepend
the tag names with SOAP-ENV.” As long as the server knows about the
namespace being used, it does not matter what shorthand name you use to
prepend the tags.

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.webserviceX.NET/
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http:///

accessing Web Services and Sources with Java ❘ 383

To parse the information contained in the reply, you can add a new method, showSOAPResponse.
You can also remove all the System.out.println statements as you do not need them anymore—
you know your messages are working:

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.MimeHeaders;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPMessage;

public class ClientWithoutWSDL {

 private final static String SERVICE_HOST = "http://www.webserviceX.NET/";
 private final static String SERVICE_METHOD = "GetQuote";
 private final static String SERVICE_ENDPOINT = "stockquote.asmx";

 private final static String STOCK_SYMBOL = "IBM";

 public static void main(String args[]) {
 try {
 // Create a new SOAP connection
 SOAPConnectionFactory soapConnectionFactory = SOAPConnectionFactory
 .newInstance();
 SOAPConnection soapConnection = soapConnectionFactory
 .createConnection();

 // Send a SOAP Message to SOAP server
 // Send this message to http://www.webserviceX.NET/stockquote.asmx
 SOAPMessage soapResponse = soapConnection.call(
 createSOAPRequest(STOCK_SYMBOL), SERVICE_HOST
 + SERVICE_ENDPOINT);

 showSOAPResponse(soapResponse);

 // Close the connection
 soapConnection.close();
 } catch (Exception e) {
 System.err.println("Fatal error occurred");
 e.printStackTrace();
 }
 }

 private static SOAPMessage createSOAPRequest(String stockSymbol)
 throws Exception {
 // Construct a new SOAP request message
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage soapMessage = messageFactory.createMessage();

 // Construct the SOAP "body" with the method arguments
 SOAPBody soapBody = soapMessage.getSOAPBody();

http://www.webserviceX.NET/
http://www.webserviceX.NET/stockquote.asmx
http:///

384 ❘ Chapter 10 AcceSSInG web SourceS

 QName bodyName = new QName(SERVICE_HOST, SERVICE_METHOD);
 SOAPBodyElement bodyElement = soapBody.addBodyElement(bodyName);
 SOAPElement soapBodyArgument1 = bodyElement.addChildElement("symbol");
 soapBodyArgument1.addTextNode(stockSymbol);

 // Add a SOAP action header to the request
 // Action: http://www.webserviceX.NET/GetQuote
 MimeHeaders headers = soapMessage.getMimeHeaders();
 headers.addHeader("SOAPAction", SERVICE_HOST + SERVICE_METHOD);

 soapMessage.saveChanges();

 return soapMessage;
 }

 private static void showSOAPResponse(SOAPMessage soapResponse)
 throws Exception {

 }

}

Let’s start illing in this method. First, add the following two lines:

Node responseNode = soapResponse.getSOAPBody().getFirstChild();
System.out.println(responseNode.getTextContent());

This will take the SOAP body part from the response message (which is an XML document), and
then take the irst child node in this body. Then you print the text content of this node, i.e., the text
between the tags in the XML message, which gives you the following:

<StockQuotes><Stock><Symbol>IBM</Symbol><Last>196.40</Last>
<Date>4/16/2014</Date><Time>4:01pm</Time><Change>-
0.62</Change><Open>197.77</Open><High>198.71</High><Low>195.00
</Low><Volume>8527415</Volume><MktCap>204.5B</MktCap>
<PreviousClose>197.02</PreviousClose><PercentageChange>-
0.31%</PercentageChange><AnnRange>172.19 - 211.98</AnnRange>
<Earns>14.942</Earns><P-E>13.19</P-E><Name>International
Bus</Name></Stock></StockQuotes>

You can see that Java has already “un‐escaped” the XML for you, but it is still regarded as one
big string. To parse this information, you need to construct a new object representing an XML
document out of this string, so you change the method to look like so:

private static void showSOAPResponse(SOAPMessage soapResponse) throws Exception {
 Node responseNode = soapResponse.getSOAPBody().getFirstChild();
 String xmlText = responseNode.getTextContent();
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document document = builder.parse(new InputSource(
 new StringReader(xmlText)));
}

http://www.webserviceX.NET/GetQuote
http:///

accessing Web Services and Sources with Java ❘ 385

This code will create an org.w3c.dom.Document object representing an XML tree. You can now
traverse this tree to get out your information. Looking at the result, you can see that stock informa-
tion is provided in “Stock” tags, with each piece of information being stored in a separate subtag. So
modify your method once again, so that the complete class will look like this:

import java.io.StringReader;

import javax.xml.namespace.QName;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.MimeHeaders;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPMessage;

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;

public class ClientWithoutWSDL {

 private final static String SERVICE_HOST = "http://www.webserviceX.NET/";
 private final static String SERVICE_METHOD = "GetQuote";
 private final static String SERVICE_ENDPOINT = "stockquote.asmx";

 private final static String STOCK_SYMBOL = "IBM";

 public static void main(String args[]) {
 try {
 // Create a new SOAP connection
 SOAPConnectionFactory soapConnectionFactory = SOAPConnectionFactory
 .newInstance();
 SOAPConnection soapConnection = soapConnectionFactory
 .createConnection();

 // Send a SOAP Message to SOAP server
 // Send this message to http://www.webserviceX.NET/stockquote.asmx
 SOAPMessage soapResponse = soapConnection.call(
 createSOAPRequest(STOCK_SYMBOL), SERVICE_HOST
 + SERVICE_ENDPOINT);

 showSOAPResponse(soapResponse);

 // Close the connection
 soapConnection.close();
 } catch (Exception e) {
 System.err.println("Fatal error occurred");
 e.printStackTrace();
 }

http://www.webserviceX.NET/
http://www.webserviceX.NET/stockquote.asmx
http:///

386 ❘ Chapter 10 AcceSSInG web SourceS

 }

 private static SOAPMessage createSOAPRequest(String stockSymbol)
 throws Exception {
 // Construct a new SOAP request message
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage soapMessage = messageFactory.createMessage();

 // Construct the SOAP "body" with the method arguments
 SOAPBody soapBody = soapMessage.getSOAPBody();
 QName bodyName = new QName(SERVICE_HOST, SERVICE_METHOD);
 SOAPBodyElement bodyElement = soapBody.addBodyElement(bodyName);
 SOAPElement soapBodyArgument1 = bodyElement.addChildElement("symbol");
 soapBodyArgument1.addTextNode(stockSymbol);

 // Add a SOAP action header to the request
 // Action: http://www.webserviceX.NET/GetQuote
 MimeHeaders headers = soapMessage.getMimeHeaders();
 headers.addHeader("SOAPAction", SERVICE_HOST + SERVICE_METHOD);

 soapMessage.saveChanges();

 return soapMessage;
 }

 private static void showSOAPResponse(SOAPMessage soapResponse)
 throws Exception {
 Node responseNode = soapResponse.getSOAPBody().getFirstChild();
 String xmlText = responseNode.getTextContent();
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document document = builder.parse(new InputSource(
 new StringReader(xmlText)));

 NodeList stockElements = document.getElementsByTagName("Stock");
 for (int i = 0; i < stockElements.getLength(); i++) {
 System.out.println("----- Stock nr. " + i + " ------");
 NodeList infoElements = stockElements.item(i).getChildNodes();
 for (int j = 0; j < infoElements.getLength(); j++) {
 System.out.println(infoElements.item(j).getNodeName() +
 "\t --> " +
 infoElements.item(j).getTextContent());
 }
 }

 }

}

If you execute this code, the program will show the following result:

––––– Stock nr. 0 ––––—
Symbol ––> IBM
Last ––> 196.40

http://www.webserviceX.NET/GetQuote
http:///

accessing Web Services and Sources with Java ❘ 387

Date ––> 4/16/2014
Time ––> 4:01pm
Change ––> -0.62
Open ––> 197.77
High ––> 198.71
Low ––> 195.00
Volume ––> 8527415
MktCap ––> 204.5B
PreviousClose ––> 197.02
PercentageChange ––> -0.31%
AnnRange ––> 172.19 - 211.98
Earns ––> 14.942
P-E ––> 13.19
Name ––> International Bus

Take some time to explore the code you’ve written at your own leisure. Try experimenting with dif-
ferent stock symbols, or if you feel up to it, try selecting one of the other provided web services at
WebserviceX.NET and see whether you can get it to work (the “Global Weather” service—http://

www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56—works nicely).

In this section, you’ve been accessing SOAP services in a very ad hoc manner, constructing SOAP
messages by hand and parsing the responses manually. You had to look up the correct endpoint URI
and hostname to use, and had to deal with picky server error messages. Luckily, many SOAP web
services also provide a so‐called WSDL ile that describes the operations the service offers, together
with the ways they can be accessed. JAX‐WS contains a handy feature to automatically construct a
set of service‐interacting classes from this WSDL ile, as you’ll see in the following section.

First, however, this section ends with a hands‐on Try It Out. It shows you how to clean up the code
you’ve written some more, if you’re up for it.

try it out a true Object‐Oriented SOAp client

The code you wrote to access a SOAP client does not really look like clean, object‐oriented Java code.
In fact, the code has more similarities to a procedural scripting language, with one big main method
delegating some tasks to other static methods.

For building a quick prototype—e.g., when you’re just starting out and trying to see if you can get your
SOAP client to work—this is ine, but in real‐life applications, you’ll want to clean up your code to be
more in line with the object‐oriented paradigm.

Let’s see how you can do this for the stock quote client. The goal is to abstract away the complexity of
SOAP interaction and to provide an object structure for your applications to work with.

 1. Create a new package called withoutwsdlobjectoriented to hold your classes (feel free to pick a
more suitable or creative name, but this one will match the code provided with this book). As you
know by now, when you think about objects and classes, you want your classes to represent your
domain concepts. What is your most primary concept in a stock quote application? Naturally, a
class representing a stock symbol and its information. As such, create a Stock class as follows:

package withoutwsdlobjectoriented;

import java.util.Date;

http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56
http:///

388 ❘ Chapter 10 AcceSSInG web SourceS

public class Stock {
 private String symbol, name;
 private double last, open, high, low;
 private long volume;
 private Date timestamp;
 private double marketCap;
 private double previousClose;
 private double change, percentageChange;
 private double annRangeLow, annRangeHigh;
 private double earns;
 private double pe;

 public Stock(String symbol, String name, double last, double open, double high,
 double low, long volume, Date timestamp, double marketCap,
 double previousClose, double change, double percentageChange,
 double annRangeLow, double annRangeHigh, double earns, double pe) {
 this.symbol = symbol;
 this.name = name;
 this.last = last;
 this.open = open;
 this.high = high;
 this.low = low;
 this.volume = volume;
 this.timestamp = timestamp;
 this.marketCap = marketCap;
 this.previousClose = previousClose;
 this.change = change;
 this.percentageChange = percentageChange;
 this.annRangeLow = annRangeLow;
 this.annRangeHigh = annRangeHigh;
 this.earns = earns;
 this.pe = pe;
 }

 public String getSymbol() {
 return symbol;
 }

 public String getName() {
 return name;
 }

 public double getLast() {
 return last;
 }

 public double getChange() {
 return change;
 }

 public double getOpen() {
 return open;
 }

 public double getHigh() {
 return high;
 }

http:///

accessing Web Services and Sources with Java ❘ 389

 public double getLow() {
 return low;
 }

 public long getVolume() {
 return volume;
 }

 public Date getTimestamp() {
 return timestamp;
 }

 public double getMarketCap() {
 return marketCap;
 }

 public double getPreviousClose() {
 return previousClose;
 }

 public double getPercentageChange() {
 return percentageChange;
 }

 public double getAnnRangeLow() {
 return annRangeLow;
 }

 public double getAnnRangeHigh() {
 return annRangeHigh;
 }

 public double getEarns() {
 return earns;
 }

 public double getPe() {
 return pe;
 }

 public String toString() {
 String r = "";
 r += "STOCK " + symbol + ": " + name + "\r\n";
 int l = r.length() - 2;
 for (int i = 0; i < l; i++)
 r += "=";
 r += "\r\n";
 r += "* Retrieved at: " + timestamp + "\r\n";
 r += "* Last / High / Low / Open: " +
 last + " / " + high + " / " + low + " / " + open + "\r\n";
 r += "* Previous close: " + previousClose + "\r\n";
 r += "* Volume: " + volume + "\r\n";
 r += "* Market Cap: " + marketCap + "B" + "\r\n";
 r += "* Change (%): " + change + " (" + percentageChange + "%)" + "\r\n";
 r += "* Annual range High / Low: " +
 annRangeHigh + " / " + annRangeLow + "\r\n";
 r += "* Earns: " + earns + "\r\n";

http:///

390 ❘ Chapter 10 AcceSSInG web SourceS

 r += "* P/E: " + pe + "\r\n";
 return r;
 }
}

 2. You need a way to instantiate a Stock object based on the response you receive from the web
service. There are multiple ways to approach this. You can create an additional constructor, add
a static method (e.g., createStockFromXML) to the Stock class, or abstract out this functionality
using a separate class. In this exercise the last method is used, to keep your Stock class as clean as
possible and to add a layer of abstraction between domain logic and web-service-oriented logic. As
such, create a StockFactory class that will just contain some static methods to help instantiate a
Stock object using a received SOAP reply:

package withoutwsdlobjectoriented;

import java.io.IOException;
import java.io.StringReader;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;
import java.util.Set;
import java.util.HashSet;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

public class StockFactory {
 public static Set<Stock> newStocksFromSOAPReplyMessage(SOAPMessage soapResponse) {
 try {
 Node responseNode = soapResponse.getSOAPBody().getFirstChild();
 String xmlText = responseNode.getTextContent();
 return newStocksFromXMLString(xmlText);
 } catch (SOAPException e) {
 e.printStackTrace();
 }
 // If we end up here, something went wrong:
 return null;
 }

 public static Set<Stock> newStocksFromXMLString(String xmlText) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

http:///

accessing Web Services and Sources with Java ❘ 391

 DocumentBuilder builder = factory.newDocumentBuilder();
 Document document =
 builder.parse(new InputSource(new StringReader(xmlText)));
 return newStocksFromXMLDocument(document);
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 } catch (SAXException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 // If we end up here, something went wrong:
 return null;
 }

 public static Set<Stock> newStocksFromXMLDocument(Document document) {
 Set<Stock> stocksSet = new HashSet<Stock>();
 NodeList stockElements = document.getElementsByTagName("Stock");
 for (int i = 0; i < stockElements.getLength(); i++) {
 Stock stock = newStockFromXMLElement(
 (Element) stockElements.item(i));
 stocksSet.add(stock);
 }
 return stocksSet;
 }

 public static Stock newStockFromXMLElement(Element node) {
 String symbol, name;
 double last, open, high, low, marketCap,
 previousClose, change, percentageChange, annRangeLow,
 annRangeHigh, earns, pe;
 long volume;
 Date timestamp;

 symbol = getEl(node, "Symbol");
 name = getEl(node, "Name");
 last = Double.parseDouble(getEl(node, "Last"));
 open = Double.parseDouble(getEl(node, "Open"));
 high = Double.parseDouble(getEl(node, "High"));
 low = Double.parseDouble(getEl(node, "Low"));
 volume = Long.parseLong(getEl(node, "Volume"));
 marketCap = Double.parseDouble(getEl(node, "MktCap").replace("B", ""));
 previousClose = Double.parseDouble(getEl(node, "PreviousClose"));
 percentageChange = Double.parseDouble(getEl(node, "PercentageChange")
 .replace("%", "")
 .replace("+", "")
 .replace("-", ""));
 change = Double.parseDouble(getEl(node, "Change")
 .replace("+", "")
 .replace("-", ""));
 String[] annRange = getEl(node, "AnnRange").split(" - ");
 annRangeLow = Double.parseDouble(annRange[0]);
 annRangeHigh = Double.parseDouble(annRange[1]);
 earns = Double.parseDouble(getEl(node, "Earns"));
 pe = Double.parseDouble(getEl(node, "P-E"));

http:///

392 ❘ Chapter 10 AcceSSInG web SourceS

 try {
 String fullDate = getEl(node, "Date")+" "+getEl(node, "Time");
 fullDate = fullDate.replace("pm", " pm").replace("am", " am");
 timestamp = new SimpleDateFormat("M/d/y K:m a",
 Locale.ENGLISH).parse(fullDate);
 } catch (ParseException e) {
 e.printStackTrace();
 timestamp = new Date();
 }

 return new Stock(symbol, name,
 last, open, high, low,
 volume, timestamp, marketCap,
 previousClose, change,
 percentageChange, annRangeLow,
 annRangeHigh, earns, pe);
 }

 private static String getEl(Element node, String n) {
 return node.getElementsByTagName(n).item(0).getTextContent();
 }

}

 3. Also deine another helper class, called StockServiceClient, which will communicate with the
SOAP service, like so:

package withoutwsdlobjectoriented;

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.MimeHeaders;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

public class StockServiceClient {
 private final static String SERVICE_HOST = "http://www.webserviceX.NET/";
 private final static String SERVICE_METHOD = "GetQuote";
 private final static String SERVICE_ENDPOINT = "stockquote.asmx";

 public static SOAPMessage getStockQuote(String stockSymbol) {
 SOAPConnection soapConnection = null;
 try {
 SOAPConnectionFactory soapConnectionFactory =
 SOAPConnectionFactory.newInstance();
 soapConnection =
 soapConnectionFactory.createConnection();

 SOAPMessage soapResponse = soapConnection.call(

http://www.webserviceX.NET/
http:///

accessing Web Services and Sources with Java ❘ 393

 createSOAPRequest(stockSymbol),
 SERVICE_HOST + SERVICE_ENDPOINT);

 soapConnection.close();

 return soapResponse;
 } catch (UnsupportedOperationException | SOAPException e) {
 e.printStackTrace();
 } finally {
 if (soapConnection != null)
 try { soapConnection.close(); } catch (SOAPException i) {}
 }

 return null;
 }

 private static SOAPMessage createSOAPRequest(String stockSymbol) {
 try {
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage soapMessage = messageFactory.createMessage();

 SOAPBody soapBody = soapMessage.getSOAPBody();
 QName bodyName = new QName(SERVICE_HOST, SERVICE_METHOD);
 SOAPBodyElement bodyElement = soapBody.addBodyElement(bodyName);
 SOAPElement soapBodyArgument1 = bodyElement.addChildElement("symbol");
 soapBodyArgument1.addTextNode(stockSymbol);

 MimeHeaders headers = soapMessage.getMimeHeaders();
 headers.addHeader("SOAPAction", SERVICE_HOST + SERVICE_METHOD);

 soapMessage.saveChanges();

 return soapMessage;
 } catch (SOAPException e) {
 e.printStackTrace();
 }

 return null;
 }
}

 4. Finally, you can create a test class containing a main method, called StockQuoteProgram:

package withoutwsdlobjectoriented;

import java.util.Set;
import javax.xml.soap.SOAPMessage;

public class StockQuoteProgram {
 public static void main(String[] args) {
 SOAPMessage soapReply = StockServiceClient.getStockQuote("IBM");

 Set<Stock> stocks =
 StockFactory.newStocksFromSOAPReplyMessage(soapReply);

http:///

394 ❘ Chapter 10 AcceSSInG web SourceS

 for (Stock stock : stocks) {
 System.out.println(stock.toString());
 }
 }
}

 5. Run the program. If all goes well—the website or your Internet connection might be down—you
should see the following:

STOCK IBM: International Bus
============================
* Retrieved at: Thu Apr 17 16:02:00 CEST 2014
* Last / High / Low / Open: 190.01 / 190.7 / 187.01 / 187.29
* Previous close: 196.4
* Volume: 11255493
* Market Cap: 197.9B
* Change (%): 6.39 (3.25%)
* Annual range High / Low: 211.98 / 172.19
* Earns: 14.942
* P/E: 13.14

How It Works

Here’s how it works:

 1. In the Stock class, you created instance variables to hold all the information the web service
will provide, together with a constructor to initialize Stock objects. You used private variables
with generated getters and setters to do so. While it is generally a good idea to access data in
objects from the outside world by using methods provided by the object (instead of using pub-
lic ields), for “data‐heavy” classes such as the Stock class, feel free to resort to public inal
ields if you don’t want to make your code too verbose. Especially when none of the getters
and the setters have side effects (meaning that they just return or change one ield), this is an
okay approach.

 2. At this point, it might also be prudent to note that—generally speaking—it is not a good idea to
store monetary values and amounts as doubles or loats, not only in Java, but in most program-
ming languages. The reason for this is that the internal representation of a loating point number
cannot accurately represent fractions, which will introduce subtle rounding errors over time once
you start performing addition, multiplication, subtraction, and division on them, as monetary
software tends to do. There are ways to work around this, for example, by using the built‐in
BigDecimal class in Java. For these exercises, it’s simpler to work with doubles, but keep this
remark in mind when working with monetary values in a real‐life setting.

 3. The StockFactory class includes a number of methods to construct a set of Stock objects from
a received SOAP message. The newStocksFromSOAPReplyMessage method extracts the reply
string from the message, which is then passed to a separate method, newStocksFromXMLString.
This method converts the string to an XML document, which is then passed to another method,
newStocksFromXMLDocument, which iterates over all the “Stock” tags and parses them using
newStockFromXMLElement. getEl is a helper method deined to get the text content from the

http:///

accessing Web Services and Sources with Java ❘ 395

irst XML tag within a node given a speciic tag name. Note that you need to parse some of
the information you receive from the server. For example, since the server returns the string
"172.19 - 211.98" to specify the annual range, you need to split up this string and parse it using
Double.parseDouble()to store it in your variables. Note also the use of the SimpleDateFormat
class to parse a string to a Date object.

 4. StockServiceClient contains most of the same logic you’ve seen before to communicate with the
SOAP service.

 5. Finally, your now nimble main method just invokes the StockServiceClient and StockFactory
classes to do the heavy lifting. You have neatly separated all aspects of this program—the
domain logic (Stock), the service interaction logic (StockServiceClient), and the parsing logic
(StockFactory). If you want, you can continue to expand on this program some more. For exam-
ple, try expanding the main method to take a list of stock symbols, retrieve their information, and
show a ranking based on price/earnings ratio.

accessing SOap Services with JaX‐WS with WSdL

You have seen how to access a web service by constructing SOAP request messages manually.
However, this method assumes that you are aware of the endpoints the service provides, the opera-
tions, and the parameters to be passed.

To overcome this issue, most SOAP‐based web services provide a so‐called WSDL ile. WSDL, or
“Web Services Description Language,” is an XML format for describing network services and their
endpoints, together with the operation they support and the arguments they expect. You can use the
information stored in such iles to allow JAX‐WS to do a lot of the work for you.

Let’s take another look at the Stock Quote service page at WebserviceX.NET:
http://www.webservicex.net/WS/WSDetails.aspx?CATID=2&WSID=9. The description mentions
that a WSDL ile is provided at http://www.webservicex.net/stockquote.asmx?WSDL, which
you can request with your web browser, and indeed looks like an XML document containing the
following:

<wsdl:definitions xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://www.webserviceX.NET/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://www.webserviceX.NET/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
 targetNamespace="http://www.webserviceX.NET/">
 <s:element name="GetQuote">
 <s:complexType>

http://www.webservicex.net/WS/WSDetails.aspx?CATID=2&WSID=9
http://www.webservicex.net/stockquote.asmx?WSDL
http://microsoft.com/wsdl/mime/textMatching/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/mime/
http://www.webserviceX.NET/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap12/
http://schemas.xmlsoap.org/wsdl/http/
http://schemas.xmlsoap.org/wsdl/
http://www.webserviceX.NET/
http://www.webserviceX.NET/
http:///

396 ❘ Chapter 10 AcceSSInG web SourceS

 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="symbol" type="s:string"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetQuoteResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetQuoteResult" type="s:string"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="string" nillable="true" type="s:string"/>
 </s:schema>
 </wsdl:types>

 <wsdl:message name="GetQuoteSoapIn">
 <wsdl:part name="parameters" element="tns:GetQuote"/>
 </wsdl:message>

 <wsdl:message name="GetQuoteSoapOut">
 <wsdl:part name="parameters" element="tns:GetQuoteResponse"/>
 </wsdl:message>

 <wsdl:message name="GetQuoteHttpGetIn">
 <wsdl:part name="symbol" type="s:string"/>
 </wsdl:message>

 <wsdl:message name="GetQuoteHttpGetOut">
 <wsdl:part name="Body" element="tns:string"/>
 </wsdl:message>

 <wsdl:message name="GetQuoteHttpPostIn">
 <wsdl:part name="symbol" type="s:string"/>
 </wsdl:message>

 <wsdl:message name="GetQuoteHttpPostOut">
 <wsdl:part name="Body" element="tns:string"/>
 </wsdl:message>

 <wsdl:portType name="StockQuoteSoap">
 <wsdl:operation name="GetQuote">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 Get Stock quote for a company Symbol</wsdl:documentation>
 <wsdl:input message="tns:GetQuoteSoapIn"/>
 <wsdl:output message="tns:GetQuoteSoapOut"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:portType name="StockQuoteHttpGet">
 <wsdl:operation name="GetQuote">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 Get Stock quote for a company Symbol</wsdl:documentation>
 <wsdl:input message="tns:GetQuoteHttpGetIn"/>

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http:///

accessing Web Services and Sources with Java ❘ 397

 <wsdl:output message="tns:GetQuoteHttpGetOut"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:portType name="StockQuoteHttpPost">
 <wsdl:operation name="GetQuote">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 Get Stock quote for a company Symbol</wsdl:documentation>
 <wsdl:input message="tns:GetQuoteHttpPostIn"/>
 <wsdl:output message="tns:GetQuoteHttpPostOut"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="StockQuoteSoap" type="tns:StockQuoteSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetQuote">
 <soap:operation soapAction="http://www.webserviceX.NET/GetQuote"
 style="document"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:binding name="StockQuoteSoap12" type="tns:StockQuoteSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetQuote">
 <soap12:operation soapAction="http://www.webserviceX.NET/GetQuote"
 style="document"/>
 <wsdl:input>
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:binding name="StockQuoteHttpGet" type="tns:StockQuoteHttpGet">
 <http:binding verb="GET"/>
 <wsdl:operation name="GetQuote">
 <http:operation location="/GetQuote"/>
 <wsdl:input>
 <http:urlEncoded/>
 </wsdl:input>
 <wsdl:output>
 <mime:mimeXml part="Body"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/http"/
http://www.webserviceX.NET/GetQuote
http://schemas.xmlsoap.org/soap/http"/
http://www.webserviceX.NET/GetQuote
http:///

398 ❘ Chapter 10 AcceSSInG web SourceS

 <wsdl:binding name="StockQuoteHttpPost" type="tns:StockQuoteHttpPost">
 <http:binding verb="POST"/>
 <wsdl:operation name="GetQuote">
 <http:operation location="/GetQuote"/>
 <wsdl:input>
 <mime:content type="application/x-www-form-urlencoded"/>
 </wsdl:input>
 <wsdl:output>
 <mime:mimeXml part="Body"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="StockQuote">
 <wsdl:port name="StockQuoteSoap" binding="tns:StockQuoteSoap">
 <soap:address location="http://www.webservicex.net/stockquote.asmx"/>
 </wsdl:port>
 <wsdl:port name="StockQuoteSoap12" binding="tns:StockQuoteSoap12">
 <soap12:address location="http://www.webservicex.net/stockquote.asmx"/>
 </wsdl:port>
 <wsdl:port name="StockQuoteHttpGet" binding="tns:StockQuoteHttpGet">
 <http:address location="http://www.webservicex.net/stockquote.asmx"/>
 </wsdl:port>
 <wsdl:port name="StockQuoteHttpPost" binding="tns:StockQuoteHttpPost">
 <http:address location="http://www.webservicex.net/stockquote.asmx"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Certainly, this is a pretty hefty WSDL descriptor, but it does provide a good general overview on
how they are deined. First, the WSDL document lists a number of types that are used throughout
the service. Note the symbol and GetQuoteResult types. By looking at GetQuoteResult, there’s no
doubt that this type provides a single string that you will need to parse. Next, the WSDL document
lists a number of messages to deine the various messages that will be interchanged. These are used
in the deinition of WSDL “ports.” For example, StockQuoteHttpPost indicates that it’s possible
to interchange messages by an HTTP POST request to perform the GetQuote operation, and it will
use the GetQuoteHttpPostIn and GetQuoteHttpPostOut messages to do so (which is exactly what
you’re doing when trying out the service using your browser, as seen earlier). Finally, to make ports
available for public access, they need to be “bound” to endpoints. You can see, for example, that a
binding named StockQuoteSoap has been deined for the GetQuote operation, which is bound to
the endpoint http://www.webserviceX.NET/GetQuote.

While WSDL iles are certainly not meant for human reading, they do provide a means to easily
construct clients to consume the web services deined therein.

Here you will see how to use the wsimport tool provided by JAX‐WS. Contrary to what we’ve seen
thus far, you’ll now need to have the Java Development Kit (JDK) installed. The tool itself is located
in the bin folder of your JDK installation.

Next, open a command prompt and navigate to the location of the wsimport executable (using
the cd command, as shown in Figure 10-10). Most likely, you will get the error message shown in
Figure 10-10.

http://www.webserviceX.NET/GetQuote
http://www.webservicex.net/stockquote.asmx"/
http://www.webservicex.net/stockquote.asmx"/
http://www.webservicex.net/stockquote.asmx"/
http://www.webservicex.net/stockquote.asmx"/
http:///

accessing Web Services and Sources with Java ❘ 399

To ix this, you’ll need to explicitly provide the location of the JDK. Depending on the version you
installed and the architecture you’re using, this might either be located in C:\Program Files\
Java\jdk*VERSION* or C:\Program Files (x86)\Java\jdk*VERSION*. Make sure to check the
exact location. In this case, it’s C:\Program Files\Java\jdk1.8.0_05. Execute the following com-
mand to point wsimport in the right direction:

set JAVA_HOME=C:\Program Files\Java\jdk1.8.0_05

Run wsimport again; you should now get back some helpful information, as shown in Figure 10-11.

figure 10-10

figure 10-11

http:///

400 ❘ Chapter 10 AcceSSInG web SourceS

Try to execute wsimport using the WSDL URL:

wsimport http://www.webservicex.net/stockquote.asmx?WSDL

However, you’ll get an error message telling you that a schema document could not be read because
ile access is not allowed, as shown in Figure 10-12.

NOTE You’ll need to execute the set JAVA_HOME command every time you
want to run wsimport and open a command prompt. If you want to avoid this,
you can also edit the wsimport.bat ile in a text editor and add the command
after the :LAUNCH line, so it looks like this:

:LAUNCH
set JAVA_HOME=C:\Program Files\Java\jdk1.8.0_05
%JAVA% %WSIMPORT_OPTS% -jar "%JAXWS_HOME%\lib\jaxws-tools.jar" %*

figure 10-12

To work around this, you need to set another variable, called WSIMPORT_OPTS, with the following
command:

http://www.webservicex.net/stockquote.asmx?WSDL
http:///

accessing Web Services and Sources with Java ❘ 401

set WSIMPORT_OPTS=-Djavax.xml.accessExternalSchema=all

Pay close attention when entering this command (there is only one space and note the capitalization).
Once you’ve executed this command, you can run wsimport again. You should now get the results
shown in Figure 10-13.

figure 10-13

wsimport is warning you that it found some ports that are not SOAP‐speciic or using a non‐
standard binding. You can safely ignore this warning, as you’re interested in the SOAP 1.1 endpoint
only.

What has happened here? wsimport downloaded the WSDL ile, parsed its contents, constructed
some classes, and compiled them, placing them in the location where you executed the tool (the bin
folder in this case). If you take a look with the ile explorer, you’ll see that a new folder called net
has been added, as shown in Figure 10-14.

When exploring this folder deeper, you’ll see a listing of class iles, as shown in Figure 10-15.

These generated class iles can immediately be used in your project to interact with the web service.
However, since you would like to take a look at the generated source code, run the wsimport tool
again, but this time with the -keep option set, like so:

wsimport -keep http://www.webservicex.net/stockquote.asmx?WSDL

http://www.webservicex.net/stockquote.asmx?WSDL
http:///

402 ❘ Chapter 10 AcceSSInG web SourceS

figure 10-14

figure 10-15

The generated iles will now also include Java source iles. Now, take a look at them in Eclipse.
You can continue to use the SOAPWithJava project, as this contains the references to JAX‐WS,
but you can also set up a new project if you want. Create a new package in Eclipse called net
.webservicex, and drag all the .java iles (you should have six of them) located in the net\
webservicex folder to this package in the Eclipse package explorer.

Take a look at the classes wsimport has generated:

 ➤ package-info is a meta ile containing no real information.

 ➤ ObjectFactory is a Factory class containing methods to create GetQuote and
GetQuoteResponse objects.

http:///

accessing Web Services and Sources with Java ❘ 403

 ➤ StockQuote is a class to wrap access to the service, with methods returning StockQuoteSoap
objects to access one of the service endpoints.

 ➤ StockQuoteSoap is a class to wrap access to an endpoint provided by the service, in this case a
SOAP endpoint. It contains a single method, called getQuote, to perform the GetQuote operation.

 ➤ GetQuote and GetQuoteResponse wrap the XML messages themselves.

Based on the classes wsimport has created for you from the WSDL ile, it becomes very easy to
access SOAP services. You no longer have to be concerned with manually constructing the SOAP
request message with the proper parameters and knowing the endpoints you need to access. Try this
out by creating a new class called ClientWithWSDL:

package withwsdl;

import net.webservicex.StockQuote;
import net.webservicex.StockQuoteSoap;

public class ClientWithWSDL {
 public static void main(String[] args) {
 StockQuote service = new StockQuote();
 StockQuoteSoap soapService = service.getStockQuoteSoap();

 String stock = soapService.getQuote("IBM");

 System.out.println(stock);
 }
}

Just as before, this should give you the following output (note that executing this code might take
some time):

<StockQuotes><Stock><Symbol>IBM</Symbol><Last>190.01</Last><Date>4/17/2014</Date>
<Time>4:02pm</Time><Change>-
6.39</Change><Open>187.29</Open><High>190.70</High><Low>187.01</Low>
<Volume>11255493</Volume><MktCap>197.9B</MktCap><PreviousClose>196.40
</PreviousClose><PercentageChange>-3.25%</PercentageChange><AnnRange>
172.19 - 211.98</AnnRange><Earns>14.942</Earns><P-E>13.14</P-E>
<Name>International Bus</Name></Stock></StockQuotes>

You only need to use the service‐providing classes. All the rest is dealt with automati-
cally. The ObjectFactory class is used by the service classes to construct the GetQuote and
GetQuoteResponse objects—you do not need to construct them manually, but can instead call your
desired method directly with the stock symbol (“IBM”) as the method argument.

Naturally, since this SOAP service is still returning a single string, you still need to perform the
parsing of this string manually, just like earlier:

package withwsdl;

import java.io.IOException;
import java.io.StringReader;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

http:///

404 ❘ Chapter 10 AcceSSInG web SourceS

import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

import net.webservicex.StockQuote;
import net.webservicex.StockQuoteSoap;

public class ClientWithWSDL {
 public static void main(String[] args) {
 StockQuote service = new StockQuote();
 StockQuoteSoap soapService = service.getStockQuoteSoap();
 String stock = soapService.getQuote("IBM");

 showSOAPResponse(stock);
 }

 private static void showSOAPResponse(String responseString) {
 Document document = null;

 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new InputSource(
 new StringReader(responseString)));
 } catch (SAXException | IOException | ParserConfigurationException e) {
 e.printStackTrace();
 return;
 }

 NodeList stockElements = document.getElementsByTagName("Stock");
 for (int i = 0; i < stockElements.getLength(); i++) {
 System.out.println("----- Stock nr. " + i + " ------");
 NodeList infoElements = stockElements.item(i).getChildNodes();
 for (int j = 0; j < infoElements.getLength(); j++) {
 System.out.println(infoElements.item(j).getNodeName() +
 "\t ––> " +
 infoElements.item(j).getTextContent());
 }
 }
 }
}

In most cases, it’s best to access SOAP services in this manner, i.e., by using wsimport to generate
service‐wrapping classes and use those in your projects. One inal remark concerns the fact that
the WSDL ile will continue to be accessed by the generated classes every time you use them. To see
how, take a look at the generated StockQuote class and note the following lines:

static {
 URL url = null;
 WebServiceException e = null;
 try {

http:///

accessing Web Services and Sources with Java ❘ 405

 url = new URL("http://www.webservicex.net/stockquote.asmx?WSDL");
 } catch (MalformedURLException ex) {
 e = new WebServiceException(ex);
 }
 STOCKQUOTE_WSDL_LOCATION = url;
 STOCKQUOTE_EXCEPTION = e;
}

NOTE The code snippet that shows the generated StockQuote class
shows a so‐called “static block,” which you have not worked with explic-
itly before. Static code blocks are helpful when you want to instantiate
some static variables, but need to catch some error conditions with a
try-catch block as well, as can be observed here. Just typing the follow-
ing would not work, as Java expects you to catch a possible exception—a
MalformedURLException—which can occur during the instantiation of an URL
object:

private final static URL STOCKQUOTE_WSDL_LOCATION = new
 URL("http://www.webservicex.net/stockquote.asmx?WSDL");

To speed up the code somewhat, and to prevent the code from breaking down when the WSDL ile is
unavailable (but the SOAP service itself still works), it’s also possible to store this ile on your local
machine.

To do so, navigate to http://www.webservicex.net/stockquote.asmx?WSDL in your web
browser and save this ile somewhere, for instance on your desktop, as stockquote.wsdl. Next,
in Eclipse, right‐click the SOAPWithJava project in the package explorer (or on your project name
if you’re using a different one) and create a new “Folder” (not a “Source Folder”). Call it wsdl. See
Figure 10-16.

Next, drag your saved stockquote.wsdl ile over to the wsdl folder in the package explorer and
create a copy (you may now remove your originally saved ile). Next, edit the code in StockQuote to
look like the following:

static {
 ClassLoader classloader = Thread.currentThread().getContextClassLoader();
 WebServiceException e = null;
 URL url = classloader.getResource("wsdl/stockquote.wsdl");
 STOCKQUOTE_WSDL_LOCATION = url;
 STOCKQUOTE_EXCEPTION = e;
 }

The generated class will now use the locally stored WSDL ile instead of retrieving it online.

You have now seen how to access SOAP web services, both by constructing SOAP messages
manually and by using the wsimport tool to automatically generate classes. Obviously, in most
cases, the functionality offered by wsimport is the recommended way to write clients using SOAP

http://www.webservicex.net/stockquote.asmx?WSDL
http://www.webservicex.net/stockquote.asmx?WSDL
http://www.webservicex.net/stockquote.asmx?WSDL
http:///

406 ❘ Chapter 10 AcceSSInG web SourceS

services. Again, take some time to go over all the code you’ve seen to make sure you understand
everything. If you’re up for it, you can try some of the other web services offered at WebserviceX.
NET and see if you can get them to work with wsimport.

One aspect of SOAP you’ll probably agree on is the fact that its services are not really “simple” at
all. They involve a wealth of protocols and message formats, involving terminology such as ports,
bindings, and endpoints. In enterprise environments, however, SOAP services remain very popular,
so it is helpful to know how to access them in the programs you write. In the next section, you’ll
take a look at a simpler web service “standard,” which is not really a standard, but more like an
agreed‐upon method to access web sources using the infrastructure that’s already in place to serve
websites to end users: HTTP.

accessing rest services
REST stands for “Representational State Transfer” and describes a simple, common methodol-
ogy for accessing ad hoc web services. In recent years, it has become the methodology of choice by
“modern” web companies to provide APIs to access their information.

Recall from the introduction that one of the biggest differences between REST and SOAP is that
REST is stateless and SOAP is stateful. However, as you’ve seen in the preceding section, since many
SOAP services do not track state (in fact, only complex SOAP services do), this is not really an issue
for most applications.

figure 10-16

http:///

accessing Web Services and Sources with Java ❘ 407

Recall also that REST builds heavily on the existing HTTP protocol. If you’re very observant, you
might recall that SOAP can wrap its messages inside the HTTP protocol. Take, for instance, the
example provided by WebserviceX.NET to access the stock quote service:

POST /stockquote.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.webserviceX.NET/GetQuote"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetQuote xmlns="http://www.webserviceX.NET/">
 <symbol>string</symbol>
 </GetQuote>
 </soap:Body>
</soap:Envelope>

So what is the difference here? In SOAP, the HTTP protocol is just one way to “encapsulate” a
SOAP message. Other methods exist. For example, it is possible to send SOAP messages over the
so‐called SMTP protocol, the Simple Mail Transfer Protocol that is used to send e‐mails. When
you are coding SOAP clients, however, JAX‐WS assumes by default that you’re going to send
SOAP messages over HTTP, and the main concern then is to construct the actual XML SOAP
message.

In REST, the HTTP protocol is the complete exchange protocol, meaning that REST basically
instructs programmers to use the same protocol as your web browser uses to access websites, with
the difference being that web servers will not return HTML data to be rendered by a web browser,
but structured data that can be parsed by a computer. This can be in XML as well, but with the
difference that this XML will not contain any of the SOAP‐deined tags. For example, you could
send the following HTTP GET request to a RESTful web service:

GET /stockquote/IBM HTTP/1.1
Host: www.example.com
Connection: keep-alive
Accept: application/xml

And simply get back the following reply:

HTTP/1.0 200 OK
Content-Type: application/xml

<StockQuotes>
 <Stock>
 <Symbol>IBM</Symbol>
 <Last>190.01</Last>
 <Date>4/17/2014</Date>

http://www.webservicex.net
http://www.webserviceX.NET/GetQuote
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/
http://www.webserviceX.NET/
http://www.example.com
http:///

408 ❘ Chapter 10 AcceSSInG web SourceS

 <Time>4:02pm</Time>
 <Change>-6.39</Change>
 <Open>187.29</Open>
 <High>190.70</High>
 <Low>187.01</Low>
 <Volume>11255493</Volume>
 <MktCap>197.9B</MktCap>
 <PreviousClose>196.40</PreviousClose>
 <PercentageChange>-3.25%</PercentageChange>
 <AnnRange>172.19 - 211.98</AnnRange>
 <Earns>14.942</Earns>
 <P-E>13.14</P-E>
 <Name>International Bus</Name>
 </Stock>
</StockQuotes>

The idea behind REST stems from the realization that most web services just provide simple
request‐reply functionality, for which HTTP is already perfectly suited, and thus extra stan-
dards, such as SOAP, which add extra overhead and complexity, are not needed. REST just uses
HTTP as‐is, with some extra conventions added to it—one of them being that messages should
be structured to be parsed and understood by machines, and the other one being that HTTP
methods other than GET and POST (used by your browser) should be used on a structured set of
URLs, either on an URL representing a collection (http://www.example.com/books) or speciic
resource elements (http://www.example.com/books/B101). To repeat, the four common HTTP
methods being used are:

 ➤ GET: Retrieves a list of resources belonging to a collection or a formatted representation of
information on a resource element.

 ➤ PUT: Replaces the entire collection with a new one, or replaces the resource element with a
new one, or creates a resource element if its identiier does not exist.

 ➤ POST: Creates a new entry in a collection or creates a new entry in a resource element (less
commonly used).

 ➤ DELETE: Deletes an entire collection or a resource element.

Do keep in mind, however, that unlike SOAP, REST does not have an oficial standard, so different
APIs may apply different conventions in terms of how they deal with these HTTP methods. Some
providers choose to use GET and POST only, or to deine different URLs to deal with different actions
(/book/retrieve/B101, /book/insert/B101, and so on). However, since RESTful web services are
easy to understand—as they’re built straight on top of HTTP—perusing the documentation given
by the service provider is in most cases enough to get going.

accessing reSt Services Without authentication

To get started, you will see how you can access a REST service without authentication. As before,
the examples use publicly offered services, the irst of which is a simple service located at http://
www.thomas-bayer.com/sqlrest/.

Try opening this URL in your web browser. You’ll see the results shown in Figure 10-17.

http://www.example.com/books
http://www.example.com/books/B101
http://www.thomas-bayer.com/sqlrest/
http://www.thomas-bayer.com/sqlrest/
http://www.example.com/books/B101
http:///

accessing Web Services and Sources with Java ❘ 409

figure 10-17

Now try following the link http://www.thomas-bayer.com/sqlrest/CUSTOMER/, which is a col-
lection URL and thus provides a list of customers. See Figure 10-18.

Now try accessing a speciic customer, e.g., http://www.thomas-bayer.com/sqlrest/
CUSTOMER/8/, which is a resource element. See Figure 10-19.

figure 10-18

http://www.thomas-bayer.com/sqlrest/CUSTOMER/
http://www.thomas-bayer.com/sqlrest/CUSTOMER/8/
http://www.thomas-bayer.com/sqlrest/CUSTOMER/8/
http:///

410 ❘ Chapter 10 AcceSSInG web SourceS

As you can observe, your browser is making simple HTTP GET requests to speciied, agreed‐upon
URLs and getting back structured information, in this case formatted as XML.

To access REST web services using Java, you’ll need a way to work with the HTTP protocol
directly. Many good libraries exist to do so, but for now, take a look at Java’s built‐in HTTP con-
nection class: java.net.HttpURLConnection. Create a new project in Eclipse—RESTWithJava—
and use it throughout this section.

Instead of writing Java code like a script (as you’ve done before to show off SOAP services), make
sure the resources you request from the web service are immediately converted to objects, which is
the proper object‐oriented way to go. If you take a look at the web service, you’ll see that it deines
four kinds of resources:

 ➤ A customer: With an ID, irst name, last name, street, and city

 ➤ An invoice: With an ID, which is the customer ID the invoice relates to and a total sum

 ➤ A product: With an ID, name, and price

 ➤ An item line: Relates to an invoice, a product, quantity, and total cost

You can verify this by exploring the other URLs in your browser. You should create classes to rep-
resent each of these and place them in the com.thomasbayer.sqlrest package, starting with a
customer:

package com.thomasbayer.sqlrest;

public class Customer {
 private int id;
 private String firstName, lastName;

figure 10-19

http:///

accessing Web Services and Sources with Java ❘ 411

 private String street, city;

 public Customer(int id) {
 this.id = id;
 }

 public Customer(int id,
 String firstName, String lastName,
 String street, String city) {
 this(id);
 this.firstName = firstName;
 this.lastName = lastName;
 this.street = street;
 this.city = city;
 }

 public int getId() {
 return id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String toString() {
 return String.format(
 "Customer[#%s: %s, %s -- %s, %s]",

http:///

412 ❘ Chapter 10 AcceSSInG web SourceS

 id, lastName, firstName,
 street, city);
 }
}

Recall that you can use the “Generate Getters and Setters. . .” function under “Source” when right‐
clicking in Eclipse’s code window to generate getter and setter methods. Note also that here the
String.format method is used to format the string representation in the toString method. This is
a more readable alternative than having to work with long, concatenated strings.

Next up, create a class to represent a product:

package com.thomasbayer.sqlrest;

public class Product {
 private int id;
 private String name;
 private double price;

 public Product(int id) {
 this.id = id;
 }

 public Product(int id, String name, double price) {
 this(id);
 this.name = name;
 this.price = price;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {
 this.price = price;
 }

 public String toString() {
 return String.format(
 "Product #%s: %s: priced at %s",
 id, name, price);
 }

http:///

accessing Web Services and Sources with Java ❘ 413

}

Followed by an invoice:

package com.thomasbayer.sqlrest;

import java.util.ArrayList;
import java.util.List;

public class Invoice {
 private int id;
 private Customer customer;
 private double totalSum;
 private final List<Item> items;

 public Invoice(int id) {
 this.id = id;
 this.items = new ArrayList<Item>();
 }

 public Invoice(int id, Customer customer, double totalSum, List<Item> items) {
 this(id);
 this.customer = customer;
 this.totalSum = totalSum;
 this.items.addAll(items);
 }

 public Customer getCustomer() {
 return customer;
 }

 public void setCustomer(Customer customer) {
 this.customer = customer;
 }

 public double getTotalSum() {
 return totalSum;
 }

 public void setTotalSum(double totalSum) {
 this.totalSum = totalSum;
 }

 public int getId() {
 return id;
 }

 public void addItem(Item item) {
 items.add(item);
 }

 public void removeItem(Item item) {
 items.remove(item);
 }

http:///

414 ❘ Chapter 10 AcceSSInG web SourceS

 public List<Item> getItems() {
 return new ArrayList<Item>(items);
 }

 public void setItems(List<Item> items) {
 this.items.clear();
 this.items.addAll(items);
 }

 public String toString() {
 return String.format(
 "Invoice #%s: total sum %s" +
 "%n%s",
 id, totalSum,
 customer);
 }
}

And inally, an item:

package com.thomasbayer.sqlrest;

public class Item {
 private Invoice invoice;
 private Product product;
 private int quantity;
 private double cost;

 public Item(Invoice invoice, Product product) {
 this.invoice = invoice;
 this.product = product;
 }

 public Item(Invoice invoice, Product product, int quantity, double cost) {
 this(invoice, product);
 this.quantity = quantity;
 this.cost = cost;
 }

 public Invoice getInvoice() {
 return invoice;
 }

 public Product getProduct() {
 return product;
 }

 public int getQuantity() {
 return quantity;
 }

 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }

http:///

accessing Web Services and Sources with Java ❘ 415

 public double getCost() {
 return cost;
 }

 public void setCost(double cost) {
 this.cost = cost;
 }

 public String toString() {
 return String.format(
 "Item: quantity: %s, cost: %s" +
 "%n%s" +
 "%n%s",
 quantity, cost,
 invoice,
 product);
 }
}

Next, create a RestServiceClient class to communicate with the web service:

package com.thomasbayer.sqlrest;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.StringReader;
import java.io.StringWriter;
import java.net.HttpURLConnection;
import java.net.URL;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

public class RestServiceClient {
 private final static String URL_API_ROOT =
 "http://www.thomas-bayer.com/sqlrest/";

 public enum Resource {
 CUSTOMER, PRODUCT, INVOICE, ITEM
 };

 public Document getResourceCollection(Resource resource) {

http://www.thomas-bayer.com/sqlrest/
http:///

416 ❘ Chapter 10 AcceSSInG web SourceS

 return stringToXMLDocument(getHttpUrl(URL_API_ROOT + resource.name()));
 }

 public Document getResourceItem(Resource resource, int itemId) {
 return stringToXMLDocument(
 getHttpUrl(URL_API_ROOT + resource.name() + "/" + itemId));
 }

 public String getHttpUrl(String url) {
 HttpURLConnection connection = null;
 try {
 URL u = new URL(url);
 connection = (HttpURLConnection) u.openConnection();
 // We will be making GET requests only to this service
 connection.setRequestMethod("GET");
 connection.connect();
 int responseCode = connection.getResponseCode();
 if (responseCode != HttpURLConnection.HTTP_OK) {
 // We got a non 200 (OK) status code: error or server is down
 System.err.println("Server returned status code: " + responseCode);
 return null;
 }
 // Fetch the response from the server
 StringBuilder stringBuilder = new StringBuilder();
 // getInputStream is data coming back from the server
 // getOutputStream is meant for sending data to the server
 try (BufferedReader reader = new BufferedReader(
 new InputStreamReader(connection.getInputStream(), "UTF-8"))) {
 String s;
 while ((s = reader.readLine()) != null) {
 stringBuilder.append(s + "\n");
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 connection.disconnect();
 return stringBuilder.toString();
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (connection != null)
 connection.disconnect();
 }
 return null;
 }

 static public Document stringToXMLDocument(String xmlText) {
 try {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 Document document = builder.parse(new InputSource(
 new StringReader(xmlText)));
 return document;
 } catch (ParserConfigurationException | SAXException | IOException e) {
 e.printStackTrace();

http:///

accessing Web Services and Sources with Java ❘ 417

 }
 return null;
 }

 public static void main(String args[]) throws TransformerException {
 // Testing our RestServiceClient
 RestServiceClient client = new RestServiceClient();

 // Set up a transformer to properly convert an XML document to a string
 Document d;
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer();

 // Test collection URL
 StringWriter writer = new StringWriter();
 d = client.getResourceCollection(Resource.CUSTOMER);
 transformer.transform(new DOMSource(d), new StreamResult(writer));
 System.out.println(writer);

 // Test item URL
 writer = new StringWriter();
 d = client.getResourceItem(Resource.PRODUCT, 3);
 transformer.transform(new DOMSource(d), new StreamResult(writer));
 System.out.println(writer);
 }
}

Pay particular attention to the HttpUrlConnection class used here to establish an HTTP connec-
tion and get a response from the server. This object exposes two streams using the getInputStream
and getOutputStream methods. The irst enables you to get information from the server (the input),
whereas the second allows you to send information to the server (the output), which you do not
have to use here as the URL on its own is enough for the server to know which information you
want to retrieve. A short main method is added here to test the functionality of this class, using a
Transformer to convert an XML document back to a string (just using toString() will not work
for document objects). Finally, note that a BufferedReader is used together with a StringBuilder
object to quickly construct a string of the HTTP response received.

Next up, create an ObjectFactory to convert received XML replies to your Java objects:

package com.thomasbayer.sqlrest;

import java.util.ArrayList;
import java.util.List;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

import com.thomasbayer.sqlrest.RestServiceClient.Resource;

public class ObjectFactory {
 private final static RestServiceClient client = new RestServiceClient();

http:///

418 ❘ Chapter 10 AcceSSInG web SourceS

 public static int[] getCustomerIds() {
 return getCollectionIds(Resource.CUSTOMER);
 }

 public static int[] getProductIds() {
 return getCollectionIds(Resource.PRODUCT);
 }

 public static int[] getItemIds() {
 return getCollectionIds(Resource.ITEM);
 }

 public static int[] getInvoiceIds() {
 return getCollectionIds(Resource.INVOICE);
 }

 public static Customer createCustomer(int id) {
 Document document = client.getResourceItem(Resource.CUSTOMER, id);
 Customer customer = new Customer(id);
 customer.setFirstName(getEl(document, "FIRSTNAME"));
 customer.setLastName(getEl(document, "LASTNAME"));
 customer.setStreet(getEl(document, "STREET"));
 customer.setCity(getEl(document, "CITY"));
 return customer;
 }

 public static Product createProduct(int id) {
 Document document = client.getResourceItem(Resource.PRODUCT, id);
 Product product = new Product(id);
 product.setName(getEl(document, "NAME"));
 product.setPrice(Double.parseDouble(getEl(document, "PRICE")));
 return product;
 }

 public static Invoice createInvoice(int id) {
 Document document = client.getResourceItem(Resource.INVOICE, id);
 Invoice invoice = new Invoice(id);
 invoice.setCustomer(
 createCustomer(Integer.parseInt(getEl(document, "CUSTOMERID"))));
 invoice.setTotalSum(Double.parseDouble(getEl(document, "TOTAL")));
 invoice.setItems(createItems(id, invoice));
 return invoice;
 }

 public static List<Item> createItems(int id, Invoice invoice) {
 Item item;
 Product product = null;
 int quantity = 0;
 double cost = 0D;
 Document document = client.getResourceItem(Resource.ITEM, id);
 List<Item> items = new ArrayList<Item>();
 if (document.getChildNodes().getLength() == 0)
 return items;
 NodeList children = document.getChildNodes().item(0).getChildNodes();
 // Loop over the XML document

http:///

accessing Web Services and Sources with Java ❘ 419

 for (int i = 0; i < children.getLength(); i++) {
 Node node = children.item(i);
 switch (node.getNodeName()) {
 case "PRODUCTID":
 product = createProduct(Integer.parseInt(node.getTextContent()));
 break;
 case "QUANTITY":
 quantity = Integer.parseInt(node.getTextContent());
 break;
 case "COST":
 cost = Double.parseDouble(node.getTextContent());
 // This is the last line, commit our item to the list
 item = new Item(invoice, product, quantity, cost);
 items.add(item);
 break;
 default:
 break;
 }
 }

 return items;
 }
 private static int[] getCollectionIds(Resource resource) {
 Document document = client.getResourceCollection(resource);
 NodeList elements = document.getElementsByTagName(resource.name());
 int[] ids = new int[elements.getLength()];
 for (int i = 0; i < ids.length; i++) {
 ids[i] = Integer.parseInt(((Element) elements.item(i)).getTextContent());
 }
 return ids;
 }

 private static String getEl(Document document, String n) {
 return document.getElementsByTagName(n).item(0).getTextContent();
 }

}

Finally, you can create a RestClientProgram class to test what you’ve built:

package com.thomasbayer.sqlrest;

public class RestClientProgram {
 public static void main(String[] args) {
 int[] customerIds = ObjectFactory.getCustomerIds();

 System.out.println("----------- Collection test -----------");
 System.out.println("First three customer ids: " +
 customerIds[0] + ", " +
 customerIds[1] + ", " +
 customerIds[2]);

http:///

420 ❘ Chapter 10 AcceSSInG web SourceS

 System.out.println("----------- Customer test -----------");
 Customer customer = ObjectFactory.createCustomer(customerIds[1]);
 System.out.println(customer);

 System.out.println("----------- Product test -----------");
 Product product = ObjectFactory.createProduct(0);
 System.out.println(product);

 System.out.println("----------- Invoice test -----------");
 Invoice invoice = ObjectFactory.createInvoice(0);
 System.out.println(invoice);

 System.out.println("----------- Invoice items test -----------");
 System.out.println(invoice.getItems());
 }
}

If you run this class, you should get something like the following:

----------- Collection test -----------
First three customer ids: 0, 1, 2
----------- Customer test -----------
Customer #1: King, Susanne – 366 - 20th Ave., Olten
----------- Product test -----------
Product #0: Iron Iron: priced at 5.4
----------- Invoice test -----------
Invoice #0: total sum 2607.6
Customer #0: Steel, Laura – 429 Seventh Av., Dallas
----------- Invoice items test -----------
[Item: quantity: 12, cost: 12.6
Invoice #0: total sum 2607.6
Customer #0: Steel, Laura -- 429 Seventh Av., Dallas
Product #7: Telephone Shoe: priced at 8.4, Item: quantity: 19, cost: 18.6
Invoice #0: total sum 2607.6
Customer #0: Steel, Laura -- 429 Seventh Av., Dallas
Product #14: Telephone Iron: priced at 12.4, Item: quantity: 3, cost: 26.7

That’s all there is to the basics of accessing RESTful web services. Note that the essential code is
found in the RestServiceClient class, where the HttpUrlConnection class is used to establish the
connection. All the other classes deal with parsing the responses received from the server and estab-
lishing an object representation for them.

NOTE If you’ve already worked through the previous chapter on data-
bases, you might recognize that what is built here is quite similar to Object
Relational Mapping (ORM), where the relational structure of a database is
mapped to objects in Java, abstracting the aspect of having to deal with SQL
manually by or and just working with plain objects and their methods. What
you’re doing here is similar: abstracting communication with the REST service
in a separate class.

http:///

accessing Web Services and Sources with Java ❘ 421

Again, take some time to explore this code at your own leisure. One “issue” that’s still present is that
you are creating objects in an ad hoc manner, even if an object might already exist. For instance,
if you create two Invoice objects belonging to the same customer, the customer information is
requested twice, and two separate Customer objects are created containing the same information.
You might try to modify the code to work around this. To do so, you need a global set of object
“managing” classes, which keep track of a set of objects (customers, for instance). This class can then
provide a method—e.g., createOrGetCustomer—that returns a Customer object for a given ID if it
has been created earlier (stored in a map, for example) or fetches and creates a new Customer object
and returns that one (after adding it to its map for quick retrieval later). You can also try to add
constructors to the resource objects to create a resource by fetching information from a web service
(using the ObjectFactory), instead of directly accessing the methods of ObjectFactory. You will
often have to think about these kinds of architectural decisions when writing more complex pro-
grams. Different solutions to solve the same problem exist, and depending on your needs, you might
need to add more abstraction or managing classes. As you get more experienced in programming in
Java, the right “patterns” to use for a given circumstance will present themselves more quickly and
easily, but don’t be afraid to iterate over your code and refactor when necessary.

NOTE Another interesting aspect is the way to fetch “related” objects. For exam-
ple, when an Invoice object is created, the information for Customer is requested
immediately to construct a Customer object and store this in the Invoice object.
This technique is called “eager” loading, where you immediately request all infor-
mation you need, potentially leading to slower code. For instance, consider an
object with a very large related object. If you only need basic information, eagerly
loading the related object leads to bandwidth and time overhead.

As such, it would be possible to adapt your classes to only store the customer
ID for an invoice, for instance, and keep the Customer ield set to null. Once
the programmer requests the full customer information (using the getCus-
tomer method), an additional request to the server to instantiate and set the
customer ield can be ired. If you feel up for it, you can try modifying the code
to allow for “lazy” loading.

Note that the same terminology pops up when working with Object Relational
Mappers to interact with databases, for instance, to indicate whether you want
to immediately fetch all relations in a one-to-many connection or wait until the
programmer explicitly requests to do so.

In any case, now you know how to access a simple RESTful service using Java. Now, take a look
at a more complex RESTful service, which involves authentication and requests other than GET, in
order to send information to the service.

accessing reSt Services with authentication

Not all RESTful services are as simple as the one used in the previous section. In fact, many
RESTful services involve authentication of some kind.

http:///

422 ❘ Chapter 10 AcceSSInG web SourceS

Depending on the REST service you’re using, different authentication schemes can be used:

 ➤ Sending a username and password with every request as an URL parameter. You then send
requests to the following URL, for instance: http://www.example.com/books/B101?usern
ame=me&password=secret.

 ➤ Sending a so‐called “key” with every request as an URL parameter. This is a secret “pass-
word” given to you by the service provider. You then send requests to the following URL, for
instance: http://www.example.com/books/B101?api_key=1234567890/.

 ➤ Username/password or key‐based authentication schemes where the key is sent in an HTTP
header.

 ➤ Username/password or key‐based authentication schemes using HTTP cookies. Users then
irst authenticate once and send the given cookie in each of the subsequent requests.

 ➤ RESTful services using middleware—such as OAuth—to handle authentication; this is espe-
cially helpful when you need more ine‐grained authentication (instead of just allowing or
disallowing requests).

URL parameter and cookie‐based authentication is becoming quite rare in modern REST services.
The reason for this is that keys and passwords can be stolen by intercepting network trafic, espe-
cially when services are exposed over non‐secured HTTP connections.

For all of the authentication schemes mentioned previously, Java’s built‐in HttpUrlConnection class
will work ine (just add the URL parameters in the URL you request). When you need to work with
cookies, you can use the java.net.CookieManager class to help out—in the “Screen Scraping” sec-
tion that follows, there is an example on how to use this class. However, for REST services using
OAuth, you might want to resort to another library to handle the authentication aspect for you, as
doing this step manually is somewhat complex.

To this end, these examples will use Google’s Java OAuth Client Library. This library is built on
top of Google’s HTTP Library for Java, which in turn can wrap using HttpUrlConnection or the
Apache HTTP Client Library for Java, an alternative third‐party class to communicate with HTTP
servers. To set up this library, navigate to https://code.google.com/p/google-oauth-java-
client/ and download the latest version of the library (google-oauth-java-client-1.17.0-rc.
zip is used here). Extract this ZIP ile somewhere. Next, create a new folder in your Eclipse project
(this book continues to use RESTWithJava, but you can create a new one) named google-http.
Next, drag and copy the contents of the libs folder in the extracted ZIP to this folder. Finally, add
all the JAR iles in the google-http folder to the build path in Eclipse.

Twitter’s REST service is used here to build a sample client. Twitter is a social networking ser-
vice that enables users to send and read short messages, called “tweets.” Take a look at Twitter’s
documentation concerning its REST service at https://dev.twitter.com/docs/api/1.1. The
documentation lists a number of resources that can be accessed using only GET and POST HTTP
requests. For example, the page on “statuses/home_timeline”—see https://dev.twitter.com/
docs/api/1.1/get/statuses/home_timeline—mentions that this resource can be used to
return a collection of tweets posted by the authenticated user and the users they follow. The page
mentions that accessing this resource requires a “user context.” The page also lists parameters
that can be submitted with the request and an example request message. Try to open the URL

http://www.example.com/books/B101?username=me&password=secret
http://www.example.com/books/B101?username=me&password=secret
http://www.example.com/books/B101?api_key=1234567890/
https://code.google.com/p/google-oauth-java-client/
https://code.google.com/p/google-oauth-java-client/
https://dev.twitter.com/docs/api/1.1
https://dev.twitter.com/docs/api/1.1/get/statuses/home_timeline
https://dev.twitter.com/docs/api/1.1/get/statuses/home_timeline
http:///

accessing Web Services and Sources with Java ❘ 423

https://api.twitter.com/1.1/statuses/home_timeline.json in your browser, and you’ll get
the following response:

{"errors":[{"message":"Bad Authentication data","code":215}]}

Clearly, Twitter requires you to perform some additional steps before you can access its REST ser-
vice. However, you can see already that Twitter does not return XML-formatted responses, but
instead uses JSON, another notation to structure documents. You will see how to deal with parsing
JSON soon.

Now take a look at setting up OAuth authentication to access the Twitter service. Even without
knowing it, you might be familiar with OAuth if you’ve accessed Twitter—or services such as
Facebook—before. Whenever you see a pop‐up in your browser asking you if you want to grant a
third‐party application access to your Twitter information, OAuth is under the hood. Every OAuth
authentication basically involves these three steps:

 1. Get a “request token,” which is a temporary identiier shared between your application and
the service that will be used to authorize an access token.

 2. Ask the user to identify and allow access, basically indicates that this “request token” has
been granted access.

 3. If the user authorizes access, an “access token” can be given to the requesting application,
which is requested using the request token. Once this is done, the request token is discarded
and the access token is used for following requests.

The documentation of Twitter’s REST service also provides excellent documentation regarding
OAuth. Take a look at https://dev.twitter.com/docs/auth/3-legged-authorization
and https://dev.twitter.com/docs/auth/authorizing-request. The latter mentions that
normally, you would be able to send a REST HTTP POST request like this to post a tweet:

POST /1/statuses/update.json?include_entities=true HTTP/1.1
Accept: */*
Connection: close
User-Agent: OAuth gem v0.4.4
Content-Type: application/x-www-form-urlencoded
Content-Length: 76
Host: api.twitter.com

status=Hello%20Ladies%20%2b%20Gentlemen%2c%20a%20signed%20OAuth%20request%21

However, this request would be considered invalid, since Twitter would not know which applica-
tion makes the request, for which user the request is being posed, if the user is allowed to post this
tweet, and whether the request has been tampered with. A valid request thus needs to look like
this:

POST /1/statuses/update.json?include_entities=true HTTP/1.1
Accept: */*
Connection: close
User-Agent: OAuth gem v0.4.4

https://api.twitter.com/1.1/statuses/home_timeline.json
https://dev.twitter.com/docs/auth/3-legged-authorization
https://dev.twitter.com/docs/auth/authorizing-request
http:///

424 ❘ Chapter 10 AcceSSInG web SourceS

Content-Type: application/x-www-form-urlencoded
Authorization:
 OAuth oauth_consumer_key="xvz1evFS4wEEPTGEFPHBog",
 oauth_nonce="kYjzVBB8Y0ZFabxSWbWovY3uYSQ2pTgmZeNu2VS4cg",
 oauth_signature="tnnArxj06cWHq44gCs1OSKk%2FjLY%3D",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="1318622958",
 oauth_token="370773112-GmHxMAgYyLbNEtIKZeRNFsMKPR9EyMZeS9weJAEb",
 oauth_version="1.0"
Content-Length: 76
Host: api.twitter.com

status=Hello%20Ladies%20%2b%20Gentlemen%2c%20a%20signed%20OAuth%20request%21

This request is similar, except that it now contains a special “Authorization” OAuth header. This
header contains the following information:

 ➤ oauth_consumer_key: Identiies the application making the REST request.

 ➤ oauth_nonce: A unique token generated for each request. This is to prevent the same request
being sent multiple times.

 ➤ oauth_signature: A hash of the request and some secret values that can be used to check
the request on the server’s side to make sure it has not been tampered with.

 ➤ oauth_signature_method: The method that was used to construct the signature.

 ➤ oauth_timestamp: Indicates when the request was created. OAuth services will reject
requests that were created too far in the past.

 ➤ oauth_token: The access token representing the permission by the user to share access to
your application.

 ➤ oauth_version: The version of the OAuth protocol being used.

It is possible to construct this header manually and send it along every request, e.g., using
HttpUrlConnection. Since this is a complex process involving a great deal of steps, you can use
Google’s Java OAuth Client Library instead.

The irst thing you’ll need to do is create a Twitter API key to identify your application. This is the
oath_consumer_key mentioned previously. To create it, navigate to https://apps.twitter.com/,
log in with your Twitter account (it’s easy to create one if you haven’t already), and select Create
New App. You will need to ill in some details:

 ➤ Name: The name given to your application. For this example, the name
NAMEJavaTestClient is used. Fill in your name instead of “NAME” (application names
need to be unique).

 ➤ Description: “Testing Twitter’s REST Service in Java.”

 ➤ Website: You can just put a placeholder here, e.g., http://www.example.com.

 ➤ Callback URL: Fill in nothing.

Accept the agreements and press Create Your Twitter Application. If all goes well, you’ll be brought
to a page with details for your app. See Figure 10-20.

http://www.example.com
https://apps.twitter.com/
http:///

accessing Web Services and Sources with Java ❘ 425

Note your API key and take note of the request token, authorize, and access token URLs. They’ll
reappear in your code soon. You’ll also need to modify your app permissions (click the link) and
allow for Read and Write access. Update your settings and go back to the Details tab. There, next to
the API key, click Manage API Keys and note your API Secret as well. Also note that the access level
has been set to Read and Write. As the Twitter page mentions, never give out your secret key to any-
one, as this will allow others to pose as your application. In real‐life applications, you’ll want to store
this key in an encrypted form, but for these purposes, you can just use it in plain form in the code.

Next, create a TwitterTest class in a new com.twitter.api package to build a prototype working
with OAuth. The code should like the following:

package com.twitter.api;

import java.io.BufferedReader;
import java.io.InputStreamReader;

import com.google.api.client.auth.oauth.OAuthAuthorizeTemporaryTokenUrl;
import com.google.api.client.auth.oauth.OAuthCredentialsResponse;
import com.google.api.client.auth.oauth.OAuthGetAccessToken;
import com.google.api.client.auth.oauth.OAuthGetTemporaryToken;
import com.google.api.client.auth.oauth.OAuthHmacSigner;

figure 10-20

http:///

426 ❘ Chapter 10 AcceSSInG web SourceS

import com.google.api.client.auth.oauth.OAuthParameters;
import com.google.api.client.http.GenericUrl;
import com.google.api.client.http.HttpRequest;
import com.google.api.client.http.HttpRequestFactory;
import com.google.api.client.http.HttpResponse;
import com.google.api.client.http.HttpTransport;
import com.google.api.client.http.javanet.NetHttpTransport;

public class TwitterTest {

 private static final String CONSUMER_KEY = "FILL IN YOUR API KEY";
 private static final String CONSUMER_SECRET = "FILL IN YOUR SECRET KEY";

 private static final String REQUEST_TOKEN_URL =
 "https://api.twitter.com/oauth/request_token";
 private static final String AUTHORIZE_URL =
 "https://api.twitter.com/oauth/authenticate";
 private static final String ACCESS_TOKEN_URL =
 "https://api.twitter.com/oauth/access_token";

 private static final String API_ENDPOINT_URL =
 "https://api.twitter.com/1.1/statuses/home_timeline.json";

 public static void main(String[] args) throws Exception {
 // HttpTransport will be used to handle the HTTP requests
 // This is part of the google-http library
 HttpTransport transport = new NetHttpTransport();

 // The OAuthHmacSigner will be used to create the oauth_signature
 // Using HMAC-SHA1 as the oauth_signature_method
 // The signer needs the secret key to sign requests
 OAuthHmacSigner signer = new OAuthHmacSigner();
 signer.clientSharedSecret = CONSUMER_SECRET;

 // Step 1: Get a request token
 // ---------------------------

 // We need to provide our application key
 // We also need to provide an HTTP transport object
 // And the signer which will sign the request
 OAuthGetTemporaryToken requestToken =
 new OAuthGetTemporaryToken(REQUEST_TOKEN_URL);
 requestToken.consumerKey = CONSUMER_KEY;
 requestToken.transport = transport;
 requestToken.signer = signer;

 // Get back our request token
 OAuthCredentialsResponse requestTokenResponse = requestToken.execute();

 System.out.println("Request Token:");
 System.out.println("- oauth_token = " + requestTokenResponse.token);
 System.out.println("- oauth_token_secret = " +
 requestTokenResponse.tokenSecret);

 // Update the signer to also include the request token
 signer.tokenSharedSecret = requestTokenResponse.tokenSecret;

https://api.twitter.com/oauth/request_token
https://api.twitter.com/oauth/authenticate
https://api.twitter.com/oauth/access_token
https://api.twitter.com/1.1/statuses/home_timeline.json
http:///

accessing Web Services and Sources with Java ❘ 427

 // Step 2: User grants access
 // ---------------------------

 // Construct an authorization URL using the temporary request token
 OAuthAuthorizeTemporaryTokenUrl authorizeUrl =
 new OAuthAuthorizeTemporaryTokenUrl(AUTHORIZE_URL);
 authorizeUrl.temporaryToken = requestTokenResponse.token;

 // We ask the user to open this URL and grant access
 // Twitter includes an extra safety measure, asks the user to provide PIN
 String pin = null;
 System.out.println("Go to the following link:\n" + authorizeUrl.build());
 InputStreamReader converter = new InputStreamReader(System.in, "UTF-8");
 BufferedReader in = new BufferedReader(converter);
 while (pin == null) {
 System.out.println("Enter the verification PIN provided by Twitter:");
 pin = in.readLine();
 }

 // Step 3: Request the access token the user has approved
 // --

 // Get the access token
 // We need to provide our application key
 // The signer, the transport objects
 // The temporary request token
 // And a verifier string (the PIN number provided by Twitter)
 OAuthGetAccessToken accessToken = new OAuthGetAccessToken(ACCESS_TOKEN_URL);
 accessToken.consumerKey = CONSUMER_KEY;
 accessToken.signer = signer;
 accessToken.transport = transport;
 accessToken.temporaryToken = requestTokenResponse.token;
 accessToken.verifier = pin;

 // Get back our access token
 OAuthCredentialsResponse accessTokenResponse = accessToken.execute();

 System.out.println("Access Token:");
 System.out.println("- oauth_token = " + accessTokenResponse.token);
 System.out.println("- oauth_token_secret = " +
 accessTokenResponse.tokenSecret);

 // Update the signer again
 // We now replace the temporary request token with the final access token
 signer.tokenSharedSecret = accessTokenResponse.tokenSecret;

 // Set up OAuth parameters which can now be used in authenticated requests
 OAuthParameters parameters = new OAuthParameters();
 parameters.consumerKey = CONSUMER_KEY;
 parameters.token = accessTokenResponse.token;
 parameters.signer = signer;

 // OAuth steps finished, we can now start accessing the service
 // --

 HttpRequestFactory factory = transport.createRequestFactory(parameters);

http:///

428 ❘ Chapter 10 AcceSSInG web SourceS

 GenericUrl url = new GenericUrl(API_ENDPOINT_URL);
 HttpRequest req = factory.buildGetRequest(url);
 HttpResponse resp = req.execute();

 System.out.println(resp.getStatusCode());
 System.out.println(resp.parseAsString());

 }

}

Take some time to read through the code and the comments. Don’t forget to ill in the keys you
received from Twitter in the CONSUMER_KEY and CONSUMER_SECRET variables. Note also the
REQUEST_TOKEN_URL, AUTHORIZE_URL, and ACCESS_TOKEN_URL variables, containing the OAuth
URLs provided to you earlier by Twitter.

Execute this code in Eclipse; you’ll see the following output:

Request Token:
- oauth_token = QEaZwniqkgRcB25gAuGGQg7rHz48OR5a8uoZ3AJs
- oauth_token_secret = scnIHqN59V0WAe2nyEoxiOWRejcBA7WPmQv5Ah5Q
Go to the following link:
https://api.twitter.com/oauth/authenticate?oauth_token=
 QEaZwniqkgRcB25gAuGGQg7rHz48OR5a8uoZ3AJs
Enter the verification PIN provided by Twitter:

(Your tokens will differ.) Open the given link in your web browser. A Twitter page will appear ask-
ing you if you want to allow access to an external application. See Figure 10-21.

Press Authorize App. Next, Twitter will provide you with a PIN that you’ll need to provide to the
application. See Figure 10-22.

Go back to the running Eclipse console, enter the PIN, and press Enter. The program will resume
and execute the REST call:

Enter the verification PIN provided by Twitter:
2162766
Access Token:
- oauth_token = 9807092-pEFWjo4juyL3MhZ1IruqvUeq1bvbpb83ZcDGCBtVEB
- oauth_token_secret = QlG4enz5Zo4YKMXq6Pv4kgoLFH5x7cLBZpHsYshhNynwz
200
[*REALLY LONG JSON RESPONSE*]

NOTE If you had set a callback URL, Twitter would not provide a PIN but
would refer the user back to an URL you specify with the access token pro-
vided as an URL parameter, which your application can then intercept auto-
matically. Since setting up web servers with Java hasn’t been covered yet, here
you can use the PIN‐based approach.

https://api.twitter.com/oauth/authenticate?oauth_token=QEaZwniqkgRcB25gAuGGQg7rHz48OR5a8uoZ3AJs
http:///

accessing Web Services and Sources with Java ❘ 429

figure 10-21

figure 10-22

http:///

430 ❘ Chapter 10 AcceSSInG web SourceS

Great, everything works. However, the code is contained in one huge main method and thus could
use some cleaning up. You’ll also need to ind a way to parse the received JSON, and it would be
better to avoid users having to grant permission to your application each time it is run, as you can
just as well reuse the same access token for future requests.

Start by creating an OAuthParametersProvider class, which you can use to perform a three‐step
OAuth authentication, and will be able to store access tokens for later use. First, create a new
folder (not a source folder) in your RESTWithJava project called tokens. Next, enter the following
code:

package com.twitter.api;

import java.awt.Desktop;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.net.URI;
import java.net.URISyntaxException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;

import com.google.api.client.auth.oauth.OAuthAuthorizeTemporaryTokenUrl;
import com.google.api.client.auth.oauth.OAuthCredentialsResponse;
import com.google.api.client.auth.oauth.OAuthGetAccessToken;
import com.google.api.client.auth.oauth.OAuthGetTemporaryToken;
import com.google.api.client.auth.oauth.OAuthHmacSigner;
import com.google.api.client.auth.oauth.OAuthParameters;
import com.google.api.client.http.HttpTransport;
import com.google.api.client.http.javanet.NetHttpTransport;

public class OAuthParametersProvider {
 protected final String configurationName;

 protected final String consumerKey;
 protected final String consumerSecret;

 protected final String requestTokenUrl;
 protected final String authorizeUrl;
 protected final String accessTokenUrl;

 protected final boolean requiresVerification;

 protected final HttpTransport transport;
 protected final OAuthHmacSigner signer;

 public OAuthParametersProvider(String configurationName,
 String consumerKey, String consumerSecret,
 String requestTokenUrl, String authorizeUrl, String accessTokenUrl,

http:///

accessing Web Services and Sources with Java ❘ 431

 boolean requiresVerification) {
 this.configurationName = configurationName;
 this.consumerKey = consumerKey;
 this.consumerSecret = consumerSecret;
 this.requestTokenUrl = requestTokenUrl;
 this.authorizeUrl = authorizeUrl;
 this.accessTokenUrl = accessTokenUrl;
 this.requiresVerification = requiresVerification;

 this.transport = new NetHttpTransport();
 this.signer = new OAuthHmacSigner();
 this.signer.clientSharedSecret = consumerSecret;
 }

 public OAuthParameters getOAuthParameters() {
 OAuthParameters parameters = new OAuthParameters();
 parameters.consumerKey = consumerKey;
 OAuthCredentialsResponse accessToken = getAccessToken();
 parameters.token = accessToken.token;

 // Construct a new signer
 OAuthHmacSigner requestSigner = new OAuthHmacSigner();
 requestSigner.clientSharedSecret = consumerSecret;
 requestSigner.tokenSharedSecret = accessToken.tokenSecret;

 parameters.signer = requestSigner;

 return parameters;
 }

 public OAuthCredentialsResponse getAccessToken() {
 return getAccessToken(false);
 }

 public OAuthCredentialsResponse getAccessToken(boolean forceNewToken) {
 OAuthCredentialsResponse token = getStoredAccessToken();
 if (!forceNewToken && token != null)
 return token;

 OAuthCredentialsResponse requestToken = getRequestToken();
 OAuthCredentialsResponse accessToken = getAccessToken(requestToken);

 return accessToken;
 }

 protected OAuthCredentialsResponse getStoredAccessToken() {
 String path = "tokens/"+configurationName+".txt";
 if (Files.notExists(Paths.get(path)))
 return null;
 try {
 List<String> lines = Files.readAllLines(Paths.get(path),
 StandardCharsets.UTF_8);
 OAuthCredentialsResponse accessToken = new OAuthCredentialsResponse();
 accessToken.token = lines.get(0);

http:///

432 ❘ Chapter 10 AcceSSInG web SourceS

 accessToken.tokenSecret = lines.get(1);
 return accessToken;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }

 protected String getStoredVerifier() {
 String path = "tokens/"+configurationName+".txt";
 if (!Files.exists(Paths.get(path)))
 return null;
 try {
 List<String> lines = Files.readAllLines(Paths.get(path),
 StandardCharsets.UTF_8);
 return lines.get(2);
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }

 protected void storeAccessTokenAndVerifier(OAuthCredentialsResponse accessToken,
 String verifier) {
 String path = "tokens/"+configurationName+".txt";
 try (PrintWriter writer = new PrintWriter(path, "UTF-8")) {
 writer.println(accessToken.token);
 writer.println(accessToken.tokenSecret);
 writer.println(verifier); }
 catch (FileNotFoundException | UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }

 protected OAuthCredentialsResponse getRequestToken() {
 signer.tokenSharedSecret = null;

 OAuthGetTemporaryToken requestToken =
 new OAuthGetTemporaryToken(requestTokenUrl);
 requestToken.consumerKey = consumerKey;
 requestToken.transport = transport;
 requestToken.signer = signer;

 try {
 OAuthCredentialsResponse requestTokenResponse = requestToken.execute();
 return requestTokenResponse;
 } catch (IOException e) {
 e.printStackTrace();
 }

 return null;
 }

 protected OAuthCredentialsResponse getAccessToken(
 OAuthCredentialsResponse requestToken) {

http:///

accessing Web Services and Sources with Java ❘ 433

 signer.tokenSharedSecret = requestToken.tokenSecret;
 OAuthAuthorizeTemporaryTokenUrl oAuthAuthorizeUrl =
 new OAuthAuthorizeTemporaryTokenUrl(authorizeUrl);
 oAuthAuthorizeUrl.temporaryToken = requestToken.token;
 System.out.println("Go to the following link in your browser:\n"
 + oAuthAuthorizeUrl.build());
 try {
 // Try to open browser automatically
 Desktop.getDesktop().browse(new URI(oAuthAuthorizeUrl.build()));
 } catch (IOException | URISyntaxException e1) {
 e1.printStackTrace();
 }
 String verifier = null;
 if (requiresVerification)
 verifier = getVerificationCode();

 OAuthGetAccessToken accessToken = new OAuthGetAccessToken(accessTokenUrl);
 accessToken.consumerKey = consumerKey;
 accessToken.signer = signer;
 accessToken.transport = transport;
 accessToken.temporaryToken = requestToken.token;
 if (requiresVerification)
 accessToken.verifier = verifier;

 OAuthCredentialsResponse accessTokenResponse;
 try {
 accessTokenResponse = accessToken.execute();
 storeAccessTokenAndVerifier(accessTokenResponse, verifier);
 return accessTokenResponse;
 } catch (IOException e) {
 e.printStackTrace();
 }

 return null;
 }

 protected String getVerificationCode() {
 String verifier = null;
 InputStreamReader converter = new InputStreamReader(System.in, "UTF-8");
 BufferedReader in = new BufferedReader(converter);
 while (verifier == null) {
 System.out.println(
 "Enter the verification code provided by the service:");
 try {
 verifier = in.readLine();
 } catch (IOException e) {}
 }
 return verifier;
 }
}

This code contains much of the same logic you’ve seen earlier, but now neatly separated into differ-
ent methods. There is also the added functionality to store access tokens in text iles and retrieve
them later. A few lines of code were added to automatically open a browser window:

http:///

434 ❘ Chapter 10 AcceSSInG web SourceS

 try {
 // Try to open browser automatically
 Desktop.getDesktop().browse(new URI(oAuthAuthorizeUrl.build()));
 } catch (IOException | URISyntaxException e1) {}

Note also that protected ields and methods are used in this class, in order to extend it later (the
reason will be made clear soon).

Next, create a TwitterRESTClient class:

package com.twitter.api;

import java.io.IOException;
import java.util.Map;
import java.util.Map.Entry;

import com.google.api.client.http.GenericUrl;
import com.google.api.client.http.HttpRequest;
import com.google.api.client.http.HttpRequestFactory;
import com.google.api.client.http.HttpResponse;
import com.google.api.client.http.HttpTransport;
import com.google.api.client.http.UrlEncodedContent;
import com.google.api.client.http.javanet.NetHttpTransport;

public class TwitterRESTClient {
 private static final String API_ENDPOINT_URL = "https://api.twitter.com/1.1/";

 private final HttpTransport transport;
 private final OAuthPostSignatureParametersProvider parametersProvider;

 public TwitterRESTClient(
 OAuthPostSignatureParametersProvider parametersProvider) {
 this.transport = new NetHttpTransport();
 this.parametersProvider = parametersProvider;
 }

 public String makeRequest(String operation) {
 return makeRequest(operation, "GET");
 }

 public String makeRequest(String operation, String method) {
 return makeRequest(operation, method, true, null);
 }

 public String makeRequest(String operation, Map<String, String> parameters) {
 return makeRequest(operation, "GET", true, parameters);
 }

 public String makeRequest(String operation, String method,
 Map<String, String> parameters) {
 return makeRequest(operation, method, true, parameters);
 }

 public String makeRequest(String operation, String method, boolean useOAuth,
 Map<String, String> parameters) {

https://api.twitter.com/1.1/
http:///

accessing Web Services and Sources with Java ❘ 435

 HttpRequestFactory factory;
 if (useOAuth)
 factory = transport.createRequestFactory(
 parametersProvider. getOAuthPostSignatureParameters());
 else
 factory = transport.createRequestFactory();

 String url = API_ENDPOINT_URL + operation;
 GenericUrl reqUrl = new GenericUrl(url);
 UrlEncodedContent content = null;
 if (parameters != null && method.equals("POST"))
 content = new UrlEncodedContent(parameters);
 if (parameters != null && method.equals("GET"))
 for (Entry<String, String> parameter : parameters.entrySet())
 reqUrl.put(parameter.getKey(), parameter.getValue());

 HttpRequest req = null;
 try {
 req = factory.buildRequest(method, reqUrl, content);
 HttpResponse resp = req.execute();
 if (resp.isSuccessStatusCode()) {
 return resp.parseAsString();
 } else {
 System.err.println("Request failed with status code: " +
 resp.getStatusCode());
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 return null;
 }

}

Again, much of the same logic is at work here. The makeRequest method allows you to send an
OAuth authenticated request to the Twitter REST service and takes parameters (and adds them to
the URL in the case of a GET request or to the HTTP request body in case of a POST request) before
iring off the request.

Note that OAuthParametersProvider is not used here. Instead, the code uses
OAuthPostSignatureParametersProvider, which is a class that still needs to be made:

package com.twitter.api;

import com.google.api.client.auth.oauth.OAuthCredentialsResponse;
import com.google.api.client.auth.oauth.OAuthHmacSigner;

public class OAuthPostSignatureParametersProvider extends OAuthParametersProvider {

 public OAuthPostSignatureParametersProvider(String configurationName,
 String consumerKey, String consumerSecret, String requestTokenUrl,
 String authorizeUrl, String accessTokenUrl,
 boolean requiresVerification) {
 super(configurationName, consumerKey, consumerSecret, requestTokenUrl,

http:///

436 ❘ Chapter 10 AcceSSInG web SourceS

 authorizeUrl, accessTokenUrl, requiresVerification);
 }

 public OAuthPostSignatureParameters getOAuthPostSignatureParameters() {
 OAuthPostSignatureParameters parameters = new OAuthPostSignatureParameters();
 parameters.consumerKey = consumerKey;
 OAuthCredentialsResponse accessToken = getAccessToken();
 parameters.token = accessToken.token;

 // Twitter is sometimes picky on requiring a callback in every request
 // As well as the original verifier
 parameters.callback = "http://127.0.0.1/";
 if (requiresVerification)
 parameters.verifier = getStoredVerifier();

 // Construct a new signer
 OAuthHmacSigner requestSigner = new OAuthHmacSigner();
 requestSigner.clientSharedSecret = consumerSecret;
 requestSigner.tokenSharedSecret = accessToken.tokenSecret;

 parameters.signer = requestSigner;

 return parameters;
 }

}

This class simply extends OAuthParametersProvider and adds an extra method, which does not
return a set of OAuthParameters, but OAuthPostSignatureParameters instead. The reason for
this is that Google’s OAuth Client Library for Java does not allow you to include POST parameters in
the signature, something that Twitter requires (see https://dev.twitter.com/docs/auth/creat-
ing-signature). Thus, you need to roll your own OAuthPostSignatureParameters, which is very
similar to Google’s OAuthParameters:

package com.twitter.api;

import com.google.api.client.auth.oauth.OAuthSigner;
import com.google.api.client.http.GenericUrl;
import com.google.api.client.http.HttpContent;
import com.google.api.client.http.HttpExecuteInterceptor;
import com.google.api.client.http.HttpRequest;
import com.google.api.client.http.HttpRequestInitializer;
import com.google.api.client.http.UrlEncodedContent;
import com.google.api.client.util.escape.PercentEscaper;

import java.io.IOException;
import java.security.GeneralSecurityException;
import java.security.SecureRandom;
import java.util.Collection;
import java.util.Map;
import java.util.TreeMap;

public final class OAuthPostSignatureParameters

http://127.0.0.1/
https://dev.twitter.com/docs/auth/creat-ing-signature
https://dev.twitter.com/docs/auth/creat-ing-signature
https://dev.twitter.com/docs/auth/creat-ing-signature
http:///

accessing Web Services and Sources with Java ❘ 437

 implements HttpExecuteInterceptor, HttpRequestInitializer {

 /*
 * Due to a limitation in OAuthParameters, form parameters (as those
 * used by POST requests) are not included in the construction of the
 * OAuth signature. As such, we build a new class based on the source
 * code of OAuthParameters to work around this issue.
 *
 * Note that, normally, we would write a superclass which extends
 * OAuthParameters, but since OAuthParameters is declared as a final
 * class, we cannot do so here.
 */

 private static final SecureRandom RANDOM = new SecureRandom();
 public OAuthSigner signer;
 public String callback;
 public String consumerKey;
 public String nonce;
 public String realm;
 public String signature;
 public String signatureMethod;
 public String timestamp;
 public String token;
 public String verifier;
 public String version;

 private static final PercentEscaper ESCAPER =
 new PercentEscaper("-_.~", false);

 public void computeNonce() {
 nonce = Long.toHexString(Math.abs(RANDOM.nextLong()));
 }

 public void computeTimestamp() {
 timestamp = Long.toString(System.currentTimeMillis() / 1000);
 }

 public void computeSignature(String requestMethod, GenericUrl requestUrl,
 HttpContent httpContent)
 throws GeneralSecurityException {
 OAuthSigner signer = this.signer;
 String signatureMethod = this.signatureMethod = signer.getSignatureMethod();

 TreeMap<String, String> parameters = new TreeMap<String, String>();

 // Include all OAuth values in the signature
 putParameterIfValueNotNull(parameters, "oauth_callback", callback);
 putParameterIfValueNotNull(parameters, "oauth_consumer_key", consumerKey);
 putParameterIfValueNotNull(parameters, "oauth_nonce", nonce);
 putParameterIfValueNotNull(parameters, "oauth_signature_method",
 signatureMethod);
 putParameterIfValueNotNull(parameters, "oauth_timestamp", timestamp);
 putParameterIfValueNotNull(parameters, "oauth_token", token);
 putParameterIfValueNotNull(parameters, "oauth_verifier", verifier);
 putParameterIfValueNotNull(parameters, "oauth_version", version);

http:///

438 ❘ Chapter 10 AcceSSInG web SourceS

 // Include URL query parameters
 for (Map.Entry<String, Object> fieldEntry : requestUrl.entrySet()) {
 Object value = fieldEntry.getValue();
 if (value != null) {
 String name = fieldEntry.getKey();
 if (value instanceof Collection<?>) {
 for (Object repeatedValue : (Collection<?>) value) {
 putParameter(parameters, name, repeatedValue);
 }
 } else {
 putParameter(parameters, name, value);
 }
 }
 }

 // Include postdata parameters (added in our implementation)
 if (httpContent != null && httpContent instanceof UrlEncodedContent) {
 @SuppressWarnings("unchecked")
 Map<String, Object> data = (Map<String, Object>)
 ((UrlEncodedContent)httpContent).getData();
 for (Map.Entry<String, Object> dataEntry : data.entrySet()) {
 Object value = dataEntry.getValue();
 if (value != null) {
 String name = dataEntry.getKey();
 if (value instanceof Collection<?>) {
 for (Object repeatedValue : (Collection<?>) value) {
 putParameter(parameters, name, repeatedValue);
 }
 } else {
 putParameter(parameters, name, value);
 }
 }
 }
 }

 // Normalize parameters
 StringBuilder parametersBuf = new StringBuilder();
 boolean first = true;
 for (Map.Entry<String, String> entry : parameters.entrySet()) {
 if (first) {
 first = false;
 } else {
 parametersBuf.append('&');
 }
 parametersBuf.append(entry.getKey());
 String value = entry.getValue();
 if (value != null) {
 parametersBuf.append('=').append(value);
 }
 }
 String normalizedParameters = parametersBuf.toString();

 // Normalize URL
 GenericUrl normalized = new GenericUrl();
 String scheme = requestUrl.getScheme();

http:///

accessing Web Services and Sources with Java ❘ 439

 normalized.setScheme(scheme);
 normalized.setHost(requestUrl.getHost());
 normalized.setPathParts(requestUrl.getPathParts());
 int port = requestUrl.getPort();
 if ("http".equals(scheme) && port == 80 � "https".equals(scheme)
 && port == 443) {
 port = -1;
 }
 normalized.setPort(port);
 String normalizedPath = normalized.build();

 // Construct signature base string
 StringBuilder buf = new StringBuilder();
 buf.append(escape(requestMethod)).append('&');
 buf.append(escape(normalizedPath)).append('&');
 buf.append(escape(normalizedParameters));
 String signatureBaseString = buf.toString();
 signature = signer.computeSignature(signatureBaseString);
 }

 public String getAuthorizationHeader() {
 StringBuilder buf = new StringBuilder("OAuth");
 appendParameter(buf, "realm", realm);
 appendParameter(buf, "oauth_callback", callback);
 appendParameter(buf, "oauth_consumer_key", consumerKey);
 appendParameter(buf, "oauth_nonce", nonce);
 appendParameter(buf, "oauth_signature", signature);
 appendParameter(buf, "oauth_signature_method", signatureMethod);
 appendParameter(buf, "oauth_timestamp", timestamp);
 appendParameter(buf, "oauth_token", token);
 appendParameter(buf, "oauth_verifier", verifier);
 appendParameter(buf, "oauth_version", version);
 return buf.substring(0, buf.length() - 1);
 }

 private void appendParameter(StringBuilder buf, String name, String value) {
 if (value != null) {
 buf.append(' ').append(escape(name)).append("=\"")
 .append(escape(value)).append("\",");
 }
 }

 private void putParameterIfValueNotNull(TreeMap<String, String> parameters,
 String key, String value) {
 if (value != null) {
 putParameter(parameters, key, value);
 }
 }

 private void putParameter(TreeMap<String, String> parameters, String key,
 Object value) {
 parameters.put(escape(key),
 value == null ? null : escape(value.toString()));
 }

http:///

440 ❘ Chapter 10 AcceSSInG web SourceS

 public static String escape(String value) {
 return ESCAPER.escape(value);
 }

 public void initialize(HttpRequest request) throws IOException {
 request.setInterceptor(this);
 }

 public void intercept(HttpRequest request) throws IOException {
 computeNonce();
 computeTimestamp();
 try {
 computeSignature(request.getRequestMethod(), request.getUrl(),
 request.getContent());
 } catch (GeneralSecurityException e) {
 IOException io = new IOException();
 io.initCause(e);
 throw io;
 }
 request.getHeaders().setAuthorization(getAuthorizationHeader());
 }
}

Don’t be too concerned about how this code works; it is basically the same as OAuthParameters,
with the addition that it now also includes POST data to compute the signature.

Next, go back to the TwitterTest class and modify it as follows:

package com.twitter.api;

import java.util.HashMap;

public class TwitterTest {

 private static final String CONSUMER_KEY = "FILL IN YOUR API KEY";
 private static final String CONSUMER_SECRET = "FILL IN YOUR SECRET KEY";

 private static final String REQUEST_TOKEN_URL =
 "https://api.twitter.com/oauth/request_token";
 private static final String AUTHORIZE_URL =
 "https://api.twitter.com/oauth/authenticate";
 private static final String ACCESS_TOKEN_URL =
 "https://api.twitter.com/oauth/access_token";

 public static void main(String[] args) throws Exception {
 OAuthPostSignatureParametersProvider parametersProvider =
 new OAuthPostSignatureParametersProvider("twitter",
 CONSUMER_KEY, CONSUMER_SECRET,
 REQUEST_TOKEN_URL, AUTHORIZE_URL, ACCESS_TOKEN_URL,
 true);
 TwitterRESTClient client = new TwitterRESTClient(parametersProvider);

 String jsonResponse;

https://api.twitter.com/oauth/request_token
https://api.twitter.com/oauth/authenticate
https://api.twitter.com/oauth/access_token
http:///

accessing Web Services and Sources with Java ❘ 441

 System.out.println("----- Get user time line -----");
 jsonResponse = client.makeRequest("statuses/home_timeline.json");
 System.out.println(jsonResponse);

 System.out.println("----- Get user time line: 5 tweets -----");
 jsonResponse = client.makeRequest("statuses/home_timeline.json",
 new HashMap<String, String>() {{
 put("count", "5");
 }});
 System.out.println(jsonResponse);

 System.out.println("----- Get user WileyTech's timeline: 5 tweets -----");
 jsonResponse = client.makeRequest("statuses/user_timeline.json",
 new HashMap<String, String>() {{
 put("screen_name", "WileyTech");
 put("count", "5");
 }});
 System.out.println(jsonResponse);

 System.out.println("----- Post a tweet -----");
 jsonResponse = client.makeRequest("statuses/update.json", "POST",
 new HashMap<String, String>() {{
 put("status", "Posting this Tweet from Java!" +
 " [" + System.currentTimeMillis() + "]");
 }});
 System.out.println(jsonResponse);
 }

}

Again, don’t forget to ill in your API keys. If all goes right, the irst time you execute this code a
browser window will open and ask you to authorize the app. Enter the PIN in the console, and the
remainder of the code will execute. Try executing this code again, and the stored access code will be
used:

----- Get user time line -----
[** HUGE JSON RESPONSE **]
----- Get user time line: 5 tweets -----
[** SHORTER JSON RESPONSE **]
----- Get user WileyTech's timeline: 5 tweets -----
[** DIFFERENT SET OF TWEETS**]
----- Post a tweet -----
{** JSON CONTAINING POSTED TWEET **}

Check your Twitter page. Notice that your tweet has been posted (a timestamp was added because
Twitter does not allow you to post the same tweet again). See Figure 10-23.

If you’re getting errors, it might be due to the following:

 ➤ Your access token might have been revoked. Try removing the text iles under the tokens
folder (you might need to refresh this folder in Eclipse) and trying again.

http:///

442 ❘ Chapter 10 AcceSSInG web SourceS

 ➤ You might be trying to post or request too many tweets in rapid succession. Twitter applied
rate limiting to its services. Try again later.

 ➤ The parameters or endpoints might have changed (unlikely, as Twitter would assign a new
version number). Check Twitter’s documentation.

figure 10-23

NOTE Note the shorthand notation used here to initialize an anonymous
HashMap:

new HashMap<String, String>() {{
 put("count", "5");
}};

You can apply the same approach to initialize lists. Why the use of double braces
({{ and }}) here? The irst set of braces creates a new anonymous inner class,
extending the HashMap object. The second set of braces declares an “instance
initializer” block that is run when the anonymous inner class is instantiated.

The only thing left do is actually parse the received JSON. To do so, you’ll be using another Google
library called Google JSON, or GSON for short. You can ind it at https://code.google.com/p/
google-gson/. Installation is similar to what you’ve seen before—you download the latest version
(here, google-gson-2.2.4-release.zip is used), extract the ZIP ile, copy gson-2.2.4.jar to a

https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/
http:///

accessing Web Services and Sources with Java ❘ 443

folder in your Eclipse project (google-json is used here to keep in line with google-http), and add
the library to the build path. Next, modify the TwitterTest class to look like this:

package com.twitter.api;

import java.util.HashMap;

import com.google.gson.JsonArray;
import com.google.gson.JsonElement;
import com.google.gson.JsonParser;

public class TwitterTest {

 private static final String CONSUMER_KEY = "FILL IN YOUR API KEY";
 private static final String CONSUMER_SECRET = "FILL IN YOUR SECRET KEY";

 private static final String REQUEST_TOKEN_URL =
 "https://api.twitter.com/oauth/request_token";
 private static final String AUTHORIZE_URL =
 "https://api.twitter.com/oauth/authenticate";
 private static final String ACCESS_TOKEN_URL =
 "https://api.twitter.com/oauth/access_token";

 public static void main(String[] args) throws Exception {
 OAuthPostSignatureParametersProvider parametersProvider =
 new OAuthPostSignatureParametersProvider("twitter",
 CONSUMER_KEY, CONSUMER_SECRET,
 REQUEST_TOKEN_URL, AUTHORIZE_URL, ACCESS_TOKEN_URL,
 true);
 TwitterRESTClient client = new TwitterRESTClient(parametersProvider);

 String jsonResponse;

 System.out.println("----- Get user time line: 5 tweets -----");
 HashMap<String, String> data = new HashMap<>();
 Data.put("count", "5");
 jsonResponse = client.makeRequest("statuses/home_timeline.json",
 data);

 JsonParser jsonParser = new JsonParser();
 JsonElement jsonElement = jsonParser.parse(jsonResponse);
 JsonArray jsonArray = jsonElement.getAsJsonArray();

 for (JsonElement element : jsonArray)
 System.out.println(element.getAsJsonObject().get("text"));

 }

}

If you run this code, you’ll now see the following, more user‐friendly output (of course, your tweets
will vary):

----- Get user time line: 5 tweets -----

https://api.twitter.com/oauth/request_token
https://api.twitter.com/oauth/authenticate
https://api.twitter.com/oauth/access_token
http:///

444 ❘ Chapter 10 AcceSSInG web SourceS

"RT @wwwtxt: Hi, is there anyone out there on the net this Easter?
 I will be back again tomorrow if you miss me today. ?92APR"
"RT @BobVila: Here's something everyone can make! 5 Things to do with...
 Junk Mail! http://t.co/2qyTBJEkQX http://t.co/32ymeLUff9"
"RT @hari: How @reddit @Disqus @smittenkitchen are taming the 'Wild West'
 of online comments | http://t.co/I8f2FKJ694"
"RT @MDogGeist: so the wii-u is as old as the dreamcast when it was killed
 and the wii-u has sold less than half what the dreamcast did..."
"I've now been on twitter for half an hour or so, but I'm \"totally coding
 right now\" in my head. Procrastinators, unite!"

If you want, you can take some time to familiarize yourself with the GSON library, but its usage is
relatively straightforward and can be derived quickly by using Eclipse’s context pop‐ups. You can
also explore the Twitter REST service somewhat further to get out and post different information.

NOTE One interesting way to use the Twitter REST service is through the
search/tweets.json GET endpoint (this requires a single mandatory param-
eter, q, which contains the search query). You can use this, for example, to
search for tweets users are posting about you or your company.

NOTE These examples have been using a set of libraries and built‐in classes
to deal with HTTP communication and OAuth for you. However, many RESTful
services also offer even higher‐lever libraries (or third parties offer them),
providing “bindings” to a number of languages, Java often among them. For
Twitter, for instance, you can check out the Twitter4J library at http://twit-
ter4j.org/, which offers a Java library to interact with Twitter’s REST service.
Methods and classes offered by such libraries are oftentimes more closely
deined to the actual service (i.e., a method called postTweet), but since the
goal here is to familiarize yourself with REST services in general, a more “pure”
approach is applied.

This concludes the section on accessing REST services. This section has covered a lot of ground, so
feel free to go over the code again or experiment some more to get a feel for how everything works.
Since REST has become so popular in recent years, you might want to explore the developer’s sec-
tion of your favorite productivity site or social network to see if they’re offering something similar.

You’ve now seen how to work with Java’s built‐in HttpURLConnection class to access RESTful ser-
vices, as well as used Google’s OAuth and HTTP client libraries to access more complex services.
You’ve also seen how to parse XML and JSON.

As a inal exercise, the next Try It Out shows how to access another REST service—Facebook.

http://t.co/2qyTBJEkQX
http://t.co/32ymeLUff9
http://t.co/I8f2FKJ694
http://twit-ter4j.org/
http://twit-ter4j.org/
http://twit-ter4j.org/
http:///

accessing Web Services and Sources with Java ❘ 445

try it out accessing Facebook

This exercise demonstrates how to use the REST service of Facebook. It assumes that you already have
a Facebook account at http://www.facebook.com. Facebook developer’s documentation can be found
at https://developers.facebook.com/. Information on its REST API (which Facebook now calls the
“Graph API”) can be found at https://developers.facebook.com/docs/graph-api/reference/,
and includes a list of all the resources you can access.

 1. To access the Facebook Graph API, you’ll irst need to register as a developer. This can be done by
navigating to https://developers.facebook.com/ and selecting Register as a Developer under
Apps in the upper menu.

 2. Next, just as for Twitter, you need to create a set of keys under https://developers.facebook
.com/tools/accesstoken/. Create a new app, give it a unique name, and select a category.

 3. After creating your app, you’ll be brought to your app’s “Dashboard,” which contains a wealth of
information and settings to play with. See Figure 10-24.

figure 10-24

 4. Be sure to note your “App ID” and “App Secret” keys. Click + Add Platform, choose website, and
enter http://www.example.com as the site URL, which you’ll also use as a callback URL. Even if
you’re not the owner of this domain, it’ll work ine to extract the callback URL (together with the
access token) and copy it in your application. Don’t forget to save your changes.

 5. Facebook uses a complicated login low with the possibility to modify many options and permis-
sions, inspired by OAuth but not exactly the same. The page on manually building a login low,
found at https://developers.facebook.com/docs/facebook-login/manually-build-a-
login-flow, provides more details if you’re interested (there is a lot to read through).

 6. Create a single class, called FacebookTest, using the following code:

package com.facebook.graph;

import java.awt.Desktop;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.HashMap;

http://www.facebook.com
https://developers.facebook.com/
https://developers.facebook.com/docs/graph-api/reference/
https://developers.facebook.com/
https://developers.facebook.com/tools/accesstoken/
http://www.example.com
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow
https://developers.facebook.com/tools/accesstoken/
http:///

446 ❘ Chapter 10 AcceSSInG web SourceS

import java.util.Map;
import java.util.Map.Entry;

import com.google.api.client.http.GenericUrl;
import com.google.api.client.http.HttpRequest;
import com.google.api.client.http.HttpRequestFactory;
import com.google.api.client.http.HttpResponse;
import com.google.api.client.http.UrlEncodedContent;
import com.google.api.client.http.javanet.NetHttpTransport;

public class FacebookTest {
 public static final String CLIENT_ID = "300114530143039";
 public static final String CLIENT_SECRET = "55e0b30296331c05afa1542d7806122c";
 public static final String API_ENDPOINT_URL = "https://graph.facebook.com/";
 public static final String CALLBACK_URL = "http://www.example.com";

 public static void main(String[] args) {
 // Step 1: open browser and ask user to allow access: get user access token
 String userGrantAccessUrl = "https://www.facebook.com/dialog/oauth?" +
 "client_id=" + CLIENT_ID +
 "&redirect_uri=" + CALLBACK_URL +
 "&response_type=token";
 try {
 Desktop.getDesktop().browse(new URI(userGrantAccessUrl));
 } catch (IOException | URISyntaxException e) {}

 final String userAccessToken = getAccessToken();

 System.out.println("User access token: " + userAccessToken);

 // Step 2: get an app access token
 final String appGrantAccessToken = makeRequest("oauth/access_token", "GET",
 new HashMap<String, String>(){{
 put("client_id", CLIENT_ID);
 put("client_secret", CLIENT_SECRET);
 put("grant_type", "client_credentials");
 }})
 .replace("access_token=", "");

 System.out.println("App access token: " + appGrantAccessToken);

 // Step 3: verify the user token with our app token
 String verificationResponse = makeRequest("debug_token", "GET",
 new HashMap<String, String>(){{
 put("input_token", userAccessToken);
 put("access_token", appGrantAccessToken);
 }});

 System.out.println("Status of token verification: " + verificationResponse);

 // Step 4: access the API
 // You'll need to provide the user access token with every request
 String userInformation = makeRequest("me", "GET",
 new HashMap<String, String>(){{
 put("access_token", userAccessToken);

https://graph.facebook.com/
http://www.example.com
https://www.facebook.com/dialog/oauth?
http:///

accessing Web Services and Sources with Java ❘ 447

 }});
 System.out.println("Here's some information about the user: ");
 System.out.println(userInformation);

 }

 private static String getAccessToken() {
 String accessToken = null;
 InputStreamReader converter = new InputStreamReader(System.in, "UTF-8");
 BufferedReader in = new BufferedReader(converter);
 while (accessToken == null) {
 System.out.println("Enter the access token from the callback URL:");
 try {
 accessToken = in.readLine();
 } catch (IOException e) {}
 }
 return accessToken;
 }

 private static String makeRequest(String operation, String method,
 Map<String, String> parameters) {
 NetHttpTransport transport = new NetHttpTransport();
 HttpRequestFactory factory;
 factory = transport.createRequestFactory();

 GenericUrl reqUrl = new GenericUrl(API_ENDPOINT_URL + operation);
 UrlEncodedContent content = null;
 if (parameters != null && method.equals("POST"))
 content = new UrlEncodedContent(parameters);
 if (parameters != null && method.equals("GET"))
 for (Entry<String, String> parameter : parameters.entrySet())
 reqUrl.put(parameter.getKey(), parameter.getValue());

 // If set, the access_token must be provided as a GET parameter
 // Even when we're making a POST request
 if (parameters != null && parameters.get("access_token") != null)
 reqUrl.put("access_token", parameters.get("access_token"));

 HttpRequest req = null;
 try {
 req = factory.buildRequest(method, reqUrl, content);
 HttpResponse resp = req.execute();
 if (resp.isSuccessStatusCode()) {
 return resp.parseAsString();
 } else {
 System.err.println("Request failed with status code: "
 + resp.getStatusCode());
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 return null;
 }
}

http:///

448 ❘ Chapter 10 AcceSSInG web SourceS

 7. Test the program. The irst time you run this program, Facebook will ask you whether you want to
give your app permission. Note that the default permissions do not allow you to post through your
app. See Figure 10-25.

figure 10-25

Next, Java will redirect you to the callback URL, which in this case is http://www
.example.com. See Figure 10-26.

Your Java program is waiting for you to provide the access token. This is the ACCESS_TOKEN_
HERE part of the callback URL: http://www.example.com/#access_token=ACCESS_TOKEN_
HERE&expires_in=NUMBER. Again, if you open the Facebook authorization page in your Java
program (using a GUI and web browser component), you can “sniff out” this access token,
but here, just manually copy and paste it into the Eclipse console.

Next, your program will continue with requesting an app access token and verifying the
user access token with the app access token, using a similar makeRequest method as the one
you used for your Twitter client. Once this inal authorization step is inished, you can exe-
cute a real request, in this case requesting some information about the user who authorized
the app (you). The inal output should look like this:

Enter the access token from the callback URL:
 CAAEQ89v2Cz8BAEifGHPKiaTDZCGZAf1Uf5NaODOFKrC8kL1C5iYBsY4LLCmh6J8sGTuWCMdCOP
 faba9CEhJMweXofNMUp8W9skDOXGAZAimENwY3ZAebfEWx89ZAaxNCLL2PDi25X5mbUWoxD6dEiA
 9fxu16iZB7EVKj4vT4uoRaV4x4tofrgUWvulVZBnsgMYZD
User access token:

http://www.example.com
http://www.example.com
http://www.example.com/#access_token=ACCESS_TOKEN_HERE&expires_in=NUMBER
http://www.example.com/#access_token=ACCESS_TOKEN_HERE&expires_in=NUMBER
http:///

accessing Web Services and Sources with Java ❘ 449

 CAAEQ89v2Cz8BAEifGHPKiaTDZCGZAf1Uf5NaODOFKrC8kL1C5iYBsY4LLCmh6J8sGTuWCMdCOP
 faba9CEhJMweXofNMUp8W9skDOXGAZAimENwY3ZAebfEWx89ZAaxNCLL2PDi25X5mbUWoxD6dEiA
 9fxu16iZB7EVKj4vT4uoRaV4x4tofrgUWvulVZBnsgMYZD
App access token: 300114530143039|lhvmPn7r6HbmN4dj3LgAFgoisIk
Status of token verification:
 {"data":{"app_id":"300114530143039","is_valid":true,"application":
 "SeppeJavaClient","user_id":"507162275","expires_at":1398038400,
 "scopes":["public_profile","basic_info","user_friends"]}}
Here's some information about the user:
{"id":"507162275",** ALL KINDS OF INFORMATION **}

figure 10-26

 8. This exercise is meant to give you a taste of what’s possible with Java and Facebook. Note that,
just like for Twitter, there exists a Facebook4J library (http://facebook4j.org/) that makes
this whole process a lot easier. Take a look if you want to invest more time in developing Java
applications that interact with Facebook.

screen scraping
The last type of web service this chapter is going to discuss is not really a web service at all, but
involves a technique called “screen scraping,” used when you really, absolutely want to get some
information out of a website, or when a website just didn’t bother to provide a structured service
based on SOAP or REST.

http://facebook4j.org/
http:///

450 ❘ Chapter 10 AcceSSInG web SourceS

Let’s say you’re visiting an interesting page on Wikipedia about coffee varieties at http://
en.wikipedia.org/wiki/List_of_coffee_varieties. You notice the list shown in Figure 10-27.

figure 10-27

You’d like to extract this list for later use (perhaps to import into a database). You know you can copy
and paste tables from websites into Excel, but where’s the fun in that? You’ve already seen how to make
HTTP requests to REST services interact with them, so why wouldn’t it be possible to make HTTP
requests to normal websites and parse the HTML page they give back? Sure, HTML contains a lot of
formatting and is not a structured format such as XML or JSON, but it deinitely seems possible.

This is exactly what screen scraping (also called data scraping or web scraping) does—it extracts
data programmatically from output that’s meant to be consumed by humans.

Depending on the type of data you want to extract, screen scraping can be more or less dificult to
pull off. Some websites are structured in a complex way, make HTTP requests even after the main
page has loaded (using JavaScript), or require certain cookies to be set (e.g., indicating that a user is
logged in) before you can access pages. This section takes a look at screen scraping web pages both
with and without cookie‐based authentication. To screen scrape, you need to use yet another library

in order to help parse and search through the received HTML pages.
You certainly don’t want to do this manually using Java’s String
manipulation methods.

As always, start by setting up a new project in Eclipse, called
ScreenScrapingWithJava. The library you will be using to do the
HTML parsing is called jsoup and can be downloaded at http://
jsoup.org/download (in this book version 1.7.3 is used). Simply
download the core library JAR ile and drag and copy it into an
Eclipse folder within your project, named jsoup. Finally, right‐click
the JAR in Eclipse to add it to the build path. See Figure 10-28.figure 10-28

http://en.wikipedia.org/wiki/List_of_coffee_varieties
http://en.wikipedia.org/wiki/List_of_coffee_varieties
http://jsoup.org/download
http://jsoup.org/download
http:///

accessing Web Services and Sources with Java ❘ 451

This is all you need to do to set up. Now take a look at how to extract data from a web page.

Screen Scraping Without Cookies

Create a class called WikipediaGetter with the following content:

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;

public class WikipediaGetter {
 public static void main(String[] args) throws IOException {

 List<String[]> coffee = new ArrayList<String[]>();

 Document doc = Jsoup.connect(
 "http://en.wikipedia.org/wiki/List_of_coffee_varieties").get();

 Elements wikiTables = doc.select("table.wikitable");

 System.out.println(wikiTables.size() + " wikitables found");

 for (Element table : wikiTables) {
 if (table.html().contains("<th>Arabica</th>")) {
 // We've found our table!
 Elements rows = table.select("tr");
 for (Element row : rows) {
 Elements cells = row.select("td");
 if (cells.size() == 0)
 continue;
 String[] line = new String[cells.size()];
 for (int i = 0; i < line.length; i++) {
 line[i] = cells.get(i).text();
 }
 coffee.add(line);
 }
 break;
 }
 }

 for (String[] variety : coffee) {
 System.out.println("----- " + variety[0] + " -----");
 System.out.println("Arabica: " + variety[1]);
 System.out.println("Region(s): " + variety[2]);
 System.out.println("Comments: " + variety[3]);
 }
 }

}

http://en.wikipedia.org/wiki/List_of_coffee_varieties
http:///

452 ❘ Chapter 10 AcceSSInG web SourceS

This simple script does the following: it connects to the Wikipedia page using jsoup. Apart
from being an excellent HTML parser, jsoup also provides user‐friendly methods to per-
form HTTP requests, so you don’t have to build your own makeRequest method around
HttpURLConnection. Next, it fetches the HTML table elements with the wikitable class,
searches until it inds the right table, and then loops through the tr and td elements to extract
the contents of the tables.

If you’re wondering how to know which element to fetch from the HTML structure, most browsers
provide a way to inspect the source of each web page you view. See Figure 10-29.

figure 10-29

To retrieve elements from the HTML tree, jsoup applies a selector method. Basic selectors include:

 ➤ tagname: Finds elements by the tag name, e.g., table

 ➤ #id: Finds elements based on ID, e.g., #main-table

 ➤ .class: Finds elements based on class name, e.g., .wikitable

http:///

accessing Web Services and Sources with Java ❘ 453

 ➤ [attribute]: Finds elements with an attribute

 ➤ [attribute=value]: Finds elements whose attribute equals a value

Selectors can be combined to build more complex queries, e.g., table.wikitable could select all
table elements with the class wikitable, or table a could ind all link elements within a table.
You can read more about selectors on the jsoup site.

Running your code will produce the following result:

2 wikitables found
----- Arusha -----
Arabica: Arabica
Region(s): Mount Meru in Tanzania, and Papua New Guinea
Comments: either a Typica variety or a French Mission.
----- Bergendal, Sidikalang -----
Arabica: Arabica
Region(s): Indonesia
Comments: Both are Typica varieties which survived the Leaf Rust Outbreak
 of the 1880s; most of the other Typica in Indonesia was destroyed.
** AND SO ON **

As you no doubt agree, screen scraping can oftentimes offer a very straightforward and simple
method to extract data from web pages. However, screen scraping is generally regarded as an inel-
egant technique to be used only when no other mechanism for structured data exchange is available
(such as REST or SOAP). The reasons for this are both technical and “ethical” in nature. First, web
pages may change without notice, causing your screen scraping programs to break and require a
great deal of maintenance. Second, it is not regarded good form to “hammer” websites with screen
scraping programs. It makes thousands of requests to extract all data from the websites, which was
originally meant for human consumption only. Therefore, always take care when screen scraping a
website not to anger the website owner.

NOTE People sometimes build wrappers around websites that do not offer an
oficial REST API based on screen scraping techniques, but rather a so‐called
“Evil API” that can be used by programmers to access a website in a program-
matic manner. The reason such third‐party tools are denoted as “evil” is due
to the fact that the website owner does not intend or want programmers to
access their resources in a programmatic manner.

Screen Scraping with Cookies

Before showing you their content, websites frequently require your browser to send a set of cookies
(small tokens of information) that were set by the website earlier to be able to identify you again.
Recall that this was HTTP’s way to work around its stateless nature. For instance, when you visit
Twitter or Facebook in your browser and no cookie is sent with the request, the site will ask you to
log in before continuing. Once you provide your username and password, the site will set a cookie
to remember you in subsequent requests.

http:///

454 ❘ Chapter 10 AcceSSInG web SourceS

To see how this works, the next exercise accesses Twitter again, but this time using screen scraping
techniques only. Create a class named TwitterScraper with the following source code:

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import org.jsoup.Connection;
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;

public class TwitterScraper {
 private static final Map<String, String> COOKIES =
 new HashMap<String, String>();
 private static final String USERNAME = "FILL IN YOUR USERNAME";
 private static final String PASSWORD = "FILL IN YOUR PASSWORD";

 public static void main(String[] args) throws IOException {
 System.out.println("Trying to log into Twitter...");
 boolean result = login(USERNAME, PASSWORD);

 System.out.println("Cookies are now:");
 System.out.println(COOKIES);

 if (!result) {
 System.out.println("Login failed! Try the following:");
 System.out.println("- Has the Twitter website changed?");
 System.out.println("- Are your username and password correct?");
 System.exit(0);
 }

 String username = getUsername();
 System.out.println("Your username is: "+username);

 String[] myStats = getStats(username);
 System.out.println("Your stats: ");
 System.out.println("- Tweets: "+myStats[0]);
 System.out.println("- Following: "+myStats[1]);
 System.out.println("- Followers: "+myStats[2]);

 String[] wileyStats = getStats("WileyTech");
 System.out.println("@WileyTech stats: ");
 System.out.println("- Tweets: "+wileyStats[0]);
 System.out.println("- Following: "+wileyStats[1]);
 System.out.println("- Followers: "+wileyStats[2]);
 }

 public static String[] getStats(String username) throws IOException {
 Connection connection = Jsoup.connect("https://twitter.com/"+username);
 // We do not need to be logged in to get stats
 Document result = connection.get();
 String[] stats = new String[3]; // tweets, following, followers
 try {
 Element statsTable = result.select("table.js-mini-profile-stats").get(0);

https://twitter.com/"+username
http:///

accessing Web Services and Sources with Java ❘ 455

 stats[0] = statsTable.select(
 "a[data-element-term=tweet_stats]").text();
 stats[1] = statsTable.select(
 "a[data-element-term=following_stats]").text();
 stats[2] = statsTable.select(
 "a[data-element-term=follower_stats]").text();
 } catch (IndexOutOfBoundsException e) {
 // table.js-mini-profile-stats could not be found
 // Perhaps this user has enabled the new Twitter profile?
 Element statsTable = result.select("ul.ProfileNav-list").get(0);
 stats[0] = statsTable.select(
 "a[data-nav=tweets] span.ProfileNav-value").text();
 stats[1] = statsTable.select(
 "a[data-nav=following] span.ProfileNav-value").text();
 stats[2] = statsTable.select(
 "a[data-nav=followers] span.ProfileNav-value").text();
 }
 return stats;
 }

 public static String getUsername() throws IOException {
 Connection connection = Jsoup.connect("https://twitter.com")
 .cookies(COOKIES);
 Document result = connection.get();
 COOKIES.putAll(connection.response().cookies());
 return result.select("div[role=navigation] li.profile a.js-
 nav").attr("href").replace("/", "");
 }

 public static boolean login(String username, String password)
 throws IOException {
 COOKIES.clear(); // Clear all cookies
 // Request Twitter homepage to set first cookies and get token
 String authenticityToken = getAuthenticityToken();
 // Then login using a POST request
 Connection connection = Jsoup.connect("https://twitter.com/sessions")
 .data("session[username_or_email]", username)
 .data("session[password]", password)
 .data("remember_me", "1")
 .data("return_to_ssl", "true")
 .data("redirect_after_login", "/")
 .data("remember_me", "1")
 .data("authenticity_token", authenticityToken)
 .cookies(COOKIES);
 Document result = connection.post();
 COOKIES.putAll(connection.response().cookies());
 if (result.html().contains("action=\"https://twitter.com/sessions\"")) {
 // The sign-in form is still present in the result
 // The login was probably incorrect
 return false;
 }
 return true;
 }

 private static String getAuthenticityToken() throws IOException {

https://twitter.com
https://twitter.com/sessions
https://twitter.com/sessions\
http:///

456 ❘ Chapter 10 AcceSSInG web SourceS

 // Request Twitter homepage and get token
 Connection initialConnection = Jsoup.connect("https://twitter.com/");
 Document initialResult = initialConnection.get();
 String authenticityToken = initialResult
 .select("input[name=authenticity_token]").get(0).val();
 // Update cookies
 COOKIES.putAll(initialConnection.response().cookies());
 return authenticityToken;
 }

}

This code is mostly similar to the one you saw previously, with the difference that you’re now mak-
ing POST requests, setting and sending cookies, and using more complex selectors. If you’re wonder-
ing how you can igure out the names of the POST parameters to send along with the login request,
these can be obtained by inspecting network trafic using the developer tools in any modern web
browser (e.g., Firefox or Chrome). See Figure 10-30.

figure 10-30

https://twitter.com/
http:///

Creating Your Own Web Services with Java ❘ 457

After executing this code (don’t forget to ill in your username and password), you should receive
something like the following output:

Trying to log into Twitter...
Cookies are now:
{twid="u=9807092", guest_id=v1%3A139809069245291074, remember_checked_on=1,
auth_token=0a5fe41724884eaab2e8b121e6ed74d6f74a2754,
_twitter_sess=BAh7CiIKZmxhc2hJQzonQWN0aW9uQ29udHJvbGxlcjo6Rmxhc2g6OkZsYXNo
%250ASGFzaHsABjoKQHVzZWR7ADoHaWQiJTRiM2IyN2VjMDZkZGMxZTVjNzc2MGI1%250AOTBh
NzAwN2U1Og9jcmVhdGVkX2F0bCsIZfeyhEUBOgxjc3JmX2lkIiUzMGQ2%250ANzNkMjQxNjRiN
TMzNDgzNzBjYTJiMDZjZWNhZjoJdXNlcmkD9KSV--4244a4f3d399fab8a4eda1a3ad69e3f29
6a23c84, lang=en,
h=%7B%22tweet_id%22%3A%22456581708179972100%22%2C%22advertiser_id%22%3A%22
121336088%22%2C%22newer_tweet_id%22%3A%22458251425135734784%22%2C%22
older_tweet_id%22%3A%22458251414578270208%22%2C%22promoted_content%22%3A%7B%22
impression_id%22%3A%2242597fa3f64f6b16%22%2C%22disclosure_type%22%3A%22
promoted%22%2C%22disclosure_text%22%3A%22%22%7D%2C%22experiment_values%22%3A%7B%22
display.display_style%22%3A%22show_social_context%22%7D%7D}
Your username is: ** YOUR USERNAME **
Your stats:
- Tweets: 556
- Following: 377
- Followers: 143
@WileyTech stats:
- Tweets: 1 943
- Following: 897
- Followers: 3 832

creating your oWn Web services With Java

Now that you’ve seen how to access web services, you might be wondering how you can offer your
own information over the web using Java. Java has excellent support for setting up web servers, ser-
vices, and applications, but a full discussion of those is out of scope for a beginner’s book.

Instead, this book will be using a simple framework—aptly named “Simple”—which can be down-
loaded from http://www.simpleframework.org/. Like always, create a new project in Eclipse
(HTTPServer, for instance) and unzip the JAR ile (simple-6.0.1.jar) to a folder in Eclipse (e.g.,
simple). Finally, add the JAR ile to the build path.

setting up an http server
Create a class called HTTPServer with the following source code:

import java.awt.Desktop;
import java.io.PrintStream;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.net.URI;

import org.simpleframework.http.Request;

http://www.simpleframework.org/
http:///

458 ❘ Chapter 10 AcceSSInG web SourceS

import org.simpleframework.http.Response;
import org.simpleframework.http.core.Container;
import org.simpleframework.http.core.ContainerSocketProcessor;
import org.simpleframework.transport.connect.Connection;
import org.simpleframework.transport.connect.SocketConnection;

public class HTTPServer implements Container {
 public void handle(Request request, Response response) {
 try {
 PrintStream body = response.getPrintStream();

 response.setValue("Content-Type", "text/plain");
 body.println("Hello there, you've requested: "+request.getPath());
 body.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] list) throws Exception {
 // If you get an Address already in use: bind error, try changing the port
 int port = 880;

 Container container = new HTTPServer();
 ContainerSocketProcessor server = new ContainerSocketProcessor(container);
 Connection connection = new SocketConnection(server);
 SocketAddress address = new InetSocketAddress(port);
 connection.connect(address);

 Desktop.getDesktop().browse(new URI("http://127.0.0.1:" + port));

 System.out.println("Press ENTER to stop server...");
 System.in.read();

 connection.close();
 server.stop();

 }
}

Run the code. A web browser will open and connect you to a running HTTP server. Try modify-
ing the URL (e.g., http://127.0.0.1:880/test/me) and note that the server changes its response
accordingly. See Figure 10-31.

You can easily extend this class with what you’ve learned in the chapter on working with iles to
open and transmit HTML and other iles stored on the server to the browser. The following class
shows you how to do so:

import java.awt.Desktop;
import java.io.OutputStream;
import java.io.PrintStream;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.net.URI;
import java.nio.file.Files;

http://127.0.0.1:880/test/me
http://127.0.0.1:
http:///

Creating Your Own Web Services with Java ❘ 459

import java.nio.file.Path;
import java.nio.file.Paths;

import org.simpleframework.http.Request;
import org.simpleframework.http.Response;
import org.simpleframework.http.core.Container;
import org.simpleframework.http.core.ContainerSocketProcessor;
import org.simpleframework.transport.connect.Connection;
import org.simpleframework.transport.connect.SocketConnection;

public class HTTPServer implements Container {
 private static final int PORT = 880;
 private static final String ROOTDIR = "data";

 public void handle(Request request, Response response) {
 try {
 System.err.println(request.getPath());
 Path path = Paths.get(ROOTDIR + request.getPath());
 if (Files.exists(path) && Files.isRegularFile(path)) {
 OutputStream body = response.getOutputStream();
 byte[] data = Files.readAllBytes(path);
 body.write(data);
 body.close();
 } else {
 PrintStream body = response.getPrintStream();
 body.println("404 Not Found");
 body.close();
 response.setStatus(org.simpleframework.http.Status.NOT_FOUND);
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] list) throws Exception {
 Container container = new HTTPServer();
 ContainerSocketProcessor server = new ContainerSocketProcessor(container);
 Connection connection = new SocketConnection(server);
 SocketAddress address = new InetSocketAddress(PORT);
 connection.connect(address);

 Desktop.getDesktop().browse(new URI("http://127.0.0.1:" + PORT));

 System.out.println("Press ENTER to stop server...");
 System.in.read();

 connection.close();
 server.stop();

 }
}

http://127.0.0.1:
http:///

460 ❘ Chapter 10 AcceSSInG web SourceS

In your Eclipse project, create a new folder called data. In this folder, you can create or put iles. For
instance, try creating a ile called hello.htm in your text editor with the content:

<html><body><h1>Hello!</h1></body></html>

Run the server (make sure to stop any running servers). Note the 404 error when opening
http://127.0.0.1:880/. Now try accessing http://127.0.0.1:880/hello.htm; the web page
shown in Figure 10-32 will appear.

figure 10-32

The Simple library is easy to extend with even more functionality (getting data the users enter in
forms, for example). If you only need to provide information from Java to users via a web server, this
should be enough to get started. Check out the documentation at http://www.simpleframework
.org/ for more information.

figure 10-31

http://127.0.0.1:880/
http://127.0.0.1:880/hello.htm
http://www.simpleframework.org/
http://www.simpleframework.org/
http:///

Creating Your Own Web Services with Java ❘ 461

providing rest services
Just as with the JAX‐WS library discussed earlier for SOAP, there exists an API for offering REST
services called JAX‐RS. Multiple implementations of this API exist, the most complete of which
is called “Jersey.” This library offers a complete package to offer and access REST services, but is
somewhat complex to set up, so it will not be discussed further.

However, based on what you’ve seen so far, you know that a RESTful web service is nothing more
than a structured URI scheme with a web server sending structured responses. As such, the Simple
framework discussed in the previous section can also be leveraged to build a REST service. By com-
bining what you’ve seen about databases, ile IO, web services, and XML, you should be able to cre-
ate your own REST services without much hassle.

For now, this chapter and the wonderful world of web services is left behind you. The chapter cov-
ered a lot of topics, ranging from networking, protocols, and HTTP to SOAP, REST, JSON and
XML, and OAuth. Take some time to revisit some of the code you’ve seen, or feel free to explore on
your own. As always, don’t be afraid to search for help online whenever you get stuck. Web tech-
nologies can get very complex, but the good thing is that there is a large community of programmers
trying to accomplish similar things, so you’ll always ind an answer if you encounter a problem.

In addition, this chapter—more so than others—has clearly illustrated the beneits of a rich library
ecosystem as the one found for Java. To accomplish almost all of the tasks in this chapter, you’ve
been using a third‐party library handling a lot of the heavy lifting for you. Setting up an OAuth
token exchange between a REST service still might not be as easy as you’d like, but think back on
the small example on TCP/IP sockets in the beginning of this chapter and imagine having to write
all other aspects of interacting with a web service on top of this. . . This illustrates another impor-
tant point when programming in Java: don’t be afraid to use existing libraries. As the old saying
goes, buy the best, build the rest.

http:///

http:///

Designing Graphical Interfaces

11
What you Will learn in this chapter:

 ➤ The types of graphical user interface frameworks that exist in Java

 ➤ How you can make programs with a graphical user interface

 ➤ Understanding the containment hierarchy, layout managers, and

events in a GUI context

 ➤ Using best practices when building graphical user interfaces

Wrox.com code doWnloads for this chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 11
download and individually named according to the names throughout the chapter.

Up until now, all the programs you’ve been working with throughout this book have been
rather Spartan looking. Since most of the action happened on a command‐line (or the Eclipse

console), you might be wondering whether it is possible to give your programs a bit more

visual lair, and, more importantly, make them more useful by means of adding some buttons

or a textbox or two.

Luckily, Java provides a wide range of capabilities to work with graphical user interfaces—

commonly abbreviated as GUIs—out of the box. Trying to come up with your own GUI

classes from scratch would take you many years. This also means, however, that working

with GUIs in Java is less straightforward than just dealing with input and output through

the console, and constructing visual‐rich programs will take up many more lines of code as

well. As you might expect, all the components you’ll need in order to build a nice‐looking

user interface will be implemented as classes. These classes adhere to Object‐Oriented

Programming principles, so you can ind your way through them using the principles you’ve

already learned.

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

464 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

covering the basics of guis in Java

Java has been around for a while, so there are quite a number of GUI frameworks to choose from
when you decide to start building your own user interfaces, both in the form of built‐in as well as

third‐party libraries.

The reasons behind this are mostly historical, but are also inluenced quite a bit by functional deci-

sions. Some frameworks, for instance, will opt to keep as close as possible to the native look and

feel of the operating system Java is running on, whereas others will try to go for a fancy, modern,

or eccentric look. Some will focus on robustness or simplicity, whereas others will utilize advanced,

performance‐oriented functionalities such as hardware acceleration.

As a beginner’s chapter on building GUIs with Java, things will be kept simple, using only built‐in func-

tionality without relying on third‐party libraries or features that are too hard or complex to use. You’ll

note that unless you’re building graphic‐intensive programs, these components will serve just ine.

highlighting the built‐In GuI libraries
Before getting your feet wet with building your irst GUI application, you need to get acquainted

with some of the basics. You can start off with a short introduction, highlighting a bit more the

architecture and history of Java’s built‐in GUI libraries.

abstract Window toolkit (aWt)

Back when Java was irst released in 1995, Sun Microsystems provided a built‐in library, called the

Abstract Window Toolkit (AWT), to provide a standard widget toolkit (a widget is a typical GUI

term used for a speciic GUI component, such as a button or a check box) in the form of a thin layer

above the native, underlying user interface, deined by the operating system. This meant that creat-

ing a button with AWT would call the routines of the underlying operating system as straightfor-

wardly as possible to display the actual button, meaning that widgets created with AWT would look

different depending on the actual operating system the Java program was running on; For example,

OSX buttons look different than Windows buttons.

Although AWT is closely coupled to the underlying operating system (its components are called

“heavyweight components” for that reason), the library itself is still enormous. It consists of no less

than 12 packages, containing the collection of GUI widgets, classes to deal with GUI events (you

will learn about events in the context of GUIs later), classes dealing with layout managers, interfaces

to deal with input devices such as the mouse and keyboard, and even classes to handle the clipboard

(copying and pasting) and drag‐and‐drop functionality.

Swing

Swing was originally developed to offer a more advanced set of GUI widgets compared to AWT.

One goal was to offer a set of GUI components that would emulate the look and feel of the host

operating system (as this was what users were familiar with) by default, but would also support a

pluggable look‐and‐feel system that would allow applications to have a separate visual style.

In addition, Swing aimed to offer more components when compared to AWT, such as tabbed pan-

els, lists, and scroll panes. Finally, unlike AWT widgets, Swing components are not implemented

by relying on operating system–speciic code. Instead, they are written entirely in Java and thus

http:///

Covering the Basics of GUIs in Java ❘ 465

completely platform independent, so these widgets are referred to as being “lightweight.” The
notions of heavyweight and lightweight in this case indicate how the GUI components are imple-
mented, rather than how they look or how complex they are.

NOTE In fact, not all Swing components are lightweight—there a few notable
exceptions, but more on that later.

One important aspect to keep in mind is that Swing is implemented, for the most part, as an extension
of AWT. That is, every Swing top‐level component (don’t worry about what top‐level means, you’ll

encounter this again in more detail soon) is implemented as a class extending an AWT counterpart,

the difference being that the Swing components extend the AWT set in such a way that no native

calls to the operating system are made anymore.

Since Swing draws the components itself (instead of relying on the operating system), it makes sense

that there is some common set of functionality to draw basic 2D primitives (rectangles, lines, text, cir-

cles, and so on) on-screen. Indeed, this core functionality is provided by another set of libraries called

“Java 2D,” which, confusingly, is located under the java.awt package (the reason for this is that AWT

already contained some form of basic graphic functionality, which was thus also extended).

Standard Widget toolkit (SWt)

When people build GUIs in Java, they’ll still almost always be using Swing to do so. Therefore, in

this chapter, you’ll focus most on this library. That said, however, there exists a number of addi-

tional GUI libraries as well, with the Standard Widget Toolkit (SWT) as a notable irst example.

The origins of SWT date all the way back from when AWT was still in its infancy (and Swing still

under development). The developers at IBM decided that AWT was too buggy and developed their

own alternative, SWT. It is similar to AWT in the sense that its components are also heavyweight

and thus also call native operating system routines to draw and display GUI components. However,

SWT also offers some additional widgets using native code, in cases where native-platform GUI rou-

tines do not support the functionality required for SWT. In that way, SWT is a compromise between

native performance and Swing’s ease of use of.

It is interesting to note that SWT was originally conceived to support the development of VisualAge,

an IDE made by IBM at the time. The company decided to eventually open‐source the project,

which then led to the development of Eclipse. That means Eclipse itself—the IDE used in this

book—can be regarded as a prime example of SWT in action.

Does it make sense to use it yourself? In some cases, it might. When you are looking for a GUI tool-

kit that provides a sensible programming interface to access native widgets in a functional manner

and with a more sensible structure and fallbacks than AWT, it might be interesting to give SWT a

shot. If you care more about customization support and ease of use, and want a look and feel that

appears similar on all platforms, Swing is probably better suited.

JavaFX

JavaFX is the “new kid” on the block concerning GUI toolkits, even though it has been around for

quite some time by now. Its original goal was to offer a software platform for creating rich Internet

http:///

466 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

and mobile applications, but is now geared toward replacing Swing as the standard GUI toolkit for
Java, although Oracle will continue to offer both in the foreseeable future.

Note that JavaFX has been around since 2008, but it took a few years until the library was ready for
use on non‐Windows platforms. With the release of Java 8, JavaFX became an integral part of the

JRE (and JDK), so that the latest version of JavaFX went from 2.2 to just simply JavaFX 8. These

aspects form the main reason behind the lack of larger adoption of this GUI toolkit. Even though

Oracle has been trying to put more effort behind the project in recent years, it can be argued that the

time for a big breakthrough has passed, and even though the toolkit keeps improving, most people

still stick to Swing as their default GUI toolkit today. Another reason why the framework is not yet as

popular as it could be is because most of the GUI‐related innovations these days tend to focus on web

and mobile development, with standard desktop application development being more stabilized.

NOTE Speaking of platforms, Oracle—and Sun before them—has missed the
boat somewhat regarding the creation of a GUI framework for Java on mobile
platforms, i.e., iOS and Android. For Android, Google has driven a great deal of
attention toward creating a nice‐looking set of widgets (Android itself runs heav-
ily on Java technology). Although Oracle had an internal prototype of JavaFX
working on iOS and Android at one point, the code base was renamed and
reworked signiicantly afterwards (called RoboVM on iOS). Even today, these
mobile UI toolkits are considered experimental and not yet ready for prime time.

Other toolkits and Libraries

Apart from the ones you’ve just seen, there are a number of additional GUI toolkits and libraries

as well. For instance, there are add‐on libraries oriented toward extending Swing with additional

helpful components, such as JGoodies or SwingX from SwingLabs, a library which also contains

a number of Swing components. There also exist additional libraries that try to offer a complete

solution, such as Apache Pivot, which is trying to position itself against JavaFX by offering a com-

pletely open-source package (parts of JavaFX are still proprietary). There’s also Qt Jambi, a binding

between the Qt GUI toolkit (that works across various platforms) and Java, as well as GTK‐Java,

which does the same for Java and the GTK GUI toolkit. Finally, as noted before, in case you might

be interested in developing apps on Android later (which are written in Java), keep in mind that the

platform comes with its own GUI toolkit and thus its own set of components and classes, although

learning GUI libraries gets easier once you have seen one.

Choosing a GUI Library

In this section you’ve seen an overview of several GUI libraries, and by now you might be getting

worried or overwhelmed by the number of choices offered. Which one is the best? Which one is easi-

est to learn? Which one should you go for?

For most of this chapter, you will continue with Swing. The reasons for this are because Swing is

very robust, pretty easy to work with (as long as your GUIs don’t need to be very complex), and well

known by Java programmers, so you can easily ind or get help. Remember that using Swing will

always involve talking a little bit about AWT as well, which Swing extends.

http:///

Covering the Basics of GUIs in Java ❘ 467

Finally, keep in mind that some people who feel Swing is outdated will disagree with this choice;
some would rather see Swing quietly disappear to be replaced with a more modern system—most
likely, JavaFX. The reality, however, is that the multitude of projects in Java are, and continue to be,
written with Swing. You certainly won’t be left empty-handed regarding JavaFX, however. In the
inal parts of this chapter, you can take a look at setting up a small project with JavaFX, so you can

get a feel for how everything works and decide yourself whether you want to continue with this UI

toolkit and leave Swing behind.

building with containers and components
You have already learned, generally, about many different GUI widget toolkits or GUI libraries offering

a collection of GUI widgets, or GUI components, as they’re called. Now what exactly is a GUI compo-

nent? Basically, the GUI components determine the set of building blocks you can use to construct a user

interface. They are the elementary, basic GUI entities. Think of a button, a text label, a textbox, and

so on. In the Microsoft realm, GUI components are sometimes referred to as “controls,” whereas other

libraries prefer to use the term “widget.” Just keep in mind, a GUI component is a widget is a control.

In Swing, every component has its own class, and all extend the base class JComponent, located

under the javax.swing package. Why not take a look at some of them?

class used as looKs liKe

JButton JComponent component = new

JButton("BUTTONS!");

JLabel JComponent component =

 new JLabel("A label");

JList JComponent component =

 new JList<String>(

 new String[]{

 "---1---",

 "---2---"

});

JProgressBar JProgressBar component =

 new JProgressBar(0, 100);

component.setValue(20);

JScrollBar JComponent component =

 new JScrollBar(

 JScrollBar.HORIZONTAL,

 50, 20, 1, 500);

JSlider JComponent component =

 new JSlider(0, 100, 33);

JSpinner JComponent component =

 new JSpinner();

continues

http:///

468 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

class used as looKs liKe

JTextField JComponent component =

 new JTextField("Text field");

JTextArea JComponent component =

 new JTextArea("Text area");

JComboBox JComponent component =

 new JComboBox<String>(

 new String[]{

 "---1---",

 "---2---"

 });

JCheckBox JComponent component =

 new JCheckBox("Check boxes");

JRadioButton JComponent component =

 new JRadioButton(

 "And radio buttons");

Apart from components, there is also a second GUI element you should be aware of, called a “con-
tainer.” Containers hold components together in a speciic layout and can also contain sub‐contain-

ers. Therefore, a container can be seen as a special kind of component that holds other components

and organizes them in a speciic manner.

You should be aware of the following Swing container classes: JApplet, JFrame, JDialog, JWindow,

and JPanel; all of them are derived from the AWT java.awt.Container class (which is subclassed

in a number of AWT containers you can ignore, as you will only be using the Swing ones). You’re

probably getting anxious to start coding by now, so why not introduce one of the containers by

means of a Try It Out?

try it out Writing Your First GUI application

In this Try It Out, you will construct a simple GUI application using the JFrame container class.

 1. As always, feel free to create a new project in Eclipse.

 2. Create a class called MyFirstFrame with the following content:

import java.awt.BorderLayout;
import java.awt.Color;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;

public class MyFirstFrame {
 public static void main(String[] args) {
 JFrame frame new JFrame();

(continued)

http:///

Covering the Basics of GUIs in Java ❘ 469

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("My First Frame");

 JPanel bluePanel = new JPanel();
 JPanel redPanel = new JPanel();

 JLabel label = new JLabel("<–– pick your side ––>");

 frame.getContentPane().add(label, BorderLayout.CENTER);

 bluePanel.setBackground(Color.blue);
 redPanel.setBackground(Color.red);

 frame.getContentPane().add(bluePanel, BorderLayout.LINE_START);
 frame.getContentPane().add(redPanel, BorderLayout.LINE_END);

 JButton blueButton = new JButton("PICK BLUE TEAM");
 JButton redButton = new JButton("PICK RED TEAM");

 bluePanel.add(blueButton);
 redPanel.add(redButton);

 frame.pack();
 frame.setVisible(true);
 }
}

 3. Run the project from Eclipse. You should see the window shown in Figure 11-1.

figure 11-1

How It Works

This is how it works:

 1. The window you see is your actual JFrame, a container for other components or containers. The
getContentPane() method gives you access to the actual container to which you can add() other
components (or containers). Note the setTitle() method allows you to set the title, and the
setDefaultCloseOperation() method allows you to specify what the Java program should do
(in this case, stop completely) when the user closes this JFrame object.

 2. You also constructed two JPanel containers and set their background colors. They are added to the
left and right sides of the JFrame content pane. The default layout for a JFrame content pane is a so‐

called border layout. Don’t worry about this too much, as you will see layouts in more detail soon.

 3. Next, two buttons are created with different text labels, and they are added to the JPanels.

 4. Finally, calling the pack() method of JFrame ensures everything is laid out correctly and then

shows the frame to the user.

http:///

470 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 5. Try resizing the window. What works and what does not? What could look better? Keep these
aspects in mind for later.

 6. Note that Java, by default, will pick a “look and feel” to match a cross‐platform theme. You might

have noted that the button Java shows looks nothing like a normal Windows button. If you want

to select another Swing look, try adding the following code at the top of the main method:

try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (ClassNotFoundException | InstantiationException
 | IllegalAccessException | UnsupportedLookAndFeelException e) {
 e.printStackTrace();
}

(Eclipse will suggest which classes to import.) When you run the program again, you will see the win-

dow in Figure 11-2, which looks a lot more similar to your normal system environment.

figure 11-2

NOTE Actually, it is possible to deine so‐called “undecorated” windows in
Swing, if you do want to draw your own custom controls for taking care of win-
dow management or apply custom borders. It is also possible to change the
opacity (transparency) and shape of windows, so it is possible to make windows
that look like whatever you want, although it requires some advanced usage of
Swing and takes much more code than showing a standard looking window.

If you’ve followed along with the Try It Out (or just looked at the pictures), you might note that

Swing will handle the look and feel of the buttons you’ve added to your window, but the window

itself—its title bar; minimize, maximize, and close buttons; and border—still look as if they were

drawn by the operating system. So what gives?

The explanation behind this is that there are four Swing components that are actually not lightweight

and thus still drawn and displayed on-screen by calling an underlying operating system function. These

are JFrame, JDialog, JWindow, and JApplet, which are all the container components that have some

kind of border that’s displayed in a window. Instead of Swing drawing these windows by itself (and

thus also determining the look and feel of title bars and borders), it was decided to continue ofloading

this to the operating system, and that is why the actual window retains its look in this example.

On another note, you might expect there to be a wealth of Swing look and feel to choose from, but

in actuality, the number of high‐quality “themes” out there is very limited. The main reason for this

is that creating a complete look-and-feel package is very complex (especially when all components

http:///

Covering the Basics of GUIs in Java ❘ 471

need to look good in all cases). You saw Nimbus mentioned (a SwingLabs project) as a notable
exception. You can enable it by inserting the following code at the top of your main method:

try {
 for (LookAndFeelInfo info : UIManager.getInstalledLookAndFeels()) {
 if ("Nimbus".equals(info.getName())) {
 UIManager.setLookAndFeel(info.getClassName());
 break;
 }
 }
} catch (Exception e) {
 // Nimbus not available, revert to system look and feel
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 } catch (Exception ign) {}
}

(This snippet also shows you how to get a list of available look and feels.) The Nimbus look and feel
looks like Figure 11-3 (using the “SwingSet” example provided by Oracle).

Feel free to use it in your own projects or just stick with the defaults.

figure 11-3

http:///

472 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

looking at the full picture
You’ve now seen the differences between Swing components and containers and already utilized a
handful of Swing classes. Earlier, you read that Swing extends the older and native AWT library. It
therefore makes sense to take a step back and look at the whole class hierarchy to understand what
exactly is going on, as the GUI hierarchy in Java can be somewhat confusing.

Start with the class tree representing only AWT objects, which will keep Swing out of the mix for
now. You then end up with the GUI class hierarchy illustrated in Figure 11-4.

figure 11-4

java.lang.Object

java.awt.Component

java.awt.Containerjava.awt.Button

java.awt.Panel java.awt.Window

java.awt.Applet java.awt.Frame java.awt.Dialog

java.awt.Checkboxjava.awt.Label
Other AWT

Components

Other AWT
Components

However, recall that you have been using J‐classes (JButton, JFrame, and JWindow), that is, Swing

classes. This means completely ignoring the AWT components and containers when making GUIs.

Now see what happens when you ignore the AWT components and add the Swing components to the

mix. This is illustrated in Figure 11-5.

figure 11-5

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

AWT Components

AWT Containers

javax.swing.JPanel javax.swing.JLabel
Other Swing
Components

Note that each Swing component extends the JComponent, and that JComponent itself extends the AWT

Container class, meaning that a JButton does not extend an AWT Button, a JLabel does not extend

an AWT Label, and so on.

Now, where do Swing containers it in? One of them, the JPanel, you can already ind among the

JComponents. However, the ones with a window border, namely JFrame, JApplet, JDialog, and

JWindow, are missing. They are added to the class tree as shown in Figure 11-6.

http:///

Comparing Layout Managers ❘ 473

There they are. Note how things are a bit complicated (JPanel for instance does not extend the
AWT Panel), but the main classes you’ll be working with are all part of Swing, all starting with “J”.

Annotating the class tree somewhat more, you inally get the full picture shown in Figure 11-7.

figure 11-6

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

AWT Components

java.awt.Paneljava.awt.Window

java.awt.Applet

javax.swing.JApplet

javax.swing.JPanel Swing Componentsjava.awt.Frame

javax.swing.JWindow javax.swing.JFrame javax.swing.JDialog

java.awt.Dialog

figure 11-7

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

AWT Components

Other AWT Classes
(Font, Dimension, LayoutManager...)

Also used by Swing

java.awt.Paneljava.awt.Window

java.awt.Applet

javax.swing.JApplet

javax.swing.JPanel Swing Componentsjava.awt.Frame

javax.swing.JWindow javax.swing.JFrame javax.swing.JDialog

java.awt.Dialog

Heavyweight Swing Classes
Swing Containers

AWT Containers

comparing layout managers

Now that you have a clear picture of the GUI class hierarchy, you are ready to move on to the next

topic. Some of the general AWT classes that are reused in Swing represent layout managers. What is

a layout manager? Basically, an object specifying the way components in a container should be laid

out. Java offers a number of them out of the box, and you can combine these (by nesting containers

inside each other) to create relatively intricate layouts.

http:///

474 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

Specifying a layout manager for a container is a simple operation. You just need to call the following
method:

public void setLayout(LayoutManager manager)

For example:

JPanel redPanel = new JPanel();
redPanel.setLayout(new BorderLayout());

The questions then are which layout managers exist and what does each of them do? The following
sections discuss each of the built‐in layout managers in detail and provide examples of all of them.

flowlayout
In a FlowLayout, all components will be arranged from left to right in the order that they are added.

When a row is illed, a new row is started. Resizing the container or changing the width of the

container programmatically thus changes the appearance. The FlowLayout is the default layout for

JPanel.

try it out Creating Flowing panels

In this Try It Out, you will create a JFrame, set its layout manager to use a FlowLayout, and add some

panels.

 1. As always, feel free to create a new project in Eclipse.

 2. Now make a rainbow. Create a class called FlowLayoutFrame with the following content:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.FlowLayout;

import javax.swing.JFrame;
import javax.swing.JPanel;

public class FlowLayoutFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("FlowLayout frame");

 frame.getContentPane().setLayout(new FlowLayout());

 frame.getContentPane().add(makePanel(Color.red));
 frame.getContentPane().add(makePanel(Color.orange));
 frame.getContentPane().add(makePanel(Color.green));
 frame.getContentPane().add(makePanel(Color.blue));
 frame.getContentPane().add(makePanel(new Color(75, 0, 130)));
 frame.getContentPane().add(makePanel(new Color(138, 43, 226)));

 frame.pack();

http:///

Comparing Layout Managers ❘ 475

 frame.setVisible(true);
 }

 private static JPanel makePanel(Color color) {
 JPanel panel = new JPanel();
 panel.setBackground(color);
 return panel;
 }
}

 3. Run the project from Eclipse. You should see the window in Figure 11-8.

figure 11-8

figure 11-9

How It Works

This is how it works:

 1. In this class, a JFrame is created and given a title like before, but its layout manager is changed to
be a FlowLayout. Then seven panels are added and colored with a rainbow pattern.

 2. Try resizing the window. Note how you cannot make the window smaller than its starting size.
This is due to the fact that this is the minimum size for windows in Windows, and thus the layout
manager has determined this to be the optimal size and has sized the panels accordingly as well,
since none of them contain any components. Now say you would like to make your rainbow a bit
bigger. You can do so by adding the following line to the makePanel method:

panel.setPreferredSize(new Dimension(100, 100));

 3. Run the program again; you will now see a bigger rainbow. Note that resizing the window shows
the FlowLayout in action, as shown in Figure 11-9.

http:///

476 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 4. You might be wondering why you are using setPreferredSize instead of just setSize, which is
also available as a method. This is because setBounds and setSize only have an effect when the
layout manager of the container holding your components is set to null. This is a common mis-
take that throws many beginners off, especially since all containers have default layout managers
and are thus not equal to null. By using setPreferredSize, you effectively signal to the layout
manager: I would like this component to be this size, if you deem it possible.

The FlowLayout comes with three constructors. These are:

public FlowLayout();
public FlowLayout(int align);
public FlowLayout(int align, int hgap, int vgap);

// align: either FlowLayout.LEFT (or FlowLayout.LEADING),
// FlowLayout.RIGHT (or FlowLayout.TRAILING),
// or FlowLayout.CENTER

// hgap, vgap: horizontal/vertical gap between the components

about right‐to‐left orIentatIon

Some languages, such as Arabic, are read from right to left, and operating systems
include functionality to also make UI components appear in the correct reading
order. In Java, it is also possible to change the reading orientation, and Swing will
honor this setting as well—FlowLayout, for instance, will then order components
from right to left. You can try this out with the following code snippet:

import java.awt.ComponentOrientation;
import javax.swing.JFrame;

public class RightToLeft {
 public static void main(String[] args) {
 JFrame.setDefaultLookAndFeelDecorated(true);
 JFrame frame = new JFrame("Right to Left Frame");

 frame.setComponentOrientation(
 ComponentOrientation.RIGHT_TO_LEFT);

 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 frame.setVisible(true);
 }
}

Borderlayout
In a BorderLayout, a container is divided into ive “zones,” called North, South, West, East, and

Center, in which components can be placed. You do not need to add components to all zones for a

BorderLayout to work, as the components are allowed to stretch to ill available space.

http:///

Comparing Layout Managers ❘ 477

The BorderLayout comes with two constructors. These are:

public BorderLayout();
public BorderLayout (int hgap, int vgap);

// hgap, vgap: horizontal/vertical gap between the components

Note that the BorderLayout is the default layout manager for the content pane of a windowed con-
tainer (e.g., for a JFrame). You’ve already seen how it works in your irst Try It Out for this chapter,

but look at another example here.

try it out experimenting with the BorderLayout

In this Try It Out, you create a JFrame to see how the BorderLayout layout manager works.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called

BorderLayoutFrame with the following content:

import java.awt.BorderLayout;

import javax.swing.JButton;
import javax.swing.JFrame;

public class BorderLayoutFrame {

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("BorderLayout frame");

 /* Since the default layout manager for bordered containers is
 * already a BorderLayout, the following line is OPTIONAL here.
 */
 frame.getContentPane().setLayout(new BorderLayout());

 frame.getContentPane().add(new JButton("NORTH"), BorderLayout.NORTH);
 // ... or BorderLayout.PAGE_START

 frame.getContentPane().add(new JButton("WEST"), BorderLayout.WEST);
 // ... or BorderLayout.LINE_START

 frame.getContentPane().add(new JButton("EAST"), BorderLayout.EAST);
 // ... or BorderLayout.LINE_END

 frame.getContentPane().add(new JButton("SOUTH"), BorderLayout.SOUTH);
 // ... or BorderLayout.PAGE_END

 frame.getContentPane().add(new JButton("CENTER"), BorderLayout.CENTER);
 frame.pack();
 frame.setVisible(true);
 }
}

 2. Run the project from Eclipse. You should see the window in Figure 11-10.

http:///

478 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

How It Works

This is how it works:

 1. This class is similar to the previous one, but now a BorderLayout object is speciied as the layout

manager. This step is optional in the case of a JFrame container, because its default layout man-

ager is already BorderLayout.

 2. Components are now added to a speciic position by specifying the location as the second argument

of the add method.

 3. Try resizing the window and see how the controls behave. Try removing a few of the buttons and

see how the window reacts, as shown in Figure 11-11.

figure 11-11

figure 11-10

 4. Try adding a call to setPreferredSize for one of the buttons. What happens? As you can

see, BorderLayout has its own ideas about sizing components and does not adhere to your

size hints. This does make the layout manager well suited to host nested JPanels, however

(which then can be given their own separate layout manager in which you can lay out all

components).

gridlayout
A GridLayout layout manager places components, as the name suggests, in a grid of cells. Each

component will take up all the available space in its cell, and the dimensions of each cell are the

same. When resizing containers with a GridLayout layout manager, the width and height of each

cell will be resized accordingly.

http:///

Comparing Layout Managers ❘ 479

A GridLayout layout manager can be constructed in two ways:

public GridLayout(int rows, int columns);
public GridLayout(int rows, int columns, int hgap, int vgap);

// rows, columns: number of rows and columns in the grid

// hgap, vgap: horizontal/vertical gap between the components

Note that when you specify 0 (zero) for the number of rows or columns (but not both), any number
of components can be placed in the column or row, respectively (the actual non‐zero value is then

effectively ignored). When you specify both the number of rows and columns, the column value is

also ignored. The number of components you add and the number of rows you have speciied deter-

mine the real number of columns.

The following Try It Out shows an example.

try it out Creating the Useless pocket Calculator

In this Try It Out, you create a JFrame to see how the GridLayout layout manager works. You also see

how containers can be nested to create more complex layouts.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called

GridLayoutFrame with the following content:

import java.awt.Container;
import java.awt.GridLayout;

import javax.swing.JButton;
import javax.swing.JFrame;

public class GridLayoutFrame {

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("GridLayout frame");

 // 7 8 9 0
 // 4 5 6 C
 // 1 2 3 =
 // + - * /

 frame.getContentPane().setLayout(new GridLayout(4, 4));

 addButtons(frame.getContentPane(),
 "7", "8", "9", "0", "4", "5", "6", "C",
 "1", "2", "3", "=", "+", "-", "*", "/"
);

 frame.pack();
 frame.setVisible(true);

 }

http:///

480 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 private static void addButtons(Container contentPane, String ... strings) {
 for (String label : strings) {
 contentPane.add(new JButton(label));
 }
 }

}

 2. Run the project from Eclipse. You should see the window shown in Figure 11-12.

figure 11-12

 3. The buttons don’t do anything (yet) and are pretty useless for now, but you can see already that
you will need to add a textbox for any calculations. It is probably also apparent that it’s not good
to cram this into a single cell. It would be better to span this text the width of a whole row. Why
not put your buttons in a JPanel and the textield in the north position of the BorderLayout lay-

out manager? Change your class to look like this:

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.GridLayout;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class GridLayoutFrame {

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("GridLayout frame");

 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new GridLayout(4, 4));

 addButtons(buttonPanel,
 "7", "8", "9", "0", "4", "5", "6", "C",

http:///

Comparing Layout Managers ❘ 481

 "1", "2", "3", "=", "+", "-", "*", "/"
);

 JTextField resultBox = new JTextField("*** BATTERY EMPTY ***");
 resultBox.setEditable(false); // Prevent user editing

 frame.getContentPane().add(buttonPanel, BorderLayout.CENTER);
 frame.getContentPane().add(resultBox, BorderLayout.NORTH);

 frame.pack();
 frame.setVisible(true);

 }

 private static void addButtons(Container contentPane, String... strings) {
 for (String label : strings) {
 contentPane.add(new JButton(label));
 }
 }

}

The result will now look like Figure 11-13.

figure 11-13

How It Works

This is how it works:

 1. This class is similar to the previous one, but now you have speciied a GridLayout object as the

layout manager.

 2. In the second version, a new JPanel container is constructed, and its layout manager is set to be

a GridLayout. Then it is added to the center of the JFrame. A JTextField is then added in the

north position. Note the use of the setEditable method to prevent users from typing in characters

in the textbox.

http:///

482 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

gridbaglayout
The GridBagLayout layout manager is one of the most lexible and complex layout managers Java

provides, while still being easy enough to use in a manual manner (GroupLayout and SpringLayout

are even more lexible, but almost impossible to use by hand).

A GridBagLayout allows components to be placed in a grid of rows and columns, just like the

GridLayout manager, but unlike GridLayout, cells in a GridBagLayout can have different widths

and heights. In addition, it is possible for components to span across cells.

To arrange components, the GridBagLayout layout manager bases itself on the preferred sizes

set for each component, as well as a series of so‐called constraints, formulated by means of a

GridBagConstraints object. Before you read more about these constraints, the following Try It

Out introduces the GridBagLayout layout manager.

try it out Creating the pocket Calculator with GridBagLayout

In this Try It Out, you change your pocket calculator from the previous Try It Out to use

GridBagLayout to demonstrate the added lexibility of this layout manager.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called

GridBagLayoutFrame with the following content:

import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.Insets;
import java.util.HashMap;
import java.util.Map;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JTextField;

public class GridBagLayoutFrame {

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("GridLayout frame");

 frame.getContentPane().setLayout(new GridBagLayout());

 Map<String, JButton> buttons = makeButtons(
 "7", "8", "9", "0", "4", "5", "6", "C",
 "1", "2", "3", "=", "+", "-", "*", "/"
);

 JTextField resultBox = new JTextField("*** BATTERY EMPTY ***");
 resultBox.setEditable(false);

 GridBagConstraints constraints = new GridBagConstraints();

 // Add number buttons

http:///

Comparing Layout Managers ❘ 483

 constraints.fill = GridBagConstraints.BOTH;
 constraints.weightx = 1; constraints.weighty = 1;
 constraints.fill = GridBagConstraints.BOTH;

 // First row
 constraints.gridy = 1;
 constraints.gridx = 0;
 frame.add(buttons.get("7"), constraints);
 constraints.gridx = 1;
 frame.add(buttons.get("8"), constraints);
 constraints.gridx = 2;
 frame.add(buttons.get("9"), constraints);
 // Second row
 constraints.gridy = 2;
 constraints.gridx = 0;
 frame.add(buttons.get("4"), constraints);
 constraints.gridx = 1;
 frame.add(buttons.get("5"), constraints);
 constraints.gridx = 2;
 frame.add(buttons.get("6"), constraints);
 // Third row
 constraints.gridy = 3;
 constraints.gridx = 0;
 frame.add(buttons.get("1"), constraints);
 constraints.gridx = 1;
 frame.add(buttons.get("2"), constraints);
 constraints.gridx = 2;
 frame.add(buttons.get("3"), constraints);

 // Add text field on row above
 constraints.gridy = 0;
 constraints.gridx = 0;
 constraints.gridwidth = 4;
 constraints.anchor = GridBagConstraints.PAGE_START;
 constraints.insets = new Insets(10, 4, 10, 4);
 frame.add(resultBox, constraints);

 // Add bottom buttons
 constraints.gridy = 4;
 constraints.gridwidth = 1;
 constraints.anchor = GridBagConstraints.PAGE_END;
 constraints.insets = new Insets(10, 0, 0, 0);
 constraints.gridx = 0;
 frame.add(buttons.get("+"), constraints);
 constraints.gridx = 1;
 frame.add(buttons.get("-"), constraints);
 constraints.gridx = 2;
 frame.add(buttons.get("*"), constraints);
 constraints.gridx = 3;
 frame.add(buttons.get("/"), constraints);

 // Add buttons to the right
 constraints.anchor = GridBagConstraints.LINE_END;
 constraints.gridx = 3;
 constraints.gridy = 1;

http:///

484 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 constraints.insets = new Insets(0, 0, 0, 0);
 frame.add(buttons.get("0"), constraints);

 constraints.insets = new Insets(0, 10, 0, 0);
 constraints.gridy = 2;
 frame.add(buttons.get("C"), constraints);
 constraints.gridy = 3;
 frame.add(buttons.get("="), constraints);

 frame.pack();
 frame.setVisible(true);

 }

 private static Map<String, JButton> makeButtons(String... strings) {
 Map<String, JButton> buttons = new HashMap<>();
 for (String label : strings)
 buttons.put(label, new JButton(label));
 return buttons;
 }

}

 2. Run the project from Eclipse. You should see the window in Figure 11-14.

 3. Try resizing the window. Observe how the components stretch and behave.

figure 11-14

How It Works

This is how it works:

 1. This class is similar to the previous one, but a GridBagLayout object is now speciied as the layout

manager.

http:///

Comparing Layout Managers ❘ 485

 2. All components are added with the add method, as always, but they now specify a
GridBagConstraints object as the second argument, which the layout manager will use to lay out
all the components. The GridBagConstraints object is a simple container for a number of ields

(gridx, gridy, and so on), and the same object can be reused to position all components.

 3. Try playing around with the constraints to guess what they do. Try changing some of them and observe

how they inluence the look of the form. Try removing the weightx and weighty lines. What happens?

Now take a closer look at the ields in GridBagConstraints. You can set the following

GridBagConstraints instance variables:

 ➤ gridx and gridy: These integers specify the row and column of the cell where you want to

place the component. The upper leftmost cell has the position gridx=0 and gridy=0. You

can also set this to GridBagConstraints.RELATIVE to specify that a component should fol-

low directly right of and/or under the component that was placed before.

 ➤ gridwidth and gridheight: These integers specify the number of columns and rows the

component spans. The default value for these is 1 (the component takes up a single cell). You

can set this to GridBagConstraints.REMAINDER to specify that the component should take

up all the remaining space in the row and/or column.

 ➤ fill: Used when the component’s cell(s) span a larger area than the preferred size of the

component. When set to GridBagConstraints.NONE, the component’s size will not be

stretched. When set to GridBagConstraints.HORIZONTAL, VERTICAL, or BOTH, the compo-

nent’s size will be stretched accordingly (try playing with these in the previous Try It Out).

 ➤ ipadx and ipady: These integers specify the internal padding of the component, with a default

value of 0. This determines how much space will be added to the size of the component.

 ➤ insets: Add a java.awt.Insets object here to specify the external padding of the compo-

nent, i.e., the minimum amount of space between the component and the edges of the cell(s)

it resides in. By default, no external padding is used.

 ➤ anchor: This ield determines where to place the component when the size of the component

is smaller than its cell(s). Valid values are GridBagConstraints.CENTER (the default), PAGE_

START, PAGE_END, LINE_START, LINE_END, FIRST_LINE_START (top‐left corner), FIRST_

LINE_END (top‐right corner), LAST_LINE_START (bottom‐left corner), and LAST_LINE_END

(bottom‐right corner). You can also use compass names (NORTH, NORTHEAST, and so on) if

you prefer, although those are considered to be deprecated.

 ➤ weightx and weighty: These two values determine how the layout manager should distrib-

ute space among the columns and rows, which is important for resizing behavior. The oficial

Javadocs mention that specifying weights “is an art that can have a signiicant impact on the

appearance of the components.” In general, it is advisable to use either 0.0 or 1.0 as weights, and

use the numbers in between whenever necessary. Also important to know is that when you spec-

ify a weight of 0.0 (the default) for all components in the container, they will all clump together

in the center of the container. This is because the GridBagLayout will then put all extra space

between the edges of the container and the edges of the cell grid. Try removing the weightx and

weighty lines from the previous Try It Out and check this out for yourself.

http:///

486 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

cardlayout
The CardLayout layout manager is useful when you have two or more components (usually JPanel
objects) that should share the same display space and when the user can choose which component
should be shown.

Constructing it is very easy:

public CardLayout();
public CardLayout(int hgap, int vgap);

// hgap, vgap: horizontal/vertical gap between the components

The following Try It Out shows how it works.

try it out playing Your Cards right with the CardLayout

In this Try It Out, you will get to see the CardLayout layout manager in use.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called
CardLayoutFrame with the following content:

import java.awt.BorderLayout;
import java.awt.CardLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;

import javax.swing.JComboBox;
import javax.swing.JFrame;
import javax.swing.JPanel;

public class CardLayoutFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("CardLayout frame");

 JPanel cardPanel = new JPanel();
 cardPanel.setLayout(new CardLayout());
 cardPanel.setPreferredSize(new Dimension(300, 400));

 JPanel bluePanel = new JPanel();
 JPanel redPanel = new JPanel();
 bluePanel.setBackground(Color.blue);
 redPanel.setBackground(Color.red);

 cardPanel.add(bluePanel, "BLUE PANEL");
 cardPanel.add(redPanel, "RED PANEL");

 JPanel comboBoxPanel = new JPanel();
 String comboBoxItems[] = { "BLUE PANEL", "RED PANEL" };

http:///

Comparing Layout Managers ❘ 487

 JComboBox<String> cb = new JComboBox<>(comboBoxItems);
 cb.setEditable(false);
 cb.addItemListener(new ItemListener(){
 @Override
 public void itemStateChanged(ItemEvent evt) {
 CardLayout cl = (CardLayout)(cardPanel.getLayout());
 cl.show(cardPanel, (String)evt.getItem());
 }
 });
 comboBoxPanel.add(cb);

 frame.getContentPane().add(comboBoxPanel, BorderLayout.PAGE_START);
 frame.getContentPane().add(cardPanel, BorderLayout.CENTER);

 frame.pack();
 frame.setVisible(true);
 }
}

 2. Run the project from Eclipse. You should see the window in Figure 11-15.

figure 11-15

http:///

488 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 3. Try selecting a different panel from the drop‐down combobox. Notice how the blue panel changes

to make room for the red one and vice versa.

 4. You can also achieve the same effect by using a JTabbedPane Swing component instead of a

CardLayout layout manager. The following class shows how:

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JTabbedPane;

public class TabbedFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("Tabbed frame");

 JTabbedPane cardTabs = new JTabbedPane();
 cardTabs.setPreferredSize(new Dimension(300, 400));

 JPanel bluePanel = new JPanel();
 JPanel redPanel = new JPanel();
 bluePanel.setBackground(Color.blue);
 redPanel.setBackground(Color.red);

 cardTabs.add(bluePanel, "BLUE PANEL");
 cardTabs.add(redPanel, "RED PANEL");

 frame.getContentPane().add(cardTabs, BorderLayout.CENTER);

 frame.pack();
 frame.setVisible(true);
 }
}

 5. When you run the JTabbedPane version, you’ll see

Figure 11-16.

How It Works

This is how it works:

 1. Note that the setup of this example is a bit more

complicated than the previous ones. First of all, the

layout manager for the content pane of the JFrame is

unchanged (BorderLayout). Next, a new JPanel is

created to store your “cards,” and its layout manager is

set to a CardLayout instance. Next, two colored cards

(also JPanels) are created and added to the cardPanel.

The second argument of the add method, when using a

CardLayout, should be a string identiier for this card. figure 11-16

http:///

Comparing Layout Managers ❘ 489

 2. Next, an additional panel is created to hold a JComboBox, which has the same strings used for the
names of the panels (“BLUE PANEL” and “RED PANEL”) included here as items. Some additional
code adds an item listener, which is necessary to make the combobox actually do something when
selecting an item. Don’t worry about the details yet, as you will see much more about listeners
when you read about GUI events. Just note for now that this code gets the CardLayout object from
the cards JPanel and then instructs this layout manager to show a card in the cardPanel with a
given string identiier.

 3. The TabbedFrame version is somewhat simpler. Here, a single JTabbedPane component is

set up and added to the JFrame. Now, you can directly add your two colored panels, and the

JTabbedPane component handles everything else for you.

In the Try It Out, the most important line is the one that gets the CardLayout layout manager to

show another card:

CardLayout cl = (CardLayout)(cardPanel.getLayout());
cl.show(cardPanel, (String)evt.getItem());

There are a few other helpful methods you can call for a CardLayout object:

 ➤ first (Container parentContainer): Show the irst card of the container.

 ➤ next (Container parentContainer): Show the next card of the container or lip back to

the irst one when the end is reached.

 ➤ previous (Container parentContainer): Show the previous card or lip to the last one

when the beginning is reached.

 ➤ last (Container parentContainer): Show the last card of the container.

 ➤ show (Container parentContainer, String name): Show the card that was added

to the container with the given speciic name (this is the one used in the Try It Out

example).

In general, you’ll not see the CardLayout used that often, especially since components such as

JTabbedFrame allow you to accomplish the same with less boilerplate code (showing how many

cards exist, handling switching between cards, and so on).

boxlayout
BoxLayout is another layout manager that’s relatively simple to use. Put simply, BoxLayout will

stack components on top of each other or place them in a row. Therefore, you can think of it as a

version of the FlowLayout layout manager, but with greater functionality.

There’s only one constructor available:

public BoxLayout(Container target, int axis);

http:///

490 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

The target speciies for which container the layout should be performed, whereas the axis speciies whether

you want components to be placed in a row or column by providing BoxLayout.LINE_AXIS or PAGE_AXIS.

One aspect you need to be aware of is that the BoxLayout constructor expects to get the container

as an argument. Instead of writing the following:

myContainer.setLayout(new BoxLayout(BoxLayout.PAGE_AXIS));

You actually need to write the following:

myContainer.setLayout(new BoxLayout(myContainer, BoxLayout.PAGE_AXIS));

When laying out components, the BoxLayout will take the minimum, preferred, and maximum

sizes into account. The layout manager will also adhere to the alignment of a component, which

you can specify by passing Component.LEFT_ALIGNMENT, CENTER_ALIGNMENT, and so on, to the

setAlignmentX and setAlignmentY methods of components. The following Try It Out introduces

how everything works.

try it out Stacking Boxes with BoxLayout

In this Try It Out, you use the BoxLayout layout manager.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called

BoxLayoutFrame with the following content:

import java.awt.Color;
import java.awt.Component;
import java.awt.Dimension;

import javax.swing.BoxLayout;
import javax.swing.JFrame;
import javax.swing.JPanel;

public class BoxLayoutFrame {

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("BoxLayout frame");

 frame.getContentPane().setLayout(
 new BoxLayout(frame.getContentPane(), BoxLayout.PAGE_AXIS));

 frame.getContentPane().add(makePanel(Color.red, 10,
 Component.CENTER_ALIGNMENT));
 frame.getContentPane().add(makePanel(Color.blue, 50,
 Component.LEFT_ALIGNMENT));
 frame.getContentPane().add(makePanel(Color.yellow, 100,
 Component.RIGHT_ALIGNMENT));
 frame.getContentPane().add(makePanel(Color.green, 200,
 Component.LEFT_ALIGNMENT));

http:///

Comparing Layout Managers ❘ 491

 frame.getContentPane().add(makePanel(Color.pink, 500,
 Component.CENTER_ALIGNMENT));

 frame.pack();
 frame.setVisible(true);

 }

 private static JPanel makePanel(Color col, int w, float a) {
 JPanel panel = new JPanel();
 panel.setBackground(col);
 panel.setAlignmentX(a);
 panel.setPreferredSize(new Dimension(w, 50));
 panel.setMaximumSize(panel.getPreferredSize());
 panel.setMinimumSize(panel.getPreferredSize());
 return panel;
 }

}

figure 11-17

 2. Run the project from Eclipse. You should see the window in Figure 11-17.

 3. Observe what happens when you resize this window. A BoxLayout also allows you to create invis-
ible “iller” components. Now modify this class to see how the iller components work:

import java.awt.Color;
import java.awt.Component;
import java.awt.Dimension;

import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JFrame;
import javax.swing.JPanel;

public class BoxLayoutFrame {

http:///

492 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("BoxLayout frame");

 frame.getContentPane().setLayout(
 new BoxLayout(frame.getContentPane(), BoxLayout.PAGE_AXIS));

 frame.getContentPane().add(Box.createRigidArea(new Dimension(50,50)));
 frame.getContentPane().add(makePanel(Color.red, 10,
 Component.CENTER_ALIGNMENT));
 frame.getContentPane().add(Box.createVerticalGlue());
 frame.getContentPane().add(makePanel(Color.blue, 50,
 Component.LEFT_ALIGNMENT));
 frame.getContentPane().add(Box.createVerticalGlue());
 frame.getContentPane().add(makePanel(Color.yellow, 100,
 Component.RIGHT_ALIGNMENT));
 frame.getContentPane().add(Box.createVerticalGlue());
 frame.getContentPane().add(makePanel(Color.green, 200,
 Component.LEFT_ALIGNMENT));
 frame.getContentPane().add(Box.createVerticalGlue());
 frame.getContentPane().add(makePanel(Color.pink, 500,
 Component.CENTER_ALIGNMENT));

 frame.pack();
 frame.setVisible(true);

 }

 private static JPanel makePanel(Color col, int w, float a) {
 JPanel panel = new JPanel();
 panel.setBackground(col);
 panel.setAlignmentX(a);
 panel.setPreferredSize(new Dimension(w, 50));
 panel.setMaximumSize(panel.getPreferredSize());
 panel.setMinimumSize(panel.getPreferredSize());
 return panel;
 }

}

 4. Run the program again. Observe what happens when you resize the window now.

How It Works

This is how it works:

 1. The workings of this example should be easy to follow. First, the layout manager of the JFrame
content pane is changed to a BoxLayout.

 2. Next, a number of panels are added. You set their background colors; minimum, maximum, and
preferred sizes; and horizontal alignments using the makePanel method.

 3. Finally, in the second version of the class, Box.createRigidArea and Box.createVerticalGlue add rigid
areas and glue between stacked components. The following section shows these options in more detail.

http:///

Comparing Layout Managers ❘ 493

You saw in the Try It Out how to add glue and rigid areas, i.e. invisible components. You’ll next
consider these in a little more detail, but not before these general tips:

 ➤ Note how the alignment of a component can be set to a loat value, meaning that you can

also specify intermediate alignments between all the way to the left (0F), all the way to the

right (1F), or a center alignment (0.5F). Try playing with this in the Try It Out.

 ➤ Note how the minimum and maximum sizes of the panels were set to be equal to the pre-

ferred size. If these are different values, or if you don’t specify them all, the panel will be

more lexible to stretch and ill any available space. When you’re having trouble with compo-

nents misbehaving in a BoxLayout, try checking their sizes.

 ➤ Now, concerning glue and rigid areas, there are three types of invisible components that can

help you add space between components in a BoxLayout:

 ➤ A rigid area, created with Box.createRigidArea(Dimension d): Use this when you

want a ixed‐size space between two components.

 ➤ Glue, created with Box.createHorizontalGlue() or Box.createVerticalGlue():

Use this to specify where excess space in a layout should go when resizing a window.

Think of this component as some invisible elastic stretching glue between components.

It still allows components to stick closely together, but will expand when stretched.

 ➤ A custom iller, created with new Box.Filler(Dimension minimumSize,

Dimension preferredSize, Dimension maximumSize): Use this to specify a com-

ponent with whatever minimum, preferred, and maximum sizes you want. This is

equal to creating some invisible JPanel with set sizes.

 ➤ A strut: Well, you read that there are three types of invisible components, but in

actuality, there are four. A strut also provides a way to add iller, but the rigid area

provides the same functionality and avoids some sizing issues in some cases, so that it

is always better to use a rigid area instead of a strut.

 ➤ Finally, you can also add an invisible border to components to push them apart.

We recommend against this solution, however, because you will end up adding glue

or rigid areas anyway once you want to add a real border to your components.

grouplayout and springlayout
The next two layout managers are placed in the same section, as they both offer a huge amount of

lexibility, but are also incredibly hard to use. The reason behind this is that they were never meant

to be used in a manual manner anyway.

The GroupLayout layout manager was originally developed to be used in combination with graphi-

cal GUI designers, such as the one provided in Netbeans (an IDE just like Eclipse). GroupLayout can

still be used in a manual manner; the basic thing to know is that components are grouped hierarchi-

cally and groups are laid out either sequentially (one after another) or parallel (next to each other).

On the other hand, the SpringLayout layout manager is even more complex, with the ability to

emulate almost all features of the other layout managers. You can ind online references showing

you how to construct a SpringLayout by hand.

This book doesn’t cover either of these layout managers in detail. This is because the other lay-

out managers you have seen, GridBagLayout in particular, already allow you to build complex

http:///

494 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

interfaces, especially once you start nesting containers and also throw smart components such
as JTabbedFrame or JSplitPane in the mix. Later in this chapter, however, you’ll get a quick
tour of some visual GUI builders, which also allow you to see which kind of GroupLayout- or
SpringLayout‐based code these editors come up with.

absolute positioning (no layout manager)
Earlier in this chapter, you read that it is also possible to pass null as a layout manager to compo-

nents. Doing so allows you to leave the positioning of components entirely up to you. Now explore

this with a simple example in the following Try It Out.

try it out Going Solo: absolute positioning Without a Layout Manager

In this Try It Out, you see how to lay out components manually, without using a layout manager.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called

ManualLayoutFrame with the following content:

import java.awt.Color;
import javax.swing.JFrame;
import javax.swing.JPanel;

public class ManualLayoutFrame {

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setTitle("Manual layout frame");

 frame.getContentPane().setLayout(null);

 JPanel bluePanel = new JPanel(),
 redPanel = new JPanel(),
 greenPanel = new JPanel();
 bluePanel.setBackground(Color.blue);
 redPanel.setBackground(Color.red);
 greenPanel.setBackground(Color.green);

 bluePanel.setBounds(100, 100, 100, 100);
 redPanel.setBounds(50, 200, 400, 200);
 greenPanel.setBounds(150, 100, 50, 50);

 frame.add(bluePanel);
 frame.add(redPanel);
 frame.add(greenPanel);

 frame.pack();
 frame.setVisible(true);

 frame.setSize(500, 500);
 }

}

http:///

Comparing Layout Managers ❘ 495

 2. Run the project from Eclipse. You should see the window in Figure 11-18.

 3. Observe what happens when you resize this window (there is no layout manager now to stretch
things around). Also, try changing the order of the add method lines to make the green panel
appear above the other ones (it is currently hidden).

How It Works

This is how it works:

 1. The workings of this class should be easy to understand. The main things to note are the use of a
null layout manager, as well as calling setBounds on the panels. Four dimensions are given: x‐

position, y‐position, width, and height.

 2. Finally, note the use of the setSize method here to size the JFrame, as there is now no layout

manager that can make an informed guess based on the components contained in the JFrame con-

tainer on which size to give the frame.

This concludes the overview on layout managers and how to use them. Take your time to play

around with them and create some nested structures. Before moving on to the next big topic when

dealing with GUIs—events—consider these helpful tips that help you when you lay out components.

 ➤ One of the problems beginners encounter when dealing with layout managers relates to the

sizing of components. Remember that setSize and setBounds only work when a layout

figure 11-18

http:///

496 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

manager is not controlling your component. Since JPanels are controlled by a FlowLayout,
by default, and bordered containers by a BorderLayout, this will never be the case by default.

 ➤ To specify sizes, you’ll hence to resort to the setMinimumSize, setPreferredSize, and
setMaximumSize methods. Try these irst before trying something else.

 ➤ Sometimes, you’ll want to add components while your program is running. You might

encounter cases where your component does not appear. Occassionally, you might note that

the added component suddenly pops into view when resizing its containers. In that case,

check out the revalidate and repaint methods of the component, which will force Java to

draw it after adding it.

 ➤ You’ll note that building GUIs is mostly a matter of creating components and adding them

to each other. For these simple examples, it was easy to just put the complete GUI initializa-

tion in a main method and leave it at that. However, be aware that it is an easy mistake when

building GUIs to suddenly forget everything about Object‐Oriented Programming and end

up with monster classes setting up a huge amount of GUI components. Thus, when build-

ing GUIs, always ask if you might be able to reuse certain parts, and keep in mind you can

extend GUI classes just like you could any class! If you need a bold red label in many places

of your program, why not construct an ErrorLabel that extends the JLabel class that

already contains the right calls to set up the font and size, instead of always directly setting

up a nice-looking JLabel every time you need it? If you need some kind of easy way to create

forms row‐by‐row, consider creating a class‐extending JPanel that uses a GridBagLayout

together with some hand‐rolled methods to make the GUI setup easier. In short, don’t be

afraid to abstract GUI aspects. Another even more important issue arising from putting logic

and GUI‐related code into the main method (the main method, in the examples above) is the

fact that you might run into threading issues with Swing. The next section will explain in

detail what this entails and how you can avoid such issues.

 ➤ Finally, when constructing GUIs, it is a nice idea to sketch out on paper irst how your GUI

should look, and derive some component/container tree out of it. Maybe the JFrame should

contain two panels. One panel would contain a JSplitPane, with the left component a

JScrollPane and the right component another panel. The layout manager would stack a

number of different JPanels, each of which would contain certain buttons and labels. Sketch

your ideas on paper irst, and don’t be afraid to put things into a separate JPanel (or even

better, into a custom class‐extending JPanel). It takes a little more work at irst, but you’ll

be thankful later.

understanding events

All the GUI applications you’ve been building so far do not have any true functionality associated with

them. Sure, you can add a JButton and even click it, but how do you make it actually do something?

To add behavior to your graphical interfaces, you irst need an introduction to the concept of events.

introduction to events
An event can be deined as a happening of something, an occurrence, meaning that something

happened somewhere. In graphical user interfaces, events usually result from a user’s action. For

http:///

Understanding events ❘ 497

instance, the user clicks on a button, closes a window, resizes a window, selects an item in a combo-
box, or even moves the mouse around inside a window.

When building console programs, there is a set sequence of actions, and the program will stop
execution when it expects input from the user, and continues onward once it has received it. In
graphical programs, the user can at any time do a number of things: type in a textbox, minimize a
window, or click a button. All these actions by the user are called “events.” Not only in Java, but in
many other programming languages, there is usually an “event loop,” which is a background task
that constantly checks for any new event and responds accordingly. This type of program is said to
be event‐driven. In Java, you do not have to deal with this event loop directly, but you can plug into

it so you can capture interesting events (a user clicked a button) and deal with them accordingly.

This is done by creating so‐called event listeners.

NOTE Some programming languages make the concept of an “event loop”
a core architectural construct. Node.js, for instance, has become popular as
a JavaScript‐based (not Java) programming framework that applies an event
loop to the whole program, not just to the GUI.

event listeners
You’ve already learned that any user action within a GUI application will lead to some kind of

event. By default, all of these events just happen, but to make useful applications, you’ll need to

deine event listeners. These are objects that can receive a notiication when a speciic event of inter-

est has happened. This is illustrated in the following Try It Out example.

try it out Creating a BMI Calculator

In this Try It Out, you create a graphical Body Mass Index (BMI) calculator.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called

BMICalculator with the following content:

import java.awt.Dimension;

import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JTextField;
import javax.swing.SwingUtilities;

public class BMICalculator extends JFrame {

 private final JTextField txtMass = new JTextField();
 private final JTextField txtHeight = new JTextField();
 private final JButton btnCalc = new JButton("Calculate BMI");

http:///

498 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 public BMICalculator() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("BMI Calculator");

 getContentPane().setLayout(
 new BoxLayout(getContentPane(), BoxLayout.PAGE_AXIS));

 txtMass.setPreferredSize(new Dimension(200,30));
 txtHeight.setPreferredSize(new Dimension(200,30));
 txtMass.setMaximumSize(txtMass.getPreferredSize());
 txtHeight.setMaximumSize(txtHeight.getPreferredSize());

 getContentPane().add(new JLabel("Your mass (kg):"));
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));
 getContentPane().add(txtMass);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 getContentPane().add(Box.createVerticalGlue());

 getContentPane().add(new JLabel("Your height (cm):"));
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));
 getContentPane().add(txtHeight);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 getContentPane().add(Box.createVerticalGlue());
 getContentPane().add(btnCalc);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 pack();
 setVisible(true);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new BMICalculator();
 }
 });
 }
}

 2. Run the project from Eclipse. You should see the window in Figure 11-19.

figure 11-19

http:///

Understanding events ❘ 499

 3. This is a good time to explore a bit and add some styling if you want to do so. Here’s an example
of something you can come up with:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.Insets;

import javax.swing.BorderFactory;
import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JTextField;
import javax.swing.SwingUtilities;

public class BMICalculator extends JFrame {

 private final JTextField txtMass = makePrettyTextField();
 private final JTextField txtHeight = makePrettyTextField();
 private final JButton btnCalc = makePrettyButton("Calculate BMI");

 public BMICalculator() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("BMI Calculator");

 getContentPane().setLayout(
 new BoxLayout(getContentPane(), BoxLayout.PAGE_AXIS));

 txtMass.setPreferredSize(new Dimension(200,30));
 txtHeight.setPreferredSize(new Dimension(200,30));
 txtMass.setMaximumSize(txtMass.getPreferredSize());
 txtHeight.setMaximumSize(txtHeight.getPreferredSize());

 getContentPane().setBackground(new Color(232, 240, 255));

 getContentPane().add(makePrettyLabel("Your mass (kg):"));
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));
 getContentPane().add(txtMass);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 getContentPane().add(Box.createVerticalGlue());

 getContentPane().add(makePrettyLabel("Your height (cm):"));
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));
 getContentPane().add(txtHeight);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 getContentPane().add(Box.createVerticalGlue());
 getContentPane().add(btnCalc);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

http:///

500 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 pack();
 setVisible(true);
 }

 private JButton makePrettyButton(String title) {
 JButton button = new JButton(title);
 button.setFont(new Font(Font.SANS_SERIF, Font.PLAIN, 16));
 button.setBorder(BorderFactory.createRaisedBevelBorder());
 button.setBackground(Color.white);
 button.setForeground(new Color(53, 124, 255));
 return button;
 }

 private JTextField makePrettyTextField() {
 JTextField field = new JTextField();
 field.setFont(new Font(Font.SANS_SERIF, Font.ITALIC, 14));
 field.setHorizontalAlignment(JTextField.RIGHT);
 field.setBorder(BorderFactory.createLoweredBevelBorder());
 return field;
 }

 private JLabel makePrettyLabel(String title) {
 JLabel label = new JLabel(title);
 label.setFont(new Font(Font.SANS_SERIF, Font.BOLD, 14));
 label.setForeground(new Color(53, 124, 255));
 return label;
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new BMICalculator();
 }
 });
 }
}

 4. To add a behavior to the Calculate button, change the class once again to look as follows:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.BorderFactory;
import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JTextField;
import javax.swing.SwingUtilities;

http:///

Understanding events ❘ 501

public class BMICalculator extends JFrame {

 private final JTextField txtMass = makePrettyTextField();
 private final JTextField txtHeight = makePrettyTextField();
 private final JButton btnCalc = makePrettyButton("Calculate BMI");

 private final BMICalculator self = this;

 public BMICalculator() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("BMI Calculator");

 getContentPane().setLayout(
 new BoxLayout(getContentPane(), BoxLayout.PAGE_AXIS));

 txtMass.setPreferredSize(new Dimension(200,30));
 txtHeight.setPreferredSize(new Dimension(200,30));
 txtMass.setMaximumSize(txtMass.getPreferredSize());
 txtHeight.setMaximumSize(txtHeight.getPreferredSize());

 getContentPane().setBackground(new Color(232, 240, 255));

 getContentPane().add(makePrettyLabel("Your mass (kg):"));
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));
 getContentPane().add(txtMass);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 getContentPane().add(Box.createVerticalGlue());

 getContentPane().add(makePrettyLabel("Your height (cm):"));
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));
 getContentPane().add(txtHeight);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 getContentPane().add(Box.createVerticalGlue());
 getContentPane().add(btnCalc);
 getContentPane().add(Box.createRigidArea(new Dimension(5,5)));

 // Add BMI calculation
 btnCalc.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent arg0) {
 double mass;
 double height;
 try {
 mass = Double.parseDouble(txtMass.getText());
 height = Double.parseDouble(txtHeight.getText());
 } catch (NumberFormatException e) {
 JOptionPane.showMessageDialog(self,
 "Please enter a valid number for mass and height.",
 "Input error",
 JOptionPane.ERROR_MESSAGE);

http:///

502 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 return;
 }
 double result = calculateBMI(mass, height);
 JOptionPane.showMessageDialog(self,
 "Your BMI is: " + (Math.round(result*100.0)/100.0),
 "Your BMI result",
 JOptionPane.PLAIN_MESSAGE);
 }
 });

 pack();
 setVisible(true);
 }

 protected double calculateBMI(double mass, double height) {
 return mass / Math.pow(height/100.0, 2.0);
 }

 private JButton makePrettyButton(String title) {
 JButton button = new JButton(title);
 button.setFont(new Font(Font.SANS_SERIF, Font.PLAIN, 16));
 button.setBorder(BorderFactory.createRaisedBevelBorder());
 button.setBackground(Color.white);
 button.setForeground(new Color(53, 124, 255));
 return button;
 }

 private JTextField makePrettyTextField() {
 JTextField field = new JTextField();
 field.setFont(new Font(Font.SANS_SERIF, Font.ITALIC, 14));
 field.setHorizontalAlignment(JTextField.RIGHT);
 field.setBorder(BorderFactory.createLoweredBevelBorder());
 return field;
 }

 private JLabel makePrettyLabel(String title) {
 JLabel label = new JLabel(title);
 label.setFont(new Font(Font.SANS_SERIF, Font.BOLD, 14));
 label.setForeground(new Color(53, 124, 255));
 return label;
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new BMICalculator();
 }
 });
 }
}

 5. Try running the program and enter some numbers. Note that the button actually works, as shown
in Figure 11-20.

http:///

Understanding events ❘ 503

figure 11-20

How It Works

This is how it works:

 1. Instead of putting all the code in a single main method, like in the trivial examples before, now a
proper class, extending JFrame, is created.

 2. Note also the addition of the following pattern in the main method:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 // Execute UI code here
 }
});

Using the static invokeLater method of the SwingUtilities class ensures that all UI‐related code is executed on

the Event Dispatch Thread. You’ll see later on what this means exactly. For now, just keep this pattern in mind.

 3. A set of methods is deined to create “pretty” text ields, buttons, and labels. Your deinition of

pretty might vary, so feel free to change and experiment with these methods.

 4. Then the GUI is set up within the constructor of the class. A BoxLayout is used here, and all the

components are stacked under each other.

 5. The important code is located in the addActionListener method. As the name suggests,

this method allows you to add a listener to your btnCalc button that’s notiied whenever an

ActionEvent occurs. The listener itself is constructed by using an anonymous inner class (new

ActionListener(){ . . . }), a pattern that you will see occurring often for event listeners. This

anonymous class needs to override and specify one method, actionPerformed, which will be

called by the button whenever the user performs an action. In the case of a JButton, this means

whenever the button is activated (clicked, focused on, and then Enter is pressed).

 6. Inside the action listener, the mass and height are taken from the text ields, and a check is done to

see if these ields contain invalid input (if they do, an error is displayed). To show messages, another

Swing component called JOptionPane shows the message dialogs using a single static method. The

irst argument indicates the parent component of the message dialog to be shown, which in this case

means the BMI Calculator. You cannot, however, just pass this, as this, in this context, would

resolve to the anonymous ActionListener object, not to the BMICalculator object. Instead, use a

http:///

504 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

simple trick and deine a inal variable called self, which can be used in the anonymous inner class.

This is another pattern you might see occurring often when creating event listeners.

 7. It is always a good idea to separate logic code from interface code whenever you can. Therefore,

the actual calculation of a BMI is properly separated into its own method: calculateBMI. The

result is shown to the user with another message dialog.

serial version ids

When following along with the Try It Out, you might have spotted an Eclipse

warning saying that BMICalculator does not contain a serial version identiier.

Eclipse will offer to generate a random one for you, which boils down to a line of

code similar to this one being added to your class:

private static final long serialVersionUID = -8952857142790654268L;

Now what is this identiier and why is it useful? The reason behind this has to do

with serialization (storing objects in a format that allows you to read them back out

and initialize them as class instances again later). To make sure that the data of a

stored object still matches a class deinition (as this might have changed over time),

Java also stores a special identiier that veriies that the object to be loaded back in

still matches the identiier of the class. As such, as the name suggests, the serial-

VersionUID is mainly helpful for versioning reasons (an object with UID 100 will

not be able to get instantiated to its class when the class deinition is on version 101).

In most cases, Java can generate a serialVersionUID based on various aspects of

the class at hand. However, it is recommended that all serializable classes explicitly

declare serialVersionUID values, since the default serialVersionUID computa-

tion is sensitive to class details that may vary depending on compiler implementa-

tions. Since Swing components implement Serializable and because Eclipse cares

about best practices, it asks you to specify a serialVersionUID.

Since it is unlikely that you will start serializing Swing components (they shouldn’t

contain important data anyway and should just concern themselves with UI), the best

thing to do if you want to avoid these warnings is to use the default UID everywhere:

private static final long serialVersionUID = 1L;

You can also turn off these warning by navigating to Window, Preferences,

Java Compiler Errors/Warnings and setting Serializable Class Without

serialVersionUID to Ignore under Potential Programming Problems.

Now take a closer look to see how event listeners work. Swing components hold a collection of lis-

tener objects, which have registered themselves to be interested in being notiied whenever an event

occurs. For instance, for a JButton, you have seen how ActionListener objects can be registered

using the addActionListener method. Note that the same listener can in theory be registered with

multiple components.

http:///

Understanding events ❘ 505

NOTE By using the term event listener, you might expect the listening objects
to be the active players in this setup, but actually, it is the event source (e.g., a
button) that will notify its listeners when something interesting happens, by call-
ing one of their methods. This listener‐notiier setup is a typical programming
pattern, commonly referred to as the observer pattern. The following chapter
has much more information on Object‐Oriented Programming patterns.

Generally speaking, there are three ways you will see listener objects being deined and registered.

First of all, for simple event listeners you know you’ll only need with one particular component, it is

common to deine the listener directly as an anonymous inner class, like so:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;

public class ActionListenerExample extends JFrame {

 public ActionListenerExample() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton btn = new JButton("Click Me!");

 btn.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent arg0) {
 JOptionPane.showMessageDialog(
 null,
 "You clicked me, nice!",
 "Aw yeah!",
 JOptionPane.PLAIN_MESSAGE);
 }
 });

 this.add(btn);

 pack();
 setVisible(true);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ActionListenerExample();
 }
 });
 }
}

http:///

506 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

The main beneit of this technique is that it is easy and simple, so it works well for simple com-

ponents. The downside it that it leads quickly to messy‐looking code, does not allow the same

listener to be reused in multiple components, and will sometimes require you to do some vari-

able hocus‐pocus to access them in the inner class (remember the self variable from the Try It

Out).

The second way will make the container component itself the event listener. This is helpful when you

have multiple components to listen to and you already have a custom class for your container. In this

case, you’ll see the pattern class Name extends JContainerName implements ListenerName

appearing, like in this example:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;

public class ActionListenerExample extends JFrame implements ActionListener {

 public ActionListenerExample() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton btn = new JButton("Click Me!");

 // The JFrame is now also the listener object
 btn.addActionListener(this);

 this.add(btn);

 pack();
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent arg0) {
 JOptionPane.showMessageDialog(
 null,
 "You clicked me, nice!",
 "Aw yeah!",
 JOptionPane.PLAIN_MESSAGE);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ActionListenerExample();
 }
 });
 }
}

http:///

Understanding events ❘ 507

The upside of this approach is that it allows the class you already have as a container to act as a
listener for its child components. The downside is that you need to add some extra code when you
want to add a listener to multiple buttons, for instance, and need to know which button (not just
that a button) was clicked. More about how to deal with this later.

Finally, you can also decide to keep the listener separated as much as possible by deining it in a new class:

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;

public class ActionListenerExample extends JFrame {

 public ActionListenerExample() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton btn = new JButton("Click Me!");

 MySimpleButtonListener listener = new MySimpleButtonListener();
 btn.addActionListener(listener);

 this.add(btn);

 pack();
 setVisible(true);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ActionListenerExample();
 }
 });
 }
}

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class MySimpleButtonListener implements ActionListener {

 @Override
 public void actionPerformed(ActionEvent arg0) {
 JOptionPane.showMessageDialog(
 null,
 "You clicked me, nice!",
 "Aw yeah!",
 JOptionPane.PLAIN_MESSAGE);
 }

}

http:///

508 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

Obviously, the advantage is that it becomes easy to reuse the same listener class (and instances,
even) across different components. The downside is that this requires a little more effort to
set up.

So far, you’ve only seen the ActionListener for a JButton. A wealth of other listeners
exists as well. The general usage is always the same: construct a listener with the appropri-
ate type using one of the three techniques seen previously, and then add it to a component using
addLISTENERTYPEListener. A nonexhaustive list of some of the interesting listeners is included in
the following table.

listener (interface): method

to add can be used With: purpose method(s) to implement

Action Listener

(ActionListener) -

 addActionListener

Fires ActionEvent when user per-

forms primary action on component.

Can be used with JButton,

JCheckBox, JComboBox,

JRadioButton, and

JTextField.

actionPerformed: Code that

reacts to the action.

Caret Listener

(CaretListener) -

 addCaretListener

Fires CaretEvent whenever the

caret (the cursor in a text ield,

for instance) moves or when the

selection changes.

Can be used with JTextArea,

JTextField, and JTextPane.

caretUpdate: Code that reacts

whenever caret is updated (is

moved, the selection changes,

text is inserted, and so on).

Change Listener

(ChangeListener) -

 addChangeListener

Fires ChangeEvent whenever a

component changes its state.

stateChanged: Code that reacts

to component changes.

Can be used with JButton ,

JCheckBox, JProgressBar, and

JRadioButton. Also useful with

JSlider and JSpinner, as these

will fire events for the value of

the slider or the spinner changes.

These two components do not

accept ActionListeners , so

here you’ll want to use Change

Listeners.

Item Listener

(ItemListener) -

 addItemListener

Fires ItemEvent whenever a

state change occurs in the com-

ponent’s items.

JCheckBox, JComboBox, and

other components keep a list of

items that accept this listener.

itemStateChanged: Code

that reacts when state of items

changes.

http:///

Understanding events ❘ 509

List Selection

Listener

(ListSelectionListener) -

 addListSelectionListener

Fires ListSelectionEvent

when selection changes in the

component’s items.

Only JList and JTable accept

this listener.

valueChanged: Code that reacts

when another item is selected

from the component’s items.

Window Listener

(WindowListener) -

addWindowListener

Fires WindowEvent when state

changes occur in windowed

components.

JDialog and JFrame accept this

listener.

windowOpened: Code that reacts

when window has been shown for

irst time (in program’s execution).

windowClosing: Code that reacts

when user requests the window

to close.

windowClosed: Code that reacts

just after window has closed.

windowIconified and

windowDeiconified: Code that

reacts when window is minimized

or unminimized.

windowActivated and window-

Deactivated: Code that reacts

when window is activated or

deactivated. This method will

not work with frames or dialogs,

so you need to use the Window

FocusListener here instead.

Window Focus Listener

(WindowFocusListener) -

 addWindowFocusListener

Fires WindowEvent when a

windowed component gains or

loses focus.

JDialog and JFrame accept this

listener.

windowGainedFocus and win-

dowLostFocus: Code that reacts

when window gains or loses focus.

Window State Listener

(WindowStateListener) -

 addWindowStateListener

Fires WindowEvent when the

state of a windowed component

changes, such as is maximized or

minimized.

JDialog and JFrame accept this

listener.

windowStateChanged: Code

that reacts when window is being

(un)minimized, maximized, or

returned to normal.

Component Listener

(ComponentListener) -

 addComponentListener

Fires ComponentEvent when a

component is hidden, moved,

resized, or shown.

All components accept this

listener.

componentHidden and

componentShown: Code that

reacts when component is made

invisible or visible.

componentMoved and componen-

dResized: Code that reacts when

position or dimensions of compo-

nent changes.

continues

http:///

510 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

listener (interface): method

to add can be used With: purpose method(s) to implement

Focus Listener

(FocusListener) -

 addFocusListener

Fires FocusEvent when compo-

nent loses or gains focus.

All components accept this listener.

focusGained and focusLost:

Code that reacts when compo-

nent gains or loses focus.

Key Listener

(KeyListener) -

 addKeyListener

Fires KeyEvent when user types

on the keyboard and the com-

ponent the listener is registered

with has focus.

All components accept this

listener.

keyTyped: Code that reacts when

user types a key (presses and

releases a key).

keyPressed and keyReleased:

Code that reacts when user

presses and releases a key.

Mouse Listener

(MouseListener)

- addMouseListener

Fires MouseEvent when the

mouse pointer interacts with a

component.

All components accept this

listener.

mouseClicked: Code that reacts

when a user clicks a mouse button.

mouseEntered and mouseExited:

Code that reacts when the

mouse pointer enters or exits a

component.

mousePressed and

mouseReleased: Code that reacts

when user presses and releases a

mouse button.

Mouse Motion Listener

(MouseMotionListener)

- addMouseMotionListener

Fires MouseEvent when the

mouse pointer is dragged or

moved over a component.

All components accept this

listener.

mouseDragged: Code that reacts

when a user moves the mouse

while holding a mouse button

down.

mouseMoved: Code that reacts

when a user moves the mouse.

Mouse Wheel Listener

(MouseWheelListener)

- addMouseWheelListener

Fires MouseWheelEvent when

user scrolls the mouse wheel.

All components accept this

listener.

mouseWheelMoved: Code that

reacts when the user moves the

mouse wheel.

Mouse Adapter

(MouseAdapter) -

addMouseListener,

addMouseMotionListener,

addMouseWheelListener

Can be used to deine all three

mouse event listeners at the

same time. Convenience class.

See three mouse event listeners

above.

Don’t worry if the amount of event types and listeners seems overwhelming for now (and this isn’t
even all of them). Just refer to this table when you encounter a need to add more behavior to your
components. In most cases, using action listener should cover most of your needs.

(continued)

http:///

Understanding events ❘ 511

That said, whichever listener you’re using, you should still consider a few additional aspects. The
irst one relates to the event source—the component sending the event to the listeners. Earlier on,

you read that in some cases you might want to determine exactly which button was clicked. For

example, take the following base scenario:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;

public class ActionListenerExample extends JFrame implements ActionListener {
 public ActionListenerExample() {
 super();
 this.setLayout(new FlowLayout());
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JButton btn1 = new JButton("Click Me!");
 JButton btn2 = new JButton("No, click me!");
 btn1.addActionListener(this);
 btn2.addActionListener(this);
 getContentPane().add(btn1);
 getContentPane().add(btn2);
 pack();
 setVisible(true);
 }

 @Override

 public void actionPerformed(ActionEvent ev) {
 JOptionPane.showMessageDialog(
 null,
 "You clicked a button!",
 "Aw yeah!",
 JOptionPane.PLAIN_MESSAGE);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ActionListenerExample();
 }
 });
 }
}

This class is comparable to the earlier example and acts as both a container and an action listener for

two buttons. Now say you want to show a different message depending on which button was clicked.

The irst way to do this is by changing the actionPerformed method as follows:

@Override
public void actionPerformed(ActionEvent ev) {

http:///

512 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 String message;
 if (((JButton)ev.getSource()).getText().equals("Click Me!"))
 message = "First button was clicked";
 else
 message = "Second button was clicked";

 JOptionPane.showMessageDialog(null,
 message, "Aw yeah!",
 JOptionPane.PLAIN_MESSAGE);
}

Of course, this is a terrible way to implement the desired functionality. Not only are you mak-
ing an unsafe case (who says the source component will always be a button?), but you’re also
hardcoding some text that might later be changed. This does introduce an interesting method
though: getSource(). This method allows you to get the source component for the incom-
ing event. Why not directly use this method as is? You will need to make the two buttons class
ields, however:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;

public class ActionListenerExample extends JFrame implements ActionListener {
 private final JButton btn1 = new JButton("Click Me!");
 private final JButton btn2 = new JButton("No, click me!");

 public ActionListenerExample() {
 super();
 this.setLayout(new FlowLayout());
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 btn1.addActionListener(this);
 btn2.addActionListener(this);
 getContentPane().add(btn1);
 getContentPane().add(btn2);
 pack();
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 String message = "";
 if (ev.getSource() == btn1)
 message = "First button was clicked";
 else if (ev.getSource() == btn2)
 message = "Second button was clicked";

 JOptionPane.showMessageDialog(null,
 message, "Aw yeah!",
 JOptionPane.PLAIN_MESSAGE);

http:///

Understanding events ❘ 513

 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ActionListenerExample();
 }
 });
 }
}

This is much better. There is, however, also another mechanism by which you can determine
the correct action to take whenever an event is ired, that is by means of a so‐called action com-

mand. This is especially useful when the same event source can lead to different behavior. The

following example shows how action commands work. Pay particular attention to the use of the

setActionCommand and getActionCommand methods.

import java.awt.Color;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class DiscoLightsExample extends JFrame implements ActionListener {
 private final String ACTION_ON = "LIGHT ON";
 private final String ACTION_OFF = "LIGHT OFF";
 private final String ACTION_CYCLE = "CYCLE COLOR";

 private final Color[] COLORS = new Color[]{
 Color.white,
 Color.green,
 Color.red,
 Color.yellow,
 Color.orange,
 Color.pink
 };

 private int currentColor = 0;
 private boolean isLightOn = false;

 public DiscoLightsExample() {
 setTitle("Disco Light Party Frame");
 setLayout(new FlowLayout());
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton btnOffOn = new JButton("Lights On");
 JButton btnColor = new JButton("Cycle Color");

 btnOffOn.setActionCommand(ACTION_ON);
 btnColor.setActionCommand(ACTION_CYCLE);

 btnOffOn.addActionListener(this);

http:///

514 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 btnColor.addActionListener(this);
 getContentPane().add(btnOffOn);
 getContentPane().add(btnColor);
 pack();
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 String action = ev.getActionCommand();
 System.err.println("Got action "+action);
 switch (action) {
 case ACTION_ON:
 isLightOn = true;
 getContentPane().setBackground(COLORS[currentColor]);
 ((JButton) ev.getSource()).setText("Lights Off");
 ((JButton) ev.getSource()).setActionCommand(ACTION_OFF);
 break;
 case ACTION_OFF:
 isLightOn = false;
 getContentPane().setBackground(Color.black);
 ((JButton) ev.getSource()).setText("Lights On");
 ((JButton) ev.getSource()).setActionCommand(ACTION_ON);
 break;
 case ACTION_CYCLE:
 if (isLightOn)
 getContentPane().setBackground(COLORS[++currentColor
 % COLORS.length]);
 break;
 }
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new DiscoLightsExample();
 }
 });
 }
}

on threading and swing
Finally, before moving on to the next section, there is one more important thing to highlight when
working with event listeners—and indeed with UIs in general when using Swing. Recall that when-
ever you build a GUI with Java Swing, an event loop will start running in the background that will
check for user actions and dispatch events to your listeners. To be more precise, all Swing event
handling code runs on a special thread known as the Event Dispatch Thread. We won’t talk in depth
about threads in a beginner’s book on programming, but in general, think about a thread as a unit
of execution in a program. For instance, the following code snippet shows how two threads are cre-
ated that will count from 1 to 10 in parallel:

http:///

Understanding events ❘ 515

public class CountingTask implements Runnable {
 private static int COUNTER = 0;
 private int threadId;

 public CountingTask() {
 threadId = ++COUNTER;
 }

 public void run() {
 for (int i = 1; i <= 10; i++) {
 System.out.println("Thread #"+threadId+" is at: "+i);
 try {
 // Rest a bit to give other threads a chance to work
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 Thread thread1 = new Thread(new CountingTask());
 Thread thread2 = new Thread(new CountingTask());
 thread1.start();
 thread2.start();
 }
}

If you try to execute this code, you’ll note that both threads’ output lines will end up mixed on the
console. This shows how threads can serve as a helpful way to deine multiple work tasks within the

same program. Note that your operating system is responsible for the actual allocation of CPU time

to the various threads in your program. Even if you have only one CPU core, the operating system

will make sure to divide calculation time so that each thread in all running programs on your com-

puter get a chance to do their work, causing them to seemingly run in parallel. Note that running

the code snippet above actually involves the creation of three threads: the main thread (all programs

have one main thread, where the main method is invoked) and the two custom-deined ones.

Let’s return to the discussion of the Event Dispatch Thread (EDT). This thread is started in the

background (i.e., next to the main thread) to continually process events: button clicks, mouse clicks,

and so on. Whenever you write code that makes changes to the GUI of a program, all this code

must be executed in this Event Dispatch Thread as well. Updating visible components from other

threads is the source of many common bugs in Java programs that use Swing. Note that this aspect

is not speciic to Swing; the same concept exists in other UI toolkits as well. To see how updating the

UI outside the EDT can cause problems, take a look at the following code:

import javax.swing.DefaultListModel;
import javax.swing.JFrame;
import javax.swing.JList;

public class MultiThreadedFrame extends JFrame {
 public static final int LENGTH = 100;

http:///

516 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 public static final JList<String> COMPONENT = new JList<>();

 public class CountingTask implements Runnable {
 public void run() {
 for (int i = 1; i <= LENGTH; i++) {
 // Add an item
 ((DefaultListModel<String>) COMPONENT.getModel()).clear();
 ((DefaultListModel<String>)
 COMPONENT.getModel()).addElement("At: "+i);
 // Force component repaint
 COMPONENT.repaint();
 COMPONENT.invalidate();
 COMPONENT.repaint();
 // Sleep for a little to give other threads a chance
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }

 public MultiThreadedFrame() {
 DefaultListModel<String> listModel = new DefaultListModel<>();
 COMPONENT.setModel(listModel);
 getContentPane().add(COMPONENT);
 pack();
 setSize(300,500);
 setVisible(true);

 // Increase the number of threads if problem does not appear
 for (int t = 0; t < 16; t++) {
 Thread thread = new Thread(new CountingTask());
 thread.start();
 }
 }

 public static void main(String[] args) {
 new MultiThreadedFrame();
 }
}

When you run this code, you’ll see a number of exceptions appearing in the console. Another unde-
sired aspect of the code is that you’ll (most likely) end up with multiple elements in your JList when
the program stops running, even though you execute the clear() method before adding a new item
in every thread. This is due to the fact that threads can run in parallel, meaning that two threads
can add items right after they have both cleared the list.

NOTE Some Swing components’ methods are called “thread safe.” However,
this behavior has changed between Java versions before, so it is generally a
good idea not to rely on thread-safe components. This also applies to JList.

http:///

Understanding events ❘ 517

You’ve already seen an important rule regarding the EDT, namely that all UI-related code should
be run inside this thread. The way to do so is simple, namely by using the SwingUtilities helper
class, which deines the following methods to help out with threading:

 ➤ invokeLater(Runnable doRun): Executes doRun.run() asynchronously on the event dis-

patching thread.

 ➤ invokeAndWait(Runnable doRun): Executes doRun.run() synchronously on the event dis-

patching thread, meaning that this method will wait until doRun.run() has completed.

 ➤ isEventDispatchThread(): Returns true if the current thread is the event dispatching thread.

In almost all cases, you’ll use the invokeLater method to wrap UI‐affecting code as follows:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 // UI affecting code
 }
});

One particular place where it is important to use this method is in the main method of your pro-

grams, as it is guaranteed there that you will not yet be in the EDT (but instead in the initial main

thread). Using SwingUtilities, you can rewrite the earlier example as follows:

import javax.swing.DefaultListModel;
import javax.swing.JFrame;
import javax.swing.JList;
import javax.swing.SwingUtilities;

public class MultiThreadedFrame extends JFrame {
 public static final int LENGTH = 100;
 public static final JList<String> COMPONENT = new JList<>();

 public class CountingTask implements Runnable {
 public void run() {
 for (int i = 1; i <= LENGTH; i++) {
 // Add an item
 ((DefaultListModel<String>) COMPONENT.getModel()).clear();
 ((DefaultListModel<String>)
 COMPONENT.getModel()).addElement("At: "+i);
 // Force component repaint
 COMPONENT.repaint();
 COMPONENT.invalidate();
 COMPONENT.repaint();
 // Sleep for a little to give other threads a chance
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }

 public MultiThreadedFrame() {

http:///

518 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 DefaultListModel<String> listModel = new DefaultListModel<>();
 COMPONENT.setModel(listModel);
 getContentPane().add(COMPONENT);
 pack();
 setSize(300,500);
 setVisible(true);

 for (int t = 0; t < 16; t++) {
 SwingUtilities.invokeLater(new CountingTask());
 }
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new MultiThreadedFrame(); }
 });
 }
}

The fact that you must ensure all UI updating code is run on the EDT might seem like an annoying
aspect of GUI programming at irst, but there is a silver lining that relates to event listeners. Because

the EDT is responsible for catching user-interface events and also passes these to any event listen-

ers, any code that you execute inside an event listener will be run inside the EDT. This means that

you do not need to use invokeLater, for instance, when running code inside the actionPerformed

method of an ActionListener for a button, which, luckily, will also contain the multitude of UI‐

related code.

However, since this code is executed in the EDT, this means that, while the EDT is busy executing

the event listeners, the event loop will block until all event listeners have inished what they need to

do. Subsequent events will thus need to wait until they are handled, and since this can involve any-

thing from button clicks to window resizes, this can quickly lead to unresponsive, sluggish interfaces

when you stick too much calculation‐heavy code in your event listeners. Again, this is illustrated

with a simple example. Imagine you come up with the following beautiful progress‐tracking inter-

face to wrap around some heavy‐duty code:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JProgressBar;
import javax.swing.SwingUtilities;

public class ProgressTrackingFrame extends JFrame implements ActionListener {
 private boolean isRunning = false;
 private final JProgressBar bar = new JProgressBar(0, 100);
 private final JButton btn = new JButton("Start Calculation");

 public ProgressTrackingFrame() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("Progress Tracker");
 setLayout(new FlowLayout());
 btn.addActionListener(this);

http:///

Understanding events ❘ 519

 add(bar);
 add(btn);
 pack();
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent arg0) {
 if (isRunning) {
 // How to cancel here?
 } else {
 isRunning = true;
 btn.setText("Stop Calculation");
 long total = 1000000000;
 for (long i = 0; i < total; i++) {
 int perc = (int)
 (i * (bar.getMaximum() - bar.getMinimum())
 / total);
 bar.setValue(perc);
 }
 }
 isRunning = false;
 btn.setText("Start Calculation");
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new ProgressTrackingFrame(); }
 });
 }

Try running the program and starting the calculation. Unless you have a very fast machine, the loop
will take some time to inish. Notice how the rest of the UI becomes frozen during the execution of

the action listener. Try resizing the window. You’ll note that this will lead to a garbled result that’s

typical for programs that do not redraw their UI anymore, as shown in Figure 11-21.

figure 11-21

In some cases, Windows will notice that your program is not responding and might attempt to close

it. Just wait a few more seconds, however, and you’ll see that the program suddenly pops into life

again and the event loop catches up to handle the other events. This is because the event listener

includes heavy‐duty code that is run inside the EDT.

Of course, you would like a way to improve things, and if possible, you’d also like to implement a

way to cancel a running calculation.

http:///

520 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

Again, luckily, Swing already provides a mechanism to do this in a fairly simple manner, by
means of the SwingWorker class. This class allows you to construct objects that represent some
kind of background task. Here’s how you can implement it. First of all, deine a new class ield

like so:

private SwingWorker<Boolean, Integer> backgroundTask = null;

You can remove the isRunning ield, as you’ll no longer need it. Next, create a method to construct

a background task for you:

public SwingWorker<Boolean, Integer> makeBackgroundTask(final long total) {

}

This method will construct a new SwingWorker anonymous inner class. You will need to provide

two type parameters to this class. The irst one represents the type of the inal result value (you use a

Boolean here). The second one represents the type of the intermediate result values (Integer is used

here as these will be sent out to update the progress bar):

public SwingWorker<Boolean, Integer> makeBackgroundTask(final long total) {
 SwingWorker<Boolean, Integer> task = new SwingWorker<Boolean, Integer>(){
 @Override
 protected Boolean doInBackground() throws Exception {
 return true;
 }
 };
 return task;
}

The doInBackground method needs to be implemented and has to have your indicated inal result

type as a return type (Boolean). This method contains the work that will be performed in the back-

ground, so ill it up with your loop:

public SwingWorker<Boolean, Integer> makeBackgroundTask(final long total) {
 SwingWorker<Boolean, Integer> task = new SwingWorker<Boolean, Integer>(){
 @Override
 protected Boolean doInBackground() throws Exception {
 btn.setText("Stop Calculation");
 for (long i = 0; i < total; i++) {
 int perc = (int)
 (i * (bar.getMaximum() - bar.getMinimum())
 / total);
 }
 return true;
 }

 };
 return task;
}

Although you could still update the progress bar value inside this method, SwingWorker also pro-

vides a way to work with intermediate values in a better manner, by using its publish method. This

method will queue intermediate results that can then be processed by a process method. You don’t

http:///

Understanding events ❘ 521

need to manually call the latter, as SwingWorker will determine when (based on time and results
gathered) it is a good time to call this method:

public SwingWorker<Boolean, Integer> makeBackgroundTask(final long total) {
 SwingWorker<Boolean, Integer> task = new SwingWorker<Boolean, Integer>(){
 @Override
 protected Boolean doInBackground() throws Exception {
 btn.setText("Stop Calculation");
 for (long i = 0; i < total; i++) {
 int perc = (int)
 (i * (bar.getMaximum() - bar.getMinimum())
 / total);
 publish(perc);
 }
 return true;
 }
 @Override
 protected void process(List<Integer> percs) {
 for (int perc : percs)
 if (bar.getValue() < perc)
 bar.setValue(perc);
 }
 };
 return task;
}

You can also use the isCancelled method to igure out whether your background task was can-

celled from the outside. It is a good idea to check the result of this method as often as possible so

a cancellation request can be dealt with as soon as possible, for instance in the deepest level of a

loop:

public SwingWorker<Boolean, Integer> makeBackgroundTask(final long total) {
 SwingWorker<Boolean, Integer> task = new SwingWorker<Boolean, Integer>(){
 @Override
 protected Boolean doInBackground() throws Exception {
 btn.setText("Stop Calculation");
 for (long i = 0; i < total; i++) {
 if (isCancelled()) {
 bar.setValue(0);
 return false;
 }
 int perc = (int)
 (i * (bar.getMaximum() - bar.getMinimum())
 / total);
 publish(perc);
 }
 return true;
 }
 @Override
 protected void process(List<Integer> percs) {
 for (int perc : percs)
 if (bar.getValue() < perc)
 bar.setValue(perc);
 }

http:///

522 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 };
 return task;
}

Finally, you can also override the done method to update your UI:

public SwingWorker<Boolean, Integer> makeBackgroundTask(final long total) {
 SwingWorker<Boolean, Integer> task = new SwingWorker<Boolean, Integer>(){
 @Override
 protected Boolean doInBackground() throws Exception {
 btn.setText("Stop Calculation");
 for (long i = 0; i < total; i++) {
 if (isCancelled()) {
 bar.setValue(0);
 return false;
 }
 int perc = (int)
 (i * (bar.getMaximum() - bar.getMinimum())
 / total);
 publish(perc);
 }
 return true;
 }
 @Override
 protected void process(List<Integer> percs) {
 for (int perc : percs)
 if (bar.getValue() < perc)
 bar.setValue(perc);
 }
 @Override
 public void done() {
 btn.setText("Start Calculation");
 backgroundTask = null;
 }
 };
 return task;
}

Next, the only thing left to do is to change your original action listener so it now sets up and exe-
cutes your background task, using the execute method. Use the cancel method to send a cancella-
tion request in case the user wants to cancel the calculation. The inal result looks like this:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.List;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JProgressBar;
import javax.swing.SwingUtilities;
import javax.swing.SwingWorker;

public class ProgressTrackingFrame extends JFrame implements ActionListener {
 private final JProgressBar bar = new JProgressBar(0, 100);
 private final JButton btn = new JButton("Start Calculation");

http:///

Understanding events ❘ 523

 private SwingWorker<Boolean, Integer> backgroundTask = null;

 public ProgressTrackingFrame() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("Progress Tracker");
 setLayout(new FlowLayout());
 btn.addActionListener(this);
 add(bar);
 add(btn);
 pack();
 setVisible(true);
 }

 public SwingWorker<Boolean, Integer> makeBackgroundTask(final long total) {
 SwingWorker<Boolean, Integer> task = new SwingWorker<Boolean, Integer>(){
 @Override
 protected Boolean doInBackground() throws Exception {
 btn.setText("Stop Calculation");
 for (long i = 0; i < total; i++) {
 if (isCancelled()) {
 bar.setValue(0);
 return false;
 }
 int perc = (int)
 (i * (bar.getMaximum() - bar.getMinimum())
 / total);
 publish(perc);
 }
 return true;
 }
 @Override
 protected void process(List<Integer> percs) {
 for (int perc : percs)
 if (bar.getValue() < perc)
 bar.setValue(perc);
 }
 @Override
 public void done() {
 btn.setText("Start Calculation");
 backgroundTask = null;
 }
 };
 return task;
 }

 @Override
 public void actionPerformed(ActionEvent arg0) {
 if (backgroundTask == null) {
 backgroundTask = makeBackgroundTask(1000000000);
 backgroundTask.execute();
 } else {
 backgroundTask.cancel(true);
 }

http:///

524 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new ProgressTrackingFrame(); }
 });
 }

Try running the program again and observe what happens. Finally, it is good to know that you can
also call get() and get(long timeout, TimeUnit unit) on a SwingWorker object to block until
the background task has completed and you get the inal result. In most cases, this blocking behav-

ior is not what you want, and it is a better idea to have the done method of the worker call one of

your objects to notify about the completion.

You’ve now seen all the important things you need to know about GUIs in Java. With a complex class

hierarchy, a huge list of components and containers, layout managers that all have different behav-

ior and a plethora of event listeners, building GUIs in Java can appear to be a daunting task at irst.

Don’t be afraid to get started and build some simple interfaces. Check the online documentation and

Eclipse’s helpful autosuggest feature to get to know Swing’s components and utilize them whenever

you can. Exercise is key here, and this chapter has only outlined the basics. The inal chapter in this

book contains many case study examples that will have you building more realistic, complex graphical

user interfaces, utilizing many of the available Swing components. Don’t hesitate to have a look.

closing topics

This chapter closes with some additional topics related to the concept of GUIs.

best practices: Keeping looks and logic separated
A irst topic you’ll read about relates to best practices when writing graphical user interfaces.

Generally speaking, even after gaining knowledge of Object‐Oriented Programming, beginners will

ind it relatively hard to keep domain logic separated from user‐interface concerns. When you ind

yourself making monstrous user interfaces where buttons and text ields keep track of state, you’ll

know it is time for a change.

Ideally, you should be able to perform all your application logic using pure Java objects and without

using any graphical user interface at all. Therefore, it is always a good idea to construct your core

domain concepts irst. Which concepts exist? What data needs to be stored? Which actions can be

undertaken? Afterward, you can start building the GUI around all of this. As a challenge, consider

creating a “console” version for your applications as an alternative to the graphical one. How hard

would it be? Where are the main root issues? Here lies the opportunity for solid refactoring.

The next chapter talks more about patterns, and you will get acquainted with a very helpful pattern

when building GUI‐driven applications: the model‐view‐controller pattern.

Although separating your logic from UI is a must, it is also a good idea to keep your UI as architecturally

sound as possible. Many of the examples you’ve seen in this chapter already relect a natural progress in

UI architecture, starting with sticking everything in a main method (bad) to creating custom UI classes

http:///

Closing topics ❘ 525

(good), from creating huge event listeners in inner classes (bad) to separating them into separate classes
and even into background tasks (good), from trying to make UIs as hierarchically lat as possible and

ighting with layout managers (bad) to accepting the fact that you might want to create another JPanel,

or perhaps a separate custom class extending JPanel and nesting this in a reusable manner (good).

Writing GUIs in Java is by no means easy. It is oftentimes cumbersome, boring even. You want to focus

on the core concepts of your program, and that involves a lot of boilerplate code. However, architectural

decisions you make at the beginning might end up saving you a lot of time and headache later.

let’s draw: deining custom draw behavior
It’s already been stated that Swing components handle all drawing behavior by themselves, which is

why they can look similar on each platform they’re run on. You saw before how to work with differ-

ent look and feels inside Swing, but you might also be interested in knowing whether you can over-

ride or extend rendering behavior of components.

The answer is that indeed, you can. All Swing components (JComponent) come with the following

built‐in methods:

 ➤ public void paint(Graphics g): Paints the component, its border, and its children by

calling these methods:

 ➤ protected void paintComponent(Graphics g)

 ➤ protected void paintBorder(Graphics g)

 ➤ protected void paintChildren(Graphics g)

The Graphics object that’s passed along can be regarded as a general surface area on which Java

can draw, representing the geometric area of the component that will need to be painted.

To show this off, the following Try It Out will lead you through a simple painting application,

which is also a good opportunity to show off a mouse listener and show another helpful component,

the JFileChooser.

try it out Making a paint application with Custom-painted Components

In this Try It Out, you create a simple painting application by overriding the default painting behavior

of a component.

 1. As always, feel free to create a new project in Eclipse when you want to. Create a class called

SimplePaint with the following content as a bare bones starting point:

import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class SimplePaint extends JFrame {
 public SimplePaint() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("Simple Paint");

 pack();

http:///

526 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 setVisible(true);
 }
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new SimplePaint(); }
 });
 }
}

 2. Start out by adding some menu items to your JFrame. In fact, a JFrame comes with built‐in func-

tionality to set up a menu bar. You just need to construct a menu irst:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;

public class SimplePaint extends JFrame implements ActionListener {
 private final String ACTION_NEW = "New Image";
 private final String ACTION_LOAD = "Load Image";
 private final String ACTION_SAVE = "Save Image";

 public SimplePaint() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("Simple Paint");

 initMenu();

 pack();
 setVisible(true);
 }

 private void initMenu() {
 JMenuBar menuBar = new JMenuBar();
 JMenu menu = new JMenu("File");
 JMenuItem mnuNew = new JMenuItem(ACTION_NEW);
 JMenuItem mnuLoad = new JMenuItem(ACTION_LOAD);
 JMenuItem mnuSave = new JMenuItem(ACTION_SAVE);
 mnuNew.setActionCommand(ACTION_NEW);
 mnuLoad.setActionCommand(ACTION_LOAD);
 mnuSave.setActionCommand(ACTION_SAVE);
 mnuNew.addActionListener(this);
 mnuLoad.addActionListener(this);
 mnuSave.addActionListener(this);
 menu.add(mnuNew);
 menu.add(mnuLoad);
 menu.add(mnuSave);
 menuBar.add(menu);
 this.setJMenuBar(menuBar);
 }

http:///

Closing topics ❘ 527

 @Override
 public void actionPerformed(ActionEvent ev) {

 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new SimplePaint(); }
 });
 }
}

 3. Feel free to run the program in between steps and check the result. You should get something like
Figure 11-22.

figure 11-22

Next, create a custom panel, that is, a panel with some custom paint code:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Point;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.util.Collection;
import java.util.HashSet;
import java.util.Set;

import javax.swing.JPanel;

public class SimplePaintPanel extends JPanel {
 private final Set<Point> blackPixels = new HashSet<Point>();
 private final int brushSize;

 private int mouseButtonDown = 0;

http:///

528 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 public SimplePaintPanel() {
 this(5, new HashSet<Point>());
 }

 public SimplePaintPanel(Set<Point> blackPixels) {
 this(5, blackPixels);
 }

 public SimplePaintPanel(int brushSize, Set<Point> blackPixels) {
 this.setPreferredSize(new Dimension(300, 300));
 this.brushSize = brushSize;
 this.blackPixels.addAll(blackPixels);
 final SimplePaintPanel self = this;

 MouseAdapter mouseAdapter = new MouseAdapter() {
 @Override
 public void mouseDragged(MouseEvent ev) {
 if (self.mouseButtonDown == 1)
 self.blackPixels.addAll(getPixelsAround(ev.getPoint()));
 else if (self.mouseButtonDown == 3)
 self.blackPixels.removeAll(getPixelsAround(ev.getPoint()));
 self.invalidate();
 self.repaint();
 }

 @Override
 public void mousePressed(MouseEvent ev) {
 self.mouseButtonDown = ev.getButton();
 }
 };
 this.addMouseMotionListener(mouseAdapter);
 this.addMouseListener(mouseAdapter);

 }

 public void paint(Graphics g) {
 int w = this.getWidth();
 int h = this.getHeight();
 g.setColor(Color.white);
 g.fillRect(0, 0, w, h);
 g.setColor(Color.black);
 for (Point point : blackPixels)
 g.drawRect(point.x, point.y, 1, 1);

 }

 private Collection<? extends Point> getPixelsAround(Point point) {
 Set<Point> points = new HashSet<>();
 for (int x = point.x - brushSize; x < point.x + brushSize; x++)
 for (int y = point.y - brushSize; y < point.y + brushSize; y++)
 points.add(new Point(x, y));
 return points;
 }

 4. Next, add this custom component to your JFrame:

import java.awt.event.ActionEvent;

http:///

Closing topics ❘ 529

import java.awt.event.ActionListener;

import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;

public class SimplePaint extends JFrame implements ActionListener {
 private final String ACTION_NEW = "New Image";
 private final String ACTION_LOAD = "Load Image";
 private final String ACTION_SAVE = "Save Image";

 private final SimplePaintPanel paintPanel = new SimplePaintPanel();

 public SimplePaint() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("Simple Paint");

 initMenu();
 this.getContentPane().add(paintPanel);

 pack();
 setVisible(true);
 }

 private void initMenu() {
 JMenuBar menuBar = new JMenuBar();
 JMenu menu = new JMenu("File");
 JMenuItem mnuNew = new JMenuItem(ACTION_NEW);
 JMenuItem mnuLoad = new JMenuItem(ACTION_LOAD);
 JMenuItem mnuSave = new JMenuItem(ACTION_SAVE);
 mnuNew.setActionCommand(ACTION_NEW);
 mnuLoad.setActionCommand(ACTION_LOAD);
 mnuSave.setActionCommand(ACTION_SAVE);
 mnuNew.addActionListener(this);
 mnuLoad.addActionListener(this);
 mnuSave.addActionListener(this);
 menu.add(mnuNew);
 menu.add(mnuLoad);
 menu.add(mnuSave);
 menuBar.add(menu);
 this.setJMenuBar(menuBar);
 }

 @Override
 public void actionPerformed(ActionEvent ev) {

 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new SimplePaint(); }
 });
 }
}

http:///

530 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 5. Try running the program again. Try dragging the mouse using the left and right mouse buttons.
Although the implementation is horribly ineficient, the concept works, as shown in Figure 11-23.

figure 11-23

 6. Now continue by making the menu work. To do so, irst make some modiications to your

SimplePaintPanel, adding/changing the following methods:

// Inside the mouseAdapter:
@Override
public void mouseDragged(MouseEvent ev) {
 if (mouseButtonDown == 1)
 addPixels(getPixelsAround(ev.getPoint()));
 else if (mouseButtonDown == 3)
 removePixels(getPixelsAround(ev.getPoint()));
}

// Add the following methods:
public void clear() {
 this.blackPixels.clear();
 this.invalidate();
 this.repaint();
}

public void addPixels(Collection<? extends Point> blackPixels) {
 this.blackPixels.addAll(blackPixels);
 this.invalidate();
 this.repaint();
}

public void removePixels(Collection<? extends Point> blackPixels) {

http:///

Closing topics ❘ 531

 this.blackPixels.removeAll(blackPixels);
 this.invalidate();
 this.repaint();
}

public boolean isPixel(Point blackPixel) {
 return this.blackPixels.contains(blackPixel);
}

// Change this method:
private Collection<? extends Point> getPixelsAround(Point point) {
 Set<Point> points = new HashSet<>();
 for (int x = point.x - brushSize; x < point.x + brushSize; x++)
 for (int y = point.y - brushSize; y < point.y + brushSize; y++)
 points.add(new Point(x, y));
 return points;
}

 7. Making the New menu work then becomes a simple manner of illing up the actionPerformed

method in the SimplePaint class like so:

@Override
public void actionPerformed(ActionEvent ev) {
 switch (ev.getActionCommand()) {
 case ACTION_NEW:
 paintPanel.clear();
 break;
 }
}

 8. Next up is the ability to load images. Some tricks are used to convert everything to black and

white, but you could theoretically show the image as is if you want to (try this out later by yourself

if you want to take up the challenge):

@Override
public void actionPerformed(ActionEvent ev) {
 switch (ev.getActionCommand()) {
 case ACTION_NEW:
 paintPanel.clear();
 break;
 case ACTION_LOAD:
 doLoadImage();
 break;
 }
}

private void doLoadImage() {
 JFileChooser fileChooser = new JFileChooser();
 fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
 int result = fileChooser.showOpenDialog(this);
 if (result != JFileChooser.APPROVE_OPTION)
 return;
 BufferedImage image;
 File openFile = fileChooser.getSelectedFile();

http:///

532 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 try (FileInputStream fis = new FileInputStream(openFile)) {
 image = ImageIO.read(fis);
 } catch (IOException e) {
 return;
 }
 if (image == null)
 return;
 paintPanel.clear();
 Set<Point> blackPixels = new HashSet<Point>();
 for (int x = 0; x < image.getWidth(); x++) {
 for (int y = 0; y < image.getHeight(); y++) {
 Color c = new Color(image.getRGB(x, y));
 if ((c.getBlue() < 128 || c.getRed() < 128 || c.getGreen() < 128)
 && c.getAlpha() == 255) {
 blackPixels.add(new Point(x, y));
 }
 }
 }
 paintPanel.addPixels(blackPixels);
}

 9. Try loading the project again and loading an image, as shown in Figure 11-24.

figure 11-24

 10. Finally, you can add the ability to save images:

@Override
public void actionPerformed(ActionEvent ev) {
 switch (ev.getActionCommand()) {
 case ACTION_NEW:
 paintPanel.clear();

http:///

Closing topics ❘ 533

 break;
 case ACTION_LOAD:
 doLoadImage();
 break;
 case ACTION_SAVE:
 doSaveImage();
 break;
 }
}

private void doSaveImage() {
 JFileChooser fileChooser = new JFileChooser();
 fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
 int result = fileChooser.showSaveDialog(this);
 if (result != JFileChooser.APPROVE_OPTION)
 return;
 File saveFile = fileChooser.getSelectedFile();
 if (!saveFile.getAbsolutePath().toLowerCase().endsWith(".png"))
 saveFile = new File(saveFile.getAbsolutePath() + ".png");
 BufferedImage image = new BufferedImage(
 paintPanel.getSize().width,
 paintPanel.getSize().height,
 BufferedImage.TYPE_INT_RGB);
 for (int x = 0; x < image.getWidth(); x++) {
 for (int y = 0; y < image.getHeight(); y++) {
 image.setRGB(x, y, Color.white.getRGB());
 if (paintPanel.isPixel(new Point(x, y))) {
 image.setRGB(x, y, Color.black.getRGB());
 }
 }
 }
 try {
 ImageIO.write(image, "png", saveFile);
 } catch (IOException e) {
 return;
 }
}

This approach works just as well, as shown in Figure 11-25.

Here is the full code for the two classes once more for convenience:

import java.awt.Color;
import java.awt.Point;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.HashSet;
import java.util.Set;
import javax.imageio.ImageIO;
import javax.swing.JFileChooser;
import javax.swing.JFrame;

http:///

534 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.SwingUtilities;

public class SimplePaint extends JFrame implements ActionListener {
 private final String ACTION_NEW = "New Image";
 private final String ACTION_LOAD = "Load Image";
 private final String ACTION_SAVE = "Save Image";

 private final SimplePaintPanel paintPanel = new SimplePaintPanel();

 public SimplePaint() {
 super();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("Simple Paint");

 initMenu();
 this.getContentPane().add(paintPanel);

 pack();
 setVisible(true);
 }

 private void initMenu() {
 JMenuBar menuBar = new JMenuBar();
 JMenu menu = new JMenu("File");
 JMenuItem mnuNew = new JMenuItem(ACTION_NEW);
 JMenuItem mnuLoad = new JMenuItem(ACTION_LOAD);
 JMenuItem mnuSave = new JMenuItem(ACTION_SAVE);
 mnuNew.setActionCommand(ACTION_NEW);
 mnuLoad.setActionCommand(ACTION_LOAD);
 mnuSave.setActionCommand(ACTION_SAVE);
 mnuNew.addActionListener(this);
 mnuLoad.addActionListener(this);
 mnuSave.addActionListener(this);
 menu.add(mnuNew);
 menu.add(mnuLoad);
 menu.add(mnuSave);
 menuBar.add(menu);
 this.setJMenuBar(menuBar);
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 switch (ev.getActionCommand()) {
 case ACTION_NEW:
 paintPanel.clear();
 break;
 case ACTION_LOAD:
 doLoadImage();
 break;
 case ACTION_SAVE:
 doSaveImage();
 break;
 }

http:///

Closing topics ❘ 535

 }

 private void doSaveImage() {
 JFileChooser fileChooser = new JFileChooser();
 fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
 int result = fileChooser.showSaveDialog(this);
 if (result != JFileChooser.APPROVE_OPTION)
 return;
 File saveFile = fileChooser.getSelectedFile();
 if (!saveFile.getAbsolutePath().toLowerCase().endsWith(".png"))
 saveFile = new File(saveFile.getAbsolutePath() + ".png");
 BufferedImage image = new BufferedImage(
 paintPanel.getSize().width,
 paintPanel.getSize().height,
 BufferedImage.TYPE_INT_RGB);
 for (int x = 0; x < image.getWidth(); x++) {
 for (int y = 0; y < image.getHeight(); y++) {
 image.setRGB(x, y, Color.white.getRGB());
 if (paintPanel.isPixel(new Point(x, y))) {
 image.setRGB(x, y, Color.black.getRGB());
 }
 }
 }
 try {
 ImageIO.write(image, "png", saveFile);
 } catch (IOException e) {
 return;
 }
 }

 private void doLoadImage() {
 JFileChooser fileChooser = new JFileChooser();
 fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
 int result = fileChooser.showOpenDialog(this);
 if (result != JFileChooser.APPROVE_OPTION)
 return;
 BufferedImage image;
 File openFile = fileChooser.getSelectedFile();
 try (FileInputStream fis = new FileInputStream(openFile)) {
 image = ImageIO.read(fis);
 } catch (IOException e) {
 return;
 }
 if (image == null)
 return;
 paintPanel.clear();
 Set<Point> blackPixels = new HashSet<Point>();
 for (int x = 0; x < image.getWidth(); x++) {
 for (int y = 0; y < image.getHeight(); y++) {
 Color c = new Color(image.getRGB(x, y));
 if ((c.getBlue() < 128 || c.getRed() < 128 || c.getGreen() < 128)
 && c.getAlpha() == 255) {
 blackPixels.add(new Point(x, y));
 }
 }
 }

http:///

536 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 paintPanel.addPixels(blackPixels);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new SimplePaint(); }
 });
 }
}

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Point;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.util.Collection;
import java.util.HashSet;
import java.util.Set;
import javax.swing.JPanel;

public class SimplePaintPanel extends JPanel {
 private final Set<Point> blackPixels = new HashSet<Point>();
 private final int brushSize;

 private int mouseButtonDown = 0;

 public SimplePaintPanel() {
 this(5, new HashSet<Point>());
 }

 public SimplePaintPanel(Set<Point> blackPixels) {
 this(5, blackPixels);
 }

 public SimplePaintPanel(int brushSize, Set<Point> blackPixels) {
 this.setPreferredSize(new Dimension(300, 300));
 this.brushSize = brushSize;
 this.blackPixels.addAll(blackPixels);
 final SimplePaintPanel self = this;

 MouseAdapter mouseAdapter = new MouseAdapter() {
 @Override
 public void mouseDragged(MouseEvent ev) {
 if (mouseButtonDown == 1)
 addPixels(getPixelsAround(ev.getPoint()));
 else if (mouseButtonDown == 3)
 removePixels(getPixelsAround(ev.getPoint()));
 }

 @Override
 public void mousePressed(MouseEvent ev) {
 self.mouseButtonDown = ev.getButton();
 }
 };
 this.addMouseMotionListener(mouseAdapter);

http:///

Closing topics ❘ 537

 this.addMouseListener(mouseAdapter);

 }

 public void paint(Graphics g) {
 int w = this.getWidth();
 int h = this.getHeight();
 g.setColor(Color.white);
 g.fillRect(0, 0, w, h);
 g.setColor(Color.black);
 for (Point point : blackPixels)
 g.drawRect(point.x, point.y, 1, 1);

 }

 public void clear() {
 this.blackPixels.clear();
 this.invalidate();
 this.repaint();
 }

 public void addPixels(Collection<? extends Point> blackPixels) {
 this.blackPixels.addAll(blackPixels);
 this.invalidate();
 this.repaint();
 }

 public void removePixels(Collection<? extends Point> blackPixels) {
 this.blackPixels.removeAll(blackPixels);
 this.invalidate();
 this.repaint();
 }

 public boolean isPixel(Point blackPixel) {
 return this.blackPixels.contains(blackPixel);
 }

 private Collection<? extends Point> getPixelsAround(Point point) {
 Set<Point> points = new HashSet<>();
 for (int x = point.x - brushSize; x < point.x + brushSize; x++)
 for (int y = point.y - brushSize; y < point.y + brushSize; y++)
 points.add(new Point(x, y));
 return points;
 }

How It Works

This is how it works:

 1. There is a lot going on in this small project. Start by taking a look at the SimplePaint class. The
JFrame is set up just like before; a SimplePaintPanel component is added to the content pane,
and the initMenu() is called to initialize the menu bar.

 2. The initMenu() shows you how you can set up menus with Swing. Note that JFrame has a dedi-
cated area to place menu bars, which you can set and get using the setJMenuBar and getJMenuBar
methods. Here, a single File menu entry was created, and three menu items were placed under it.

http:///

538 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 3. You will have noted that it is possible to assign action listeners to menu items. In this project, the
SimplePaint class acts as a listener for all menu items as well. The actionPerformed method
then determines which method to call based on the action command.

 4. The New menu item performs a simple operation and just calls the clear method on the paint
panel.

 5. Loading an image is a bit more convoluted. First, a JFileChooser is constructed (you could also
make this a class ield; go ahead and try this if you want) and conigured so users can only select

NOTE The Swing menu components are used here. Menu, MenuBar, MenuItem,
setMenuBar, and getMenuBar also exist, but these correspond to the AWT
components, which should be considered outdated. The naming is somewhat
confusing, but that’s the way it is.

figure 11-25

http:///

Closing topics ❘ 539

iles. Next, the showOpenDialog method is called to display an Open File dialog. JFileChooser

also has a lot of additional options you can conigure, such as iltering which iles to show. The

result of this method is an integer determining whether the user selected a ile or cancelled the

dialog, or an error occurred. Next, the getSelectedFile method retrieves your ile. Note that

JFileChooser still utilizes the legacy File class. Next, a built‐in utility class called ImageIO does

the heavy lifting regarding reading image iles. This class reads in common ile formats, such as

PNG, JPG, BMP, and GIF iles, and returns a BufferedImage object to store the image data. Next,

it iterates over all pixels in the image and applies a simple trick to determine whether the pixel

color should be converted to a black pixel. Dark colors are converted to black, whereas light colors

are not; that is what the if ((c.getBlue() < 128 || c.getRed() < 128 || c.getGreen()

< 128) && c.getAlpha() == 255) line does. Once all the black pixels are gathered, the

paintPanel object is instructed to add them.

 6. The save method works similarly. Here, a fresh image is constructed with the width and height

equal to the current width and height of the paint panel. Next, it loops over each pixel again and

sets them to black when necessary. Note that some additional logic is applied to make the ilename

selected with showSaveDialog end in .png, as there is no way to force the JFileChooser to do

this for you. (This is because ile extensions are just a convention to tell the operating system what

the default program should be to open iles ending in a particular sufix. There is nothing prevent-

ing you from saving a PNG image as image.txt and opening it with an image editor afterward.)

 7. Now take a look at the SimplePaintPanel class. This class extends JPanel and implements a

mouse and mouse motion event listener by using the MouseAdapter class.

 8. The mouse‐related methods that are implemented are mouseDragged and mousePressed. The lat-

ter determines which button (left or right) is being pressed. When the mouse is dragged, it looks

at the mouse button currently being pressed and determines whether black pixels should be added

or removed. You might wonder why you can’t just use ev.getButton() in the mouseDragged

method to determine which mouse button is being pressed. The reason for this is that this will

always return 0, as getButton() only returns the button number when the state has changed.

Since you keep holding down the mouse button whilst dragging, no button state is changing. You

can, however, use SwingUtilities.isLeftMouseButton(ev) instead, which will work, but here

things were done manually to show off how the mouse event listener works as well.

 9. The second interesting aspect to note is the custom paint method for this class. First, the whole panel

surface is illed out with white, after which a pixel is drawn for each point in the blackPixels set.

 10. Finally, it is important to know that you should tell Java when “my surface has changed; you

should draw me again.” This is what is done with the invalidate method. A repaint call is

placed right after this to instruct Java to redraw the component (which will have Java make a call

to the paint method).

 11. You will notice this yourself when drawing quickly; the drawing code is horribly ineficient. There

are many reasons for this. First, working with a set of pixels is not ideal, especially not for larger

images. Second, Swing components were never really designed to perform high‐speed drawing

updates, which is what is done here while dragging. In a real painting application, you need to look

for better-suited drawing components (those exist). That said, this example helps to explain various

concepts, and custom drawing code can still be helpful whenever you know components will not

need to be redrawn continuously.

http:///

540 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

If you want to try to improve this simple painting application (this is a great starter project with the
right amount of challenges), here are some suggestions:

 ➤ Try using background tasks. Perhaps you don’t need to call for a repaint every time the mouse is
moved while dragged; perhaps you can postpone the redraw until the movement has settled down?

 ➤ Similarly, instead of adding a set of pixels based on every point the mouse touches while dragging,
you can also poll less aggressively and draw line segments between two points the mouse has been.
This solves the problem of gaps while drawing quickly, but makes it harder to draw smooth curves
when moving quickly.

 ➤ Try exploring the java.awt.Canvas component. This component has been speciically designed

for custom free‐form drawing.

 ➤ Finally, you can add a panel with some buttons, such as to select colors and so on. In this case,

you might want to drop the set of black pixels and work directly on and with the painting

surface. You can also try using a BufferedImage to store your image data directly (and more

eficiently).

visual gui designers: making life easy?
Earlier in this chapter, you learned that the GroupLayout and SpringLayout layout managers were

originally designed to be used in combination with visual GUI designers. So what are these exactly?

Eclipse, by default, does not come with a visual GUI designer, but you can install one by selecting

Install New Software from the Help menu and searching for the WindowBuilder packages, as shown

in Figure 11-26.

NOTE To make WindowBuilder understand Swing components, you will also
need to search for the “Swing Designer” packages and install these as well.

Once the new package is installed (and you restart Eclipse), try creating a new class. Right‐click it

in the Package Explorer and select Open With WindowBuilder Editor. From this editor, you can

switch between a Source and Design tab, as shown in Figure 11-27.

When you switch to the Design tab, WindowBuilder will complain about the fact that it cannot ig-

ure out that this is a GUI class. No worries; just modify the class to make it a JFrame:

import javax.swing.JFrame;

public class WindowBuilderExample extends JFrame {
 public WindowBuilderExample() {
 }
}

Open the Design tab once more (select Reparse when nothing appears). You will be presented with

the screen shown in Figure 11-28.

http:///

Closing topics ❘ 541

figure 11-26

figure 11-27

Here, you can drag and drop components and layouts to your JFrame. Figure 11-29 shows an example
after ive minutes of tinkering.

Note the row of buttons at the top of the designer view, including the one that allows you to quickly

test a preview of your component in Figure 11-30.

http:///

542 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

figure 11-28

figure 11-29

figure 11-30

http:///

Closing topics ❘ 543

Once you’re done prototyping, you can switch back to the source view and check out the generated
code:

import javax.swing.JFrame;
import javax.swing.GroupLayout;
import javax.swing.GroupLayout.Alignment;
import javax.swing.JLabel;
import java.awt.Font;
import javax.swing.LayoutStyle.ComponentPlacement;
import javax.swing.JTextField;
import javax.swing.JComboBox;
import javax.swing.DefaultComboBoxModel;
import javax.swing.JCheckBox;
import javax.swing.JButton;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class WindowBuilderExample extends JFrame {
 private JTextField textField;
 private JTextField textField_1;
 public WindowBuilderExample() {

 JLabel lblAddEmployee = new JLabel("Add Employee");
 lblAddEmployee.setFont(new Font("Tahoma", Font.BOLD, 22));

 JLabel lblUsername = new JLabel("Username:");

 textField = new JTextField();
 textField.setColumns(10);

 JLabel lblPassword = new JLabel("Password:");

 textField_1 = new JTextField();
 textField_1.setColumns(10);

 JLabel lblRole = new JLabel("Role:");

 JComboBox comboBox = new JComboBox();
 comboBox.setModel(new DefaultComboBoxModel(
 new String[] {"Intern", "Employee", "Manager"}));

 JCheckBox chckbxHasUnlimitedCoffee =
 new JCheckBox("Has unlimited coffee access");

 JButton btnCancel = new JButton("Cancel");

 JButton btnAdd = new JButton("Add");
 btnAdd.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {
 }
 });
 GroupLayout groupLayout = new GroupLayout(getContentPane());
 groupLayout.setHorizontalGroup(
 groupLayout.createParallelGroup(Alignment.LEADING)
 .addGroup(groupLayout.createSequentialGroup()
 .addGroup(groupLayout.createParallelGroup(Alignment.LEADING)

http:///

544 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 .addComponent(lblAddEmployee)
 .addGroup(groupLayout.createSequentialGroup()
 .addGroup(groupLayout.createParallelGroup(Alignment.LEADING)
 .addComponent(lblUsername)
 .addComponent(lblPassword)
 .addComponent(lblRole))
 .addGap(54)
 .addGroup(groupLayout.createParallelGroup(Alignment.LEADING)
 .addComponent(comboBox, GroupLayout.PREFERRED_SIZE,
 GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .addComponent(textField, GroupLayout.DEFAULT_SIZE,
 229, Short.MAX_VALUE)
 .addComponent(textField_1, GroupLayout.DEFAULT_SIZE,
 229, Short.MAX_VALUE)))
 .addComponent(chckbxHasUnlimitedCoffee)
 .addGroup(groupLayout.createSequentialGroup()
 .addContainerGap()
 .addComponent(btnCancel)
 .addPreferredGap(ComponentPlacement.RELATED)
 .addComponent(btnAdd)))
 .addContainerGap())
);
 groupLayout.setVerticalGroup(
 groupLayout.createParallelGroup(Alignment.LEADING)
 .addGroup(groupLayout.createSequentialGroup()
 .addComponent(lblAddEmployee)
 .addPreferredGap(ComponentPlacement.RELATED)
 .addGroup(groupLayout.createParallelGroup(Alignment.BASELINE)
 .addComponent(lblUsername)
 .addComponent(textField, GroupLayout.PREFERRED_SIZE,
 GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(ComponentPlacement.RELATED)
 .addGroup(groupLayout.createParallelGroup(Alignment.BASELINE)
 .addComponent(lblPassword)
 .addComponent(textField_1, GroupLayout.PREFERRED_SIZE,
 GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(ComponentPlacement.RELATED)
 .addGroup(groupLayout.createParallelGroup(Alignment.BASELINE)
 .addComponent(lblRole)
 .addComponent(comboBox, GroupLayout.PREFERRED_SIZE,
 GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(ComponentPlacement.RELATED)
 .addComponent(chckbxHasUnlimitedCoffee)
 .addPreferredGap(ComponentPlacement.RELATED, 49, Short.MAX_VALUE)
 .addGroup(groupLayout.createParallelGroup(Alignment.BASELINE)
 .addComponent(btnCancel)
 .addComponent(btnAdd))
 .addContainerGap())
);
 getContentPane().setLayout(groupLayout);
 }
}

Well, the result certainly looks complicated. WindowBuilder will do its best to anticipate your further
code and will make components such as textields and class ields so you can access them from other

http:///

Closing topics ❘ 545

methods and objects when needed (to get and set text). By default, listeners are inlined with anony-
mous inner classes, but you can change this to real listener objects as well. Be careful when changing
around too many things, though, as WindowBuilder might then not be able to convert your changes
to a GUI layout it understands. This immediately illustrates both the advantages and disadvantages of
visual GUI designers. They provide a great, easy method to quickly prototype a GUI (image building
the GUI above by hand), but can lose their head once you start making too many custom changes.

In general, especially when you’re starting out, you are advised not to fall into the luring trap of visual
designers promising rapid development. If you can construct your GUI with some nimble nested com-
ponents and simple layout managers, then by all means go ahead. If you do need to build complex
forms and don’t want to waste time laying out everything by hand, WindowBuilder provides a great
alternative. The designer is also a helpful way to get acquainted quickly with unfamiliar components.

Finally, it is worth noting that you can also download other plug‐ins to make WindowBuilder aware

of GUI toolkits other than AWT/Swing, such as SWT. Other IDEs (Netbeans especially) also come

with great visual designers, and there are some commercial ones as well (Jvider, JFormDesigner, and

others).

Javafx: the road ahead?
Swing has been around for a long time, and although the toolkit is immensely robust, it is starting to

show its age. You have seen this already when talking about custom painting, or when taking a look

at some of the . . . less nice‐looking look and feels. With high‐resolution retina displays, smartphones,

tablets, rich Internet applications, and hardware‐accelerated desktop compositors, the Java commu-

nity started to desire a more modern UI toolkit. JavaFX was kickstarted to answer this need, and the

UI toolkit has been around since 2008. With the release of Java 8, JavaFX became an integral part of

the JRE (and JDK), so that the latest version of JavaFX went from 2.2 to simply JavaFX 8.

Sadly, this beginner book can’t go into depth on all aspects of JavaFX, but when you are familiar with

Swing, switching to JavaFX, should you want to, doesn’t pose too many hurdles. Answering the ques-

tion whether you should use JavaFX is not so straightforward. If you’re itching to use the latest and

greatest, then by all means go ahead. Keep in mind, however, that the community surrounding JavaFX

is still young, so it will be much easier to ind Swing‐related libraries, support, and help when you need

it. Finally, the multitude of GUIs in Java were built and are still being built with Swing, so if you’re

looking to apply your skills in a real‐life setting, you still need to be acquainted with Swing.

The chapter concludes with two example projects built with JavaFX. In the irst example, you’ll

learn how to build the BMI calculator again. If you’re following along, you can just copy the old

BMICalculator class and throw out anything that has to do with AWT or Swing. You’ll also see a

few things commented out so you don’t forget to deal with them later:

public class BMICalculatorFX {

 //private final JTextField txtMass = makePrettyTextField();
 //private final JTextField txtHeight = makePrettyTextField();
 //private final JButton btnCalc = makePrettyButton("Calculate BMI");

 public BMICalculatorFX() {
 /*
 btnCalc.addActionListener(new ActionListener() {

http:///

546 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 @Override
 public void actionPerformed(ActionEvent arg0) {
 double mass;
 double height;
 try {
 mass = Double.parseDouble(txtMass.getText());
 height = Double.parseDouble(txtHeight.getText());
 } catch (NumberFormatException e) {
 JOptionPane.showMessageDialog(self,
 "Please enter a valid number for mass and height.",
 "Input error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 double result = calculateBMI(mass, height);
 JOptionPane.showMessageDialog(self,
 "Your BMI is: " + (Math.round(result*100.0)/100.0),
 "Your BMI result",
 JOptionPane.PLAIN_MESSAGE);
 }
 });
 */
 }

 protected double calculateBMI(double mass, double height) {
 return mass / Math.pow(height/100.0, 2.0);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() { new BMICalculatorFX(); }
 });
 }
}

The irst thing to do is to igure out a way to show a simple window using JavaFX. In JavaFX, the

main actor is called an application, and it can manage and show various stages. For this simple

JavaFX application, this leads to the following:

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class BMICalculatorFX extends Application {

 //private final JTextField txtMass = makePrettyTextField();
 //private final JTextField txtHeight = makePrettyTextField();
 //private final JButton btnCalc = makePrettyButton("Calculate BMI");

 public BMICalculatorFX() {
 /*
 btnCalc.addActionListener(new ActionListener() {
 @Override

http:///

Closing topics ❘ 547

 public void actionPerformed(ActionEvent arg0) {
 double mass;
 double height;
 try {
 mass = Double.parseDouble(txtMass.getText());
 height = Double.parseDouble(txtHeight.getText());
 } catch (NumberFormatException e) {
 JOptionPane.showMessageDialog(self,
 "Please enter a valid number for mass and height.",
 "Input error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 double result = calculateBMI(mass, height);
 JOptionPane.showMessageDialog(self,
 "Your BMI is: " + (Math.round(result*100.0)/100.0),
 "Your BMI result",
 JOptionPane.PLAIN_MESSAGE);
 }
 });
 */
 }

 @Override
 public void start(Stage stage) throws Exception {
 Scene scene = new Scene(new Group());
 stage.setTitle("JavaFX BMI Calculator");
 stage.setScene(scene);
 stage.sizeToScene();
 stage.show();
 }

 protected double calculateBMI(double mass, double height) {
 return mass / Math.pow(height/100.0, 2.0);
 }

 public static void main(String[] args) {
 Application.launch(args);
 }
}

Note that Eclipse will complain about your JavaFX imports. The reason for this is that they are only part
of Oracle’s JRE and other Java implementations might not support this. To solve this warning, right‐click

your project in the Package Explorer, select Build Path followed by Conigure Build Path. In the window

that opens, navigate to the Libraries tab and expand the entry for JRE System Library. Select Access Rules

and click Edit. Next, add an access rule to make javafx/** accessible, as illustrated in Figure 11-31.

Press OK. Your build path window should now look like Figure 11-32.

Press OK again. Your project will recompile and the errors should disappear.

You can try running the project now. A window will appear, but it seems to contain absolutely noth-

ing, which is not surprising seeing that you set up an empty scene for the stage:

Scene scene = new Scene(new Group());

http:///

548 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

Now you can ill this scene with some actors. Just as with Swing, JavaFX also has several layout

managers you can use. A simple VBox layout is used here:

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class BMICalculatorFX extends Application {

 private final TextField txtMass = new TextField();
 private final TextField txtHeight = new TextField();
 private final Button btnCalc = new Button("Calculate BMI");

 public BMICalculatorFX() {
 /*
 btnCalc.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent arg0) {

figure 11-31

http:///

Closing topics ❘ 549

 double mass;
 double height;
 try {
 mass = Double.parseDouble(txtMass.getText());
 height = Double.parseDouble(txtHeight.getText());
 } catch (NumberFormatException e) {
 JOptionPane.showMessageDialog(self,
 "Please enter a valid number for mass and height.",
 "Input error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 double result = calculateBMI(mass, height);
 JOptionPane.showMessageDialog(self,
 "Your BMI is: " + (Math.round(result*100.0)/100.0),
 "Your BMI result",
 JOptionPane.PLAIN_MESSAGE);
 }
 });
 */
 }

 @Override
 public void start(Stage stage) throws Exception {
 VBox vbox = new VBox(10);

 Label lblTitle = new Label("BMI Calculator");
 lblTitle.setFont(Font.font(18));
 vbox.getChildren().add(lblTitle);

 vbox.getChildren().add(new Label("Your mass (kg):"));
 vbox.getChildren().add(txtMass);

 vbox.getChildren().add(new Label("Your height (cm):"));
 vbox.getChildren().add(txtHeight);

 vbox.getChildren().add(btnCalc);

 Scene scene = new Scene(new Group(vbox));

 stage.setTitle("JavaFX BMI Calculator");
 stage.setScene(scene);
 stage.sizeToScene();
 stage.show();
 }

 protected double calculateBMI(double mass, double height) {
 return mass / Math.pow(height/100.0, 2.0);
 }

 public static void main(String[] args) {
 Application.launch(args);
 }
}

http:///

550 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

figure 11-33

figure 11-32

You’ll notice that the basic concepts are not so different from Swing. Running your project now pro-
vides the beautifully crafted window shown in Figure 11-33.

http:///

Closing topics ❘ 551

Next, you’ll need to add an action handler to the button. Again, the basic concepts are the same—
you need to catch interesting UI events and respond to them:

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.stage.Stage;
import javafx.geometry.Pos;
import javafx.scene.layout.HBox;
import javafx.stage.Modality;
import javafx.stage.StageStyle;

public class BMICalculatorFX extends Application {

 private Stage stage;
 private final TextField txtMass = new TextField();
 private final TextField txtHeight = new TextField();
 private final Button btnCalc = new Button("Calculate BMI");

 @Override
 public void start(Stage stage) throws Exception {
 this.stage = stage;

 VBox vbox = new VBox(10);

 Label lblTitle = new Label("BMI Calculator");
 lblTitle.setFont(Font.font(18));
 vbox.getChildren().add(lblTitle);

 vbox.getChildren().add(new Label("Your mass (kg):"));
 vbox.getChildren().add(txtMass);

 vbox.getChildren().add(new Label("Your height (cm):"));
 vbox.getChildren().add(txtHeight);

 vbox.getChildren().add(btnCalc);

 btnCalc.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent ev) {
 double mass;
 double height;
 try {
 mass = Double.parseDouble(txtMass.getText());
 height = Double.parseDouble(txtHeight.getText());
 } catch (NumberFormatException e) {
 showMessage("Check your input.", "Error in number input");

http:///

552 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 return;
 }
 double result = calculateBMI(mass, height);
 showMessage("Your BMI is: " +
 (Math.round(result*100.0)/100.0), "Your BMI result");
 }
 });

 Scene scene = new Scene(new Group(vbox));
 stage.setTitle("JavaFX BMI Calculator");
 stage.setScene(scene);
 stage.sizeToScene();
 stage.show();
 }

 protected double calculateBMI(double mass, double height) {
 return mass / Math.pow(height/100.0, 2.0);
 }

 public static void main(String[] args) {
 Application.launch(args);
 }

 public void showMessage(final String message, final String title) {
 final Stage dialog = new Stage(StageStyle.UTILITY);
 dialog.setTitle(title);
 dialog.setResizable(false);
 dialog.initModality(Modality.WINDOW_MODAL);
 dialog.initOwner(this.stage);

 VBox vbox = new VBox(2);
 HBox pane = new HBox(10);

 dialog.setScene(new Scene(vbox));
 vbox.setAlignment(Pos.CENTER);

 vbox.getChildren().add(pane);
 pane.getChildren().add(new Label(message));
 Button btn = new Button("OK");
 btn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 dialog.close();
 }
 });
 pane.getChildren().add(btn);
 dialog.showAndWait();
 }
}

Note that JavaFX does not provide a built‐in method to show dialogs (this might be included in

future Java updates, though). Here, a simple showMessage method was added that constructs a new

stage window to show a message with an OK button. The end result looks like Figure 11-34.

http:///

Closing topics ❘ 553

figure 11-34

As of now, you might appreciate the cleaner coding style and look of JavaFX, but still wonder what
the big deal is. Earlier, you read that JavaFX hardware accelerated graphics to allow for more spec-
tacular graphical applications as well. The following and inal example (adapted from an Oracle

tutorial) shows this in action:

import static java.lang.Math.random;

import javafx.animation.Animation;
import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.effect.BlendMode;
import javafx.scene.effect.BoxBlur;
import javafx.scene.paint.Color;
import javafx.scene.paint.CycleMethod;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.scene.shape.StrokeType;
import javafx.stage.Stage;
import javafx.util.Duration;

public class ScreenSaver extends Application {

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 Group root = new Group();
 Scene scene = new Scene(root, 800, 600, Color.WHITE);
 primaryStage.setScene(scene);

http:///

554 ❘ Chapter 11 deSIGnInG GrAPhIcAl InterFAceS

 Group circles = new Group();
 for (int i = 0; i < 500; i++) {
 Circle circle = new Circle(30, Color.web("black", 0.10));
 circle.setStrokeType(StrokeType.OUTSIDE);
 circle.setStroke(Color.web("black", 0.15));
 circle.setStrokeWidth(2);
 circles.getChildren().add(circle);
 }

 Rectangle colors = new Rectangle(scene.getWidth(), scene.getHeight(),
 new LinearGradient(0f, 1f, 1f, 0f, true, CycleMethod.REPEAT,
 new Stop[]{
 new Stop(0, Color.web("#f8bd55")),
 new Stop(0.14, Color.web("#c0fe56")),
 new Stop(0.28, Color.web("#5dfbc1")),
 new Stop(0.43, Color.web("#64c2f8")),
 new Stop(0.57, Color.web("#be4af7")),
 new Stop(0.71, Color.web("#ed5fc2")),
 new Stop(0.85, Color.web("#ef504c")),
 new Stop(1, Color.web("#f2660f"))}
));
 colors.widthProperty().bind(scene.widthProperty());
 colors.heightProperty().bind(scene.heightProperty());
 Group blendModeGroup = new Group(
 new Group(
 new Rectangle(scene.getWidth(), scene.getHeight(),
 Color.WHITE), circles), colors);
 colors.setBlendMode(BlendMode.OVERLAY);
 root.getChildren().add(blendModeGroup);
 circles.setEffect(new BoxBlur(10, 10, 3));
 Timeline timeline = new Timeline();
 for (Node circle : circles.getChildren()) {
 timeline.getKeyFrames().addAll(
 new KeyFrame(Duration.ZERO,
 new KeyValue(circle.translateXProperty(),
 random() * scene.getWidth()),
 new KeyValue(circle.translateYProperty(),
 random() * scene.getHeight())),
 new KeyFrame(new Duration(60000),
 new KeyValue(circle.translateXProperty(),
 random() * scene.getWidth()),
 new KeyValue(circle.translateYProperty(),
 random() * scene.getHeight())));
 }
 timeline.setCycleCount(Animation.INDEFINITE);
 timeline.play();

 primaryStage.show();
 }
}

Feel free to daydream while JavaFX shows its graphical prowess in Figure 11-35.

http:///

Closing topics ❘ 555

figure 11-35

This concludes the chapter on building graphical interfaces. This has been a lengthy one, and even
now, many Swing (and JavaFX) components remain worth taking a closer look at. As such, don’t
hesitate to get started building your own GUIs and exploring the Javadocs to hone your skills. Make
sure to keep the best practices listed in this chapter in mind—keep logic and looks separated and
structure your UI code in a neat manner.

Speaking of best practices, the following chapter will be completely devoted to these, as you delve
into the topic of Object‐Oriented Programming patterns. It covers best practices to solve common

architectural challenges and structure your applications in the best maintainable and understand-

able way possible, something that will become immensely important as your applications start

growing in size and complexity.

http:///

http:///

12
Using Object‐Oriented patterns

What you Will learn in this chapter:

 ➤ What programming patterns are and why they are useful

 ➤ How can object‐oriented patterns be applied to structure

applications

 ➤ Which libraries, frameworks, and best practices are commonly used in

Java programming

Wrox.com code doWnloads for this chapter

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 12
download and individually named according to the names throughout the chapter.

Congratulations, you’ve reached the last chapter. The primary goal behind this chapter is to
combine all the knowledge you’ve gained throughout this book and to show you how all the
various pieces—control low, input and output, class inheritance, and so on—come together to
construct a complete application.

Since many aspiring programmers ind it hard to start from a blank sheet and maintain order
and structure in their applications, we aim to reach the goals listed above with a chapter on
so‐called programming patterns. This chapter will teach you a number of best practices and
solutions for common problems you’ll encounter when creating object‐oriented applications
with Java. As such, this chapter starts with a general introduction on programming patterns,
before delving deeper into the patterns. Finally, the chapter ends with a brief overview of some
third‐party libraries that you may ind useful when starting new projects.

www.wrox.com/go/beginningjavaprogramming
www.wrox.com/go/beginningjavaprogramming
http:///

558 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

introduction to patterns

The concept of the design pattern is well known in the area of software engineering. Many deini-
tions for “pattern” exist, but broadly speaking, a pattern is a general applicable and reusable solu-

tion that solves frequently occurring problems and architectural challenges in software design. In
other words, a pattern provides a description on how to solve a particular problem, which is appli-
cable in many situations.

Interestingly, the notion of a pattern did not originate in the realm of programming or software
engineering, but as an architectural concept. In 1977, Christopher Alexander put forth the idea of
capturing architectural design principles as reusable descriptions, formulated in his work, A Pattern

Language: Towns, Buildings, Construction. He stated that “each pattern describes a problem that
occurs over and over again in our environment and then describes the core of the solution to that
problem in such a way that you can use this solution a million times over without ever doing it the
same way twice.” Then, in 1987, Kent Beck and Ward Cunningham started experimenting with the
idea of applying patterns to programming and presented their results at object‐oriented software
engineering conferences. From that moment onward, software and programming “design patterns”
have been popular in computer science.

The big surge in interest, however, followed the publication of the book Design Patterns: Elements

of Reusable Object‐Oriented Software in 1994 by Gamma, Helm, Johnson, and Vlissides, com-
monly referred to as the “Gang of Four.” The book describes 23 design patterns for use in object‐
oriented software projects and has become highly inluential in the ield of software engineering. So
much so that it is incredibly hard to ind a mid‐ to large‐scale Java, C++, Smalltalk, or other Object-
Oriented Programming language‐based project that doesn’t contain one of these design patterns.

Remember that a pattern deines a concrete solution, meaning that you should be able to use a pat-
tern repeatedly once the reference is given, and the solution must be applicable in lots of different
situations. To describe and write down these patterns, many different forms have been proposed,
ranging from free‐form, narrative texts to structured forms containing well‐deined sections (the
Gang of Four books, for instance, applies a very structured form). In addition, a repository or
catalogue should also be structured in such a way that speciic patterns can be easily and quickly
retrieved. To facilitate this, patterns are often structured in so‐called pattern languages or pattern
groups: a set of patterns aiming to solve the same general problem.

The “Gang of Four” book structures patterns as being Creational, Structural, or Behavioral.
Creational patterns deal with object creation mechanisms, as the basic form of object creation
could result in design problems or added complexity to the design. Structural patterns ease the
design by identifying a simple way to realize relationships between entities. Behavioral patterns
identify common communication patterns between objects to increase lexibility in carrying out this
communication.

obJect‐orIented patterns

This section takes you through a handful of the original Gang of Four design patterns. It’s presented
in a relaxed style, where instead of providing the pattern in a very strict and structured form (you
can read the original book for that), you see how the pattern works, how you can spot it in real‐life

http:///

Object‐Oriented patterns ❘ 559

projects, how you can use it yourself, and then common pitfalls you should watch out for. Don’t
expect that all patterns will immediately be useful to you as a beginner, but you’ll note that you will
feel a natural tendency toward them as you become more experienced.

This book adopts the same structure and naming as the Gang of Four, dividing the patterns into
Creational, Structural, and Behavioral categories. Keep in mind that the focus here is on how each
pattern works and behaves in Java. The goal here is to show you the patterns that also teach you
how to make architectural design choices and how each choice allows certain freedoms and takes
away others. This section doesn’t copy the description of the original patterns verbatim, as this
would not offer much value.

creational patterns
Creational patterns deal with object creation. Instead of creating objects directly, these patterns
offer more lexibility in terms of deciding which objects need to be created in a given case, mean-
ing that they offer alternatives for the following standard creation procedure in Java, as you’ve seen
throughout this book:

House myHouse = new House();

Here, the singleton, static utility class, service provider (this pattern is not mentioned in the Gang of
Four book but is closely related to the singleton pattern), factory, and abstract factory patterns are
covered. The builder and prototype creational patterns are not discussed, as both of them are less
commonly applied in Java.

Singleton pattern and Static Utility class

Let’s start with one of the most controversial object‐oriented patterns, the singleton pattern. (We’ll
address the reasons behind its controversy later on.) The Gang of Four summarizes a design pattern
as follows:

Ensure a class has instance and provide a global point of access to that instance.

This pattern is useful whenever exactly one object is needed to coordinate certain actions. In Java,
an easy way to deine a singleton class is as follows:

public class Singleton {
 private static final Singleton INSTANCE = new Singleton();

 private Singleton() {}

 public static Singleton getInstance() {
 return INSTANCE;
}

 // Other public methods follow here
}

You call the singleton’s methods as follows:

Singleton.getInstance().theSingletonMethod();

http:///

560 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

Note the different aspects at play here. First of all, the static inal ield is immediately initialized
to contain the single singleton object (which cannot be changed afterward due to being inal).
Second, direct instantiation of objects is prohibited by making the constructor private. Third, the
single instance is accessed calling the public static getInstance() method.

This way of deining a singleton class is called “eager initialization,” as the single instance gets
created no matter whether it will be used during the execution of the program. The alternative,
called “lazy initialization,” irst sets the INSTANCE (noninal, then) ield to null and initializes it the
irst time the getInstance() method is called. Using this approach, however, can introduce subtle
bugs in multithreaded Java programs (where multiple tasks are executed in parallel) if not imple-
mented correctly, so it is not advisable.

Another interesting, less‐used way to deine a singleton in Java is by using an enum type:

public enum Singleton {
 INSTANCE;

 // Other public methods follow here
}

This method is preferred by some, as it takes advantage of Java’s guarantee that enum values are
instantiated only once in a Java program, are globally accessible, and are instantiated lazily without
potential issues regarding multithreading. You use the singleton enum as follows:

Singleton.INSTANCE.theSingletonMethod();

Now that you know how the singleton pattern works, it is time for a word of advice: this pattern is
one of the most overused and badly used design patterns out there. The reason for this is easy to see:
the singleton pattern provides an easy way out whenever you want to introduce global variables or
state in your program. Why is this a bad thing? By allowing global state in your program, you allow
any other parts of your program to access and modify this at any time, making these programs very
hard to test and debug when something goes wrong (who modiied the singleton in a bad manner?).

In many real‐life cases, less experienced programmers will resort to using singletons whenever they
feel that they need a “manager” class to store some centralized information, perform some central-
ized task, or babysit other objects. For example, take a look at the following extreme case:

public class Account {
 private String name;
 private double amount;

 public String getName() {
 return name;
 }

 public double getAmount() {
 return amount;
 }

 public void setName(String name) {
 this.name = name;

http:///

Object‐Oriented patterns ❘ 561

 }

 public void setAmount(double amount) {
 this.amount = amount;
 }
}

public class AccountManager {
 public Account createAccount(String name, double startFunds) {
 Account account = new Account();
 account.setName(name);
 account.setAmount(startFunds);
 return account;
 }
 public boolean isOverdrawn(Account account) {
 return account.getAmount() < 0;
 }
 public void addFunds(Account account, double amount) {
 account.setAmount(account.getAmount() + amount);
 }
}

This example can look a bit silly—rightly so—although note that there exist many cases of code
with such anti‐object‐oriented design once you look behind the curtain. In cases such as these, it’s
easy to imagine that AccountManager should be a singleton. Any account will need a manager,
and how many managers do you need? Of course, the correct answer is not one, but none. You can
resolve this problem like so:

public class Account {
 private String name;
 private double amount;

 public Account(String name) {
 this(name, 0);
 }

 public Account(String name, double startAmount) {
 this.name = name;
 this.amount = startAmount;
 }

 public boolean isOverdrawn() {
 return this.amount < 0;
 }

 public void addFunds(double amount) {
 this.amount += amount;
 }

 public String getName() {
 return name;
 }

http:///

562 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 public double getAmount() {
 return amount;
 }

}

You can use the Account class as is to encapsulate the data and the behavior, which has to do with
the concept of an account. This is exactly what Object-Oriented Programming is about. Poorly
designed singleton classes are oftentimes “helpers” or “utility” classes that add functionality to
other classes. If possible, just move that behavior to the class itself.

NOTE This misuse of the singleton is captured in the so‐called “god object”
anti‐pattern. Just as patterns recommend best practices, anti‐patterns indicate
commonly made mistakes and depict bad design decisions. A god object is a
centralized object that contains and does too many things. It shows up in all
other places of the codebase and becomes too tightly coupled to the other
code.

There are cases, however, where the use of singletons is helpful. A big insight lies in the fact that the
singleton pattern solves two problems at once:

 ➤ Limits a class to a single instance.

 ➤ Provides a global point of access to an instance.

In Java, you should look at both requirements separately. If you want to limit a class to a single
instance, this doesn’t mean you want to allow every other object out there to access this instance. In
those cases, providing a public, global point of access is a weak architectural decision. How, then,
do you allow only one creation of a class? Like so:

public class Singleton {
 private static boolean CREATED = false;

 public Singleton() {
 if (CREATED)
 throw new RuntimeException(
 "Class "+this.getClass()+" can only be created once");
 CREATED = true;
 }

 // Other methods follow here

 public static void main(String args[]) {
 Singleton one = new Singleton();
 Singleton two = new Singleton();
 }
}

The singleton class can now be constructed at any time in any place, but will throw an error if
you try to construct it more than once. This code ensures single instantiation, but does not dictate

http:///

Object‐Oriented patterns ❘ 563

how the class is used (i.e., not a global point of access). This is a simple mechanism that’s somewhat
underused.

Providing a global point of access to an instance is the second and often the main reason that singletons
are used. This concept makes it easy to reach for an object that’s utilized in many places, but sometimes
in places where you don’t want it to be used. So what options are there to keep things organized?

In some cases, you can choose to pass in the object you need as an argument to the methods that
need it. However, it can be argued that many objects don’t it well in the argument list of a method.
For instance, when every method that’s added to a log ile also has a Log object in its argument list,
things get messy quickly.

NOTE In many cases, singletons pop up for things that have to be used
and accessed throughout a codebase. Logging is a traditional example. This
concept is called “cross‐cutting concerns,” and an alternative programming
paradigm—aspect‐oriented programming—was designed to address these
concerns. Libraries exist to bring aspect‐oriented features to Java, but their
use is not very widespread. Refactoring your code and trying to keep things as
neat as possible is the preferred way to go.

For “global” objects that only have to be accessed by a class and its subclasses, it is a good idea
to make the singleton object a ield of the superclass, together with a private method such as
getObjectOfInterest(). The subclasses derived from the superclass then have access to the object
they need, without the object being accessible to other classes and their instances.

For global classes that offer a set of utility functions, consider making the class and all its methods
static to build a “static utility class.” In many cases, this is a better approach and one you’ll see
in many Java programs. Many third‐party libraries offer classes ending in “Utils” (FileUtils,
StringUtils, and so on), and they contain nothing else but public static helper methods. Although
these methods are also globally accessible, the class itself does not contain any state. Naturally, this
point only holds when you do not deine static variables in the helper class that’s being modiied by
the methods. The only reason why static utility classes should contain static ields is to deine help-
ful constants (such as the static double PI variable in the Math class). If you do decide to create a
static utility class, however, always keep in mind the earlier example, and try to encapsulate as much
behavior as possible in the appropriate classes themselves whenever possible (no AccountUtils!).

static utility class or singleton?

You might be wondering what the difference is between the following two ways to
deine a singleton class in Java:

// As a static utility class:
public class Singleton {
 private static int A = 0;
 public static int get() {
 return A; continues

http:///

564 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 }
 public static void set(int a) {
 A = a;
 }
}

// A single instance of a class:
public class Singleton {
 private static final Singleton INSTANCE = new Singleton();
 private int A;
 private Singleton() {
 A = 0;
 }
 public static Singleton getInstance() {
 return INSTANCE;
 }
 public int get() {
 return A;
 }
 public void set(int a) {
 A = a;
 }
}

Ignoring the fact that using static variables to keep state is not good practice, both
of these classes seem to achieve the same end, although there is a subtle difference.
Consider a Logger singleton class with a log(String message) method.
Imagine that, at irst, this method just shows a message on the console, but later
on, you want to add functionality to log a ile and retain the ability to choose at
runtime which of the two implementations to use. With a static utility class, you
would have to resort to a check in the log method to see which path of execu-
tion to follow. If the singleton contains more methods, the check has to be added
to every method, reducing maintainability and introducing redundancy. With the
non‐static singleton object, you can make the log method abstract and create two
subclasses—ConsoleLogger and FileLogger. You can then determine the right
object to assign as the instance, without modifying any other code. The second
way is thus better practice from an Object-Oriented Programming viewpoint. That
said, remember that whenever you are deining a utility class without its own state
and thus holding a collection of simple utility functions, it is better to deine it as a
static class.

continued

To conclude this discussion on the singleton pattern, consider the following guidelines:

 ➤ Always check whether you actually need a separate class or whether the behavior belongs in
an existing class.

 ➤ When you need a globally accessible list of utility methods, use a static utility class without
modeling any state (static variables that are being changed by the class methods).

http:///

Object‐Oriented patterns ❘ 565

 ➤ When you do need a single instance of a class, think about whether the instance also has to
be globally accessible.

 ➤ If you do need a single instance of a class and it has to be globally accessible, you can use the
full singleton pattern. Always be wary of this option, and make sure you’ve exhausted the
other options mentioned here irst.

As discussed, most singletons offer some general “helper” methods or provide a global centralized
service for use in the rest of the application, such as a logging functionality. To avoid having a global
collection of singleton objects, it is a good idea to group your singletons under a service provider, as
described in the next pattern.

Service provider pattern and null Object pattern

Let’s say you have a service offering logging functionality that needs to be called throughout
all parts of your code. Perhaps you should implement it as a static utility class, as you’ve seen
previously:

LoggingUtils.logMessage("Something bad happened", LoggingUtils.PRIORITY_HIGH);

Or perhaps create a singleton:

Logger.getInstance().logMessage("Something bad happened", Logger.PRIORITY_HIGH);

Disregarding the fact that this approach introduces some nasty global objects in the project, you still
have the problem that these objects are very tightly coupled with the rest of the code. What if at one
point you want to introduce a second logging system and decide which one to use at runtime?

The service provider pattern can help, because it allows you to keep a “registry” of services and
swap them in and out at runtime. This is illustrated in the logging example. Imagine you have a
Logger interface and two concrete implementing classes, ConsoleLogger and EmailLogger (an
AbstractLogger can be deined here as well, for instance to hold the different priority level con-
stants). Your service locator would then look like this:

public class ServiceProvider {
 private static final ServiceLocator INSTANCE = new ServiceLocator();
 private ServiceLocator() {}

 private Logger logger;

 public static ServiceLocator getInstance() {
 return INSTANCE;
 }

 private Logger getLogger() {
 return logger;
 }

 private void setLogger(Logger logger) {
 this.logger = logger;
 }
}

http:///

566 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

The service locator has some interesting beneits. First, it is not possible to change the service imple-
mentation at runtime. Second, the service provider is a singleton, but the services don’t have to be.
You can still prevent multiple instantiation, but instead of making ive singletons globally accessible,
everything can now go through one single locator. Third, adding services is just a simple manner of
adding a ield and the getter and setter methods.

In essence, the service provider pattern is a combination of a singleton and strategy pattern (as you’ll
see later).

One thing that you do need to consider, however, is remembering to set all services. When you for-
get to call the setLogger method in this example, for instance, the ServiceProvider will return
null. There are several ways around this. You can manually check in your code to see if a provider
returns null, you can force initialization by accepting a Logger object in the ServiceProvider
constructor, or you can just initialize the service to a default one. Finally, you can also apply another
pattern, the null object pattern, to solve this issue.

The basic idea of the null object is that instead of returning null, a special object returning the same
interface as the desired object is returned, but with an implementation that does nothing. In the log-
ging example, a NullLogger would look like this:

public class NullLogger implements Logger {
 public void logMessage(String message, int PRIORITY_LEVEL) {
 // Do nothing
 }
}

As you can see, this service implements all expected methods, but does not actually do anything.
Now, when you default to this service in your provider class, the calling code doesn’t have to handle
nulls.

NOTE The discussion on the null object pattern is also related to another
commonly observed best practice, namely the fact that it is always better—
whenever possible—to have functions return empty collections (collections
containing zero elements) instead of a null value). A common reason why
programmers choose to return null in the irst place is to signal to the calling
code that some kind of error occurred (the collection could not be retrieved or
constructed), which is different from a successful execution returning an empty
collection. In this case (signaling errors), the better practice is to rely on excep-
tions, which can be caught and handled accordingly by calling code. Following
this practice will help greatly to avoid null pointer exceptions (e.g., by calling
the size() method on a null object).

(abstract) Factory pattern

The factory pattern is another commonly applied creational pattern. It’s summarized as follows:
Defer instantiation of a class to subclasses.

In other words, the factory pattern provides an interface for creating an object, while providing dif-
ferent implementations for the creation of that object.

http:///

Object‐Oriented patterns ❘ 567

As an example, suppose you have an abstract class called Account, subclassed to NormalAccount
and VIPAccount. Maybe the VIPAccount gets a bonus on creation, or a bonus every time funds are
added, but the exact details of the implementation are not important.

Instead of directly using these objects as is, the factory pattern abstracts away the creation of them
by deining separate creation methods that can be overridden. For the account example, the factory
pattern can thus be implemented as follows:

public class AccountFactory {
 public Account createAccount(String name, double amount) {
 return new NormalAccount(name, amount);
 }
}

public class VIPAccountFactory extends AccountFactory {
 public Account createAccount(String name, double amount) {
 return new VIPAccount(name, amount);
 }
}

In other parts of the code, either of the following can be deined:

AccountFactory factory = new AccountFactory();

Or:

AccountFactory factory = new VIPAccountFactory();

Either one can call the same createAccount method to create the appropriate account.

Note that you can also choose to implement the factory methods directly in the account classes as
static methods, making the constructor of the class private. This is another pattern that shows up a
lot in Java projects.

Again, in other cases, different factory classes implement a single interface class. Sometimes, all fac-
tory classes subclass an abstract factory superclass (this is speciically referred to as the “abstract
factory pattern”) to encapsulate multiple related creation methods. Consider, for example, the
abstract factory class FurnitureFactory, which provides abstract deinitions for createChair()
and createTable(), among others. This abstract factory can then be subclassed to the concrete
WoodFurnitureFactory and PlasticFurnitureFactory classes, which would each create corre-
sponding objects (WoodChair, PlasticTable, and so on), all of which are also subclasses of abstract
Chair and Table classes. The beneit from using this pattern lies in the fact that all remaining code
using these factories can work with the abstract Chair and Table classes, instead of the speciic ver-
sion the factory created. This approach retains more levels of abstraction.

Another reason that factory classes are often applied is to create a centralized location to keep a
list of all created objects. For instance, you might opt to keep a list of all created accounts in the
AccountFactory class and provide methods to easily retrieve a speciic account later on. This is
ine in some cases, but just as with the singleton pattern, you should take care not to construct
overloaded factory classes containing too much behavior and logic. On a similar note, you might
encounter factory objects that are also singletons. When this happens, keep an eye out for possible
ways to restructure and streamline the affected code.

http:///

568 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

structural patterns
Structural patterns concern how classes and objects are structured, mainly how inheritance and
interfaces should be applied to design, or redesign, object‐oriented architectures in useful ways.

Most of these patterns involve wrapping of some kind, i.e., creating classes that contain instances
of other classes or subclass other classes. Such patterns often show up in cases when code is being
refactored or when complex classes are wrapped in simpler ones.

The adapter, bridge, decorator, façade, and composite patterns are discussed here. The type pattern,
which is not explicitly mentioned in the Gang of Four book, but deals with an interesting and useful
aspect of Object-Oriented Programming, is also included here as an explicit pattern. The structural
proxy and lyweight patterns are not addressed, as their use cases are less relevant for beginners (feel
free to look them up, however).

adapter pattern

The goal of the adapter pattern is to make classes with incompatible interfaces work together, as
illustrated here. Imagine a world with two printer companies. One is called Ink4Ever and has a class
somewhere in its driver code that looks like this:

public class InkjetPrinter {
 public void print(Document d, int nrCopies) {
 // Print code here
 }
 public void printDuplicate(Document d, int nrCopies) {
 // Print code here
 }
}

The second printer company, called MajorLaser, has a driver class like this:

public class LaserPrinter {
 public void print(Document d, boolean printDuplicate) {
 // Print code here
 }
}

After many years of ierce competition, the two companies merge to form a new entity, called
Ink&Laser. The programmers start working on exciting new printer software, with the inal task of
creating a uniied driver that can work with laser and inkjet printers.

The team decides it would be best to use the following single method throughout the codebase:

public void print(Document d, int nrCopies, boolean printDuplicate)

The question now is how to implement this approach so that it works with the inkjet and laser
printer drivers, as they do not agree on their method signatures. One of the programmers suggests
just merging the two legacy printers into a new, uniied driver, like so:

public class UnifiedPrinter {
 public void print(Document d, int nrCopies, boolean printDuplicate) {

http:///

Object‐Oriented patterns ❘ 569

 if (isLaser()) {
 for (int copy = 1; copy <= nrCopies; copy++)
 printLaser(d, printDuplicate);
 } else {
 if (printDuplicate)
 printInkjetDuplicate(d, nrCopies);
 else
 printInkjet(d, nrCopies);
 }
 }

 public void printInkjet(Document d, int nrCopies) {
 // Print code here
 }

 public void printInkjetDuplicate(Document d, int nrCopies) {
 // Print code here
 }

 public void printLaser(Document d, boolean printDuplicate) {
 // Print code here
 }

 public boolean isLaser() {
 // Figure out whether this is a laser printer or not
 return true;
 }
}

At irst, this seems like a smart idea, but the project manager disapproves. “This won’t do,” he
tells his team, “It is far too hard to merge the two classes into a single one, what with the similarly
named variables and all. Even more important, what are we going to do once we start supporting a
third type of printer? This is not the object‐oriented way to do things.” The programmers are rub-
bing their heads. What would be the right way to implement this correctly? Starting purely from an
object‐oriented perspective, a natural place to start is by deining a Printer interface containing the
method signature that all printer drivers should support:

public interface Printer {
 public void print(Document d, int nrCopies, boolean printDuplicate);

}

Next, InkjetPrinter and LaserPrinter can be renamed LegacyInkjetPrinter and
LegacyLaserPrinter, and two new classes can be deined:

public class LaserPrinter implements Printer {

 public LegacyLaserPrinter printer = new LegacyLaserPrinter();

 @Override
 public void print(Document d, int nrCopies, boolean printDuplicate) {
 for (int copy = 1; copy <= nrCopies; copy++)
 printer.print(d, printDuplicate);
 }

http:///

570 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

}

public class InkjetPrinter implements Printer {

 public LegacyInkjetPrinter printer = new LegacyInkjetPrinter();

 @Override
 public void print(Document d, int nrCopies, boolean printDuplicate) {
 if (printDuplicate)
 printer.print(d, nrCopies);
 else
 printer.print(d, nrCopies);
 }
}

Note how LegacyInkjetPrinter and LegacyLaserPrinter are now contained as instances in the
adapter classes InkjetPrinter and LaserPrinter. This is exactly what this pattern is about: wrap-
ping instances of incompatible classes in adapters. Note that the Printer interface can now be used
everywhere in the code to pass around printer objects.

NOTE Of course, you still need to decide whether to use an InkjetPrinter
or LaserPrinter class at construction. Since this is a creation issue, you might
want to use the factory pattern to construct the appropriate object, based on
the hardware coniguration detected on the computer.

Finally, note that there is another variant of this pattern where a new class is created that extends all
original legacy classes. As you’ve seen before, multiple inheritance is not possible in Java, although
one way to apply this pattern would be if all legacy classes also have associated interfaces. The new
class can then implement all these interfaces.

Bridge pattern

Next up is the bridge pattern. This pattern is sometimes confused with the adapter pattern, the
reason being that the bridge pattern uses the adapter pattern, but goes a step further. It not only
keeps lexibility in the implementation (e.g., to choose which printer class to use, all implementing
the interface Printer), but also allows greater abstraction. Say you have the Printer interface and
InkjetPrinter and LaserPrinter as implementing classes, perhaps still using the legacy classes.
The key point to remember is that you have an interface and different implementations of this
interface.

Now, an additional abstraction is added on top of the implementations, a class that will sit between
the client code and the implementations. That is a bridging class. In the example, this class might be
called AbstractPrintSpooler:

public abstract class AbstractPrintSpooler {
 private Printer printer;

 public AbstractPrintSpooler(Printer printer) {
 this.printer = printer;

http:///

Object‐Oriented patterns ❘ 571

 }

 public void print(Document d, int nrCopies, boolean printDuplicate) {
 printer.print(d, nrCopies, printDuplicate);
 }
}

Note how this class reimplements all the methods from the original Printer interface and passes on
every command to the contained Printer instance (again, this is an example of the adapter pattern).
Instead of using the Printer interface in your client code, you now use AbstractPrintSpooler,
however. Note that you can also decide to have AbstractPrintSpooler implement the Printer
interface (this forces the abstraction to also implement all methods from the implementation) and to
make the class nonabstract if you want to use it as is (which is also perfectly valid). All things con-
sidered, it does seem that the AbstractPrintSpooler class is adding nothing of value, so then why
would you add another layer of abstraction? The reason is that you can now add concrete subclasses
of this abstraction. Imagine for example a GreenPrintSpooler like so:

public class GreenPrintSpooler extends AbstractPrintSpooler {
 public GreenPrintSpooler(Printer printer) {
 super(printer);
 }
 public void print(Document d, int nrCopies, boolean printDuplicate) {
 printDuplicate = true; // Force to print duplicates
 d.setToBlackAndWhite(); // Convert document to black and white
 print(d, nrCopies, printDuplicate);
 }
}

A concrete implementation of your spooler has now been created that will convert all documents to
black and white and force the duplicate option to true before passing on the print command to the
implementation. The beneits of this pattern should become clear to you now: bridges are helpful
whenever an extra layer of abstraction is needed on top of something else. For example, whether to
print green is a separate decision on top of the printer model being used.

decorator pattern

The decorator pattern also bears similarities to the adapter pattern. It allows you to add behavior
to a single instance of a class without adding this behavior to all instances of the same class (as you
would end up with through normal subclassing).

This pattern is commonly used in GUI programming, so it makes sense to include an example from
this context. Imagine you have created a Window class to display fancy GUI windows. Now let’s say
you want to create a particular variant of these windows that cannot be minimized and needs to
stay on-screen. You can simply create a NaggingWindow class that extends the Window class and adds
behavior to disable the minimize button. Imagine that, sometime later, you also encounter a need to
add scrollbars to some of your windows. No problem, as you can just create a ScrollableWindow
class to do this. However, what about windows that should not be minimized and also need
 scrollbars? One solution might be to add a NaggingScrollableWindow class, but as windows get
more and more features, this would quickly lead to a soup of redundant subclasses. One solution is
to merge everything in the single Window class, but this would lead to a single, horribly confusing

http:///

572 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

and lengthy class with many methods, such as setHasScrollbars(boolean b). This solution also
does not seem like the proper object‐oriented way to program things.

Luckily, the decorator pattern can help. This pattern resembles the bridge pattern in that it con-
tains both a combination of interfaces and abstract classes. For this example, you would need the
following:

 ➤ interface Window: Contains all the method signatures windows need to support, such as
setTitle(String title).

 ➤ class NormalWindow implements Window: The class implementing the bare‐bones
window.

 ➤ abstract class WindowDecorator implements Window: The abstract decorator class.
Just as with the bridge pattern, this class contains an instance of a Window object, as well as
methods for all methods the Window interface deines. In the abstract calls, all method calls
are passed to the Window object (this is called delegation).

 ➤ class NaggingWindowDecorator extends WindowDecorator and other decorators: These
classes deine the behavior you want to add on top of another object. These classes will over-
ride all methods that need to be extended, in most cases also involving a call to the original
superclass method, which delegates to the Window object (super.setTitle(title)).

Once you put all of this in place, the complete code for the example above would look as follows.
Note that the code sample below makes some “quick and dirty” shortcuts to get the point across,
mainly by reusing the JFrame component in our window classes instead of writing a UI widget
library from scratch.

import javax.swing.JFrame;
public interface Window {
 public void setTitle(String title);
 public void addPanel(String message);
 public JFrame getJFrame();
}

import javax.swing.BoxLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
public class NormalWindow implements Window {
 private final JFrame jFrame;
 private final JPanel mainPane;
 public NormalWindow() {
 this.jFrame = new JFrame();
 this.jFrame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 // We allow ourselves to cheat here by first setting up a scrollpane
 // as the content pane for every window, with scroll bars hidden
 // Decorators are then free to re-enable these
 this.mainPane = new JPanel();
 this.mainPane.setLayout(new BoxLayout(this.mainPane, BoxLayout.PAGE_AXIS));
 JScrollPane scrollPane = new JScrollPane(mainPane,

http:///

Object‐Oriented patterns ❘ 573

 JScrollPane.VERTICAL_SCROLLBAR_NEVER,
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
 this.jFrame.setContentPane(scrollPane);
 this.jFrame.pack();
 this.jFrame.setSize(300, 400);
 this.jFrame.setVisible(true);
 }
 public void setTitle(String title) {
 jFrame.setTitle(title);
 }
 public void addPanel(String message) {
 JPanel pane = new JPanel();
 pane.add(new JLabel(message));
 mainPane.add(pane);
 }
 public JFrame getJFrame() {
 return jFrame;
 }
}

import javax.swing.JFrame;
public abstract class WindowDecorator implements Window {
 private final Window window;
 public WindowDecorator(Window window) {
 this.window = window;
 }
 public void setTitle(String title) {
 window.setTitle(title);
 }
 public void addPanel(String message) {
 window.addPanel(message);
 }
 public JFrame getJFrame() {
 return window.getJFrame();
 }
 public Window getWindow() {
 return window;
 }
}

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.JFrame;
public class NaggingWindowDecorator extends WindowDecorator {
 public NaggingWindowDecorator(Window window) {
 super(window);
 // Add a simple message just to show the decorator is working:
 getWindow().addPanel("Decorated with NaggingWindowDecorator");
 getWindow().getJFrame().setAlwaysOnTop(true);
 getWindow().getJFrame().setResizable(false);
 // The code below will prevent users from minimizing the window
 // by immediately re-opening minimized windows
 // In a real life context, you'd of course resort to the full suite

http:///

574 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 // of Swing components as we've seen before, i.e. using JDialog
 getWindow().getJFrame().addWindowListener(new WindowAdapter() {
 @Override
 public void windowClosing(WindowEvent we) {
 }
 // The following will prevent minimizing
 @Override
 public void windowIconified(WindowEvent we) {
 getWindow().getJFrame().setState(JFrame.NORMAL);
 }
 });
 }
}

import javax.swing.JScrollPane;
public class ScrollingWindowDecorator extends WindowDecorator {
 public ScrollingWindowDecorator(Window window) {
 super(window);
 // Add a simple message just to show the decorator is working:
 getWindow().addPanel("Decorated with ScrollingWindowDecorator");
 ((JScrollPane)
 getWindow().getJFrame().getContentPane()).setHorizontalScrollBarPolicy(
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
 ((JScrollPane)
 getWindow().getJFrame().getContentPane()).setVerticalScrollBarPolicy(
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
 }
}

public class WindowTester {
 public static void main(String[] args) {
 Window decoratedWindow1 = new NaggingWindowDecorator(new NormalWindow());
 Window decoratedWindow2 = new ScrollingWindowDecorator(new
 NaggingWindowDecorator(new NormalWindow()));
 }
}

Note that this pattern shares a lot of similarities with the bridge pattern. The difference is that in
this pattern, you continue to use the interface (Window) to deine objects and the abstract class has
to implement this interface as well. In the bridge pattern, the abstract class can (but does not have
to) implement the deined interface and will be used in the client code (AbstractPrintSpool is used
instead of the Printer interface).

Façade pattern

The façade pattern also deals with wrapping objects and shares similarities with the adapter pattern.
Again, it is related to the previous patterns:

 ➤ The adapter pattern converts the interface to the one the client code is expecting.

 ➤ The bridge pattern adds a layer of abstraction between the client code and implementations
of an interface.

http:///

Object‐Oriented patterns ❘ 575

 ➤ The decorator pattern allows the addition and combination of behavioral extensions to an
original interface.

 ➤ The façade pattern aims to provide a simpliied interface around a collection of other
interfaces.

The façade pattern is like the adapter pattern on steroids: the façade class will contain an instance of
every class it wraps in order to provide a uniied and simpler interface for the client code that needs
it. For example, let’s say you have a class to search for lights between two locations and a class
to search for hotels between two locations. Instead of using these two classes as is in your code, it
might be a good idea to deine a third class (TripPlanner) that wraps around these two classes in
order to ind a list of suitable lights and hotels for a given set of locations and time period. The cli-
ent can then use this façade class, which adds an extra layer of decoupling.

NOTE A word of warning for all these “wrapping” patterns. Note that all
these patterns connect the wrapped class to their wrappers, meaning that if
changes are made to the wrapped subsystems, all adapters, bridges, decora-
tors, facades, and proxies might need to be changed and updated as well.
Therefore, don’t go too far when connecting classes together by wrapping
them up around each other.

composite pattern

The last structural pattern discussed in this chapter is less about wrapping around objects and more
about grouping objects together. Luckily, the description of this pattern is easy to understand:

Allows a group of objects to be treated like a single object.

Basically, following the composite pattern boils down to implementing your own collection class,
which is subject to the same methods as the members of that collection. This pattern is pretty inter-
esting since it is easy to understand in essence, but there are multiple ways to implement it, all with
their advantages and disadvantages.

This idea is illustrated with a simple example. Imagine you’re programming an application for the
human resources department. The department oversees a number of employees—project managers
and programmers. You need to keep track of their names and salaries. As such, you set out to create
the following class:

public class Employee {
 private String name;
 private double salary;
 private boolean manager;

 public Employee(String name, double salary, boolean manager) {
 this.name = name;
 this.salary = salary;
 this.manager = manager;
 }

http:///

576 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 public String getName() {
 return name;
 }

 public double getSalary() {
 return salary;
 }

 public boolean isManager() {
 return manager;
 }
}

You discuss your progress with the HR team. They congratulate you on your work, but the team
head mentions the following: “Sorry, I totally forgot to mention this—I thought this would be
clear—but managers need to be able to oversee other employees, managers, or programmers,
whereas programmers cannot.”

No problem, you think, I’ll just add a list to the Employee class to keep track of employees overseen
by other employees:

public class Employee {
 private List<Employee> employees;
 private String name;
 private double salary;
 private boolean manager;

 public Employee(String name, double salary, boolean manager) {
 this.employees = new ArrayList<>();
 this.name = name;
 this.salary = salary;
 this.manager = manager;
 }

 public void addEmployee(Employee employee) {
 if (isManager())
 employees.add(employee);
 }

 public void removeEmployee(Employee employee) {
 if (isManager())
 employees.remove(employee);
 }

 public Employee getEmployee(int i) {
 return employees.get(i);
 }

 public int getNrEmployees() {
 return employees.size();
 }

 public String getName() {

http:///

Object‐Oriented patterns ❘ 577

 return name;
 }

 public double getSalary() {
 return salary;
 }

 public boolean isManager() {
 return manager;
 }
}

You discuss your changes with the team head. “Great,” you’re told, “this is exactly what we need!”
Throughout the following months, the HR department requests more and more features. “We forgot
to mention, we also want to keep track of the languages a programmer knows. Oh, and for manag-
ers, we want to keep track of the number of years they have been working at the company. Oh, and
we also have a third type of employee that we want to add. . .” You keep expanding and changing
your Employee class, and all is well in the world, right? Not so much. By now, your object‐oriented
senses should start tingling. The right approach to tackle this problem is to add an abstraction by
creating separate Employee, Manager, and Programmer classes, like so:

import java.util.ArrayList;
import java.util.List;

public abstract class Employee {
 private List<Employee> employees;
 private String name;
 private double salary;

 public Employee(String name, double salary) {
 this.employees = new ArrayList<>();
 this.name = name;
 this.salary = salary;
 }

 public void addEmployee(Employee employee) {
 employees.add(employee);
 }

 public void removeEmployee(Employee employee) {
 employees.remove(employee);
 }

 public Employee getEmployee(int i) {
 return employees.get(i);
 }

 public int getNrEmployees() {
 return employees.size();
 }

 public String getName() {
 return name;
 }

http:///

578 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 public double getSalary() {
 return salary;
 }
}

public class Manager extends Employee {
 public Manager(String name, double salary) {
 super(name, salary);
 }
}

public class Programmer extends Employee {
 public Programmer(String name, double salary) {
 super(name, salary);
 }

 @Override
 public void addEmployee(Employee employee) {
 // Consider throwing an exception here
 }

 @Override
 public void removeEmployee(Employee employee) {

 }

 @Override
 public Employee getEmployee(int i) {
 return null;
 }

 @Override
 public int getNrEmployees() {
 return 0;
 }
}

Much better! Now every concept has its own class. Note how this immediately gives you a way to
implement the composite pattern. You now have an easy way to treat a group of employees the same
way as a single employee. The composite pattern makes it very easy to model a “has a” relation,
which is particularly helpful when you want to model a tree structure, such as in this example.

To see why this is so helpful, look at the next simple example program, which shows the organiza-
tional structure starting from a particular employee:

public class HRExample {
 public static void main(String args[]) {
 Employee programmerAimee = new Programmer("Aimee", 16000);
 Employee programmerBart = new Programmer("Bart", 15000);
 Employee programmerSeppe = new Programmer("Seppe", 14000);

 Employee managerJane = new Manager("Jane", 30000);
 Employee managerWiley = new Manager("Wiley", 35000);

 managerWiley.addEmployee(managerJane);
 managerWiley.addEmployee(programmerBart);

http:///

Object‐Oriented patterns ❘ 579

 managerJane.addEmployee(programmerAimee);
 managerJane.addEmployee(programmerSeppe);

 showOrganigram(managerWiley);
 }

 public static void showOrganigram(Employee e) {
 showOrganigram(e, 1);
 }

 private static void showOrganigram(Employee e, int level) {
 // Recursive function, show employee
 System.out.format("%"+(level*2)+"s - %s, " +
 "earning %s", "", e.getName(), e.getSalary());
 if (e.getNrEmployees() > 0)
 System.out.format(" manages %s employees:", e.getNrEmployees());
 System.out.println();
 for (int i = 0; i < e.getNrEmployees(); i++) {
 showOrganigram(e.getEmployee(i), level+1);
 }
 }
}

Running this code prints the following:

 - Wiley, earning 35000.0 manages 2 employees:
 - Jane, earning 30000.0 manages 2 employees:
 - Aimee, earning 16000.0
 - Seppe, earning 14000.0
 - Bart, earning 15000.0

Here you can see the beneits of the composite pattern in action. In the recursive function, you
don’t need to pay attention to the differences among a programmer, manager, and groups of
employees, as you can apply the same methods on all of them, using the single, abstract Employee
class.

Note that there is also a second way to model a composite pattern: by having both the composite
objects (the objects containing a list) and the member objects (objects without a list) implement a
component interface that deines the operations that should be possible on both of them. It would
use the following structure:

public interface Component {
 public void method1();
 public void method2();
 // ...
}

public class Member implements Component {
 @Override
 public void method1() {/*...*/}
 @Override
 public void method2() {/*...*/}

 // Other methods
}

http:///

580 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

public class Group implements Component {
 @Override
 public void method1() {/*...*/}
 @Override
 public void method2() {/*...*/}

 public void addMember(Member member) {/*...*/}
 public void removeMember(Member member) {/*...*/}
 public Member getMember(int i) {/*...*/}
 public int nrMembers() {/*...*/}

 // Other methods
}

This implementation can be useful when the member and group nodes do not share any behavior
other than a particular set of methods deined in the interface, or when you explicitly want to pre-
vent executing list methods (addMember, removeMember ...) on the member objects. Note that it is
also possible to combine the two approaches by deining an interface, an abstract class that imple-
ments the interface, and subclasses.

the interface‐aBstraCt ComBo

This is a good point in the chapter to mention a particularly curious pattern that
you might see in large, heavily “architected” codebases: the combination of an
abstract class and an interface.

These classes will often be scattered across different packages, so you need to go on
a hunt to ind the code you’re looking for in the dependency tree. For instance, an
interface class might be named IPerson, PersonInterface, or just Person, and be
located in the com.bigcompany.models.hr package, or perhaps in com.bigcom-
pany.models.hr.interface. The abstract class implementing this interface might
be named AbstractPerson, PersonImpl, PersonImplementation, or Person, and
be located in com.bigcompany.models.hr or com.bigcompany.models.hr.impl,
perhaps. The subclasses extending the abstract class are then named NormalPerson
and VIPPerson, or NormalPersonImpl and VIPPersonImpl, and are located in
com.bigcompany.models.hr or com.bigcompany.models.hr.impl. . .

What is going on here? In terms of, naming, different programmers prefer different
strategies, but in general, an interface deines a contract that the implementations
should adhere to. This immediately provides a good heuristic for deciding between
an interface and an abstract class: a person is a noun. Normal persons and VIP per-
sons are always, by deinition, people. Starting with an abstract class makes more
sense in this case. An abstract class describes all the subclasses.

The interface describes what the implementing classes should be able to do.
Consider the Comparable built‐in interface in Java, which describes the implemen-
tations that should add a method that allows you to compare one object of the
implementing class to another object of that class. Maybe this applies to all persons

http:///

Object‐Oriented patterns ❘ 581

as well (comparing alphabetically based on name, for instance), or maybe this only
applies to some subclasses of a person, for example, VIPPerson. With subclassing,
you describe a hierarchy of inherited behavior. With interfaces, you describe a set
of behavior that can be implemented by classes.

So why would it make sense to apply both? First of all, using this approach
allows a certain freedom. For instance, when you use and pass around the
interface in your client code, you can later deine a second abstract class (with
descendants) that also implements this interface. These two sets of hierarchies
can then differ from each other, but since they both implement the same inter-
face, your client code will continue to work as normal, for both abstract classes
and all their descendants, without you having to perform heavy refactoring.
However, this doesn’t mean that you should go out of your way to always deine
an interface and an abstract class. If you ind yourself adding all the methods in
the abstract class as signatures to the interface, the added beneit of the inter-
face itself is little, especially since there is no immediate desire to create a sec-
ond abstract class implementing that interface. Even if such a desire did arise, it
is likely that you could refactor your current class tree to add the new abstract
class as a subclass of the existing abstract class, since they appear to share so
much behavior anyway.

The best thing to do is pick either an abstract class (a class is a...) or an interface
(a class can do...) and refactor only when a need arises.

One particular real‐life scenario you have seen before uses the decorator pattern,
where the abstract class and its descendants contain most of the shared code and
implement an interface (in simple cases, the abstract hierarchy can be replaced with
a single class). The decorator classes can then form a second hierarchy of abstract
classes and descendants (or can also be implemented as a collection of unrelated
classes in simple cases), and also implement the interface. The interface then
provides signatures for the functionality the decorators can tweak. Figures 12-1
through 12-4 provide a schematic overview of these cases.

interface Window

class NormalWindow
implements Window

class WindowDecorator
implements Window

Window instanceToDecorate;

Simplest case: shared interface, two concrete classes

figure 12-1

continues

http:///

582 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

figure 12-2

interface Window

class NormalWindow
implements Window

class WindowDecorator1
implements Window

Window instanceToDecorate;

Multiple, unrelated decorators

class WindowDecorator2
implements Window

Window instanceToDecorate;

figure 12-3

interface Window

Window instanceToDecorate;

Decorators share behavior and form class hierarchy.

class NormalWindow
implements Window

abstract class
WindowDecorator

implements Window

class WindowDecorator1
extends WindowDecorator

class WindowDecorator2
extends WindowDecorator

figure 12-4

interface Window

Window instanceToDecorate;

Both decorators and window classes form class hierarchy, shared behavior in interface.

class SimpleWindow
extends AbstractWindow

abstract class
AbstractWindow

implements Window

class WindowDecorator1
extends WindowDecorator

class WindowDecorator2
extends WindowDecorator

class ComplexWindow
extends AbstractWindow

abstract class
WindowDecorator

implements Window

continued

http:///

Object‐Oriented patterns ❘ 583

Type pattern and role pattern

The last structural pattern covered in this chapter is not explicitly mentioned as such by the Gang of
Four, but captures a powerful concept that’s worth explaining on its own.

The idea is that you will create a level of abstraction above the classes and instances, meaning the
concept of a class is made into a class itself. Each instance of that class, that is, each object, then
represents a different class.

This idea might seem a bit confusing at irst. Imagine you’re programming an application to man-
age various kinds of products. Like a good object‐oriented programmer, you start out by deining an
abstract Product class and then deine concrete subclasses: Book, Movie, Music, and so on. As time
progresses, maybe your product tree becomes more and more complex, and you end up having more
and more subclasses.

Your program is starting to become hard to maintain, with this gigantic product class tree that
keeps growing. This is the typical object‐oriented issue, right? Indeed, subclassing deines an “is a”
relationship, but it’s only one way of establishing this conceptual relationship.

You decide to sit back and think about your problem some more. At a basic level, you’re trying to
solve a simple concept. You have a set of products you want to manage and that share some particu-
lar attributes and behavior. Each product is of a certain type, a certain class, in your code. What if
you tried to create a class for a class? A class conceptualizing the product type? You set out to try
this idea:

import java.util.Set;

public class ProductType {
 private String name;
 private Set<String> properties;

 public ProductType(String name, Set<String> properties) {
 this.name = name;
 this.properties = properties;
 }

 public String getName() {
 return name;
 }

 public Set<String> getProperties() {
 return properties;
 }
}

import java.util.HashMap;
import java.util.Map;

public class Product {
 private double price;
 private String name;
 private ProductType type;
 private Map<String, Object> typeProperties;

http:///

584 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 public Product(String name, double price, ProductType type) {
 this.name = name;
 this.price = price;
 this.type = type;
 this.typeProperties = new HashMap<>();
 for (String property : type.getProperties())
 this.typeProperties.put(property, null);
 }

 public double getPrice() {
 return price;
 }

 public String getName() {
 return name;
 }

 public void setProperty(String property, Object value) {
 validateProperty(property);
 typeProperties.put(property, value);
 }

 public Object getProperty(String property) {
 validateProperty(property);
 return typeProperties.get(property);
 }

 private void validateProperty(String property) {
 if (!typeProperties.containsKey(property))
 throw new IllegalArgumentException("Property "+property
 +" not valid for type: "+type.getName());
 }
}

Next, you try it:

import java.util.HashSet;

public class TypeTest {
 public static void main(String[] args) {
 ProductType musicType = new ProductType("Music",
 new HashSet<String>());
 ProductType movieType = new ProductType("Movie",
 new HashSet<String>());

 // Set some properties for books:
 ProductType bookType = new ProductType("Book",
 new HashSet<String>(){{
 add("title");
 add("author");
 add("pages");
 }});

 Product someMusic = new Product("A music track", 0.99, musicType);

 Product aBook = new Product("My book", 44.99, bookType);

http:///

Object‐Oriented patterns ❘ 585

 aBook.setProperty("title", aBook.getName());
 aBook.setProperty("author", "Aimee, Bart and Seppe");
 aBook.setProperty("pages", 540);

 System.out.println("Book title: "+aBook.getProperty("title"));
 System.out.println("Book author: "+aBook.getProperty("author"));
 System.out.println("Book pages: "+aBook.getProperty("pages"));
 }
}

Congratulations, you’ve just implemented the irst principle of Object-Oriented Programming
(classes and objects) in an object‐oriented manner, albeit a bit awkwardly. Your properties are cur-
rently all objects and will need to be typecast to be used in a meaningful way. It’s also hard to know
which properties a certain type has (this could be ixed by adding a method returning all proper-
ties). Also, this system does not support inheritance. Again, this could also be done by getting clever
and determining that ProductType objects can have a “parent” ProductType. If a property is set to
null, a product type can then ask a parent (if set) to see if they have a value for a particular prop-
erty, which is the basics of data inheritance. You might also want to modify your ProductType class
so it works more like a real constructor, which you could do by adding the following method:

public Product createProduct(String name, double price) {
 return new Product(name, price, this);
}

Which can be used like so:

Product someMusic = musicType.createProduct("A music track", 0.99);
Product aBook = bookType.createProduct("My book", 44.99);

Exciting, no? Using this pattern also has the added beneit that product types can be created and
destroyed while the program is running, without requiring that you ire up Eclipse, deine some new
subclasses, compile everything, and ship it out. Just ask the users which properties the new type
should have and you’re golden. You could even allow users to save a list of product type deinitions
to a ile, which can be loaded back in.

In fact, using this pattern, you can also go a step further than Java allows. Think about the follow-
ing ideas, for instance:

 ➤ Allow the type of an object to change. With normal subclassing, this would not be pos-
sible (and rightly so!). If this is allowed, this pattern is sometimes called a role pattern.
Imagine your program is managing employees who can be managers or programmers. You
might want to create Employee, Manager, and Programmer classes, the latter two subclass-
ing Employee. But what if an employee’s role changes? Then modeling these concepts as a
subclass is not a good idea, and you’re better off with classes for Employee, EmployeeRole
(abstract), ManagerRole (concrete subclass), and ProgrammerRole (concrete subclass), and
then adding methods to Employee to set and get its role. What if roles can be deined at run-
time as well? Then you need to resort to the type pattern explained here.

 ➤ Allow an object to have multiple types or roles, by keeping a list of types.

 ➤ Allow multiple inheritance, by allowing a type to have a list of parent types. What this means
in practice is for you to determine.

http:///

586 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

In conclusion, the type pattern is a very powerful one, and it allows you to create your own object‐
oriented paradigm inside an existing one (object‐oriented inception). Some warning, however—you
will have noticed that this pattern is especially useful when you’re dealing with shared data, that is,
a list of properties for product types.

Note that this pattern’s implementation will change a bit when you know up front what the set of
properties will be. In that case, just implement this as follows:

 ➤ The ields you want to change at runtime can be implemented as ields in the class (Product,
for instance). Fields that are not necessary for a certain product can be set to null.

 ➤ The ields that are determined by the type are implemented as ields in the type class and set
at construction or by setters (e.g., in ProductType). Getters are added to the original class
(Product) to fetch information from the type class (ProductType), or the type object is
directly exposed (getProductType() in Product).

Note that all of this still has to do with data. When you also want to dynamically construct behavior,
things get much more dificult. You’re then better off resorting to subclasses, or you can apply the
strategy pattern (which you’ll see later) to dynamically assign another object to your type class from
which a method will be called to execute some behavior. As a simple teaser, consider, for example,
that you want to implement a method that calculates a discounted price. Sadly, the way this discount
is calculated can differ for each product type. In this case, you need to get a bit clever when assigning
properties and their values. Why not go a step further as well? The product manager above was basi-
cally assuming that all ields in a product type are non‐static, non‐inal, public, and uninitialized. You
can change your type class and allow for static inal properties that are all public:

import java.util.HashMap;
import java.util.Map;

public class ProductType {
 private String name;

 private Map<String, Object> staticProperties;
 private Map<String, Object> instanceProperties;

 public ProductType(String name) {
 this.name = name;
 this.staticProperties = new HashMap<>();
 this.instanceProperties = new HashMap<>();
 }

 public Product createProduct(String name, double price) {
 return new Product(name, price, this);
 }

 public String getName() {
 return name;
 }

 public void addStaticProperty(String name, Object value) {
 staticProperties.put(name, value);
 }

http:///

Object‐Oriented patterns ❘ 587

 public void removeStaticProperty(String name, Object value) {
 staticProperties.remove(name);
 }

 public void addInstanceProperty(String name, Object value) {
 instanceProperties.put(name, value);
 }

 public void removeInstanceProperty(String name, Object value) {
 instanceProperties.remove(name);
 }

 public boolean isInstanceProperty(String name) {
 return instanceProperties.containsKey(name);
 }

 public boolean isStaticProperty(String name) {
 return staticProperties.containsKey(name);
 }

 public Object getStaticProperty(String name) {
 return staticProperties.get(name);
 }

 public Object getInstanceProperty(String name) {
 return instanceProperties.get(name);
 }

}

NOTE If you’re up for a challenge, try making a general type class support-
ing static, instance, public, private, and inal ields. In addition, try creating a
Typeable interface that any class can implement and then add your custom
typing functionality on top of it.

Next, rework the Product class:

import java.util.HashMap;
import java.util.Map;

public class Product {
 private double price;
 private String name;
 private ProductType type;
 private Map<String, Object> instanceProperties;

 public Product(String name, double price, ProductType type) {
 this.name = name;
 this.price = price;
 this.type = type;
 this.instanceProperties = new HashMap<>();
 }

http:///

588 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 public double getPrice() {
 return price;
 }

 public String getName() {
 return name;
 }

 public void setProperty(String property, Object value) {
 validateProperty(property);
 instanceProperties.put(property, value);
 }

 public Object getProperty(String property) {
 validateProperty(property);
 if (!instanceProperties.containsKey(property)) {
 // Get the default initialized property from the type
 return type.getInstanceProperty(property);
 }

 return instanceProperties.get(property);
 }

 public Object getStaticProperty(String property) {
 if (!type.isStaticProperty(property))
 throw new IllegalArgumentException("Static property "+property+
 " not valid for type: "+type.getName());
 return type.getStaticProperty(property);

 }

 private void validateProperty(String property) {
 if (!type.isInstanceProperty(property))
 throw new IllegalArgumentException("Property "+property+
 " not valid for type: "+type.getName());
 }
}

Your main class will then look like this:

public class TypeTest {
 public static void main(String[] args) {
 // Product types now have a discount calculator field...
 BookDiscountCalculator bookDiscounter = new BookDiscountCalculator();

 ProductType bookType = new ProductType("Book");
 bookType.addInstanceProperty("title", null);
 bookType.addInstanceProperty("author", null);
 bookType.addInstanceProperty("pages", 0);
 bookType.addStaticProperty("discountCalculator", bookDiscounter);

 Product aBook = bookType.createProduct("My book", 44.99);
 aBook.setProperty("title", aBook.getName());
 aBook.setProperty("author", "Aimee, Bart and Seppe");
 aBook.setProperty("pages", 540);

http:///

Object‐Oriented patterns ❘ 589

 Product anotherBook = bookType.createProduct("My second book", 244.99);
 anotherBook.setProperty("title", anotherBook.getName());
 anotherBook.setProperty("author", "Patternicus");
 anotherBook.setProperty("pages", 800);

 showBook(aBook);
 showBook(anotherBook);
 }

 public static void showBook(Product bookProduct) {
 System.out.format("Book '%s' from '%s' (%s pages) costs '%s' " +
 "––> after discount = %s%n",
 bookProduct.getProperty("title"),
 bookProduct.getProperty("author"),
 bookProduct.getProperty("pages"),
 bookProduct.getPrice(),
 ((BookDiscountCalculator) bookProduct
 .getStaticProperty("discountCalculator"))
 .getDiscountedPrice(bookProduct.getPrice())
);
 }

 public static interface DiscountCalculator {
 public double getDiscountedPrice(double originalPrice);
 }

 public static class BookDiscountCalculator implements DiscountCalculator {
 @Override
 public double getDiscountedPrice(double originalPrice) {
 return Math.max(10, originalPrice * 0.60 - 10);
 }
 }
}

Note how it is now possible to deine a discount calculator for each product type.

NOTE If you’ve been following along closely throughout this book, you might
remember that Java deines the concept of a class as an actual class, as java.
lang.Class. Couldn’t you just use that to make your classes at runtime,
 programmatically? Sadly, no. The constructor for this class class is not visible.
The following will not work:

Class myClass = new Class();

If you want to get clever, you can use Java’s relection capabilities together
with a custom class loader to construct classes on the ly. If you want to see
this approach in action, the most basic proof of concept looks like this:

import java.net.URL;
import java.net.URLClassLoader;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

continues

http:///

590 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

import javax.tools.JavaCompiler;
import javax.tools.ToolProvider;

public class ClassMaker {
 public static void main(String[] args) throws Exception {
 String source = "public class Test { "
 + "static { System.out.println(
 \"A new class enters this life!\"); } "
 "public Test() { "
 + " System.out.println(
 \"Wow! Who has created me?\");"
 + "}"
 + "}";

 Path sourceDir = Files.createTempDirectory("_javaTest");
 Path sourceFile = Paths.get(sourceDir + "/Test.java");
 Files.write(sourceFile, source.getBytes());

 System.out.println("Compiling: "+sourceFile.toString());

 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();
 if (compiler == null) {
 System.out.println(
 "Could not get compiler. Are you running with JDK?");
 System.exit(1);
 }

 compiler.run(null, null, null, sourceFile.toString());

 System.out.println("Making class...");

 URLClassLoader classLoader = URLClassLoader.newInstance(
 new URL[] {
 sourceDir.toUri().toURL()
 });
 Class<?> cls = Class.forName("Test", true, classLoader);
 Object instance = cls.newInstance();

 System.out.println("Compiled a new class: "+cls);
 System.out.println("Created its instance: "+instance);
 }
}

Note that you must run this code with the JDK, which will then produce some-
thing like this:

Compiling: C:\Users\n11093\AppData\Local\Temp\
 _javaTest560570871985698759\Test.java
Making class...

continued

http:///

Object‐Oriented patterns ❘ 591

A new class enters this life!
Wow! Who has created me?
Compiled a new class: class Test
Created its instance: Test@79dd63b4

Truly a Frankenstein‐inspired class. If you think this is cheating by requiring
the JDK, note that the Eclipse developers have managed to implement a
Java compilation library on top of the JRE, which you could use here instead.
There’s also the BCEL (Byte Code Engineering Library). Finally, if you know
the methods a class should have beforehand (as was the case in the previ-
ous example), you can start with an interface and then rely only on relection
to do the rest for you, without a class loader or compilation. Again, this is
too advanced to discuss in full here (in fact, this is already very deep in Java’s
internals at this point). Finally, it’s interesting to know that some developers
have applied this concept toward creating software solutions that allow you to
change a Java program while it is running, without having to stop it. Look up
“hot code replace” if you wish to learn more about this.

behavioral patterns
Behavioral patterns are concerned with organizing communication between objects in an eficient
and clean manner.

Here, the chain‐of‐responsibility, observer (and model‐view‐controller), iterator, visitor, template,
and strategy patterns are covered. The command, interpreter, mediator, and state patterns are not
discussed as they are less commonly used. They are interesting and very useful in particular cases,
but deal less with architecture‐related object‐oriented programs and are therefore less suitable for a
beginner’s tour.

chain‐of‐responsibility pattern

The chain‐of‐responsibility pattern describes a method that organizes objects in a chain. This is use-
ful when certain commands are handled by different objects, each of them passing the command to
the next object in the chain.

A simple example to illustrate this pattern is through a logging system. Imagine that an abstract
Logger class is deined like so:

public abstract class Logger {
 private Logger nextLoggerInChain;
 public void setNext(Logger logger) {
 nextLoggerInChain = logger;
 }

 public void logMessage(String message) {
 performLogging(message);

http:///

592 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 // Pass command to next link in chain:
 if (nextLoggerInChain != null)
 nextLoggerInChain.logMessage(message);
 }

 // Method to be extended by subclasses
 abstract protected void performLogging(String message);
}

Separate subclasses, such as ConsoleLogger, DatabaseLogger, FileLogger, and so on, log mes-
sages to a related target and pass the message to the next link in the chain. An example main
method might look like this:

public static void main(String[] args) {
 Logger consoleLogger = new ConsoleLogger();
 Logger emailLogger = new EmailLogger();
 Logger databaseLogger = new DatabaseLogger();

 consoleLogger.setNext(emailLogger);
 emailLogger.setNext(databaseLogger);

 // Send a message down the chain:
 consoleLogger.logMessage("Log this message");
}

The chain‐of‐responsibility pattern is somewhat underappreciated in practice. In most cases, you’ll
see examples like this one being solved by an implementation of the observer pattern (which you’ll
see next). However, the chain‐of‐responsibility pattern is still mentioned here, for two reasons. The
irst one is that this pattern also deines an order of responsibility. For a logging system, this is not
important, but for other systems, it can be useful to establish an ordering, with the irst objects in
the chain getting a chance to handle the incoming message or object (and potentially modify it)
before passing it on. The second reason entails this “passing on” behavior. In most cases where this
pattern is useful, you’ll code it in such a way that an object in the chain will only pass on an incom-
ing object when the current link is unable to do anything useful with it. Once a link that can handle
the incoming object is found, the processing stops there.

Observer pattern and Model‐View‐controller pattern

The observer pattern describes a framework in which a particular object (the subject) maintains a
list of dependents (observers) and notiies them of any important changes.

In Java, this pattern can be implemented in different ways. The irst one is by using Java’s built‐in
java.util.Observable class and the java.util.Observer interface. Observable deines the fol-
lowing methods your classes can override:

 ➤ void addObserver(Observer o)

 ➤ void deleteObserver(Observer o)

 ➤ void deleteObservers()

 ➤ int countObservers()

http:///

Object‐Oriented patterns ❘ 593

 ➤ protected void clearChanged()

 ➤ boolean hasChanged()

 ➤ void notifyObservers()

 ➤ void notifyObservers(Object arg)

 ➤ protected void setChanged()

The Observer interface deines only one method—void update(Observable o, Object arg)—
which will be called by the subject. This is illustrated with an example. Say you are building an
application to fetch stock quotes. At one point, you realize that other applications might want to
plug in to your code to register an interest to be notiied whenever you pull in a new stock quote.
You decide to make the relevant class in your code Observable:

import java.util.Observable;

// Observable class (the subject)
public class StockTicker extends Observable {
 public void updateStock() {
 // Stock retrieving code here
 // At the end, we get a Quote object, which we pass to our observers
 Quote latestStockQuote = ...;

 notifyObservers(latestStockQuote);
 }
}

Note the notifyObservers call. Observers can now be implemented as a class like so:

import java.util.Observable;
import java.util.Observer;

public class StockObserver implements Observer {
 @Override
 public void update(Observable sender, Object receivedObject) {
 Quote quote = (Quote) receivedObject;

 // Do something interesting with the quote here
 }

}

Before getting updates from the subject, observers have to register themselves, like so:

public static void main(String[] args) {
 StockTicker ticker = new StockTicker();

 StockObserver observer = new StockObserver();

 ticker.addObserver(observer);
 // Add other observers
}

http:///

594 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

The observer pattern encapsulates a simple but powerful concept that can greatly extend your
 programs. The observer pattern isn’t implemented by using java.util.Observable class and
java.util.Observer in many real‐life cases, but rather is implemented in the form of a hand‐
rolled approach where one class keeps a list of objects it needs to “notify” in some way whenever
something interesting happens. The reasons for this stem mainly from the fact that programmers
sometimes want to get creative with their use of notiication methods, want to keep a list of multiple
types of observers, or are hindered by the fact that Observable is an abstract class that needs to
be extended, preventing classes from extending from another abstract class. Don’t worry, though,
the pattern and the basic idea behind it are the same.

In fact, it seems that many built‐in parts of Java are hampered by this issue, since many classes
(especially those dealing with GUIs) prefer to go for a hand‐rolled approach. In the Java world,
people often refer to the observer pattern as the listener pattern (observers are called listeners in that
case). The basic pattern is like this:

 ➤ The subject class keeps a list of registered listeners and is free to extend its own abstract
classes.

 ➤ The listeners all implement an interface deining the “notiication” methods.

 ➤ When something interesting happens to the subject, it goes through its list of listeners and
calls the appropriate notiication method.

A perfect way to illustrate this is by building a simple GUI application. As the subject, a simple
JFrame is used here:

import javax.swing.JFrame;

public class GUIListenerExample {
 public static void main(String[] args) {
 // Create our subject
 JFrame frame = new JFrame();
 frame.setSize(400, 400);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create our listener
 MyMouseListener listener = new MyMouseListener();

 // Register
 frame.addMouseListener(listener);

 // Go
 frame.setVisible(true);
 }
}

Note that javax.swing.JFrame extends java.awt.Frame and thus has nothing to do with
Observable. The listener is created as follows:

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.JOptionPane;

http:///

Object‐Oriented patterns ❘ 595

public class MyMouseListener implements MouseListener {
 @Override
 public void mouseClicked(MouseEvent e) {
 JOptionPane.showMessageDialog(null, "You clicked the mouse!");
 }
 @Override
 public void mouseEntered(MouseEvent e) {}
 @Override
 public void mouseExited(MouseEvent e) {}
 @Override
 public void mousePressed(MouseEvent e) {}
 @Override
 public void mouseReleased(MouseEvent e) {}
}

This produces the mesmerizing application shown in Figure 12-5.

figure 12-5

Note that nothing prevents you from implementing similar listener systems in your own
 applications. All you need is an interface and subjects that know how to register and notify them.
Note that—as you’ve seen in the chapter dealing with GUI applications—you can also create one‐
shot throwaway listeners, like so:

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.JFrame;
import javax.swing.JOptionPane;

public class GUIListenerExample {
 public static void main(String[] args) {
 // Create our subject
 JFrame frame = new JFrame();

http:///

596 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 frame.setSize(400, 400);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create our listener
 MouseListener listener = new MouseListener(){
 public void mouseClicked(MouseEvent e) {
 JOptionPane.showMessageDialog(null, "You clicked the mouse!");
 }
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 };

 // Register
 frame.addMouseListener(listener);

 // Go
 frame.setVisible(true);
 }
}

In some other cases, you’ll see the subject acting as its own listener (GUIListenerExample extends
JFrame implements MouseListener):

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.JFrame;
import javax.swing.JOptionPane;

public class GUIListenerExample extends JFrame implements MouseListener {
 public GUIListenerExample() {
 this.addMouseListener(this);
 }

 public void mouseClicked(MouseEvent e) {
 JOptionPane.showMessageDialog(null, "You clicked the mouse!");
 }
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}

 public static void main(String[] args) {
 // Create our subject
 JFrame frame = new GUIListenerExample();
 frame.setSize(400, 400);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Go
 frame.setVisible(true);
 }

}

http:///

Object‐Oriented patterns ❘ 597

Without a doubt, the observer pattern is one of the most useful patterns out there, especially since
it forms the cornerstone of another pattern: model‐view‐controller. You were introduced to this pat-
tern in the previous chapter on GUIs. Basically, a model‐view‐controller architecture expresses the
fact that every program should be separated in three loosely coupled parts:

 ➤ The model as the central component containing the problem domain (accounts, users, and so
on). This part should be completely independent from the user interface in the sense that the
interface cannot directly manipulate the model.

 ➤ The controller is the component that sends commands to the model to manipulate it.

 ➤ The view is the interface through which the users get an output representation.

This description is a bit hand‐wavy, so it is illustrated here with a simple example. Say you want
to create a program to deal with checking accounts and you want to put a fancy GUI on top of
it. You could start by building a simple window and just keep adding lists and variables until
you have everything stuffed in a single ball of code spaghetti, but this is not the object‐oriented
way to do things. Instead, you start building the core problem domain and think about the
classes that matter. In this case, that would be an account. You may recall this example from
earlier:

public class Account {
 private String name;
 private double amount;

 public Account(String name) {
 this(name, 0);
 }

 public Account(String name, double startAmount) {
 this.name = name;
 this.amount = startAmount;
 }

 public boolean isOverdrawn() {
 return this.amount < 0;
 }

 public void addFunds(double amount) {
 this.amount += amount;
 }

 public String getName() {
 return name;
 }

 public double getAmount() {
 return amount;
 }
}

Next up, you want to create a GUI to manage your account objects. You could start adding win-
dows to this class, but again, this does not seem like the right way to do it. Instead, you decide to
start with a new class:

http:///

598 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JTextField;

public class AccountWindow extends JFrame {
 private JTextField funds, add;
 private JButton addButton;

 public AccountWindow() {
 this.setSize(400, 120);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());

 funds = new JTextField(30);
 add = new JTextField(30);
 addButton = new JButton("Add funds");

 funds.setEditable(false);
 addButton.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent arg0) {
 // Add funds here
 }
 });

 this.add(funds);
 this.add(add);
 this.add(addButton);
 }
}

The interface is Spartan‐looking for now, but it will do, as shown in Figure 12-6.

figure 12-6

A bigger question on your mind is how to ill in the “Add Funds” box. You want to keep your model
and view as separate as possible, and thus avoid passing an Account object to this view. This is
where the controller comes in. You start out by deining your controller:

import javax.swing.JFrame;

public class AccountController {

http:///

Object‐Oriented patterns ❘ 599

 private Account model;
 private AccountWindow view;

 public AccountController(Account model, AccountWindow view) {
 this.model = model;
 this.view = view;
 }

 public void addFunds(double amount) {
 model.addFunds(amount);
 view.updateView(model.getAmount());
 }

 public static void main(String args[]) {
 Account myAccount = new Account("AimeeBartSeppe Ltd.", 3000);
 AccountWindow myView = new AccountWindow();

 AccountController controller = new AccountController(myAccount, myView);
 myView.setController(controller);
 myView.updateView(myAccount.getAmount());

 myView.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 myView.setVisible(true);
 }
}

And modify the view accordingly:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JTextField;

public class AccountWindow extends JFrame {
 private JTextField funds, add;
 private JButton addButton;
 private AccountController controller;

 public AccountWindow() {
 this.setSize(400, 120);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());

 funds = new JTextField(30);
 add = new JTextField(30);
 addButton = new JButton("Add funds");

 funds.setEditable(false);
 addButton.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent arg0) {
 if (controller != null)

http:///

600 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 controller.addFunds(Double.parseDouble(add.getText()));
 }
 });

 this.add(funds);
 this.add(add);
 this.add(addButton);
 }

 public void updateView(double funds) {
 this.funds.setText("Your funds: "+funds);
 this.add.setText("");
 }

 public void setController(AccountController controller) {
 this.controller = controller;
 }

}

You pat yourself on the back. Well done, the view can now call actions in the controller, which
modiies its models and sends back updates to the view.

Still, you can’t help but feel there’s something missing . . . Most beginner programmers who want
to decouple models and UI will end up with a solution resembling something you’ve just seen.
Although the model is now completely unaware of the user interface that might exist (good!), the
problem still remains that the controller is calling methods in the view and the view is calling meth-
ods in the controller, creating a problem where both need to be explicitly aware of one another.

Luckily, thanks to the observer pattern, there is a way to improve this situation. The basic idea is
this: controllers will act as listeners in that they will be notiied by the view and then can manipulate
their models. The views will also act as listeners; they will be notiied by the models but will not be
able to manipulate them directly. The models inally act as subjects that notify interested parties,
including the listening views.

One aspect of this idea has already been implemented, in a way. That is, the setController method
basically registers the controller as a listener in the view. However, there is a smarter way to do this.
Since you need to listen for UI events coming from the view, why not deine the controller as an UI
listener? Second, the controller is now allowed to call methods in the view, serving as an intermedia-
tor between the data stored in the models and how it is represented in the views. A better way to do
this is to change your model to allow listeners.

So, start again with the Account class. You need to add the ability to notify view listeners. There are
several ways to do this:

 ➤ A registerView method that just sets a single view listener.

 ➤ A hand‐rolled listener solution that keeps a list of views.

 ➤ A hand‐rolled listener solution that keeps a list of objects implementing a self‐made
AccountListener interface.

 ➤ Using the built‐in Observable and Observer class and interface.

http:///

Object‐Oriented patterns ❘ 601

In order to make your program future‐proof, go for the most lexible route. Start with deining an
AccountListener interface:

public interface AccountListener {
 public void notifyFundsChanged(double newAmount);
}

Next up, modify your model to accept AccountListeners:

import java.util.ArrayList;
import java.util.List;

public class Account {
 private List<AccountListener> listeners;
 private String name;
 private double amount;

 public Account(String name) {
 this(name, 0);
 }

 public Account(String name, double startAmount) {
 this.name = name;
 this.amount = startAmount;
 this.listeners = new ArrayList<>();
 }

 public boolean isOverdrawn() {
 return this.amount < 0;
 }

 public void addFunds(double amount) {
 this.amount += amount;
 for (AccountListener listener : listeners)
 listener.notifyFundsChanged(getAmount());
 }

 public String getName() {
 return name;
 }

 public double getAmount() {
 return amount;
 }

 public void addAccountListener(AccountListener listener) {
 listeners.add(listener);
 }

 public void removeAccountListener(AccountListener listener) {
 listeners.remove(listener);
 }

 public void removeAllAccountListeners() {

http:///

602 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 listeners.clear();
 }
}

Next, change your view to behave as a listener. You also need to modify the view to accept listening
controllers. In most cases, every view will have a single listening controller, so you can just keep this
as a ield instead of a list. Also, the controller object is used directly instead of deined as a separate
listening interface (you can try to deine an AccountViewListener and work from there if you
want).

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JTextField;

public class AccountWindow extends JFrame implements AccountListener,
 ActionListener {
 private JTextField funds, add;
 private JButton addButton;
 private AccountController controller;

 public AccountWindow() {
 this.setSize(400, 120);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());

 funds = new JTextField(30);
 funds.setEditable(false);

 add = new JTextField(30);

 addButton = new JButton("Add funds");
 addButton.addActionListener(this);

 this.add(funds);
 this.add(add);
 this.add(addButton);
 }

 @Override
 public void notifyFundsChanged(double newAmount) {
 this.funds.setText("Your funds: "+newAmount);
 this.add.setText("");
 }

 public void registerController(AccountController controller) {
 this.controller = controller;
 }

 @Override
 public void actionPerformed(ActionEvent e) {

http:///

Object‐Oriented patterns ❘ 603

 controller.notifyAddFunds(Double.parseDouble(add.getText()));
 }
}

Finally, your controller should be reworked:

import javax.swing.JFrame;

public class AccountController {
 private Account model;

 public AccountController(Account model, AccountWindow view) {
 this.model = model;
 }

 public static void main(String args[]) {
 Account myAccount = new Account("AimeeBartSeppe Ltd.", 3000);
 AccountWindow myView = new AccountWindow();

 AccountController controller = new AccountController(myAccount, myView);

 // Register controller and view
 // (This can also be done in controller constructor)
 myView.registerController(controller);
 myAccount.addAccountListener(myView);

 myView.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 myView.setVisible(true);
 }

 public void notifyAddFunds(double amount) {
 model.addFunds(amount);
 }
}

Note that, technically, the controller does not need to be aware of the view anymore, so you can
remove the view ield from the controller class. You can also remove it from the constructor, but
depending on your preference, you can also let the controller handle its registration and register the
view in the model, so that you can decide to keep it in.

When you run this application, you’ll see that it behaves exactly the same as before.

NOTE Well. . . almost exactly. Notice that the funds ield stays empty until you
add some funds. How would you solve this issue while adhering to the model‐
view‐controller principles? Purists would argue that it would be best to add an
notifyControllerRegistered method to the controller that can be called by
the view. The controller would then call a refreshListeners method in the

continues

http:///

604 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

Before continuing with the next pattern, you may want to read the sidebar about the so‐called
“lapsed listener” problem.

model, which in turn would notify all the listening views to update their states.
If this looks like a roundabout way of doing things, don’t feel too bad; some
implementations prefer to pass the controller to a view’s constructor, so that it
can be immediately registered and the controller can be notiied immediately
after the UI is set up. Some implementations allow views to be registered with
controllers so that the controller can update their state directly, as you’ve seen
before. In practice, all of these approaches are ine. The key reasoning behind
the model‐view‐controller pattern is to establish a clear separation among
data, data manipulation, and data representation. In other words, never mix UI
code with data‐handling code.

lapsed listeners

The observer pattern is a very helpful one, but it comes with a tricky issue that can
pose problems in larger applications and cause memory leaks with long‐running
applications (applications taking up more and more memory until they crash).

The problem is this: let’s say that you have a large application and the user decides
to close the window of the account. The AccountWindow object is thrown away,
and the user returns to an overview screen of all accounts. (By the way, if you feel
up for it, try expanding the previous example to work with lists of accounts in a
model‐view‐controller paradigm instead of just one account. Which classes do you
need to add and which do you need to change?) So far so good, except that the win-
dow is still registered as a listener of the account object, which is still being kept
around. This prevents the garbage collector from removing the window object from
memory. In fact, the account object will just continue to notify the (hidden) win-
dow object for eternity. When an account is opened again in the UI, the program-
mer creates a new view object, so that over time, more and more objects are created
and remain stuck as listeners.

The solution is simple: make sure to deregister all listeners when it is time to
close them. Note that this is one of the few times when it makes sense to override
Object.finalize():

@Override
public void finalize() {
 // Deregister this listener
 super.finalize(); // Perform rest of finalization
}

continued

http:///

Object‐Oriented patterns ❘ 605

iterator pattern

The next pattern discussed is also built in to Java itself, although contrary to the observer pattern,
the iterator pattern is much more useable.

The design goal behind an iterator is to traverse through and access a container’s elements, for
instance, looping through members in a Java List object. Why is this concept so earth‐shatter-
ing, you might ask. After all, if you have a collection, it makes sense that you can loop through its
 members. True, but the iterator pattern decouples the way a container is looped over from the con-
tainer. For instance, the most logical iterator for a list would loop through members by index, but
you might prefer to loop through members in reverse order, or random order, or sorted alphabeti-
cally irst.

In Java, two interfaces exist to apply this pattern. Iterable is implemented by collections that can
be looped over, and they subsequently implement a method (iterator()) to return an object imple-
menting the Iterator interface. This is done with the methods hasNext(), next(), and remove().

All collections in Java extend Iterable, meaning that you can get an iterator from every collection
class. The following examples illustrates how you can loop over a list using an iterator:

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class IteratorTest {
 public static void main(String[] args) {
 List<String> list = new ArrayList<>();
 list.add("Bart");
 list.add("Aimee");
 list.add("Seppe");

 Iterator<String> iterator = list.iterator();
 while (iterator.hasNext()) {

However, this is easier said than done, since a listener . . . listens. It cannot shout to
its subjects, “Hey, I’m about to get deleted; please deregister me from your lists.”
You need to make sure that this listener is deregistered when it’s destroyed. A good
way to do this is to have the view send a notiication to the controller (“I’ve been
closed, goodbye . . .”) so that the controller can proceed to deregister the listener
from the relevant views.

Another, more advanced, way of solving this issue is to work with so‐called “weak
references.” These specify a reference to an object (a listener), but allow the garbage
collector to kick in once all normal references are gone. In Java, this functionality
is provided by the WeakReference built‐in class, but it is best to explicitly program
deregistration in your code. After all, that is why removeListener methods are
provided.

http:///

606 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 String name = iterator.next();
 System.out.println(name);
 if (name.startsWith("A")) {
 iterator.remove();
 System.out.println(" ... removed");
 }
 }
 }
}

What if you want to create a list returning a backward looping iterator? Just extend the built‐in
List class, extending the iterator() method to return your own iterator. If you want to create a
list that can return both iterators, it’s easiest to extend the List class with a separate method, as is
done in the following snippet:

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class IteratorTest {
 public static void main(String[] args) {
 BackwardsList<String> list = new BackwardsList<>();
 list.add("Bart");
 list.add("Aimee");
 list.add("Seppe");

 Iterator<String> iterator = list.getBackwardsIterator();
 while (iterator.hasNext()) {
 String name = iterator.next();
 System.out.println(name);
 if (name.startsWith("A")) {
 iterator.remove();
 System.out.println(" ... removed");
 }
 }
 }

 public static class BackwardsList<T> extends ArrayList<T> {
 public Iterator<T> getBackwardsIterator() {
 final List<T> arrayList = this;
 Iterator<T> iterator = new Iterator<T>() {
 private int currentIndex = arrayList.size()-1;
 @Override
 public boolean hasNext() {
 return currentIndex >= 0;
 }
 @Override
 public T next() {
 return arrayList.get(currentIndex––);
 }
 @Override
 public void remove() {
 arrayList.remove(currentIndex+1);
 }

http:///

Object‐Oriented patterns ❘ 607

 };
 return iterator;
 }
 }
}

Visitor pattern

Just as with the chain‐of‐responsibility pattern you’ve seen before, the visitor pattern is a little
bit more advanced and its beneits might not immediately be clear when programming smaller
applications.

The main goal of a visitor pattern is to separate a certain algorithm (some code) from the data struc-
ture it operates on. Or, more practically speaking, the visitor pattern allows methods to be added to
a related set of classes without having to modify the classes themselves.

Again, let’s dive immediately into an example. Let’s say you’re creating a book management system.
You decide to start from an abstract class and extend it to some concrete classes:

public abstract class Book {
 private String title;
 // ...
}

public class NonFictionBook extends Book {
 // ...
}

public class FictionBook extends Book {
 // ...
}

public class AudioBook extends Book {
 // ...
}

So far, so good. Now let’s say at some point you have a list of books you’re keeping track of:

public class VisitorTest {
 public static void main(String[] args) {
 Book[] books = new Book[]{
 new AudioBook(), new FictionBook(), new FictionBook(),
 new NonFictionBook(), new AudioBook(), new NonFictionBook()
 };

 }
}

Okay, now you want to sort this collection of books into three lists, one for each concrete class of
books. Simple, you think; you can just write the following:

import java.util.ArrayList;
import java.util.List;

http:///

608 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

public class VisitorTest {
 public static void main(String[] args) {
 Book[] books = new Book[]{
 new AudioBook(), new FictionBook(), new FictionBook(),
 new NonFictionBook(), new AudioBook(), new NonFictionBook()
 };
 List<AudioBook> audioBooks = new ArrayList<>();
 List<FictionBook> fictionBooks = new ArrayList<>();
 List<NonFictionBook> nonFictionBooks = new ArrayList<>();

 for (Book book : books) {
 if (book instanceof AudioBook)
 audioBooks.add((AudioBook) book);
 else if(book instanceof FictionBook)
 fictionBooks.add((FictionBook) book);
 else if(book instanceof NonFictionBook)
 nonFictionBooks.add((NonFictionBook) book);
 }

 System.out.println("Nr. audio books: "+audioBooks.size());
 System.out.println("Nr. fiction books: "+fictionBooks.size());
 System.out.println("Nr. non-fiction books: "+nonFictionBooks.size());
 }

}

However, there are a number of problems with this code. It’s kind of ugly looking with all the type-
casting going on, and you realize that adding new types of books will require you to do a search for
all places where you do something like this.

Luckily, the visitor pattern can help you separate your algorithm (categorizing a list of books in
separate lists) from the data structure (the abstract class and its dependents). How? First of all, you
deine an interface for a “visitor,” in this case, someone who can visit books like so:

public interface BookVisitor {
 public void visit(AudioBook book);
 public void visit(FictionBook book);
 public void visit(NonFictionBook book);
}

Next, add a method to your Book class so that it can accept visitors, as well as to all the concrete
classes:

public abstract class Book {
 private String title;
 // ...

 abstract public void accept(BookVisitor visitor);
}

public class FictionBook extends Book {
 @Override
 public void accept(BookVisitor visitor) {

http:///

Object‐Oriented patterns ❘ 609

 visitor.visit(this);
 }
}

public class AudioBook extends Book {
 @Override
 public void accept(BookVisitor visitor) {
 visitor.visit(this);
 }
}

public class NonFictionBook extends Book {
 @Override
 public void accept(BookVisitor visitor) {
 visitor.visit(this);
 }
}

You might be thinking there is no difference between this and the previous strategy, since both
require you to override the accept methods. However, since the concrete class extends the abstract
class, Eclipse will throw a warning in case you forget to implement this method in your new con-
crete class, and consequently will throw a warning to implement this in your interface as well. In
short, there’s no risk of forgetting anything in this case.

Finally, you need to deine the visitor implementation:

import java.util.ArrayList;
import java.util.List;

public class CategorizingBookVisitor implements BookVisitor {

 private List<AudioBook> audioBooks;
 private List<FictionBook> fictionBooks;
 private List<NonFictionBook> nonFictionBooks;

 public CategorizingBookVisitor() {
 this.audioBooks = new ArrayList<>();
 this.fictionBooks = new ArrayList<>();
 this.nonFictionBooks = new ArrayList<>();
 }

 @Override
 public void visit(AudioBook book) {
 audioBooks.add(book);
 }

 @Override
 public void visit(FictionBook book) {
 fictionBooks.add(book);
 }

http:///

610 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 @Override
 public void visit(NonFictionBook book) {
 nonFictionBooks.add(book);
 }

 public List<AudioBook> getAudioBooks() {
 return audioBooks;
 }

 public List<FictionBook> getFictionBooks() {
 return fictionBooks;
 }

 public List<NonFictionBook> getNonFictionBooks() {
 return nonFictionBooks;
 }
}

The main program code now becomes a simple and elegant affair:

public class VisitorTest {
 public static void main(String[] args) {
 Book[] books = new Book[]{
 new AudioBook(), new FictionBook(), new FictionBook(),
 new NonFictionBook(), new AudioBook(), new NonFictionBook()
 };

 CategorizingBookVisitor visitor = new CategorizingBookVisitor();
 for (Book book : books)
 book.accept(visitor); // Accept the visitor

 System.out.println("Nr. audio books: "+visitor.getAudioBooks().size());
 System.out.println("Nr. fiction books: "+visitor.getFictionBooks().size());
 System.out.println("Nr. non-fiction books:
 "+visitor.getNonFictionBooks().size());
 }
}

The workings of the visitor pattern should be pretty clear by now. Consider the visitor to be an
object ringing a doorbell at another object’s house. By calling the accept method, the object opens
the door and lets the visitor in.

template Method pattern

The last two patterns to be discussed are easy to understand and make you think, “Of course,
this deinitely seems like the normal way to do this.” Nevertheless, it is worthwhile to explic-
itly discuss them, because they are easy to overlook in practice if you haven’t encountered them
before.

The template method pattern deines a general structure of a piece of code in a so‐called template
method, where some particular steps are kept abstract, left to the concrete subclasses to implement.
This pattern is particularly useful when you know the general structure of a piece of code, but want
to keep the internals lexible.

http:///

Object‐Oriented patterns ❘ 611

This can be illustrated with a simple example. Let’s say you’ve written some code to get a list of
expenses your company has incurred from a database, which you store in a List<Expense> object.
You know that management will want to run different kinds of statistics on this list of expenses.
What is the total sum of all expenses? How many different receiving companies are involved? How
many products of a certain type were purchased? And so on. In any case, you realize that the gen-
eral structure of all these questions is the same: you loop through the list, do something with every
expense, and present the result. As such, you could make this type of template method:

import java.util.List;

public abstract class ExpenseListCalculator {
 public final double calculate(List<Expense> expenses) {
 initialize();
 for (Expense expense : expenses) {
 handle(expense);
 }
 return getResult();
 }

 protected abstract void initialize();
 protected abstract void handle(Expense expense);
 protected abstract double getResult();
}

Calculating the total sum of all expenses would now look like this:

public class ExpenseTotalSumCalculator extends ExpenseListCalculator {

 private double total;

 @Override
 protected void initialize() {
 total = 0;
 }

 @Override
 protected void handle(Expense expense) {
 total += expense.getTotalPrice();
 }

 @Override
 protected double getResult() {
 return total;
 }

}

Finding the amount of expense lines related to a given product is similarly easy:

public class ExpenseProductCountCalculator extends ExpenseListCalculator {

 private double count;
 private String product;

http:///

612 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 public ExpenseProductCountCalculator(String productToFind) {
 this.product = productToFind;
 }

 @Override
 protected void initialize() {
 count = 0;
 }

 @Override
 protected void handle(Expense expense) {
 if (expense.getProduct().equals(product))
 count++;
 }

 @Override
 protected double getResult() {
 return count;
 }

}

The beneit of using this pattern comes not only from the fact that you can now easily create new
implementations for a general algorithm, but you will also able to work with all these algorithms
in a general manner, using the abstract class. You could now, for instance, easily deine a list of
ExpenseListCalculator objects that should be executed one by one and added to a report.

Strategy pattern

The strategy pattern also deals with generalizing algorithms, but here, the focus is on selecting a
particular algorithm at runtime, instead of algorithms extending a general template.

To see how this works, let’s say you have a customer class. You want to add a method in order to
send notiication messages to this user. Depending on the user’s preferences, they can be notiied by
text message, email, or Twitter. You want to avoid adding a bunch of notifySMS, notifyEmail, and
notifyTwitter methods, which look ugly and are hard to maintain later on. There should be a bet-
ter, object‐oriented way to do this.

You realize that all these ways of notifying a customer can be regarded as different notiication
strategies, and thus get to work. First, you deine a general interface:

public interface NotifyStrategy {
 public void notify(Customer customer, String message);
}

The customer class looks something like this:

public class Customer {
 private NotifyStrategy notificationPreference;

 public Customer(NotifyStrategy notificationPreference) {
 this.notificationPreference = notificationPreference;
 }

http:///

Object‐Oriented patterns ❘ 613

 // ...

 public void notify (String message) {
 notificationPreference.notify(this, message);
 }
}

An implementation of the notiication strategy then looks like this:

public class EmailNotifyStrategy implements NotifyStrategy {

 @Override
 public void notify(Customer customer, String message) {
 // Send mail to customer.getEmail();

 System.out.println("Sending an email: "+message);
 }
}

You can test the program like so:

public class StrategyTest {
 public static void main(String[] args) {
 EmailNotifyStrategy emailNotifier = new EmailNotifyStrategy();

 Customer a = new Customer(emailNotifier);
 Customer b = new Customer(emailNotifier);

 a.notify("Your product has shipped!");
 }
}

This concludes the tour of the creational, structural, and behavioral design patterns. It is easy to
feel overwhelmed by these concepts, especially if you’re a newbie. Some of these patterns might look
confusing, and some of them might look so nicely designed that you want to use them right away. Be
careful not to overuse them.

Most of the patterns that were discussed deal, ultimately, with abstracting concepts and algorithms
into more classes and objects. Most programmers will go through an “abstraction vision quest”
sometime in their career, looking roughly like this:

 1. Beginner programmers don’t care too much about patterns and architecture. Their programs
are small. They take care to put every concept into an appropriate class, but things stay man-
ageable and nimble.

 2. As programmers undertake bigger and bigger projects, they become at one point annoyed by
a problem that one of the patterns tries to solve. Why do I have to keep adding subclasses to
deine product types? Maybe I should think at a higher level? What if I make a product type
itself a class? Programmers start looking into design patterns, and suddenly, they seem like
the perfect solution to all their problems.

 3. Programmers are so happy with their use of patterns and the elegance they bring along, they
start “thinking” ahead and start working out beautiful, elegant, and abstract architectures
for their new projects.

http:///

614 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

 4. At some point, everything breaks down again. Programmers undertake new projects with
an inherent need to create decorators, observers, and some factories thrown in as well. At
this point, you’ll see the dreaded interface‐abstract‐concrete class combo showing up for
every concept that needs to be deined. It is a grandiose architecture, but somehow, the joy
is lost.

 5. And so, at some point, programmers try hard not to over‐engineer everything. Yes, big soft-
ware architectures are impressive, but for simple projects, simplicity also brings elegance.

The main takeaway is that you should keep things as simple as possible. What is important to
remember is that you should always keep an eye out for things that can be improved as your projects
grow. Starting out small is awesome to keep things moving along, but when it’s time to inally ix
that hard‐to‐maintain issue, it’s nice to keep the things you’ve learned in this chapter in the back of
your mind.

helpful libraries

It’s impossible to list all libraries here, so the most common ones are included here for your
 reference. The main reason why we discuss these here—in a chapter on patterns and best prac-
tices—is because the Java ecosphere thrives mainly thanks to the great amount of excellent,
well‐known, and reliable libraries that have been built by the community throughout the years.
Therefore, the old advice to “buy the best, build the rest” seems like a itting inspiration (especially
when “buy” means “get for free” in this context) for this closing best practice, which is to make use
of helpful libraries. You might even end up loving some of them so much that you’ll include them by
default on the build paths of all your projects.

apache commons
The Commons is an Apache open-source project dedicated to building reusable Java components. In
short, you could describe this as the project that adds the missing batteries to Java.

In actuality, this project does not encompass one library, but is split into a series of packages. Not
all of them are as useful, but the following ones are worth checking out:

 ➤ Apache Commons Collections: Provides a replacement for Java’s collection types. It is more
eficient, more expandable, and easier to garbage collect.

 ➤ Apache Commons CSV: Useful when dealing with CSV iles.

 ➤ Apache Commons Exec: Useful when you want to start and manage other programs from
Java.

 ➤ Apache Commons IO: By far the most widely used commons library, mainly due to its
FileUtils utility class, which adds a lot of static utility functions to deal with common ile
handling operations in a sensible manner. One downside is that, for compatibility reasons,
File objects are used everywhere, instead of the NIO Path.

 ➤ Apache Commons Lang: Adds functionality to Java’s language core. Useful additions include
a better Math class and better String operation methods.

http:///

helpful Libraries ❘ 615

 ➤ Apache Commons Logging: Adds a thin bridge between your program and many other log-
ging libraries.

 ➤ Apache Commons Math: Adds many mathematical and statistics components not available
in Java by default.

See http://commons.apache.org/.

google guava
Another collection of libraries, Guava is used by Google in all its Java projects. The most important
features include:

 ➤ Replacement for Java’s default collections, making them faster and better. This was the initial
idea for the creation of Guava, back when it was called “Google‐collections” (you’ll see this
library popping up, but it is outdated and replaced by Guava).

 ➤ Tools to avoid NullPointerExceptions.

 ➤ Tools to add preconditions to methods.

 ➤ Tools to simplify other common tasks, such as writing a toString() method.

 ➤ Tools to eficiently manipulate strings.

 ➤ Tools to deal with I/O.

 ➤ Mathematical library.

 ➤ Tools to write parallel programs.

Note that there is a high degree of overlap regarding the objectives and content of Google Guava
and Apache Commons, so it’s best to stick with the same project if you can.

See https://code.google.com/p/guava‐libraries/.

trove
The Trove library provides yet another high‐speed replacement for collection types. The reason for
so many implementations stems from the fact that collections often form the cornerstone of every
algorithm in Java, and it thus makes sense to keep these nimble and fast.

Trove is popular in some areas (some computer science researchers prefer it), but if you’re already
using Apache Commons or Google Guava, there’s no need to add Trove for any particular reason.
Just use the Commons Collections or Guava Collections.

See http://trove.starlight‐systems.com/.

colt
This is another library used by computer scientists aiming to add high‐performance scientiic com-
puting functionality (linear algebra, statistics, fast multidimensional arrays, and others). In most

http://commons.apache.org/
https://code.google.com/p/guava<2010>libraries/
http://trove.starlight<2010>systems.com/
http:///

616 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

cases, the functionality offered by Commons Math or Guava’s math classes should sufice, but you
might see this library pop up in a number of very intensive applications.

See http://acs.lbl.gov/ACSSoftware/colt/.

lombok
Lombok aims to provide a set of features that simpliies the development of Java programs. It
includes functionality to avoid having to write getters and setters manually, or to create a “data”
object in a very straightforward manner. Its website shows the following example:

import lombok.AccessLevel;
import lombok.Setter;
import lombok.Data;

@Data public class DataExample {
 private final String name;
 @Setter(AccessLevel.PACKAGE) private int age;
 private double score;
 private String[] tags;
}

This code will automatically create getters, setters, equals, hashCode, and toString.

See http://projectlombok.org/.

opencsv
Just like the Apache Commons CSV library (see “Apache Commons” above), this is another well-
maintained library for dealing with CSV iles. Using this library can be more ideal in projects where
you only desire to add functionality to read and write CSV iles, without requiring any other librar-
ies from the Apache Commons project. Including the OpenCSV library is then a simple matter of
including one JAR ile in your build path.

Reading a CSV iles then becomes as easy as writing the following:

// Read csvfile using comma separator (,), double quote quote character ("),
// and skip the first 1 line(s)
CSVReader reader = new CSVReader(new FileReader("csvfile.csv"), ',', '"', 1);
String [] nextLine;
while ((nextLine = reader.readNext()) != null) {
 // Do something with nextLine here
}

See http://opencsv.sourceforge.net/.

html and Json libraries
These are libraries to parse HTML and deal with JSON data. Refer back to Chapter 10 of this
book, which deals with web sources.

http://acs.lbl.gov/ACSSoftware/colt/
http://projectlombok.org/
http://opencsv.sourceforge.net/
http:///

helpful Libraries ❘ 617

See the following libraries:

 ➤ http://jsoup.org/ (jsoup)

 ➤ http://jackson.codehaus.org/ (Jackson)

 ➤ https://code.google.com/p/google‐gson/ (Google‐gson)

hibernate and other Jpa‐Compliant libraries
These are libraries that work with persistent data. See Chapter 9 of this book on databases.

See http://hibernate.org/ (Hibernate).

Joda‐time
This is a library that essentially ixes Java’s date and time classes. It is extremely useful if you’re
stuck with an older Java version.

The library was so well written that the author of Joda‐Time was contacted by Oracle to
lead the development of the Java 8 java.time classes. So make sure you use those instead of
java.util.Date when you can.

In case you cannot yet use Java 8 in one of your projects, see http://www.joda.org/joda‐time/ to
download the library.

Charting libraries
Many charting libraries exist in Java for making 2D and 3D plots. They differ in terms of lexibility,
ease‐of‐use, and license used.

See the following:

 ➤ http://www.jfree.org/jfreechart/ (JFreeChart)

 ➤ https://code.google.com/p/charts4j/ (charts4j)

 ➤ http://trac.erichseifert.de/gral/ (GRAL)

 ➤ http://freecode.com/projects/jchartlib (JChartLib)

 ➤ http://jzy3d.org/ (Jzy3d)

 ➤ http://jchart2d.sourceforge.net/ (JChart2D)

 ➤ http://docs.oracle.com/javase/8/javafx/user‐interface‐tutorial/charts

.htm#JFXUI577 (charts with JavaFX)

3d Graphics libraries
These libraries provide bindings from Java to OpenGL and related APIs to use hardware-accelerated
graphics in your projects—useful if you’re developing graphic-intensive programs.

http://jsoup.org/
http://jackson.codehaus.org/
https://code.google.com/p/google<2010>gson/
http://hibernate.org/
http://www.joda.org/joda<2010>time/
http://www.jfree.org/jfreechart/
https://code.google.com/p/charts4j/
http://trac.erichseifert.de/gral/
http://freecode.com/projects/jchartlib
http://jzy3d.org/
http://jchart2d.sourceforge.net/
http://docs.oracle.com/javase/8/javafx/user<2010>interface<2010>tutorial/charts .htm#JFXUI577
http://docs.oracle.com/javase/8/javafx/user<2010>interface<2010>tutorial/charts .htm#JFXUI577
http:///

618 ❘ Chapter 12 uSInG obJect‐orIented PAtternS

See the following:

 ➤ http://jogamp.org/ (JogAmp)

 ➤ http://www.lwjgl.org/ (LWJGL, geared toward game engine development)

 ➤ http://env3d.org/beta/ (Env3D)

 ➤ http://www.jpct.net/ (jPCT)

 ➤ http://www.oracle.com/technetwork/java/javase/tech/index‐jsp‐138252.html
(Java 3D, which is outdated; replaced by JavaFX at this point)

 ➤ http://docs.oracle.com/javase/8/javase‐clienttechnologies.htm (JavaFX)

financial libraries
These libraries offer inancial quantitative algorithms and trading algorithms.

See the following

 ➤ http://www.jquantlib.org/en/latest/ (JQuantLib, derived from QuantLib—http://

quantlib.org/index.shtml—which also offers bindings to Java but is written in C++.)

 ➤ http://finmath.net/java/ (FinMath)

 ➤ https://code.google.com/p/maygard/ (Maygard)

 ➤ http://www.javaquant.net/finalgo.html (Java Quant)

 ➤ http://www.eclipsetrader.org/ (EclipseTrader)

http://jogamp.org/
http://www.lwjgl.org/
http://env3d.org/beta/
http://www.jpct.net/
http://www.oracle.com/technetwork/java/javase/tech/index<2010>jsp<2010>138252.html
http://docs.oracle.com/javase/8/javase<2010>clienttechnologies.htm
http://www.jquantlib.org/en/latest/
http://quantlib.org/index.shtml
http://quantlib.org/index.shtml
http://finmath.net/java/
https://code.google.com/p/maygard/
http://www.javaquant.net/finalgo.html
http://www.eclipsetrader.org/
http:///

619

index

symbols & numbers

+ (addition) operator, 30

/’ (apostrophe) escape character, 29

= (assignment) operator, 30–31

\ (backslash) escape character, 29

& (bitwise AND) operator, 31, 132

^ (bitwise exclusive OR) operator, 32, 33

| (bitwise OR) operator, 31, 132

{} (brackets), 22

&& (conditional AND) operator, 33, 132

|| (conditional OR) operator, 33, 132

/ (division) operator, 30

== (equal) operator, 34, 130–132, 133–134

> (greater than) operator, 34, 130

>= (greater than or equal) operator, 34, 130

<< (left shift) operator, 32

< (less than) operator, 34, 130

<= (less than or equal) operator, 34, 130

% (modulo) operator, 30

* (multiplication) operator, 30

!= (not equal) operator, 34, 130

/’’ (quote mark) escape character, 29

; (semicolon) character, 21

>> (signed right shift) operator, 32

- (subtraction) operator, 30

~ (unary bitwise inverse operator), 32

! (unary NOT) operator, 33

>>> (unsigned right shift) operator, 32

3D graphics libraries, 617–618

a

a ile mode, 262

a+ ile mode, 262

abstract classes, 246–247

interface-abstract combination, 580–582

abstract factory pattern, 566–567

Abstract Window Toolkit (AWT), 464

access modiiers, 22, 105–106, 230–231

AccountFactory class, 567

AccountManager class, 248

action commands, 513–515

ActionListenerExample class, 505–508,

511–513

adapter pattern, 568–570

adaptive maintenance, 8

addition (+) operator, 30

@After annotation, 211–212

@AfterClass annotation, 211–212

algorithms, 3

abstraction, 613–614

inancial quantitative, 618

strategy pattern, 612–614

trading, 618

visitor pattern, 607–610

alpha testing, 8

Amazon Dynamo, 344

anchor variable, GridBagConstraints, 485

AND (&) bitwise operator, 31, 132

AND (&&) conditional operator, 33, 132

annotations, 222

AnotherTypeCastingExample class, 39–40

anti-patterns, 562

Apache Commons, 614–615

Apache Log4j, 204–210

Apache Pivot, 466

ApacheLogging class, 205–209

apostrophe (/’) escape character, 29

applets, 20

http:///

620

application layer – BreakLoop class

application layer, OSI model, 356

applications

applets, 20

debugging, 6–7, 195–210

Java beans, 21

maintenance, 8–9

object-oriented programming. See object-

oriented programming

programming process, 2–5

servlets, 20

standalone, 19–20

structured programming, 9

testing

JUnit tests, 210–219

principles, 7–8

writing

BMI calculator example, 497–504

Eclipse example, 53–59

GUI example, 468–470

networked example, 356–360

Notepad example, 43–46

paint example, 526–540

argument passing, 109–115

arithmetic operators, 30–31

ArithmeticException, 176

ArrayIndexOutOfBoundsException, 186

ArrayList class, 121

arrays, 34–37

Arrays class, 126

arrow lowchart symbol, 3

ASCII (American Standard Code for Information

Interchange), 264–265

aspect-oriented programming, 563

assertions, JUnit tests, 212

assignment operators, 30–31

AudioBook class, 609

AudioInputStream class, 281

autoboxing, 64, 125–126

AWT (Abstract Window Toolkit), 464

b

/b (backspace) escape character, 29

backslash (//) escape character, 29

backspace (/b) escape character, 29

@Before annotation, 211–212

@BeforeClass annotation, 211–212

behavioral patterns, 591–614

chain-of-responsibility, 591–592

iterator, 605–607

model-view-controller, 597–604

observer, 592–604

strategy, 612–614

template method, 610–612

visitor, 607–610

beta testing, 8

BigDecimal class, 118

BigInteger class, 118

binary iles, 263–265

binding, 244–245

bitwise operators, 31–32

black box strategy, 8

blank inal variables, 83, 97–98

BMI (Body Mass Index) calculator, creating,

497–504

BMI example program

comments, 24–26

creating, 497–504, 546–555

data types, 27–39

identiiers, 22

Java language structure, 21–22

keywords, 22–23

methods, 23–24

naming conventions, 26

overview, 2–5

variables, 23

Book class, 223–224

Boolean operators, 32–33

bootstrap class loader, 17–18

BorderLayout layout manager, 476–478

BorderLayoutFrame class, 477–478

boxing, 64

BoxLayout layout manager, 489–493

BoxLayoutFrame class, 490–493

brackets ({}), 22

branching, 135

break keyword, 157–158, 163–164

BreakLoop class, 165–168, 165–168

http:///

621

breakpoints – constructors

breakpoints, setting, 195–196

bridge pattern, 570–571

buffered streams, 276–278

BufferedInputStream class, 277–278

BufferedOutputStream class, 277–278

BufferedReader class, 277–278

BufferedWriter class, 277–278

bugs, 6–7

byte streams, 269–275

bytecode, 14–15

bytecode veriier, 18

c

c ile mode, 263

c+ ile mode, 263

Calendar class, 126

CallableStatement JDBC class, 317

CardLayout layout manager, 486–489

CardLayoutFrame class, 486–489

CaretListener, 508

carriage return (/r) escape character, 29

case keyword, 157

case sensitivity, 22, 43

CategorizingBookVisitor class, 609–610

chain-of-responsibility pattern, 591–592

ChangeListener, 508

channel I/O, 298

character encodings, 67–68, 263–265

character streams, 275–276

charting libraries, 617

charts4j, 617

checked exceptions, 192

CheckingAccount class, 250

class keyword, 22, 66

class loader, 17–18

class methods, 94–95

class variables, 80–82

classes, 22

abstract classes, 580–582

access modiiers, 22, 105–106, 230–231

adding methods, 69–71

collections, 119–126

creating, 63–58

encapsulation, 63, 229–240

access modiiers, 230–231

advantages, 229–230

example application, 234–240

getter methods, 231–232

setter methods, 232–234

generics, 124–126

inheritance, 63, 240–251

abstract classes, 246–247

extends keyword, 240–241

method overriding, 243

polymorphism, 243–245

superclass, 240, 241–243, 245–246, 247–251

naming conventions, 26

packages, 251–252

CLASSPATH environment variable, 18, 252

ClientWithoutWSDL class, 373–387

ClientWithWSDL class, 403–404

clone() method, 245

collections, 119–126

Colt library, 615–616

@Column annotation, 327, 333

column-based databases, 344–345

command-line, 283–290

comments, 24–26

vs. annotations, 222

Commons, Apache, 614–615

comparison methods, 132–135

comparison operators, 130–132

compilation errors, 6

ComponentListener, 510

components, GUI, 467–473

AWT components, 464

JavaFX components, 465–466

Swing components, 464–465, 467–473

SWT components, 465

composite pattern, 575–580

conditional AND operator (&&), 33

conditional OR operator (||), 33

Conig logging level, 200, 204

Connection class, 316

console, 283–290

constructors, 72–73, 95–100

super keyword, 241–243

http:///

622

containers – design patterns

containers, GUI, 468–473

simple GUI app example, 468–470

continue keyword, 164–165

control structures, 129–130

do while loops, 152–156

enhanced for loops, 143–146

for loops, 138–143, 156

if-then statements, 135–138

keywords, 162–168

nested for loops, 146–148

operators, 130–135

switches, 156–161

while loops, 148–152, 156

CORBA RMI protocol, 118, 363

corrective maintenance, 8

creational patterns, 559–567

abstract factory, 566–567

factory, 566–567

null object, 566

service provider, 565–566

singleton, 559–565

static utility class, 559, 563–564

cross-cutting concerns, 563

Currency class, 126

cursors, SQLJ, 323–324

cylinder lowchart symbol, 4

d

data deinition language (DDL), 309–314

data link layer, OSI model, 356

data manipulation language (DML), 309–310

data scraping, 449–457

data streams, 278–280

data types, 27–39

autoboxing, 64, 125–126

comparing, 130–135

type casting, 37–39

databases

comparison of access technologies,

343–344

document-based, 344

graph databases, 345

key-value-based, 344

MySQL

accessing data, 317–321, 328–333

creating, 311–314

many-to-many mappings, 334–340

NoSQL, 344–345

OODBMS (object-oriented databases), 308,

325, 341–344

relational databases

accessing from Java, 315–324

accessing using Hibernate, 328–333

creating, 311–314

impedance mismatch problem, 315, 324

Date class, 126

DDL (data deinition language), 309–314

Debug perspective, 196–199

debugging applications, 6–7

errors

vs. exceptions, 175–176

logic errors, 7

logical errors, 176–180

runtime errors, 6, 175–176

semantic errors, 7

syntax errors, 6, 172–175

exceptions, 180–194

catching, 187–194

vs. errors, 175–176

index out of bounds, 185–186

null pointer, 181–185

OutOfMemoryError, 186–187

runtime, 192

StackOverFlowError, 186–187

using a debugger, 195–199

using a logger, 199–210

decorator pattern, 571–574

default keyword, 157

design patterns

anti-patterns, 562

behavioral, 591–614

chain-of-responsibility, 591–592

iterator, 605–607

model-view-controller, 597–604

observer, 592–604

strategy, 612–613

template method, 610–612

visitor, 607–610

http:///

623

destructors – exceptions

creational, 559–567

abstract factory, 566–567

factory, 566–567

null object, 566

service provider, 565–566

singleton, 559–565

static utility class, 559, 563–564

structural, 568–591

adapter, 568–570

bridge, 570–571

composite, 575–580

decorator, 571–574

façade, 574–575

type, 583–589

destructors, 99–100

diamond lowchart symbol, 4

DistanceConverterTest class, 216–219

division (/) operator, 30

division by zero exception, 176, 188–189

DML (data manipulation language), 309–310

DNS (Domain Name System), 349–351, 356

do while loops, 152–156

document-based databases, 344

documentation, 9

Domain Name System (DNS), 349–351, 356

DoWhileLoop class, 154–156

DriverManager class, 316

drivers, JDBC, 315–316

dynamic

binding, 244–245

testing, 8

Dynamo database, 344

e

eager initialization, 560

EBCDIC (Extended Binary Coded Decimal

Interchange Code), 264

Eclipse, 47

buttons, 59–60

creating Java application, 53–59

installing, 48–50

JUnit tests, 210–219

using, 50–52

EclipseLink, 345

EclipseTrader, 618

EDT (Event Dispatch Thread), 503, 515–520

EmailNotifyStrategy class, 613

encapsulation, 63, 229–240

access modiiers, 230–231

advantages, 229–230

example application, 234–240

getter methods, 231–232

setter methods, 232–234

EndlessMethodCall class, 187

enhanced for loop, 143–146

EnhancedForLoop class, 144–146

entering() method, Logger class, 201

@Entity annotation, 327, 333, 339

Env3D, 618

equal (==) operator, 34, 130–132, 133–134

equals() method, 245–246

errors, 6–7. See also debugging; exceptions

vs. exceptions, 175–176

logic errors, 7

logical errors, 176–180

runtime errors, 6, 175–176

semantic errors, 7

syntax errors, 6, 172–175

Errors class, 172–175, 179–180

escape characters, 29

escape sequences, 274

Event Dispatch Thread (EDT), 503, 515–520

events, GUI, 496–524

canceling running calculations, 520–524

deining event listeners, 497–515

EDT (Event Dispatch Thread), 503, 515–520

event loops, 397, 515, 519, 520

Evil API, 453

Exception class, 115

ExceptionExamples class, 181–185

exceptions, 180–194. See also debugging; errors

catching, 187–194

vs. errors, 175–176

index out of bounds, 185–186

null pointer, 181–185

OutOfMemoryError, 186–187

runtime, 192

StackOverFlowError, 186–187

http:///

624

exclusive Or – graph databases

exclusive OR (^) operator, 32

exiting() method, Logger class, 201

ExpenseProductCountCalculator class,

611–612

ExpenseTotalSumCalculator class, 611

Extended Binary Coded Decimal Interchange

Code (EBCDIC), 264

extends keyword, 240–241

extensions class loader, 18

f

façade pattern, 574–575

Facebook

accessing REST services, 445–449

Casandra databases, 345

REST interface, accessing, 367–368

FacebookTest class, 445–447, 446–449

factory pattern, 566–567

ile modes, 262–263

FileCopier class, 271–273

FileInputStream class, 270–273

FileOutputStream class, 270–273

iles

binary iles, 263, 265

checking existence, 293–294

copying, 294–295

with buffered streams, 277–278

with byte streams, 270–273

with character streams, 275–276

NIO2 API, 294–295

deleting, 294

moving, 295

text iles, 263

FileUtils class, 305, 614

fill variable, GridBagConstraints, 485

final keyword, 96

inal variables, 82–86

finalize() method, 100, 245, 246

finally block, 190–192, 194

inancial libraries, 618

Fine logging level, 200

Finer logging level, 200, 203–204

Finest logging level, 200

FinMath, 618

first() method, CardLayout, 489

lowcharts, 3–4

FlowLayout layout manager, 474–476

FlowLayoutFrame class, 474–475

lyweight pattern, 568

FocusListener, 510

folders

copying, 294–295

creating, 298

deleting, 294

moving, 295

reading, 298–299

recursing, 299–303

for loops

breaking, 165–168

enhanced, 143–146

nested, 146–148

vs. while loops, 156

ForLoop class, 141–143

FormattingOutput class, 273–275

g

Gang of Four design patterns. See also speciic

patterns

behavioral, 591–614

creational, 559–567

structural, 568–591

garbage collection, 100, 259–260

generics, 124–126

getClass() method, 245, 246

getLogger() method, 200–201

GetPassword class, 289–290

getter methods, 231–232

globbing, 299

god object anti-pattern, 562

Google

BigTable, 345

Gson (Google JSON), 442–444, 617

Guava library, 615

Spanner, 345

GRAL, 617

graph databases, 344-345

http:///

625

graphical user interfaces – identiiers

graphical user interfaces. See GUIs

Green research project, 12

GreenPrintSpooler class, 571

GridBagLayout layout manager, 482–486

GridBagLayoutFrame class, 482–485

gridheight variable, GridBagConstraints,

485

GridLayout layout manager, 478–482

GridLayoutFrame class, 479–482

gridwidth variable, GridBagConstraints, 485

gridx variable, GridBagConstraints, 485

gridy variable, GridBagConstraints, 485

GroupLayout layout manager, 493–494Gson

(Google JSON), 442–444, 617

GTX-Java, 466

Guava library, 615

GUIs (graphical user interfaces)

AWT (Abstract Window Toolkit) library, 464

best practices, 525

choosing a library, 466–467

class hierarchy, 472–473

components, 467–473

containers, 468–473

creating a simple application, 468–471

events, 496–524

canceling running calculations, 520–524

deining event listeners, 497–515

EDT (Event Dispatch Thread), 503,

515–520

event loop, 497

JavaFX library, 465–466, 545–555

layout managers, 473–474

absolute positioning without, 494–496

BorderLayout, 476–478

BoxLayout, 489–493

CardLayout, 486–489

FlowLayout, 474–476

GridBagLayout, 482–486

GridLayout, 478–482

GroupLayout, 493–494

SpringLayout, 493–494

Swing library, 464–465

SWT (Standard Widget Toolkit) library, 465

visual GUI designers, 540–545

h

handlers, 200–204. See also loggers

hashCode() method, 245, 246

HashSetTester class, 120–121

heavyweight web services, 360

Hibernate, 325–340

accessing relational MySQL database, 328–333

annotations, 327

architecture, 326

many-to-many mappings, 334–340

Hibernate Query Language (HQL), 327, 333

hot spots, 19

HotJava, 12

HotSpot JVM, 18

HQL (Hibernate Query Language), 327, 333

HTML libraries, 617

HTTP requests, 352–356, 366–368

HTTPServer class, 457–460, 458–460

HttpUrlConnection class, 417

HyperGraphDB, 345

i

I/O, 261–305

ile modes, 262–263

from iles, 290–305

legacy ile I/O, 304–305

NIO2 API, 291–303

from the command-line, 283–290

in Java, 266–268

scanners, 281–283

stream-based, 268–281

buffered streams, 276–278

byte streams, 269–275

character streams, 275–276

data streams, 278–280

object streams, 278–280

text versus binary iles, 263–265

@ID annotation, 327, 333, 339

identiiers, 22

classes, 22

abstract classes, 580–582

access modiiers, 22, 105–106, 230–231

http:///

626

identiiers – Jar

identiiers (continued)

adding methods, 69–71

collections, 119–126

creating, 63–58

encapsulation, 63, 229–240

generics, 124–126

inheritance, 63, 240–251

packages, 251–252

methods, 23–24, 91–115

argument passing, 109–115

class methods, 94–95

comparison methods, 132–135

constructors, 95–100

declaration, 24

generics, 124–126

getter methods, 231–232

instance methods, 91–94

main, 100–102

overloading, 222–224, 226–229

overriding, 243

setter methods, 232–234

naming conventions, 26

variables, 23, 76

blank inal variables, 83, 97–98

class variables, 80–82

encapsulation, 63, 229–240

inal variables, 82–86

instance variables, 76–80

scope, 87–91

superclass variables, 242–243

IDEs (integrated development environments), 42–48

choosing, 46–48

coding in text editors, 42–46

Eclipse, 47

buttons, 59–60

creating Java application, 53–59

installing, 48–50

JUnit tests, 210–219

using, 50–52

impedance mismatch problem, 315, 324

index out of bounds exceptions, 185–186

IndexExceptionExample class, 185–186

Info logging level, 200

information hiding, 63, 229–240

access modiiers, 230–231

advantages, 229–230

example application, 234–240

getter methods, 231–232

setter methods, 232–234

inheritance, 63, 240–251

abstract classes, 246–247

extends keyword, 240–241

method overriding, 243

polymorphism, 243–245

superclass, 240, 241–243, 245–246, 247–251

InkjetPrinter class, 568–570

input/output. See I/O

InputStream class, 269, 281

insets variable, GridBagConstraints, 485

instance methods, 91–94

instance variables, 76–80

integrated development environments. See IDEs

IntelliJ IDEA, 47

inter-process communication (IPC), 280

interfaces, 252–259

interface-abstract combination, 580–581

interning, 133–134

Invoice class, 413–414

invokeAndWait() method, SwingUtilities

class, 517

invokeLater() method, SwingUtilities

class, 517

IP addresses, 348–356

ipadx variable, GridBagConstraints, 485

ipady variable, GridBagConstraints, 485

IPC (inter-process communication), 280

isEventDispatchThread() method,

SwingUtilities class, 517

Item class, 414–415

ItemListener, 509

iterator pattern, 605–607

IteratorTest class, 605–607

J

Jackson library, 617

JApplet class, 468, 470, 472–473

JAR (Java ARchive) iles, 17–18, 107–108,

287–290

http:///

627

Java – JUnittest class

Java. See also Java SE

application types, 19–21

bytecode, 14–15

data types, 27–39

history of, 12–13

key characteristics, 13

language structure, 21–26

platforms, 19

release overview, 12–13

Java 2D, 465

Java API, 16–17

Java ARchive (JAR) iles, 17–18, 107–108,

287–290

Java beans, 21

Java database connectivity (JDBC), 315–321

Java Development Kits (JDKs), 12, 42

Java Persistence API (JPA)

Hibernate, 325–340

JPA-compliant libraries, 616–617

ObjectDB, 341–343

Java Quant, 618

Java RMI, 360–363

Java Runtime Environment (JRE), 15–19

Java SE

classes, 115–127

CORBA, 363

generics, 124

Non-Blocking IO API, 267

object persistence, 325

release overview, 12–13

Java Virtual Machine (JVM), 14, 16, 18–19

java.awt package, 118

java.io package, 117

java.lang package, 115–117

java.math package, 118

java.net package, 118

java.nio package, 117

java.rmi package, 118

java.security package, 127

java.text package, 127

java.util package, 118–127

JavaFX, 118, 465–466, 467, 545–555

JavaInput class, 266–267

javax.swing package, 118

JAX-RS, 461

JButton class, 467, 472, 496, 504, 505

JChart2D, 617

JChartLib, 617

JCheckBox class, 468, 508, 509

JComboBox class, 468, 489, 508, 509

JComponent class, 467–468, 472–473, 525

JDBC (Java database connectivity), 315–321

JDBCExample1 class, 317–319

JDBCExample2 class, 319–321

JDialog class, 468, 470, 472–473

JDKs (Java Development Kits), 12, 42

JDO (Java Data Objects), 325, 341–343

JFrame class, 468, 470–473

JFreeChart, 617

JGoodies, 466

JIT (Just in Time) compiler, 16, 19, 87

JLabel class, 467, 472, 496

JList class, 467, 509, 517

JobAmp, 618

Joda-Time, 617

JPA (Java Persistence API)

Hibernate, 325–340

JPA-compliant libraries, 616–617

ObjectDB, 341–343

JPanel class, 468

jPCT, 618

JProgressBar class, 467, 509

JQuantLib, 618

JRadioButton class, 468

JRE (Java Runtime Environment), 15–19

bytecode veriier, 18

class loader, 17–8

Java API, 16–17

JVM (Java Virtual Machine), 14, 16, 18–19

JScrollBar class, 467

JSlider class, 467, 509

JSON libraries, 617

jsoup library, 450–456, 617

JSpinner class, 467, 509

JTextArea class, 468, 508

JTextField class, 468, 508

JUnit tests, 210–219

JUnitTest class, 211–214

http:///

628

Just in time – maintaining software

Just in Time (JIT) compiler, 16, 19, 87

JVM (Java Virtual Machine), 14, 16, 18–19

JWindow class, 468, 470, 472–473

Jzy3d, 617

K

key-value-based databases, 344

KeyListener, 510

keywords, 22–23, 24

break, 157–158, 163–164

class, 22, 66

case, 157

continue, 164–165

default, 157

extends, 240–241

final, 96

new, 72–74

public, 24

return, 162–163

static, 24, 74, 81–82

super, 241–243

switch, 157–158

this, 99, 224–229

transient, 23, 280

void, 24

l

LAMP (Linux, Apache, MySQL, and Perl/PHP/

Pyton) stack, 310

lapsed listeners, 604–605

LaserPrinter class, 568–570

last() method, CardLayout, 489

layers, OSI model, 356

layout managers, 473–496

absolute positioning without, 494–496

BorderLayout, 476–478

BoxLayout, 489–493

CardLayout, 486–489

FlowLayout, 474–476

GridBagLayout, 482–486

GridLayout, 478–482

GroupLayout, 493–494

SpringLayout, 493–494

lazy initialization, 560

left shift (<<) operator, 32

legacy ile I/O, 304–305

libraries

3D graphics, 617–618

AWT (Abstract Window Toolkit), 464

charting, 617

Colt, 615–616

inancial, 618

Guava, 615

HTML, 617

Jackson, 617

Java API, 16–17

JavaFX, 465–466, 545–555

JPA-compliant, 616–617

JSON, 617

Lombok, 616

OAuth Client Library, 422

OpenCSV, 616

Swing, 464–465

SWT (Standard Widget Toolkit) library, 465

Trove, 615

linefeed (/n) escape character, 29

LineReverser class, 286–289

LinkedList class, 121

List class, 121-122

ListSelectionListener, 509

literals, 28–29

Locale class, 126

log() method, Logger class, 201

Log4j, 204–210

LoggerExample class, 201–204

loggers, 199–210

built-in API, 199–204

Log4j, 204–210

logical errors, 7, 176–180

logical operators, 32–33, 131–132

Lombok library, 616

Luna, 47, 48

LWJGL, 618

m

magic number, 265

main method, 100–102

maintaining software, 8–9

http:///

629

ManualLayoutFrame class – ObjectOutputStreamtest class

ManualLayoutFrame class, 494–495

many-to-many mappings, 334–340

Map class, 121

maps, 121–122

Math class, 116

MatrixExample class, 36–37

Maygard, 618

member methods, 91–94

methods, 23–24, 91–115

argument passing, 109–115

class methods, 94–95

comparison methods, 132–135

constructors, 95–100

declaration, 24

generics, 124–126

getter methods, 231–232

instance methods, 91–94

main, 100–102

naming conventions, 26

overloading, 222–224, 226–229

overriding, 243

setter methods, 232–234

model-view-controller pattern, 597–604

modulo (%) operator, 30

MongoDB, 344

MouseAdapter, 511

MouseListener, 510

MouseMotionListener, 511

MouseWheelListener, 511

multiplication (*) operator, 30

myDBApp class, 331

myDBApp2 class, 337

myDBApp3 class, 341–343

MyFirstApplication class, 43–46, 55–59

MyFirstFrame class, 468–470

MySQL, 311

accessing data

using Hibernate, 328–333

using JDBC, 317–321

creating relational database, 311–314

many-to-many mappings, 334–340

n

/n (linefeed) escape character, 29

naming conventions, 9, 26

Neo4j, 345

nested

for loops, 146–148

if-then statements, 137–138

NetBeans, 47

network layer, OSI model, 356

new keyword, 72–74

next() method, CardLayout, 489

Nimbus, 471

NIO (Non-Blocking IO), 118, 267

NIO2, 267–268, 291–303

Files class, 293–303

Path interface, 291–293

no modifier access modifer, 105, 230

Node.js, 497

NonFictionBook class, 607

NoSQL, 344–345

not equal (!=) operator, 34, 130

null object pattern, 566

null pointer exceptions, 181–185

NullLogger class, 566

o

Oak language, 12

OAuth, 422, 423–444

OAuth Client Library, 422

Object class, 115, 240, 245–246

Object Management Group (OMG), 363

object persistence, 325

object relational mapping (ORM), 324–340

object streams, 278–280

object-oriented databases. See OODBMS

object-oriented programming, 5–6

annotations, 222

classes. See classes

encapsulation, 63, 229–240

garbage collection, 259–260

packages, 251–252

Object/Grid Mapper (OGM), 345

ObjectDB, 325, 341–343

ObjectFactory class, 403, 417–419, 421

ObjectOutputStream class, 278–280

ObjectOutputStreamTest class, 279–280

http:///

630

objects – random class

objects, 5–6

creating, 71–75

garbage collection, 100, 259–260

object relational mapping (ORM), 324–340

Observable class, 594

observer pattern, 592–604

Off logging level, 200

OGM (Object/Grid Mapper), 345

OMG (Object Management Group), 363

on-demand loading, 17

OO. See object-oriented programming

OODBMS (object-oriented databases), 308, 325,

341–344

comparison of access technologies, 343–344

ObjectDB, 325

Open Systems Interconnection (OSI) model, 356

OpenCSV library, 616

operands, 29

operations, SOAP, 373

operators, 29–34

arithmetic, 29–30

assignment, 30–31

bitwise, 31–32

comparison, 130–132

logical, 32–33

relational, 34, 130–131

OR (|) bitwise operator, 31, 132

OR (||) conditional operator, 33, 132

org.omg.CORBA package, 118

ORM (object relational mapping), 324–340

OSI (Open Systems Interconnection) model, 356

OutOfMemoryError exception, 186–187

OutputStream class, 270, 281

overloading methods, 222–224, 226–229

overriding methods, 243

p

packages, 251–252

pass by value, 109–115

pattern groups, 558

pattern languages, 558

patterns. See design patterns

perfective maintenance, 8

persistent objects

OODBMS (object-oriented databases), 308,

325, 341–344

ORM (object relational mapping), 324–340

Person class, 225–229

PersonProgram class, 244–245

perspectives, 47, 50

Debug, 196–199

Eclipse workbench, 47, 50

physical layer, OSI model, 356

pipe, 280, 289

Pivot, Apache, 466

platforms, Java, 19

polymorphism, 63, 243–245

PreparedStatement class, 317, 320

presentation layer, OSI model, 356

preventative maintenance, 9

previous() method, CardLayout, 489

primitive data types, 27–28

PrintStream class, 273–275

PrintWriter class, 276

private access modiier, 105, 230–231

Product class, 229–234

ProductProgram class, 234

programming process, 2–5

protected access modiier, 105, 230–231

pseudo-code, 3, 62

public access modiier, 105, 230–231, 252

public keyword, 24

Q

Qt Jambi, 466

Queue class, 121

queues, 121, 280

quote mark (/’’) escape character, 29

r

/r (carriage return) escape character, 29

r ile mode, 262

r+ ile mode, 262

Random Access Files, 298

Random class, 126

http:///

631

rDBMS – SpringLayout layout manager

RDBMS. See relational databases

ReadName class, 284–285

rectangle lowchart symbol, 3

recursive operations, 187, 299–303

RecursiveOperations class, 300–303

relational databases

accessing

from Java, 315–324

impedance mismatch problem, 315, 324

using Hibernate, 328–333

comparison of access technologies, 343–344

creating, 311–314

relational operators, 34, 130–132

Remote Method Invocation (RMI), 118, 360–363

Remote Procedure Calls (RPC), 118, 360, 363–364

Representational State Transfer. See REST

Resources class, 191–192

REST (Representational State Transfer), 366–368

accessing, 406–449

Facebook, 445–449

with authentication, 421–444

without authentication, 409–421

vs. SOAP, 366–367, 407–408

RestClientProgram class, 419–420

RestServiceClient class, 415–417

ResultSet class, 317, 319–321

Resume (F8) button, 197

return keyword, 162–163

rhombus lowchart symbol, 4

RMI (Remote Method Invocation), 118, 360–363

RMIClient class, 362–363

RMIServer class, 361–363

RoboVM, 466

role pattern, 585. See also type pattern

rounding errors, 177, 179–180, 394

RPC (Remote Procedure Calls), 118, 360, 363–364

runnable JAR iles, creating, 107

runtime errors, 6, 175–176

runtime exceptions, 192–194

s

sandbox, 20

SavingsAccount class, 250–251

Scanner class, 126, 149, 191–194, 212–214,

281–283

schema-less databases, 344–345

scope of variables, 87–91

screen scraping, 449–457

with cookies, 453–457

without cookies, 451–453

ScreenScrapingWithJava project, 450

semantic errors, 7

semicolon (;) character, 21

serial version identiiers, 504–505

serialization, 280–281, 504–505

service operations, SOAP, 373

service provider pattern, 565–566

ServiceProvider class, 565–566

servlets, 20

session layer, OSI model, 356

Set class, 121

sets, 121–122

setter methods, 232–234

Severe logging level, 200

short circuiting, 132

show() method, CardLayout, 489

ShowDirectory class, 298–299

ShowGroceries class, 266

signed right shift (>>) operator, 32

Simple Mail Transport Protocol (SMTP), 407

Simple Object Access Protocol. See SOAP

SimplePaint class, 526–540

singleton pattern, 559–565

SMTP (Simple Mail Transport Protocol), 407

SOAP (Simple Object Access Protocol),

364–366

accessing, 368–406

installing JAX-WS library, 368–369

with WSDL, 395–406

without WSDL, 369, 373–387

operations, 373

vs. REST, 366–367, 407–408

webservicex.net website, 370–373

spaghetti code, 63

Spanner, 345

special characters, 265

SpringLayout layout manager, 493–494

http:///

632

SQLite – third-party libraries

SQLite, 340

SQLJ, 321–324

SQLJet, 340

Stack class, 121

StackOverFlowError exception, 186–187

stacks, 121

standalone applications, 19–20

standard streams, 284

Standard Widget Toolkit (SWT), 465

standardization, 263–265

Statement class, 316

static binding, 244

static code blocks, 405

static keyword, 24, 74, 81–82

static methods. See class methods

static testing, 8

static utility class, 559, 563–564

Step Into (F5) button, 197

Step Over (F6) button, 197

Step Return (F7) button, 197

stepwise reinement, 9

Stock class, 388–395

StockFactory class, 390–392

StockQuote class, 403, 405

StockQuoteProgram class, 393–394

StockQuoteSoap class, 403

StockServiceClient class, 392–393

strategy pattern, 612–614

stream redirection, 287–288

streams, 268–281

buffered streams, 276–278

byte streams, 269–275

character streams, 275–276

data streams, 278–280

object streams, 278–280

String class, 115, 117

StringBuilder class, 115, 117

structural patterns, 568–591

adapter, 568–570

bridge, 570–571

composite, 575–580

decorator, 571–574

façade, 574–575

type, 583–589

structured programming, 9

subclasses, 240–241

subtraction (-) operator, 30

super keyword, 241–243

superclass, 240, 241–243, 245–246, 247–251

Swing, 464–465

threading, 515–524

SwingLabs

Nimbus, 471

SwingX, 466

SwingUtilities class, 517–518

SwingWorker class, 520–524

SwingX, 466

switch keyword, 157–158

switch statements, 156–161

SwitchClass class, 159–161

SWT (Standard Widget Toolkit), 465

syntax errors, 6, 172–175

System class, 116

system class loader, 18

t

tab (/t) escape character, 29

@Table annotation, 327, 333

TCP (Transmission Control Protocol), 351, 352,

353, 356–359

TCPClient class, 357–359

TCPServer class, 357–359

template method pattern, 610–612

terminator lowchart symbol, 3

@Test annotation, 211

testing applications

JUnit tests, 210–219

principles, 7–8

text editors, coding in, 42–46

text iles, 263

third-party libraries, 127

3D graphics libraries, 617–618

Apache Commons, 614–615

charting libraries, 617

Colt, 615–616

inancial libraries, 618

Google Guava, 615

http:///

633

this keyword – web services

HTML libraries, 616–617

Joda-Time, 617

JPA-compliant libraries, 616–617

JSON libraries, 616–617

Lombok, 616

OpenCSV, 616

Trove, 615

this keyword, 99, 224–229

thread safe components, 517

threading, 515–524

throwables, 189–190

ThrowsExceptions class, 193–194

TOCTTOU bugs, 294

tokens, 281–283

toString() method, 245, 246

@Transient annotation, 327

transient keyword, 23, 280

translators, 4

Transmission Control Protocol (TCP), 351, 352,

353, 356–359

transport layer, OSI model, 356

Trove library, 615

truth tables, 33, 131

try-with-resources, 191, 272

try/catch blocks, 187–194

try/finally blocks, 194

Twitter

REST service, 422–444

screen scraping, 454–457

TwitterRESTClient class, 434–435

TwitterScraper class, 454–457

TwitterTest class, 426–428, 440–441

type casting, 37–39

type pattern, 583–589

TypeCastingExample class, 39–40

u

UDP (User Datagram Protocol), 349, 350, 351,

352, 356, 359

unary bitwise (~) operator, 32

unary NOT (!) operator, 33

unboxing, 64

unchecked exceptions, 192

undecorated windows, 470

UnifiedPrinter class, 568–569

unit testing, 210–219

Universal Character Set, 264

unsigned right shift (>>>) operator, 32

User Datagram Protocol (UDP), 349, 350, 351,

352, 356, 359

UTF-8 encoding, 264–265

UTF-16 encoding, 264

v

variable width encodings, 264

variables, 23, 76

blank inal variables, 83, 97–98

class variables, 80–82

encapsulation, 63, 229–240

inal variables, 82–86

instance variables, 76–80

naming conventions, 26

scope, 87–91

superclass variables, 242–243

virtual method invocation, 244–245

visitor pattern, 607–610

VisitorTest class, 607–608, 610

visual GUI designers, 540–545

void keyword, 24

W

w ile mode, 262

w+ ile mode, 262

Warning logging level, 200

weak references, 605

web scraping, 449–457

web services, 360–

creating, 457–461

REST (Representational State Transfer), 366–368

accessing Facebook, 445–449

accessing with authentication, 421–444

accessing without authentication, 409–421

vs. SOAP, 366–367, 407–408

RMI (Remote Method Invocation), 118,

360–363

http:///

634

web services – ZipOutputStream class

web services (continued)

RPC (Remote Procedure Calls), 118, 360,

363–364

screen scraping, 449–457

with cookies, 453–457

without cookies, 451–453

SOAP (Simple Object Access Protocol), 364–366

accessing, 368–406

operations, 373

vs. REST, 366–367, 407–408

webservicex.net website, 370–373

webservicex.net website, 370–373

weightx variable, GridBagConstraints, 486

weighty variable, GridBagConstraints, 486

while loops, 148–152

do while loops, 152–156

vs. for loops, 156

WhileLoop class, 150–152

white box strategy, 8

WikipediaGetter class, 451–452

WindowFocusListener, 510

WindowListener, 509

WindowStateListener, 510

wrapper classes

autoboxing, 64, 125–126

wrapping patterns, 585

wrapping patterns, 585. See also structural

patterns

wrapping streams, 278

wsimport, 398–406

x

x ile mode, 262

x+ ile mode, 262

XOR (exclusive OR) operator, 32

z

ZipOutputStream class, 281

http:///

http:///

http:///

WILEY END USER LICENSE

AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula
http:///

	Beginning Java® Programming
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	Chapter 1: A General Introduction to Programming
	The Programming Process
	Object-Oriented Programming: A Sneak Preview
	Programming Errors
	Syntax/Compilation Errors
	Runtime Errors
	Logic/Semantic Errors

	Principles of Software Testing
	Software Maintenance
	Adaptive Maintenance
	Perfective Maintenance
	Corrective Maintenance
	Preventive Maintenance

	Principles of Structured Programming

	Chapter 2: Getting to Know Java
	A Short Java History
	Features of Java
	Looking Under the Hood
	Bytecode
	Java Runtime Environment (JRE)
	Java Application Programming Interface (API)
	Class Loader
	Bytecode Verifier
	Java Virtual Machine (JVM)

	Java Platforms
	Java Applications
	Standalone Applications
	Java Applets
	Java Servlets
	Java Beans

	Java Language Structure
	Classes
	Identifiers
	Java Keywords
	Variables
	Methods
	Comments
	Naming Conventions

	Java Data Types
	Primitive Data Types
	Literals
	Operators
	Arithmetic Operators
	Assignment Operators
	Bitwise Operators
	Logical Operators
	Relational Operators

	Arrays
	Type Casting

	Summary

	Chapter 3: Setting Up Your Development Environment
	Integrated Development Environments
	Coding in Text Editors
	Choosing an IDE
	Eclipse
	NetBeans
	IntelliJ IDEA
	Continuing with One IDE

	Installing Eclipse on Your Computer
	Downloading and Installing Eclipse
	Using Eclipse

	Chapter 4: Moving Toward Object-Oriented Programming
	Basic Concepts of Object-Oriented Programming
	Classes and Objects in Java
	Defining Classes in Java
	Creating Objects

	Storing Data: Variables
	Instance Variables
	Class Variables
	Final Variables
	Variable Scope

	Defining Behavior: Methods
	Instance Methods
	Class Methods
	Constructors
	The Main Method
	Method Argument Passing

	Java SE Built-in Classes
	Classes in the java.lang Package
	Classes in the java.io and java.nio Packages
	Classes in the java.math Package
	Classes in the java.net, java.rmi, javax.rmi, and org.omg.CORBA Packages
	Classes in the java.awt and javax.swing Packages
	Classes in the java.util Package
	Collections
	Other Utility Classes

	Other Classes and Custom Libraries

	Chapter 5: Controlling the Flow of Your Program
	Comparisons Using Operators and Methods
	Comparing Primitive Data Types with Comparison Operators
	Comparing Composite Data Types with Comparison Methods

	Understanding Language Control
	Creating if-then Statements
	Nesting if-then Statements

	Creating for Loops
	What Is an Enhanced for Loop?
	Nesting for Loops

	Creating while Loops
	What Is a do while Loop?

	Comparing for and while Loops
	Creating Switches
	Comparing Switches and if-then Statements
	Reviewing Keywords for Control
	Controlling with the return Keyword
	Controlling with the break Keyword
	Controlling with the continue Keyword
	Specifying a Label for break or continue Control

	Reviewing Control Structures

	Chapter 6: Handling Exceptions and Debugging
	Recognizing Error Types
	Identifying Syntax Errors
	Identifying Runtime Errors
	Identifying Logical Errors

	Exceptions
	Common Exceptions
	Catching Exceptions

	Debugging Your Applications
	Using a Debugger Tool
	Using a Logging API

	Testing Your Applications
	Summary

	Chapter 7: Delving Further into Object-Oriented Concepts
	Annotations
	Overloading Methods
	The this KeyWord
	Information Hiding
	Access Modifiers
	Getters
	Setters

	Class Inheritance
	The Keyword super
	Method Overriding
	Polymorphism
	Static Binding
	Dynamic Binding

	The Superclass Object
	Abstract Classes and Methods

	Packages
	Interfaces
	Garbage Collection

	Chapter 8: Handling Input and Output
	General Input and Output
	Input and Output in Java
	Streams
	Byte Streams
	Character Streams
	Buffered Streams
	Data and Object Streams
	Other Streams

	Scanners
	Input and Output from the Command-Line
	Input and Output from Files
	Java NIO2 File Input and Output
	The Path Interface
	The Files Class
	Checking Existence

	Legacy File Input and Output
	A Word on FileUtils

	Conclusion

	Chapter 9: Working with Databases in Java
	Covering the Basics of Relational Databases
	Accessing Relational Databases from Java
	Java Database Connectivity (JDBC)
	SQLJ

	Ensuring Object Persistence
	Hibernate
	Object-Oriented Database Access from Java

	Comparing Java Database Access Technologies
	What’s Ahead

	Chapter 10: Accessing Web Sources
	A Brief Introduction to Networking
	Web Services
	RPC and RMI
	SOAP
	REST

	Accessing Web Services and Sources with Java
	Accessing SOAP Services
	Installing JAX-WS
	Accessing SOAP Services with JAX-WS Without WSDL
	Accessing SOAP Services with JAX-WS with WSDL

	Accessing REST Services
	Accessing REST Services Without Authentication
	Accessing REST Services with Authentication

	Screen Scraping
	Screen Scraping Without Cookies
	Screen Scraping with Cookies

	Creating Your Own Web Services with Java
	Setting Up an HTTP Server
	Providing REST Services

	Chapter 11: Designing Graphical Interfaces
	Covering the Basics of GUIs in Java
	Highlighting the Built-In GUI Libraries
	Abstract Window Toolkit (AWT)
	Swing
	Standard Widget Toolkit (SWT)
	JavaFX
	Other Toolkits and Libraries
	Choosing a GUI Library

	Building with Containers and Components
	Looking at the Full Picture

	Comparing Layout Managers
	FlowLayout
	BorderLayout
	GridLayout
	GridBagLayout
	CardLayout
	BoxLayout
	GroupLayout and SpringLayout
	Absolute Positioning (No Layout Manager)

	Understanding Events
	Introduction to Events
	Event Listeners
	On Threading and Swing

	Closing Topics
	Best Practices: Keeping Looks and Logic Separated
	Let’s Draw: Defining Custom Draw Behavior
	Visual GUI Designers: Making Life Easy?
	JavaFX: The Road Ahead?

	Chapter 12: Using Object-Oriented Patterns
	Introduction to Patterns
	Object-Oriented Patterns
	Creational Patterns
	Singleton Pattern and Static Utility Class
	Service Provider Pattern and Null Object Pattern
	(Abstract) Factory Pattern

	Structural Patterns
	Adapter Pattern
	Bridge Pattern
	Decorator Pattern
	Façade Pattern
	Composite Pattern
	Type Pattern and Role Pattern

	Behavioral Patterns
	Chain-of-Responsibility Pattern
	Observer Pattern and Model-View-Controller Pattern
	Iterator Pattern
	Visitor Pattern
	Template Method Pattern
	Strategy Pattern

	Helpful Libraries
	Apache Commons
	Google Guava
	Trove
	Colt
	Lombok
	OpenCSV
	HTML and JSON Libraries
	Hibernate and Other JPA-Compliant Libraries
	Joda-Time
	Charting Libraries
	3D Graphics Libraries
	Financial Libraries

	Index
	Advert
	EULA

