
www.allitebooks.com

http://www.allitebooks.org

CONTENTS
INTRODUCTION

WHO	THIS	BOOK	IS	FOR
WHAT	THIS	BOOK	COVERS
WHAT	YOU	NEED	TO	USE	THIS	BOOK
CONVENTIONS
SOURCE	CODE
ERRATA
P2P.WROX.COM

CHAPTER	1:	INTRODUCTION	TO	JAVASCRIPT	AND	THE	WEB
INTRODUCTION	TO	JAVASCRIPT
WHERE	DO	MY	SCRIPTS	GO?
YOUR	FIRST	SIMPLE	JAVASCRIPT	PROGRAM
WRITING	MORE	JAVASCRIPT
A	BRIEF	LOOK	AT	BROWSERS	AND	COMPATIBILITY	PROBLEMS
SUMMARY

CHAPTER	2:	DATA	TYPES	AND	VARIABLES
TYPES	OF	DATA	IN	JAVASCRIPT
VARIABLES—STORING	DATA	IN	MEMORY
USING	DATA—CALCULATIONS	AND	BASIC	STRING	MANIPULATION
DATA	TYPE	CONVERSION
ARRAYS
SUMMARY
EXERCISES

CHAPTER	3:	DECISIONS	AND	LOOPS
DECISION	MAKING—THE	IF	AND	SWITCH	STATEMENTS
LOOPING—THE	FOR	AND	WHILE	STATEMENTS
SUMMARY
EXERCISES

CHAPTER	4:	FUNCTIONS	AND	SCOPE
CREATING	YOUR	OWN	FUNCTIONS
SCOPE	AND	LIFETIME
FUNCTIONS	AS	VALUES
SUMMARY

www.allitebooks.com

http://www.allitebooks.org

EXERCISES
CHAPTER	5:	JAVASCRIPT—AN	OBJECT-BASED	LANGUAGE

OBJECT-BASED	PROGRAMMING
JAVASCRIPT’S	NATIVE	OBJECT	TYPES
CREATING	YOUR	OWN	CUSTOM	OBJECTS
CREATING	NEW	TYPES	OF	OBJECTS	(REFERENCE	TYPES)
SUMMARY
EXERCISES

CHAPTER	6:	STRING	MANIPULATION
ADDITIONAL	STRING	METHODS
REGULAR	EXPRESSIONS
THE	STRING	OBJECT
USING	THE	REGEXP	OBJECT’S	CONSTRUCTOR
SUMMARY
EXERCISES

CHAPTER	7:	DATE,	TIME,	AND	TIMERS
WORLD	TIME
TIMERS	IN	A	WEB	PAGE
SUMMARY
EXERCISES

CHAPTER	8:	PROGRAMMING	THE	BROWSER
INTRODUCTION	TO	THE	BROWSER’S	OBJECTS
DETERMINING	THE	USER’S	BROWSER
SUMMARY
EXERCISES

CHAPTER	9:	DOM	SCRIPTING
THE	WEB	STANDARDS
THE	DOCUMENT	OBJECT	MODEL
MANIPULATING	THE	DOM
SUMMARY
EXERCISES

CHAPTER	10:	EVENTS
TYPES	OF	EVENTS
CONNECTING	CODE	TO	EVENTS
THE	STANDARD	EVENT	MODEL
EVENT	HANDLING	IN	OLD	VERSIONS	OF	INTERNET	EXPLORER

www.allitebooks.com

http://www.allitebooks.org

WRITING	CROSS-BROWSER	CODE
NATIVE	DRAG	AND	DROP
SUMMARY
EXERCISES

CHAPTER	11:	HTML	FORMS:	INTERACTING	WITH	THE	USER
HTML	FORMS
TRADITIONAL	FORM	OBJECT	PROPERTIES	AND	METHODS
HTML5	FORM	OBJECT	PROPERTIES	AND	METHODS
SUMMARY
EXERCISES

CHAPTER	12:	JSON
XML
JSON
SUMMARY
EXERCISES

CHAPTER	13:	DATA	STORAGE
BAKING	YOUR	FIRST	COOKIE
CREATING	A	COOKIE
GETTING	A	COOKIE’S	VALUE
COOKIE	LIMITATIONS
COOKIE	SECURITY	AND	IE
WEB	STORAGE
SUMMARY
EXERCISES

CHAPTER	14:	AJAX
WHAT	IS	AJAX?
USING	THE	XMLHTTPREQUEST	OBJECT
CREATING	A	SIMPLE	AJAX	MODULE
VALIDATING	FORM	FIELDS	WITH	AJAX
THINGS	TO	WATCH	OUT	FOR
SUMMARY
EXERCISES

CHAPTER	15:	HTML5	MEDIA
A	PRIMER
SCRIPTING	MEDIA
SUMMARY

www.allitebooks.com

http://www.allitebooks.org

EXERCISES
CHAPTER	16:	JQUERY

GETTING	JQUERY
jQUERY’S	API
SUMMARY
EXERCISES

CHAPTER	17:	OTHER	JAVASCRIPT	LIBRARIES
DIGGING	INTO	MODERNIZR
DIVING	INTO	PROTOTYPE
DELVING	INTO	MOOTOOLS
SUMMARY
EXERCISES

CHAPTER	18:	COMMON	MISTAKES,	DEBUGGING,	AND	ERROR	HANDLING
D’OH!	I	CAN’T	BELIEVE	I	JUST	DID	THAT:	SOME	COMMON	MISTAKES
ERROR	HANDLING
DEBUGGING
SUMMARY
EXERCISES

APPENDIX	A:	ANSWERS	TO	EXERCISES
CHAPTER	2
CHAPTER	3
CHAPTER	4
CHAPTER	5
CHAPTER	6
CHAPTER	7
CHAPTER	8
CHAPTER	9
CHAPTER	10
CHAPTER	11
CHAPTER	12
CHAPTER	13
CHAPTER	14
CHAPTER	15
CHAPTER	16
CHAPTER	17
CHAPTER	18

www.allitebooks.com

http://www.allitebooks.org

APPENDIX	B:	JAVASCRIPT	CORE	REFERENCE
BROWSER	REFERENCE
RESERVED	WORDS
JAVASCRIPT	OPERATORS
JAVASCRIPT	STATEMENTS
TOP-LEVEL	PROPERTIES	AND	FUNCTIONS
JAVASCRIPT	CORE	OBJECTS

APPENDIX	C:	W3C	DOM	REFERENCE
DOM	CORE	OBJECTS
HTML	DOM	OBJECTS
DOM	EVENT	MODEL	AND	OBJECTS
MISCELLANEOUS	EVENTS

APPENDIX	D:	LATIN-1	CHARACTER	SET
TITLE	PAGE
COPYRIGHT
DEDICATION
CREDITS
ABOUT	THE	AUTHORS
ACKNOWLEDGMENTS
ADVERT
EULA

www.allitebooks.com

http://www.allitebooks.org

List	of	Illustrations
Chapter	1

Figure	1.1

Figure	1.2

Figure	1.3

Figure	1.4

Chapter	2

Figure	2.1

Figure	2.2

Figure	2.3

Figure	2.4

Figure	2.5

Figure	2.6

Figure	2.7

Figure	2.8

Figure	2.9

Figure	2.10

Figure	2.11

Chapter	3

Figure	3.1

Figure	3.2

Figure	3.3

Figure	3.4

Figure	3.5

Figure	3.6

Figure	3.7

Figure	3.8

Figure	3.9

Figure	3.10

Figure	3.11

Figure	3.12

www.allitebooks.com

http://www.allitebooks.org

Chapter	4

Figure	4.1

Figure	4.2

Chapter	5

Figure	5.1

Figure	5.2

Figure	5.3

Figure	5.4

Figure	5.5

Figure	5.6

Chapter	6

Figure	6.1

Figure	6.2

Figure	6.3

Figure	6.4

Figure	6.5

Figure	6.6

Figure	6.7

Figure	6.8

Figure	6.9

Figure	6.10

Chapter	7

Figure	7.1

Figure	7.2

Figure	7.3

Chapter	8

Figure	8.1

Figure	8.2

Figure	8.3

Figure	8.4

Chapter	9

Figure	9.1

www.allitebooks.com

http://www.allitebooks.org

Figure	9.2

Figure	9.3

Figure	9.4

Figure	9.5

Figure	9.6

Figure	9.7

Figure	9.8

Figure	9.9

Figure	9.10

Figure	9.11

Chapter	10

Figure	10.1

Figure	10.2

Figure	10.3

Figure	10.4

Figure	10.5

Figure	10.6

Figure	10.7

Figure	10.8

Figure	10.9

Chapter	11

Figure	11.1

Figure	11.2

Figure	11.3

Figure	11.4

Figure	11.5

Figure	11.6

Figure	11.7

Figure	11.8

Figure	11.9

Figure	11.10

Chapter	13

www.allitebooks.com

http://www.allitebooks.org

Figure	13.1

Figure	13.2

Figure	13.3

Figure	13.4

Figure	13.5

Figure	13.6

Figure	13.7

Figure	13.8

Figure	13.9

Figure	13.10

Figure	13.11

Figure	13.12

Figure	13.13

Figure	13.14

Figure	13.15

Figure	13.16

Figure	13.17

Figure	13.18

Figure	13.19

Figure	13.20

Chapter	14

Figure	14.1

Figure	14.2

Figure	14.3

Figure	14.4

Figure	14.5

Figure	14.6

Figure	14.7

Chapter	15

Figure	15.1

Figure	15.2

Figure	15.3

www.allitebooks.com

http://www.allitebooks.org

Figure	15.4

Figure	15.5

Figure	15.6

Figure	15.7

Chapter	17

Figure	17.1

Figure	17.2

Chapter	18

Figure	18.1

Figure	18.2

Figure	18.3

Figure	18.4

Figure	18.5

Figure	18.6

Figure	18.7

Figure	18.8

Figure	18.9

Figure	18.10

Figure	18.11

Figure	18.12

Figure	18.13

Figure	18.14

Figure	18.15

Figure	18.16

Figure	18.17

Figure	18.18

Figure	18.19

Figure	18.20

Figure	18.21

Figure	18.22

Figure	18.23

Figure	18.24

Figure	18.25

Figure	18.26

Figure	18.27

Figure	18.28

Figure	18.29

Figure	18.30

Figure	18.31

kindle:embed:0005?mime=image/jpg

INTRODUCTION
JAVASCRIPT	IS	A	SCRIPTING	LANGUAGE	that	enables	you	to	enhance	static	web
applications	by	providing	dynamic,	personalized,	and	interactive	content.	This	improves
the	experience	of	visitors	to	your	site	and	makes	it	more	likely	that	they	will	visit	again.
You	must	have	seen	the	flashy	drop-down	menus,	moving	text,	and	changing	content	that
are	now	widespread	on	websites—they	are	enabled	through	JavaScript.	Supported	by	all
the	major	browsers,	JavaScript	is	the	language	of	choice	on	the	web.	It	can	even	be	used
outside	web	applications—to	automate	administrative	tasks,	for	example.

This	book	aims	to	teach	you	all	you	need	to	know	to	start	experimenting	with	JavaScript:
what	it	is,	how	it	works,	and	what	you	can	do	with	it.	Starting	from	the	basic	syntax,
you’ll	move	on	to	learn	how	to	create	powerful	web	applications.	Don’t	worry	if	you’ve
never	programmed	before—this	book	will	teach	you	all	you	need	to	know,	step	by	step.
You’ll	find	that	JavaScript	can	be	a	great	introduction	to	the	world	of	programming:	with
the	knowledge	and	understanding	that	you’ll	gain	from	this	book,	you’ll	be	able	to	move
on	to	learn	newer	and	more	advanced	technologies	in	the	world	of	computing.

WHO	THIS	BOOK	IS	FOR
To	get	the	most	out	of	this	book,	you’ll	need	to	have	an	understanding	of	HTML,	CSS,
and	how	to	create	a	static	web	page.	You	don’t	need	to	have	any	programming	experience.

This	book	will	also	suit	you	if	you	have	some	programming	experience	already	and	would
like	to	turn	your	hand	to	web	programming.	You	will	know	a	fair	amount	about	computing
concepts,	but	maybe	not	as	much	about	web	technologies.

Alternatively,	you	may	have	a	design	background	and	know	relatively	little	about	the	web
and	computing	concepts.	For	you,	JavaScript	will	be	a	cheap	and	relatively	easy
introduction	to	the	world	of	programming	and	web	application	development.

Whoever	you	are,	I	hope	that	this	book	lives	up	to	your	expectations.

WHAT	THIS	BOOK	COVERS
You’ll	begin	by	looking	at	exactly	what	JavaScript	is,	and	taking	your	first	steps	with	the
underlying	language	and	syntax.	You’ll	learn	all	the	fundamental	programming	concepts,
including	data	and	data	types,	and	structuring	your	code	to	make	decisions	in	your
programs	or	to	loop	over	the	same	piece	of	code	many	times.

Once	you’re	comfortable	with	the	basics,	you’ll	move	on	to	one	of	the	key	ideas	in
JavaScript—the	object.	You’ll	learn	how	to	take	advantage	of	the	objects	that	are	native	to
the	JavaScript	language,	such	as	functions,	dates,	and	strings,	and	find	out	how	these
objects	enable	you	to	manage	complex	data	and	simplify	your	programs.	Next,	you’ll	see
how	you	can	use	JavaScript	to	manipulate	and	detect	objects	made	available	to	you	in	the
browser	and	detect	the	browsers.

From	here,	you’ll	move	on	to	more	advanced	topics,	such	as	writing	code	to	dynamically
manipulate	elements	within	a	web	page	and	executing	code	when	certain	things	happen
within	your	page.	You’ll	also	learn	how	to	script	forms	and	other	controls.	Using	this
knowledge,	you	can	start	to	create	truly	professional-looking	applications	that	enable	you
to	interact	with	the	user.

You’ll	then	learn	how	to	store	data	within	the	browser	and	communicate	directly	with	a
server.	You’ll	also	learn	how	to	write	code	for	the	new	HTML5	media	elements,	and	write
your	own	custom	user	interface	for	them.

You’ll	explore	some	of	the	time	saving	JavaScript	frameworks	such	as	jQuery,	Modernizr,
Prototype,	and	MooTools	and	see	how	they	work	and	how	they	can	help	you	create
sophisticated	JavaScript	powered	applications.

Finally,	you’ll	look	at	common	syntax	and	logical	errors,	how	you	can	spot	them,	and	how
to	use	the	JavaScript	debuggers	for	Chrome,	Internet	Explorer,	Firefox,	Safari,	and	Opera
to	aid	you	with	this	task.	Also,	you	need	to	examine	how	to	handle	the	errors	that	slip
through	the	net,	and	ensure	that	these	do	not	detract	from	the	experience	of	the	end	user	of
your	application.

All	the	new	concepts	introduced	in	this	book	will	be	illustrated	with	practical	examples,
which	enable	you	to	experiment	with	JavaScript	and	build	on	the	theory	that	you	have	just
learned.

You’ll	find	four	appendixes	at	the	end	of	the	book.	Appendix	A	provides	solutions	to	the
exercises	included	at	the	end	of	most	chapters	throughout	the	book.	The	remaining
appendixes	contain	the	reference	material	that	your	authors	hope	you	find	useful	and
informational.	Appendix	B	contains	the	JavaScript	language’s	core	reference.	Appendix	C
contains	a	complete	W3C	DOM	Core	reference—as	well	as	information	on	the	HTML
DOM	and	DOM	level	2	Event	model.	Appendix	D	contains	the	decimal	and	hexadecimal
character	codes	for	the	Latin-1	character	set.

WHAT	YOU	NEED	TO	USE	THIS	BOOK
Because	JavaScript	is	a	text-based	technology,	all	you	really	need	to	create	documents
containing	JavaScript	is	a	text	editor.	Any	will	do.

Also,	in	order	to	try	out	the	code	in	this	book,	you	will	need	a	web	browser	that	supports	a
modern	version	of	JavaScript.	Ideally,	this	means	the	latest	versions	of	Chrome,	Internet
Explorer,	Firefox,	Safari,	and	Opera.	The	book	has	been	extensively	tested	with	these
browsers.	However,	the	code	should	work	in	any	modern	web	browser.	Where	there	are
exceptions,	they	will	be	clearly	noted.

CONVENTIONS
To	help	you	get	the	most	from	the	text	and	keep	track	of	what’s	happening,	we’ve	used	a
number	of	conventions	throughout	the	book.

				TRY	IT	OUT							

The	Try	It	Out	is	an	exercise	you	should	work	through,	following	the	text	in	the	book.

1.	 It	usually	consists	of	a	set	of	steps.

2.	 Each	step	has	a	number.

3.	 Follow	the	steps	with	your	copy	of	the	database.

As	you	work	through	each	Try	It	Out,	the	code	you’ve	typed	will	be	explained	in
detail.

WARNING	Boxes	like	this	one	hold	important,	not-to-be	forgotten	information	that	is
directly	relevant	to	the	surrounding	text.

NOTE	Tips,	hints,	tricks,	and	asides	to	the	current	discussion	are	offset	and	placed	in
italics	like	this.

As	for	styles	in	the	text:

We	highlight	in	italic	type	new	terms	and	important	words	when	we	introduce	them.

We	show	keyboard	strokes	like	this:	Ctrl+A.

We	show	file	names,	URLs,	and	code	within	the	text	like	so:

persistence.properties.

We	present	code	in	two	different	ways:

Important	code	in	code	examples	is	highlighted	with	a	gray	background.
The	gray	highlighting	is	not	used	for	code	that’s	less	important	in	the

present	context,	or	that	has	been	shown	before.

SOURCE	CODE
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to	type	in	all	the
code	manually	or	to	use	the	source-code	files	that	accompany	the	book.	All	of	the	source
code	used	in	this	book	is	available	for	download	at	www.wrox.com.	Once	at	the	site,	simply
locate	the	book’s	title	(either	by	using	the	Search	box	or	by	using	one	of	the	title	lists)	and
click	the	Download	Code	link	on	the	book’s	detail	page	to	obtain	all	the	source	code	for
the	book.

NOTE	Because	many	books	have	similar	titles,	you	may	find	it	easiest	to	search	by
ISBN;	this	book’s	ISBN	is	978-1-118-90333-9.

Once	you	download	the	code,	just	decompress	it	with	your	favorite	compression	tool.
Alternately,	you	can	go	to	the	main	Wrox	code	download	page	at
www.wrox.com/dynamic/books/download.aspx	to	see	the	code	available	for	this	book	and
all	other	Wrox	books.

You	can	also	view	the	examples	presented	in	this	book	at	http://beginningjs.com.

www.allitebooks.com

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://beginningjs.com
http://www.allitebooks.org

ERRATA
We	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text	or	in	the	code.	However,
no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in	one	of	our	books,	like	a
spelling	mistake	or	faulty	piece	of	code,	we	would	be	very	grateful	for	your	feedback.	By
sending	in	errata,	you	may	save	another	reader	hours	of	frustration,	and	at	the	same	time
you	will	be	helping	us	provide	even	higher-quality	information.

To	find	the	errata	page	for	this	book,	go	to	www.wrox.com	and	locate	the	title	using	the
Search	box	or	one	of	the	title	lists.	Then,	on	the	book	details	page,	click	the	Book	Errata
link.	On	this	page	you	can	view	all	errata	that	have	been	submitted	for	this	book	and
posted	by	Wrox	editors.	A	complete	book	list,	including	links	to	each	book’s	errata,	is	also
available	at	www.wrox.com/misc-pages/booklist.shtml.

If	you	don’t	spot	“your”	error	on	the	Book	Errata	page	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send	us	the
error	you	have	found.	We’ll	check	the	information	and,	if	appropriate,	post	a	message	to
the	book’s	errata	page	and	fix	the	problem	in	subsequent	editions	of	the	book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

P2P.WROX.COM
For	author	and	peer	discussion,	join	the	P2P	forums	at	p2p.wrox.com.	The	forums	are	a
web-based	system	on	which	you	can	post	messages	relating	to	Wrox	books	and	related
technologies	and	interact	with	other	readers	and	technology	users.	The	forums	offer	a
subscription	feature	to	e-mail	you	topics	of	interest	of	your	choosing	when	new	posts	are
made	to	the	forums.	Wrox	authors,	editors,	other	industry	experts,	and	your	fellow	readers
are	present	on	these	forums.

At	http://p2p.wrox.com	you	will	find	a	number	of	different	forums	that	will	help	you
not	only	as	you	read	this	book,	but	also	as	you	develop	your	own	applications.	To	join	the
forums,	just	follow	these	steps:

1.	 Go	to	p2p.wrox.com	and	click	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join	as	well	as	any	optional	information	you
wish	to	provide,	and	click	Submit.

4.	 You	will	receive	an	e-mail	with	information	describing	how	to	verify	your	account
and	complete	the	joining	process.

NOTE	You	can	read	messages	in	the	forums	without	joining	P2P,	but	in	order	to	post
your	own	messages,	you	must	join.

Once	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users	post.	You
can	read	messages	at	any	time	on	the	web.	If	you	would	like	to	have	new	messages	from	a
particular	forum	e-mailed	to	you,	click	the	Subscribe	to	this	Forum	icon	by	the	forum
name	in	the	forum	listing.

For	more	information	about	how	to	use	the	Wrox	P2P,	be	sure	to	read	the	P2P	FAQs	for
answers	to	questions	about	how	the	forum	software	works,	as	well	as	many	common
questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click	the	FAQ	link	on	any
P2P	page.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

1
Introduction	to	JavaScript	and	the	Web
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Adding	JavaScript	to	your	web	pages

Referencing	external	JavaScript	files

Changing	the	background	color	of	a	web	page

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

In	this	introductory	chapter,	you	look	at	what	JavaScript	is,	what	it	can	do	for	you,	and
what	you	need	in	order	to	use	it.	With	these	foundations	in	place,	you	will	see	throughout
the	rest	of	the	book	how	JavaScript	can	help	you	to	create	powerful	web	applications	for
your	website.

The	easiest	way	to	learn	something	is	by	actually	doing	it,	so	throughout	the	book	you
create	a	number	of	useful	example	programs	using	JavaScript.	This	process	starts	in	this
chapter,	by	the	end	of	which	you	will	have	created	your	first	piece	of	JavaScript	code.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

INTRODUCTION	TO	JAVASCRIPT
In	this	section	you	take	a	brief	look	at	what	JavaScript	is,	where	it	came	from,	how	it
works,	and	what	sorts	of	useful	things	you	can	do	with	it.

What	Is	JavaScript?
Having	bought	this	book,	you	are	probably	already	well	aware	that	JavaScript	is	some	sort
of	computer	language,	but	what	is	a	computer	language?	Put	simply,	a	computer	language
is	a	series	of	instructions	that	tell	the	computer	to	do	something.	That	something	can	be
one	of	a	wide	variety	of	things,	including	displaying	text,	moving	an	image,	or	asking	the
user	for	information.	Normally,	the	instructions,	or	what	is	termed	code,	are	processed
from	the	top	line	downward.	This	simply	means	that	the	computer	looks	at	the	code
you’ve	written,	works	out	what	action	you	want	it	to	take,	and	then	takes	that	action.	The
act	of	processing	the	code	is	called	running	or	executing	it.

In	natural	English,	here	are	instructions,	or	code,	you	might	write	to	make	a	cup	of	instant
coffee:

1.	 Put	coffee	crystals	in	cup.

2.	 Fill	kettle	with	water.

3.	 Put	kettle	on	to	boil.

4.	 Has	the	kettle	boiled?	If	so,	then	pour	water	into	cup;	otherwise,	continue	to	wait.

5.	 Drink	coffee.

You’d	start	running	this	code	from	the	first	line	(instruction	1),	and	then	continue	to	the
next	(instruction	2),	then	the	next,	and	so	on	until	you	came	to	the	end.	This	is	pretty	much
how	most	computer	languages	work,	JavaScript	included.	However,	on	some	occasions
you	might	change	the	flow	of	execution	or	even	skip	over	some	code,	but	you	see	more	of
this	in	Chapter	3.

JavaScript	is	an	interpreted	language	rather	than	a	compiled	language.	What	is	meant	by
the	terms	interpreted	and	compiled?

Well,	to	let	you	in	on	a	secret,	your	computer	doesn’t	really	understand	JavaScript	at	all.	It
needs	something	to	interpret	the	JavaScript	code	and	convert	it	into	something	that	it
understands;	hence	it	is	an	interpreted	language.	Computers	understand	only	machine
code,	which	is	essentially	a	string	of	binary	numbers	(that	is,	a	string	of	zeros	and	ones).
As	the	browser	goes	through	the	JavaScript,	it	passes	it	to	a	special	program	called	an
interpreter,	which	converts	the	JavaScript	to	the	machine	code	your	computer
understands.	It’s	a	bit	like	having	a	translator	translate	English	to	Spanish,	for	example.
The	important	point	to	note	is	that	the	conversion	of	the	JavaScript	happens	at	the	time	the
code	is	run;	it	has	to	be	repeated	every	time	this	happens.	JavaScript	is	not	the	only
interpreted	language;	others	exist,	including	PHP	and	Ruby.

The	alternative	compiled	language	is	one	in	which	the	program	code	is	converted	to
machine	code	before	it’s	actually	run,	and	this	conversion	has	to	be	done	only	once.	The

programmer	uses	a	compiler	to	convert	the	code	that	he	wrote	to	machine	code,	and	this
machine	code	is	run	by	the	program’s	user.	Compiled	languages	include	C#,	Java,	and
many	others.	Using	a	real-world	analogy,	it’s	a	bit	like	having	a	Spanish	translator
verbally	tell	you	in	English	what	a	Spanish	document	says.	Unless	you	change	the
document,	you	can	use	it	without	retranslation	as	much	as	you	like.

Perhaps	this	is	a	good	place	to	dispel	a	widespread	myth:	JavaScript	is	not	the	script
version	of	the	Java	language.	In	fact,	although	they	share	the	same	name,	that’s	virtually
all	they	do	share.	Particularly	good	news	is	that	JavaScript	is	much,	much	easier	to	learn
and	use	than	Java.	In	fact,	languages	like	JavaScript	are	the	easiest	of	all	languages	to
learn,	but	they	are	still	surprisingly	powerful.

JavaScript	and	the	Web
For	most	of	this	book	you	look	at	JavaScript	code	that	runs	inside	a	web	page	loaded	into
a	browser.	All	you	need	to	create	these	web	pages	is	a	text	editor—for	example,	Windows
Notepad—and	a	web	browser,	such	as	Chrome,	Firefox,	or	Internet	Explorer	(IE),	with
which	you	can	view	your	pages.	These	browsers	come	equipped	with	JavaScript
interpreters	(more	commonly	known	as	JavaScript	engines).

NOTE	Throughout	this	book,	we	use	the	terms	“IE”	and	“Internet	Explorer”
interchangeably	when	referring	to	Microsoft’s	Internet	Explorer	browser.

In	fact,	the	JavaScript	language	first	became	available	in	Netscape’s	Navigator	2.	Initially,
it	was	called	LiveScript,	but	because	Java	was	the	hot	technology	of	the	time,	Netscape
decided	that	JavaScript	sounded	more	exciting.	When	JavaScript	really	took	off,	Microsoft
decided	to	add	its	own	dialect	of	JavaScript,	called	JScript,	to	Internet	Explorer	3.

In	1997,	JavaScript	was	standardized	by	Ecma	International,	a	membership-based	non-
profit	organization,	and	renamed	to	ECMAScript.	Today’s	browser	makers	look	to	the
ECMAScript	standard	to	implement	the	JavaScript	engines	included	in	their	respective
browsers,	but	that	doesn’t	necessarily	mean	that	all	browsers	support	the	same	features.
JavaScript	support	among	today’s	browsers	is	certainly	more	unified	than	it	has	ever	been,
but	as	you	see	in	future	chapters,	developers	still	have	to	cope	with	older,	and	in	many
cases	non-standard,	JavaScript	implementations.

The	ECMAScript	standard	controls	various	aspects	of	the	language	and	helps	ensure	that
different	versions	of	JavaScript	are	compatible.	However,	although	Ecma	sets	standards
for	the	actual	language,	it	doesn’t	specify	how	it’s	used	in	particular	hosts.	By	host,	we
mean	hosting	environment;	in	this	book,	that	is	the	web	browser.	Other	hosting
environments	include	PDF	files,	web	servers,	and	many,	many	other	places.	In	this	book,
we	discuss	only	its	use	within	the	web	browser.	The	organization	that	sets	the	standards
for	web	pages	is	the	World	Wide	Web	Consortium	(W3C).	It	not	only	sets	standards	for
HTML	and	CSS,	but	also	for	how	JavaScript	interacts	with	web	pages	inside	a	web
browser.	You	learn	much	more	about	this	in	later	chapters	of	the	book.	Initially,	you’ll
look	at	the	essentials	of	JavaScript	before	the	more	advanced	stuff.	In	the	appendices	of
this	book,	you’ll	find	useful	guides	to	the	JavaScript	language	and	how	it	interacts	with

the	web	browser.

The	majority	of	the	web	pages	containing	JavaScript	that	you	create	in	this	book	can	be
stored	on	your	hard	drive	and	loaded	directly	into	your	browser	from	the	hard	drive	itself,
just	as	you’d	load	any	normal	file	(such	as	a	text	file).	However,	this	is	not	how	web	pages
are	loaded	when	you	browse	websites	on	the	Internet.	The	Internet	is	really	just	one	great
big	network	connecting	computers.	Access	to	websites	is	a	special	service	provided	by
particular	computers	on	the	Internet;	the	computers	providing	this	service	are	known	as
web	servers.

Basically,	the	job	of	a	web	server	is	to	hold	lots	of	web	pages	on	its	hard	drive.	When	a
browser,	usually	on	a	different	computer,	requests	a	web	page	contained	on	that	web
server,	the	web	server	loads	it	from	its	own	hard	drive	and	then	passes	the	page	back	to	the
requesting	computer	via	a	special	communications	protocol	called	Hypertext	Transfer
Protocol	(HTTP).	The	computer	running	the	web	browser	that	makes	the	request	is	known
as	the	client.	Think	of	the	client/server	relationship	as	a	bit	like	a	customer/shopkeeper
relationship.	The	customer	goes	into	a	shop	and	says,	“Give	me	one	of	those.”	The
shopkeeper	serves	the	customer	by	reaching	for	the	item	requested	and	passing	it	back	to
the	customer.	In	a	web	situation,	the	client	machine	running	the	web	browser	is	like	the
customer,	and	the	web	server	providing	the	page	requested	is	like	the	shopkeeper.

When	you	type	an	address	into	the	web	browser,	how	does	it	know	which	web	server	to
get	the	page	from?	Well,	just	as	shops	have	addresses,	say,	45	Central	Avenue,
Sometownsville,	so	do	web	servers.	Web	servers	don’t	have	street	names;	instead,	they
have	Internet	protocol	(IP)	addresses,	which	uniquely	identify	them	on	the	Internet.	These
consist	of	four	sets	of	numbers,	separated	by	dots	(for	example,	127.0.0.1).

If	you’ve	ever	surfed	the	Net,	you’re	probably	wondering	what	on	earth	we’re	talking
about.	Surely	web	servers	have	nice	www.somewebsite.com	names,	not	IP	addresses?	In
fact,	the	www.somewebsite.com	name	is	the	“friendly”	name	for	the	actual	IP	address;	it’s
a	whole	lot	easier	for	us	humans	to	remember.	On	the	Internet,	the	friendly	name	is
converted	to	the	actual	IP	address	by	computers	called	domain	name	servers,	which	your
Internet	service	provider	will	have	set	up	for	you.

What	Can	JavaScript	Do	for	Me?
JavaScript	is	primarily	used	to	interact	with	users.	That’s	a	rather	broad	statement,	so	let’s
break	“interact	with	users”	into	two	categories:	user	input	validation	and	enhancement.

JavaScript	was	originally	created	for	validating	form	input.	For	example,	if	you	had	a
form	that	takes	a	user’s	credit	card	details	in	preparation	for	on	online	purchase	of	goods,
you’d	want	to	make	sure	he	had	actually	filled	in	those	details	before	you	sent	the	goods.
You	might	also	want	to	check	that	the	data	being	entered	is	of	the	correct	type,	such	as	a
number	for	his	age	rather	than	text.

Thanks	to	the	advances	made	in	today’s	JavaScript	engines,	JavaScript	is	used	for	much,
much	more	than	input-related	tasks.	In	fact,	advanced	JavaScript-driven	applications	can
be	created	that	rival	the	speed	and	functionality	of	conventional	desktop	applications.
Examples	of	such	applications	include	Google	Maps,	Google	Calendar,	and	even	full-
fledged	productivity	software	such	as	Microsoft’s	Office	Web	Apps.	These	applications

http://www.somewebsite.com
http://www.somewebsite.com

provide	a	real	service.	In	most	of	these	applications,	JavaScript	only	powers	the	user
interface,	with	the	actual	data	processing	being	done	on	the	server.	But	even	then,
JavaScript	could	be	used	on	the	server	if	used	with	a	JavaScript-based	processing	engine
(one	such	environment	is	called	Node).

Tools	Needed	to	Create	JavaScript	Web	Applications
The	great	news	is	that	learning	JavaScript	requires	no	expensive	software	purchases;	you
can	learn	JavaScript	for	free	on	any	PC	or	Mac.	This	section	discusses	what	tools	are
available	and	how	to	obtain	them.

Development	Tools
All	that	you	need	to	get	started	writing	JavaScript	code	for	web	applications	is	a	simple
text	editor,	such	as	Notepad	for	Windows	or	TextEdit	for	Mac	OS	X.	You	can	also	use	one
of	the	many	advanced	text	editors	that	provide	line	numbering,	color	coding,	search	and
replace,	and	so	on.	Here	are	just	a	few:

Notepad2	(Windows):	www.flos-freeware.ch/notepad2.html

WebMatrix	(Windows):	www.microsoft.com/web/webmatrix/

Brackets	(Cross-Platform):	brackets.io

Sublime	Text	(Cross-Platform):	www.sublimetext.com

Sublime	Text	is	not	free	software,	but	it	does	have	a	time-limited	evaluation.	If	you	try	it
and	like	it,	please	support	the	developers	of	that	application.

You	might	also	prefer	a	proper	HTML	editor;	you’ll	need	one	that	enables	you	to	edit	the
HTML	source	code,	because	that’s	where	you	need	to	add	your	JavaScript.	A	number	of
very	good	tools	specifically	aimed	at	developing	web-based	applications,	such	as	Adobe’s
Dreamweaver,	are	also	available.	However,	this	book	concentrates	on	JavaScript	rather
than	any	specific	development	tool.	When	it	comes	to	learning	the	basics,	it’s	often	best	to
write	the	code	by	hand	rather	than	rely	on	a	tool	to	do	it	for	you.	This	helps	you
understand	the	fundamentals	of	the	language	before	you	attempt	the	more	advanced	logic
that	is	beyond	a	tool’s	capability.	When	you	have	a	good	understanding	of	the	basics,	you
can	use	tools	as	timesavers	so	that	you	can	spend	time	on	the	more	advanced	and	more
interesting	coding.

Once	you	become	more	proficient,	you	may	find	that	a	web	page	editor	makes	life	easier
by	inclusion	of	features	such	as	checking	the	validity	of	your	code,	color-coding	important
JavaScript	words,	and	making	it	easier	to	view	your	pages	before	loading	them	into	a	web
browser.	Many	other,	equally	good,	free	web	page	editors	are	available.	A	Google	search
on	web	editing	software	will	bring	back	a	long	list	of	software	you	can	use.

As	you	write	web	applications	of	increasing	complexity,	you’ll	find	useful	tools	that	help
you	spot	and	solve	errors.	Errors	in	code	are	what	programmers	call	bugs,	though	when
our	programs	go	wrong,	we	prefer	to	call	them	“unexpected	additional	features.”	Very
useful	in	solving	bugs	are	development	tools	called	debuggers.	Debuggers	let	you	monitor
what	is	happening	in	your	code	as	it’s	running.	In	Chapter	18,	you	take	an	in-depth	look	at

http://www.flos-freeware.ch/notepad2.html
http://www.microsoft.com/web/webmatrix/
http://brackets.io
http://www.sublimetext.com

bugs	and	debugger	development	tools.

Web	Browsers
In	addition	to	software	that	lets	you	edit	web	pages,	you’ll	also	need	a	browser	to	view
your	web	pages.	It’s	best	to	develop	your	JavaScript	code	on	the	sorts	of	browsers	you
expect	visitors	to	use	to	access	your	website.	You	see	later	in	the	chapter	that	although
browsers	are	much	more	standards	based,	differences	exist	in	how	they	view	web	pages
and	treat	JavaScript	code.	All	the	examples	provided	in	this	book	have	been	tested	on
Chrome,	IE9-11,	Firefox,	Safari,	and	Opera.	Wherever	a	piece	of	code	does	not	work	on
any	of	these	browsers,	a	note	to	this	effect	is	made	in	the	text.

If	you’re	running	Windows,	you’ll	almost	certainly	have	IE	installed.	If	not,	a	trip	to
windows.microsoft.com/en-us/internet-explorer/download-ie	will	get	you	the	latest
version	for	your	version	of	Windows.

You	can	find	Chrome	at	www.google.com/chrome,	and	you	can	download	Firefox	at
www.getfirefox.com.

By	default,	most	browsers	have	JavaScript	support	enabled,	but	it	is	possible	to	disable
this	functionality	in	all	browsers	except	Firefox.	So	before	you	start	on	your	first
JavaScript	examples	in	the	next	section,	you	should	check	to	make	sure	JavaScript	is
enabled	in	your	browser.

To	do	this	in	Chrome,	you	want	to	modify	the	JavaScript	settings	in	Content	Settings,	as
shown	in	Figure	1.1.	You	can	access	these	settings	by	navigating	to
chrome://settings/content	or	by	following	these	instructions:

1.	 Go	to	the	Settings	option	in	the	menu.

2.	 Click	the	“Show	advanced	settings…”	link.

3.	 Under	Privacy,	click	the	“Content	settings…”	button.

http://windows.microsoft.com/en-us/internet-explorer/download-ie
http://www.google.com/chrome
http://www.getfirefox.com
http://chrome://settings/content

Figure	1.1

It	is	harder	to	turn	off	scripting	in	Internet	Explorer.	Choose	Internet	Options	from	the
menu	(the	gear	icon	in	the	upper-right	corner),	click	the	Security	tab,	and	check	whether
the	Internet	or	Local	intranet	options	have	custom	security	settings.	If	either	of	them	does,
click	the	Custom	Level	button	and	scroll	down	to	the	Scripting	section.	Check	that	Active
Scripting	is	set	to	Enable.

A	final	point	to	note	is	how	to	open	the	code	examples	in	your	browser.	For	this	book,	you
simply	need	to	open	the	file	on	your	hard	drive	in	which	an	example	is	stored.	You	can	do
this	in	a	number	of	ways,	but	the	easiest	is	to	just	double-click	the	file.

WHERE	DO	MY	SCRIPTS	GO?
Inserting	JavaScript	into	a	web	page	is	much	like	inserting	any	other	HTML	content;	you
use	tags	to	mark	the	start	and	end	of	your	script	code.	The	element	you	use	to	do	this	is
<script/>.	This	tells	the	browser	that	the	following	chunk	of	text,	bounded	by	the	closing
</script>	tag,	is	not	HTML	to	be	displayed,	but	rather	script	code	to	be	processed.	The
chunk	of	code	surrounded	by	the	<script>	and	</script>	tags	is	called	a	script	block.
Here’s	an	example:

<script>

				//	JavaScript	goes	here

</script>

Basically,	when	the	browser	spots	<script>	tags,	instead	of	trying	to	display	the	contained
text	to	the	user,	it	uses	the	browser’s	JavaScript	engine	to	run	the	code’s	instructions.	Of
course,	the	code	might	give	instructions	about	changes	to	the	way	the	page	is	displayed	or
what	is	shown	in	the	page,	but	the	text	of	the	code	itself	is	never	shown	to	the	user.

You	can	put	the	<script/>	element	inside	the	header	(between	the	<head>	and	</head>
tags)	or	inside	the	body	(between	the	<body>	and	</body>	tags)	of	the	HTML	page.
However,	although	you	can	put	them	outside	these	areas—for	example,	before	the	<html>
tag	or	after	the	</html>	tag—this	is	not	permitted	in	the	web	standards	and	so	is
considered	bad	practice.	Today’s	JavaScript	developers	typically	add	their	<script/>
elements	directly	before	the	</body>	tag.

The	<script/>	element	has	a	type	attribute	that	tells	the	browser	what	type	of	text	is
contained	within	the	element.	For	JavaScript,	the	best	practice	is	to	omit	the	type	attribute
(browsers	automatically	assume	that	any	<script/>	element	without	a	type	attribute	is
JavaScript).	We	used	to	always	set	the	type	attribute	to	text/javascript,	but	with	the
introduction	of	the	HTML5	specification,	it	is	no	longer	considered	good	practice	to	do	so.
Only	include	the	type	attribute	if	the	<script/>	element	contains	something	other	than
JavaScript.

NOTE	The	<script/>	element	can	be	used	for	more	than	just	JavaScript.	Some
JavaScript-based	templating	engines	use	<script/>	elements	to	contain	snippets	of
HTML.

Linking	to	an	External	JavaScript	File
The	<script/>	element	has	another	arrow	in	its	quiver:	the	capability	to	specify	that	the
JavaScript	code	is	not	inside	the	web	page,	but	inside	a	separate	file.	You	should	give	any
external	files	the	file	extension	.js.	Though	it’s	not	compulsory,	it	does	make	it	easier	for
you	to	work	out	what	is	contained	in	each	of	your	files.

To	link	to	an	external	JavaScript	file,	you	need	to	create	a	<script/>	element	as	described
earlier	and	use	its	src	attribute	to	specify	the	location	of	the	external	file.	For	example,
imagine	you’ve	created	a	file	called	MyCommonFunctions.js	to	which	you	want	to	link,

www.allitebooks.com

http://www.allitebooks.org

and	the	file	is	in	the	same	directory	as	your	web	page.	The	<script/>	element	would	look
like	this:

<script	src="MyCommonFunctions.js"></script>

The	web	browser	will	read	this	code	and	include	the	file	contents	as	part	of	your	web
page.	When	linking	to	external	files,	you	must	not	put	any	code	within	the	opening	and
closing	<script>	tags;	for	example,	the	following	would	be	invalid:

<script	src="MyCommonFunctions.js">

var	myVariable;

if	(myVariable	==	1)	{

				//	do	something

}

</script>

It’s	important	to	note	that	an	opening	<script>	tag	must	be	accompanied	by	a	closing
</script>	tag.	You	cannot	use	the	self-closing	syntax	found	in	XML.	Therefore,	the
following	is	invalid:

<script	src="MyCommonFunctions.js"	/>

Generally,	you	use	the	<script/>	element	to	load	local	files	(those	on	the	same	computer
as	the	web	page	itself).	However,	you	can	load	external	files	from	a	web	server	by
specifying	the	web	address	of	the	file.	For	example,	if	your	file	was	called
MyCommonFunctions.js	and	was	loaded	on	a	web	server	with	the	domain	name
www.mysite.com,	the	<script/>	element	would	look	like	this:

<script	src="http://www.mysite.com/MyCommonFunctions.js"></script>

Linking	to	an	external	file	is	common	when	incorporating	well-known	JavaScript	libraries
into	a	web	page.	The	servers	hosting	these	libraries	are	referred	to	as	Content	Delivery
Networks,	or	CDNs.	CDNs	are	relatively	safe,	but	beware	of	linking	to	external	files	if
they	are	controlled	by	other	people.	It	would	give	those	people	the	ability	to	control	and
change	your	web	page,	so	you	need	to	be	very	sure	you	trust	them!

Advantages	of	Using	an	External	File
The	biggest	advantage	of	external	files	is	code	reuse.	Say	you	write	a	complex	bit	of
JavaScript	that	performs	a	general	function	you	might	need	in	lots	of	pages.	If	you	include
the	code	inline	(within	the	web	page	rather	than	via	an	external	file),	you	need	to	cut	and
paste	the	code	into	each	web	page	that	uses	it.	This	is	fine	as	long	as	you	never	need	to
change	the	code,	but	the	reality	is	you	probably	will	need	to	change	or	improve	the	code	at
some	point.	If	you’ve	cut	and	pasted	the	code	to	30	different	web	pages,	you’ll	need	to
update	it	in	30	different	places.	Quite	a	headache!	By	using	one	external	file	and	including
it	in	all	the	pages	that	need	it,	you	need	to	update	the	code	only	once	and	all	the	30	pages
are	updated	instantly.	So	much	easier!

Another	advantage	of	using	external	files	is	that	the	browser	will	cache	them,	much	as	it
does	with	images	shared	between	pages.	If	your	files	are	large,	this	could	save	download
time	and	also	reduce	bandwidth	usage.

http://www.mysite.com

YOUR	FIRST	SIMPLE	JAVASCRIPT	PROGRAM
Enough	talk	about	the	subject	of	JavaScript;	let’s	write	some!	We’ll	start	with	a	simple
example	that	changes	the	background	color	of	the	web	page.

				TRY	IT	OUT								Painting	the	Page	Red

This	is	a	simple	example	of	using	JavaScript	to	change	the	background	color	of	the
browser.	In	your	text	editor,	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8"	/>

								<title>Chapter	1,	Example	1</title>

				</head>

				<body	bgcolor="white">

								<p>Paragraph	1</p>

								<script>

												document.bgColor	=	"red";

								</script>

				</body>

</html>

Save	the	page	as	ch1_example1.html	to	a	convenient	place	on	your	hard	drive,	and
load	it	into	your	web	browser.	You	should	see	a	red	web	page	with	the	text	Paragraph
1	in	the	top-left	corner.	But	wait—don’t	you	set	the	<body>	tag’s	BGCOLOR	attribute	to
white?	Okay,	let’s	look	at	what’s	going	on	here.

The	page	is	contained	within	<html>	and	</html>	tags.	This	block	contains	a	<body>
element.	When	you	define	the	opening	<body>	tag,	you	use	HTML	to	set	the	page’s
background	color	to	white:

<body	bgcolor="white">

Then	you	let	the	browser	know	that	your	next	lines	of	code	are	JavaScript	code	by
using	the	<script>	start	tag:

<script>

Everything	from	here	until	the	close	tag,	</script>,	is	JavaScript	and	is	treated	as
such	by	the	browser.	Within	this	script	block,	you	use	JavaScript	to	set	the
document’s	background	color	to	red:

document.bgColor	=	"red";

What	you	might	call	the	page	is	known	as	the	document	for	the	purpose	of	scripting
in	a	web	page.	The	document	has	lots	of	properties,	including	its	background	color,
bgColor.	You	can	reference	properties	of	the	document	by	writing	document,

followed	by	a	dot,	followed	by	the	property	name.	Don’t	worry	about	the	use	of
document	at	the	moment;	you	look	at	it	in	greater	depth	later	in	the	book.

Note	that	the	preceding	line	of	code	is	an	example	of	a	JavaScript	statement.	Every
line	of	code	between	the	<script>	and	</script>	tags	is	called	a	statement,	although
some	statements	may	run	on	to	more	than	one	line.

You’ll	also	see	that	there’s	a	semicolon	(;)	at	the	end	of	the	line.	You	use	a	semicolon
in	JavaScript	to	indicate	the	end	of	a	statement.	In	practice,	JavaScript	is	very	relaxed
about	the	need	for	semicolons,	and	when	you	start	a	new	line,	JavaScript	will	usually
be	able	to	work	out	whether	you	mean	to	start	a	new	line	of	code.	However,	for	good
coding	practice,	you	should	use	a	semicolon	at	the	end	of	statements	of	code,	and	a
single	JavaScript	statement	should	fit	onto	one	line	rather	than	continue	on	to	two	or
more	lines.	Moreover,	you’ll	find	some	situations	in	which	you	must	include	a
semicolon,	which	you’ll	come	to	later	in	the	book.

Finally,	to	tell	the	browser	to	stop	interpreting	your	text	as	JavaScript	and	start
interpreting	it	as	HTML,	you	use	the	script	close	tag:

</script>

You’ve	now	looked	at	how	the	code	works,	but	you	haven’t	looked	at	the	order	in
which	it	works.	When	the	browser	loads	in	the	web	page,	the	browser	goes	through	it,
rendering	it	tag	by	tag	from	top	to	bottom	of	the	page.	This	process	is	called	parsing.
The	web	browser	starts	at	the	top	of	the	page	and	works	its	way	down	to	the	bottom
of	the	page.	The	browser	comes	to	the	<body>	tag	first	and	sets	the	document’s
background	to	white.	Then	it	continues	parsing	the	page.	When	it	comes	to	the
JavaScript	code,	it	is	instructed	to	change	the	document’s	background	to	red.

WRITING	MORE	JAVASCRIPT
The	first	example	let	you	dip	your	toes	into	the	JavaScript	waters.	We’ll	write	a	few	more
JavaScript	programs	to	demonstrate	the	web	page	flow	and	one	of	the	many	ways	to
display	a	result	in	the	browser.

				TRY	IT	OUT								Way	Things	Flow

Let’s	extend	the	previous	example	to	demonstrate	the	parsing	of	a	web	page	in	action.
Type	the	following	into	your	text	editor:

<!DOCTYPE	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8"	/>

								<title>Chapter	1,	Example	2</title>

				</head>

				<body	bgcolor="white">

								<p>Paragraph	1</p>

								<script>

												//	script	block	1

												alert("First	Script	Block");

								</script>

								<p>Paragraph	2</p>

								<script>

												//	script	block	2

												alert("Second	Script	Block");

								</script>

								<p>Paragraph	3</p>

				</body>

</html>

Save	the	file	to	your	hard	drive	as	ch1_example2.html	and	then	load	it	into	your
browser.	When	you	load	the	page,	you	should	see	the	first	paragraph,	Paragraph	1,
followed	by	a	message	box	displayed	by	the	first	script	block.	The	browser	halts	its
parsing	until	you	click	the	OK	button.	As	you	see	in	Figure	1.2,	the	page	background
is	white,	as	set	in	the	<body>	tag,	and	only	the	first	paragraph	is	displayed.

Figure	1.2

Click	the	OK	button,	and	the	parsing	continues.	The	browser	displays	the	second
paragraph,	and	the	second	script	block	is	reached,	which	changes	the	background
color	to	red.	Another	message	box	is	displayed	by	the	second	script	block,	as	shown
in	Figure	1.3.

Figure	1.3

Click	OK,	and	again	the	parsing	continues,	with	the	third	paragraph,	Paragraph	3,
being	displayed.	The	web	page	is	complete,	as	shown	in	Figure	1.4.

Figure	1.4

The	first	part	of	the	page	is	the	same	as	in	our	earlier	example.	The	background	color
for	the	page	is	set	to	white	in	the	definition	of	the	<body>	tag,	and	then	a	paragraph	is
written	to	the	page:

<body	bgcolor="white">

								<p>Paragraph	1</p>

The	first	new	section	is	contained	in	the	first	script	block:

								<script>

												//	script	block	1

												alert("First	Script	Block");

								</script>

This	script	block	contains	two	lines,	both	of	which	are	new	to	you.	The	first	line

			//	Script	block	1

is	just	a	comment,	solely	for	your	benefit.	The	browser	recognizes	anything	on	a	line
after	a	double	forward	slash	(//)	to	be	a	comment	and	does	not	do	anything	with	it.	It
is	useful	for	you	as	a	programmer	because	you	can	add	explanations	to	your	code	that
make	it	easier	to	remember	what	you	were	doing	when	you	come	back	to	your	code
later.

The	alert()	function	in	the	second	line	of	code	is	also	new	to	you.	Before	learning
what	it	does,	you	need	to	know	what	a	function	is.

Functions	are	defined	more	fully	in	Chapter	4,	but	for	now	you	need	only	think	of
them	as	pieces	of	JavaScript	code	that	you	can	use	to	do	certain	tasks.	If	you	have	a
background	in	math,	you	may	already	have	some	idea	of	what	a	function	is:	it	takes
some	information,	processes	it,	and	gives	you	a	result.	A	function	makes	life	easier

for	you	as	a	programmer	because	you	don’t	have	to	think	about	how	the	function	does
the	task—you	can	just	concentrate	on	when	you	want	the	task	done.

In	particular,	the	alert()	function	enables	you	to	alert	or	inform	the	user	about
something	by	displaying	a	message	box.	The	message	to	be	given	in	the	message	box
is	specified	inside	the	parentheses	of	the	alert()	function	and	is	known	as	the
function’s	parameter.

The	message	box	displayed	by	the	alert()	function	is	modal.	This	is	an	important
concept,	which	you’ll	come	across	again.	It	simply	means	that	the	message	box	won’t
go	away	until	the	user	closes	it	by	clicking	the	OK	button.	In	fact,	parsing	of	the	page
stops	at	the	line	where	the	alert()	function	is	used	and	doesn’t	restart	until	the	user
closes	the	message	box.	This	is	quite	useful	for	this	example,	because	it	enables	you
to	demonstrate	the	results	of	what	has	been	parsed	so	far:	The	page	color	has	been	set
to	white,	and	the	first	paragraph	has	been	displayed.

When	you	click	OK,	the	browser	carries	on	parsing	down	the	page	through	the
following	lines:

								<p>Paragraph	2</p>

								<script>

												//	script	block	2

												document.bgColor	=	"red";

												alert("Second	Script	Block");

								</script>

The	second	paragraph	is	displayed,	and	the	second	block	of	JavaScript	is	run.	The
first	line	of	the	script	block	code	is	another	comment,	so	the	browser	ignores	this.	You
saw	the	second	line	of	the	script	code	in	the	previous	example—it	changes	the
background	color	of	the	page	to	red.	The	third	line	of	code	is	the	alert()	function,
which	displays	the	second	message	box.	Parsing	is	brought	to	a	halt	until	you	close
the	message	box	by	clicking	OK.

When	you	close	the	message	box,	the	browser	moves	on	to	the	next	lines	of	code	in
the	page,	displaying	the	third	paragraph	and,	finally,	ending	the	web	page:

								<p>Paragraph	3</p>

				</body>

</html>

Another	important	point	raised	by	this	example	is	the	difference	between	setting
properties	of	the	page,	such	as	background	color,	via	HTML	and	doing	the	same	thing
using	JavaScript.	The	method	of	setting	properties	using	HTML	is	static:	A	value	can
be	set	only	once	and	never	changed	again	by	means	of	HTML.	Setting	properties
using	JavaScript	enables	you	to	dynamically	change	their	values.	The	term	dynamic
refers	to	something	that	can	be	changed	and	whose	value	or	appearance	is	not	set	in
stone.

This	example	is	just	that,	an	example.	In	practice,	if	you	want	the	page’s	background
to	be	red,	simply	set	the	background	color	with	CSS	(don’t	use	the	bgcolor	attribute
in	practice).	Where	you	want	to	use	JavaScript	is	where	you	want	to	add	some	sort	of
intelligence	or	logic	to	the	page.	For	example,	if	the	user’s	screen	resolution	is

particularly	low,	you	might	want	to	change	what’s	displayed	on	the	page,	and	you	can
do	that	with	JavaScript.

				TRY	IT	OUT								Displaying	Results	in	a	Web
Page
In	this	final	example,	you	discover	how	to	write	information	directly	to	a	web	page
using	JavaScript.	This	proves	more	useful	when	you’re	writing	the	results	of	a
calculation	or	text	you’ve	created	using	JavaScript,	as	you	see	in	the	next	chapter.	For
now,	you’ll	just	write	“Hello	World!”	to	a	blank	page	using	JavaScript:

<!DOCTYPE	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8"	/>

								<title>Chapter	1,	Example	3</title>

				</head>

				<body>

								<p	id="results"></p>

								<script>

												document.getElementById("results").innerHTML	=	"Hello	

World!";

								</script>

				</body>

</html>

Save	the	page	as	ch1_example3.html	to	a	convenient	place	on	your	hard	drive.	Now
load	it	into	your	web	browser	and	you’ll	see	Hello	World!	in	the	page.	Although	it
would	be	easier	to	use	HTML	to	do	the	same	thing,	this	technique	will	prove	useful	in
later	chapters.

The	first	part	of	the	page	is	the	same	as	in	our	earlier	examples,	but	things	start	to
change	when	you	reach	this	line:

<p	id="results"></p>

You’ll	notice	the	<p/>	element	has	been	given	an	ID	using	the	id	attribute.	This	ID
must	be	unique	in	the	web	page,	because	it	is	used	by	JavaScript	to	identify	the
specific	HTML	element	in	the	following	line:

document.getElementById("results").innerHTML	=	"Hello	World!";

Don’t	worry	if	this	seems	complex	at	the	moment;	you	learn	more	about	how	this
works	in	later	chapters.	Basically,	the	code	is	saying,	“Get	me	the	element	with	the	ID
of	results	and	set	the	HTML	inside	that	element	to	Hello	World!”

It’s	important	in	that	the	code	accessing	the	paragraph	is	after	the	actual	<p/>	element.
Otherwise,	the	code	would	be	attempting	to	access	a	paragraph	before	it	existed	in	the
page	and	would	throw	an	error.

www.allitebooks.com

http://www.allitebooks.org

A	BRIEF	LOOK	AT	BROWSERS	AND	COMPATIBILITY
PROBLEMS
In	the	preceding	example	you	saw	that	by	using	JavaScript	you	can	change	a	web	page’s
document	background	color	using	the	bgColor	property	of	the	document.	The	example
worked	regardless	of	what	browser	you	used	because	they	all	support	a	document	with	a
bgColor	property.	You	can	say	that	the	example	is	cross-browser	compatible.	However,
it’s	not	always	the	case	that	the	property	or	language	feature	available	in	one	browser	will
be	available	in	another	browser.	This	is	even	sometimes	the	case	between	versions	of	the
same	browser.

One	of	the	main	headaches	involved	in	creating	web-based	JavaScript	is	the	differences
between	different	web	browsers,	the	level	of	HTML	and	CSS	they	support,	and	the
functionality	their	JavaScript	engines	can	handle.	Each	new	release	of	any	browser	sees
new	and	exciting	features	added	to	its	HTML,	CSS,	and	JavaScript	support.	The	good
news	is	that	to	a	much	greater	extent	than	ever	before,	browser	creators	are	complying
with	standards	set	by	organizations	such	as	Ecma	and	the	W3C.

Which	browsers	you	want	to	support	really	comes	down	to	the	browsers	you	think	the
majority	of	your	website’s	visitors—that	is,	your	user	base—will	be	using.	This	book	is
aimed	at	standards-compliant	browsers,	such	as	Chrome,	IE9+,	Firefox,	Safari,	and	Opera.

If	you	want	your	website	to	be	professional,	you	need	to	somehow	deal	with	older
browsers.	You	could	make	sure	your	code	is	backward	compatible—that	is,	it	only	uses
features	available	in	older	browsers.	However,	you	may	decide	that	it’s	simply	not	worth
limiting	yourself	to	the	features	of	older	browsers.	In	this	case	you	need	to	make	sure	your
pages	degrade	gracefully.	In	other	words,	make	sure	that	although	your	pages	won’t	work
in	older	browsers,	they	will	fail	in	a	way	that	means	the	user	is	either	never	aware	of	the
failure	or	is	alerted	to	the	fact	that	certain	features	on	the	website	are	not	compatible	with
his	or	her	browser.	The	alternative	to	degrading	gracefully	is	for	your	code	to	raise	lots	of
error	messages,	cause	strange	results	to	be	displayed	on	the	page,	and	generally	make	you
look	like	an	idiot	who	doesn’t	know	what	he’s	doing!

So	how	do	you	make	your	web	pages	degrade	gracefully?	You	can	do	this	by	using
JavaScript	to	determine	which	browser	the	web	page	is	running	in	after	it	has	been
partially	or	completely	loaded.	You	can	use	this	information	to	determine	what	scripts	to
run	or	even	to	redirect	the	user	to	another	page	written	to	make	best	use	of	her	particular
browser.	In	later	chapters,	you	see	how	to	find	out	what	features	the	browser	supports	and
take	appropriate	action	so	that	your	pages	work	acceptably	on	as	many	browsers	as
possible.

SUMMARY
At	this	point,	you	should	have	a	feel	for	what	JavaScript	is	and	what	it	can	do.	In
particular,	this	brief	introduction	covered	the	following:

You	looked	into	the	process	the	browser	follows	when	interpreting	your	web	page.	It
goes	through	the	page	element	by	element	(parsing)	and	acts	upon	your	HTML	tags
and	JavaScript	code	as	it	comes	to	them.

Unlike	many	programming	languages,	JavaScript	requires	just	a	text	editor	to	start
creating	code.	Something	like	Windows	Notepad	is	fine	for	getting	started,	though
more	extensive	tools	will	prove	valuable	once	you	get	more	experience.

JavaScript	code	is	embedded	into	the	web	page	itself,	along	with	the	HTML.	Its
existence	is	marked	out	by	the	use	of	<script/>	elements.	As	with	HTML,	the	script
executes	from	the	top	of	the	page	and	works	down	to	the	bottom,	interpreting	and
executing	the	code	statement	by	statement.

2
Data	Types	and	Variables
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Representing	data	in	code

Storing	data	in	memory

Making	calculations

Converting	data

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

One	of	the	main	uses	of	computers	is	to	process	and	display	information.	By	processing,
we	mean	the	information	is	modified,	interpreted,	or	filtered	in	some	way	by	the	computer.
For	example,	on	an	online	banking	website,	a	customer	may	request	details	of	all	money
paid	out	from	his	account	in	the	past	month.	Here	the	computer	would	retrieve	the
information,	filter	out	any	information	not	related	to	payments	made	in	the	past	month,
and	then	display	what’s	left	in	a	web	page.	In	some	situations,	information	is	processed
without	being	displayed,	and	at	other	times,	information	is	obtained	directly	without	being
processed.	For	example,	in	a	banking	environment,	regular	payments	may	be	processed
and	transferred	electronically	without	any	human	interaction	or	display.

In	computing,	information	is	referred	to	as	data.	Data	comes	in	all	sorts	of	forms,	such	as
numbers,	text,	dates,	and	times,	to	mention	just	a	few.	In	this	chapter,	you	look	specifically
at	how	JavaScript	handles	data	such	as	numbers	and	text.	An	understanding	of	how	data	is
handled	is	fundamental	to	any	programming	language.

In	this	chapter	you	start	by	looking	at	the	various	types	of	data	JavaScript	can	process.
Then	you	look	at	how	you	can	store	this	data	in	the	computer’s	memory	so	you	can	use	it
again	and	again	in	the	code.	Finally,	you	see	how	to	use	JavaScript	to	manipulate	and
process	the	data.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

TYPES	OF	DATA	IN	JAVASCRIPT
Data	can	come	in	many	different	forms,	or	types.	You’ll	recognize	some	of	the	data	types
that	JavaScript	handles	from	the	world	outside	of	programming—for	example,	numbers
and	text.	Other	data	types	are	a	little	more	abstract	and	are	used	to	make	programming
easier;	one	example	is	the	object	data	type,	which	you	won’t	see	in	detail	until	Chapter	5.

Some	programming	languages	are	strongly	typed.	In	these	languages,	whenever	you	use	a
piece	of	data,	you	need	to	explicitly	state	what	sort	of	data	you	are	dealing	with,	and	use
of	that	data	must	follow	strict	rules	applicable	to	its	type.	For	example,	in	a	strongly	typed
language	you	can’t	add	a	number	and	a	word.

JavaScript,	on	the	other	hand,	is	a	weakly	typed	language	and	a	lot	more	forgiving	about
how	you	use	different	types	of	data.	When	you	deal	with	data,	you	often	don’t	need	to
specify	type;	JavaScript	will	work	that	out	for	itself.	Furthermore,	when	you	are	using
different	types	of	data	at	the	same	time,	JavaScript	will	work	out	behind	the	scenes	what	it
is	you’re	trying	to	do.

Given	how	easygoing	JavaScript	is	about	data,	why	talk	about	data	types	at	all?	Why	not
just	cut	to	the	chase	and	start	using	data	without	worrying	about	its	type?

First	of	all,	although	JavaScript	is	very	good	at	working	out	what	data	it’s	dealing	with,	on
occasion	it’ll	get	things	wrong	or	at	least	not	do	what	you	want	it	to	do.	In	these	situations,
you	need	to	make	it	explicit	to	JavaScript	what	sort	of	data	type	you	intended	and	how	it
should	be	used.	To	do	that,	you	first	need	to	know	a	little	bit	about	data	types.

A	second	reason	is	that	data	types	enable	you	to	use	data	effectively	in	your	code.	The
things	that	you	can	do	with	data	and	the	results	you’ll	get	depend	on	the	type	of	data	being
used,	even	if	you	don’t	explicitly	specify	what	type	it	is.	For	example,	although	trying	to
multiply	two	numbers	makes	sense,	doing	the	same	thing	with	text	doesn’t.	Also,	the
result	of	adding	numbers	is	very	different	from	the	result	of	adding	text.	With	numbers
you	get	the	sum,	but	with	text	you	get	one	big	piece	of	text	consisting	of	the	other	pieces
joined	together.

Let’s	take	a	brief	look	at	some	of	the	more	commonly	used	data	types:	numerical,	text,	and
boolean.	You	see	how	to	use	them	later	in	the	chapter.

Numerical	Data
Numerical	data	comes	in	two	forms:

Whole	numbers,	such	as	145,	which	are	also	known	as	integers.	These	numbers	can
be	positive	or	negative	and	can	span	a	very	wide	range	in	JavaScript:	–253	to	253.

Fractional	numbers,	such	as	1.234,	which	are	also	known	as	floating-point	numbers.
Like	integers,	they	can	be	positive	or	negative,	and	they	also	have	a	massive	range.

In	simple	terms,	unless	you’re	writing	specialized	scientific	applications,	you’re	not	going
to	face	problems	with	the	size	of	numbers	available	in	JavaScript.	Also,	although	you	can
treat	integers	and	floating-point	numbers	differently	when	it	comes	to	storing	them,

JavaScript	actually	treats	them	both	as	floating-point	numbers.	It	kindly	hides	the	detail
from	you	so	you	generally	don’t	need	to	worry	about	it.	One	exception	is	when	you	want
an	integer	but	you	have	a	floating-point	number,	in	which	case	you’ll	round	the	number	to
make	it	an	integer.	You	take	a	look	at	rounding	numbers	later	in	this	chapter.

Text	Data
Another	term	for	one	or	more	characters	of	text	is	a	string.	You	tell	JavaScript	that	text	is
to	be	treated	as	text	and	not	as	code	simply	by	enclosing	it	inside	quotation	marks	(").	For
example,	"Hello	World"	and	"A"	are	examples	of	strings	that	JavaScript	will	recognize.
You	can	also	use	the	single	quotation	marks	('),	so	'Hello	World'	and	'A'	are	also
examples	of	strings	that	JavaScript	will	recognize.	However,	you	must	end	the	string	with
the	same	quotation	mark	that	you	started	it	with.	Therefore,	"A'	is	not	a	valid	JavaScript
string,	and	neither	is	'Hello	World".

What	if	you	want	a	string	with	a	single	quotation	mark	in	the	middle,	say	a	string	like
Peter	O'Toole?	If	you	enclose	it	in	double	quotes,	you’ll	be	fine,	so	"Peter	O'Toole"	is
recognized	by	JavaScript.	However,	'Peter	O'Toole'	will	produce	an	error.	This	is
because	JavaScript	thinks	that	your	text	string	is	Peter	O	(that	is,	it	treats	the	middle
single	quote	as	marking	the	end	of	the	string)	and	falls	over	wondering	what	the	Toole'	is.

Another	way	around	this	is	to	tell	JavaScript	that	the	middle	'	is	part	of	the	text	and	is	not
indicating	the	end	of	the	string.	You	do	this	by	using	the	backslash	character	(\),	which
has	special	meaning	in	JavaScript	and	is	referred	to	as	an	escape	character.	The	backslash
tells	the	browser	that	the	next	character	is	not	the	end	of	the	string,	but	part	of	the	text.	So
'Peter	O\'Toole'	will	work	as	planned.

What	if	you	want	to	use	a	double	quote	inside	a	string	enclosed	in	double	quotes?	Well,
everything	just	said	about	the	single	quote	still	applies.	So	'Hello	"Paul"'	works,	but
"Hello	"Paul""	won’t.	However,	"Hello	\"Paul\""	will	work.

JavaScript	has	a	lot	of	other	special	characters,	which	can’t	be	typed	in	but	can	be
represented	using	the	escape	character	in	conjunction	with	other	characters	to	create
escape	sequences.	These	work	much	the	same	as	in	HTML.	For	example,	more	than	one
space	in	a	row	is	ignored	in	HTML,	so	a	space	is	represented	by	the	term	 .
Similarly,	in	JavaScript	you’ll	find	instances	where	you	can’t	use	a	character	directly	but
must	use	an	escape	sequence.	The	following	table	details	some	of	the	more	useful	escape
sequences.

ESCAPE
SEQUENCES

CHARACTER	REPRESENTED

\b Backspace
\f Form	feed
\n New	line
\r Carriage	return
\t Tab
\' Single	quote
\" Double	quote
\\ Backslash
\xNN NN	is	a	hexadecimal	number	that	identifies	a	character	in	the	Latin-

1	character	set.

The	least	obvious	of	these	is	the	last,	which	represents	individual	characters	by	their
character	number	in	the	Latin-1	character	set	rather	than	by	their	normal	appearance.	Let’s
pick	an	example:	Say	you	wanted	to	include	the	copyright	symbol	(©)	in	your	string.
What	would	your	string	need	to	look	like?	The	answer	is	"\xA9	Paul	Wilton".

Similarly,	you	can	refer	to	characters	using	their	Unicode	escape	sequence.	These	are
written	\uNNNN,	where	NNNN	refers	to	the	Unicode	number	for	that	particular	character.	For
example,	to	refer	to	the	copyright	symbol	using	this	method,	you	use	the	string	\u00A9.

Boolean	Data
The	use	of	yes	or	no,	positive	or	negative,	and	true	or	false	is	commonplace	in	the	physical
world.	The	idea	of	true	and	false	is	also	fundamental	to	digital	computers;	they	don’t
understand	maybes,	only	true	and	false.	In	fact,	the	concept	of	“yes	or	no”	is	so	useful	it
has	its	own	data	type	in	JavaScript:	the	boolean	data	type.	The	boolean	type	has	two
possible	values:	true	for	yes	and	false	for	no.

The	purpose	of	boolean	data	in	JavaScript	is	just	the	same	as	in	the	world	outside
programming:	it	enables	you	to	answer	questions	and	make	decisions	based	on	the	answer.
For	example,	if	you	are	asked,	“Is	this	book	about	JavaScript?”	you	would	hopefully
answer,	“Yes	it	is,”	or	you	might	also	say,	“That’s	true.”	Similarly,	you	might	say,	“If	it’s
false	that	the	subject	of	the	book	is	JavaScript,	then	put	it	down.”	Here	you	have	a	boolean
logic	statement	(named	after	its	inventor	George	Boole),	which	asks	a	question	and	then
does	something	based	on	whether	the	answer	is	true	or	false.	In	JavaScript,	you	can	use
the	same	sort	of	boolean	logic	to	give	your	programs	decision-making	abilities.	You	take	a
more	detailed	look	at	boolean	logic	in	the	next	chapter.

VARIABLES—STORING	DATA	IN	MEMORY
Data	can	be	stored	either	permanently	or	temporarily.

You	will	want	to	keep	important	data,	such	as	the	details	of	a	person’s	bank	account,	in	a
permanent	store.	For	example,	when	Ms.	Bloggs	takes	ten	dollars	or	pounds	or	euros	out
of	her	account,	you	want	to	deduct	the	money	from	her	account	and	keep	a	permanent
record	of	the	new	balance.	Information	like	this	might	be	stored	in	something	called	a
database.

However,	in	other	cases	you	don’t	want	to	permanently	store	data,	but	simply	want	to	keep
a	temporary	note	of	it.	Let’s	look	at	an	example.	Say	Ms.	Bloggs	has	a	loan	from	BigBank
Inc.,	and	she	wants	to	find	out	how	much	is	still	outstanding	on	this	loan.	She	goes	to	the
online	banking	page	for	loans	and	clicks	a	link	to	find	out	how	much	she	owes.	This	is
data	that	will	be	stored	permanently	somewhere.	However,	suppose	you	also	provide	a
facility	for	increasing	loan	repayments	to	pay	off	the	loan	early.	If	Ms.	Bloggs	enters	an
increased	repayment	amount	into	the	text	box	on	the	web	page,	you	might	want	to	show
how	much	sooner	the	loan	will	be	paid.	This	will	involve	a	few	possibly	complex
calculations,	so	to	make	it	easier,	you	want	to	write	code	that	calculates	the	result	in
several	stages,	storing	the	result	at	each	stage	as	you	go	along,	before	providing	a	final
result.	After	you’ve	done	the	calculation	and	displayed	the	results,	there’s	no	need	to
permanently	store	the	results	for	each	stage,	so	rather	than	use	a	database,	you	need	to	use
something	called	a	variable.	Why	is	it	called	a	variable?	Well,	perhaps	because	a	variable
can	be	used	to	store	temporary	data	that	can	be	altered,	or	varied.

Another	bonus	of	variables	is	that	unlike	permanent	storage,	which	might	be	saved	to	disk
or	magnetic	tape,	variables	are	held	in	the	computer’s	memory.	This	means	that	it	is	much,
much	faster	to	store	and	retrieve	the	data.

So	what	makes	variables	good	places	for	temporarily	storing	your	data?	Well,	variables
have	a	limited	lifetime.	When	your	visitors	close	the	page	or	move	to	a	new	one,	your
variables	are	lost,	unless	you	take	some	steps	to	save	them	somewhere.

You	give	each	variable	a	name	so	that	you	can	refer	to	it	elsewhere	in	your	code.	These
names	must	follow	certain	rules.

As	with	much	of	JavaScript	code,	variable	names	are	case	sensitive.	For	example,
myVariable	is	not	the	same	as	myvariable.	You’ll	find	that	this	is	a	very	easy	way	for
errors	to	slip	into	your	code,	even	when	you	become	an	expert	at	JavaScript.

Also,	you	can’t	use	certain	names	and	characters	for	your	variable	names.	Names	you
can’t	use	are	called	reserved	words.	Reserved	words	are	words	that	JavaScript	keeps	for
its	own	use	(for	example,	the	word	var	or	the	word	with).	Certain	characters	are	also
forbidden	in	variable	names:	for	example,	the	ampersand	(&)	and	the	percent	sign	(%).	You
are	allowed	to	use	numbers	in	your	variable	names,	but	the	names	must	not	begin	with
numbers.	So	101myVariable	is	not	okay,	but	myVariable101	is.	Let’s	look	at	some	more
examples.

Invalid	names	include:

with

99variables

my%Variable

theGood&theBad

Valid	names	include:

myVariable99

myPercent_Variable

the_Good_and_the_Bad

You	may	want	to	use	a	naming	convention	for	your	variables	(for	example,	one	that
describes	what	sort	of	data	you	plan	to	hold	in	the	variable).	You	can	notate	your	variables
in	lots	of	different	ways—none	are	right	or	wrong,	but	it’s	best	to	stick	with	one	of	them.

Today,	the	convention	most	JavaScript	developers	use	is	to	simply	give	their	variables
descriptive	names.	For	example,	a	variable	for	a	person’s	first	name	would	be	called
firstName;	his	account	number	would	be	accountNumber.	However,	as	long	as	the	names
you	use	make	sense	and	are	used	consistently,	it	really	doesn’t	matter	what	convention	you
choose.

Creating	Variables	and	Giving	Them	Values
Before	you	can	use	a	variable,	you	should	declare	its	existence	to	the	JavaScript	engine
using	the	var	keyword.	This	warns	the	engine	that	it	needs	to	reserve	some	memory	in
which	to	store	your	data	later.	To	declare	a	new	variable	called	myFirstVariable,	write
the	following:

var	myFirstVariable;

Note	that	the	semicolon	at	the	end	of	the	line	is	not	part	of	the	variable	name,	but	instead
is	used	to	indicate	to	JavaScript	the	end	of	a	statement.	This	line	is	an	example	of	a
JavaScript	statement.

Once	declared,	you	can	use	a	variable	to	store	any	type	of	data.	As	mentioned	earlier,
many	other	programming	languages	(called	strongly	typed	languages)	require	you	to
declare	not	only	the	variable,	but	also	the	type	of	data	that	will	be	stored,	such	as	numbers
or	text.	However,	JavaScript	is	a	weakly	typed	language;	you	don’t	need	to	limit	yourself
to	what	type	of	data	a	variable	can	hold.

You	put	data	into	your	variables,	a	process	called	assigning	values	to	your	variables,	by
using	the	equals	sign	(=).	For	example,	if	you	want	your	variable	named	myFirstVariable
to	hold	the	number	101,	you	would	write	this:

myFirstVariable	=	101;

The	equals	sign	has	a	special	name	when	used	to	assign	values	to	a	variable;	it’s	called	the
assignment	operator.

				TRY	IT	OUT								Declaring	Variables
Let’s	look	at	an	example	in	which	a	variable	is	declared,	store	some	data	in	it,	and
finally,	access	its	contents.	You’ll	also	see	that	variables	can	hold	any	type	of	data,
and	that	the	type	of	data	being	held	can	be	changed.	For	example,	you	can	start	by
storing	text	and	then	change	to	storing	numbers	without	JavaScript	having	any
problems.	Type	the	following	code	into	your	text	editor	and	save	it	as	ch2 _ 
example1.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	1</title>

</head>

<body>

				<script>

								var	myFirstVariable;

								myFirstVariable	=	"Hello";

								alert(myFirstVariable);

								myFirstVariable	=	54321;

								alert(myFirstVariable);

				</script>

</body>

</html>

As	soon	as	you	load	this	into	your	web	browser,	it	should	show	an	alert	box	with
“Hello”	in	it,	as	shown	in	Figure	2.1.	This	is	the	content	of	the	variable
myFirstVariable	at	that	point	in	the	code.

Figure	2.1

Click	OK	and	another	alert	box	appears	with	54321	in	it,	as	shown	in	Figure	2.2.
This	is	the	new	value	you	assigned	to	the	variable	myFirstVariable.

Figure	2.2

Within	the	script	block,	you	first	declare	your	variable:

var	myFirstVariable;

Currently,	its	value	is	the	undefined	value	because	you’ve	declared	only	its	existence
to	the	JavaScript	engine,	not	any	actual	data.	It	may	sound	odd,	but	undefined	is	an
actual	primitive	value	in	JavaScript,	and	it	enables	you	to	do	comparisons.	(For

www.allitebooks.com

http://www.allitebooks.org

example,	you	can	check	to	see	whether	a	variable	contains	an	actual	value	or	whether
it	has	not	yet	been	given	a	value,	that	is,	whether	it	is	undefined.)	However,	in	the
next	line	you	assign	myFirstVariable	a	string	value,	namely	the	value	Hello:

myFirstVariable	=	"Hello";

Here	you	have	assigned	the	variable	a	literal	value	(that	is,	a	piece	of	actual	data
rather	than	data	obtained	by	a	calculation	or	from	another	variable).	Almost	anywhere
that	you	can	use	a	literal	string	or	number,	you	can	replace	it	with	a	variable
containing	number	or	string	data.	You	see	an	example	of	this	in	the	next	line	of	code,
where	you	use	your	variable	myFirstVariable	in	the	alert()	function	that	you	saw
in	the	previous	chapter:

alert(myFirstVariable);

This	causes	the	first	alert	box	to	appear.	Next	you	store	a	new	value	in	your	variable,
this	time	a	number:

myFirstVariable	=	54321;

The	previous	value	of	myFirstVariable	is	lost	forever.	The	memory	space	used	to
store	the	value	is	freed	up	automatically	by	JavaScript	in	a	process	called	garbage
collection.	Whenever	JavaScript	detects	that	the	contents	of	a	variable	are	no	longer
usable,	such	as	when	you	allocate	a	new	value,	it	performs	the	garbage	collection
process	and	makes	the	memory	available.	Without	this	automatic	garbage	collection
process,	more	and	more	of	the	computer’s	memory	would	be	consumed,	until
eventually	the	computer	would	run	out	and	the	system	would	grind	to	a	halt.
However,	garbage	collection	is	not	always	as	efficient	as	it	should	be	and	may	not
occur	until	another	page	is	loaded.

Just	to	prove	that	the	new	value	has	been	stored,	use	the	alert()	function	again	to
display	the	variable’s	new	contents:

alert(myFirstVariable);

Assigning	Variables	with	the	Value	of	Other	Variables
You’ve	seen	that	you	can	assign	a	variable	with	a	number	or	string,	but	can	you	assign	a
variable	with	the	data	stored	inside	another	variable?	The	answer	is	yes,	very	easily,	and	in
exactly	the	same	way	as	giving	a	variable	a	literal	value.	For	example,	if	you	have
declared	the	two	variables	myVariable	and	myOtherVariable	and	have	given	the	variable
myOtherVariable	the	value	22,	like	this:

var	myVariable;

var	myOtherVariable;

myOtherVariable	=	22;

you	can	use	the	following	line	to	assign	myVariable	the	same	value	as	myOtherVariable
(that	is,	22):

myVariable	=	myOtherVariable;

				TRY	IT	OUT								Assigning	Variables	the	Values
of	Other	Variables
Let’s	look	at	another	example,	this	time	assigning	variables	the	values	of	other
variables.

1.	 Type	the	following	code	into	your	text	editor	and	save	it	as	ch2_example2.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	2</title>

</head>

<body>

				<script>

								var	string1	=	"Hello";

								var	string2	=	"Goodbye";

								alert(string1);

								alert(string2);

								string2	=	string1;

								alert(string1);

								alert(string2);

								string1	=	"Now	for	something	different";

								alert(string1);

								alert(string2);

				</script>

</body>

<html>

2.	 Load	the	page	into	your	browser,	and	you’ll	see	a	series	of	six	alert	boxes
appear.

3.	 Click	OK	on	each	alert	box	to	see	the	next	alert.	The	first	two	show	the	values
of	string1	and	string2—Hello	and	Goodbye,	respectively.	Then	you	assign
string2	the	value	that’s	in	string1.	The	next	two	alert	boxes	show	the
contents	of	string1	and	string2;	this	time	both	are	Hello.

4.	 Finally,	you	change	the	value	of	string1.	Note	that	the	value	of	string2
remains	unaffected.	The	final	two	alert	boxes	show	the	new	value	of	string1
(Now	for	something	different)	and	the	unchanged	value	of	string2	(Hello).

The	first	thing	you	do	in	the	script	block	is	declare	your	two	variables:	string1	and
string2.	However,	notice	that	you	have	assigned	them	values	at	the	same	time	that
you	have	declared	them.	This	is	a	shortcut,	called	initializing,	that	saves	you	typing

too	much	code:

var	string1	="Hello";

var	string2	=	"Goodbye";

Note	that	you	can	use	this	shortcut	with	all	data	types,	not	just	strings.	In	the	next	two
lines	you	use	the	alert()	function	to	show	the	current	value	of	each	variable	to	the
user:

alert(string1);

alert(string2);

Then	you	assign	string2	the	value	that’s	contained	in	string1.	To	prove	that	the
assignment	has	really	worked,	you	again	use	the	alert()	function	to	show	the	user
the	contents	of	each	variable:

string2	=	string1;

alert(string1);

alert(string2);

Next,	you	set	string1	to	a	new	value:

string1	=	"Now	for	something	different";

This	leaves	string2	with	its	current	value,	demonstrating	that	string2	has	its	own
copy	of	the	data	assigned	to	it	from	string1	in	the	previous	step.	You	see	in	later
chapters	that	this	is	not	always	the	case.	However,	as	a	general	rule,	basic	data	types,
such	as	text	and	numbers,	are	always	copied	when	assigned,	whereas	more	complex
data	types,	like	the	objects	you	come	across	in	Chapter	5,	are	actually	shared	and	not
copied.	For	example,	if	you	have	a	variable	with	the	string	Hello	and	assign	five
other	variables	the	value	of	this	variable,	you	now	have	the	original	data	and	five
independent	copies	of	the	data.	However,	if	it	was	an	object	rather	than	a	string	and
you	did	the	same	thing,	you’d	find	you	still	have	only	one	copy	of	the	data,	but	that
six	variables	share	it.	Changing	the	data	using	any	of	the	six	variable	names	would
change	it	for	all	the	variables.

Finally,	you	use	the	alert()	function	to	show	the	current	values	of	each	variable:

alert(string1);

alert(string2);

USING	DATA—CALCULATIONS	AND	BASIC	STRING
MANIPULATION
You’ve	seen	how	to	declare	variables	and	how	they	can	store	information,	but	so	far	you
haven’t	done	anything	really	useful	with	this	knowledge—so	just	why	would	you	want	to
use	variables	at	all?

What	variables	enable	you	to	do	is	temporarily	hold	information	that	you	can	use	for
processing	in	mathematical	calculations,	in	building	up	text	messages,	or	in	processing
words	that	the	user	has	entered.	Variables	are	a	little	bit	like	the	Memory	Store	button	on
the	average	pocket	calculator.	Say	you	were	adding	up	your	finances.	You	might	first	add
up	all	the	money	you	needed	to	spend,	and	then	store	it	in	temporary	memory.	After	you
had	added	up	all	your	money	coming	in,	you	could	deduct	the	amount	stored	in	the
memory	to	figure	out	how	much	would	be	left	over.	You	can	use	variables	in	a	similar
way:	You	can	first	gain	the	necessary	user	input	and	store	it	in	variables,	and	then	you	can
do	your	calculations	using	the	values	obtained.

In	this	section	you	see	how	you	can	put	the	values	stored	in	variables	to	good	use	in	both
number-crunching	and	text-based	operations.

Numerical	Calculations
JavaScript	has	a	range	of	basic	mathematical	capabilities,	such	as	addition,	subtraction,
multiplication,	and	division.	Each	of	the	basic	math	functions	is	represented	by	a	symbol:
plus	(+),	minus	(−),	star	(*),	and	forward	slash	(/),	respectively.	These	symbols	are	called
operators	because	they	operate	on	the	values	you	give	them.	In	other	words,	they	perform
some	calculation	or	operation	and	return	a	result.	You	can	use	the	results	of	these
calculations	almost	anywhere	you’d	use	a	number	or	a	variable.

Imagine	you	were	calculating	the	total	value	of	items	on	a	shopping	list.	You	could	write
this	calculation	as	follows:

Total	cost	of	shopping	=	10	+	5	+	5

Or,	if	you	actually	calculate	the	sum,	it’s:

Total	cost	of	shopping	=	20

Now	let’s	see	how	to	do	this	in	JavaScript.	In	actual	fact,	it	is	very	similar	except	that	you
need	to	use	a	variable	to	store	the	final	total:

var	totalCostOfShopping;

totalCostOfShopping	=	10	+	5	+	5;

alert(totalCostOfShopping);

First,	you	declare	a	variable,	totalCostOfShopping,	to	hold	the	total	cost.

In	the	second	line,	you	have	the	code	10	+	5	+	5.	This	piece	of	code	is	known	as	an
expression.	When	you	assign	the	variable	totalCostOfShopping	the	value	of	this
expression,	JavaScript	automatically	calculates	the	value	of	the	expression	(20)	and	stores

it	in	the	variable.	Notice	that	the	equals	sign	tells	JavaScript	to	store	the	results	of	the
calculation	in	the	totalCostOfShopping	variable.	This	is	called	assigning	the	value	of	the
calculation	to	the	variable,	which	is	why	the	single	equals	sign	(=)	is	called	the	assignment
operator.

Finally,	you	display	the	value	of	the	variable	in	an	alert	box.

The	operators	for	subtraction	and	multiplication	work	in	exactly	the	same	way.	Division	is
a	little	different.

				TRY	IT	OUT								Calculations
Let’s	take	a	look	at	an	example	using	the	division	operator	to	see	how	it	works.

1.	 Enter	the	following	code	and	save	it	as	ch2_example3.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	3</title>

</head>

<body>

				<script>

								var	firstNumber	=	15;

								var	secondNumber	=	10;

								var	answer;

								answer	=	15	/	10;

								alert(answer);

								alert(15	/	10);

								answer	=	firstNumber	/	secondNumber;

								alert(answer);

				</script>

</body>

</html>

2.	 Load	this	into	your	web	browser.	You	should	see	a	succession	of	three	alert
boxes,	each	containing	the	value	1.5.	These	values	are	the	results	of	three
calculations.

3.	 The	first	thing	you	do	in	the	script	block	is	declare	your	three	variables	and
assign	the	first	two	of	them	values	that	you’ll	be	using	later:

var	firstNumber	=	15;

var	secondNumber	=	10;

var	answer;

4.	 Next,	you	set	the	answer	variable	to	the	results	of	the	calculation	of	the
expression	15/10.	You	show	the	value	of	this	variable	in	an	alert	box:

answer	=	15	/	10;

alert(answer);

This	example	demonstrates	one	way	of	doing	the	calculation,	but	in	reality	you’d
almost	never	do	it	this	way.

To	demonstrate	that	you	can	use	expressions	in	places	you’d	use	numbers	or
variables,	you	show	the	results	of	the	calculation	of	15/10	directly	by	including	it	in
the	alert()	function:

alert(15	/	10);

Finally,	you	do	the	same	calculation,	but	this	time	using	the	two	variables:
firstNumber,	which	was	set	to	15,	and	secondNumber,	which	was	set	to	10.	You	have
the	expression	firstNumber	/	secondNumber,	the	result	of	which	you	store	in	your
answer	variable.	Then,	to	prove	it	has	all	worked,	you	show	the	value	contained	in
answer	by	using	your	friend	the	alert()	function:

answer	=	firstNumber	/	secondNumber;

alert(answer);

You’ll	do	most	calculations	the	third	way	(that	is,	using	variables,	or	numbers	and
variables,	and	storing	the	result	in	another	variable).	The	reason	for	this	is	that	if	the
calculation	used	literal	values	(actual	values,	such	as	15	/	10),	then	you	might	as	well
program	in	the	result	of	the	calculation,	rather	than	force	JavaScript	to	calculate	it	for
you.	For	example,	rather	than	writing	15	/	10,	you	might	as	well	just	write	1.5.	After
all,	the	more	calculations	you	force	JavaScript	to	do,	the	slower	it	will	be,	though
admittedly	just	one	calculation	won’t	tax	it	too	much.

Another	reason	for	using	the	result	rather	than	the	calculation	is	that	it	makes	code
more	readable.	Which	would	you	prefer	to	read	in	code:	1.5	*	45	–	56	/	67	+
2.567	or	69.231?	Still	better,	a	variable	named,	for	example,	pricePerKG,	makes
code	even	easier	to	understand	for	someone	not	familiar	with	it.

Increment	and	Decrement	Operators
A	number	of	operations	using	the	math	operators	are	so	commonly	used	that	they	have
been	given	their	own	operators.	The	two	you’ll	be	looking	at	here	are	the	increment	and
decrement	operators,	which	are	represented	by	two	plus	signs	(++)	and	two	minus	signs	(−
−),	respectively.	Basically,	all	they	do	is	increase	or	decrease	a	variable’s	value	by	one.
You	could	use	the	normal	+	and	−	operators	to	do	this,	for	example:

myVariable	=	myVariable	+	1;

myVariable	=	myVariable	−	1;

NOTE	You	can	assign	a	variable	a	new	value	that	is	the	result	of	an	expression
involving	its	previous	value.

However,	using	the	increment	and	decrement	operators	shortens	this	to:

myVariable++;

myVariable−−;

The	result	is	the	same—the	value	of	myVariable	is	increased	or	decreased	by	one—but
the	code	is	shorter.	When	you	are	familiar	with	the	syntax,	this	becomes	very	clear	and
easy	to	read.

Right	now,	you	may	well	be	thinking	that	these	operators	sound	as	useful	as	a	poke	in	the
eye.	However,	in	Chapter	3,	when	you	look	at	how	you	can	run	the	same	code	a	number	of
times,	you’ll	see	that	these	operators	are	very	useful	and	widely	used.	In	fact,	the	++
operator	is	so	widely	used	it	has	a	computer	language	named	after	it:	C++.	The	joke	here
is	that	C++	is	one	up	from	C.	(Well,	that’s	programmer	humor	for	you!)

As	well	as	placing	the	++	or	−−	after	the	variable,	you	can	also	place	it	before,	like	so:

++myVariable;

−−myVariable;

When	the	++	and	−−	are	used	on	their	own,	as	they	usually	are,	it	makes	no	difference
where	they	are	placed,	but	it	is	possible	to	use	the	++	and	−−	operators	in	an	expression
along	with	other	operators.	For	example:

myVar	=	myNumber++	−	20;

This	code	takes	20	away	from	myNumber	and	then	increments	the	variable	myNumber	by
one	before	assigning	the	result	to	the	variable	myVar.	If	instead	you	place	the	++	before
and	prefix	it	like	this:

myVar	=	++myNumber	−	20;

myNumber	is	first	incremented	by	one,	and	then	myNumber	has	20	subtracted	from	it.	It’s	a
subtle	difference,	but	in	some	situations	a	very	important	one.	Take	the	following	code:

myNumber	=	1;

myVar	=	(myNumber++	*	10	+	1);

What	value	will	myVar	contain?	Well,	because	the	++	is	postfixed	(it’s	after	the	myNumber
variable),	it	will	be	incremented	afterward.	So	the	equation	reads:	Multiply	myNumber	by
10	plus	1	and	then	increment	myNumber	by	one.

myVar	=	1	*	10	+	1	=	11

Then	add	1	to	myNumber	to	get	12,	but	do	this	after	the	value	11	has	been	assigned	to
myVar.	Now	take	a	look	at	the	following	code:

myNumber	=	1;

myVar	=	++myNumber	*	10	+	1;

This	time	myNumber	is	incremented	by	one	first,	then	times	10	and	plus	1:

myVar	=	2	*	10	+	1	=	21

As	you	can	imagine,	such	subtlety	can	easily	be	overlooked	and	lead	to	bugs	in	code;
therefore,	it’s	usually	best	to	avoid	this	syntax.

Before	going	on,	this	seems	to	be	a	good	place	to	introduce	another	operator:	+=.	You	can
use	this	operator	as	a	shortcut	for	increasing	the	value	held	by	a	variable	by	a	set	amount.
For	example,

myVar	+=	6;

does	exactly	the	same	thing	as:

myVar	=	myVar	+	6;

You	can	also	do	the	same	thing	for	subtraction	and	multiplication,	as	shown	here:

myVar	−=	6;

myVar	*=	6;

which	is	equivalent	to:

myVar	=	myVar	−	6;

myVar	=	myVar	*	6;

Operator	Precedence
You’ve	seen	that	symbols	that	perform	some	function—like	+,	which	adds	two	numbers,
and	−,	which	subtracts	one	number	from	another—are	called	operators.	Unlike	people,	not
all	operators	are	created	equal;	some	have	a	higher	precedence—that	is,	they	get	dealt
with	sooner.	A	quick	look	at	a	simple	example	will	help	demonstrate	this	point:

var	myVariable;

myVariable	=	1	+	1	*	2;

alert(myVariable);

If	you	were	to	type	this,	what	result	would	you	expect	the	alert	box	to	show	as	the	value
of	myVariable?	You	might	expect	that	because	1	+	1	=	2	and	2	*	2	=	4,	the	answer	is	4.
Actually,	you’ll	find	that	the	alert	box	shows	3	as	the	value	stored	in	myVariable	as	a
result	of	the	calculation.	So	what	gives?	Doesn’t	JavaScript	add	up	right?

Well,	you	probably	already	know	the	reason	from	your	understanding	of	mathematics.	The
way	JavaScript	does	the	calculation	is	to	first	calculate	1	*	2	=	2,	and	then	use	this	result
in	the	addition,	so	that	JavaScript	finishes	off	with	1	+	2	=	3.

Why?	Because	*	has	a	higher	precedence	than	+.	The	=	symbol,	also	an	operator	(called
the	assignment	operator),	has	the	lowest	precedence—it	always	gets	left	until	last.

The	+	and	−	operators	have	an	equal	precedence,	so	which	one	gets	done	first?	Well,
JavaScript	works	from	left	to	right,	so	if	operators	with	equal	precedence	exist	in	a
calculation,	they	get	calculated	in	the	order	in	which	they	appear	when	going	from	left	to
right.	The	same	applies	to	*	and	/,	which	are	also	of	equal	precedence.

				TRY	IT	OUT								Fahrenheit	to	Centigrade

Take	a	look	at	a	slightly	more	complex	example—a	Fahrenheit	to	centigrade
converter.	(Centigrade	is	another	name	for	the	Celsius	temperature	scale.)	Type	this
code	and	save	it	as	ch2_example4.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	4</title>

</head>

<body>

				<script>

								//	Equation	is	°C	=	5/9	(°F	-	32).

								var	degFahren	=	prompt("Enter	the	degrees	in	Fahrenheit",50);

								var	degCent;

								degCent	=	5/9	*	(degFahren	-	32);

								alert(degCent);

				</script>

</body>

</html>

If	you	load	the	page	into	your	browser,	you	should	see	a	prompt	box,	like	that	shown
in	Figure	2.3,	that	asks	you	to	enter	the	degrees	in	Fahrenheit	to	be	converted.	The
value	50	is	already	filled	in	by	default.

Figure	2.3

If	you	leave	it	at	50	and	click	OK,	an	alert	box	with	the	number	10	in	it	appears.
This	represents	50	degrees	Fahrenheit	converted	to	centigrade.

Reload	the	page	and	try	changing	the	value	in	the	prompt	box	to	see	what	results	you
get.	For	example,	change	the	value	to	32	and	reload	the	page.	This	time	you	should

see	0	appear	in	the	box.

Because	it’s	still	a	fairly	simple	example,	there’s	no	checking	of	data	input,	so	it’ll	let
you	enter	abc	as	the	degrees	Fahrenheit.	Later,	in	the	“Data	Type	Conversion”	section
of	this	chapter,	you	see	how	to	spot	invalid	characters	posing	as	numeric	data.

				TRY	IT	OUT								Security	Issues	with	Internet
Explorer
When	loading	the	page	to	Internet	Explorer	(IE),	you	may	see	the	security	warning
issue	shown	in	Figure	2.4,	and	the	prompt	window	doesn’t	appear.

Figure	2.4

If	it	does	you’ll	need	to	change	IE’s	security	settings	to	allow	active	content	from
your	computer.	To	do	this:

1.	 Open	IE	and	select	the	“Internet	options”	menu	from	the	Tools	menu,	as	shown
in	Figure	2.5.

2.	 Click	the	Advanced	tab	and	then	scroll	down	to	the	Security	section.	Check	the
“Allow	active	content	to	run	in	files	on	My	Computer”	option,	as	shown	in
Figure	2.6.

3.	 Click	the	OK	button	on	the	Internet	Options	dialog	box	and	close	Internet
Explorer.	Open	Example	4	from	the	“Fahrenheit	to	Centigrade”	Try	It	Out	again,
and	the	example	will	now	work.

www.allitebooks.com

http://www.allitebooks.org

Figure	2.5

Figure	2.6

The	first	line	of	the	script	block	is	a	comment,	because	it	starts	with	two	forward
slashes	(//).	It	contains	the	equation	for	converting	Fahrenheit	temperatures	to
centigrade	and	is	in	the	example	code	solely	for	reference:

//	Equation	is	°C	=	5/9	(°F	-	32).

Your	task	is	to	represent	this	equation	in	JavaScript	code.	You	start	by	declaring	your
variables,	degFahren	and	degCent:

var	degFahren	=	prompt(“Enter	the	degrees	in	Fahrenheit”,50);

var	degCent;

Instead	of	initializing	the	degFahren	variable	to	a	literal	value,	you	get	a	value	from
the	user	using	the	prompt()	function.	The	prompt()	function	works	in	a	similar	way
to	an	alert()	function,	except	that	as	well	as	displaying	a	message,	it	also	contains	a
text	box	in	which	the	user	can	enter	a	value.	It	is	this	value	that	will	be	stored	inside
the	degFahren	variable.	The	value	returned	is	a	text	string,	but	this	will	be	implicitly
converted	by	JavaScript	to	a	number	when	you	use	it	as	a	number,	as	discussed	in	the
section	“Data	Type	Conversion”	later	in	this	chapter.

You	pass	two	pieces	of	information	to	the	prompt()	function:

The	text	to	be	displayed—usually	a	question	that	prompts	the	user	for	input

The	default	value	that	is	contained	in	the	input	box	when	the	prompt	dialog	box
first	appears

These	two	pieces	of	information	must	be	specified	in	the	given	order	and	separated	by
a	comma.	If	you	don’t	want	a	default	value	to	be	contained	in	the	input	box	when	the
prompt	box	opens,	use	an	empty	string	("")	for	the	second	piece	of	information.

As	you	can	see	in	the	preceding	code,	the	text	is	“Enter	the	degrees	in	Fahrenheit,”
and	the	default	value	in	the	input	box	is	50.

Next	in	the	script	block	comes	the	equation	represented	in	JavaScript.	You	store	the
result	of	the	equation	in	the	degCent	variable.	You	can	see	that	the	JavaScript	looks
very	much	like	the	equation	you	have	in	the	comment,	except	you	use	degFahren
instead	of	°F,	and	degCent	rather	than	°C:

degCent	=	5/9	*	(degFahren	-	32);

The	calculation	of	the	expression	on	the	right-hand	side	of	the	equals	sign	raises	a
number	of	important	points.	First,	just	as	in	math,	the	JavaScript	equation	is	read	from
left	to	right,	at	least	for	the	basic	math	functions	like	+,	-,	and	so	on.	Secondly,	as	you
saw	earlier,	just	as	there	is	precedence	in	math,	there	is	precedence	in	JavaScript.

Starting	from	the	left,	first	JavaScript	works	out	5/9	=	.5556	(approximately).	Then
it	comes	to	the	multiplication,	but	wait…	the	last	bit	of	your	equation,	degFahren	–
32,	is	in	parentheses.	This	raises	the	order	of	precedence	and	causes	JavaScript	to
calculate	the	result	of	degFahren	–	32	before	doing	the	multiplication.	For	example,
when	degFahren	is	set	to	50,	(degFahren	-	32)	=	(50	–	32)	=	18.	Now	JavaScript
does	the	multiplication,	.5556	*	18,	which	is	approximately	10.

What	if	you	didn’t	use	the	parentheses?	Then	your	code	would	be:

degCent	=	5/9	*	degFahren	-	32;

The	calculation	of	5/9	remains	the	same,	but	then	JavaScript	would	have	calculated
the	multiplication,	5/9	*	degFahren.	This	is	because	the	multiplication	takes
precedence	over	the	subtraction.	When	degFahren	is	50,	this	equates	to	5/9	*	50	=
27.7778.	Finally,	JavaScript	would	have	subtracted	the	32,	leaving	the	result	as	–
4.2221;	not	the	answer	you	want!

Finally,	in	your	script	block,	you	display	the	answer	using	the	alert()	function:

alert(degCent);

That	concludes	a	brief	look	at	basic	calculations	with	JavaScript.	However,	in	Chapter
5	you	look	at	the	Math	object,	which	enables	you	to	do	more	complex	calculations.

Basic	String	Operations

In	an	earlier	section,	you	looked	at	the	text	or	string	data	type,	as	well	as	numerical	data.
Just	as	numerical	data	has	associated	operators,	strings	have	operators	too.	This	section
introduces	some	basic	string	manipulation	techniques	using	such	operators.	Strings	are
covered	in	more	depth	in	Chapter	5,	and	advanced	string	handling	is	covered	in	Chapter	6.

One	thing	you’ll	find	yourself	doing	again	and	again	in	JavaScript	is	joining	two	strings	to
make	one	string—a	process	termed	concatenation.	For	example,	you	may	want	to
concatenate	the	two	strings	"Hello	"	and	"Paul"	to	make	the	string	"Hello	Paul".	So
how	do	you	concatenate?	Easy!	Use	the	+	operator.	Recall	that	when	applied	to	numbers,
the	+	operator	adds	them	up,	but	when	used	in	the	context	of	two	strings,	it	joins	them:

var	concatString	=	"Hello	"	+	"Paul";

The	string	now	stored	in	the	variable	concatString	is	"Hello	Paul".	Notice	that	the	last
character	of	the	string	"Hello"	is	a	space—if	you	left	this	out,	your	concatenated	string
would	be	"HelloPaul".

				TRY	IT	OUT								Concatenating	Strings
Let’s	look	at	an	example	using	the	+	operator	for	string	concatenation.

1.	 Type	the	following	code	and	save	it	as	ch2_example5.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	5</title>

</head>

<body>

				<script>

								var	greetingString	=	"Hello";

								var	myName	=	prompt("Please	enter	your	name",	"");

								var	concatString;

								document.write(greetingString	+	"	"	+	myName	+	"
");

								concatString	=	greetingString	+	"	"	+	myName;

								document.write(concatString);

				</script>

</body>

</html>

2.	 If	you	load	it	into	your	web	browser,	you	should	see	a	prompt	box	asking	for
your	name.

3.	 Enter	your	name	and	click	OK.	You	should	see	a	greeting	and	your	name
displayed	twice	on	the	web	page.

You	start	the	script	block	by	declaring	three	variables.	You	set	the	first	variable,
greetingString,	to	a	string	value.	The	second	variable,	myName,	is	assigned	to

whatever	is	entered	by	the	user	in	the	prompt	box.	You	do	not	initialize	the	third
variable,	concatString,	here.	It	will	be	used	to	store	the	result	of	the	concatenation
that	you’ll	do	later	in	the	code.

var	greetingString	=	"Hello";

var	myName	=	prompt("Please	enter	your	name",	"");

var	concatString;

In	the	previous	chapter,	you	saw	how	the	web	page	was	represented	by	the	concept	of
a	document	and	that	it	had	a	number	of	different	properties,	such	as	bgColor.	You	can
also	use	document	to	write	text	and	HTML	directly	into	the	page	itself.	You	do	this	by
using	the	word	document,	followed	by	a	dot,	and	then	write().	You	then	use
document.write()	much	as	you	do	the	alert()	function,	in	that	you	put	the	text	that
you	want	displayed	in	the	web	page	inside	the	parentheses	following	the	word	write.
Don’t	worry	too	much	about	this	here,	though,	because	it	is	all	explained	in	detail	in
later	chapters.	However,	you	now	make	use	of	document.write()	in	your	code	to
write	the	result	of	an	expression	to	the	page:

document.write(greetingString	+	"	"	+	myName	+	"
");

The	expression	written	to	the	page	is	the	concatenation	of	the	value	of	the
greetingString	variable,	a	space	("	"),	the	value	of	the	myName	variable,	and	the
HTML	
	element,	which	causes	a	line	break.	For	example,	if	you	enter	Jeremy
into	the	prompt	box,	the	value	of	this	expression	will	be	as	follows:

Hello	Jeremy

In	the	next	line	of	code	is	a	similar	expression.	This	time	it	is	just	the	concatenation	of
the	value	in	the	variable	greetingString,	a	space,	and	the	value	in	the	variable
myName.	You	store	the	result	of	this	expression	in	the	variable	concatString.	Finally,
you	write	the	contents	of	the	variable	concatString	to	the	page	using
document.write():

concatString	=	greetingString	+	"	"	+	myName;

document.write(concatString);

Mixing	Numbers	and	Strings
What	if	you	want	to	mix	text	and	numbers	in	an	expression?	A	prime	example	of	this
would	be	in	the	temperature	converter	you	saw	earlier.	In	the	example,	you	just	display	the
number	without	telling	the	user	what	it	actually	means.	What	you	really	want	to	do	is
display	the	number	with	descriptive	text	wrapped	around	it,	such	as	“The	value	converted
to	degrees	centigrade	is	10.”

Mixing	numbers	and	text	is	actually	very	easy.	You	can	simply	join	them	using	the	+
operator.	JavaScript	is	intelligent	enough	to	know	that	when	both	a	string	and	a	number
are	involved,	you’re	not	trying	to	do	numerical	calculations,	but	rather	that	you	want	to
treat	the	number	as	a	string	and	join	it	to	the	text.	For	example,	to	join	the	text	My	age	is
and	the	number	101,	you	could	simply	do	the	following:

alert("My	age	is	"	+	101);

This	would	produce	an	alert	box	with	“My	age	is	101”	inside	it.

				TRY	IT	OUT								Making	the	Temperature
Converter	User-Friendly
You	can	try	out	this	technique	of	concatenating	strings	and	numbers	in	the
temperature-converter	example.	You	output	some	explanatory	text,	along	with	the
result	of	the	conversion	calculation.	The	changes	that	you	need	to	make	are	very
small,	so	load	ch2_example4.html	into	your	text	editor	and	change	the	following	line.
Then	save	it	as	ch2_example6.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	6</title>

</head>

<body>

				<script>

								//	Equation	is	°C	=	5/9	(°F	-	32).

								var	degFahren	=	prompt("Enter	the	degrees	in	Fahrenheit",50);

								var	degCent;

								degCent	=	5/9	*	(degFahren	-	32);

								alert(degFahren	+	"\xB0	Fahrenheit	is	"	+	degCent	+	"\xB0	

centigrade");

				</script>

</body>

</html>

Load	the	page	into	your	web	browser.	Click	OK	in	the	prompt	box	to	submit	the	value
50,	and	this	time	you	should	see	the	box	shown	in	Figure	2.7.

Figure	2.7

This	example	is	identical	to	ch2 _ example4.html,	except	for	one	line:

alert(degFahren	+	"\xB0	Fahrenheit	is	"	+	degCent	+	"\xB0	centigrade");

So	we	will	just	look	at	this	line	here.	You	can	see	that	the	alert()	function	contains
an	expression.	Let’s	look	at	that	expression	more	closely.

First	is	the	variable	degFahren,	which	contains	numerical	data.	You	concatenate	that
to	the	string	"\xBO	Fahrenheit	is	“.	JavaScript	realizes	that	because	you	are	adding
a	number	and	a	string,	you	want	to	join	them	into	one	string	rather	than	trying	to	take
their	sum,	and	so	it	automatically	converts	the	number	contained	in	degFahren	to	a
string.	You	next	concatenate	this	string	to	the	variable	degCent,	containing	numerical
data.	Again	JavaScript	converts	the	value	of	this	variable	to	a	string.	Finally,	you
concatenate	to	the	string	"\xBO	centigrade".

Note	also	the	escape	sequence	used	to	insert	the	degree	character	into	the	strings.
You’ll	remember	from	earlier	in	the	chapter	that	you	can	use	\xNN	to	insert	special
characters	not	available	to	type	in	directly.	(NN	is	a	hexadecimal	number	representing
a	character	from	the	Latin-1	character	table.)	So	when	JavaScript	spots	\xB0	in	a
string,	instead	of	showing	those	characters	it	does	a	lookup	to	see	what	character	is
represented	by	B0	and	shows	that	instead.

Something	to	be	aware	of	when	using	special	characters	is	that	they	are	not
necessarily	cross-platform–compatible.	Although	you	can	use	\xNN	for	a	certain
character	on	a	Windows	computer,	you	may	find	you	need	to	use	a	different	character
on	a	Mac	or	a	Unix	machine.

You	look	at	more	string	manipulation	techniques	in	Chapter	5—you	see	how	to	search
strings	and	insert	characters	in	the	middle	of	them,	and	in	Chapter	6	you	see	some
very	sophisticated	string	techniques.

DATA	TYPE	CONVERSION
As	you’ve	seen,	if	you	add	a	string	and	a	number,	JavaScript	makes	the	sensible	choice
and	converts	the	number	to	a	string,	then	concatenates	the	two.	Usually,	JavaScript	has
enough	sense	to	make	data	type	conversions	like	this	whenever	it	needs	to,	but	in	some
situations	you	need	to	convert	the	type	of	a	piece	of	data	yourself.	For	example,	you	may
be	given	a	piece	of	string	data	that	you	want	to	think	of	as	a	number.	This	is	especially
likely	if	you	are	using	forms	to	collect	data	from	the	user.	Any	values	input	by	the	user	are
treated	as	strings,	even	though	they	may	contain	numerical	data,	such	as	the	user’s	age.

Why	is	changing	the	type	of	the	data	so	important?	Consider	a	situation	in	which	you
collect	two	numbers	from	the	user	using	a	form	and	want	to	calculate	their	sum.	The	two
numbers	are	available	to	you	as	strings,	for	example	"22"	and	"15".	When	you	try	to
calculate	the	sum	of	these	values	using	"22"	+	"15"	you	get	the	result	"2215",	because
JavaScript	thinks	you	are	trying	to	concatenate	two	strings	rather	than	trying	to	find	the
sum	of	two	numbers.	To	add	to	the	possible	confusion,	the	order	also	makes	a	difference.
So:

1	+	2	+	"abc"

results	in	a	string	containing	"3abc",	whereas:

"abc"	+	1	+	2

would	result	in	the	string	containing	"abc12".

In	this	section	you	look	at	two	conversion	functions	that	convert	strings	to	numbers:
parseInt()	and	parseFloat().

Let’s	take	parseInt()	first.	This	function	takes	a	string	and	converts	it	to	an	integer.	The
name	is	a	little	confusing	at	first—why	parseInt()	rather	than	convertToInt()?	The
main	reason	for	the	name	comes	from	the	way	that	the	function	works.	It	actually	goes
through	(that	is,	parses)	each	character	of	the	string	you	ask	it	to	convert	and	sees	if	it’s	a
valid	number.	If	it	is	valid,	parseInt()	uses	it	to	build	up	the	number;	if	it	is	not	valid,	the
command	simply	stops	converting	and	returns	the	number	it	has	converted	so	far.

For	example,	if	your	code	is	parseInt("123"),	JavaScript	will	convert	the	string	"123"	to
the	number	123.	For	the	code	parseInt("123abc"),	JavaScript	will	also	return	the	number
123.	When	the	JavaScript	engine	gets	to	the	letter	a,	it	assumes	the	number	has	ended	and
gives	123	as	the	integer	version	of	the	string	"123abc".

The	parseFloat()	function	works	in	the	same	way	as	parseInt(),	except	that	it	returns
floating-point	numbers—fractional	numbers—and	that	a	decimal	point	in	the	string,	which
it	is	converting,	is	considered	to	be	part	of	the	allowable	number.

				TRY	IT	OUT								Converting	Strings	to	Numbers

Let’s	look	at	an	example	using	parseInt()	and	parseFloat().	Enter	the	following

code	and	save	it	as	ch2_example7.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	7</title>

</head>

<body>

				<script>

								var	myString	=	"56.02	degrees	centigrade";

								var	myInt;

								var	myFloat;

								document.write("\""	+	myString	+	"\"	is	"	+	parseInt(myString,	

10)	+

												"	as	an	integer"	+	"
");

								myInt	=	parseInt(myString,	10);

								document.write("\""	+	myString	+

												"\"	when	converted	to	an	integer	equals	"	+	myInt	+	"

");

								myFloat	=	parseFloat(myString);

								document.write("\""	+	myString	+

												"\"	when	converted	to	a	floating	point	number	equals	"	+	

myFloat);

				</script>

</body>

</html>

Load	it	into	your	browser,	and	you’ll	see	three	lines	written	in	the	web	page,	as	shown
in	Figure	2.8.

Figure	2.8

Your	first	task	in	the	script	block	is	to	declare	some	variables.	The	variable	myString
is	declared	and	initialized	to	the	string	you	want	to	convert.	You	could	just	as	easily
have	used	the	string	directly	in	this	example	rather	than	storing	it	in	a	variable,	but	in
practice	you’ll	find	that	you	use	variables	more	often	than	literal	values.	You	also
declare	the	variables	myInt	and	myFloat,	which	will	hold	the	converted	numbers:

var	myString	=	"56.02	degrees	centigrade";

var	myInt;

var	myFloat;

Next,	you	write	to	the	page	the	converted	integer	value	of	myString	displayed	inside
a	user-friendly	sentence	you	build	up	using	string	concatenation.	Notice	that	you	use
the	escape	sequence	\"	to	display	quotes	(")	around	the	string	you	are	converting:

document.write("\""	+	myString	+	"\"	is	"	+	parseInt(myString,	10)	+

				"	as	an	integer"	+	"
");

As	you	can	see,	you	can	use	parseInt()	and	parseFloat()	in	the	same	places	you
would	use	a	number	itself	or	a	variable	containing	a	number.	In	fact,	in	this	line	the
JavaScript	engine	is	doing	two	conversions.	First,	it	converts	myString	to	an	integer,
because	that’s	what	you	asked	for	by	using	parseInt().	Then	it	automatically
converts	that	integer	number	back	to	a	string,	so	it	can	be	concatenated	with	the	other
strings	to	make	up	your	sentence.	Also	note	that	only	the	56	part	of	the	myString
variable’s	value	is	considered	a	valid	number	when	you’re	dealing	with	integers.
Anything	after	the	6	is	considered	invalid	and	is	ignored.

Notice	the	second	value,	the	number	10,	that	is	passed	to	parseInt().	This	is	called
the	radix,	and	it	determines	how	the	string	is	parsed	into	a	number.	By	passing	the
number	10,	you	tell	the	parseInt()	function	to	convert	the	number	using	the	Base	10
number	system.	Base	10	is	our	common	number	system,	but	you	can	use	parseInt()
to	convert	numbers	to	binary	(Base	2),	hex	(Base	16),	and	other	number	systems.	For
example,	parseInt(10,	2)	converts	the	number	10	using	the	binary	number	system,
resulting	in	the	number	2.	Always	specify	the	radix!	Without	it,	JavaScript	guesses
what	number	system	to	use,	and	you	could	encounter	unexpected	results.

Next,	you	do	the	same	conversion	of	myString	using	parseInt(),	but	this	time	you
store	the	result	in	the	myInt	variable.	On	the	following	line	you	use	the	result	in	some
text	you	display	to	the	user:

myInt	=	parseInt(myString,	10);

document.write("\""	+	myString	+

				"\"	when	converted	to	an	integer	equals	"	+	myInt	+	"
");

Again,	though	myInt	holds	a	number,	the	JavaScript	interpreter	knows	that	+,	when	a
string	and	a	number	are	involved,	means	you	want	the	myInt	value	converted	to	a
string	and	concatenated	to	the	rest	of	the	string	so	it	can	be	displayed.

Finally,	you	use	parseFloat()	to	convert	the	string	in	myString	to	a	floating-point
number,	which	you	store	in	the	variable	myFloat.	This	time	the	decimal	point	is
considered	to	be	a	valid	part	of	the	number,	so	it’s	anything	after	the	2	that	is	ignored.
Again	you	use	document.write()	to	write	the	result	to	the	web	page	inside	a	user-

www.allitebooks.com

http://www.allitebooks.org

friendly	string:

myFloat	=	parseFloat(myString);

document.write("\""	+	myString	+

				"\"	when	converted	to	a	floating	point	number	equals	"	+	myFloat);

Dealing	with	Strings	That	Won’t	Convert
Some	strings	simply	are	not	convertible	to	numbers,	such	as	strings	that	don’t	contain	any
numerical	data.	What	happens	if	you	try	to	convert	these	strings?	As	a	little	experiment,
try	changing	the	preceding	example	so	that	myString	holds	something	that	is	not
convertible.	For	example,	change	the	line

var	myString	=	"56.02	degrees	centigrade";

to

var	myString	=	"I'm	a	name	not	a	number";

Now	reload	the	page	in	your	browser	and	you	should	see	what’s	shown	in	Figure	2.9.

Figure	2.9

You	can	see	that	in	the	place	of	the	numbers	you	got	before,	you	get	NaN.	What	sort	of
number	is	that?	Well,	it’s	Not	a	Number	at	all!

If	you	use	parseInt()	or	parseFloat()	with	any	string	that	is	empty	or	does	not	start
with	at	least	one	valid	digit,	you	get	NaN,	meaning	Not	a	Number.

NaN	is	actually	a	special	value	in	JavaScript.	It	has	its	own	function,	isNaN(),	which
checks	whether	something	is	NaN	or	not.	For	example,

myVar1	=	isNaN("Hello");

will	store	the	value	true	in	the	variable	myVar1,	because	"Hello"	is	not	a	number,	whereas

myVar2	=	isNaN("34");

will	store	the	value	false	in	the	variable	myVar2,	because	34	can	be	converted
successfully	from	a	string	to	a	number	by	the	isNaN()	function.

In	later	chapters	you	see	how	you	can	use	the	isNaN()	function	to	check	the	validity	of
strings	as	numbers,	something	that	proves	invaluable	when	dealing	with	user	input.

ARRAYS
Now	we’re	going	to	look	at	a	new	concept—something	called	an	array.	An	array	is
similar	to	a	normal	variable,	in	that	you	can	use	it	to	hold	any	type	of	data.	However,	it	has
one	important	difference,	which	you	see	in	this	section.

As	you	have	already	seen,	a	normal	variable	can	only	hold	one	piece	of	data	at	a	time.	For
example,	you	can	set	myVariable	to	be	equal	to	25	like	so:

myVariable	=	25;

and	then	go	and	set	it	to	something	else,	say	35:

myVariable	=	35;

However,	when	you	set	the	variable	to	35,	the	first	value	of	25	is	lost.	The	variable
myVariable	now	holds	just	the	number	35.

The	following	table	illustrates	the	variable:

VARIABLE	NAME VALUE
myVariable 35

The	difference	between	such	a	normal	variable	and	an	array	is	that	an	array	can	hold	more
than	one	item	of	data	at	the	same	time.	For	example,	you	could	use	an	array	with	the	name
myArray	to	store	both	the	numbers	25	and	35.	Each	place	where	a	piece	of	data	can	be
stored	in	an	array	is	called	an	element.

How	do	you	distinguish	between	these	two	pieces	of	data	in	an	array?	You	give	each	piece
of	data	an	index	value.	To	refer	to	that	piece	of	data,	you	enclose	its	index	value	in	square
brackets	after	the	name	of	the	array.	For	example,	an	array	called	myArray	containing	the
data	25	and	35	could	be	illustrated	using	the	following	table:

ELEMENTNAME VALUE
myArray[0] 25

myArray[1] 35

Notice	that	the	index	values	start	at	0	and	not	1.	Why	is	this?	Surely	1	makes	more	sense
—after	all,	we	humans	tend	to	say	the	first	item	of	data,	followed	by	the	second	item,	and
so	on.	Computers	start	from	0,	and	think	of	the	first	item	as	the	zero	item,	the	second	as
the	first	item,	and	so	on.	Confusing,	but	you’ll	soon	get	used	to	this.

Arrays	can	be	very	useful	because	you	can	store	as	many	(within	the	limits	of	the
language,	which	specifies	a	maximum	of	two	to	the	power	of	32	elements)	or	as	few	items
of	data	in	an	array	as	you	want.	Also,	you	don’t	have	to	say	up	front	how	many	pieces	of
data	you	want	to	store	in	an	array.

So	how	do	you	create	an	array?	This	is	slightly	different	from	declaring	a	normal	variable.
To	create	a	new	array,	you	need	to	declare	a	variable	name	and	tell	JavaScript	that	you
want	it	to	be	a	new	array	using	the	new	keyword	and	the	Array()	function.	For	example,

you	could	define	the	array	myArray	like	this:

var	myArray	=	new	Array();

Note	that,	as	with	everything	in	JavaScript,	the	code	is	case-sensitive,	so	if	you	type
array()	rather	than	Array(),	the	code	won’t	work.	Using	the	new	operator	is	explained	in
Chapter	5.

Today’s	JavaScript	developers	create	arrays	like	this:

var	myArray	=	[];

This	uses	an	array	literal	to	create	the	array.	It	is	functionally	the	same	as	using	new
Array(),	but	it	requires	less	typing.	There	is	no	right	or	wrong	way	to	create	an	array,	but
for	the	remainder	of	this	book,	we	use	the	array	literal	to	create	arrays.

As	with	normal	variables,	you	can	also	declare	your	variable	first,	and	then	tell	JavaScript
you	want	it	to	be	an	array.	For	example:

var	myArray;

myArray	=	[];

You	have	seen	how	to	declare	a	new	array,	but	how	do	you	store	your	pieces	of	data	inside
it?	You	can	do	this	when	you	define	your	array	by	including	your	data	inside	the	square
brackets,	with	each	piece	of	data	separated	by	a	comma.	For	example:

var	myArray	=	["Paul",345,"John",112,"Bob",99];

Here	the	first	item	of	data,	"Paul",	will	be	put	in	the	array	with	an	index	of	0.	The	next
piece	of	data,	345,	will	be	put	in	the	array	with	an	index	of	1,	and	so	on.	This	means	that
the	element	with	the	name	myArray[0]	contains	the	value	"Paul",	the	element	with	the
name	myArray[1]	contains	the	value	345,	and	so	on.

You	don’t	have	to	provide	an	array’s	data	when	you	first	create	the	array.	For	example,
you	could	also	write	the	preceding	line	like	this:

var	myArray	=	[];

myArray[0]	=	"Paul";

myArray[1]	=	345;

myArray[2]	=	"John";

myArray[3]	=	112;

myArray[4]	=	"Bob";

myArray[5]	=	99;

You	use	each	element	name	as	you	would	a	variable,	assigning	them	with	values.	You
learn	this	method	of	declaring	the	values	of	array	elements	in	the	following	“Try	It	Out”
section.

Obviously,	in	this	example	the	first	way	of	defining	the	data	items	is	much	easier.
However,	there	will	be	situations	in	which	you	want	to	change	the	data	stored	in	a
particular	element	in	an	array	after	the	data	items	have	been	declared.	In	that	case	you	will
have	to	use	the	latter	method	of	defining	the	values	of	the	array	elements.

You’ll	also	spot	from	the	preceding	example	that	you	can	store	different	data	types	in	the

same	array.	JavaScript	is	very	flexible	as	to	what	you	can	put	in	an	array	and	where	you
can	put	it.

				TRY	IT	OUT								An	Array
In	this	example,	you	create	an	array	to	hold	some	names,	and	you	use	the	second
method	described	in	the	preceding	section	to	store	these	pieces	of	data	in	the	array.
You	then	display	the	data	to	the	user.	Type	this	code	and	save	it	as
ch2_example8.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	8</title>

</head>

<body>

				<script>

								var	myArray	=	[];

								myArray[0]	=	"Jeremy";

								myArray[1]	=	"Paul";

								myArray[2]	=	"John";

								document.write("myArray[0]	=	"	+	myArray[0]	+	"
");

								document.write("myArray[2]	=	"	+	myArray[2]	+	"
");

								document.write("myArray[1]	=	"	+	myArray[1]	+	"
");

								myArray[1]	=	"Mike";

								document.write("myArray[1]	changed	to	"	+	myArray[1]);

				</script>

</body>

</html>

If	you	load	this	into	your	web	browser,	you	should	see	a	web	page	that	looks
something	like	the	one	shown	in	Figure	2.10.

Figure	2.10

The	first	task	in	the	script	block	is	to	declare	a	variable	and	initialize	it	as	an	array:

var	myArray	=	[];

Now	that	you	have	your	array	defined,	you	can	store	some	data	in	it.	Each	time	you
store	an	item	of	data	with	a	new	index,	JavaScript	automatically	creates	a	new	storage
space	for	it.	Remember	that	the	first	element	will	be	at	myArray[0].

Take	each	addition	to	the	array	in	turn	and	see	what’s	happening.	Before	you	add
anything,	your	array	is	empty.	Then	you	add	an	array	element	with	the	following	line:

myArray[0]	=	"Jeremy";

Your	array	now	looks	like	this:

INDEX DATA	STORED
0 Jeremy

Then	you	add	another	element	to	the	array,	this	time	with	an	index	of	1:

myArray[1]	=	"Paul";

Your	array	now	looks	like	this:

INDEX DATA	STORED
0 Jeremy
1 Paul

Finally,	you	add	another	element	to	the	array	with	an	index	of	2:

myArray[2]	=	"John";

Your	array	now	looks	like	this:

INDEX DATA	STORED
0 Jeremy
1 Paul
2 John

Next,	you	use	a	series	of	document.write()	functions	to	insert	the	values	that	each
element	of	the	array	contains	into	the	web	page.	Here	the	array	is	out	of	order	just	to
demonstrate	that	you	can	access	it	that	way:

document.write("myArray[0]	=	"	+	myArray[0]	+	"
");

document.write("myArray[2]	=	"	+	myArray[2]	+	"
");

document.write("myArray[1]	=	"	+	myArray[1]	+	"
");

You	can	treat	each	particular	position	in	an	array	as	if	it’s	a	standard	variable,	so	you
can	use	it	to	do	calculations,	transfer	its	value	to	another	variable	or	array,	and	so	on.
However,	if	you	try	to	access	the	data	inside	an	array	position	before	you	have
defined	it,	you’ll	get	undefined	as	a	value.

Finally,	you	changed	the	value	of	the	second	array	position	to	"Mike".	You	could	have
changed	it	to	a	number	because,	just	as	with	normal	variables,	you	can	store	any	data
type	at	any	time	in	each	individual	data	position	in	an	array:

myArray[1]	=	"Mike";

Now	your	array’s	contents	look	like	this:

INDEX DATA	STORED
0 Jeremy
1 Mike
2 John

Just	to	show	that	the	change	you	made	has	worked,	you	use	document.write()	to
display	the	second	element’s	value:

document.write("myArray[1]	changed	to	"	+	myArray[1]);

A	Multi-Dimensional	Array
Suppose	you	want	to	store	a	company’s	personnel	information	in	an	array.	You	might	have
data	such	as	names,	ages,	addresses,	and	so	on.	One	way	to	create	such	an	array	would	be
to	store	the	information	sequentially—the	first	name	in	the	first	element	of	the	array,	then
the	corresponding	age	in	the	next	element,	the	address	in	the	third,	the	next	name	in	the
fourth	element,	and	so	on.	Your	array	could	look	something	like	this:

INDEX DATA	STORED
0 Name1
1 Age1
2 Address1
3 Name2
4 Age2
5 Address2
6 Name3
7 Age3
8 Address3

This	would	work,	but	there	is	a	neater	solution:	using	a	multi-dimensional	array.	Up	to
now	you	have	been	using	single-dimension	arrays.	In	these	arrays	each	element	is
specified	by	just	one	index—that	is,	one	dimension.	So,	taking	the	preceding	example,	you
can	see	Name1	is	at	index	0,	Age1	is	at	index	1,	and	so	on.

A	multi-dimensional	array	is	one	with	two	or	more	indexes	for	each	element.	For	example,
this	is	how	your	personnel	array	could	look	as	a	two-dimensional	array:

INDEX 0 1 2
0 Name1 Name2 Name3
1 Age1 Age2 Age3
2 Address1 Address2 Address3

You	see	how	to	create	such	multi-dimensional	arrays	in	the	following	“Try	It	Out”	section.

				TRY	IT	OUT								A	Two-Dimensional	Array
This	example	illustrates	how	you	can	create	such	a	multi-dimensional	array	in
JavaScript	code	and	how	you	can	access	the	elements	of	this	array.	Type	this	code	and
save	it	as	ch2_example9.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Example	9</title>

</head>

<body>

				<script>

								var	personnel	=	[];

								personnel[0]	=	[];

								personnel[0][0]	=	"Name0";

								personnel[0][1]	=	"Age0";

								personnel[0][2]	=	"Address0";

								personnel[1]	=	[];

								personnel[1][0]	=	"Name1";

								personnel[1][1]	=	"Age1";

								personnel[1][2]	=	"Address1";

								personnel[2]	=	[];

								personnel[2][0]	=	"Name2";

								personnel[2][1]	=	"Age2";

								personnel[2][2]	=	"Address2";

								document.write("Name	:	"	+	personnel[1][0]	+	"
");

								document.write("Age	:	"	+	personnel[1][1]	+	"
");

								document.write("Address	:	"	+	personnel[1][2]);

				</script>

</body>

</html>

If	you	load	it	into	your	web	browser,	you’ll	see	three	lines	written	into	the	page,
which	represent	the	name,	age,	and	address	of	the	person	whose	details	are	stored	in
the	personnel[1]	element	of	the	array,	as	shown	in	Figure	2.11.

Figure	2.11

The	first	thing	to	do	in	this	script	block	is	declare	a	variable,	personnel,	and	tell
JavaScript	that	you	want	it	to	be	a	new	array:

var	personnel	=	[];

Then	you	do	something	new;	you	tell	JavaScript	you	want	index	0	of	the	personnel
array,	that	is,	the	element	personnel[0],	to	be	another	new	array:

personnel[0]	=	[];

So	what’s	going	on?	Well,	the	truth	is	that	JavaScript	doesn’t	actually	support	multi-

dimensional	arrays,	only	single	ones.	However,	JavaScript	enables	you	to	fake	multi-
dimensional	arrays	by	creating	an	array	inside	another	array.	So	what	the	preceding
line	is	doing	is	creating	a	new	array	inside	the	element	with	index	0	of	your
personnel	array.

In	the	next	three	lines,	you	put	values	into	the	newly	created	personnel[0]	array.
JavaScript	makes	it	easy	to	do	this:	You	just	state	the	name	of	the	array,
personnel[0],	followed	by	another	index	in	square	brackets.	The	first	index	(0)
belongs	to	the	personnel	array;	the	second	index	belongs	to	the	personnel[0]	array:

personnel[0][0]	=	"Name0";

personnel[0][1]	=	"Age0";

personnel[0][2]	=	"Address0";

After	these	lines	of	code,	your	array	looks	like	this:

INDEX 0
0 Name0
1 Age0
2 Address0

The	numbers	at	the	top,	at	the	moment	just	0,	refer	to	the	personnel	array.	The
numbers	going	down	the	side,	0,	1,	and	2,	are	actually	indices	for	the	new
personnel[0]	array	inside	the	personnel	array.

For	the	second	person’s	details,	you	repeat	the	process,	but	this	time	you	are	using	the
personnel	array	element	with	index	1:

personnel[1]	=	[];

personnel[1][0]	=	"Name1";

personnel[1][1]	=	"Age1";

personnel[1][2]	=	"Address1";

Now	your	array	looks	like	this:

INDEX 0 1
0 Name0 Name1
1 Age0 Age1
2 Address0 Address1

You	create	a	third	person’s	details	in	the	next	few	lines.	You	are	now	using	the
element	with	index	2	inside	the	personnel	array	to	create	a	new	array:

personnel[2]	=	[];

personnel[2][0]	=	"Name2";

personnel[2][1]	=	"Age2";

personnel[2][2]	=	"Address2";

The	array	now	looks	like	this:

INDEX 0 1 2
0 Name0 Name1 Name2
1 Age0 Age1 Age2
2 Address0 Address1 Address2

You	have	now	finished	creating	your	multi-dimensional	array.	You	end	the	script
block	by	accessing	the	data	for	the	second	person	(Name1,	Age1,	Address1)	and
displaying	it	in	the	page	by	using	document.write().	As	you	can	see,	accessing	the
data	is	very	much	the	same	as	storing	it.	You	can	use	the	multi-dimensional	array
anywhere	you	would	use	a	normal	variable	or	single-dimension	array.

document.write("Name	:	"	+	personnel[1][0]	+	"
");

document.write("Age	:	"	+	personnel[1][1]	+	"
");

document.write("Address	:	"	+	personnel[1][2]);

Try	changing	the	document.write()	commands	so	that	they	display	the	first	person’s
details.	The	code	would	look	like	this:

document.write("Name	:	"	+	personnel[0][0]	+	"
");

document.write("Age	:	"	+	personnel[0][1]	+	"
");

document.write("Address	:	"	+	personnel[0][2]);

It’s	possible	to	create	multi-dimensional	arrays	of	three,	four,	or	even	a	hundred
dimensions,	but	things	can	start	to	get	very	confusing,	and	you’ll	find	that	you	rarely,
if	ever,	need	more	than	two	dimensions.	To	give	you	an	idea,	here’s	how	to	declare
and	access	a	five-dimensional	array:

var	myArray	=	[];

myArray[0]	=	[];

myArray[0][0]	=	[];

myArray[0][0][0]	=	[];

myArray[0][0][0][0]	=	[];

myArray[0][0][0][0][0]	=	"This	is	getting	out	of	hand";

document.write(myArray[0][0][0][0][0]);

That’s	it	for	arrays	for	now,	but	you	return	to	them	in	Chapter	5,	where	you’ll	find	out
something	shocking	about	them.	You	also	learn	about	some	of	their	more	advanced
features.

SUMMARY
In	this	chapter	you	have	built	up	knowledge	of	the	fundamentals	of	JavaScript’s	data	types
and	variables	and	how	to	use	them	in	operations.	In	particular,	you	saw	that:

JavaScript	supports	a	number	of	types	of	data,	such	as	numbers,	text,	and	booleans.

Text	is	represented	by	strings	of	characters	and	is	surrounded	by	quotes.	You	must
match	the	quotes	surrounding	strings.	Escape	characters	enable	you	to	include
characters	in	your	string	that	cannot	be	typed.

Variables	are	JavaScript’s	means	of	storing	data,	such	as	numbers	and	text,	in
memory	so	that	they	can	be	used	again	and	again	in	your	code.

Variable	names	must	not	include	certain	illegal	characters,	like	the	percent	sign	(%)
and	the	ampersand	(&),	or	be	a	reserved	word,	like	with.

Before	you	can	give	a	value	to	a	variable,	you	must	declare	its	existence	to	the
JavaScript	interpreter.

JavaScript	has	the	four	basic	math	operators,	represented	by	the	symbols	plus	(+),
minus	(−),	star	(*),	and	forward	slash	(/).	To	assign	values	of	a	calculation	to	a
variable,	you	use	the	equals	sign	(=),	termed	the	assignment	operator.

Operators	have	different	levels	of	precedence,	so	multiplication	and	division	will	be
calculated	before	addition	and	subtraction.

Strings	can	be	joined,	or	concatenated,	to	produce	one	big	string	by	means	of	the	+
operator.	When	numbers	and	strings	are	concatenated	with	the	+	operator,	JavaScript
automatically	converts	the	number	into	a	string.

Although	JavaScript’s	automatic	data	conversion	suits	us	most	of	the	time,	on	some
occasions	you	need	to	force	the	conversion	of	data.	You	saw	how	parseInt()	and
parseFloat()	can	be	used	to	convert	strings	to	numbers.	Attempting	to	convert
strings	that	won’t	convert	will	result	in	NaN	(Not	a	Number)	being	returned.

Arrays	are	a	special	type	of	variable	that	can	hold	more	than	one	piece	of	data.	The
data	is	inserted	and	accessed	by	means	of	a	unique	index	number.

EXERCISES
1.	 Write	a	JavaScript	program	to	convert	degrees	centigrade	into	degrees	Fahrenheit,

and	to	write	the	result	to	the	page	in	a	descriptive	sentence.	The	JavaScript	equation
for	Fahrenheit	to	centigrade	is	as	follows:

degFahren	=	9	/	5	*	degCent	+	32

2.	 The	following	code	uses	the	prompt()	function	to	get	two	numbers	from	the	user.	It
then	adds	those	two	numbers	and	writes	the	result	to	the	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Question	2</title>

</head>

<body>

<script>

				var	firstNumber	=	prompt("Enter	the	first	number","");

				var	secondNumber	=	prompt("Enter	the	second	number","");

				var	theTotal	=	firstNumber	+	secondNumber;

				document.write(firstNumber	+	"	added	to	"	+	secondNumber	+

								"	equals	"	+	theTotal);

</script>

</body>

</html>

However,	if	you	try	out	the	code,	you’ll	discover	that	it	doesn’t	work.	Why	not?
Change	the	code	so	that	it	does	work.

3
Decisions	and	Loops
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Comparing	number	and	string	values

Making	decisions	with	the	if,	else,	and	switch	statements

Repeating	code	for	as	long	as	a	condition	is	true

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

So	far,	you’ve	seen	how	to	use	JavaScript	to	get	user	input,	perform	calculations	and	tasks
with	that	input,	and	write	the	results	to	a	web	page.	However,	a	pocket	calculator	can	do
all	this,	so	what	is	it	that	makes	computers	different?	That	is	to	say,	what	gives	computers
the	appearance	of	having	intelligence?	The	answer	is	the	capability	to	make	decisions
based	on	information	gathered.

How	will	decision-making	help	you	in	creating	websites?	In	the	preceding	chapter	you
wrote	some	code	that	converted	temperature	in	degrees	Fahrenheit	to	centigrade.	You
obtained	the	degrees	Fahrenheit	from	the	user	using	the	prompt()	function.	This	worked
fine	if	the	user	entered	a	valid	number,	such	as	50.	If,	however,	the	user	entered	something
invalid	for	the	Fahrenheit	temperature,	such	as	the	string	aaa,	you	would	find	that	your
code	no	longer	works	as	expected.	Now,	if	you	had	some	decision-making	capabilities	in
your	program,	you	could	check	to	see	if	what	the	user	has	entered	is	valid.	If	it	is,	you	can
do	the	calculation,	and	if	it	isn’t,	you	can	tell	the	user	why	and	ask	him	to	enter	a	valid
number.

Validation	of	user	input	is	probably	one	of	the	most	common	uses	of	decision	making	in
JavaScript,	but	it’s	far	from	being	the	only	use.

In	this	chapter	you	look	at	how	decision	making	is	implemented	in	JavaScript	and	how
you	can	use	it	to	make	your	code	smarter.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

DECISION	MAKING—THE	IF	AND	SWITCH
STATEMENTS
All	programming	languages	enable	you	to	make	decisions—that	is,	they	enable	the
program	to	follow	a	certain	course	of	action	depending	on	whether	a	particular	condition
is	met.	This	is	what	gives	programming	languages	their	intelligence.

Conditions	are	comparisons	between	variables	and	data,	such	as	the	following:

Is	A	bigger	than	B?

Is	X	equal	to	Y?

Is	M	not	equal	to	N?

For	example,	if	the	variable	today	held	the	day	of	the	week	on	which	you	are	reading	this
chapter,	the	condition	would	be	this:

Is	today	equal	to	Friday?

You’ll	notice	that	all	of	these	questions	have	a	yes	or	no	answer—that	is,	they	are
boolean-based	and	can	only	evaluate	to	true	or	false.	How	do	you	use	this	to	create
decision-making	capabilities	in	your	code?	You	get	the	browser	to	test	for	whether
the	condition	is	true.	If	(and	only	if)	it	is	true,	you	execute	a	particular	section	of
code.

Look	at	another	example.	Recall	from	Chapter	1	the	natural	English	instructions	used
to	demonstrate	how	code	flows.	One	of	these	instructions	for	making	a	cup	of	coffee
is:

Has	the	kettle	boiled?	If	so,	then	pour	water	into	cup;	otherwise,	continue	to	wait.

This	is	an	example	of	making	a	decision.	The	condition	in	this	instruction	is	“Has	the
kettle	boiled?”	It	has	a	true	or	false	answer.	If	the	answer	is	true,	you	pour	the
water	into	the	cup.	If	it	isn’t	true,	you	continue	to	wait.

In	JavaScript,	you	can	change	the	flow	of	the	code’s	execution	depending	on	whether
a	condition	is	true	or	false,	using	an	if	statement	or	a	switch	statement.	You	look
at	these	shortly,	but	first	we	need	to	introduce	some	new	operators	that	are	essential
for	the	definition	of	conditions—comparison	operators.

Comparison	Operators
In	Chapter	2	you	saw	how	mathematical	functions,	such	as	addition	and	division,	were
represented	by	symbols,	such	as	plus	(+)	and	forward	slash	(/),	called	operators.	You	also
saw	that	if	you	want	to	give	a	variable	a	value,	you	can	assign	to	it	a	value	or	the	result	of
a	calculation	using	the	equals	sign	(=),	termed	the	assignment	operator.

Decision	making	also	has	its	own	operators,	which	enable	you	to	test	conditions.
Comparison	operators,	just	like	the	mathematical	operators	you	saw	in	the	preceding
chapter,	have	a	left-hand	side	(LHS)	and	a	right-hand	side	(RHS),	and	the	comparison	is

made	between	the	two.	The	technical	terms	for	these	are	the	left	operand	and	the	right
operand.	For	example,	the	less-than	operator,	with	the	symbol	<,	is	a	comparison	operator.
You	could	write	23	<	45,	which	translates	as	“Is	23	less	than	45?”	Here,	the	answer	would
be	true	(see	Figure	3.1).

Figure	3.1

Other	comparison	operators	exist,	the	more	useful	of	which	are	summarized	in	the
following	table:

OPERATOR	SYMBOL PURPOSE
== Tests	if	LHS	is	equal	to	RHS
< Tests	if	LHS	is	less	than	RHS
> Tests	if	LHS	is	greater	than	RHS
<= Tests	if	LHS	is	less	than	or	equal	to	RHS
>= Tests	if	LHS	is	greater	than	or	equal	to	RHS
!= Tests	if	LHS	is	not	equal	to	RHS

You	see	these	comparison	operators	in	use	in	the	next	section	when	you	look	at	the	if
statement.

Precedence
Recall	from	Chapter	2	that	operators	have	an	order	of	precedence.	This	applies	also	to	the
comparison	operators.	The	==	and	!=	comparison	operators	have	the	lowest	order	of
precedence,	and	the	rest	of	the	comparison	operators,	<,	>,	<=,	and	>=,	have	an	equal
precedence.

All	of	these	comparison	operators	have	a	precedence	that	is	below	arithmetic	operators,
such	as	+,	−,	*,	and	/.	This	means	that	if	you	make	a	comparison	such	as	3	*	5	>	2	*	5,
the	multiplication	calculations	are	worked	out	first,	before	their	results	are	compared.
However,	in	these	circumstances,	it’s	both	safer	and	clearer	if	you	wrap	the	calculations	on
either	side	inside	parentheses;	for	example,	(3	*	5)	>	(2	*	5).	As	a	general	rule,	it’s	a
good	idea	to	use	parentheses	to	ensure	that	the	precedence	is	clear,	or	you	may	find
yourself	surprised	by	the	outcome.

Assignment	versus	Comparison
One	very	important	point	to	mention	is	the	ease	with	which	the	assignment	operator	(=)

and	the	comparison	operator	(==)	can	be	mixed	up.	Remember	that	the	=	operator	assigns
a	value	to	a	variable	and	that	the	==	operator	compares	the	value	of	two	variables.	Even
when	you	have	this	idea	clear,	it’s	amazingly	easy	to	put	one	equals	sign	where	you	meant
to	put	two.

Assigning	the	Results	of	Comparisons
You	can	store	the	results	of	a	comparison	in	a	variable,	as	shown	in	the	following
example:

var	age	=	prompt("Enter	age:",	"");

var	isOverSixty	=	parseInt(age,	10)	>	60;

		document.write("Older	than	60:	"	+	isOverSixty);

Here	you	obtain	the	user’s	age	using	the	prompt()	function.	This	returns,	as	a	string,
whatever	value	the	user	enters.	You	then	convert	that	to	a	number	using	the	parseInt()
function	you	saw	in	the	previous	chapter	and	use	the	greater-than	operator	to	see	if	it’s
greater	than	60.	The	result	(either	true	or	false)	of	the	comparison	will	be	stored	in	the
variable	isOverSixty.

If	the	user	enters	35,	the	document.write()	on	the	final	line	will	write	this	to	the	page:

Older	than	60:	false

If	the	user	enters	61,	this	will	be	displayed:

Older	than	60:	true

The	if	Statement
The	if	statement	is	one	you’ll	find	yourself	using	in	almost	every	program	that	is	more
than	a	couple	of	lines	long.	It	works	very	much	as	it	does	in	the	English	language.	For
example,	you	might	say	in	English,	“If	the	room	temperature	is	more	than	80	degrees
Fahrenheit,	then	I’ll	turn	the	air	conditioning	on.”	In	JavaScript,	this	would	translate	into
something	like	this:

if	(roomTemperature	>	80)	{

			roomTemperature	=	roomTemperature	–	10;

}

How	does	this	work?	See	Figure	3.2.

Figure	3.2

Notice	that	the	test	condition	is	placed	in	parentheses	and	follows	the	if	keyword.	Also,

note	that	there	is	no	semicolon	at	the	end	of	this	line.	The	code	to	be	executed	if	the
condition	is	true	is	placed	in	curly	braces	on	the	line	after	the	condition,	and	each	of	these
lines	of	code	does	end	with	a	semicolon.

The	curly	braces,	{},	have	a	special	purpose	in	JavaScript:	They	mark	out	a	block	of	code.
Marking	out	lines	of	code	as	belonging	to	a	single	block	means	that	JavaScript	will	treat
them	all	as	one	piece	of	code.	If	the	condition	of	an	if	statement	is	true,	JavaScript
executes	the	next	line	or	block	of	code	following	the	if	statement.	In	the	preceding
example,	the	block	of	code	has	only	one	statement,	so	we	could	equally	as	well	have
written	this:

if	(roomTemperature	>	80)

			roomTemperature	=	roomTemperature	–	10;

However,	if	you	have	a	number	of	lines	of	code	that	you	want	to	execute,	you	need	the
braces	to	mark	them	out	as	a	single	block	of	code.	For	example,	a	modified	version	of	the
example	with	three	statements	of	code	would	have	to	include	the	braces:

if	(roomTemperature	>	80)	{

			roomTemperature	=	roomTemperature	–	10;

			alert("It's	getting	hot	in	here");

			alert("Air	conditioning	switched	on");

}

A	particularly	easy	mistake	to	make	is	to	forget	the	braces	when	marking	out	a	block	of
code	to	be	executed.	Instead	of	the	code	in	the	block	being	executed	when	the	condition	is
true,	you’ll	find	that	only	the	first	line	after	the	if	statement	is	executed.	However,	the
other	lines	will	always	be	executed	regardless	of	the	outcome	of	the	test	condition.	To
avoid	mistakes	like	these,	it’s	a	good	idea	to	always	use	braces,	even	where	there	is	only
one	statement.	If	you	get	into	this	habit,	you’ll	be	less	likely	to	leave	them	out	when	they
are	actually	needed.

				TRY	IT	OUT								The	if	Statement
Let’s	return	to	the	temperature	converter	example	from	Chapter	2	and	add	some
decision-making	functionality.

1.	 Enter	the	following	code	and	save	it	as	ch3_example1.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	3,	Example	1</title>

</head>

<body>

				<script>

								var	degFahren	=	parseInt(prompt("Enter	the	degrees	

Fahrenheit",	32),	10);

								var	degCent	=	5/9	*	(degFahren	-	32);

								document.write(degFahren	+	"\xB0	Fahrenheit	is	"	+	degCent	

+

											"\xB0	centigrade
");

								if	(degCent	<	0)	{

												document.write("That's	below	the	freezing	point	of	

water");

								}

								if	(degCent	==	100)

												document.write("That's	the	boiling	point	of	water");

				</script>

</body>

</html>

2.	 Load	the	page	into	your	browser	and	enter	32	into	the	prompt	box	for	the
Fahrenheit	value	to	be	converted.	With	a	value	of	32,	neither	of	the	if
statement’s	conditions	will	be	true,	so	the	only	line	written	in	the	page	will	be
that	shown	in	Figure	3.3.

Figure	3.3

3.	 Now	reload	the	page	and	enter	31	for	the	Fahrenheit	value.	This	time	you’ll	see
two	lines	in	the	page,	as	shown	in	Figure	3.4.

Figure	3.4

4.	 Finally,	reload	the	page	again,	but	this	time,	enter	212	in	the	prompt	box.	The
two	lines	shown	in	Figure	3.5	will	appear	in	the	page.

Figure	3.5

The	first	part	of	the	script	block	in	this	page	is	similar	to	the	example
ch2_example4.html	in	Chapter	2.	You	declare	two	variables,	degFahren	and
degCent.	The	variable	degFahren	is	given	an	initial	value	obtained	from	the	user	with
the	prompt()	function.	Note	the	prompt()	function	returns	a	string	value,	which	you
then	convert	to	a	numeric	value	using	the	parseInt()	function.	The	variable	degCent
is	initialized	to	the	result	of	the	calculation	5/9	*	(degFahren	-	32),	which	is	the

Fahrenheit-to-centigrade	conversion	calculation:

var	degFahren	=	parseInt(prompt("Enter	the	degrees	Fahrenheit",	32),	

10);

var	degCent	=	5/9	*	(degFahren	-	32);

Then	you	write	the	result	of	your	calculation	to	the	page:

document.write(degFahren	+	"\xB0	Fahrenheit	is	"	+	degCent	+

				"\xB0	centigrade
");

Now	comes	the	new	code;	the	first	of	two	if	statements:

if	(degCent	<	0)	{

				document.write("That's	below	the	freezing	point	of	water");

}

This	if	statement	has	the	condition	that	asks,	“Is	the	value	of	the	variable	degCent
less	than	zero?”	If	the	answer	is	yes	(true),	the	code	inside	the	curly	braces	executes.
In	this	case,	you	write	a	sentence	to	the	page	using	document.write().	If	the	answer
is	no	(false),	the	processing	moves	on	to	the	next	line	after	the	closing	brace.	Also
worth	noting	is	the	fact	that	the	code	inside	the	if	statement’s	opening	brace	is
indented.	This	is	not	necessary,	but	it	is	a	good	practice	to	get	into	because	it	makes
your	code	much	easier	to	read.

When	trying	out	the	example,	you	started	by	entering	32,	so	that	degFahren	will	be
initialized	to	32.	In	this	case	the	calculation	degCent	=	5/9	*	(degFahren	−	32)
will	set	degCent	to	0.	So	the	answer	to	the	question	“Is	degCent	less	than	zero?”	is
false,	because	degCent	is	equal	to	zero,	not	less	than	zero.	The	code	inside	the	curly
braces	will	be	skipped	and	never	executed.	In	this	case,	the	next	line	to	be	executed
will	be	the	second	if	statement’s	condition,	which	we’ll	discuss	shortly.

When	you	entered	31	in	the	prompt	box,	degFahren	was	set	to	31,	so	the	variable
degCent	will	be	−0.55555555556.	So	how	does	your	if	statement	look	now?	It
evaluates	to	“Is	–0.55555555556	less	than	zero?”	The	answer	this	time	is	true,	and
the	code	inside	the	braces,	here	just	a	document.write()	statement,	executes.

Finally,	when	you	entered	212,	how	did	this	alter	the	if	statement?	The	variable
degCent	is	set	to	100	by	the	calculation,	so	the	if	statement	now	asks	the	question,
“Is	100	less	than	zero?”	The	answer	is	false,	and	the	code	inside	the	braces	will	be
skipped	over.

In	the	second	if	statement,	you	evaluate	the	condition	“Is	the	value	of	variable
degCent	equal	to	100?”:

if	(degCent	==	100)

				document.write("That's	the	boiling	point	of	water");

There	are	no	braces	here,	so	if	the	condition	is	true,	the	only	code	to	execute	is	the
first	line	below	the	if	statement.	When	you	want	to	execute	multiple	lines	in	the	case
of	the	condition	being	true,	braces	are	required.

You	saw	that	when	degFahren	is	32,	degCent	will	be	0.	So	your	if	statement	will	be

“Is	0	equal	to	100?”	The	answer	is	clearly	false,	and	the	code	won’t	execute.	Again,
when	you	set	degFahren	to	31,	degCent	will	be	calculated	to	be	-0.55555555556;	“Is
–0.55555555556	equal	to	100?”	is	also	false,	and	the	code	won’t	execute.

Finally,	when	degFahren	is	set	to	212,	degCent	will	be	100.	This	time	the	if
statement	is	“Is	100	equal	to	100?”	and	the	answer	is	true,	so	the	document.write()
statement	executes.

As	you	have	seen	already,	one	of	the	most	common	errors	in	JavaScript,	even	for
experts,	is	using	one	equals	sign	for	evaluating,	rather	than	the	necessary	two.	Take	a
look	at	the	following	code	extract:

if	(degCent	=	100)

				document.write("That's	the	boiling	point	of	water");

This	condition	will	always	evaluate	to	true,	and	the	code	below	the	if	statement	will
always	execute.	Worse	still,	your	variable	degCent	will	be	set	to	100.	Why?	Because	a
single	equals	sign	assigns	values	to	a	variable;	only	a	double	equals	sign	compares
values.	The	reason	an	assignment	always	evaluates	to	true	is	that	the	result	of	the
assignment	expression	is	the	value	of	the	right-hand	side	expression	and	this	is	the
number	100,	which	is	then	implicitly	converted	to	a	boolean	and	any	number	besides
0	and	NaN	converts	to	true.

Logical	Operators
You	should	have	a	general	idea	of	how	to	use	conditions	in	if	statements	now,	but	how	do
you	use	a	condition	such	as	“Is	degFahren	greater	than	zero	but	less	than	100?”	You	have
two	conditions	to	test	here.	You	need	to	test	whether	degFahren	is	greater	than	zero	and
whether	degFahren	is	less	than	100.

JavaScript	enables	you	to	use	such	multiple	conditions.	To	do	this,	you	need	to	learn	about
three	more	operators:	the	logical	operators	AND,	OR,	and	NOT.	The	symbols	for	these	are
listed	in	the	following	table:

OPERATOR SYMBOL
AND &&

OR ||

NOT !

Notice	that	the	AND	and	OR	operators	are	two	symbols	repeated:	&&	and	|	|.	If	you	type	just
one	symbol,	&	or	|,	strange	things	will	happen	because	these	are	special	operators	called
bitwise	operators	used	in	binary	operations—for	logical	operations	you	must	always	use
two.

After	you’ve	learned	about	the	three	logical	operators,	you	take	a	look	at	how	to	use	them
in	if	statements,	with	plenty	of	practical	examples.	So	if	it	seems	a	bit	confusing	on	first
read,	don’t	panic.	All	will	become	clear.	Let’s	look	at	how	each	of	these	works,	starting
with	the	AND	operator.

AND
Recall	that	we	talked	about	the	left-hand	side	(LHS)	and	the	right-hand	side	(RHS)	of	the
operator.	The	same	is	true	with	the	AND	operator.	However,	now	the	LHS	and	RHS	of	the
condition	are	boolean	values	(usually	the	result	of	a	condition).

The	AND	operator	works	very	much	as	it	does	in	English.	For	example,	you	might	say,	“If	I
feel	cold	and	I	have	a	coat,	then	I’ll	put	my	coat	on.”	Here,	the	left-hand	side	of	the	“and”
word	is	“Do	I	feel	cold?”	and	this	can	be	evaluated	as	true	or	false.	The	right-hand	side
is	“Do	I	have	a	coat?”	which	again	is	evaluated	to	either	true	or	false.	If	the	left-hand
side	is	true	(I	am	cold)	and	the	right-hand	side	is	true	(I	do	have	a	coat),	then	you	put	your
coat	on.

This	is	very	similar	to	how	the	AND	operator	works	in	JavaScript.	The	AND	operator
actually	produces	a	result,	just	as	adding	two	numbers	produces	a	result.	However,	the	AND
operator	takes	two	boolean	values	(on	its	LHS	and	RHS)	and	results	in	another	boolean
value.	If	the	LHS	and	RHS	conditions	evaluate	to	true,	the	result	will	be	true.	In	any
other	circumstance,	the	result	will	be	false.

Following	is	a	truth	table	of	possible	evaluations	of	left-hand	sides	and	right-hand	sides
and	the	result	when	AND	is	used:

LEFT-HAND	SIDE RIGHT-HAND	SIDE RESULT
true true true

false true false

true false false

false false false

Although	the	table	is,	strictly	speaking,	true,	it’s	worth	noting	that	JavaScript	doesn’t	like
doing	unnecessary	work.	Well,	who	does!	If	the	left-hand	side	is	false,	even	if	the	right-
hand	side	does	evaluate	to	true,	it	won’t	make	any	difference	to	the	final	result—it’ll	still
be	false.	So	to	avoid	wasting	time,	if	the	left-hand	side	is	false,	JavaScript	doesn’t	even
bother	checking	the	right-hand	side	and	just	returns	a	result	of	false.

OR
Just	like	AND,	OR	also	works	much	as	it	does	in	English.	For	example,	you	might	say	that	if
it	is	raining	or	if	it	is	snowing,	then	you’ll	take	an	umbrella.	If	either	of	the	conditions	“it
is	raining”	or	“it	is	snowing”	is	true,	you	will	take	an	umbrella.

Again,	just	like	AND,	the	OR	operator	acts	on	two	boolean	values	(one	from	its	left-hand
side	and	one	from	its	right-hand	side)	and	returns	another	boolean	value.	If	the	left-hand
side	evaluates	to	true	or	the	right-hand	side	evaluates	to	true,	the	result	returned	is	true.
Otherwise,	the	result	is	false.	The	following	table	shows	the	possible	results:

LEFT-HAND	SIDE RIGHT-HAND	SIDE RESULT
true true true

false true true

true false true

false false false

As	with	the	AND	operator,	JavaScript	likes	to	avoid	doing	things	that	make	no	difference	to
the	final	result.	If	the	left-hand	side	is	true,	then	whether	the	right-hand	side	is	true	or
false	makes	no	difference	to	the	final	result—it’ll	still	be	true.	So,	to	avoid	work,	if	the
left-hand	side	is	true,	the	right-hand	side	is	not	evaluated,	and	JavaScript	simply	returns
true.	The	end	result	is	the	same—the	only	difference	is	in	how	JavaScript	arrives	at	the
conclusion.	However,	it	does	mean	you	should	not	rely	on	the	right-hand	side	of	the	OR
operator	to	be	executed.

NOT
In	English,	we	might	say,	“If	I’m	not	hot,	then	I’ll	eat	soup.”	The	condition	being
evaluated	is	whether	we’re	hot.	The	result	is	true	or	false,	but	in	this	example	we	act	(eat
soup)	if	the	result	is	false.

However,	JavaScript	is	used	to	executing	code	only	if	a	condition	is	true.	So	if	you	want	a
false	condition	to	cause	code	to	execute,	you	need	to	switch	that	false	value	to	true
(and	any	true	value	to	false).	That	way	you	can	trick	JavaScript	into	executing	code	after
a	false	condition.

You	do	this	using	the	NOT	operator.	This	operator	reverses	the	logic	of	a	result;	it	takes	one
boolean	value	and	changes	it	to	the	other	boolean	value.	So	it	changes	true	to	false	and
false	to	true.	This	is	sometimes	called	negation.

To	use	the	NOT	operator,	you	put	the	condition	you	want	reversed	in	parentheses	and	put
the	!	symbol	in	front	of	the	parentheses.	For	example:

if	(!(degCent	<	100))	{

			//	Some	code

}

Any	code	within	the	braces	will	be	executed	only	if	the	condition	degCent	<	100	is
false.

The	following	table	details	the	possible	results	when	using	NOT:

RIGHT-HAND	SIDE RESULT
true false

false true

Multiple	Conditions	Inside	an	if	Statement
The	previous	section	started	by	asking	how	you	could	use	the	condition	“Is	degFahren
greater	than	zero	but	less	than	100?”	One	way	of	doing	this	would	be	to	use	two	if
statements,	one	nested	inside	another.	Nested	simply	means	that	there	is	an	outer	if

statement,	and	inside	this	is	an	inner	if	statement.	If	the	condition	for	the	outer	if
statement	is	true,	then	(and	only	then)	will	the	nested	inner	if	statement’s	condition	be
tested.

Using	nested	if	statements,	your	code	would	be:

if	(degCent	<	100)	{

			if	(degCent	>	0)	{

						document.write("degCent	is	between	0	and	100");

			}

}

This	would	work,	but	it’s	a	little	verbose	and	can	be	quite	confusing.	JavaScript	offers	a
better	alternative—using	multiple	conditions	inside	the	condition	part	of	the	if	statement.
The	multiple	conditions	are	strung	together	with	the	logical	operators	you	just	looked	at.
So	the	preceding	code	could	be	rewritten	like	this:

if	(degCent	>	0	&&	degCent	<	100)	{

			document.write("degCent	is	between	0	and	100");

}

The	if	statement’s	condition	first	evaluates	whether	degCent	is	greater	than	zero.	If	that	is
true,	the	code	goes	on	to	evaluate	whether	degCent	is	less	than	100.	Only	if	both	of	these
conditions	are	true	will	the	document.write()	code	line	execute.

				TRY	IT	OUT								Multiple	Conditions
This	example	demonstrates	multi-condition	if	statements	using	the	AND,	OR,	and	NOT
operators.	Type	the	following	code,	and	save	it	as	ch3 _ example2.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	3,	Example	2</title>

</head>

<body>

				<script>

								var	myAge	=	parseInt(prompt("Enter	your	age",	30),	10);

								if	(myAge	>=	0	&&	myAge	<=	10)	{

												document.write("myAge	is	between	0	and	10
");

								}

								if	(!(myAge	>=	0	&&	myAge	<=	10))	{

												document.write("myAge	is	NOT	between	0	and	10
");

								}

								if	(myAge	>=	80	||	myAge	<=	10)	{

												document.write("myAge	is	80	or	above	OR	10	or	below
");

								}

								if	((myAge	>=	30	&&	myAge	<=	39)	||	(myAge	>=	80	&&	myAge	<=	

89))	{

												document.write("myAge	is	between	30	and	39	or	myAge	is	"	+

																											"between	80	and	89");

								}

				</script>

</body>

</html>

When	you	load	it	into	your	browser,	a	prompt	box	should	appear.	Enter	the	value	30,
then	press	Return,	and	the	lines	shown	in	Figure	3.6	are	written	to	the	web	page.

Figure	3.6

The	script	block	starts	by	defining	the	variable	myAge	and	initializing	it	to	the	value
entered	by	the	user	in	the	prompt	box	and	converted	to	a	number:

var	myAge	=	parseInt(prompt("Enter	your	age",	30),	10);

After	this	are	four	if	statements,	each	using	multiple	conditions.	You	look	at	each	in
detail	in	turn.

The	easiest	way	to	work	out	what	multiple	conditions	are	doing	is	to	split	them	up
into	smaller	pieces	and	then	evaluate	the	combined	result.	In	this	example	you	have
entered	the	value	30,	which	has	been	stored	in	the	variable	myAge.	You’ll	substitute
this	value	into	the	conditions	to	see	how	they	work.

Here’s	the	first	if	statement:

if	(myAge	>=	0	&&	myAge	<=	10)	{

				document.write("myAge	is	between	0	and	10
");

}

The	first	if	statement	is	asking	the	question,	“Is	myAge	between	0	and	10?”	You’ll

take	the	LHS	of	the	condition	first,	substituting	your	particular	value	for	myAge.	The
LHS	asks,	“Is	30	greater	than	or	equal	to	0?”	The	answer	is	true.	The	question	posed
by	the	RHS	condition	is	“Is	30	less	than	or	equal	to	10?”	The	answer	is	false.	These
two	halves	of	the	condition	are	joined	using	&&,	which	indicates	the	AND	operator.
Using	the	AND	results	table	shown	earlier,	you	can	see	that	if	LHS	is	true	and	RHS	is
false,	you	have	an	overall	result	of	false.	So	the	end	result	of	the	condition	for	the
if	statement	is	false,	and	the	code	inside	the	braces	won’t	execute.

Let’s	move	on	to	the	second	if	statement:

if	(!(myAge	>=	0	&&	myAge	<=	10))	{

				document.write("myAge	is	NOT	between	0	and	10
");

}

The	second	if	statement	is	posing	the	question,	“Is	myAge	not	between	0	and	10?”	Its
condition	is	similar	to	that	of	the	first	if	statement,	but	with	one	small	difference:
You	have	enclosed	the	condition	inside	parentheses	and	put	the	NOT	operator	(!)	in
front.

The	part	of	the	condition	inside	the	parentheses	is	evaluated	and,	as	before,	produces
the	same	result—false.	However,	the	NOT	operator	reverses	the	result	and	makes	it
true.	Because	the	if	statement’s	condition	is	true,	the	code	inside	the	braces	will
execute	this	time,	causing	a	document.write()	to	write	a	response	to	the	page.

What	about	the	third	if	statement?

if	(myAge	>=	80	||	myAge	<=	10)	{

				document.write("myAge	is	80	or	above	OR	10	or	below
");

}

The	third	if	statement	asks,	“Is	myAge	greater	than	or	equal	to	80,	or	less	than	or
equal	to	10?”	Taking	the	LHS	condition	first—“Is	30	greater	than	or	equal	to	80?”—
the	answer	is	false.	The	answer	to	the	RHS	condition—“Is	30	less	than	or	equal	to
10?”—is	again	false.	These	two	halves	of	the	condition	are	combined	using	| |,
which	indicates	the	OR	operator.	Looking	at	the	OR	result	table	earlier	in	this	section,
you	see	that	false	OR	false	produces	a	result	of	false.	So	again	the	if	statement’s
condition	evaluates	to	false,	and	the	code	within	the	curly	braces	does	not	execute.

The	final	if	statement	is	a	little	more	complex:

if	((myAge	>=	30	&&	myAge	<=	39)	||	(myAge	>=	80	&&	myAge	<=	89))	{

				document.write("myAge	is	between	30	and	39	or	myAge	is	between	80	

and	89");

}

It	asks	the	question,	“Is	myAge	between	30	and	39	or	between	80	and	89?”	Let’s	break
down	the	condition	into	its	component	parts.	There	is	a	left-hand-side	and	a	right-
hand-side	condition,	combined	by	means	of	an	OR	operator.	However,	the	LHS	and
RHS	themselves	have	an	LHS	and	RHS	each,	which	are	combined	using	AND
operators.	Notice	how	parentheses	are	used	to	tell	JavaScript	which	parts	of	the
condition	to	evaluate	first,	just	as	you	would	do	with	numbers	in	a	mathematical
calculation.

Let’s	look	at	the	LHS	of	the	condition	first,	namely	(myAge	>=	30	&&	myAge	<=	39).
By	putting	the	condition	into	parentheses,	you	ensure	that	it’s	treated	as	a	single
condition;	no	matter	how	many	conditions	are	inside	the	parentheses,	it	only	produces
a	single	result,	either	true	or	false.	Breaking	down	the	conditions	in	the	parentheses,
you	have	“Is	30	greater	than	or	equal	to	30?”	with	a	result	of	true,	and	“Is	30	less
than	or	equal	to	39?”	again	with	a	result	of	true.	From	the	AND	table,	you	know	true
AND	true	produces	a	result	of	true.

Now	let’s	look	at	the	RHS	of	the	condition,	namely	(myAge	>=	80	&&	myAge	<=	89).
Again	breaking	down	the	condition,	you	see	that	the	LHS	asks,	“Is	30	greater	than	or
equal	to	80?”	which	gives	a	false	result,	and	the	RHS	asks,	“Is	30	less	than	or	equal
to	89?”	which	gives	a	true	result.	You	know	that	false	AND	true	gives	a	false
result.

Now	you	can	think	of	your	if	statement’s	condition	as	looking	like	(true	| |
false).	Looking	at	the	OR	results	table,	you	can	see	that	true	OR	false	gives	a	result
of	true,	so	the	code	within	the	braces	following	the	if	statement	will	execute,	and	a
line	will	be	written	to	the	page.

However,	remember	that	JavaScript	does	not	evaluate	conditions	where	they	won’t
affect	the	final	result,	and	the	preceding	condition	is	one	of	those	situations.	The	LHS
of	the	condition	evaluated	to	true.	After	that,	it	does	not	matter	if	the	RHS	of	the
condition	is	true	or	false	because	only	one	of	the	conditions	in	an	OR	operation
needs	to	be	true	for	a	result	of	true.	Thus	JavaScript	does	not	actually	evaluate	the
RHS	of	the	condition.	We	did	so	simply	for	demonstration	purposes.

As	you	have	seen,	the	easiest	way	to	approach	understanding	or	creating	multiple
conditions	is	to	break	them	down	into	the	smallest	logical	chunks.	You’ll	find	that
with	experience,	you	will	do	this	almost	without	thinking,	unless	you	have	a
particularly	tricky	condition	to	evaluate.

Although	using	multiple	conditions	is	often	better	than	using	multiple	if	statements,
sometimes	it	makes	your	code	harder	to	read	and	therefore	harder	to	understand	and
debug.	It’s	possible	to	have	10,	20,	or	more	than	100	conditions	inside	your	if
statement,	but	can	you	imagine	trying	to	read	an	if	statement	with	even	10
conditions?	If	you	feel	that	your	multiple	conditions	are	getting	too	complex,	break
them	down	into	smaller	logical	chunks.

For	example,	imagine	you	want	to	execute	some	code	if	myAge	is	in	the	ranges	30–39,
80–89,	or	100–115,	using	different	code	in	each	case.	You	could	write	the	statement
like	so:

if	((myAge	>=	30	&&	myAge	<=	39)	||	(myAge	>=	80	&&	myAge	<=	89)	||

					(myAge	>=	100	&&	myAge	<=	115))	{

		document.write("myAge	is	between	30	and	39	"	+

																	"or	myAge	is	between	80	"	+

																	"and	89	or	myAge	is	between	100	and	115");

}

There’s	nothing	wrong	with	this,	but	it	is	starting	to	get	a	little	long	and	difficult	to
read.	Instead,	you	could	create	another	if	statement	for	the	code	executed	for	the

100–115	range.

else	and	else	if
Imagine	a	situation	where	you	want	some	code	to	execute	if	a	certain	condition	is	true	and
some	other	code	to	execute	if	it	is	false.	You	can	achieve	this	by	having	two	if	statements,
as	shown	in	the	following	example:

if	(myAge	>=	0	&&	myAge	<=	10)	{

			document.write("myAge	is	between	0	and	10");

}

if	(!(myAge	>=	0	&&	myAge	<=	10))	{

			document.write("myAge	is	NOT	between	0	and	10");

}

The	first	if	statement	tests	whether	myAge	is	between	0	and	10,	and	the	second	for	the
situation	where	myAge	is	not	between	0	and	10.	However,	JavaScript	provides	an	easier
way	of	achieving	this:	with	an	else	statement.	Again,	the	use	of	the	word	else	is	similar
to	its	use	in	the	English	language.	You	might	say,	“If	it	is	raining,	I	will	take	an	umbrella;
otherwise	I	will	take	a	sun	hat.”	In	JavaScript	you	can	say	if	the	condition	is	true,	then
execute	one	block	of	code;	else	execute	an	alternative	block.	Rewriting	the	preceding
code	using	this	technique,	you	would	have	the	following:

if	(myAge	>=	0	&&	myAge	<=	10)	{

			document.write("myAge	is	between	0	and	10");

}	else	{

			document.write("myAge	is	NOT	between	0	and	10");

}

Writing	the	code	like	this	makes	it	simpler	and	therefore	easier	to	read.	Plus	it	also	saves
JavaScript	from	testing	a	condition	to	which	you	already	know	the	answer.

You	could	also	include	another	if	statement	with	the	else	statement.	For	example:

if	(myAge	>=	0	&&	myAge	<=	10)	{

			document.write("myAge	is	between	0	and	10");

}	else	if	((myAge	>=	30	&&	myAge	<=	39)	||	(myAge	>=	80	&&	myAge	<=	89)){

			document.write("myAge	is	between	30	and	39	"	+

																		"or	myAge	is	between	80	and	89");

}	else	{

			document.write("myAge	is	NOT	between	0	and	10,	"	+

																		"nor	is	it	between	30	and	39,	nor	"	+

																		"is	it	between	80	and	89");

}

The	first	if	statement	checks	whether	myAge	is	between	0	and	10	and	executes	some	code
if	that’s	true.	If	it’s	false,	an	else	if	statement	checks	if	myAge	is	between	30	and	39	or
80	and	89,	and	executes	some	other	code	if	either	of	those	conditions	is	true.	Failing	that,
you	have	a	final	else	statement,	which	catches	the	situation	in	which	the	value	of	myAge
did	not	trigger	true	in	any	of	the	earlier	if	conditions.

When	using	if	and	else	if,	you	need	to	be	extra	careful	with	your	curly	braces	to	ensure
that	the	if	and	else	if	statements	start	and	stop	where	you	expect,	and	you	don’t	end	up
with	an	else	that	doesn’t	belong	to	the	right	if.	This	is	quite	tricky	to	describe	with	words
—it’s	easier	to	see	what	we	mean	with	an	example:

if	(myAge	>=	0	&&	myAge	<=	10)	{

document.write("myAge	is	between	0	and	10");

if	(myAge	==	5){

document.write("You're	5	years	old");

}

}else{

document.write("myAge	is	NOT	between	0	and	10");

}

Notice	that	we	haven’t	indented	the	code.	Although	this	does	not	matter	to	JavaScript,	it
does	make	the	code	more	difficult	for	humans	to	read	and	hides	the	missing	curly	brace
that	should	be	before	the	final	else	statement.

Correctly	formatted	and	with	the	missing	bracket	inserted,	the	code	looks	like	this:

if	(myAge	>=	0	&&	myAge	<=	10)	{

			document.write("myAge	is	between	0	and	10
");

			if	(myAge	==	5)	{

						document.write("You're	5	years	old");

			}

}	else	{

			document.write("myAge	is	NOT	between	0	and	10");

}

As	you	can	see,	the	code	is	working	now;	it	is	also	a	lot	easier	to	see	which	code	is	part	of
which	if	block.

Comparing	Strings
Up	to	this	point,	you	have	been	looking	exclusively	at	using	comparison	operators	with
numbers.	However,	they	work	just	as	well	with	strings.	All	that’s	been	said	and	done	with
numbers	applies	to	strings,	but	with	one	important	difference.	You	are	now	comparing
data	alphabetically	rather	than	numerically,	so	you	have	a	few	traps	to	watch	out	for.

In	the	following	code,	you	compare	the	variable	myName,	which	contains	the	string	"Paul",
with	the	string	literal	"Paul":

var	myName	=	"Paul";

if	(myName	==	"Paul")	{

			alert("myName	is	Paul");

}

How	does	JavaScript	deal	with	this?	Well,	it	goes	through	each	letter	in	turn	on	the	LHS
and	checks	it	with	the	letter	in	the	same	position	on	the	RHS	to	see	if	it’s	actually	the
same.	If	at	any	point	it	finds	a	difference,	it	stops,	and	the	result	is	false.	If,	after	having
checked	each	letter	in	turn	all	the	way	to	the	end,	it	confirms	that	they	are	all	the	same,	it
returns	true.	The	condition	in	the	preceding	if	statement	will	return	true,	so	you’ll	see
an	alert	box.

However,	string	comparison	in	JavaScript	is	case	sensitive.	So	"P"	is	not	the	same	as	"p".
Taking	the	preceding	example,	but	changing	the	variable	myName	to	"paul",	you	find	that
the	condition	is	false	and	the	code	inside	the	if	statement	does	not	execute:

var	myName	=	"paul";

if	(myName	==	"Paul"){

			alert("myName	is	Paul");

}

The	>=,	>,	<=,	and	<	operators	work	with	strings	as	well	as	with	numbers,	but	again	it	is	an
alphabetical	comparison.	So	"A"	<	"B"	is	true,	because	A	comes	before	B	in	the
alphabet.	However,	JavaScript’s	case	sensitivity	comes	into	play	again.	"A"	<	"B"	is	true,
but	"a"	<	"B"	is	false.	Why?	Because	uppercase	letters	are	treated	as	always	coming
before	lowercase	letters.	Why	is	this?	Each	letter	has	a	code	number	in	the	ASCII	and
Unicode	character	sets,	and	the	code	numbers	for	uppercase	letters	are	lower	than	the	code
numbers	for	lowercase	letters.	This	is	something	to	watch	out	for	when	writing	your	own
code.

The	simplest	way	to	avoid	confusion	with	different	cases	is	to	convert	both	strings	to
either	uppercase	or	lowercase	before	you	compare	them.	You	can	do	this	easily	using	the
toUpperCase()	or	toLowerCase()	function,	which	you	learn	about	in	Chapter	5.

The	switch	Statement
You	saw	earlier	how	the	if	and	else	if	statements	could	be	used	for	checking	various
conditions;	if	the	first	condition	is	not	valid,	then	another	is	checked,	and	another,	and	so
on.	However,	when	you	want	to	check	the	value	of	a	particular	variable	for	a	large	number
of	possible	values,	there	is	a	more	efficient	alternative,	namely	the	switch	statement.	The
structure	of	the	switch	statement	is	given	in	Figure	3.7.

Figure	3.7

The	best	way	to	think	of	the	switch	statement	is	“Switch	to	the	code	where	the	case
matches.”	The	switch	statement	has	four	important	elements:

The	test	expression

The	case	statements

The	break	statements

The	default	statement

The	test	expression	is	given	in	the	parentheses	following	the	switch	keyword.	In	the
previous	example,	you	are	testing	using	the	variable	myName.	Inside	the	parentheses,
however,	you	could	have	any	valid	expression.

Next	come	the	case	statements.	The	case	statements	do	the	condition	checking.	To
indicate	which	case	statements	belong	to	your	switch	statement,	you	must	put	them
inside	the	curly	braces	following	the	test	expression.	Each	case	statement	specifies	a
value,	for	example	"Paul".	The	case	statement	then	acts	like	if	(myName	==	"Paul").	If
the	variable	myName	did	contain	the	value	"Paul",	execution	would	commence	from	the
code	starting	below	the	case	"Paul"	statement	and	would	continue	to	the	end	of	the
switch	statement.	This	example	has	only	two	case	statements,	but	you	can	have	as	many
as	you	like.

In	most	cases,	you	want	only	the	block	of	code	directly	underneath	the	relevant	case
statement	to	execute,	not	all	the	code	below	the	relevant	case	statement,	including	any
other	case	statements.	To	achieve	this,	you	put	a	break	statement	at	the	end	of	the	code
that	you	want	executed.	This	tells	JavaScript	to	stop	executing	at	that	point	and	leave	the
switch	statement.

Finally,	you	have	the	default	case,	which	(as	the	name	suggests)	is	the	code	that	will
execute	when	none	of	the	other	case	statements	match.	The	default	statement	is	optional;
if	you	have	no	default	code	that	you	want	to	execute,	you	can	leave	it	out,	but	remember
that	in	this	case	no	code	will	execute	if	no	case	statements	match.	It	is	a	good	idea	to
include	a	default	case,	unless	you	are	absolutely	sure	that	you	have	all	your	options
covered.

				TRY	IT	OUT								Using	the	switch	Statement
Let’s	take	a	look	at	the	switch	statement	in	action.	The	following	example	illustrates
a	simple	guessing	game.	Type	the	code	and	save	it	as	ch3_example3.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	3,	Example	3</title>

</head>

<body>

				<script>

								var	secretNumber	=	prompt("Pick	a	number	between	1	and	5:",	

"");

								secretNumber	=	parseInt(secretNumber,	10);

								switch	(secretNumber)	{

												case	1:

																document.write("Too	low!");

																break;

												case	2:

																document.write("Too	low!");

																break;

												case	3:

																document.write("You	guessed	the	secret	number!");

																break;

												case	4:

																document.write("Too	high!");

																break;

												case	5:

																document.write("Too	high!");

																break;

												default:

																document.write("You	did	not	enter	a	number	between	1	

and	5.");

																break;

								}

								document.write("
Execution	continues	here");

				</script>

</body>

</html>

Load	this	into	your	browser	and	enter,	for	example,	the	value	1	in	the	prompt	box.
You	should	then	see	something	like	what	is	shown	in	Figure	3.8.

Figure	3.8

If,	on	the	other	hand,	you	enter	the	value	3,	you	should	see	a	friendly	message	letting
you	know	that	you	guessed	the	secret	number	correctly,	as	shown	in	Figure	3.9.

Figure	3.9

First	you	declare	the	variable	secretNumber	and	set	it	to	the	value	entered	by	the	user
via	the	prompt	box.	Note	that	you	use	the	parseInt()	function	to	convert	the	string
that	is	returned	from	prompt()	to	an	integer	value:

var	secretNumber	=	prompt("Pick	a	number	between	1	and	5:",	"");

secretNumber	=	parseInt(secretNumber,	10);

Next	you	create	the	start	of	the	switch	statement:

switch	(secretNumber)	{

The	expression	in	parentheses	is	simply	the	variable	secretNumber,	and	it’s	this
number	that	the	case	statements	will	be	compared	against.

You	specify	the	block	of	code	encompassing	the	case	statements	using	curly	braces.
Each	case	statement	checks	one	of	the	numbers	between	1	and	5,	because	this	is	what
you	have	specified	to	the	user	that	she	should	enter.	The	first	simply	outputs	a
message	that	the	number	she	has	entered	is	too	low:

				case	1:

							document.write("Too	low!");

							break;

The	second	case	statement,	for	the	value	2,	has	the	same	message,	so	the	code	is	not
repeated	here.	The	third	case	statement	lets	the	user	know	that	she	has	guessed
correctly:

				case	3:

							document.write("You	guessed	the	secret	number!");

							break;

Finally,	the	fourth	and	fifth	case	statements	output	a	message	that	the	number	the	user

has	entered	is	too	high:

case	4:

			document.write("Too	high!");

			break;

You	do	need	to	add	a	default	case	in	this	example,	because	the	user	might	very	well
(despite	the	instructions)	enter	a	number	that	is	not	between	1	and	5,	or	even	perhaps
a	letter.	In	this	case,	you	add	a	message	to	let	the	user	know	that	there	is	a	problem:

default:

			document.write("You	did	not	enter	a	number	between	1	and	5.");

			break;

A	default	statement	is	also	very	useful	for	picking	up	bugs—if	you	have	coded	some
of	the	case	statements	incorrectly,	you	will	pick	that	up	very	quickly	if	you	see	the
default	code	being	run	when	it	shouldn’t	be.

Finally,	you	have	added	the	closing	brace	indicating	the	end	of	the	switch	statement.
After	this	you	output	a	line	to	indicate	where	the	execution	continues:

}

document.write("
Execution	continues	here");

Note	that	each	case	statement	ends	with	a	break	statement.	This	is	important	to
ensure	that	execution	of	the	code	moves	to	the	line	after	the	end	of	the	switch
statement.	If	you	forget	to	include	this,	you	could	end	up	executing	the	code	for	each
case	following	the	case	that	matches.

Executing	the	Same	Code	for	Different	Cases
You	may	have	spotted	a	problem	with	the	switch	statement	in	this	example—you	want	to
execute	the	same	code	if	the	user	enters	a	1	or	a	2,	and	the	same	code	for	a	4	or	a	5.
However,	to	achieve	this,	you	have	had	to	repeat	the	code	in	each	case.	What	you	want	is
an	easier	way	of	getting	JavaScript	to	execute	the	same	code	for	different	cases.	Well,
that’s	easy!	Simply	change	the	code	so	that	it	looks	like	this:

switch	(secretNumber)	{

case	1:

case	2:

			document.write("Too	low!");

			break;

case	3:

			document.write("You	guessed	the	secret	number!");

			break;

case	4:

case	5:

			document.write("Too	high!");

			break;

default:

			document.write("You	did	not	enter	a	number	between	1	and	5.");

			break;

}

If	you	load	this	into	your	browser	and	experiment	with	entering	some	different	numbers,
you	should	see	that	it	behaves	exactly	like	the	previous	code.

Here,	you	are	making	use	of	the	fact	that	if	there	is	no	break	statement	underneath	the
code	for	a	certain	case	statement,	execution	will	continue	through	each	following	case
statement	until	a	break	statement	or	the	end	of	the	switch	is	reached.	Think	of	it	as	a	sort
of	free	fall	through	the	switch	statement	until	you	hit	the	break	statement.

If	the	case	statement	for	the	value	1	is	matched,	execution	simply	continues	until	the
break	statement	under	case	2,	so	effectively	you	can	execute	the	same	code	for	both
cases.	The	same	technique	is	used	for	the	case	statements	with	values	4	and	5.

LOOPING—THE	FOR	AND	WHILE	STATEMENTS
Looping	means	repeating	a	block	of	code	when	a	condition	is	true.	This	is	achieved	in
JavaScript	with	the	use	of	two	statements:	the	while	statement	and	the	for	statement.
You’ll	be	looking	at	these	shortly,	but	why	would	you	want	to	repeat	blocks	of	code
anyway?

Well,	take	the	situation	where	you	have	a	series	of	results,	say	the	average	temperature	for
each	month	in	a	year,	and	you	want	to	plot	these	on	a	graph.	The	code	needed	for	plotting
each	point	will	most	likely	be	the	same.	So,	rather	than	write	the	code	12	times	(once	for
each	point),	it’s	much	easier	to	execute	the	same	code	12	times	by	using	the	next	item	of
data	in	the	series.	This	is	where	the	for	statement	would	come	in	handy,	because	you
know	how	many	times	you	want	the	code	to	execute.

In	another	situation,	you	might	want	to	repeat	the	same	piece	of	code	when	a	certain
condition	is	true,	for	example,	while	the	user	keeps	clicking	a	Start	Again	button.	In	this
situation,	the	while	statement	would	be	very	useful.

The	for	Loop
The	for	statement	enables	you	to	repeat	a	block	of	code	a	certain	number	of	times.	The
syntax	is	illustrated	in	Figure	3.10.

Figure	3.10

Let’s	look	at	the	makeup	of	a	for	statement.	You	can	see	from	Figure	3.10	that,	just	like
the	if	and	switch	statements,	the	for	statement	also	has	its	logic	inside	parentheses.
However,	this	time	that	logic	is	split	into	three	parts,	each	part	separated	by	a	semicolon.
For	example,	in	Figure	3.10	you	have	the	following:

(var	loopCounter	=	1;	loopCounter	<=	3;	loopCounter++)

The	first	part	of	the	for	statement’s	logic	is	the	initialization	part	of	the	for	statement.	To
keep	track	of	how	many	times	you	have	looped	through	the	code,	you	need	a	variable	to
keep	count.	It’s	in	the	initialization	part	that	you	initialize	variables.	In	the	example,	you

have	declared	loopCounter	and	set	it	to	the	value	of	1.	This	part	is	only	executed	once
during	the	execution	of	the	loops,	unlike	the	other	parts.	You	don’t	need	to	declare	the
variable	if	it	was	declared	earlier	in	the	code:

var	loopCounter;

for	(loopCounter	=	1;	loopCounter	<=	3;	loopCounter++)

Following	the	semicolon,	you	have	the	test	condition	part	of	the	for	statement.	The	code
inside	the	for	statement	will	keep	executing	for	as	long	as	this	test	condition	evaluates	to
true.	After	the	code	is	looped	through	each	time,	this	condition	is	tested.	In	Figure	3.10,
you	execute	for	as	long	as	loopCounter	is	less	than	or	equal	to	3.	The	number	of	times	a
loop	is	performed	is	often	called	the	number	of	iterations.

Finally,	you	have	the	increment	part	of	the	for	loop,	where	variables	in	your	loop’s	test
condition	have	their	values	incremented.	Here	you	can	see	that	loopCounter	is
incremented	by	one	by	means	of	the	++	operator	you	saw	in	Chapter	2.	Again,	this	part	of
the	for	statement	is	repeated	with	every	loop	of	the	code.	Although	we	call	it	the
increment	part,	it	can	actually	be	used	to	decrease,	or	decrement,	the	value—for	example,
if	you	wanted	to	count	down	from	the	top	element	in	an	array	to	the	first.

After	the	for	statement	comes	the	block	of	code	that	will	be	executed	repeatedly,	as	long
as	the	test	condition	is	true.	This	block	of	code	is	contained	within	curly	braces.	If	the
condition	is	never	true,	even	at	the	first	test	of	the	loop	condition,	the	code	inside	the	for
loop	will	be	skipped	over	and	never	executed.

Putting	all	this	together,	how	does	the	for	loop	work?

1.	 Execute	initialization	part	of	the	for	statement.

2.	 Check	the	test	condition.	If	true,	continue;	if	not,	exit	the	for	statement.

3.	 Execute	code	in	the	block	after	the	for	statement.

4.	 Execute	the	increment	part	of	the	for	statement.

5.	 Repeat	steps	2	through	4	until	the	test	condition	is	false.

				TRY	IT	OUT								Converting	a	Series	of
Fahrenheit	Values
Let’s	change	the	temperature	converter	so	that	it	converts	a	series	of	values,	stored	in
an	array,	from	Fahrenheit	to	centigrade.	You	will	be	using	the	for	statement	to	go
through	each	element	of	the	array.	Type	the	following	code	and	save	it	as
ch3_example4.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	3,	Example	4</title>

</head>

<body>

				<script>

								var	degFahren	=	[212,	32,	-459.15];

								var	degCent	=	[];

								var	loopCounter;

								for	(loopCounter	=	0;	loopCounter	<=	2;	loopCounter++)	{

												degCent[loopCounter]	=	5/9	*	(degFahren[loopCounter]	-	32);

								}

								for	(loopCounter	=	2;	loopCounter	>=	0;	loopCounter−−)	{

												document.write("Value	"	+	loopCounter	+

																											"	was	"	+	degFahren[loopCounter]	+

																											"	degrees	Fahrenheit");

												document.write("	which	is	"	+	degCent[loopCounter]	+

																											"	degrees	centigrade
");

								}

				</script>

</body>

</html>

On	loading	this	into	your	browser,	you’ll	see	a	series	of	three	lines	in	the	page,
containing	the	results	of	converting	your	array	of	Fahrenheit	values	into	centigrade
(as	shown	in	Figure	3.11).

Figure	3.11

The	first	task	is	to	declare	the	variables	you	are	going	to	use.	First,	you	declare	and
initialize	degFahren	to	contain	an	array	of	three	values:	212,	32,	and	–459.15.	Next,
you	declare	degCent	as	an	empty	array.	Finally,	you	declare	loopCounter	and	will	use
it	to	keep	track	of	which	array	index	you	are	accessing	during	your	looping:

var	degFahren	=	[212,	32,	-459.15];

var	degCent	=	[];

var	loopCounter;

Following	this	comes	your	first	for	loop:

for	(loopCounter	=	0;	loopCounter	<=	2;	loopCounter++)	{

			degCent[loopCounter]	=	5/9	*	(degFahren[loopCounter]	-	32);

}

In	the	first	line,	you	start	by	initializing	the	loopCounter	to	0.	Then	the	for	loop’s	test
condition,	loopCounter	<=	2,	is	checked.	If	this	condition	is	true,	the	loop	executes
for	the	first	time.	After	the	code	inside	the	curly	braces	has	executed,	the
incrementing	part	of	the	for	loop,	loopCounter++,	will	be	executed,	and	then	the	test
condition	will	be	re-evaluated.	If	it’s	still	true,	another	execution	of	the	loop	code	is
performed.	This	continues	until	the	for	loop’s	test	condition	evaluates	to	false,	at
which	point	looping	will	end,	and	the	first	statement	after	the	closing	curly	brace	will
be	executed.

The	code	inside	the	curly	braces	is	the	equation	you	saw	in	earlier	examples,	only	this
time	you	are	placing	its	result	into	the	degCent	array,	with	the	index	being	the	value
of	loopCounter.

In	the	second	for	loop,	you	write	the	results	contained	in	the	degCent	array	to	the
screen:

for	(loopCounter	=	2;	loopCounter	>=	0;	loopCounter−−)	{

				document.write("Value	"	+	loopCounter	+

																			"	was	"	+	degFahren[loopCounter]	+

																			"	degrees	Fahrenheit");

				document.write("	which	is	"	+	degCent[loopCounter]	+

																			"	degrees	centigrade
");

}

This	time	you’re	counting	down	from	2	to	0.	The	variable	loopCounter	is	initialized
to	2,	and	the	loop	condition	remains	true	until	loopCounter	is	less	than	0.	This	time
loopCounter	is	actually	decremented	each	time	rather	than	incremented,	by	means	of
loopCounter−−.	Again,	loopCounter	is	serving	a	dual	purpose:	It	keeps	count	of	how
many	loops	you	have	done	and	also	provides	the	index	position	in	the	array.

NOTE	In	these	examples,	you’ve	used	whole	numbers	in	your	loops.	However,	there
is	no	reason	why	you	can’t	use	fractional	numbers,	although	it’s	much	less	common	to
do	so.

The	for…	in	Loop
This	loop	enables	you	to	loop	through	each	element	in	the	array	without	having	to	know
how	many	elements	the	array	actually	contains.	In	plain	English,	what	this	loop	says	is
“For	each	element	in	the	array,	execute	some	code.”	Rather	than	having	to	work	out	the
index	number	of	each	element,	the	for… in	loop	does	it	for	you	and	automatically	moves

to	the	next	index	with	each	iteration	(loop	through).

Its	syntax	for	use	with	arrays	is:

for	(index	in	arrayName)	{

			//some	code

}

In	this	code	extract,	index	is	a	variable	you	declare	prior	to	the	loop,	which	will
automatically	be	populated	with	the	next	index	value	in	the	array.	arrayName	is	the	name
of	the	variable	holding	the	array	you	want	to	loop	through.

Let’s	look	at	an	example	to	make	things	clearer.	You	define	an	array	and	initialize	it	with
three	values:

var	myArray	=	["Paul","Paula","Pauline"];

To	access	each	element	using	a	conventional	for	loop,	you’d	write	this:

for	(var	loopCounter	=	0;	loopCounter	<	3;	loopCounter++)	{

			document.write(myArray[loopCounter]);

}

To	do	exactly	the	same	thing	with	the	for… in	loop,	you	write	this:

for	(var	elementIndex	in	myArray)	{

			document.write(myArray[elementIndex]);

}

As	you	can	see,	the	code	in	the	second	example	is	a	little	clearer,	as	well	as	shorter.	Both
methods	work	equally	well	and	will	iterate	three	times.	However,	if	you	increase	the	size
of	the	array,	for	example,	by	adding	the	element	myArray[3]	=	"Philip",	the	first
method	will	still	loop	only	through	the	first	three	elements	in	the	array,	whereas	the
second	method	will	loop	through	all	four	elements.

The	while	Loop
Whereas	the	for	loop	is	used	for	looping	a	certain	number	of	times,	the	while	loop
enables	you	to	test	a	condition	and	keep	on	looping	while	it’s	true.	The	for	loop	is	useful
when	you	know	how	many	times	you	need	to	loop;	for	example,	when	you	are	looping
through	an	array	that	you	know	has	a	certain	number	of	elements.	The	while	loop	is	more
useful	when	you	don’t	know	how	many	times	you’ll	need	to	loop.	For	example,	if	you	are
looping	through	an	array	of	temperature	values	and	want	to	continue	looping	when	the
temperature	value	contained	in	the	array	element	is	less	than	100,	you	will	need	to	use	the
while	statement.

Let’s	take	a	look	at	the	structure	of	the	while	statement,	as	illustrated	in	Figure	3.12.

Figure	3.12

You	can	see	that	the	while	loop	has	fewer	parts	to	it	than	the	for	loop.	The	while	loop
consists	of	a	condition	which,	if	it	evaluates	to	true,	causes	the	block	of	code	inside	the
curly	braces	to	execute	once;	then	the	condition	is	re-evaluated.	If	it’s	still	true,	the	code
is	executed	again,	the	condition	is	re-evaluated,	and	so	on	until	the	condition	evaluates	to
false.

One	thing	to	watch	out	for	is	that	if	the	condition	is	false	to	start	with,	the	while	loop
never	executes.	For	example:

var	degCent	=	100;

while	(degCent	!=	100)	{

						//	some	code

}

Here,	the	loop	will	run	if	degCent	does	not	equal	100.	However,	because	degCent	is	100,
the	condition	is	false,	and	the	code	never	executes.

In	practice	you	would	normally	expect	the	loop	to	execute	once;	whether	it	executes	again
will	depend	on	what	the	code	inside	the	loop	has	done	to	variables	involved	in	the	loop

condition.	For	example:

var	degCent	=	[];

degFahren	=	[34,	123,	212];

var	loopCounter	=	0;

while	(loopCounter	<	3)	{

			degCent[loopCounter]	=	5/9	*	(degFahren[loopCounter]	-	32);

			loopCounter++;

}

The	loop	will	execute	so	long	as	loopCounter	is	less	than	3.	It’s	the	code	inside	the	loop
(loopCounter++;)	that	increments	loopCounter	and	will	eventually	cause	loopCounter	<
3	to	be	false	so	that	the	loop	stops.	Execution	will	then	continue	on	the	first	line	after	the
closing	brace	of	the	while	statement.

Something	to	watch	out	for	is	the	infinite	loop—a	loop	that	will	never	end.	Suppose	you
forgot	to	include	the	loopCounter++;	line	in	the	code.	Leaving	this	line	out	would	mean
that	loopCounter	will	remain	at	0,	so	the	condition	(loopCounter	<	3)	will	always	be
true,	and	the	loop	will	continue	until	the	user	gets	bored	and	cross,	and	shuts	down	her
browser.	However,	it	is	an	easy	mistake	to	make,	and	one	that	JavaScript	won’t	warn	you
about.

It’s	not	just	missing	lines	that	can	cause	infinite	loops,	but	also	mistakes	inside	the	loop’s
code.	For	example:

var	testVariable	=	0;

while	(testVariable	<=	10)	{

				alert("Test	Variable	is	"	+	testVariable);

				testVariable++;

				if	(testVariable	=	10)	{

								alert("The	last	loop");

				}

}

See	if	you	can	spot	the	deliberate	mistake	that	leads	to	an	infinite	loop—yes,	it’s	the	if
statement	that	will	cause	this	code	to	go	on	forever.	Instead	of	using	==	as	the	comparison
operator	in	the	condition	of	the	if	statement,	you	put	=,	so	testVariable	is	set	to	10	again
in	each	loop,	despite	the	line	testVariable++.	This	means	that	at	the	start	of	each	loop,
the	test	condition	always	evaluates	to	true,	because	10	is	less	than	or	equal	to	10.	Put	the
extra	=	in	to	make	if	(testVariable	==	10),	and	everything	is	fine.

The	do…	while	loop
With	the	while	loop,	you	saw	that	the	code	inside	the	loop	only	executes	if	the	condition
is	true;	if	it’s	false,	the	code	never	executes,	and	execution	instead	moves	to	the	first	line
after	the	while	loop.	However,	there	may	be	times	when	you	want	the	code	in	the	while
loop	to	execute	at	least	once,	regardless	of	whether	the	condition	in	the	while	statement
evaluates	to	true.	It	might	even	be	that	some	code	inside	the	while	loop	needs	to	be
executed	before	you	can	test	the	while	statement’s	condition.	It’s	situations	like	this	for

which	the	do… while	loop	is	ideal.

Look	at	an	example	in	which	you	want	to	get	the	user’s	age	via	a	prompt	box.	You	want	to
show	the	prompt	box	but	also	make	sure	that	what	the	user	has	entered	is	a	number:

var	userAge;

do	{

			userAge	=	prompt("Please	enter	your	age","")

}	while	(isNaN(userAge)	==	true);

The	code	line	within	the	loop:

userAge	=	prompt("Please	enter	your	age","")

will	be	executed	regardless	of	the	while	statement’s	condition.	This	is	because	the
condition	is	not	checked	until	one	loop	has	been	executed.	If	the	condition	is	true,	the
code	is	looped	through	again.	If	it’s	false,	looping	stops.

Note	that	within	the	while	statement’s	condition,	you	are	using	the	isNaN()	function	that
you	saw	in	Chapter	2.	This	checks	whether	the	userAge	variable’s	value	is	NaN	(Not	a
Number).	If	it	is	not	a	number,	the	condition	returns	a	value	of	true;	otherwise,	it	returns
false.	As	you	can	see	from	the	example,	it	enables	you	to	test	the	user	input	to	ensure	the
right	data	has	been	entered.	The	user	might	lie	about	his	age,	but	at	least	you	know	he
entered	a	number!

The	do… while	loop	is	fairly	rare;	there’s	not	much	you	can’t	do	without	it,	so	it’s	best
avoided	unless	really	necessary.

The	break	and	continue	Statements
You	met	the	break	statement	earlier	when	you	looked	at	the	switch	statement.	Its	function
inside	a	switch	statement	is	to	stop	code	execution	and	move	execution	to	the	next	line	of
code	after	the	closing	curly	brace	of	the	switch	statement.	However,	you	can	also	use	the
break	statement	as	part	of	the	for	and	while	loops	when	you	want	to	exit	the	loop
prematurely.	For	example,	suppose	you’re	looping	through	an	array,	as	you	did	in	the
temperature	conversion	example,	and	you	hit	an	invalid	value.	In	this	situation,	you	might
want	to	stop	the	code	in	its	tracks,	notify	the	user	that	the	data	is	invalid,	and	leave	the
loop.	This	is	one	situation	where	the	break	statement	comes	in	handy.

Let’s	see	how	you	could	change	the	example	where	you	converted	a	series	of	Fahrenheit
values	(ch3_example4.html)	so	that	if	you	hit	a	value	that’s	not	a	number	you	stop	the
loop	and	let	the	user	know	about	the	invalid	data:

<script>

var	degFahren	=	[212,	"string	data",	-459.67];

var	degCent	=	[];

var	loopCounter;

for	(loopCounter	=	0;	loopCounter	<=	2;	loopCounter++)	{

				if	(isNaN(degFahren[loopCounter]))	{

										alert("Data	'"	+	degFahren[loopCounter]	+	"'	at	array	index	"	+

																loopCounter	+	"	is	invalid");

										break;

				}

			degCent[loopCounter]	=	5/9	*	(degFahren[loopCounter]	-	32);

}

You	have	changed	the	initialization	of	the	degFahren	array	so	that	it	now	contains	some
invalid	data.	Then,	inside	the	for	loop,	you	add	an	if	statement	to	check	whether	the	data
in	the	degFahren	array	is	not	a	number.	You	do	this	by	means	of	the	isNaN()	function;	it
returns	true	if	the	value	passed	to	it	in	the	parentheses,	here	degFahren[loopCounter],	is
not	a	number.	If	the	value	is	not	a	number,	you	tell	the	user	where	in	the	array	you	have
the	invalid	data.	Then	you	break	out	of	the	for	loop	altogether,	using	the	break	statement,
and	code	execution	continues	on	the	first	line	after	the	end	of	the	for	statement.

That’s	the	break	statement,	but	what	about	continue?	The	continue	statement	is	similar
to	break	in	that	it	stops	the	execution	of	a	loop	at	the	point	where	it	is	found,	but	instead
of	leaving	the	loop,	it	starts	execution	at	the	next	iteration,	starting	with	the	for	or	while
statement’s	condition	being	re-evaluated,	just	as	if	the	last	line	of	the	loop’s	code	had	been
reached.

In	the	break	example,	it	was	all	or	nothing—if	even	one	piece	of	data	was	invalid,	you
broke	out	of	the	loop.	It	might	be	better	if	you	tried	to	convert	all	the	values	in	degFahren,
but	if	you	hit	an	invalid	item	of	data	in	the	array,	you	notify	the	user	and	continue	with	the
next	item,	rather	than	giving	up	as	the	break	statement	example	does:

if	(isNaN(degFahren[loopCounter]))	{

				alert("Data	'"	+	degFahren[loopCounter]	+	"'	at	array	index	"	+

												loopCounter	+	"	is	invalid");

				continue;

}

Just	change	the	break	statement	to	a	continue.	You	will	still	get	a	message	about	the
invalid	data,	but	the	third	value	will	also	be	converted.

SUMMARY
In	this	chapter	you	continued	your	look	at	the	core	of	the	JavaScript	language	and	its
syntax.

The	chapter	looked	at	the	following:

Decision	making	with	the	if	and	switch	statements:	The	ability	to	make	decisions
is	essentially	what	gives	the	code	its	“intelligence.”	Based	on	whether	a	condition	is
true	or	false,	you	can	decide	on	a	course	of	action	to	follow.

Comparison	operators:	The	comparison	operators	compare	the	value	on	the	left	of
the	operator	(left-hand	side,	LHS)	with	the	value	on	the	right	of	the	operator	(right-
hand	side,	RHS)	and	return	a	boolean	value.	Here	is	a	list	of	the	main	comparison
operators:

==	means	“is	the	LHS	equal	to	the	RHS?”

!=	means	“is	the	LHS	not	equal	to	the	RHS?”

<=	means	“is	the	LHS	less	than	or	equal	to	the	RHS?”

>=	means	“is	the	LHS	greater	than	or	equal	to	the	RHS?”

<	means	“is	the	LHS	less	than	the	RHS?”

>	means	“is	the	LHS	greater	than	the	RHS?”

The	if	statement:	Using	the	if	statement,	you	can	choose	to	execute	a	block	of
code	(defined	by	being	in	curly	braces)	when	a	condition	is	true.	The	if	statement
has	a	test	condition,	specified	in	parentheses.	If	this	condition	evaluates	to	true,	the
code	after	the	if	statement	will	execute.

The	else	statement:	If	you	want	code	to	execute	when	the	if	statement	is	false,
you	can	use	the	else	statement	that	appears	after	the	if	statement.

Logical	operators:	To	combine	conditions,	you	can	use	the	three	logical	operators:
AND,	OR,	and	NOT,	represented	by	&&,	||,	and	!,	respectively:

The	AND	operator	returns	true	only	if	both	sides	of	the	expression	are	true.

The	OR	operator	returns	true	when	either	one	or	both	sides	of	an	expression	are
true.

The	NOT	operator	reverses	the	logic	of	an	expression.

The	switch	statement:	This	compares	the	result	of	an	expression	with	a	series	of
possible	cases	and	is	similar	in	effect	to	a	multiple	if	statement.

Looping	with	for,	for… in,	while,	and	do… while:	It’s	often	necessary	to	repeat	a
block	of	code	a	number	of	times,	something	JavaScript	enables	by	looping.

The	for	loop:	Useful	for	looping	through	code	a	certain	number	of	times,	the
for	loop	consists	of	three	parts:	the	initialization,	test	condition,	and	increment
parts.	Looping	continues	while	the	test	condition	is	true.	Each	loop	executes	the

block	of	code	and	then	executes	the	increment	part	of	the	for	loop	before	re-
evaluating	the	test	condition	to	see	if	the	results	of	incrementing	have	changed
it.

The	for… in	loop:	This	is	useful	when	you	want	to	loop	through	an	array
without	knowing	the	number	of	elements	in	the	array.	JavaScript	works	this	out
for	you	so	that	no	elements	are	missed.

The	while	loop:	This	is	useful	for	looping	through	some	code	for	as	long	as	a
test	condition	remains	true.	It	consists	of	a	test	condition	and	the	block	of	code
that’s	executed	only	if	the	condition	is	true.	If	the	condition	is	never	true,	the
code	never	executes.

The	do… while	loop:	This	is	similar	to	a	while	loop,	except	that	it	executes	the
code	once	and	then	keeps	executing	the	code	as	long	as	the	test	condition
remains	true.

break	and	continue	statements:	Sometimes	you	have	a	good	reason	to	break
out	of	a	loop	prematurely,	in	which	case	you	need	to	use	the	break	statement.
On	hitting	a	break	statement,	code	execution	stops	for	the	block	of	code	marked
out	by	the	curly	braces	and	starts	immediately	after	the	closing	brace.	The
continue	statement	is	similar	to	break,	except	that	when	code	execution	stops
at	that	point	in	the	loop,	the	loop	is	not	broken	out	of	but	instead	continues	as	if
the	end	of	that	reiteration	had	been	reached.

EXERCISES
1.	 A	junior	programmer	comes	to	you	with	some	code	that	appears	not	to	work.	Can

you	spot	where	he	went	wrong?	Give	him	a	hand	and	correct	the	mistakes.

var	userAge	=	prompt("Please	enter	your	age");

if	(userAge	=	0)	{;

				alert("So	you're	a	baby!");

}	else	if	(userAge	<	0	|	userAge	>	200)

				alert("I	think	you	may	be	lying	about	your	age");

else	{

			alert("That's	a	good	age");

}

2.	 Using	document.write(),	write	code	that	displays	the	results	of	the	12	times	table.
Its	output	should	be	the	results	of	the	calculations.

12	*	1	=	12

12	*	2	=	24

12	*	3	=	36…

12	*	11	=	132

12	*	12	=	144

4
Functions	and	Scope
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Creating	your	own	functions

Identifying,	creating,	and	using	global	and	local	variables

Using	functions	as	a	value

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

A	function	is	something	that	performs	a	particular	task.	Take	a	pocket	calculator	as	an
example.	It	performs	lots	of	basic	calculations,	such	as	addition	and	subtraction.	However,
many	also	have	function	keys	that	perform	more	complex	operations.	For	example,	some
calculators	have	a	button	for	calculating	the	square	root	of	a	number,	and	others	even
provide	statistical	functions,	such	as	the	calculation	of	an	average.	Most	of	these	functions
could	be	done	with	the	basic	mathematical	operations	of	add,	subtract,	multiply,	and
divide,	but	that	might	take	a	lot	of	steps—it’s	much	simpler	for	the	user	if	she	only	needs
to	press	one	button.	All	she	needs	to	do	is	provide	the	data—numbers	in	this	case—and
the	function	key	does	the	rest.

Functions	in	JavaScript	work	a	little	like	the	function	buttons	on	a	pocket	calculator:	They
encapsulate	a	block	of	code	that	performs	a	certain	task.	Over	the	course	of	the	book	so
far,	you	have	come	across	a	number	of	handy	built-in	functions	that	perform	a	certain	task,
such	as	the	parseInt()	and	parseFloat()	functions,	which	convert	strings	to	numbers,
and	the	isNaN()	function,	which	tells	you	whether	a	particular	value	can	be	converted	to	a
number.	Some	of	these	functions	return	data,	such	as	parseInt(),	which	returns	an	integer
number;	others	simply	perform	an	action	but	return	no	data.	You’ll	also	notice	that	some
functions	can	be	passed	data,	whereas	others	cannot.	For	example,	the	isNaN()	function
needs	to	be	passed	some	data,	which	it	checks	to	see	if	it	is	NaN.	The	data	that	a	function
requires	to	be	passed	are	known	as	its	parameter(s).

As	you	work	your	way	through	the	book,	you’ll	be	coming	across	many	more	useful	built-
in	functions,	but	wouldn’t	it	be	great	to	be	able	to	write	your	own	functions?	After	you’ve
worked	out,	written,	and	debugged	a	block	of	code	to	perform	a	certain	task,	it	would	be
nice	to	be	able	to	call	it	again	and	again	when	you	need	it.	JavaScript	enables	us	to	do	just
that,	and	this	is	what	you’ll	be	concentrating	on	in	this	section.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

CREATING	YOUR	OWN	FUNCTIONS
Creating	and	using	your	own	functions	is	very	simple.	Figure	4.1	shows	an	example	of	a
function	declaration.

Figure	4.1

You’ve	probably	already	realized	what	this	function	does	and	how	the	code	works.	Yes,
it’s	the	infamous	Fahrenheit-to-centigrade	conversion	code	again.

Each	function	you	define	in	JavaScript	must	be	given	a	unique	name	for	that	particular
page.	The	name	comes	immediately	after	the	function	keyword.	To	make	life	easier	for
yourself,	try	using	meaningful	names	so	that	when	you	see	them	being	used	later	in	your
code,	you’ll	know	exactly	what	they	do.	For	example,	a	function	that	takes	as	its
parameters	someone’s	birthday	and	today’s	date	and	returns	the	person’s	age	could	be
called	getAge().	However,	the	names	you	can	use	are	limited,	much	as	variable	names
are.	For	example,	you	can’t	use	words	reserved	by	JavaScript,	so	you	can’t	call	your
function	if()	or	while().

The	parameters	for	the	function	are	given	in	parentheses	after	the	function’s	name.	A
parameter	is	just	an	item	of	data	that	the	function	needs	to	be	given	in	order	to	do	its	job.
Usually,	not	passing	the	required	parameters	will	result	in	an	error.	A	function	can	have
zero	or	more	parameters,	though	even	if	it	has	no	parameters,	you	must	still	put	the	open
and	close	parentheses	after	its	name.	For	example,	the	top	of	your	function	definition	must
look	like	the	following:

function	myNoParamFunction()

You	then	write	the	code,	which	the	function	will	execute	when	called	on	to	do	so.	All	the
function	code	must	be	put	in	a	block	with	a	pair	of	curly	braces.

Functions	also	enable	you	to	return	a	value	from	a	function	to	the	code	that	called	it.	You
use	the	return	statement	to	return	a	value.	In	the	example	function	given	earlier,	you
return	the	value	of	the	variable	degCent,	which	you	have	just	calculated.	You	don’t	have
to	return	a	value	if	you	don’t	want	to,	but	it’s	important	to	note	that	every	function	returns
a	value	even	if	you	don’t	use	the	return	statement.	Functions	that	do	not	explicitly	return
a	value—that	is,	return	a	value	with	the	return	statement—return	undefined.

When	JavaScript	comes	across	a	return	statement	in	a	function,	it	treats	it	a	bit	like	a
break	statement	in	a	for	loop—it	exits	the	function,	returning	any	value	specified	after	the
return	keyword.

You’ll	probably	find	it	useful	to	build	up	a	“library”	of	functions	that	you	use	frequently	in
JavaScript	code,	which	you	can	reference	in	your	pages.

Having	created	your	functions,	how	do	you	use	them?	Unlike	the	code	you’ve	seen	so	far,
which	executes	when	JavaScript	reaches	that	line,	functions	only	execute	if	you	ask	them
to,	which	is	termed	calling	or	invoking	the	function.	You	call	a	function	by	writing	its
name	at	the	point	where	you	want	it	to	be	called	and	making	sure	that	you	pass	any
parameters	it	needs,	separated	by	commas.	For	example:

myTemp	=	convertToCentigrade(212);

This	line	calls	the	convertToCentigrade()	function	you	saw	earlier,	passing	212	as	the
parameter	and	storing	the	return	value	from	the	function	(that	is,	100)	in	the	myTemp
variable.

Have	a	go	at	creating	your	own	functions	now,	taking	a	closer	look	at	how	parameters	are
passed.	Parameter	passing	can	be	a	bit	confusing,	so	you’ll	first	create	a	simple	function
that	takes	just	one	parameter	(the	user’s	name)	and	writes	it	to	the	page	in	a	friendly
welcome	string.	First,	you	need	to	think	of	a	name	for	your	function.	A	short	but
descriptive	name	is	writeUserWelcome().	Now	you	need	to	define	what	parameters	the
function	expects	to	be	passed.	There’s	only	one	parameter—the	username.	Defining
parameters	is	a	little	like	defining	variables—you	need	to	stick	to	the	same	rules	for
naming,	so	that	means	no	spaces,	special	characters,	or	reserved	words.	Let’s	call	your
parameter	userName.	You	need	to	add	it	inside	parentheses	to	the	end	of	the	function	name
(note	that	you	don’t	put	a	semicolon	at	the	end	of	the	line):

function	writeUserWelcome(userName)

Okay,	now	you	have	defined	your	function	name	and	its	parameters;	all	that’s	left	is	to
create	the	function	body—that	is,	the	code	that	will	be	executed	when	the	function	is
called.	You	mark	out	this	part	of	the	function	by	wrapping	it	in	curly	braces:

function	writeUserWelcome(userName){

			document.write("Welcome	to	my	website	"	+	userName	+	"
");

			document.write("Hope	you	enjoy	it!");

}

The	code	is	simple	enough;	you	write	out	a	message	to	the	web	page	using
document.write().	You	can	see	that	userName	is	used	just	as	you’d	use	any	normal
variable;	in	fact,	it’s	best	to	think	of	parameters	as	normal	variables.	The	value	that	the
parameter	has	will	be	that	specified	by	the	JavaScript	code	where	the	function	was	called.

Let’s	see	how	you	would	call	this	function:

writeUserWelcome("Paul");

Simple,	really—just	write	the	name	of	the	function	you	want	to	call,	and	then	in
parentheses	add	the	data	to	be	passed	to	each	of	the	parameters,	here	just	one	piece.	When

the	code	in	the	function	is	executed,	the	variable	userName,	used	in	the	body	of	the
function	code,	will	contain	the	text	"Paul".

Suppose	you	wanted	to	pass	two	parameters	to	your	function—what	would	you	need	to
change?	Well,	first	you’d	have	to	alter	the	function	definition.	Imagine	that	the	second
parameter	will	hold	the	user’s	age—you	could	call	it	userAge	because	that	makes	it	pretty
clear	what	the	parameter’s	data	represents.	Here	is	the	new	code:

function	writeUserWelcome(userName,	userAge)	{

			document.write("Welcome	to	my	website"	+	userName	+	"
");

			document.write("Hope	you	enjoy	it
");

			document.write("Your	age	is	"	+	userAge);

}

You’ve	added	a	line	to	the	body	of	the	function	that	uses	the	parameter	you	have	added.
To	call	the	function,	you’d	write	the	following:

writeUserWelcome("Paul",31);

The	second	parameter	is	a	number,	so	there	is	no	need	for	quotes	around	it.	Here	the
userName	parameter	will	be	Paul,	and	the	second	parameter,	userAge,	will	be	31.

				TRY	IT	OUT								Fahrenheit	to	Centigrade
Function
Let’s	rewrite	the	temperature	converter	page	using	functions.	You	can	cut	and	paste
most	of	this	code	from	ch3_example4.html—the	parts	that	have	changed	have	been
highlighted.	When	you’ve	finished,	save	it	as	ch4_example1.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	4,	Example	1</title>

</head>

<body>

				<script>

								function	convertToCentigrade(degFahren)	{

												var	degCent	=	5	/	9	*	(degFahren	-	32);

												return	degCent;

								}

								var	degFahren	=	[212,	32,	-459.15];

								var	degCent	=	[];

								var	loopCounter;

								for	(loopCounter	=	0;	loopCounter	<=	2;	loopCounter++)	{

												degCent[loopCounter]	=	

convertToCentigrade(degFahren[loopCounter]);

								}

								for	(loopCounter	=	2;	loopCounter	>=	0;	loopCounter−−)	{

												document.write("Value	"	+	loopCounter	+

																											"	was	"	+	degFahren[loopCounter]	+

																											"	degrees	Fahrenheit");

												document.write("	which	is	"	+	degCent[loopCounter]	+

																											"	degrees	centigrade
");

								}

				</script>

</body>

</html>

When	you	load	this	page	into	your	browser,	you	should	see	exactly	the	same	results
that	you	had	with	ch3_example4.html.

At	the	top	of	the	script	block	you	declare	your	convertToCentigrade()	function.	You
saw	this	function	earlier:

function	convertToCentigrade(degFahren)	{

			var	degCent	=	5/9	*	(degFahren	-	32);

			return	degCent;

}

If	you’re	using	a	number	of	separate	script	blocks	in	a	page,	it’s	very	important	that
the	function	be	defined	before	any	script	calls	it.	If	you	have	a	number	of	functions,
you	may	want	to	put	them	all	in	their	own	script	file	and	load	it	before	all	other
scripts.	That	way	you	know	where	to	find	all	your	functions,	and	you	can	be	sure	that
they	have	been	declared	before	they	have	been	used.

You	should	be	pretty	familiar	with	how	the	code	in	the	function	works.	You	declare	a
variable	degCent,	do	your	calculation,	and	then	return	degCent	back	to	the	calling
code.	The	function’s	parameter	is	degFahren,	which	provides	the	information	the
calculation	needs.

Following	the	function	declaration	is	the	code	that	executes	when	the	page	loads.
First	you	define	the	variables	you	need,	and	then	you	have	the	two	loops	that
calculate	and	then	output	the	results.	This	is	mostly	the	same	as	before,	apart	from	the
first	for	loop:

for	(loopCounter	=	0;	loopCounter	<=	2;	loopCounter++)	{

				degCent[loopCounter]	=	convertToCentigrade(degFahren[loopCounter]);

}

The	code	inside	the	first	for	loop	puts	the	value	returned	by	the	function
convertToCentigrade()	into	the	degCent	array.

There	is	a	subtle	point	to	the	code	in	this	example.	Notice	that	you	declare	the
variable	degCent	within	your	function	convertToCentigrade(),	and	you	also	declare
it	as	an	array	after	the	function	definition.

Surely	this	isn’t	allowed?

Well,	this	leads	neatly	to	the	next	topic	of	this	chapter—scope.

SCOPE	AND	LIFETIME
What	is	meant	by	scope?	Well,	put	simply,	it’s	the	scope	or	extent	of	a	variable’s	or
function’s	availability—which	parts	of	your	code	can	access	a	variable	and	the	data	it
contains.	Scope	is	important	to	any	programming	language—even	more	so	in	JavaScript
—so	it’s	imperative	that	you	understand	how	scope	works	in	JavaScript.

Global	Scope
Any	variables	or	functions	declared	outside	of	a	function	will	be	available	to	all	JavaScript
code	on	the	page,	whether	that	code	is	inside	a	function	or	otherwise—we	call	this	global
scope.	Look	at	the	following	example:

var	degFahren	=	12;

function	convertToCentigrade()	{

				var	degCent	=	5/9	*	(degFahren	-	32);

				return	degCent;

}

In	this	code,	the	degFahren	variable	is	a	global	variable	because	it	is	created	outside	of	a
function,	and	because	it	is	global,	it	can	be	used	anywhere	in	the	page.	The
convertToCentigrade()	function	accesses	the	degFahren	variable,	using	it	as	part	of	the
calculation	to	convert	Fahrenheit	to	centigrade.

This	also	means	you	can	change	the	value	of	a	global	variable,	and	the	following	code
does	just	that:

var	degFahren	=	12;

function	convertToCentigrade()	{

				degFahren	=	20;

				var	degCent	=	5/9	*	(degFahren	-	32);

				return	degCent;

}

This	new	line	of	code	changes	the	value	of	degFahren	to	20;	so	the	original	value	of	12	is
no	longer	used	in	the	calculation.	This	change	in	value	isn’t	seen	only	inside	of	the
convertToCentigrade()	function.	The	degFahren	variable	is	a	global	variable,	and	thus
its	value	is	20	everywhere	it	is	used.

Additionally,	the	covertToCentigrade()	function	is	a	global	function	because	it	is
defined	outside	of	another	function	(yes,	you	can	create	a	function	within	a
function…	funception!),	and	they	too	can	be	accessed	anywhere	in	the	page.

In	practice,	you	want	to	avoid	creating	global	variables	and	functions	because	they	can	be
easily	and	unintentionally	modified.	You	can	use	some	tricks	to	avoid	globals,	and	you
will	see	them	throughout	this	book,	but	they	all	boil	down	to	creating	variables	and

functions	in	functional	scope.

Functional	Scope
Variables	and	functions	declared	inside	a	function	are	visible	only	inside	that	function—no
code	outside	the	function	can	access	them.	For	example,	consider	our	standard
convertToCentigrade()	function:

function	convertToCentigrade(degFahren)	{

				var	degCent	=	5/9	*	(degFahren	-	32);

				return	degCent;

}

The	degCent	variable	is	defined	inside	the	convertToCentigrade()	function.	Therefore,	it
can	only	be	accessed	from	within	convertToCentigrade().	This	is	commonly	referred	to
as	functional	or	local	scope,	and	degCent	is	commonly	called	a	local	variable.

Function	parameters	are	similar	to	variables;	they	have	local	scope,	and	thus	can	only	be
accessed	from	within	the	function.	So	in	the	case	of	the	previous	convertToCentigrade()
function,	degFahren	and	degCent	are	local	variables.

So	what	happens	when	the	code	inside	a	function	ends	and	execution	returns	to	the	point
at	which	the	code	was	called?	Do	the	variables	defined	within	the	function	retain	their
value	when	you	call	the	function	the	next	time?

The	answer	is	no:	Variables	not	only	have	the	scope	property—where	they	are	visible—
but	they	also	have	a	lifetime.	When	the	function	finishes	executing,	the	variables	in	that
function	die	and	their	values	are	lost,	unless	you	return	one	of	them	to	the	calling	code.
Every	so	often	JavaScript	performs	garbage	collection	(which	we	talked	about	in	Chapter
2),	whereby	it	scans	through	the	code	and	sees	if	any	variables	are	no	longer	in	use;	if	so,
the	data	they	hold	are	freed	from	memory	to	make	way	for	the	data	of	other	variables.

Identifier	Lookup
What	happens	if	you	use	the	same	variable	name	for	both	a	global	and	local	variable?
JavaScript	handles	this	seemingly	catastrophic	event	with	a	process	called	identifier
lookup.	An	identifier	is	simply	the	name	you	give	a	variable	or	function.	So,	identifier
lookup	is	the	process	that	the	JavaScript	engine	uses	to	find	a	variable	or	function	with	a
given	name.	Consider	the	following	code:

var	degCent	=	10;

function	convertToCentigrade(degFahren)	{

				var	degCent	=	5/9	*	(degFahren	-	32);

				return	degCent;

}

This	code	contains	two	degCent	variables:	One	is	global,	and	the	other	is	local	to
convertToCentigrade().	When	you	execute	the	function,	the	JavaScript	engine	creates

the	local	degCent	variable	and	assigns	it	the	result	of	the	Fahrenheit-to-centigrade
conversion—the	global	degCent	variable	is	left	alone	and	still	contains	10.	But	what	value
does	the	return	statement	return:	the	global	or	local	degCent?

The	JavaScript	engine	begins	the	identifier	lookup	process	in	the	current	level	of	scope.
Therefore,	it	starts	looking	within	the	functional	scope	of	convertToCentigrade()	for	a
variable	or	function	with	the	name	degCent,	it	finds	the	local	variable,	and	uses	its	value
in	the	return	statement.

But	if	degCent	was	not	created	within	convertToCentigrade(),	the	JavaScript	engine
would	then	look	in	the	next	level	of	scope—the	global	scope	in	this	case—for	the	degCent
identifier.	It	would	find	the	global	variable	and	use	its	value.

So	now	that	you	understand	how	scope	works,	revisit	Example	1	in	the	“Fahrenheit	to
Centigrade	Function”	Try	It	Out.	Even	though	it	has	two	degCent	variables—one	global
and	one	local	to	convertToCentigrade()—the	code	executes	without	a	problem.	Inside
the	function,	the	local	degCent	variable	takes	precedence	over	the	global.	And	outside	of
the	function,	the	local	variable	is	no	longer	in	scope;	therefore,	the	global	degCent	is	used.

Although	it’s	perfectly	valid	to	use	the	same	identifier	for	global	and	local	variables,	it	is
highly	recommended	that	you	avoid	doing	so.	It	adds	extra,	and	often	unnecessary,
complexity	and	confusion	to	your	code.	It	can	also	make	it	easier	to	introduce	bugs	that
are	difficult	to	find	and	fix.	Imagine	that,	within	a	function,	you	modified	a	local	variable
when	you	meant	to	modify	a	global	variable.	That	is	a	bug,	and	if	you	replicated	it	in
many	other	functions,	you	will	spend	precious	time	finding	and	fixing	those	errors.

FUNCTIONS	AS	VALUES
JavaScript	is	a	powerful	language,	and	a	lot	of	that	power	comes	from	functions.	Unlike
many	other	languages,	functions	are	first-class	citizens	in	JavaScript;	in	other	words,	we
can	treat	functions	just	like	any	other	type	of	value.	For	example,	let’s	take	the
convertToCentigrade()	function	and	assign	it	to	a	variable:

function	convertToCentigrade(degFahren)	{

				var	degCent	=	5/9	*	(degFahren	-	32);

				return	degCent;

}

var	myFunction	=	convertToCentigrade;

This	code	assigns	the	convertToCentigrade()	function	to	the	myFunction	variable,	but
look	closely	at	the	right-hand	side	of	the	assignment—the	opening	and	closing	parentheses
are	missing	at	the	end	of	the	convertToCentigrade	identifier.	It	looks	a	lot	like	a	variable!

In	this	statement,	we	are	not	executing	convertToCentigrade();	we	are	referring	to	the
actual	function	itself.	This	means	that	we	now	have	two	ways	of	executing	the	same
function.	We	can	call	it	normally	by	executing	convertToCentigrade(),	or	we	can
execute	myFunction(),	like	this:

var	degCent	=	myFunction(75);	//	23.88888889

var	degCent2	=	convertToCentigrade(75);	//	23.88888889

This	also	means	we	can	pass	a	function	to	another	function’s	parameter.	Take	a	look	at	the
following	code:

function	doSomething(fn)	{

				fn("Hello,	World");

}

doSomething(alert);

This	code	defines	a	function	called	doSomething(),	and	it	has	a	single	parameter	called
fn.	Inside	the	function,	the	fn	variable	is	used	as	a	function;	it’s	executed	by	using	the	fn
identifier	followed	by	a	pair	of	parentheses.	The	final	line	of	code	executes	the
doSomething()	function	and	passes	the	alert	function	as	the	parameter.	When	this	code
executes,	an	alert	box	displays	the	message	"Hello,	World".

				TRY	IT	OUT								Passing	Functions

Let’s	rewrite	the	temperature	converter	page	to	use	more	functions.	You	can	cut	and
paste	some	of	the	code	from	ch4_example1.html,	but	the	majority	of	this	example
will	be	new	code.	When	you’ve	finished,	save	it	as	ch4_example2.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	4,	Example	2</title>

</head>

<body>

								<script>

								function	toCentigrade(degFahren)	{

												var	degCent	=	5	/	9	*	(degFahren	-	32);

												document.write(degFahren	+	"	Fahrenheit	is	"	+

																											degCent	+	"	Celsius.
");

								}

								function	toFahrenheit(degCent)	{

												var	degFahren	=	9	/	5	*	degCent	+	32;

												document.write(degCent	+	"	Celsius	is	"	+

																											degFahren	+	"	Fahrenheit.
");

								}

								function	convert(converter,	temperature)	{

												converter(temperature);

								}

								convert(toFahrenheit,	23);

								convert(toCentigrade,	75);

				</script>

</body>

</html>

When	you	load	this	page	into	your	browser,	you	should	see	the	results	shown	in
Figure	4.2.

Figure	4.2

At	the	top	of	the	script	block	is	the	toCentigrade()	function.	It	is	somewhat	similar
to	the	convertToCentigrade()	function	from	ch4_example1.html;	instead	of
returning	the	converted	value,	it	simply	writes	the	conversion	information	to	the
document:

function	toCentigrade(degFahren)	{

				var	degCent	=	5	/	9	*	(degFahren	-	32);

				document.write(degFahren	+	"	Fahrenheit	is	"	+

																			degCent	+	"	Celsius.
");

}

The	next	function,	toFahrenheit(),	is	similar	to	toCentigrade()	except	that	it
converts	the	supplied	value	to	Fahrenheit.	It	then	writes	the	conversion	information	to
the	document:

function	toFahrenheit(degCent)	{

				var	degFahren	=	9	/	5	*	degCent	+	32;

				document.write(degCent	+	"	Celsius	is	"	+

																			degFahren	+	"	Fahrenheit.
");

}

Admittedly,	you	could	use	these	functions	as	is	without	any	problem,	but	that
wouldn’t	result	in	a	very	interesting	example.	Instead,	the	third	function,	convert(),
will	be	used	to	execute	toCentigrade()	and	toFahrenheit():

function	convert(converter,	temperature)	{

				return	converter(temperature);

}

This	function	takes	the	first	parameter,	converter,	and	uses	it	as	a	function.	The
second	parameter,	temperature,	is	then	passed	to	converter()	to	perform	the
conversion	and	write	the	results	to	the	document.

The	final	two	lines	of	code	use	convert()	and	pass	it	the	appropriate	converter
function	and	temperature	value:

convert(toFahrenheit,	23);

convert(toCentigrade,	75);

Although	this	is	certainly	a	more	complex	solution	to	a	relatively	simple	problem,	it
demonstrates	the	fact	that	functions	are	values	in	JavaScript.	We	can	assign	them	to
variables	and	pass	them	to	other	functions.	This	is	an	extremely	important	concept	to
understand,	and	you’ll	see	why	in	Chapter	10	when	you	learn	about	events.

SUMMARY
In	this	chapter	you	concluded	your	look	at	the	core	of	the	JavaScript	language	and	its
syntax.	Everything	from	now	on	builds	on	these	foundations,	and	with	the	less	interesting
syntax	under	your	belt,	you	can	move	on	to	more	interesting	things	in	the	remainder	of	the
book.

The	chapter	looked	at	the	following:

Functions	are	reusable	bits	of	code.	JavaScript	has	a	lot	of	built-in	functions	that
provide	programmers	services,	such	as	converting	a	string	to	a	number.	However,
JavaScript	also	enables	you	to	define	and	use	your	own	functions	using	the	function
keyword.	Functions	can	have	zero	or	more	parameters	passed	to	them	and	can	return
a	value	if	you	so	wish.

Variable	scope	and	lifetime:	Variables	declared	outside	a	function	are	available
globally—that	is,	anywhere	in	the	page.	Any	variables	defined	inside	a	function	are
private	to	that	function	and	can’t	be	accessed	outside	of	it.	Variables	have	a	lifetime,
the	length	of	which	depends	on	where	the	variable	was	declared.	If	it’s	a	global
variable,	its	lifetime	is	that	of	the	page—while	the	page	is	loaded	in	the	browser,	the
variable	remains	alive.	For	variables	defined	in	a	function,	the	lifetime	is	limited	to
the	execution	of	that	function.	When	the	function	is	finished	executing,	the	variables
die,	and	their	values	are	lost.	If	the	function	is	called	again	later	in	the	code,	the
variables	will	be	empty.

Identifier	lookup:	When	you	use	a	variable	or	function,	the	JavaScript	engine	goes
through	the	identifier	lookup	process	to	find	the	value	associated	with	the	identifier.

Functions	are	first-class	citizens	in	JavaScript.	You	can	assign	functions	to
variables	and	pass	them	to	other	functions.

EXERCISES
You	can	find	suggested	solutions	to	these	questions	in	Appendix	A.

1.	 Change	the	code	of	Question	2	from	Chapter	3	so	that	it’s	a	function	that	takes	as
parameters	the	times	table	required	and	the	values	at	which	it	should	start	and	end.
For	example,	you	might	try	the	4	times	table	displayed	starting	with	4	*	4	and
ending	at	4	*	9.

2.	 Modify	the	code	of	Question	1	to	request	the	times	table	to	be	displayed	from	the
user;	the	code	should	continue	to	request	and	display	times	tables	until	the	user	enters
-1.	Additionally,	do	a	check	to	make	sure	that	the	user	is	entering	a	valid	number;	if
the	number	is	not	valid,	ask	the	user	to	re-enter	it.

5
JavaScript—An	Object-Based	Language
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Using	JavaScript’s	built-in	objects	to	work	with	complex	data

Creating	custom	objects	to	represent	complex	ideas	and	data

Defining	custom	reference	types

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

In	this	chapter,	you	look	at	a	concept	that	is	central	to	JavaScript,	namely	objects.	But
what	are	objects,	and	why	are	they	useful?

First,	we	have	to	break	it	to	you:	You	have	been	using	objects	throughout	this	book	(for
example,	an	array	is	an	object).	JavaScript	is	an	object-based	language,	and	therefore	most
of	what	you	do	involves	manipulating	objects.	You’ll	see	that	when	you	make	full	use	of
these	objects,	the	range	of	things	you	can	do	with	JavaScript	expands	immensely.

We’ll	start	this	chapter	by	taking	a	look	at	the	idea	of	what	objects	are	and	why	they	are
important.	We’ll	move	on	to	what	kinds	of	objects	are	used	in	JavaScript,	how	to	create
them	and	use	them,	and	how	they	simplify	many	programming	tasks	for	you.	Finally,
you’ll	see	in	more	detail	some	of	the	most	useful	objects	that	JavaScript	provides	and	how
to	use	these	in	practical	situations.

Not	only	does	the	JavaScript	language	consist	of	a	number	of	these	things	called	objects
(which	are	also	called	native	JavaScript	objects),	but	also	the	browser	itself	is	modeled	as
a	collection	of	objects	available	for	your	use.	You	learn	about	these	objects	in	particular	in
Chapter	8.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

OBJECT-BASED	PROGRAMMING
Object-based	programming	is	a	slightly	scarier	way	of	saying	“programming	using
objects.”	But	what	are	these	objects	that	you	will	be	programming	with?	Where	are	they
and	how	and	why	would	you	want	to	program	with	them?	In	this	section,	you	look	at	the
answers	to	these	questions,	both	in	general	programming	terms	and	more	specifically
within	JavaScript.

What	Are	Objects?
To	start	the	introduction	to	objects,	let’s	think	about	what	is	meant	by	an	object	in	the	“real
world”	outside	computing.	The	world	is	composed	of	things,	or	objects,	such	as	tables,
chairs,	and	cars	(to	name	just	a	few!).	Let’s	take	a	car	as	an	example,	to	explore	what	an
object	really	is.

How	would	you	define	the	car?	You	might	say	it’s	a	blue	car	with	four-wheel	drive.	You
might	specify	the	speed	at	which	it’s	traveling.	When	you	do	this,	you	are	specifying
properties	of	the	object.	For	example,	the	car	has	a	color	property,	which	in	this	instance
has	the	value	blue.

How	do	you	use	the	car?	You	turn	the	ignition	key,	press	the	gas	pedal,	beep	the	horn,
change	the	gear	(that	is,	choose	between	1,	2,	3,	4,	and	reverse	on	a	manual	car,	or	drive
and	reverse	on	an	automatic),	and	so	on.	When	you	do	this,	you	are	using	methods	of	the
object.

You	can	think	of	methods	as	being	a	bit	like	functions.	Sometimes,	you	may	need	to	use
some	information	with	the	method,	or	pass	it	a	parameter,	to	get	it	to	work.	For	example,
when	you	use	the	changing-gears	method,	you	need	to	say	which	gear	you	want	to	change
to.	Other	methods	may	pass	information	back	to	the	owner.	For	example,	the	dipstick
method	will	tell	the	owner	how	much	oil	is	left	in	the	car.

Sometimes	using	one	or	more	of	the	methods	may	change	one	or	more	of	the	object’s
properties.	For	example,	using	the	accelerator	method	will	probably	change	the	car’s
speed	property.	Other	properties	can’t	be	changed:	for	example,	the	body-shape	property
of	the	car	(unless	you	hit	a	brick	wall	with	the	speed	property	at	100	miles	per	hour!).

You	could	say	that	the	car	is	defined	by	its	collection	of	methods	and	properties.	In	object-
based	programming,	the	idea	is	to	model	real-world	situations	by	objects,	which	are
defined	by	their	methods	and	properties.

Objects	in	JavaScript
You	should	now	have	a	basic	idea	of	what	an	object	is—a	“thing”	with	methods	and
properties.	But	how	do	you	use	this	concept	in	JavaScript?

In	the	previous	chapters	you	have	(for	the	most	part)	been	dealing	with	primitive	data	(that
is,	you’ve	been	working	with	actual	data).	This	type	of	data	is	not	too	complex	and	is
fairly	easy	to	deal	with.	However,	not	all	information	is	as	simple	as	primitive	data.	Let’s

look	at	an	example	to	clarify	things	a	little.

Suppose	you	had	written	a	web	application	that	displayed	timetable	information	for	buses
or	trains.	Once	the	user	has	selected	a	journey,	you	might	want	to	let	him	know	how	long
that	journey	will	take.	To	do	that,	you	need	to	subtract	the	arrival	time	from	the	departure
time.

However,	that’s	not	quite	as	simple	as	it	may	appear	at	first	glance.	For	example,	consider
a	departure	time	of	14:53	(for	2:53	p.m.)	and	an	arrival	time	of	15:10	(for	3:10	p.m.).	If
you	tell	JavaScript	to	evaluate	the	expression	15.10–14.53,	you	get	the	result	0.57,	which
is	57	minutes.	However,	you	know	that	the	real	difference	in	time	is	17	minutes.	Using	the
normal	mathematical	operators	on	times	doesn’t	work!

What	would	you	need	to	do	to	calculate	the	difference	between	these	two	times?	You
would	first	need	to	separate	the	hours	from	the	minutes	in	each	time.	Then,	to	get	the
difference	in	minutes	between	the	two	times,	you	would	need	to	check	whether	the
minutes	of	the	arrival	time	were	greater	than	the	minutes	of	the	departure.	If	so,	you	could
simply	subtract	the	departure	time	minutes	from	the	arrival	time	minutes.	If	not,	you’d
need	to	add	60	to	the	arrival	time	minutes	and	subtract	one	from	the	arrival	time	hours	to
compensate,	before	taking	the	departure	time	minutes	from	the	arrival	time	minutes.
You’d	then	need	to	subtract	the	departure	time	hours	from	the	arrival	time	hours,	before
putting	the	minutes	and	hours	that	you	have	arrived	at	back	together.

This	would	work	okay	so	long	as	the	two	times	were	in	the	same	day.	It	wouldn’t	work,
for	example,	with	the	times	23:45	and	04:32.

This	way	of	working	out	the	time	difference	obviously	has	its	problems,	but	it	also	seems
very	complex.	Is	there	an	easier	way	to	deal	with	more	complex	data	such	as	times	and
dates?

This	is	where	objects	come	in.	You	can	define	your	departure	and	arrival	times	as	Date
objects.	Because	they	are	Date	objects,	they	come	with	a	variety	of	properties	and
methods	that	you	can	use	when	you	need	to	manipulate	or	calculate	times.	For	example,
you	can	use	the	getTime()	method	to	get	the	number	of	milliseconds	between	the	time	in
the	Date	object	and	January	1,	1970,	00:00:00.	Once	you	have	these	millisecond	values
for	the	arrival	and	departure	times,	you	can	simply	subtract	one	from	the	other	and	store
the	result	in	another	Date	object.	To	retrieve	the	hours	and	minutes	of	this	time,	you
simply	use	the	getHours()	and	getMinutes()	methods	of	the	Date	object.	You	see	more
examples	of	this	later	in	the	chapter.

The	Date	object	is	not	the	only	type	of	object	that	JavaScript	has	to	offer.	Another	object
type	was	introduced	in	Chapter	2,	but	to	keep	things	simple,	we	didn’t	tell	you	what	it	was
at	the	time:	the	Array	object.	Recall	that	an	array	is	a	way	of	holding	a	number	of	pieces
of	data	at	the	same	time.

Array	objects	have	a	property	called	length	that	tells	you	how	many	pieces	of	data,	or
rather	how	many	elements,	the	array	holds.	They	also	have	a	number	of	methods.	One
example	is	the	sort()	method,	which	you	can	use	to	sort	the	elements	within	the	array
into	alphabetical	order.

You	should	now	have	an	idea	why	objects	are	useful	in	JavaScript.	You	have	seen	the	Date

and	Array	objects,	but	JavaScript	makes	available	many	other	types	of	objects	so	that	you
can	achieve	more	with	your	code.	These	include	the	Math	and	String	objects,	which	we
talk	more	about	later	in	the	chapter.

Using	JavaScript	Objects
Now	that	you	have	seen	the	why	of	JavaScript	objects,	you	need	to	look	at	the	what	and
the	how.

Each	of	JavaScript’s	objects	has	a	collection	of	related	properties	and	methods	that	you
can	use	to	manipulate	a	certain	kind	of	data.	For	example,	the	Array	object	consists	of
methods	to	manipulate	arrays	and	properties	to	find	out	information	from	them.	In	most
cases,	to	make	use	of	these	methods	and	properties,	you	need	to	define	your	data	as	one	of
these	objects.	In	other	words,	you	need	to	create	an	object.

In	this	section,	you	look	at	how	to	go	about	creating	an	object	and,	having	done	that,	how
you	use	its	properties	and	methods.

Creating	an	Object
To	create	many	types	of	objects,	you	use	the	new	operator.	The	following	statement	creates
a	Date	object:

var	myDate	=	new	Date();

The	first	half	of	the	statement	is	familiar	to	you.	You	use	the	var	keyword	to	define	a
variable	called	myDate.	This	variable	is	initialized,	using	the	equals	sign	assignment
operator	(=),	to	the	right-hand	side	of	the	statement.

The	right-hand	side	of	the	statement	consists	of	two	parts.	First	you	have	the	operator	new.
This	tells	JavaScript	that	you	want	to	create	a	new	object.	Next	you	have	Date().	This	is
the	constructor	for	a	Date	object.	It’s	a	function	that	tells	JavaScript	what	type	of	object
you	want	to	create.	Most	objects	have	constructors	like	this.	For	example,	the	Array	object
has	the	Array()	constructor	(but	remember,	we	typically	don’t	use	it	in	favor	of	the	literal
[]).	The	only	exception	you	see	in	this	book	is	the	Math	object,	and	this	is	explained	in	a
later	part	of	the	chapter.

Because	a	constructor	is	a	function,	you	can	pass	parameters	to	the	constructor	to	add	data
to	your	object.	For	example,	the	following	code	creates	a	Date	object	containing	the	date	1
January	2014:

var	myDate	=	new	Date("1	Jan	2014");

How	object	data	is	stored	in	variables	differs	from	how	primitive	data,	such	as	text	and
numbers,	is	stored.	(Primitive	data	is	the	most	basic	data	possible	in	JavaScript.)	With
primitive	data,	the	variable	holds	the	data’s	actual	value.	For	example:

var	myNumber	=	23;

This	code	means	that	the	variable	myNumber	holds	the	data	23.	However,	variables
assigned	to	objects	don’t	hold	the	actual	data,	but	rather	a	reference	to	the	memory	address

where	the	data	can	be	found.	This	doesn’t	mean	you	can	get	hold	of	the	memory	address
—this	is	something	only	JavaScript	has	details	of	and	keeps	to	itself	in	the	background.
All	you	need	to	remember	is	that	when	you	say	that	a	variable	references	an	object,	you
mean	it	references	a	memory	address.	This	is	shown	in	the	following	example:

var	myArrayRef	=	[0,	1,	2];

var	mySecondArrayRef	=	myArrayRef;

myArrayRef[0]	=	100;

alert(mySecondArrayRef[0]);

First	you	set	the	myArrayRef	variable	to	reference	the	new	array	object,	and	then	you	set
mySecondArrayRef	to	the	same	reference—for	example,	now	mySecondArrayRef	is	set	to
reference	the	same	array	object.	So	when	you	set	the	first	element	of	the	array	to	100,	as
shown	here:

myArrayRef[0]	=	100;

and	display	the	contents	of	the	first	element	of	the	array	referenced	in	mySecondArrayRef
as	follows:

alert(mySecondArrayRef[0]);

you’ll	see	it	has	also	magically	changed	to	100!	However,	as	you	now	know,	it’s	not
magic;	it’s	because	both	variables	reference	the	same	array	object—when	it	comes	to
objects,	it’s	a	reference	to	the	object	and	not	the	object	itself	that	is	stored	in	a	variable.
When	you	did	the	assignment,	it	didn’t	make	a	copy	of	the	array	object,	it	simply	copied
the	reference.	Contrast	that	with	the	following:

var	myVariable	=	"ABC";

var	mySecondVariable	=	myVariable;

myVariable	=	"DEF";

alert(mySecondVariable);

In	this	case	you’re	dealing	with	a	string,	which	is	a	primitive	data	type,	as	are	numbers.
This	time	the	actual	values	are	stored	in	the	variable,	so	when	you	do	this:

var	mySecondVariable	=	myVariable;

mySecondVariable	gets	its	own	separate	copy	of	the	data	in	myVariable.	So	the	alert	at
the	end	will	still	show	mySecondVariable	as	holding	"ABC".

To	summarize	this	section,	you	create	JavaScript	objects	using	the	following	basic	syntax:

var	myVariable	=	new	ConstructorName(optional	parameters);

Using	an	Object’s	Properties
Accessing	the	values	contained	in	an	object’s	properties	is	very	simple.	You	write	the
name	of	the	variable	containing	(or	referencing)	your	object,	followed	by	a	dot,	and	then
the	name	of	the	object’s	property.

For	example,	if	you	defined	an	Array	object	contained	in	the	variable	myArray,	you	could
access	its	length	property	like	this:

myArray.length

But	what	can	you	do	with	this	property	now	that	you	have	it?	You	can	use	it	as	you	would
any	other	piece	of	data	and	store	it	in	a	variable:

var	myVariable	=	myArray.length;

Or	you	can	show	it	to	the	user:

alert(myArray.length);

In	some	cases,	you	can	even	change	the	value	of	the	property,	like	this:

myArray.length	=	12;

However,	unlike	variables,	some	properties	are	read-only—you	can	get	information	from
them,	but	you	can’t	change	information	inside	them.

Calling	an	Object’s	Methods
Methods	are	very	much	like	functions	in	that	they	can	be	used	to	perform	useful	tasks,
such	as	getting	the	hours	from	a	particular	date	or	generating	a	random	number.	Again	like
functions,	some	methods	return	a	value,	such	as	a	Date	object’s	getHours()	method,
whereas	others	perform	a	task,	but	return	no	data,	such	as	an	Array	object’s	sort()
method.

Using	the	methods	of	an	object	is	very	similar	to	using	properties,	in	that	you	put	the
object’s	variable	name	first,	then	a	dot,	and	then	the	name	of	the	method.	For	example,	to
sort	the	elements	of	an	Array	in	the	variable	myArray,	you	can	use	the	following	code:

myArray.sort();

Just	as	with	functions,	you	can	pass	parameters	to	some	methods	by	placing	the
parameters	between	the	parentheses	following	the	method’s	name.	However,	whether	or
not	a	method	takes	parameters,	you	must	still	put	parentheses	after	the	method’s	name,
just	as	you	did	with	functions.	As	a	general	rule,	anywhere	you	can	use	a	function,	you
can	use	a	method	of	an	object.

Primitives	and	Objects
You	should	now	have	a	good	idea	about	the	difference	between	primitive	data,	such	as
numbers	and	strings,	and	object	data,	such	as	Dates	and	Arrays.	However,	as	was
mentioned	earlier,	there	is	also	a	String	object.	Where	does	this	fit	in?

In	fact,	there	are	String,	Number,	and	Boolean	objects	corresponding	to	the	string,
number,	and	boolean	primitive	data	types.	For	example,	to	create	a	String	object
containing	the	text	"I'm	a	String	object"	you	can	use	the	following	code:

var	myString	=	new	String("I'm	a	String	object");

String	objects	have	the	length	property	just	as	Array	objects	do.	This	returns	the	number
of	characters	in	the	String	object.	For	example,

var	lengthOfString	=	myString.length;

would	store	the	value	19	in	the	variable	lengthOfString	(remember	that	spaces	are
referred	to	as	characters,	too).

But	what	if	you	had	declared	a	primitive	string	called	mySecondString	holding	the	text
"I'm	a	primitive	string"	like	this:

var	mySecondString	=	"I'm	a	primitive	string";

and	wanted	to	know	how	many	characters	could	be	found	in	this	primitive	string?

This	is	where	JavaScript	helps	you	out.	Recall	from	previous	chapters	that	JavaScript	can
handle	the	conversion	of	one	data	type	to	another	automatically.	For	example,	if	you	tried
to	add	a	string	primitive	to	a	number	primitive,	like	this:

theResult	=	"23"	+	23;

JavaScript	would	assume	that	you	want	to	treat	the	number	as	a	string	and	concatenate	the
two	together,	the	number	being	converted	to	text	automatically.	The	variable	theResult
would	contain	"2323"—the	concatenation	of	23	and	23,	and	not	the	sum	of	23	and	23,
which	would	be	46.

The	same	applies	to	objects.	If	you	declare	a	primitive	string	and	then	treat	it	as	an	object,
such	as	by	trying	to	access	one	of	its	methods	or	properties,	JavaScript	will	know	that	the
operation	you’re	trying	to	do	won’t	work.	The	operation	will	only	work	with	an	object;	for
example,	it	would	be	valid	with	a	String	object.	In	this	case,	JavaScript	converts	the
plaintext	string	into	a	temporary	String	object,	just	for	that	operation,	and	destroys	the
object	when	it’s	finished	the	operation.

So,	for	your	primitive	string	mySecondString,	you	can	use	the	length	property	of	the
String	object	to	find	out	the	number	of	characters	it	contains.	For	example:

var	lengthOfSecondString	=	mySecondString.length;

This	would	store	the	data	22	in	the	variable	lengthOfSecondString.

The	same	ideas	expressed	here	are	also	true	for	number	and	boolean	primitives	and	their
corresponding	Number	and	Boolean	objects.	However,	these	objects	are	not	used	very
often,	so	we	will	not	be	discussing	them	further	in	this	book.

JAVASCRIPT’S	NATIVE	OBJECT	TYPES
So	far,	you	have	just	been	looking	at	what	objects	are,	how	to	create	them,	and	how	to	use
them.	Now	take	a	look	at	some	of	the	more	useful	objects	that	are	native	to	JavaScript—
that	is,	those	that	are	built	into	the	JavaScript	language.

You	won’t	be	looking	at	all	of	the	native	JavaScript	objects,	just	some	of	the	more
commonly	used	ones,	namely	the	String	object,	the	Math	object,	the	Array	object,	and	the
Date	object.

String	Objects
Like	most	objects,	String	objects	need	to	be	created	before	they	can	be	used.	To	create	a
String	object,	you	can	write	this:

var	string1	=	new	String("Hello");

var	string2	=	new	String(123);

var	string3	=	new	String(123.456);

However,	as	you	have	seen,	you	can	also	declare	a	string	primitive	and	use	it	as	if	it	were
a	String	object,	letting	JavaScript	do	the	conversion	to	an	object	for	you	behind	the
scenes.	For	example:

var	string1	=	"Hello";

Using	this	technique	is	preferable.	The	advantages	to	doing	it	this	way	are	that	there	is	no
need	to	create	a	String	object	itself,	and	you	avoid	the	troubles	with	comparing	string
objects.	When	you	try	to	compare	string	objects	with	primitive	string	values,	the	actual
values	are	compared,	but	with	String	objects,	the	object	references	are	compared.

The	String	object	has	a	vast	number	of	methods	and	properties.	In	this	section,	you	look
only	at	some	of	the	less	complex	and	more	commonly	used	methods.	However,	in	Chapter
6	you	look	at	some	of	the	trickier	but	very	powerful	methods	associated	with	strings	and
the	regular	expression	object	(RegExp).	Regular	expressions	provide	a	very	powerful
means	of	searching	strings	for	patterns	of	characters.	For	example,	if	you	want	to	find
"Paul"	where	it	exists	as	a	whole	word	in	the	string	"Pauline,	Paul,	Paula",	you	need
to	use	regular	expressions.	However,	they	can	be	a	little	tricky	to	use,	so	we	won’t	discuss
them	further	in	this	chapter—we	want	to	save	some	fun	for	later!

With	most	of	the	String	object’s	methods,	it	helps	to	remember	that	a	string	is	just	a
series	of	individual	characters	and	that,	as	with	arrays,	each	character	has	a	position,	or
index.	Also	as	with	arrays,	the	first	position,	or	index,	is	labeled	0	and	not	1.	So,	for
example,	the	string	"Hello	World"	has	the	character	positions	shown	in	the	following
table:

CHARACTER	INDEX 0 1 2 3 4 5 6 7 8 9 10
Character H e l l o W o r l d

The	length	Property
The	length	property	simply	returns	the	number	of	characters	in	the	string.	For	example,

var	myName	=	"Jeremy";

document.write(myName.length);

will	write	the	length	of	the	string	"Jeremy"	(that	is,	6)	to	the	page.

Finding	a	String	Inside	Another	String—The	indexOf()	and	lastIndexOf()
Methods
The	methods	indexOf()	and	lastIndexOf()	are	used	for	searching	for	the	occurrence	of
one	string	inside	another.	A	string	contained	inside	another	is	usually	termed	a	substring.
They	are	useful	when	you	have	a	string	of	information	but	only	want	a	small	part	of	it.	For
example,	in	the	trivia	quiz,	when	someone	enters	a	text	answer,	you	want	to	check	if
certain	keywords	are	present	within	the	string.

Both	indexOf()	and	lastIndexOf()	take	two	parameters:

The	string	you	want	to	find

The	character	position	you	want	to	start	searching	from	(optional)

Character	positions	start	at	0.	If	you	don’t	include	the	second	parameter,	searching	starts
from	the	beginning	of	the	string.

The	return	value	of	indexOf()	and	lastIndexOf()	is	the	character	position	in	the	string	at
which	the	substring	was	found.	Again,	it’s	zero-based,	so	if	the	substring	is	found	at	the
start	of	the	string,	then	0	is	returned.	If	there	is	no	match,	the	value	-1	is	returned.

For	example,	to	search	for	the	substring	"Jeremy"	in	the	string	"Hello	jeremy.	How	are
you	Jeremy",	you	can	use	the	following	code:

var	myString	=	"Hello	jeremy.	How	are	you	Jeremy";

var	foundAtPosition	=	myString.indexOf("Jeremy");

alert(foundAtPosition);

This	code	should	result	in	a	message	box	containing	the	number	26,	which	is	the	character
position	of	"Jeremy".	You	might	be	wondering	why	it’s	26,	which	clearly	refers	to	the
second	"Jeremy"	in	the	string,	rather	than	6	for	the	first	"jeremy".

This	is	due	to	case	sensitivity.	JavaScript	takes	case	sensitivity	very	seriously,	both	in	its
syntax	and	when	making	comparisons.	If	you	type	IndexOf()	instead	of	indexOf(),
JavaScript	will	complain.	Similarly,	"jeremy"	is	not	the	same	as	"Jeremy".	Remember
that	mistakes	with	case	are	very	common	and	so	easy	to	make,	even	for	experts,	and	it’s
best	to	be	very	aware	of	case	when	programming.

You’ve	seen	indexOf()	in	action,	but	how	does	lastIndexOf()	differ?	Well,	whereas
indexOf()	starts	searching	from	the	beginning	of	the	string,	or	the	position	you	specified
in	the	second	parameter,	and	works	toward	the	end,	lastIndexOf()	starts	at	the	end	of	the
string,	or	the	position	you	specified,	and	works	toward	the	beginning	of	the	string.	Let’s
modify	the	previous	example	to	the	following	code:

var	myString	=	"Hello	Jeremy.	How	are	you	Jeremy";

var	foundAtPosition	=	myString.indexOf("Jeremy");

alert(foundAtPosition);

foundAtPosition	=	myString.lastIndexOf("Jeremy");

alert(foundAtPosition);

First,	notice	the	string	value	assigned	to	myString;	both	instances	of	"Jeremy"	now	begin
with	a	capital	letter.	The	first	alert	box	displays	the	result	of	6	because	that	is	the	position
of	the	first	occurrence	of	"Jeremy".	The	second	alert	box	displays	26	because
lastIndexOf()	starts	searching	at	the	end	of	the	string,	and	the	position	of	the	first
occurrence	of	"Jeremy"	from	the	end	of	the	string	is	26.

				TRY	IT	OUT								Counting	Occurrences	of
Substrings
In	this	example,	you	look	at	how	to	use	the	“start	character	position”	parameter	of
indexOf().	Here	you	will	count	how	many	times	the	word	Wrox	appears	in	the	string:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Example	1</title>

</head>

<body>

				<script>

								var	myString	=	"Welcome	to	Wrox	books.	"	+

																							"The	Wrox	website	is	www.wrox.com.	"	+

																							"Visit	the	Wrox	website	today.	Thanks	for	buying	

Wrox";

								var	foundAtPosition	=	0;

								var	wroxCount	=	0;

								while	(foundAtPosition	!=	-1)	{

												foundAtPosition	=	myString.indexOf("Wrox",	

foundAtPosition);

												if	(foundAtPosition	!=	-1)	{

																wroxCount++;

																foundAtPosition++;

												}

								}

								document.write("There	are	"	+	wroxCount	+	"	occurrences	of	the	

word	Wrox");

				</script>

</body>

</html>

Save	this	example	as	ch5_example1.html.	When	you	load	the	page	into	your
browser,	you	should	see	the	following	sentence:	There	are	4	occurrences	of	the
word	Wrox.

At	the	top	of	the	script	block,	you	built	up	a	string	inside	the	variable	myString,
which	you	then	want	to	search	for	the	occurrence	of	the	word	Wrox.	You	also	define
two	variables:	wroxCount	will	contain	the	number	of	times	Wrox	is	found	in	the	string,
and	foundAtPosition	will	contain	the	position	in	the	string	of	the	current	occurrence
of	the	substring	Wrox.

You	then	used	a	while	loop,	which	continues	looping	all	the	while	you	are	finding	the
word	Wrox	in	the	string—that	is,	while	the	variable	foundAtPosition	is	not	equal	to
-1.	Inside	the	while	loop,	you	have	this	line:

foundAtPosition	=	myString.indexOf("Wrox",	foundAtPosition);

Here	you	search	for	the	next	occurrence	of	the	substring	Wrox	in	the	string	myString.
How	do	you	make	sure	that	you	get	the	next	occurrence?	You	use	the	variable
foundAtPosition	to	give	you	the	starting	position	of	your	search,	because	this
contains	the	index	after	the	index	position	of	the	last	occurrence	of	the	substring	Wrox.
You	assign	the	variable	foundAtPosition	to	the	result	of	your	search,	the	index
position	of	the	next	occurrence	of	the	substring	Wrox.

Each	time	Wrox	is	found	(that	is,	each	time	foundAtPosition	is	not	-1)	you	increase
the	variable	wroxCount,	which	counts	how	many	times	you	have	found	the	substring,
and	you	increase	foundAtPosition	so	that	you	continue	the	search	at	the	next
position	in	the	string:

if	(foundAtPosition	!=	-1)	{

				wroxCount++;

				foundAtPosition++;

}

Finally,	you	document.write()	the	value	of	the	variable	wroxCount	to	the	page.

Chapter	3	talked	about	the	danger	of	infinite	loops,	and	you	can	see	that	there	is	a
danger	of	one	here.	If	foundAtPosition++	were	removed,	you’d	keep	searching	from
the	same	starting	point	and	never	move	to	find	the	next	occurrence	of	the	word	Wrox.

The	indexOf()	and	lastIndexOf()	methods	are	more	useful	when	coupled	with	the
substr()	and	substring()	methods,	which	you	look	at	in	the	next	section.	Using	a
combination	of	these	methods	enables	you	to	cut	substrings	out	of	a	string.

Copying	Part	of	a	String—The	substr()	and	substring()	Methods
If	you	wanted	to	cut	out	part	of	a	string	and	assign	that	cut-out	part	to	another	variable	or
use	it	in	an	expression,	you	would	use	the	substr()	and	substring()	methods.	Both
methods	provide	the	same	end	result—that	is,	a	part	of	a	string—but	they	differ	in	the
parameters	they	require.

The	method	substring()	accepts	two	parameters:	the	character	start	position	and	the
position	after	the	last	character	desired	in	the	substring.	The	second	parameter	is	optional;

if	you	don’t	include	it,	all	characters	from	the	start	position	to	the	end	of	the	string	are
included.

For	example,	if	your	string	is	"JavaScript"	and	you	want	just	the	text	"Java",	you	could
call	the	method	like	so:

var	myString	=	"JavaScript";

var	mySubString	=	myString.substring(0,4);

alert(mySubString);

The	character	positions	for	the	string	“JavaScript”	are:

CHARACTER	POSITION 0 1 2 3 4 5 6 7 8 9
Character J a v a S c r i p t

Like	substring(),	the	method	substr()	again	takes	two	parameters,	the	first	being	the
start	position	of	the	first	character	you	want	included	in	your	substring.	However,	this	time
the	second	parameter	specifies	the	length	of	the	string	of	characters	that	you	want	to	cut
out	of	the	longer	string.	For	example,	you	could	rewrite	the	preceding	code	like	this:

var	myString	=	"JavaScript";

var	mySubString	=	myString.substr(0,4);

alert(mySubString);

As	with	the	substring()	method,	the	second	parameter	is	optional.	If	you	don’t	include	it,
all	the	characters	from	the	start	position	onward	will	be	included.

NOTE	The	substring()	method	was	introduced	long	before	substr().	Most	of	the
time,	you	will	use	the	substr()	method.

Let’s	look	at	the	use	of	the	substr()	and	lastIndexOf()	methods	together.	Later	in	the
book,	you	see	how	you	can	retrieve	the	file	path	and	name	of	the	currently	loaded	web
page.	However,	there	is	no	way	of	retrieving	the	filename	alone.	So	if,	for	example,	your
file	is	http://mywebsite/temp/myfile.html,	you	may	need	to	extract	the	myfile.html
part.	This	is	where	substr()	and	lastIndexOf()	are	useful:

var	fileName	=	window.location.href;

fileName	=	fileName.substr(fileName.lastIndexOf("/")	+	1);

document.write("The	file	name	of	this	page	is	"	+	fileName);

The	first	line	sets	the	variable	fileName	to	the	current	file	path	and	name,	such	as
/mywebsite/temp/myfile.html.	Don’t	worry	about	understanding	this	line	right	now;
you’ll	see	it	later.

The	second	line	is	where	the	interesting	action	is.	You	can	see	that	this	code	uses	the
return	value	of	the	lastIndexOf()	method	as	a	parameter	for	another	method,	something
that’s	perfectly	correct	and	very	useful.	The	goal	in	using	fileName.lastIndexOf("/")	is
to	find	the	position	of	the	final	forward	slash	(/),	which	will	be	the	last	character	before
the	name	of	the	file.	You	add	one	to	this	value,	because	you	don’t	want	to	include	that
character,	and	then	pass	this	new	value	to	the	substr()	method.	There’s	no	second

http://mywebsite/temp/myfile.html

parameter	here	(the	length),	because	you	don’t	know	it.	As	a	result,	substr()	will	return
all	the	characters	right	to	the	end	of	the	string,	which	is	what	you	want.

NOTE	This	example	retrieves	the	name	of	the	page	on	the	local	machine,	because
you’re	not	accessing	the	page	from	a	web	server.	However,	don’t	let	this	mislead	you
into	thinking	that	accessing	files	on	a	local	hard	drive	from	a	web	page	is	something
you’ll	be	able	to	do	with	JavaScript	alone.	To	protect	users	from	malicious	hackers,
JavaScript’s	access	to	the	user’s	system,	such	as	access	to	files,	is	very	limited.	You
learn	more	about	this	later	in	the	book.

Converting	Case—The	toLowerCase()	and	toUpperCase()	Methods
If	you	want	to	change	the	case	of	a	string	(for	example,	to	remove	case	sensitivity	when
comparing	strings),	you	need	the	toLowerCase()	and	toUpperCase()	methods.	It’s	not
hard	to	guess	what	these	two	methods	do.	Both	of	them	return	a	string	that	is	the	value	of
the	string	in	the	String	object,	but	with	its	case	converted	to	either	upper	or	lower
depending	on	the	method	invoked.	Any	non-alphabetical	characters	remain	unchanged	by
these	functions.

In	the	following	example,	you	can	see	that	by	changing	the	case	of	both	strings	you	can
compare	them	without	case	sensitivity	being	an	issue:

var	myString	=	"I	Don't	Care	About	Case";

if	(myString.toLowerCase()	==	"i	don't	care	about	case")	{

				alert("Who	cares	about	case?");

}

Even	though	toLowerCase()	and	toUpperCase()	don’t	take	any	parameters,	you	must
remember	to	put	the	two	empty	parentheses—that	is,	()—at	the	end,	if	you	want	to	call	a
method.

Selecting	a	Single	Character	from	a	String—The	charAt()	and	charCodeAt()
Methods
If	you	want	to	find	out	information	about	a	single	character	within	a	string,	you	need	the
charAt()	and	charCodeAt()	methods.	These	methods	can	be	very	useful	for	checking	the
validity	of	user	input,	something	you	see	more	of	in	Chapter	11	when	you	look	at	HTML
forms.

The	charAt()	method	accepts	one	parameter:	the	index	position	of	the	character	you	want
in	the	string.	It	then	returns	that	character.	charAt()	treats	the	positions	of	the	string
characters	as	starting	at	0,	so	the	first	character	is	at	index	0,	the	second	at	index	1,	and	so
on.

For	example,	to	find	the	last	character	in	a	string,	you	could	use	this	code:

var	myString	=	prompt("Enter	some	text",	"Hello	World!");

var	theLastChar	=	myString.charAt(myString.length	-	1);

document.write("The	last	character	is	"	+	theLastChar);

In	the	first	line,	you	prompt	the	user	for	a	string,	with	the	default	of	"Hello	World!",	and
store	this	string	in	the	variable	myString.

In	the	next	line,	you	use	the	charAt()	method	to	retrieve	the	last	character	in	the	string.
You	use	the	index	position	of	(myString.length	-	1).	Why?	Let’s	take	the	string	"Hello
World!"	as	an	example.	The	length	of	this	string	is	12,	but	the	last	character	position	is	11
because	the	indexing	starts	at	0.	Therefore,	you	need	to	subtract	one	from	the	length	of	the
string	to	get	the	last	character’s	position.

In	the	final	line,	you	write	the	last	character	in	the	string	to	the	page.

The	charCodeAt()	method	is	similar	in	use	to	the	charAt()	method,	but	instead	of
returning	the	character	itself,	it	returns	a	number	that	represents	the	decimal	character
code	for	that	character	in	the	Unicode	character	set.	Recall	that	computers	only	understand
numbers—to	the	computer,	all	your	strings	are	just	numeric	data.	When	you	request	text
rather	than	numbers,	the	computer	does	a	conversion	based	on	its	internal	understanding
of	each	number	and	provides	the	respective	character.

For	example,	to	find	the	character	code	of	the	first	character	in	a	string,	you	could	write
this:

var	myString	=	prompt("Enter	some	text",	"Hello	World!");

var	theFirstCharCode	=	myString.charCodeAt(0);

document.write("The	first	character	code	is	"	+	theFirstCharCode);

This	will	get	the	character	code	for	the	character	at	index	position	0	in	the	string	given	by
the	user,	and	write	it	out	to	the	page.

Character	codes	go	in	order,	so,	for	example,	the	letter	A	has	the	code	65,	B	66,	and	so	on.
Lowercase	letters	start	at	97	(a	is	97,	b	is	98,	and	so	on).	Digits	go	from	48	(for	the
number	0)	to	57	(for	the	number	9).	You	can	use	this	information	for	various	purposes,	as
you	see	in	the	next	example.

				TRY	IT	OUT								Checking	a	Character’s	Case
This	is	an	example	that	detects	the	type	of	the	character	at	the	start	of	a	given	string—
that	is,	whether	the	character	is	uppercase,	lowercase,	numeric,	or	other:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Example	2</title>

</head>

<body>

				<script>

								function	checkCharType(charToCheck)	{

												var	returnValue	=	"O";

												var	charCode	=	charToCheck.charCodeAt(0);

												if	(charCode	>=	"A".charCodeAt(0)	&&	charCode	<=	

"Z".charCodeAt(0))	{

																returnValue	=	"U";

												}	else	if	(charCode	>=	"a".charCodeAt(0)	&&

																							charCode	<=	"z".charCodeAt(0))	{

																returnValue	=	"L";

												}	else	if	(charCode	>=	"0".charCodeAt(0)	&&

																							charCode	<=	"9".charCodeAt(0))	{

																returnValue	=	"N";

												}

												return	returnValue;

								}

								var	myString	=	prompt("Enter	some	text",	"Hello	World!");

								switch	(checkCharType(myString))	{

												case	"U":

																document.write("First	character	was	upper	case");

																break;

												case	"L":

																document.write("First	character	was	lower	case");

																break;

												case	"N":

																document.write("First	character	was	a	number");

																break;

												default:

																document.write("First	character	was	not	a	character	or	

a	number");

								}

				</script>

</body>

</html>

Type	the	code	and	save	it	as	ch5_example2.html.	When	you	load	the	page	into	your
browser,	you	will	be	prompted	for	a	string.	A	message	will	then	be	written	to	the	page
informing	you	of	the	type	of	the	first	character	that	you	entered—whether	it	is
uppercase,	lowercase,	a	number,	or	something	else,	such	as	a	punctuation	mark.

To	start	with,	you	define	a	function	checkCharType().	You	start	this	function	by
declaring	the	variable	returnValue	and	initializing	it	to	the	character	"O"	to	indicate
it’s	some	other	character	than	a	lowercase	letter,	uppercase	letter,	or	numerical
character:

function	checkCharType(charToCheck)	{

				var	returnValue	=	"O";

You	use	this	variable	as	the	value	to	be	returned	at	the	end	of	the	function,	indicating
the	type	of	character.	It	will	take	the	values	U	for	uppercase,	L	for	lowercase,	N	for
number,	and	O	for	other.

The	next	line	in	the	function	uses	the	charCodeAt()	method	to	get	the	character	code
of	the	first	character	in	the	string	stored	in	charToCheck,	which	is	the	function’s	only
parameter.	The	character	code	is	stored	in	the	variable	charCode:

				var	charCode	=	charToCheck.charCodeAt(0);

In	the	following	lines,	you	have	a	series	of	if	statements,	which	check	within	what
range	of	values	the	character	code	falls.	You	know	that	if	it	falls	between	the
character	codes	for	A	and	Z,	it’s	uppercase,	and	so	you	assign	the	variable
returnValue	the	value	U.	If	the	character	code	falls	between	the	character	codes	for	a
and	z,	it’s	lowercase,	and	so	you	assign	the	value	L	to	the	variable	returnValue.	If	the
character	code	falls	between	the	character	codes	for	0	and	9,	it’s	a	number,	and	you
assign	the	value	N	to	the	variable	returnValue.	If	the	value	falls	into	none	of	these
ranges,	the	variable	retains	its	initialization	value	of	O	for	other,	and	you	don’t	have	to
do	anything.

				if	(charCode	>=	"A".charCodeAt(0)	&&	charCode	<=	"Z".charCodeAt(0))	

{

								returnValue	=	"U";

				}	else	if	(charCode	>=	"a".charCodeAt(0)	&&

															charCode	<=	"z".charCodeAt(0))	{

								returnValue	=	"L";

				}	else	if	(charCode	>=	"0".charCodeAt(0)	&&

															charCode	<=	"9".charCodeAt(0))	{

								returnValue	=	"N";

				}

This	probably	seems	a	bit	weird	at	first,	so	let’s	see	what	JavaScript	is	doing	with
your	code.	When	you	write

"A".charCodeAt(0)

it	appears	that	you	are	trying	to	use	a	method	of	the	String	object	on	a	string	literal,
which	is	the	same	as	a	primitive	string	in	that	it’s	just	characters	and	not	an	object.
However,	JavaScript	realizes	what	you	are	doing	and	does	the	necessary	conversion
of	literal	character	"A"	into	a	temporary	String	object	containing	"A".	Then,	and	only
then,	does	JavaScript	perform	the	charCodeAt()	method	on	the	String	object	it	has
created	in	the	background.	When	it	has	finished,	the	String	object	is	disposed	of.
Basically,	this	is	a	shorthand	way	of	writing	the	following:

var	myChar	=	new	String("A");

myChar.charCodeAt(0);

In	either	case,	the	first	(and,	in	this	string,	the	only)	character’s	code	is	returned	to
you.	For	example,	"A".charCodeAt(0)	will	return	the	number	65.

Finally,	you	come	to	the	end	of	the	function	and	return	the	returnValue	variable	to
where	the	function	was	called:

				return	returnValue;

}

You	might	wonder	why	you	bother	using	the	variable	returnValue	at	all,	instead	of
just	returning	its	value.	For	example,	you	could	write	the	code	as	follows:

if	(charCode	>=	"A".charCodeAt(0)	&&	charCode	<=	"Z".charCodeAt(0))	{

				return	"U";

}	else	if	(charCode	>=	"a".charCodeAt(0)	&&

											charCode	<=	"z".charCodeAt(0))	{

				return	"L";

}	else	if	(charCode	>=	"0".charCodeAt(0)	&&

											charCode	<=	"9".charCodeAt(0))	{

				return	"N";

}

return	"O";

This	would	work	fine,	so	why	not	do	it	this	way?	The	disadvantage	of	this	way	is	that
it’s	difficult	to	follow	the	flow	of	execution	of	the	function,	which	is	not	that	bad	in	a
small	function	like	this,	but	can	get	tricky	in	bigger	functions.	With	the	original	code
you	always	know	exactly	where	the	function	execution	stops:	It	stops	at	the	end	with
the	only	return	statement.	The	version	of	the	function	just	shown	finishes	when	any
of	the	return	statements	is	reached,	so	there	are	four	possible	places	where	the
function	might	end.

The	next	chunk	of	code	checks	that	the	function	works.	You	first	use	the	variable
myString,	initialized	to	"Hello	World!"	or	whatever	the	user	enters	into	the	prompt
box,	as	your	test	string.

var	myString	=	prompt("Enter	some	text",	"Hello	World!");

Next,	the	switch	statement	uses	the	checkCharType()	function	that	you	defined
earlier	in	its	comparison	expression.	Depending	on	what	is	returned	by	the	function,
one	of	the	case	statements	will	execute	and	let	the	user	know	what	the	character	type
was:

switch	(checkCharType(myString))	{

				case	"U":

								document.write("First	character	was	upper	case");

								break;

				case	"L":

								document.write("First	character	was	lower	case");

								break;

				case	"N":

								document.write("First	character	was	a	number");

								break;

				default:

								document.write("First	character	was	not	a	character	or	a	

number");

}

That	completes	the	example,	but	before	moving	on,	it’s	worth	noting	that	this
example	is	just	that—an	example	of	using	charCodeAt().	In	practice,	it	would	be
much	easier	to	just	write

if	(char	>=	"A"	&&	char	<=	"Z")

rather	than

if	(charCode	>=	"A".charCodeAt(0)	&&	charCode	<=	"Z".charCodeAt(0))

which	you	have	used	here.

Converting	Character	Codes	to	a	String—The	fromCharCode()	Method
You	can	think	of	the	method	fromCharCode()	as	the	opposite	of	charCodeAt(),	in	that
you	pass	it	a	series	of	comma-separated	numbers	representing	character	codes,	and	it
converts	them	to	a	single	string.

However,	the	fromCharCode()	method	is	unusual	in	that	it’s	a	static	method—you	don’t
need	to	have	created	a	String	object	to	use	it	with;	it’s	always	available	to	you.

For	example,	the	following	lines	put	the	string	"ABC"	into	the	variable	myString:

var	myString	=	String.fromCharCode(65,66,67);

The	fromCharCode()	method	can	be	very	useful	when	used	with	variables.	For	example,
to	build	up	a	string	consisting	of	all	the	uppercase	letters	of	the	alphabet,	you	could	use	the
following	code:

var	myString	=	"";

var	charCode;

for	(charCode	=	65;	charCode	<=	90;	charCode++)	{

				myString	=	myString	+	String.fromCharCode(charCode);

}

document.write(myString);

You	use	the	for	loop	to	select	each	character	from	A	to	Z	in	turn	and	concatenate	this	to
myString.	Note	that	although	this	is	fine	as	an	example,	it	is	more	efficient	and	less
memory-hungry	to	simply	write	this	instead:

var	myString	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Removing	Leading	and	Trailing	Whitespace—The	trim()	Method
When	working	with	user-provided	data,	you’re	never	guaranteed	that	the	users	input	their
data	exactly	how	you	want	them	to.	Therefore,	it’s	always	best	to	assume	user	input	is
incorrect,	and	it’s	your	job	to	make	it	correct.

The	process	of	scrubbing	data	is	dependent	on	the	specific	needs	of	your	application,	but
you’ll	commonly	want	to	trim	the	whitespace	from	the	start	and	end	of	the	string.	For	this,
String	objects	have	the	trim()	method.	It	returns	a	new	string	with	all	leading	and
trailing	whitespace	removed.	For	example:

var	name	=	prompt("Please	enter	your	name");

name	=	name.trim();

alert("Hello,	"	+	name);

This	code	prompts	users	to	enter	their	name.	You	then	trim	their	input	of	whitespace	and
use	the	resulting	value	in	a	greeting	that	is	displayed	in	an	alert	box.	So,	if	the	user
entered	"	Jim",	he’d	still	only	see	"Hello,	Jim"	in	the	alert	box	because	you	trimmed
his	input.

Array	Objects
You	saw	how	to	create	and	use	arrays	in	Chapter	2,	and	this	chapter	mentioned	earlier	that
they	are	actually	objects.

In	addition	to	storing	data,	Array	objects	provide	a	number	of	useful	properties	and
methods	you	can	use	to	manipulate	the	data	in	the	array	and	find	out	information	such	as
the	size	of	the	array.

Again,	this	is	not	an	exhaustive	look	at	every	property	and	method	of	Array	objects,	but
rather	just	some	of	the	more	useful	ones.

Finding	Out	How	Many	Elements	Are	in	an	Array—The	length	Property
The	length	property	gives	you	the	number	of	elements	within	an	array.	Sometimes	you
know	exactly	how	long	the	array	is,	but	in	some	situations	you	may	have	been	adding	new
elements	to	an	array	with	no	easy	way	of	keeping	track	of	how	many	have	been	added.

You	can	use	the	length	property	to	find	the	index	of	the	last	element	in	the	array.	This	is
illustrated	in	the	following	example:

var	names	=	[];

names[0]	=	"Paul";

names[1]	=	"Jeremy";

names[11]	=	"Nick";

document.write("The	last	name	is	"	+	names[names.length	-	1]);

NOTE	Note	that	you	have	inserted	data	in	the	elements	with	index	positions	0,	1,	and
11.	The	array	index	starts	at	0,	so	the	last	element	is	at	index	length	-	1,	which	is
11,	rather	than	the	value	of	the	length	property,	which	is	12.

Another	situation	in	which	the	length	property	proves	useful	is	where	a	JavaScript
method	returns	an	array	it	has	built	itself.	For	example,	in	the	next	chapter,	you	see	that
the	String	object	has	the	split()	method,	which	splits	text	into	pieces	and	passes	back
the	result	as	an	Array	object.	Because	JavaScript	created	the	array,	there	is	no	way	for	you
to	know,	without	the	length	property,	what	the	index	is	of	the	last	element	in	the	array.

Adding	Elements—The	push()	Method
You’ll	find	that	Array	objects	have	many	useful	methods,	but	you	will	probably	use	the
push()	method	more	than	any	other.	Its	purpose	is	simple—add	elements	to	the	array—
and	it	lets	you	do	so	without	needing	to	specify	an	index,	like	this:

var	names	=	[];

names.push("Jeremy");

names.push("Paul");

Its	usage	is	simple—simply	pass	the	value	you	want	to	add	to	the	array,	and	that	value	will
be	pushed	to	the	end	of	the	array.	So	in	the	previous	names	array,	"Jeremy"	and	"Paul"	are

in	index	positions	of	0	and	1,	respectively.

Joining	Arrays—The	concat()	Method
If	you	want	to	take	two	separate	arrays	and	join	them	into	one	big	array,	you	can	use	the
Array	object’s	concat()	method.	The	concat()	method	returns	a	new	array,	which	is	the
combination	of	the	two	arrays:	the	elements	of	the	first	array,	then	the	elements	of	the
second	array.	To	do	this,	you	use	the	method	on	your	first	array	and	pass	the	name	of	the
second	array	as	its	parameter.

For	example,	say	you	have	two	arrays,	names	and	ages,	and	separately	they	look	like	the
following	tables:

names	array
ELEMENT	INDEX 0 1 2
VALUE Paul Jeremy Nick

ages	array
ELEMENT	INDEX 0 1 2
VALUE 31 30 31

If	you	combine	them	using	names.concat(ages),	you	will	get	an	array	like	the	one	in	the
following	table:

ELEMENT	INDEX 0 1 2 3 4 5
VALUE Paul Jeremy Nick 31 30 31

In	the	following	code,	this	is	exactly	what	you	are	doing:

var	names	=	["Paul",	"Jeremy",	"Nick"];

var	ages	=	[31,	30,	31];

var	concatArray	=	names.concat(ages);

It’s	also	possible	to	combine	two	arrays	into	one	but	assign	the	new	array	to	the	name	of
the	existing	first	array,	using	names	=	names.concat(ages).

If	you	were	to	use	ages.concat(names),	what	would	be	the	difference?	Well,	as	you	can
see	in	the	following	table,	the	difference	is	that	now	the	ages	array	elements	are	first,	and
the	elements	from	the	names	array	are	concatenated	on	the	end:

ELEMENT	INDEX 0 1 2 3 4 5
VALUE 31 30 31 Paul Jeremy Nick

Copying	Part	of	an	Array—The	slice()	Method
When	you	just	want	to	copy	a	portion	of	an	array,	you	can	use	the	slice()	method.	Using
the	slice()	method,	you	can	slice	out	a	portion	of	the	array	and	assign	it	to	a	new
variable	name.	The	slice()	method	has	two	parameters:

The	index	of	the	first	element	you	want	copied

The	index	of	the	element	marking	the	end	of	the	portion	you	are	slicing	out	(optional)

Just	as	with	string	copying	with	substring(),	the	start	point	is	included	in	the	copy,	but
the	end	point	is	not.	Again,	if	you	don’t	include	the	second	parameter,	all	elements	from
the	start	index	onward	are	copied.

Suppose	you	have	the	array	names	shown	in	the	following	table:

INDEX 0 1 2 3 4
VALUE Paul Sarah Jeremy Adam Bob

If	you	want	to	create	a	new	array	with	elements	1,	Sarah,	and	2,	Jeremy,	you	would
specify	a	start	index	of	1	and	an	end	index	of	3.	The	code	would	look	something	like	this:

var	names	=	["Paul",	"Sarah",	"Jeremy",	"Adam",	"Bob"];

var	slicedArray	=	names.slice(1,3);

When	JavaScript	copies	the	array,	it	copies	the	new	elements	to	an	array	in	which	they
have	indexes	0	and	1,	not	their	old	indexes	of	1	and	2.

After	slicing,	the	slicedArray	looks	like	the	following	table:

INDEX 0 1
VALUE Sarah Jeremy

The	first	array,	names,	is	unaffected	by	the	slicing.

Converting	an	Array	into	a	Single	String—The	join()	Method
The	join()	method	concatenates	all	the	elements	in	an	array	and	returns	them	as	a	string.
It	also	enables	you	to	specify	any	characters	you	want	to	insert	between	elements	as	they
are	joined	together.	The	method	has	only	one	parameter,	and	that’s	the	string	you	want
between	elements.

An	example	will	help	explain	things.	Imagine	that	you	have	your	weekly	shopping	list
stored	in	an	array,	which	looks	something	like	this:

INDEX 0 1 2 3 4
VALUE Eggs Milk Potatoes Cereal Banana

Now	you	want	to	write	out	your	shopping	list	to	the	page	using	document.write().	You
want	each	item	to	be	on	a	different	line,	and	you	can	do	this	by	using	the	
	tag
between	each	element	in	the	array.	The	
	tag	is	an	HTML	line	break,	a	visual	carriage
return	for	breaking	text	into	different	lines.	First,	you	need	to	declare	your	array:

var	myShopping	=	["Eggs",	"Milk",	"Potatoes",	"Cereal",	"Banana"];

Next,	convert	the	array	into	one	string	with	the	join()	method:

var	myShoppingList	=	myShopping.join("
");

Now	the	variable	myShoppingList	will	hold	the	following	text:

"Eggs
Milk
Potatoes
Cereal
Banana"

which	you	can	write	out	to	the	page	with	document.write():

document.write(myShoppingList);

The	shopping	list	will	appear	in	the	page	with	each	item	on	a	new	line,	as	shown	in	Figure
5.1.

Figure	5.1

Putting	Your	Array	in	Order—The	sort()	Method
If	you	have	an	array	that	contains	similar	data,	such	as	a	list	of	names	or	a	list	of	ages,	you
may	want	to	put	them	in	alphabetical	or	numerical	order.	This	is	something	that	the
sort()	method	makes	very	easy.	In	the	following	code,	you	define	your	array	and	then	put
it	in	ascending	alphabetical	order	using	names.sort().	Finally,	you	output	it	so	that	you
can	see	that	it’s	in	order:

var	names	=	["Paul",	"Sarah",	"Jeremy",	"Adam",	"Bob"];

names.sort();

document.write("Now	the	names	again	in	order	
");

for	(var	index	=	0;	index	<	names.length;	index++)	{

				document.write(names[index]	+	"
");

}

Don’t	forget	that	the	sorting	is	case	sensitive,	so	Paul	will	come	before	paul.	Remember
that	JavaScript	stores	letters	encoded	in	their	equivalent	Unicode	number,	and	that	sorting
is	done	based	on	Unicode	numbers	rather	than	actual	letters.	It	just	happens	that	Unicode

numbers	match	the	order	in	the	alphabet.	However,	lowercase	letters	are	given	a	different
sequence	of	numbers,	which	come	after	the	uppercase	letters.	So	the	array	with	elements
Adam,	adam,	Zoë,	zoë,	will	be	sorted	to	the	order	Adam,	Zoë,	adam,	zoë.

Note	that	in	your	for	statement	you’ve	used	the	Array	object’s	length	property	in	the
condition	statement,	rather	than	inserting	the	length	of	the	array	(5),	like	this:

for	(var	index	=	0;	index	<	5;	index++)

Why	do	this?	After	all,	you	know	in	advance	that	you	have	five	elements	in	the	array.
Well,	what	would	happen	if	you	altered	the	number	of	elements	in	the	array	by	adding	two
more	names?

var	names	=	["Paul",	"Sarah",	"Jeremy",	"Adam",	"Bob",	"Karen",	"Steve"];

If	you	had	inserted	5	rather	than	names.length,	your	loop	code	wouldn’t	work	as	you
want	it	to.	It	wouldn’t	display	the	last	two	elements	unless	you	changed	the	condition	part
of	the	for	loop	to	7.	By	using	the	length	property,	you’ve	made	life	easier,	because	now
there	is	no	need	to	change	code	elsewhere	if	you	add	array	elements.

Okay,	you’ve	put	things	in	ascending	order,	but	what	if	you	wanted	descending	order?
That	is	where	the	reverse()	method	comes	in.

Putting	Your	Array	into	Reverse	Order—The	reverse()	Method
The	next	method	for	the	Array	object	is	the	reverse()	method,	which,	no	prizes	for
guessing,	reverses	the	order	of	the	array	so	that	the	elements	at	the	back	are	moved	to	the
front.	Let’s	take	the	shopping	list	again	as	an	example:

INDEX 0 1 2 3 4
VALUE Eggs Milk Potatoes Cereal Banana

If	you	use	the	reverse()	method

var	myShopping	=	["Eggs",	"Milk",	"Potatoes",	"Cereal",	"Banana"];

myShopping.reverse();

you	get

INDEX 0 1 2 3 4
VALUE Banana Cereal Potatoes Milk Eggs

To	prove	this,	you	could	write	it	to	the	page	with	the	join()	method	you	saw	earlier.

var	myShoppingList	=	myShopping.join("
")

document.write(myShoppingList);

				TRY	IT	OUT								Sorting	an	Array
When	used	in	conjunction	with	the	sort()	method,	the	reverse()	method	can	be

used	to	sort	an	array	so	that	its	elements	appear	in	reverse	alphabetical	or	numerical
order.	This	is	shown	in	the	following	example:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Example	3</title>

</head>

<body>

				<script>

								var	myShopping	=	["Eggs",	"Milk",	"Potatoes",	"Cereal",	

"Banana"];

								var	ord	=	prompt("Enter	1	for	alphabetical	order,	"	+

																									"and	-1	for	reverse	order",	1);

								if	(ord	==	1)	{

												myShopping.sort();

												document.write(myShopping.join("
"));

								}	else	if	(ord	==	-1)	{

												myShopping.sort();

												myShopping.reverse();

												document.write(myShopping.join("
"));

								}	else	{

												document.write("That	is	not	a	valid	input");

								}

				</script>

</body>

</html>

Save	the	example	as	ch5_example3.html.	When	you	load	this	into	your	browser,	you
will	be	asked	to	enter	some	input	depending	on	whether	you	want	the	array	to	be
ordered	in	forward	or	backward	order.	If	you	enter	1,	the	array	will	be	displayed	in
forward	order.	If	you	enter	–1,	the	array	will	be	displayed	in	reverse	order.	If	you
enter	neither	of	these	values,	you	will	be	told	that	your	input	was	invalid.

At	the	top	of	the	script	block,	you	define	the	array	containing	your	shopping	list.	Next
you	define	the	variable	ord	to	be	the	value	entered	by	the	user	in	a	prompt	box:

var	ord	=	prompt("Enter	1	for	alphabetical	order,	"	+

																	"and	-1	for	reverse	order",	1);

This	value	is	used	in	the	conditions	of	the	if	statements	that	follow.	The	first	if
checks	whether	the	value	of	ord	is	1—that	is,	whether	the	user	wants	the	array	in
alphabetical	order.	If	so,	the	following	code	is	executed:

myShopping.sort();

document.write(myShopping.join("
"));

The	array	is	sorted	and	then	displayed	to	the	user	on	separate	lines	using	the	join()
method.	Next,	in	the	else	if	statement,	you	check	whether	the	value	of	ord	is	-1—
that	is,	whether	the	user	wants	the	array	in	reverse	alphabetical	order.	If	so,	the
following	code	is	executed:

myShopping.sort();

myShopping.reverse();

document.write(myShopping.join("
"));

Here,	you	sort	the	array	before	reversing	its	order.	Again	the	array	is	displayed	to	the
user	by	means	of	the	join()	method.

Finally,	if	ord	has	neither	the	value	1	nor	the	value	-1,	you	tell	the	user	that	his	input
was	invalid:

document.write("That	is	not	a	valid	input");

Finding	Array	Elements—The	indexOf()	and	lastIndexOf()	Methods
As	you	can	probably	guess,	the	Array	object’s	indexOf()	and	lastIndexOf()	methods
behave	similarly	to	the	String	object’s	methods—they	return	the	index	of	an	item’s	first
and	last	occurrence	in	an	array.	Consider	the	following	code:

var	colors	=	["red",	"blue",	"green",	"blue"];

alert(colors.indexOf("red"));

alert(colors.lastIndexOf("blue"));

The	first	line	of	code	creates	an	array	called	colors.	It	has	four	elements	(two	of	which
are	blue).	The	second	line	alerts	0	to	the	user,	because	red	is	the	first	element	of	the	array.
The	third	line	returns	the	value	of	3	because	the	lastIndexOf()	method	begins	its	search
at	the	very	end	of	the	array.

Both	the	indexOf()	and	lastIndexOf()	methods	return	-1	if	the	provided	value	cannot	be
found	in	the	array.

Iterating	through	an	Array	without	Loops
The	remaining	five	methods	are	called	iterative	methods	because	they	iterate,	or	loop,
through	the	array.	In	addition,	these	methods	execute	a	function	that	you	define	on	every
element	while	they	iterate	through	the	array.	The	function	these	methods	use	must	follow
one	rule—it	must	accept	three	arguments	like	the	following	code:

function	functionName(value,	index,	array)	{

				//	do	something	here

}

When	executed,	JavaScript	passes	three	arguments	to	your	function.	The	first	is	the	value
of	the	element,	the	second	is	the	index	of	the	element,	and	the	third	is	the	array	itself.
These	three	parameters	enable	you	to	perform	just	about	any	operation	or	comparison	you
might	need	in	relation	to	the	array	and	its	elements.

Testing	Each	Element—The	every(),	some(),	and	filter()	Methods
Let’s	look	at	the	every()	and	some()	methods	first.	These	are	testing	methods.	The
every()	method	tests	whether	all	elements	in	the	array	pass	the	test	in	your	function.
Consider	the	following	code:

var	numbers	=	[1,	2,	3,	4,	5];

function	isLessThan3(value,	index,	array)	{

				var	returnValue	=	false;

				if	(value	<	3)	{

								returnValue	=	true;

				}

				return	returnValue;

}

alert(numbers.every(isLessThan3));

The	first	line	shows	the	creation	of	an	array	called	numbers;	its	elements	hold	the	values	1
through	5.	The	next	line	defines	the	isLessThan3()	function.	It	accepts	the	three
mandatory	arguments	and	determines	if	the	value	of	each	element	is	less	than	3.	The	last
line	alerts	the	outcome	of	the	every()	test.	Because	not	every	value	in	the	array	is	less
than	3,	the	result	of	the	every()	test	is	false.

Contrast	this	with	the	some()	method.	Unlike	every(),	the	some()	test	only	cares	if	some
of	the	elements	pass	the	test	in	your	function.	Using	the	same	numbers	array	and
isLessThan3()	function,	consider	this	line	of	code:

alert(numbers.some(isLessThan3));

The	result	is	true	because	some	of	the	elements	in	the	array	are	less	than	3.	It’s	easy	to
keep	these	two	methods	straight.	Just	remember	the	every()	method	returns	true	if,	and
only	if,	all	elements	in	the	array	pass	the	test	in	your	function;	the	some()	method	returns
true	if,	and	only	if,	some	of	the	elements	in	the	array	pass	your	function’s	test.

Let’s	assume	you	want	to	retrieve	the	elements	that	have	a	value	less	than	3.	You	already
know	some	elements	meet	this	criterion,	but	how	do	you	identify	those	elements	and
retrieve	them?	This	is	where	the	filter()	method	becomes	useful.

The	filter()	method	executes	your	function	on	every	element	in	the	array,	and	if	your
function	returns	true	for	a	particular	element,	that	element	is	added	to	a	new	array	that	the
filter()	method	returns.	Keeping	that	in	mind,	look	at	the	following	code:

var	numbers	=	[1,	2,	3,	4,	5];

function	isLessThan3(value,	index,	array)	{

				var	returnValue	=	false;

				if	(value	<	3)	{

								returnValue	=	true;

				}

				return	returnValue;

}

if	(numbers.some(isLessThan3))	{

				var	result	=	numbers.filter(isLessThan3);

				alert("These	numbers	are	less	than	3:	"	+	result);

}

This	code	redefines	the	numbers	array	and	the	isLessThan3	function	used	in	previous
examples.	The	highlighted	code	determines	if	any	elements	in	the	numbers	array	contain	a
value	less	than	3,	and	if	so,	calls	the	filter()	method	to	place	those	elements	into	a	new
array.	The	result	of	this	code	is	shown	in	Figure	5.2.

Figure	5.2

Operating	on	Elements—The	forEach()	and	map()	Methods
The	final	two	methods	are	the	forEach()	and	map()	methods.	Unlike	the	previous
iterative	methods,	these	two	methods	do	not	test	each	element	in	the	array	with	your
function;	instead,	the	function	you	write	should	perform	some	kind	of	operation	that	uses
the	element	in	some	way.	Look	at	the	following	code:

var	numbers	=	[1,	2,	3,	4,	5];

for	(var	i	=	0;	i	<	numbers.length;	i++)	{

				var	result	=	numbers[i]	*	2;

				alert(result);

}

As	a	programmer,	you’ll	often	see	and	use	this	type	of	code.	It	defines	an	array	and	loops
through	it	in	order	to	perform	some	kind	of	operation	on	each	element.	In	this	case,	the
value	of	each	element	is	doubled,	and	the	result	is	shown	in	an	alert	box	to	the	user.

This	code	can	be	rewritten	to	use	the	forEach()	method.	As	its	name	implies,	it	does
something	for	each	element	in	the	array.	All	you	need	to	do	is	write	a	function	to	double	a
given	value	and	output	the	result	in	an	alert	box,	like	this:

var	numbers	=	[1,	2,	3,	4,	5];

function	doubleAndAlert(value,	index,	array)	{

				var	result	=	value	*	2;

				alert(result);

}

numbers.forEach(doubleAndAlert);

Notice	that	the	doubleAndAlert()	function	doesn’t	return	a	value	like	the	testing	methods.
It	cannot	return	a	value;	its	only	purpose	is	to	perform	an	operation	on	every	element	in
the	array.	This	is	useful	in	many	cases,	but	you’ll	want	to	use	the	map()	method	when	you
need	to	store	the	results	of	the	function.

The	premise	of	the	map()	method	is	similar	to	that	of	forEach().	It	executes	a	given
function	on	every	element	in	an	array,	but	it	also	returns	a	new	array	that	contains	the
results	of	the	function.

Let’s	modify	the	previous	example	and	write	a	new	function	called	doubleAndReturn().	It
will	still	double	each	element	in	the	array,	but	it	will	return	the	doubled	value	instead	of
alerting	it.	The	following	code	passes	the	doubleAndReturn()	function	to	the	Array
object’s	map()	method:

var	numbers	=	[1,	2,	3,	4,	5];

function	doubleAndReturn(value,	index,	array)	{

				var	result	=	value	*	2;

				return	result;

}

var	doubledNumbers	=	numbers.map(doubleAndReturn);

alert("The	doubled	numbers	are:	"	+	doubledNumbers);

Figure	5.3	shows	the	results	of	this	code.	It’s	important	to	note	that	the	map()	method	does
not	alter	the	original	array.

Figure	5.3

The	Math	Object
The	Math	object	provides	a	number	of	useful	mathematical	functions	and	number
manipulation	methods.	You	take	a	look	at	some	of	them	here,	but	you’ll	find	the	rest
described	in	detail	at	the	Mozilla	Developer	Network:
https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Math.

The	Math	object	is	a	little	unusual	in	that	JavaScript	creates	it	for	you	automatically.
There’s	no	need	to	declare	a	variable	as	a	Math	object	or	define	a	new	Math	object	before
being	able	to	use	it,	making	it	a	little	bit	easier	to	use.

The	properties	of	the	Math	object	include	some	useful	math	constants,	such	as	the	PI
property	(giving	the	value	3.14159	and	so	on).	You	access	these	properties,	as	usual,	by
placing	a	dot	after	the	object	name	(Math)	and	then	writing	the	property	name.	For
example,	to	calculate	the	area	of	a	circle,	you	can	use	the	following	code:

var	radius	=	prompt("Give	the	radius	of	the	circle",	"");

var	area	=	Math.PI	*	radius	*	radius;

document.write("The	area	is	"	+	area);

The	methods	of	the	Math	object	include	some	operations	that	are	impossible,	or	complex,
to	perform	using	the	standard	mathematical	operators	(+,	–,	*,	and	/).	For	example,	the
cos()	method	returns	the	cosine	of	the	value	passed	as	a	parameter.	You	look	at	a	few	of
these	methods	now.

The	abs()	Method
The	abs()	method	returns	the	absolute	value	of	the	number	passed	as	its	parameter.
Essentially,	this	means	that	it	returns	the	positive	value	of	the	number.	So	-1	is	returned	as

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

1,	-4	as	4,	and	so	on.	However,	1	would	be	returned	as	1	because	it’s	already	positive.

For	example,	the	following	code	writes	the	number	101	to	the	page:

var	myNumber	=	-101;

document.write(Math.abs(myNumber));

Finding	the	Largest	and	Smallest	Numbers—The	min()	and	max()	Methods
Let’s	say	you	have	two	numbers,	and	you	want	to	find	either	the	largest	or	smallest	of	the
two.	To	aid	you	in	this	task,	the	Math	object	provides	the	min()	and	max()	methods.	These
methods	both	accept	at	least	two	arguments,	all	of	which	must	obviously	be	numbers.
Look	at	this	example	code:

var	max	=	Math.max(21,22);	//	result	is	22

var	min	=	Math.min(30.1,	30.2);	//	result	is	30.1

The	min()	method	returns	the	number	with	the	lowest	value,	and	max()returns	the	number
with	the	highest	value.	The	numbers	you	pass	to	these	two	methods	can	be	whole	or
floating-point	numbers.

NOTE	The	max()	and	min()	methods	can	accept	many	numbers;	you’re	not	limited	to
two.

Rounding	Numbers
The	Math	object	provides	a	few	methods	to	round	numbers,	each	with	its	own	specific
purpose.

The	ceil()	Method
The	ceil()	method	always	rounds	a	number	up	to	the	next	largest	whole	number	or
integer.	So	10.01	becomes	11,	and	–9.99	becomes	–9	(because	–9	is	greater	than	–10).
The	ceil()	method	has	just	one	parameter,	namely	the	number	you	want	rounded	up.

Using	ceil()	is	different	from	using	the	parseInt()	function	you	saw	in	Chapter	2,
because	parseInt()	simply	chops	off	any	numbers	after	the	decimal	point	to	leave	a
whole	number,	whereas	ceil()	rounds	the	number	up.

For	example,	the	following	code	writes	two	lines	in	the	page,	the	first	containing	the
number	102	and	the	second	containing	the	number	101:

var	myNumber	=	101.01;

document.write(Math.ceil(myNumber)	+	"
");

document.write(parseInt(myNumber,	10));

The	floor()	Method
Like	the	ceil()	method,	the	floor()	method	removes	any	numbers	after	the	decimal
point,	and	returns	a	whole	number	or	integer.	The	difference	is	that	floor()	always
rounds	the	number	down.	So	if	you	pass	10.01	you	will	be	returned	10,	and	if	you	pass	–
9.99	you	will	see	–10	returned.

The	round()	Method
The	round()	method	is	very	similar	to	ceil()	and	floor(),	except	that	instead	of	always
rounding	up	or	always	rounding	down,	it	rounds	up	only	if	the	decimal	part	is	.5	or
greater,	and	rounds	down	otherwise.

For	example:

var	myNumber	=	44.5;

document.write(Math.round(myNumber)	+	"
");

myNumber	=	44.49;

document.write(Math.round(myNumber));

This	code	would	write	the	numbers	45	and	44	to	the	page.

Summary	of	Rounding	Methods
As	you	have	seen,	the	ceil(),	floor(),	and	round()	methods	all	remove	the	numbers
after	a	decimal	point	and	return	just	a	whole	number.	However,	which	whole	number	they
return	depends	on	the	method	used:	floor()	returns	the	lowest,	ceil()	the	highest,	and
round()	the	nearest	equivalent	integer.	This	can	be	a	little	confusing,	so	the	following	is	a
table	of	values	and	what	whole	number	would	be	returned	if	these	values	were	passed	to
the	parseInt()	function,	and	ceil(),	floor(),	and	round()	methods:

PARAMETER PARSEINT()
RETURNS

CEIL()
RETURNS

FLOOR()
RETURNS

ROUND()
RETURNS

10.25 10 11 10 10
10.75 10 11 10 11
10.5 10 11 10 11
−10.25 −10 −10 −11 −10
−10.75 −10 −10 −11 −11
−10.5 −10 −10 −11 −10

NOTE	Remember	that	parseInt()	is	a	native	JavaScript	function,	not	a	method	of
the	Math	object,	like	the	other	methods	presented	in	this	table.

				TRY	IT	OUT								Rounding	Methods	Results
Calculator
If	you’re	still	not	sure	about	rounding	numbers,	this	example	should	help.	Here,	you
look	at	a	calculator	that	gets	a	number	from	the	user,	and	then	writes	out	what	the
result	would	be	when	you	pass	that	number	to	parseInt(),	ceil(),	floor(),	and
round():

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Example	4</title>

</head>

<body>

				<script>

				var	myNumber	=	prompt("Enter	the	number	to	be	rounded","");

								document.write("<h3>The	number	you	entered	was	"	+	myNumber	+

																							"</h3>");

								document.write("<p>The	rounding	results	for	this	number	

are</p>");

								document.write("<table	width='150'	border='1'>");

								document.write("<tr><th>Method</th><th>Result</th></tr>");

								document.write("<tr><td>parseInt()</td><td>"	+

																							parseInt(myNumber,	10)	+	"</td></tr>");

								document.write("<tr><td>ceil()</td><td>"	+	Math.ceil(myNumber)	

+

																							"</td></tr>");

								document.write("<tr><td>floor()</td><td>"+	Math.floor(myNumber)	

+

																							"</td></tr>");

								document.write("<tr><td>round()</td><td>"	+	

Math.round(myNumber)	+

																							"</td></tr>");

								document.write("</table>");

				</script>

</body>

</html>

Save	this	as	ch5_example4.html	and	load	it	into	a	web	browser.	In	the	prompt	box,
enter	a	number	(for	example,	12.354),	and	click	OK.	The	results	of	this	number	being
passed	to	parseInt(),	ceil(),	floor(),	and	round()	will	be	displayed	in	the	page
formatted	inside	a	table,	as	shown	in	Figure	5.4.

Figure	5.4

The	first	task	is	to	get	the	number	to	be	rounded	from	the	user:

var	myNumber	=	prompt("Enter	the	number	to	be	rounded","");

Then	you	write	out	the	number	and	some	descriptive	text:

document.write("<h3>The	number	you	entered	was	"	+	myNumber	+	"</h3>");

document.write("<p>The	rounding	results	for	this	number	are</p>");

Notice	how	this	time	some	HTML	tags	for	formatting	have	been	included—the	main
header	being	in	<h3>	tags,	and	the	description	of	what	the	table	means	being	inside	a
paragraph	<p>	tag.

Next	you	create	the	table	of	results:

document.write("<table	width='150'	border='1'>");

document.write("<tr><th>Method</th><th>Result</th></tr>");

document.write("<tr><td>parseInt()</td><td>"	+

															parseInt(myNumber,	10)	+	"</td></tr>");

document.write("<tr><td>ceil()</td><td>"	+	Math.ceil(myNumber)	+

															"</td></tr>");

document.write("<tr><td>floor()</td><td>"+	Math.floor(myNumber)	+

															"</td></tr>");

document.write("<tr><td>round()</td><td>"	+	Math.round(myNumber)	+

															"</td></tr>");

document.write("</table>");

You	create	the	table	header	first	before	actually	displaying	the	results	of	each

rounding	function	on	a	separate	row.	The	principles	are	the	same	as	with	HTML	in	a
page:	You	must	make	sure	your	tag’s	syntax	is	valid	or	otherwise	things	will	appear
strange	or	not	appear	at	all.

Each	row	follows	the	same	principle	but	uses	a	different	rounding	function.	Let’s	look
at	the	first	row,	which	displays	the	results	of	parseInt():

document.write("<tr><td>parseInt()</td><td>"	+

															parseInt(myNumber,	10)	+	"</td></tr>");

Inside	the	string	to	be	written	out	to	the	page,	you	start	by	creating	the	table	row	with
the	<tr>	tag.	Then	you	create	a	table	cell	with	a	<td>	tag	and	insert	the	name	of	the
method	from	which	the	results	are	being	displayed	on	this	row.	Then	you	close	the
cell	with	</td>	and	open	a	new	one	with	<td>.	Inside	this	next	cell	you	are	placing
the	actual	results	of	the	parseInt()	function.	Although	a	number	is	returned	by
parseInt(),	because	you	are	concatenating	it	to	a	string,	JavaScript	automatically
converts	the	number	returned	by	parseInt()	into	a	string	before	concatenating.	All
this	happens	in	the	background	without	you	needing	to	do	a	thing.	Finally,	you	close
the	cell	and	the	row	with	</td></tr>.

The	random()	Method
The	random()	method	returns	a	random	floating-point	number	in	the	range	between	0	and
1,	where	0	is	included	and	1	is	not.	This	can	be	very	useful	for	displaying	random	banner
images	or	for	writing	a	JavaScript	game.

Let’s	look	at	how	you	would	mimic	the	roll	of	a	single	die.	In	the	following	page,	10
random	numbers	are	written	to	the	page.	Click	the	browser’s	Refresh	button	to	get	another
set	of	random	numbers.

<!DOCTYPE	html>

<html	lang="en">

<body>

				<script>

								var	diceThrow;

								for	(var	throwCount	=	0;	throwCount	<	10;	throwCount++)	{

												diceThrow	=	(Math.floor(Math.random()	*	6)	+	1);

												document.write(diceThrow	+	"
");

								}

				</script>

</body>

</html>

You	want	diceThrow	to	be	between	1	and	6.	The	random()	function	returns	a	floating-
point	number	between	0	and	just	under	1.	By	multiplying	this	number	by	6,	you	get	a
number	between	0	and	just	under	6.	Then	by	adding	1,	you	get	a	number	between	1	and
just	under	7.	By	using	floor()	to	always	round	it	down	to	the	next	lowest	whole	number,
you	can	ensure	that	you’ll	end	up	with	a	number	between	1	and	6.

If	you	wanted	a	random	number	between	1	and	100,	you	would	just	change	the	code	so

that	Math.random()	is	multiplied	by	100	rather	than	6.

The	pow()	Method
The	pow()	method	raises	a	number	to	a	specified	power.	It	takes	two	parameters,	the	first
being	the	number	you	want	raised	to	a	power,	and	the	second	being	the	power	itself.	For
example,	to	raise	2	to	the	power	of	8	(that	is,	to	calculate	2	*	2	*	2	*	2	*	2	*	2	*	2	*	2),	you
would	write	Math.pow(2,8)—the	result	being	256.	Unlike	some	of	the	other	mathematical
methods,	like	sin(),	cos(),	and	acos(),	which	are	not	commonly	used	in	web
programming	unless	it’s	a	scientific	application	you’re	writing,	the	pow()	method	can
often	prove	very	useful.

				TRY	IT	OUT								Using	pow()
In	this	example,	you	write	a	function	using	pow(),	which	fixes	the	number	of	decimal
places	in	a	number:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	<5,	Example	5</title>

</head>

<body>

				<script>

								function	fix(fixNumber,	decimalPlaces)	{

												var	div	=	Math.pow(10,	decimalPlaces);

												fixNumber	=	Math.round(fixNumber	*	div)	/	div;

												return	fixNumber;

								}

								var	number1	=	prompt("Enter	the	number	with	decimal	places	you	

"	+

																													"want	to	fix",	"");

								var	number2	=	prompt("How	many	decimal	places	do	you	want?",	

"");

								document.write(number1	+	"	fixed	to	"	+	number2	+	"	decimal	

places	is:	");

								document.write(fix(number1,	number2));

				</script>

</body>

</html>

Save	the	page	as	ch5_example5.html.	When	you	load	the	page	into	your	browser,
you	will	be	presented	with	two	prompt	boxes.	In	the	first,	enter	the	number	for	which
you	want	to	fix	the	number	of	decimal	places	(for	example,	2.2345).	In	the	second,
enter	the	number	of	decimal	places	you	want	fixed	(for	example,	2).	Then	the	result
of	fixing	the	number	you	have	entered	to	the	number	of	decimal	places	you	have
chosen	will	be	written	to	the	page,	as	shown	in	Figure	5.5.	For	the	example	numbers,

this	will	be	2.23.

Figure	5.5

You	first	define	the	function	fix().	This	function	will	fix	its	fixNumber	parameter	to
a	maximum	of	its	decimalPlaces	parameter’s	number	of	digits	after	the	decimal
place.	For	example,	fixing	34.76459	to	a	maximum	of	three	decimal	places	will
return	34.765.

The	first	line	of	code	in	the	function	sets	the	variable	div	to	the	number	10	raised	to
the	power	of	the	number	of	decimal	places	you	want:

function	fix(fixNumber,	decimalPlaces)	{

				var	div	=	Math.pow(10,decimalPlaces);

Then,	in	the	next	line,	you	calculate	the	new	number:

				fixNumber	=	Math.round(fixNumber	*	div)	/	div;

What	the	code	Math.round(fixNumber	*	div)	does	is	move	the	decimal	point	in	the
number	that	you	are	converting	to	after	the	point	in	the	number	that	you	want	to	keep.
So	for	2.2345,	if	you	want	to	keep	two	decimal	places,	you	convert	it	to	223.45.	The
Math.round()	method	rounds	this	number	to	the	nearest	integer	(in	this	case	223)	and
so	removes	any	undesired	decimal	part.

You	then	convert	this	number	back	into	the	fraction	it	should	be,	but	of	course	only
the	fractional	part	you	want	is	left.	You	do	this	by	dividing	by	the	same	number	(div)
that	you	multiplied	by.	In	this	example,	you	divide	223	by	100,	which	leaves	2.23.
This	is	2.2345	fixed	to	two	decimal	places.	This	value	is	returned	to	the	calling	code
in	the	line:

			return	fixNumber;

}

Next,	you	use	two	prompt	boxes	to	get	numbers	from	the	user.	You	then	display	the
results	of	using	these	numbers	in	your	fix()	function	to	the	user	using
document.write().

This	example	is	just	that—an	example.	In	a	few	minutes,	you	learn	about	the	Number
object’s	toFixed()	method,	which	does	the	same	thing	as	the	fix()	function.

Number	Objects
As	with	the	String	object,	Number	objects	need	to	be	created	before	they	can	be	used.	To
create	a	Number	object,	you	can	write	the	following:

var	firstNumber	=	new	Number(123);

var	secondNumber	=	new	Number('123');

However,	as	you	have	seen,	you	can	also	declare	a	number	as	primitive	and	use	it	as	if	it
were	a	Number	object,	letting	JavaScript	do	the	conversion	to	an	object	for	you	behind	the
scenes.	For	example:

var	myNumber	=	123.765;

As	with	the	String	object,	this	technique	is	preferable	so	long	as	it’s	clear	to	JavaScript
what	object	you	expect	to	have	created	in	the	background.	So,	for	example,

var	myNumber	=	"123.567";

will	lead	JavaScript	to	assume,	quite	rightly,	that	it’s	a	string,	and	any	attempts	to	use	the
Number	object’s	methods	will	fail.

You	look	at	just	the	toFixed()	method	of	the	Number	object	because	that’s	the	most	useful
method	for	regular	use.

The	toFixed()	Method
The	toFixed()	method	cuts	a	number	off	after	a	certain	point.	Let’s	say	you	want	to
display	a	price	after	sales	tax.	If	your	price	is	$9.99	and	sales	tax	is	7.5	percent,	that	means
the	after-tax	cost	will	be	$10.73925.	Well,	this	is	rather	an	odd	amount	for	a	money
transaction—what	you	really	want	to	do	is	fix	the	number	to	no	more	than	two	decimal
places.	Let’s	create	an	example:

var	itemCost	=	9.99;

var	itemCostAfterTax	=	9.99	*	1.075;

document.write("Item	cost	is	$"	+	itemCostAfterTax	+	"
");

itemCostAfterTax	=	itemCostAfterTax.toFixed(2);

document.write("Item	cost	fixed	to	2	decimal	places	is	"	+

															"$"	+	itemCostAfterTax);

The	first	document.write()outputs	the	following	to	the	page:

Item	cost	is	$10.73925

However,	this	is	not	the	format	you	want;	instead	you	want	two	decimal	places,	so	on	the
next	line,	enter	this:

itemCostAfterTax	=	itemCostAfterTax.toFixed(2);

You	use	the	toFixed()	method	of	the	Number	object	to	fix	the	number	variable	that
itemCostAfterTax	holds	to	two	decimal	places.	The	method’s	only	parameter	is	the
number	of	decimal	places	you	want	your	number	fixed	to.	This	line	means	that	the	next
document.write	displays	this:

Item	cost	fixed	to	2	decimal	places	is	$10.74

The	first	thing	you	might	wonder	is	why	10.74	and	not	10.73?	Well,	the	toFixed()
method	doesn’t	just	chop	off	the	digits	not	required;	it	also	rounds	up	or	down.	In	this
case,	the	number	was	10.739,	which	rounds	up	to	10.74.	If	it’d	been	10.732,	it	would
have	been	rounded	down	to	10.73.

Note	that	you	can	only	fix	a	number	from	0	to	20	decimal	places.

Date	Objects
The	Date	object	handles	everything	to	do	with	date	and	time	in	JavaScript.	Using	it,	you
can	find	out	the	current	date	and	time,	store	your	own	dates	and	times,	do	calculations
with	these	dates,	and	convert	the	dates	into	strings.

The	Date	object	has	a	lot	of	methods	and	can	be	a	little	tricky	to	use,	which	is	why
Chapter	7	is	dedicated	to	the	date,	time,	and	timers	in	JavaScript.	However,	in	this	section
you	focus	on	how	to	create	a	Date	object	and	some	of	its	more	commonly	used	methods.

Creating	a	Date	Object
You	can	declare	and	initialize	a	Date	object	in	four	ways.	In	the	first	method,	you	simply
declare	a	new	Date	object	without	initializing	its	value.	In	this	case,	the	date	and	time
value	will	be	set	to	the	current	date	and	time	on	the	PC	on	which	the	script	is	run:

var	theDate1	=	new	Date();

Secondly,	you	can	define	a	Date	object	by	passing	the	number	of	milliseconds	since
January	1,	1970,	at	00:00:00	GMT.	In	the	following	example,	the	date	is	31	January	2000
00:20:00	GMT	(that	is,	20	minutes	past	midnight):

var	theDate2	=	new	Date(949278000000);

It’s	unlikely	that	you’ll	be	using	this	way	of	defining	a	Date	object	very	often,	but	this	is
how	JavaScript	actually	stores	the	dates.	The	other	formats	for	giving	a	date	are	simply	for
convenience.

The	third	way	for	you	to	declare	a	Date	object	is	to	pass	a	string	representing	a	date,	or	a
date	and	time.	In	the	following	example,	you	have	"31	January	2014":

var	theDate3	=	new	Date("31	January	2014");

However,	you	could	have	written	31	Jan	2014,	Jan	31	2014,	or	any	of	a	number	of	valid
variations	you’d	commonly	expect	when	writing	down	a	date	normally—if	in	doubt,	try	it
out.

If	you	are	writing	your	web	pages	for	an	international	audience,	you	need	to	be	aware	of
the	different	ways	of	specifying	dates.	In	the	United	Kingdom	and	many	other	places,	the
standard	is	day,	month,	year,	whereas	in	the	United	States	the	standard	is	month,	day,	year.
This	can	cause	problems	if	you	specify	only	numbers—JavaScript	may	think	you’re
referring	to	a	day	when	you	mean	a	month.

In	the	fourth	and	final	way	of	defining	a	Date	object,	you	initialize	it	by	passing	the
following	parameters	separated	by	commas:	year,	month,	day,	hours,	minutes,	seconds,
and	milliseconds.	For	example:

var	theDate4	=	new	Date(2014,0,31,15,35,20,20);

This	date	is	actually	31	January	2014	at	15:35:20	and	20	milliseconds.	You	can	specify
just	the	date	part	if	you	want	and	ignore	the	time.	Something	to	be	aware	of	is	that	in	this
instance	January	is	month	0,	not	month	1,	as	you’d	expect,	and	December	is	month	11.

TIP	It’s	very	easy	to	make	a	mistake	when	specifying	a	month	using	either	the	third	or
fourth	method	of	declaring	a	Date	object.	The	easiest	way	to	avoid	such	headaches	is
to	always	use	the	name	of	the	month	where	possible.	That	way	there	can	be	no
confusion.

Getting	Date	Values
It’s	all	very	nice	having	stored	a	date,	but	how	do	you	get	the	information	out	again?	Well,
you	just	use	the	get	methods.	These	are	summarized	in	the	following	table:

METHOD RETURNS
getDate() The	day	of	the	month
getDay() The	day	of	the	week	as	an	integer,	with	Sunday	as	0,	Monday	as	1,	and

so	on
getMonth() The	month	as	an	integer,	with	January	as	0,	February	as	1,	and	so	on
getFullYear() The	year	as	a	four-digit	number
toDateString() Returns	the	full	date	based	on	the	current	time	zone	as	a	human-

readable	string,	for	example,	“Wed	31	Dec	2003”

For	example,	if	you	want	to	get	the	month	in	ourDateObj,	you	can	simply	write	the
following:

theMonth	=	myDateObject.getMonth();

All	the	methods	work	in	a	very	similar	way,	and	all	values	returned	are	based	on	local
time,	meaning	time	local	to	the	machine	on	which	the	code	is	running.	It’s	also	possible	to
use	Universal	Time,	previously	known	as	GMT,	which	we	discuss	in	Chapter	7.

				TRY	IT	OUT								Using	the	Date	Object	to	Retrieve
the	Current	Date
In	this	example,	you	use	the	get	date	type	methods	you	have	been	looking	at	to
write	the	current	day,	month,	and	year	to	a	web	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Example	6</title>

</head>

<body>

				<script>

								var	months	=	["January",	"February",	"March",	"April",	"May",

																						"June",	"July",	"August",	"September",

																						"October",	"November",	"December"];

								var	dateNow	=	new	Date();

								var	yearNow	=	dateNow.getFullYear();

								var	monthNow	=	months[dateNow.getMonth()];

								var	dayNow	=	dateNow.getDate();

								var	daySuffix;

								switch	(dayNow)	{

												case	1:

												case	21:

												case	31:

																daySuffix	=	"st";

																break;

												case	2:

												case	22:

																daySuffix	=	"nd";

																break;

												case	3:

												case	23:

																daySuffix	=	"rd";

																break;

												default:

																daySuffix	=	"th";

																break;

								}

								document.write("It	is	the	"	+	dayNow	+	daySuffix	+	"	day	");

								document.write("in	the	month	of	"	+	monthNow);

								document.write("	in	the	year	"	+	yearNow);

				</script>

</body>

</html>

Save	the	code	as	ch5_example6.html.	When	you	load	the	page	in	your	browser,	you
should	see	a	correctly	formatted	sentence	telling	you	the	current	date.

The	first	thing	you	do	in	the	code	is	declare	an	array	and	populate	it	with	the	months
of	a	year.	Why	do	this?	Well,	there	is	no	method	of	the	Date	object	that’ll	give	you
the	month	by	name	instead	of	as	a	number.	However,	this	poses	no	problem;	you	just
declare	an	array	of	months	and	use	the	month	number	as	the	array	index	to	select	the
correct	month	name:

var	months	=	["January",	"February",	"March",	"April",	"May",	"June",	

"July",

														"August",	"September",	"October",	"November",	

"December"];

Next	you	create	a	new	Date	object,	and	by	not	initializing	it	with	your	own	value,	you
allow	it	to	initialize	itself	to	the	current	date	and	time:

var	dateNow	=	new	Date();

Following	this	you	set	the	yearNow	variable	to	the	current	year,	as	returned	by	the
getFullYear()	method:

var	yearNow	=	dateNow.getFullYear();

You	then	populate	your	monthNow	variable	with	the	value	contained	in	the	array
element	with	an	index	of	the	number	returned	by	getMonth().	Remember	that
getMonth()	returns	the	month	as	an	integer	value,	starting	with	0	for	January—this	is
a	bonus	because	arrays	also	start	at	0,	so	no	adjustment	is	needed	to	find	the	correct
array	element:

var	monthNow	=	months[dateNow.getMonth()];

Finally,	you	put	the	current	day	of	the	month	into	the	variable	dayNow:

var	dayNow	=	dateNow.getDate();

Next	you	use	a	switch	statement,	which	you	learned	about	in	Chapter	3.	This	is	a
useful	technique	for	adding	the	correct	suffix	to	the	date	that	you	already	have.	After
all,	your	application	will	look	more	professional	if	you	can	say	"it	is	the	1st
day",	rather	than	"it	is	the	1	day".	This	is	a	little	tricky,	however,	because	the
suffix	you	want	to	add	depends	on	the	number	that	precedes	it.	So,	for	the	first,
twenty-first,	and	thirty-first	days	of	the	month,	you	have	this:

switch	(dayNow)	{

				case	1:

				case	21:

				case	31:

								daySuffix	=	"st";

								break;

For	the	second	and	twenty-second	days,	you	have	this:

				case	2:

				case	22:

								daySuffix	=	"nd";

								break;

and	for	the	third	and	twenty-third	days,	you	have	this:

				case	3:

				case	23:

								daySuffix	=	"rd";

								break;

Finally,	you	need	the	default	case	for	everything	else.	As	you	will	have	guessed	by
now,	this	is	simply	"th":

				default:

								daySuffix	=	"th";

								break;

}

In	the	final	lines	you	simply	write	the	information	to	the	HTML	page,	using
document.write().

Setting	Date	Values
To	change	part	of	the	date	in	a	Date	object,	you	have	a	group	of	set	functions,	which
pretty	much	replicate	the	get	functions	described	earlier,	except	that	you	are	setting,	not
getting,	the	values.	These	functions	are	summarized	in	the	following	table:

METHOD DESCRIPTION
setDate() The	date	of	the	month	is	passed	in	as	the	parameter	to	set	the	date.
setMonth() The	month	of	the	year	is	passed	in	as	an	integer	parameter,	where	0	is

January,	1	is	February,	and	so	on.
setFullYear() This	sets	the	year	to	the	four-digit	integer	number	passed	in	as	a

parameter.

NOTE	that	for	security	reasons,	there	is	no	way	for	web-based	JavaScript	to	change
the	current	date	and	time	on	a	user’s	computer.

So,	to	change	the	year	to	2016,	the	code	would	be	as	follows:

myDateObject.setFullYear(2016);

Setting	the	date	and	month	to	the	27th	of	February	looks	like	this:

myDateObject.setDate(27);

myDateObject.setMonth(1);

One	minor	point	to	note	here	is	that	there	is	no	direct	equivalent	of	the	getDay()	method.
After	the	year,	date,	and	month	have	been	defined,	the	day	is	automatically	set	for	you.

Calculations	and	Dates
Take	a	look	at	the	following	code:

var	myDate	=	new	Date("1	Jan	2010");

myDate.setDate(32);

document.write(myDate);

Surely	there	is	some	error—since	when	has	January	had	32	days?	The	answer	is	that	of
course	it	doesn’t,	and	JavaScript	knows	that.	Instead	JavaScript	sets	the	date	to	32	days
from	the	first	of	January—that	is,	it	sets	it	to	the	1st	of	February.

The	same	also	applies	to	the	setMonth()	method.	If	you	set	it	to	a	value	greater	than	11,
the	date	automatically	rolls	over	to	the	next	year.	So	if	you	use	setMonth(12),	that	will	set
the	date	to	January	of	the	next	year,	and	similarly	setMonth(13)	is	February	of	the	next
year.

How	can	you	use	this	feature	of	setDate()	and	setMonth()	to	your	advantage?	Well,	let’s
say	you	want	to	find	out	what	date	it	will	be	28	days	from	now.	Given	that	different
months	have	different	numbers	of	days	and	that	you	could	roll	over	to	a	different	year,	it’s
not	as	simple	a	task	as	it	might	first	seem.	Or	at	least	that	would	be	the	case	if	it	were	not
for	setDate().	The	code	to	achieve	this	task	is	as	follows:

var	nowDate	=	new	Date();

var	currentDay	=	nowDate.getDate();

nowDate.setDate(currentDay	+	28);

First	you	get	the	current	system	date	by	setting	the	nowDate	variable	to	a	new	Date	object
with	no	initialization	value.	In	the	next	line,	you	put	the	current	day	of	the	month	into	a
variable	called	currentDay.	Why?	Well,	when	you	use	setDate()	and	pass	it	a	value
outside	of	the	maximum	number	of	days	for	that	month,	it	starts	from	the	first	of	the
month	and	counts	that	many	days	forward.	So,	if	today’s	date	is	January	15	and	you	use
setDate(28),	it’s	not	28	days	from	the	15th	of	January,	but	28	days	from	the	1st	of
January.	What	you	want	is	28	days	from	the	current	date,	so	you	need	to	add	the	current
date	to	the	number	of	days	ahead	you	want.	So	you	want	setDate(15	+	28).	In	the	third
line,	you	set	the	date	to	the	current	date,	plus	28	days.	You	stored	the	current	day	of	the
month	in	currentDay,	so	now	you	just	add	28	to	that	to	move	28	days	ahead.

If	you	want	the	date	28	days	prior	to	the	current	date,	you	just	pass	the	current	date	minus
28.	Note	that	this	will	most	often	be	a	negative	number.	You	need	to	change	only	one	line,
and	that’s	the	third	one,	which	you	change	to	the	following:

nowDate.setDate(currentDay	-	28);

You	can	use	exactly	the	same	principles	for	setMonth()	as	you	have	used	for	setDate().

Getting	Time	Values
The	methods	you	use	to	retrieve	the	individual	pieces	of	time	data	work	much	like	the	get
methods	for	date	values.	The	methods	you	use	here	are:

getHours()

getMinutes()

getSeconds()

getMilliseconds()

toTimeString()

These	methods	return,	respectively,	the	hours,	minutes,	seconds,	milliseconds,	and	full
time	of	the	specified	Date	object,	where	the	time	is	based	on	the	24-hour	clock:	0	for
midnight	and	23	for	11	p.m.	The	last	method	is	similar	to	the	toDateString()	method	in
that	it	returns	an	easily	readable	string,	except	that	in	this	case	it	contains	the	time	(for
example,	"13:03:51	UTC").

				TRY	IT	OUT								Writing	the	Current	Time	into	a
Web	Page
Let’s	look	at	an	example	that	writes	out	the	current	time	to	the	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Example	7</title>

</head>

<body>

				<script>

								var	greeting;

								var	nowDate	=	new	Date();

								var	nowHour	=	nowDate.getHours();

								var	nowMinute	=	nowDate.getMinutes();

								var	nowSecond	=	nowDate.getSeconds();

								if	(nowMinute	<	10)	{

												nowMinute	=	"0"	+	nowMinute;

								}

								if	(nowSecond	<	10)	{

												nowSecond	=	"0"	+	nowSecond;

								}

								if	(nowHour	<	12)	{

												greeting	=	"Good	Morning";

								}	else	if	(nowHour	<	17)	{

												greeting	=	"Good	Afternoon";

								}	else	{

												greeting	=	"Good	Evening";

								}

								document.write("<h4>"	+	greeting	+	"	and	welcome	to	my	

website</h4>");

								document.write("According	to	your	clock	the	time	is	");

								document.write(nowHour	+	":"	+	nowMinute	+	":"	+	nowSecond);

				</script>

</body>

</html>

Save	this	page	as	ch5_example7.html.	When	you	load	it	into	a	web	browser,	it	writes
a	greeting	based	on	the	time	of	day	as	well	as	the	current	time,	as	shown	in	Figure
5.6.

Figure	5.6

The	first	two	lines	of	code	declare	two	variables—greeting	and	nowDate:

var	greeting;

var	nowDate	=	new	Date();

The	greeting	variable	will	be	used	shortly	to	store	the	welcome	message	on	the
website,	whether	this	is	"Good	Morning",	"Good	Afternoon",	or	"Good	Evening".
The	nowDate	variable	is	initialized	to	a	new	Date	object.	Note	that	the	constructor	for
the	Date	object	is	empty,	so	JavaScript	will	store	the	current	date	and	time	in	it.

Next,	you	get	the	information	on	the	current	time	from	nowDate	and	store	it	in	various
variables.	You	can	see	that	getting	time	data	is	very	similar	to	getting	date	data,	just
using	different	methods:

var	nowHour	=	nowDate.getHours();

var	nowMinute	=	nowDate.getMinutes();

var	nowSecond	=	nowDate.getSeconds();

You	may	wonder	why	the	following	lines	are	included	in	the	example:

if	(nowMinute	<	10)	{

				nowMinute	=	"0"	+	nowMinute;

}

if	(nowSecond	<	10)	{

				nowSecond	=	"0"	+	nowSecond;

}

These	lines	are	there	just	for	formatting	reasons.	If	the	time	is	nine	minutes	past	10,
then	you	expect	to	see	something	like	10:09.	You	don’t	expect	10:9,	which	is	what
you	would	get	if	you	used	the	getMinutes()	method	without	adding	the	extra	zero.
The	same	goes	for	seconds.	If	you’re	just	using	the	data	in	calculations,	you	don’t
need	to	worry	about	formatting	issues—you	do	here	because	you’re	inserting	the	time
the	code	executed	into	the	web	page.

Next,	in	a	series	of	if	statements,	you	decide	(based	on	the	time	of	day)	which
greeting	to	create	for	displaying	to	the	user:

if	(nowHour	<	12)	{

				greeting	=	"Good	Morning";

}	else	if	(nowHour	<	17)	{

				greeting	=	"Good	Afternoon";

}	else	{

				greeting	=	"Good	Evening";

}

Finally,	you	write	out	the	greeting	and	the	current	time	to	the	page:

document.write("<h4>"	+	greeting	+	"	and	welcome	to	my	website</h4>");

document.write("According	to	your	clock	the	time	is	");

document.write(nowHour	+	":"	+	nowMinute	+	":"	+	nowSecond);

Setting	Time	Values
When	you	want	to	set	the	time	in	your	Date	objects,	you	have	a	series	of	methods	similar
to	those	used	for	getting	the	time:

setHours()

setMinutes()

setSeconds()

setMilliseconds()

These	work	much	like	the	methods	you	use	to	set	the	date,	in	that	if	you	set	any	of	the
time	parameters	to	an	illegal	value,	JavaScript	assumes	you	mean	the	next	or	previous
time	boundary.	If	it’s	9:57	and	you	set	minutes	to	64,	the	time	will	be	set	to	10:04—that	is,
64	minutes	from	9:00.

This	is	demonstrated	in	the	following	code:

var	nowDate	=	new	Date();

nowDate.setHours(9);

nowDate.setMinutes(57);

alert(nowDate);

nowDate.setMinutes(64);

alert(nowDate);

First	you	declare	the	nowDate	variable	and	assign	it	to	a	new	Date	object,	which	will
contain	the	current	date	and	time.	In	the	following	two	lines,	you	set	the	hours	to	9	and	the

minutes	to	57.	You	show	the	date	and	time	using	an	alert	box,	which	should	show	a	time
of	9:57.	The	minutes	are	then	set	to	64	and	again	an	alert	box	is	used	to	show	the	date
and	time	to	the	user.	Now	the	minutes	have	rolled	over	the	hour	so	the	time	shown	should
be	10:04.

If	the	hours	were	set	to	23	instead	of	9,	setting	the	minutes	to	64	would	not	just	move	the
time	to	another	hour,	but	also	cause	the	day	to	change	to	the	next	date.

CREATING	YOUR	OWN	CUSTOM	OBJECTS
We’ve	spent	a	lot	of	time	discussing	objects	built	into	JavaScript,	but	JavaScript’s	real
power	comes	from	the	fact	that	you	can	create	your	own	objects	to	represent	complex
data.	For	example,	imagine	that	you	need	to	represent	an	individual	person	in	your	code.
You	could	simply	use	two	variables	for	an	individual	person’s	first	name	and	last	name,
like	this:

var	firstName	=	"John";

var	lastName	=	"Doe";

But	what	if	you	needed	to	represent	multiple	people?	Creating	two	variables	for	every
person	would	get	unwieldy	very	quickly,	and	keeping	track	of	every	variable	for	every
person	would	cause	headaches	for	even	the	best	programmers	in	the	world.	Instead,	you
could	create	an	object	to	represent	each	individual	person.	Each	of	these	objects	would
contain	the	necessary	information	that	makes	one	person	unique	from	other	(such	as	a
person’s	first	and	last	names).

To	create	an	object	in	JavaScript,	simply	use	the	new	operator	in	conjunction	with	the
Object	constructor,	like	this:

var	johnDoe	=	new	Object();

But	like	arrays,	JavaScript	provides	a	literal	syntax	to	signify	an	object:	a	pair	of	curly
braces	({}).	So	you	can	rewrite	the	previous	code	like	this:

var	johnDoe	=	{};

Today’s	JavaScript	developers	favor	this	literal	syntax	instead	of	calling	the	Object
constructor.

Once	you	have	an	object,	you	can	begin	to	populate	it	with	properties.	It	is	similar	to
creating	a	variable,	except	you	do	not	use	the	var	keyword.	Simply	use	the	name	of	the
object,	followed	by	a	dot,	then	the	name	of	the	property,	and	assign	it	a	value.	For
example:

johnDoe.firstName	=	"John";

johnDoe.lastName	=	"Doe";

These	two	lines	of	code	create	the	firstName	and	lastName	properties	on	the	johnDoe
object	and	assign	their	respective	values.	JavaScript	does	not	check	if	these	properties
exist	before	they’re	created;	it	simply	creates	them.	This	free	property	creation	might
sound	great	(and	it	is!),	but	it	does	have	drawbacks.	The	primary	issue	is	that	JavaScript
won’t	tell	you	if	you	accidentally	misspell	a	property	name;	it’ll	just	create	a	new	property
with	the	misspelled	name,	something	that	can	make	it	difficult	to	track	bugs.	So	always	be
careful	when	creating	properties.

You	can	assign	methods	in	the	same	way,	except	you	assign	a	function	instead	of	another
type	of	value,	like	this:

johnDoe.greet	=	function()		{

				alert("My	name	is	"	+	this.firstName	+	"	"	+	this.lastName;

};

This	code	creates	a	method	called	greet(),	which	simply	alerts	a	greeting.	A	few
important	things	are	important	to	note	in	this	code.

First,	notice	there	is	no	name	between	function	and	().	A	function	that	has	no	name	is
called	an	anonymous	function.	Anonymous	functions,	in	and	of	themselves,	are	a	syntax
error	unless	you	assign	that	function	to	a	variable.	Once	you	assign	an	anonymous
function	to	a	variable,	that	function’s	name	becomes	the	name	of	the	variable.	So	you	can
execute	the	anonymous	function	assigned	to	johnDoe.greet	like	this:

johnDoe.greet();

Next,	notice	the	use	of	this	inside	of	the	function:	this.firstName	and	this.lastName.
In	JavaScript,	this	is	a	special	variable	that	refers	to	the	current	object—the	johnDoe
object	in	this	case.	It	literally	means	“this	object.”	So	you	could	rewrite	greet()	like	the
following:

johnDoe.greet	=	function()		{

				alert("My	name	is	"	+	johnDoe.firstName	+	"	"	+	johnDoe.lastName;

};

However,	you	won’t	always	have	the	name	of	object	to	use	in	place	of	this.	Therefore,	it
is	preferred	to	refer	to	the	current	object	inside	of	a	method	by	using	this	rather	than	the
actual	name	of	the	object.

The	full	code	for	creating	this	johnDoe	object	looks	like	this:

var	johnDoe	=	{};

johnDoe.firstName	=	"John";

johnDoe.lastName	=	"Doe";

johnDoe.greet	=	function()		{

				alert("My	name	is	"	+	johnDoe.firstName	+	"	"	+	johnDoe.lastName;

};

This	is	perfectly	valid	JavaScript,	but	it	takes	four	statements	to	create	the	complete
object.	These	four	statements	can	be	reduced	to	one	statement	by	defining	the	entire	object
using	literal	notation.	Admittedly,	it	will	look	a	little	weird	at	first,	but	you’ll	soon	get
used	to	it:

var	johnDoe	=	{

				firstName	:	"John",

				lastName	:	"Doe",

				greet	:	function()	{

								alert("My	name	is	"	+

								this.firstName	+	"	"	+

								this.lastName;

				}

};

Take	a	moment	and	study	this	code.	First,	notice	this	code	uses	curly	braces	to	enclose	the

entire	object.	Then	notice	that	each	property	and	method	is	defined	by	specifying	the	name
of	the	property/method,	followed	by	a	colon,	and	then	its	value.	So,	assigning	the
firstName	property	looks	like	this:

firstName	:	"John"

There	is	no	equal	sign	used	here.	In	object	literal	notation,	the	colon	sets	the	value	of	the
property.

Finally,	notice	that	each	property	and	method	definition	is	separated	by	a	comma—very
much	like	how	you	separate	individual	elements	in	an	array	literal.

				TRY	IT	OUT								Using	Object	Literals
It	is	very	important	for	you	to	understand	object	literals—they	are	used	extremely
liberally	by	JavaScript	developers.	Let’s	look	at	an	example	that	uses	a	function	to
create	a	custom	object:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Example	8</title>

</head>

<body>

				<script>

								function	createPerson(firstName,	lastName)	{

												return	{

																firstName:	firstName,

																lastName:	lastName,

																getFullName:	function()	{

																				return	this.firstName	+	"	"	+	this.lastName

																},

																greet:	function(person)	{

																				alert("Hello,	"	+	person.getFullName()	+

																										".	I'm	"	+	this.getFullName());

																}

												};

								}

								var	johnDoe	=	createPerson("John",	"Doe");

								var	janeDoe	=	createPerson("Jane",	"Doe");

								johnDoe.greet(janeDoe);

				</script>

</body>

</html>

Save	this	page	as	ch5_example8.html.	When	you	load	the	page	into	a	web	browser,	it
displays	the	message:	"Hello,	Jane	Doe.	I'm	John	Doe".

First,	this	code	creates	a	function	called	createPerson()	that	accepts	a	person’s	first
and	last	names	as	parameters.	This	function	creates	an	object	with	the	person’s	first

and	last	names	using	object	literal	notation:

function	createPerson(firstName,	lastName)	{

				return	{

The	first	property	created	is	the	firstName	property,	and	it	is	assigned	the	value	of	the
firstName	parameter:

								firstName:	firstName,

Next	is	the	lastName	property,	which	receives	its	value	from	the	createPerson()
function’s	lastName	parameter:

								lastName:	lastName,

Then	a	method	called	getFullName()	is	created.	Its	purpose	is	to	return	the	first	and
last	name	of	the	person	to	the	caller:

								getFullName:	function()	{

												return	this.firstName	+	"	"	+	this.lastName

								},

This	method	uses	the	this	variable	to	access	this	object’s	firstName	and	lastName
properties.	Note	that	the	this	variable	is	the	only	way	to	retrieve	these	properties—
the	object	doesn’t	have	a	name;	it	is	an	anonymous	object	that	is	created	and	then
returned	to	the	caller.

The	final	method	of	this	object	is	greet().	It	accepts	another	person	object	as	a
parameter	and	uses	its	getFullName()	in	order	to	greet	that	person:

								greet:	function(person)	{

												alert("Hello,	"	+	person.getFullName()	+

																		".	I'm	"	+	this.getFullName());

								}

				};

}

The	next	two	lines	create	two	objects	two	represent	two	individual	people:

var	johnDoe	=	createPerson("John",	"Doe");

var	janeDoe	=	createPerson("Jane",	"Doe");

Notice	the	absence	of	the	new	keyword.	The	createPerson()	function	is	not	a
constructor	function	(you	learn	how	to	write	constructor	functions	later).	It’s	simply	a
function	that	creates	and	returns	an	object.

Finally,	John	Doe	greets	Jane	Doe	by	calling	the	greet()	method	and	passing	the
janeDoe	object	to	it:

johnDoe.greet(janeDoe);

CREATING	NEW	TYPES	OF	OBJECTS	(REFERENCE
TYPES)
This	section’s	focus	is	on	some	advanced	stuff.	It’s	not	essential	stuff,	so	you	may	want	to
move	on	and	come	back	to	it	later.

You’ve	seen	that	JavaScript	provides	a	number	of	objects	built	into	the	language	and	ready
for	us	to	use.	You’ve	also	built	custom	objects	that	you	can	use	to	represent	more	complex
data,	but	JavaScript	also	enables	you	to	create	your	own	type	of	objects.	For	example,	you
created	an	object	that	represented	an	individual	person,	but	you	can	also	create	an	object
that	is	a	Person	object.

It’s	a	bit	like	a	house	that’s	built	already	and	you	can	just	move	on	in.	However,	what	if
you	want	to	create	your	own	house,	to	design	it	for	your	own	specific	needs?	In	that	case
you’ll	use	an	architect	to	create	technical	drawings	and	plans	that	provide	the	template	for
the	new	house—the	builders	use	the	plans	to	tell	them	how	to	create	the	house.

So	what	does	any	of	this	have	to	do	with	JavaScript	and	objects?	Well,	JavaScript	enables
you	to	be	an	architect	and	create	the	templates	for	your	own	objects	to	your	own
specification,	to	fit	your	specific	needs.	Going	back	to	the	person	object	example,
JavaScript	doesn’t	come	with	built-in	person	objects,	so	you’d	have	to	design	your	own.

Just	as	a	builder	of	a	house	needs	an	architect’s	plans	to	know	what	to	build	and	how	it
should	be	laid	out,	you	need	to	provide	blueprints	telling	JavaScript	how	your	object
should	look.	You	somewhat	did	this	with	the	createPerson()	function	in	ch5 _ 
example8.html,	but	you	only	created	plain	objects	with	custom	properties	and	methods—
you	didn’t	create	an	actual	Person	object.

But	JavaScript	supports	the	definition	of	reference	types.	Reference	types	are	essentially
templates	for	an	object,	as	the	architect’s	drawings	are	the	template	used	to	build	a	house.
Before	you	can	use	your	new	object	type,	you	need	to	define	it	along	with	its	methods	and
properties.	The	important	distinction	is	that	when	you	define	your	reference	type,	no
object	based	on	that	type	is	created.	It’s	only	when	you	create	an	instance	of	your
reference	type	using	the	new	keyword	that	an	object	of	that	type,	based	on	your	blueprint
or	prototype,	is	created.

Before	you	start,	an	important	distinction	must	be	made.	Many	developers	refer	to
reference	types	as	classes	and	use	the	two	terms	interchangeably.	Although	this	is	correct
for	many	object-oriented	languages	such	as	Java,	C#,	and	C++,	it	is	not	correct	for
JavaScript.	JavaScript	does	not	yet	support	a	class	construct,	although	the	next	version	of
JavaScript	will	provide	formal	classes.	JavaScript	does,	however,	fully	support	the	logical
equivalent,	reference	types.

It’s	also	important	to	point	out	that	the	built-in	objects	discussed	thus	far	in	this	chapter
are	also	reference	types.	String,	Array,	Number,	Date,	and	even	Object	are	all	reference
types,	and	the	objects	you	created	are	instances	of	these	types.

A	reference	type	consists	of	three	things:

A	constructor

Method	definitions

Properties

A	constructor	is	a	function	that	is	called	every	time	one	of	your	objects	based	on	this
reference	type	is	created.	It’s	useful	when	you	want	to	initialize	properties	or	the	object	in
some	way.	You	need	to	create	a	constructor	even	if	you	don’t	pass	any	parameters	to	it	or
if	it	contains	no	code.	(In	that	case	it’d	just	be	an	empty	definition.)	As	with	all	functions,
a	constructor	can	have	zero	or	more	parameters.

You’ve	created	objects	to	represent	individual	people.	Next	you	create	a	simple	reference,
called	Person,	to	do	the	same	thing—except	that	these	objects	will	be	actual	Person
objects.

Defining	a	Reference	Type
The	first	thing	you	need	to	do	is	create	the	constructor,	which	is	shown	here:

function	Person(firstName,	lastName)	{

				this.firstName	=	firstName;

				this.lastName	=	lastName;

}

Your	first	thought	might	be	that	what	you	have	here	is	simply	a	function,	and	you’d	be
right.	It’s	not	until	you	start	defining	the	properties	and	methods	that	it	becomes	something
more	than	a	function.	This	is	in	contrast	to	some	programming	languages,	which	have	a
more	formal	way	of	defining	types.

NOTE	Typically,	a	reference	type	is	defined	with	an	uppercase	letter.	Doing	so	makes
it	easy	to	differentiate	a	function	from	a	reference	type	easily	and	quickly.

Inside	the	function,	notice	the	use	of	the	this	variable.	Once	again,	it	literally	means	“this
object,”	and	it	is	the	only	way	to	access	the	object	that	is	being	created.	So	to	create	the
firstName	and	lastName	properties,	you	write	the	following	code:

this.firstName	=	firstName;

this.lastName	=	lastName;

Now	you	need	to	define	getFullName()	and	greet()	methods.	You	can	define	them
inside	of	the	constructor,	but	it	is	more	efficient	to	define	them	on	Person’s	prototype,
like	this:

Person.prototype.getFullName	=	function()	{

				return	this.firstName	+	"	"	+	this.lastName;

};

Person.prototype.greet	=	function(person)	{

				alert("Hello,	"	+	person.getFullName()	+

										".	I'm	"	+	this.getFullName());

};

The	first	thing	you	notice	is	Person.prototype.	Remember	from	Chapter	4	that	functions

are	objects	in	JavaScript,	and	in	this	chapter	you	learned	that	objects	have	properties	and
methods.	So	it’s	easy	to	assume	that	functions	have	properties	and	methods.

Every	function	object	has	a	prototype	property,	but	it	is	only	useful	for	constructor
functions.	You	can	think	of	the	Person.prototype	property	as	an	actual	prototype	for
Person	objects.	Any	properties	and	methods	you	assign	to	Person.prototype	are	usable
on	all	Person	objects.	In	fact,	they’re	more	than	usable—they’re	shared!

The	functions	assigned	to	Person.prototype.getFullName	and
Person.prototype.greet	are	shared	between	all	objects,	or	instances,	of	Person.	This
means	that	the	function	object	of	one	Person	object’s	getFullName	is	the	exact	same
function	object	on	another	Person	object’s	getFullName.	To	express	that	in	code:

var	areSame	=	person1.getFullName	==	person2.getFullName;	//	true

But	why	were	firstName	and	lastName	assigned	in	the	constructor	instead	of
Person.prototype?	The	firstName	and	lastName	properties	are	called	instance	data.
Instance	data	is	unique	to	each	individual	object,	or	instance.	So	because	firstName	and
lastName	are	instance	data,	we	define	them	in	the	constructor—they	shouldn’t	be	shared
between	all	Person	objects.

Creating	and	Using	Reference	Type	Instances
You	create	instances	of	your	reference	type	in	the	same	way	you	created	instances	of
JavaScript’s	built-in	types:	using	the	new	keyword.	So	to	create	a	new	instance	of	Person,
you’d	write	this:

var	johnDoe	=	new	Person("John",	"Doe");

var	janeDoe	=	new	Person("Jane",	"Doe");

Here,	as	with	a	Date	object,	you	have	created	two	new	objects	and	stored	them	in
variables,	johnDoe	and	janeDoe,	but	this	time	it’s	a	new	object	based	on	the	Person	type.

NOTE	The	use	of	the	new	keyword	is	very	important	when	creating	an	object	with	a
constructor.	The	browser	does	not	throw	an	error	if	you	do	not	use	the	new	keyword,
but	your	script	will	not	work	correctly.	Instead	of	creating	a	new	object,	you	actually
add	properties	to	the	global	window	object.	The	problems	caused	by	not	using	the	new
keyword	can	be	hard	to	diagnose,	so	make	sure	you	specify	the	new	keyword	when
creating	objects	with	a	constructor.

You	use	these	objects	just	like	you	did	in	ch5 _ example8.html.	In	the	following	code,	Jane
Doe	greets	John	Doe:

janeDoe.greet(johnDoe);

Even	though	getFullName()	and	greet()	are	defined	on	Person.prototype,	you	still	call
them	like	normal	methods.	JavaScript	is	intelligent	enough	to	look	at	Person.prototype
for	those	methods.

Now	for	the	million	dollar	question:	Why	define	a	reference	type	instead	of	creating	plain,

but	custom,	objects?	It’s	a	valid	question.	Both	the	objects	created	in	ch5_example8.html
and	from	the	Person	constructor	serve	the	same	purpose:	to	represent	an	individual
person.	The	main	difference	is	how	the	objects	are	created.	Objects	created	from	a
constructor	typically	consume	less	of	the	computer’s	memory	than	literal	objects.

Frankly,	it’s	a	question	you	don’t	have	to	worry	about	at	this	point	in	time.	It’s	more
important	to	know	how	to	create	objects	than	using	the	correct	approach.	So	practice	both
methods;	create	your	own	custom	objects	and	reference	types!

SUMMARY
In	this	chapter	you’ve	taken	a	look	at	the	concept	of	objects	and	seen	how	vital	they	are	to
an	understanding	of	JavaScript,	which	represents	virtually	everything	with	objects.	You
also	looked	at	some	of	the	various	native	reference	types	that	the	JavaScript	language
provides	to	add	to	its	functionality.

You	saw	that:

JavaScript	is	object-based—it	represents	things,	such	as	strings,	dates,	and	arrays,
using	the	concept	of	objects.

Objects	have	properties	and	methods.	For	example,	an	Array	object	has	the	length
property	and	the	sort()	method.

To	create	a	new	object,	you	simply	write	new	ObjectType().	You	can	choose	to
initialize	an	object	when	you	create	it.

To	set	an	object’s	property	value	or	get	that	value,	you	simply	write
objectName.objectProperty.

Calling	the	methods	of	an	object	is	similar	to	calling	functions.	Parameters	may	be
passed,	and	return	values	may	be	passed	back.	Accessing	the	methods	of	an	object	is
identical	to	accessing	a	property,	except	that	you	must	remember	to	add	parentheses
at	the	end,	even	when	it	has	no	parameters.	For	example,	you	would	write
objectName.objectMethod().

The	String	type	provides	lots	of	handy	functionality	for	text	and	gives	you	ways	of
finding	out	how	long	the	text	is,	searching	for	text	inside	the	string,	and	selecting
parts	of	the	text.

The	Math	type	is	created	automatically	and	provides	a	number	of	mathematical
properties	and	methods.	For	example,	to	obtain	a	random	number	between	0	and	1,
you	use	the	method	Math.random().

The	Array	type	provides	ways	of	manipulating	arrays.	Some	of	the	things	you	can	do
are	find	the	length	of	an	array,	sort	its	elements,	and	join	two	arrays	together.

The	Date	type	provides	a	way	of	storing,	calculating	with,	and	later	accessing	dates
and	times.

JavaScript	lets	you	create	your	own	custom	objects,	giving	them	the	properties	and
methods	that	you	want	them	to	have.

JavaScript	enables	you	to	create	your	own	types	of	objects	using	reference	types.
These	can	be	used	to	model	real-world	situations	and	for	making	code	easier	to	create
and	more	maintainable,	though	they	do	require	extra	effort	at	the	start.

EXERCISES
You	can	find	suggested	solutions	to	these	questions	in	Appendix	A.

1.	 Using	the	Date	type,	calculate	the	date	12	months	from	now	and	write	this	into	a	web
page.

2.	 Obtain	a	list	of	names	from	the	user,	storing	each	name	entered	in	an	array.	Keep
getting	another	name	until	the	user	enters	nothing.	Sort	the	names	in	ascending	order
and	then	write	them	out	to	the	page,	with	each	name	on	its	own	line.

3.	 ch5_example8.html	uses	a	function	to	create	objects	using	literal	notation.	Modify
this	example	to	use	the	Person	data	type.

6
String	Manipulation
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Using	the	String	object’s	advanced	methods	to	manipulate	strings

Matching	substrings	follow	a	specific	pattern

Validating	useful	pieces	of	information,	such	as	telephone	numbers,	e-mail	addresses,
and	postal	codes

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

In	Chapter	5	you	looked	at	the	String	object,	which	is	one	of	the	native	objects	that
JavaScript	makes	available	to	you.	You	saw	a	number	of	its	properties	and	methods,
including	the	following:

length—The	length	of	the	string	in	characters

charAt()	and	charCodeAt()—The	methods	for	returning	the	character	or	character
code	at	a	certain	position	in	the	string

indexOf()	and	lastIndexOf()—The	methods	that	allow	you	to	search	a	string	for
the	existence	of	another	string	and	that	return	the	character	position	of	the	string	if
found

substr()	and	substring()—The	methods	that	return	just	a	portion	of	a	string

toUpperCase()	and	toLowerCase()—The	methods	that	return	a	string	converted	to
upper-	or	lowercase

In	this	chapter	you	look	at	four	new	methods	of	the	String	object,	namely	split(),
match(),	replace(),	and	search().	The	last	three,	in	particular,	give	you	some	very
powerful	text-manipulation	functionality.	However,	to	make	full	use	of	this	functionality,
you	need	to	learn	about	a	slightly	more	complex	subject.

The	methods	split(),	match(),	replace(),	and	search()	can	all	make	use	of	regular
expressions,	something	JavaScript	wraps	up	in	an	object	called	the	RegExp	object.	Regular
expressions	enable	you	to	define	a	pattern	of	characters,	which	you	can	use	for	text
searching	or	replacement.	Say,	for	example,	that	you	have	a	string	in	which	you	want	to
replace	all	single	quotes	enclosing	text	with	double	quotes.	This	may	seem	easy—just
search	the	string	for	'	and	replace	it	with	"—but	what	if	the	string	is	Bob	O'Hara	said
"Hello"?	You	would	not	want	to	replace	the	single-quote	character	in	O'Hara.	You	can
perform	this	text	replacement	without	regular	expressions,	but	it	would	take	more	than	the
two	lines	of	code	needed	if	you	do	use	regular	expressions.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

Although	split(),	match(),	replace(),	and	search()	are	at	their	most	powerful	with
regular	expressions,	they	can	also	be	used	with	just	plaintext.	You	take	a	look	at	how	they
work	in	this	simpler	context	first,	to	become	familiar	with	the	methods.

ADDITIONAL	STRING	METHODS
In	this	section	you	take	a	look	at	the	split(),	replace(),	search(),	and	match()
methods,	and	see	how	they	work	without	regular	expressions.

The	split()	Method
The	String	object’s	split()	method	splits	a	single	string	into	an	array	of	substrings.
Where	the	string	is	split	is	determined	by	the	separation	parameter	that	you	pass	to	the
method.	This	parameter	is	simply	a	character	or	text	string.

For	example,	to	split	the	string	"A,B,C"	so	that	you	have	an	array	populated	with	the
letters	between	the	commas,	the	code	would	be	as	follows:

var	myString	=	"A,B,C";

var	myTextArray	=	myString.split(",");

JavaScript	creates	an	array	with	three	elements.	In	the	first	element	it	puts	everything	from
the	start	of	the	string	myString	up	to	the	first	comma.	In	the	second	element	it	puts
everything	from	after	the	first	comma	to	before	the	second	comma.	Finally,	in	the	third
element	it	puts	everything	from	after	the	second	comma	to	the	end	of	the	string.	So,	your
array	myTextArray	will	look	like	this:

A		B		C

If,	however,	your	string	were	"A,B,C,"	JavaScript	would	split	it	into	four	elements,	the
last	element	containing	everything	from	the	last	comma	to	the	end	of	the	string;	in	other
words,	the	last	string	would	be	an	empty	string:

A		B		C

This	is	something	that	can	catch	you	off	guard	if	you’re	not	aware	of	it.

				TRY	IT	OUT								Reversing	the	Order	of	Text
Let’s	create	a	short	example	using	the	split()	method,	in	which	you	reverse	the	lines
written	in	a	<textarea>	element:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Example	1</title>

</head>

				<body>

								<script>

												var	values	=	prompt("Please	enter	a	set	of	comma	separated	

values.",

																"Apples,Oranges,Bananas");

												function	splitAndReverseText(csv)	{

																var	parts	=	csv.split(",");

																parts.reverse();

																var	reversedString	=	parts.join(",");

																alert(reversedString);

												}

												splitAndReverseText(values);

								</script>

				</body>

</html>

Save	this	as	ch6 _ example1.html	and	load	it	into	your	browser.	Use	the	default
value	in	the	prompt	box,	click	OK,	and	you	should	see	the	screen	shown	in	Figure
6.1.

Figure	6.1

Try	other	comma-separated	values	to	test	it	further.

The	key	to	how	this	code	works	is	the	function	splitAndReverseText().	It	accepts	a
string	value	that	should	contain	one	or	more	commas.	You	start	by	splitting	the	value
contained	within	csv	using	the	split()	method	and	putting	the	resulting	array	inside
the	parts	variable:

function	splitAndReverseText(csv)	{

				var	parts	=	csv.split(",");

This	uses	a	comma	as	the	separator.	You	then	reverse	the	array	of	string	parts	using
the	Array	object’s	reverse()	method:

				parts.reverse();

With	the	array	now	reversed,	it’s	just	a	simple	matter	of	creating	the	new	string.	You
can	easily	accomplish	this	with	the	Array	object’s	join()	method:

				var	reversedString	=	parts.join(",");

Remember	from	Chapter	5	that	the	join()	method	converts	an	array	into	a	string,
separating	each	element	with	the	specified	separator.

Finally,	you	display	the	new	string	in	an	alert	box:

			alert(reversedString);

}

After	you’ve	looked	at	regular	expressions,	you’ll	revisit	the	split()	method.

The	replace()	Method
The	replace()	method	searches	a	string	for	occurrences	of	a	substring.	Where	it	finds	a
match	for	this	substring,	it	replaces	the	substring	with	a	third	string	that	you	specify.

Let’s	look	at	an	example.	Say	you	have	a	string	with	the	word	May	in	it,	as	shown	in	the
following:

var	myString	=	"The	event	will	be	in	May,	the	21st	of	June";

Now,	say	you	want	to	replace	May	with	June.	You	can	use	the	replace()	method	like	so:

Var	myCleanedUpString	=	myString.replace("May",	"June");

The	value	of	myString	will	not	be	changed.	Instead,	the	replace()	method	returns	the
value	of	myString	but	with	May	replaced	with	June.	You	assign	this	returned	string	to	the
variable	myCleanedUpString,	which	will	contain	the	corrected	text:

"The	event	will	be	in	June,	the	21st	of	June"

The	search()	Method
The	search()	method	enables	you	to	search	a	string	for	a	particular	piece	of	text.	If	the
text	is	found,	the	character	position	at	which	it	was	found	is	returned;	otherwise,	-1	is
returned.	The	method	takes	only	one	parameter,	namely	the	text	you	want	to	search	for.

When	used	with	plaintext,	the	search()	method	provides	no	real	benefit	over	methods
like	indexOf(),	which	you’ve	already	seen.	However,	you	see	later	that	the	power	of	this
method	becomes	apparent	when	you	use	regular	expressions.

In	the	following	example,	you	want	to	find	out	if	the	word	Java	is	contained	within	the
string	called	myString:

var	myString	=	"Beginning	JavaScript,	Beginning	Java,	"	+

															"Professional	JavaScript";

alert(myString.search("Java"));

The	alert	box	that	occurs	will	show	the	value	10,	which	is	the	character	position	of	the	J
in	the	first	occurrence	of	Java,	as	part	of	the	word	JavaScript.

The	match()	Method
The	match()	method	is	very	similar	to	the	search()	method,	except	that	instead	of
returning	the	position	at	which	a	match	was	found,	it	returns	an	array.	Each	element	of	the
array	contains	the	text	of	each	match	that	is	found.

Although	you	can	use	plaintext	with	the	match()	method,	it	would	be	completely	pointless
to	do	so.	For	example,	take	a	look	at	the	following:

var	myString	=	"1997,	1998,	1999,	2000,	2000,	2001,	2002";

myMatchArray	=	myString.match("2000");

alert(myMatchArray.length);

This	code	results	in	myMatchArray	holding	an	element	containing	the	value	2000.	Given
that	you	already	know	your	search	string	is	2000,	you	can	see	it’s	been	a	pretty	pointless
exercise.

However,	the	match()	method	makes	a	lot	more	sense	when	you	use	it	with	regular
expressions.	Then	you	might	search	for	all	years	in	the	twenty-first	century—that	is,	those
beginning	with	2.	In	this	case,	your	array	would	contain	the	values	2000,	2000,	2001,	and
2002,	which	is	much	more	useful	information!

REGULAR	EXPRESSIONS
Before	you	look	at	the	split(),	match(),	search(),	and	replace()	methods	of	the
String	object	again,	you	need	to	look	at	regular	expressions	and	the	RegExp	object.
Regular	expressions	provide	a	means	of	defining	a	pattern	of	characters,	which	you	can
then	use	to	split,	search	for,	or	replace	characters	in	a	string	when	they	fit	the	defined
pattern.

JavaScript’s	regular	expression	syntax	borrows	heavily	from	the	regular	expression	syntax
of	Perl,	another	scripting	language.	Most	modern	programming	languages	support	regular
expressions,	as	do	lots	of	applications,	such	as	WebMatrix,	Sublime	Text,	and
Dreamweaver,	in	which	the	Find	facility	allows	regular	expressions	to	be	used.	You’ll	find
that	your	regular	expression	knowledge	will	prove	useful	even	outside	JavaScript.

Regular	expressions	in	JavaScript	are	used	through	the	RegExp	object,	which	is	a	native
JavaScript	object,	as	are	String,	Array,	and	so	on.	You	have	two	ways	of	creating	a	new
RegExp	object.	The	easier	is	with	a	regular	expression	literal,	such	as	the	following:

var	myRegExp	=	/\b'|'\b/;

The	forward	slashes	(/)	mark	the	start	and	end	of	the	regular	expression.	This	is	a	special
syntax	that	tells	JavaScript	that	the	code	is	a	regular	expression,	much	as	quote	marks
define	a	string’s	start	and	end.	Don’t	worry	about	the	actual	expression’s	syntax	yet	(the
\b'|'\b)—that	is	explained	in	detail	shortly.

Alternatively,	you	could	use	the	RegExp	object’s	constructor	function	RegExp()	and	type
the	following:

var	myRegExp	=	new	RegExp("\\b'|'\\b");

Either	way	of	specifying	a	regular	expression	is	fine,	though	the	former	method	is	a
shorter,	more	efficient	one	for	JavaScript	to	use	and	therefore	is	generally	preferred.	For
much	of	the	remainder	of	the	chapter,	you	use	the	first	method.	The	main	reason	for	using
the	second	method	is	that	it	allows	the	regular	expression	to	be	determined	at	run	time	(as
the	code	is	executing	and	not	when	you	are	writing	the	code).	This	is	useful	if,	for
example,	you	want	to	base	the	regular	expression	on	user	input.

Once	you	get	familiar	with	regular	expressions,	you	will	come	back	to	the	second	way	of
defining	them,	using	the	RegExp()	constructor.	As	you	can	see,	the	syntax	of	regular
expressions	is	slightly	different	with	the	second	method,	so	we’ll	return	to	this	subject
later.

Although	you’ll	be	concentrating	on	the	use	of	the	RegExp	object	as	a	parameter	for	the
String	object’s	split(),	replace(),	match(),	and	search()	methods,	the	RegExp	object
does	have	its	own	methods	and	properties.	For	example,	the	test()	method	enables	you
to	test	to	see	if	the	string	passed	to	it	as	a	parameter	contains	a	pattern	matching	the	one
defined	in	the	RegExp	object.	You	see	the	test()	method	in	use	in	an	example	shortly.

Simple	Regular	Expressions

Defining	patterns	of	characters	using	regular	expression	syntax	can	get	fairly	complex.	In
this	section	you	explore	just	the	basics	of	regular	expression	patterns.	The	best	way	to	do
this	is	through	examples.

Let’s	start	by	looking	at	an	example	in	which	you	want	to	do	a	simple	text	replacement
using	the	replace()	method	and	a	regular	expression.	Imagine	you	have	the	following
string:

var	myString	=	"Paul,	Paula,	Pauline,	paul,	Paul";

and	you	want	to	replace	any	occurrence	of	the	name	“Paul”	with	“Ringo.”

Well,	the	pattern	of	text	you	need	to	look	for	is	simply	Paul.	Representing	this	as	a	regular
expression,	you	just	have	this:

var	myRegExp	=	/Paul/;

As	you	saw	earlier,	the	forward-slash	characters	mark	the	start	and	end	of	the	regular
expression.	Now	let’s	use	this	expression	with	the	replace()	method:

myString	=	myString.replace(myRegExp,	"Ringo");

You	can	see	that	the	replace()	method	takes	two	parameters:	the	RegExp	object	that
defines	the	pattern	to	be	searched	and	replaced,	and	the	replacement	text.

If	you	put	this	all	together	in	an	example,	you	have	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Figure	2</title>

</head>

<body>

				<script>

								var	myString	=	"Paul,	Paula,	Pauline,	paul,	Paul";

								var	myRegExp	=	/Paul/;

								myString	=	myString.replace(myRegExp,	"Ringo");

								alert(myString);

				</script>

</body>

</html>

You	can	save	and	run	this	code.	You	will	see	the	screen	shown	in	Figure	6.2.

Figure	6.2

You	can	see	that	this	has	replaced	the	first	occurrence	of	Paul	in	your	string.	But	what	if
you	wanted	all	the	occurrences	of	Paul	in	the	string	to	be	replaced?	The	two	at	the	far	end
of	the	string	are	still	there,	so	what	happened?

By	default,	the	RegExp	object	looks	only	for	the	first	matching	pattern,	in	this	case	the	first
Paul,	and	then	stops.	This	is	a	common	and	important	behavior	for	RegExp	objects.
Regular	expressions	tend	to	start	at	one	end	of	a	string	and	look	through	the	characters
until	the	first	complete	match	is	found,	then	stop.

What	you	want	is	a	global	match,	which	is	a	search	for	all	possible	matches	to	be	made
and	replaced.	To	help	you	out,	the	RegExp	object	has	three	attributes	you	can	define,	as
listed	in	the	following	table:

ATTRIBUTE
CHARACTER

DESCRIPTION

G Global	match.	This	looks	for	all	matches	of	the	pattern	rather	than
stopping	after	the	first	match	is	found.

I Pattern	is	case-insensitive.	For	example,	Paul	and	paul	are	considered
the	same	pattern	of	characters.

M Multi-line	flag.	This	specifies	that	the	special	characters	^	and	$	can
match	the	beginning	and	the	end	of	lines	as	well	as	the	beginning	and
end	of	the	string.

You	learn	more	about	these	attribute	characters	later	in	the	chapter.

If	you	change	the	RegExp	object	in	the	code	to	the	following,	a	global	case-insensitive
match	will	be	made:

var	myRegExp	=	/Paul/gi;

Running	the	code	now	produces	the	result	shown	in	Figure	6.3.

Figure	6.3

This	looks	as	if	it	has	all	gone	horribly	wrong.	The	regular	expression	has	matched	the
Paul	substrings	at	the	start	and	the	end	of	the	string,	and	the	penultimate	paul,	just	as	you
wanted.	However,	the	Paul	substrings	inside	Pauline	and	Paula	have	also	been	replaced.

The	RegExp	object	has	done	its	job	correctly.	You	asked	for	all	patterns	of	the	characters
Paul	to	be	replaced	and	that’s	what	you	got.	What	you	actually	meant	was	for	all
occurrences	of	Paul,	when	it’s	a	single	word	and	not	part	of	another	word,	such	as	Paula,
to	be	replaced.	The	key	to	making	regular	expressions	work	is	to	define	exactly	the	pattern
of	characters	you	mean,	so	that	only	that	pattern	can	match	and	no	other.	So	let’s	do	that.

1.	 You	want	paul	or	Paul	to	be	replaced.

2.	 You	don’t	want	it	replaced	when	it’s	actually	part	of	another	word,	as	in	Pauline.

How	do	you	specify	this	second	condition?	How	do	you	know	when	the	word	is	joined	to
other	characters,	rather	than	just	joined	to	spaces	or	punctuation	or	the	start	or	end	of	the
string?

To	see	how	you	can	achieve	the	desired	result	with	regular	expressions,	you	need	to	enlist
the	help	of	regular	expression	special	characters.	You	look	at	these	in	the	next	section,	by
the	end	of	which	you	should	be	able	to	solve	the	problem.

Regular	Expressions:	Special	Characters
You	look	at	three	types	of	special	characters	in	this	section.

Text,	Numbers,	and	Punctuation
The	first	group	of	special	characters	contains	the	character	class’s	special	characters.

Character	class	means	digits,	letters,	and	whitespace	characters.	The	special	characters
are	displayed	in	the	following	table:

CHARACTER
CLASS

CHARACTERS	IT	MATCHES EXAMPLE

\d Any	digit	from	0	to	9 \d\d	matches	72,	but	not
aa	or	7a.

\D Any	character	that	is	not	a	digit \D\D\D	matches	abc,	but
not	123	or	8ef.

\w Any	word	character;	that	is,	A–Z,	a–z,	0–9,
and	the	underscore	character	(_)

\w\w\w\w	matches	Ab_2,
but	not	£$%*	or	Ab_@.

\W Any	non-word	character \W	matches	@,	but	not	a.
\s Any	whitespace	character \s	matches	tab,	return,

formfeed,	and	vertical	tab.
\S Any	non-whitespace	character \S	matches	A,	but	not	the

tab	character.
. Any	single	character	other	than	the	newline

character	(\n)
.	matches	a	or	4	or	@.

[.	.	.] Any	one	of	the	characters	between	the
brackets[a-z]	matches	any	character	in	the
range	a	to	z

[abc]	matches	a	or	b	or	c,
but	nothing	else.

[^.	.	.] Any	one	character,	but	not	one	of	those
inside	the	brackets

[^abc]	matches	any
character	except	a	or	b	or
c.

[^a-z]	matches	any
character	that	is	not	in	the
range	a	to	z

.

Note	that	uppercase	and	lowercase	characters	mean	very	different	things,	so	you	need	to
be	extra	careful	with	case	when	using	regular	expressions.

Let’s	look	at	an	example.	To	match	a	telephone	number	in	the	format	1-800-888-5474,	the
regular	expression	would	be	as	follows:

\d-\d\d\d-\d\d\d-\d\d\d\d

You	can	see	that	there’s	a	lot	of	repetition	of	characters	here,	which	makes	the	expression
quite	unwieldy.	To	make	this	simpler,	regular	expressions	have	a	way	of	defining
repetition.	You	see	this	a	little	later	in	the	chapter,	but	first	let’s	look	at	another	example.

				TRY	IT	OUT								Checking	a	Passphrase	for
Alphanumeric	Characters
You	use	what	you’ve	learned	so	far	about	regular	expressions	in	a	full	example	in
which	you	check	that	a	passphrase	contains	only	letters	and	numbers—that	is,
alphanumeric	characters,	not	punctuation	or	symbols	like	@,	%,	and	so	on:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Example	2</title>

</head>

<body>

				<script>

								var	input	=	prompt("Please	enter	a	pass	phrase.",	"");

								function	isValid	(text)	{

												var	myRegExp	=	/[^a-z\d]/i;

												return	!(myRegExp.test(text));

								}

								if	(isValid(input))	{

												alert("Your	passphrase	contains	only	valid	characters");

								}	else	{

												alert("Your	passphrase	contains	one	or	more	invalid	

characters");

								}

				</script>

</body>

</html>

Save	the	page	as	ch6 _ example2.html,	and	then	load	it	into	your	browser.	Type	just
letters,	numbers,	and	spaces	into	the	prompt	box,	click	OK,	and	you’ll	be	told	that	the
phrase	contains	valid	characters.	Try	putting	punctuation	or	special	characters	like	@,
^,	$,	and	so	on	into	the	text	box,	and	you’ll	be	informed	that	your	passphrase	is
invalid.

Let’s	start	by	looking	at	the	isValid()	function.	As	its	name	implies,	it	checks	the
validity	of	the	passphrase:

function	isValid(text)	{

				var	myRegExp	=	/[^a-z\d]/i;

				return	!(myRegExp.test(text));

}

The	function	takes	just	one	parameter:	the	text	you	want	to	validate.	You	then	declare
a	variable,	myRegExp,	and	set	it	to	a	new	regular	expression,	which	implicitly	creates	a
new	RegExp	object.

The	regular	expression	itself	is	fairly	simple,	but	first	think	about	what	pattern	you	are

looking	for.	What	you	want	to	find	out	is	whether	your	passphrase	string	contains	any
characters	that	are	not	letters	between	A	and	Z	or	between	a	and	z,	numbers	between
0	and	9,	or	spaces.	Let’s	see	how	this	translates	into	a	regular	expression:

1.	 You	use	square	brackets	with	the	^	symbol:

[^]

This	means	you	want	to	match	any	character	that	is	not	one	of	the	characters
specified	inside	the	square	brackets.

2.	 You	add	a-z,	which	specifies	any	character	in	the	range	a	through	z:

[^a-z]

So	far,	your	regular	expression	matches	any	character	that	is	not	between	a	and
z.	Note	that,	because	you	added	the	i	to	the	end	of	the	expression	definition,
you’ve	made	the	pattern	case-insensitive.	So	your	regular	expression	actually
matches	any	character	not	between	A	and	Z	or	a	and	z.

3.	 You	add	\d	to	indicate	any	digit	character,	or	any	character	between	0	and	9:

[^a-z\d]

4.	 Your	expression	matches	any	character	that	is	not	between	a	and	z,	A	and	Z,	or	0
and	9.	You	decide	that	a	space	is	valid,	so	you	add	that	inside	the	square
brackets:

[^a-z\d]

Putting	this	all	together,	you	have	a	regular	expression	that	matches	any
character	that	is	not	a	letter,	a	digit,	or	a	space.

5.	 On	the	second	and	final	line	of	the	function,	you	use	the	RegExp	object’s	test()
method	to	return	a	value:

return	!(myRegExp.test(text));

The	test()	method	of	the	RegExp	object	checks	the	string	passed	as	its	parameter	to
see	if	the	characters	specified	by	the	regular	expression	syntax	match	anything	inside
the	string.	If	they	do,	true	is	returned;	if	not,	false	is	returned.	Your	regular
expression	matches	the	first	invalid	character	found,	so	if	you	get	a	result	of	true,
you	have	an	invalid	passphrase.	However,	it’s	a	bit	illogical	for	an	is _ valid
function	to	return	true	when	it’s	invalid,	so	you	reverse	the	result	returned	by	adding
the	NOT	operator	(!).

Previously	you	saw	the	two-line	validity-checker	function	using	regular	expressions.
Just	to	show	how	much	more	coding	is	required	to	do	the	same	thing	without	regular
expressions,	here	is	a	second	function	that	does	the	same	thing	as	isValid()	but
without	regular	expressions:

function	isValid2(text)	{

			var	returnValue	=	true;

			var	validChars	=	"abcdefghijklmnopqrstuvwxyz1234567890	";

			for	(var	charIndex	=	0;	charIndex	<	text.length;charIndex++)	{

						if	(validChars.indexOf(text.charAt(charIndex).toLowerCase())	<	0)	

{

									returnValue	=	false;

									break;

						}

			}

			return	returnValue;

}

This	is	probably	as	small	as	the	non-regular	expression	version	can	be,	and	yet	it’s
still	several	lines	longer	than	isValid().

The	principle	of	this	function	is	similar	to	that	of	the	regular	expression	version.	You
have	a	variable,	validChars,	which	contains	all	the	characters	you	consider	to	be
valid.	You	then	use	the	charAt()	method	in	a	for	loop	to	get	each	character	in	the
passphrase	string	and	check	whether	it	exists	in	your	validChars	string.	If	it	doesn’t,
you	know	you	have	an	invalid	character.

In	this	example,	the	non-regular	expression	version	of	the	function	is	10	lines,	but
with	a	more	complex	problem	you	could	find	it	takes	20	or	30	lines	to	do	the	same
thing	a	regular	expression	can	do	in	just	a	few.

Back	to	your	actual	code:	you	use	an	if…else	statement	to	display	the	appropriate
message	to	the	user.	If	the	passphrase	is	valid,	an	alert	box	tells	the	user	that	all	is
fine:

if	(isValid(input))	{

				alert("Your	passphrase	contains	only	valid	characters");

}

If	it	isn’t,	another	alert	box	tells	users	that	their	text	was	invalid:

		else	{

				alert("Your	passphrase	contains	one	or	more	invalid	characters");

}

Repetition	Characters
Regular	expressions	include	something	called	repetition	characters,	which	are	a	means	of
specifying	how	many	of	the	last	item	or	character	you	want	to	match.	This	proves	very
useful,	for	example,	if	you	want	to	specify	a	phone	number	that	repeats	a	character	a
specific	number	of	times.	The	following	table	lists	some	of	the	most	common	repetition
characters	and	what	they	do:

SPECIAL
CHARACTER

MEANING EXAMPLE

{n} Match	n	of	the	previous	item. x{2}	matches	xx.
{n,} Match	n	or	more	of	the	previous

item.
x{2,}	matches	xx,	xxx,	xxxx,
xxxxx,	and	so	on.

{n,m} Match	at	least	n	and	at	most	m	of
the	previous	item.

x{2,4}	matches	xx,	xxx,	and
xxxx.

? Match	the	previous	item	zero	or
one	time.

x?	matches	nothing	or	x.

+ Match	the	previous	item	one	or
more	times.

x+	matches	x,	xx,	xxx,	xxxx,
xxxxx,	and	so	on.

* Match	the	previous	item	zero	or
more	times.

x*	matches	nothing,	or	x,	xx,	xxx,
xxxx,	and	so	on.

You	saw	earlier	that	to	match	a	telephone	number	in	the	format	1-800-888-5474,	the
regular	expression	would	be	\d-\d\d\d-\d\d\d-\d\d\d\d.	Let’s	see	how	this	would	be
simplified	with	the	use	of	the	repetition	characters.

The	pattern	you’re	looking	for	starts	with	one	digit	followed	by	a	dash,	so	you	need	the
following:

\d-

Next	are	three	digits	followed	by	a	dash.	This	time	you	can	use	the	repetition	special
characters—\d{3}	will	match	exactly	three	\d,	which	is	the	any-digit	character:

\d-\d{3}-

Next,	you	have	three	digits	followed	by	a	dash	again,	so	now	your	regular	expression
looks	like	this:

\d-\d{3}-\d{3}-

Finally,	the	last	part	of	the	expression	is	four	digits,	which	is	\d{4}:

\d-\d{3}-\d{3}-\d{4}

You’d	declare	this	regular	expression	like	this:

var	myRegExp	=	/\d-\d{3}-\d{3}-\d{4}/

Remember	that	the	first	/	and	last	/	tell	JavaScript	that	what	is	in	between	those	characters
is	a	regular	expression.	JavaScript	creates	a	RegExp	object	based	on	this	regular
expression.

As	another	example,	what	if	you	have	the	string	Paul	Paula	Pauline,	and	you	want	to
replace	Paul	and	Paula	with	George?	To	do	this,	you	would	need	a	regular	expression	that
matches	both	Paul	and	Paula.

Let’s	break	this	down.	You	know	you	want	the	characters	Paul,	so	your	regular	expression

starts	as:

Paul

Now	you	also	want	to	match	Paula,	but	if	you	make	your	expression	Paula,	this	will
exclude	a	match	on	Paul.	This	is	where	the	special	character	?	comes	in.	It	enables	you	to
specify	that	the	previous	character	is	optional—it	must	appear	zero	(not	at	all)	or	one	time.
So,	the	solution	is:

Paula?

which	you’d	declare	as:

var	myRegExp	=	/Paula?/

Position	Characters
The	third	group	of	special	characters	includes	those	that	enable	you	to	specify	either
where	the	match	should	start	or	end	or	what	will	be	on	either	side	of	the	character	pattern.
For	example,	you	might	want	your	pattern	to	exist	at	the	start	or	end	of	a	string	or	line,	or
you	might	want	it	to	be	between	two	words.	The	following	table	lists	some	of	the	most
common	position	characters	and	what	they	do:

POSITION
CHARACTER

DESCRIPTION

^ The	pattern	must	be	at	the	start	of	the	string,	or	if	it’s	a	multi-line	string,
then	at	the	beginning	of	a	line.	For	multi-line	text	(a	string	that	contains
carriage	returns),	you	need	to	set	the	multi-line	flag	when	defining	the
regular	expression	using	/myreg	ex/m.	Note	that	this	is	only	applicable
to	IE	5.5	and	later	and	NN	6	and	later.

$ The	pattern	must	be	at	the	end	of	the	string,	or	if	it’s	a	multi-line	string,
then	at	the	end	of	a	line.	For	multi-line	text	(a	string	that	contains
carriage	returns),	you	need	to	set	the	multi-line	flag	when	defining	the
regular	expression	using	/myreg	ex/m.	Note	that	this	is	only	applicable
to	IE	5.5	and	later	and	NN	6	and	later.

\b This	matches	a	word	boundary,	which	is	essentially	the	point	between	a
word	character	and	a	non-word	character.

\B This	matches	a	position	that’s	not	a	word	boundary.

For	example,	if	you	wanted	to	make	sure	your	pattern	was	at	the	start	of	a	line,	you	would
type	the	following:

^myPattern

This	would	match	an	occurrence	of	myPattern	if	it	was	at	the	beginning	of	a	line.

To	match	the	same	pattern,	but	at	the	end	of	a	line,	you	would	type	the	following:

myPattern$

The	word-boundary	special	characters	\b	and	\B	can	cause	confusion,	because	they	do	not
match	characters	but	the	positions	between	characters.

Imagine	you	had	the	string	"Hello	world!,	let's	look	at	boundaries	said	007."
defined	in	the	code	as	follows:

var	myString	=	"Hello	world!,	let's	look	at	boundaries	said	007.";

To	make	the	word	boundaries	(that	is,	the	boundaries	between	the	words)	of	this	string
stand	out,	let’s	convert	them	to	the	|	character:

var	myRegExp	=	/\b/g;

myString	=	myString.replace(myRegExp,	"|");

alert(myString);

You’ve	replaced	all	the	word	boundaries,	\b,	with	a	|,	and	your	message	box	looks	like
the	one	in	Figure	6.4.

Figure	6.4

You	can	see	that	the	position	between	any	word	character	(letters,	numbers,	or	the
underscore	character)	and	any	non-word	character	is	a	word	boundary.	You’ll	also	notice
that	the	boundary	between	the	start	or	end	of	the	string	and	a	word	character	is	considered
to	be	a	word	boundary.	The	end	of	this	string	is	a	full	stop.	So	the	boundary	between	the
full	stop	and	the	end	of	the	string	is	a	non-word	boundary,	and	therefore	no	|	has	been
inserted.

If	you	change	the	regular	expression	in	the	example,	so	that	it	replaces	non-word
boundaries	as	follows:

var	myRegExp	=	/\B/g;

you	get	the	result	shown	in	Figure	6.5.

Figure	6.5

Now	the	position	between	a	letter,	number,	or	underscore	and	another	letter,	number,	or
underscore	is	considered	a	non-word	boundary	and	is	replaced	by	an	|	in	the	example.
However,	what	is	slightly	confusing	is	that	the	boundary	between	two	non-word
characters,	such	as	an	exclamation	mark	and	a	comma,	is	also	considered	a	non-word
boundary.	If	you	think	about	it,	it	actually	does	make	sense,	but	it’s	easy	to	forget	when
creating	regular	expressions.

You’ll	remember	this	example	from	when	you	started	looking	at	regular	expressions:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Figure	2</title>

</head>

<body>

				<script>

								var	myString	=	"Paul,	Paula,	Pauline,	paul,	Paul";

								var	myRegExp	=	/Paul/gi;

								myString	=	myString.replace(myRegExp,	"Ringo");

								alert(myString);

				</script>

</body>

</html>

You	used	this	code	to	convert	all	instances	of	Paul	or	paul	to	Ringo.

However,	you	found	that	this	code	actually	converts	all	instances	of	Paul	to	Ringo,	even
when	the	word	Paul	is	inside	another	word.

One	way	to	solve	this	problem	would	be	to	replace	the	string	Paul	only	where	it	is

followed	by	a	non-word	character.	The	special	character	for	non-word	characters	is	\W,	so
you	need	to	alter	the	regular	expression	to	the	following:

var	myRegExp	=	/Paul\W/gi;

This	gives	the	result	shown	in	Figure	6.6.

Figure	6.6

It’s	getting	better,	but	it’s	still	not	what	you	want.	Notice	that	the	commas	after	the	second
and	third	Paul	substrings	have	also	been	replaced	because	they	matched	the	\W	character.
Also,	you’re	still	not	replacing	Paul	at	the	very	end	of	the	string.	That’s	because	there	is
no	character	after	the	letter	l	in	the	last	Paul.	What	is	after	the	l	in	the	last	Paul?	Nothing,
just	the	boundary	between	a	word	character	and	a	non-word	character,	and	therein	lies	the
answer.	What	you	want	as	your	regular	expression	is	Paul	followed	by	a	word	boundary.
Let’s	alter	the	regular	expression	to	cope	with	that	by	entering	the	following:

var	myRegExp	=	/Paul\b/gi;

Now	you	get	the	result	you	want,	as	shown	in	Figure	6.7.

Figure	6.7

At	last	you’ve	got	it	right,	and	this	example	is	finished.

Covering	All	Eventualities
Perhaps	the	trickiest	thing	about	a	regular	expression	is	making	sure	it	covers	all
eventualities.	In	the	previous	example	your	regular	expression	works	with	the	string	as
defined,	but	does	it	work	with	the	following?

var	myString	=	"Paul,	Paula,	Pauline,	paul,	Paul,	JeanPaul";

Here	the	Paul	substring	in	JeanPaul	will	be	changed	to	Ringo.	You	really	only	want	to
convert	the	substring	Paul	where	it	is	on	its	own,	with	a	word	boundary	on	either	side.	If
you	change	your	regular	expression	code	to:

var	myRegExp	=	/\bPaul\b/gi;

you	have	your	final	answer	and	can	be	sure	only	Paul	or	paul	will	ever	be	matched.

Grouping	Regular	Expressions
The	final	topic	under	regular	expressions,	before	you	look	at	examples	using	the	match(),
replace(),	and	search()	methods,	is	how	you	can	group	expressions.	In	fact,	it’s	quite
easy.	If	you	want	a	number	of	expressions	to	be	treated	as	a	single	group,	you	just	enclose
them	in	parentheses,	for	example,	/(\d\d)/.	Parentheses	in	regular	expressions	are	special
characters	that	group	together	character	patterns	and	are	not	themselves	part	of	the
characters	to	be	matched.

Why	would	you	want	to	do	this?	Well,	by	grouping	characters	into	patterns,	you	can	use
the	special	repetition	characters	to	apply	to	the	whole	group	of	characters,	rather	than	just
one.

Let’s	take	the	following	string	defined	in	myString	as	an	example:

var	myString	=	"JavaScript,	VBScript	and	PHP";

How	could	you	match	both	JavaScript	and	VBScript	using	the	same	regular	expression?
The	only	thing	they	have	in	common	is	that	they	are	whole	words	and	they	both	end	in
Script.	Well,	an	easy	way	would	be	to	use	parentheses	to	group	the	patterns	Java	and	VB.
Then	you	can	use	the	?	special	character	to	apply	to	each	of	these	groups	of	characters	to
make	the	pattern	match	any	word	having	zero	or	one	instance	of	the	characters	Java	or	VB,
and	ending	in	Script:

var	myRegExp	=	/\b(VB)?(Java)?Script\b/gi;

Breaking	down	this	expression,	you	can	see	the	pattern	it	requires	is	as	follows:

1.	 A	word	boundary:	\b

2.	 Zero	or	one	instance	of	VB:	(VB)?

3.	 Zero	or	one	instance	of	Java:	(Java)?

4.	 The	characters	Script:	Script

5.	 A	word	boundary:	\b

Putting	these	together,	you	get	this:

var	myString	=	"JavaScript,	VBScript	and	PHP";

var	myRegExp	=	/\b(VB)?(Java)?Script\b/gi;

myString	=	myString.replace(myRegExp,	"xxxx");

alert(myString);

The	output	of	this	code	is	shown	in	Figure	6.8.

Figure	6.8

If	you	look	back	at	the	special	repetition	characters	table,	you’ll	see	that	they	apply	to	the
item	preceding	them.	This	can	be	a	character,	or,	where	they	have	been	grouped	by	means
of	parentheses,	the	previous	group	of	characters.

However,	there	is	a	potential	problem	with	the	regular	expression	you	just	defined.	As
well	as	matching	VBScript	and	JavaScript,	it	also	matches	VBJavaScript.	This	is	clearly
not	exactly	what	you	meant.

To	get	around	this	you	need	to	make	use	of	both	grouping	and	the	special	character	|,
which	is	the	alternation	character.	It	has	an	or-like	meaning,	similar	to	|	|	in	if
statements,	and	will	match	the	characters	on	either	side	of	itself.

Let’s	think	about	the	problem	again.	You	want	the	pattern	to	match	VBScript	or
JavaScript.	Clearly	they	have	the	Script	part	in	common.	So	what	you	want	is	a	new
word	starting	with	Java	or	starting	with	VB;	either	way,	it	must	end	in	Script.

First,	you	know	that	the	word	must	start	with	a	word	boundary:

\b

Next	you	know	that	you	want	either	VB	or	Java	to	be	at	the	start	of	the	word.	You’ve	just
seen	that	in	regular	expressions	|	provides	the	“or”	you	need,	so	in	regular	expression
syntax	you	want	the	following:

\b(VB|Java)

This	matches	the	pattern	VB	or	Java.	Now	you	can	just	add	the	Script	part:

\b(VB|Java)Script\b

Your	final	code	looks	like	this:

var	myString	=	"JavaScript,	VBScript	and	Perl";

var	myRegExp	=	/\b(VB|Java)Script\b/gi;

myString	=	myString.replace(myRegExp,	"xxxx");

alert(myString);

Reusing	Groups	of	Characters
You	can	reuse	the	pattern	specified	by	a	group	of	characters	later	on	in	the	regular
expression.	To	refer	to	a	previous	group	of	characters,	you	just	type	\	and	a	number
indicating	the	order	of	the	group.	For	example,	you	can	refer	to	the	first	group	as	\1,	the
second	as	\2,	and	so	on.

Let’s	look	at	an	example.	Say	you	have	a	list	of	numbers	in	a	string,	with	each	number
separated	by	a	comma.	For	whatever	reason,	you	are	not	allowed	to	have	two	instances	of
the	same	number	in	a	row,	so	although

009,007,001,002,004,003

would	be	okay,	the	following:

007,007,001,002,002,003

would	not	be	valid,	because	you	have	007	and	002	repeated	after	themselves.

How	can	you	find	instances	of	repeated	digits	and	replace	them	with	the	word	ERROR?	You
need	to	use	the	ability	to	refer	to	groups	in	regular	expressions.

First,	let’s	define	the	string	as	follows:

var	myString		=	"007,007,001,002,002,003,002,004";

Now	you	know	you	need	to	search	for	a	series	of	one	or	more	number	characters.	In
regular	expressions	the	\d	specifies	any	digit	character,	and	+	means	one	or	more	of	the
previous	character.	So	far,	that	gives	you	this	regular	expression:

\d+

You	want	to	match	a	series	of	digits	followed	by	a	comma,	so	you	just	add	the	comma:

\d+,

This	will	match	any	series	of	digits	followed	by	a	comma,	but	how	do	you	search	for	any
series	of	digits	followed	by	a	comma,	then	followed	again	by	the	same	series	of	digits?
Because	the	digits	could	be	any	digits,	you	can’t	add	them	directly	into	the	expression	like
so:

\d+,007

This	would	not	work	with	the	002	repeat.	What	you	need	to	do	is	put	the	first	series	of
digits	in	a	group;	then	you	can	specify	that	you	want	to	match	that	group	of	digits	again.
You	can	do	this	with	\1,	which	says,	“Match	the	characters	found	in	the	first	group
defined	using	parentheses.”	Put	all	this	together,	and	you	have	the	following:

(\d+),\1

This	defines	a	group	whose	pattern	of	characters	is	one	or	more	digit	characters.	This
group	must	be	followed	by	a	comma	and	then	by	the	same	pattern	of	characters	as	in	the
first	group.	Put	this	into	some	JavaScript,	and	you	have	the	following:

var	myString		=	"007,007,001,002,002,003,002,004";

var	myRegExp	=	/(\d+),\1/g;

myString	=	myString.replace(myRegExp,	"ERROR");

alert(myString);

The	alert	box	will	show	this	message:

ERROR,1,ERROR,003,002,004

That	completes	your	brief	look	at	regular	expression	syntax.	Because	regular	expressions
can	get	a	little	complex,	it’s	often	a	good	idea	to	start	simple	and	build	them	up	slowly,	as
in	the	previous	example.	In	fact,	most	regular	expressions	are	just	too	hard	to	get	right	in
one	step—at	least	for	us	mere	mortals	without	a	brain	the	size	of	a	planet.

If	it’s	still	looking	a	bit	strange	and	confusing,	don’t	panic.	In	the	next	sections,	you	look
at	the	String	object’s	split(),	replace(),	search(),	and	match()	methods	with	plenty
more	examples	of	regular	expression	syntax.

THE	STRING	OBJECT
The	main	functions	making	use	of	regular	expressions	are	the	String	object’s	split(),
replace(),	search(),	and	match()	methods.	You’ve	already	seen	their	syntax,	so	in	this
section	you	concentrate	on	their	use	with	regular	expressions	and	at	the	same	time	learn
more	about	regular	expression	syntax	and	usage.

The	split()	Method
You’ve	seen	that	the	split()	method	enables	you	to	split	a	string	into	various	pieces,	with
the	split	being	made	at	the	character	or	characters	specified	as	a	parameter.	The	result	of
this	method	is	an	array	with	each	element	containing	one	of	the	split	pieces.	For	example,
the	following	string:

var	myListString	=	"apple,	banana,	peach,	orange"

could	be	split	into	an	array	in	which	each	element	contains	a	different	fruit,	like	this:

var	myFruitArray	=	myListString.split(",	");

How	about	if	your	string	is	this	instead?

var	myListString	=	"apple,	0.99,	banana,	0.50,	peach,	0.25,	orange,	0.75";

The	string	could,	for	example,	contain	both	the	names	and	prices	of	the	fruit.	How	could
you	split	the	string,	but	retrieve	only	the	names	of	the	fruit	and	not	the	prices?	You	could
do	it	without	regular	expressions,	but	it	would	take	many	lines	of	code.	With	regular
expressions	you	can	use	the	same	code	and	just	amend	the	split()	method’s	parameter.

				TRY	IT	OUT								Splitting	the	Fruit	String
Let’s	create	an	example	that	solves	the	problem	just	described—it	must	split	your
string,	but	include	only	the	fruit	names,	not	the	prices:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Example	3</title>

</head>

<body>

				<script>

								var	myListString	=	"apple,	0.99,	banana,	0.50,	peach,	0.25,	

orange,	0.75";

								var	theRegExp	=	/[^a-z]+/i;

								var	myFruitArray	=	myListString.split(theRegExp);

								document.write(myFruitArray.join("
"));

				</script>

</body>

</html>

Save	the	file	as	ch6 _ example3.html	and	load	it	in	your	browser.	You	should	see	the
four	fruits	from	your	string	written	out	to	the	page,	with	each	fruit	on	a	separate	line.

Within	the	script	block,	first	you	have	your	string	with	fruit	names	and	prices:

var	myListString	=	"apple,	0.99,	banana,	0.50,	peach,	0.25,	orange,	

0.75";

How	do	you	split	it	in	such	a	way	that	only	the	fruit	names	are	included?	Your	first
thought	might	be	to	use	the	comma	as	the	split()	method’s	parameter,	but	of	course
that	means	you	end	up	with	the	prices.	What	you	have	to	ask	is,	“What	is	it	that’s
between	the	items	I	want?”	Or	in	other	words,	what	is	between	the	fruit	names	that
you	can	use	to	define	your	split?	The	answer	is	that	various	characters	are	between
the	names	of	the	fruit,	such	as	a	comma,	a	space,	numbers,	a	full	stop,	more	numbers,
and	finally	another	comma.	What	is	it	that	these	things	have	in	common	and	makes
them	different	from	the	fruit	names	that	you	want?	What	they	have	in	common	is	that
none	of	them	are	letters	from	a	through	z.	If	you	say	“Split	the	string	at	the	point
where	there	is	a	group	of	characters	that	are	not	between	a	and	z,”	then	you	get	the
result	you	want.	Now	you	know	what	you	need	to	create	your	regular	expression.

You	know	that	what	you	want	is	not	the	letters	a	through	z,	so	you	start	with	this:

[^a-z]

The	^	says	“Match	any	character	that	does	not	match	those	specified	inside	the	square
brackets.”	In	this	case	you’ve	specified	a	range	of	characters	not	to	be	matched—all
the	characters	between	a	and	z.	As	specified,	this	expression	will	match	only	one
character,	whereas	you	want	to	split	wherever	there	is	a	single	group	of	one	or	more
characters	that	are	not	between	a	and	z.	To	do	this	you	need	to	add	the	+	special
repetition	character,	which	says	“Match	one	or	more	of	the	preceding	character	or
group	specified”:

[^a-z]+

The	final	result	is	this:

var	theRegExp	=	/[^a-z]+/i

The	/	and	/	characters	mark	the	start	and	end	of	the	regular	expression	whose	RegExp
object	is	stored	as	a	reference	in	the	variable	theRegExp.	You	add	the	i	on	the	end	to
make	the	match	case-insensitive.

Don’t	panic	if	creating	regular	expressions	seems	like	a	frustrating	and	less-than-
obvious	process.	At	first,	it	takes	a	lot	of	trial	and	error	to	get	it	right,	but	as	you	get
more	experienced,	you’ll	find	creating	them	becomes	much	easier	and	will	enable	you
to	do	things	that	without	regular	expressions	would	be	either	very	awkward	or
virtually	impossible.

In	the	next	line	of	script	you	pass	the	RegExp	object	to	the	split()	method,	which
uses	it	to	decide	where	to	split	the	string:

var	myFruitArray	=	myListString.split(theRegExp);

After	the	split,	the	variable	myFruitArray	will	contain	an	Array	with	each	element
containing	the	fruit	name,	as	shown	here:

ARRAY	ELEMENT	INDEX 0 1 2 3
Element	value apple banana peach orange

You	then	join	the	string	together	again	using	the	Array	object’s	join()	methods,
which	you	saw	in	Chapter	4:

document.write(myFruitArray.join("
"))

The	replace()	Method
You’ve	already	looked	at	the	syntax	and	usage	of	the	replace()	method.	However,
something	unique	to	the	replace()	method	is	its	ability	to	replace	text	based	on	the
groups	matched	in	the	regular	expression.	You	do	this	using	the	$	sign	and	the	group’s
number.	Each	group	in	a	regular	expression	is	given	a	number	from	1	to	99;	any	groups
greater	than	99	are	not	accessible.	To	refer	to	a	group,	you	write	$	followed	by	the	group’s
position.	For	example,	if	you	had	the	following:

var	myRegExp	=	/(\d)(\W)/g;

then	$1	refers	to	the	group(\d),	and	$2	refers	to	the	group	(\W).	You’ve	also	set	the	global
flag	g	to	ensure	that	all	matching	patterns	are	replaced—not	just	the	first	one.

You	can	see	this	more	clearly	in	the	next	example.	Say	you	have	the	following	string:

var	myString	=	"2012,	2013,	2014";

If	you	wanted	to	change	this	to	"the	year	2012,	the	year	2013,	the	year	2014",
how	could	you	do	it	with	regular	expressions?

First,	you	need	to	work	out	the	pattern	as	a	regular	expression,	in	this	case	four	digits:

var	myRegExp	=	/\d{4}/g;

But	given	that	the	year	is	different	every	time,	how	can	you	substitute	the	year	value	into
the	replaced	string?

Well,	you	change	your	regular	expression	so	that	it’s	inside	a	group,	as	follows:

var	myRegExp	=	/(\d{4})/g;

Now	you	can	use	the	group,	which	has	group	number	1,	inside	the	replacement	string	like
this:

myString	=	myString.replace(myRegExp,	"the	year	$1");

The	variable	myString	now	contains	the	required	string	"the	year	2012,	the	year
2013,	the	year	2014".

Let’s	look	at	another	example	in	which	you	want	to	convert	single	quotes	in	text	to	double
quotes.	Your	test	string	is	this:

He	then	said	'My	Name	is	O'Connerly,	yes	that's	right,	O'Connerly'.

One	problem	that	the	test	string	makes	clear	is	that	you	want	to	replace	the	single-quote
mark	with	a	double	only	where	it	is	used	in	pairs	around	speech,	not	when	it	is	acting	as
an	apostrophe,	such	as	in	the	word	that's,	or	when	it’s	part	of	someone’s	name,	such	as
in	O'Connerly.

Let’s	start	by	defining	the	regular	expression.	First,	you	know	that	it	must	include	a	single
quote,	as	shown	in	the	following	code:

var	myRegExp	=	/'/;

However,	as	it	is	this	would	replace	every	single	quote,	which	is	not	what	you	want.

Looking	at	the	text,	you	should	also	notice	that	quotes	are	always	at	the	start	or	end	of	a
word—that	is,	at	a	boundary.	On	first	glance	it	might	be	easy	to	assume	that	it	would	be	a
word	boundary.	However,	don’t	forget	that	the	'	is	a	non-word	character,	so	the	boundary
will	be	between	it	and	another	non-word	character,	such	as	a	space.	So	the	boundary	will
be	a	non-word	boundary	or,	in	other	words,	\B.

Therefore,	the	character	pattern	you	are	looking	for	is	either	a	non-word	boundary
followed	by	a	single	quote	or	a	single	quote	followed	by	a	non-word	boundary.	The	key	is
the	“or,”	for	which	you	use	|	in	regular	expressions.	This	leaves	your	regular	expression
as	the	following:

var	myRegExp	=	/\B'|'\B/g;

This	will	match	the	pattern	on	the	left	of	the	|	or	the	character	pattern	on	the	right.	You
want	to	replace	all	the	single	quotes	with	double	quotes,	so	the	g	has	been	added	at	the
end,	indicating	that	a	global	match	should	take	place.

				TRY	IT	OUT								Replacing	Single	Quotes	with
Double	Quotes
Let’s	look	at	an	example	using	the	regular	expression	just	defined:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Example	4</title>

</head>

<body>

				<script>

								var	text	=	"He	then	said	'My	Name	is	O'Connerly,	yes	"	+

																			"that's	right,	O'Connerly'";

								document.write("Original:	"	+	text	+	"
");

								var	myRegExp	=	/\B'|'\B/g;

								text	=	text.replace(myRegExp,	'"');

								document.write("Corrected:	"	+	text);

				</script>

</body>

</html>

Save	the	page	as	ch6_example4.html.	Load	the	page	into	your	browser	and	you
should	see	what	is	shown	in	Figure	6.9.

Figure	6.9

You	can	see	that	by	using	regular	expressions,	you	have	completed	a	task	in	a	couple
of	lines	of	simple	code.	Without	regular	expressions,	it	would	probably	take	four	or
five	times	that	amount.

The	workhorses	of	this	code	are	two	simple	lines:

var	myRegExp	=	/\B'|'\B/g;

text	=	text.replace(myRegExp,	'"');

You	define	your	regular	expression	(as	discussed	previously),	which	matches	any
non-word	boundary	followed	by	a	single	quote	or	any	single	quote	followed	by	a	non-
word	boundary.	For	example,	'H	will	match,	as	will	H',	but	O'R	won’t,	because	the
quote	is	between	two	word	boundaries.	Don’t	forget	that	a	word	boundary	is	the
position	between	the	start	or	end	of	a	word	and	a	non-word	character,	such	as	a	space
or	punctuation	mark.

The	second	line	of	code	uses	the	replace()	method	to	do	the	character	pattern	search
and	replace,	and	assigns	the	new	value	to	the	text	variable.

The	search()	Method
The	search()	method	enables	you	to	search	a	string	for	a	pattern	of	characters.	If	the
pattern	is	found,	the	character	position	at	which	it	was	found	is	returned;	otherwise,	-1	is
returned.	The	method	takes	only	one	parameter,	the	RegExp	object	you	have	created.

Although	for	basic	searches	the	indexOf()	method	is	fine,	if	you	want	more	complex
searches,	such	as	a	search	for	a	pattern	of	any	digits	or	one	in	which	a	word	must	be	in
between	a	certain	boundary,	search()	provides	a	much	more	powerful	and	flexible,	but
sometimes	more	complex,	approach.

In	the	following	example,	you	want	to	find	out	if	the	word	Java	is	contained	within	the
string.	However,	you	want	to	look	just	for	Java	as	a	whole	word,	not	part	of	another	word
such	as	JavaScript:

var	myString	=	"Beginning	JavaScript,	Beginning	Java	2,	"	+

															"Professional	JavaScript";

var	myRegExp	=	/\bJava\b/i;

alert(myString.search(myRegExp));

First,	you	have	defined	your	string,	and	then	you’ve	created	your	regular	expression.	You
want	to	find	the	character	pattern	Java	when	it’s	on	its	own	between	two	word	boundaries.
You’ve	made	your	search	case-insensitive	by	adding	the	i	after	the	regular	expression.
Note	that	with	the	search()	method,	the	g	for	global	is	not	relevant,	and	its	use	has	no
effect.

On	the	final	line,	you	output	the	position	at	which	the	search	has	located	the	pattern,	in
this	case	32.

The	match()	Method
The	match()	method	is	very	similar	to	the	search()	method,	except	that	instead	of
returning	the	position	at	which	a	match	was	found,	it	returns	an	array.	Each	element	of	the
array	contains	the	text	of	a	match	made.

For	example,	if	you	had	the	string:

var	myString	=	"The	years	were	2012,	2013	and	2014";

and	wanted	to	extract	the	years	from	this	string,	you	could	do	so	using	the	match()
method.	To	match	each	year,	you	are	looking	for	four	digits	in	between	word	boundaries.
This	requirement	translates	to	the	following	regular	expression:

var	myRegExp	=	/\b\d{4}\b/g;

You	want	to	match	all	the	years,	so	the	g	has	been	added	to	the	end	for	a	global	search.

To	do	the	match	and	store	the	results,	you	use	the	match()	method	and	store	the	Array
object	it	returns	in	a	variable:

var	resultsArray	=	myString.match(myRegExp);

To	prove	it	has	worked,	let’s	use	some	code	to	output	each	item	in	the	array.	You’ve	added

an	if	statement	to	double-check	that	the	results	array	actually	contains	an	array.	If	no
matches	were	made,	the	results	array	will	contain	null—doing	if	(resultsArray)	will
return	true	if	the	variable	has	a	value	and	not	null:

if	(resultsArray)	{

		for	(var	index	=	0;	index	<	resultsArray.length;	index++)	{

					alert(resultsArray[index]);

		}

}

This	would	result	in	three	alert	boxes	containing	the	numbers	2012,	2013,	and	2014.

				TRY	IT	OUT								Splitting	HTML
In	this	example,	you	want	to	take	a	string	of	HTML	and	split	it	into	its	component
parts.	For	example,	you	want	the	HTML	<p>Hello</p>	to	become	an	array,	with	the
elements	having	the	following	contents:

<p> Hello </p>

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Example	5</title>

</head>

				<body>

								<div	id="output"></div>

								<script>

												var	html	=	"<h2>Hello	World!</h2>"	+

																"<p>We	love	JavaScript!</p>";

												var	regex	=	/<[^>\r\n]+>|[^<>\r\n]+/g;

												var	results	=	html.match(regex);

												document.getElementById("output").innerText	=	

results.join("\r\n");

								</script>

				</body>

</html>

Save	this	file	as	ch6 _ example5.html.	When	you	load	the	page	into	your	browser
you’ll	see	that	the	string	of	HTML	is	split,	with	each	element’s	tags	and	content
displayed	on	separate	lines,	as	shown	in	Figure	6.10.

Figure	6.10

Once	again,	the	code	that	makes	all	of	this	work	consists	of	just	a	few	lines.	You	first
create	a	RegExp	object	and	initialize	it	to	your	regular	expression:

var	regex	=	/<[^>\r\n]+>|[^<>\r\n]+/g;

Let’s	break	it	down	to	see	what	pattern	you’re	trying	to	match.	First,	note	that	the
pattern	is	broken	up	by	an	alternation	symbol:	|.	This	means	that	you	want	the	pattern
on	the	left	or	the	right	of	this	symbol.	Look	at	these	patterns	separately.	On	the	left,
you	have	the	following:

The	pattern	must	start	with	a	<.

In	[^>\r\n]+,	you	specify	that	you	want	one	or	more	of	any	character	except	the	>	or
a	\r	(carriage	return)	or	a	\n	(linefeed).

>	specifies	that	the	pattern	must	end	with	a	>.

On	the	right,	you	have	only	the	following:

[^<>\r\n]+	specifies	that	the	pattern	is	one	or	more	of	any	character,	so	long	as	that
character	is	not	a	<,	>,	\r,	or	\n.	This	will	match	plaintext.

After	the	regular	expression	definition	you	have	a	g,	which	specifies	that	this	is	a
global	match.

So	the	<[^>\r\n]+>	regular	expression	will	match	any	start	or	close	tags,	such	as	<p>
or	</p>.	The	alternative	pattern	is	[^<>\r\n]+,	which	will	match	any	character
pattern	that	is	not	an	opening	or	closing	tag.

In	the	following	line,	you	assign	the	results	variable	to	the	Array	object	returned	by
the	match()	method:

var	results	=	html.match(regex);

The	remainder	of	the	code	populates	a	<div/>	element	with	the	split	HTML:

document.getElementById("output").innerText	=	results.join("\r\n");

This	code	uses	features	you	haven’t	yet	seen.	It	essentially	retrieves	the	element	that
has	an	id	value	of	output;	this	is	the	<div/>	element	at	the	top	of	the	body.	The
innerText	property	enables	you	to	set	the	text	inside	of	the	<div/>	element.	You
learn	more	in	later	chapters.

You	then	use	the	Array	object’s	join()	method	to	join	all	the	array’s	elements	into
one	string	with	each	element	separated	by	a	\r\n	character,	so	that	each	tag	or	piece
of	text	goes	on	a	separate	line.

USING	THE	REGEXP	OBJECT’S	CONSTRUCTOR
So	far	you’ve	been	creating	RegExp	objects	using	the	/	and	/	characters	to	define	the	start
and	end	of	the	regular	expression,	as	shown	in	the	following	example:

var	myRegExp	=	/[a-z]/;

Although	this	is	the	generally	preferred	method,	it	was	briefly	mentioned	that	a	RegExp
object	can	also	be	created	by	means	of	the	RegExp()	constructor.	You	might	use	the	first
way	most	of	the	time.	However,	on	some	occasions	the	second	way	of	creating	a	RegExp
object	is	necessary	(for	example,	when	a	regular	expression	is	to	be	constructed	from	user
input).

As	an	example,	the	preceding	regular	expression	could	equally	well	be	defined	as:

var	myRegExp	=	new	RegExp("[a-z]");

Here	you	pass	the	regular	expression	as	a	string	parameter	to	the	RegExp()	constructor
function.

A	very	important	difference	when	you	are	using	this	method	is	in	how	you	use	special
regular	expression	characters,	such	as	\b,	that	have	a	backward	slash	in	front	of	them.	The
problem	is	that	the	backward	slash	indicates	an	escape	character	in	JavaScript	strings—for
example,	you	may	use	\b,	which	means	a	backspace.	To	differentiate	between	\b	meaning
a	backspace	in	a	string	and	the	\b	special	character	in	a	regular	expression,	you	have	to
put	another	backward	slash	in	front	of	the	regular	expression	special	character.	So	\b
becomes	\\b	when	you	mean	the	regular	expression	\b	that	matches	a	word	boundary,
rather	than	a	backspace	character.

For	example,	say	you	have	defined	your	RegExp	object	using	the	following:

var	myRegExp	=	/\b/;

To	declare	it	using	the	RegExp()	constructor,	you	would	need	to	write	this:

var	myRegExp	=	new	RegExp("\\b");

and	not	this:

var	myRegExp	=	new	RegExp("\b");

All	special	regular	expression	characters,	such	as	\w,	\b,	\d,	and	so	on,	must	have	an	extra
\	in	front	when	you	create	them	using	RegExp().

When	you	define	regular	expressions	with	the	/	and	/	method,	after	the	final	/	you	could
add	the	special	flags	m,	g,	and	i	to	indicate	that	the	pattern	matching	should	be	multi-line,
global,	or	case-insensitive,	respectively.	When	using	the	RegExp()	constructor,	how	can
you	do	the	same	thing?

Easy.	The	optional	second	parameter	of	the	RegExp()	constructor	takes	the	flags	that
specify	a	global	or	case-insensitive	match.	For	example,	this	will	do	a	global	case-
insensitive	pattern	match:

var	myRegExp	=	new	RegExp("hello\\b","gi");

You	can	specify	just	one	of	the	flags	if	you	want—such	as	the	following:

var	myRegExp	=	new	RegExp("hello\\b","i");

or

var	myRegExp	=	new	RegExp("hello\\b","g");

				TRY	IT	OUT								Form	Validation	Module
In	this	Try	It	Out,	you	create	a	set	of	useful	JavaScript	functions	that	use	regular
expressions	to	validate	the	following:

Telephone	numbers

Postal	codes

E-mail	addresses

The	validation	only	checks	the	format.	So,	for	example,	it	can’t	check	that	the
telephone	number	actually	exists,	only	that	it	would	be	valid	if	it	did.

First	is	the	.js	code	file	with	the	input	validation	code.	Please	note	that	the	lines	of
code	in	the	following	block	are	too	wide	for	the	book—make	sure	each	regular
expression	is	contained	on	one	line:

function	isValidTelephoneNumber(telephoneNumber)	{

				var	telRegExp	=	/^(\+\d{1,3}	?)?(\(\d{1,5}\)|\d{1,5})

								?\d{3}?\d{0,7}((x|xtn|ext|extn|pax|pbx|extension)?\.?	?\d{2-

5})?$/i;

				return	telRegExp.test(telephoneNumber);

}

function	isValidPostalCode(postalCode)	{

				var	pcodeRegExp	=	/^(\d{5}(-\d{4})?|([a-z][a-z]?\d\d?|[a-z{2}\d[a-

z])

								?\d[a-z][a-z])$/i;

				return	pcodeRegExp.test(postalCode);

}

function	isValidEmail(emailAddress)	{

				var	emailRegExp	=	/^(([^<>()\[\]\\.,;:@"\x00-\x20\x7F]|\\.)+|("""

([^\x0A\x0D"\\]

				|\\\\)+"""))@(([a-z]|#\d+?)([a-z0-9-]|#\d+?)*([a-z0-9]

				|#\d+?)\.)+([a-z]{2,4})$/i;

				return	emailRegExp.test(emailAddress);

}

Save	this	as	ch6_example6.js.

To	test	the	code,	you	need	a	simple	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6,	Example	6</title>

</head>

				<body>

								<script	src="ch6_example6.js"></script>

								<script>

												var	phoneNumber	=	prompt("Please	enter	a	phone	number.",	

"");

												if	(isValidTelephoneNumber(phoneNumber))	{

																alert("Valid	Phone	Number");

												}	else	{

																alert("Invalid	Phone	Number");

												}

												var	postalCode	=	prompt("Please	enter	a	postal	code.",	"");

												if	(isValidPostalCode(postalCode))	{

																alert("Valid	Postal	Code");

												}	else	{

																alert("Invalid	Postal	Code");

												}

												var	email	=	prompt("Please	enter	an	email	address.",	"");

												if	(isValidEmail(email))	{

																alert("Valid	Email	Address");

												}	else	{

																alert("Invalid	Email	Address");

												}

								</script>

				</body>

</html>

Save	this	as	ch6 _ example6.html	and	load	it	into	your	browser,	and	you’ll	be
prompted	to	enter	a	phone	number.	Enter	a	valid	telephone	number	(for	example,	+1
(123)	123	4567),	and	you’ll	see	a	message	that	states	whether	or	not	the	phone
number	is	valid.

You’ll	then	be	prompted	to	enter	a	postal	code	and	an	e-mail.	Enter	those	values	to
test	those	functions.	This	is	pretty	basic,	but	it’s	sufficient	for	testing	your	code.

The	actual	code	is	very	simple,	but	the	regular	expressions	are	tricky	to	create,	so	let’s
look	at	those	in	depth	starting	with	telephone	number	validation.

Telephone	Number	Validation
Telephone	numbers	are	more	of	a	challenge	to	validate.	The	problems	are:

Phone	numbers	differ	from	country	to	country.

A	valid	number	can	be	entered	in	different	ways	(for	example,	with	or	without	the
national	or	international	code).

For	this	regular	expression,	you	need	to	specify	more	than	just	the	valid	characters;	you
also	need	to	specify	the	format	of	the	data.	For	example,	all	of	the	following	are	valid:

+1	(123)	123	4567

+1123123	456

+44	(123)	123	4567

+44	(123)	123	4567	ext	123

+44	20	7893	4567

The	variations	that	your	regular	expression	needs	to	deal	with	(optionally	separated	by
spaces)	are	shown	in	the	following	table:

The	international
number

“+”	followed	by	one	to	three	digits	(optional)

The	local	area	code Two	to	five	digits,	sometimes	in	parentheses	(compulsory)
The	actual
subscriber	number

Three	to	10	digits,	sometimes	with	spaces	(compulsory)

An	extension
number

Two	to	five	digits,	preceded	by	x,	xtn,	extn,	pax,	pbx,	or
extension,	and	sometimes	in	parentheses

Obviously,	this	won’t	work	in	some	countries,	which	is	something	you’d	need	to	deal	with
based	on	where	your	customers	and	partners	would	be.	The	following	regular	expression
is	rather	complex	(its	length	meant	it	had	to	be	split	across	two	lines;	make	sure	you	type
it	in	on	one	line):

^(\+\d{1,3}	?)?(\(\d{1,5}\)|\d{1,5})	?\d{3}	?\d{0,7}

((x|xtn|ext|extn|pax|pbx|extension)?\.?	?\d{2-5})?$

You	will	need	to	set	the	case-insensitive	flag	with	this,	as	well	as	the	explicit	capture
option.	Although	this	seems	complex,	if	broken	down,	it’s	quite	straightforward.

Let’s	start	with	the	pattern	that	matches	an	international	dialing	code:

(\+\d{1,3}	?)?

So	far,	you’re	matching	a	plus	sign	(\+)	followed	by	one	to	three	digits	(\d{1,3})	and	an
optional	space	(?).	Remember	that	because	the	+	character	is	a	special	character,	you	add	a
\	character	in	front	of	it	to	specify	that	you	mean	an	actual	+	character.	The	characters	are
wrapped	inside	parentheses	to	specify	a	group	of	characters.	You	allow	an	optional	space
and	match	this	entire	group	of	characters	zero	or	one	time,	as	indicated	by	the	?	character
after	the	closing	parenthesis	of	the	group.

Next	is	the	pattern	to	match	an	area	code:

(\(\d{1,5}\)|\d{1,5})

This	pattern	is	contained	in	parentheses,	which	designate	it	as	a	group	of	characters,	and
matches	either	one	to	five	digits	in	parentheses	((\d{1,5}))	or	just	one	to	five	digits
(\d{1,5}).	Again,	because	the	parenthesis	characters	are	special	characters	in	regular

expression	syntax	and	you	want	to	match	actual	parentheses,	you	need	the	\	character	in
front	of	them.	Also	note	the	use	of	the	pipe	symbol	(|),	which	means	“OR”	or	“match
either	of	these	two	patterns.”

Next,	let’s	match	the	subscriber	number:

	?\d{3,4}	?\d{0,7}

NOTE	The	initial	space	and	?	mean	“match	zero	or	one	space.”	This	is	followed	by
three	or	four	digits	(\d{3,4})—although	U.S.	numbers	always	have	three	digits,	UK
numbers	often	have	four.	Then	there’s	another	“zero	or	one	space,”	and,	finally,
between	zero	and	seven	digits	(\d{0,7}).

Finally,	add	the	part	to	cope	with	an	optional	extension	number:

((x|xtn|ext|extn|extension)?\.?	?\d{2-5})?

This	group	is	optional	because	its	parentheses	are	followed	by	a	question	mark.	The	group
itself	checks	for	a	space,	optionally	followed	by	x,	ext,	xtn,	extn,	or	extension,	followed
by	zero	or	one	period	(note	the	\	character,	because	.	is	a	special	character	in	regular
expression	syntax),	followed	by	zero	or	one	space,	followed	by	between	two	and	five
digits.	Putting	these	four	patterns	together,	you	can	construct	the	entire	regular	expression,
apart	from	the	surrounding	syntax.	The	regular	expression	starts	with	^	and	ends	with	$.
The	^	character	specifies	that	the	pattern	must	be	matched	at	the	beginning	of	the	string,
and	the	$	character	specifies	that	the	pattern	must	be	matched	at	the	end	of	the	string.	This
means	that	the	string	must	match	the	pattern	completely;	it	cannot	contain	any	other
characters	before	or	after	the	pattern	that	is	matched.

Therefore,	with	the	regular	expression	explained,	let’s	look	once	again	at	the
isValidTelephoneNumber()	function	in	ch6_example6.js:

function	isValidTelephoneNumber(telephoneNumber)	{

				var	telRegExp	=	/^(\+\d{1,3}	?)?(\(\d{1,5}\)|\d{1,5})	?\d{3}

								?\d{0,7}((x|xtn|ext|extn|pax|pbx|extension)?\.?	?\d{2-5})?$/i;

				return	telRegExp.test(telephoneNumber);

}

Note	in	this	case	that	it	is	important	to	set	the	case-insensitive	flag	by	adding	an	i	on	the
end	of	the	expression	definition;	otherwise,	the	regular	expression	could	fail	to	match	the
ext	parts.	Please	also	note	that	the	regular	expression	itself	must	be	on	one	line	in	your
code—it’s	shown	in	multiple	lines	here	due	to	the	page-width	restrictions	of	this	book.

Validating	a	Postal	Code
We	just	about	managed	to	check	worldwide	telephone	numbers,	but	doing	the	same	for
postal	codes	would	be	something	of	a	major	challenge.	Instead,	you’ll	create	a	function
that	only	checks	for	U.S.	ZIP	codes	and	UK	postcodes.	If	you	needed	to	check	for	other
countries,	the	code	would	need	modifying.	You	may	find	that	checking	more	than	one	or
two	postal	codes	in	one	regular	expression	begins	to	get	unmanageable,	and	it	may	well	be

easier	to	have	an	individual	regular	expression	for	each	country’s	postal	code	you	need	to
check.	For	this	purpose	though,	let’s	combine	the	regular	expression	for	the	United
Kingdom	and	the	United	States:

^(\d{5}(-\d{4})?|[a-z][a-z]?\d\d?	?\d[a-z][a-z])$

This	is	actually	in	two	parts.	The	first	part	checks	for	ZIP	codes,	and	the	second	part
checks	for	UK	postcodes.	Start	by	looking	at	the	ZIP	code	part.

ZIP	codes	can	be	represented	in	one	of	two	formats:	as	five	digits	(12345),	or	five	digits
followed	by	a	dash	and	four	digits	(12345-1234).	The	ZIP	code	regular	expression	to
match	these	is	as	follows:

\d{5}(-\d{4})?

This	matches	five	digits,	followed	by	an	optional	non-capturing	group	that	matches	a	dash,
followed	by	four	digits.

For	a	regular	expression	that	covers	UK	postcodes,	let’s	consider	their	various	formats.
UK	postcode	formats	are	one	or	two	letters	followed	by	either	one	or	two	digits,	followed
by	an	optional	space,	followed	by	a	digit,	and	then	two	letters.	Additionally,	some	central
London	postcodes	look	like	SE2V	3ER,	with	a	letter	at	the	end	of	the	first	part.	Currently,
only	some	of	those	postcodes	start	with	SE,	WC,	and	W,	but	that	may	change.	Valid
examples	of	UK	postcodes	include:	CH3	9DR,	PR29	1XX,	M27	1AE,	WC1V	2ER,	and
C27	3AH.

Based	on	this,	the	required	pattern	is	as	follows:

([a-z][a-z]?\d\d?|[a-z]{2}\d[a-z])	?\d[a-z][a-z]

These	two	patterns	are	combined	using	the	|	character	to	“match	one	or	the	other”	and
grouped	using	parentheses.	You	then	add	the	^	character	at	the	start	and	the	$	character	at
the	end	of	the	pattern	to	be	sure	that	the	only	information	in	the	string	is	the	postal	code.
Although	postal	codes	should	be	uppercase,	it	is	still	valid	for	them	to	be	lowercase,	so
you	also	set	the	case-insensitive	option	as	follows	when	you	use	the	regular	expression:

^(\d{5}(-\d{4})?|([a-z][a-z]?\d\d?|[a-z{2}\d[a-z])	?\d[a-z][a-z])$

Just	for	reference,	let’s	look	once	again	at	the	isValidPostalCode()	function:

function	isValidPostalCode(postalCode)	{

				var	pcodeRegExp	=	/^(\d{5}(-\d{4})?|([a-z][a-z]?\d\d?|[a-z{2}\d[a-z])

								?\d[a-z][a-z])$/i;

				return	pcodeRegExp.test(postalCode);

}

Again,	remember	that	the	regular	expression	must	be	on	one	line	in	your	code.

Validating	an	E-mail	Address
Before	working	on	a	regular	expression	to	match	e-mail	addresses,	you	need	to	look	at	the
types	of	valid	e-mail	addresses	you	can	have.	For	example:

someone@mailserver.com

someone@mailserver.info

someone.something@mailserver.com

someone.something@subdomain.mailserver.com

someone@mailserver.co.uk

someone@subdomain.mailserver.co.uk

someone.something@mailserver.co.uk

someone@mailserver.org.uk

some.one@subdomain.mailserver.org.uk

Also,	if	you	examine	the	SMTP	RFC	(http://www.ietf.org/rfc/rfc0821.txt),	you	can
have	the	following:

someone@123.113.209.32

"""Paul	Wilton"""@somedomain.com

That’s	quite	a	list,	and	it	contains	many	variations	to	cope	with.	It’s	best	to	start	by
breaking	it	down.	First,	note	that	the	latter	two	versions	are	exceptionally	rare	and	not
provided	for	in	the	regular	expression	you’ll	create.

Second,	you	need	to	break	up	the	e-mail	address	into	separate	parts.	Let’s	look	at	the	part
after	the	@	symbol	first.

Validating	a	Domain	Name
Everything	has	become	more	complicated	since	Unicode	domain	names	have	been
allowed.	However,	the	e-mail	RFC	still	doesn’t	allow	these,	so	let’s	stick	with	the
traditional	definition	of	how	a	domain	can	be	described	using	ASCII.	A	domain	name
consists	of	a	dot-separated	list	of	words,	with	the	last	word	being	between	two	and	four
characters	long.	It	was	often	the	case	that	if	a	two-letter	country	word	was	used,	there
would	be	at	least	two	parts	to	the	domain	name	before	it:	a	grouping	domain	(.co,	.ac,
and	so	on)	and	a	specific	domain	name.	However,	with	the	advent	of	the	.tv	names,	this	is
no	longer	the	case.	You	could	make	this	very	specific	and	provide	for	the	allowed	top-
level	domains	(TLDs),	but	that	would	make	the	regular	expression	very	large,	and	it	would
be	more	productive	to	perform	a	DNS	lookup	instead.

Each	part	of	a	domain	name	must	follow	certain	rules.	It	can	contain	any	letter	or	number
or	a	hyphen,	but	it	must	start	with	a	letter.	The	exception	is	that,	at	any	point	in	the	domain
name,	you	can	use	a	#,	followed	by	a	number,	which	represents	the	ASCII	code	for	that
letter,	or	in	Unicode,	the	16-bit	Unicode	value.	Knowing	this,	let’s	begin	to	build	up	the
regular	expression,	first	with	the	name	part,	assuming	that	the	case-insensitive	flag	will	be
set	later	in	the	code:

([a-z]|#\d+)([a-z0-9-]|#\d+)*([a-z0-9]|#\d+)

This	breaks	the	domain	into	three	parts.	The	RFC	doesn’t	specify	how	many	digits	can	be

http://www.ietf.org/rfc/rfc0821.txt

contained	here,	so	neither	will	we.	The	first	part	must	only	contain	an	ASCII	letter;	the
second	must	contain	zero	or	more	of	a	letter,	number,	or	hyphen;	and	the	third	must
contain	either	a	letter	or	number.	The	top-level	domain	has	more	restrictions,	as	shown
here:

[a-z]{2,4}

This	restricts	you	to	a	two-,	three-,	or	four-letter	top-level	domain.	So,	putting	it	all
together,	with	the	periods	you	end	up	with	this:

^(([a-z]|#\d+?)([a-z0-9-]|#\d+?)*([a-z0-9]|#\d+?)\.)+([a-z]{2,4})$

Again,	the	domain	name	is	anchored	at	the	beginning	and	end	of	the	string.	The	first	thing
is	to	add	an	extra	group	to	allow	one	or	more	name.	portions	and	then	anchor	a	two-	to
four-letter	domain	name	at	the	end	in	its	own	group.	We	have	also	made	most	of	the
wildcards	lazy.	Because	much	of	the	pattern	is	similar,	it	makes	sense	to	do	this;
otherwise,	it	would	require	too	much	backtracking.	However,	we	have	left	the	second
group	with	a	“greedy”	wildcard:	It	will	match	as	much	as	it	can,	up	until	it	reaches	a
character	that	does	not	match.	Then	it	will	only	backtrack	one	position	to	attempt	the	third
group	match.	This	is	more	resource-efficient	than	a	lazy	match	is	in	this	case,	because	it
could	be	constantly	going	forward	to	attempt	the	match.	One	backtrack	per	name	is	an
acceptable	amount	of	extra	processing.

Validating	a	Person’s	Address
You	can	now	attempt	to	validate	the	part	before	the	@	sign.	The	RFC	specifies	that	it	can
contain	any	ASCII	character	with	a	code	in	the	range	from	33	to	126.	You	are	assuming
that	you	are	matching	against	ASCII	only,	so	you	can	assume	that	the	engine	will	match
against	only	128	characters.	This	being	the	case,	it	is	simpler	to	just	exclude	the	required
values	as	follows:

[^<>()\[\],;:@"\x00-\x20\x7F]+

Using	this,	you’re	saying	that	you	allow	any	number	of	characters,	as	long	as	none	of
them	are	those	contained	within	the	square	brackets.	The	square	bracket	and	backslash
characters	([,],	and	\)	have	to	be	escaped.	However,	the	RFC	allows	for	other	kinds	of
matches.

Validating	the	Complete	Address
Now	that	you	have	seen	all	the	previous	sections,	you	can	build	up	a	regular	expression
for	the	entire	e-mail	address.	First,	here’s	everything	up	to	and	including	the	@	sign:

^([^<>()\[\],;:@"\x00-\x20\x7F]|\\.)+@

That	was	straightforward.	Now	for	the	domain	name	part:

^([^<>()\[\],;:@"\x00-\x20\x7F]|\\.)+@(([a-z]|#\d+?)([a-z0-9-]

|#\d+?)*([a-z0-9]|#\d+?)\.)+([a-z]{2,4})$

We’ve	had	to	put	it	on	two	lines	to	fit	this	book’s	page	width,	but	in	your	code	this	must

all	be	on	one	line.

Finally,	here’s	the	isValidEmail()	function	for	reference:

function	isValidEmail(emailAddress)	{

				var	emailRegExp	=

								/^(([^<>()\[\]\\.,;:@"\x00-\x20\x7F]|\\.)+|("""

([^\x0A\x0D"\\]|\\\\)+"""))

								@(([a-z]|#\d+?)([a-z0-9-]|#\d+?)*([a-z0-9]|#\d+?)\.)

								+([a-z]{2,4})$/i;

				return	emailRegExp.test(emailAddress);

}

Again,	note	the	regular	expression	must	all	be	on	one	line	in	your	code.

SUMMARY
In	this	chapter	you’ve	looked	at	some	more	advanced	methods	of	the	String	object	and
how	you	can	optimize	their	use	with	regular	expressions.

To	recap,	the	chapter	covered	the	following	points:

The	split()	method	splits	a	single	string	into	an	array	of	strings.	You	pass	a	string	or
a	regular	expression	to	the	method	that	determines	where	the	split	occurs.

The	replace()	method	enables	you	to	replace	a	pattern	of	characters	with	another
pattern	that	you	specify	as	a	second	parameter.

The	search()	method	returns	the	character	position	of	the	first	pattern	matching	the
one	given	as	a	parameter.

The	match()	method	matches	patterns,	returning	the	text	of	the	matches	in	an	array.

Regular	expressions	enable	you	to	define	a	pattern	of	characters	that	you	want	to
match.	Using	this	pattern,	you	can	perform	splits,	searches,	text	replacement,	and
matches	on	strings.

In	JavaScript,	the	regular	expressions	are	in	the	form	of	a	RegExp	object.	You	can
create	a	RegExp	object	using	either	myRegExp	=	/myRegularExpression/	or
myRegExp	=	new	RegExp(“myRegularExpression”).	The	second	form	requires	that
certain	special	characters	that	normally	have	a	single	\	in	front	now	have	two.

The	g	and	i	characters	at	the	end	of	a	regular	expression	(as	in,	for	example,
myRegExp	=	/Pattern/gi;)	ensure	that	a	global	and	case-insensitive	match	is	made.

As	well	as	specifying	actual	characters,	regular	expressions	have	certain	groups	of
special	characters	that	allow	any	of	certain	groups	of	characters,	such	as	digits,
words,	or	non-word	characters,	to	be	matched.

You	can	also	use	special	characters	to	specify	pattern	or	character	repetition.
Additionally,	you	can	specify	what	the	pattern	boundaries	must	be—for	example,	at
the	beginning	or	end	of	the	string,	or	next	to	a	word	or	non-word	boundary.

Finally,	you	can	define	groups	of	characters	that	can	be	used	later	in	the	regular
expression	or	in	the	results	of	using	the	expression	with	the	replace()	method.

In	the	next	chapter,	you	take	a	look	at	using	and	manipulating	dates	and	times	using
JavaScript,	and	time	conversion	between	different	world	time	zones.	Also	covered	is	how
to	create	a	timer	that	executes	code	at	regular	intervals	after	the	page	is	loaded.

EXERCISES
You	can	find	suggested	solutions	to	these	questions	in	Appendix	A.

1.	 What	problem	does	the	following	code	solve?

var	myString	=	"This	sentence	has	has	a	fault	and	and	we	need	to	fix	

it."

var	myRegExp	=	/(\b\w+\b)	\1/g;

myString	=	myString.replace(myRegExp,"$1");

Now	imagine	that	you	change	that	code,	so	that	you	create	the	RegExp	object	like
this:

var	myRegExp	=	new	RegExp("(\b\w+\b)	\1");

Why	would	this	not	work,	and	how	could	you	rectify	the	problem?

2.	 Write	a	regular	expression	that	finds	all	of	the	occurrences	of	the	word	“a”	in	the
following	sentence	and	replaces	them	with	“the”:

“a	dog	walked	in	off	a	street	and	ordered	a	finest	beer”

The	sentence	should	become:

“the	dog	walked	in	off	the	street	and	ordered	the	finest	beer”

3.	 Imagine	you	have	a	website	with	a	message	board.	Write	a	regular	expression	that
would	remove	barred	words.	(You	can	make	up	your	own	words!)

7
Date,	Time,	and	Timers
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Retrieving	specific	date	and	time	information	from	a	Date	object

Modifying	the	date	and	time	of	a	Date	object

Delaying	the	execution	of	a	function

Executing	a	function	at	a	set	interval	of	time

Chapter	5	discussed	that	the	concepts	of	date	and	time	are	embodied	in	JavaScript	through
the	Date	object.	You	looked	at	some	of	the	properties	and	methods	of	the	Date	object,
including	the	following:

The	methods	getDate(),	getDay(),	getMonth(),	and	getFullYear()	enable	you	to
retrieve	date	values	from	inside	a	Date	object.

The	setDate(),	setMonth(),	and	setFullYear()	methods	enable	you	to	set	the	date
values	of	an	existing	Date	object.

The	getHours(),	getMinutes(),	getSeconds(),	and	getMilliseconds()	methods
retrieve	the	time	values	in	a	Date	object.

The	setHours(),	setMinutes(),	setSeconds(),	and	setMilliseconds()	methods
enable	you	to	set	the	time	values	of	an	existing	Date	object.

One	thing	not	covered	in	that	chapter	is	the	idea	that	the	time	depends	on	your	location
around	the	world.	In	this	chapter	you	correct	that	omission	by	looking	at	date	and	time	in
relation	to	world	time.

For	example,	imagine	you	have	a	chat	room	on	your	website	and	want	to	organize	a	chat
for	a	certain	date	and	time.	Simply	stating	15:30	is	not	good	enough	if	your	website
attracts	international	visitors.	The	time	15:30	could	be	Eastern	Standard	Time,	Pacific
Standard	Time,	the	time	in	the	United	Kingdom,	or	even	the	time	in	Kuala	Lumpur.	You
could,	of	course,	say	15:30	EST	and	let	your	visitors	work	out	what	that	means,	but	even
that	isn’t	foolproof.	There	is	an	EST	in	Australia	as	well	as	in	the	United	States.	Wouldn’t
it	be	great	if	you	could	automatically	convert	the	time	to	the	user’s	time	zone?	In	this
chapter,	you	see	how.

In	addition	to	looking	at	world	time,	you	also	look	at	how	to	create	a	timer	in	a	web	page.
You’ll	see	that	by	using	the	timer	you	can	trigger	code,	either	at	regular	intervals	or	just
once	(for	example,	five	seconds	after	the	page	has	loaded).	You’ll	see	how	you	can	use
timers	to	add	a	real-time	clock	to	a	web	page.	Timers	can	also	be	useful	for	creating
animations	or	special	effects	in	your	web	applications,	which	you	explore	in	later	chapters.

WORLD	TIME
The	concept	of	now	means	the	same	point	in	time	everywhere	in	the	world.	However,
when	that	point	in	time	is	represented	by	numbers,	those	numbers	differ	depending	on
where	you	are.	What	is	needed	is	a	standard	number	to	represent	that	moment	in	time.
This	is	achieved	through	Coordinated	Universal	Time	(UTC),	which	is	an	international
basis	of	civil	and	scientific	time	and	was	implemented	in	1964.	It	was	previously	known
as	GMT	(Greenwich	Mean	Time),	and,	indeed,	at	0:00	UTC	it	is	midnight	in	Greenwich,
London.

The	following	table	shows	local	times	around	the	world	at	0:00	UTC	time:

SAN
FRANCISCO

NEW	YORK
(EST)

GREENWICH,
LONDON

BERLIN,
GERMANY

TOKYO,
JAPAN

4:00	pm 7:00	pm 0:00	(midnight) 1:00	am 9:00	am

NOTE	that	the	times	given	are	winter	times—no	daylight	savings	hours	are	taken	into
account.

The	support	for	UTC	in	JavaScript	comes	from	a	number	of	methods	of	the	Date	object
that	are	similar	to	those	you	have	already	seen.	For	each	of	the	set-date	and	get-date–type
methods	you’ve	seen	so	far,	there	is	a	UTC	equivalent.	For	example,	setHours()	sets	the
local	hour	in	a	Date	object,	and	setUTCHours()	does	the	same	thing	for	UTC	time.	You
look	at	these	methods	in	more	detail	in	the	next	section.

In	addition,	three	more	methods	of	the	Date	object	involve	world	time.

You	have	the	methods	toUTCString()	and	toLocaleString(),	which	return	the	date	and
time	stored	in	the	Date	object	as	a	string	based	on	either	UTC	or	local	time.	Most	modern
browsers	also	have	these	additional	methods:	toLocaleTimeString(),	toTimeString(),
toLocaleDateString(),	and	toDateString().

If	you	simply	want	to	find	out	the	difference	in	minutes	between	the	current	locale’s	time
and	UTC,	you	can	use	the	getTimezoneOffset()	method.	If	the	time	zone	is	behind	UTC,
such	as	in	the	United	States,	it	will	return	a	positive	number.	If	the	time	zone	is	ahead,
such	as	in	Australia	or	Japan,	it	will	return	a	negative	number.

				TRY	IT	OUT								The	World	Time	Method	of	the
Date	Object

In	the	following	code	you	use	the	toLocaleString(),	toUTCString(),
getTimezoneOffset(),	toLocaleTimeString(),	toTimeString(),
toLocaleDateString(),	and	toDateString()	methods	and	write	their	values	out	to
the	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	7,	Example	1</title>

</head>

<body>

				<script>

								var	localTime	=	new	Date();

								var	html	=	"<p>UTC	Time	is	"	+	localTime.toUTCString()	+	"

</p>";

								html	+=	"Local	Time	is	"	+	localTime.toLocaleString()	+	"</p>";

								html	+=	"<p>Time	Zone	Offset	is	"	+

																					localTime.getTimezoneOffset()	+	"</p>";

								html	+=	"<p>Using	toLocalTimeString()	gives:	"	+

																					localTime.toLocaleTimeString()	+	"</p>";

								html	+=	"<p>Using	toTimeString()	gives:	"	+

																					localTime.toTimeString()	+	"</p>";

								html	+=	"<p>Using	toLocaleDateString()	gives:	"	+

																				localTime.toLocaleDateString()	+	"</p>";

								html	+=	"<p>Using	toDateString()	gives:	:	"	+

																				localTime.toDateString()	+	"</p>";

								document.write(html);

				</script>

</body>

</html>

Save	this	as	ch7_example1.html	and	load	it	into	your	browser.	What	you	see,	of
course,	depends	on	which	time	zone	your	computer	is	set	to,	but	your	browser	should
show	something	similar	to	Figure	7.1.

Figure	7.1

Here	the	computer’s	time	is	set	to	09:28:318	PM	on	March	30,	2014,	in	America’s
Eastern	Daylight	Time	(for	example,	New	York).

So	how	does	this	work?	At	the	top	of	the	page’s	script	block,	you	have	just:

var	localTime	=	new	Date();

This	creates	a	new	Date	object	and	initializes	it	to	the	current	date	and	time	based	on
the	client	computer’s	clock.	(Note	that	the	Date	object	simply	stores	the	number	of
milliseconds	between	the	date	and	time	on	your	computer’s	clock	and	midnight	UTC
on	January	1,	1970.)

Within	the	rest	of	the	script	block,	you	obtain	the	results	from	various	time	and	date
functions.	The	results	are	stored	in	variable	html,	and	this	is	then	displayed	in	the
page.

In	the	following	line,	you	store	the	string	returned	by	the	toUTCString()	method	in
the	html	variable:

var	html	=	"<p>UTC	Time	is	"	+	localTime.toUTCString()	+	"</p>";

This	converts	the	date	and	time	stored	inside	the	localTime	Date	object	to	the
equivalent	UTC	date	and	time.

Then	the	following	line	stores	a	string	with	the	local	date	and	time	value:

html	+=	"Local	Time	is	"	+	localTime.toLocaleString()	+	"</p>";

Because	this	time	is	just	based	on	the	user’s	clock,	the	string	returned	by	this	method
also	adjusts	for	daylight	savings	time	(as	long	as	the	clock	adjusts	for	it).

Next,	this	code	stores	a	string	with	the	difference,	in	minutes,	between	the	local	time

zone’s	time	and	that	of	UTC:

html	+=	"<p>Time	Zone	Offset	is	"	+	localTime.getTimezoneOffset()	+	"

</p>";

You	may	notice	in	Figure	7.1	that	the	difference	between	New	York	time	and	UTC
time	is	written	to	be	240	minutes,	or	4	hours.	Yet	in	the	previous	table,	you	saw	that
New	York	time	is	5	hours	behind	UTC.	So	what	is	happening?

Well,	in	New	York	on	March	30,	daylight	savings	hours	are	in	use.	Whereas	in	the
summer	it’s	8:00	p.m.	in	New	York	when	it’s	0:00	UTC,	in	the	winter	it’s	7:00	p.m.	in
New	York	when	it’s	0:00	UTC.	Therefore,	in	the	summer	the	getTimezoneOffset()
method	returns	240,	whereas	in	the	winter	the	getTimezoneOffset()	method	returns
300.

To	illustrate	this,	compare	Figure	7.1	to	Figure	7.2,	where	the	date	on	the	computer’s
clock	has	been	advanced	to	December,	which	is	in	the	winter	when	daylight	savings	is
not	in	effect.

Figure	7.2

The	next	two	methods	are	toLocaleTimeString()	and	toTimeString(),	as	follows:

html	+=	"<p>Using	toLocalTimeString()	gives:	"	+

								localTime.toLocaleTimeString()	+	"</p>";

html	+=	"<p>Using	toTimeString()	gives:	"	+

								localTime.toTimeString()	+	"</p>";

These	methods	display	just	the	time	part	of	the	date	and	time	held	in	the	Date	object.
The	toLocaleTimeString()	method	displays	the	time	as	specified	by	the	user	on	his
computer.	The	second	method	displays	the	time	but	also	gives	an	indication	of	the
time	zone	(in	the	example,	EST	for	Eastern	Standard	Time	in	America).

The	final	two	methods	display	the	date	part	of	the	date	and	time.	The
toLocaleDateString()	displays	the	date	in	the	format	the	user	has	specified	on	his
computer.	On	Windows	operating	systems,	this	is	set	in	the	regional	settings	of	the
PC’s	Control	Panel.	However,	because	it	relies	on	the	user’s	PC	setup,	the	look	of	the
date	varies	from	computer	to	computer.	The	toDateString()	method	displays	the
current	date	contained	in	the	PC	date	in	a	standard	format.

Of	course,	this	example	relies	on	the	fact	that	the	user’s	clock	is	set	correctly,	not
something	you	can	be	100	percent	sure	of—it’s	amazing	how	many	users	have	their
local	time	zone	settings	set	completely	wrong.

Setting	and	Getting	a	Date	Object’s	UTC	Date	and
Time
When	you	create	a	new	Date	object,	you	can	either	initialize	it	with	a	value	or	let
JavaScript	set	it	to	the	current	date	and	time.	Either	way,	JavaScript	assumes	you	are
setting	the	local	time	values.	If	you	want	to	specify	UTC	time,	you	need	to	use	the	setUTC
type	methods,	such	as	setUTCHours().

Following	are	the	seven	methods	for	setting	UTC	date	and	time:

setUTCDate()

setUTCFullYear()

setUTCHours()

setUTCMilliseconds()

setUTCMinutes()

setUTCMonth()

setUTCSeconds()

The	names	pretty	much	give	away	exactly	what	each	method	does,	so	let’s	launch	straight
into	a	simple	example,	which	sets	the	UTC	time.

				TRY	IT	OUT								Working	with	UTC	Date	and	Time
Let’s	look	at	a	quick	example.	Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	7,	Example	2</title>

</head>

<body>

				<script>

								var	myDate	=	new	Date();

								myDate.setUTCHours(12);

								myDate.setUTCMinutes(0);

								myDate.setUTCSeconds(0);

								var	html	=	"<p>"	+		myDate.toUTCString()	+	"</p>";

								html	+=	"<p>"	+		myDate.toLocaleString()	+	"</p>";

								document.write(html);

				</script>

</body>

</html>

Save	this	as	ch7_example2.html.	When	you	load	it	in	your	browser,	you	should	see
something	like	what	is	shown	in	Figure	7.3	in	your	web	page,	although	the	actual	date
will	depend	on	the	current	date	and	where	you	are	in	the	world.

Figure	7.3

You	might	want	to	change	your	computer’s	time	zone	and	time	of	year	to	see	how	it
varies	in	different	regions	and	with	daylight	savings	changes.	In	Windows	you	can
make	the	changes	by	opening	the	Control	Panel	and	then	double-clicking	the
Date/Time	icon.

So	how	does	this	example	work?	You	declare	a	variable,	myDate,	and	set	it	to	a	new
Date	object.	Because	you	haven’t	initialized	the	Date	object	to	any	value,	it	contains
the	local	current	date	and	time.

Then,	using	the	setUTC	methods,	you	set	the	hours,	minutes,	and	seconds	so	that	the
time	is	12:00:00	UTC	(midday,	not	midnight).

Now,	when	you	write	out	the	value	of	myDate	as	a	UTC	string,	you	get	12:00:00	and
today’s	date.	When	you	write	out	the	value	of	the	Date	object	as	a	local	string,	you
get	today’s	date	and	a	time	that	is	the	UTC	time	12:00:00	converted	to	the	equivalent
local	time.	The	local	values	you’ll	see,	of	course,	depend	on	your	time	zone.	For

example,	New	Yorkers	will	see	08:00:00	during	the	summer	and	07:00:00	during	the
winter	because	of	daylight	savings.	In	the	United	Kingdom,	in	the	winter	you’ll	see
12:00:00,	but	in	the	summer	you’ll	see	13:00:00.

For	getting	UTC	dates	and	times,	you	have	the	same	functions	you	would	use	for	setting
UTC	dates	and	times,	except	that	this	time,	for	example,	it’s	getUTCHours(),	not
setUTCHours():

getUTCDate()

getUTCDay()

getUTCFullYear()

getUTCHours()

getUTCMilliseconds()

getUTCMinutes()

getUTCMonth()

getUTCSeconds()

toISOString()

Notice	that	this	time	you	have	two	additional	methods,	getUTCDay()	and	toISOString().
The	getUTCDay()	method	works	in	the	same	way	as	the	getDay()	method	and	returns	the
day	of	the	week	as	a	number,	from	0	for	Sunday	to	6	for	Saturday.	Because	the	day	of	the
week	is	decided	by	the	day	of	the	month,	the	month,	and	the	year,	there	is	no	setUTCDay()
method.

The	toISOString()	method	is	relatively	new	to	JavaScript,	and	it	returns	the	date	and
time	in	an	ISO-formatted	string.	The	format	is:

YYYY-MM-DDTHH:mm:ss.sssZ

The	ISO	format	separates	the	date	from	the	time	with	the	literal	character	T.	So	YYYY-MM-
DD	is	the	date,	and	HH:mm:ss.sss	is	the	time.	The	Z	at	the	end	denotes	the	UTC	time	zone.
The	ISO	formatted	string	for	March	30,	2014	at	3:10	PM	UTC	is:

2014-03-30T15:10:00Z

When	you	learn	about	forms	in	Chapter	11,	you’ll	revisit	dates	and	times	to	build	a	time
converter.

TIMERS	IN	A	WEB	PAGE
You	can	create	two	types	of	timers:	one-shot	timers	and	continually	firing	timers.	The	one-
shot	timer	triggers	just	once	after	a	certain	period	of	time,	and	the	second	type	of	timer
continually	triggers	at	set	intervals.	You	investigate	each	of	these	types	of	timers	in	the
next	two	sections.

Within	reasonable	limits,	you	can	have	as	many	timers	as	you	want	and	can	set	them
going	at	any	point	in	your	code,	such	as	when	the	user	clicks	a	button.	Common	uses	for
timers	include	animating	elements,	creating	advertisement	banner	pictures	that	change	at
regular	intervals,	and	displaying	the	changing	time	in	a	web	page.

One-Shot	Timer
Setting	a	one-shot	timer	is	very	easy;	you	just	use	the	setTimeout()	function:

var	timerId	=	setTimeout(yourFunction,	millisecondsDelay)

The	setTimeout()	method	takes	two	parameters.	The	first	is	a	function	you	want
executed,	and	the	second	is	the	delay,	in	milliseconds	(thousandths	of	a	second),	until	the
code	is	executed.

The	method	returns	a	value	(an	integer),	which	is	the	timer’s	unique	ID.	If	you	decide	later
that	you	want	to	stop	the	timer	firing,	you	use	this	ID	to	tell	JavaScript	which	timer	you
are	referring	to.

				TRY	IT	OUT								Delaying	a	Message
In	this	example,	you	set	a	timer	that	fires	three	seconds	after	the	page	has	loaded:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	7,	Example	3</title>

</head>

				<body>

								<script>

												function	doThisLater()	{

																alert("Time's	up!");

												}

												setTimeout(doThisLater,	3000);

								</script>

				</body>

</html>

Save	this	file	as	ch7_example3.html,	and	load	it	into	your	browser.

This	page	displays	a	message	box	three	seconds	after	the	browser	executes	the
JavaScript	code	in	the	body	of	the	page.	Let’s	look	at	that	code	starting	with	the
doThisLater()	function:

function	doThisLater()	{

				alert("Time's	up!");

}

This	function,	when	called,	simply	displays	a	message	in	an	alert	box.	You	delay	the
call	of	this	function	by	using	setTimeout():

	setTimeout(doThisLater,	3000);

Take	note	how	doThisLater()	is	passed	to	setTimeout()—the	parentheses	are
omitted.	You	do	not	want	to	call	doThisLater()	here;	you	simply	want	to	refer	to	the
function	object.

The	second	parameter	tells	JavaScript	to	execute	doThisLater()	after	3,000
milliseconds,	or	3	seconds,	have	passed.

It’s	important	to	note	that	setting	a	timer	does	not	stop	the	script	from	continuing	to
execute.	The	timer	runs	in	the	background	and	fires	when	its	time	is	up.	In	the	meantime
the	page	runs	as	usual,	and	any	script	after	you	start	the	timer’s	countdown	will	run
immediately.	So,	in	this	example,	the	alert	box	telling	you	that	the	timer	has	been	set
appears	immediately	after	the	code	setting	the	timer	has	been	executed.

What	if	you	decided	that	you	wanted	to	stop	the	timer	before	it	fired?

To	clear	a	timer	you	use	the	clearTimeout()	function.	This	takes	just	one	parameter:	the

unique	timer	ID	returned	by	the	setTimeout()	function.

				TRY	IT	OUT								Stopping	a	Timer
In	this	example,	you’ll	alter	the	preceding	example	and	provide	a	button	that	you	can
click	to	stop	the	timer:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	7,	Example	4</title>

</head>

				<body>

								<script>

												function	doThisLater()	{

																alert("Time's	up!");

												}

												var	timerId	=	setTimeout(doThisLater,	3000);

												clearTimeout(timerId);

								</script>

				</body>

</html>

Save	this	as	ch7_example4.html	and	load	it	into	your	browser.	You	will	not	see	an
alert	box	displaying	the	Time's	up!	message	because	you	called	clearTimeout()
and	passed	the	timer	ID	before	the	timeout	could	expire.

Setting	a	Timer	that	Fires	at	Regular	Intervals
The	setInterval()	and	clearInterval()	functions	work	similarly	to	setTimeout()	and
clearTimeout(),	except	that	the	timer	fires	continually	at	regular	intervals	rather	than	just
once.

The	setInterval()	function	takes	the	same	parameters	as	setTimeout(),	except	that	the
second	parameter	now	specifies	the	interval,	in	milliseconds,	between	each	firing	of	the
timer,	rather	than	just	the	length	of	time	before	the	timer	fires.

For	example,	to	set	a	timer	that	fires	the	function	myFunction()	every	five	seconds,	the
code	would	be	as	follows:

var	myTimerID	=	setInterval(myFunction,5000);

As	with	setTimeout(),	the	setInterval()	method	returns	a	unique	timer	ID	that	you’ll
need	if	you	want	to	clear	the	timer	with	clearInterval(),	which	works	identically	to
clearTimeout().	So	to	stop	the	timer	started	in	the	preceding	code,	you	would	use	the
following:

clearInterval(myTimerID);

				TRY	IT	OUT								A	Counting	Clock
In	this	example,	you	write	a	simple	page	that	displays	the	current	date	and	time.
That’s	not	very	exciting,	so	you’ll	also	make	it	update	every	second:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	7,	Example	5</title>

</head>

				<body>

								<div	id="output"></div>

								<script>

												function	updateTime()	{

																document.getElementById("output").innerHTML	=	new	

Date();

												}

												setInterval(updateTime,	1000);

								</script>

				</body>

</html>

Save	this	file	as	ch7_example5.html,	and	load	it	into	your	browser.

In	the	body	of	this	page	is	a	<div	/>	element,	and	its	id	attribute	has	the	value	of
output:

<div	id="output"></div>

The	updated	date	and	time	will	be	displayed	inside	this	element,	and	the	contents	of
this	element	are	updated	by	the	updateTime()	function:

function	updateTime()	{

				document.getElementById("output").innerText	=	new	Date();

}

This	function	uses	the	document.getElementById()	method	to	retrieve	the
aforementioned	<div/>	element,	and	it	uses	the	innerText	property	to	set	the
element’s	text	to	a	new	Date	object.	When	displayed	in	the	browser,	JavaScript
converts	the	Date	object	to	a	human-readable	string	containing	both	the	date	and	time.

To	change	the	date	and	time,	you	use	the	setInterval()	function,	passing	it	a
reference	to	the	updateTime()	function,	and	setting	it	to	execute	every	second	(1,000
milliseconds).	This,	in	turn,	changes	the	text	inside	of	the	<div/>	element,	thus
showing	the	current	date	and	time	every	second.

That	completes	your	look	at	this	example	and	also	your	introduction	to	timers.	You	use	the
setInterval()	and	clearInterval()	functions	in	later	chapters.

SUMMARY
You	started	the	chapter	by	looking	at	Coordinated	Universal	Time	(UTC),	which	is	an
international	standard	time.	You	then	looked	at	how	to	create	timers	in	web	pages.

The	particular	points	covered	were	the	following:

The	Date	object	enables	you	to	set	and	get	UTC	time	in	a	way	similar	to	setting	a
Date	object’s	local	time	by	using	methods	(such	as	setUTCHours()	and
getUTCHours())	for	setting	and	getting	UTC	hours	with	similar	methods	for	months,
years,	minutes,	seconds,	and	so	on.

A	useful	tool	in	international	time	conversion	is	the	getTimezoneOffset()	method,
which	returns	the	difference,	in	minutes,	between	the	user’s	local	time	and	UTC.	One
pitfall	of	this	is	that	you	are	assuming	the	user	has	correctly	set	his	time	zone	on	his
computer.	If	not,	getTimezoneOffset()	is	rendered	useless,	as	will	be	any	local	date
and	time	methods	if	the	user’s	clock	is	incorrectly	set.

Using	the	setTimeout()	method,	you	found	you	could	start	a	timer	that	would	fire
just	once	after	a	certain	number	of	milliseconds.	setTimeout()	takes	two	parameters:
The	first	is	the	function	you	want	executed,	and	the	second	is	the	delay	before	that
code	is	executed.	It	returns	a	value,	the	unique	timer	ID	that	you	can	use	if	you	later
want	to	reference	the	timer;	for	example,	to	stop	it	before	it	fires,	you	use	the
clearTimeout()	method.

To	create	a	timer	that	fires	at	regular	intervals,	you	used	the	setInterval()	method,
which	works	in	the	same	way	as	setTimeout(),	except	that	it	keeps	firing	unless	the
user	leaves	the	page	or	you	call	the	clearInterval()	method.

In	the	next	chapter,	you	turn	your	attention	to	the	web	browser	itself	and,	particularly,	the
various	objects	that	it	makes	available	for	your	JavaScript	programming.	You	see	that	the
use	of	browser	objects	is	key	to	creating	powerful	web	pages.

EXERCISES
1.	 Create	a	page	that	gets	the	user’s	date	of	birth.	Then,	using	that	information,	tell	her

on	what	day	of	the	week	she	was	born.

2.	 Create	a	web	page	similar	to	Example	5	in	the	“A	Counting	Clock”	Try	It	Out,	but
make	it	display	only	the	hour,	minutes,	and	seconds.

8
Programming	the	Browser
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Working	with	the	browser’s	native	window	object

Sending	the	browser	to	a	URL

Manipulating	images	after	they	are	loaded	in	the	page

Retrieving	the	browser’s	current	geographical	position

Detecting	the	user’s	browser

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

Over	the	past	few	chapters,	you’ve	examined	the	core	JavaScript	language.	You’ve	seen
how	to	work	with	variables	and	data,	perform	operations	on	that	data,	make	decisions	in
your	code,	loop	repeatedly	over	the	same	section	of	code,	and	even	how	to	write	your	own
functions.	You	moved	on	to	learn	how	JavaScript	is	an	object-based	language,	and	you
saw	how	to	work	with	the	native	JavaScript	objects.	However,	you	are	not	interested	only
in	the	language	itself;	you	want	to	find	out	how	to	write	scripts	for	the	web	browser.	Using
this	ability,	you	can	start	to	create	more	impressive	web	pages.

Not	only	is	JavaScript	object-based,	but	the	browser	is	also	made	up	of	objects.	When
JavaScript	is	running	in	the	browser,	you	can	access	the	browser’s	objects	in	exactly	the
same	way	that	you	used	JavaScript’s	native	objects.	But	what	kinds	of	objects	does	the
browser	provide?

The	browser	makes	available	a	remarkable	number	of	objects.	For	example,	there	is	a
window	object	corresponding	to	the	window	of	the	browser.	You	have	already	been	using
two	methods	of	this	object,	namely	the	alert()	and	prompt()	methods.	For	simplicity,	we
previously	referred	to	these	as	functions,	but	they	are,	in	fact,	methods	of	the	browser’s
window	object.

Another	object	made	available	by	the	browser	is	the	page	itself,	represented	by	the
document	object.	Again,	you	have	already	used	methods	and	properties	of	this	object.
Recall	from	previous	chapters	that	you	used	the	document	object’s	write()	method	to
write	information	to	the	page.

A	variety	of	other	objects	exist,	representative	of	the	HTML	you	write	in	the	page.	For
example,	there	is	an	img	object	for	each		element	that	you	use	to	insert	an	image
into	your	document.

The	collection	of	objects	that	the	browser	makes	available	to	you	for	use	with	JavaScript

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

is	generally	called	the	browser	object	model	(BOM).

NOTE	You	will	often	see	this	termed	the	document	object	model	(DOM);	it	is
incorrect	to	do	so.	Throughout	this	book,	we’ll	use	the	term	DOM	to	refer	to	the
W3C’s	standard	document	object	model,	which	is	discussed	in	the	next	chapter.

All	this	added	functionality	of	JavaScript	comes	with	a	potential	downside:	There	is	no
standard	BOM	implementation	(although	some	attempt	is	being	made	with	the	HTML5
specification).	Which	collections	of	objects	are	made	available	to	you	is	highly	dependent
on	the	brand	and	version	of	the	browser	that	you	are	using.	Some	objects	are	made
available	in	some	browsers	and	not	in	others,	whereas	other	objects	have	different
properties	and	methods	in	different	browsers.	The	good	news	is	that	browser	makers
typically	do	not	change	much	of	their	browser’s	BOM,	because	doing	so	would	create	a
rift	in	interoperability.	This	means	if	you	stick	to	the	core	functionality	of	the	BOM	(the
common	objects	in	all	browsers),	your	code	is	more	likely	to	work	between	the	different
browsers	and	versions.	This	chapter’s	focus	is	the	BOM	core	functionality.	You	can
achieve	a	lot	in	JavaScript	by	just	sticking	to	the	core.

INTRODUCTION	TO	THE	BROWSER’S	OBJECTS
This	section	introduces	the	objects	of	the	BOM	that	are	common	to	all	browsers.

In	Chapter	5,	you	saw	that	JavaScript	has	a	number	of	native	objects	that	you	can	access
and	use.	Most	of	the	objects	are	those	that	you	need	to	create	yourself,	such	as	the	String
and	Date	objects.	Others,	such	as	the	Math	object,	exist	without	you	needing	to	create
them	and	are	ready	for	use	immediately	when	the	page	starts	loading.

When	JavaScript	is	running	in	a	web	page,	it	has	access	to	a	large	number	of	other	objects
made	available	by	the	web	browser.	Like	the	Math	object,	these	are	created	for	you	rather
than	your	needing	to	create	them	explicitly.	As	mentioned,	the	objects,	their	methods,
properties,	and	events	are	all	mapped	out	in	the	BOM.

The	BOM	is	very	large	and	potentially	overwhelming	at	first.	However,	you’ll	find	that
initially	you	won’t	be	using	more	than	10	percent	of	the	available	objects,	methods,	and
properties	in	the	BOM.	You	start	in	this	chapter	by	looking	at	the	more	commonly	used
parts	of	the	BOM,	as	shown	in	Figure	8.1.	These	parts	of	the	BOM	are,	to	a	certain	extent,
common	across	all	browsers.	Later	chapters	build	on	this	so	that	by	the	end	of	the	book
you’ll	be	able	to	really	make	the	BOM	work	for	you.

Figure	8.1

The	BOM	has	a	hierarchy.	At	the	very	top	of	this	hierarchy	is	the	window	object.	You	can
think	of	this	as	representing	the	frame	of	the	browser	and	everything	associated	with	it,
such	as	the	scrollbars,	navigator	bar	icons,	and	so	on.

Contained	inside	the	window	frame	is	the	page.	The	page	is	represented	in	the	BOM	by
the	document	object.	You	can	see	these	two	objects	represented	in	Figure	8.2.

Figure	8.2

Now	let’s	look	at	each	of	these	objects	in	more	detail.

The	window	Object
The	window	object	represents	the	browser’s	frame	or	window,	in	which	your	web	page	is
contained.	To	some	extent,	it	also	represents	the	browser	itself	and	includes	a	number	of
properties	that	are	there	simply	because	they	don’t	fit	anywhere	else.	For	example,	via	the
properties	of	the	window	object,	you	can	find	out	what	browser	is	running,	the	pages	the
user	has	visited,	the	size	of	the	browser	window,	the	size	of	the	user’s	screen,	and	much
more.	You	can	also	use	the	window	object	to	access	and	change	the	text	in	the	browser’s
status	bar,	change	the	page	that	is	loaded,	and	even	open	new	windows.

The	window	object	is	a	global	object,	which	means	you	don’t	need	to	use	its	name	to
access	its	properties	and	methods.	In	fact,	the	global	functions	and	variables	(the	ones
accessible	for	you	to	script	anywhere	in	a	page)	are	all	created	as	properties	of	the	global
object.	For	example,	the	alert()	function	you	have	been	using	since	the	beginning	of	the
book	is,	in	fact,	the	alert()	method	of	the	window	object.	Although	you	have	been	using
this	simply	as	this:

alert("Hello!");

You	could	write	this	with	the	same,	exact	results:

window.alert("Hello!");

However,	because	the	window	object	is	the	global	object,	it	is	perfectly	correct	to	use	the
first	version.

Some	of	the	properties	of	the	window	object	are	themselves	objects.	Those	common	to	all
browsers	include	the	document,	navigator,	history,	screen,	and	location	objects.	The
document	object	represents	your	page,	the	history	object	contains	the	history	of	pages
visited	by	the	user,	the	navigator	object	holds	information	about	the	browser,	the	screen

object	contains	information	about	the	display	capabilities	of	the	client,	and	the	location
object	contains	details	on	the	current	page’s	location.	You	look	at	these	important	objects
individually	later	in	the	chapter.

At	this	point	it’s	worth	highlighting	the	fact	that,	within	a	web	page,	you	shouldn’t	use
names	for	your	functions	or	variables	that	conflict	with	names	of	BOM	objects	or	their
properties	and	methods.	If	you	do,	you	may	not	get	an	error,	but	instead	get	unexpected
results.	For	example,	the	following	code	declares	a	variable	named	history,	and	tries	to
use	the	history	property	of	the	window	object	to	go	back	to	the	previous	page.	This,
however,	won’t	work	because	history	has	been	changed	to	hold	a	different	value:

var	history	=	"Hello,	BOM!";

window.history.back();	//	error;	string	objects	don't	have	a	back()	method

In	this	situation	you	need	to	use	a	different	variable	name.	This	happens	because	any
function	or	variable	you	define	within	the	global	scope	actually	gets	appended	to	the
window	object.	Look	at	this	code	as	an	example:

var	myVariable	=	"Hello,	World!";

alert(window.myVariable);

If	you	were	to	execute	this	code	in	a	browser,	the	alert	window	would	display	the	message
“Hello,	World.”

As	with	all	the	BOM	objects,	you	can	look	at	lots	of	properties	and	methods	for	the
window	object.	However,	in	this	chapter	you	concentrate	on	the	history,	location,
navigator,	screen,	and	document	properties.	All	five	of	these	properties	contain	objects
(the	history,	location,	navigator,	screen,	and	document	objects),	each	with	its	own
properties	and	methods.	In	the	next	few	pages,	you	look	at	each	of	these	objects	in	turn
and	find	out	how	they	can	help	you	make	full	use	of	the	BOM.

The	history	Object
The	history	object	keeps	track	of	each	page	that	the	user	visits.	This	list	of	pages	is
commonly	called	the	history	stack	for	the	browser.	It	enables	the	user	to	click	the
browser’s	Back	and	Forward	buttons	to	revisit	pages.	You	have	access	to	this	object	via
the	window	object’s	history	property.

Like	the	native	JavaScript	Array	type,	the	history	object	has	a	length	property.	You	can
use	this	to	find	out	how	many	pages	are	in	the	history	stack.

As	you	might	expect,	the	history	object	has	the	back()	and	forward()	methods.	When
they	are	called,	the	location	of	the	page	currently	loaded	in	the	browser	is	changed	to	the
previous	or	next	page	that	the	user	has	visited.

The	history	object	also	has	the	go()	method.	This	takes	one	parameter	that	specifies	how
far	forward	or	backward	in	the	history	stack	you	want	to	go.	For	example,	if	you	wanted	to
return	the	user	to	the	page	before	the	previous	page,	you’d	write	this:

history.go(-2);

To	go	forward	three	pages,	you’d	write	this:

history.go(3);.

Note	that	go(-1)	and	back()	are	equivalent,	as	are	go(1)	and	forward().

The	location	Object
The	location	object	contains	lots	of	potentially	useful	information	about	the	current
page’s	location.	Not	only	does	it	contain	the	uniform	resource	locator	(URL)	for	the	page,
but	also	the	server	hosting	the	page,	the	port	number	of	the	server	connection,	and	the
protocol	used.	This	information	is	made	available	through	the	location	object’s	href,
hostname,	port,	and	protocol	properties.	However,	many	of	these	values	are	only	really
relevant	when	you	are	loading	the	page	from	a	server	and	not,	as	you	are	doing	in	the
present	examples,	loading	the	page	directly	from	a	local	hard	drive.

In	addition	to	retrieving	the	current	page’s	location,	you	can	use	the	methods	of	the
location	object	to	change	the	location	and	refresh	the	current	page.

You	can	navigate	to	another	page	in	two	ways.	You	can	either	set	the	location	object’s
href	property	to	point	to	another	page,	or	you	can	use	the	location	object’s	replace()
method.	The	effect	of	the	two	is	the	same;	the	page	changes	location.	However,	they	differ
in	that	the	replace()	method	removes	the	current	page	from	the	history	stack	and
replaces	it	with	the	new	page	you	are	moving	to,	whereas	using	the	href	property	simply
adds	the	new	page	to	the	top	of	the	history	stack.	This	means	that	if	the	replace()	method
has	been	used	and	the	user	clicks	the	Back	button	in	the	browser,	the	user	can’t	go	back	to
the	original	page	loaded.	If	the	href	property	has	been	used,	the	user	can	use	the	Back
button	as	normal.

For	example,	to	replace	the	current	page	with	a	new	page	called	myPage.html,	you’d	use
the	replace()	method	and	write	the	following:

location.replace("myPage.html");

This	loads	myPage.html	and	replaces	any	occurrence	of	the	current	page	in	the	history
stack	with	myPage.html.

To	load	the	same	page	and	to	add	it	to	the	history	of	pages	navigated	to,	you	use	the	href
property:

location.href	=	"myPage.html";

This	adds	the	currently	loaded	page	to	the	history.	In	both	of	the	preceding	cases,	window
is	in	front	of	the	expression,	but	because	the	window	object	is	global	throughout	the	page,
you	could	have	written	one	of	the	following:

location.replace("myPage.html");

location.href	=	"myPage.html";

The	navigator	Object
The	navigator	object	is	another	object	that	is	a	property	of	window	and	is	available	in	all
browsers.	Its	name	is	more	historical	than	descriptive.	Perhaps	a	better	name	would	be	the

“browser	object,”	because	the	navigator	object	contains	lots	of	information	about	the
browser	and	the	operating	system	in	which	it’s	running.

Historically,	the	most	common	use	of	the	navigator	object	is	for	handling	browser
differences.	Using	its	properties,	you	can	find	out	which	browser,	version,	and	operating
system	the	user	has.	You	can	then	act	on	that	information	and	make	sure	your	code	works
only	in	browsers	that	support	it.	This	is	referred	to	as	browser	sniffing,	and	though	it	has
its	uses,	it	does	have	limitations.

A	better	alternative	to	browser	sniffing	is	feature	detection,	the	act	of	determining	if	a
browser	supports	a	particular	feature.	We	won’t	go	into	these	subjects	here;	later	sections
of	this	chapter	are	devoted	to	browser	sniffing	and	feature	detection.

The	geolocation	Object
The	HTML5	specification	adds	the	geolocation	property	to	navigator.	Its	purpose	is
simple:	to	enable	developers	to	obtain	and	use	the	position	of	the	device	or	computer.	That
sounds	like	a	scary	proposition,	but	users	must	give	permission	for	that	information	to	be
retrieved	and	used.

At	the	heart	of	the	geolocation	object	is	its	getCurrentPosition()	method.	When	you
call	this	method,	you	must	pass	it	a	callback	function,	which	is	a	function	that	executes
when	getCurrentPosition()	successfully	completes	its	work.	In	Chapter	4,	you	learned
that	functions	are	values.	You	can	assign	them	to	variables	and	pass	them	to	other
functions,	and	the	latter	is	what	you	do	with	the	getCurrentPosition()	method.	For
example:

function	success(position)	{

				alert("I	have	you	now!");

}

navigator.geolocation.getCurrentPosition(success);

In	this	code,	success()	is	the	callback	function	that	executes	when
navigator.geolocation.getCurrentPosition()	determines	the	computer’s	or	device’s
location.	The	parameter,	position,	is	an	object	that	contains	the	Earthly	position	and
altitude	of	the	computer	or	device,	and	you	can	retrieve	these	pieces	of	information
through	its	coords	property,	like	this:

function	success(position)	{

				var	latitude	=	position.coords.latitude;

				var	longitude	=	position.coords.longitude;

				var	altitude	=	position.coords.altitude;

				var	speed	=	position.coords.speed;

}

The	latitude,	longitude,	and	altitude	properties	are	self-explanatory;	they	are	simply
numeric	values	representing	the	latitude,	longitude,	and	altitude	of	the	device	or	computer,
respectively.	The	speed	property	retrieves	the	speed,	or	rather	the	velocity,	of	the
device/computer	in	meters	per	second.

If	you	need	to	retrieve	more	than	one	of	these	values,	it	makes	sense	to	assign

position.coords	to	a	variable	and	then	use	the	variable	to	retrieve	the	positional	values.
For	example:

function	success(position)	{

				var	crds	=	position.coords;

				var	latitude	=	crds.latitude;

				var	longitude	=	crds.longitude;

				var	altitude	=	crds.altitude;

				var	speed	=	crds.speed;

}

This	reduces	the	amount	of	code	you	have	to	type.	It	also	has	the	advantage	of	reducing
the	size	of	your	code,	resulting	in	a	slightly	faster	download	time.

The	getCurrentPosition()	method	accepts	a	second	parameter,	another	callback
function	that	executes	when	an	error	occurs:

function	geoError(errorObj)	{

				alert("Uh	oh,	something	went	wrong");

}

navigator.geolocation.getCurrentPosition(success,	geoError);

The	error	callback	function	has	a	single	parameter	that	represents	the	reason	for
getCurrentPosition()’s	failure.	It	is	an	object	containing	two	properties.	The	first,	code,
is	a	numeric	value	indicating	the	reason	of	failure.	The	following	table	lists	the	possible
values	and	their	meanings:

VALUE DESCRIPTION
1 Failure	occurred	because	the	page	did	not	have	permission	to	acquire	the

position	of	the	device/computer.
2 An	internal	error	occurred.
3 The	time	allowed	to	retrieve	the	device’s/computer’s	position	was	reached

before	the	position	was	obtained.

The	second	property	is	called	message;	it’s	a	human-readable	message	that	describes	the
error.

				TRY	IT	OUT								Using	Geolocation
In	this	example,	you	use	the	geolocation	object	to	retrieve	the	latitude	and	longitude
of	the	device/computer:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	8,	Example	1</title>

</head>

				<body>

								<script>

												function	geoSuccess(position)	{

																var	coords	=	position.coords;

																var	latitude	=	coords.latitude;

																var	longitude	=	coords.longitude;

																var	message	=	"You're	at	"	+	latitude	+	",	"	+	

longitude

																alert(message);

												}

												function	geoError(errorObj)	{

																alert(errorObj.message);

												}

												navigator.geolocation.getCurrentPosition(geoSuccess,	

geoError);

								</script>

				</body>

</html>

Save	the	page	as	ch8_example1.html	and	load	it	into	your	browser.

The	page	requires	the	user’s	consent	in	order	to	retrieve	his	or	her	geographical
position.	So	the	first	thing	you	will	see	is	a	prompt	asking	you	to	allow	or	deny	the
page	permission	to	retrieve	that	information.	Every	browser	displays	this	request
differently;	Figure	8.3	is	Chrome’s	request.

Figure	8.3

If	you	allow	the	page	to	access	your	position,	you’ll	see	the	latitude	and	longitude	of
your	device	or	computer	displayed	in	an	alert	box.	If	you	choose	to	deny	access,

you’ll	see	a	message	similar	to	that	shown	in	Figure	8.4.

Figure	8.4

Two	functions	in	this	page	are	responsible	for	the	aforementioned	behavior.	The	first
function,	geoSuccess(),	is	the	callback	function	that	executes	when	the	browser	can
successfully	retrieve	your	device’s/computer’s	position:

function	geoSuccess(position)	{

				var	coords	=	position.coords;

				var	latitude	=	coords.latitude;

				var	longitude	=	coords.longitude;

The	first	statement	in	this	function	stores	position.coords	in	the	coords	variable	to
access	the	positional	information	with	fewer	keystrokes.	The	second	and	third
statements	retrieve	the	latitude	and	longitude,	respectively.

Now	that	you	have	the	latitude	and	longitude,	you	assemble	a	message	that	contains
this	information	and	display	it	to	the	user:

				var	message	=	"You're	at	"	+	latitude	+	",	"	+	longitude

				alert(message);

}

If	you	denied	the	page	access	to	your	position,	or	if	the	browser	cannot	obtain	your
position,	the	geoError()	callback	function	executes:

function	geoError(errorObj)	{

				alert(errorObj.message);

}

This	simple	function	simply	uses	the	error	object’s	message	property	to	tell	the	user
why	getCurrentPosition()	failed.

The	screen	Object
The	screen	object	property	of	the	window	object	contains	a	lot	of	information	about	the
display	capabilities	of	the	client	machine.	Its	properties	include	the	height	and	width
properties,	which	indicate	the	vertical	and	horizontal	range	of	the	screen,	respectively,	in

pixels.

Another	property	of	the	screen	object,	which	you	use	in	an	example	later,	is	the
colorDepth	property.	This	tells	you	the	number	of	bits	used	for	colors	on	the	client’s
screen.

The	document	Object
Along	with	the	window	object,	the	document	object	is	probably	one	of	the	most	important
and	commonly	used	objects	in	the	BOM.	Via	this	object	you	can	gain	access	to	the	HTML
elements,	their	properties,	and	their	methods	inside	your	page.

This	chapter	concentrates	on	the	basic	properties	and	methods	that	are	common	to	all
browsers.	More	advanced	manipulation	of	the	document	object	is	covered	in	Chapter	9.

The	document	object	has	a	number	of	properties	associated	with	it,	which	are	also	array-
like	structures	called	collections.	The	main	collections	are	the	forms,	images,	and	links
collections.	Internet	Explorer	supports	a	number	of	other	collection	properties,	such	as	the
all	collection	property,	which	is	an	array	of	all	the	elements	represented	by	objects	in	the
page.	However,	you’ll	concentrate	on	using	objects	that	have	standard	cross-browser
support,	so	that	you	are	not	limiting	your	web	pages	to	just	one	browser.

You	look	at	the	images	and	links	collections	shortly.	A	third	collection,	the	forms
collection,	is	one	of	the	topics	of	Chapter	11	when	you	look	at	forms	in	web	browsers.
First,	though,	you	look	at	a	nice,	simple	example	of	how	to	use	the	document	object’s
methods	and	properties.

Using	the	document	Object
You’ve	already	come	across	some	of	the	document	object’s	properties	and	methods—for
example,	the	write()	method	and	the	bgColor	property.

				TRY	IT	OUT								Setting	Colors	According	to	the
User’s	Screen	Color	Depth

In	this	example,	you	set	the	background	color	of	the	page	according	to	how	many
colors	the	user’s	screen	supports.	This	is	termed	screen	color	depth.	If	the	user	has	a
display	that	supports	just	two	colors	(black	and	white),	there’s	no	point	in	you	setting
the	background	color	to	bright	red.	You	accommodate	different	depths	by	using
JavaScript	to	set	a	color	the	user	can	actually	see.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	8,	Example	2</title>

</head>

				<body>

								<script>

												var	colorDepth	=	window.screen.colorDepth;

												switch	(colorDepth)	{

																case	1:

																case	4:

																				document.bgColor	=	"white";

																				break;

																case	8:

																case	15:

																case	16:

																				document.bgColor	=	"blue";

																				break;

																case	24:

																case	32:

																				document.bgColor	=	"skyblue";

																				break;

																default:

																				document.bgColor	=	"white";

												}

												document.write("Your	screen	supports	"	+	colorDepth	+

																											"bit	color");

								</script>

				</body>

</html>

Save	the	page	as	ch8_example2.html.	When	you	load	it	into	your	browser,	the
background	color	of	the	page	will	be	determined	by	your	current	screen	color	depth.
Also,	a	message	in	the	page	will	tell	you	what	the	color	depth	currently	is.

You	can	test	that	the	code	is	working	properly	by	changing	the	colors	supported	by
your	screen.	By	refreshing	the	browser,	you	can	see	what	difference	this	makes	to	the
color	of	the	page.

NOTE	In	Firefox,	Safari,	and	Chrome	browsers,	it’s	necessary	to	shut	down	and
restart	the	browser	to	observe	any	effect.

As	you	saw	earlier,	the	window	object	has	the	screen	object	property.	One	of	the
properties	of	this	object	is	the	colorDepth	property,	which	returns	a	value	of	1,	4,	8,
15,	16,	24,	or	32.	This	represents	the	number	of	bits	assigned	to	each	pixel	on	your
screen.	(A	pixel	is	just	one	of	the	many	dots	that	make	up	your	screen.)	To	work	out
how	many	colors	you	have,	you	just	calculate	the	value	of	2	to	the	power	of	the
colorDepth	property.	For	example,	a	colorDepth	of	1	means	that	two	colors	are
available,	a	colorDepth	of	8	means	that	256	colors	are	available,	and	so	on.	Currently,
most	people	have	a	screen	color	depth	of	at	least	8,	but	usually	24	or	32.

The	first	task	of	the	script	block	is	to	set	the	color	of	the	background	of	the	page
based	on	the	number	of	colors	the	user	can	actually	see.	You	do	this	in	a	big	switch
statement.	The	condition	that	is	checked	for	in	the	switch	statement	is	the	value	of
the	colorDepth	variable,	which	is	set	to	window.screen.colorDepth:

var	colorDepth	=	window.screen.colorDepth;

switch	(colorDepth)	{

You	don’t	need	to	set	a	different	color	for	each	colorDepth	possible,	because	many	of
them	are	similar	when	it	comes	to	general	web	use.	Instead,	you	set	the	same
background	color	for	different,	but	similar,	colorDepth	values.	For	a	colorDepth	of	1
or	4,	you	set	the	background	to	white.	You	do	this	by	declaring	the	case	1:
statement,	but	you	don’t	give	it	any	code.	If	the	colorDepth	matches	this	case
statement,	it	will	fall	through	to	the	case	4:	statement	below	it,	where	you	do	set	the
background	color	to	white.	You	then	call	a	break	statement,	so	that	the	case	matching
will	not	fall	any	further	through	the	switch	statement:

				case	1:

				case	4:

								document.bgColor	=	"white";

								break;

You	do	the	same	with	colorDepth	values	of	8,	15,	and	16,	setting	the	background
color	to	blue	as	follows:

				case	8:

				case	15:

				case	16:

								document.bgColor	=	"blue";

								break;

Finally,	you	do	the	same	for	colorDepth	values	of	24	and	32,	setting	the	background
color	to	sky	blue:

				case	24:

				case	32:

								document.bgColor	=	"skyblue";

								break;

You	end	the	switch	statement	with	a	default	case,	just	in	case	the	other	case
statements	did	not	match.	In	this	default	case,	you	again	set	the	background	color	to
white:

				default:

								document.bgColor	=	"white";

}

In	the	next	bit	of	script,	you	use	the	document	object’s	write()	method,	something
you’ve	been	using	in	these	examples	for	a	while	now.	You	use	it	to	write	to	the
document—that	is,	the	page—the	number	of	bits	at	which	the	color	depth	is	currently
set,	as	follows:

			document.write("Your	screen	supports	"	+	colorDepth	+

																		"bit	color")

You’ve	already	been	using	the	document	object	in	the	examples	throughout	the	book.
You	used	its	bgColor	property	in	Chapter	1	to	change	the	background	color	of	the
page,	and	you’ve	also	made	good	use	of	its	write()	method	in	the	examples	to	write

HTML	and	text	out	to	the	page.

Now	let’s	look	at	some	of	the	slightly	more	complex	properties	of	the	document	object.
These	properties	have	in	common	the	fact	that	they	all	contain	collections.	The	first	one
you	look	at	is	a	collection	containing	an	object	for	each	image	in	the	page.

The	images	Collection
As	you	know,	you	can	insert	an	image	into	an	HTML	page	using	the	following	tag:

The	browser	makes	this	image	available	for	you	to	manipulate	with	JavaScript	by	creating
an	img	object	for	it	with	the	name	myImage.	In	fact,	each	image	on	your	page	has	an	img
object	created	for	it.

Each	of	the	img	objects	in	a	page	is	stored	in	the	images	collection,	which	is	a	property	of
the	document	object.	You	use	this,	and	other	collections,	as	you	would	an	array.	The	first
image	on	the	page	is	found	in	the	element	document.images[0],	the	second	in
document.images[1],	and	so	on.

If	you	want	to,	you	can	assign	a	variable	to	reference	an	img	object	in	the	images
collection.	It	can	make	code	easier	to	type	and	read.	For	example,	the	following	code
assigns	a	reference	to	the	img	object	at	index	position	1	to	the	myImage2	variable:

var	myImage2	=	document.images[1];

Now	you	can	write	myImage2	instead	of	document.images[1]	in	your	code,	with	exactly
the	same	effect.

Because	the	document.images	property	is	a	collection,	it	has	properties	similar	to	the
native	JavaScript	Array	type,	such	as	the	length	property.	For	example,	if	you	want	to
know	how	many	images	are	on	the	page,	the	code	document.images.length	will	tell	you.

				TRY	IT	OUT								Image	Selection
The	img	object	itself	has	a	number	of	useful	properties.	The	most	important	of	these	is
its	src	property.	By	changing	this,	you	can	change	the	image	that’s	loaded.	This
example	demonstrates	this:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	8,	Example	3</title>

</head>

<body>

				

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								var	imgIndex	=	prompt("Enter	a	number	from	0	to	3",	"");

								document.images[0].src	=	myImages[imgIndex];

				</script>

</body>

</html>

Save	this	as	ch8_example3.html.	You	will	also	need	four	image	files,	called	usa.gif,
canada.gif,	jamaica.gif,	and	mexico.gif.	You	can	create	these	images	yourself	or
obtain	the	ones	provided	with	the	code	download	for	the	book.

A	prompt	box	asks	you	to	enter	a	number	from	0	to	3	when	this	page	loads	into	the
browser.	A	different	image	is	displayed	depending	on	the	number	you	enter.

At	the	top	of	the	page	you	have	your	HTML		element.	Notice	that	the	src
attribute	is	left	empty:

Next	you	come	to	the	script	block	where	the	image	to	be	displayed	is	decided.	On	the
first	line,	you	define	an	array	containing	a	list	of	image	sources.	In	this	example,	the
images	are	in	the	same	directory	as	the	HTML	file,	so	a	path	is	not	specified.	If	yours
are	not,	make	sure	you	enter	the	full	path	(for	example,	C:\myImages\mexico.gif).

Then	you	ask	the	user	for	a	number	from	0	to	3,	which	will	be	used	as	the	array	index
to	access	the	image	source	in	the	myImages	array:

			var	imgIndex	=	prompt("Enter	a	number	from	0	to	3","");

Finally,	you	set	the	src	property	of	the	img	object	to	the	source	text	inside	the
myImages	array	element	with	the	index	number	provided	by	the	user:

			document.images[0].src	=	myImages[imgIndex];

Don’t	forget	that	when	you	write	document.images[0],	you	are	accessing	the	img
object	stored	in	the	images	collection.	It’s	an	index	position	of	0,	because	it’s	the	first
(and	only)	image	on	this	page.

The	links	Collection
For	each	hyperlink	element	<a/>	defined	with	an	href	attribute,	the	browser	creates	an	a
object.	The	most	important	property	of	the	a	object	is	the	href	property,	corresponding	to
the	href	attribute	of	the	tag.	Using	this,	you	can	find	out	where	the	link	points	to,	and	you
can	change	this	even	after	the	page	has	loaded.

The	collection	of	all	a	objects	in	a	page	is	contained	within	the	links	collection,	much	as
the	img	objects	are	contained	in	the	images	collection,	as	you	saw	earlier.

DETERMINING	THE	USER’S	BROWSER
Many	browsers,	versions	of	those	browsers,	and	operating	systems	are	out	there	on	the
Internet,	each	with	its	own	version	of	the	BOM,	its	own	set	of	features,	and	its	own
particular	quirks.	It’s	therefore	important	that	you	make	sure	your	pages	will	work
correctly	on	all	browsers,	or	at	least	degrade	gracefully,	such	as	by	displaying	a	message
suggesting	that	the	user	upgrade	his	or	her	browser.

You	have	two	ways	to	test	if	the	browser	can	execute	your	code:	feature	detection	and
browser	sniffing.	They	share	a	similar	end	goal	(to	execute	code	for	a	given	browser),	but
they	are	used	for	different	purposes.

Feature	Detection
Not	all	browsers	support	the	same	features	(although	today’s	modern	browsers	do	a	very
good	job	of	it).	When	we	say	“feature,”	we’re	not	referring	to	tabbed	browsing,	download
managers,	and	so	on.	We	mean	features	that	we,	as	JavaScript	developers,	can	access	and
use	in	our	code.

Feature	detection	is	the	process	of	determining	if	a	browser	supports	a	given	feature,	and	it
is	the	preferred	method	of	browser	detection.	It	requires	little	maintenance,	and	it	is	used
to	execute	code	across	all	browsers	that	implement	(or	don’t	implement)	a	specific	feature.

For	example,	all	modern	browsers	support	navigator.geolocation.	You	can	use	it	in
your	page,	and	visitors	using	those	browsers	will	not	experience	any	issues.	However,
visitors	using	Internet	Explorer	8	would	experience	script	errors	because	IE8	does	not
support	geolocation.

This	is	a	common	problem	because	even	the	latest	versions	of	browsers	don’t	always
support	the	same	features,	but	you	can	avoid	these	types	of	issues	with	feature	detection.
The	pattern	is	simple:	Check	if	the	feature	exists,	and	only	use	the	feature	if	it	does.
Therefore,	all	you	need	is	an	if	statement,	like	this:

if	(navigator.geolocation)	{

				//	use	geolocation

}

Whoa!	Wait	a	minute!	This	code	uses	navigator.geolocation	as	the	if	statement’s
condition!	Isn’t	the	if	statement	supposed	to	work	on	true	or	false	values?	Yes,	but
JavaScript	can	treat	any	value	as	true	or	false.	We	call	these	truthy	and	falsey.	They
aren’t	true	boolean	values,	but	they	evaluate	to	true	and	false	when	used	in	a	conditional
statement.

Here’s	how	this	works;	the	following	values	are	falsey:

0

""	(an	empty	string)

null

undefined

[]	(an	empty	array)

false

Just	about	everything	else	is	truthy.

In	browsers	that	don’t	support	geolocation,	navigator.geolocation	is	undefined	and	is
therefore	falsey.

We	know	that	this	can	be	confusing,	and	it	can	add	some	ambiguity	to	your	code.	So	many
JavaScript	developers	like	to	avoid	using	truthy/falsey	statements,	and	opt	for	a	clearer
comparison	by	using	the	typeof	operator,	like	this:

if	(typeof	navigator.geolocation	!=	"undefined")	{

				//	use	geolocation

}

The	typeof	operator	returns	a	string	that	tells	you	the	type	of	a	value	or	object.	In	this
code,	the	typeof	operator	is	used	on	navigator.geolocation.	In	browsers	that	support
geolocation,	the	type	is	"object";	in	browsers	that	don’t,	it’s	"undefined".

You	can	use	the	typeof	operator	on	any	object	or	value.	Refer	to	the	following	table	for
the	possible	values	returned	by	typeof:

STATEMENT RESULT
typeof	1 number
typeof	"hello" string
typeof	true boolean
typeof	[]	(or	any	array) object
typeof	{}	(or	any	object) object
typeof	undefined undefined
typeof	null object

				TRY	IT	OUT								Using	Feature	Detection
In	this	example,	you	modify	ch8_example1.html	and	ensure	that	the	page	works	in
browsers	that	do	not	support	geolocation.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	8,	Example	4</title>

</head>

				<body>

								<script>

												function	geoSuccess(position)	{

																var	coords	=	position.coords;

																var	latitude	=	coords.latitude;

																var	longitude	=	coords.longitude;

																var	message	=	"You're	at	"	+	latitude	+	",	"	+	

longitude

																alert(message);

												}

												function	geoError(errorObj)	{

																alert(errorObj.message);

												}

												if	(typeof	navigator.geolocation	!=	"undefined")	{

																navigator.geolocation.getCurrentPosition(geoSuccess,	

geoError);

												}	else	{

																alert("This	page	uses	geolocation,	and	your	"	+

																						"browser	doesn't	support	it.");

												}

								</script>

				</body>

</html>

Save	this	example	as	ch8_example4.html.

The	key	difference	in	this	example	is	the	if…	else	statement	at	the	bottom	of	the
JavaScript	code:

if	(typeof	navigator.geolocation	!=	"undefined")	{

				navigator.geolocation.getCurrentPosition(geoSuccess,	geoError);

}	else	{

				alert("This	page	uses	geolocation,	and	your	"	+

										"browser	doesn't	support	it.");

}

Here,	you	use	the	typeof	operator	on	navigator.geolocation	to	determine	if	the
browser	supports	that	feature.	If	it	does,	the	getCurrentPosition()	method	is	called.

If	the	browser	doesn’t	support	geolocation,	the	code	displays	a	message	to	the	user
stating	that	his	or	her	browser	doesn’t	support	the	necessary	feature.	If	you	had
attempted	to	use	geolocation	without	ensuring	that	the	browser	supports	it,	the
browser	would	throw	an	error.

Feature	detection	is	extremely	useful,	and	it	enables	you	to	isolate	browsers	based	on	the
features	they	do	or	don’t	support.	But	browser	makers	are	not	perfect,	and	they	sometimes
release	a	version	of	a	browser	that	exhibits	unique	and	quirky	behavior.	In	these	cases,	you
need	to	isolate	an	individual	browser,	and	feature	detection	rarely	gives	you	that	fine	level
of	control.

Browser	Sniffing
First,	let	us	reiterate	this	point:	Most	of	the	time,	you	want	to	use	feature	detection.
Browser	sniffing	has	many	drawbacks,	one	of	which	is	that	some	less	common	browsers
may	falsely	identify	themselves	as	a	more	common	browser.	Another	problem	is	that
browser	sniffing	relies	on	the	browser’s	user-agent	string,	which	is	a	string	that	identifies
the	browser,	and	browser	makers	can	drastically	change	the	user-agent	string	between

different	versions	(you	see	an	example	of	this	later).	You	should	use	the	techniques
contained	in	this	section	only	when	you	need	to	target	a	single	browser	for	its	own	quirky
behavior.

The	navigator	object	exposes	two	properties	that	are	useful	in	identifying	a	browser:
appName	and	userAgent.	The	appName	property	returns	the	model	of	the	browser,	such	as
“Microsoft	Internet	Explorer”	for	IE	or	“Netscape”	for	Firefox,	Chrome,	and	Safari.

The	userAgent	property	returns	a	string	containing	various	bits	of	information,	such	as	the
browser	version,	operating	system,	and	browser	model.	However,	the	value	returned	by
this	property	varies	from	browser	to	browser,	so	you	have	to	be	very,	very	careful	when
using	it.	For	example,	the	browser’s	version	is	embedded	in	different	locations	of	the
string.

				TRY	IT	OUT								Checking	for	and	Dealing	with
Different	Browsers
In	this	example,	you	create	a	page	that	uses	the	aforementioned	properties	to	discover
the	client’s	browser	and	browser	version.	The	page	can	then	take	action	based	on	the
client’s	specifications.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	8,	Example	5</title>

</head>

<body>

				<script>

								function	getBrowserName()	{

												var	lsBrowser	=	navigator.userAgent;

												if	(lsBrowser.indexOf("MSIE")	>=	0)	{

																return	"MSIE";

												}	else	if	(lsBrowser.indexOf("Firefox")	>=	0)	{

																return	"Firefox";

												}	else	if	(lsBrowser.indexOf("Chrome")	>=	0)	{

																return	"Chrome";

												}	else	if	(lsBrowser.indexOf("Safari")	>=	0)	{

																return	"Safari";

												}	else	if	(lsBrowser.indexOf("Opera")	>=	0)	{

																return	"Opera";

												}	else	{

																return	"UNKNOWN";

												}

								}

								function	getBrowserVersion()	{

												var	ua	=	navigator.userAgent;

												var	browser	=	getBrowserName();

												var	findIndex	=	ua.indexOf(browser)	+	browser.length	+	1;

												var	browserVersion	=	parseFloat(

																ua.substring(findIndex,	findIndex	+	3));

												return	browserVersion;

								}

								var	browserName	=	getBrowserName();

								var	browserVersion	=	getBrowserVersion();

								if	(browserName	==	"MSIE")	{

												if	(browserVersion	<	9)	{

																document.write("Your	version	of	IE	is	too	old");

												}	else	{

																document.write("Your	version	of	IE	is	fully	

supported");

												}

								}	else	if	(browserName	==	"Firefox")	{

												document.write("Firefox	is	fully	supported");

								}	else	if	(browserName	==	"Safari")	{

												document.write("Safari	is	fully	supported");

								}	else	if	(browserName	==	"Chrome")	{

												document.write("Chrome	is	fully	supported");

								}	else	if	(browserName	==	"Opera")	{

												document.write("Opera	is	fully	supported");

								}	else	{

												document.write("Sorry	this	browser	version	is	not	

supported");

								}

				</script>

</body>

</html>

Save	this	file	as	ch8_example5.html.

If	the	browser	is	Firefox,	IE9	or	10,	Safari,	Chrome,	or	Opera,	a	message	appears
telling	users	that	the	browser	is	supported.	If	it’s	an	earlier	version	of	IE,	the	user	sees
a	message	telling	him	or	her	the	version	of	that	browser	is	not	supported.

If	it’s	not	one	of	those	browsers	(including	IE11+),	the	user	sees	a	message	saying	the
browser	is	unsupported.

At	the	top	of	the	script	block	are	two	important	functions.	The	getBrowserName()
function	finds	out	the	name	of	the	browser	and	the	getBrowserVersion()	function
finds	out	the	browser	version.

The	key	to	the	browser-checking	code	is	the	value	returned	by	the
navigator.userAgent	property.	Here	are	a	few	example	user-agent	strings	from
current	browsers:

1.	 Mozilla/5.0	(Windows	NT	6.3;	WOW64;	Trident/7.0;	.NET4.0E;
.NET4.0C;	.NET	CLR	3.5.30729;	.NET	CLR	2.0.50727;	.NET	CLR

3.0.30729;	rv:11.0)	like	Gecko

2.	 Mozilla/5.0	(compatible;	MSIE	10.0;	Windows	NT	6.3;	WOW64;
Trident/7.0;	.NET4.0E;	.NET4.0C;	.NET	CLR	3.5.30729;	.NET	CLR

2.0.50727;	.NET	CLR	3.0.30729)

3.	 Mozilla/5.0	(Windows	NT	6.3;	WOW64)	AppleWebKit/537.36	(KHTML,	like
Gecko)	Chrome/34.0.1847.131	Safari/537.36

4.	 Mozilla/5.0	(Windows	NT	6.3;	WOW64;	rv:32.0)	Gecko/20100101
Firefox/32.0

Here	each	line	of	the	userAgent	strings	has	been	numbered.	Looking	closely	at	each
line,	it’s	not	hard	to	guess	which	browser	each	agent	string	relates	to.	In	order:

1.	 Microsoft	IE11

2.	 Microsoft	IE10

3.	 Chrome	34.0.1847.131

4.	 Firefox	32

Using	this	information,	let’s	start	on	the	first	function,	getBrowserName().	First	you
get	the	name	of	the	browser,	as	found	in	navigator.userAgent,	and	store	it	in	the
variable	lsBrowser:

function	getBrowserName()	{

				var	lsBrowser	=	navigator.userAgent;

The	string	returned	by	this	property	tends	to	be	quite	long	and	does	vary.	However,	by
checking	for	the	existence	of	certain	keywords,	such	as	MSIE	or	Firefox,	you	can
usually	determine	the	browser	name.	Start	with	the	following	lines:

				if	(lsBrowser.indexOf("MSIE")	>=	0)	{

								return	"MSIE";

				}

These	lines	search	the	lsBrowser	string	for	MSIE.	If	the	indexOf	value	of	this
substring	is	0	or	greater,	you	know	you	have	found	it,	and	so	you	set	the	return	value
to	MSIE.

The	following	else	if	statement	does	the	same,	except	that	it	is	modified	for
Firefox:

				else	if	(lsBrowser.indexOf("Firefox")	>=	0)	{

								return	"Firefox";

				}

This	principle	carries	on	for	another	three	if	statements,	in	which	you	also	check	for
Chrome,	Safari,	and	Opera.	If	you	have	a	browser	you	want	to	check	for,	this	is	the
place	to	add	its	if	statement.	Just	view	the	string	it	returns	in	navigator.userAgent
and	look	for	its	name	or	something	that	uniquely	identifies	it.

If	none	of	the	if	statements	match,	you	return	UNKNOWN	as	the	browser	name:

				else	{

								return	"UNKNOWN";

				}

Now	turn	to	the	final	function,	getBrowserVersion().

The	browser	version	details	often	appear	in	the	userAgent	string	right	after	the	name
of	the	browser.	For	these	reasons,	your	first	task	in	the	function	is	to	find	out	which
browser	you	are	dealing	with.	You	declare	and	initialize	the	browser	variable	to	the
name	of	the	browser,	using	the	getBrowserName()	function	you	just	wrote:

function	getBrowserVersion()	{

				var	ua	=	navigator.userAgent;

				var	browser	=	getBrowserName();

If	the	browser	is	MSIE	(Internet	Explorer),	you	need	to	use	the	userAgent	property
again.	Under	IE,	the	userAgent	property	always	contains	MSIE	followed	by	the
browser	version.	So	what	you	need	to	do	is	search	for	MSIE,	and	then	get	the	number
following	that.

You	set	findIndex	to	the	character	position	of	the	browser	name	plus	the	length	of
the	name,	plus	one.	Doing	this	ensures	you	to	get	the	character	after	the	name	and	just
before	the	version	number.	browserVersion	is	set	to	the	floating-point	value	of	that
number,	which	you	obtain	using	the	substring()	method.	This	selects	the	characters
starting	at	findIndex	and	ending	with	the	one	before	findIndex,	plus	three.	This
ensures	that	you	just	select	three	characters	for	the	version	number:

				var	findIndex	=	ua.indexOf(browser)	+	browser.length	+	1;

				var	browserVersion	=	parseFloat(ua.substring(findIndex,	findIndex	+	

3));

If	you	look	back	to	the	userAgent	strings,	you	see	that	IE10’s	is	similar	to	this:

Mozilla/5.0	(compatible;	MSIE	10.0;	Windows	NT	6.3;	WOW64;	Trident/7.0)

So	findIndex	will	be	set	to	the	character	index	of	the	number	10	following	the
browser	name.	browserVersion	will	be	set	to	three	characters	from	and	including	the
10,	giving	the	version	number	as	10.0.

At	the	end	of	the	function,	you	return	browserVersion	to	the	calling	code,	as	shown
here:

				return	browserVersion;

}

You’ve	seen	the	supporting	functions,	but	how	do	you	make	use	of	them?	Well,	in	the
following	code	you	obtain	two	bits	of	information—browser	name	and	version—and
use	these	to	filter	which	browser	the	user	is	running:

var	browserName	=	getBrowserName();

var	browserVersion	=	getBrowserVersion();

if	(browserName	==	"MSIE")	{

				if	(browserVersion	<	9)	{

								document.write("Your	version	of	Internet	Explorer	is	too	old");

				}	else	{

								document.write("Your	version	of	Internet	Explorer	is	fully	

supported");

				}

}

The	first	of	the	if	statements	is	shown	in	the	preceding	code	and	checks	to	see	if	the
user	has	IE.	If	true,	it	then	checks	to	see	if	the	version	is	lower	than	9.	If	it	is,	the	user
sees	the	message	stating	his	or	her	browser	is	too	old.	If	it	is	9	or	10,	the	message	tells
the	user	that	his	or	her	browser	is	fully	supported.	Something	goes	wrong	with	this

code	with	IE11,	and	you’ll	find	out	what	that	is	shortly.

You	do	this	again	for	Firefox,	Chrome,	Safari,	and	Opera.	The	versions	of	these
browsers	aren’t	checked	in	this	example,	but	you	can	do	so	if	you	want	to:

else	if	(browserName	==	"Firefox")	{

				document.write("Firefox	is	fully	supported");

}	else	if	(browserName	==	"Safari")	{

				document.write("Safari	is	fully	supported");

}	else	if	(browserName	==	"Chrome")	{

				document.write("Chrome	is	fully	supported");

}	else	if	(browserName	==	"Opera")	{

				document.write("Opera	is	fully	supported");

}	else	{

				document.write("Sorry	this	browser	version	is	not	supported.");

}

On	the	final	part	of	the	if	statements	is	the	else	statement	that	covers	all	other
browsers	and	tells	the	user	the	browser	is	not	supported.

If	you	run	this	page	in	IE11,	you’ll	see	the	message	“Sorry	this	browser	version	is	not
supported.”	At	first	glance,	this	appears	to	be	an	error,	but	look	at	IE11’s	user-agent
string:

Mozilla/5.0	(Windows	NT	6.3;	WOW64;	Trident/7.0;	rv:11.0)	like	Gecko

There	is	no	mention	of	MSIE	anywhere,	but	for	those	versed	in	the	browser	maker’s
code	words,	we	know	that	Trident	is	Microsoft’s	rendering	engine	and	the	version	is
11.0.	Microsoft	had	very	good	reasons	for	changing	its	user-agent	string	with	version
11,	but	this	just	drives	the	point	home:	You	cannot	rely	on	browser	sniffing	beyond
targeting	a	single	browser.

SUMMARY
You’ve	covered	a	lot	in	this	chapter,	but	now	you	have	all	the	grounding	you	need	to	move
on	to	more	useful	things,	such	as	interacting	with	the	page	and	forms	and	handling	user
input.

You	turned	your	attention	to	the	browser,	the	environment	in	which	JavaScript	exists.
Just	as	JavaScript	has	native	objects,	so	do	web	browsers.	The	objects	within	the	web
browser,	and	the	hierarchy	in	which	they	are	organized,	are	described	by	something
called	the	browser	object	model	(BOM).	This	is	essentially	a	map	of	a	browser’s
objects.	Using	it,	you	can	navigate	your	way	around	each	of	the	objects	made
available	by	the	browser,	together	with	their	properties,	methods,	and	events.

The	first	of	the	main	objects	you	looked	at	was	the	window	object.	This	sits	at	the
very	top	of	the	BOM’s	hierarchy.	The	window	object	contains	a	number	of	important
sub-objects,	including	the	location	object,	the	navigator	object,	the	history	object,
the	screen	object,	and	the	document	object.

The	location	object	contains	information	about	the	current	page’s	location,	such	as
its	filename,	the	server	hosting	the	page,	and	the	protocol	used.	Each	of	these	is	a
property	of	the	location	object.	Some	properties	are	read-only,	but	others,	such	as
the	href	property,	not	only	enable	you	to	find	the	location	of	the	page,	but	can	be
changed	so	that	you	can	navigate	the	page	to	a	new	location.

The	history	object	is	a	record	of	all	the	pages	the	user	has	visited	since	opening	his
or	her	browser.	Sometimes	pages	are	not	noted	(for	example,	when	the	location
object’s	replace()	method	is	used	for	navigation).	You	can	move	the	browser
forward	and	backward	in	the	history	stack	and	discover	what	pages	the	user	has
visited.

The	navigator	object	represents	the	browser	itself	and	contains	useful	details	of
what	type	of	browser,	version,	and	operating	system	the	user	has.	These	details
enable	you	to	write	pages	dealing	with	various	types	of	browsers,	even	where	they
may	be	incompatible.

The	screen	object	contains	information	about	the	display	capabilities	of	the	user’s
computer.

The	document	object	is	one	of	the	most	important	objects.	It’s	an	object
representation	of	your	page	and	contains	all	the	elements,	also	represented	by	objects,
within	that	page.	The	differences	between	the	various	browsers	are	particularly
prominent	here,	but	similarities	exist	between	the	browsers	that	enable	you	to	write
cross-browser	code.

The	document	object	contains	three	properties	that	are	actually	collections.	These	are
the	links,	images,	and	forms	collections.	Each	contains	all	the	objects	created	by	the
<a/>,	,	and	<form/>	elements	on	the	page,	and	it’s	a	way	of	accessing	those
elements.

The	images	collection	contains	an	img	object	for	each		element	on	the	page.

You	found	that	even	after	the	page	has	loaded,	you	can	change	the	properties	of
images.	For	example,	you	can	make	the	image	change	when	clicked.	The	same
principles	for	using	the	images	collection	apply	to	the	links	collection.

Finally,	you	looked	at	how	you	can	check	what	type	of	browser	the	user	has,	thereby
giving	you	the	power	to	use	new	features	without	causing	errors	in	older	browsers.
You	also	learned	how	to	sniff	the	browser	with	the	navigator	object’s	appName	and
userAgent	properties,	and	how	unreliable	that	information	can	be.

That’s	it	for	this	chapter.	In	the	next	chapter,	you	move	on	to	the	more	exciting	document
object	model,	where	you	can	access	and	manipulate	the	elements	in	your	page.

EXERCISES
You	can	find	suggested	solutions	to	these	questions	in	Appendix	A.

1.	 Create	two	pages,	one	called	legacy.html	and	the	other	called	modern.html.	Each
page	should	have	a	heading	telling	you	what	page	is	loaded.	For	example:

<h2>Welcome	to	the	Legacy	page.	You	need	to	upgrade!</h2>

Using	feature	detection	and	the	location	object,	send	browsers	that	do	not	support
geolocation	to	legacy.html;	send	browsers	that	do	support	geolocation	to
modern.html.

2.	 Modify	Example	3	from	the	“Image	Selection”	Try	It	Out	to	display	one	of	the	four
images	randomly.	Hint:	refer	to	Chapter	5	and	the	Math.random()	method.

9
DOM	Scripting
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Finding	elements	in	the	page

Creating	and	inserting	elements	into	the	page	dynamically

Navigating	the	web	page,	travelling	from	one	element	to	another

Changing	elements’	style	after	they	are	loaded	in	the	page

Animating	elements	by	manipulating	their	positioning

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

JavaScript’s	primary	role	in	web	development	is	to	interact	with	the	user,	to	add	some	kind
of	behavior	to	your	web	page.	JavaScript	enables	you	to	completely	change	all	aspects	of
a	web	page	after	it’s	loaded	in	the	browser.	What	gives	JavaScript	this	power	over	a	web
page	is	the	document	object	model	(DOM),	a	tree-like	representation	of	the	web	page.

The	DOM	is	one	of	the	most	misunderstood	standards	set	forth	by	the	World	Wide	Web
Consortium	(W3C),	a	body	of	developers	who	recommend	standards	for	browser	makers
and	web	developers	to	follow.	The	DOM	gives	developers	a	way	of	representing
everything	on	a	web	page	so	that	it	is	accessible	via	a	common	set	of	properties	and
methods	in	JavaScript.	By	everything,	we	mean	everything.	You	can	literally	change
anything	on	the	page:	the	graphics,	tables,	forms,	style,	and	even	text	itself	by	altering	a
relevant	DOM	property	with	JavaScript.

The	DOM	should	not	be	confused	with	the	browser	object	model	(BOM)	that	was
introduced	in	Chapter	8.	You’ll	see	the	differences	between	the	two	in	detail	shortly.	For
now,	though,	think	of	the	BOM	as	a	browser-dependent	representation	of	every	feature	of
the	browser,	from	the	browser	buttons,	URL	address	line,	and	title	bar	to	the	browser
window	controls,	as	well	as	parts	of	the	web	page,	too.	The	DOM,	however,	deals	only
with	the	contents	of	the	browser	window	or	web	page	(in	other	words,	the	HTML
document).	It	makes	the	document	available	in	such	a	way	that	any	browser	can	use
exactly	the	same	code	to	access	and	manipulate	the	content	of	the	document.	To
summarize,	the	BOM	gives	you	access	to	the	browser	and	some	of	the	document,	whereas
the	DOM	gives	you	access	to	all	of	the	document,	but	only	the	document.

The	great	thing	about	the	DOM	is	that	it	is	browser-	and	platform-independent.	This
means	that	developers	can	write	JavaScript	code	that	dynamically	updates	the	page,	and
that	will	work	on	any	DOM-compliant	browser	without	any	tweaking.	You	should	not
need	to	code	for	different	browsers	or	take	excessive	care	when	coding.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

The	DOM	achieves	this	independence	by	representing	the	contents	of	the	page	as	a
generic	tree	structure.	Whereas	in	the	BOM	you	might	expect	to	access	something	by
looking	up	a	property	relevant	to	that	part	of	the	browser	and	adjusting	it,	the	DOM
requires	navigation	through	its	representation	of	the	page	through	nodes	and	properties
that	are	not	specific	to	the	browser.	You	explore	this	structure	a	little	later.

However,	to	use	the	DOM	standard,	ultimately	developers	require	browsers	that
completely	implement	the	standard,	something	that	no	browser	does	100	percent
efficiently,	unfortunately.	To	make	matters	worse,	no	one	browser	implements	the	exact
same	DOM	features	that	other	browsers	support,	but	don’t	be	scared	off	yet.	All	modern
browsers	support	many	of	the	same	features	outlined	by	the	DOM	standard.

To	provide	a	true	perspective	on	how	the	DOM	fits	in,	we	need	to	take	a	brief	look	at	its
relationship	with	some	of	the	other	currently	existing	web	standards.	We	should	also	talk
about	why	there	is	more	than	one	version	of	the	DOM	standard,	as	well	as	different
sections	within	the	standard	itself.	After	understanding	the	relationships,	you	can	look	at
using	JavaScript	to	navigate	the	DOM	and	to	dynamically	change	a	web	page’s	content	in
more	than	one	browser.	The	following	items	are	on	your	agenda:

The	HTML	and	ECMAScript	standards

The	DOM	standards

Manipulating	the	DOM

Writing	cross-browser	JavaScript

NOTE	Remember	that	the	examples	within	this	chapter	are	targeted	only	at	the	DOM
(with	very	few	exceptions)	and	will	be	supported	by	modern	browsers	(IE	9+,
Chrome,	Firefox,	Opera,	and	Safari).	Legacy	browsers	(IE8	and	below,	earlier
versions	of	Chrome,	and	similar	early	browsers)	may	or	may	not	support	them.

THE	WEB	STANDARDS
When	Tim	Berners-Lee	created	HTML	in	1991,	he	probably	had	little	idea	that	this
technology	for	marking	up	scientific	papers	via	a	set	of	tags	for	his	own	global	hypertext
project,	known	as	the	World	Wide	Web,	would,	within	a	matter	of	years,	become	a
battleground	between	the	two	giants	of	the	software	business	of	the	mid-1990s.	HTML
was	a	simple	derivation	from	the	meta-language	Standard	Generalized	Markup	Language
(SGML)	that	had	been	kicking	around	academic	institutions	for	decades.	Its	purpose	was
to	preserve	the	structure	of	the	documents	created	with	it.	HTML	depends	on	a	protocol,
HyperText	Transfer	Protocol	(HTTP),	to	transmit	documents	back	and	forth	between	the
resource	and	the	viewer	(for	example,	the	server	and	the	client	computer).	These	two
technologies	formed	the	foundation	of	the	web,	and	it	quickly	became	obvious	in	the	early
1990s	that	there	needed	to	be	some	sort	of	policing	of	both	specifications	to	ensure	a
common	implementation	of	HTML	and	HTTP	so	that	communications	could	be	conducted
worldwide.

In	1994,	Tim	founded	the	World	Wide	Web	Consortium	(W3C),	a	body	that	set	out	to
oversee	the	technical	evolution	of	the	web.	It	has	three	main	aims:

To	provide	universal	access,	so	that	anybody	can	use	the	web

To	develop	a	software	environment	to	allow	users	to	make	use	of	the	web

To	guide	the	development	of	the	web,	taking	into	consideration	the	legal,	social,	and
commercial	issues	that	arise

Each	new	version	of	a	specification	of	a	web	technology	has	to	be	carefully	vetted	by
W3C	before	it	can	become	a	standard.	The	HTML	and	HTTP	specifications	are	subject	to
this	process,	and	each	new	set	of	updates	to	these	specifications	yields	a	new	version	of
the	standard.	Each	standard	has	to	go	through	a	working	draft,	a	candidate
recommendation,	and	a	proposed	recommendation	stage	before	it	can	be	considered	a
fully	operational	standard.	At	each	stage	of	the	process,	members	of	the	W3C	consortium
vote	on	which	amendments	to	make,	or	even	on	whether	to	cancel	the	standard	completely
and	send	it	back	to	square	one.

It	sounds	like	a	very	painful	and	laborious	method	of	creating	a	standard	format,	and	not
something	you’d	think	of	as	spearheading	the	cutting	edge	of	technical	revolution.	Indeed,
the	software	companies	of	the	mid-1990s	found	the	processes	involved	too	slow,	so	they
set	the	tone	by	implementing	new	innovations	themselves	and	then	submitting	them	to	the
standards	body	for	approval.	Netscape	started	by	introducing	new	elements	in	its	browser,
such	as	the		element,	to	add	presentational	content	to	the	web	pages.	This	proved
popular,	so	Netscape	added	a	whole	raft	of	elements	that	enabled	users	to	alter	aspects	of
presentation	and	style	on	web	pages.	Indeed,	JavaScript	itself	was	such	an	innovation	from
Netscape.

When	Microsoft	entered	the	fray,	it	was	playing	catch	up	for	the	first	two	iterations	of	its
Internet	Explorer	browser.	However,	with	Internet	Explorer	3	in	1996,	Microsoft
established	a	roughly	equal	set	of	features	to	compete	with	Netscape	and	so	was	able	to
add	its	own	browser-specific	elements.	Very	quickly,	the	web	polarized	between	these	two

browsers,	and	pages	viewable	on	one	browser	quite	often	wouldn’t	work	on	another.	One
problem	was	that	Microsoft	had	used	its	much	stronger	position	in	the	market	to	give
away	its	browser	for	free,	whereas	Netscape	still	needed	to	sell	its	own	browser	because	it
couldn’t	afford	to	freely	distribute	its	flagship	product.	To	maintain	a	competitive	position,
Netscape	needed	to	offer	new	features	to	make	the	user	want	to	purchase	its	browser
rather	than	use	the	free	Microsoft	browser.

Things	came	to	a	head	with	both	companies’	version	4	browsers,	which	introduced
dynamic	page	functionality.	Unfortunately,	Netscape	did	this	by	the	means	of	a	<layer	/>
element,	whereas	Microsoft	chose	to	implement	it	via	scripting	language	properties	and
methods.	The	W3C	needed	to	take	a	firm	stand	here,	because	one	of	its	three	principal
aims	had	been	compromised:	that	of	universal	access.	How	could	access	be	universal	if
users	needed	a	specific	vendor’s	browser	to	view	a	particular	set	of	pages?	They	decided
on	a	solution	that	used	existing	standard	HTML	elements	and	cascading	style	sheets,	both
of	which	had	been	adopted	as	part	of	the	Microsoft	solution.	As	a	result,	Microsoft	gained
a	dominant	position	in	the	browser	war,	and	it	held	that	position	for	many	years.	Today,
Microsoft’s	Internet	Explorer	is	still	the	dominant	browser,	but	it	has	lost	a	lot	of	its
market	share	to	Chrome	and	Firefox.

With	a	relatively	stable	version	of	the	HTML	standard	in	place	with	version	4.01,	which
boasts	a	set	of	features	that	will	take	any	browser	manufacturer	a	long	time	to	implement
completely,	attention	was	turned	to	other	areas	of	the	web.	A	new	set	of	standards	was
introduced	in	the	late	1990s	to	govern	the	means	of	presenting	HTML	(style	sheets)	and
the	representation	of	the	HTML	document	in	script	(the	DOM).	Other	standards	emerged,
such	as	Extensible	Markup	Language	(XML),	which	offers	a	common	format	for
representing	data	in	a	way	that	preserves	its	structure.

The	W3C	website	(www.w3.org)	has	a	huge	number	of	standards	in	varying	stages	of
creation.	Not	all	of	these	standards	concern	us,	and	not	all	of	the	ones	that	concern	us	can
be	found	at	this	website.	However,	the	vast	majority	of	standards	that	do	concern	us	can	be
found	there.

You’re	going	to	take	a	brief	look	now	at	the	technologies	and	standards	that	have	an
impact	on	JavaScript	and	find	out	a	little	background	information	about	each.	Some	of	the
technologies	may	be	unfamiliar,	but	you	need	to	be	aware	of	their	existence	at	the	very
least.

HTML
The	HTML	standard	is	maintained	by	W3C.	This	standard	might	seem	fairly
straightforward,	given	that	each	version	should	have	introduced	just	a	few	new	elements,
but	in	reality	the	life	of	the	standards	body	was	vastly	complicated	by	the	browser	wars.
The	1.0	and	2.0	versions	of	HTML	were	simple,	small	documents,	but	when	the	W3C
came	to	debate	HTML	version	3.0,	they	found	that	much	of	the	new	functionality	it	was
discussing	had	already	been	superseded	by	new	additions	(such	as	the	<applet	/>	and
<style	/>	elements)	to	the	version	3.0	browser’s	appletstyle.	Version	3.0	was
discarded,	and	a	new	version,	3.2,	became	the	standard.

However,	a	lot	of	the	features	that	went	into	HTML	3.2	had	been	introduced	at	the	behest

http://www.w3.org

of	the	browser	manufacturers	and	ran	contrary	to	the	spirit	of	HTML,	which	was	intended
solely	to	define	structure.	The	new	features,	stemming	from	the		element,	just
confused	the	issue	and	added	unnecessary	presentational	features	to	HTML.	These
features	really	became	redundant	with	the	introduction	of	style	sheets.	So	suddenly,	in	the
version	3	browsers,	there	were	three	distinct	ways	to	define	the	style	of	an	item	of	text.
Which	was	the	correct	way?	And	if	all	three	ways	were	used,	which	style	did	the	text
ultimately	assume?	Version	4.0	of	the	HTML	standard	was	left	with	the	job	of	unmuddling
this	chaotic	mess	and	designated	a	lot	of	elements	for	deprecation	(removal)	in	the	next
version	of	the	standards.	It	was	the	largest	version	of	the	standard	so	far	and	included
features	that	linked	it	to	style	sheets	and	the	DOM,	and	also	added	facilities	for	the
visually	impaired	and	other	unfairly	neglected	minority	interest	areas.

In	2004,	the	W3C	was	focusing	on	XHTML	2.0,	a	specification	that	many,	and	perhaps
most,	in	the	web	development	community	thought	to	be	the	wrong	direction	for	the	web.
So	another	body,	the	Web	Hypertext	Application	Technology	Working	Group
(WHATWG)	started	working	on	HTML5.	In	2009,	the	W3C	officially	dropped	XHTML
2.0,	and	today	the	W3C	and	the	WHATWG	work	together	on	developing	HTML5.

HTML5	introduces	many	new	features.	First	are	new	elements	that	identify	a	page’s
navigation,	header,	and	footer	with	the	<nav	/>,	<header	/>,	and	<footer	/>	elements.	It
also	adds	<audio	/>	and	<video	/>	elements	to	replace	<object	/>.	HTML5	also
removes	elements	like		and	<center	/>,	elements	that	are	purely	used	for
presentation	purposes.	HTML5	also	defines	native	support	for	drag	and	drop,	geolocation,
storage,	and	much	more.

Note	The	HTML5	specification	is	not	completely	finalized,	but	many	of	its	individual
features	are	said	to	be	complete.	As	a	result,	you’ll	find	many	features	implemented	in
today’s	modern	browsers.	You	can	visit	the	W3C	website	at
http://www.w3.org/TR/html5/	or	the	WHATWG	living	standard	at
http://html.spec.whatwg.org/multipage/	if	you	want	to	read	the	actual
specifications.

ECMAScript
JavaScript	itself	followed	a	trajectory	similar	to	that	of	HTML.	It	was	first	used	in
Netscape	Navigator	and	then	added	to	Internet	Explorer.	The	Internet	Explorer	version	of
JavaScript	was	christened	JScript	and	wasn’t	far	removed	from	the	version	of	JavaScript
found	in	Netscape	Navigator.	However,	once	again,	there	were	differences	between	the
two	implementations	and	a	lot	of	care	had	to	be	taken	in	writing	script	for	both	browsers.

Oddly	enough,	it	was	left	to	the	European	Computer	Manufacturers	Association	(ECMA)
to	propose	a	standard	specification	for	JavaScript.	This	didn’t	appear	until	a	few	versions
of	JavaScript	had	already	been	released.	Unlike	HTML,	which	had	been	developed	from
the	start	with	the	W3C	consortium,	JavaScript	was	a	proprietary	creation.	This	is	the
reason	that	it	is	governed	by	a	different	standards	body.	Microsoft	and	Netscape	both
agreed	to	use	ECMA	as	the	standards	vehicle/debating	forum,	because	of	its	reputation	for
fast-tracking	standards	and	perhaps	also	because	of	its	perceived	neutrality.	The	name

http://www.w3.org/TR/2000/PR-DOM-Level-2-Views-20000927/
http://www.w3.org/TR/2000/PR-DOM-Level-2-Views-20000927/

ECMAScript	was	chosen	so	as	not	to	be	biased	toward	either	vendor’s	creation	and	also
because	the	“Java”	part	of	JavaScript	was	a	trademark	of	Sun	licensed	to	Netscape.	The
standard,	named	ECMA-262,	laid	down	a	specification	that	was	roughly	equivalent	to	the
JavaScript	1.1	specification.

That	said,	the	ECMAScript	standard	covers	only	core	JavaScript	features,	such	as	the
primitive	data	types	of	numbers,	strings,	and	booleans,	native	objects	like	the	Date,	Array,
and	Math	objects,	and	the	procedural	statements	like	for	and	while	loops,	and	if	and	else
conditionals.	It	makes	no	reference	to	client-side	objects	or	collections,	such	as	window,
document,	forms,	links,	and	images.	So,	although	the	standard	helps	to	make	core
programming	tasks	compatible	when	both	JavaScript	and	JScript	comply	with	it,	it	is	of	no
use	in	making	the	scripting	of	client-side	objects	compatible	between	the	main	browsers.
Some	incompatibilities	remain.

All	current	implementations	of	JavaScript	are	expected	to	conform	to	the	current
ECMAScript	standard,	which	is	ECMAScript	edition	5,	published	in	December	2009.

Although	there	used	to	be	quite	a	few	irregularities	between	the	different	dialects	of
JavaScript,	they’re	now	similar	enough	to	be	considered	the	same	language.	This	is	a	good
example	of	how	standards	have	provided	a	uniform	language	across	browser
implementations,	although	a	debate	that	is	similar	to	the	one	that	took	place	over	HTML
still	rages	to	a	lesser	degree	over	JavaScript.

It’s	now	time	for	you	to	consider	the	document	object	model	itself.

THE	DOCUMENT	OBJECT	MODEL
The	document	object	model	(DOM)	is,	as	previously	mentioned,	a	way	of	representing	the
document	independent	of	browser	type.	It	allows	a	developer	to	access	the	document	via	a
common	set	of	objects,	properties,	methods,	and	events,	and	to	alter	the	contents	of	the
web	page	dynamically	using	scripts.

You	should	be	aware	that	some	small	variations	are	usually	added	to	the	DOM	by	the
browser	vendor.	So,	to	guarantee	that	you	don’t	fall	afoul	of	a	particular	implementation,
the	W3C	has	provided	a	generic	set	of	objects,	properties,	and	methods	that	should	be
available	in	all	browsers,	in	the	form	of	the	DOM	standard.

The	DOM	Standard
We	haven’t	talked	about	the	DOM	standard	so	far,	and	for	a	particular	reason:	It’s	not	the
easiest	standard	to	follow.	Supporting	a	generic	set	of	properties	and	methods	has	proved
to	be	a	very	complex	task,	and	the	DOM	standard	has	been	broken	down	into	separate
levels	and	sections	to	deal	with	the	different	areas.	The	different	levels	of	the	standard	are
all	at	differing	stages	of	completion.

Level	0
Level	0	is	a	bit	of	a	misnomer,	because	there	wasn’t	really	a	level	0	of	the	standard.	This
term	in	fact	refers	to	the	“old	way”	of	doing	things—the	methods	implemented	by	the
browser	vendors	before	the	DOM	standard.	Someone	mentioning	level	0	properties	is
referring	to	a	more	linear	notation	of	accessing	properties	and	methods.	For	example,
typically	you’d	reference	items	on	a	form	with	the	following	code:

document.forms[0].elements[1].value	=	"button1";

We’re	not	going	to	cover	such	properties	and	methods	in	this	chapter,	because	they	have
been	superseded	by	newer	methods.

Level	1
Level	1	is	the	first	version	of	the	standard.	It	is	split	into	two	sections:	One	is	defined	as
core	(objects,	properties,	and	methods	that	can	apply	to	both	XML	and	HTML)	and	the
other	as	HTML	(HTML-specific	objects,	properties,	and	methods).	The	first	section	deals
with	how	to	go	about	navigating	and	manipulating	the	structure	of	the	document.	The
objects,	properties,	and	methods	in	this	section	are	very	abstract.	The	second	section	deals
with	HTML	only	and	offers	a	set	of	objects	corresponding	to	all	the	HTML	elements.	This
chapter	mainly	deals	with	the	second	section—level	1	of	the	standard.

In	2000,	level	1	was	revamped	and	corrected,	though	it	only	made	it	to	a	working	draft
and	not	to	a	full	W3C	recommendation.

Level	2
Level	2	is	complete	and	many	of	the	properties,	methods,	and	events	have	been

implemented	by	today’s	browsers.	It	has	sections	that	add	specifications	for	events	and
style	sheets	to	the	specifications	for	core	and	HTML-specific	properties	and	events.	(It
also	provides	sections	on	views	and	traversal	ranges,	neither	of	which	is	covered	in	this
book;	you	can	find	more	information	at	www.w3.org/TR/2000/PR-DOM-Level-2-Views-
20000927/	and	www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/.)

Level	3
Level	3	achieved	recommendation	status	in	2004.	It	is	intended	to	resolve	a	lot	of	the
complications	that	still	exist	in	the	event	model	in	level	2	of	the	standard,	and	adds	support
for	XML	features,	such	as	content	models	and	being	able	to	save	the	DOM	as	an	XML
document.

Level	4
In	May	2014,	DOM	level	4	reached	candidate	recommendation	status.	It	consolidates
DOM	level	3	with	several	independent	components.	At	the	time	of	this	writing,	no	modern
browser	supports	DOM	level	4,	although	that	will	change	in	the	future.

Browser	Compliance	with	the	Standards
Almost	no	browser	has	100	percent	compliance	with	any	standard.	Therefore,	there	is	no
guarantee	that	all	the	objects,	properties,	and	methods	of	the	DOM	standard	will	be
available	in	a	given	version	of	a	browser.	However,	all	modern	browsers	do	a	very	good
job	of	supporting	the	standard	DOM.	The	only	browsers	you	truly	have	to	watch	out	for
are	IE8	and	below.

Much	of	the	material	in	the	DOM	standard	has	only	recently	been	clarified,	and	a	lot	of
DOM	features	and	support	have	been	added	to	only	the	latest	browser	versions.	For	this
reason,	examples	in	this	chapter	will	be	guaranteed	to	work	on	only	the	latest	versions	of
IE,	Chrome,	Firefox,	Opera,	and	Safari.	Although	cross-browser	scripting	is	a	realistic
goal,	backward-compatible	support	isn’t	at	all.

Although	the	standards	might	still	not	be	fully	implemented,	they	do	give	you	an	idea	as	to
how	a	particular	property	or	method	should	be	implemented,	and	provide	a	guideline	for
all	browser	manufacturers	to	agree	to	work	toward	in	later	versions	of	their	browsers.	The
DOM	doesn’t	introduce	any	new	HTML	elements	or	style	sheet	properties	to	achieve	its
ends.	The	idea	of	the	DOM	is	to	make	use	of	the	existing	technologies,	and	quite	often	the
existing	properties	and	methods	of	one	or	other	of	the	browsers.

Differences	between	the	DOM	and	the	BOM
As	mentioned	earlier,	two	main	differences	exist	between	the	document	object	model	and
the	browser	object	model.	However,	complicating	the	issue	is	the	fact	that	a	BOM	is
sometimes	referred	to	under	the	name	DOM.	Look	out	for	this	in	any	literature	on	the
subject.

First,	the	DOM	covers	only	the	document	of	the	web	page,	whereas	the	BOM	offers
scripting	access	to	all	areas	of	the	browsers,	from	the	buttons	to	the	title	bar,
including	some	parts	of	the	page.

http://www.w3.org/TR/2000/PR-DOM-Level-2-Views-20000927/
http://www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/

Second,	the	BOM	is	unique	to	a	particular	browser.	This	makes	sense	if	you	think
about	it:	you	can’t	expect	to	standardize	browsers,	because	they	have	to	offer
competitive	features.	Therefore,	you	need	a	different	set	of	properties	and	methods
and	even	objects	to	be	able	to	manipulate	them	with	JavaScript.

Representing	the	HTML	Document	as	a	Tree	Structure
Because	HTML	is	standardized	so	that	web	pages	can	contain	only	the	standard	features
supported	in	the	language,	such	as	forms,	tables,	images,	and	the	like,	a	common	method
of	accessing	these	features	is	needed.	This	is	where	the	DOM	comes	in.	It	provides	a
uniform	representation	of	the	HTML	document,	and	it	does	this	by	representing	the	entire
HTML	document/web	page	as	a	tree	structure.

In	fact,	it	is	possible	to	represent	any	HTML	as	a	tree	structure,	and	for	best	results,	the
HTML	document	should	be	well	formed.	Browsers	tolerate,	to	a	greater	or	lesser	extent,
quirks	such	as	unclosed	tags,	or	HTML	form	controls	not	being	enclosed	within	a	<form/>
element;	however,	for	the	structure	of	the	HTML	document	to	be	accurately	depicted,	you
need	to	be	able	to	always	predict	the	structure	of	the	document.	The	ability	to	access
elements	via	the	DOM	depends	on	the	ability	to	represent	the	page	as	a	hierarchy.

What	Is	a	Tree	Structure?
If	you’re	not	familiar	with	the	concept	of	trees,	don’t	worry.	They’re	just	a	diagrammatic
means	of	representing	a	hierarchical	structure.

Let’s	consider	the	example	of	a	book	with	several	chapters.	If	instructed	to,	you	could	find
the	third	line	on	page	543	after	a	little	searching.	If	an	updated	edition	of	the	book	were
printed	with	extra	chapters,	more	likely	than	not	you’d	fail	to	find	the	same	text	if	you
followed	those	same	instructions.	However,	if	the	instructions	were	changed	to,	say,	“Find
the	chapter	on	still-life	painting,	the	section	on	using	watercolors,	and	the	paragraph	on
positioning	light	sources,”	you’d	be	able	to	find	that	even	in	a	reprinted	edition	with	extra
pages	and	chapters,	albeit	with	perhaps	a	little	more	effort	than	the	first	request	required.

Books	aren’t	particularly	dynamic	examples,	but	given	something	like	a	web	page,	where
the	information	could	be	changed	daily,	or	even	hourly,	can	you	see	why	it	would	be	of
more	use	to	give	the	second	set	of	directions	than	the	first?	The	same	principle	applies
with	the	DOM.	Navigating	the	DOM	in	a	hierarchical	fashion,	rather	than	in	a	strictly
linear	way,	makes	much	more	sense.	When	you	treat	the	DOM	as	a	tree,	it	becomes	easy
to	navigate	the	page	in	this	fashion.	Consider	how	you	locate	files	on	your	computer.	The
file/folder	manager	(Windows	Explorer	in	Windows,	Finder	in	Mac	OS,	and	so	on)	creates
a	tree	view	of	folders	through	which	you	can	drill	down.	Instead	of	looking	for	a	file
alphabetically,	you	locate	it	by	going	into	a	particular	folder.

The	rules	for	creating	trees	are	simple.	You	start	at	the	top	of	the	tree	with	the	document
and	the	element	that	contains	all	other	elements	in	the	page.	The	document	is	the	root
node.	A	node	is	just	a	point	on	the	tree	representing	a	particular	element	or	attribute	of	an
element,	or	even	the	text	that	an	element	contains.	The	root	node	contains	all	other	nodes,
such	as	the	DTD	declaration	and	the	root	element	(the	HTML	or	XML	element	that
contains	all	other	elements).	The	root	element	should	always	be	the	<html/>	element	in	an

HTML	document.	Underneath	the	root	element	are	the	HTML	elements	that	the	root
element	contains.	Typically,	an	HTML	page	will	have	<head/>	and	<body/>	elements
inside	the	<html/>	element.	These	elements	are	represented	as	nodes	underneath	the	root
element’s	node,	which	itself	is	underneath	the	root	node	at	the	top	of	the	tree	(see	Figure
9.1).

Figure	9.1

The	two	nodes	representing	the	<head/>	and	<body/>	elements	are	examples	of	child
nodes,	and	the	<html/>	element’s	node	above	them	is	a	parent	node.	Because	the	<head/>
and	<body/>	elements	are	both	child	nodes	of	the	<html/>	element,	they	both	go	on	the
same	level	underneath	the	parent	node	<html/>	element.	The	<head/>	and	<body/>
elements	in	turn	contain	other	child	nodes/HTML	elements,	which	will	appear	at	a	level
underneath	their	nodes.	So	child	nodes	can	also	be	parent	nodes.	Each	time	you	encounter
a	set	of	HTML	elements	within	another	element,	they	each	form	a	separate	node	at	the
same	level	on	the	tree.	The	easiest	way	of	explaining	this	clearly	is	with	an	example.

An	Example	HTML	Page
Let’s	consider	a	basic	HTML	page	such	as	this:

<!DOCTYPE	html>

<html	lang="en">

<head>

</head>

<body>

				<h1>My	Heading</h1>

				<p>This	is	some	text	in	a	paragraph.</p>

</body>

</html>

The	<html/>	element	contains	<head/>	and	<body/>	elements.	The	<body/>	element
contains	an	<h1/>	element	and	a	<p/>	element.	The	<h1/>	element	contains	the	text	My
Heading.	When	you	reach	an	item,	such	as	text,	an	image,	or	an	element,	that	contains	no
others,	the	tree	structure	will	terminate	at	that	node.	Such	a	node	is	termed	a	leaf	node.
You	then	continue	to	the	<p/>	node,	which	contains	some	text,	which	is	also	a	node	in	the
document.	You	can	depict	this	with	the	tree	structure	shown	in	Figure	9.2.

Figure	9.2

Simple,	eh?	This	example	is	almost	too	straightforward,	so	let’s	move	on	to	a	slightly
more	complex	one	that	involves	a	table	as	well:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>This	is	a	test	page</title>

</head>

<body>

			Below	is	a	table

			<table>

						<tr>

									<td>Row	1	Cell	1</td>

									<td>Row	1	Cell	2</td>

						</tr>

			</table>

</body>

</html>

There	is	nothing	out	of	the	ordinary	here;	the	document	contains	a	table	with	two	rows
with	two	cells	in	each	row.	You	can	once	again	represent	the	hierarchical	structure	of	your
page	(for	example,	the	fact	that	the	<html/>	element	contains	a	<head/>	and	a	<body/>
element,	and	that	the	<head/>	element	contains	a	<title/>	element,	and	so	on)	using	your
tree	structure,	as	shown	in	Figure	9.3.

Figure	9.3

The	top	level	of	the	tree	is	simple	enough;	the	<html/>	element	contains	<head/>	and
<body/>	elements.	The	<head/>	element	in	turn	contains	a	<title/>	element	and	the
<title/>	element	contains	some	text.	This	text	node	is	a	child	node	that	terminates	the
branch	(a	leaf	node).	You	can	then	go	back	to	the	next	node,	the	<body/>	element	node,
and	go	down	that	branch.	Here	you	have	two	elements	contained	within	the	<body/>
element:	the		and	<table/>	elements.	Although	the		element	contains
only	text	and	terminates	there,	the	<table/>	element	contains	one	row	(<tr/>),	and	it
contains	two	table	cell	(<td/>)	elements.	Only	then	do	you	get	to	the	bottom	of	the	tree
with	the	text	contained	in	each	table	cell.	Your	tree	is	now	a	complete	representation	of
your	HTML	code.

The	Core	DOM	Objects
What	you	have	seen	so	far	has	been	highly	theoretical,	so	let’s	get	a	little	more	practical
now.

The	DOM	provides	you	with	a	concrete	set	of	objects,	properties,	and	methods	that	you
can	access	through	JavaScript	to	navigate	the	tree	structure	of	the	DOM.	Let’s	start	with
the	set	of	objects,	within	the	DOM,	that	is	used	to	represent	the	nodes	(elements,
attributes,	or	text)	on	your	tree.

Base	DOM	Objects
Three	objects,	shown	in	the	following	table,	are	known	as	the	base	DOM	objects.

OBJECT DESCRIPTION
Node Each	node	in	the	document	has	its	own	Node	object.
NodeList This	is	a	list	of	Node	objects.
NamedNodeMap This	provides	access	by	name	rather	than	by	index	to	all	the	Node	objects.

This	is	where	the	DOM	differs	from	the	BOM	quite	extensively.	The	BOM	objects	have
names	that	relate	to	a	specific	part	of	the	browser,	such	as	the	window	object,	or	the	forms
and	images	collections.	As	mentioned	earlier,	to	be	able	to	navigate	in	the	web	page	as
though	it	were	a	tree,	you	have	to	do	it	abstractly.	You	can	have	no	prior	knowledge	of	the
structure	of	the	page;	everything	ultimately	is	just	a	node.	To	move	around	from	HTML
element	to	HTML	element,	or	element	to	attribute,	you	have	to	go	from	node	to	node.	This
also	means	you	can	add,	replace,	or	remove	parts	of	your	web	page	without	affecting	the
structure	as	a	whole,	because	you’re	just	changing	nodes.	This	is	why	you	have	three
rather	obscure-sounding	objects	that	represent	your	tree	structure.

I’ve	already	mentioned	that	the	top	of	your	tree	structure	is	the	root	node,	and	that	the	root
node	contains	the	DTD	and	root	element.	Therefore,	you	need	more	than	just	these	three
objects	to	represent	your	document.	In	fact,	there	are	different	objects	to	represent	the
different	types	of	nodes	on	the	tree.

High-Level	DOM	Objects
Because	everything	in	the	DOM	is	a	node,	it’s	no	wonder	that	nodes	come	in	a	variety	of
types.	Is	the	node	an	element,	an	attribute,	or	just	plaintext?	The	Node	object	has	different
objects	to	represent	each	possible	type	of	node.	The	following	is	a	complete	list	of	all	the
different	node	type	objects	that	can	be	accessed	via	the	DOM.	A	lot	of	them	won’t	concern
you	in	this	book,	because	they’re	better	suited	for	XML	documents	and	not	HTML
documents,	but	you	should	notice	that	your	three	main	types	of	nodes,	namely	element,
attribute,	and	text,	are	all	covered.

OBJECT DESCRIPTION
Document The	root	node	of	the	document
DocumentType The	DTD	or	schema	type	of	the	XML	document
DocumentFragment A	temporary	storage	space	for	parts	of	the	document
EntityReference A	reference	to	an	entity	in	the	XML	document
Element An	element	in	the	document
Attr An	attribute	of	an	element	in	the	document
ProcessingInstruction A	processing	instruction
Comment A	comment	in	an	XML	document	or	HTML	document
Text Text	that	must	form	a	child	node	of	an	element
CDATASection A	CDATA	section	within	the	XML	document
Entity An	unparsed	entity	in	the	DTD
Notation A	notation	declared	within	a	DTD

We	won’t	go	over	most	of	these	objects	in	this	chapter.

Each	of	these	objects	inherits	all	the	properties	and	methods	of	the	Node	object,	but	also
has	some	properties	and	methods	of	its	own.	You	look	at	some	examples	in	the	next
section.

DOM	Objects	and	Their	Properties	and	Methods
If	you	tried	to	look	at	the	properties	and	methods	of	all	the	objects	in	the	DOM,	it	would
take	up	half	the	book.	Instead	you’re	going	to	actively	consider	only	three	of	the	objects,
namely	the	Node	object,	the	Element	object,	and	the	Document	object.	This	is	all	you’ll
need	to	be	able	to	create,	amend,	and	navigate	your	tree	structure.	Also,	you’re	not	going
to	spend	ages	trawling	through	each	of	the	properties	and	methods	of	these	objects,	but
rather	look	only	at	some	of	the	most	useful	properties	and	methods	and	use	them	to
achieve	specific	ends.

NOTE	Appendix	C	contains	a	relatively	complete	reference	to	the	DOM,	its	objects,
and	their	properties.

The	Document	Object	and	its	Methods
The	Document	reference	type	exposes	various	properties	and	methods	that	are	very	helpful
to	someone	scripting	the	DOM.	Its	methods	enable	you	to	find	individual	or	groups	of
elements	and	create	new	elements,	attributes,	and	text	nodes.	Any	DOM	scripter	should
know	these	methods	and	properties,	because	they’re	used	quite	frequently.

The	Document	object’s	methods	are	probably	the	most	important	methods	you’ll	learn.
Although	many	tools	are	at	your	disposal,	the	Document	object’s	methods	let	you	find,
create,	and	delete	elements	in	your	page.

Finding	Elements	or	an	Element
Let’s	say	you	have	an	HTML	web	page—how	do	you	go	about	getting	back	a	particular
element	on	the	page	in	script?	The	Document	reference	type	exposes	the	following
methods	to	perform	this	task.

METHODS	OF	THE
DOCUMENT	OBJECT

DESCRIPTION

getElementById(idValue) Returns	a	reference	(a	node)	of	an	element,	when
supplied	with	the	value	of	the	id	attribute	of	that
element

getElementsByTagName(tagName) Returns	a	reference	(a	node	list)	to	a	set	of	elements
that	have	the	same	tag	as	the	one	supplied	in	the
argument

querySelector(cssSelector) Returns	a	reference	(a	node)	of	the	first	element	that
matches	the	given	CSS	selector

querySelectorAll(cssSelector) Returns	a	reference	(a	node	list)	to	a	set	of	elements
that	match	the	given	CSS	selector

The	first	of	these	methods,	getElementById(),	requires	you	to	ensure	that	every	element
you	want	to	quickly	access	in	the	page	uses	an	id	attribute,	otherwise	a	null	value	(a
word	indicating	a	missing	or	unknown	value)	will	be	returned	by	your	method.	Let’s	go
back	to	the	first	example	and	add	some	id	attributes	to	the	elements.

<!DOCTYPE	html>

<html	lang="en">

<head>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph.</p>

</body>

</html>

Now	you	can	use	the	getElementById()	method	to	return	a	reference	to	any	of	the	HTML
elements	with	id	attributes	on	your	page.	For	example,	if	you	add	the	following	code	in
the	highlighted	section,	you	can	find	and	reference	the	<h1/>	element:

<!DOCTYPE	html>

<html	lang="en">

<head>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph.</p>

				<script>

								alert(document.getElementById("heading1"));

				</script>

</body>

</html>

Figure	9.4	shows	the	result	of	this	code	in	Firefox.

Figure	9.4

NOTE	HTMLHeadingElement	is	an	object	of	the	HTML	DOM.	All	HTML	elements
have	a	corresponding	reference	type	in	the	DOM.	See	Appendix	C	for	more	objects	of
the	HTML	DOM.

You	might	have	been	expecting	it	to	return	something	along	the	lines	of	<h1/>	or	<h1
id="heading1">,	but	all	it’s	actually	returning	is	a	reference	to	the	<h1/>	element.	This
reference	to	the	<h1/>	element	is	more	useful	though,	because	you	can	use	it	to	alter
attributes	of	the	element,	such	as	by	changing	the	color	or	size.	You	can	do	this	via	the
style	object:

<!DOCTYPE	html>

<html	lang="en">

<head>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph.</p>

				<script>

								var	h1Element	=	document.getElementById("heading1");

								h1Element.style.color	=	"red";

				</script>

</body>

</html>

If	you	display	this	in	the	browser,	you	see	that	you	can	directly	influence	the	attributes	of
the	<h1/>	element	in	script,	as	you	have	done	here	by	changing	its	text	color	to	red.

NOTE	The	style	object	points	to	the	style	attribute	of	an	element;	it	enables	you	to
change	the	CSS	style	assigned	to	an	element.	The	style	object	is	covered	later	in	the
chapter.

The	second	method,	getElementsByTagName(),	works	in	the	same	way,	but,	as	its	name
implies,	it	can	return	more	than	one	element.	If	you	were	to	go	back	to	the	example
HTML	document	with	the	table	and	use	this	method	to	return	the	table	cells	(<td/>)	in
your	code,	you	would	get	a	node	list	containing	a	total	of	four	tables.	You’d	still	have	only
one	object	returned,	but	this	object	would	be	a	collection	of	elements.	Remember	that
collections	are	array-like	structures,	so	specify	the	index	number	for	the	specific	element
you	want	from	the	collection.	You	can	use	the	square	brackets	if	you	want;	another
alternative	is	to	use	the	item()	method	of	the	NodeList	object,	like	this:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>This	is	a	test	page</title>

</head>

<body>

			Below	is	a	table

			<table>

						<tr>

									<td>Row	1	Cell	1</td>

									<td>Row	1	Cell	2</td>

						</tr>

				</table>

				<script>

								var	tdElement	=	document.getElementsByTagName("td").item(0);

								tdElement.style.color	=	"red";

				</script>

</body>

</html>

If	you	ran	this	example,	once	again	using	the	style	object,	it	would	alter	the	style	of	the
contents	of	the	first	cell	in	the	table.	If	you	wanted	to	change	the	color	of	all	the	cells	in
this	way,	you	could	loop	through	the	node	list,	like	this:

<script>

				var	tdElements	=	document.getElementsByTagName("td");

				var	length	=	tdElements.length;

				for	(var	i	=	0;	i	<	length;	i++)	{

								tdElements[i].style.color	=	"red";

				}

</script>

One	thing	to	note	about	the	getElementsByTagName()	method	is	that	it	takes	the	element
names	within	quotation	marks	and	without	the	angle	brackets	(<>)	that	normally	surround
tags.

The	third	method,	querySelector(),	retrieves	the	first	element	that	matches	the	provided

CSS	selector.	This	is	a	convenient	way	of	retrieving	an	element	that	does	not	have	an	id
attribute	(if	it	does	have	an	id	attribute,	you	want	to	use	getElementById()).

For	example,	consider	the	following	HTML:

<p	class="sub-title">This	is	a	special	paragraph	element

				that	contains	some	text</p>.

Using	the	querySelector()	method,	you	can	retrieve	the	first		element	in	this
HTML	with	the	following	code:

var	firstSpan	=	document.querySelector(".sub-title	span");

The	provided	CSS	selector	matches	all		elements	contained	within	a	parent
element	with	a	CSS	class	of	sub-title.	This	HTML	contains	two	such		elements,
but	querySelector()	only	returns	the	first:	the		element	containing	the	text
“special.”	Just	as	with	the	previous	examples,	you	can	modify	the	element’s	text	color
with	its	style	property:

<script>

				var	firstSpan	=	document.querySelector(".sub-title	span");

				firstSpan.style.color	=	"red";

</script>

If	you	wanted	to	retrieve	all	of	the		elements	in	this	HTML,	you	want	to	use	the
fourth	method,	querySelectorAll(),	like	this:

var	spans	=	document.querySelectorAll(".sub-title	span");

And	just	as	with	the	getElementsByTagName()	example,	you	can	use	a	loop	and	modify
all	the	elements	contained	within	the	spans	NodeList:

<script>

				var	spans	=	document.querySelectorAll(".sub-title	span");

				var	length	=	spans.length;

				for	(var	i	=	0;	i	<	length;	i++)	{

								spans[i].style.color	=	"red";

				}

</script>

NOTE	The	querySelector()	and	querySelectorAll()	methods	aren’t	actually	part
of	the	DOM	standard.	They’re	defined	within	the	W3C’s	Selectors	API,	which	is	one
of	the	components	to	be	consolidated	with	DOM	level	3	into	DOM	level	4.	You	can
use	these	methods	on	Element	objects,	too.

Creating	Elements	and	Text
The	Document	object	also	boasts	some	methods	for	creating	elements	and	text,	shown	in
the	following	table.

METHODS	OF	THE
DOCUMENT	OBJECT

DESCRIPTION

createElement(elementName) Creates	an	element	node	with	the	specified	tag	name.
Returns	the	created	element

createTextNode(text) Creates	and	returns	a	text	node	with	the	supplied	text

The	following	code	demonstrates	the	use	of	these	methods:

var	pElement	=	document.createElement("p");

var	text	=	document.createTextNode("This	is	some	text.");

This	code	creates	a	<p/>	element	and	stores	its	reference	in	the	pElement	variable.	It	then
creates	a	text	node	containing	the	text	This	is	some	text.	and	stores	its	reference	in	the
text	variable.

It’s	not	enough	to	create	nodes,	however;	you	have	to	add	them	to	the	document.	We’ll
discuss	how	to	do	this	in	just	a	bit.

Property	of	the	Document	Object:	Getting	the	Document’s	Root	Element
You	now	have	a	reference	to	individual	elements	on	the	page,	but	what	about	the	tree
structure	mentioned	earlier?	The	tree	structure	encompasses	all	the	elements	and	nodes	on
the	page	and	gives	them	a	hierarchical	structure.	If	you	want	to	reference	that	structure,
you	need	a	particular	property	of	the	document	object	that	returns	the	outermost	element
of	your	document.	In	HTML,	this	should	always	be	the	<html/>	element.	The	property
that	returns	this	element	is	documentElement,	as	shown	in	the	following	table.

PROPERTY	OF	THE
DOCUMENT	OBJECT

DESCRIPTION

documentElement Returns	a	reference	to	the	outermost	element	of	the
document	(the	root	element;	for	example,	<html/>)

You	can	use	documentElement	as	follows.	If	you	go	back	to	the	simple	HTML	page,	you
can	transfer	your	entire	DOM	into	one	variable	like	this:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title></title>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph</p>

				<script>

								var	container	=	document.documentElement;

				</script>

</body>

</html>

The	variable	container	now	contains	the	root	element,	which	is	<html/>.	The

documentElement	property	returned	a	reference	to	this	element	in	the	form	of	an	object,	an
Element	object	to	be	precise.	The	Element	object	has	its	own	set	of	properties	and
methods.	If	you	want	to	use	them,	you	can	refer	to	them	by	using	the	variable	name,
followed	by	the	method	or	property	name:

container.elementObjectProperty

Fortunately,	the	Element	object	has	only	one	property.

The	Element	Object
The	Element	object	is	quite	simple,	especially	compared	to	the	Node	object	(which	you	are
introduced	to	later).	It	exposes	only	a	handful	of	members	(properties	and	methods).

MEMBER	NAME DESCRIPTION
tagName Gets	the	element’s	tag	name
getAttribute() Gets	the	value	of	an	attribute
setAttribute() Sets	an	attribute	with	a	specified	value
removeAttribute() Removes	a	specific	attribute	and	its	value	from	the	element

Getting	the	Element’s	Tag	Name:	The	tagName	Property
The	sole	property	of	the	Element	object	is	a	reference	to	the	tag	name	of	the	element:	the
tagName	property.

In	the	previous	example,	the	variable	container	contained	the	<html/>	element.	Add	the
following	highlighted	line,	which	makes	use	of	the	tagName	property:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title></title>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph</p>

				<script>

								var	container	=	document.documentElement;

								alert(container.tagName);

				</script>

</body>

</html>

This	code	will	now	return	proof	that	your	variable	container	holds	the	outermost
element,	and	by	implication	all	other	elements	within	it	(see	Figure	9.5).

Figure	9.5

Methods	of	the	Element	Object:	Getting	and	Setting	Attributes
If	you	want	to	set	any	element	attributes,	other	than	the	style	attribute,	you	should	use	the
DOM-specific	methods	of	the	Element	object.

The	three	methods	you	can	use	to	return	and	alter	the	contents	of	an	HTML	element’s
attributes	are	getAttribute(),	setAttribute(),	and	removeAttribute(),	as	shown	in
the	following	table.

METHODS	OF	THE	ELEMENT
OBJECT

DESCRIPTION

getAttribute(attributeName) Returns	the	value	of	the	supplied	attribute	Returns
null	or	an	empty	string	if	the	attribute	does	not	exist

setAttribute(attributeName,

value)

Sets	the	value	of	an	attribute

removeAttribute(attributeName) Removes	the	value	of	an	attribute	and	replaces	it
with	the	default	value

Let’s	take	a	quick	look	at	how	these	methods	work	now.

				TRY	IT	OUT								Playing	with	Attributes
Open	your	text	editor	and	type	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9,	Example	1</title>

</head>

<body>

				<p	id="paragraph1">This	is	some	text.</p>

				<script>

								var	pElement	=	document.getElementById("paragraph1");

								pElement.setAttribute("align",	"center");

								alert(pElement.getAttribute("align"));

								pElement.removeAttribute("align");

				</script>

</body>

</html>

Save	this	as	ch9 _ example1.html	and	open	it	in	a	browser.	You’ll	see	the	text	of	the
<p/>	element	in	the	center	of	the	screen	and	an	alert	box	displaying	the	text	center
(Figure	9.6).

Figure	9.6

When	you	click	the	OK	button,	you’ll	see	the	text	become	left-aligned	(Figure	9.7).

Figure	9.7

This	HTML	page	contains	one	<p/>	element	with	an	id	value	of	paragraph1.	You	use
this	value	in	the	JavaScript	code	to	find	the	element	node	and	store	its	reference	in	the
pElement	variable	with	the	getElementById()	method:

var	pElement	=	document.getElementById("paragraph1");

Now	that	you	have	a	reference	to	the	element,	you	use	the	setAttribute()	method	to
set	the	align	attribute	to	center:

pElement.setAttribute("align",	"center");

The	result	of	this	code	moves	the	text	to	the	center	of	the	browser’s	window.

You	then	use	the	getAttribute()	method	to	get	the	align	attribute’s	value	and
display	it	in	an	alert	box:

alert(pElement.getAttribute("align"));

This	code	displays	the	value	"center"	in	the	alert	box.

Finally,	you	remove	the	align	attribute	with	the	removeAttribute()	method,
effectively	making	the	text	left-aligned.

NOTE	Strictly	speaking,	the	align	attribute	is	deprecated,	but	you	used	it	because	it
works	and	because	it	has	one	of	the	most	easily	demonstrable	visual	effects	on	a	web
page.

The	Node	Object
You	now	have	your	element	or	elements	from	the	web	page,	but	what	happens	if	you	want

to	move	through	your	page	systematically,	from	element	to	element	or	from	attribute	to
attribute?	This	is	where	you	need	to	step	back	to	a	lower	level.	To	move	among	elements,
attributes,	and	text,	you	have	to	move	among	nodes	in	your	tree	structure.	It	doesn’t	matter
what	is	contained	within	the	node,	or	rather,	what	sort	of	node	it	is.	This	is	why	you	need
to	go	back	to	one	of	the	objects	of	the	core	DOM	specification.	Your	whole	tree	structure
is	made	up	of	these	base-level	Node	objects.

The	Node	Object:	Navigating	the	DOM
The	following	table	lists	some	common	properties	of	the	Node	object	that	provide
information	about	the	node,	whether	it	is	an	element,	attribute,	or	text,	and	enable	you	to
move	from	one	node	to	another.

PROPERTIES	OF	THE
NODE	OBJECT

DESCRIPTION	OF	PROPERTY

firstChild Returns	the	first	child	node	of	an	element
lastChild Returns	the	last	child	node	of	an	element
previousSibling Returns	the	previous	child	node	of	an	element	at	the	same

level	as	the	current	child	node
nextSibling Returns	the	next	child	node	of	an	element	at	the	same	level	as

the	current	child	node
ownerDocument Returns	the	root	node	of	the	document	that	contains	the	node

(note	this	is	not	available	in	IE	5	or	5.5)
parentNode Returns	the	element	that	contains	the	current	node	in	the	tree

structure
nodeName Returns	the	name	of	the	node
nodeType Returns	the	type	of	the	node	as	a	number
nodeValue Gets	or	sets	the	value	of	the	node	in	plaintext	format

Let’s	take	a	quick	look	at	how	some	of	these	properties	work.	Consider	this	familiar
example:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title></title>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph</p>

				<script>

								var	h1Element	=	document.getElementById("heading1");

								h1Element.style.color	=	"red";

				</script>

</body>

</html>

You	can	now	use	h1Element	to	navigate	your	tree	structure	and	make	whatever	changes
you	desire.	The	following	code	uses	h1Element	as	a	starting	point	to	find	the	<p/>	element
and	change	its	text	color:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title></title>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph</p>

				<script>

								var	h1Element	=	document.getElementById("heading1");

								h1Element.style.color	=	"red";

								var	pElement;

								if	(h1Element.nextSibling.nodeType	==	1)	{

												pElement	=	h1Element.nextSibling;

								}	else	{

												pElement	=	h1Element.nextSibling.nextSibling;

								}

								pElement.style.color	=	"red";

				</script>

</body>

</html>

This	code	demonstrates	a	fundamental	difference	between	the	DOM	present	in	modern
browsers	and	that	in	older	versions	of	IE.	The	DOM	in	modern	browsers	treats	everything
as	a	node	in	the	DOM	tree,	including	the	whitespace	between	elements.	On	the	other	hand,
older	versions	of	IE	strip	out	this	whitespace.	So	to	locate	the	<p/>	element	in	the	previous
example,	a	sibling	to	the	<h1/>	element,	you	must	check	the	next	sibling’s	nodeType
property.	An	element’s	node	type	is	1	(text	nodes	are	3).	If	the	nextSibling’snodeType	is
1,	you	assign	that	sibling’s	reference	to	pElement.	If	not,	you	get	the	next	sibling	(the	<p/>
element)	of	h1Element’s	sibling	(the	whitespace	text	node).

In	effect,	you	are	navigating	through	the	tree	structure	as	shown	in	Figure	9.8.

Figure	9.8

The	same	principles	also	work	in	reverse.	You	can	go	back	and	change	the	code	to
navigate	from	the	<p/>	element	to	the	<h1/>	element:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title></title>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph</p>

				<script>

								var	pElement	=	document.getElementById("paragraph1");

								pElement.style.color	=	"red";

								var	h1Element;

								if	(pElement.previousSibling.nodeType	==	1)	{

												h1Element	=	pElement.previousSibling;

								}	else	{

												h1Element	=	pElement.previousSibling.previousSibling;

								}

								h1Element.style.color	=	"red";

				</script>

</body>

</html>

What	you’re	doing	here	is	the	exact	opposite;	you	find	the	<p/>	by	passing	the	value	of	its
id	attribute	to	the	getElementById()	method	and	storing	the	returned	element	reference
to	the	pElement	variable.	You	then	find	the	correct	previous	sibling	so	that	your	code
works	in	all	browsers,	and	you	change	its	text	color	to	red.

				TRY	IT	OUT								Navigating	Your	HTML	Document
Using	the	DOM

Up	until	now,	you’ve	been	cheating,	because	you	haven’t	truly	navigated	your	HTML
document.	You’ve	just	used	document.getElementById()	to	return	an	element	and
navigated	to	different	nodes	from	there.	Now	let’s	use	the	documentElement	property
of	the	document	object	and	do	this	properly.	You’ll	start	at	the	top	of	your	tree	and
move	down	through	the	child	nodes	to	get	at	those	elements;	then	you’ll	navigate
through	your	child	nodes	and	change	the	properties	in	the	same	way	as	before.

Type	the	following	into	your	text	editor:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9,	Example	2</title>

</head>

<body>

				<h1	id="heading1">My	Heading</h1>

				<p	id="paragraph1">This	is	some	text	in	a	paragraph</p>

				<script>

								var	htmlElement;	//	htmlElement	stores	reference	to	<html>

								var	headElement;	//	headingElement	stores	reference	to	<head>

								var	bodyElement;	//	bodyElement	stores	reference	to	<body>

								var	h1Element;	//	h1Element	stores	reference	to	<h1>

								var	pElement;	//	pElement	stores	reference	to	<p>

								htmlElement	=	document.documentElement;

								headElement	=	htmlElement.firstChild;

								alert(headElement.tagName);

								if	(headElement.nextSibling.nodeType	==	3)	{

												bodyElement	=	headElement.nextSibling.nextSibling;

								}	else	{

												bodyElement	=	headElement.nextSibling;

								}

								alert(bodyElement.tagName);

								if	(bodyElement.firstChild.nodeType	==	3)	{

												h1Element	=	bodyElement.firstChild.nextSibling;

								}	else	{

												h1Element	=	bodyElement.firstChild;

								}

								alert(h1Element.tagName);

								h1Element.style.fontFamily	=	"Arial";

								if	(h1Element.nextSibling.nodeType	==	3)	{

												pElement	=	h1Element.nextSibling.nextSibling;

								}	else	{

												pElement	=	h1Element.nextSibling;

								}

								alert(pElement.tagName);

								pElement.style.fontFamily	=	"Arial";

								if	(pElement.previousSibling.nodeType	==	3)	{

												h1Element	=	pElement.previousSibling.previousSibling;

								}	else	{

												h1Element	=	pElement.previousSibling;

								}

								h1Element.style.fontFamily	=	"Courier";

				</script>

</body>

</html>

Save	this	as	ch9 _ example2.html	and	open	it	in	your	browser.

Click	OK	in	each	of	the	message	boxes	until	you	see	the	page	shown	in	Figure	9.9
(unfortunately,	IE	does	not	render	the	style	changes	until	all	alert	boxes	have	been
opened	and	closed).

Figure	9.9

You’ve	hopefully	made	this	example	very	transparent	by	adding	several	alerts	to
demonstrate	where	you	are	along	each	section	of	the	tree.	You’ve	also	named	the
variables	with	their	various	elements,	to	give	a	clearer	idea	of	what	is	stored	in	each
variable.	(You	could	just	as	easily	have	named	them	a,	b,	c,	d,	and	e,	so	don’t	think
you	need	to	be	bound	by	this	naming	convention.)

You	start	at	the	top	of	the	script	block	by	retrieving	the	whole	document	using	the
documentElement	property:

var	htmlElement	=	document.documentElement;

The	root	element	is	the	<html/>	element,	hence	the	name	of	your	first	variable.	Now
if	you	refer	to	your	tree,	you’ll	see	that	the	HTML	element	must	have	two	child
nodes:	one	containing	the	<head/>	element	and	the	other	containing	the	<body/>
element.	You	start	by	moving	to	the	<head/>	element.	You	get	there	using	the
firstChild	property	of	the	Node	object,	which	contains	your	<html/>	element.	You
use	your	first	alert	to	demonstrate	that	this	is	true:

alert(headingElement.tagName);

Your	<body/>	element	is	your	next	sibling	across	from	the	<head/>	element,	so	you
navigate	across	by	creating	a	variable	that	is	the	next	sibling	from	the	<head/>
element:

if	(headingElement.nextSibling.nodeType	==	3)	{

				bodyElement	=	headingElement.nextSibling.nextSibling;

}	else	{

				bodyElement	=	headingElement.nextSibling;

}

alert(bodyElement.tagName);

Here	you	check	to	see	what	the	nodeType	of	the	nextSibling	of	headingElement	is.
If	it	returns	3,	(nodeType	3	is	a	text	node),	you	set	bodyElement	to	be	the
nextSibling	of	the	nextSibling	of	headingElement;	otherwise,	you	just	set	it	to	be
the	nextSibling	of	headingElement.

You	use	an	alert	to	prove	that	you	are	now	at	the	<body/>	element:

alert(bodyElement.tagName);

The	<body/>	element	in	this	page	also	has	two	children,	the	<h1/>	and	<p/>	elements.
Using	the	firstChild	property,	you	move	down	to	the	<h1/>	element.	Again	you
check	whether	the	child	node	is	whitespace	for	standard-compliant	browsers.	You	use
an	alert	again	to	show	that	you	have	arrived	at	<h1/>:

if	(bodyElement.firstChild.nodeType	==	3)	{

				h1Element	=	bodyElement.firstChild.nextSibling;

}	else	{

				h1Element	=	bodyElement.firstChild;

}

alert(h1Element.tagName);

After	the	third	alert,	the	style	will	be	altered	on	your	first	element,	changing	the	font
to	Arial:

h1Element.style.fontFamily	=	"Arial";

You	then	navigate	across	to	the	<p/>	element	using	the	nextSibling	property,	again
checking	for	whitespace:

if	(h1Element.nextSibling.nodeType	==	3)	{

				pElement	=	h1Element.nextSibling.nextSibling;

}	else	{

				pElement	=	h1Element.nextSibling;

}

alert(pElement.tagName);

You	change	the	<p/>	element’s	font	to	Arial	also:

pElement.style.fontFamily	=	"Arial";

Finally,	you	use	the	previousSibling	property	to	move	back	in	your	tree	to	the
<h1/>	element	and	this	time	change	the	font	to	Courier:

if	(pElement.previousSibling.nodeType	==	3)	{

				h1Element	=	pElement.previousSibling.previousSibling;

}	else	{

				h1Element	=	pElement.previousSibling;

}

h1Element.style.fontFamily	=	"Courier";

This	is	a	fairly	easy	example	to	follow	because	you’re	using	the	same	tree	structure
you	created	with	diagrams,	but	it	does	show	how	the	DOM	effectively	creates	this
hierarchy	and	that	you	can	move	around	within	it	using	script.

Methods	of	the	Node	Object
Whereas	the	Node	object’s	properties	enable	you	to	navigate	the	DOM,	its	methods
provide	the	completely	different	ability	to	add	and	remove	nodes	from	the	DOM,	thus
fundamentally	altering	the	structure	of	the	HTML	document.	The	following	table	lists
these	methods.

METHODS	OF	NODE
OBJECTS

DESCRIPTION

appendChild(newNode) Adds	a	new	Node	object	to	the	end	of	the	list	of	child	nodes.
This	method	returns	the	appended	node.

cloneNode(cloneChildren) Returns	a	duplicate	of	the	current	node.	It	accepts	a	boolean
value.	If	the	value	is	true,	the	method	clones	the	current
node	and	all	child	nodes.	If	the	value	is	false,	only	the
current	node	is	cloned	and	child	nodes	are	left	out	of	the
clone.

hasChildNodes() Returns	true	if	a	node	has	any	child	nodes	and	false	if	not
insertBefore(newNode,

referenceNode)

Inserts	a	new	Node	object	into	the	list	of	child	nodes	before
the	node	stipulated	by	referenceNode.	Returns	the	inserted
node

removeChild(childNode) Removes	a	child	node	from	a	list	of	child	nodes	of	the	Node
object.	Returns	the	removed	node

				TRY	IT	OUT								Creating	HTML	Elements	and
Text	with	DOM	Methods
In	this	Try	It	Out	you	create	a	web	page	with	just	paragraph	<p/>	and	heading	<h1/>
elements,	but	instead	of	HTML	you’ll	use	the	DOM	properties	and	methods	to	place
these	elements	on	the	web	page.	Start	up	your	preferred	text	editor	and	type	the
following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9,	Example	3</title>

</head>

<body>

				<script>

								var	newText	=	document.createTextNode("My	Heading");

								var	newElem	=	document.createElement("h1");

								newElem.appendChild(newText);

								document.body.appendChild(newElem);

								newText	=	document.createTextNode("This	is	some	text	in	a	

paragraph");

								newElem	=	document.createElement("p");

								newElem.appendChild(newText);

								document.body.appendChild(newElem);

				</script>

</body>

</html>

Save	this	page	as	ch9_example3.html	and	open	it	in	a	browser	(Figure	9.10).

Figure	9.10

It	all	looks	a	bit	dull	and	tedious,	doesn’t	it?	And	yes,	you	could	have	done	this	much
more	simply	with	HTML.	That	isn’t	the	point,	though.	The	idea	is	that	you	use	DOM
properties	and	methods,	accessed	with	JavaScript,	to	insert	these	elements.	The	first
two	lines	of	the	script	block	are	used	to	define	the	variables	in	your	script,	which	are
initialized	to	hold	the	text	you	want	to	insert	into	the	page	and	the	HTML	element	you
want	to	insert:

var	newText	=	document.createTextNode("My	Heading");

var	newElem	=	document.createElement("h1");

You	start	at	the	bottom	of	your	tree	first,	by	creating	a	text	node	with	the
createTextNode()	method.	Then	use	the	createElement()	method	to	create	an
HTML	heading.

At	this	point,	the	two	variables	are	entirely	separate	from	each	other.	You	have	a	text
node,	and	you	have	an	<h1/>	element,	but	they’re	not	connected.	The	next	line
enables	you	to	attach	the	text	node	to	your	HTML	element.	You	reference	the	HTML
element	you	have	created	with	the	variable	name	newElem,	use	the	appendChild()
method	of	your	node,	and	supply	the	contents	of	the	newText	variable	you	created
earlier	as	a	parameter:

newElem.appendChild(newText);

Let’s	recap.	You	created	a	text	node	and	stored	it	in	the	newText	variable.	You	created
an	<h1/>	element	and	stored	it	in	the	newElem	variable.	Then	you	appended	the	text
node	as	a	child	node	to	the	<h1/>	element.	That	still	leaves	you	with	a	problem:
You’ve	created	an	element	with	a	value,	but	the	element	isn’t	part	of	your	document.
You	need	to	attach	the	entirety	of	what	you’ve	created	so	far	to	the	document	body.
Again,	you	can	do	this	with	the	appendChild()	method,	but	this	time	call	it	on	the
document.body	object	(which,	too,	is	a	Node):

document.body.appendChild(newElem);

This	completes	the	first	part	of	your	code.	Now	all	you	have	to	do	is	repeat	the
process	for	the	<p/>	element:

newText	=	document.createTextNode("This	is	some	text	in	a	paragraph");

newElem	=	document.createElement("p");

newElem.appendChild(newText);

document.body.appendChild(newElem);

You	create	a	text	node	first;	then	you	create	an	element.	You	attach	the	text	to	the
element,	and	finally	you	attach	the	element	and	text	to	the	body	of	the	document.

It’s	important	to	note	that	the	order	in	which	you	create	nodes	does	not	matter.	This
example	had	you	create	the	text	nodes	before	the	element	nodes;	if	you	wanted,	you	could
have	created	the	elements	first	and	the	text	nodes	second.

However,	the	order	in	which	you	append	nodes	is	very	important	for	performance	reasons.
Updating	the	DOM	can	be	an	expensive	process,	and	performance	can	suffer	if	you	make
many	changes	to	the	DOM.	For	example,	this	example	updated	the	DOM	only	two	times
by	appending	the	completed	elements	to	the	document’s	body.	It	would	require	four
updates	if	you	appended	the	element	to	the	document’s	body	and	then	appended	the	text
node	to	the	element.	As	a	rule	of	thumb,	only	append	completed	element	nodes	(that	is,
the	element,	its	attributes,	and	any	text)	to	the	document	whenever	you	can.

Now	that	you	can	navigate	and	make	changes	to	the	DOM,	let’s	look	further	into
manipulating	DOM	nodes.

MANIPULATING	THE	DOM
DOM	scripting	is	the	manipulation	of	an	HTML	page	after	it’s	loaded	into	the	browser.	Up
to	this	point,	you’ve	examined	the	properties	and	methods	of	the	basic	DOM	objects	and
learned	how	to	traverse	the	DOM	through	JavaScript.

Throughout	the	previous	section,	you	saw	some	examples	of	manipulating	the	DOM;
more	specifically,	you	saw	that	you	can	change	the	color	and	font	family	of	text	contained
within	an	element.	In	this	section,	you	expand	on	that	knowledge.

Accessing	Elements
As	you	saw	in	the	previous	section,	the	DOM	holds	the	tools	you	need	to	find	and	access
HTML	elements;	you	used	the	getElementById()	method	quite	frequently,	and	through
examples	you	saw	how	easy	it	was	to	find	specific	elements	in	the	page.

When	scripting	the	DOM,	chances	are	you	have	a	pretty	good	idea	of	what	elements	you
want	to	manipulate.	The	easiest	ways	to	find	those	elements	are	with	the
getElementById(),	querySelector(),	and	querySelectorAll()	methods.	If	an	element
has	an	id	attribute,	use	getElementById()	because	it	is	the	fastest	way	to	find	an	element
in	the	page.	Otherwise,	you’ll	need	to	use	the	querySelector()	and	querySelectorAll()
methods.

Changing	Appearances
Probably	the	most	common	DOM	manipulation	is	to	change	the	way	an	element	looks.
Such	a	change	can	create	an	interactive	experience	for	visitors	to	your	website	and	can
even	be	used	to	alert	them	to	important	information	or	that	an	action	is	required	by	them.
Changing	the	way	an	element	looks	consists	almost	exclusively	of	changing	CSS
properties	for	an	HTML	element.	You	can	do	this	two	ways	through	JavaScript:

Change	each	CSS	property	with	the	style	property.

Change	the	value	of	the	element’s	class	attribute.

Using	the	style	Property
To	change	specific	CSS	properties,	you	must	look	to	the	style	property.	All	browsers
implement	this	object,	which	maps	directly	to	the	element’s	style	attribute.	This	object
contains	CSS	properties,	and	by	using	it	you	can	change	any	CSS	property	that	the
browser	supports.	You’ve	already	seen	the	style	property	in	use,	but	here’s	a	quick
refresher:

element.style.cssProperty	=	value;

The	CSS	property	names	generally	match	those	used	in	a	CSS	style	sheet;	therefore,
changing	the	text	color	of	an	element	requires	the	use	of	the	color	property,	like	this:

var	divAdvert	=	document.getElementById("divAdvert");

divAdvert.style.color	=	"blue";

In	some	cases,	however,	the	property	name	is	a	little	different	from	the	one	seen	in	a	CSS
file.	CSS	properties	that	contain	a	hyphen	(-)	are	a	perfect	example	of	this	exception.	In
the	case	of	these	properties,	you	remove	the	hyphen	and	capitalize	the	first	letter	of	the
word	that	follows	the	hyphen.	The	following	code	shows	the	incorrect	and	correct	ways	to
do	this:

divAdvert.style.background-color	=	"gray";		//	wrong

divAdvert.style.backgroundColor	=	"gray";		//	correct

You	can	also	use	the	style	object	to	retrieve	styles	that	have	previously	been	declared.
However,	if	the	style	property	you	try	to	retrieve	has	not	been	set	with	the	style	attribute
(inline	styles)	or	with	the	style	object,	you	will	not	retrieve	the	property’s	value.	Consider
the	following	HTML	containing	a	style	sheet	and	<div/>	element:

<style>

#divAdvert	{

				background-color:	gray;

}

</style>

<div	id="divAdvert"	style="color:	green">I	am	an	advertisement.</div>

When	the	browser	renders	this	element,	it	will	have	green	text	on	a	gray	background.	If
you	had	used	the	style	object	to	retrieve	the	value	of	both	the	background-color	and
color	properties,	you’d	get	the	following	mixed	results:

var	divAdvert	=	document.getElementById("divAdvert");

alert(divAdvert.style.backgroundColor);		//	alerts	an	empty	string

alert(divAdvert.style.color);		//	alerts	green

You	get	these	results	because	the	style	object	maps	directly	to	the	style	attribute	of	the
element.	If	the	style	declaration	is	set	in	a	<style/>	element,	or	in	an	external	style	sheet,
you	cannot	retrieve	that	property’s	value	with	the	style	object.

				TRY	IT	OUT								Using	the	style	Object
Let’s	look	at	a	simple	example	of	changing	the	appearance	of	some	text	by	using	the
style	object.	Type	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9,	Example	4</title>

				<style>

								#divAdvert	{

												font:	12pt	arial;

								}

				</style>

</head>

<body>

				<div	id="divAdvert">

								Here	is	an	advertisement.

				</div>

				<script>

								var	divAdvert	=	document.getElementById("divAdvert");

								divAdvert.style.fontStyle	=	"italic";

								divAdvert.style.textDecoration	=	"underline";

				</script>

</body>

</html>

Save	this	as	ch9_example4.html.	When	you	run	this	in	your	browser,	you	should	see
a	single	line	of	text	that	is	italicized	and	underlined,	as	shown	in	Figure	9.11.

Figure	9.11

In	the	page’s	body,	a	<div/>	element	is	defined	with	an	id	of	divAdvert.	The
<script/>	element	appears	after	the	<div/>,	and	it	contains	the	following	JavaScript
code:

var	divAdvert	=	document.getElementById("divAdvert");

divAdvert.style.fontStyle	=	"italic";

divAdvert.style.textDecoration	=	"underline";

Before	you	can	do	anything	to	the	<div/>	element,	you	must	first	retrieve	it.	You	do
this	simply	by	using	the	getElementById()	method.	Now	that	you	have	the	element,
you	manipulate	its	style	by	first	italicizing	the	text	with	the	fontStyle	property.	Next,
you	underline	the	text	by	using	the	textDecoration	property	and	assigning	its	value
to	underline.

It’s	very	important	that	the	<div	id="divAdvert"/>	element	is	loaded	into	the
browser	before	you	retrieve	it	with	getElementById().	This	is	why	the	<script/>
element	appears	after	<div	id="divAdvert"/>.	By	the	time	the	browser	loads	and
executes	the	JavaScript	code,	the	<div/>	element	is	loaded	into	the	DOM.

Changing	the	class	Attribute
You	can	assign	a	CSS	class	to	elements	by	using	the	element’s	class	attribute.	This
attribute	is	exposed	in	the	DOM	by	the	className	property	and	can	be	changed	through
JavaScript	to	associate	a	different	style	rule	with	the	element:

element.className	=	sNewClassName;

Using	the	className	property	to	change	an	element’s	style	is	advantageous	in	two	ways:

It	reduces	the	amount	of	JavaScript	you	have	to	write,	which	no	one	is	likely	to
complain	about.

It	keeps	style	information	out	of	the	JavaScript	file	and	puts	it	into	the	CSS	file	where
it	belongs.	Making	any	type	of	changes	to	the	style	rules	is	easier	because	you	do	not
have	to	have	several	files	open	in	order	to	change	them.

				TRY	IT	OUT								Using	the	className	Property
Let’s	revisit	the	code	from	ch9 _ example4.html	from	the	previous	section	and	make
some	revisions.	Type	the	following	code:

-transitional.dtd”>

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9,	Example	5</title>

				<style>

								#divAdvert	{

												font:	12pt	arial;

								}

								.new-style	{

												font-style:	italic;

												text-decoration:	underline;

								}

				</style>

</head>

<body>

				<div	id="divAdvert">

								Here	is	an	advertisement.

				</div>

				<script>

								var	divAdvert	=	document.getElementById("divAdvert");

								divAdvert.className	=	"new-style";

				</script>

</body>

</html>

Save	this	as	ch9 _ example5.html.

Two	key	differences	exist	between	ch9 _ example4.html	and	ch9 _ example5.html.
The	first	is	the	addition	of	a	CSS	class	called	new-style:

.newStyle	{

				font-style:	italic;

				text-decoration:	underline;

}

This	class	contains	style	declarations	to	specify	italicized	and	underlined	text.

The	second	change	is	in	the	JavaScript	itself:

				var	divAdvert	=	document.getElementById("divAdvert");

				divAdvert.className	=	"new-style";

}

The	first	statement	retrieves	the	<div/>	element	by	using	the	getElementById()
method.	The	second	statement	changes	the	className	property	to	the	value	new-
style.	With	this	line,	the	divAdvert	element	takes	on	a	new	style	rule	and	the
browser	changes	the	way	it	looks.

NOTE	Although	it	wasn’t	demonstrated	here,	the	HTML	class	attribute,	and	thus	the
className	property,	can	contain	multiple	CSS	class	names.	You	see	more	about
multiple	class	names	in	Chapter	16.

Positioning	and	Moving	Content
Changing	the	appearance	of	an	element	is	an	important	pattern	in	DOM	scripting,	and	it
finds	its	place	in	many	scripts.	However,	there	is	more	to	DOM	scripting	than	just
changing	the	way	content	appears	on	the	page;	you	can	also	change	the	position	of	an
element	with	JavaScript.

Moving	content	with	JavaScript	is	just	as	easy	as	using	the	style	object.	You	use	the
position	property	to	change	the	type	of	position	desired,	and	by	using	the	left	and	top
properties,	you	can	position	the	element:

var	divAdvert	=	document.getElementById("divAdvert");

divAdvert.style.position	=	"absolute";

divAdvert.style.left	=	"100px";	//	set	the	left	position

divAdvert.style.top	=	"100px";		//	set	the	right	position

This	code	first	retrieves	the	divAdvert	element.	Then	it	sets	the	element’s	position	to

absolute	and	moves	the	element	100	pixels	from	the	left	and	top	edges.	Notice	the	addition
of	px	to	the	value	assigned	to	the	positions.	You	must	specify	a	unit	when	assigning	a
positional	value;	otherwise,	the	browser	will	not	position	the	element.

NOTE	Positioning	elements	requires	the	position	of	absolute	or	relative.

Example:	Animated	Advertisement
Perhaps	the	most	creative	use	of	DOM	scripting	is	in	animating	content	on	the	page.	You
can	perform	a	variety	of	animations:	you	can	fade	text	elements	or	images	in	and	out,	give
them	a	swipe	animation	(making	it	look	like	as	if	they	are	wiped	onto	the	page),	and
animate	them	to	move	around	on	the	page.

Animation	can	give	important	information	the	flair	it	needs	to	be	easily	recognized	by
your	reader,	as	well	as	adding	a	“that’s	cool”	factor.	Performing	animation	with	JavaScript
follows	the	same	principles	of	any	other	type	of	animation:	You	make	seemingly
insignificant	changes	one	at	a	time	in	a	sequential	order	until	you	reach	the	end	of	the
animation.	Essentially,	with	any	animation,	you	have	the	following	requisites:

1.	 The	starting	state

2.	 The	movement	toward	the	final	goal

3.	 The	end	state;	stopping	the	animation

Animating	an	absolutely	positioned	element,	as	you’re	going	to	do	in	this	section,	is	no
different.	First,	with	CSS,	position	the	element	at	the	start	location.	Then	perform	the
animation	up	until	you	reach	the	end	point,	which	signals	the	end	of	the	animation.

In	this	section,	you	learn	how	to	animate	content	to	bounce	back	and	forth	between	two
points.	To	do	this,	you	need	one	important	piece	of	information:	the	content’s	current
location.

Are	We	There	Yet?
The	DOM	in	modern	browsers	exposes	the	offsetTop	and	offsetLeft	properties	of	an
HTML	element	object.	These	two	properties	return	the	calculated	position	relative	to	the
element’s	parent	element:	offsetTop	tells	you	the	top	location,	and	offsetLeft	tells	you
the	left	position.	The	values	returned	by	these	properties	are	numerical	values,	so	you
can	easily	check	to	see	where	your	element	currently	is	in	the	animation.	For	example:

var	endPointX	=	394;

if	(element.offsetLeft	<	endPointX)	{

				//		continue	animation

}

The	preceding	code	specifies	the	end	point	(in	this	case,	394)	and	assigns	it	to	the
endPointX	variable.	You	can	then	check	to	see	if	the	element’s	offsetLeft	value	is
currently	less	than	that	of	the	end	point.	If	it	is,	you	can	continue	the	animation.	This
example	brings	us	to	the	next	topic	in	content	movement:	performing	the	animation.

Performing	the	Animation
To	perform	an	animation,	you	need	to	modify	the	top	and	left	properties	of	the	style
object	incrementally	and	quickly.	You	do	this	with	periodic	function	execution	until	it’s
time	to	end	the	animation.	To	do	this,	use	one	of	two	methods	of	the	window	object:
setTimeout()	or	setInterval().	This	example	uses	the	setInterval()	method	to
periodically	move	an	element.

				TRY	IT	OUT								Animating	Content
This	page	moves	an	element	across	the	page	from	right	to	left.	Open	your	text	editor
and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9,	Example	6</title>

				<style>

								#divAdvert	{

												position:	absolute;

												font:	12px	Arial;

												top:	4px;

												left:	0px;

								}

				</style>

</head>

<body>

				<div	id="divAdvert">

								Here	is	an	advertisement.

				</div>

				<script>

								var	switchDirection	=	false;

								function	doAnimation()	{

												var	divAdvert	=	document.getElementById("divAdvert");

												var	currentLeft	=	divAdvert.offsetLeft;

												var	newLocation;

												if	(!switchDirection)	{

																newLocation	=	currentLeft	+	2;

																if	(currentLeft	>=	400)	{

																				switchDirection	=	true;

																}

												}	else	{

																newLocation	=	currentLeft	-	2;

																if	(currentLeft	<=	0)	{

																				switchDirection	=	false;

																}

												}

												divAdvert.style.left	=	newLocation	+	"px";

								}

								setInterval(doAnimation,	10);

				</script>

</body>

</html>

Save	this	page	as	ch9 _ example6.html	and	load	it	into	your	browser.	When	you
load	the	page	into	the	browser,	the	content	should	start	moving	from	left	to	right,
starting	at	the	left	edge	of	the	viewport.	When	the	content	reaches	a	left	position	of
400	pixels,	the	content	switches	directions	and	begins	to	move	back	toward	the	left
edge.	This	animation	is	continuous,	so	it	should	bounce	between	the	two	points	(0	and
400)	perpetually.

Inside	the	body	of	the	page	is	a	<div/>	element.	This	element	has	an	id	of	divAdvert
so	that	you	can	retrieve	it	with	the	getElementById()	method,	because	this	is	the
element	you	want	to	animate:

<div	id="divAdvert">

				Here	is	an	advertisement.

</div>

This	element	has	no	style	attributes	because	all	the	style	information	is	inside	the
style	sheet	located	in	the	head	of	the	page.	In	the	style	sheet,	you	define	a	starting
point	for	this	<div/>.	You	want	the	animation	to	go	first	from	left	to	right,	and	you
want	it	to	start	at	the	left	edge	of	the	browser:

#divAdvert	{

				position:	absolute;

				font:	12pt	arial;

				top:	4px;

				left:	0px;

}

The	first	style	declaration	positions	the	element	absolutely,	and	the	second	specifies
the	font	as	12-point	Arial.	The	next	declaration	positions	the	element	four	pixels	from
the	top	of	the	browser’s	viewport.	Setting	the	top	position	away	from	the	topmost
edge	makes	the	text	a	little	easier	to	read.	Finally,	the	last	line	positions	the
divAdvert	element	along	the	left	edge	of	the	viewport	with	the	left	property.

Within	the	script	block	is	a	global	variable	called	switchDirection:

var	switchDirection	=	false;

This	variable	keeps	track	of	the	direction	in	which	the	content	is	currently	going.	If
switchDirection	is	false,	the	content	is	moving	from	left	to	right,	which	is	the
default.	If	switchDirection	is	true,	the	content	is	moving	from	right	to	left.

Next	in	the	script	block	is	the	doAnimation()	function,	which	performs	the
animation:

function	doAnimation()	{

				var	divAdvert	=	document.getElementById("divAdvert");

				var	currentLeft	=	divAdvert.offsetLeft;

				var	newLocation;

First,	you	retrieve	the	divAdvert	element	with	the	getElementById()	method;	you
also	retrieve	the	offsetLeft	property	and	assign	its	value	to	the	currentLeft
variable.	You	use	this	variable	to	check	the	content’s	current	position.	Next,	create	a
variable	called	newLocation	that	will	contain	the	new	left	position,	but	before	you
assign	its	value	you	need	to	know	the	direction	in	which	the	content	is	moving:

				if	(!switchDirection)	{

								newLocation	=	currentLeft	+	2;

								if	(currentLeft	>=	400)	{

												switchDirection	=	true;

								}

				}

First,	check	the	direction	by	checking	the	switchDirection	variable.	Remember,	if	it
is	false,	the	animation	is	moving	from	left	to	right;	so	assign	newLocation	to	contain
the	content’s	current	position	and	add	2,	thus	moving	the	content	two	pixels	to	the
right.

You	then	need	to	check	if	the	content	has	reached	the	left	position	of	400	pixels.	If	it
has,	you	need	to	switch	the	direction	of	the	animation,	and	you	do	this	by	changing
switchDirection	to	true.	So	the	next	time	doAnimation()	runs,	it	will	begin	to
move	the	content	from	right	to	left.

The	code	to	move	the	element	in	this	new	direction	is	similar	to	the	previous	code,
except	for	a	few	key	differences:

				else	{

								newLocation	=	currentLeft	-	2;

								if	(currentLeft	<=	0)	{

												switchDirection	=	false;

								}

				}

The	first	difference	is	the	value	assigned	to	newLocation;	instead	of	adding	2	to	the
current	location,	you	subtract	2,	thus	moving	the	content	two	pixels	to	the	left.	Next,
check	if	currentLeft	is	less	than	or	equal	to	0.	If	it	is,	you	know	you’ve	reached	the
ending	point	of	the	right-to-left	movement	and	need	to	switch	directions	again	by
assigning	switchDirection	to	be	false.

Finally,	set	the	new	position	of	the	content:

				divAdvert.style.left	=	newLocation	+	"px";

}

This	final	line	of	the	function	sets	the	element’s	left	property	to	the	value	stored	in	the
newLocation	variable	plus	the	string	"px".

To	run	the	animation,	use	setInterval()	to	continuously	execute	doAnimation().

The	following	code	runs	doAnimation()	every	10	milliseconds:

setInterval(doAnimation,	10);

At	this	speed,	the	content	moves	at	a	pace	that	is	easily	seen	by	those	viewing	the
page.	If	you	want	to	speed	up	or	slow	down	the	animation,	simply	change	how	often
the	setInterval()	function	calls	doAnimation()	by	changing	the	second	parameter.

What	have	you	seen	so	far?	Well,	you’ve	seen	the	DOM	hierarchy	and	how	it	represents
the	HTML	document	as	a	tree-like	structure.	You	navigated	through	the	different	parts	of
it	via	DOM	objects	(the	Node	objects)	and	their	properties,	and	you	changed	the	properties
of	objects,	thus	altering	the	content	of	the	web	page.	This	leaves	just	one	area	of	the	DOM
to	cover:	the	event	model.	You	learn	about	events	in	the	next	chapter.

SUMMARY
This	chapter	has	featured	quite	a	few	diversions	and	digressions,	but	these	were	necessary
to	demonstrate	the	position	and	importance	of	the	document	object	model	in	JavaScript.

This	chapter	covered	the	following	points:

It	started	by	outlining	two	of	the	main	standards—HTML	and	ECMAScript—and
examined	the	relationships	between	them.	You	saw	that	a	common	aim	emerging
from	these	standards	was	to	provide	guidelines	for	coding	HTML	web	pages.	Those
guidelines	in	turn	benefited	the	document	object	model,	making	it	possible	to	access
and	manipulate	any	item	on	the	web	page	using	script	if	web	pages	were	coded
according	to	those	guidelines.

You	examined	the	document	object	model	and	saw	that	it	offered	a	browser-
independent	means	of	accessing	the	items	on	a	web	page,	and	that	it	resolved	some	of
the	problems	that	dogged	older	browsers.	You	saw	how	the	DOM	represents	the
HTML	document	as	a	tree	structure	and	how	it	is	possible	for	you	to	navigate
through	the	tree	to	different	elements	and	use	the	properties	and	methods	it	exposes
to	access	the	different	parts	of	the	web	page.

The	DOM	lets	you	change	a	page	after	it	is	loaded	into	the	browser,	and	you	can
perform	a	variety	of	user	interface	tricks	to	add	some	flair	to	your	page.

You	learned	how	to	change	a	tag’s	style	by	using	the	style	and	className
properties.

You	also	learned	the	basics	of	animation	and	made	text	bounce	back	and	forth
between	two	points.

EXERCISES
1.	 Here’s	some	HTML	code	that	creates	a	table.	Re-create	this	table	using	only

JavaScript	and	the	core	DOM	objects	to	generate	the	HTML.	Test	your	code	in	all
browsers	available	to	you	to	make	sure	it	works	in	them.	Hint:	Comment	each	line	as
you	write	it	to	keep	track	of	where	you	are	in	the	tree	structure,	and	create	a	new
variable	for	every	element	on	the	page	(for	example,	not	just	one	for	each	of	the	TD
cells	but	nine	variables).

<table>

				<tr>

								<td>Car</td>

								<td>Top	Speed</td>

								<td>Price</td>

				</tr>

				<tr>

								<td>Chevrolet</td>

								<td>120mph</td>

								<td>$10,000</td>

			</tr>

			<tr>

							<td>Pontiac</td>

							<td>140mph</td>

							<td>$20,000</td>

			</tr>

</table>

2.	 Modify	ch9_example6.html	from	the	“Animating	Content”	Try	It	Out	so	that	the
amount	of	pixels	moved	in	either	direction	is	controlled	by	a	global	variable.	Call	it
direction.	Remove	the	switchDirection	variable,	and	change	the	code	to	use	the
new	direction	variable	to	determine	when	the	animation	should	change	directions.

10
Events
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Connecting	your	code	to	events	to	respond	to	user	actions

Writing	standards-compliant,	event-driven	code

Writing	event	code	for	older	versions	of	Internet	Explorer

Handling	the	difference	between	standards-compliant	and	old-IE	event	models

Dragging	and	dropping	content	with	HTML5’s	native	drag-and-drop	capabilities

Animating	elements	by	manipulating	their	positioning

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

There’s	no	doubt	that	JavaScript	is	a	useful	tool	in	web	programming.	You’ve	seen	how	to
dynamically	create,	remove,	and	manipulate	HTML	in	the	page,	and	in	the	coming
chapters,	you	learn	how	to	process	user	input	and	send	data	to	the	server.

Although	these	capabilities	are	very	important	in	today’s	web	programming,	perhaps	the
most	important	concept	you’ll	learn	and	use	is	that	of	events.	In	the	real	world,	an	event	is,
put	simply,	something	that	happens.	For	example,	a	ringing	telephone	is	an	event.	If	you
are	expecting	a	friend	or	colleague	to	call,	you	usually	want	to	do	something:	Answer	the
call.

In	programming,	events	are	very	similar	to	a	telephone	call.	Something	in	the	page	will
happen,	and	if	it’s	something	you	are	expecting,	you	can	respond	to	it.	For	example,	the
user	clicking	the	page,	pressing	a	key	on	the	keyboard,	or	moving	the	mouse	pointer	over
some	text	all	cause	events	to	occur.	Another	example,	which	is	used	quite	frequently,	is
the	load	event	for	the	page:	The	window	raises	(or	fires)	a	notification	when	the	page	is
completely	loaded	in	the	browser.

Why	should	you	be	interested	in	events?

Take	as	an	example	the	situation	in	which	you	want	to	make	a	menu	pop	up	when	the	user
clicks	anywhere	in	your	web	page.	Assuming	that	you	can	write	a	function	that	will	make
the	pop-up	menu	appear,	how	do	you	know	when	to	make	it	appear,	or	in	other	words,
when	to	call	the	function?	You	somehow	need	to	intercept	the	event	of	the	user	clicking	in
the	document,	and	make	sure	your	function	is	called	when	that	event	occurs.

To	do	this,	you	need	to	use	something	called	an	event	handler,	or	listener.	You	associate
this	with	the	code	that	you	want	to	execute	when	the	event	occurs.	This	provides	you	with

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

a	way	of	intercepting	events	and	making	your	code	execute	when	they	have	occurred.	You
will	find	that	adding	an	event	handler	to	your	code	is	often	known	as	“connecting	your
code	to	the	event.”	It’s	a	bit	like	setting	an	alarm	clock—you	set	the	clock	to	make	a
ringing	noise	when	a	certain	event	happens.	With	alarm	clocks,	the	event	is	when	a	certain
time	is	reached.

TYPES	OF	EVENTS
Web	development,	especially	when	it	comes	to	JavaScript,	is	primarily	event-driven,
meaning	that	the	flow	of	the	program	is	controlled	by	events.	In	other	words,	a	large
portion	of	your	JavaScript	code	usually	only	executes	when	an	event	occurs,	and	you	can
listen	for	many	events.

Take	a	moment	and	think	about	how	you	interact	with	a	web	page.	On	a	computer	or
laptop,	you	move	your	mouse	around	the	page,	perhaps	you	select	text	that	you	want	to
copy	and	paste	into	your	note-taking	program,	and	you	definitely	click	things	(like	links).
On	touch-based	devices,	you	tap	items	in	the	page.	And	on	all	web-enabled	devices,	you
fill	out	forms	by	typing	keys	on	the	keyboard.	Virtually	everything	you	do	triggers	an
event,	and	a	lot	of	the	time,	you	want	to	write	code	that	reacts	to	some	of	those	events.

Following	is	a	list	of	the	many	types	of	events	that	you	can	listen	for	and	react	to:

Mouse	events:	These	occur	when	the	user	does	something	with	the	mouse,	such	as
moving	the	cursor,	clicking,	double-clicking,	dragging,	and	so	on.

Keyboard	events:	These	occur	when	keys	on	the	keyboard	are	pressed	or	depressed.
Though	commonly	used	in	conjunction	with	forms,	keyboard	events	occur	every	time
the	user	presses	or	depresses	a	key.

Progression	events:	These	are	more	generic	events	that	occur	at	different	stages	of
an	object.	For	example,	when	the	document	loads.

Form	events:	These	occur	when	something	in	the	form	changes.

Mutation	events:	These	occur	when	DOM	nodes	are	modified.

Touch	events:	These	occur	when	the	user	touches	the	sensor.

Error	events:	These	occur	when	an	error	occurs.

The	most	common	user-based	events	are	mouse	events,	and	rightly	so.	The	primary	way
users	interact	with	their	computers	is	with	the	mouse,	but	that’s	starting	to	change	as	more
and	more	people	own	touch-enabled	devices.

The	main	focus	of	this	chapter	is	to	teach	you	how	to	listen	for	events,	and	it	does	so
primarily	with	mouse	events.	In	the	next	chapter,	you	use	some	keyboard	events	to	interact
with	forms.

CONNECTING	CODE	TO	EVENTS
Browsers	have	been	around	for	quite	some	time,	and	as	you	can	guess,	the	way	in	which
we	listen	for	events	has	evolved	over	the	years.	But	even	with	the	many	changes	the
JavaScript	community	has	seen	over	the	years,	the	old	ways	of	listening	for	events	are	still
supported	and	useful	in	certain	situations.

Chapter	5	introduced	objects	defined	by	their	methods	and	properties.	However,	objects
also	have	events	associated	with	them.	This	was	not	mentioned	before,	because	native
JavaScript	objects	do	not	have	these	events,	but	the	objects	of	the	browser	object	model
(BOM)	and	document	object	model	(DOM)	do.

You	can	connect	your	code	to	an	event	in	three	ways:

Assigning	HTML	attributes

Assigning	an	object’s	special	properties

Calling	an	object’s	special	methods

Handling	Events	via	HTML	Attributes
In	this	section	you	create	a	simple	HTML	page	with	a	single	hyperlink,	given	by	the
element	<a/>.	Associated	with	this	element	is	the	a	object,	and	one	of	the	events	the	a
object	has	is	the	click	event.	The	click	event	fires,	not	surprisingly,	when	the	user	clicks
the	hyperlink.	Feel	free	to	follow	along;	open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Connecting	Events	Using	HTML	Attributes</title>

</head>

<body>

				Click	Me

</body>

</html>

As	it	stands,	this	page	does	nothing	a	normal	hyperlink	doesn’t	do.	You	click	it,	and	it
navigates	the	window	to	another	page,	called	somepage.html,	which	would	need	to	be
created.	There’s	been	no	event	handler	added	to	the	link—yet!

As	mentioned	earlier,	one	way	of	connecting	the	event	to	your	code	is	to	add	it	directly	to
the	opening	tag	of	the	element	object	whose	event	you	are	capturing.	In	this	case,	it’s	the
click	event	of	the	a	object,	as	defined	by	the	<a/>	element.	On	clicking	the	link,	you	want
to	capture	the	event	and	connect	it	to	your	code.	You	need	to	add	the	event	handler,	in	this
case	onclick,	as	an	attribute	to	the	opening	<a>	tag.	You	set	the	value	of	the	attribute	to
the	code	you	want	to	execute	when	the	event	occurs.

Rewrite	the	opening	<a>	tag	to	do	this	as	follows:

				Click	Me

This	code	adds	onclick="alert('You	Clicked?')"	to	the	definition	of	the	opening	<a>
tag.	Now,	when	the	link	is	clicked,	you	see	an	alert	box.	After	this,	the	hyperlink	does	its
usual	stuff	and	takes	you	to	the	page	defined	in	the	href	attribute.

This	is	fine	if	you	have	only	one	line	of	code	to	connect	to	the	event	handler,	but	what	if
you	want	a	number	of	lines	to	execute	when	the	link	is	clicked?

Well,	all	you	need	to	do	is	define	the	function	you	want	to	execute	and	call	it	in	the
onclick	code.	Do	that	now:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Connecting	Events	Using	HTML	Attributes</title>

</head>

<body>

				Click	Me

				<script>

								function	linkClick()								{

												alert("You	Clicked?");

												return	true;

								}

				</script>

</body>

</html>

Within	the	script	block,	you	have	created	a	standard	function.	The	onclick	attribute	is
now	connected	to	some	code	that	calls	the	function	linkClick().	Therefore,	when	the
user	clicks	the	hyperlink,	this	function	will	be	executed.

You’ll	also	see	that	the	function	returns	a	value,	true	in	this	case.	Also,	where	you	define
your	onclick	attribute,	you	return	the	return	value	of	the	function	by	using	the	return
statement	before	the	function	name.	Why	do	this?

The	value	returned	by	onclick="return	linkClick()"	is	used	by	JavaScript	to	decide
whether	the	normal	action	of	the	link—that	is,	going	to	a	new	page—should	occur.	If	you
return	true,	the	action	continues,	and	you	go	to	somepage.html.	If	you	return	false,	the
normal	chain	of	events	(that	is,	going	to	somepage.html)	does	not	happen.	You	say	that
the	action	associated	with	the	event	is	canceled.	Try	changing	the	function	to	this:

function	linkClick()	{

				alert("This	link	is	going	nowhere");

				return	false;

}

Now	you’ll	find	that	you	just	get	a	message,	and	no	attempt	is	made	to	go	to
somepage.html.

NOTE	Not	all	objects	and	their	events	make	use	of	the	return	value,	so	sometimes	it’s
redundant.

Some	events	are	not	directly	linked	with	the	user’s	actions	as	such.	For	example,	the
window	object	has	the	load	event,	which	fires	when	a	page	is	loaded,	and	the	unload
event,	which	fires	when	the	page	is	unloaded	(that	is,	when	the	user	either	closes	the
browser	or	moves	to	another	page).

Event	handlers	for	the	window	object	actually	go	inside	the	opening	<body>	tag.	For
example,	to	add	an	event	handler	for	the	load	and	unload	events,	you’d	write	the
following:

<body	onload="myOnLoadfunction()"onunload="myOnUnloadFunction()">

				TRY	IT	OUT								Displaying	Random	Images	with
HTML	Attribute	Event	Handlers
In	this	Try	It	Out,	you	connect	to	an	image’s	click	event	to	randomly	change	the
image	loaded	in	a	page.	Open	your	editor	and	type	in	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	1</title>

</head>

<body>

				

				

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(that)	{

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(that.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												that.src	=	myImages[newImgNumber];

								}

				</script>

</body>

</html>

Save	the	page	as	ch10_example1.html.	You	will	need	four	image	files	for	the
example,	which	you	can	create	or	retrieve	from	the	code	download	available	with	this
book.

Load	the	page	into	your	browser.	You	should	see	a	page	like	that	shown	in	Figure
10.1.

Figure	10.1

If	you	click	an	image,	you’ll	see	it	change	to	a	different	image,	which	is	selected
randomly.

The	first	line	in	the	script	block	at	the	top	of	the	page	defines	a	variable	with	page-
level	scope.	This	is	an	array	that	contains	your	list	of	image	sources:

var	myImages	=	[

				"usa.gif",

				"canada.gif",

				"jamaica.gif",

				"mexico.gif"

];

Next	you	have	the	changeImg()	function,	which	will	be	connected	to	the	onclick
event	handler	of	the		elements	defined	in	the	page.	You	are	using	the	same
function	for	the	onclick	event	handlers	of	both	images,	and	indeed,	can	connect	one
function	to	as	many	event	handlers	as	you	like.	This	function	accepts	one	parameter
called	that.	It	is	called	that	because	you	pass	the	this	keyword	to	the	function,
which	gives	you	immediate	access	to	the	img	object	you	click.	You	can	actually	name
the	parameter	whatever	you	want,	but	most	developers	use	the	word	“that”	when	it
references	this.

In	the	first	line	of	the	function,	you	set	the	newImgNumber	variable	to	a	random	integer
between	0	and	3:

function	changeImg(that)	{

				var	newImgNumber	=	Math.round(Math.random()	*	3);

The	Math.random()	method	provides	a	random	number	between	0	and	1,	and	you
multiply	that	by	three	to	get	a	number	between	0	and	3.	This	number	is	rounded	to	the
nearest	whole	number	(0,	1,	2,	or	3)	by	means	of	Math.round().	This	integer	provides
the	index	for	the	image	src	that	you	will	select	from	the	myImages	array.

The	next	lines	are	a	while	loop,	the	purpose	of	which	is	to	ensure	that	you	don’t
select	the	same	image	as	the	current	one.	If	the	string	contained	in
myImages[newImgNumber]	is	found	inside	the	src	property	of	the	current	image,	you
know	it’s	the	same	and	that	you	need	to	get	another	random	number.	You	keep
looping	until	you	get	a	new	image,	at	which	point	myImages[newImgNumber]	will	not
be	found	in	the	existing	src,	and	-1	will	be	returned	by	the	indexOf()	method,
breaking	out	of	the	loop:

				while	(that.src.indexOf(myImages[newImgNumber])	!=	-1)	{

								newImgNumber	=	Math.round(Math.random()	*	3);

				}

Next,	you	set	the	src	property	of	the	img	object	to	the	new	value	contained	in	your
myImages	array:

				that.src	=	myImages[newImgNumber];

}

You	connect	the	onclick	event	of	the	first		element	to	the	changeImg()
function:

And	now	to	the	second		element:

Passing	this	in	the	changeImg()	function	gives	the	function	direct	access	to	this
	element’s	corresponding	object.	When	you	pass	this	to	an	HTML	element’s
attribute	event	handler,	the	corresponding	object	of	that	element	is	passed	to	the
function.	It’s	a	nice,	clean	way	of	accessing	the	element’s	object	in	your	JavaScript
code.

This	example	had	you	pass	this	as	an	argument	to	the	function	handling	the	element’s
click	event.	This	is	a	simple	and	easy	way	of	accessing	the	element	that	received	the
event,	but	there’s	a	far	more	useful	object	you	can	pass:	an	Event	object	that	contains	all
the	information	about	the	event.

Passing	the	Event	object	is	very	simple	to	do;	simply	pass	event	instead	of	this.	For
example,	in	the	following	code	the	<p/>	element	will	raise	a	dblclick	event:

<p	ondblclick="handle(event)">Paragraph</p>

<script>

function	handle(e)	{

				alert(e.type);

}

</script>

Notice	that	event	is	passed	to	the	handle()	function	in	the	ondblclick	attribute.	This
event	variable	is	special	in	that	it	is	not	defined	anywhere;	instead,	it	is	an	argument	used
only	with	event	handlers	that	are	connected	through	HTML	attributes.	It	passes	a	reference
to	the	current	event	object	when	the	event	fires.

If	you	ran	the	previous	example,	it	would	just	tell	you	what	kind	of	event	raised	your
event-handling	function.	This	might	seem	self-evident	in	the	preceding	example,	but	if
you	had	included	the	following	extra	lines	of	code,	any	one	of	three	elements	could	have
raised	the	function:

<p	ondblclick="handle(event)">Paragraph</p>

<h1	onclick="handle(event)">Heading	1</h1>

Special	Text

<script>

function	handle(e)	{

				alert(e.type);

}

</script>

This	makes	the	code	much	more	useful.	In	general,	you	will	use	relatively	few	event
handlers	to	deal	with	any	number	of	events,	and	you	can	use	the	event	properties	as	a	filter
to	determine	what	type	of	event	happened	and	what	HTML	element	triggered	it,	so	that
you	can	treat	each	event	differently.

In	the	following	example,	you	see	that	you	can	take	different	courses	of	action	depending
on	what	type	of	event	is	returned:

<p	ondblclick="handle(event)">Paragraph</p>

<h1	onclick="handle(event)">Heading	1</h1>

Special	Text

<script>

function	handle(e)	{

				if	(e.type	==	"mouseover")	{

								alert("You	moved	over	the	Special	Text");

				}

}

</script>

This	code	uses	the	type	property	to	determine	what	type	of	event	occurred.	If	users	move
their	mouse	cursor	over	the		element,	an	alert	box	tells	them	so.

You	learn	a	lot	more	about	the	Event	object	later	in	the	chapter,	but	for	now,	just	know
that	it	exposes	a	property	called	target.	This	is	the	target	of	the	event,	the	element	object
that	received	the	event.	With	this	information,	you	can	rewrite	ch10_example1.html	to
use	the	more	versatile	Event	object.

				TRY	IT	OUT								Displaying	Random	Images	with
Object	Property	Event	Handlers	and	the	Event
Object
In	this	Try	It	Out,	you	rewrite	ch10_example1.html	to	use	the	Event	object	instead	of
this.	Type	in	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	2</title>

</head>

<body>

				

				

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(e)	{

												var	el	=	e.target;

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												el.src	=	myImages[newImgNumber];

								}

				</script>

</body>

</html>

Save	the	page	as	ch10_example2.html.	Load	the	page	into	your	browser,	and	you	will
see	a	page	similar	to	ch10_example1.html.	Click	an	image,	and	you’ll	see	it	change
to	a	random	picture.

The	code	for	this	page	is	almost	identical	to	ch10_example1.html.	This	new	version
just	has	a	few	changes.

The	first	two	changes	are	in	the	onclick	event	handlers	of	the		elements.
Instead	of	passing	this	to	changeImg(),	you	pass	event.

The	next	change	is	in	the	changeImg()	declaration:

function	changeImg(e)	{

The	parameter	name	is	now	e,	meaning	event.	Keep	in	mind	that	it	doesn’t	matter
what	you	call	this	parameter,	but	the	general	convention	is	to	use	e.

When	the	browser	calls	this	function,	it	will	pass	an	Event	object	as	the	e	parameter,
and	you	can	retrieve	the	img	element	object	that	received	the	event	by	using
e.target:

				var	el	=	e.target;

You	assign	this	object	to	a	variable	called	el	(short	for	element),	and	you	use	it	in	the
while	loop:

				while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

								newImgNumber	=	Math.round(Math.random()	*	3);

				}

You	also	use	it	to	assign	its	src	property	in	the	last	line	of	the	function:

				el.src	=	myImages[newImgNumber];

The	changes	made	to	changeImg()	are	minimal,	and	though	it	does	require	just	a	little
bit	more	code,	it	is	much	more	versatile,	as	you	learn	later	in	the	chapter.

Using	the	HTML	attribute	event	handlers	is	an	easy	way	to	connect	your	JavaScript	code
to	an	element’s	events,	but	they	have	some	downsides:

Your	HTML	and	JavaScript	are	mixed	together.	This	makes	it	more	difficult	to
maintain	and	find	and	fix	bugs.

You	can’t	remove	an	event	handler	without	changing	the	HTML.

You	can	only	set	up	event	handlers	for	elements	that	appear	in	your	HTML	code,	as
opposed	to	elements	you	create	dynamically	(like,	for	example,	when	you	create	an
element	using	document.createElement()).

These	issues,	however,	are	solved	with	an	object’s	event	handler	properties.

Handling	Events	via	Object	Properties
With	this	method,	you	first	need	to	define	the	function	that	will	be	executed	when	the
event	occurs.	Then	you	need	to	set	that	object’s	event	handler	property	to	the	function	you
defined.

This	is	illustrated	in	the	following	example.	Open	your	editor	and	type	in	the	following
code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10,	Example	3</title>

</head>

<body>

				

								Click	Me

				

				<script>

								function	linkClick()	{

												alert("This	link	is	going	nowhere");

												return	false;

								}

								document.getElementById("someLink").onclick	=	linkClick;

				</script>

</body>

</html>

Save	this	as	ch10_example3.html.

First,	you	have	the	<a/>	element,	whose	object’s	event	you	are	connecting	to.	You’ll
notice	there	is	no	mention	of	the	event	handler	or	the	function	within	the	attributes	of	the
tag,	but	do	notice	that	it	now	has	an	id	attribute.	This	is	so	that	you	can	easily	find	the
element	in	the	document	with	the	getElementById()	method.

Next,	you	define	the	function	linkClick(),	much	as	you	did	previously.	As	before,	you
can	return	a	value	indicating	whether	you	want	the	normal	action	of	that	object	to	happen.

The	connection	is	made	between	the	object’s	event	and	the	function	on	the	final	lines	of
script,	as	shown	in	the	following	code:

document.getElementById("someLink").onclick	=	linkClick;

As	you	learned	in	the	previous	chapter,	the	getElementById()	method	finds	the	element
with	the	given	id	and	returns	the	a	object.	You	set	this	object’s	onclick	property	to
reference	your	function—this	makes	the	connection	between	the	object’s	event	handler
and	your	function.	Note	that	no	parentheses	are	added	after	the	function	name.	You	are
assigning	the	linkClick	function	object	to	the	element’s	onclick	property,	not	executing
linkClick()	and	assigning	its	return	value	to	onclick.

Take	a	moment	and	look	back	at	ch10_example2.html.	When	you	listened	for	the	click
event	using	the	onclick	attribute,	you	had	complete	control	over	how	changeImg()	was
called;	you	simply	called	the	function	and	passed	it	the	event	object.

But	that’s	now	an	issue.	Look	again	at	the	onclick	property	assignment:

document.getElementById("someLink").onclick	=	linkClick;

You	no	longer	control	how	the	event	handler	function	is	executed;	the	browser	executes
the	function	for	you.	How	then	do	you	attain	a	reference	to	the	Event?	When	an	event
triggers	and	an	event	handler	executes,	the	browser	automatically	passes	an	Event	object
to	the	handler	function.

				TRY	IT	OUT								Displaying	Random	Images	with
Object	Property	Event	Handlers
In	this	Try	It	Out,	you	rewrite	ch10_example2.html	to	use	the	onclick	property	of

the	img	objects.	Type	in	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	4</title>

</head>

<body>

				

				

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(e)	{

												var	el	=	e.target;

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												el.src	=	myImages[newImgNumber];

								}

								document.getElementById("img0").onclick	=	changeImg;

								document.getElementById("img1").onclick	=	changeImg;

				</script>

</body>

</html>

Save	the	page	as	ch10_example4.html.	Load	the	page	into	your	browser,	and	you	will
see	a	page	similar	to	ch10_example2.html.	Click	an	image,	and	you’ll	see	it	change
to	a	random	picture.

The	code	for	this	page	is	almost	identical	to	ch10_example2.html.	The	first	changes
are	in	the		tags.	They	no	longer	have	onclick	attributes,	and	they	now	have	id
attributes.	The	first	image	has	an	id	of	img0,	and	the	second	is	img1.	These	elements
have	an	id	so	that	you	can	reference	them	in	your	JavaScript	code.

The	only	other	changes	are	the	final	two	lines	of	JavaScript	code:

document.getElementById("img0").onclick	=	changeImg;

document.getElementById("img1").onclick	=	changeImg;

You	use	document.getElementById()	to	retrieve	the	two	img	objects	from	the	DOM
and	assign	their	onclick	properties,	thus	setting	up	the	changeImg()	functions	to
handle	the	click	events	on	both	img	objects.

Removing	an	event	handler	is	rather	trivial.	Simply	assign	null	to	the	event	handler
property,	like	this:

img1.onclick	=	null;

By	assigning	null,	you	have	overwritten	the	previous	value	contained	by	the	property,	and
that	introduces	the	main	problem	with	these	types	of	event	handlers:	you	can	assign	only
one	function	to	handle	a	given	event.	For	example:

img2.onclick	=	functionOne;

img2.onclick	=	functionTwo;

The	first	line	of	this	code	assigns	a	function	called	functionOne()	to	an	element’s
onclick	property.	The	second	line,	however,	overwrites	the	value	of	img2.onclick	by
assigning	it	a	new	value.	So,	when	the	user	clicks	img2,	only	functionTwo()	executes.
That	behavior	is	fine	if	it’s	what	you	actually	want,	but	more	often	than	not,	you	want	both
functionOne()	and	functionTwo()	to	execute	when	img2	is	clicked.

You	can	do	that	thanks	to	the	standard	DOM	event	model.

THE	STANDARD	EVENT	MODEL
Up	until	this	point,	you’ve	been	working	with	nonstandard	techniques	for	listening	for
events.	Yes,	they	work	in	every	browser,	but	that	support	exists	primarily	for	backward
compatibility.	They	are	not	guaranteed	to	work	in	future	browser	versions.

First,	some	history.	The	two	major	browsers	in	the	late	1990s	were	Internet	Explorer	4	and
Netscape	4—the	first	browser	war.	Not	surprisingly,	both	browser	vendors	implemented
vastly	different	DOMs	and	event	models,	fragmenting	the	web	into	two	groups:	websites
that	catered	to	Netscape	only,	and	websites	that	catered	to	IE	only.	Very	few	developers
chose	the	frustrating	task	of	cross-browser	development.

Obviously,	a	need	for	a	standard	grew	from	this	fragmentation	and	frustration.	So	the
W3C	introduced	the	DOM	standard,	which	grew	into	DOM	level	2,	which	included	a
standard	event	model.

The	DOM	standard	defines	an	object	called	EventTarget.	Its	purpose	is	to	define	a
standard	way	of	adding	and	removing	listeners	for	an	event	on	the	target.	Every	element
node	in	the	DOM	is	an	EventTarget,	and	as	such,	you	can	dynamically	add	and	remove
event	listeners	for	a	given	element.

The	standard	also	describes	an	Event	object	that	provides	information	about	the	element
that	has	generated	an	event	and	enables	you	to	retrieve	it	in	script.	It	provides	a	set	of
guidelines	for	a	standard	way	of	determining	what	generated	an	event,	what	type	of	event
it	was,	and	when	and	where	the	event	occurred.	If	you	want	to	make	it	available	in	script,
it	must	be	passed	as	a	parameter	to	the	function	connected	to	the	event	handler.

NOTE	Older	versions	of	Internet	Explorer	(8	and	below)	do	not	implement	the	DOM
event	model.	The	code	in	this	section	only	works	with	modern	browsers:	IE9+,
Chrome,	Firefox,	Opera,	and	Safari.

Connecting	Code	to	Events—The	Standard	Way
The	EventTarget	object	defines	two	methods	for	adding	and	removing	event	listeners
(remember	that	an	EventTarget	is	an	element).	The	first	method,	addEventListener(),
registers	an	event	listener	on	the	target	on	which	it’s	called.	You	call	it	on	a	target/element
object,	as	you	see	in	the	following	example.	Type	in	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10,	Example	5</title>

</head>

<body>

				

								Click	Me

				

				<script>

								var	link	=	document.getElementById("someLink");

								link.addEventListener("click",	function	(e)	{

												alert("This	link	is	going	nowhere");

												e.preventDefault();

								});

				</script>

</body>

</html>

Save	this	as	ch10_example5.html.	This	is	a	re-creation	of	ch10_example3.html,	but	it
uses	the	standard	event	model	application	programming	interface	(API),	which	is	a	set	of
objects,	properties,	and	methods,	to	register	an	event	listener	and	prevent	the	default
action	of	a	link	from	occurring.

The	first	line	of	JavaScript	retrieves	the	element	that	has	an	id	of	someLink,	and	stores	it
in	the	link	variable.	You	then	call	the	addEventListener()	method	and	pass	it	two
arguments.	The	first	is	the	name	of	the	event	without	the	"on"	prefix.	In	this	example,	an
event	listener	is	registered	for	the	click	event.

The	second	argument	is	the	function	that	executes	when	the	event	occurs.	The	previous
code	uses	an	anonymous	function,	a	common	pattern	that	you’ll	see	very	often,	but	it’s
more	useful	to	pass	a	declared	function,	like	this:

function	linkClick()	{

				alert("This	link	is	going	nowhere");

				e.preventDefault();

}

link.addEventListener("click",	linkClick);

Using	a	declared	function	lets	you	reuse	it	for	multiple	event	listeners,	as	you	see	in	the
next	exercise.	But	first,	notice	that	linkClick()	no	longer	returns	false;	instead,	it	calls
the	preventDefault()	method	on	the	Event	object.	This	is	the	standard	way	that	you
prevent	the	default	action	from	occurring.

				TRY	IT	OUT								Displaying	Random	Images	with
Standard	Event	Handlers
In	this	Try	It	Out,	you	rewrite	ch10_example4.html	to	use	the	standard	DOM	event
model.	Type	in	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	6</title>

</head>

<body>

				

				

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(e)	{

												var	el	=	e.target;

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												el.src	=	myImages[newImgNumber];

								}

								document.getElementById("img0").addEventListener("click",	

changeImg);

								document.getElementById("img1").addEventListener("click",	

changeImg);

				</script>

</body>

</html>

Save	the	page	as	ch10_example6.html.	Load	the	page	into	your	browser,	and	you	will
see	the	familiar	page	from	the	previous	examples.	Click	an	image,	and	you’ll	see	it
change	to	a	random	picture.

The	only	changes	from	ch10_example4.html	are	the	final	two	lines	of	JavaScript:

document.getElementById("img0").addEventListener("click",	changeImg);

document.getElementById("img1").addEventListener("click",	changeImg);

Instead	of	using	each	element	object’s	onclick	property,	you	register	the	click	event
handler	using	addEventListener().

Using	a	declared	function	is	also	useful	because	it	enables	you	to	unregister	an	event
listener	with	the	removeEventListener()	method:

elementObj.removeEventListener("click",	elementObjClick);

When	you	remove	an	event	listener,	you	must	provide	the	same	exact	information	that	you
called	addEventListener()	with;	this	includes	not	only	the	same	name	of	the	event,	but
the	same	function	object	that	you	passed	to	addEventListener().

The	beauty	of	the	standard	DOM	event	model	is	that	you	can	register	multiple	event
listeners	for	a	single	event	on	a	single	element.	This	is	extremely	useful	when	you	need	to
listen	for	the	same	event	on	an	element	with	different	and	unrelated	functions.	To	do	this,

simply	call	addEventListener()	as	many	times	as	you	need	to,	like	this:

elementObj.addEventListener("click",	handlerOne);

elementObj.addEventListener("click",	handlerTwo);

elementObj.addEventListener("click",	handlerThree);

This	code	registers	three	listeners	for	the	click	event	on	the	element	referenced	by
elementObj.	As	you	may	suspect,	these	listeners	execute	in	the	order	in	which	they	were
registered.	So,	when	you	click	elementObj,	handlerOne()	executes	first,	handlerTwo()
executes	second,	and	handlerThree()	executes	third.

				TRY	IT	OUT								Adding	and	Removing	Multiple
Event	Listeners
In	this	Try	It	Out,	you	practice	registering	multiple	event	listeners	for	a	single
element,	and	you	remove	those	listeners	when	a	condition	is	met.	Type	in	the
following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	7</title>

</head>

<body>

				

				<div	id="status"></div>

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(e)	{

												var	el	=	e.target;

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												el.src	=	myImages[newImgNumber];

								}

								function	updateStatus(e)	{

												var	el	=	e.target;

												var	status	=	document.getElementById("status");

												status.innerHTML	=	"The	image	changed	to	"	+	el.src;

												if	(el.src.indexOf("mexico")	>	-1)	{

																el.removeEventListener("click",	changeImg);

																el.removeEventListener("click",	updateStatus);

												}

								}

								var	imgObj	=	document.getElementById("img0");

								imgObj.addEventListener("click",	changeImg);

								imgObj.addEventListener("click",	updateStatus);

				</script>

</body>

</html>

Save	the	page	as	ch10_example7.html.	Load	the	page	into	your	browser,	and	you	will
see	a	page	with	a	single	image.	Click	the	image,	and	it	will	change	to	a	random
picture.	You’ll	also	see	the	text	of	the	<div/>	element	change	to	contain	the	URL	of
the	new	picture,	as	shown	in	Figure	10.2.

Figure	10.2

This	code	is	reminiscent	of	the	past	few	examples;	so,	let’s	just	focus	on	what’s
different.	First,	the	HTML:

				

				<div	id="status"></div>

Instead	of	two	image	elements,	this	HTML	defines	a	single		element	with	an
id	of	img0	and	a	<div/>	element	whose	id	is	status.	The	contents	of	the	<div/>
element	will	change	when	the	user	clicks	the	image.

There’s	a	new	function	called	updateStatus(),	and	its	purpose	is	to	update	the	text
inside	<div	id="status"/>.	The	first	two	lines	of	this	function	acquire	references	to

the	event	target	(the	image)	and	<div/>	element:

function	updateStatus(e)	{

				var	el	=	e.target;

				var	status	=	document.getElementById("status");

The	next	line	of	code	changes	the	text	of	the	status	element:

				status.innerHTML	=	"The	image	changed	to	"	+	el.src;

Element	objects	have	an	innerHTML	property	that	lets	you	set	the	contents	of	the
element	to	whatever	value	you	assign	to	it.	In	this	code,	you	change	the	<div/>
element’s	contents	to	contain	the	URL	of	the	picture	currently	displayed	in	the
browser.

To	add	some	variety,	the	next	few	lines	of	code	remove	the	image’s	click	event
listeners	if	the	Mexico	flag	is	displayed	in	the	browser:

				if	(el.src.indexOf("mexico")	>	-1)	{

								el.removeEventListener("click",	changeImg);

								el.removeEventListener("click",	updateStatus);

				}

}

The	if	statement	uses	the	indexOf()	method	on	the	image’s	src	to	determine	if	the
Mexico	flag	is	currently	displayed.	If	so,	you	remove	the	image’s	two	event	listeners
using	the	removeEventListener()	method.	We	have	yet	to	discuss	the	code	for
registering	these	click	event	listeners,	but	you	pass	the	same	information	to
removeEventListener()	that	you	pass	to	addEventListener().	If	you	don’t,	you
won’t	remove	the	event	listeners.

The	final	lines	of	code	set	up	the	event	listeners:

var	imgObj	=	document.getElementById("img0");

imgObj.addEventListener("click",	changeImg);

imgObj.addEventListener("click",	updateStatus);

The	first	line	retrieves	the		element,	and	you	register	the	click
event	handlers	by	calling	addEventListener()	and	passing	click	for	the	event	and
the	two	functions,	changeImg()	and	updateStatus(),	respectively.

It’s	important	to	remember	that	when	you	register	multiple	event	handlers	on	a	single
element,	the	listening	functions	execute	in	the	order	in	which	you	registered	them.	In
this	example,	you	registered	a	listener	with	changeImg()	before	a	listener	with
updateStatus().	This	is	ideal	because	you	want	the	status	to	display	the	URL	of	the
image	after	you	change	it.	If	you	had	registered	updateStatus()	before	changeImg(),
the	status	would	update	before	the	image,	thus	displaying	incorrect	information.

Using	Event	Data
The	standard	outlines	several	properties	of	the	Event	object	that	offer	information	about

that	event:	what	element	it	happened	at,	what	type	of	event	took	place,	and	what	time	it
occurred.	These	are	all	pieces	of	data	offered	by	the	Event	object.	The	following	table	lists
the	properties	outlined	in	the	specification.

PROPERTIES	OF
THE	EVENT
OBJECT

DESCRIPTION

bubbles Indicates	whether	an	event	can	bubble—passing	control	from	one
element	to	another	starting	from	the	event	target	and	bubbling	up
the	hierarchy

cancelable Indicates	whether	an	event	can	have	its	default	action	canceled
currentTarget Identifies	the	current	target	for	the	event	as	the	event	traverses	the

DOM
defaultPrevented Indicates	whether	or	not	preventDefault()	has	been	called	on	the

event
eventPhase Indicates	which	phase	of	the	event	flow	an	event	is	in
target Indicates	which	element	caused	the	event;	in	the	DOM	event

model,	text	nodes	are	a	possible	target	of	an	event
timestamp Indicates	at	what	time	the	event	occurred
type Indicates	the	name	of	the	event

Secondly,	the	DOM	event	model	introduces	a	MouseEvent	object,	which	deals	with	events
generated	specifically	by	the	mouse.	This	is	useful	because	you	might	need	more	specific
information	about	the	event,	such	as	the	position	in	pixels	of	the	cursor,	or	the	element	the
mouse	has	come	from.	The	following	table	lists	some	of	the	MouseEvent	object’s
properties:

PROPERTIES
OF	THE
MOUSEEVENT
OBJECT

DESCRIPTION

altKey Indicates	whether	the	Alt	key	was	pressed	when	the	event	was
generated

button Indicates	which	button	on	the	mouse	was	pressed
clientX Indicates	where	in	the	browser	window,	in	horizontal	coordinates,	the

mouse	pointer	was	when	the	event	was	generated
clientY Indicates	where	in	the	browser	window,	in	vertical	coordinates,	the

mouse	pointer	was	when	the	event	was	generated
ctrlKey Indicates	whether	the	Ctrl	key	was	pressed	when	the	event	was

generated
metaKey Indicates	whether	the	meta	key	was	pressed	when	the	event	was

generated
relatedTarget Used	to	identify	a	secondary	event	target.	For	mouseover	events,	this

property	references	the	element	at	which	the	mouse	pointer	exited.	For
mouseout	events,	this	property	references	the	element	at	which	the
mouse	pointer	entered

screenX Indicates	the	horizontal	coordinates	relative	to	the	origin	in	the	screen
screenY Indicates	the	vertical	coordinates	relative	to	the	origin	in	the	screen
shiftKey Indicates	whether	the	Shift	key	was	pressed	when	the	event	was

generated

Although	any	event	might	create	an	Event	object,	only	a	select	set	of	events	can	generate	a
MouseEvent	object.	On	the	occurrence	of	a	MouseEvent	event,	you’d	be	able	to	access
properties	from	the	Event	object	and	the	MouseEvent	object.	With	a	non-mouse	event,
none	of	the	MouseEvent	object	properties	in	the	preceding	table	would	be	available.	The
following	mouse	events	can	create	a	MouseEvent	object:

click	occurs	when	a	mouse	button	is	clicked	(pressed	and	released)	with	the	pointer
over	an	element	or	text.

mousedown	occurs	when	a	mouse	button	is	pressed	with	the	pointer	over	an	element
or	text.

mouseup	occurs	when	a	mouse	button	is	released	with	the	pointer	over	an	element	or
text.

mouseover	occurs	when	a	mouse	button	is	moved	onto	an	element	or	text.

mousemove	occurs	when	a	mouse	button	is	moved	and	it	is	already	on	top	of	an
element	or	text.

mouseout	occurs	when	a	mouse	button	is	moved	out	and	away	from	an	element	or
text.

Unlike	MouseEvent,	the	current	DOM	specification	does	not	define	a	KeyboardEvent
object	for	keyboard-related	events	(although	one	will	be	defined	in	the	next	version,	DOM
level	3).	You	can,	however,	still	access	information	about	keyboard-related	events	with	the
properties	listed	in	the	following	table.

PROPERTIES	OF	THE
KEYBOARDEVENT	OBJECT

DESCRIPTION

altKey Indicates	whether	the	Alt	key	was	pressed	when
the	event	was	generated

charCode Used	for	the	keypress	event.	The	Unicode
reference	number	of	the	key

ctrlKey Indicates	whether	the	Ctrl	key	was	pressed	when
the	event	was	generated

keyCode A	system-	and	browser-dependent	numerical	code
identifying	the	pressed	key

metaKey Indicates	whether	the	meta	key	was	pressed	when
the	event	was	generated

shiftKey Indicates	whether	the	Shift	key	was	pressed	when
the	event	was	generated

				TRY	IT	OUT								Using	the	DOM	Event	Model
In	this	Try	It	Out,	you	take	a	quick	look	at	an	example	that	uses	some	properties	of
the	MouseEvent	object.

Open	a	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	8</title>

				<style>

								.underline	{

												color:	red;

												text-decoration:	underline;

								}

				</style>

</head>

<body>

				<p>This	is	paragraph	1.</p>

				<p>This	is	paragraph	2.</p>

				<p>This	is	paragraph	3.</p>

				<script>

								function	handleEvent(e)	{

												var	target	=	e.target;

												var	type	=	e.type;

												if	(target.tagName	==	"P")	{

																if	(type	==	"mouseover")	{

																				target.className	=	"underline";

																}	else	if	(type	==	"mouseout")	{

																				target.className	=	"";

																}

												}

												if	(type	==	"click")	{

																alert("You	clicked	the	mouse	button	at	the	X:"

																				+	e.clientX	+	"	and	Y:"	+	e.clientY	+	"	

coordinates");

												}

								}

								document.addEventListener("mouseover",	handleEvent);

								document.addEventListener("mouseout",	handleEvent);

								document.addEventListener("click",	handleEvent);

				</script>

</body>

</html>

Save	this	as	ch10_example8.html	and	run	it	in	your	browser.	When	you	move	your
mouse	over	one	of	the	paragraphs,	you’ll	notice	its	text	changes	color	to	red	and	it
becomes	underlined.	Click	anywhere	in	the	page,	and	you’ll	see	an	alert	box	like
Figure	10.3.

Figure	10.3

Now	click	OK,	move	the	pointer	in	the	browser	window,	and	click	again.	A	different
result	appears.

This	example	is	consistent	with	the	event-handling	behavior:	The	browser	waits	for
an	event,	and	every	time	that	event	occurs	it	calls	the	corresponding	function.	It	will
continue	to	wait	for	the	event	until	you	exit	the	browser	or	that	particular	web	page.
In	this	example,	you	assign	event	handlers	for	the	mouseover,	mouseout,	and	click

events	on	the	document	object:

document.addEventListener("mouseover",	handleEvent);

document.addEventListener("mouseout",	handleEvent);

document.addEventListener("click",	handleEvent);

One	function,	handleEvent(),	handles	all	three	of	these	events.

Whenever	any	of	these	events	fire,	the	handleClick()	function	is	raised	and	a	new
MouseEvent	object	is	generated.	Remember	that	MouseEvent	objects	give	you	access
to	Event	object	properties	as	well	as	MouseEvent	object	properties,	and	you	use	some
of	them	in	this	example.

The	function	accepts	the	MouseEvent	object	and	assigns	it	the	reference	e:

function	handleEvent(e)	{

				var	target	=	e.target;

				var	type	=	e.type;

				if	(target.tagName	==	"P")	{

Inside	the	function,	the	first	thing	you	do	is	initialize	the	target	and	type	variables
with	the	target	and	type	event	properties,	respectively.	These	are	convenience
variables	to	make	accessing	that	information	easier.	You	then	check	if	the	event	target
(the	element	that	caused	the	event)	has	a	tagName	of	P.	If	the	target	is	a	paragraph
element,	the	next	bit	of	information	you	need	to	find	is	what	kind	of	event	took	place
by	using	the	type	variable:

								if	(type	==	"mouseover")	{

												target.className	=	"underline";

								}	else	if	(type	==	"mouseout")	{

												target.className	=	"";

								}

				}

If	the	event	is	a	mouseover,	the	paragraph’s	CSS	class	is	assigned	the	underline	class
defined	in	the	page’s	style	sheet.	If	the	event	type	is	mouseout,	the	element’s
className	property	is	cleared,	which	returns	the	text	to	its	original	style.	This	style-
changing	code	runs	only	if	the	element	that	caused	the	event	is	a	paragraph	element.

Next,	the	function	determines	if	the	user	clicked	his	mouse	by	again	checking	the
type	variable:

				if	(type	==	"click")	{

								alert("You	clicked	the	mouse	button	at	the	X:"

												+	e.clientX	+	"	and	Y:"	+	e.clientY	+	"	coordinates");

				}

If	the	user	did	indeed	click	somewhere	in	the	page,	you	use	the	alert()	method	to
display	the	contents	of	the	clientX	and	clientY	properties	of	the	MouseEvent	object
on	the	screen.

The	MouseEvent	object	supplied	to	this	function	is	overwritten	and	re-created	every
time	you	generate	an	event,	so	the	next	time	you	click	the	mouse	or	move	the	pointer,

it	creates	a	new	MouseEvent	object	containing	the	coordinates	for	the	x	and	y
positions	and	the	information	on	the	element	that	caused	the	event	to	fire.

Let’s	look	at	another	example.

				TRY	IT	OUT								A	Crude	Tab	Strip
In	this	Try	It	Out,	you	will	write	a	functional,	yet	flawed,	tab	strip	using	the
mouseover,	mouseout,	and	click	events.	Open	your	text	editor	and	type	the
following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	9</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

								.tabStrip	div	{

												float:	left;

												font:	14px	arial;

												cursor:	pointer;

								}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script>

								function	handleEvent(e)	{

												var	target	=	e.target;

												switch	(e.type)	{

																case	"mouseover":

																				if	(target.className	==	"tabStrip-tab")	{

																								target.className	=	"tabStrip-tab-hover";

																				}

																				break;

																case	"mouseout":

																				if	(target.className	==	"tabStrip-tab-hover")	{

																								target.className	=	"tabStrip-tab";

																				}

																				break;

																case	"click":

																				if	(target.className	==	"tabStrip-tab-hover")	{

																								target.className	=	"tabStrip-tab-click";

																								var	num	=	target.getAttribute("data-tab-

number");

																								showDescription(num);

																				}

																				break;

												}

								}

								function	showDescription(num)	{

												var	text	=	"Description	for	Tab	"	+	num;

												descContainer.innerHTML	=	text;

								}

								document.addEventListener("mouseover",	handleEvent);

								document.addEventListener("mouseout",	handleEvent);

								document.addEventListener("click",	handleEvent);

				</script>

</body>

</html>

Save	this	file	as	ch10_example9.html.	Open	it	in	your	browser,	and	when	you	move
your	mouse	pointer	over	a	tab,	its	style	changes	to	a	blue	background	with	a	darker
blue	border.	When	you	click	a	tab,	its	style	changes	yet	again	to	make	the	tab’s
background	color	a	light	orange	with	a	darker	orange	border	color.	Also,	when	you
click	a	tab,	text	is	added	to	the	page.	For	example,	clicking	tab	3	results	in	the	text
“Description	for	Tab	3”	being	added	to	the	page.

Take	a	look	at	the	HTML	in	the	body,	and	its	style,	first:

<div	class="tabStrip">

				<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

				<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

				<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

</div>

<div	id="descContainer"></div>

The	first	<div/>	element	has	a	CSS	class	of	tabStrip.	The	three	<div/>	elements
contained	within	it	represent	three	tabs.	Each	tab	<div/>	element	has	a	numeric	value
assigned	to	its	data-tab-number	attribute,	and	a	CSS	class	of	tabStrip-tab.

The	tab	strip	<div/>	element	has	a	sibling	<div/>	element	with	an	id	value	of
descContainer.	It	doesn’t	contain	any	children,	and	it	doesn’t	have	a	CSS	class
associated	with	it.

In	this	example,	the	tab	strip	is	visually	set	apart	from	the	rest	of	the	page	by	giving	it
a	gray	background:

.tabStrip	{

				background-color:	#E4E2D5;

				padding:	3px;

				height:	22px;

}

It’s	given	an	actual	height	of	28	pixels	(height	+	top	padding	+	bottom	padding).	This
height	and	padding	vertically	centers	the	tab	<div/>	elements	within	the	tab	strip.

The	tabs	have	several	CSS	rules	to	define	the	way	they	are	rendered	in	the	browser
because	they	have	three	states:	normal,	hover,	and	click.	Despite	these	three	states,
they	are	still	tabs	and	thus	share	some	visual	characteristics.	The	first	rule	dictates
these	shared	properties:

.tabStrip	div	{

				float:	left;

				font:	14px	arial;

				cursor:	pointer;

}

The	selector	tells	the	browser	to	apply	these	properties	to	all	<div/>	elements	inside
the	tab	strip.	The	elements	are	set	to	float	left	to	give	them	an	inline	appearance
(<div/>	elements	are	block	elements,	and	appear	on	a	new	line	by	default).

The	next	rule,	the	tabStrip-tab	class,	defines	the	normal	state:

.tabStrip-tab	{

				padding:	3px;

}

All	this	rule	adds	is	a	padding	of	three	pixels	on	all	sides	of	the	element.	Next	is	the
hover	state,	as	defined	by	the	tabStrip-tab-hover	class:

.tabStrip-tab-hover	{

				border:	1px	solid	#316AC5;

				background-color:	#C1D2EE;

				padding:	2px;

}

This	rule	reduces	the	padding	to	two	pixels,	adds	a	one-pixel-wide	border,	and
changes	the	background	color	to	a	shade	of	blue.	Borders,	like	padding,	add	to	the

actual	dimensions	of	an	element;	reducing	the	padding	while	adding	a	border	keeps
the	element	in	a	hover	state,	the	same	height	and	width	as	it	was	in	the	normal	state.

The	final	rule	declares	the	tabStrip-tab-click	class:

.tabStrip-tab-click	{

				border:	1px	solid	#facc5a;

				background-color:	#f9e391;

				padding:	2px;

}

This	class	is	similar	to	the	hover	class;	the	only	difference	is	the	dark	orange	border
color	and	light	orange	background	color.

Now	let’s	look	at	the	JavaScript	code	that	performs	the	magic.	The	code	consists	of
the	handleEvent()	function,	which	is	registered	as	the	document	object’s	mouseover,
mouseout,	and	click	event	listeners:

document.addEventListener("mouseover",	handleEvent);

document.addEventListener("mouseout",	handleEvent);

document.addEventListener("click",	handleEvent);

The	function	begins	by	declaring	a	variable	called	target,	which	is	initialized	with
the	event	object’s	target	property:

function	handleEvent(e)	{

				var	target	=	e.target;

Now	you	need	to	determine	what	type	of	event	took	place	and	make	the	appropriate
changes	to	the	DOM.	A	switch	statement	works	well	here,	and	you	use	the	event
object’s	type	property	as	the	switch	expression:

				switch	(e.type)	{

								case	"mouseover":

												if	(target.className	==	"tabStrip-tab")	{

																target.className	=	"tabStrip-tab-hover";

												}

												break;

First,	check	for	the	mouseover	event.	If	the	element	that	caused	the	event	has	a	class
name	of	tabStrip-tab,	a	tab	in	its	normal	state,	change	the	element’s	className
property	to	tabStrip-tab-hover.	In	doing	so,	the	tab	is	now	in	the	hover	state.

If	a	mouseout	event	occurred,	you	also	need	to	make	changes	to	the	DOM:

								case	"mouseout":

												if	(target.className	==	"tabStrip-tab-hover")	{

																target.className	=	"tabStrip-tab";

												}

												break;

This	code	changes	the	tab’s	className	property	to	tabStrip-tab	(the	normal	state)
only	when	the	tab	in	which	the	mouse	pointer	exited	is	in	the	hover	state.

The	last	event	you	need	to	look	for	is	the	click	event,	so	check	for	it	now	with	the

following	code:

								case	"click":

												if	(target.className	==	"tabStrip-tab-hover")	{

																target.className	=	"tabStrip-tab-click";

This	code	changes	the	tab	element’s	className	to	tabStrip-tab-click,	thus	putting
it	into	the	click	state.

Next,	you	need	to	add	the	tab’s	description	to	the	page,	and	you	start	this	process	by
getting	the	tab’s	number	from	the	<div/>	element’s	data-tab-number	attribute.	You
use	the	getAttribute()	method	to	retrieve	this	value:

																var	num	=	target.getAttribute("data-tab-number");

																showDescription(num);

												}

												break;

				}

}

Now	that	you	have	the	tab’s	number,	you	pass	it	to	the	showDescription()	function:

function	showDescription(num)	{

				var	descContainer	=	document.getElementById("descContainer");

The	tabs’	descriptions	are	added	to	the	<div/>	element	with	an	id	of	descContainer,
so	as	this	code	shows,	you	first	retrieve	that	element	using	the	getElementById()
method.

The	descriptions	are	dynamically	created	by	this	function,	so	now	you	need	to	build
the	description	text	and	display	that	text	in	the	descContainer	element.	First,	create	a
string	containing	the	description	for	the	tab.	In	this	example,	the	description	is	simple
and	includes	the	tab’s	number:

				var	text	=	"Description	for	Tab	"	+	num;

Then	add	the	text	to	the	description	element	by	using	its	innerHTML	property:

				descContainer.innerHTML	=	text;

}

One	problem	that	has	plagued	the	web	is	the	lack	of	compatibility	between	the	major
browsers.	Today’s	modern	browsers	do	a	very	good	job	of	implementing	the	standard
DOM,	but	older	browsers,	specifically	IE8	and	below,	only	partially	support	the
DOM	standard.	Despite	the	lack	of	support	for	the	DOM	standard	in	these	old
browsers,	you	can	still	acquire	the	same	useful	information	on	a	given	event	with	old-
IE’s	event	model.

EVENT	HANDLING	IN	OLD	VERSIONS	OF	INTERNET
EXPLORER
Old-IE’s	event	model	incorporates	the	use	of	a	global	event	object	(it	is	a	property	of	the
window	object),	and	one	such	object	exists	for	each	open	browser	window.	The	browser
updates	the	event	object	every	time	the	user	causes	an	event	to	occur,	and	it	provides
information	similar	to	that	of	the	standard	DOM	Event	object.

NOTE	To	be	clear,	the	information	in	this	section	applies	to	IE8	and	below.	We	will
refer	to	these	old	browsers	as	“old-IE.”	IE9	and	later	implement	the	standard	DOM
event	model.	Thankfully,	old-IE’s	usage	continues	to	dwindle	with	each	passing	year.

Accessing	the	event	Object
Because	the	event	object	is	a	property	of	window,	it	is	very	simple	to	access:

<p	ondblclick="handle()">Paragraph</p>

<script>

function	handle()	{

				alert(event.type);

}

</script>

This	code	assigns	the	handle()	function	to	handle	the	<p/>	element’s	dblclick	event.
When	the	function	executes,	it	gets	the	type	of	event	that	caused	the	handle()	function’s
execution.	Because	the	event	object	is	global,	there	is	no	need	to	pass	the	object	to	the
handling	function	like	the	DOM	event	model.	Also	note	that	like	other	properties	of	the
window	object,	it’s	not	required	that	you	precede	the	event	object	with	window.

NOTE	Even	though	you	don’t	have	to	pass	event	to	an	event	handler,	you	still	want
to	do	so	in	order	to	support	both	old-IE	and	modern	browsers.

The	same	holds	true	when	you	assign	event	handlers	through	JavaScript	using	object
properties:

<p	id="p">Paragraph</p>

<h1	id="h1">Heading	1</h1>

Special	Text

<script>

function	handle()	{

				if	(event.type	==	"mouseover")	{

								alert("You	moved	over	the	Special	Text");

				}

}

document.getElementById("p").ondblclick	=	handle;

document.getElementById("h1").onclick	=	handle;

document.getElementById("span").onmouseover	=	handle;

</script>

Old-IE	does	not	support	addEventListener()	and	removeEventListener(),	but	it	does
implement	two	similar	methods:	attachEvent()	and	detachEvent().	Rewrite	Example	5
using	old-IE’s	event	API:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10,	Example	10</title>

</head>

<body>

				

								Click	Me

				

				<script>

								var	link	=	document.getElementById("someLink");

								function	linkClick(e)	{

												alert("This	link	is	going	nowhere");

												e.returnValue	=	false;

								}

								link.attachEvent("onclick",	linkClick);

				</script>

</body>

</html>

Save	this	as	ch10_example10.html.

Let’s	first	look	at	the	call	to	attachEvent().	The	overall	pattern	is	the	same	as
addEventListener()	(and	thus	removeEventListener());	you	pass	the	event	you	want	to
listen	for	and	the	function	to	execute	when	the	event	occurs.	But	as	you’ll	notice	from	this
code,	the	event	names	are	prefixed	with	“on”.

The	second	argument	is	the	function	that	executes	when	the	event	occurs.	Notice,	though,
that	the	linkClick()	function	defines	a	parameter	called	e.	When	you	register	an	event
handler	with	attachEvent(),	old-IE	passes	the	event	object	to	the	handling	function.

Also	notice	that	linkClick()	does	not	return	false	or	call	preventDefault().	Instead,
old-IE’s	event	object	has	a	property	called	returnValue,	and	setting	it	to	false	achieves
the	same	result.

Using	Event	Data
Unsurprisingly,	IE’s	event	object	provides	some	different	properties	from	the	DOM
standard’s	Event	and	MouseEvent	objects,	although	they	typically	provide	you	with	similar
data.

The	following	table	lists	some	of	the	properties	of	IE’s	event	object.

PROPERTIES
OF	THE	EVENT
OBJECT

DESCRIPTION

altKey Indicates	whether	the	Alt	key	was	pressed	when	the	event	was
generated

button Indicates	which	button	on	the	mouse	was	pressed
cancelBubble Gets	or	sets	whether	the	current	event	should	bubble	up	the	hierarchy

of	event	handlers
clientX Indicates	where	in	the	browser	window,	in	horizontal	coordinates,	the

mouse	pointer	was	when	the	event	was	generated
clientY Indicates	where	in	the	browser	window,	in	vertical	coordinates,	the

mouse	pointer	was	when	the	event	was	generated
ctrlKey Indicates	whether	the	Ctrl	key	was	pressed	when	the	event	was

generated
fromElement Gets	the	element	object	the	mouse	pointer	is	exiting
keyCode Gets	the	Unicode	keycode	associated	with	the	key	that	caused	the

event
returnValue Gets	or	sets	the	return	value	from	the	event
screenX Indicates	where	in	the	browser	window,	in	horizontal	coordinates

relative	to	the	origin	in	the	screen	coordinates,	the	mouse	pointer	was
when	the	event	was	generated

screenY Indicates	where	in	the	browser	window,	in	vertical	coordinates
relative	to	the	origin	in	the	screen	coordinates,	the	mouse	pointer	was
when	the	event	was	generated

shiftKey Indicates	whether	the	Shift	key	was	pressed	when	the	event	was
generated

srcElement Gets	the	element	object	that	caused	the	event
toElement Gets	the	element	object	that	the	mouse	pointer	is	entering
type Retrieves	the	event’s	name

Let’s	revisit	some	previous	examples	and	make	them	work	exclusively	in	old-IE.

				TRY	IT	OUT								Adding	and	Removing	Multiple
Event	Handlers	in	Old-IE
In	this	Try	It	Out,	you	rewrite	ch10_example7.html	to	use	old-IE’s	attachEvent()
and	detachEvent()	methods.	Type	in	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	11</title>

</head>

<body>

				

				<div	id="status"></div>

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(e)	{

												var	el	=	e.srcElement;

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												el.src	=	myImages[newImgNumber];

								}

								function	updateStatus(e)	{

												var	el	=	e.srcElement;

												var	status	=	document.getElementById("status");

												status.innerHTML	=	"The	image	changed	to	"	+	el.src;

												if	(el.src.indexOf("mexico")	>	-1)	{

																el.detachEvent("onclick",	changeImg);

																el.detachEvent("onclick",	updateStatus);

												}

								}

								var	imgObj	=	document.getElementById("img0");

								imgObj.attachEvent("onclick",	updateStatus);

								imgObj.attachEvent("onclick",	changeImg);

				</script>

</body>

</html>

Save	the	page	as	ch10_example11.html.	Load	the	page	into	your	browser,	and	you
will	see	it	behave	like	ch10_example7.html.	Clicking	the	image	results	in	it	changing
to	a	random	picture,	and	the	text	of	the	<div/>	element	changes	to	contain	the	URL	of
the	new	picture.

Let’s	jump	right	to	the	code,	which	is	mostly	the	same	as	ch10_example7.html.	The
first	big	difference	is	how	you	register	the	event	handlers	for	the	image	object.	Instead

of	using	addEventListener(),	you	use	old-IE’s	attachEvent()	method:

								imgObj.attachEvent("onclick",	updateStatus);

								imgObj.attachEvent("onclick",	changeImg);

But	there’s	another	big	difference	here.	Unlike	the	standard	addEventListener(),	the
handlers	registered	with	attachEvent()	execute	in	reverse	order.	So,	you	register	the
handler	with	the	updateStatus()	function	before	registering	with	changeImg().

The	next	change	is	in	the	first	statement	of	the	changeImg()	function.	You	want	to
retrieve	the	element	that	received	the	event,	and	old-IE’s	event	object	gives	you	that
information	with	the	srcElement	property:

function	changeImg(e)	{

				var	el	=	e.srcElement;

The	rest	of	the	function	is	left	unchanged.

You	want	to	do	the	same	thing	in	the	updateStatus()	function,	so	you	change	the
first	statement	to	use	old-IE’s	srcElement	property	as	well:

function	updateStatus(e)	{

				var	el	=	e.srcElement;

After	you	retrieve	the	status	element	and	set	its	innerHTML,	you	then	want	to	remove
the	event	handlers	if	the	Mexico	flag	is	displayed.	You	do	this	with	the
detachEvent()	method:

				if	(el.src.indexOf("mexico")	>	-1)	{

								el.detachEvent("onclick",	changeImg);

								el.detachEvent("onclick",	updateStatus);

				}

Here,	the	order	in	which	you	call	detachEvent()	doesn’t	matter.	It	will	simply
remove	the	event	handler	from	the	element.

Next,	you	rewrite	Example	8	to	use	old-IE’s	event	model.

				TRY	IT	OUT								Using	the	IE	Event	Model
In	this	Try	It	Out,	you	use	the	old-IE’s	event	model.	Open	your	text	editor	and	type
the	following.	Feel	free	to	copy	and	paste	the	elements	within	the	body	and	the	style
sheet	from	ch10_example8.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	12</title>

				<style>

								.underline	{

												color:	red;

												text-decoration:	underline;

								}

				</style>

</head>

<body>

				<p>This	is	paragraph	1.</p>

				<p>This	is	paragraph	2.</p>

				<p>This	is	paragraph	3.</p>

				<script>

								function	handleEvent(e)	{

												var	target	=	e.srcElement;

												var	type	=	e.type;

												if	(target.tagName	==	"P")	{

																if	(type	==	"mouseover")	{

																				target.className	=	"underline";

																}	else	if	(type	==	"mouseout")	{

																				target.className	=	"";

																}

												}

												if	(type	==	"click")	{

																alert("You	clicked	the	mouse	button	at	the	X:"

																				+	e.clientX	+	"	and	Y:"	+	e.clientY	+	"	

coordinates");

												}

								}

								document.attachEvent("onmouseover",	handleEvent);

								document.attachEvent("onmouseout",	handleEvent);

								document.attachEvent("onclick",	handleEvent);

				</script>

</body>

</html>

Save	this	as	ch10_example12.html,	and	load	it	into	old-IE.	It’ll	look	and	behave
exactly	like	Example	8;	the	paragraph	text	will	change	to	red	and	have	an	underline	as
you	move	your	mouse	pointer	over	the	paragraphs.	When	your	mouse	pointer	leaves	a
paragraph,	the	text	returns	to	the	original	state.	When	you	click	your	mouse,	an	alert
box	tells	you	the	coordinates	of	where	your	mouse	pointer	was	when	you	clicked.

You	assign	the	handleEvent()	function	to	handle	the	mouseover,	mouseout,	and
click	events	on	the	document	object:

document.attachEvent("onmouseover",	handleEvent);

document.attachEvent("onmouseout",	handleEvent);

document.attachEvent("onclick",	handleEvent);

When	you	cause	any	of	these	events	to	fire,	the	browser	updates	the	event	object	and
calls	the	handleEvent()	function:

function	handleEvent(e)	{

				var	target	=	e.srcElement;

				var	type	=	e.type;

First,	you	want	to	get	the	target	of	the	event	(or	in	old-IE	speak,	the	source	element),
so	initialize	the	target	variable	with	the	event	object’s	srcElement	property	and	the
type	variable	with	the	event	object’s	type	property.

Next,	you	check	if	the	event	target	has	a	tagName	of	P.	If	so,	you	determine	what	kind
of	event	took	place	by	using	the	type	variable:

				if	(target.tagName	==	"P")	{

								if	(type	==	"mouseover")	{

												target.className	=	"underline";

								}	else	if	(type	==	"mouseout")	{

												target.className	=	"";

								}

				}

For	mouseover	events,	you	change	the	paragraph’s	CSS	class	to	underline.	If	the
event	type	is	mouseout,	the	element’s	className	property	is	set	to	an	empty	string—
returning	the	text	to	its	original	style.

Before	moving	on,	notice	the	name	of	these	events:	mouseover	and	mouseout.	Like
the	standard	DOM,	old-IE’s	type	property	returns	the	name	of	the	event	without	the
"on"	prefix.	So	even	though	you	register	the	event	handlers	with	onmouseover,
onmouseout,	and	onclick,	the	type	property	will	return	mouseover,	mouseout,	and
click,	respectively.

The	next	bit	of	code	displays	the	mouse	pointer’s	location	if	the	mouse	button	was
clicked:

				if	(type	==	"click")	{

								alert("You	clicked	the	mouse	button	at	the	X:"

												+	e.clientX	+	"	and	Y:"	+	e.clientY	+	"	coordinates");

				}

}

If	you	compare	Example	8	with	Example	12,	you	will	notice	the	two	primary
differences	are	how	the	event	handlers	are	registered,	and	how	to	retrieve	the	element
that	caused	the	event	to	occur.	Most	everything	else	is	shared	between	the	standard
DOM	event	model	and	IE’s	event	model.

Now	let’s	look	at	Example	9	through	the	prism	of	old-IE.

				TRY	IT	OUT								A	Crude	Tab	Strip	for	Old-IE
In	this	Try	It	Out,	you	will	rewrite	ch10_example9.html	to	use	old-IE’s	event	model.
Open	your	text	editor	and	type	the	following,	or	you	can	copy	ch10_example9.html
and	change	the	highlighted	lines	of	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	13</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

								.tabStrip	div	{

												float:	left;

												font:	14px	arial;

												cursor:	pointer;

								}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script>

								function	handleEvent(e)	{

												var	target	=	e.srcElement;

												switch	(e.type)	{

																case	"mouseover":

																				if	(target.className	==	"tabStrip-tab")	{

																								target.className	=	"tabStrip-tab-hover";

																				}

																				break;

																case	"mouseout":

																				if	(target.className	==	"tabStrip-tab-hover")	{

																								target.className	=	"tabStrip-tab";

																				}

																				break;

																case	"click":

																				if	(target.className	==	"tabStrip-tab-hover")	{

																								target.className	=	"tabStrip-tab-click";

																								var	num	=	target.getAttribute("data-tab-

number");

																								showDescription(num);

																				}

																				break;

												}

								}

								function	showDescription(num)	{

												var	text	=	"Description	for	Tab	"	+	num;

												descContainer.innerHTML	=	text;

								}

								document.attachEvent("onmouseover",	handleEvent);

								document.attachEvent("onmouseout",	handleEvent);

								document.attachEvent("onclick",	handleEvent);

				</script>

</body>

</html>

Save	this	file	as	ch10_example13.html.	Open	it	in	your	browser,	and	you’ll	see	it
work	exactly	like	ch10_example9.html.	When	you	move	your	mouse	pointer	over	a
tab,	its	style	changes	to	a	blue	background	with	a	darker	blue	border.	When	you	click
a	tab,	its	style	changes	yet	again	and	adds	the	tab’s	description	to	the	page.

Four	things	are	different	in	this	version	of	the	tab	script.	The	first	three	are	how	you
register	the	event	handlers:

document.attachEvent("onmouseover",	handleEvent);

document.attachEvent("onmouseout",	handleEvent);

document.attachEvent("onclick",	handleEvent);

Instead	of	using	addEventListener(),	you	use	old-IE’s	attachEvent()	method	to
register	the	event	handlers.

The	next	and	last	modification	is	the	first	statement	of	handleEvent():

								function	handleEvent(e)	{

												var	target	=	e.srcElement;

As	in	the	previous	examples,	you	use	the	event	object’s	srcElement	property	to
retrieve	the	event	target.	The	rest	of	the	function	remains	unchanged.

In	the	next	section,	you	learn	how	to	handle	the	fundamental	differences	between	both
event	models	and	to	write	cross-browser	DHTML	code.

WRITING	CROSS-BROWSER	CODE
By	now	you’ve	written	two	versions	of	multiple	examples:	one	for	standards-compliant
browsers	and	one	for	old-IE.	In	the	real	world,	creating	separate	versions	of	websites	is
rarely	considered	best	practice,	and	it’s	much,	much	easier	to	write	a	cross-browser
version	of	the	web	page.	In	this	section,	you	use	the	knowledge	you’ve	gained	of	the
DOM,	the	standard	DOM	event	model,	and	old-IE’s	event	model	to	write	cross-browser
code.

The	trick	to	cross-browser	JavaScript	is	to	create	a	unified	API	that	hides	the	complexity
of	working	with	different	browser	implementations.	For	example,	to	register	a	new	event
listener,	you	need	to	do	three	things:

Check	if	the	browser	supports	the	standard	DOM	event	model.

If	so,	use	addEventListener()

If	not,	use	attachEvent()

Using	the	technique	of	feature	detection,	which	you	learned	about	in	Chapter	8,	you	can
easily	determine	if	the	browser	supports	addEventListener().	Simply	check	to	see	if	it
exists,	like	this:

if	(typeof	addEventListener	!=	"undefined")	{

				//	use	addEventListener()

}	else	{

				//	use	attachEvent()

}

When	writing	cross-browser	JavaScript,	you	always	want	to	check	for	standards
compliance	first	because	some	browsers	may	support	both	options.	For	example,	IE9	and
IE10	support	both	addEventListener()	and	attachEvent().	If	you	check	for
attachEvent()	instead	of	addEventListener(),	like	this:

//	wrong!	Do	not	do!

if	(typeof	attachEvent	!=	"undefined")	{

				//	use	attachEvent

}	else	{

				//	use	addEventListener

}

IE9	and	IE10	will	use	attachEvent()	instead	of	addEventListener().	We	know	that
attachEvent()	exhibits	different	behavior	than	addEventListener(),	and	as	such,	we
want	to	avoid	that	behavior	as	much	as	possible.	Plus,	we	always	want	to	use	standards-
compliant	code	because	it	is	guaranteed	to	work	in	every	standards-compliant	browser.

The	previous	example	uses	the	typeof	operator	to	determine	if	the	addEventListener()
method	is	not	undefined,	but	you	can	simplify	the	code	by	using	addEventListener	as	a
truthy	or	falsy	value,	like	this:

if	(addEventListener)	{

				//	use	addEventListener()

}	else	{

				//	use	attachEvent()

}

Whether	you	use	the	typeof	operator	or	truthy/falsy	values,	either	approach	will	give	you
the	same	results.	Just	keep	in	mind	that	you	want	to	be	consistent	as	you	write	your	code.
If	you	use	typeof,	use	it	for	all	of	your	feature-detection	code.

So	with	this	in	mind,	you	can	write	a	function	like	this:

function	addListener(obj,	type,	fn)	{

				if	(obj.addEventListener)	{

								obj.addEventListener(type,	fn)

				}	else	{

								obj.attachEvent("on"	+	type,	fn);

				}

}

Let’s	break	down	this	code.	Here,	you	define	a	function	called	addListener().	It	has	three
parameters—the	object	to	register	the	event	listener	on,	the	event	type,	and	the	function	to
execute	when	the	event	fires:

function	addListener(obj,	type,	fn)	{

The	first	thing	you	do	inside	this	function	is	to	check	if	the	given	object	has	an
addEventListener()	method:

				if	(obj.addEventListener)	{

								obj.addEventListener(type,	fn)

				}

If	addEventListener()	exists,	you	call	it	and	pass	the	type	and	fn	parameters	to	it.	But	if
addEventListener()	doesn’t	exist,	you	want	to	call	attachEvent():

						else	{

								obj.attachEvent("on"	+	type,	fn);

				}

}

Here,	you	append	on	to	the	value	contained	within	the	type	variable.	This	way,	you	can
pass	the	standard	name	of	the	event,	such	as	click,	to	the	addListener()	function,	and
it’ll	work	with	both	standards-compliant	browsers	and	old-IE.

To	use	this	function,	you’d	call	it	like	this:

addListener(elementObj,	"click",	eventHandler);

Assuming	elementObj	is	an	element	object	and	eventHandler()	is	a	function,	you’d
successfully	register	an	event	listener/handler	for	standards-compliant	browsers	and	old-
IE.

Following	the	pattern	used	in	the	addListener()	function,	you	can	write	an	event	utility
object	that	makes	it	easier	to	write	cross-browser,	event-driven	code.	An	event	utility
object	should	provide	the	capability	to	add	and	remove	listeners,	as	well	as	get	the	event

target.

				TRY	IT	OUT								A	Cross-Browser	Event	Utility
In	this	Try	It	Out,	you	will	write	a	utility	to	make	it	easier	to	write	cross-browser
code.	Open	your	text	editor	and	type	the	following:

var	evt	=	{

				addListener:	function(obj,	type,	fn)	{

								if	(obj.addEventListener)	{

												obj.addEventListener(type,	fn);

								}	else	{

												obj.attachEvent("on"	+	type,	fn);

								}

				},

				removeListener:	function(obj,	type,	fn)	{

								if	(obj.removeEventListener)	{

												obj.removeEventListener(type,	fn);

								}	else	{

												obj.detachEvent("on"	+	type,	fn);

								}

				},

				getTarget:	function(e)	{

								if	(e.target)	{

												return	e.target;

								}

								return	e.srcElement;

				},

				preventDefault:	function(e)	{

								if	(e.preventDefault)	{

												e.preventDefault();

								}	else	{

												e.returnValue	=	false;

								}

				}

};

Save	it	as	event-utility.js.

Using	object	literal	notation,	you	create	an	object	called	evt.	Its	purpose	is	to	make	it
easier	to	write	cross-browser	code:

var	evt	=	{

The	first	method	you	write	is	the	addListener()	method,	and	it	is	exactly	the	same	as
the	addListener()	function	you	previously	wrote:

				addListener:	function(obj,	type,	fn)	{

								if	(obj.addEventListener)	{

												obj.addEventListener(type,	fn);

								}	else	{

												obj.attachEvent("on"	+	type,	fn);

								}

				},

If	the	browser	supports	addEventListener(),	it	uses	the	method	to	register	an	event
listener.	Otherwise,	the	browser	calls	attachEvent().

The	next	method	is	removeListener().	As	its	name	implies,	it	removes	a	listener	that
was	added	previously	to	an	object:

				removeListener:	function(obj,	type,	fn)	{

								if	(obj.removeEventListener)	{

												obj.removeEventListener(type,	fn);

								}	else	{

												obj.detachEvent("on"	+	type,	fn);

								}

				},

The	code	is	almost	identical	to	addListener()	except	for	a	few	key	changes.	First,	it
checks	if	the	given	object	has	a	removeEventListener()	method,	and	if	so,	it	calls
removeEventListener().	If	not,	it	assumes	the	browser	is	old-IE	and	calls
detachEvent().

The	third	method,	getTarget(),	is	responsible	for	getting	the	event	target	from	the
event	object:

				getTarget:	function(e)	{

								if	(e.target)	{

												return	e.target;

								}

								return	e.srcElement;

				}

};

It	follows	the	same	pattern	used	in	addListener()	and	removeListener();	it	uses	the
target	property	as	a	truthy/falsy	value	to	determine	if	the	browser	supports	the
standard	API.	If	target	is	supported,	it	is	returned.	Otherwise,	the	function	returns
the	element	object	contained	within	srcElement.

The	fourth	and	final	method	is	preventDefault().	The	purpose	of	this	method	is	to
prevent	the	default	action	of	the	event	that	took	place	(if	such	an	action	exists).	It	first
checks	for	standards	compliance	by	determining	if	the	supplied	event	object	has	a
preventDefault()	method.	If	so,	it	calls	the	method;	otherwise,	it	sets	the	event
object’s	returnValue	to	false.

Before	moving	on,	it’s	important	to	realize	that	this	event	utility	object	is	based	on	an
assumption:	If	the	browser	doesn’t	support	the	standard	event	model,	it	must	be	old-IE.
Although	this	is	a	safe	assumption	to	make,	it	is	not	always	100	percent	correct.	Some	old
mobile	browsers	do	not	support	either	the	standard	event	model	or	old-IE’s	event	model.
However,	as	Windows,	Android,	and	iOS	mobile	devices	continue	to	gain	market	share,
these	old,	non-compliant	mobile	browsers	are	vanishing	from	the	market.	In	most	cases,
it’s	safe	to	ignore	them.

Now	that	you	have	a	utility	for	making	it	easier	to	write	cross-browser,	event-driven	code,
let’s	revisit	the	previous	examples	and	put	it	to	use.

Start	by	modifying	Example	10.	Here’s	the	revised	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10,	Example	14</title>

</head>

<body>

				

								Click	Me

				

				<script	src="event-utility.js"></script>

				<script>

								var	link	=	document.getElementById("someLink");

								function	linkClick(e)	{

												alert("This	link	is	going	nowhere");

												evt.preventDefault(e);

								}

								evt.addListener(link,	"click",	linkClick);

				</script>

</body>

</html>

Save	this	as	ch10_example14.html.

The	highlighted	lines	of	code	are	the	only	changes.	First,	you	include	event-utility.js.
The	code	in	this	example	assumes	the	file	is	in	the	same	directory	as
ch10_example14.html:

<script	src="event-utility.js"></script>

You	then	register	the	event	listener	using	evt.addListener():

evt.addListener(link,	"click",	linkClick);

You	pass	it	the	element	object	you	want	to	register	the	listener	on,	the	name	of	the	event
you	want	to	listen	for,	and	the	function	to	execute	when	the	event	occurs.

The	final	change	is	inside	the	linkClick()	function.	You	want	to	prevent	the	browser
from	navigating	to	somepage.html,	so	you	call	your	event	utility’s	preventDefault()
method	and	pass	it	the	event	object.	Now,	when	you	click	the	link,	the	browser	will	stay
on	the	same	page.

				TRY	IT	OUT								Adding	and	Removing	Multiple
Event	Handlers
In	this	Try	It	Out,	you	rewrite	ch10_example11.html	and	use	your	event	utility	object
to	add	and	remove	event	listeners/handlers.	You	can	write	it	from	scratch,	or	you	can
copy	and	paste	from	ch10_example11.html.	The	highlighted	lines	indicate	what
changed	in	this	example.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	15</title>

</head>

<body>

				

				<div	id="status"></div>

				<script	src="event-utility.js"></script>

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(e)	{

												var	el	=	evt.getTarget(e);

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												el.src	=	myImages[newImgNumber];

								}

								function	updateStatus(e)	{

												var	el	=	evt.getTarget(e);

												var	status	=	document.getElementById("status");

												status.innerHTML	=	"The	image	changed	to	"	+	el.src;

												if	(el.src.indexOf("mexico")	>	-1)	{

																evt.removeListener(el,	"click",	changeImg);

																evt.removeListener(el,	"click",	updateStatus);

												}

								}

								var	imgObj	=	document.getElementById("img0");

								evt.addListener(imgObj,	"click",	changeImg);

								evt.addListener(imgObj,	"click",	updateStatus);

				</script>

</body>

</html>

Save	the	page	as	ch10_example15.html.	Load	the	page	into	your	browser,	and	you
will	see	it	behave	like	ch10_example11.html.	Clicking	the	image	results	in	it
changing	to	a	random	picture,	and	the	text	of	the	<div/>	element	changes	to	contain
the	URL	of	the	new	picture.

You’ve	seen	this	code	a	few	times	now,	so	the	pertinent	changes	are	highlighted.	First,
you	want	to	include	your	event-utility.js	file.

The	next	change	is	how	you	register	the	event	listeners	for	the	image	object.	Using
your	event	utility’s	addListener()	method,	you	pass	it	the	image	object,	event	name,
and	the	function:

evt.addListener(imgObj,	"click",	changeImg);

evt.addListener(imgObj,	"click",	updateStatus);

In	the	changeImg()	and	updateStatus()	functions,	you	change	their	first	lines	to
retrieve	the	event	target	to	use	your	new	getTarget()	method:

var	el	=	evt.getTarget(e);

Then	inside	updateStatus(),	you	modify	the	code	inside	the	if	statement	to	use	your
new	removeListener()	method:

if	(el.src.indexOf("mexico")	>	-1)	{

				evt.removeListener(el,	"click",	changeImg);

				evt.removeListener(el,	"click",	updateStatus);

}

There	is,	however,	an	issue	with	this	new	version:	In	old-IE,	the	event	listeners
execute	in	reverse	order.	This	is	a	problem,	but	one	you’ll	fix	at	the	very	end	of	this
chapter.

Next,	you	rewrite	Example	12	to	use	your	new	evt	object.

				TRY	IT	OUT								Using	the	Event	Models	of
Differing	Browsers
In	this	Try	It	Out,	you	will	rewrite	ch10_example12.html	using	your	event	utility.
Open	your	text	editor	and	type	the	following.	Feel	free	to	copy	and	paste	the	elements
within	the	body	and	the	style	sheet	from	ch10_example12.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	16</title>

				<style>

								.underline	{

												color:	red;

												text-decoration:	underline;

								}

				</style>

</head>

<body>

				<p>This	is	paragraph	1.</p>

				<p>This	is	paragraph	2.</p>

				<p>This	is	paragraph	3.</p>

				<script	src="event-utility.js"></script>

				<script>

								function	handleEvent(e)	{

												var	target	=	evt.getTarget(e);

												var	type	=	e.type;

												if	(target.tagName	==	"P")	{

																if	(type	==	"mouseover")	{

																				target.className	=	"underline";

																}	else	if	(type	==	"mouseout")	{

																				target.className	=	"";

																}

												}

												if	(type	==	"click")	{

																alert("You	clicked	the	mouse	button	at	the	X:"

																				+	e.clientX	+	"	and	Y:"	+	e.clientY	+	"	

coordinates");

												}

								}

								evt.addListener(document,	"mouseover",	handleEvent);

								evt.addListener(document,	"mouseout",	handleEvent);

								evt.addListener(document,	"click",	handleEvent);

				</script>

</body>

</html>

Save	this	as	ch10_example16.html,	and	load	it	into	different	browsers	(preferably	a
standards-compliant	browser	and	old-IE,	if	you	have	access	to	one).	It’ll	look	and
behave	exactly	like	ch10_example12.html;	the	paragraph	text	will	change	to	red	and
have	an	underline	as	you	move	your	mouse	pointer	over	the	paragraphs.	When	your
mouse	pointer	leaves	a	paragraph,	the	text	returns	to	the	original	state.	When	you
click	your	mouse,	an	alert	box	tells	you	the	coordinates	of	where	your	mouse	pointer
was	when	you	clicked.

Once	again,	the	majority	of	code	is	left	untouched	with	only	five	lines	of	code	having
changes.	First,	you	want	to	include	the	event-utility.js	file	using	a	<script/>
element:

<script	src="event-utility.js"></script>

Next,	you	register	the	mouseover,	mouseout,	and	click	event	listeners	using	your
evt.addListener()	method:

evt.addListener(document,	"mouseover",	handleEvent);

evt.addListener(document,	"mouseout",	handleEvent);

evt.addListener(document,	"click",	handleEvent);

And	finally,	you	change	the	first	line	of	the	handleEvent()	function:

function	handleEvent(e)	{

				var	target	=	evt.getTarget(e);

Instead	of	using	any	browser-specific	code,	you	use	evt.getTarget()	to	retrieve	the
element	object	that	received	the	event.

Now	let’s	look	at	ch10_example13.html	and	use	the	evt	object.

				TRY	IT	OUT								A	Crude	Tab	Strip	for	All
Browsers
In	this	Try	It	Out,	you	will	rewrite	ch10_example13.html	using	your	cross-browser
event	utility.	Open	your	text	editor	and	type	the	following,	or	you	can	copy
ch10_example13.html	and	change	the	highlighted	lines	of	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	17</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

								.tabStrip	div	{

												float:	left;

												font:	14px	arial;

												cursor:	pointer;

								}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script	src="event-utility.js"></script>

				<script>

								function	handleEvent(e)	{

												var	target	=	evt.getTarget(e);

												switch	(e.type)	{

																case	"mouseover":

																				if	(target.className	==	"tabStrip-tab")	{

																								target.className	=	"tabStrip-tab-hover";

																				}

																				break;

																case	"mouseout":

																				if	(target.className	==	"tabStrip-tab-hover")	{

																								target.className	=	"tabStrip-tab";

																				}

																				break;

																case	"click":

																				if	(target.className	==	"tabStrip-tab-hover")	{

																								target.className	=	"tabStrip-tab-click";

																								var	num	=	target.getAttribute("data-tab-

number");

																								showDescription(num);

																				}

																				break;

												}

								}

								function	showDescription(num)	{

												var	descContainer	=	

document.getElementById("descContainer");

												var	text	=	"Description	for	Tab	"	+	num;

												descContainer.innerHTML	=	text;

								}

								evt.addListener(document,	"mouseover",	handleEvent);

								evt.addListener(document,	"mouseout",	handleEvent);

								evt.addListener(document,	"click",	handleEvent);

				</script>

</body>

</html>

Save	this	file	as	ch10_example17.html.	Open	it	in	multiple	browsers,	and	you’ll	see	it
work	exactly	like	Example	13.

The	code	is	mostly	unchanged;	this	new	version	changes	only	five	lines	of	code.	As
with	the	past	two	examples,	you	need	to	include	the	file	containing	your	evt	object:

<script	src="event-utility.js"></script>

Next,	you	register	the	event	listeners	on	the	document	object	for	the	click,
mouseover,	and	mouseout	events	using	the	evt	object’s	addListener()	method:

evt.addListener(document,	"mouseover",	handleEvent);

evt.addListener(document,	"mouseout",	handleEvent);

evt.addListener(document,	"click",	handleEvent);

And	finally,	you	change	the	first	line	of	the	handleEvent()	function:

function	handleEvent(e)	{

				var	target	=	evt.getTarget(e);

Instead	of	directly	using	the	standard	or	old-IE’s	target	and	srcElement	properties,
you	use	evt.getTarget()	to	retrieve	the	element	object	that	received	the	event.

Thankfully	with	each	passing	year,	the	importance	of	cross-browser	JavaScript	diminishes
as	old-IE	continues	to	lose	market	share.	IE8	is	currently	the	most	popular	version	of	old-
IE,	and	the	number	of	people	using	that	browser	is	dwindling.	Whether	or	not	you	need	to
support	old-IE	is	determined	by	your	target	audience,	and	only	you	can	decide	if	you	need
to	put	forth	the	effort	of	supporting	it.

The	past	few	sections	have	been	rather	repetitive,	but	understanding	events	and	how	they
work	is	absolutely	vital	in	JavaScript	development.	Much	of	the	code	you	write	will	be	in
reaction	to	an	event	occurring	within	the	page.

Additionally,	you’ll	find	that	more	events	are	added	to	browsers	as	they	implement	new
features—for	example,	the	new	HTML5	Drag	and	Drop	API.

NATIVE	DRAG	AND	DROP
Dragging	and	dropping	objects	within	a	web	page	has	been	the	Holy	Grail	of	JavaScript
development,	and	rightly	so—the	system	we	spend	the	majority	of	our	time	with,	our
computer’s/device’s	operating	system,	has	always	provided	that	functionality.

Unfortunately,	true	drag-and-drop	support	has	been	elusive	in	web	development,	although
some	JavaScript	libraries	came	close.	Though	they	enabled	us	to	drag	and	drop	elements
within	the	web	page,	they	were	limited	by	the	capabilities,	or	lack	of	in	this	case,	exposed
by	the	browser;	interacting	with	dropped	objects	from	the	operating	system	was
impossible.

But	HTML5	changes	that.	For	browsers	that	support	it,	you	can	now	incorporate	true
drag-and-drop	capabilities	within	your	web	pages	thanks	to	HTML5’s	Drag	and	Drop	API.
Not	only	can	you	move	elements	around	the	page	by	dragging	and	dropping	them,	but	the
API	enables	you	to	drag	objects	from	the	operating	system,	like	files,	and	drop	them	in
your	page.

NOTE	Native	drag	and	drop	is	only	supported	in	IE10+,	Chrome,	Firefox,	Opera,
and	Safari.

Making	Content	Draggable
HTML5	makes	it	easy	to	create	draggable	content.	By	simply	adding	the	draggable
attribute	to	an	element	and	setting	it	to	true,	you	tell	the	browser	that	the	element	can	be
used	for	drag	and	drop:

<div	draggable="true">Draggable	Content</div>

In	most	browsers,	images,	links,	and	selected	text	are	draggable	by	default.	Figure	10.4
shows	some	selected	text	being	dragged	in	Chrome.

Figure	10.4

Three	events	are	related	to	the	source	of	the	drag—that	is,	the	element	that	is	being
dragged.	The	following	table	lists	them.

DRAG
SOURCE
EVENTS

DESCRIPTION

dragstart Fires	on	the	element	when	a	drag	is	started.	This	does	not	fire	when
dragging	an	object	from	the	filesystem

drag Fires	continuously	while	the	object	is	dragged
dragend Fires	when	the	drag	operation	is	complete,	regardless	of	whether	the	object

was	dropped.	This	does	not	fire	when	dragging	an	object	from	the
filesystem

To	perform	a	drag-and-drop	operation,	the	only	event	you	need	to	listen	for	is	dragstart,
but	that	doesn’t	mean	the	drag	and	dragend	events	are	not	useful.	You	can	use	them	to
add	extra	functionality	and/or	visual	cues	to	enhance	the	user’s	experience.

Creating	a	Drop	Target
If	you	are	dragging	objects,	chances	are	very	good	that	you	need	some	place	to	drop	them
—a	drop	target.	There	aren’t	special	attributes	or	HTML	to	signify	an	element	as	a	drop
target.	Instead,	you	listen	for	one	or	multiple	events	on	the	element	serving	as	the	drop
target.

One	of	them	is	the	dragenter	event.	This	event	fires	when	the	mouse	cursor	enters	the
target	while	dragging	an	object.	For	example:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	18</title>

				<style>

								.drop-zone	{

												width:	300px;

												padding:	20px;

												border:	2px	dashed	#000;

								}

				</style>

</head>

<body>

				<div	id="dropZone"	class="drop-zone">Drop	Zone!</div>

				<div	id="dropStatus"></div>

				<script>

								function	handleDragEnter(e)	{

												dropStatus.innerHTML	=	"You're	dragging	something!";

								}

								var	dropZone	=	document.getElementById("dropZone");

								var	dropStatus	=	document.getElementById("dropStatus");

								dropZone.addEventListener("dragenter",	handleDragEnter);

				</script>

</body>

</html>

Save	this	file	as	ch10_example18.html.	Open	it	and	you’ll	see	something	like	Figure	10.5.

Figure	10.5

Drag	anything	to	the	target.	It	can	be	selected	text,	a	file	on	your	computer,	and	so	on.	As
your	mouse	pointer	enters	the	target,	you’ll	see	the	text	You're	dragging	something!

appear	on	the	page.	Figure	10.6	shows	text	being	dragged	over	the	drop	zone	in	Chrome.

Figure	10.6

In	this	page,	a	<div/>	element	is	used	as	the	drop	zone:

<div	id="dropZone"	class="drop-zone">Drop	Zone!</div>

It	has	an	id	of	dropZone	and	has	the	CSS	class	of	drop-zone.	The	CSS	is	unimportant
from	a	functional	standpoint,	but	it	does	add	visual	clarity	because	it	defines	the	area	in
which	you	can	drop	something.

The	important	stuff	is	in	the	JavaScript.	First,	you	retrieve	the	drop	target	element	by
using	the	document.getElementById()	method	and	listen	for	its	dragenter	event.	You
also	retrieve	the	<div/>	element	with	an	id	of	dropStatus.	You’ll	use	it	to	display	status
messages	during	the	drag	operation:

var	dropZone	=	document.getElementById("dropZone");

var	dropStatus	=	document.getElementById("dropStatus");

dropZone.addEventListener("dragenter",	handleDragEnter);

This	event	fires	only	when	you	are	dragging	something	and	the	mouse	cursor	enters	the
target.	When	this	happens,	the	handleDragEnter()	function	executes:

function	handleDragEnter(e)	{

				dropStatus.innerHTML	=	"You're	dragging	something!";

}

This	simple	function	changes	the	status	element’s	contents	to	state,	You're	dragging
something!

The	dragenter	event	is	one	of	four	events	you	can	listen	for	on	the	target	element.	The
following	table	lists	them.

DRAG	SOURCE
EVENTS

DESCRIPTION

dragenter Fires	when	the	mouse	is	first	moved	over	the	target	element
while	dragging

dragover Fires	on	the	target	as	the	mouse	moves	over	an	element	while
dragging

dragleave Fires	on	the	target	when	the	mouse	leaves	the	target	while
dragging

drop Fires	on	the	target	when	the	drop	(the	user	releases	the	mouse
button)	occurs

The	dragenter	event	looks	important;	after	all,	it	lets	you	know	when	the	mouse	cursor
enters	the	drop	zone	while	dragging	an	object.	But	in	actuality,	it’s	optional.	You	cannot
complete	a	drag-and-drop	operation	with	the	dragenter	event.	Instead,	you	have	to	listen
for	the	drop	zone’s	dragover	event.

This	is	where	things	start	to	get	weird.	For	the	drop	event	to	fire,	you	have	to	prevent	the
behavior	of	the	dragover	event.	So,	you	basically	have	to	call	preventDefault()	on	the
Event	object	every	time	you	listen	for	the	dragover	event.

				TRY	IT	OUT								Dropping	Objects	on	a	Target
In	this	Try	It	Out,	you	write	a	simple	example	that	lets	you	drag	and	drop	an	element
onto	a	target.	Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	19</title>

				<style>

								.box	{

												width:	100px;

												height:	100px;

								}

								.red	{

												background-color:	red;

								}

								.drop-zone	{

												width:	300px;

												padding:	20px;

												border:	2px	dashed	#000;

								}

				</style>

</head>

<body>

				<div	draggable="true"	class="box	red"></div>

				<div	id="dropZone"	class="drop-zone">Drop	Zone!</div>

				<div	id="dropStatus"></div>

				<script>

								function	dragDropHandler(e)	{

												e.preventDefault();

												if	(e.type	==	"dragover")	{

																dropStatus.innerHTML	=	"You're	dragging	over	the	drop	

zone!";

												}	else	{

																dropStatus.innerHTML	=	"You	dropped	something!";

												}

								}

								var	dropZone	=	document.getElementById("dropZone");

								var	dropStatus	=	document.getElementById("dropStatus");

								dropZone.addEventListener("dragover",	dragDropHandler);

								dropZone.addEventListener("drop",	dragDropHandler);

				</script>

</body>

</html>

Save	this	file	as	ch10_example19.html,	and	open	it.	Your	web	page	will	look	like
Figure	10.7.

Figure	10.7

Drag	the	red	box	over	the	target	element,	and	you’ll	see	the	text	of	the	status	element
change	to	You're	dragging	over	the	drop	zone!	Drop	the	element	in	the	drop
zone,	and	the	status	text	will	change	to	You	dropped	something!

There	is	one	exception,	however:	Firefox	will	not	let	you	drag	the	red	box,	but	it	will
let	you	drop	objects	from	other	sources	(such	as	text,	files	on	the	filesystem,	and	so

on).	We’ll	explain	why	later.

The	CSS	of	this	example	defines	three	classes.	You’ve	already	seen	the	drop-zone
class,	and	the	box	and	red	classes	are	extremely	simple:

.box	{

				width:	100px;

				height:	100px;

}

.red	{

				background-color:	red;

}

The	box	class	sets	the	element’s	width	and	height	properties	to	100	pixels,	and	red
gives	the	element	a	background	color	of	red.	These	are	arbitrary	values	meant	to	only
give	the	draggable	element	some	visibility.

Next,	the	HTML.	The	only	new	element	in	this	HTML	document	is	a	draggable
<div/>	element:

<div	draggable="true"	class="box	red"></div>

To	make	it	draggable,	you	set	the	draggable	attribute	to	true,	and	you	apply	the	box
and	red	CSS	classes	to	make	it	easier	to	drag	and	drop.

But	as	with	Example	18,	the	good	stuff	is	in	the	JavaScript.	First,	you	register
listeners	for	the	dropZone’s	dragover	and	drop	events:

dropZone.addEventListener("dragover",	dragDropHandler);

dropZone.addEventListener("drop",	dragDropHandler);

Let’s	look	at	the	dragDropHandler()	function.	The	very	first	line	calls	the	Event
object’s	preventDefault()	method:

function	dragDropHandler(e)	{

				e.preventDefault();

This	is	crucial	for	two	reasons.	First,	the	dragover’s	default	behavior	must	be
prevented	in	order	for	the	drop	event	to	fire	(and	that’s	kind	of	important).

Second,	the	browser	will	do	something	when	you	drop	an	object.	In	other	words,	the
drop	event	has	a	default	behavior,	but	the	exact	behavior	depends	on	the	browser	and
the	object	that	you	drop.	Some	examples	are:

For	a	file	or	image,	most	browsers	will	attempt	to	open	it.

Dropping	a	URL	may	cause	the	browser	to	navigate	to	the	URL.

In	Firefox,	dropping	an	element	will	cause	the	browser	to	navigate	to	the	value	in	the
element’s	id	attribute.

Therefore,	you	want	to	prevent	the	drop	event’s	default	behavior	in	most	cases.

After	preventing	the	default	behavior,	the	dragDropHandler()	function	changes	the
content	of	the	dropStatus	element	based	on	the	type	of	event:

				if	(e.type	==	"dragover")	{

								dropStatus.innerHTML	=	"You're	dragging	over	the	drop	zone!";

				}	else	{

								dropStatus.innerHTML	=	"You	dropped	something!";

				}

}

For	the	dragover	event,	it	simply	states	that	you	are	dragging	over	the	target	element;
otherwise,	the	function	knows	that	you	dropped	something	and	tells	you	so.

Frustratingly,	native	drag	and	drop	doesn’t	work	exactly	the	same	in	all	modern	browsers.
The	aforementioned	partial	list	of	the	browsers’	default	behavior	for	the	drop	event	is	just
one	thing	JavaScript	developers	have	to	contend	with.

But	also	remember	that	Example	19	doesn’t	completely	work	in	Firefox.	Although	it	is
frustrating	that	JavaScript	developers	have	to	cope	with	inconsistent	implementations,
Firefox’s	drag-and-drop	implementation,	whether	it’s	right	or	wrong,	does	make	some
sense	in	this	regard.	As	we	try	to	drag	the	red	box,	we	haven’t	told	the	browser	what	we’re
transferring.

Transferring	Data
When	you	think	about	it,	a	drag-and-drop	operation	is	the	transference	of	data.	For
example,	when	you	drag	a	file	on	your	filesystem	from	one	folder	to	another,	you	are
transferring	the	data	(the	file)	between	the	two	folder	locations.	When	dragging	text	from
one	application	to	another,	you	are	transferring	the	textual	data	between	the	two
applications.

Drag	and	drop	in	the	browser	follows	a	similar	concept.	When	starting	a	drag,	you	need	to
tell	the	browser	what	you	plan	to	transfer,	and	when	you	drop	the	object,	you	need	to
specify	how	that	data	transfers	from	the	source	to	the	target.

The	drag-and-drop	specification	defines	a	DataTransfer	object	that	is	used	to	hold	the
data	that	is	being	dragged	during	a	drag-and-drop	operation.	You	access	this	object	with
the	Event	object’s	dataTransfer	property.	You	set	data	with	the	DataTransfer	object’s
setData()	method	in	the	dragstart	event	handler,	and	you	read	that	data	in	the	drop
event	handler	with	the	getData()	method.

To	make	Example	19	work	in	Firefox,	you	need	to	handle	the	dragstart	event	and	use	the
DataTransfer	object’s	setData()	method.	The	following	adds	the	necessary	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	20</title>

				<style>

								.box	{

												width:	100px;

												height:	100px;

								}

								.red	{

												background-color:	red;

								}

								.drop-zone	{

												width:	300px;

												padding:	20px;

												border:	2px	dashed	#000;

								}

				</style>

</head>

<body>

				<div	draggable="true"	class="box	red"></div>

				<div	id="dropZone"	class="drop-zone">Drop	Zone!</div>

				<div	id="dropStatus"></div>

				<script>

								function	dragStartHandler(e)	{

												e.dataTransfer.setData("text",	"Drag	and	Drop!");

								}

								function	dragDropHandler(e)	{

												e.preventDefault();

												if	(e.type	==	"dragover")	{

																dropStatus.innerHTML	=	"You're	dragging	over	the	"	+

																																							"drop	zone!";

												}	else	{

																dropStatus.innerHTML	=	e.dataTransfer.getData("text");

												}

								}

								var	dragBox	=	document.querySelector("[draggable]");

								var	dropZone	=	document.getElementById("dropZone");

								var	dropStatus	=	document.getElementById("dropStatus");

								dragBox.addEventListener("dragstart",	dragStartHandler);

								dropZone.addEventListener("dragover",	dragDropHandler);

								dropZone.addEventListener("drop",	dragDropHandler);

				</script>

</body>

</html>

Save	this	file	as	ch10_example20.html,	and	open	it	in	Firefox.	Now	drag	the	red	box	to
the	target,	and	you’ll	see	that	it	behaves	similarly	to	ch10_example19.html	in	all	browsers
(Firefox	included).

Let’s	focus	only	on	the	new	lines	of	code.	First,	you	store	the	draggable	box	in	the
dragBox	variable	by	using	document.querySelector()	and	passing	the	attribute	selector
of	“[draggable]”:

								var	dragBox	=	document.querySelector("[draggable]");

Next,	you	register	an	event	listener	for	the	dragstart	event	on	the	dragBox	object:

								dragBox.addEventListener("dragstart",	dragStartHandler);

The	dragStartHandler()	function	executes	when	you	start	a	drag	operation	on	the
dragBox	object.	This	function	makes	use	of	the	DataTransfer	object’s	setData()	method
to	hold	data	for	the	drag-and-drop	operation:

								function	dragStartHandler(e)	{

												e.dataTransfer.setData("text",	"Drag	and	Drop!");

								}

The	setData()	function	accepts	two	arguments:	the	type	of	data	to	store	and	the	actual
data.	The	only	data	types	supported	by	all	browsers	are	“text”	and	“url”;	therefore,	this
function	stores	the	textual	data	of	Drag	and	Drop!

NOTE	Most	browsers	support	other	data	types,	such	as	MIME	types	(for	example,
text/plain,	text/html,	and	so	on).	IE10	and	IE11,	however,	only	support	text	and	url.

The	last	new/changed	line	is	in	the	dragDropHandler()	function.	Instead	of	displaying	an
arbitrary	string	value	in	the	status	element	when	the	drop	event	fires,	you	retrieve	the	data
from	the	dataTransfer	object	by	using	the	getData()	method:

dropStatus.innerHTML	=	e.dataTransfer.getData("text");

The	getData()	method	accepts	only	one	argument:	the	data	type	you	used	when	calling
setData().	Therefore,	this	code	retrieves	the	value	of	Drag	and	Drop!	and	uses	it	as	the
inner	HTML	of	the	status	element.

				TRY	IT	OUT								Full	Drag	and	Drop
In	this	Try	It	Out,	you	apply	everything	you’ve	learned	about	native	drag	and	drop
and	write	a	page	that	lets	you	drag	and	drop	elements	between	two	drop	targets.

Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Example	21</title>

				<style>

								[data-drop-target]	{

												height:	400px;

												width:	200px;

												margin:	2px;

												background-color:	gainsboro;

												float:	left;

								}

								.drag-enter	{

												border:	2px	dashed	#000;

								}

								.box	{

												width:	200px;

												height:	200px;

								}

								.navy	{

												background-color:	navy;

								}

								.red	{

												background-color:	red;

								}

				</style>

</head>

<body>

				<div	data-drop-target="true">

								<div	id="box1"	draggable="true"	class="box	navy"></div>

								<div	id="box2"	draggable="true"	class="box	red"></div>

				</div>

				<div	data-drop-target="true"></div>

				<script>

								function	handleDragStart(e)	{

												e.dataTransfer.setData("text",	this.id);

								}

								function	handleDragEnterLeave(e)	{

												if	(e.type	==	"dragenter")	{

																this.className	=	"drag-enter";

												}	else	{

																this.className	=	"";

												}

								}

								function	handleOverDrop(e)	{

												e.preventDefault();

												if	(e.type	!=	"drop")	{

																return;

												}

												var	draggedId	=	e.dataTransfer.getData("text");

												var	draggedEl	=	document.getElementById(draggedId);

												if	(draggedEl.parentNode	==	this)	{

																return;

												}

												draggedEl.parentNode.removeChild(draggedEl);

												this.appendChild(draggedEl);

												this.className	=	"";

								}

								var	draggable	=	document.querySelectorAll("[draggable]");

								var	targets	=	document.querySelectorAll("[data-drop-target]");

								for	(var	i	=	0;	i	<	draggable.length;	i++)	{

												draggable[i].addEventListener("dragstart",	

handleDragStart);

								}

								for	(i	=	0;	i	<	targets.length;	i++)	{

												targets[i].addEventListener("dragover",	handleOverDrop);

												targets[i].addEventListener("drop",	handleOverDrop);

												targets[i].addEventListener("dragenter",	

handleDragEnterLeave);

												targets[i].addEventListener("dragleave",	

handleDragEnterLeave);

								}

				</script>

</body>

</html>

Save	this	file	as	ch10_example21.html	and	open	it	in	your	modern	browser	of	choice.
You’ll	see	a	page	that	consists	of	two	columns.	On	the	left,	a	blue	box	sits	on	top	of	a
red	one,	and	on	the	right	is	a	solid	grayish	rectangle,	as	shown	in	Figure	10.8.

Figure	10.8

The	grayish	areas	are	drop	targets,	and	the	blue	and	red	boxes	are	draggable	objects.
Drag	the	blue	box	to	the	empty	drop	target,	and	you’ll	see	a	dashed	border	appear
around	the	target	(Figure	10.9).

Figure	10.9

Drop	the	blue	box	on	that	target,	and	you’ll	see	it	move	from	the	left	target	to	the
right.	Now	drag	the	boxes	between	the	two	drop	targets	to	see	the	full	effect.

Let’s	start	with	the	HTML.	A	drop	target	in	this	example	is	an	element	identified	with
the	data-drop-target	attribute	set	to	true.	This	example	consists	of	two	drop
targets,	although	you	can	easily	add	more:

<div	data-drop-target="true">

				<div	id="box1"	draggable="true"	class="box	navy"></div>

				<div	id="box2"	draggable="true"	class="box	red"></div>

</div>

<div	data-drop-target="true"></div>

The	first	drop	target	contains	two	draggable	<div/>	elements,	and	they	each	have	an
id	attribute.	Other	than	their	id	values,	the	only	difference	is	their	CSS.	Both	use	the
box	CSS	class,	but	one	also	uses	the	navy	CSS	class,	whereas	the	other	uses	the	red
class.

Speaking	of	CSS,	let’s	look	at	the	styles	defined	in	the	style	sheet.	The	first	rule
matches	all	elements	that	have	a	data-drop-target	attribute:

[data-drop-target]	{

				height:	400px;

				width:	200px;

				margin:	2px;

				background-color:	gainsboro;

				float:	left;

}

The	height	and	width	are	set	to	accommodate	two	draggable	boxes	at	a	time.	A

margin	of	two	pixels	gives	just	enough	space	between	the	drop	target	elements	to
visually	separate	them.	A	background	color	makes	them	easily	distinguishable
between	the	page’s	background,	and	they	each	float	left.

The	next	rule	also	applies	to	drop	targets:

.drag-enter	{

				border:	2px	dashed	#000;

}

The	drag-enter	class	is	used	as	a	visual	cue.	As	you	drag	an	object	over	a	drop	target
element,	this	drag-enter	class	is	applied	to	the	element.	This	isn’t	necessary	for	the
drag-and-drop	operation	to	complete,	but	it	does	enhance	the	user’s	experience.

The	final	set	of	CSS	rules	is	used	for	the	draggable	elements:

.box	{

				width:	200px;

				height:	200px;

}

.navy	{

				background-color:	navy;

}

.red	{

				background-color:	red;

}

Each	draggable	element	uses	the	box	class	to	set	its	height	and	width.	The	navy	and
red	classes	are	used	in	conjunction	with	the	box	class	to	give	the	element	a
background	color	of	navy	or	red,	respectively.

As	for	the	JavaScript,	you	first	retrieve	two	groups	of	elements—those	that	are
draggable	and	those	that	are	drop	targets:

var	draggable	=	document.querySelectorAll("[draggable]");

var	targets	=	document.querySelectorAll("[data-drop-target]");

So	using	the	document.querySelectorAll()	method,	you	retrieve	both	groups	of
elements	with	their	respective	[draggable]	and	[data-drop-target]	CSS	selectors
and	assign	them	to	the	draggable	and	targets	variables.

Next,	you	want	to	register	the	dragstart	event	listeners	on	the	draggable	elements:

for	(var	i	=	0;	i	<	draggable.length;	i++)	{

				draggable[i].addEventListener("dragstart",	handleDragStart);

}

Using	a	for	loop,	you	iterate	over	the	draggable	collection	and	call	the
addEventListener()	method	on	each	draggable	object,	passing	dragstart	as	the
event	and	the	handleDragStart()	function	object	as	the	handler.

You	then	want	to	use	a	similar	process	on	the	target	elements:

for	(i	=	0;	i	<	targets.length;	i++)	{

				targets[i].addEventListener("dragover",	handleOverDrop);

				targets[i].addEventListener("drop",	handleOverDrop);

				targets[i].addEventListener("dragenter",	handleDragEnterLeave);

				targets[i].addEventListener("dragleave",	handleDragEnterLeave);

}

By	using	another	for	loop,	you	loop	through	the	targets	collection	and	register
event	handlers	for	the	dragover,	drop,	dragenter,	and	dragleave	events.	Two
functions	are	used	to	handle	these	four	events:	the	handleOverDrop()	function
handles	the	dragover	and	drop	events,	and	handleDragEnterLeave()	handles
dragenter	and	dragleave.

The	first	function,	handleDragStart(),	contains	just	a	single	line	of	code:

function	handleDragStart(e)	{

				e.dataTransfer.setData("text",	this.id);

}

Its	purpose	is	simple:	to	store	the	id	of	the	draggable	element.	Notice	the	use	of	this
in	this.id.	When	you	register	an	event	listener,	the	handler	function	executes	within
the	context	of	the	element	object	the	event	fired	on.	In	this	case,	the	dragstart	event
fired	on	one	of	the	draggable	elements;	so,	this	refers	to	that	element.	In	other	words,
this	is	the	same	as	e.target.

The	next	function	is	handleDragEnterLeave(),	and	as	mentioned	earlier,	it	executes
when	the	dragenter	and	dragleave	events	fire	on	a	drop	target:

function	handleDragEnterLeave(e)	{

				if	(e.type	==	"dragenter")	{

								this.className	=	"drag-enter";

				}	else	{

								this.className	=	"";

				}

}

The	first	line	of	this	function	checks	the	type	of	event	that	occurred.	If	the	event	is
dragenter,	the	CSS	class	of	the	drop	target	element	is	set	to	drag-enter	(once	again,
notice	this	is	used	instead	of	e.target—it’s	much	easier	to	type).	If	the	event	isn’t
dragenter,	the	element’s	CSS	class	is	set	to	an	empty	string,	thus	removing	the	drag-
enter	class.

The	final	function,	handleOverDrop(),	performs	the	real	magic	of	the	drag-and-drop
operation.	This	function	handles	both	the	dragover	and	drop	events	and	should
therefore	prevent	the	default	action	from	occurring.	Thus,	the	first	line	of	the	function
calls	e.preventDefault():

function	handleOverDrop(e)	{

				e.preventDefault();

This	is	all	that	is	needed	for	the	dragover	event.	So,	if	the	event	isn’t	a	drop	event,
the	function	simply	exits:

				if	(e.type	!=	"drop")	{

								return;

				}

If	it	is	a	drop	event,	the	function	continues	on	and	retrieves	the	draggable	element’s
id	from	the	DataTransfer	object:

				var	draggedId	=	e.dataTransfer.getData("text");

				var	draggedEl	=	document.getElementById(draggedId);

And	with	this	id,	you	retrieve	the	draggable	element’s	object	with
document.getElementById()	and	store	it	in	the	draggedEl	variable.

You	have	two	options	when	it	comes	to	dropping	one	of	the	draggable	boxes:	you	can
either	drop	it	in	the	target	it’s	currently	in,	or	you	can	drop	it	in	another	target.	If
dropped	in	its	current	location,	there’s	nothing	left	to	do	except	reset	the	target’s	CSS
class.	This	is	easy	enough	to	check;	simply	use	the	element’s	parentNode	property:

				if	(draggedEl.parentNode	==	this)	{

								this.className	=	"";

								return;

				}

If	the	dragged	element’s	parent	node	is	the	target	drop	zone,	you	set	the	className
property	to	an	empty	string	and	exit	the	function	using	the	return	statement.
Otherwise,	you	want	to	move	the	dragged	element	node	from	its	old	parent/drop
target	to	its	new	parent/drop	target:

				draggedEl.parentNode.removeChild(draggedEl);

				this.appendChild(draggedEl);

This	is	a	simple	process,	as	you	can	see.	To	remove	the	draggable	element	from	its
current	parent,	you	retrieve	its	parentNode	and	call	the	removeChild()	method.	The
removeChild()	method	doesn’t	delete	the	node;	it	simply	removes	it	so	that	you	can
append	it	to	another	node	in	the	DOM.

With	the	dragged	element	moved	from	one	drop	target	to	another,	the	drag-and-drop
operation	is	complete,	and	you	set	the	drop	target	element’s	CSS	class	to	an	empty
string:

				this.className	=	"";

This	visually	resets	the	drop	target,	giving	users	a	visual	cue	that	the	drag-and-drop
operation	is	complete.

A	web	page	is	an	interactive	environment.	Users	are	busy	clicking,	typing,	dragging,	and
doing	other	things.	As	such,	events	are	an	extremely	important	matter	for	web	developers.
Not	only	are	events	how	we	respond	and	interact	with	the	user,	they	also	enable	us	to
execute	code	when	specific	things	happen	in	the	page.	In	later	chapters,	you	see	examples
of	such	and	use	events	to	respond	to	an	object’s	action,	rather	than	a	user’s	action.

SUMMARY
You’ve	covered	a	lot	in	this	chapter,	but	now	you	have	a	solid	basis	on	how	to	work	with
and	handle	events	in	the	browsers	that	are	currently	in	use	on	the	web.	You	even	know	the
difference	between	the	standard	DOM	event	model	and	old-IE’s	event	model,	and	you
wrote	an	event	utility	that	makes	writing	cross-browser	JavaScript	relatively	simple.

This	chapter	covered	the	following	points:

You	saw	that	HTML	elements	have	events	as	well	as	methods	and	properties.	You
handle	these	events	in	JavaScript	by	using	event	handlers,	which	you	connect	to	code
that	you	want	to	have	executed	when	the	event	occurs.	The	events	available	for	use
depend	on	the	object	you	are	dealing	with.

You	can	connect	a	function	to	an	element’s	event	handler	using	the	element’s	“on”
attributes.	But	you	also	learned	that	doing	so	mixes	your	HTML	and	JavaScript,	and
this	approach	should	be	avoided	most	of	the	time.

Events	can	be	handled	by	using	an	object’s	"on"	properties,	which	is	a	better	solution
than	the	HTML	attributes,	but	still	has	its	own	issues.

The	standard	DOM	event	model	is	supported	by	all	modern	browsers,	and	it	provides
the	best	way	to	connect	your	code	to	events.

You	learned	about	the	standard	Event	object	and	how	it	provides	a	lot	of	information
about	the	event	that	occurred,	including	the	type	of	event	and	the	element	that
received	the	event.

You	learned	about	old-IE’s	proprietary	event	model,	how	to	connect	events	with
attachEvent(),	and	how	to	access	old-IE’s	event	object.

Some	differences	exist	between	the	standard	DOM	event	model	and	the	old-IE	event
model.	You	learned	the	key	differences	and	wrote	a	simple	cross-browser	event
utility.

Some	events	have	a	default	action	that	occurs	when	the	event	fires,	and	you	can
prevent	that	action	with	the	standard	Event	object’s	preventDefault()	method	and
old-IE’s	returnValue	property.

Modern	browsers	support	native	drag-and-drop	capabilities,	and	you	can	write	code
that	takes	advantage	of	this	new	feature.

In	some	instances,	such	as	for	the	document	object,	a	second	way	of	connecting	event
handlers	to	code	is	necessary.	Setting	the	object’s	property	with	the	name	of	the	event
handler	to	your	function	produces	the	same	effect	as	if	you	did	it	using	the	event
handler	as	an	attribute.

In	some	instances,	returning	values	from	event	functions	enables	you	to	cancel	the
action	associated	with	the	event.	For	example,	to	stop	a	clicked	link	from	navigating
to	a	page,	you	return	false	from	the	event	handler’s	code.

That’s	it	for	this	chapter.	In	the	next	chapter,	you	move	on	to	form	scripting,	where	you

can	add	various	controls	to	your	page	to	help	you	gather	information	from	the	user.

EXERCISES
1.	 Add	a	method	to	the	event	utility	object	called	isOldIE()	that	returns	a	boolean

value	indicating	whether	or	not	the	browser	is	old-IE.

2.	 Example	15	exhibits	some	behavior	inconsistencies	between	standards-compliant
browsers	and	old-IE.	Remember	that	the	event	handlers	execute	in	reverse	order	in
old-IE.	Modify	this	example	to	use	the	new	isOldIE()	method	so	that	you	can	write
specific	code	for	old-IE	and	standards-compliant	browsers	(Hint:	you	will	call	the
addListener()	method	four	times).

3.	 Example	17	had	you	write	a	cross-browser	tab	script,	but	as	you	probably	noticed,	it
behaves	peculiarly.	The	basic	idea	is	there,	but	the	tabs	remain	active	as	you	click
another	tab.	Modify	the	script	so	that	only	one	tab	is	active	at	a	time.

11
HTML	Forms:	Interacting	with	the	User
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Scripting	text,	password,	text	area,	and	hidden	form	controls

Writing	code	for	select,	check	box,	and	radio	button	form	controls

Using	JavaScript	to	interact	with	new	HTML5	form	controls

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

Web	pages	would	be	very	boring	if	you	could	not	interact	with	or	obtain	information	from
the	user,	such	as	text,	numbers,	or	dates.	Luckily,	with	JavaScript	this	is	possible.	You	can
use	this	information	within	the	web	page,	or	you	can	post	it	to	the	web	server	where	you
can	manipulate	it	and	store	it	in	a	database	if	you	wish.	This	chapter	concentrates	on	using
the	information	within	the	web	browser,	which	is	called	client-side	processing.

You’re	quite	accustomed	to	various	user	interface	elements.	For	example,	every	operating
system	has	a	number	of	standard	elements,	such	as	buttons	you	can	click;	lists,	drop-down
list	boxes,	and	radio	buttons	you	can	select	from;	and	boxes	you	can	check.	These
elements	are	the	means	by	which	you	now	interface	with	applications.	The	good	news	is
that	you	can	include	many	of	these	types	of	elements	in	your	web	page—and	even	better,
it’s	very	easy	to	do	so.	When	you	have	such	an	element—say,	a	button—inside	your	page,
you	can	then	tie	code	to	its	events.	For	example,	when	the	button	is	clicked,	you	can	fire
off	a	JavaScript	function	you	created.

All	of	the	HTML	elements	used	for	interaction	should	be	placed	inside	an	HTML	form.
Let’s	start	by	taking	a	look	at	HTML	forms	and	how	you	interact	with	them	in	JavaScript.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

HTML	FORMS
Forms	provide	you	with	a	way	of	grouping	together	HTML	interaction	elements	with	a
common	purpose.	For	example,	a	form	may	contain	elements	that	enable	the	input	of	a
user’s	data	for	registering	on	a	website.	Another	form	may	contain	elements	that	enable
the	user	to	ask	for	a	car	insurance	quote.	It’s	possible	to	have	a	number	of	separate	forms
in	a	single	page.	You	don’t	need	to	worry	about	pages	containing	multiple	forms	until	you
have	to	submit	information	to	a	web	server—then	you	need	to	be	aware	that	the
information	from	only	one	of	the	forms	on	a	page	can	be	submitted	to	the	server	at	one
time.

To	create	a	form,	use	the	<form>	and	</form>	tags	to	declare	where	it	starts	and	where	it
ends.	The	<form/>	element	has	a	number	of	attributes,	such	as	the	action	attribute,	which
determines	where	the	form	is	submitted;	the	method	attribute,	which	determines	how	the
information	is	submitted;	and	the	target	attribute,	which	determines	the	frame	to	which
the	response	to	the	form	is	loaded.

Generally	speaking,	for	client-side	scripting	where	you	have	no	intention	of	submitting
information	to	a	server,	these	attributes	are	not	necessary.	For	now	the	only	attribute	you
need	to	set	in	the	<form/>	element	is	the	name	attribute,	so	that	you	can	reference	the	form.

So,	to	create	a	blank	form,	the	tags	required	would	look	something	like	this:

<form	name="myForm">

</form>

You	won’t	be	surprised	to	hear	that	these	tags	create	an	HtmlFormElement	object,	which
you	can	use	to	access	the	form.	You	can	access	this	object	in	two	ways.

First,	you	can	access	the	object	directly	using	its	name—in	this	case	document.myForm.
Alternatively,	you	can	access	the	object	through	the	document	object’s	forms	collection
property.	Remember	that	Chapter	8	included	a	discussion	of	the	document	object’s	images
collection	and	how	you	can	manipulate	it	like	any	other	array.	The	same	applies	to	the
forms	collection,	except	that	instead	of	each	element	in	the	collection	holding	an
HtmlImageElement	object,	it	now	holds	an	HtmlFormElement	(hereby	called	simply	Form)
object.	For	example,	if	it’s	the	first	form	in	the	page,	you	reference	it	using
document.forms[0].

NOTE	Of	course,	you	can	also	access	a	form	using	the	document.getElementById()
and	document.querySelector()	methods.

Many	of	the	attributes	of	the	<form/>	element	can	be	accessed	as	properties	of	the
HtmlFormElement	object.	In	particular,	the	name	property	mirrors	the	name	attribute	of	the
<form/>	element.

				TRY	IT	OUT								The	forms	Collection

In	this	Try	It	Out,	you’ll	use	the	forms	collection	to	access	each	of	three	Form	objects
and	show	the	value	of	their	name	properties	in	a	message	box.	Open	your	text	editor
and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	1</title>

</head>

<body>

				<form	action=""	name="form1">

								<p>

												This	is	inside	form1.

								</p>

				</form>

				<form	action=""	name="form2">

								<p>

												This	is	inside	form2

								</p>

				</form>

				<form	action=""	name="form3">

								<p>

												This	is	inside	form3

								</p>

				</form>

				<script>

								var	numberForms	=	document.forms.length;

								for	(var	index	=	0;	index	<	numberForms;	index++)	{

												alert(document.forms[index].name);

								}

				</script>

</body>

</html>

Save	this	as	ch11_example1.html.	When	you	load	it	into	your	browser,	you	should
see	an	alert	box	display	the	name	of	the	first	form.	Click	the	OK	button	to	display	the
next	form’s	name,	and	then	click	OK	a	third	time	to	display	the	third	and	final	form’s
name.

Within	the	body	of	the	page	you	define	three	forms.	You	give	each	form	a	name	and	a
paragraph	of	text.

In	the	JavaScript	code,	you	loop	through	the	forms	collection.	Just	like	any	other
JavaScript	array,	the	forms	collection	has	a	length	property,	which	you	can	use	to
determine	how	many	times	you	need	to	loop.	Actually,	because	you	know	how	many
forms	you	have,	you	can	just	write	the	number	in.	However,	this	example	uses	the
length	property,	because	that	makes	it	easier	to	add	to	the	collection	without	having
to	change	the	code.	Generalizing	your	code	like	this	is	a	good	practice	to	get	into.

The	code	starts	by	getting	the	number	of	Form	objects	within	the	forms	collection	and
storing	that	number	in	the	variable	numberForms:

var	numberForms	=	document.forms.length;

Next	you	define	the	for	loop:

for	(var	formIndex	=	0;	formIndex	<	numberForms;	formIndex++)	{

				alert(document.forms[formIndex].name);

}

Remember	that	because	the	indexes	for	arrays	start	at	0,	your	loop	needs	to	go	from
an	index	of	0	to	an	index	of	numberForms	–	1.	You	enable	this	by	initializing	the
index	variable	to	0,	and	setting	the	condition	of	the	for	loop	to	index	<
numberForms.

Within	the	for	loop’s	code,	you	pass	the	index	of	the	form	you	want	(that	is,	index)
to	document.forms[],	which	gives	you	the	Form	object	at	that	index	in	the	forms
collection.	To	access	the	Form	object’s	name	property,	you	put	a	dot	at	the	end	of	the
name	of	the	property,	name.

TRADITIONAL	FORM	OBJECT	PROPERTIES	AND
METHODS
The	HTML	form	controls	commonly	found	in	forms,	which	you	look	at	in	more	detail
shortly,	also	have	corresponding	objects.	One	way	to	access	these	is	through	the	elements
property	of	the	Form	object,	another	collection.	The	elements	collection	contains	all	the
objects	corresponding	to	the	HTML	interaction	elements	within	the	form,	with	the
exception	of	the	little-used	<input	type="image"/>	element.	As	you	see	later,	this
property	is	very	useful	for	looping	through	each	of	the	elements	in	a	form.	For	example,
you	can	loop	through	each	element	to	check	that	it	contains	valid	data	prior	to	submitting
a	form.

Being	a	collection,	the	elements	property	of	the	Form	object	has	the	length	property,
which	tells	you	how	many	elements	are	in	the	form.	The	Form	object	also	has	the	length
property,	which	also	gives	you	the	number	of	elements	in	the	form.	Which	of	these	you
use	is	up	to	you	because	both	do	the	same	job,	although	writing	myForm.length	is	shorter,
and	therefore	quicker	to	type	and	less	lengthy	to	look	at	in	code,	than
myForm.elements.length.

When	you	submit	data	from	a	form	to	a	server,	you	normally	use	the	Submit	button,	which
you	will	come	to	shortly.	However,	the	Form	object	also	has	the	submit()	method,	which
does	nearly	the	same	thing.

NOTE	The	submit()	method	submits	the	form,	but	it	does	not	fire	the	submit	event	of
the	Form	object;	thus,	submit	event	listeners	are	not	called	when	submitting	the	form
with	submit().

Recall	that	in	Chapter	10	you	learned	that	you	can	affect	whether	the	normal	course	of
events	continues	or	is	canceled.	You	saw,	for	example,	that	calling	preventDefault()	in	a
hyperlink’s	click	event	handler	causes	the	link’s	navigation	to	be	canceled.	Well,	the
same	principle	applies	to	the	Form	object’s	submit	event,	which	fires	when	the	user
submits	the	form.	By	calling	preventDefault(),	the	submission	is	canceled.	This	makes
the	submit	event	handler’s	code	a	great	place	to	do	form	validation—that	is,	to	check	that
what	the	user	has	entered	into	the	form	is	valid.	For	example,	if	you	ask	for	the	users’	ages
and	they	enter	mind	your	own	business,	you	can	spot	that	this	is	text	rather	than	a	valid
number	and	stop	them	from	continuing.

In	addition	to	there	being	a	Reset	button,	which	is	discussed	later	in	the	chapter,	the	Form
object	has	the	reset()	method,	which	clears	the	form,	or	restores	default	values	if	these
exist.

Creating	blank	forms	is	not	exactly	exciting	or	useful,	so	now	let’s	turn	our	attention	to	the
HTML	elements	that	provide	interaction	functionality	inside	forms.

HTML	Elements	in	Forms

About	ten	elements	are	commonly	found	within	<form/>	elements.	The	most	useful	are
shown	in	Figures	11.1,	11.2,	11.3,	and	11.4,	ordered	into	general	types.	Each	type	name	is
given	and,	in	parentheses,	the	HTML	needed	to	create	it,	though	note	this	is	not	the	full
HTML	but	only	a	portion.	The	new	HTML5	form	controls	are	not	listed	here;	you
examine	them	later	in	the	chapter.

Figure	11.1

Figure	11.2

Figure	11.3

Figure	11.4

As	you	can	see,	most	form	elements	are	created	by	means	of	the	<input/>	element.	One
of	the	<input/>	element’s	attributes	is	the	type	attribute.	It’s	this	attribute	that	decides
which	of	the	form	elements	this	element	will	be.	Examples	of	values	for	this	attribute
include	button	(to	create	a	button)	and	text	(to	create	a	text	box).

Each	form	element	inside	the	web	page	is	made	available	to	you	as—yes,	you	guessed	it
—an	object.	As	with	all	the	other	objects	you	have	seen,	each	element’s	object	has	its	own
set	of	distinctive	properties,	methods,	and	events.	You’ll	be	taking	a	look	at	each	form
element	in	turn	and	how	to	use	its	particular	properties,	methods,	and	events,	but	before
you	do	that,	let’s	look	at	properties	and	methods	that	the	objects	of	the	form	elements	have
in	common.

Common	Properties	and	Methods
Because	most	form	elements	are	created	by	the	<input/>	element,	it	would	be	correct	to
guess	that	all	form	elements	share	several	properties	and	methods	in	common.

Here	are	a	few.

The	name	Property
One	property	that	all	the	objects	of	the	form	elements	have	in	common	is	the	name
property.	You	can	use	the	value	of	this	property	to	reference	that	particular	element	in	your
script.	Also,	if	you	are	sending	the	information	in	the	form	to	a	server,	the	element’s	name
property	is	sent	along	with	any	value	of	the	form	element,	so	that	the	server	knows	what
the	value	relates	to.

The	value	Property

Most	form	element	objects	also	have	the	value	property,	which	returns	the	value	of	the
element.	For	example,	for	a	text	box,	the	value	property	returns	the	text	that	the	user
entered	in	the	text	box.	Also,	setting	the	value	of	the	value	property	enables	you	to	put
text	inside	the	text	box.	However,	the	use	of	the	value	property	is	specific	to	each
element,	so	you’ll	look	at	what	it	means	as	you	look	at	each	individual	element.

The	form	Property
All	form	element	objects	also	have	the	form	property,	which	returns	the	Form	object	in
which	the	element	is	contained.	This	can	be	useful	in	cases	where	you	have	a	generic
routine	that	checks	the	validity	of	data	in	a	form.	For	example,	when	the	user	clicks	a
Submit	button,	you	can	pass	the	Form	object	referenced	by	the	form	property	of	the	Submit
button	to	your	data	checker,	which	can	use	it	to	loop	through	each	element	on	the	form	in
turn,	checking	that	the	data	in	the	element	is	valid.	This	is	handy	if	you	have	more	than
one	form	defined	on	the	page	or	where	you	have	a	generic	data	checker	that	you	cut	and
paste	to	different	pages—this	way	you	don’t	need	to	know	the	form’s	name	in	advance.

The	type	Property
Sometimes	it’s	useful	to	know	what	type	of	element	you’re	dealing	with,	particularly
where	you’re	looping	through	the	elements	in	a	form	using	the	elements	collection
property.	This	information	can	be	retrieved	by	means	of	the	type	property,	which	each
element’s	object	has.	This	property	returns	the	type	of	the	element	(for	example,	button	or
text).

The	focus()	and	blur()	Methods
All	form	element	objects	also	have	the	focus()	and	blur()	methods.	Focus	is	a	concept
you	might	not	have	come	across	yet.	If	an	element	is	the	center	of	the	focus,	any	key
presses	made	by	the	user	are	passed	directly	to	that	element.	For	example,	if	a	text	box	has
focus,	pressing	keys	will	enter	values	into	the	text	box.	Also,	if	a	button	has	the	focus,
pressing	the	Enter	key	causes	the	button’s	onclick	event	handler	code	to	fire,	just	as	if	a
user	had	clicked	the	button	with	his	mouse.

The	user	can	set	which	element	currently	has	the	focus	by	clicking	it	or	by	using	the	Tab
key	to	select	it.	However,	you	as	the	programmer	can	also	decide	which	element	has	the
focus	by	using	the	form	element’s	object’s	focus()	method.	For	example,	if	you	have	a
text	box	for	the	user	to	enter	his	age	and	he	enters	an	invalid	value,	such	as	a	letter	rather
than	a	number,	you	can	tell	him	that	his	input	is	invalid	and	send	him	back	to	that	text	box
to	correct	his	mistake.

Blur,	which	perhaps	could	be	better	called	“lost	focus,”	is	the	opposite	of	focus.	If	you
want	to	remove	a	form	element	from	being	the	focus	of	the	user’s	attention,	you	can	use
the	blur()	method.	When	used	with	a	form	element,	the	blur()	method	usually	results	in
the	focus	shifting	to	the	page	containing	the	form.

In	addition	to	the	focus()	and	blur()	methods,	all	the	form	element’s	objects	have	the
onfocus	and	onblur	event	handlers.	These	are	fired,	as	you’d	expect,	when	an	element
gets	or	loses	the	focus,	respectively,	due	to	user	action	or	the	focus()	and	blur()
methods.	The	onblur	event	handler	can	be	a	good	place	to	check	the	validity	of	data	in	the

element	that	has	just	lost	the	focus.	If	the	data	is	invalid,	you	can	set	the	focus	back	to	the
element	and	let	the	user	know	why	the	data	he	entered	is	wrong.

NOTE	Remember	that	the	submit()	method	behaves	differently	than	focus()	and
blur()	in	that	it	does	not	fire	the	submit	event.

One	thing	to	be	careful	of	is	using	the	focus()	and	blur()	methods	in	the	focus	or	blur
event	listener	code.	There	is	the	danger	of	an	infinite	loop	occurring.	For	example,
consider	two	elements,	each	of	whose	focus	events	passes	the	focus	to	the	other	element.
Then,	if	one	element	gets	the	focus,	its	focus	event	will	pass	the	focus	to	the	second
element,	whose	focus	event	will	pass	the	focus	back	to	the	first	element,	and	so	on	until
the	only	way	out	is	to	close	the	browser	down.	This	is	not	likely	to	please	your	users!

Also	be	very	wary	of	using	the	focus()	and	blur()	methods	to	put	focus	back	in	a
problem	field	if	that	field	or	others	depend	on	some	of	the	user’s	input.	For	example,	say
you	have	two	text	boxes:	one	in	which	you	want	users	to	enter	their	city	and	the	other	in
which	you	want	them	to	enter	their	state.	Also	say	that	the	input	into	the	state	text	box	is
checked	to	make	sure	that	the	specified	city	is	in	that	state.	If	the	state	does	not	contain	the
city,	you	put	the	focus	back	on	the	state	text	box	so	that	the	user	can	change	the	name	of
the	state.	However,	if	the	user	actually	input	the	wrong	city	name	and	the	right	state	name,
she	may	not	be	able	to	go	back	to	the	city	text	box	to	rectify	the	problem.

Button	Elements
We’re	starting	our	look	at	form	elements	with	the	standard	button	element	because	it’s
probably	the	most	commonly	used	and	is	fairly	simple.	The	HTML	element	to	create	a
button	is	<input/>.	For	example,	to	create	a	button	called	myButton,	which	has	the	words
“Click	Me”	on	its	face,	the	<input/>	element	would	need	to	be	as	follows:

<input	type="button"	name="myButton"	value="Click	Me"	/>

The	type	attribute	is	set	to	button,	and	the	value	attribute	is	set	to	the	text	you	want	to
appear	on	the	face	of	the	button.	You	can	leave	the	value	attribute	off,	but	you’ll	end	up
with	a	blank	button,	which	will	leave	your	users	guessing	as	to	its	purpose.

This	element	creates	an	associated	HTMLInputElement	object	(in	fact,	all	<input/>
elements	create	HTMLInputElement	objects);	in	this	example	it	is	called	myButton.	This
object	has	all	the	common	properties	and	methods	described	earlier,	including	the	value
property.	This	property	enables	you	to	change	the	text	on	the	button	face	using	JavaScript,
though	this	is	probably	not	something	you’ll	need	to	do	very	often.	What	the	button	is
really	all	about	is	the	click	event.

You	connect	to	the	button’s	click	event	just	as	you	would	with	any	other	element.	All	you
need	to	do	is	define	a	function	that	you	want	to	execute	when	the	button	is	clicked	(say,
buttonClick())	and	then	register	a	click	event	listener	with	the	addEventListener()
method.

				TRY	IT	OUT								Counting	Button	Clicks
In	the	following	example,	you	use	the	methods	described	previously	to	record	how
often	a	button	has	been	clicked.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	2</title>

</head>

<body>

				<form	action=""	name="form1">

								<input	type="button"	name="myButton"	value="Button	clicked	0	

times"	/>

				</form>

				<script>

								var	myButton	=	document.form1.myButton;

								var	numberOfClicks	=	0;

								function	myButtonClick()	{

												numberOfClicks++;

												myButton.value	=	"Button	clicked	"	+	numberOfClicks	+	"	

times";

								}

								myButton.addEventListener("click",	myButtonClick);

				</script>

</body>

</html>

Save	this	page	as	ch11_example2.html.	If	you	load	this	page	into	your	browser,	you
will	see	a	button	with	“Button	clicked	0	times”	on	it.	If	you	repeatedly	press	this
button,	you	will	see	the	number	of	button	clicks	recorded	on	the	text	of	the	button.

You	start	the	script	block	by	defining	two	variables	called	myButton	and
numberOfClicks.	The	former	holds	a	reference	to	the	<input/>	element	object.	You
record	the	number	of	times	the	button	has	been	clicked	in	the	latter	and	use	this
information	to	update	the	button’s	text.

The	other	piece	of	code	in	the	script	block	is	the	definition	of	the	function
myButtonClick().	This	function	handles	the	<input/>	element’s	click	event:

myButton.addEventListener("click",	myButtonClick);

This	element	is	for	a	Button	element	called	myButton	and	is	contained	within	a	form
called	form1:

<form	action=""	name="form1">

				<input	type="button"	name="myButton"	value="Button	clicked	0	times"	

/>

</form>

Let’s	look	at	the	myButtonClick()	function	a	little	more	closely.	First,	the	function
increments	the	value	of	the	variable	numberOfClicks	by	one:

function	myButtonClick()	{

				numberOfClicks++;

Next,	you	update	the	text	on	the	button	face	using	the	Button	object’s	value	property:

				myButton.value	=	"Button	clicked	"	+	numberOfClicks	+	"	times";

}

The	function	in	this	example	is	specific	to	this	form	and	button,	rather	than	a	generic
function	you’ll	use	in	other	situations.	Therefore,	the	code	in	this	example	directly
refers	to	a	button	using	the	myButton	variable.

				TRY	IT	OUT								mouseup	and	mousedown
Events
Two	less	commonly	used	events	supported	by	the	Button	object	are	the	mousedown
and	mouseup	events.	You	can	see	these	two	events	in	action	in	the	next	example.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	3</title>

</head>

<body>

				<form	action=""	name="form1">

								<input	type="button"	name="myButton"	value="Mouse	goes	up"	/>

				</form>

				<script>

								var	myButton	=	document.form1.myButton;

								function	myButtonMouseup()	{

												myButton.value	=	"Mouse	Goes	Up";

								}

								function	myButtonMousedown()	{

												myButton.value	=	"Mouse	Goes	Down";

								}

								myButton.addEventListener("mousedown",	myButtonMousedown);

								myButton.addEventListener("mouseup",	myButtonMouseup);

				</script>

</body>

</html>

Save	this	page	as	ch11_example3.html	and	load	it	into	your	browser.	If	you	click	the
button	with	your	left	mouse	button	and	keep	it	held	down,	you’ll	see	the	text	on	the
button	change	to	“Mouse	Goes	Down.”	As	soon	as	you	release	the	button,	the	text

changes	to	“Mouse	Goes	Up.”

In	the	body	of	the	page,	you	define	a	button	called	myButton	within	a	form	called
form1:

<form	action=""	name="form1">

				<input	type="button"	name="myButton"	value="Mouse	goes	up"	/>

</form>

Your	JavaScript	code	retrieves	this	Button	object	from	the	document	and	stores	it	in
the	myButton	variable,	and	you	register	event	listeners	for	the	mouseup	and	mousedown
events.

The	myButtonMouseup()	and	myButtonMousedown()	functions	handle	those	events,
respectively.	Each	function	consists	of	just	a	single	line	of	code,	in	which	you	use	the
value	property	of	the	Button	object	to	change	the	text	that	is	displayed	on	the
button’s	face.

An	important	point	to	note	is	that	events	like	mouseup	and	mousedown	are	triggered
only	when	the	mouse	pointer	is	actually	over	the	element	in	question.	For	example,	if
you	click	and	hold	down	the	mouse	button	over	your	button,	then	move	the	mouse
away	from	the	button	before	releasing	the	mouse	button,	you’ll	find	that	the	mouseup
event	does	not	fire	and	the	text	on	the	button’s	face	does	not	change.	In	this	instance	it
would	be	the	document	object’s	mouseup	event	that	would	fire,	if	you’d	connected	any
code	to	it.

Don’t	forget	that,	like	all	form	element	objects,	the	Button	object	also	has	the	focus
and	blur	events,	though	they	are	rarely	used	in	the	context	of	buttons.

Two	additional	button	types	are	the	Submit	and	Reset	buttons.	You	define	these	buttons
just	as	you	do	a	standard	button,	except	that	the	type	attribute	of	the	<input>	tag	is	set	to
submit	or	reset	rather	than	to	button.	For	example,	the	Submit	and	Reset	buttons	in
Figure	11.4	were	created	using	the	following	code:

<input	type="submit"	value="Submit"	name="submit1"	/>

<input	type="reset"	value="Reset"	name="reset1"	/>

These	buttons	have	special	purposes,	which	are	not	related	to	script.

When	the	Submit	button	is	clicked,	the	form	data	from	the	form	that	the	button	is	inside
gets	sent	to	the	server	automatically,	without	the	need	for	any	script.

When	the	Reset	button	is	clicked,	all	the	elements	in	a	form	are	cleared	and	returned	to
their	default	values	(the	values	they	had	when	the	page	was	first	loaded).

The	Submit	and	Reset	buttons	have	corresponding	objects	called	Submit	and	Reset,	which
have	exactly	the	same	properties,	methods,	and	events	as	a	standard	Button	object.

Text	Elements
The	standard	text	elements	enable	users	to	enter	a	single	line	of	text.	This	information	can
then	be	used	in	JavaScript	code	or	submitted	to	a	server	for	server-side	processing.

The	Text	Box
A	text	box	is	created	by	means	of	the	<input/>	element,	much	as	the	button	is,	but	with
the	type	attribute	set	to	text.	Again,	you	can	choose	not	to	include	the	value	attribute,
but	if	you	do,	this	value	will	appear	inside	the	text	box	when	the	page	is	loaded.

In	the	following	example	the	<input/>	element	has	two	additional	attributes,	size	and
maxlength.	The	size	attribute	determines	how	many	characters	wide	the	text	box	is,	and
maxlength	determines	the	maximum	number	of	characters	the	user	can	enter	in	the	box.
Both	attributes	are	optional	and	use	defaults	determined	by	the	browser.

For	example,	to	create	a	text	box	10	characters	wide,	with	a	maximum	character	length	of
15,	and	initially	containing	the	words	Hello	World,	your	<input/>	element	would	be	as
follows:

<input	type="text"	name="myTextBox"	size="10"	maxlength="15"	value="Hello	

World"	/>

The	object	that	this	element	creates	has	a	value	property,	which	you	can	use	in	your
scripts	to	set	or	read	the	text	contained	inside	the	text	box.	In	addition	to	the	common
properties	and	methods	discussed	earlier,	the	object	representing	the	text	box	also	has	the
select()	method,	which	selects	or	highlights	all	the	text	inside	the	text	box.	This	may	be
used	if	the	user	has	entered	an	invalid	value,	and	you	can	set	the	focus	to	the	text	box	and
select	the	text	inside	it.	This	then	puts	the	user’s	cursor	in	the	right	place	to	correct	the
data	and	makes	it	very	clear	to	the	user	where	the	invalid	data	is.	The	value	property
always	returns	a	string	data	type,	even	if	number	characters	are	being	entered.	If	you	use
the	value	as	a	number,	JavaScript	normally	does	a	conversion	from	a	string	data	type	to	a
number	data	type	for	you,	but	this	is	not	always	the	case.	For	example,	JavaScript	won’t
do	the	conversion	if	the	operation	you’re	performing	is	valid	for	a	string.	If	you	have	a
form	with	two	text	boxes	and	you	add	the	values	returned	from	these,	JavaScript
concatenates	rather	than	adds	the	two	values,	so	1	plus	1	will	be	11	and	not	2.	To	fix	this,
you	need	to	convert	all	the	values	involved	to	a	numerical	data	type,	for	example	by	using
parseInt()	or	parseFloat()	or	Number().	However,	if	you	subtract	the	two	values,	an
operation	only	valid	for	numbers,	JavaScript	says	“Aha,	this	can	only	be	done	with
numbers,	so	I’ll	convert	the	values	to	a	number	data	type.”	Therefore,	1	minus	1	will	be
returned	as	0	without	your	having	to	use	parseInt()	or	parseFloat().	This	is	a	tricky
bug	to	spot,	so	it’s	best	to	get	into	the	habit	of	converting	explicitly	to	avoid	problems
later.

In	addition	to	the	common	events,	such	as	focus	and	blur,	the	text	box	has	the	change,
select,	keydown,	keypress,	and	keyup	events.

The	select	event	fires	when	the	user	selects	some	text	in	the	text	box.

More	useful	is	the	change	event,	which	fires	when	the	element	loses	focus	if	(and	only	if)
the	value	inside	the	text	box	is	different	from	the	value	it	had	when	it	got	the	focus.	This
enables	you	to	do	things	like	validity	checks	that	occur	only	if	something	has	changed.

You	can	use	the	readonly	attribute	of	the	<input/>	element,	or	the	corresponding
readOnly	property,	to	prevent	the	contents	from	being	changed:

<input	type="text"	name="txtReadonly"	value="Look	but	don't	change"

				readonly="readonly">

The	keypress,	keydown,	and	keyup	events	fire,	as	their	names	suggest,	when	the	user
presses	a	key,	when	the	user	presses	a	key	down,	and	when	a	key	that	is	pressed	down	is
let	back	up,	respectively.

				TRY	IT	OUT								A	Simple	Form	with	Validation
Let’s	put	all	the	information	on	text	boxes	and	buttons	together	into	an	example.	In
this	example,	you	have	a	simple	form	consisting	of	two	text	boxes	and	a	button.	The
top	text	box	is	for	the	users’	name,	and	the	second	is	for	their	age.	You	do	various
validity	checks.	You	check	the	validity	of	the	age	text	box	when	it	loses	focus.
However,	the	name	and	age	text	boxes	are	only	checked	to	see	if	they	are	empty	when
the	button	is	clicked.	This	example	does	not	work	properly	on	Firefox;	we’ll	discuss
this	shortly.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	4</title>

</head>

<body>

				<form	action=""	name="form1">

								Please	enter	the	following	details:

								<p>

												Name:

												<input	type="text"	name="txtName"	/>

								</p>

								<p>

												Age:

												<input	type="text"	name="txtAge"	size="3"	maxlength="3"	/>

								</p>

								<p>

												<input	type="button"	value="Check	details"	

name="btnCheckForm">

								</p>

				</form>

				<script>

								var	myForm	=	document.form1;

								function	btnCheckFormClick(e)	{

												var	txtName	=	myForm.txtName;

												var	txtAge	=	myForm.txtAge;

												if	(txtAge.value	==	""	||	txtName.value	==	"")	{

																alert("Please	complete	all	of	the	form");

																if	(txtName.value	==	"")	{

																				txtName.focus();

																}	else	{

																				txtAge.focus();

																}

												}	else	{

																alert("Thanks	for	completing	the	form	"	+	

txtName.value);

												}

								}

								function	txtAgeBlur(e)	{

												var	target	=	e.target;

												if	(isNaN(target.value))	{

																alert("Please	enter	a	valid	age");

																target.focus();

																target.select();

												}

								}

								function	txtNameChange(e)	{

												alert("Hi	"	+	e.target.value);

								}

								myForm.txtName.addEventListener("change",	txtNameChange);

								myForm.txtAge.addEventListener("blur",	txtAgeBlur);

								myForm.btnCheckForm.addEventListener("click",	

btnCheckFormClick);

				</script>

</body>

</html>

After	you’ve	entered	the	text,	save	the	file	as	ch11_example4.html	and	load	it	into
your	web	browser.

In	the	text	box	shown	in	Figure	11.5,	type	your	name.	When	you	leave	the	text	box,
you’ll	see	Hi	yourname	appear	in	an	alert	box.

Figure	11.5

Enter	an	invalid	value	into	the	age	text	box,	such	as	aaaa,	and	when	you	try	to	leave
the	box,	it’ll	tell	you	of	the	error	and	send	you	back	to	correct	it.

Finally,	click	the	Check	Details	button	and	both	text	boxes	will	be	checked	to	see	that
you	have	completed	them.	If	either	is	empty,	you’ll	get	a	message	telling	you	to
complete	the	whole	form,	and	it’ll	send	you	back	to	the	box	that’s	empty.

If	everything	is	filled	in	correctly,	you’ll	get	a	message	thanking	you,	as	shown	in
Figure	11.5.

Within	the	body	of	the	page,	you	create	the	HTML	elements	that	define	your	form.
Inside	your	form,	which	is	called	form1,	you	create	three	form	elements	with	the
names	txtName,	txtAge,	and	btnCheckForm:

<form	action=""	name="form1">

				Please	enter	the	following	details:

				<p>

								Name:

								<input	type="text"	name="txtName"	/>

				</p>

				<p>

								Age:

								<input	type="text"	name="txtAge"	size="3"	maxlength="3"	/>

				</p>

				<p>

								<input	type="button"	value="Check	details"

															name="btnCheckForm">

				</p>

</form>

You’ll	see	that	for	the	second	text	box	(the	txtAge	text	box),	you	have	included	the

size	and	maxlength	attributes	inside	the	<input/>	element.	Setting	the	size	attribute
to	3	gives	the	user	an	idea	of	how	much	text	you	are	expecting,	and	setting	the
maxlength	attribute	to	3	helps	ensure	that	you	don’t	get	overly	large	numbers	entered
for	the	age	value.

You	register	listeners	for	various	events	on	these	elements:

var	myForm	=	document.form1;

myForm.txtName.addEventListener("change",	txtNameChange);

myForm.txtAge.addEventListener("blur",	txtAgeBlur);

myForm.btnCheckForm.addEventListener("click",	btnCheckFormClick);

The	first	text	box’s	change	event	is	handled	by	the	txtNameChange(),	the	second	text
box’s	blur	event	is	handled	by	txtAgeBlur(),	and	the	button’s	click	event	will
cause	btnCheckFormClick()	to	execute.	Let’s	look	at	each	of	these	functions	in	turn,
starting	with	btnCheckFormClick().

The	first	thing	you	do	is	define	two	variables,	txtName	and	txtAge,	and	set	them	to
reference	<input/>	elements	with	the	same	names:

function	btnCheckFormClick(e)	{

				var	txtName	=	myForm.txtName;

				var	txtAge	=	myForm.txtAge;

These	are	convenience	variables,	thus	reducing	the	size	of	your	code	(you	don’t	have
to	type	myForm.txtName	every	time	you	reference	the	txtName	object).	It	makes	your
code	more	readable	and	therefore	easier	to	debug,	and	it	saves	typing.

After	getting	the	reference	to	the	<input/>	element	objects,	you	then	use	it	in	an	if
statement	to	check	whether	the	value	in	the	text	box	named	txtAge	or	the	text	box
named	txtName	actually	contains	any	text:

				if	(txtAge.value	==	""	||	txtName.value	==	"")	{

								alert("Please	complete	all	of	the	form");

								if	(txtName.value	==	"")	{

												txtName.focus();

								}	else	{

												txtAge.focus();

								}

				}

If	you	do	find	an	incomplete	form,	you	alert	the	user.	Then	in	an	inner	if	statement,
you	check	which	text	box	was	not	filled	in.	You	set	the	focus	to	the	offending	text
box,	so	that	the	user	can	start	filling	it	in	straightaway	without	having	to	move	the
focus	to	it	herself.	It	also	lets	the	user	know	which	text	box	your	program	requires	her
to	fill	in.	To	avoid	annoying	your	users,	make	sure	that	text	in	the	page	tells	them
which	fields	are	required.

If	the	original	outer	if	statement	finds	that	the	form	is	complete,	it	lets	the	user	know
with	a	thank-you	message:

				else	{

								alert("Thanks	for	completing	the	form	"	+	txtName.value);

				}

}

In	this	sort	of	situation,	it’s	probably	more	likely	that	you’ll	submit	the	form	to	the
server	than	to	let	the	user	know	with	a	thank-you	message.	You	can	do	this	using	the
Form	object’s	submit()	method	or	using	a	normal	Submit	button.

The	next	of	the	three	functions	is	txtAgeBlur(),	which	handles	the	blur	event	of	the
txtAge	text	box.	This	function’s	purpose	is	to	check	that	the	string	value	the	user
entered	into	the	age	box	actually	consists	of	numeric	characters:

function	txtAgeBlur(e)	{

				var	target	=	e.target;

At	the	start	of	the	function,	you	retrieve	the	target	of	the	event	(the	txtAge	text	box)
and	store	it	in	the	target	variable.	You	could	use	myForm.txtAge	to	reference	the
same	txtAge	text	box,	but	using	the	Event	object’s	target	property	is	a	better
solution.	The	txtAgeBlur()	function	works	only	with	the	element	that	received	the
blur	event.	As	such,	using	the	Event	object’s	target	property	gives	you	a
generalized	function	that	doesn’t	depend	on	any	external	variables,	such	as	myForm.
Plus,	it’s	less	typing.

The	following	if	statement	checks	to	see	whether	what	has	been	entered	in	the
txtAge	text	box	can	be	converted	to	a	number.	You	use	the	isNaN()	function	to	do
this	for	you.	If	the	value	in	the	txtAge	text	box	is	not	a	number,	it	tells	the	user	and
sets	the	focus	back	to	the	text	box	by	calling	the	focus()	method.	Additionally,	this
time	you	highlight	the	text	by	using	the	select()	method.	This	makes	it	even	clearer
to	the	users	what	they	need	to	fix.	It	also	allows	them	to	rectify	the	problem	without
needing	to	delete	text	first.

				if	(isNaN(target.value))	{

								alert("Please	enter	a	valid	age");

								target.focus();

								target.select();

				}

}

You	could	go	further	and	check	that	the	number	inside	the	text	box	is	actually	a	valid
age—for	example,	191	is	not	a	valid	age,	nor	is	255	likely	to	be.	You	just	need	to	add
another	if	statement	to	check	for	these	possibilities.

This	function	handles	the	blur	event	of	the	txtAge	text	box,	but	why	didn’t	you	use
the	change	event,	with	its	advantage	that	it	only	rechecks	the	value	when	the	value
has	actually	been	changed?	The	change	event	would	not	fire	if	the	box	was	empty
both	before	focus	was	passed	to	it	and	after	focus	was	passed	away	from	it.	However,
leaving	the	checking	of	the	form	completion	until	just	before	the	form	is	submitted	is
probably	best	because	some	users	prefer	to	fill	in	information	out	of	order	and	come
back	to	some	form	elements	later.

The	final	function	is	for	the	txtName	text	box’s	change	event.	Its	use	here	is	a	little
flippant	and	intended	primarily	as	an	example	of	the	change	event:

function	txtNameChange(e)	{

				alert("Hi	"	+	e.target.value);

}

When	the	change	event	fires	(when	focus	is	passed	away	from	the	name	text	box	and
its	contents	have	changed),	you	take	the	value	of	the	event	target	(again,	making	use
of	the	target	property)	and	put	it	into	an	alert	box.	It	simply	says	Hi	yourname.

Problems	with	Firefox	and	the	blur	Event
The	previous	example	will	fail	with	Firefox	if	you	enter	a	name	in	the	name	text	box	and
then	an	invalid	age	into	the	age	box	(for	example,	if	you	enter	abc	and	then	click	the
Check	Form	button).	With	other	browsers	the	blur	event	fires	and	displays	an	alert	box
if	the	age	is	invalid,	but	the	button’s	click	event	doesn’t	fire.	However,	in	Firefox,	both
events	fire	with	the	result	that	the	invalid	age	alert	is	hidden	by	the	“form	completed
successfully”	alert	box.

In	addition,	if	you	enter	an	invalid	age	and	then	switch	to	a	different	program	altogether,
the	“invalid	age”	alert	box	appears,	which	is	annoying	for	the	user.	It	could	be	that	the
user	was	opening	up	another	program	to	check	the	details.

Although	this	is	a	fine	example,	it	is	not	great	for	the	real	world.	A	better	option	would	be
to	check	the	form	when	it’s	finally	submitted	and	not	while	the	user	is	entering	data.	Or,
alternatively,	you	can	check	the	data	as	it	is	entered	but	not	use	an	alert	box	to	display
errors.	Instead	you	could	write	out	a	warning	in	red	next	to	the	erroneous	input	control,
informing	the	user	of	the	invalid	data,	and	then	also	get	your	code	to	check	the	form	when
it’s	submitted.

The	Password	Text	Box
The	only	real	purpose	of	the	password	box	is	to	enable	users	to	type	in	a	password	on	a
page	and	to	have	the	password	characters	hidden,	so	that	no	one	can	look	over	the	user’s
shoulder	and	discover	his	or	her	password.	However,	this	protection	is	visual	only.	When
sent	to	the	server,	the	text	in	the	password	is	sent	as	plaintext—there	is	no	encryption	or
any	attempt	at	hiding	the	text	(unless	the	page	is	served	over	a	secure	connection	from	the
server).

Defining	a	password	box	is	identical	to	defining	a	text	box,	except	that	the	type	attribute
is	password:

<input	name="password1"	type="password"	/>

This	form	element	creates	an	<input/>	element	object	and	has	the	same	properties,
methods,	and	events	as	normal	text	boxes.

The	Hidden	Text	Box
The	hidden	text	box	can	hold	text	and	numbers	just	like	a	normal	text	box,	with	the
difference	being	that	it’s	not	visible	to	the	user.	A	hidden	element?	It	may	sound	as	useful
as	an	invisible	painting,	but	in	fact	it	proves	to	be	very	useful.

To	define	a	hidden	text	box,	you	use	the	following	HTML:

<input	type="hidden"	name="myHiddenElement"	/>

The	hidden	text	box	creates	yet	another	<input/>	element	object,	and	it	can	be
manipulated	in	JavaScript	like	any	other	object—although,	you	can	actually	set	its	value
only	through	its	HTML	definition	or	through	JavaScript.	As	with	a	normal	text	box,	its
value	is	submitted	to	the	server	when	the	user	submits	the	form.

So	why	are	hidden	text	boxes	useful?	Imagine	you	have	a	lot	of	information	that	you	need
to	obtain	from	the	user,	but	to	avoid	having	a	page	stuffed	full	of	elements	and	looking
like	the	control	panel	of	the	space	shuttle,	you	decide	to	obtain	the	information	over	more
than	one	page.	The	problem	is,	how	do	you	keep	a	record	of	what	was	entered	in	previous
pages?	Easy—you	use	hidden	text	boxes	and	put	the	values	in	there.	Then,	in	the	final
page,	all	the	information	is	submitted	to	the	server—it’s	just	that	some	of	it	is	hidden.

The	textarea	Element
The	<textarea/>	element	allows	multi-line	input	of	text.	Other	than	this,	it	acts	very
much	like	the	text	box	element.

However,	unlike	the	text	box,	the	<textarea/>	element	has	its	own	tag,	the	<textarea>
tag,	and	it	creates	an	HTMLTextAreaElement	object.	It	also	has	two	additional	attributes:
cols	and	rows.	The	cols	attribute	defines	how	many	characters	wide	the	text	area	will	be,
and	the	rows	attribute	defines	how	many	character	rows	there	will	be.	You	set	the	text
inside	the	element	by	putting	it	between	the	start	and	closing	tags,	rather	than	by	using	the
value	attribute.	So	if	you	want	a	<textarea/>	element	40	characters	wide	by	20	rows
deep	with	initial	text	Hello	World	on	the	first	line	and	Line	2	on	the	second	line,	you
define	it	as	follows:

<textarea	name="myTextArea"	cols="40"	rows="20">Hello	World

Line	2

</textarea>

Another	attribute	of	the	<textarea/>	element	is	the	wrap	attribute,	which	determines	what
happens	when	the	user	types	to	the	end	of	a	line.	The	default	value	for	this	is	soft,	so	the
user	does	not	have	to	press	Return	at	the	end	of	a	line,	though	this	can	vary	from	browser
to	browser.	To	turn	wrapping	on,	you	can	use	one	of	two	values:	soft	and	hard.	As	far	as
client-side	processing	goes,	both	do	the	same	thing:	They	switch	wrapping	on.	However,
when	you	come	to	server-side	processing,	they	do	make	a	difference	in	terms	of	which
information	is	sent	to	the	server	when	the	form	is	posted.

If	you	set	the	wrap	attribute	on	by	setting	it	to	soft,	wrapping	will	occur	on	the	client	side,
but	the	carriage	returns	won’t	be	posted	to	the	server,	just	the	text.	If	the	wrap	attribute	is
set	to	hard,	any	carriage	returns	caused	by	wrapping	will	be	converted	to	hard	returns—it
will	be	as	if	the	user	had	pressed	the	Enter	key,	and	these	returns	will	be	sent	to	the	server.
Also,	you	need	to	be	aware	that	the	carriage-return	character	is	determined	by	the
operating	system	that	the	browser	is	running	on—for	example,	in	Windows	a	carriage
return	is	\r\n,	on	UNIX,	UNIX-like	systems,	and	Mac	OS	X,	a	carriage	return	is	\n.	To
turn	off	wrapping	client-side,	set	wrap	to	off.

NOTE	The	\n	character	is	the	universal	line	feed	character.	If	you	are	formatting	raw
text	output	and	need	a	new	line,	\n	works	in	every	browser	on	every	operating	system.

The	object	created	by	the	<textarea/>	element	has	the	same	properties,	methods,	and
events	as	the	text	box	object	you	saw	previously,	except	that	the	text	area	doesn’t	have	the
maxlength	attribute.	Note	that	there	is	a	value	property	even	though	the	<textarea/>
element	does	not	have	a	value	attribute.	The	value	property	simply	returns	the	text
between	the	<textarea>	and	</textarea>	tags.	The	events	supported	by	the	<textarea/>
element	object	include	the	keydown,	keypress,	keyup,	and	change	event	handlers.

				TRY	IT	OUT								Event	Watching
To	help	demonstrate	how	the	keydown,	keypress,	keyup,	and	change	events	work	(in
particular,	the	order	in	which	they	fire),	you’ll	create	an	example	that	tells	you	what
events	are	firing:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	5</title>

</head>

<body>

				<form	action=""	name="form1">

								<textarea	rows="15"	cols="40"	name="textarea1"></textarea>

								<textarea	rows="15"	cols="40"	name="textarea2"></textarea>

								

								<input	type="button"	value="Clear	event	textarea"	

name="button1"	/>

				</form>

				<script>

								var	myForm	=	document.form1;

								var	textArea1	=	myForm.textarea1;

								var	textArea2	=	myForm.textarea2;

								var	btnClear	=	myForm.button1;

								function	displayEvent(e)	{

												var	message	=	textArea2.value;

												message	=	message	+	e.type	+	"\n";

												textArea2.value	=	message;

								}

								function	clearEventLog(e)	{

												textArea2.value	=	"";

								}

								textArea1.addEventListener("change",	displayEvent);

								textArea1.addEventListener("keydown",	displayEvent);

								textArea1.addEventListener("keypress",	displayEvent);

								textArea1.addEventListener("keyup",	displayEvent);

								btnClear.addEventListener("click",	clearEventLog);

				</script>

</body>

</html>

Save	this	page	as	ch11_example5.html.	Load	the	page	into	your	browser,	and	see
what	happens	when	you	type	any	letter	into	the	first	text	area	box.	You	should	see	the
events	being	fired	listed	in	the	second	text	area	box	(keydown,	keypress,	and	keyup),
as	shown	in	Figure	11.6.	When	you	click	outside	the	first	text	area	box,	you’ll	see	the
change	event	fire.

Figure	11.6

Experiment	with	the	example	to	see	what	events	fire	and	when.

Within	a	form	called	form1	in	the	body	of	the	page,	you	define	two	text	areas	and	a
button.	The	first	text	area	is	the	one	whose	events	you	are	going	to	monitor:

<form	action=""	name="form1">

				<textarea	rows="15"	cols="40"	name="textarea1"></textarea>

Next,	you	have	an	empty	text	area	the	same	size	as	the	first:

				<textarea	rows="15"	cols="40"	name="textarea2"></textarea>

Finally,	you	have	your	button:

				<input	type="button"	value="Clear	event	textarea"	name="button1"	/>

</form>

You’ll	register	event	listeners	for	the	textarea1	and	button1	elements	in	your

JavaScript	code.	But	first,	you	need	to	retrieve	those	element	objects	from	the
document.	You	do	this	very	simply	by	using	the	form	hierarchy:

var	myForm	=	document.form1;

var	textArea1	=	myForm.textarea1;

var	textArea2	=	myForm.textarea2;

var	btnClear	=	myForm.button1;

You	start	by	creating	the	myForm	variable	to	contain	the	<form/>	element	object,	and
then	you	use	that	variable	to	retrieve	the	other	form	elements.	Now	that	you	have	the
element	objects,	registering	event	listeners	is	as	easy	as	calling	the
addEventListener()	method:

textArea1.addEventListener("change",	displayEvent);

textArea1.addEventListener("keydown",	displayEvent);

textArea1.addEventListener("keypress",	displayEvent);

textArea1.addEventListener("keyup",	displayEvent);

btnClear.addEventListener("click",	clearEventLog);

On	the	first	<textarea/>	element	(textArea1),	you	listen	for	the	change,	keydown,
keypress,	and	keyup	events,	using	the	displayEvent()	function	as	the	handling
function.	For	the	button,	you	listen	for	the	click	event	with	the	clearEventLog()
function.

The	latter	function	is	the	simplest,	so	let’s	look	at	that	first:

function	clearEventLog(e)	{

				textArea2.value	=	"";

}

The	purpose	of	clearEventLog()	is	to	clear	the	contents	of	the	second	<textarea/>
element,	and	it	achieves	this	by	setting	the	<textarea/>	element’s	value	property	to
an	empty	string	("").

Now	let’s	look	at	the	displayEvent()	function.	It	adds	the	name	of	the	event	that
occurred	to	the	text	already	contained	in	the	second	text	area:

function	displayEvent(e)	{

				var	message	=	textArea2.value;

				message	=	message	+	e.type	+	"\n";

You	first	retrieve	the	<textarea/>	element’s	value	and	store	it	in	the	message
variable.	You	then	append	the	name	of	the	event	as	well	as	a	new	line	to	the	message.
Putting	each	event	name	on	a	separate	line	makes	it	much	easier	to	read	and	follow.

Then	finally,	you	assign	the	new	message	to	the	text	area’s	value	property:

				textArea2.value	=	message;

}

Check	Boxes	and	Radio	Buttons

The	discussions	of	check	boxes	and	radio	buttons	are	together	because	their	objects	have
identical	properties,	methods,	and	events.	A	check	box	enables	the	user	to	check	and
uncheck	it.	It	is	similar	to	the	paper	surveys	you	may	get	where	you	are	asked	to	“check
the	boxes	that	apply	to	you.”	Radio	buttons	are	basically	a	group	of	check	boxes	where
only	one	can	be	checked	at	a	time.	Of	course,	they	also	look	different,	and	their	group
nature	means	that	they	are	treated	differently.

Creating	check	boxes	and	radio	buttons	requires	our	old	friend	the	<input/>	element.	Its
type	attribute	is	set	to	"checkbox"	or	"radio"	to	determine	which	box	or	button	is
created.	To	set	a	check	box	or	a	radio	button	to	be	checked	when	the	page	is	loaded,	you
simply	insert	the	attribute	checked	into	the	<input>	tag	and	assign	its	value	as	checked.
This	is	handy	if	you	want	to	set	a	default	option	like,	for	example,	those	“Check	this	box	if
you	want	our	junk	mail”	forms	you	often	see	on	the	Net,	which	are	usually	checked	by
default,	forcing	you	to	uncheck	them.	So	to	create	a	check	box	that	is	already	checked,
your	<input>	tag	will	be	the	following:

<input	type="checkbox"	name="chkDVD"	checked="checked"	value="DVD"	/>

To	create	a	checked	radio	button,	the	<input>	tag	would	be	as	follows:

<input	type="radio"	name="radCPUSpeed"	checked="checked"	value="1	GHz"	/>

As	previously	mentioned,	radio	buttons	are	group	elements.	In	fact,	there	is	little	point	in
putting	just	one	on	a	page,	because	the	user	won’t	be	able	to	choose	between	any
alternative	boxes.

To	create	a	group	of	radio	buttons,	you	simply	give	each	radio	button	the	same	name.	This
creates	an	array	of	radio	buttons	going	by	that	name	that	you	can	access,	as	you	would
with	any	array,	using	its	index.

For	example,	to	create	a	group	of	three	radio	buttons,	your	HTML	would	be	as	follows:

<input	type="radio"	name="radCPUSpeed"	checked="checked"	value="800	mhz"	/>

<input	type="radio"	name="radCPUSpeed"	value="1	ghz"	/>

<input	type="radio"	name="radCPUSpeed"	value="1.5	ghz"	/>

You	can	put	as	many	groups	of	radio	buttons	in	a	form	as	you	want,	by	just	giving	each
group	its	own	unique	name.	Note	that	you	have	only	used	one	checked	attribute,	because
only	one	of	the	radio	buttons	in	the	group	can	be	checked.	If	you	had	used	the	checked
attribute	in	more	than	one	of	the	radio	buttons,	only	the	last	of	these	would	have	actually
been	checked.

Using	the	value	attribute	of	the	check	box	and	radio	button	elements	is	not	the	same	as
with	previous	elements	you’ve	looked	at.	It	tells	you	nothing	about	the	user’s	interaction
with	an	element	because	it’s	predefined	in	your	HTML	or	by	your	JavaScript.	Whether	a
check	box	or	radio	button	is	checked	or	not,	it	still	returns	the	same	value.

Each	check	box	has	an	associated	Checkbox	object,	and	each	radio	button	in	a	group	has	a
separate	Radio	object.	As	mentioned	earlier,	with	radio	buttons	of	the	same	name	you	can
access	each	Radio	object	in	a	group	by	treating	the	group	of	radio	buttons	as	an	array,	with
the	name	of	the	array	being	the	name	of	the	radio	buttons	in	the	group.	As	with	any	array,
you	have	the	length	property,	which	will	tell	you	how	many	radio	buttons	are	in	the

group.

NOTE	There	actually	aren’t	objects	called	Checkbox	and	Radio.	All	<input	/>
elements	create	an	object	of	type	HtmlInputElement.	But	for	the	sake	of	clarity,	this
text	uses	Checkbox	and	Radio	to	make	explanations	easier	to	follow	and	understand.

For	determining	whether	a	user	has	actually	checked	or	unchecked	a	check	box,	you	need
to	use	the	checked	property	of	the	Checkbox	object.	This	property	returns	true	if	the
check	box	is	currently	checked	and	false	if	not.

Radio	buttons	are	slightly	different.	Because	radio	buttons	with	the	same	name	are
grouped	together,	you	need	to	test	each	Radio	object	in	the	group	in	turn	to	see	if	it	has
been	checked.	Only	one	of	the	radio	buttons	in	a	group	can	be	checked,	so	if	you	check
another	one	in	the	group,	the	previously	checked	one	will	become	unchecked,	and	the	new
one	will	be	checked	in	its	place.

Both	Checkbox	and	Radio	have	the	click,	focus,	and	blur	events,	and	these	operate
identically	to	the	other	elements,	although	they	can	also	be	used	to	cancel	the	default
action,	such	as	clicking	the	check	box	or	radio	button.

Scripting	check	box	and	radio	buttons	usually	automatically	adds	extra	stuff	to	your	code
—namely	loops	because	you	are	working	with	multiple,	near-identical	elements.	The	next
example	demonstrates	this.

				TRY	IT	OUT								Check	Boxes	and	Radio	Buttons
Let’s	look	at	an	example	that	makes	use	of	all	the	properties,	methods,	and	events	we
have	just	discussed.	The	example	is	a	simple	form	that	enables	a	user	to	build	a
computer	system.	Perhaps	it	could	be	used	in	an	e-commerce	situation,	to	sell
computers	with	the	exact	specifications	determined	by	the	customer.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	6</title>

</head>

<body>

				<form	action=""	name="form1">

								<p>

												Tick	all	of	the	components	you	want	included	on	your	

computer

								</p>

								<p>

												<label	for="chkDVD">DVD-ROM</label>

												<input	type="checkbox"	id="chkDVD"	name="chkDVD"	

value="DVD-ROM"	/>

								</p>

								<p>

												<label	for="chkBluRay">Blu-ray</label>

												<input	type="checkbox"	id="chkBluRay"	name="chkBluRay"

																			value="Blu-ray"	/>

								</p>

								<p>

												Select	the	processor	speed	you	require

								</p>

								<p>

												<input	type="radio"	name="radCpuSpeed"	checked="checked"

																			value="3.2	ghz"	/>

												<label>3.2	GHz</label>

												<input	type="radio"	name="radCpuSpeed"	value="3.7	ghz"	/>

												<label>3.7	GHz</label>

												<input	type="radio"	name="radCpuSpeed"	value="4.0	ghz"	/>

												<label>4.0	GHz</label>

								</p>

								<input	type="button"	value="Check	form"	name="btnCheck"	/>

				</form>

				<script>

								var	myForm	=	document.form1;

								function	getSelectedSpeedValue()	{

												var	radios	=	myForm.radCpuSpeed;

												for	(var	index	=	0;	index	<	radios.length;	index++)	{

																if	(radios[index].checked)	{

																				return	radios[index].value;

																}

												}

												return	"";

								}

								function	findIndexOfSpeed(radio)	{

												var	radios	=	myForm.radCpuSpeed;

												for	(var	index	=	0;	index	<	radios.length;	index++)	{

																if	(radios[index]	==	radio)	{

																				return	index;

																}

												}

												return	-1;

								}

								function	radCpuSpeedClick(e)	{

												var	radIndex	=	findIndexOfSpeed(e.target);

												if	(radIndex	==	1)	{

																e.preventDefault();

																alert("Sorry	that	processor	speed	is	currently	

unavailable");

																//	to	fix	an	issue	with	IE

																myForm.radCpuSpeed[0].checked	=	true;

												}

								}

								function	btnCheckClick()	{

												var	numberOfControls	=	myForm.length;

												var	compSpec	=	"Your	chosen	processor	speed	is	";

												compSpec	=	compSpec	+	getSelectedSpeedValue();

												compSpec	=	compSpec	+	"\nWith	the	following	additional	

components:\n";

												for	(var	index	=	0;	index	<	numberOfControls;	index++)	{

																var	element	=	myForm[index];

																if	(element.type	==	"checkbox")	{

																				if	(element.checked)	{

																								compSpec	=	compSpec	+	element.value	+	"\n";

																				}

																}

												}

												alert(compSpec);

								}

								for	(var	index	=	0;	index	<	myForm.radCpuSpeed.length;	index++)	

{

												myForm.radCpuSpeed[index].addEventListener("click",	

radCpuSpeedClick);

								}

								myForm.btnCheck.addEventListener("click",	btnCheckClick);

				</script>

</body>

</html>

Save	the	page	as	ch11_example6.html	and	load	it	into	your	web	browser.	You	should
see	a	form	like	the	one	shown	in	Figure	11.7.

Figure	11.7

Check	some	of	the	check	boxes,	change	the	processor	speed,	and	click	the	Check
Form	button.	A	message	box	appears	and	lists	the	components	and	processor	speed
you	selected.	For	example,	if	you	select	a	DVD-ROM	and	a	4.0	GHz	processor	speed,
you	will	see	something	like	what	is	shown	in	Figure	11.8.

Figure	11.8

Note	that	the	3.7	GHz	processor	is	out	of	stock,	so	if	you	choose	that,	a	message	box

tells	you	it’s	out	of	stock,	and	the	3.2	GHz	processor	speed	radio	button	won’t	be
selected.	The	previous	setting	will	be	restored	when	the	user	dismisses	the	message
box.

Let’s	first	look	at	the	body	of	the	page,	where	you	define	the	check	boxes	and	radio
buttons	and	a	standard	button	inside	a	form	called	form1.	You	start	with	the	check
boxes:

<p>

				Tick	all	of	the	components	you	want	included	on	your	computer

</p>

<p>

				<label	for="chkDVD">DVD-ROM</label>

				<input	type="checkbox"	id="chkDVD"	name="chkDVD"	value="DVD-ROM"	/>

</p>

<p>

				<label	for="chkBluRay">Blu-ray</label>

				<input	type="checkbox"	id="chkBluRay"	name="chkBluRay"	value="Blu-

ray"	/>

</p>

Each	check	box	has	a	label	and	is	contained	within	a	<p/>	element	for	formatting
purposes.

Next	come	the	radio	buttons	for	selecting	the	required	CPU	speed.	Again,	each	has	a
label,	but	unlike	the	check	boxes,	these	radio	buttons	are	contained	within	a	single
<p/>	element:

<p>

				Select	the	processor	speed	you	require

</p>

<p>

				<input	type="radio"	name="radCpuSpeed"	checked="checked"

												value="3.2	ghz"	/>

				<label>3.2	GHz</label>

				<input	type="radio"	name="radCpuSpeed"	value="3.7	ghz"	/>

				<label>3.7	GHz</label>

				<input	type="radio"	name="radCpuSpeed"	value="4.0	ghz"	/>

				<label>4.0	GHz</label>

</p>

The	radio	button	group	name	is	radCpuSpeed.	Here,	the	first	one	is	set	to	be	checked
by	default	by	the	inclusion	of	the	checked	attribute	inside	the	<input/>	element’s
definition.	It’s	a	good	idea	to	ensure	that	you	have	one	radio	button	checked	by
default,	because	if	you	do	not	and	the	user	doesn’t	select	a	button,	the	form	will	be
submitted	with	no	value	for	that	radio	group.

Next,	the	standard	button	that	completes	your	form:

<input	type="button"	value="Check	form"	name="btnCheck"	/>

Before	proceeding	further,	a	note:	To	make	the	JavaScript	code	easier,	you	could	use

the	onclick	attributes	on	each	of	the	radio	buttons	as	well	as	the	standard	button.	But
as	mentioned	in	Chapter	10,	you	want	to	avoid	those	attributes	as	much	as	possible
because	it	couples	your	HTML	and	JavaScript	together.

Two	functions	are	used	to	handle	the	click	events	for	the	standard	button	and	the
radio	buttons:	btnCheckClick()	and	radCpuSpeedClick(),	respectively.	And	before
we	look	at	these	functions,	you	first	need	to	register	the	click	event	listeners	on	their
respective	elements.	As	in	previous	examples,	first	create	a	variable	called	myForm	to
reference	the	form	in	the	document:

var	myForm	=	document.form1;

Now,	register	the	click	event	listener	on	your	radio	buttons.	Unfortunately,	there’s	no
magical	command	that	says	“use	this	function	to	handle	all	the	radio	buttons’	click
events.”	So,	you’ll	have	to	call	addEventListener()	on	every	Radio	object.	This	isn’t
as	difficult	as	it	sounds;	a	for	loop	will	help	you:

for	(var	index	=	0;	index	<	myForm.radCpuSpeed.length;	index++)	{

				myForm.radCpuSpeed[index].addEventListener("click",	

radCpuSpeedClick);

}

This	for	loop	is	fairly	straightforward	except	for	one	thing:	myForm.radCpuSpeed.
What	you	are	doing	here	is	using	the	collection	for	the	radCpuSpeed	radio	group.
Each	element	in	the	collection	actually	contains	an	object,	namely	each	of	your	three
Radio	objects.	Therefore,	you’re	looping	over	the	Radio	objects	in	the	radCpuSpeed
radio	group,	retrieving	the	Radio	object	at	the	given	index,	and	calling	its
addEventListener()	method.

Next,	register	the	event	listener	for	the	form’s	standard	button:

myForm.btnCheck.addEventListener("click",	btnCheckClick);

Now	let’s	look	at	the	radCpuSpeedClick()	function,	the	function	that	executes	when
the	radio	buttons	are	clicked.	The	first	thing	this	function	needs	to	do	is	to	find	the
index	of	the	event	target	in	the	radCpuSpeed	radio	group:

function	radCpuSpeedClick(e)	{

				var	radIndex	=	findIndexOfSpeed(e.target);

You	do	this	by	calling	the	findIndexOfSpeed()	helper	function.	We’ll	look	at	this
function	later,	but	for	now,	just	know	that	it	finds	the	index	of	the	supplied	Radio
object	in	the	myForm.radCpuSpeed	collection.

The	default	action	of	clicking	a	radio	button	is	to	check	the	radio	button.	If	you
prevent	the	default	action	from	occurring,	the	radio	button	will	not	be	checked.	As	an
example	of	this	in	action,	you	have	an	if	statement	on	the	next	line.	If	the	radio
button’s	index	value	is	1	(that	is,	if	the	user	checked	the	box	for	a	3.7	GHz	processor),
you	tell	the	user	that	it’s	out	of	stock	and	cancel	the	clicking	action	by	calling	the
Event	object’s	preventDefault()	method:

				if	(radIndex	==	1)	{

								e.preventDefault();

								alert("Sorry	that	processor	speed	is	currently	unavailable");

As	previously	mentioned,	canceling	the	clicking	action	results	in	the	radio	button	not
being	checked.	In	such	a	situation,	all	browsers	(except	for	IE)	recheck	the	previously
checked	radio	button.	IE,	however,	removes	all	checks	from	the	radio	group.	To
rectify	this,	you	reset	the	radio	group:

								//	to	fix	an	issue	with	IE

								myForm.radCpuSpeed[0].checked	=	true;

				}

}

You	once	again	use	the	myForm.radCpuSpeed	collection,	retrieve	the	Radio	object	at
index	0,	and	set	its	checked	property	to	true.	Let’s	take	a	moment	and	look	at	the
findIndexOfSpeed()	helper	method.	It	accepts	a	Radio	object	as	an	argument,	and	it
searches	the	myForm.radCpuSpeed	collection	for	the	given	Radio	object.

The	first	line	of	the	function	creates	a	variable	called	radios,	and	it	contains	a
reference	to	the	myForm.radCpuSpeed	collection.	This	is	to	make	typing	and	reading	a
bit	easier:

function	findIndexOfSpeed(radio)	{

				var	radios	=	myForm.radCpuSpeed;

Next,	you	want	to	loop	through	the	radios	collection	and	determine	if	each	Radio
object	in	the	collection	is	the	same	Radio	object	in	the	radio	variable:

				for	(var	index	=	0;	index	<	radios.length;	index++)	{

								if	(radios[index]	==	radio)	{

												return	index;

								}

				}

				return	-1;

}

If	you	find	a	match,	you	return	the	value	of	the	index	variable.	If	the	loop	exits
without	finding	a	match,	you	return	-1.	This	behavior	is	consistent	with	the	String
object’s	indexOf()	method.	Consistency	is	a	very	good	thing!

The	next	function,	btnCheckClick(),	executes	when	the	standard	button’s	click
event	fires.	In	a	real	e-commerce	situation,	this	button	would	be	the	place	where
you’d	check	your	form	and	then	submit	it	to	the	server	for	processing.	Here	you	use
the	form	to	show	a	message	box	confirming	which	boxes	you	have	checked	(as	if	you
didn’t	already	know)!

At	the	top	you	declare	two	local	variables	to	use	in	the	function.	The	variable
numberOfControls	is	set	to	the	form’s	length	property,	which	is	the	number	of
elements	on	the	form.	The	variable	compSpec	is	used	to	build	the	string	that	you’ll
display	in	a	message	box:

function	btnCheckClick()	{

				var	numberOfControls	=	myForm.length;

				var	compSpec	=	"Your	chosen	processor	speed	is	";

In	the	following	line,	you	add	the	value	of	the	radio	button	the	user	has	selected	to
your	message	string:

				compSpec	=	compSpec	+	findSelectedSpeedValue();

				compSpec	=	compSpec	+	"\nWith	the	following	additional	

components:\n";

You	use	yet	another	helper	function	called	getSelectedSpeedValue().	As	its	name
implies,	it	gets	the	value	of	the	selected	Radio	object.	You’ll	look	at	its	code	later.

Next,	you	loop	through	the	form’s	elements:

				for	(var	index	=	0;	index	<	numberOfControls;	index++)	{

								var	element	=	myForm[index];

								if	(element.type	==	"checkbox")	{

												if	(element.checked)	{

																compSpec	=	compSpec	+	element.value	+	"\n";

												}

								}

				}

				alert(compSpec);

}

It’s	here	that	you	loop	through	each	element	on	the	form	using
myForm[controlIndex],	which	returns	a	reference	to	the	element	object	stored	at	the
controlIndex	index	position.

You’ll	see	that	in	this	example	the	element	variable	is	set	to	reference	the	object
stored	in	the	myForm	collection	at	the	index	position	stored	in	variable	controlIndex.
Again,	this	is	for	convenient	shorthand	purposes;	now	to	use	that	particular	object’s
properties	or	methods,	you	just	type	element,	a	period,	and	then	the	method	or
property	name,	making	your	code	easier	to	read	and	debug,	which	also	saves	on
typing.

You	only	want	to	see	which	check	boxes	have	been	checked,	so	you	use	the	type
property,	which	every	HTML	form	element	object	has,	to	see	what	element	type	you
are	dealing	with.	If	the	type	is	checkbox,	you	go	ahead	and	see	if	it’s	a	checked	check
box.	If	so,	you	append	its	value	to	the	message	string	in	compSpec.	If	it	is	not	a	check
box,	it	can	be	safely	ignored.

Finally,	you	use	the	alert()	method	to	display	the	contents	of	your	message	string.

The	last	function	is	getSelectedSpeedValue().	It	doesn’t	accept	any	arguments,
although	you	could	generalize	this	function	to	accept	a	collection	of	Radio	objects.
Doing	so	would	allow	you	to	reuse	the	function	in	multiple	projects.

But	to	get	back	to	the	actual	code,	the	first	statement	of	the	function	creates	a	radios
variable	that	contains	a	reference	to	the	myForm.radCpuSpeed	collection:

function	getSelectedSpeedValue()	{

				var	radios	=	myForm.radCpuSpeed;

Next,	you	want	to	find	the	selected	Radio	object	and	retrieve	its	value.	You	can	do
this	with	yet	another	for	loop:

				for	(var	index	=	0;	index	<	radios.length;	index++)	{

								if	(radios[index].checked)	{

												return	radios[index].value;

								}

				}

				return	"";

}

The	logic	is	straightforward:	Loop	through	the	radios	collection	and	check	each
Radio	object’s	checked	property.	If	it’s	true,	return	the	value	of	that	Radio	object,	but
if	the	loop	exits	without	finding	a	checked	Radio	object,	you	return	an	empty	string.

Selection	Boxes
Although	they	look	quite	different,	the	drop-down	list	and	the	list	boxes	are	actually	both
elements	created	with	the	<select>	tag,	and	strictly	speaking	they	are	both	select
elements.	The	select	element	has	one	or	more	options	in	a	list	that	you	can	select	from;
each	of	these	options	is	defined	by	means	of	one	or	more	<option/>	elements	inside	the
opening	and	closing	<select>	tags.

The	size	attribute	of	the	<select/>	element	is	used	to	specify	how	many	of	the	options
are	visible	to	the	user.

For	example,	to	create	a	list	box	five	rows	deep	and	populate	it	with	seven	options,	your
HTML	would	look	like	this:

<select	name="theDay"	size="5">

				<option	value="0"	selected="selected">Monday</option>

				<option	value="1">Tuesday</option>

				<option	value="2">Wednesday</option>

				<option	value="3">Thursday</option>

				<option	value="4">Friday</option>

				<option	value="5">Saturday</option>

				<option	value="6">Sunday</option>

</select>

Notice	that	the	<option/>	element	for	Monday	also	contains	the	attribute	selected;	this
will	make	this	option	selected	by	default	when	the	page	is	loaded.	The	values	of	the
options	have	been	defined	as	numbers,	but	text	would	be	equally	valid.

If	you	want	this	to	be	a	drop-down	list,	you	just	need	to	change	the	size	attribute	in	the
<select/>	element	to	1,	and	presto,	it’s	a	drop-down	list.

If	you	want	to	let	the	user	choose	more	than	one	item	from	a	list	at	once,	you	simply	need
to	add	the	multiple	attribute	to	the	<select/>	definition.

The	<select/>	element	creates	an	HTMLSelectElement	object	(hereby	known	as	Select).

This	object	has	an	options	collection	property,	which	is	made	up	of	HtmlOptionElement
(hereby	known	as	Option)	objects,	one	for	each	<option/>	element	inside	the	<select/>
element	associated	with	the	Select	object.	For	instance,	in	the	preceding	example,	if	the
<select/>	element	was	contained	in	a	form	called	theForm	with	the	following:

document.theForm.theDay.options[0]

you	would	access	the	option	created	for	Monday.

How	can	you	tell	which	option	has	been	selected	by	the	user?	Easy:	you	use	the	Select
object’s	selectedIndex	property.	You	can	use	the	index	value	returned	by	this	property	to
access	the	selected	option	using	the	options	collection.

The	Option	object	also	has	index,	text,	and	value	properties.	The	index	property	returns
the	index	position	of	that	option	in	the	options	collection.	The	text	property	is	what’s
displayed	in	the	list,	and	the	value	property	is	the	value	defined	for	the	option,	which
would	be	posted	to	the	server	if	the	form	were	submitted.

If	you	want	to	find	out	how	many	options	are	in	a	select	element,	you	can	use	the	length
property	of	either	the	Select	object	itself	or	of	its	options	collection	property.

Let’s	see	how	you	could	loop	through	the	options	for	the	preceding	select	box:

var	theDayElement	=	document.theForm.theDay;

document.write("There	are	"	+	theDayElement.length	+	"options
");

for	(var	index	=	0;	index	<	theDayElement.length;	index++)	{

				document.write("Option	text	is	"	+

								theDayElement.options[index].text);

				document.write("	and	its	value	is	");

				document.write(theDayElement.options[index].value);

				document.write("
");

}

First,	you	set	the	variable	theDayElement	to	reference	the	Select	object.	Then	you	write
the	number	of	options	to	the	page,	in	this	case	7.

Next	you	use	a	for	loop	to	loop	through	the	options	collection,	displaying	the	text	of
each	option,	such	as	Monday,	Tuesday,	and	so	on,	and	its	value,	such	as	0,	1,	and	so	on.	If
you	create	a	page	based	on	this	code,	it	must	be	placed	after	the	<select/>	element’s
definition.

It’s	also	possible	to	add	options	to	a	select	element	after	the	page	has	finished	loading.	You
look	at	how	to	do	this	next.

Adding	and	Removing	Options
To	add	a	new	option	to	a	select	element,	you	simply	create	a	new	Option	object	using	the
new	operator	and	then	insert	it	into	the	options	collection	of	the	Select	object	at	an	empty
index	position.

When	you	create	a	new	Option	object,	you	have	two	parameters	to	pass.	The	first	is	the
text	you	want	to	appear	in	the	list,	and	the	second	is	the	value	to	be	assigned	to	the	option:

var	myNewOption	=	new	Option("TheText","TheValue");

You	then	simply	assign	this	Option	object	to	an	empty	array	element.	For	example:

theDayElement.options[0]	=	myNewOption;

If	you	want	to	remove	an	option,	you	simply	set	that	part	of	the	options	collection	to
null.	For	example,	to	remove	the	element	you	just	inserted,	you	need	the	following:

theDayElement.options[0]	=	null;

When	you	remove	an	Option	object	from	the	options	collection,	the	collection	is
reordered	so	that	the	array	index	value	of	each	of	the	options	above	the	removed	one	has
its	index	value	decremented	by	one.

When	you	insert	a	new	option	at	a	certain	index	position,	be	aware	that	it	will	overwrite
any	Option	object	that	is	already	there.

				TRY	IT	OUT								Adding	and	Removing	List
Options
In	this	Try	It	Out,	you	use	the	list-of-days	example	you	saw	previously	to	demonstrate
adding	and	removing	list	options.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	7</title>

</head>

<body>

				<form	action=""	name="theForm">

								<select	name="theDay"	size="5">

												<option	value="0"	selected="selected">Monday</option>

												<option	value="1">Tuesday</option>

												<option	value="2">Wednesday</option>

												<option	value="3">Thursday</option>

												<option	value="4">Friday</option>

												<option	value="5">Saturday</option>

												<option	value="6">Sunday</option>

								</select>

								

								<input	type="button"	value="Remove	Wednesday"	

name="btnRemoveWed"	/>

								<input	type="button"	value="Add	Wednesday"	name="btnAddWed"	/>

								

				</form>

				<script>

								var	theForm	=	document.theForm;

								function	btnRemoveWedClick()	{

												var	options	=	theForm.theDay.options;

												if	(options[2].text	==	"Wednesday")	{

																options[2]	=	null;

												}	else	{

																alert("There	is	no	Wednesday	here!");

												}

								}

								function	btnAddWedClick()	{

												var	options	=	theForm.theDay.options;

												if	(options[2].text	!=	"Wednesday")	{

																var	lastOption	=	new	Option();

																options[options.length]	=	lastOption;

																for	(var	index	=	options.length	-	1;	index	>	2;	

index––)	{

																				var	currentOption	=	options[index];

																				var	previousOption	=	options[index	-	1];

																				currentOption.text	=	previousOption.text;

																				currentOption.value	=	previousOption.value;

																}

																var	option	=	new	Option("Wednesday",	2);

																options[2]	=	option;

												}	else	{

																alert("Do	you	want	to	have	TWO	Wednesdays?");

												}

								}

								theForm.btnRemoveWed.addEventListener("click",	

btnRemoveWedClick);

								theForm.btnAddWed.addEventListener("click",	btnAddWedClick);

				</script>

</body>

</html>

Save	this	as	ch11_example7.html.	If	you	type	the	page	in	and	load	it	into	your
browser,	you	should	see	the	form	shown	in	Figure	11.9.	Click	the	Remove
Wednesday	button,	and	you’ll	see	Wednesday	disappear	from	the	list.	Add	it	back	by
clicking	the	Add	Wednesday	button.	If	you	try	to	add	a	second	Wednesday	or	remove
a	nonexistent	Wednesday,	you’ll	get	a	polite	warning	telling	you	that	you	can’t	do
that.

Figure	11.9

Within	the	body	of	the	page,	you	define	a	form	with	the	name	theForm.	This	contains
the	<select/>	element,	which	includes	day-of-the-week	options	that	you	have	seen
previously.	The	form	also	contains	two	buttons,	as	shown	here:

<input	type="button"	value="Remove	Wednesday"	name="btnRemoveWed"	/>

<input	type="button"	value="Add	Wednesday"	name="btnAddWed"	/>

You	want	to	execute	JavaScript	code	when	these	buttons	are	clicked;	therefore,	you
want	to	register	click	event	listeners	for	each	of	the	buttons.	To	make	this	a	bit
easier,	you	first	create	a	variable	called	theForm,	which	contains	the	<form/>	element
object:

var	theForm	=	document.theForm;

You	use	this	variable	to	access	the	individual	buttons	and	register	their	click	event
listeners:

theForm.btnRemoveWed.addEventListener("click",	btnRemoveWedClick);

theForm.btnAddWed.addEventListener("click",	btnAddWedClick);

The	“remove”	button	executes	the	btnRemoveWedClick()	function,	and	the	“add”
button	executes	btnAddWedClick().	You	take	a	look	at	each	of	these	functions	in	turn.

The	first	function,	btnRemoveWedClick(),	removes	the	Wednesday	option:

function	btnRemoveWedClick()	{

				var	options	=	theForm.theDay.options;

				if	(options[2].text	==	"Wednesday")	{

								options[2]	=	null;

				}	else	{

								alert("There	is	no	Wednesday	here!");

				}

}

The	first	thing	you	do	in	the	function	is	create	a	variable	that	contains	the	collection
of	Option	elements.	This	lets	you	repeatedly	reference	the	option	collection	without
typing	document.theForm.theDay.options,	or	any	variation	thereof.

Next,	a	sanity	check:	You	must	try	to	remove	the	Wednesday	option	only	if	it’s	there
in	the	first	place!	You	make	sure	of	this	by	seeing	if	the	third	option	in	the	collection
(with	index	2	because	arrays	start	at	index	0)	has	the	text	"Wednesday".	If	it	does,	you
can	remove	the	Wednesday	option	by	setting	that	particular	option	to	null.	If	the	third
option	in	the	array	is	not	Wednesday,	you	alert	the	user	to	the	fact	that	there	is	no
Wednesday	to	remove.	Although	this	code	uses	the	text	property	in	the	if
statement’s	condition,	you	could	just	as	easily	have	used	the	value	property;	it	makes
no	difference.

Next	you	come	to	the	btnAddWedClick()	function,	which,	as	the	name	suggests,	adds
the	Wednesday	option.	This	is	slightly	more	complex	than	the	code	required	to
remove	an	option.	First,	you	create	another	variable,	called	options,	to	contain	the
collection	of	Option	objects.	Then,	you	use	an	if	statement	to	check	that	there	is	not
already	a	Wednesday	option:

function	btnAddWedClick()	{

				var	options	=	theForm.theDay.options;

				if	(options[2].text	!=	"Wednesday")	{

								var	lastOption	=	new	Option();

								options[options.length]	=	lastOption;

								for	(var	index	=	options.length	-	1;	index	>	2;	index––)	{

												var	currentOption	=	options[index];

												var	previousOption	=	options[index	-	1];

												currentOption.text	=	previousOption.text;

												currentOption.value	=	previousOption.value;

								}

If	there	is	no	Wednesday	option,	you	then	need	to	make	space	for	the	new	Wednesday
option	to	be	inserted.

At	this	point,	you	have	six	options	(the	last	element	is	as	index	5),	so	next	you	create
a	new	option	with	the	variable	name	lastOption	and	assign	it	to	the	element	at	the
end	of	the	collection.	This	new	element	is	assigned	at	index	position	6	by	using	the
length	property	of	the	options	collection,	which	previously	had	no	contents.	You
next	assign	the	text	and	value	properties	of	each	of	the	Option	objects	from
Thursday	to	Sunday	to	the	Option	at	an	index	value	higher	by	one	in	the	options
array,	leaving	a	space	in	the	options	array	at	position	2	to	put	Wednesday	in.	This	is
the	task	for	the	for	loop	within	the	if	statement.

Next,	you	create	a	new	Option	object	by	passing	the	text	"Wednesday"	and	the	value

2	to	the	Option	constructor.	The	Option	object	is	then	inserted	into	the	options
collection	at	position	2,	and	presto,	it	appears	in	your	select	box.

								var	option	=	new	Option("Wednesday",	2);

								options[2]	=	option;

				}

You	end	the	function	by	alerting	the	user	to	the	fact	that	there	is	already	a	Wednesday
option	in	the	list,	if	the	condition	in	the	if	statement	is	false:

				else	{

								alert("Do	you	want	to	have	TWO	Wednesdays?");

				}

}

This	example	works	in	every	browser;	however,	all	modern	browsers	provide	additional
methods	to	make	adding	and	removing	options	easier.

Adding	New	Options	with	Standard	Methods
In	particular,	the	Select	object	you	are	interested	in	has	additional	add()	and	remove()
methods,	which	add	and	remove	options.	These	make	life	a	little	simpler.

Before	you	add	an	option,	you	need	to	create	it.	You	do	this	just	as	before,	using	the	new
operator.

The	Select	object’s	add()	method	enables	you	to	insert	an	Option	object	that	you	have
created	and	accepts	two	parameters.	The	first	parameter	is	the	Option	object	you	want	to
add.	The	second	parameter	is	the	Option	object	you	want	to	place	the	new	Option	object
before.	However,	in	IE7	(or	IE8	non-standards	mode),	the	second	parameter	is	the	index
position	at	which	you	want	to	add	the	option.	In	all	browsers,	you	can	pass	null	as	the
second	parameter,	and	the	added	Option	object	will	be	added	at	the	end	of	the	options
collection.

The	add()	method	won’t	overwrite	any	Option	object	already	at	that	position,	but	instead
will	simply	move	the	Option	objects	up	in	the	collection	to	make	space.	This	is	basically
the	same	as	what	you	had	to	code	into	the	btnAddWedClick()	function	using	your	for
loop.

Using	the	add()	method,	you	can	rewrite	the	btnAddWedClick()	function	in
ch11_example7.html	to	look	like	this:

function	btnAddWedClick()	{

				var	days	=	theForm.theDay;

				var	options	=	days.options;

				if	(options[2].text	!=	"Wednesday")	{

								var	option	=	new	Option("Wednesday",	2);

								var	thursdayOption	=	options[2];

								try	{

												days.add(option,	thursdayOption);

								}

								catch	(error)	{

												days.add(option,	2);

								}

				}	else	{

								alert("Do	you	want	to	have	TWO	Wednesdays?");

				}

}

In	IE7	(or	IE8	in	non-standards	mode),	the	browser	will	throw	an	error	if	you	pass	an
Option	object	as	the	second	parameter.	So	use	a	try…catch	statement	to	catch	the	error
and	pass	a	number	to	the	second	argument,	as	this	code	shows.

The	Select	object’s	remove()	method	accepts	just	one	parameter,	namely	the	index	of	the
option	you	want	removed.	When	an	option	is	removed,	the	options	at	higher	index
positions	are	moved	down	in	the	collection	to	fill	the	gap.

Using	the	remove()	method,	you	can	rewrite	the	btnRemoveWedClick()	function	in
ch11_example7.html	to	look	like	this:

function	btnRemoveWedClick()	{

				var	days	=	theForm.theDay;

				if	(days.options[2].text	==	"Wednesday")	{

								days.remove(2);

				}	else	{

								alert("There	is	no	Wednesday	here!");

				}

}

Modify	the	previous	example	and	save	it	as	ch11_example8.html	before	loading	it	into
your	browser.	You’ll	see	that	it	works	just	as	the	previous	version	did.

Select	Element	Events
Select	elements	have	three	events:	blur,	focus,	and	change.	You’ve	seen	all	these	events
before.	You	saw	the	change	event	with	the	text	box	element,	where	it	fired	when	focus
was	moved	away	from	the	text	box	and	the	value	in	the	text	box	had	changed.	Here	it	fires
when	the	user	changes	which	option	in	the	list	is	selected.

				TRY	IT	OUT								World	Time	Converter
Let’s	take	a	look	at	an	example	that	uses	the	change	event.	The	World	Time	Converter
lets	you	calculate	the	time	in	different	countries:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	9</title>

</head>

<body>

				<div>Local	Time	is	</div>

				<div	id="divCityTime"></div>

				<form	name="form1">

								<select	size="5"	name="lstCity">

												<option	value="60"	selected>Berlin

												<option	value="330">Bombay

												<option	value="0">London

												<option	value="180">Moscow

												<option	value="-300">New	York

												<option	value="60">Paris

												<option	value="-480">San	Francisco

												<option	value="600">Sydney

								</select>

								<p>

												<input	type="checkbox"	id="chkDst"	name="chkDst"	/>

												<label	for="chkDst">Adjust	city	time	for	Daylight	

Savings</label>

								</p>

				</form>

				<script>

								var	myForm	=	document.form1;

								function	updateTimeZone()	{

												var	lstCity	=	myForm.lstCity;

												var	selectedOption	=	

lstCity.options[lstCity.selectedIndex];

												var	offset	=	selectedOption.value;

												var	selectedCity	=	selectedOption.text;

												var	dstAdjust	=	0;

												if	(myForm.chkDst.checked)	{

																dstAdjust	=	60;

												}

												updateOutput(selectedCity,	offset,	dstAdjust);

								}

								function	updateOutput(selectedCity,	offset,	dstAdjust)	{

												var	now	=	new	Date();

												document.getElementById("spanLocalTime")

																.innerHTML	=	now.toLocaleString();

												now.setMinutes(now.getMinutes()	+	now.getTimezoneOffset()	+

																parseInt(offset,	10)	+	dstAdjust);

												var	resultsText	=	selectedCity	+	"	time	is	"	+

																now.toLocaleString();

												document.getElementById("divCityTime").innerHTML	=	

resultsText;

								}

								myForm.lstCity.addEventListener("change",	updateTimeZone);

								myForm.chkDst.addEventListener("click",	updateTimeZone);

								updateTimeZone();

				</script>

</body>

</html>

Save	this	as	ch11_example9.html.	Open	the	page	in	your	browser.

The	form	layout	looks	something	like	the	one	shown	in	Figure	11.10.	Whenever	the
user	clicks	a	city	in	the	list,	her	local	time	and	the	equivalent	time	in	the	selected	city
are	shown.	In	the	example	shown	in	Figure	11.10,	the	local	region	is	set	to	Central
Standard	Time	in	the	U.S.,	and	the	selected	city	is	Berlin,	with	the	daylight	savings
box	checked.

Figure	11.10

It’s	worth	pointing	out	that	this	is	just	an	example	and	not	a	totally	foolproof	one,
because	of	the	problems	presented	by	daylight	savings.	Some	locations	don’t	have	it,
others	do	at	fixed	times	of	year,	and	yet	others	do	but	at	varying	times	of	the	year.
This	makes	it	difficult	to	predict	accurately	when	a	country	will	have	its	daylight
savings	period.	You	have	tried	to	solve	this	problem	by	adding	a	check	box	for	the
user	to	click	if	the	city	she	chooses	from	the	list	is	using	daylight	savings	hours
(which	you	assume	will	put	the	time	in	the	city	forward	by	one	hour).

In	addition,	don’t	forget	that	some	users	may	not	even	have	their	regional	settings	set
correctly—there’s	no	easy	way	around	this	problem.

In	the	body	of	this	page	is	a	pair	of	<div/>	elements	used	for	output:

<div>Local	Time	is	</div>

<div	id="divCityTime"></div>

There’s	also	a	form	in	which	you’ve	defined	a	list	box	using	a	<select>	element:

<select	size="5"	name="lstCity">

				<option	value="60"	selected>Berlin

				<option	value="330">Bombay

				<option	value="0">London

				<option	value="180">Moscow

				<option	value="-300">New	York

				<option	value="60">Paris

				<option	value="-480">San	Francisco

				<option	value="600">Sydney

</select>

Each	of	the	options	displays	the	city’s	name	in	the	list	box	and	has	its	value	set	to	the
difference	in	minutes	between	that	city’s	time	zone	(in	winter)	and	UTC.	So	London,
which	uses	UTC,	has	a	value	of	0.	Paris,	which	is	an	hour	ahead	of	UTC,	has	a	value
of	60	(that	is,	60	minutes).	New	York,	which	is	five	hours	behind	UTC,	has	a	value	of
-300.

There’s	also	a	check	box	with	an	associated	label:

<p>

				<input	type="checkbox"	id="chkDst"	name="chkDst"	/>

				<label	for="chkDst">Adjust	city	time	for	Daylight	Savings</label>

</p>

Checking	this	check	box	will	add	an	hour	to	a	city’s	calculated	time.

You’ll	register	the	change	event	listener	of	the	<select/>	element	and	the	click
event	listener	of	the	check	box	to	call	the	updateTimeZone()	function.	As	with
previous	versions,	you	create	a	global	variable	to	provide	easier	access	to	the	<form/>
element	object:

var	myForm	=	document.form1;

Then	you	register	the	event	listeners:

myForm.lstCity.addEventListener("change",	updateTimeZone);

myForm.chkDst.addEventListener("click",	updateTimeZone);

The	function	updateTimeZone()	doesn’t	really	update	anything,	but	it	does	gather
information	and	kick	off	the	update	process:

function	updateTimeZone()	{

				var	lstCity	=	myForm.lstCity;

The	first	four	statements	of	this	function	create	four	variables.	The	first,	lstCity,
contains	a	reference	to	the	<select/>	element	object.	You	create	this	variable	for
convenience	purposes—namely	for	the	creation	of	the	second	variable:
selectedOption:

				var	selectedOption	=	lstCity.options[lstCity.selectedIndex];

This	selectedOption	variable	is	retrieved	by	using	the	lstCity	object’s	options
property	in	conjunction	with	its	selectedIndex	property,	and	now	that	you	have	the
selectedOption,	you	can	easily	get	the	information	attached	to	the	option:

				var	offset	=	selectedOption.value;

				var	selectedCity	=	selectedOption.text;

Next,	you	want	to	determine	if	the	user	checked	the	daylight	savings	check	box:

				var	dstAdjust	=	0;

				if	(myForm.chkDst.checked)	{

								dstAdjust	=	60;

				}

You	initialize	the	dstAdjust	variable	with	0.	If	the	check	box	is	checked,	you	modify
dstAdjust	to	contain	the	value	of	60.	The	value	of	60	is	for	60	minutes.	As	you	have
probably	guessed,	your	time	conversion	calculation	will	be	with	minute	values.

In	the	final	part	of	updateTimeZone(),	you	call	the	updateTime()	function,	passing
the	values	contained	within	the	selectedCity,	offset,	and	dstAdjust	variables:

			updateTime(selectedCity,	offset,	dstAdjust);

}

In	the	function	updateTime(),	you	write	the	current	local	time	and	the	equivalent
time	in	the	selected	city	to	the	output	elements.

You	start	at	the	top	of	the	function	by	creating	a	new	Date	object,	which	is	stored	in
the	variable	now.	The	Date	object	will	be	initialized	to	the	current	local	time:

function	updateOutput(selectedCity,	offset,	dstAdjust)	{

				var	now	=	new	Date();

Next,	you	output	the	local	time	to	the		element	with	an	id	of	spanLocalTime:

				document.getElementById("spanLocalTime").innerHTML	=	

now.toLocaleString();

You	use	the	Date	object’s	toLocaleString()	method	to	format	the	date	and	time	in
your	region’s	format.

You	saw	in	Chapter	7	that	if	you	set	the	value	of	a	Date	object’s	individual	parts	(such
as	hours,	minutes,	and	seconds)	to	a	value	beyond	their	normal	range,	JavaScript
assumes	you	want	to	adjust	the	date,	hours,	or	minutes	to	take	this	into	account.	For
example,	if	you	set	the	hours	to	36,	JavaScript	simply	changes	the	hours	to	12	and
adds	one	day	to	the	date	stored	inside	the	Date	object.	You	use	this	to	your	benefit	in
the	following	line:

				now.setMinutes(now.getMinutes()	+	now.getTimezoneOffset()	+

								parseInt(offset,	10)	+	dstAdjust);

Let’s	break	down	this	line	to	see	how	it	works.	Suppose	that	you’re	in	New	York,
with	the	local	summer	time	of	5:11,	and	you	want	to	know	what	time	it	is	in	Berlin.

How	does	your	line	of	code	calculate	this?

First,	you	get	the	minutes	of	the	current	local	time;	it’s	5:11,	so	now.getMinutes()
returns	11.

Then	you	get	the	difference,	in	minutes,	between	the	user’s	local	time	and	UTC	using
now.getTimezoneOffset().	If	you	are	in	New	York,	which	is	different	from	UTC	by
4	hours	during	the	summer,	this	is	240	minutes.

Then	you	get	the	integer	value	of	the	time	difference	between	the	standard	winter
time	in	the	selected	city	and	UTC	time,	which	is	stored	in	offset.	You’ve	used
parseInt()	here	because	it’s	one	of	the	few	situations	where	JavaScript	gets
confused	and	assumes	you	want	to	join	two	strings	together	rather	than	treat	the
values	as	numbers	and	add	them	together.	Remember	that	you	got	offset	from	an
HTML	element’s	value,	and	that	an	HTML	element’s	values	are	strings,	even	when
they	hold	characters	that	are	digits.	Because	you	want	the	time	in	Berlin,	which	is	60
minutes	different	from	UTC	time,	this	value	will	be	60.

Finally,	you	add	the	value	of	dstAdjust.	Because	it’s	summer	where	you	are	and
Berlin	uses	daylight	savings	hours,	this	value	is	60.

So	you	have	the	following:

11	+	240	+	60	+	60	=	371

Therefore,	now.setMinutes()	is	setting	the	minutes	to	371.	Clearly,	there’s	no	such
thing	as	371	minutes	past	the	hour,	so	instead	JavaScript	assumes	you	mean	6	hours
and	11	minutes	after	5:00,	that	being	11:11—the	time	in	Berlin	that	you	wanted.

Finally,	the	updateTime()	function	creates	the	resultsText	variable	and	then	writes
the	results	to	the	divCityTime:

				var	resultsText	=	selectedCity	+	"	time	is	"	+

								now.toLocaleString();

				document.getElementById("divCityTime").innerHTML	=	resultsText;

}

HTML5	FORM	OBJECT	PROPERTIES	AND	METHODS
HTML4	was	finalized	in	1997,	and	it	wasn’t	until	2012	that	the	web	community	saw	a
push	for	HTML5.	Needless	to	say,	HTML	hadn’t	seen	a	significant	update	until	the
introduction	of	HTML5.	So	for	fifteen	years,	web	developers	have	worked	with	form
controls	that	grossly	don’t	meet	developers’	and	users’	needs.	Thankfully,	that	changes
with	HTML5.

One	thing	you’ve	done	throughout	this	chapter	is	respond	to	various	form	controls’
change,	click,	focus,	blur,	and	keypress	events	(among	others).	All	of	these	events	can
be	used	in	conjunction	with	one	another	so	that	you	can	respond	to	any	user	input,	but	that
requires	a	lot	of	extra	code.

A	better	solution	would	be	to	use	the	input	event	introduced	in	HTML5.	This	new	event
fires	when	the	value	of	an	element	changes.	That	means	you	can	listen	for	the	input	event
on	a	<form/>	object	and	process	its	data	as	any	field	is	updated.

The	target	of	the	input	event	is	the	element	that	changed.	You	use	the	input	event	later	in
this	chapter.

New	Input	Types
HTML5	introduces	a	slew	of	new	types	for	<input/>	elements,	and	the	following	table
lists	them,	their	descriptions,	and	a	description	of	their	output	(the	control’s	value	if
known).	In	all	cases,	the	value	is	a	string	object.

TYPE DESCRIPTION VALUE
color A	control	for	specifying	a	color.	The	value

is	the	color	in	hexadecimal	format.
A	hexadecimal	value	of	the
number	(#ff00ff).

date Used	for	entering	the	date	(year,	month,
and	day).

The	date	in	yyyy-mm-dd	format
(2014-07-14).

datetime Allows	for	entering	the	date	and	time	based
on	UTC.

Not	yet	supported.

email A	field	for	editing	an	e-mail	address.	The
value	is	automatically	validated.

The	text	input	into	the	field	(even
if	invalid	e-mail).

month A	control	for	entering	month	and	year;	no
time	zone.

The	date	in	yyyy-mm	format
(2014-07).

number Creates	a	control	for	numeric	input,	but
does	not	prohibit	alpha-character	input.

The	numeric	data	input	into	the
field,	or	an	empty	string	if	not	a
number.

range Creates	a	native	slider	for	imprecise
numeric	input.

The	value	of	the	slider.

search A	single-line	text	entry	control. The	text	input	into	the	field.	Line
breaks	are	removed.

tel Creates	a	control	for	telephone	entry. The	text	input	into	the	field.	Line
breaks	are	removed.

time Allows	time	input	with	no	time	zone. The	time	in	24-hour	format	(15:37
for	03:37PM).

url A	control	for	editing	absolute	URLs. The	text	input	into	the	field.	Line
breaks	and	leading/trailing
whitespace	are	removed.

week Creates	a	control	for	entering	a	date
consisting	of	a	week-year	number	and	a
week	number	with	no	time	zone.

The	year	and	week	number
(2014-W29).

Unfortunately,	some	of	the	new	input	types	are	not	supported	by	any	browser,	and	some
are	only	supported	by	a	few.	Many	of	the	supported	input	types	exhibit	inconsistent
behavior	between	browsers.	In	short,	if	you	plan	on	using	any	of	these	new	input	types,	be
sure	to	test	your	page	in	all	modern	browsers.

HTML5	also	brings	several	new	attributes	to	<input/>	elements,	all	of	which	are
accessible	as	properties	of	the	element	object.	The	following	table	lists	just	some	of	these
attributes.

TYPE DESCRIPTION
autocomplete Specifies	that	the	value	of	the	control	can	be	automatically	completed	by

the	browser.
autofocus Determines	if	the	control	should	have	focus	when	the	page	loads.
form The	ID	of	the	associated	form.	If	specified,	the	control	can	be	placed

anywhere	in	the	document.	If	not	specified,	the	control	can	only	reside
within	the	form.

maxLength Specifies	the	maximum	number	of	characters	the	user	can	enter	for	text,
email,	search,	password,	tel,	and	url	types.

pattern A	regular	expression	that	the	control’s	value	is	checked	against.
placeholder Displays	a	hint	to	the	user	of	what	can	be	entered	in	the	field.
required Specifies	that	the	user	must	fill	in	a	value	for	the	field	before	submitting

the	form.

In	addition	to	these	properties,	HTML5	specifies	three	unique	properties/attributes	for	the
range	type:

min:	The	minimum	value	of	the	slider

max:	The	maximum	value	of	the	slider

step:	The	increment	between	values

				TRY	IT	OUT								New	Input	Types
Let’s	look	at	an	example	of	the	number	and	range	input	types,	as	well	as	the	input
event.	Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	10</title>

</head>

<body>

				<form	name="form1">

								<p>

												<label	for="minValue">Min:	</label>

												<input	type="number"	id="minValue"	name="minValue"	/>

								</p>

								<p>

												<label	for="maxValue">Max:	</label>

												<input	type="number"	id="maxValue"	name="maxValue"	/>

								</p>

								<p>

												<label	for="stepValue">Step:	</label>

												<input	type="number"	id="stepValue"	name="stepValue"	/>

								</p>

								<p>

												<input	type="range"	id="slider"	name="slider"	/>

								</p>

				</form>

				<div	id="output"></div>

				<script>

								var	myForm	=	document.form1;

								var	output	=	document.getElementById("output");

								function	formInputChange()	{

												var	slider	=	myForm.slider;

												slider.min	=	parseFloat(myForm.minValue.value);

												slider.max	=	parseFloat(myForm.maxValue.value);

												slider.step	=	parseFloat(myForm.stepValue.value);

												output.innerHTML	=	slider.value;

								}

								myForm.addEventListener("input",	formInputChange);

				</script>

</body>

</html>

Save	this	as	ch11_example10.html.

When	you	open	this	page	in	a	modern	browser,	you	will	see	three	text	boxes	and	one
slider.	The	three	text	boxes	enable	you	to	edit	the	minimum,	maximum,	and	step	of
the	slider.	Providing	any	input	to	any	of	the	form	fields	updates	the	min,	max,	and	step
properties	of	the	slider,	as	well	as	displays	the	value	of	the	slider	in	a	<div/>
element.

There	is	one	exception:	In	IE,	changing	the	value	of	the	slider	does	not	cause	the
input	event	to	fire.

Let’s	first	look	at	the	form’s	HTML:

<form	name="form1">

				<p>

								<label	for="minValue">Min:	</label>

								<input	type="number"	id="minValue"	name="minValue"	/>

				</p>

				<p>

								<label	for="maxValue">Max:	</label>

								<input	type="number"	id="maxValue"	name="maxValue"	/>

				</p>

				<p>

								<label	for="stepValue">Step:	</label>

								<input	type="number"	id="stepValue"	name="stepValue"	/>

				</p>

You	start	with	three	<input/>	elements	of	type	number.	Their	purpose	is	to	allow	you
to	specify	the	minimum,	maximum,	and	step	values	of	the	fourth	<input/>	element:

				<p>

								<input	type="range"	id="slider"	name="slider"	/>

				</p>

</form>

This	is	a	range	<input/>	element,	and	there	are	no	attributes	other	than	type,	id,	and
name.

Outside	of	the	form	is	a	<div/>	element	with	an	id	of	output:

<div	id="output"></div>

As	you	input	data	in	the	form,	the	contents	of	this	<div/>	element	change	with	the
value	of	the	range	<input/>	element.

Now	for	the	JavaScript.	The	first	two	lines	of	JavaScript	code	reach	into	the	DOM
and	grab	references	to	two	elements:

var	myForm	=	document.form1;

var	output	=	document.getElementById("output");

The	first	is	a	reference	to	the	<form/>	element,	and	the	second	is	the	<div
id="output"/>	element.

To	make	this	example	work,	you	listen	for	the	myForm	object’s	input	event.	So,	next
you	call	myForm.addEventListener()	to	register	the	listener:

myForm.addEventListener("input",	formInputChange);

The	formInputChange()	function	executes	when	the	input	event	fires,	and	in	its	first
line	of	code,	you	create	a	variable	called	slider	to	contain	the	range	<input/>
element:

function	formInputChange()	{

				var	slider	=	myForm.slider;

This	is	for	convenience	purposes	because	every	statement	in	this	function	will
reference	the	slider	element	in	some	way.

Next,	you	want	to	modify	the	slider’s	min,	max,	and	step	properties	with	the	data
entered	into	the	form:

				slider.min	=	parseFloat(myForm.minValue.value);

				slider.max	=	parseFloat(myForm.maxValue.value);

				slider.step	=	parseFloat(myForm.stepValue.value);

Remember	that	an	<input/>	element’s	value	is	string	data—even	if	that	string
contains	a	number.	Therefore,	you	need	to	convert	the	string	into	a	numeric	value.
The	parseFloat()	function	should	be	used	here	because	floating-point	numbers	are
valid	values	for	a	range’s	min,	max,	and	step	properties.

Finally,	you	display	slider’s	value.

				output.innerHTML	=	slider.value;

}

New	Elements
HTML5	also	introduces	three	new	form	controls:

<output/>	is	used	to	display	the	result	of	a	calculation.

<meter/>	is	a	graphical	display	of	a	value.

<progress/>	represents	the	completion	progress	of	a	task.

The	<output/>	element	is	more	of	a	traditional	form	control	in	that	it	has	to	be	associated
with	a	form;	it	can	reside	within	a	form	or	you	can	provide	a	form’s	id	as	the	value	of	its
form	attribute.

The	<meter/>	and	<progress/>	elements,	however,	have	no	such	requirement.	They	can
appear	anywhere	within	the	document	without	any	form	association.

The	<output/>	Element
The	<output/>	element	represents	the	result	of	a	particular	calculation	or	user	action.	No
graphics	or	styling	are	associated	with	the	element;	it	simply	displays	text	(although	you
can	apply	styling	with	CSS).

At	the	heart	of	the	<output/>	element	is	its	value	property.	Like	a	typical	form	control,
the	value	property	lets	you	get	and	set	the	value	of	the	control,	and	setting	the	value
visually	updates	the	control	to	display	whatever	value	you	assigned	to	the	property.	But
unlike	typical	form	controls,	the	<output/>	element	does	not	have	a	value	attribute.	The
value	of	the	element	is	instead	represented	by	a	text	node	between	the	opening	and	closing
<ouput>	tags.	For	example:

<output	name="result"	id="result"	for="field1	field2">10</output>

IE11	and	below	do	not	officially	support	the	<output/>	element,	and	setting	the	value
property	will	result	in	an	error.	You	might	work	around	this	issue	by	still	using	the
<output/>	element	and	settings	its	“value”	with	innerHTML.	However,	this	workaround	is
not	standard	and	is	not	recommended.

Finally,	the	<output/>	element	should	be	associated	with	fields	involved	in	the	result	of
calculations	that	the	<output/>	displays.	You	do	this	with	the	familiar	for	attribute.	In	the
previous	HTML,	the	<output/>	element	is	associated	with	field1	and	field2.

				TRY	IT	OUT								sing	the	<output/>	Element
In	this	exercise,	you	modify	Example	10	and	use	the	<output/>	element	to	display
the	range’s	value.	Feel	free	to	copy	and	paste	Example	10	and	modify	the	highlighted
lines	of	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	11</title>

</head>

<body>

				<form	id="form1"	name="form1">

								<p>

												<label	for="minValue">Min:	</label>

												<input	type="number"	id="minValue"	name="minValue"	/>

								</p>

								<p>

												<label	for="maxValue">Max:	</label>

												<input	type="number"	id="maxValue"	name="maxValue"	/>

								</p>

								<p>

												<label	for="stepValue">Step:	</label>

												<input	type="number"	id="stepValue"	name="stepValue"	/>

								</p>

								<p>

												<input	type="range"	id="slider"	name="slider"	/>

								</p>

				</form>

				<output	id="result"	name="result"	form="form1"	for="slider">

</output>

				<script>

								var	myForm	=	document.form1;

								var	output	=	myForm.result;

								function	formInputChange()	{

												var	slider	=	myForm.slider;

												slider.min	=	parseFloat(myForm.minValue.value);

												slider.max	=	parseFloat(myForm.maxValue.value);

												slider.step	=	parseFloat(myForm.stepValue.value);

												result.value	=	slider.value;

								}

								myForm.addEventListener("input",	formInputChange);

				</script>

</body>

</html>

Save	this	as	ch11_example11.html.

Because	you’re	using	standard	<output/>	code,	you	will	need	to	open	this	page	in
Chrome,	Firefox,	or	Opera.

Let’s	focus	only	on	the	lines	that	changed.	First,	you	add	an	id	attribute	to	the
<form/>	element:

<form	id="form1"	name="form1">

This	addition	is	only	necessary	because	you	define	the	<output/>	element	outside	of
the	form:

<output	id="result"	name="result"	form="form1"	for="slider"></output>

You	define	the	<output/>	element	by	setting	its	id	and	name	attributes	to	result,	the

form	attribute	to	form1,	and	the	for	attribute	to	slider.	The	latter	isn’t	absolutely
necessary	for	this	example	to	work,	but	the	for	attribute	exists	so	that	you	can	write
semantic	markup.	By	setting	for	to	slider,	you	(and	readers	of	your	code)	know	that
the	<output/>	element	displays	the	value	related	to	the	range	field.

The	next	change	is	the	second	line	of	JavaScript	code.	Instead	of	retrieving	a	<div/>
element,	you	grab	a	reference	to	your	new	<output/>	element:

var	output	=	myForm.result;

Notice	the	code:	myForm.result.	Even	though	the	<output/>	element	is	not	inside
the	form,	it	is	still	associated	with	the	form	because	of	the	for	attribute.	Therefore,
you	can	walk	the	Form	object	hierarchy	to	reference	the	<output/>	element.

The	final	change	is	the	last	statement	of	the	formInputChange()	function:

result.value	=	slider.value;

You	set	the	<output/>	element’s	value	property	to	the	value	of	slider;	thus,
updating	the	information	displayed	in	the	page.

The	<meter/>	and	<progress/>	Elements
As	mentioned	earlier,	the	<meter/>	and	<progress/>	form	controls	are	rather	unique	in
that	they	can	be	used	anywhere	within	a	page.	It	might	seem	strange	to	call	them	“form
controls”	when	they	don’t	have	to	be	used	within	a	form—they	don’t	even	accept	user
input!	Nevertheless,	they’re	categorized	as	such.

At	first	glance,	these	elements	look	similar,	but	they,	in	fact,	serve	two	different	purposes
and	have	a	different	set	of	attributes	and	properties.

The	<meter/>	element	is	used	to	graphically	display	an	individual	value	within	a
particular	range.	For	example,	the	RPMs	of	a	vehicle’s	engine,	the	heat	of	a	CPU,	or	disk
usage	indicators	are	perfect	examples	of	what	the	<meter/>	element	is	used	for.

The	<meter/>	element	consists	of	an	opening	and	closing	tag,	and	you	can	specify	the
low,	optimum,	and	high	sections	of	the	meter.	These	are	ranges,	mostly	for	semantic
purposes,	that	affect	the	meter’s	color.	You	can	also	set	the	min	and	max	of	possible	values,
as	well	as	the	value	of	the	meter:

<meter	min="0"	max="150"	low="40"	optimum="75"

							high="100"	value="80">80	Units	of	Something</meter>

These	six	attributes	map	to	properties	of	the	same	names.	If	a	browser	doesn’t	support	the
<meter/>	element,	the	text	between	the	opening	and	closing	tag	is	displayed	in	the
browser.

NOTE	IE9,	IE10,	and	IE11	do	not	support	the	<meter/>	element.

The	<progress/>	element	represents	the	completion	progress	of	a	task,	and	as	with	the
preceding	new	elements,	it	consists	of	an	opening	and	closing	tag:

<progress	max="100"	value="40">40%	done	with	what	you're	doing</progress>

It	also	has	a	max	attribute	that	maps	to	the	element	object’s	max	property,	and	the	control’s
value	is	contained	within	the	value	attribute/property.	Like	<meter/>,	the	text	between	the
opening	and	closing	tags	is	displayed	if	the	browser	doesn’t	support	the	<progress/>
element.

				TRY	IT	OUT								The	<meter/>	and	<progress/>
Elements
Let’s	use	the	<meter/>	and	<progress/>	elements	in	an	example.	Open	your	text
editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Example	12</title>

</head>

<body>

				<h2>Highway	Speed	Tracker</h2>

				<form	id="form1"	name="form1">

								<p>

												<label	for="driverName">Driver	Name:	</label>

												<input	type="text"	id="driverName"	name="driverName"	/>

								</p>

								<p>

												<label	for="speed">Speed	(Miles/Hour):	</label>

												<input	type="number"	id="speed"	name="speed"	/>

												<meter	id="speedMeter"	value="0"	low="55"	optimum="75"

																			high="90"	max="120"></meter>

								</p>

								<p>

												<label	for="vehicle">Vehicle	Type:	</label>

												<input	type="text"	id="vehicle"	name="vehicle"	/>

								</p>

				</form>

				<p>

								Form	Completion	Progress:

								<progress	id="completionProgress"	max="3"	value="0"></progress>

				</p>

				<script>

								var	myForm	=	document.form1;

								var	completionProgress	=	

document.getElementById("completionProgress");

								var	speedMeter	=	document.getElementById("speedMeter");

								function	countFieldData()	{

												var	count	=	0;

												for	(var	index	=	0;	index	<	myForm.length;	index++)	{

																var	element	=	myForm[index];

																if	(element.value)	{

																				count++;

																}

												}

												return	count;

								}

								function	formInputChange()	{

												completionProgress.value	=	countFieldData();

												speedMeter.value	=	myForm.speed.value;

								}

								myForm.addEventListener("input",	formInputChange);

				</script>

</body>

</html>

Save	this	as	ch11_example12.html.	Open	the	page	in	your	browser	(including	IE—
this	example	mostly	works	in	IE9,	IE10,	and	IE11),	and	you’ll	see	a	form	with	three
fields:	a	driver’s	name,	the	driver’s	speed,	and	the	type	of	vehicle	the	driver	drove.	As
you	fill	out	the	form,	you’ll	notice	a	few	things	going	on.

First,	the	progress	bar	below	the	form	changes	in	value.	This	indicates	your	progress
in	filling	out	the	form.	When	all	fields	have	a	value,	you’re	done!	Second,	you’ll
notice	the	meter	next	to	the	Speed	field	updates	to	visually	represent	the	data	from
that	field.

Now	let’s	look	at	the	HTML.	In	the	body	of	the	page,	you	define	a	form	with	three
<input/>	elements.	The	first	is	a	normal	text	box	for	the	driver’s	name:

<form	id="form1"	name="form1">

				<p>

								<label	for="driverName">Driver	Name:	</label>

								<input	type="text"	id="driverName"	name="driverName"	/>

				</p>

The	next	field	is	a	number	field	for	inputting	the	driver’s	speed:

				<p>

								<label	for="speed">Speed	(Miles/Hour):	</label>

								<input	type="number"	id="speed"	name="speed"	/>

								<meter	id="speedMeter"	value="0"	low="55"	optimum="75"

															high="90"	max="120"></meter>

				</p>

Here,	you	also	define	a	<meter/>	element	with	an	id	of	speedMeter.	This	meter	is
supposed	to	visually	represent	highway	speed	in	miles	per	hour.	In	such	cases,
55MPH	is	slow,	75MPH	is	optimum/standard,	and	90MPH	is	high.	The	maximum
value	this	meter	can	display	is	120.

The	last	field	is	another	text	box	for	the	driver’s	vehicle:

				<p>

								<label	for="vehicle">Vehicle	Type:	</label>

								<input	type="text"	id="vehicle"	name="vehicle"	/>

				</p>

Then	after	the	form,	you	define	a	<progress/>	element:

<p>

				Form	Completion	Progress:

				<progress	id="completionProgress"	max="3"	value="0"></progress>

</p>

This	is	to	track	the	user’s	progress	in	filling	out	the	form.	It	has	an	id	of
completionProgress	and	has	a	maximum	value	of	3	because	it	contains	three	fields.

Of	course,	the	HTML	by	itself	isn’t	very	interesting;	so,	let’s	look	at	the	JavaScript.
You	first	retrieve	three	elements	from	the	document:	the	<form/>,	<progress/>,	and
<meter/>	elements.

var	myForm	=	document.form1;

var	completionProgress	=	document.getElementById("completionProgress");

var	speedMeter	=	document.getElementById("speedMeter");

To	retrieve	the	<progress/>	and	<meter/>	elements,	you	use
document.getElementById()	because	although	these	two	elements	are	considered
form	controls,	you	cannot	access	them	through	the	form	hierarchy	(which	admittedly
can	be	a	little	confusing).

Once	again,	the	form’s	input	event	provides	the	magic	for	this	example;	so,	you
register	its	listener:

myForm.addEventListener("input",	formInputChange);

The	formInputChange()	function	is	rather	simple;	it	updates	the	values	of	both	the
<progress/>	and	<meter/>	elements:

function	formInputChange()	{

				completionProgress.value	=	countFieldData();

				speedMeter.value	=	myForm.speed.value;

}

The	value	for	speedMeter	comes	from	the	speed	field	in	the	form,	but	a	little	more
work	is	needed	to	set	the	value	for	completionProgress.

You	create	a	helper	function	called	countFieldData().	Its	job	is	straightforward:
Examine	the	elements	within	the	form	and	determine	if	they	have	a	value.	It’s	not	a
foolproof	solution	for	determining	if	the	user	has	completed	the	form,	but	it	works	for
this	example.

First,	you	define	a	counter	variable	to	count	how	many	fields	have	a	value.	You	call
this	variable	count:

function	countFieldData()	{

				var	count	=	0;

Now	you	need	to	check	the	value	property	of	every	element	in	the	form.	You	could
write	code	explicitly	for	this	form,	or	you	can	take	a	more	generic	approach	and	loop
through	the	form’s	elements.	Let’s	do	the	latter:

				for	(var	index	=	0;	index	<	myForm.length;	index++)	{

								var	element	=	myForm[index];

								if	(element.value)	{

												count++;

								}

				}

Using	a	for	loop,	you	iterate	over	the	myForm	object/collection	to	retrieve	each	form
control	and	check	if	it	has	a	value.	If	the	element	has	a	value,	you	increment	the
count	variable.

After	the	loop	exits,	you	return	the	value	of	the	count	variable:

				return	count;

}

SUMMARY
In	this	chapter,	you	looked	at	how	to	add	a	user	interface	onto	your	JavaScript	so	that	you
can	interact	with	your	users	and	acquire	information	from	them.	This	chapter	covered	the
following:

The	HTML	form	is	where	you	place	elements	making	up	the	interface	in	a	page.

Each	HTML	form	groups	together	a	set	of	HTML	elements.	When	a	form	is
submitted	to	a	server	for	processing,	all	the	data	in	that	form	is	sent	to	the	server.	You
can	have	multiple	forms	on	a	page,	but	only	the	information	in	one	form	can	be	sent
to	the	server.

A	form	is	created	with	the	opening	tag	<form>	and	ends	with	the	close	tag	</form>.
All	the	elements	you	want	included	in	that	form	are	placed	in	between	the	open	and
close	<form>	tags.	The	<form/>	element	has	various	attributes—for	client-side
scripting,	the	name	attribute	is	the	important	one.	You	can	access	forms	with	either
their	name	attribute	or	their	ID	attribute.

Each	<form>	element	creates	a	Form	object,	which	is	contained	within	the	document
object.	To	access	a	form	named	myForm,	you	write	document.myForm.	The	document
object	also	has	a	forms	property,	which	is	a	collection	containing	every	form	inside
the	document.	The	first	form	in	the	page	is	document.forms[0],	the	second	is
document.forms[1],	and	so	on.	The	length	property	of	the	forms	property
(document.forms.length)	tells	you	how	many	forms	are	on	the	page.

Having	discussed	forms,	we	then	went	on	to	look	at	the	different	types	of	HTML
elements	that	can	be	placed	inside	forms,	how	to	create	them,	and	how	they	are	used
in	JavaScript.

The	objects	associated	with	the	form	elements	have	a	number	of	properties,	methods,
and	events	that	are	common	to	them	all.	They	all	have	the	name	property,	which	you
can	use	to	reference	them	in	your	JavaScript.	They	also	all	have	the	form	property,
which	provides	a	reference	to	the	Form	object	in	which	that	element	is	contained.	The
type	property	returns	a	text	string	telling	you	what	type	of	element	this	is;	types
include	text,	button,	and	radio.

You	also	saw	that	the	methods	focus()	and	blur(),	and	the	events	focus	and	blur,
are	available	to	every	form	element	object.	Such	an	element	is	said	to	receive	the
focus	when	it	becomes	the	active	element	in	the	form,	either	because	the	user	has
selected	that	element	or	because	you	used	the	focus()	method.	However	an	element
got	the	focus,	its	focus	event	will	fire.	When	another	element	is	set	as	the	currently
active	element,	the	previous	element	is	said	to	lose	its	focus,	or	to	blur.	Again,	loss	of
focus	can	be	the	result	of	the	user	selecting	another	element	or	the	use	of	the	blur()
method;	either	way,	when	it	happens	the	blur	event	fires.	You	saw	that	the	firing	of
focus	and	blur	can,	if	used	carefully,	be	a	good	place	to	check	things	like	the
validity	of	data	entered	by	a	user	into	an	element.

All	elements	return	a	value,	which	is	the	string	data	assigned	to	that	element.	The

meaning	of	the	value	depends	on	the	element;	for	a	text	box,	it	is	the	value	inside	the
text	box,	and	for	a	button,	it’s	the	text	displayed	on	its	face.

Having	discussed	the	common	features	of	elements,	we	then	looked	at	each	of	the
more	commonly	used	elements	in	turn,	starting	with	the	button	element.

The	button	element’s	purpose	in	life	is	to	be	clicked	by	the	user,	where	that	clicking
fires	some	script	you	have	written.	You	can	capture	the	clicking	by	connecting	to	the
button’s	click	event.	A	button	is	created	by	means	of	the	<input/>	element	with	the
type	attribute	set	to	button.	The	value	attribute	determines	what	text	appears	on	the
button’s	face.	Two	variations	on	a	button	are	the	submit	and	reset	buttons.	In
addition	to	acting	as	buttons,	they	also	provide	a	special	service	not	linked	to	code.
The	submit	button	automatically	submits	the	form	to	the	server;	the	reset	button
clears	the	form	back	to	its	default	state	when	loaded	in	the	page.

The	text	element	allows	the	user	to	enter	a	single	line	of	plaintext.	A	text	box	is
created	by	means	of	the	<input/>	element	with	the	type	attribute	set	to	text.	You
can	set	how	many	characters	the	user	can	enter	and	how	wide	the	text	box	is	with	the
maxlength	and	size	attributes,	respectively,	of	the	<input/>	element.	The	text	box
has	an	associated	object	called	Text,	which	has	the	additional	events	select	and
change.	The	select	event	fires	when	the	user	selects	text	in	the	box,	and	the	more
useful	change	event	fires	when	the	element	loses	focus	and	its	contents	have	changed
since	the	element	gained	the	focus.	The	firing	of	the	change	event	is	a	good	place	to
do	validation	of	what	the	user	has	just	entered.	If	she	entered	illegal	values,	such	as
letters	when	you	wanted	numbers,	you	can	let	her	know	and	send	her	back	to	correct
her	mistake.	A	variation	on	the	text	box	is	the	password	box,	which	is	almost
identical	to	the	text	box	except	that	the	values	typed	into	it	are	hidden	and	shown	as
asterisks.	Additionally,	the	text	box	also	has	the	keydown,	keypress,	and	keyup
events.

The	next	element	you	looked	at	was	the	text	area,	which	is	similar	to	the	text	box
except	that	it	allows	multiple	lines	of	text	to	be	entered.	This	element	is	created	with
the	open	tag	<textarea>	and	closed	with	the	</textarea>	tag,	the	width	and	height
in	characters	of	the	text	box	being	determined	by	the	cols	and	rows	attributes,
respectively.	The	wrap	attribute	determines	whether	the	text	area	wraps	text	that
reaches	the	end	of	a	line	and	whether	that	wrapping	is	sent	when	the	contents	are
posted	to	the	server.	If	this	attribute	is	left	out,	or	set	to	off,	no	wrapping	occurs;	if
set	to	soft,	it	causes	wrapping	client-side,	but	is	not	sent	to	the	server	when	the	form
is	sent;	if	set	to	hard,	it	causes	wrapping	client-side	and	is	sent	to	the	server.	The
associated	Textarea	object	has	virtually	the	same	properties,	methods,	and	events	as
a	Text	object.

You	then	looked	at	the	check	box	and	radio	button	elements	together.	Essentially	they
are	the	same	type	of	element,	except	that	the	radio	button	is	a	grouped	element,
meaning	that	only	one	in	a	group	can	be	checked	at	once.	Checking	another	one
causes	the	previously	checked	button	to	be	unchecked.	Both	elements	are	created
with	the	<input/>	element,	the	type	attribute	being	checkbox	or	radio.	If	checked	is
put	inside	the	<input>	tag,	that	element	will	be	checked	when	the	page	is	loaded.
Creating	radio	buttons	with	the	same	name	creates	a	radio	button	group.	The	name	of

a	radio	button	actually	refers	to	an	array,	and	each	element	within	that	array	is	a	radio
button	defined	on	the	form	to	be	within	that	group.	These	elements	have	associated
objects	called	Checkbox	and	Radio.	Using	the	checked	property	of	these	objects,	you
can	find	out	whether	a	check	box	or	radio	button	is	currently	checked.	Both	objects
also	have	the	click	event	in	addition	to	the	common	events	focus	and	blur.

Next	in	your	look	at	elements	were	the	drop-down	list	and	list	boxes.	Both,	in	fact,
are	the	same	select	element,	with	the	size	attribute	determining	whether	it’s	a	drop-
down	or	list	box.	The	<select>	tag	creates	these	elements,	the	size	attribute
determining	how	many	list	items	are	visible	at	once.	If	a	size	of	1	is	given,	a	drop-
down	box	rather	than	a	list	box	is	created.	Each	item	in	a	select	element	is	defined	by
the	<option/>	element,	or	added	to	later	by	means	of	the	Select	object’s	options
collection	property,	which	is	an	array-like	structure	containing	each	Option	object	for
that	element.	However,	adding	options	after	the	page	is	loaded	differs	slightly
between	standards-compliant	browsers	and	old-IE.	The	Select	object’s
selectedIndex	property	tells	you	which	option	is	selected;	you	can	then	use	that
value	to	access	the	appropriate	option	in	the	options	collection	and	use	the	Option
object’s	value	property.	The	Option	object	also	has	the	text	and	index	properties,
text	being	the	displayed	text	in	the	list	and	index	being	its	position	in	the	Select
object’s	options	collection	property.	You	can	loop	through	the	options	collection,
finding	out	its	length	from	the	Select	object’s	length	property.	The	Select	object
has	the	change	event,	which	fires	when	the	user	selects	another	item	from	the	list.

You	then	looked	at	HTML5’s	new	elements	and	input	types,	as	well	as	the	input
event.	You	learned	how	to	write	JavaScript	code	to	manipulate	the	<output/>,
<meter/>,	and	<progress/>	elements	and	modify	their	output	when	users	input	data
in	a	form.

In	the	next	chapter,	you	look	at	JavaScript	Object	Notation	(JSON),	a	data	format	that	lets
you	store	JavaScript	objects	and	arrays	as	string	data.

EXERCISES
You	can	find	suggested	solutions	to	these	questions	in	Appendix	A.

1.	 Using	the	code	from	the	temperature	converter	example	you	saw	in	Chapter	2,	create
a	user	interface	for	it	and	connect	it	to	the	existing	code	so	that	the	user	can	enter	a
value	in	degrees	Fahrenheit	and	convert	it	to	centigrade.

2.	 Create	a	user	interface	that	allows	users	to	pick	the	computer	system	of	their	dreams,
similar	in	principle	to	the	e-commerce	sites	selling	computers	over	the	Internet.	For
example,	they	could	be	given	a	choice	of	processor	type,	speed,	memory,	and	hard
drive	size,	and	the	option	to	add	additional	components	like	a	DVD-ROM	drive,	a
sound	card,	and	so	on.	As	the	users	change	their	selections,	the	price	of	the	system
should	update	automatically	and	notify	them	of	the	cost	of	the	system	as	they
specified	it,	either	by	using	an	alert	box	or	by	updating	the	contents	of	a	text	box.

12
JSON
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Discovering	the	limitations	of	using	XML	with	JavaScript

Recognizing	the	differences	between	JavaScript	and	JSON

Serializing	objects	using	the	built-in	JSON	object

Parsing	JSON	back	into	actual	objects	and	values	you	can	use	in	your	pages

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

If	you	aren’t	already,	start	thinking	of	a	web	page	as	a	program.	It	does,	after	all,	have	all
the	trappings	of	a	traditional	program.	It	has	a	user	interface,	and	it	can	process	data	with
JavaScript.	But	as	you	well	know,	traditional	programs	can	do	more;	they	can	store	data	as
well	as	transmit	data	to	other	computers	and	systems.	In	the	coming	chapters,	you	learn
that	you	can	do	the	same	things	in	a	web	page—all	thanks	to	JavaScript.

But	as	you	soon	learn,	you	can’t	just	store	objects	and	arrays	as	they	are;	instead,	you	need
to	serialize	them.	Serialization	is	the	process	of	translating	an	object	into	a	string
representation	of	that	object.	Once	an	object	is	serialized,	the	string	representation	of	that
object	can	then	be	stored	in	a	more	permanent	storage	facility	or	transmitted	to	another
computer.

Serialization	translates	only	the	structure	and	pertinent	information	of	an	object—that	is,
only	the	properties	are	present	in	a	serialized	object.	But	once	you	need	to	work	with	the
object	within	JavaScript,	you	can	deserialize	it,	converting	it	back	into	a	native	JavaScript
object.

The	serialization	format	that	web	developers	overwhelmingly	embrace	is	called	JavaScript
Object	Notation,	or	JSON	(pronounced	like	the	name:	Jason).	It	is	a	subset	of	the
JavaScript	language;	as	such,	it’s	easy	to	read,	it’s	concise,	and	most	importantly,	it’s	easy
to	serialize	to	and	deserialize	from.

But	the	web	hasn’t	always	used	JSON	for	serializing	JavaScript	objects.	So	before	we
look	at	the	JSON	format,	let’s	look	at	what	web	developers	used	to	use.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

XML
There	was	a	time	when	the	web	development	community	embraced	XML	for	just	about
everything.	Web	services	used	it	to	communicate	with	one	another	and	other	computers,
and	JavaScript	developers	used	it	to	communicate	with	the	web	application’s	server.

XML	is	a	human-readable	language	thanks	to	its	declarative	syntax.	It’s	not	necessary	for
humans	to	read	XML	data,	but	being	able	to	read	and	decipher	the	XML	can	be	useful.
Consider	the	following	XML	document	as	an	example:

<person>

				<firstName>John</firstName>

				<lastName>Doe</lastName>

				<age>30</age>

</person>

Despite	being	a	simple	document,	you	know	that	this	XML	represents	an	individual
person	named	John	Doe	who	is	30	years	old.	You	could	catch	and	fix	errors	that	may
occur	in	your	application	as	it	generates	the	preceding	XML-formatted	data.

XML	is	also	machine-readable,	and	it	was	a	known	commodity	when	developers	started
using	it.	Every	modern	programming	language	had	the	tools	and	capabilities	for	reading,
parsing,	and	creating	XML-formatted	data,	and	so	using	XML	to	communicate	between
computer	systems	and	applications	seemed	like	a	good	idea.

But	XML	has	its	drawbacks.	For	one,	XML’s	declarative	syntax	adds	a	lot	of	extra	cruft	to
the	data.	Look	again	at	the	XML	describing	a	person	named	John	Doe:

<person>

				<firstName>John</firstName>

				<lastName>Doe</lastName>

				<age>30</age>

</person>

This	simple	XML	is	101	bytes.	That’s	not	large	by	today’s	standards,	but	remember	that
this	is	just	an	example.	This	is	information	that	a	computer	would	send	over	the	Internet	to
another	computer.

First,	the	opening	and	closing	<person>	tags	surround	the	actual	data.	Of	course,	the	outer
<person/>	element	exists	for	organizational	purposes,	but	it	is	17	bytes—16	percent	of	the
entire	payload.	Other	formats	will	still	have	some	way	to	organize	the	document’s	real
information	(the	first	and	last	name),	but	they	would	be	smaller	in	size.

Next,	opening	and	closing	tags	surround	both	the	first	and	last	name.	Naturally,	there
needs	to	be	some	way	to	organize	that	data,	but	yet,	this	XML	uses	55	bytes	to	denote	the
first	name,	last	name,	and	the	age.

Another	of	XML’s	issues	is	the	code	necessary	for	reading,	parsing,	and	generating	XML
data.	Yes,	most	modern	programming	languages	can	handle	XML,	but	it	requires	a	lot	of
code—code	that	usually	has	to	be	rewritten	for	specific	XML	formats.	For	example,	the
following	code	is	one	way	you	could	read	the	previous	XML	and	parse	it	into	an	object

called	person:

var	personElement	=	document.querySelector("person");

var	firstName	=	personElement.querySelector("firstName").innerHTML;

var	lastName	=	personElement.querySelector("lastName").innerHTML;

var	age	=	personElement.querySelector("age").innerHTML;

var	person	=	{

				firstName	:	firstName,

				lastName:	lastName,

				age:	age

};

This	code	demonstrates	a	straightforward	approach	to	parsing	the	John	Doe	XML.	It	first
retrieves	the	<person/>	element	using	document.querySelector().	It	then	retrieves	the
<firstName/>,	<lastName/>,	and	<age/>	elements	and	stores	their	respective	contents	in
the	firstName,	lastName,	and	age	variables.	Finally,	it	creates	the	person	object	and
assigns	the	appropriate	data	to	its	properties.	This	code	isn’t	complex,	but	as	you	might
suspect,	it	wouldn’t	work	for	XML-formatted	data	with	different	element	names	and
structures.	Naturally,	documents	with	more	complex	structures	require	much	more	code.

But	parsing	XML	into	a	JavaScript	object	is	only	half	of	the	story.	Before	you	can	send
data	from	JavaScript	to	the	server,	you	have	to	serialize	the	JavaScript	object.	Serializing	a
JavaScript	object	to	XML-formatted	data	is	not	a	trivial	task.	Like	parsing,	the	same	code
usually	doesn’t	work	for	different	data	structures.	Plus,	developers	must	ensure	their
generated	XML	data	is	well-formed.

Around	2007	and	2008,	the	web	community	thankfully	adopted	a	different	data	format	for
storing	and	transmitting	JavaScript	data.

JSON
In	2006,	Douglas	Crockford	wrote	the	JavaScript	Object	Notation	specification.	JSON	is	a
subset	of	the	JavaScript	language,	and	it	uses	several	of	JavaScript’s	syntactical	patterns
for	organizing	and	structuring	data.	As	such,	it	is	does	a	very	good	job	of	representing
objects	and	their	data	(it’s	so	good	that	other	languages	use	JSON,	too).	It’s	extremely
easy	to	parse	JSON	into	JavaScript	objects	and	to	serialize	objects	into	JSON.	In	today’s
modern	browsers,	it	only	takes	one	line	of	code!

As	you	soon	see,	JSON	looks	a	lot	like	JavaScript’s	object	and	array	literals.	It’s	easy	to
confuse	JSON	and	JavaScript	as	being	the	same	thing,	but	it’s	important	to	understand	the
difference	between	the	two.	JavaScript	is	a	programming	language;	JSON	is	a	data	format.

JSON	lets	you	represent	three	types	of	data:	simple	values,	objects,	and	arrays.

Simple	Values
You	can	represent	simple	values	like	strings,	numbers,	booleans,	and	null.	For	example,
the	following	line	is	valid	JSON:

"JavaScript"

This	JSON	represents	the	string	value	of	"JavaScript",	and	it	looks	exactly	like	a	normal
JavaScript	string.	But	there’s	a	big	difference	between	strings	in	JavaScript	and	JSON;
JSON	strings	must	use	double	quotes.	Thus,	the	following	is	invalid	JSON:

'JavaScript'

Numeric	data	is	represented	by	what	appears	to	be	number	literals,	like	this:

10

This	is	valid	JSON	representing	the	number	10.	Similarly,	boolean	values	and	null	look
like	JavaScript	literals,	too:

true

null

Objects
Objects	in	JSON	are	represented	with	what	looks	like	JavaScript’s	object	literal	notation.
For	example,	the	following	is	a	JavaScript	object	that	represents	the	same	person	from
earlier:

var	person	=	{

				firstName:	"John",

				lastName:	"Doe",

				age:	30

};

The	JSON	representation	of	this	object	looks	similar.	Here	is	the	same	object	represented
in	JSON:

{

				"firstName":	"John",

				"lastName":	"Doe",

				"age":	30

}

A	few	noticeable	differences	exist	between	the	JavaScript	and	JSON	representations	of
this	object.	First,	JSON	doesn’t	have	the	person	variable	name.	Remember	that	JSON	is	a
data	format,	not	a	language.	It	has	no	variables,	functions,	or	methods.	It	simply	defines
the	structure	and	data	of	an	object.

The	second	difference	is	the	object’s	property	names.	Notice	that	they	are	surrounded	by
double	quotes.	In	JSON,	an	object’s	property	names	are	strings,	and	the	values	of	those
properties	follow	the	rules	specified	in	the	previous	section.	Double	quotes	surround	the
string	values	of	"John"	and	"Doe",	and	the	number	30	appears	as	a	literal	value.

The	final	difference	is	the	lack	of	a	trailing	semicolon	after	the	closing	curly	brace.	This
isn’t	a	JavaScript	statement,	and	thus,	the	semicolon	is	not	needed.

The	size	of	this	JSON	data	structure	is	69	bytes.	That’s	68	percent	of	the	101	bytes	of	the
equivalent	XML.

Like	JavaScript	objects,	JSON	objects	can	be	simple	or	complex.	The	data	structure
representing	John	Doe	is	rather	simple,	but	you	can	easily	add	complexity	by
incorporating	his	address:

{

				"firstName":	"John",

				"lastName":	"Doe",

				"age":	30,

				"address":	{

								"numberAndStreet":	"123	Someplace",

								"city":	"Somewhere",

								"state":	"Elsewhere"

				}

}

This	adds	an	address	property	to	the	main	object,	and	its	value	is	another	object	that
contains	John’s	mailing	address.

Arrays
Like	objects,	arrays	in	JSON	are	similar	to	JavaScript’s	array	literal	notation.	The
following	line	of	code	is	an	array	literal	in	JavaScript:

var	values	=	["John",	30,	false,	null];

The	same	array	looks	like	this	in	JSON:

["John",	30,	false,	null]

Again,	notice	the	JSON	array	does	not	have	the	values	variable,	nor	does	it	have	the
trailing	semicolon.	And	like	objects,	arrays	are	not	limited	to	just	simple	values;	they	can
contain	complex	objects,	too:

[

				{

								"firstName":	"John",

								"lastName":	"Doe",

								"age":	30,

								"address":	{

												"numberAndStreet":	"123	Someplace",

												"city":	"Somewhere",

												"state":	"Elsewhere"

								}

				},

				{

								"firstName":	"Jane",

								"lastName":	"Doe",

								"age":	28,

								"address":	{

												"numberAndStreet":	"246	Someplace",

												"city":	"Somewhere",

												"state":	"Elsewhere"

								}

				}

]

This	JSON	array	contains	multiple	objects	that	represent	people	and	their	addresses.	The
first	is	our	familiar	John	Doe,	and	the	second	is	his	little	sister,	Jane,	who	lives	down	the
street.	JSON	data	structures	can	be	as	simple	or	complex	as	you	need	them	to	be.

Serializing	Into	JSON
It’s	extremely	easy	to	serialize	JavaScript	objects	into	JSON.	JavaScript	has	an	aptly
named	JSON	object	that	you	use	to	parse	JSON	data	and	serialize	JavaScript	objects.	All
major	browsers	support	this	JSON	object.	Older	browsers,	such	as	IE7	and	below,	can	use
Crockford’s	JSON	implementation	(https://github.com/douglascrockford/JSON-js)
to	achieve	the	same	results.

To	serialize	a	JavaScript	object	into	JSON,	you	use	the	JSON	object’s	stringify()
method.	It	accepts	any	value,	object,	or	array	and	serializes	it	into	JSON.	For	example:

var	person	=	{

				firstName:	"John",

				lastName:	"Doe",

				age:	30

};

var	json	=	JSON.stringify(person);

This	code	serializes	the	person	object	with	JSON.stringify()	and	stores	it	in	the	json
variable.	The	resulting	JSON-formatted	data	looks	like	this:

https://github.com/douglascrockford/JSON-js

{"firstName":"John","lastName":"Doe","age":30}

All	unnecessary	whitespace	is	removed,	giving	you	an	optimized	payload	that	you	can
then	send	to	the	web	server	or	store	elsewhere.

Parsing	JSON
Parsing	JSON	into	JavaScript	objects	is	equally	simple.	The	JSON	object	has	a	parse()
method	that	parses	the	JSON	and	returns	the	resulting	object.	Using	the	json	variable
from	the	previous	code:

var	johnDoe	=	JSON.parse(json);

This	code	parses	the	JSON	text	contained	in	json	and	stores	the	resulting	object	in	the
johnDoe	variable.	And	here’s	the	wonderful	thing—you	can	immediately	use	johnDoe	and
access	its	properties,	such	as:

var	fullName	=	johnDoe.firstName	+	"	"	+	johnDoe.lastName;

It’s	really	no	wonder	why	developers	embraced	JSON.	It’s	easy	to	work	with!

JSON	is	useful	when	you	need	to	store	an	object,	but	the	API	you’re	working	with	only
lets	you	store	text.	In	Chapter	10,	you	learned	that	the	native	drag	and	drop	API	has	a
dataTransfer	object	that	you	can	use	to	work	with	data	during	the	drag-and-drop
operation.	But	as	you	learned,	it	doesn’t	let	you	store	objects,	but	you	can	store	text.	JSON
is	text,	so	you	can	serialize	a	JavaScript	object	at	the	beginning	of	the	drag	operation	and
parse	the	JSON	when	the	drop	event	fires.

				TRY	IT	OUT								Using	JSON	in	Drag	and	Drop
This	example	uses	ch10_example21.html	as	a	basis.	Feel	free	to	copy	and	paste	the
code	from	that	example	and	make	the	highlighted	modifications.	Otherwise,	open
your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	12:	Example	1</title>

				<style>

								[data-drop-target]	{

												height:	400px;

												width:	200px;

												margin:	2px;

												background-color:	gainsboro;

												float:	left;

								}

								.drag-enter	{

												border:	2px	dashed	#000;

								}

								.box	{

												width:	200px;

												height:	200px;

								}

								.navy	{

												background-color:	navy;

								}

								.red	{

												background-color:	red;

								}

				</style>

</head>

<body>

				<div	data-drop-target="true">

								<div	id="box1"	draggable="true"	class="box	navy"></div>

								<div	id="box2"	draggable="true"	class="box	red"></div>

				</div>

				<div	data-drop-target="true"></div>

				<script>

								function	handleDragStart(e)	{

												var	data	=	{

																elementId:	this.id,

																message:	"You	moved	an	element!"

												};

												e.dataTransfer.setData("text",	JSON.stringify(data));

								}

								function	handleDragEnterLeave(e)	{

												if	(e.type	==	"dragenter")	{

																this.className	=	"drag-enter";

												}	else	{

																this.className	=	"";

												}

								}

								function	handleOverDrop(e)	{

												e.preventDefault();

												if	(e.type	!=	"drop")	{

																return;

												}

												var	json	=	e.dataTransfer.getData("text");

												var	data	=	JSON.parse(json);

												var	draggedEl	=	document.getElementById(data.elementId);

												if	(draggedEl.parentNode	==	this)	{

																this.className	=	"";

																return;

												}

												draggedEl.parentNode.removeChild(draggedEl);

												this.appendChild(draggedEl);

												this.className	=	"";

												alert(data.message);

								}

								var	draggable	=	document.querySelectorAll("[draggable]");

								var	targets	=	document.querySelectorAll("[data-drop-target]");

								for	(var	i	=	0;	i	<	draggable.length;	i++)	{

												draggable[i].addEventListener("dragstart",	

handleDragStart);

								}

								for	(i	=	0;	i	<	targets.length;	i++)	{

												targets[i].addEventListener("dragover",	handleOverDrop);

												targets[i].addEventListener("drop",	handleOverDrop);

												targets[i].addEventListener("dragenter",	

handleDragEnterLeave);

												targets[i].addEventListener("dragleave",	

handleDragEnterLeave);

								}

				</script>

</body>

</html>

Save	this	file	as	ch12_example1.html.

You	need	just	a	few	changes	to	make	this	example	different	from
ch10_example21.html.	The	first	is	in	the	handleDragStart()	function:

function	handleDragStart(e)	{

				var	data	=	{

								elementId:	this.id,

								message:	"You	moved	an	element!"

				};

The	new	code	creates	an	object	called	data.	It	has	an	elementId	property	to	contain
the	element’s	id	value,	and	a	message	property	that	contains	arbitrary	text.	You	want
to	use	this	object	as	the	drag	and	drop’s	transfer	data;	so,	you	have	to	serialize	it:

				e.dataTransfer.setData("text",	JSON.stringify(data));

}

You	call	the	JSON.stringify()	method	to	do	just	that,	and	the	resulting	JSON	text	is
set	as	the	transfer’s	data.

The	remaining	changes	appear	in	the	handleOverDrop()	function.	Its	first	few	lines
are	the	same:

function	handleOverDrop(e)	{

				e.preventDefault();

				if	(e.type	!=	"drop")	{

								return;

				}

But	the	next	two	lines	are	new:

				var	json	=	e.dataTransfer.getData("text");

				var	data	=	JSON.parse(json);

You	retrieve	the	transferred	data	with	the	getData()	method	and	store	it	in	the	json
variable.	You	then	parse	the	JSON	into	a	JavaScript	object	that	you	store	in	the	data
variable.	You	need	to	retrieve	the	dragged	element	object	from	the	document.	So,	you
use	data.elementId	and	pass	it	to	document.getElementById():

				var	draggedEl	=	document.getElementById(data.elementId);

				if	(draggedEl.parentNode	==	this)	{

								this.className	=	"";

								return;

				}

				draggedEl.parentNode.removeChild(draggedEl);

				this.appendChild(draggedEl);

				this.className	=	"";

After	you	remove	the	dragged	element	from	its	parent	and	append	it	to	the	drop
target,	you	reach	into	your	data	object	and	alert	its	message	to	the	user:

				alert(data.message);

}

This	technique	of	using	JSON	to	store	object	data	is	useful	in	a	variety	of	scenarios.	In	the
next	chapter,	you	use	the	same	technique	to	store	object	data	directly	in	the	browser.

SUMMARY
In	this	chapter,	you	looked	at	JSON,	a	text	format	for	storing	and	transmitting	objects,
arrays,	and	simple	values.	Let’s	look	at	some	of	the	things	discussed	in	this	chapter:

Serialization	is	the	process	of	translating	objects	and	values	into	a	string
representation	of	those	objects	and	values.

The	web	used	to	use	XML	for	storing	and	transmitting	JavaScript	data,	but	JSON	is
now	the	format	of	choice.

JSON	is	not	JavaScript,	but	a	subset	of	JavaScript.	Its	syntax	looks	similar,	but	key
differences	exist	between	the	two.	For	one,	JSON	does	not	have	variables	or
functions.	It	is	simply	a	data	format.

JSON	strings	must	be	surrounded	by	double	quotes.	Single	quotes	result	in	an	error.

Numbers,	booleans,	and	null	appear	as	literal	values	in	JSON.

JSON	objects	look	very	much	like	JavaScript	object	literals	except	their	properties
are	strings	and	there	are	no	trailing	semicolons.

JSON	arrays	are	almost	identical	to	JavaScript	array	literals,	but	they	do	not	have	a
trailing	semicolon.

You	serialize	JavaScript	objects,	arrays,	and	values	using	the	JSON	object’s
stringify()	method.

You	parse	JSON	text	into	a	JavaScript	object	or	value	using	JSON.parse().

In	the	next	chapter,	you	look	at	how	to	store	data	in	and	for	the	browser	using	local
storage	and	cookies.

EXERCISES
You	can	find	a	suggested	solution	to	this	question	in	Appendix	A.

1.	 The	code	for	alerting	a	single	message	in	Example	1	isn’t	very	exciting.	Modify	the
code	to	display	a	random	message	from	a	set	of	three	possible	messages.

13
Data	Storage
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Storing	data	on	the	user’s	computer	is	possible	with	cookies	and	web	storage

Creating	cookies	is	relatively	straightforward,	but	reading	them	is	complex

Using	web	storage	is	easy

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

Our	goal	as	website	programmers	should	be	to	make	the	website	experience	as	easy	and
pleasant	for	the	user	as	possible.	Clearly,	well-designed	pages	with	easily	navigable
layouts	are	central	to	this,	but	they’re	not	the	whole	story.	You	can	go	one	step	further	by
learning	about	your	users	and	using	information	gained	about	them	to	personalize	the
website.

For	example,	imagine	a	user,	whose	name	you	asked	on	the	first	visit,	returns	to	your
website.	You	could	welcome	her	back	to	the	website	by	greeting	her	by	name.	Another
good	example	is	given	by	a	website,	such	as	Amazon’s,	that	incorporates	the	one-click
purchasing	system.	By	already	knowing	the	user’s	purchasing	details,	such	as	credit-card
number	and	delivery	address,	you	can	allow	the	user	to	go	from	viewing	a	book	to	buying
it	in	just	one	click,	making	the	likelihood	of	the	user	purchasing	it	that	much	greater.	Also,
based	on	information,	such	as	the	previous	purchases	and	browsing	patterns	of	the	user,
it’s	possible	to	make	book	suggestions.

Such	personalization	requires	that	information	about	users	be	stored	somewhere	in
between	their	visits	to	the	website.	Accessing	the	user’s	local	filesystem	from	a	web
application	is	pretty	much	off	limits	because	of	security	restrictions	included	in	browsers.
However,	you,	as	a	website	developer,	can	store	small	amounts	of	information	in	a	special
place	on	the	user’s	local	disk,	using	what	is	called	a	cookie,	and	in	the	browser	using
HTML5’s	Web	Storage.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

BAKING	YOUR	FIRST	COOKIE
The	key	to	cookies	is	the	document	object’s	cookie	property.	Using	this	property,	you	can
create	and	retrieve	cookie	data	from	within	your	JavaScript	code.

You	can	set	a	cookie	by	setting	document.cookie	to	a	cookie	string.	You’ll	be	looking	in
detail	at	how	this	cookie	string	is	made	up	later	in	the	chapter,	but	let’s	first	create	a	simple
example	of	a	cookie	and	see	where	the	information	is	stored	on	the	user’s	computer.

A	Fresh-Baked	Cookie
The	following	code	sets	a	cookie	with	the	UserName	set	as	Paul	and	an	expiration	date	of
28	December,	2020:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Fresh-Baked	Cookie</title>

				<script>

								document.cookie	=

												"UserName=Paul;expires=Tue,	28	Dec	2020	00:00:00;";

				</script>

</head>

<body>

				<p>This	page	just	created	a	cookie</p>

</body>

</html>

Save	the	page	as	freshbakedcookie.html.	You’ll	see	how	the	code	works	as	you	learn	the
parts	of	a	cookie	string,	but	first	let’s	see	what	happens	when	a	cookie	is	created.

How	you	view	cookies	without	using	code	varies	with	the	browser	you	are	using.

Viewing	Cookies	in	Internet	Explorer
In	this	section,	you	see	how	to	look	at	the	cookies	that	are	already	stored	by	Internet
Explorer	(IE)	on	your	computer.	You	then	load	the	cookie-creating	page	you	just	created
with	the	preceding	code	to	see	what	effect	this	has.	Follow	these	steps:

1.	 First,	you	need	to	open	IE.	The	examples	in	this	chapter	use	IE	11,	so	if	you’re	using
an	earlier	version	of	IE	you	may	find	the	screenshots	and	menus	in	slightly	different
places.

2.	 Before	you	view	the	cookies,	first	clear	the	temporary	Internet	file	folder	for	the
browser,	because	this	will	make	it	easier	to	view	the	cookies	that	your	browser	has
stored.	Click	the	Gear	icon	and	choose	the	Internet	Options	menu	item,	which	is
shown	in	Figure	13.1.

Figure	13.1

3.	 You	are	presented	with	the	Internet	Options	dialog	box	shown	in	Figure	13.2.

Figure	13.2

4.	 Click	the	Delete	button	under	Browsing	History.	Another	dialog	box	appears,	as
shown	in	Figure	13.3.

Figure	13.3

5.	 Make	sure	to	select	the	tick	boxes	next	to	“Temporary	Internet	files	and	website	files”
and	“Cookies	and	website	data”	and	then	click	the	Delete	button.	You	now	have	a
nice	clean	cache,	which	makes	it	easy	to	see	when	you	create	a	cookie.

6.	 You	can	now	close	the	dialog	box	and	return	to	the	main	Internet	Options	dialog	box.

Let’s	have	a	look	at	the	cookies	you	have	currently	residing	on	your	machine.

7.	 From	the	Internet	Options	dialog	box,	click	the	Settings	button	next	to	the	Delete
button	grouped	under	Browsing	History.	You	should	see	the	dialog	box	shown	in
Figure	13.4.

Figure	13.4

8.	 Now	click	the	View	Files	button,	and	a	list	of	all	the	temporary	pages	and	cookie	files
on	your	computer	is	displayed.	If	you	followed	the	previous	instructions	and	deleted
all	temporary	Internet	files,	there	should	be	nothing	listed,	as	shown	in	Figure	13.5.

Figure	13.5

The	actual	cookies,	their	names,	and	their	values	may	look	slightly	different	depending	on
your	computer’s	operating	system.

You	can	examine	the	contents	of	the	cookies	by	double-clicking	them.	Note	that	you	may
get	a	warning	about	the	potential	security	risk	of	opening	a	text	file,	although	you	are
fairly	safe	with	cookies	because	they	are	simply	text	files.	In	Figure	13.6	you	can	see	the
contents	of	the	cookie	file	named	google	set	by	the	search	engine	Google.

Figure	13.6

As	you	can	see,	a	cookie	is	just	a	plain	old	text	file.	Each	website,	or	domain	name,	has	its
own	text	file	where	all	the	cookies	for	that	website	are	stored.	In	this	case,	there’s	just	one
cookie	currently	stored	for	google.com.	Domains	like	amazon.com	will	almost	certainly
have	many	cookies	set.

In	Figure	13.6,	you	can	see	the	cookie’s	details.	Here,	the	name	of	the	cookie	is	PREF;	its
value	is	a	series	of	characters,	which	although	indecipherable	to	you	make	sense	to	the
Google	website.	It	was	set	by	the	domain	google.com,	and	it	relates	to	the	root	directory	/.
The	contents	probably	look	like	a	mess	of	characters,	but	don’t	worry.	When	you	learn
how	to	program	cookies,	you’ll	see	that	you	don’t	need	to	worry	about	setting	the	details
in	this	format.

After	you	have	finished,	close	the	cookie	and	click	OK	on	the	dialog	boxes	to	return	to	the
browser.

Now	let’s	load	the	freshbakedcookie.html	page	into	your	IE	browser.	This	will	set	a
cookie.	Let’s	see	how	it	has	changed	things:

1.	 Return	to	the	Internet	Options	dialog	box	(by	choosing	Tools ➪ Internet	Options).
2.	 Click	the	Settings	button.

3.	 Click	View	Files.	Your	computer	now	shows	something	like	the	information	in
Figure	13.7.

Figure	13.7

If	you	loaded	the	HTML	file	from	your	computer,	you	created	a	cookie	from	a	web	page
stored	on	the	local	hard	drive	rather	than	a	server.	Thus,	its	domain	name	has	been	set	to
the	name	of	the	directory	in	which	the	web	page	is	stored.	Obviously,	this	is	a	little
artificial.	In	reality,	people	will	be	loading	your	web	pages	from	your	website	on	the
Internet	and	not	off	your	local	hard	drive.	The	Internet	address	is	based	on	the	directory
the	freshbakedcookie.html	file	was	in.	You	can	also	see	that	it	expires	on	December	31,
2020,	as	you	specified	when	you	created	the	cookie.	Double-click	the	cookie	to	view	its
contents,	which	look	like	those	in	Figure	13.8.

Figure	13.8

You	can	see	the	name	you	gave	to	the	cookie	at	the	left,	UserName,	its	value,	Paul,	and
also	the	directory	it’s	applicable	to.	The	expiration	date	is	there	as	well;	it’s	just	not	in	an
easily	recognizable	form.	Note	that	you	may	sometimes	need	to	close	the	browser	and
reopen	it	before	you	see	the	cookie	file.

Viewing	Cookies	in	Firefox
There	is	no	sharing	of	cookies	between	browsers,	so	the	cookies	stored	when	you	visited
websites	using	IE	won’t	be	available	to	Firefox	and	vice	versa.	The	examples	in	this
section	use	Firefox	31.

Firefox	keeps	its	cookies	in	a	totally	different	place	from	IE,	and	the	contents	are	viewed
by	a	different	means.	To	view	cookies	in	Firefox:

1.	 Click	the	“Hamburger”	icon	and	choose	Options	as	shown	in	Figure	13.9.

Figure	13.9

2.	 Select	the	Privacy	option.

3.	 Click	the	“remove	individual	cookies”	link	and	you	should	see	the	dialog	box	shown
in	Figure	13.10.

Figure	13.10

4.	 Click	Close	to	get	back	to	the	browser,	and	load	freshbakedcookie.html.

5.	 Repeat	the	process	you	followed	previously	to	get	to	the	Cookie	Manager,	and	you
should	find	that	the	UserName	cookie	has	been	added	to	the	box.	If	loaded	from	your
PC	and	not	the	Internet,	the	cookie	will	have	a	blank	web	address.	The	expanded
cookie	details	are	shown	in	Figure	13.11.

Figure	13.11

Note	that	buttons	are	provided	at	the	bottom	of	the	Cookie	Manager	to	remove	the
selected	cookie	or	all	of	the	cookies	that	are	stored.

Viewing	Cookies	in	Chrome
When	it	comes	to	cookies,	Chrome	is	somewhat	similar	to	Firefox	in	that	you	view	and
manage	them	through	the	browser:

1.	 Click	the	“Hamburger”	icon	and	choose	Settings	as	shown	in	Figure	13.12.

Figure	13.12

2.	 In	the	“Search	settings”	box,	type	cookies.	You’ll	see	Chrome	change	the	Settings
page	to	look	something	like	Figure	13.13.	Click	the	“Content	settings”	button.

Figure	13.13

3.	 In	the	“Content	settings”	window,	click	the	“All	cookies	and	site	data…”	button.	A
new	window	pops	up	that	lets	you	manage	your	cookies	(Figure	13.14).

Figure	13.14

4.	 Load	freshbakedcookie.html	in	a	new	tab	or	window.

5.	 Go	back	to	the	Settings	page	and	click	the	Refresh	icon.	You’ll	now	see	an	entry	for
the	new	cookie	as	shown	in	Figure	13.15.

Figure	13.15

Now	that	you’ve	seen	how	to	view	cookies	manually,	let’s	look	at	how	you	create	them
and	read	them	using	code.	You	start	by	looking	at	each	of	the	parts	that	make	up	a	cookie
string.

The	Cookie	String
When	you	are	creating	a	cookie,	you	can	set	six	parts:	name,	value,	expires,	path,
domain,	and	secure,	although	the	latter	four	of	these	are	optional.	You’ll	now	look	at	each
of	these	in	turn.

name	and	value
The	first	part	of	the	cookie	string	consists	of	the	name	and	value	of	the	cookie.	The	name
is	used	so	that	you	can	reference	the	cookie	later,	and	the	value	is	the	information	part	of
the	cookie.

This	name/value	part	of	the	cookie	string	is	compulsory;	it	sort	of	defeats	the	point	of	the
cookie	if	you	don’t	store	a	name	or	value,	because	storing	information	is	what	cookies	are
all	about.	You	should	make	sure	that	this	part	comes	first	in	the	cookie	string.

The	value	for	the	cookie	is	a	primitive	string,	although	the	string	can	hold	number

characters	if	it	is	numerical	data	that	you	want	to	store.	If	you	are	storing	text,	certain
characters,	such	as	semicolons,	cannot	be	used	inside	the	value,	unless	you	use	a	special
encoding,	which	you’ll	see	later.	In	the	case	of	semicolons,	this	is	because	they	are	used	to
separate	the	different	parts	of	the	cookie	within	the	cookie	string.

In	the	following	line	of	code,	you	set	a	cookie	with	the	name	UserName	and	the	value
Paul:

document.cookie	=	"UserName=Paul;";

This	cookie	has	a	very	limited	lifespan,	which	is	the	length	of	time	the	information	will
continue	to	exist.	If	you	don’t	set	an	expiration	date,	a	cookie	will	expire	when	the	user
closes	the	browser.	The	next	time	the	user	opens	the	browser	the	cookie	will	be	gone.	This
is	fine	if	you	just	want	to	store	information	for	the	life	of	a	user	session,	which	is	a	single
visit	by	the	user	to	your	website.	However,	if	you	want	to	ensure	that	your	cookie	is
available	for	longer,	you	must	set	its	expiration	date,	which	you	look	at	next.

expires
If	you	want	a	cookie	to	exist	for	longer	than	just	a	single	user	session,	you	need	to	set	an
expiration	date	using	the	second	part	of	the	cookie	string,	expires,	as	follows:

document.cookie	=	"UserName=Paul;expires=Tue,	28	Dec	2020	00:00:00	GMT;	";

The	cookie	set	by	the	previous	line	of	code	will	remain	available	for	future	use	right	up
until	December	28,	2020.

NOTE	The	format	of	the	expiration	date	is	very	important.	It	should	be	the	same
format	the	cookie	is	given	by	the	toUTCString()	method.

In	practice,	you’ll	probably	use	the	Date	object	to	get	the	current	date,	and	then	set	a
cookie	to	expire	three	or	six	months	after	this	date.	Otherwise,	you’re	going	to	need	to
rewrite	your	pages	on	December	28,	2020.

For	example,	you	could	write	the	following:

var	expire	=	new	Date();

expire.setMonth(expire.getMonth()	+	6);

document.cookie	=	"UserName=Paul;expires="	+	expire.toUTCString()	+	";";

This	will	create	a	new	cookie	called	UserName	with	the	value	of	Paul,	which	will	expire
six	months	from	the	current	date.	Note	that	other	factors	can	cause	a	cookie	to	expire
before	its	expiration	date,	such	as	the	user	deleting	the	cookie	or	the	upper	cookie	limit
being	reached.

path
You’ll	find	that	99	percent	of	the	time	you	will	only	need	to	set	the	name,	value,	and
expires	parts	of	a	cookie.	However,	at	times	the	other	three	parts,	such	as	the	path	part
that	you	are	looking	at	in	this	section,	need	to	be	set.	The	final	two	parts,	domain	and
secure,	are	for	advanced	use	beyond	the	scope	of	a	beginners’	book,	but	you’ll	look	at

them	briefly	just	for	completeness.

You’re	probably	used	to	the	idea	of	there	being	directories	on	your	hard	drive.	Rather	than
storing	everything	on	your	computer	in	one	place	on	the	hard	drive,	you	divide	it	into
these	directories.	For	example,	you	might	keep	your	word-processing	files	in	My
Documents,	your	image	files	in	My	Images,	and	so	on.	You	probably	also	subdivide	your
directories,	so	under	My	Images	you	might	have	subdirectories	called	My	Family	and	My
Holiday.

Well,	web	servers	use	the	same	principle.	Rather	than	putting	the	whole	website	into	one
web	directory,	it’s	common	and	indeed	sensible	to	divide	it	into	various	different
directories.	For	example,	if	you	visit	the	Wrox	website	at	www.wrox.com	and	then	click
one	of	the	book	categories,	you’ll	find	that	the	path	to	the	page	navigated	to	is	now
www.wrox.com/Books/.

This	is	all	very	interesting,	but	why	is	it	relevant	to	cookies?

The	problem	is	that	cookies	are	specific	not	only	to	a	particular	web	domain,	such	as
www.wrox.com,	but	also	to	a	particular	path	on	that	domain.	For	example,	if	a	page	in
www.wrox.com/Books/	sets	a	cookie,	only	pages	in	that	directory	or	its	subdirectories	will
be	able	to	read	and	change	the	cookie.	If	a	page	in	www.wrox.com/academic/	tried	to	read
the	cookie,	it	would	fail.	Why	are	cookies	restricted	like	this?

Take	the	common	example	of	free	web	space.	A	lot	of	companies	on	the	web	enable	you
to	sign	up	for	free	web	space.	Usually	everyone	who	signs	up	for	this	web	space	has	a	site
at	the	same	domain.	For	example,	Bob’s	website	might	be	at
www.freespace.com/members/bob/.	Belinda	might	have	hers	at
www.freespace.com/members/belinda.	If	cookies	could	be	retrieved	and	changed
regardless	of	the	path,	then	any	cookies	set	on	Bob’s	website	could	be	viewed	by	Belinda
and	vice	versa.	This	is	clearly	something	neither	of	them	would	be	happy	about.	Not	only
is	there	a	security	problem,	but	if,	unknown	to	each	other,	they	both	have	a	cookie	named
MyHotCookie,	there	would	be	problems	with	each	of	them	setting	and	retrieving	the	same
cookie.	When	you	think	how	many	users	a	free	web	space	provider	often	has,	you	can	see
that	there	is	potential	for	chaos.

Okay,	so	now	you	know	that	cookies	are	specific	to	a	certain	path,	but	what	if	you	want	to
view	your	cookies	from	two	different	paths	on	your	server?	Say,	for	example,	you	have	an
online	store	at	www.mywebsite.com/mystore/	but	you	subdivide	the	store	into
subdirectories,	such	as	/Books	and	/Games.	Now	let’s	imagine	that	your	checkout	is	in	the
directory	www.mywebsite.com/mystore/Checkout.	Any	cookies	set	in	the	/Books	and
/Games	directories	won’t	be	visible	to	each	other	or	pages	in	the	/Checkout	directory.	To
get	around	this	you	can	either	set	cookies	only	in	the	/mystore	directory	(because	these
can	be	read	by	that	directory	and	any	of	its	subdirectories),	or	you	can	use	the	path	part	of
the	cookie	string	to	specify	that	the	path	of	the	cookie	is	/mystore	even	if	it’s	being	set	in
the	/Games	or	/Books	or	/Checkout	subdirectories.

For	example,	you	could	do	this	like	so:

document.cookie	=	"UserName=Paul;expires=Tue,	28	Dec	2020	00:00:00"	+

";path=/mystore;";

http://www.wrox.com
http://www.wrox.com/Books/
http://www.wrox.com
http://www.wrox.com/Books/
http://www.wrox.com/academic/
http://www.freespace.com/members/bob/
http://www.freespace.com/members/belinda
http://www.mywebsite.com/mystore/
http://www.mywebsite.com/mystore/Checkout

Now,	even	if	the	cookie	is	set	by	a	page	in	the	directory	/Books,	it	will	still	be	accessible
to	files	in	the	/mystore	directory	and	its	subdirectories,	such	as	/Checkout	and	/Games.

If	you	want	to	specify	that	the	cookie	is	available	to	all	subdirectories	of	the	domain	it	is
set	in,	you	can	specify	a	path	of	the	root	directory	using	the	/	character:

document.cookie	=	"UserName=Paul;expires=Tue,	28	Dec	2020	

00:00:00;path=/;";

Now,	the	cookie	will	be	available	to	all	directories	on	the	domain	it	is	set	from.	If	the
website	is	just	one	of	many	at	that	domain,	it’s	best	not	to	do	this	because	everyone	else
will	also	have	access	to	your	cookie	information.

It’s	important	to	note	that	although	Windows	computers	don’t	have	case-sensitive
directory	names,	many	other	operating	systems	do.	For	example,	if	your	website	is	on	a
Unix-	or	Linux-based	server,	the	path	property	will	be	case-sensitive.

domain
The	fourth	part	of	the	cookie	string	is	the	domain.	An	example	of	a	domain	is	wrox.com	or
beginningjs.com.	Like	the	path	part	of	the	cookie	string,	the	domain	part	is	optional	and
it’s	unlikely	that	you’ll	find	yourself	using	it	very	often.

By	default,	cookies	are	available	only	to	pages	in	the	domain	in	which	they	were	set.	For
example,	if	you	have	your	first	website	running	on	a	server	with	the	domain
mypersonalwebsite.mydomain.com	and	you	have	a	second	website	running	under
mybusinesswebsite.mydomain.com,	a	cookie	set	in	one	website	will	not	be	available	to
pages	accessed	under	the	other	domain	name,	and	vice	versa.	Most	of	the	time,	this	is
exactly	what	you	want,	but	if	it	is	not,	you	can	use	the	domain	part	of	the	cookie	string	to
specify	that	a	cookie	is	available	to	all	subdomains	of	the	specified	domain.	For	example,
the	following	sets	a	cookie	that	can	be	shared	across	both	subdomains:

document.cookie	=	"UserName=Paul;expires=Tue,	28	Dec	2020	00:00:00;path=/"	

+

";domain=mydomain.com;";

Note	that	the	domain	must	be	the	same.	You	can’t	share	www.someoneelsesdomain.com
with	www.mydomain.com.

secure
The	final	part	of	the	cookie	string	is	the	secure	part.	This	is	simply	a	boolean	value;	if	it’s
set	to	true	the	cookie	will	be	sent	only	to	a	web	server	that	tries	to	retrieve	it	using	a
secure	channel.	The	default	value,	which	is	false,	means	the	cookie	will	always	be	sent,
regardless	of	the	security.	This	is	only	applicable	where	you	have	set	up	a	server	with	SSL
(Secure	Sockets	Layer).

http://www.someoneelsesdomain.com
http://www.mydomain.com

CREATING	A	COOKIE
To	make	life	easier	for	yourself,	you’ll	write	a	function	that	enables	you	to	create	a	new
cookie	and	set	certain	of	its	attributes	with	more	ease.	This	is	the	first	of	a	number	of
useful	functions	you’ll	create	and	add	to	a	separate	.js	file	so	you	can	easily	reuse	the
code	in	your	future	projects.	You’ll	look	at	the	code	first	and	create	an	example	using	it
shortly.	First	create	a	file	called	cookiefunctions.js	and	add	the	following	to	it:

function	setCookie(name,	value,	path,	expires)	{

				value	=	escape(value);

				if	(!expires)	{

								var	now	=	new	Date();

								now.setMonth(now.getMonth()	+	6);

								expires	=	now.toUTCString();

				}

				if	(path)	{

								path	=	";Path="	+	path;

				}

				document.cookie	=	name	+	"="	+	value	+	";expires="	+	expires	+	path;

}

The	secure	and	domain	parts	of	the	cookie	string	are	unlikely	to	be	needed,	so	you	allow
just	the	name,	value,	expires,	and	path	parts	of	a	cookie	to	be	set	by	the	function.	If	you
don’t	want	to	set	a	path	or	expiration	date,	you	can	omit	them	or	pass	empty	strings	for
those	parameters.	If	no	path	is	specified,	the	current	directory	and	its	subdirectories	will	be
the	path.	If	no	expiration	date	is	set,	you	just	assume	a	date	six	months	from	now.

The	first	line	of	the	function	introduces	the	escape()	function,	which	you’ve	not	seen
before:

value	=	escape(value);

When	we	talked	about	setting	the	value	of	a	cookie,	we	mentioned	that	certain	characters
cannot	be	used	directly,	such	as	a	semicolon.	(This	also	applies	to	the	name	of	the	cookie.)
To	get	around	this	problem,	you	can	use	the	built-in	escape()	and	unescape()	functions.
The	escape()	function	converts	characters	that	are	not	text	or	numbers	into	the
hexadecimal	equivalent	of	their	character	in	the	Latin-1	character	set,	preceded	by	a	%
character.

For	example,	a	space	has	the	hexadecimal	value	20,	and	the	semicolon	the	value	3B.	So	the
following	code	produces	the	output	shown	in	Figure	13.16:

Figure	13.16

alert(escape("2001	a	space	odyssey;"));

You	can	see	that	each	space	has	been	converted	to	%20,	the	%	indicating	that	it	represents
an	escape	or	special	character	rather	than	an	actual	character,	and	that	20	is	the	ASCII
value	of	the	actual	character.	The	semicolon	has	been	converted	to	%3B,	as	you’d	expect.

As	you	see	later,	when	retrieving	cookie	values	you	can	use	the	unescape()	function	to
convert	from	the	encoded	version	to	plaintext.

Back	to	your	function;	next	you	have	an	if	statement:

if	(!expires)	{

				var	now	=	new	Date();

				now.setMonth(now.getMonth()	+	6);

				expires	=	now.toUTCString();

}

This	deals	with	the	situation	in	which	the	expires	parameter	does	not	contain	a	usable
value	(either	by	omitting	it	or	passing	an	empty	string	"").	Because	most	of	the	time	you
want	a	cookie	to	last	longer	than	the	session	it’s	created	in,	you	set	a	default	value	for
expires	that	is	six	months	after	the	current	date.

Next,	if	a	value	has	been	passed	to	the	function	for	the	path	parameter,	you	need	to	add
that	value	when	you	create	the	cookie.	You	simply	put	"path="	in	front	of	any	value	that
has	been	passed	in	the	path	parameter:

			if	(path)	{

						path	=	";Path="	+	path;

			}

Finally,	on	the	last	line	you	actually	create	the	cookie,	putting	together	the	name,	cvalue,
expires,	and	path	parts	of	the	string:

document.cookie	=	name	+	"="	+	value	+	";expires="	+	expires	+	path;

You’ll	be	using	the	setCookie()	function	whenever	you	want	to	create	a	new	cookie
because	it	makes	setting	a	cookie	easier	than	having	to	remember	all	the	parts	you	want	to
set.	More	important,	it	can	be	used	to	set	the	expiration	date	to	a	date	six	months	ahead	of
the	current	date.

For	example,	to	use	the	function	and	set	a	cookie	with	default	values	for	expires	and
path,	you	just	type	the	following:

setCookie("cookieName","cookieValue");

				TRY	IT	OUT								Using	setCookie()
You	now	put	all	this	together	in	a	simple	example	in	which	you	use	your	setCookie()
function	to	set	three	cookies	named	Name,	Age,	and	FirstVisit.	You	then	display
what	is	in	the	document.cookie	property	to	see	how	it	has	been	affected.

Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	13:	Example	1</title>

</head>

<body>

				<script	src="cookiefunctions.js"></script>

				<script>

								setCookie("Name",	"Bob");

								setCookie("Age",	"101");

								setCookie("FirstVisit",	"10	May	2007");

								alert(document.cookie);

				</script>

</body>

</html>

Save	the	example	as	ch13_example1.html	and	load	it	into	a	web	browser.

You’ll	see	the	alert	box	shown	in	Figure	13.17.	Note	that	all	three	cookies	are
displayed	as	name/value	pairs	separated	from	the	others	by	semicolons,	and	also	that
the	expiration	date	is	not	displayed.	If	you	had	set	the	path	parameter,	this	also	would
not	have	been	displayed.	The	UserName	cookie	from	a	previous	example	is	also
displayed.

Figure	13.17

You	already	know	how	the	setCookie()	function	works,	so	let’s	look	at	the	three
lines	that	use	the	function	to	create	three	new	cookies:

setCookie("Name",	"Bob");

setCookie("Age",	"101");

setCookie("FirstVisit",	"10	May	2007");

It	is	all	fairly	simple.	The	first	parameter	is	the	name	that	you’ll	give	the	cookie.	(You
see	shortly	how	you	can	retrieve	a	value	of	a	cookie	based	on	the	name	you	gave	it.)
It’s	important	that	the	names	you	use	be	only	alphanumeric	characters,	with	no
spaces,	punctuation,	or	special	characters.	Although	you	can	use	cookie	names	with
these	characters,	doing	so	is	more	complex	and	best	avoided.	Next	you	have	the	value
you	want	to	give	the	cookie.	The	third	parameter	is	the	path,	and	the	fourth	parameter
is	the	date	on	which	you	want	the	cookie	to	expire.

For	example,	take	the	first	line	where	you	use	the	setCookie()	function.	Here	you
are	setting	a	cookie	that	will	be	named	Name	and	have	the	value	Bob.	You	don’t	want
to	set	the	path	or	expires	parts,	so	you	omit	those	parameters.

The	remaining	two	lines	in	the	previous	code	snippet	set	the	cookies	named	Age	and
FirstVisit	and	set	their	values	to	101	and	10	May	2007,	respectively.

If	you	did	want	to	set	the	path	and	the	expiration	date,	how	might	you	change	your
code?

Well,	imagine	that	you	want	the	path	to	be	/MyStore	and	the	expiration	date	to	be	one
year	in	the	future.	Then	you	can	use	the	setCookie()	function	in	the	following	way:

var	expires	=	new	Date();

expires.setMonth(expires.getMonth()	+	12);

setCookie("Name","Bob","/MyStore",	expires.toUTCString());

First,	you	create	a	new	Date	object,	and	by	passing	no	parameter	to	its	constructor,
you	let	it	initialize	itself	to	the	current	date.	In	the	next	line,	you	add	12	months	to	that
date.	When	setting	the	cookie	using	setCookie()	you	pass	"/MyStore"	as	the	path
and	expires.toUTCString()	as	the	expires	parameter.

What	about	the	situation	in	which	you’ve	created	your	cookie,	say,	one	named	Name
with	a	value	of	Bob,	and	you	want	to	change	its	value?	To	do	this,	you	can	simply	set
the	same	cookie	again,	but	with	the	new	value.	To	change	the	cookie	named	Name
from	a	value	of	Bob	to	a	value	of	Bobby,	you’d	need	the	following	code:

setCookie("Name","Bobby");

What	if	you	want	to	delete	an	existing	cookie?	Well,	that’s	easy.	Just	make	it	expire
by	changing	its	value	and	setting	its	expiration	date	to	a	date	in	the	past,	as	in	the
following	example:

setCookie("Name","","","Mon,	1	Jan	1990	00:00:00");

GETTING	A	COOKIE’S	VALUE
In	the	preceding	example,	you	used	document.cookie	to	retrieve	a	string	containing
information	about	the	cookies	that	have	been	set.	However,	this	string	has	two	limitations:

The	cookies	are	retrieved	in	name/value	pairs,	with	each	individual	cookie	separated
by	a	semicolon.	The	expires,	path,	domain,	and	secure	parts	of	the	cookie	are	not
available	to	you	and	cannot	be	retrieved.

The	cookie	property	enables	you	to	retrieve	only	all	the	cookies	set	for	a	particular
path	and,	when	they	are	hosted	on	a	web	server,	that	web	server.	So,	for	example,
there’s	no	simple	way	of	just	getting	the	value	of	a	cookie	with	the	name	Age.	To	do
this	you’ll	have	to	use	the	string	manipulation	techniques	you	learned	in	previous
chapters	to	cut	the	information	you	want	out	of	the	returned	string.

A	lot	of	different	ways	exist	to	get	the	value	of	an	individual	cookie,	but	the	way	you’ll
use	has	the	advantage	of	working	with	all	cookie-enabled	browsers.	You	use	the	following
function,	which	you	need	to	add	to	your	cookiefunctions.js	file:

function	getCookieValue(name)	{

				var	value	=	document.cookie;

				var	cookieStartsAt	=	value.indexOf("	"	+	name	+	"=");

				if	(cookieStartsAt	==	-1)	{

								cookieStartsAt	=	value.indexOf(name	+	"=");

				}

				if	(cookieStartsAt	==	-1)	{

								value	=	null;

				}	else	{

								cookieStartsAt	=	value.indexOf("=",	cookieStartsAt)	+	1;

								var	cookieEndsAt	=	value.indexOf(";",	cookieStartsAt);

								if	(cookieEndsAt	==	-1)	{

												cookieEndsAt	=	value.length;

								}

								value	=	unescape(value.substring(cookieStartsAt,

											cookieEndsAt));

				}

				return	value;

}

The	first	task	of	the	function	is	to	get	the	document.cookie	string	and	store	it	in	the	value
variable:

var	value	=	document.cookie;

Next,	you	need	to	find	out	where	the	cookie	with	the	name	passed	as	a	parameter	to	the
function	is	within	the	value	string.	You	use	the	indexOf()	method	of	the	String	object	to

find	this	information,	as	shown	in	the	following	line:

var	cookieStartsAt	=	value.indexOf("	"	+	name	+	"=");

The	method	will	return	either	the	character	position	where	the	individual	cookie	is	found
or	-1	if	no	such	name,	and	therefore	no	such	cookie,	exists.	You	search	on	"	”	+	name	+
"="	so	that	you	don’t	inadvertently	find	cookie	names	or	values	containing	the	name	that
you	require.	For	example,	if	you	have	xFoo,	Foo,	and	yFoo	as	cookie	names,	a	search	for
Foo	without	a	space	in	front	would	match	xFoo	first,	which	is	not	what	you	want!

If	cookieStartsAt	is	-1,	the	cookie	either	does	not	exist	or	it’s	at	the	very	beginning	of
the	cookie	string	so	there	is	no	space	in	front	of	its	name.	To	see	which	of	these	is	true,
you	do	another	search,	this	time	with	no	space:

if	(cookieStartsAt	==	-1)	{

				cookieStartsAt	=	value.indexOf(name	+	"=");

}

In	the	next	if	statement,	you	check	to	see	whether	the	cookie	has	been	found.	If	it	hasn’t,
you	set	the	value	variable	to	null:

if	(cookieStartsAt	==	-1)	{

				value	=	null;

}

If	the	cookie	has	been	found,	you	get	the	value	of	the	cookie	you	want	from	the
document.cookie	string	in	an	else	statement.	You	do	this	by	finding	the	start	and	the	end
of	the	value	part	of	that	cookie.	The	start	will	be	immediately	after	the	equals	sign
following	the	name.	So	in	the	following	line,	you	find	the	equals	sign	following	the	name
of	the	cookie	in	the	string	by	starting	the	indexOf()	search	for	an	equals	sign	from	the
character	at	which	the	cookie	name/value	pair	starts:

			else	{

				cookieStartsAt	=	value.indexOf("=",	cookieStartsAt)	+	1;

You	then	add	one	to	this	value	to	move	past	the	equals	sign.

The	end	of	the	cookie	value	will	either	be	at	the	next	semicolon	or	at	the	end	of	the	string,
whichever	comes	first.	You	do	a	search	for	a	semicolon,	starting	from	the	cookieStartsAt
index,	in	the	next	line:

				var	cookieEndsAt	=	value.indexOf(";",	cookieStartsAt);

If	the	cookie	you	are	after	is	the	last	one	in	the	string,	there	will	be	no	semicolon	and	the
cookieEndsAt	variable	will	be	-1	for	no	match.	In	this	case	you	know	the	end	of	the
cookie	value	must	be	the	end	of	the	string,	so	you	set	the	variable	cookieEndsAt	to	the
length	of	the	string:

				if	(cookieEndsAt	==	-1)	{

								cookieEndsAt	=	value.length;

				}

You	then	get	the	cookie’s	value	using	the	substring()	method	to	cut	the	value	that	you

want	out	of	the	main	string.	Because	you	have	encoded	the	string	with	the	escape()
function,	you	need	to	unescape	it	to	get	the	real	value,	hence	the	use	of	the	unescape()
function:

				value	=	unescape(value.substring(cookieStartsAt,

								cookieEndsAt));

Finally,	you	return	the	value	of	the	cookie	to	the	calling	function:

return	value;

				TRY	IT	OUT								What’s	New?
Now	you	know	how	to	create	and	retrieve	cookies.	Let’s	use	this	knowledge	in	an
example	in	which	you	check	to	see	if	any	changes	have	been	made	to	a	website	since
the	user	last	visited	it.

You’ll	be	creating	two	pages	for	this	example.	The	first	is	the	main	page	for	a
website;	the	second	is	the	page	with	details	of	new	additions	and	changes	to	the
website.	A	link	to	the	second	page	will	appear	on	the	first	page	only	if	the	user	has
visited	the	page	before	(that	is,	if	a	cookie	exists)	but	has	not	visited	since	the	page
was	last	updated.

Let’s	create	the	first	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	13:	Example	2a</title>

</head>

<body>

				<h1>Welcome	to	Example	2a</h1>

				<div	id="whatsNew"></div>

				<script	src="cookiefunctions.js"></script>

				<script>

								var	lastUpdated	=	new	Date("Tue,	28	Dec	2020");

								var	lastVisit	=	getCookieValue("LastVisit");

								if	(lastVisit)	{

												lastVisit	=	new	Date(lastVisit);

												if	(lastVisit	<	lastUpdated)	{

																document.getElementById("whatsNew").innerHTML	=

																				"What's	New?";

												}

								}

								var	now	=	new	Date();

								setCookie("LastVisit",	now.toUTCString());

				</script>

</body>

</html>

Save	this	page	as	ch13_example2a.html.	Note	that	it	uses	the	two	functions,
setCookie()	and	getCookieValue(),	that	you	created	earlier.

Next,	you	just	create	a	simple	page	to	link	to	for	the	What’s	New?	details:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	13:	Example	2b</title>

</head>

<body>

				<h1>Welcome	to	Example	2b</h1>

				<h3>Here's	what's	new!</h3>

</body>

</html>

Save	this	page	as	ch13_example2b.html.

Load	ch13_example2a.html	into	a	browser.	The	first	time	you	go	to	the	main	page,
there	will	be	nothing	but	a	heading	saying	“Welcome	to	Example	2a.”	Obviously,	if
this	were	a	real	website,	it	would	have	a	bit	more	than	that,	but	it	suffices	for	this
example.	However,	refresh	the	page	and	suddenly	you’ll	see	the	page	shown	in	Figure
13.18.

Figure	13.18

If	you	click	the	link,	you’re	taken	to	the	ch13_example2b.html	page	detailing	all	the
things	added	to	the	website	since	you	last	visited.	Obviously,	nothing	has	actually
changed	in	your	example	website	between	you	loading	the	page	and	then	refreshing
it.	You	got	around	this	for	testing	purposes	by	setting	the	date	when	the	website	last
changed,	stored	in	variable	lastUpdated,	to	a	date	in	the	future	(here,	December	28,
2020).

The	ch13_example2b.html	page	is	just	a	simple	HTML	page	with	no	script,	so	you
will	confine	your	attention	to	ch13_example2a.html.	In	the	script	block,	you	declare
the	variable	lastUpdated:

var	lastUpdated	=	new	Date("Tue,	28	Dec	2020");

Whenever	you	make	a	change	to	the	website,	this	variable	needs	to	be	changed.	It’s
currently	set	to	Tue,	28	Dec	2020,	just	to	make	sure	you	see	the	What’s	New?	link
when	you	refresh	the	page.	A	better	alternative	for	live	pages	would	be	the
document.lastModified	property,	which	returns	the	date	on	which	the	page	was	last
changed.

Next,	you	get	the	date	of	the	user’s	last	visit	from	the	LastVisit	cookie	using	the
getCookieValue()	function:

var	lastVisit	=	getCookieValue("LastVisit");

If	it’s	falsy,	the	user	has	either	never	been	here	before,	or	it	has	been	six	or	more
months	since	the	last	visit	and	the	cookie	has	expired.	Either	way,	you	won’t	put	the
What’s	New?	link	up	because	everything	is	new	if	the	user	is	a	first-time	visitor,	and	a
lot	has	probably	changed	in	the	last	six	months—more	than	what	your	What’s	New?
page	will	detail.

If	lastVisit	has	a	value,	you	need	to	check	whether	the	user	visited	the	site	before	it
was	last	updated,	and	if	so	to	direct	the	user	to	a	page	that	shows	what	is	new.	You	do
this	within	the	if	statement:

if	(lastVisit)	{

				lastVisit	=	new	Date(lastVisit);

				if	(lastVisit	<	lastUpdated)	{

								document.getElementById("whatsNew").innerHTML	=

												"What's	New?";

				}

}

You	first	create	a	new	Date	object	based	on	the	value	of	lastVisit	and	store	that
back	into	the	lastVisit	variable.	Then,	in	the	condition	of	the	inner	if	statement,
you	compare	the	date	of	the	user’s	last	visit	with	the	date	on	which	you	last	updated
the	website.	If	things	have	changed	since	the	user’s	last	visit,	you	write	the	What’s
New?	link	to	the	page,	so	the	user	can	click	it	and	find	out	what’s	new.	Finally,	at	the
end	of	the	script	you	reset	the	LastVisit	cookie	to	today’s	date	and	time	using	the
setCookie()	function:

var	now	=	new	Date();

setCookie("LastVisit",	nowDate.toUTCString());

COOKIE	LIMITATIONS
You	should	be	aware	of	a	number	of	limitations	when	using	cookies.

A	User	May	Disable	Cookies
The	first	limitation	is	that	although	all	modern	browsers	support	cookies,	the	user	may
have	disabled	them.	In	Firefox	you	can	do	this	by	selecting	the	Options	menu,	followed	by
the	Privacy	tab	and	the	Cookies	tab.	In	IE	you	select	Internet	Options	on	the	gear	menu.
Select	the	Privacy	tab	and	you	can	change	the	level	with	the	scroll	control.	And	in
Chrome,	choose	the	Settings	option	from	the	gear	menu,	search	for	cookies,	and	click
“Content	settings.”	Most	users	have	session	cookies	enabled	by	default.	Session	cookies
are	cookies	that	last	for	as	long	as	the	user	is	browsing	your	website.	After	he’s	closed	the
browser	the	cookie	will	be	cleared.	More	permanent	cookies	are	also	normally	enabled	by
default.	However,	third-party	cookies,	those	from	a	third-party	site,	are	usually	disabled.
These	are	the	cookies	used	for	tracking	people	from	site	to	site	and	hence	the	ones	that
raise	the	most	privacy	concerns.

Both	the	functions	that	you’ve	made	for	creating	and	getting	cookies	will	cause	no	errors
when	cookies	are	disabled,	but	of	course	the	value	of	any	cookie	set	will	be	null	and	you
need	to	make	sure	your	code	can	cope	with	this.

You	could	set	a	default	action	for	when	cookies	are	disabled.	In	the	previous	example,	if
cookies	are	disabled,	the	What’s	New?	link	will	never	appear.

Alternatively,	you	can	let	the	user	know	that	your	website	needs	cookies	to	function	by
putting	a	message	to	that	effect	in	the	web	page.

Another	tactic	is	to	actively	check	to	see	whether	cookies	are	enabled	and,	if	not,	to	take
some	action	to	cope	with	this,	such	as	by	directing	the	user	to	a	page	with	less
functionality	that	does	not	need	cookies.	How	do	you	check	to	see	if	cookies	are	enabled?

In	the	following	script,	you	set	a	test	cookie	and	then	read	back	its	value.	If	the	value	is
null,	you	know	cookies	are	disabled:

setCookie("TestCookie","Yes");

if	(!getCookieValue("TestCookie"))	{

				alert("This	website	requires	cookies	to	function");

}

Number	and	Information	Limitation
A	second	limitation	is	on	the	number	of	cookies	you	can	set	on	the	user’s	computer	for
your	website	and	how	much	information	can	be	stored	in	each.	In	older	browsers,	for	each
domain,	it	was	common	that	you	could	store	only	up	to	20	cookies,	and	each	cookie	pair
—that	is,	the	name	and	value	of	the	cookie	combined—must	not	be	more	than	4,096
characters	(4KB)	in	size.	It’s	also	important	to	be	aware	that	all	browsers	do	set	some
upper	limit	for	the	number	of	cookies	stored.	When	that	limit	is	reached,	older	cookies,
regardless	of	expiration	date,	are	often	deleted.	Some	modern	browsers	have	a	50-cookie

limit,	though	this	may	vary.

To	get	around	the	cookie	limits,	you	can	store	more	than	one	piece	of	information	per
cookie.	This	example	uses	multiple	cookies:

setCookie("Name",	"Karen")

setCookie("Age",	"44");

setCookie("LastVisit",	"10	Jan	2001");

You	could	combine	this	information	into	one	cookie,	with	each	detail	separated	by	a
semicolon:

setCookie("UserDetails",	"Karen;44;10	Jan	2001");

Because	the	setCookie()	function	escapes	the	value	of	the	cookie,	there	is	no	confusion
between	the	semicolons	separating	pieces	of	data	in	the	value	of	the	cookie,	and	the
semicolons	separating	the	parts	of	the	cookie.	When	you	get	the	cookie	value	back	using
getCookieValue(),	you	just	split	it	into	its	constituent	parts;	however,	you	must
remember	the	order	you	stored	it	in:

var	cookieValues	=	getCookieValue("UserDetails");

cookieValues	=	cookieValues.split(";");

alert("Name	=	"	+	cookieValues[0]);

alert("Age	=	"	+	cookieValues[1]);

alert("Last	Visit	=	"	+	cookieValues[2]);

Now	you	have	acquired	three	pieces	of	information	and	still	have	19	cookies	left	in	the	jar.
This	approach,	however,	is	less	than	ideal,	and	you	learn	how	to	store	data	using	newer
technologies	later	in	this	chapter.

COOKIE	SECURITY	AND	IE
IE6	introduced	a	new	security	policy	for	cookies	based	on	the	P3P	an	initiative	set	up	by
the	World	Wide	Web	Consortium	(W3C).	The	general	aim	of	P3P	is	to	reassure	users	who
are	worried	that	cookies	are	being	used	to	obtain	personal	information	about	their
browsing	habits.	In	IE	you	can	select	the	Gear	menu ➪ Internet	Options	and	click	the
Privacy	tab	to	see	where	you	can	set	the	level	of	privacy	with	regards	to	cookies	(see
Figure	13.19).	You	have	to	strike	a	balance	between	setting	it	so	high	that	no	website	will
work	and	so	low	that	your	browsing	habits	and	potentially	personal	data	may	be	recorded.

Figure	13.19

Generally,	by	default	session	cookies—cookies	that	last	for	only	as	long	as	the	user	is
browsing	your	website—are	allowed.	As	soon	as	the	user	closes	the	browser,	the	session
ends.	However,	if	you	want	cookies	to	outlast	the	user’s	visit	to	your	website,	you	need	to
create	a	privacy	policy	in	line	with	the	P3P	recommendations.	This	sounds	a	little
complex,	and	certainly	the	fine	details	of	the	policy	can	be.	Because	of	this	complexity,
very	few	implementations	of	P3P	exist.	But	many	groups	are	working	to	make	it	easier	for
people	to	use.

WEB	STORAGE
Cookies	are	a	useful	tool	that	web	developers	can	take	advantage	of	to	store	data	on	the
user’s	computer.	But	cookies	are	a	tool	designed	for	a	different	time,	and	thus,	a	different
Web.	Although	they	served	a	specific	purpose	(and	did	so	reasonably	well),	their
limitations	are	not	ideal	for	modern	JavaScript	development:

The	first	issue	is	the	application	programming	interface	(API).	To	write	and	read
cookies,	you	use	the	document.cookie	property.	Writing	a	cookie	is	relatively
straightforward,	but	reading	a	specific	cookie	requires	a	lot	of	code.	You	wrote	two
helper	functions	to	make	writing	and	reading	cookies	easier,	but	ideally,	you
shouldn’t	have	to.

Cookies	are	not	a	browser	feature,	but	a	feature	of	HTTP.	As	such,	the	browser	sends
them	to	the	server	on	every	request.	This	is	useful	for	applications	that	live	on	the
server,	but	it’s	unnecessary	for	JavaScript	that	runs	in	the	browser.

The	browser	limits	the	amount	of	cookies	it	stores	and	the	size	they	can	be.	As
mentioned	earlier,	this	can	be	anywhere	from	20	to	50	cookies	for	each	domain,	and
each	cookie	cannot	exceed	4KB.

Cookies	are	shared	between	both	the	browser	and	the	server.	If	your	server
application	needs	30	cookies	(120KB)	to	function,	that	at	best	leaves	you	with	20
cookies	(80KB).	You’re	out	of	luck	if	you	need	more.

They	can	expire.	Although	you	can	control	this	by	setting	and	maintaining	an
expiration	date,	it’s	simpler	to	not	have	one.

HTML5	introduced	a	new	feature	called	web	storage,	and	it	solves	each	of	cookies’
aforementioned	problems.	Since	its	introduction,	web	storage	has	been	moved	out	of	the
HTML5	specification	and	into	its	own	(which	is	named	Web	Storage).	It	consists	of	two
components:	session	storage	and	local	storage.	As	you	may	have	guessed,	session	storage
is	temporary	storage	that	is	cleared	when	the	user	closes	the	browser	(like	a	cookie
without	an	expiration	date).	But	in	most	cases,	you	want	to	store	data	that	persists	between
visits,	and	that	is	local	storage’s	purpose.	Other	noteworthy	features	of	web	storage	are:

It	stays	within	the	browser	and	is	not	transmitted	to	the	server.	It	is	storage	for
JavaScript	developers.

It	provides	significantly	more	storage	space.	Chrome	and	Firefox	support	5MB	per
domain.	IE	supports	10MB.

The	data	stored	in	local	storage	never	expires;	it	remains	until	you	or	the	user	deletes
it.

NOTE	This	section	focuses	on	local	storage,	but	you	can	apply	the	same	concepts	to
session	storage.

The	data	stored	in	web	storage	is	associated	with	a	unique	name.	In	technical	terms,	we

refer	to	this	name	as	a	key,	and	the	data	associated	with	a	key	is	referred	to	as	the	value.
Together,	we	refer	to	the	key	and	its	value	as	a	key/value	pair.

You	access	local	storage	using	the	localStorage	object	(session	storage	is	accessed
through	sessionStorage),	and	it	makes	it	easy	to	set,	get,	and	remove	data.

Setting	Data
The	localStorage	object	exposes	a	method	called	setItem(),	and	its	purpose	is	to	set	a
value	associated	with	a	given	key.	It’s	very	simple	to	use,	as	shown	here:

localStorage.setItem("userName",	"Paul");

The	first	argument	passed	to	setItem()	is	the	key;	the	second	is	the	value	associated	with
that	key.	In	the	case	of	this	code,	the	value	of	Paul	is	stored	in	local	storage	and	is
associated	with	the	key	of	userName.

You	can	also	set	data	using	the	more	traditional	object.propertyName	syntax,	like	so:

localStorage.userName	=	"Paul";

The	result	of	this	code	is	identical	to	the	previous	setItem()	example;	the	value	of	Paul	is
set	for	the	key	of	userName.

If	the	results	are	identical,	why	use	setItem()?	The	answer	is	that	you	don’t	have	to
unless	your	key	is	an	invalid	JavaScript	identifier.	For	example,	let’s	say	you	want	to	use
the	key	user	name.	That’s	impossible	to	use	as	a	property	name:

localStorage.user	name	=	"Paul";	//	invalid!

But	you	can	use	“user	name”	as	a	key	with	the	setItem()	method:

localStorage.setItem("user	name",	"Paul");

In	most	cases,	you	won’t	use	setItem(),	but	it	is	there	to	use	if	and	when	you	need	to.

Getting	Data
Retrieving	data	from	local	storage	is	just	as	straightforward	as	setting	it.	With	the
getItem()	method,	you	supply	the	key	for	which	you	want	the	value	of:

var	name	=	localStorage.getItem("userName");

This	code	uses	the	getItem()	method	to	retrieve	the	value	associated	with	the	“userName”
key	and	assigns	that	value	to	the	name	variable.	In	the	case	of	the	example	from	the
previous	section,	name	would	contain	“Paul“.

You	can	also	use	the	key	as	localStorage’s	property	if	it	is	a	valid	identifier:

var	name	=	localStorage.userName;

This	code	also	gets	the	value	of	Paul	and	assigns	it	to	the	name	variable.

A	word	of	note:	Keys	are	case-sensitive.	That	may	seem	obvious	if	you	are	using

object.propertyName	syntax,	but	the	rule	applies	to	setItem()	and	getItem().	For
example:

localStorage.setItem("userName",	"Paul");

var	name	=	localStorage.getItem("UserName");	//	null

This	code	set	a	key	of	userName	with	a	value	of	Paul.	It	then	tries	to	retrieve	a	value	with
the	key	of	UserName.	Because	of	the	uppercase	U,	UserName	and	userName	are	two
different	keys.	We	haven’t	set	a	value	with	UserName,	so	getItem()	returns	null.

Removing	Data
Eventually,	you	will	want	to	remove	some	data	that	you	stored	in	local	storage,	and	you
can	do	that	with	the	removeItem()	method.	Simply	provide	the	key	you	want	to	remove,
and	the	key/value	pair	will	be	deleted	from	local	storage.	For	example:

localStorage.removeItem("userName");

This	code	deletes	the	userName/Paul	key/value	pair	from	local	storage.	If	the	key	is	a
valid	JavaScript	identifier,	you	can	also	use	object.propertyName	syntax	to	do	the	same
thing,	like	so:

localStorage.userName	=	null;

Here,	you	assign	the	value	of	null	to	the	userName	key/property,	thus	removing	the
key/value	pair	from	local	storage.

If	your	goal	is	to	remove	all	keys	and	values	from	local	storage,	you	can	use	the	clear()
method,	like	this:

localStorage.clear();	//	no	more	key/value	pairs

Storing	Data	as	Strings
It’s	important	to	note	that	web	storage	is	a	string-only	data	store.	This	means	that	keys	and
their	values	can	only	be	strings.	If	you	try	to	store	some	other	type	of	value	(like	a
number)	or	object,	it	is	converted	to	a	string	and	stored	as	a	string.	For	example,	let’s	say
you	want	to	store	the	user’s	age	in	local	storage.	You	can	easily	do	so	like	this:

localStorage.age	=	35;

As	you	rightly	suspect,	this	creates	a	key/value	pair	of	age/35.	But	35	was	converted	to	a
string	before	it	was	stored	in	local	storage.	Therefore,	when	you	retrieve	the	value
associated	with	the	age	key,	you	have	the	string	of	35:

var	age	=	localStorage.age;

alert(typeof	age);	//	string

This	means	that	to	use	age	in	any	mathematic	calculations,	you	need	to	convert	it	to	a
number.	That’s	easy	enough	to	fix:

var	age	=	parseInt(localStorage.age,	10);

But	what	about	more	complex	objects?	Consider	the	following	object	as	an	example:

var	johnDoe	=	{

				firstName:	"John",

				lastName:	"Doe",

				age:	35

};

This	johnDoe	object	represents	an	individual	person	named	John	Doe,	and	he	is	35	years
old.	We	want	to	save	this	object	in	local	storage,	so	we	assign	it	as	the	value	to	the	person
key,	like	this:

localStorage.person	=	johnDoe;

But	there’s	a	problem	here:	The	person	object	cannot	be	reasonably	converted	into	a
string.

When	you	assign	a	value	or	object	to	a	key,	its	toString()	method	is	automatically	called
to	convert	it	to	a	string.	For	primitive	types	like	Number	and	Boolean,	we	get	the	string
representation	of	that	value.	But	by	default,	an	object’s	toString()	method	returns
“[object	Object]“.	Therefore	in	the	preceding	example,	the	string	“[object	Object]”	is
stored	in	localStorage.person:

var	savedPerson	=	localStorage.person;

alert(typeof	savedPerson);	//	string

alert(savedPerson);	"[object	Object]"

This	sounds	like	a	huge	limitation	(and	it	is!),	but	we	can	serialize	objects	into	JSON	and
parse	them	back	into	actual	objects.	Therefore,	we	can	write	this:

localStorage.person	=	JSON.stringify(johnDoe);

var	savedPerson	=	JSON.parse(localStorage.person);

This	code	serializes	the	johnDoe	object	and	stores	the	resulting	JSON	with	the	person	key.
Then,	when	you	need	to	retrieve	and	use	that	information,	you	deserialize	the	JSON	using
JSON.parse()	and	assign	the	resulting	object	to	the	savedPerson	variable.	Now	we	can
store	just	about	anything	we	need	to	in	local	storage,	and	we	have	a	ton	of	space	to	store	it
in!

				TRY	IT	OUT								What’s	New?	Now	with	Local
Storage
Let’s	rewrite	Example	2	using	local	storage.	Feel	free	to	copy	and	paste	the	contents
of	ch13_example2a.html	and	ch13_example2b.html	as	the	basis	for	the	new	files.

Let’s	create	the	first	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	13:	Example	3a</title>

</head>

<body>

				<h1>Welcome	to	Example	3a</h1>

				<div	id="whatsNew"></div>

				<script>

								var	lastUpdated	=	new	Date("Tue,	28	Dec	2020");

								var	lastVisit	=	localStorage.lastVisit;

								if	(lastVisit)	{

												lastVisit	=	new	Date(lastVisit);

												if	(lastVisit	<	lastUpdated)	{

																document.getElementById("whatsNew").innerHTML	=

																				"What's	New?";

												}

								}

								localStorage.lastVisit	=	new	Date();

				</script>

</body>

</html>

Save	this	page	as	ch13_example3a.html.	Next,	create	a	simple	page	to	link	to	for	the
What’s	New?	details:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	13:	Example	3b</title>

</head>

<body>

				<h1>Welcome	to	Example	3b</h1>

				<h3>Here's	what's	new!</h3>

</body>

</html>

Save	this	page	as	ch13_example3b.html.

Load	ch13_example3a.html	into	a	browser.	This	page	behaves	exactly	like	Example
2a.	The	first	time	you	go	to	the	main	page,	there	will	be	nothing	but	a	heading	saying
“Welcome	to	Example	3a.”	Refreshing	the	page	displays	the	“What’s	New?”	link	in
the	page.	Clicking	this	link	takes	you	to	ch13_example3b.html.

As	before,	we’ll	focus	on	the	JavaScript	contained	within	ch13_example3b.html.

First,	you	declare	the	lastUpdated	variable:

var	lastUpdated	=	new	Date("Tue,	28	Dec	2020");

Next,	you	get	the	date	of	the	user’s	last	visit	from	local	storage	with	the	lastVisit
key:

var	lastVisit	=	localStorage.lastVisit;

This	assigns	one	of	two	values	to	the	lastVisit	variable.	If	this	is	the	user’s	first	visit
to	the	page,	the	localStorage.lastVisit	key	won’t	exist	and	returns	null	to
lastVisit.	In	which	case,	you	won’t	display	the	What’s	New?	link	in	the	document.

The	second	possible	value	of	lastVisit	is	a	string	representation	of	the	date	the	user
last	visited	the	page.	In	this	situation,	you	need	to	check	whether	the	user	visited	the
site	before	it	was	last	updated	and	direct	the	user	to	the	What’s	New?	page	if	so:

if	(lastVisit)	{

				lastVisit	=	new	Date(lastVisit);

				if	(lastVisit	<	lastUpdated)	{

								document.getElementById("whatsNew").innerHTML	=

												"What's	New?";

				}

}

Remember	that	the	data	stored	in	local	storage	is	strings;	so,	you	create	a	new	Date
object	based	on	the	value	of	lastVisit	and	store	it	in	the	lastVisit	variable.	Then,
if	lastVisit	is	less	than	lastUpdated,	you	display	the	What’s	New?	link	in	the
document.

In	the	final	line	of	code,	you	reset	the	value	of	the	localState.lastVisit	key:

localStorage.lastVisit	=	new	Date();

Viewing	Web	Storage	Content
Like	cookies,	you	can	also	view	the	data	stored	in	web	storage,	but	doing	so	requires	you
to	use	the	features	found	in	each	browser’s	development	tools.	You	learn	about	the
development	tools	found	in	Internet	Explorer,	Chrome,	and	Firefox	in	Chapter	18,	but
viewing	the	web	storage	content	in	Chrome	is	straightforward.	Simply	press	F12	to	bring
up	the	development	tools	and	click	the	Resources	tab.	Figure	13.20	shows	you	the	local
storage	for	the	beginningjs.com	domain.

Figure	13.20

You	can	only	view	the	web	storage	of	the	domain	of	the	page	currently	loaded	in	a	given
tab;	you	cannot	view	one	domain’s	web	storage	from	another	domain.

SUMMARY
In	this	chapter,	you	looked	at	how	you	can	store	information	on	the	user’s	computer	and
use	this	information	to	personalize	the	website.	In	particular,	you	found	the	following:

The	key	to	cookies	is	the	document	object’s	cookie	property.

Creating	a	cookie	simply	involves	setting	the	document.cookie	property.	Cookies
have	six	different	parts	you	can	set.	These	are	the	name,	the	value,	when	it	expires,
the	path	it	is	available	on,	the	domain	it’s	available	on,	and	finally	whether	it	should
be	sent	only	over	secure	connections.

Although	setting	a	new	cookie	is	fairly	easy,	you	found	that	retrieving	its	value
actually	gets	all	the	cookies	for	that	domain	and	path,	and	that	you	need	to	split	up
the	cookie	name/value	pairs	to	get	a	specific	cookie	using	String	object	methods.

Cookies	have	a	number	of	limitations.	First,	the	user	can	set	the	browser	to	disable
cookies;	and	second,	you	are	limited	to	50	cookies	per	domain	in	IE7+	and	Firefox
and	a	maximum	of	4,096	characters	per	cookie	name/value	pair.

Web	storage	is	a	new	key/value	pair	data	store	that	replaces	the	need	for	cookies	for
JavaScript	developers.	Though	it	was	originally	introduced	with	HTML5,	it	is	now
its	own	specification.

Setting,	getting,	and	removing	data	from	web	storage	is	simple.	You	can	either	use
localStorage’s	getItem(),	setItem(),	and	removeItem()	methods,	or	you	can
assign	and	use	properties	on	localStorage	itself.

The	data	stored	in	web	storage	is	converted	to	strings.	So,	you	have	to	convert	the
data	back	into	its	appropriate	data	type	in	order	to	effectively	use	it.	This	is	easily
done	thanks	to	various	functions	like	parseInt(),	Date’s	constructor,	and
JSON.parse().

EXERCISES
You	can	find	suggested	solutions	to	these	questions	in	Appendix	A.

1.	 Using	local	storage,	create	a	page	that	keeps	track	of	how	many	times	the	page	has
been	visited	by	the	user	in	the	last	month.

2.	 Use	local	storage	to	load	a	different	advertisement	every	time	a	user	visits	a	web
page.

14
Ajax
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Making	HTTP	requests	with	the	XMLHttpRequest	object

Writing	a	custom	Ajax	module

Working	with	older	Ajax	techniques	to	preserve	usability

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

Since	its	inception,	the	Internet	has	used	a	transaction-like	communication	model;	a
browser	sends	a	request	to	a	server,	which	sends	a	response	back	to	the	browser,	which
(re)loads	the	page.	This	is	typical	HTTP	communication,	and	it	was	designed	to	be	this
way.	But	this	model	is	rather	cumbersome	for	developers,	because	it	requires	web
applications	to	consist	of	several	pages.	The	resulting	user	experience	becomes	disjointed
and	interrupted	due	to	these	separate	page	loads.

In	the	early	2000s,	a	movement	began	to	look	for	and	develop	new	techniques	to	enhance
the	user’s	experience;	to	make	web	applications	behave	more	like	conventional
applications.	These	new	techniques	offered	the	performance	and	usability	usually
associated	with	conventional	desktop	applications.	It	wasn’t	long	before	developers	began
to	refine	these	processes	to	offer	richer	functionality	to	the	user.

At	the	heart	of	this	movement	was	one	language:	JavaScript,	and	its	ability	to	make	HTTP
requests	transparent	to	the	user.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

WHAT	IS	AJAX?
Essentially,	Ajax	allows	client-side	JavaScript	to	request	and	receive	data	from	a	server
without	refreshing	the	web	page.	This	technique	enables	the	developer	to	create	an
application	that	is	uninterrupted,	making	only	portions	of	the	page	reload	with	new	data.

The	term	Ajax	was	originally	coined	by	Jesse	James	Garrett	in	2005.	He	wrote	an	article
entitled	“Ajax:	A	New	Approach	to	Web	Applications”
(www.adaptivepath.com/publications/essays/archives/000385.php).	In	it,	Garrett
states	that	the	interactivity	gap	between	web	and	desktop	applications	is	becoming
smaller,	and	he	cites	applications	such	as	Google	Maps	and	Google	Suggest	as	proof	of
this.	The	term	originally	stood	for	Asynchronous	JavaScript	+	XML	(XML	was	the	format
in	which	the	browser	and	server	communicated	with	each	other).	Today,	Ajax	simply
refers	to	the	pattern	of	using	JavaScript	to	send	and	receive	data	from	the	web	server
without	reloading	the	entire	page.

Although	the	term	Ajax	was	derived	in	2005,	the	underlying	methodology	was	used	years
before.	Early	Ajax	techniques	consisted	of	using	hidden	frames/iframes,	dynamically
adding	<script/>	elements	to	the	document,	and/or	using	JavaScript	to	send	HTTP
requests	to	the	server;	the	latter	has	become	quite	popular	in	the	past	few	years.	These	new
techniques	refresh	only	portions	of	a	page,	both	cutting	the	size	of	data	sent	to	the	browser
and	making	the	web	page	feel	more	like	a	conventional	application.

What	Can	It	Do?
Ajax	opened	the	doors	for	advanced	web	applications—ones	that	mimic	desktop
applications	in	form	and	in	function.	A	variety	of	commercial	websites	employ	the	use	of
Ajax.	These	sites	look	and	behave	more	like	desktop	applications	than	websites.	The	most
notable	Ajax-enabled	web	applications	come	from	the	search	giant	Google:	Google	Maps
and	Google	Suggest.

Google	Maps
Designed	to	compete	with	existing	commercial	mapping	sites	(and	using	images	from	its
Google	Earth),	Google	Maps	(http://maps.google.com)	uses	Ajax	to	dynamically	add
map	images	to	the	web	page.	When	you	enter	a	location,	the	main	page	does	not	reload	at
all;	the	images	are	dynamically	loaded	in	the	map	area.	Google	Maps	also	enables	you	to
drag	the	map	to	a	new	location,	and	once	again,	the	map	images	are	dynamically	added	to
the	map	area	(see	Figure	14.1).

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://maps.google.com

Figure	14.1

Google	Suggest
The	now	commonplace	Google	Suggest	is	another	Google	innovation	that	employs	the	use
of	Ajax.	Upon	first	glance,	it	appears	to	be	a	normal	Google	search	page.	When	you	start
typing,	however,	a	drop-down	box	displays	suggestions	for	search	terms	that	might
interest	you.	Under	the	suggested	word	or	phrase	is	the	number	of	results	the	search	term
returns	(see	Figure	14.2).

Figure	14.2

Browser	Support
In	the	early	years	of	Ajax,	browser	support	was	mixed.	Every	browser	supported	the
basics	in	some	way,	but	support	differed	from	browser	to	browser.	Today,	Ajax	is	a	just
another	normal	part	of	JavaScript	development,	and	today’s	modern	browsers
unquestionably	support	Ajax.

USING	THE	XMLHTTPREQUEST	OBJECT
As	stated	before,	you	can	create	Ajax-enabled	applications	in	a	variety	of	ways.	However,
probably	the	most	popular	Ajax	technique	incorporates	the	JavaScript	XMLHttpRequest
object,	which	is	present	in	all	major	browsers.

NOTE	Despite	its	name,	you	can	retrieve	other	types	of	data,	like	plaintext,	with
XMLHttpRequest.

The	XMLHttpRequest	object	originated	as	a	Microsoft	component,	called	XmlHttp,	in	the
MSXML	library	first	released	with	IE	5.	It	offered	developers	an	easy	way	to	open	HTTP
connections	and	retrieve	XML	data.	Microsoft	improved	the	component	with	each	new
version	of	MSXML,	making	it	faster	and	more	efficient.

As	the	popularity	of	the	Microsoft	XMLHttpRequest	object	grew,	Mozilla	decided	to
include	its	own	version	of	the	object	with	Firefox.	The	Mozilla	version	maintained	the
same	properties	and	methods	used	in	Microsoft’s	ActiveX	component,	making	cross-
browser	usage	possible.	Soon	after,	Opera	Software	and	Apple	copied	the	Mozilla
implementation,	and	Google	naturally	implemented	it	with	Chrome’s	initial	release.	As	for
Internet	Explorer,	XMLHttpRequest	is	no	longer	an	ActiveX	component	but	a	native	object
in	the	browser.

Creating	an	XMLHttpRequest	Object
The	XMLHttpRequest	object	is	located	in	the	window	object.	Creating	an	XMLHttpRequest
object	is	as	simple	as	calling	its	constructor:

var	request	=	new	XMLHttpRequest();

This	line	creates	an	XMLHttpRequest	object,	which	you	can	use	to	connect	to,	and	request
and	receive	data	from,	a	server.

Using	the	XMLHttpRequest	Object
Once	you	create	the	XMLHttpRequest	object,	you	are	ready	to	start	requesting	data	with	it.
The	first	step	in	this	process	is	to	call	the	open()	method	to	initialize	the	object:

request.open(requestType,	url,	async);

This	method	accepts	three	arguments.	The	first,	requestType,	is	a	string	value	consisting
of	the	type	of	request	to	make.	The	value	can	be	either	GET	or	POST.	The	second	argument
is	the	URL	to	send	the	request	to,	and	the	third	is	an	optional	true	or	false	value
indicating	whether	the	request	should	be	made	in	asynchronous	or	synchronous	mode.

Requests	made	in	synchronous	mode	halt	all	JavaScript	code	from	executing	until	a
response	is	received	from	the	server.	This	can	slow	down	your	application’s	execution
time.	In	most	cases,	you	want	to	use	asynchronous	mode,	which	lets	the	browser	continue

to	execute	your	application’s	code	while	the	XMLHttpRequest	object	awaits	a	response
from	the	server.	Asynchronous	mode	is	the	default	behavior	of	XMLHttpRequest,	so	you
can	usually	omit	the	third	argument	to	open().

NOTE	In	the	past,	it	was	considered	best	practice	to	pass	true	as	the	third	argument.

The	next	step	is	to	send	the	request;	do	this	with	the	send()	method.	This	method	accepts
one	argument,	which	is	a	string	that	contains	the	request	body	to	send	along	with	the
request.	GET	requests	do	not	contain	any	information,	so	pass	null	as	the	argument:

var	request	=	new	XMLHttpRequest();

request.open("GET",	"http://localhost/myTextFile.txt",	false);

request.send(null);

This	code	makes	a	GET	request	to	retrieve	a	file	called	myTextFile.txt	in	synchronous
mode.	Calling	the	send()	method	sends	the	request	to	the	server.

WARNING	The	send()	method	requires	an	argument	to	be	passed,	even	if	it	is	null.

Each	XMLHttpRequest	object	has	a	status	property.	This	property	contains	the	HTTP
status	code	sent	with	the	server’s	response.	The	server	returns	a	status	of	200	for	a
successful	request,	and	one	of	404	if	it	cannot	find	the	requested	file.	With	this	in	mind,
consider	the	following	example:

var	request	=	new	XMLHttpRequest();

request.open("GET",	"http://localhost/myTextFile.txt",	false);

request.send(null);

var	status	=	request.status;

if	(status	==	200)	{

				alert("The	text	file	was	found!");

}	else	if	(status	==	404)	{

				alert("The	text	file	could	not	be	found!");

}	else	{

				alert("The	server	returned	a	status	code	of	"	+	status);

}

This	code	checks	the	status	property	to	determine	what	message	to	display	to	the	user.	If
successful	(a	status	of	200),	an	alert	box	tells	the	user	the	request	file	exists.	If	the	file
doesn’t	exist	(status	404),	the	user	sees	a	message	stating	that	the	server	cannot	find	the
file.	Finally,	an	alert	box	tells	the	user	the	status	code	if	it	equals	something	other	than
200	or	404.

Many	different	HTTP	status	codes	exist,	and	checking	for	every	code	is	not	feasible.	Most
of	the	time,	you	should	only	be	concerned	with	whether	your	request	is	successful.
Therefore,	you	can	cut	the	previous	code	down	to	this:

var	request	=	new	XMLHttpRequest();

request.open("GET",	"http://localhost/myTextFile.txt",	false);

request.send(null);

var	status	=	request.status;

if	(status	==	200)	{

				alert("The	text	file	was	found!");

}	else	{

				alert("The	server	returned	a	status	code	of	"	+	status);

}

This	code	performs	the	same	basic	function,	but	it	only	checks	for	a	status	code	of	200	and
sends	a	generic	message	to	alert	the	user	for	other	status	codes.

Asynchronous	Requests
The	previous	code	samples	demonstrate	the	simplicity	of	synchronous	requests.
Asynchronous	requests,	on	the	other	hand,	add	some	complexity	to	your	code	because	you
have	to	handle	the	readystatechange	event.	In	asynchronous	requests,	the
XMLHttpRequest	object	exposes	a	readyState	property,	which	holds	a	numeric	value;
each	value	refers	to	a	specific	state	in	a	request’s	life	span,	as	follows:

0:	The	object	has	been	created,	but	the	open()	method	hasn’t	been	called.

1:	The	open()	method	has	been	called,	but	the	request	hasn’t	been	sent.

2:	The	request	has	been	sent;	headers	and	status	are	received	and	available.

3:	A	response	has	been	received	from	the	server.

4:	The	requested	data	has	been	fully	received.

The	readystatechange	event	fires	every	time	the	readyState	property	changes,	calling
the	onreadystatechange	event	handler.	The	fourth	and	final	state	is	the	most	important;	it
lets	you	know	that	the	request	completed.

NOTE	It	is	important	to	note	that	even	if	the	request	was	successful,	you	may	not
have	the	information	you	wanted.	An	error	may	have	occurred	on	the	server’s	end	of
the	request	(a	404,	500,	or	some	other	error).	Therefore,	you	still	need	to	check	the
status	code	of	the	request.

Code	to	handle	the	readystatechange	event	could	look	like	this:

var	request	=	new	XMLHttpRequest();

function	reqReadyStateChange()	{

				if	(request.readyState	==	4)	{

								var	status	=	request.status;

								if	(status	==	200)	{

												alert(request.responseText);

								}	else	{

												alert("The	server	returned	a	status	code	of	"	+	status);

								}

				}

}

request.open("GET",	"http://localhost/myTextFile.txt");

request.onreadystatechange	=	reqReadyStateChange;

request.send(null);

This	code	first	defines	the	reqReadyStateChange()	function,	which	handles	the
readystatechange	event.	It	first	checks	if	the	request	completed	by	comparing
readyState	to	4.	The	function	then	checks	the	request’s	status	to	ensure	the	server
returned	the	requested	data.	Once	these	two	criteria	are	met,	the	code	alerts	the	value	of
the	responseText	property	(the	actual	requested	data	in	plaintext	format).	Note	the
open()	method’s	call;	the	third	argument	is	omitted.	This	makes	the	XMLHttpRequest
object	request	data	asynchronously.

The	benefits	of	using	asynchronous	communication	are	well	worth	the	added	complexity
of	the	readystatechange	event,	because	the	browser	can	continue	to	load	the	page	and
execute	your	other	JavaScript	code	while	the	request	object	sends	and	receives	data.
Perhaps	a	user-defined	module	that	wraps	an	XMLHttpRequest	object	could	make
asynchronous	requests	easier	to	use	and	manage.

NOTE	An	XMLHttpRequest	object	also	has	a	property	called	responseXML,	which
attempts	to	load	the	received	data	into	an	HTML	DOM	(whereas	responseText
returns	plaintext).

CREATING	A	SIMPLE	AJAX	MODULE
The	concept	of	code	reuse	is	important	in	programming;	it	is	the	reason	why	functions	are
defined	to	perform	specific,	common,	and	repetitive	tasks.	Chapter	5	introduced	you	to	the
object-oriented	construct	of	code	reuse:	reference	types.	These	constructs	contain
properties	that	contain	data	and/or	methods	that	perform	actions	with	that	data.

In	this	section,	you	write	your	own	Ajax	module	called	HttpRequest,	thereby	making
asynchronous	requests	easier	to	make	and	manage.	Before	getting	into	writing	this
module,	let’s	go	over	the	properties	and	methods	the	HttpRequest	reference	type	exposes.

Planning	the	HttpRequest	Module
There’s	only	one	piece	of	information	that	you	need	to	keep	track	of:	the	underlying
XMLHttpRequest	object.	Therefore,	this	module	will	have	only	one	property,	request,
which	contains	the	underlying	XMLHttpRequest	object.

The	HttpRequest	exposes	a	single	method	called	send().	Its	purpose	is	to	send	the
request	to	the	server.

Now	let’s	begin	to	write	the	module.

The	HttpRequest	Constructor
A	reference	type’s	constructor	defines	its	properties	and	performs	any	logic	needed	to
function	properly:

function	HttpRequest(url,	callback)	{

				this.request	=	new	XMLHttpRequest();

				//more	code	here

}

The	constructor	accepts	two	arguments.	The	first,	url,	is	the	URL	the	XMLHttpRequest
object	will	request.	The	second,	callback,	is	a	callback	function;	it	will	be	called	when
the	server’s	response	is	received	(when	the	request’s	readyState	is	4	and	its	status	is
200).	The	first	line	of	the	constructor	initializes	the	request	property,	assigning	an
XMLHttpRequest	object	to	it.

With	the	request	property	created	and	ready	to	use,	you	prepare	to	send	the	request:

function	HttpRequest(url,	callback)	{

				this.request	=	new	XMLHttpRequest();

				this.request.open("GET",	url);

				function	reqReadyStateChange()	{

								//more	code	here

				}

				this.request.onreadystatechange	=	reqReadyStateChange;

}

The	first	line	of	the	new	code	uses	the	XMLHttpRequest	object’s	open()	method	to
initialize	the	request	object.	Set	the	request	type	to	GET,	and	use	the	url	parameter	to
specify	the	URL	you	want	to	request.	Because	you	omit	open()’s	third	argument,	you	set
the	request	object	to	use	asynchronous	mode.

The	next	few	lines	define	the	reqReadyStateChange()	function.	Defining	a	function
within	a	function	may	seem	weird,	but	it	is	perfectly	legal	to	do	so.	This	inner	function
cannot	be	accessed	outside	the	containing	function	(the	constructor	in	this	case),	but	it	has
access	to	the	variables	and	parameters	of	the	containing	constructor	function.	As	its	name
implies,	the	reqReadyStateChange()	function	handles	the	request	object’s
readystatechange	event,	and	you	bind	it	to	do	so	by	assigning	it	to	the
onreadystatechange	event	handler:

function	HttpRequest(url,	callback)	{

				this.request	=	new	XMLHttpRequest();

				this.request.open("GET",	url);

				var	tempRequest	=	this.request;

				function	reqReadyStateChange()	{

								if	(tempRequest.readyState	==	4)	{

												if	(tempRequest.status	==	200)	{

																callback(tempRequest.responseText);

												}	else	{

																alert("An	error	occurred	trying	to	contact	the	server.");

												}

								}

				}

				this.request.onreadystatechange	=	reqReadyStateChange;

}

The	new	lines	of	code	may	once	again	look	a	little	strange,	but	it’s	actually	a	pattern	you’ll
often	see	when	looking	at	other	people’s	code.	The	first	new	line	creates	the	tempRequest
variable.	This	variable	is	a	pointer	to	the	current	object’s	request	property,	and	it’s	used
within	the	reqReadyStateChange()	function.	This	is	a	technique	to	get	around	scoping
issues.	Ideally,	you	would	use	this.request	inside	the	reqReadyStateChange()	function.
However,	the	this	keyword	points	to	the	reqReadyStateChange()	function	instead	of	to
the	XMLHttpRequest	object,	which	would	cause	the	code	to	not	function	properly.	So	when
you	see	tempRequest,	think	this.request.

Inside	the	reqReadyStateChange()	function,	you	see	the	following	line:

callback(tempRequest.responseText);

This	line	calls	the	callback	function	specified	by	the	constructor’s	callback	parameter,
and	you	pass	the	responseText	property	to	this	function.	This	allows	the	callback	function
to	use	the	information	received	from	the	server.

Creating	the	send()	Method
There	is	one	method	in	this	reference	type,	and	it	enables	you	to	send	the	request	to	the
server.	Sending	a	request	to	the	server	involves	the	XMLHttpRequest	object’s	send()

method.	This	send()	is	similar,	with	the	difference	being	that	it	doesn’t	accept	arguments:

HttpRequest.prototype.send	=	function	()	{

				this.request.send(null);

};

This	version	of	send()	is	simple	in	that	all	you	do	is	call	the	XMLHttpRequest	object’s
send()	method	and	pass	it	null.

The	Full	Code
Now	that	the	code’s	been	covered,	open	your	text	editor	and	type	the	following:

function	HttpRequest(url,	callback)	{

				this.request	=	new	XMLHttpRequest();

				this.request.open("GET",	url);

				var	tempRequest	=	this.request;

				function	reqReadyStateChange()	{

								if	(tempRequest.readyState	==	4)	{

												if	(tempRequest.status	==	200)	{

																callback(tempRequest.responseText);

												}	else	{

																alert("An	error	occurred	trying	to	contact	the	server.");

												}

								}

				}

				this.request.onreadystatechange	=	reqReadyStateChange;

}

HttpRequest.prototype.send	=	function	()	{

				this.request.send(null);

};

Save	this	file	as	httprequest.js.	You’ll	use	it	later	in	the	chapter.

The	goal	of	this	module	was	to	make	asynchronous	requests	easier	to	use,	so	let’s	look	at	a
brief	code-only	example	and	see	if	that	goal	was	accomplished.

The	first	thing	you	need	is	a	function	to	handle	the	data	received	from	the	request;	this
function	gets	passed	to	the	HttpRequest	constructor:

function	handleData(text)	{

				alert(text);

}

This	code	defines	a	function	called	handleData()	that	accepts	one	argument	called	text.
When	executed,	the	function	merely	alerts	the	data	passed	to	it.	Now	create	an
HttpRequest	object	and	send	the	request:

var	request	=	new	HttpRequest(

								"http://localhost/myTextFile.txt",	handleData);

request.send();

Pass	the	text	file’s	location	and	a	pointer	of	the	handleData()	function	to	the	constructor,
and	send	the	request	with	the	send()	method.	The	handleData()	function	is	called	in	the
event	of	a	successful	request.

This	module	encapsulates	the	code	related	to	asynchronous	XMLHttpRequest	requests
nicely.	You	don’t	have	to	worry	about	creating	the	request	object,	handling	the
readystatechange	event,	or	checking	the	request’s	status;	the	HttpRequest	module	does
it	all	for	you.

VALIDATING	FORM	FIELDS	WITH	AJAX
You’ve	probably	seen	it	many	times:	registering	as	a	new	user	on	a	website’s	forum	or
signing	up	for	web-based	e-mail,	only	to	find	that	your	desired	username	is	taken.	Of
course,	you	don’t	find	this	out	until	after	you’ve	filled	out	the	entire	form,	submitted	it,
and	watched	the	page	reload	with	new	data	(not	to	mention	that	you’ve	lost	some	of	the
data	you	entered).	As	you	can	attest,	form	validation	can	be	a	frustrating	experience.
Thankfully,	Ajax	can	soften	this	experience	by	sending	data	to	the	server	before
submitting	the	form—allowing	the	server	to	validate	the	data,	and	letting	the	user	know
the	outcome	of	the	validation	without	reloading	the	page!

In	this	section,	you	create	a	form	that	uses	Ajax	techniques	to	validate	form	fields.	It’s
possible	to	approach	building	such	a	form	in	a	variety	of	ways;	the	easiest	of	which	to
implement	provides	a	link	that	initiates	an	HTTP	request	to	the	server	application	to	check
whether	the	user’s	desired	information	is	available	to	use.

The	form	you	build	resembles	typical	forms	used	today;	it	will	contain	the	following
fields:

Username	(validated):	The	field	where	the	user	types	his	or	her	desired	username

Email	(validated):	The	field	where	the	user	types	his	or	her	e-mail

Password	(not	validated):	The	field	where	the	user	types	his	or	her	password

Verify	Password	(not	validated):	The	field	where	the	user	verifies	his	or	her
password

Note	that	the	Password	and	Verify	Password	fields	are	just	for	show	in	this	example.
Verifying	a	password	is	certainly	something	the	server	application	can	do;	however,	it	is
far	more	efficient	to	let	JavaScript	perform	that	verification.	Doing	so	adds	more
complexity	to	this	example,	and	we	want	to	keep	this	as	simple	as	possible	to	help	you	get
a	grasp	of	using	Ajax.

Next	to	the	Username	and	Email	fields	will	be	a	hyperlink	that	calls	a	JavaScript	function
to	query	the	server	with	your	HttpRequest	module	from	the	previous	section.

As	mentioned	earlier,	Ajax	is	communication	between	the	browser	and	server.	So	this
example	needs	a	simple	server	application	to	validate	the	form	fields.	PHP	programming
is	beyond	the	scope	of	this	book.	However,	we	should	discuss	how	to	request	data	from
the	PHP	application,	as	well	as	look	at	the	response	the	application	sends	back	to
JavaScript.

Requesting	Information
The	PHP	application	looks	for	one	of	two	arguments	in	the	query	string:	username	and
email.

To	check	the	availability	of	a	username,	use	the	username	argument.	The	URL	to	do	this
looks	like	the	following:

http://localhost/formvalidator.php?username=[usernameToSearchFor]

When	searching	for	a	username,	replace	[usernameToSearchFor]	with	the	actual	name.

Searching	for	an	e-mail	follows	the	same	pattern.	The	e-mail	URL	looks	like	this,	where
you	replace	[emailToSearchFor]	with	the	actual	name:

http://localhost/formvalidator.php?email=[emailToSearchFor]

The	Received	Data
A	successful	request	results	in	a	simple	JSON	structure	that	defines	two	members	called
searchTerm	and	available,	like	this:

{

				"searchTerm":	"jmcpeak",

				"available"	:	true

}

As	its	name	implies,	the	searchTerm	item	contains	the	string	used	in	the	username	or	e-
mail	search.	The	available	item	is	a	boolean	value.	If	true,	the	requested	username
and/or	e-mail	is	available	for	use.	If	false,	the	username	and/or	e-mail	is	in	use	and
therefore	not	available.

Before	You	Begin
This	is	a	live-code	Ajax	example;	therefore,	your	system	must	meet	a	few	requirements	if
you	want	to	run	this	example	from	your	computer.

A	Web	Server
First,	you	need	a	web	server.	If	you	are	using	Windows,	you	have	Microsoft’s	web	server
software,	Internet	Information	Services	(IIS),	freely	available	to	you.	To	install	it	on
Windows,	open	Programs	and	Features	in	the	Control	Panel	and	click	Turn	Windows
features	on	or	off.	Figure	14.3	shows	the	Windows	Features	dialog	box	in	Windows	8.

Figure	14.3

Expand	Internet	Information	Services	and	check	the	features	you	want	to	install.	You	must
check	World	Wide	Web	Services	(Figure	14.4).	You	may	need	your	operating	system’s
installation	CD	to	complete	the	installation.

Figure	14.4

If	you	use	another	operating	system,	or	you	want	to	use	another	web	server	application,
you	can	install	Apache	HTTP	Server	(www.apache.org).	This	is	an	open	source	web
server	and	can	run	on	a	variety	of	operating	systems,	such	as	Linux,	Unix,	and	Windows,
to	list	only	a	few.	Most	websites	run	on	Apache,	so	don’t	feel	nervous	about	installing	it
on	your	computer.	It	is	extremely	stable.

If	you	do	choose	to	use	Apache,	don’t	download	and	install	it	just	yet;	there	are	different
versions	of	Apache.	Instead,	download	PHP	first	because	PHP’s	website	gives	you
accurate	information	on	which	Apache	version	you	should	download	and	install.

PHP
PHP	is	a	popular	open	source	server-side	scripting	language	and	must	be	installed	on	your
computer	if	you	want	to	run	PHP	scripts.	You	can	download	PHP	in	a	variety	of	forms
(binaries,	Windows	installation	wizards,	and	source	code)	at	www.php.net.	The	PHP	code
used	in	this	example	was	written	in	PHP	5.

				TRY	IT	OUT								XMLHttpRequest	Smart	Form

http://www.apache.org
http://www.php.net

In	this	Try	It	Out,	you	will	use	Ajax	to	validate	form	fields.	Open	your	text	editor	and
type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	14:	Example	1</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form>

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="httprequest.js"></script>

				<script>

								function	checkUsername(e)	{

												e.preventDefault();

												var	userValue	=	document.getElementById("username").value;

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	url	=	"ch14_formvalidator.php?username="	+	userValue;

												var	request	=	new	HttpRequest(url,	handleResponse);

												request.send();

								}

								function	checkEmail(e)	{

												e.preventDefault();

												var	emailValue	=	document.getElementById("email").value;

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	url	=	"ch14_formvalidator.php?email="	+	emailValue;

												var	request	=	new	HttpRequest(url,	handleResponse);

												request.send();

								}

								function	handleResponse(responseText)	{

												var	response	=	JSON.parse(responseText);

												if	(response.available)	{

																alert(response.searchTerm	+	"	is	available!");

												}	else	{

																alert("We're	sorry,	but	"	+	response.searchTerm	+

																						"	is	not	available.");

												}

								}

								document.getElementById("usernameAvailability")

																.addEventListener("click",	checkUsername);

								document.getElementById("emailAvailability")

																.addEventListener("click",	checkEmail);

				</script>

</body>

</html>

Save	this	file	in	your	web	server’s	root	directory.	If	you’re	using	IIS	for	your	web
server,	save	it	as	c:\inetpub\wwwroot\ch14_example1.html.	If	you’re	using
Apache,	you’ll	want	to	save	it	inside	the	htdocs	folder:
path_to_htdocs\htdocs\ch14_example1.html.

You	also	need	to	place	httprequest.js	(the	HttpRequest	module)	and	the
ch14_formvalidator.php	file	(from	the	code	download)	into	the	same	directory	as
ch14_example1.html.

Now	open	your	browser	and	navigate	to
http://localhost/ch14_formvalidator.php.	If	everything	is	working	properly,	you
should	see	the	text	“PHP	is	working	correctly.	Congratulations!”	as	in	Figure	14.5.

Figure	14.5

Now	point	your	browser	to	http://localhost/ch14_example1.html,	and	you	should
see	something	like	Figure	14.6.

http://localhost/ch14_formvalidator.php
http://localhost/ch14_example1.html

Figure	14.6

Type	jmcpeak	into	the	Username	field	and	click	the	Check	Availability	link	next	to	it.
You’ll	see	an	alert	box	like	the	one	shown	in	Figure	14.7.

Figure	14.7

Now	type	someone@xyz.com	in	the	e-mail	field	and	click	the	Check	Availability	link
next	to	it.	Again,	you’ll	be	greeted	with	an	alert	box	stating	that	the	e-mail’s	already
in	use.	Now	input	your	own	username	and	e-mail	into	these	fields	and	click	the
appropriate	links.	Chances	are	an	alert	box	will	tell	you	that	your	username	and/or	e-
mail	is	available	(the	usernames	jmcpeak	and	pwilton	and	the	e-mails
someone@xyz.com	and	someone@zyx.com	are	the	only	ones	used	by	the	application).

The	body	of	this	HTML	page	contains	a	simple	form	whose	fields	are	contained
within	a	table.	Each	form	field	exists	in	its	own	row.	The	first	two	rows	contain	the
fields	you’re	most	interested	in:	the	Username	and	Email	fields:

<form>

				<table>

								<tr>

												<td	class="fieldname">

																Username:

												</td>

												<td>

																<input	type="text"	id="username"	/>

												</td>

												<td>

																Check	

Availability

												</td>

								</tr>

								<tr>

												<td	class="fieldname">

																Email:

												</td>

												<td>

																<input	type="text"	id="email"	/>

												</td>

												<td>

																Check	

Availability

												</td>

								</tr>

								<!––	HTML	to	be	continued	later	––>

The	first	column	contains	text	identifiers	for	the	fields.	The	second	column	contains
the	<input/>	elements	themselves.	Each	of	these	tags	has	an	id	attribute:	username
for	the	Username	field	and	email	for	the	Email	field.	This	enables	you	to	easily	find
the	<input/>	elements	and	get	the	text	entered	into	them.

The	third	column	contains	an	<a/>	element.	These	hyperlinks	exist	for	the	sole
purpose	of	kicking	off	Ajax	requests.	As	such,	they	have	a	hash	(#)	in	their	href
attributes,	thus	preventing	the	browser	from	navigating	to	a	different	page	(to	be
considered	a	valid,	clickable	hyperlink,	an	<a/>	element	must	have	an	href	value).
Each	of	these	links	has	an	id	attribute	that	you’ll	use	later	in	your	JavaScript	code.

The	remaining	three	rows	in	the	table	contain	two	password	fields	and	the	Submit
button	(the	smart	form	currently	does	not	use	these	fields):

								<!––	HTML	continued	from	earlier	––>

								<tr>

												<td	class="fieldname">

																Password:

												</td>

												<td>

																<input	type="text"	id="password"	/>

												</td>

												<td	/>

								</tr>

								<tr>

												<td	class="fieldname">

																Verify	Password:

												</td>

												<td>

																<input	type="text"	id="password2"	/>

												</td>

												<td	/>

								</tr>

								<tr>

												<td	colspan="2"	class="submit">

																<input	type="submit"	value="Submit"	/>

												</td>

												<td	/>

								</tr>

				</table>

</form>

The	CSS	in	this	HTML	page	consists	of	only	a	couple	of	CSS	rules:

.fieldname	{

				text-align:	right;

}

.submit	{

				text-align:	right;

}

These	rules	align	the	fields	to	give	the	form	a	clean	and	unified	look.

As	stated	earlier,	the	hyperlinks	are	key	to	the	Ajax	functionality,	because	they	call
JavaScript	functions	when	clicked.	The	first	function,	checkUsername(),	retrieves	the
text	the	user	entered	into	the	Username	field	and	issues	an	HTTP	request	to	the	server.

This	function	executes	because	the	user	clicked	a	link.	Therefore,	you	want	to	prevent
the	browser	from	navigating	to	the	URL	specified	in	its	href	attribute.	Even	though
the	URL	is	the	hash	(#),	you	still	want	to	call	preventDefault():

function	checkUsername(e)	{

				e.preventDefault();

				var	userValue	=	document.getElementById("username").value;

Use	the	document.getElementById()	method	to	find	the	<input
id="FileName_username"/>	element	and	use	its	value	property	to	retrieve	the	text
typed	into	the	text	box.	You	then	check	to	see	if	the	user	typed	any	text:

				if	(!userValue)	{

								alert("Please	enter	a	user	name	to	check!");

								return;

				}

If	the	text	box	is	empty,	the	function	alerts	the	user	to	input	a	username	and	stops	the
function	from	further	processing.	The	application	would	make	unnecessary	requests
to	the	server	if	the	code	didn’t	do	this.

Next	construct	the	URL	to	make	the	request	to	the	PHP	application	and	assign	it	to
the	url	variable.	Then	create	an	HttpRequest	object	by	passing	the	URL	and	the
handleResponse()	callback	function	to	the	constructor,	and	send	the	request	by
calling	send():

				var	url	=	"ch14_formvalidator.php?username="	+	userValue;

				var	request	=	new	HttpRequest(url,	handleResponse);

				request.send();

}

You	look	at	the	handleResponse()	function	later.	For	now,	let’s	examine	the
checkEmail()	function.

Checking	the	e-mail	address	availability	is	almost	identical	to	the	username	process.
The	checkEmail()	function	retrieves	the	text	typed	in	the	Email	field	and	sends	that
information	to	the	server	application:

function	checkEmail(e)	{

				e.preventDefault();

				var	emailValue	=	document.getElementById("email").value;

				if	(!emailValue)	{

								alert("Please	enter	an	email	address	to	check!");

								return;

				}

				var	url	=	"ch14_formvalidator.php?email="	+	emailValue;

				var	request	=	new	HttpRequest(url,	handleResponse);

				request.send();

}

This	function	also	uses	handleResponse()	to	handle	the	server’s	response.	The
handleResponse()	function	executes	when	the	HttpRequest	object	receives	a
complete	response	from	the	server.	This	function	uses	the	requested	information	to
tell	the	user	whether	the	username	or	e-mail	address	is	available.	Remember,	the
response	from	the	server	is	JSON-formatted	data.	So,	you	need	to	first	parse	the	data
into	a	JavaScript	object:

function	handleResponse(responseText)	{

				var	response	=	JSON.parse(responseText);

The	server’s	response	is	parsed	into	an	object	that	is	stored	in	the	response	variable.
You	then	use	this	object’s	available	property	to	display	the	appropriate	message	to
the	user:

				if	(response.available)	{

								alert(response.searchTerm	+	"	is	available!");

				}	else	{

								alert("We're	sorry,	but	"	+	response.searchTerm	+	"	is	not	

available.");

				}

}

If	available	is	true,	the	function	tells	the	user	that	his	desired	username	or	e-mail
address	is	okay	to	use.	If	not,	the	alert	box	says	that	the	user’s	desired	username	or
e-mail	address	is	taken.

Finally,	you	need	to	set	up	the	event	listeners	for	your	two	links:

document.getElementById("usernameAvailability")

								.addEventListener("click",	checkUsername);

document.getElementById("emailAvailability")

								.addEventListener("click",	checkEmail);

You	do	this	by	simply	retrieving	the	<a/>	elements	by	their	respective	id	values	and
listening	for	the	click	event.

THINGS	TO	WATCH	OUT	FOR
Using	JavaScript	to	communicate	between	server	and	client	adds	tremendous	power	to	the
language’s	abilities.	However,	this	power	does	not	come	without	its	share	of	caveats.	The
two	most	important	issues	are	security	and	usability.

Security	Issues
Security	is	a	hot	topic	in	today’s	Internet,	and	as	a	web	developer	you	must	consider	the
security	restrictions	placed	on	Ajax.	Knowing	the	security	issues	surrounding	Ajax	can
save	you	development	and	debugging	time.

The	Same-Origin	Policy
Since	the	early	days	of	Netscape	Navigator	2.0,	JavaScript	cannot	access	scripts	or
documents	from	a	different	origin.	This	is	a	security	measure	that	browser	makers	adhere
to;	otherwise,	malicious	coders	could	execute	code	wherever	they	wanted.	The	same-
origin	policy	dictates	that	two	pages	are	of	the	same	origin	only	if	the	protocol	(HTTP),
port	(the	default	is	80),	and	host	are	the	same.

Consider	the	following	two	pages:

Page	1	is	located	at	http://www.site.com/folder/mypage1.htm.

Page	2	is	located	at	http://www.site.com/folder10/mypage2.htm.

According	to	the	same-origin	policy,	these	two	pages	are	of	the	same	origin.	They	share
the	same	host	(www.site.com),	use	the	same	protocol	(HTTP),	and	are	accessed	on	the
same	port	(none	is	specified;	therefore,	they	both	use	80).	Because	they	are	of	the	same
origin,	JavaScript	on	one	page	can	access	the	other	page.

Now	consider	the	next	two	pages:

Page	1	is	located	at	http://www.site.com/folder/mypage1.htm.

Page	2	is	located	at	https://www.site.com/folder/mypage2.htm.

These	two	pages	are	not	of	the	same	origin.	The	host	is	the	same,	but	their	protocols	and
ports	are	different.	Page	1	uses	HTTP	(port	80),	whereas	Page	2	uses	HTTPS	(port	443).	This
difference,	though	slight,	is	enough	to	give	the	two	pages	two	separate	origins.	Therefore,
JavaScript	on	one	of	these	pages	cannot	access	the	other	page.

So	what	does	this	have	to	do	with	Ajax?	Everything,	because	a	large	part	of	Ajax	is
JavaScript.	For	example,	because	of	this	policy,	an	XMLHttpRequest	object	cannot	retrieve
any	file	or	document	from	a	different	origin	by	default.	There	is,	however,	a	legitimate
need	for	cross-origin	requests,	and	the	W3C	responded	with	the	Cross-Origin	Resource
Sharing	(CORS)	specification.

CORS
The	CORS	specification	defines	how	browsers	and	servers	communicate	with	one	another

http://www.site.com/folder/mypage1.htm
http://www.site.com/folder10/mypage2.htm
http://www.site.com
http://www.site.com/folder/mypage1.htm
https://www.site.com/folder/mypage2.htm

when	sending	requests	across	origins.	For	CORS	to	work,	the	browser	must	send	a	custom
HTTP	header	called	Origin	that	contains	the	protocol,	domain	name,	and	port	of	the	page
making	the	request.	For	example,	if	the	JavaScript	on	the	page
http://www.abc.com/xyz.html	used	XMLHttpRequest	to	issue	a	request	to
http://beginningjs.com,	the	Origin	header	would	look	like	this:

Origin:	http://www.abc.com

When	the	server	responds	to	a	CORS	request,	it	must	also	send	a	custom	header	called
Access-Control-Allow-Origin,	and	it	must	contain	the	same	origin	specified	in	the
request’s	Origin	header.	Continuing	from	the	previous	example,	the	server’s	response
must	contain	the	following	Access-Control-Allow-Origin	header	for	CORS	to	work:

Access-Control-Allow-Origin:	http://www.abc.com

If	this	header	is	missing,	or	if	the	origins	don’t	match,	the	browser	doesn’t	process	the
request.

Alternatively,	the	server	can	include	the	Access-Control-Allow-Origin	header	with	a
value	of	*,	signifying	that	all	origins	are	accepted.	This	is	primarily	used	by	publicly
available	web	services.

NOTE	These	custom	headers	are	automatically	handled	by	the	browser.	You	do	not
need	to	set	your	own	Origin	header,	and	you	do	not	have	to	manually	check	the
Access-Control-Allow-Origin.

Usability	Concerns
Ajax	breaks	the	mold	of	traditional	web	applications	and	pages.	It	enables	developers	to
build	applications	that	behave	in	a	more	conventional,	non-“webbish”	way.	This,	however,
is	also	a	drawback,	because	the	Internet	has	been	around	for	many,	many	years,	and	users
are	accustomed	to	traditional	web	pages.

Therefore,	it	is	up	to	developers	to	ensure	that	users	can	use	their	web	pages,	and	use	them
as	they	expect	to,	without	causing	frustration.

The	Browser’s	Back	Button
One	of	the	advantages	of	XMLHttpRequest	is	its	ease	of	use.	You	simply	create	the	object,
send	the	request,	and	await	the	server’s	response.	Unfortunately,	this	object	does	have	a
downside:	Most	browsers	do	not	log	a	history	of	requests	made	with	the	object.	Therefore,
XMLHttpRequest	essentially	breaks	the	browser’s	Back	button.	This	might	be	a	desired
side-effect	for	some	Ajax-enabled	applications	or	components,	but	it	can	cause	serious
usability	problems	for	the	user.

Creating	a	Back/Forward-Capable	Form	with	an	IFrame
It’s	possible	to	avoid	breaking	the	browser’s	navigational	buttons	by	using	an	older	but
reliable	Ajax	technique:	using	hidden	frames/iframes	to	facilitate	client-server

communication.	You	must	use	two	frames	for	this	method	to	work	properly.	One	must	be
hidden,	and	one	must	be	visible.

NOTE	Note	that	when	you	are	using	an	iframe,	the	document	that	contains	the	iframe
is	the	visible	frame.

The	hidden-frame	technique	consists	of	a	four-step	process:

1.	 The	user	initiates	a	JavaScript	call	to	the	hidden	frame	by	clicking	a	link	in	the
visible	frame	or	performing	some	other	type	of	user	interaction.	This	call	is	usually
nothing	more	complicated	that	redirecting	the	hidden	frame	to	a	different	web	page.
This	redirection	automatically	triggers	the	second	step.

2.	 The	request	is	sent	to	the	server,	which	processes	the	data.

3.	 The	server	sends	its	response	(a	web	page)	back	to	the	hidden	frame.

4.	 The	browser	loads	the	web	page	in	the	hidden	frame	and	executes	any	JavaScript
code	to	contact	the	visible	frame.

The	example	in	this	section	is	based	on	the	form	validator	built	earlier	in	the	chapter,	but
you’ll	use	a	hidden	iframe	to	facilitate	the	communication	between	the	browser	and	the
server	instead	of	an	XMLHttpRequest	object.	Before	getting	into	the	code,	you	should	first
know	about	the	data	received	from	the	server.

The	Server	Response
You	expected	a	JSON	data	structure	as	the	server’s	response	when	using	XMLHttpRequest
to	get	data	from	the	server.	The	response	in	this	example	is	different	and	must	consist	of
two	things:

The	data,	which	must	be	in	HTML	format

A	mechanism	to	contact	the	parent	document	when	the	iframe	receives	the	HTML
response

The	following	code	is	an	example	of	the	response	HTML	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Returned	Data</title>

</head>

<body>

				<script>

								//more	code	here

				</script>

</body>

</html>

This	simple	HTML	page	contains	a	single	<script/>	element	in	the	body	of	the
document.	The	JavaScript	code	contained	in	this	script	block	is	generated	by	the	PHP

application,	calling	handleResponse()	in	the	visible	frame	and	passing	it	the	expected
JSON.

The	JSON	data	structure	has	a	new	member:	the	value	field.	It	contains	the	username	or
e-mail	that	was	sent	in	the	request.	Therefore,	the	following	HTML	document	is	a	valid
response	from	the	PHP	application:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Returned	Data</title>

</head>

<body>

				<script>

								top.handleResponse('{"available":false,	"value":"jmcpeak"}');

				</script>

</body>

</html>

The	HTML	page	calls	the	handleResponse()	function	in	the	parent	window	and	passes
the	JSON	structure	signifying	that	the	username	or	e-mail	address	is	available.	With	the
response	in	this	format,	you	can	keep	a	good	portion	of	the	JavaScript	code	identical	to
Example	1.

				TRY	IT	OUT								Iframe	Smart	Form
The	code	for	this	revised	smart	form	is	very	similar	to	the	code	used	previously	with
the	XMLHttpRequest	example.	There	are,	however,	a	few	changes.	Open	up	your	text
editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	14:	Example	2</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

								#hiddenFrame	{

												display:	none;

								}

				</style>

</head>

<body>

				<form>

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td></td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td></td>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	type="submit"	value="Submit"	/>

																</td>

																<td></td>

												</tr>

								</table>

				</form>

				<iframe	src="about:blank"	id="hiddenFrame"	name="hiddenFrame">

</iframe>

				<script>

								function	checkUsername(e)	{

												e.preventDefault();

												var	userValue	=	document.getElementById("username").value;

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	url	=	"ch14_iframevalidator.php?username="	+	userValue;

												frames["hiddenFrame"].location	=	url;

								}

								function	checkEmail(e)	{

												e.preventDefault();

												var	emailValue	=	document.getElementById("email").value;

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	url	=	"ch14_iframevalidator.php?email="	+	emailValue;

												frames["hiddenFrame"].location	=	url;

								}

								function	handleResponse(responseText)	{

												var	response	=	JSON.parse(responseText);

												if	(response.available)	{

																alert(response.searchTerm	+	"	is	available!");

												}	else	{

																alert("We're	sorry,	but	"	+	response.searchTerm	+

																						"	is	not	available.");

												}

								}

								document.getElementById("usernameAvailability")

																.addEventListener("click",	checkUsername);

								document.getElementById("emailAvailability")

																.addEventListener("click",	checkEmail);

				</script>

</body>

</html>

Save	this	file	as	ch14_example2.html,	and	save	it	in	your	web	server’s	root	directory.
Also	locate	the	ch14_iframevalidator.php	file	from	the	code	download	and	place	it
in	the	same	directory.

Open	your	web	browser	and	navigate	to	http://localhost/ch14_example2.html.
You	should	see	a	page	similar	to	Example	1.

Check	for	three	usernames	and	e-mail	addresses.	After	you	clear	the	final	alert	box,
click	the	browser’s	Back	button	a	few	times.	You’ll	notice	that	it	is	cycling	through

http://localhost/ch14_example2.html

the	information	you	previously	entered.	The	text	in	the	text	box	will	not	change;
however,	the	alert	box	will	display	the	names	and	e-mails	you	entered.	You	can	do
the	same	thing	with	the	Forward	button.

The	HTML	in	the	body	of	the	page	remains	unchanged	except	for	the	addition	of	the
<iframe/>	tag	after	the	closing	<form/>	tag:

<iframe	src="about:blank"	id="hiddenFrame"	name="hiddenFrame"	/>

This	frame	is	initialized	to	have	a	blank	HTML	page	loaded.	Its	name	and	id	attributes
contain	the	value	of	hiddenFrame.	You	use	the	value	of	the	name	attribute	later	to
retrieve	this	frame	from	the	frames	collection	in	the	BOM.	Next,	you	set	the	CSS	for
the	frame:

#hiddenFrame	{

				display:	none;

}

This	rule	contains	one	style	declaration	to	hide	the	iframe	from	view.

NOTE	Hiding	an	iframe	through	CSS	enables	you	to	easily	show	it	if	you	need	to
debug	the	server-side	application.

Next	up,	the	JavaScript:

function	checkUsername(e)	{

				e.preventDefault();

				var	userValue	=	document.getElementById("username").value;

				if	(!userValue)	{

								alert("Please	enter	a	user	name	to	check!");

								return;

				}

				var	url	=	"ch14_iframevalidator.php?username="	+	userValue;

				frames["hiddenFrame"].location	=	url;

}

This	checkUsername()	function	is	almost	identical	to	Example	1.	The	value	of	the
url	variable	is	changed	to	the	new	ch14_iframvalidator.php	file.	The	actual	request
is	made	by	accessing	the	<iframe/>	element	using	the	frames	collection	and	setting
its	location	property	to	the	new	URL.

The	checkEmail()	function	has	the	same	modifications:

function	checkEmail(e)	{

				e.preventDefault();

				var	emailValue	=	document.getElementById("email").value;

				if	(!emailValue)	{

								alert("Please	enter	an	email	address	to	check!");

								return;

				}

				var	url	=	"ch14_iframevalidator.php?email="	+	emailValue;

				frames["hiddenFrame"].location	=	url;

}

As	before,	the	checkEmail()	function	retrieves	the	text	box’s	value	and	checks	to	see
if	the	user	entered	data.	It	then	constructs	the	URL	using	ch14_iframevalidator.php
and	loads	the	URL	into	the	<iframe/>.

Dealing	with	Delays
The	web	browser	is	just	like	any	other	conventional	application	in	that	user	interface	(UI)
cues	tell	the	user	that	something	is	going	on.	For	example,	when	a	user	clicks	a	link,	the
throbber	animation	may	run	or	the	cursor	might	change	to	display	a	“busy”	animation.

This	is	another	area	in	which	Ajax	solutions,	and	XMLHttpRequest	specifically,	miss	the
mark.	However,	this	problem	is	simple	to	overcome:	Simply	add	UI	elements	to	tell	the
user	something	is	going	on	and	remove	them	when	the	action	is	completed.	Consider	the
following	code:

function	requestComplete(responseText)	{

				//do	something	with	the	data	here

				document.getElementById("divLoading").style.display	=	"none";

}

var	myRequest	=	new	HttpRequest("http://localhost/myfile.txt",

																																requestComplete);

//show	that	we're	loading

document.getElementById("divLoading").style.display	=	"block";

myRequest.send();

This	code	uses	the	HttpRequest	module	to	request	a	text	file.	Before	sending	the	request,
it	retrieves	an	HTML	element	in	the	document	with	an	id	of	divLoading.	This	<div/>
element	tells	the	user	that	data	is	loading.	The	code	then	hides	the	element	when	the
request	completes,	thus	letting	the	user	know	that	the	process	completed.

Offering	this	information	to	your	users	lets	them	know	the	application	is	doing	something.
Without	such	visual	cues,	users	are	left	to	wonder	if	the	application	is	working	on
whatever	they	requested.

Degrade	Gracefully	When	Ajax	Fails
In	a	perfect	world,	the	code	you	write	would	work	every	time	it	runs.	Unfortunately,	you
have	to	face	the	fact	that	many	times	Ajax-enabled	web	pages	will	not	use	the	Ajax-

enabled	goodness	because	a	user	turned	off	JavaScript	in	his	browser.

The	only	real	answer	to	this	problem	is	to	build	an	old-fashioned	web	page	with	old-
fashioned	forms,	links,	and	other	HTML	elements.	Then,	using	JavaScript,	you	can
disable	the	default	behavior	of	those	HTML	elements	and	add	Ajax	functionality.	Consider
this	hyperlink	as	an	example:

Wrox	Publishing

This	is	a	normal,	run-of-the-mill	hyperlink.	When	the	user	clicks	it,	the	browser	will	take
him	to	http://www.wrox.com.	By	using	JavaScript,	you	of	course	can	prevent	this
behavior	by	using	the	Event	object’s	preventDefault()	method.	Simply	register	a	click
event	handler	for	the	<a/>	element	and	call	preventDefault().	Both	Examples	1	and	2
demonstrated	this	technique.

As	a	rule	of	thumb,	build	your	web	page	first	and	add	Ajax	later.

http://www.wrox.com

SUMMARY
This	chapter	introduced	you	to	Ajax,	and	it	barely	scratched	the	surface	of	Ajax	and	its
many	uses:

You	looked	at	the	XMLHttpRequest	object,	and	learned	how	to	make	both
synchronous	and	asynchronous	requests	to	the	server	and	how	to	use	the
onreadystatechange	event	handler.

You	built	your	own	Ajax	module	to	make	asynchronous	HTTP	requests	easier	for
you	to	code.

You	used	your	new	Ajax	module	in	a	smarter	form,	one	that	checks	usernames	and	e-
mails	to	see	if	they	are	already	in	use.

You	saw	how	XMLHttpRequest	breaks	the	browser’s	Back	and	Forward	buttons,	and
addressed	this	problem	by	rebuilding	the	same	form	using	a	hidden	iframe	to	make
requests.

You	looked	at	some	of	the	downsides	to	Ajax,	including	the	security	issues	and	the
gotchas.

EXERCISES
You	can	find	suggested	solutions	for	these	questions	in	Appendix	A.

1.	 Extend	the	HttpRequest	module	to	include	synchronous	requests	in	addition	to	the
asynchronous	requests	the	module	already	makes.	You’ll	have	to	make	some
adjustments	to	your	code	to	incorporate	this	functionality.	(Hint:	Create	an	async
property	for	the	module.)

2.	 It	was	mentioned	earlier	in	the	chapter	that	you	could	modify	the	smart	form	to	not
use	hyperlinks.	Change	the	form	that	uses	the	HttpRequest	module	so	that	the
Username	and	Email	fields	are	checked	when	the	user	submits	the	form.	Listen	for
the	form’s	submit	event	and	cancel	the	submission	if	a	username	or	e-mail	is	taken.

15
HTML5	Media
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Playing	audio	and	video	natively	in	modern	web	browsers

Writing	a	custom	control	UI	for	media	playback

Synchronizing	your	UI	with	the	browser’s	native	controls

Parsing	JSON	back	into	actual	objects	and	values	you	can	use	in	your	pages

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

At	its	inception,	the	Internet	was	a	text	delivery	system.	Whereas	the	first	HTML
specification	described	the		tag	for	embedding	images	within	a	document,	HTTP	and
HTML	were	designed	primarily	for	transmitting	and	displaying	text	(hence,	Hyper-Text).

In	the	late	1990s,	personal	computers	were	finding	their	way	into	more	households,	and
ordinary	people	were	able	to	access	the	web.	Naturally,	people	wanted	more	from	the	web,
and	browser	makers	accommodated	this	by	designing	their	browsers	to	use	plug-ins,	third-
party	applications	that	were	designed	to	do	things	browsers	normally	didn’t,	such	as
playing	video	and	audio.Plug-ins	solved	a	particular	problem,	but	they	weren’t	without
their	faults—the	largest	being	the	need	for	so	many	of	them.	A	wide	variety	of	music	and
video	formats	were	available,	and	certain	plug-ins	would	only	play	certain	formats.
Stability	was	also	an	issue	because	a	malfunctioning	plug-in	could	crash	the	browser.

Then	in	2005,	some	enterprising	folks	created	YouTube,	a	video-sharing	website.	Instead
of	relying	on	QuickTime	or	Windows	Media	Player,	YouTube’s	videos	were	served	to
users	as	Macromedia/Adobe	Flash	files.	This	was	advantageous	because	of	Flash’s
ubiquity;	Macromedia/Adobe	had	Flash	plug-ins	for	every	major	browser	and	operating
system.	Soon	thereafter,	websites	started	using	Flash	for	delivering	their	video	and	audio
content	to	users,	and	everything	was	right	in	the	world.	Or	was	it?

Many	people	believe	the	browser	should	have	the	built-in	capability	for	playing	video	and
audio.	So	the	people	developing	the	HTML5	specification	included	two	new	tags,	<video>
and	<audio>,	for	that	express	purpose.	And	although	it’s	wonderful	that,	after	so	many
years,	browsers	finally	have	the	built-in	capability	of	playing	media,	issues	still	exist	that
we	developers	have	to	deal	with.	But	first,	let’s	take	a	brief	look	at	these	new	tags	and	how
they	work	within	the	browser.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

A	PRIMER
Before	we	begin,	the	video	used	in	this	chapter	is	called	Big	Buck	Bunny,	and	it	is
Creative	Commons-licensed	as	an	open	movie.	Because	of	its	size,	you	will	not	find	the
video	in	the	code	download.	You	can,	however,	download	Big	Buck	Bunny	in	a	variety	of
formats	at	http://www.bigbuckbunny.org.

It’s	also	worth	noting	that	video	and	audio	are	very	similar;	in	fact,	the	primary	difference
between	the	two	elements	is	that	<audio/>	elements	have	no	playback	area	for	visual
content.	Although	this	discussion	focuses	primarily	on	video,	the	same	concepts	can	be
applied	to	audio.

Before	HTML5,	embedding	video	within	a	web	page	was	cumbersome	because	it	required
you	to	use	no	less	than	three	elements	for	the	video	to	work	in	all	browsers.	With	HTML5,
however,	all	you	need	is	the	<video/>	element:

<video	src="bbb.mp4"></video>

The	<video/>	element’s	src	attribute	contains	the	location	of	the	video	file.	In	this	case,
the	browser	will	attempt	to	load	the	bbb.mp4	file	that	is	in	the	same	directory	as	the	page.

Of	course,	older	browsers	do	not	support	the	<video/>	element,	and	as	such,	they	will
simply	ignore	the	<video/>	element.	You	can,	however,	add	some	content	inside	the
<video/>	element	like	this:

<video	src="bbb.mp4">

				Download	this	video.

</video>

Browsers	that	support	native	video	will	not	display	the	link,	but	browsers	that	do	not
support	native	video	will,	as	shown	in	Figure	15.1.

http://www.bigbuckbunny.org

Figure	15.1

In	most	cases,	you	won’t	use	the	src	attribute	in	your	HTML.	Instead,	you’ll	define	a
<source/>	element	inside	<video/>,	like	this:

<video>

				<source	src="bbb.mp4"	/>

				Download	this	video.

</video>

The	reason	is	fairly	simple:	Different	browsers	support	different	formats.	This	is	the
primary	issue	we	face	with	native	video	support.	For	example,	Figure	15.2	shows	IE11
with	a	page	that	contains	the	previous	code.

Figure	15.2

The	video	is	in	H.264	format,	which	is	supported	by	IE11	and	Chrome.	Firefox,	at	the
time	of	this	writing,	has	partial	support,	and	viewing	the	same	page	gives	you	Figure	15.3.

Figure	15.3

Bupkis.	But	you	can	skirt	around	this	issue	by	providing	the	same	video	in	different
formats.	Firefox	has	complete	support	for	WebM,	and	you	can	accommodate	other	WebM-
supporting	browsers	by	adding	another	<source/>	element,	like	this:

<video>

				<source	src="bbb.mp4"	/>

				<source	src="bbb.webm"	/>

				Download	this	video.

</video>

Browsers	will	read	each	source	in	the	order	in	which	it	appears	in	the	HTML.	They
download	the	video’s	metadata	to	determine	which	video	to	load,	and	they	load	the	first
video	that	it	supports.	Chrome	supports	both	H.264	and	WebM;	so,	if	Chrome	were	to	load
a	page	with	this	code,	it	would	load	the	.mp4	file.

You	can	prevent	the	browser	from	downloading	a	video’s	metadata	by	providing	the
MIME	type	for	each	<source/>	element.	You	do	this	with	the	type	attribute,	as	shown
here:

<video>

				<source	src="bbb.mp4"	type="video/mp4"	/>

				<source	src="bbb.webm"	type="video/webm"	/>

				Download	this	video.

</video>

You	can	also	provide	the	codec	information	in	the	type	attribute	to	allow	the	browser	to
make	more	intelligent	decisions	like	this:

<video>

				<source	src="bbb.mp4"

												type='video/mp4;	codecs="avc1.4D401E,	mp4a.40.2"'	/>

				<source	src="bbb.webm"	type'video/webm;	codecs="vp8.0,	vorbis"'	/>

				Download	this	video.

</video>

NOTE	It’s	beyond	the	scope	of	this	book	to	provide	an	in-depth	discussion	on	the
various	codecs	used	and	the	browsers	that	support	them.	So	for	the	sake	of	simplicity,
this	chapter	omits	the	type	attribute	altogether—along	with	the	text-based	fallback.

By	default,	videos	do	not	display	controls,	but	you	can	easily	add	the	default	controls	by
adding	the	controls	attribute	to	the	<video/>	element:

<video	controls>

You	don’t	have	to	set	controls	to	any	value;	its	presence	is	enough	to	turn	on	the
browser’s	default	controls	for	the	video.

You	can	also	tell	the	browser	to	preload	the	video	with	the	preload	attribute:

<video	controls	preload>

This	tells	the	browser	to	immediately	start	loading	the	video.	Like	the	controls	attribute,
you	don’t	have	to	set	a	value	for	preload.

By	default,	the	browser	uses	the	first	frame	of	the	video	as	the	poster	of	the	video,	the
initial	visual	representation	of	the	video.	You	can	use	the	poster	attribute	to	display	a

custom	image	for	the	video’s	poster:

<video	controls	preload	poster="bbb.jpg">

The	poster	attribute,	as	you	might	imagine,	is	specifically	for	<video/>	elements,	but	you
can	add	a	few	other	attributes	to	the	<video/>	and	<audio/>	elements.	Probably	the	most
important,	from	a	JavaScript	perspective,	is	the	id	attribute.	It	is,	after	all,	how	you	find
specific	media	in	the	page	so	that	you	can	script	them.

SCRIPTING	MEDIA
In	the	DOM,	<video/>	and	<audio/>	elements	are	HTMLMediaElement	objects,	and	the
HTML5	specification	defines	an	API	for	working	with	these	objects.	But	naturally,	before
you	can	use	any	of	the	methods,	properties,	or	events	of	a	media	object,	you	need	to	first
obtain	one.	You	can	retrieve	an	existing	<video/>	or	<audio/>	element	in	the	page	using
any	of	the	various	methods	for	finding	elements.	For	the	sake	of	simplicity,	assume	there’s
a	<video	id="bbbVideo">	tag	in	the	page.	You	could	get	it	with	the	following	code:

var	video	=	document.getElementById("bbbVideo");

Or	you	can	create	one	dynamically	using	document.createElement(),	like	this:

var	video	=	document.createElement("video");

And	once	you	have	an	HTMLMediaElement	object,	you	can	begin	to	program	it	with	its
robust	API.

Methods
Media	objects	have	just	a	handful	of	methods,	and	they’re	primarily	used	for	controlling
media	playback,	as	shown	in	the	following	table.

METHOD	NAME DESCRIPTION
canPlayType(mimeType) Determines	the	likelihood	that	the	browser	can	play	media	of

the	provided	MIME	type	and/or	codec
load() Begins	to	load	the	media	from	the	server
pause() Pauses	the	media	playback
play() Begins	or	continues	the	playback	of	the	media

These	are	the	methods	defined	by	the	HTML5	specification,	but	be	aware	that	the	various
browsers	can	also	implement	their	own	methods	in	addition	to	these	four.	For	example,
Firefox	adds	many	more	methods	to	HTMLMediaElement	objects.	This	book,	however,	does
not	cover	them.

The	pause()	and	play()	methods	are	straightforward;	you	use	them	to	pause	and	play	the
media,	respectively:

video.play();

video.pause();

The	other	two	methods	are	used	when	you	want	to	load	media	dynamically.	The	load()
method,	obviously,	tells	the	browser	to	load	the	specified	media.	The	canPlayType()
method,	however,	is	a	bit	more	involved	because	it	doesn’t	return	true	or	false.	Instead,
it	returns	a	variety	of	values	indicating	the	likelihood	that	the	browser	supports	the	given
type.	The	possible	values	returned	by	canPlayType()	are:

"probably":	Indicates	that	the	type	appears	to	be	playable

"maybe":	It’s	impossible	to	tell	if	the	type	is	playable	without	actually	playing	it.

"":	The	media	definitely	cannot	be	played.

The	canPlayType()	and	load()	methods	are	only	needed	if	you	plan	to	load	a	video
dynamically.	Here’s	an	example	of	how	that	code	could	look:

if	(video.canPlayType("video/webm")	==	"probably")	{

				video.src	=	"bbb.webm";

}	else	{

				video.src	=	"bbb.mp4";

}

video.load();

video.play();

This	code	uses	the	canPlayType()	method	to	determine	if	the	browser	supports	the	WebM
format.	If	it	does,	the	video’s	src	property	(which	you	learn	more	about	in	the	next
section)	is	set	to	the	WebM	version	of	the	video.	If	WebM	isn’t	supported,	the	browser’s
src	is	set	to	the	MP4	version.	Then,	after	the	video	is	loaded	with	the	load()	method,	the
play()	method	plays	the	video.

				TRY	IT	OUT								Controlling	Media	Playback
Let’s	apply	some	of	this	newfound	knowledge	with	a	simple	example.	You	write	a
web	page	that	plays	and	pauses	a	video.	Note	that	this	example	assumes	you	have	two
videos:	bbb.mp4	and	bbb.webm.	Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	15:	Example	1</title>

</head>

				<body>

								<div>

												<button	id="playbackController">Play</button>

								</div>

								<video	id="bbbVideo">

												<source	src="bbb.mp4"	/>

												<source	src="bbb.webm"	/>

								</video>

								<script>

												function	playbackClick(e)	{

																var	target	=	e.target;

																var	video	=	document.getElementById("bbbVideo");

																if	(target.innerHTML	==	"Play")	{

																				video.play();

																				target.innerHTML	=	"Pause";

																}	else	{

																				video.pause();

																				target.innerHTML	=	"Play";

																}

												}

												document.getElementById("playbackController")

																				.addEventListener("click",	playbackClick);

								</script>

				</body>

</html>

Save	this	file	as	ch15_example1.html	and	open	it	in	your	browser.	You	should	see	a
button	with	the	text	Play	and	a	video	directly	beneath	it	as	shown	in	Figure	15.4.

Figure	15.4

Clicking	the	button	changes	its	text	to	Pause	and	starts	playing	the	video.	Clicking	the
button	again	changes	the	text	back	to	Play	and	pauses	the	video.

In	the	body	of	the	page,	you	have	a	<button/>	element	with	the	id	of
playbackController.	As	its	ID	implies,	it	is	used	for	controlling	the	playback	of	the
media,	a	video	embedded	with	the	<video/>	element:

<video	id="bbbVideo">

				<source	src="bbb.mp4"	/>

				<source	src="bbb.webm"	/>

</video>

The	main	portion	of	the	JavaScript	code	is	a	function	called	playbackClick(),	an
event	handler	for	the	<button/>’s	click	event.	The	first	two	statements	of	this
function	create	two	variables	called	target	and	video:

function	playbackClick(e)	{

				var	target	=	e.target;

				var	video	=	document.getElementById("bbbVideo");

The	target	variable	is	the	event	target	(the	button),	and	video	contains	a	reference	to
the	<video/>	element	object.

Next	you	determine	whether	you	need	to	play	or	pause	the	video,	and	you	do	that	by
checking	the	text	of	the	<button/>	element:

				if	(target.innerHTML	==	"Play")	{

								video.play();

								target.innerHTML	=	"Pause";

				}

If	it’s	Play,	you	want	to	play	the	video.	You	do	so	by	using	the	HTMLMediaElement
object’s	play()	method,	and	you	change	the	button’s	text	to	read	Pause.

If	the	result	of	this	if	statement	is	false,	you	can	assume	that	you	want	to	pause	the
video:

						else	{

								video.pause();

								target.innerHTML	=	"Play";

				}

}

So,	in	the	else	statement,	you	use	the	media	object’s	pause()	method	and	change	the
button’s	text	back	to	Play.

Of	course,	this	function	won’t	execute	itself,	so	you	register	a	click	event	listener	on
the	<button/>	object:

document.getElementById("playbackController")

								.addEventListener("click",	playbackClick);

This	example	works,	but	it’s	not	an	ideal	solution	for	controlling	media.	Specifically,
you	shouldn’t	rely	upon	the	text	of	an	element	to	determine	if	you	should	play	or
pause.	You	can	better	control	media	by	incorporating	some	of	the	many	properties
defined	by	the	HTML5	specification.

Properties
Although	the	HTML5	specification	defines	just	a	few	methods	for	media	objects,	it
defines	a	lot	of	properties.	You	won’t	find	a	complete	list	of	properties	in	this	section,	but
Appendix	C	lists	all	of	them.

Most	of	the	HTMLMediaElement’s	properties	are	for	querying	and/or	modifying	the	state	of
the	media;	others,	like	controls	and	poster	(the	latter	for	video)	are	cosmetic.

The	following	table	lists	a	few	of	the	properties	and	their	descriptions.

PROPERTY
NAME

DESCRIPTION

autoplay Gets	or	sets	the	autoplay	HTML	attribute,	indicating	whether	playback
should	automatically	begin	as	soon	as	enough	media	is	available

controls Reflects	the	controls	HTML	attribute
currentTime Gets	the	current	playback	time.	Setting	this	property	seeks	the	media	to

the	new	time.
duration Gets	the	length	of	the	media	in	seconds;	zero	if	no	media	is	available.

Returns	NaN	if	the	duration	cannot	be	determined
ended Indicates	whether	the	media	element	has	ended	playback
loop Reflects	the	loop	HTML	attribute.	Indicates	whether	the	media	element

should	start	over	when	playback	reaches	the	end
muted Gets	or	sets	whether	the	audio	is	muted
paused Indicates	whether	the	media	is	paused
playbackRate Gets	or	sets	the	playback	rate.	1.0	is	normal	speed.
poster Gets	or	sets	the	poster	HTML	attribute
preload Reflects	the	preload	HTML	element	attribute
src Gets	or	sets	the	src	HTML	attribute
volume The	audio	volume.	Valid	values	range	from	0.0	(silent)	to	1.0	(loudest).

Like	the	methods	from	the	previous	section,	these	properties	are	defined	by	the	HTML5
specification,	but	some	browser	makers	also	implement	their	own	proprietary	properties.
Also	like	the	aforementioned	methods,	the	majority	of	these	properties	are
straightforward;	their	names	do	a	pretty	good	job	of	describing	what	they’re	used	for.

For	example,	the	aptly	named	paused	property	can	tell	you	if	the	media	is	paused,	like
this:

if	(video.paused)	{

				video.play();

}	else	{

				video.pause();

}

It’s	important	to	know	that	the	default	state	of	any	media	is	paused.	The	browser	only
plays	media	when	it’s	told	to	do	so—either	explicitly	with	the	play()	method	or	via	the
built-in	controls,	or	implicitly	with	the	autoplay	property/HTML	attribute.

You	can	use	the	muted	property	to	not	only	tell	you	if	the	audio	is	muted,	but	to	also	mute
the	audio.	For	example:

if	(video.muted)	{

				video.muted	=	false;

}	else	{

				video.muted	=	true;

}

Or	to	write	it	in	a	more	simplified	manner:

video.muted	=	!video.muted;

This	code	achieves	the	same	results	as	the	previous	example;	it	sets	video.muted	to	the
opposite	of	its	current	value.

The	src	property,	however,	is	a	bit	different.	It’s	clear	that	it	sets	the	media	of	a	<video/>
or	<audio/>	element,	but	when	you	set	the	src	of	a	media	object,	you	have	to	load	it
explicitly	with	the	load()	method.	Otherwise,	whatever	media	is	currently	loaded	by	the
browser	will	play	when	you	call	the	play()	method.	Therefore,	the	following	code	does
not	correctly	change	and	play	the	media	of	a	media	object:

//	incorrect

video.src	=	"new_media.mp4";

video.play();

This	code	sets	the	src	property,	but	it	doesn’t	load	the	new	media	with	the	load()	method.
Therefore,	when	the	video	plays	again,	it	still	plays	the	media	currently	loaded	by	the
browser.	To	fix	this,	you	have	to	call	load()	before	you	call	play(),	like	this:

video.src	=	"new_media.mp4";

video.load();

video.play();

				TRY	IT	OUT								Controlling	Media	Playback	II
Let’s	revisit	Example	1	and	improve	it	by	taking	advantage	of	some	of	the
HTMLMediaElement	object’s	properties.	Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	15:	Example	2</title>

</head>

				<body>

								<div>

												<button	id="playbackController">Play</button>

												<button	id="muteController">Mute</button>

								</div>

								<video	id="bbbVideo">

												<source	src="bbb.mp4"	/>

												<source	src="bbb.webm"	/>

								</video>

								<script>

												function	playbackClick(e)	{

																var	target	=	e.target;

																var	video	=	document.getElementById("bbbVideo");

																if	(video.paused)	{

																				video.play();

																				target.innerHTML	=	"Pause";

																}	else	{

																				video.pause();

																				target.innerHTML	=	"Resume";

																}

												}

												function	muteClick(e)	{

																var	target	=	e.target;

																var	video	=	document.getElementById("bbbVideo");

																if	(video.muted)	{

																				video.muted	=	false;

																				target.innerHTML	=	"Mute";

																}	else	{

																				video.muted	=	true;

																				target.innerHTML	=	"Unmute";

																}

												}

												document.getElementById("playbackController")

																				.addEventListener("click",	playbackClick);

												document.getElementById("muteController")

																				.addEventListener("click",	muteClick);

								</script>

				</body>

</html>

Save	this	as	ch15_example2.html	and	open	it	in	your	browser.	You	should	now	see
two	buttons:	Play	and	Mute.	Directly	beneath	these	buttons	is	the	video,	as	shown	in
Figure	15.5.

Figure	15.5

Start	playing	the	video	and	click	the	Mute	button.	You’ll	notice	that	the	audio	is	now
muted	and	the	button’s	text	reads	Unmute.	Click	the	button	again	to	unmute	the
audio.

Now	click	the	Pause	button.	You’ll	notice	that	the	video	pauses	and	the	button’s	text
changes	to	Resume.	Clicking	the	button	again	resumes	the	video.

This	example	is	quite	different	from	Example	1.	Starting	with	the	HTML,	you	added
a	new	<button/>	element:

<div>

				<button	id="playbackController">Play</button>

				<button	id="muteController">Mute</button>

</div>

It	has	an	id	of	muteController	and	the	text	of	Mute.	As	you	already	know,	it’s	used
for	muting	and	unmuting	the	audio.	You	register	the	click	event	listener	at	the
bottom	of	the	code:

document.getElementById("muteController")

								.addEventListener("click",	muteClick);

The	function	used	to	handle	this	event	is	called	muteClick().	Its	first	two	lines	create
the	target	and	video	variables—the	former	containing	a	reference	to	the	<button/>
element	object,	and	the	latter	referencing	the	HTMLMediaElement	object:

function	muteClick(e)	{

				var	target	=	e.target;

				var	video	=	document.getElementById("bbbVideo");

This	function	toggles	the	muted	property	of	the	media	object,	so	you	first	need	to
check	its	current	value	with	an	if	statement:

				if	(video.muted)	{

								video.muted	=	false;

								target.innerHTML	=	"Mute";

				}

If	it’s	true,	the	audio	is	currently	muted.	So,	you	set	video.muted	to	false	and
change	the	text	of	the	button	to	Mute,	thus	unmuting	the	video.

But	if	muted	is	false,	the	else	statement	executes,	muting	the	video:

						else	{

								video.muted	=	true;

								target.innerHTML	=	"Unmute";

				}

}

You	set	the	video’s	muted	property	to	true	to	mute	it,	and	then	you	change	the
button’s	text	to	Unmute.

The	playbackClick()	function	is	logically	identical	to	muteClick().	After	you	set
the	target	and	video,	you	then	determine	whether	you	need	to	play	or	pause	the	video.
You	can	accomplish	this	easily	with	the	media	object’s	paused	property:

function	playbackClick(e)	{

				var	target	=	e.target;

				var	video	=	document.getElementById("bbbVideo");

				if	(video.paused)	{

								video.play();

								target.innerHTML	=	"Pause";

				}

If	it’s	true,	you	call	the	play()	method	to	either	start	or	resume	playback.	If	paused
is	false,	you	want	to	pause	playback:

						else	{

								video.pause();

								target.innerHTML	=	"Resume";

				}

}

You	do	so	with	the	pause()	method,	and	you	change	the	button’s	text	to	Resume.	The
word	“resume”	was	chosen	to	enhance	the	user’s	experience;	people	expect	to	resume
from	a	paused	state.	You	could	have	implemented	something	similar	in	Example	1,
but	because	the	video’s	state	was	determined	by	the	text	of	a	button,	it	would’ve
required	extra	code	to	make	it	work.

Now,	this	example	is	a	marked	improvement	over	Example	1,	but	it	still	has	an	issue:
Users	can	control	the	video	through	the	context	menu	(Figure	15.6).

Figure	15.6

This	in	and	of	itself	isn’t	exactly	a	problem;	after	all,	the	best	user	interfaces	have
redundancies.	It	becomes	problem	when	your	custom	UI	doesn’t	accurately	portray	the
actual	state	of	the	media.	Refer	back	to	Figure	15.6.	The	context	menu	says	Play	whereas
the	custom	Play/Pause	button	says	Pause.	Ideally,	both	the	context	menu	and	the	custom
UI	should	be	in	sync,	and	you	can	do	that	by	listening	for	certain	events.

Events
Events	are	the	lifeblood	of	graphical	applications,	and	media-based	events	are	no
exception.	The	folks	behind	the	HTML5	specification	did	a	very	thorough	job	of	defining
the	events	web	developers	need	to	write	robust	media-driven	pages	and	applications.

As	you	might	suspect,	there	are	a	lot	of	events,	and	you	can	view	the	complete	list	in
Appendix	C.	The	following	table,	however,	lists	just	a	few.

EVENT	NAME DESCRIPTION
abort Fires	when	playback	is	aborted
canplay Sent	when	enough	data	is	available	to	play	the	media
canplaythrough Indicates	that	the	entire	media	can	be	played	through	without

interruption
durationchange The	media’s	metadata	has	changed,	indicating	a	change	in	the	media’s

duration.
ended Fires	when	playback	completes
error Sent	when	an	error	occurs
loadstart Downloading	has	begun.
pause Fires	when	playback	is	paused
playing Sent	when	the	media	starts	or	resumes	playing
progress Downloading	is	in	progress.
ratechange Fires	when	the	playback	speed	changes
seeked Seeking	has	ended.
seeking Fires	when	playback	is	moved	to	a	new	position
timeupdate The	currentTime	property	has	changed.
volumechange Either	the	volume	property	or	muted	property	has	changed.

You	register	listeners	for	these	events	exactly	like	you	would	any	other	standard	event:
with	addEventListener().	For	example,	you	can	execute	code	when	the	media	is	paused
by	listening	for	the	pause	event,	like	this:

function	mediaPaused(e)	{

				alert("You	paused	the	video!");

}

video.addEventListener("pause",	mediaPaused);

And	just	like	any	other	type	of	event,	you	can	register	different	event	listeners	using	the
same	handler	function:

function	mediaPausedPlaying(e)	{

				if	(e.type	==	"pause")	{

								alert("You	paused	the	video!");

				}	else	{

								alert("You're	playing	the	video!");

				}

}

video.addEventListener("pause",	mediaPausedPlaying);

video.addEventListener("playing",	mediaPausedPlaying);

This	is	advantageous	if	you	need	to	execute	the	same	or	similar	code	for	both	events.	In
many	(and	perhaps	most)	cases,	however,	you’ll	more	than	likely	want	to	define	and	use

different	functions	for	different	events.

Listening	for	these	“state	change”	events	is	ideal	when	coding	your	own	custom	controller
UI.	You	want	your	UI	to	accurately	reflect	the	state	of	the	media,	and	the	“state	change”
events	fire	only	when	the	media’s	state	changes.	This,	of	course,	makes	them	ideal	for
keeping	a	custom	UI	in	sync	with	the	built-in	UI	of	the	browser,	as	you	see	in	the	next
example.

				TRY	IT	OUT								Controlling	Media	Playback	III
Let’s	use	some	of	the	events	in	the	previous	table	to	rewrite	Example	2.	The	following
code	contains	substantial	changes,	so	you	can	use	Example	2	as	a	starting	point	or
type	it	all	from	scratch:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	15:	Example	3</title>

</head>

<body>

				<div>

								<button	id="playbackController">Play</button>

								<button	id="muteController">Mute</button>

				</div>

				<video	id="bbbVideo">

								<source	src="bbb.mp4"	/>

								<source	src="bbb.webm"	/>

				</video>

				<script>

								function	pauseHandler(e)	{

												playButton.innerHTML	=	"Resume";

								}

								function	playingHandler(e)	{

												playButton.innerHTML	=	"Pause";

								}

								function	volumechangeHandler(e)	{

												muteButton.innerHTML	=	video.muted	?	"Unmute"	:	"Mute";

								}

								function	playbackClick(e)	{

												video.paused	?	video.play()	:	video.pause();

								}

								function	muteClick(e)	{

												video.muted	=	!video.muted;

								}

								var	video	=	document.getElementById("bbbVideo");

								var	playButton	=	document.getElementById("playbackController");

								var	muteButton	=	document.getElementById("muteController");

								video.addEventListener("pause",	pauseHandler);

								video.addEventListener("playing",	playingHandler);

								video.addEventListener("volumechange",	volumechangeHandler);

								playButton.addEventListener("click",	playbackClick);

								muteButton.addEventListener("click",	muteClick);

				</script>

</body>

</html>

Save	this	as	ch15_example3.html	and	open	it	in	your	browser.	It	will	look	exactly
like	Example	2.	Each	time	you	play,	pause,	mute,	or	unmute	the	video,	be	sure	to
open	the	media’s	context	menu.	Both	the	custom	UI	and	the	control	options	in	the
context	menu	will	be	in	sync,	as	shown	in	Figure	15.7.

Figure	15.7

The	HTML	in	this	example	is	untouched	from	Example	2,	so	let’s	jump	right	to	the
code.	Outside	of	any	function,	you	define	three	variables	for	referencing	the	<video/>
and	two	<button/>	elements:

var	video	=	document.getElementById("bbbVideo");

var	playButton	=	document.getElementById("playbackController");

var	muteButton	=	document.getElementById("muteController");

You’ll	use	these	variables	throughout	the	various	functions,	but	first,	you	register	the
event	listeners.

For	the	<video/>	element,	you	register	pause,	playing,	and	volumechange	event

listeners:

video.addEventListener("pause",	pauseHandler);

video.addEventListener("playing",	playingHandler);

video.addEventListener("volumechange",	volumechangeHandler);

Each	event	listener	uses	a	unique	function—the	pauseHandler()	function	handles	the
pause	event,	playingHandler()	handles	the	playing	event,	and
volumechangeHandler()	handles	the	volumechange	event.	You	could	make	the
argument	that	the	playing	and	pause	event	code	is	similar	enough	to	use	a	single
function,	but	keep	it	simple!	Simple	functions	are	happy	functions.

And	once	again,	the	two	<button/>	elements	register	click	events	using	the
playbackClick()	and	muteClick()	functions:

playButton.addEventListener("click",	playbackClick);

muteButton.addEventListener("click",	muteClick);

Each	of	the	five	functions	in	this	example	is	reduced	to	a	single	responsibility.	This	is
a	good	thing	because	it	makes	your	code	easier	to	manage	and	maintain	(as	well	as
find	and	fix	errors	if	they	occur).	The	first	function	is	the	pauseHandler()	function,
which	as	you	know,	handles	the	media’s	pause	event:

function	pauseHandler(e)	{

				playButton.innerHTML	=	"Resume";

}

Its	job	is	simple;	change	the	text	of	the	Play/Pause	button	to	Resume	when	the	pause
event	fires.	This	way,	the	button’s	text	changes	as	the	state	of	the	video	changes.

The	next	function	is	playingHandler(),	the	counterpart	to	the	pauseHandler()
function:

function	playingHandler(e)	{

				playButton.innerHTML	=	"Pause";

}

When	the	media	plays,	this	function	changes	the	Play/Pause	button’s	text	to	Pause.

The	volumechangeHandler()	function	is	slightly	more	complicated	because	it	fires
for	two	types	of	events—when	the	volume	changes	and	when	the	media	is	muted:

function	volumechangeHandler(e)	{

				muteButton.innerHTML	=	video.muted	?	"Unmute"	:	"Mute";

}

Like	the	other	media	event	handlers,	volumechangeHandler()	is	responsible	for
changing	the	text	of	buttons	in	the	UI.	But	to	know	which	text	value	to	use,	you	have
to	check	the	value	of	video.muted.	You	use	the	ternary	operator	here	to	reduce	the
code	to	a	single	line.	You	could	use	if…else	if	you	wanted	to:

if	(video.muted)	{

				muteButton.innerHTML	=	"Unmute";

}	else	{

				muteButton.innerHTML	=	"Mute";

}

This	approach	would	be	ideal	if	you	needed	to	execute	more	code	within	the	if…else
statement,	but	in	this	case,	the	ternary	approach	might	be	better.

Next	is	the	playbackClick()	function,	and	it	has	changed	significantly.	Because	the
pause	and	playing	event	handlers	are	responsible	for	updating	the	UI,	the
playbackClick()	function	is	only	responsible	for	playing	and	pausing	the	media:

function	playbackClick(e)	{

				video.paused	?	video.play()	:	video.pause();

}

Once	again,	you	use	the	ternary	operator	to	determine	which	method	to	execute.	If
video.paused	is	true,	you	call	the	play()	method.	Otherwise,	you	call	pause().

The	muteClick()	function	has	also	been	simplified	because	it	is	no	longer
responsible	for	updating	the	UI.	It	is	solely	responsible	for	muting	and	unmuting	the
media:

function	muteClick(e)	{

				video.muted	=	!video.muted;

}

You	set	the	muted	property	to	the	opposite	value.	Therefore,	if	muted	is	true,	it’s	set
to	false,	and	vice	versa.

Native	media	is	a	feature	that	web	developers	have	clamored	for,	for	many	years,	and	the
first	implementation	(as	specified	by	HTML5)	is	very	robust	and	feature-filled.	We
unfortunately,	however,	still	have	to	battle	with	the	different	browsers	and	the	codecs	they
support.	Hopefully,	the	web	development	community	will	see	a	unified	set	of	codecs	that
are	supported	by	all	browsers.

Naturally,	we’ve	only	scratched	the	surface	of	the	native	media	API	and	what	you	can	do
with	it.	As	with	everything,	experiment!	The	sky’s	the	limit	with	such	a	robust	and	capable
API.

SUMMARY
This	chapter	introduced	you	to	the	HTML5	video	and	audio	API.

You	learned	that	HTML5	brings	two	new	media	elements:	<video/>	and	<audio/>.	It
also	defines	a	<source/>	element	to	describe	a	media	source.

Unsurprisingly,	different	browsers	support	different	video	and	audio	formats	and
codecs,	but	you	can	address	this	issue	by	providing	multiple	sources.	The	browser	is
smart	enough	to	know	which	one	to	load.

Video	and	audio	are	programmatically	identical—except	video	has	a	poster
property.	Both	types	of	media	are	represented	as	HTMLMediaElement	objects	in	the
DOM.

You	learned	how	to	play	and	pause	media.

You	learned	how	to	mute	media	and	query	the	state	of	playback	using	the	paused
property.

You	learned	how	to	register	event	listeners	for	the	many	media-based	events,	which
allowed	you	to	simplify	your	custom	UI’s	code.

EXERCISES
You	can	find	suggested	solutions	for	these	questions	in	Appendix	A.

1.	 Being	able	to	control	playback	is	cool,	but	your	custom	UI	needs	to	also	control
volume.	Add	an	<input	type="range"	/>	element	to	Example	3	to	control	the
volume.	Remember	that	the	range	of	volume	supported	by	media	elements	is	0.0	to
1.0.	Look	back	at	Chapter	11	if	you	need	a	refresher	of	the	range	input	type.	This
unfortunately	will	not	work	in	IE.

2.	 Add	another	range	form	control	to	Question	1’s	answer,	and	program	it	to	seek	the
media.	It	should	also	update	as	the	media	plays.	Use	the	durationchange	event	to	set
the	slider’s	max	value,	and	the	timeupdate	event	to	update	the	slider’s	value.

16
jQuery
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Using	jQuery	can	simplify	common	tasks

Creating,	modifying,	and	removing	elements	with	jQuery	is	easier	than	with
traditional	DOM	methods

jQuery	makes	style	modifications,	both	with	individual	CSS	properties	and	CSS
classes,	a	breeze

Handling	HTTP	requests	and	responses	is	much	easier	than	writing	pure
XMLHttpRequest	code

Deferred	objects	are	useful,	especially	when	used	with	Ajax	requests

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

JavaScript	is	essential	to	web	development.	And	even	though	JavaScript	development	is
relatively	straightforward	today,	it	was	extremely	challenging	until	early	2011	when
Microsoft	released	the	ninth	version	of	Internet	Explorer.

Let’s	rewind	the	clock	to	the	year	2001.	The	first	browser	wars	were	coming	to	a	close,
and	Microsoft	sealed	its	overwhelming	victory	with	IE6’s	release.	A	few	months	later	the
software	giant	released	Windows	XP,	the	longest-supported	operating	system	in
Microsoft’s	history,	with	IE6	as	its	default	browser.

At	first,	Microsoft	enjoyed	its	85	percent	market	share,	but	as	the	years	passed,	growing
pressure	from	Mozilla’s	Firefox	spurred	Microsoft	to	resume	development	on	IE.	In	2006,
Microsoft	released	IE7.	This	new	version	included	many	bug	fixes,	as	well	as	the
implementation	of	new	(and	often	nonstandard)	features.

This	was	the	beginning	of	a	very	challenging	time	for	JavaScript	developers.	The	problem
with	client-side	development	was	the	many	different	web	browsers	developers	needed	to
support.	Not	only	did	developers	have	to	support	IE	and	Firefox,	but	developers	had	to
support	three	major	versions	of	IE	(6,	7,	and	8).	Be	it	writing	event-driven	code	or	an	Ajax
application,	somewhere	down	the	line	developers	ran	into	the	many	incompatibilities
between	different	browsers	and	versions.

Many	professional	developers	found	cross-browser	development	to	be	too	time-
consuming	and	cumbersome	to	deal	with	on	a	daily	basis,	so	they	set	out	to	develop
frameworks	or	libraries	to	aid	in	their	cross-browser	development.	Some	developers
released	their	frameworks	to	the	public,	and	a	few	of	them	gained	quite	a	following.	And

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

much	like	the	browser	wars	of	old,	eventually	a	victor	emerged.	Frameworks	such	as
MooTools	and	Prototype	were	quite	popular,	but	jQuery	became	the	de	facto	standard.

jQuery,	like	most	other	frameworks,	originated	as	an	Ajax	library	to	simplify	client/server
communication.	Today,	however,	jQuery	simplifies	just	about	every	common	aspect	of
JavaScript	development;	DOM	manipulation,	Ajax,	animation,	and	component
development	are	much	easier	with	jQuery.	In	this	chapter,	you	look	at	jQuery	and	learn
how	to	use	it	to	simplify	your	JavaScript	development.

Before	beginning,	a	word	of	note:	There	is	no	doubt	that	jQuery	adds	benefit	to	your
development	time	and	process.	But	it	is	not	a	substitute	for	a	solid	understanding	of	the
JavaScript	language	and	the	intricacies	of	the	different	browsers	for	which	you	have	to
develop.	Frameworks	and	libraries	come	and	go,	but	knowledge	(and	pure	JavaScript)	is
forever.

GETTING	JQUERY
Installing	jQuery	(or	any	framework	for	that	matter)	is	very	different	from	installing	an
application	on	your	computer;	there	is	no	setup	program,	and	the	installation	doesn’t
change	any	portion	of	your	system.	Basically,	all	you	do	is	reference	the	jQuery	JavaScript
file	in	your	web	page.

Open	your	browser	and	go	to	http://jquery.com/download/.	On	this	page,	you’ll	find
several	links	to	different	jQuery-related	files.	First,	you’ll	see	two	versions	of	jQuery:	1.x
and	2.x.	The	two	versions	are	almost	identical	except	that	v1.x	supports	IE	6,	7,	and	8	and
v2.x	does	not.

Second,	you’ll	need	to	choose	the	compressed	or	uncompressed	version:

Compressed	version:	This	is	minified	(all	comments	and	unnecessary	white	space
are	removed	from	the	code	files)	to	make	their	size	as	small	as	possible;	doing	so
makes	them	faster	to	download	when	someone	visits	your	web	page.	Unfortunately,
the	minification	process	makes	the	JavaScript	code	difficult	to	read	if	you	open	it	in	a
text	editor,	but	that’s	a	reasonable	trade-off	in	a	production	environment.

Uncompressed	version:	This	is	not	minified;	it	is	simply	normal	JavaScript	code
files	with	their	white	space	and	comments	intact.	It’s	perfectly	OK	to	use
uncompressed	JavaScript	files.	Because	they	are	easier	to	read	than	compressed	files,
you	can	learn	much	from	the	gurus	who	design	and	develop	these	frameworks.
However,	if	you	plan	to	roll	out	a	web	page	using	a	framework,	be	sure	to	download
and	use	the	compressed	version,	because	its	file	sizes	are	smaller	and	download
faster.

NOTE	The	production	version	of	jQuery	2.1.1	is	provided	in	the	code	download	from
Wrox.

You	can	obtain	jQuery	in	one	of	two	ways.	First,	simply	download	whichever	version	you
prefer	by	right-clicking	(or	control-clicking	on	a	Mac)	the	link,	and	save	it	in	a	location
you	can	easily	get	to.

Alternatively,	you	can	use	jQuery’s	Content	Delivery	Network	(CDN)	to	add	jQuery	to
your	web	pages.	This	prevents	you	from	having	to	download	your	own	copy	of	jQuery,
and	it	can	also	slightly	increase	the	performance	of	your	web	pages.

Regardless	of	how	you	obtain	jQuery,	you	add	it	to	your	pages	just	like	any	other	external
JavaScript	file	with	the	<script/>	element:

<script	src="jquery-2.1.1.min.js"></script>

<script	src="//code.jquery.com/jquery-2.1.1.min.js"></script>

The	only	difference	is	the	value	of	the	src	attribute.	The	first	<script/>	element	in	this
example	uses	a	local	copy	of	jQuery	2.1.1,	whereas	the	second	uses	jQuery’s	CDN.	The
examples	in	this	chapter	use	a	local	copy	of	jQuery.

http://jquery.com/download/

jQUERY’S	API
jQuery	is	JavaScript,	but	it	changes	the	way	that	you	interact	with	the	browser	and
document.	Whether	you’re	creating	HTML	elements	and	appending	them	to	the	page	or
making	Ajax	calls	to	the	server,	jQuery	lets	you	do	it	in	an	easy	fashion.

At	the	heart	of	jQuery	is	the	jQuery()	function,	but	in	most	cases,	you	won’t	write	your
code	with	jQuery().	Instead,	you’ll	use	an	alias:	the	dollar	function,	$().	This	can	seem
very	weird	at	first,	but	it	will	become	completely	natural	the	more	you	use	it.

You’ll	use	the	$()	function	for	just	about	everything,	including:

Finding	and	selecting	elements

Creating,	appending,	and	removing	elements

Wrapping	normal	DOM	objects	with	jQuery	objects

Selecting	Elements
jQuery	revolutionized	the	way	developers	find	elements	in	the	DOM:	with	CSS	selectors.
In	fact,	the	querySelector()	and	querySelectorAll()	methods	discussed	in	Chapter	9
exist	because	of	jQuery.	To	retrieve	elements	with	jQuery,	you	use	$()	and	pass	it	your
CSS	selector,	like	this:

var	elements	=	$("a");

This	code	assigns	a	special	object,	called	a	jQuery	object,	that	represents	an	array	of	all
<a/>	elements	in	the	page	to	the	elements	variable.

jQuery	was	designed	to	make	DOM	manipulation	easy,	and	because	of	this	design
philosophy,	you	can	make	changes	to	several	elements	at	the	same	time.	For	example,
imagine	you	built	a	web	page	with	more	than	100	links	in	the	document,	and	one	day	you
decide	you	want	them	to	open	in	a	new	window	by	setting	the	target	attribute	to
_	blank.	That’s	a	tall	task	to	take	on,	but	it	is	something	you	can	easily	achieve	with
jQuery.	Because	you	can	retrieve	all	<a/>	elements	in	the	document	by	calling	$("a"),
you	can	call	the	attr()	method,	which	gets	or	sets	the	value	of	an	attribute,	to	set	the
target	attribute.	The	following	code	does	this:

elements.attr("target",	"_blank");

Calling	$("a")	results	in	a	jQuery	object,	but	this	object	also	doubles	as	an	array.	Any
method	you	call	on	this	particular	jQuery	object	will	perform	the	same	operation	on	all
elements	in	the	array.	By	executing	this	line	of	code,	you	set	the	target	attribute	to
_	blank	on	every	<a/>	element	in	the	page,	and	you	didn’t	even	have	to	use	a	loop!

Because	jQuery	objects	are	an	array,	you	can	use	the	length	property	to	find	out	how
many	elements	were	selected	with	a	CSS	query:

var	length	=	elements.length;

This	information	can	be	useful,	but	you	usually	won’t	need	to	know	the	length	of	a	jQuery
object.	The	most	common	use	of	an	array’s	length	property	is	for	looping,	and	jQuery	is
designed	to	work	with	multiple	elements	at	the	same	time.	The	methods	you	execute	on	a
jQuery	object	have	built-in	loops;	so,	the	length	property	is	rarely	used.

jQuery	has	a	built-in	CSS	selector	engine,	and	you	can	use	just	about	any	valid	CSS
selector	to	retrieve	your	desired	elements—even	if	the	browser	doesn’t	support	it.	For
example,	IE6	does	not	support	the	parent	>	child	CSS	selector.	If	you	have	the
unfortunate	need	to	support	that	browser,	jQuery	can	still	select	the	appropriate	elements
with	that	selector.	Consider	the	following	HTML	as	an	example:

<p>

				<div>Div	1</div>

				<div>Div	2</div>

				Span	1</div>

</p>

Span	2

This	HTML	code	defines	a	<p/>	element	that	contains	two	<div/>	elements	and	a
	element.	Outside	the	<p/>	element	is	another		element.	Let’s	say	that	you
need	the		element	inside	the	paragraph.	You	can	easily	select	that	element	with	the
following:

var	innerSpan	=	$("p	>	span");

This	line	of	code	uses	the	parent	>	child	CSS	selector	syntax,	and	because	jQuery	has
its	own	CSS	selector	engine,	this	code	will	work	in	every	browser.

jQuery	also	lets	you	use	multiple	selectors	in	one	function	call.	Simply	delimit	each
selector	with	a	comma	as	shown	in	the	following	code:

$("a,	#myDiv,	.myCssClass,	p	>	span")

This	code	retrieves	all	<a/>	elements,	an	element	with	an	id	of	myDiv,	elements	with	the
CSS	class	myCssClass,	and	all		children	of	<p/>	elements.	If	you	wanted	to
change	the	text’s	color	of	these	elements	to	red,	you	could	simply	use	the	following	code:

$("a,	#myDiv,	.myCssClass,	p	>	span").attr("style",	"color:red;");

This	isn’t	the	best	way	to	change	an	element’s	style.	In	fact,	jQuery	provides	you	with
many	methods	to	alter	an	element’s	style.

NOTE	For	a	complete	list	of	supported	selectors,	see
http://docs.jquery.com/Selectors.

Changing	Style
Changing	an	element’s	style	requires	you	to	either	modify	individual	CSS	properties	or
manipulate	its	CSS	classes.	jQuery	makes	it	easy	to	do	both.	To	change	individual	CSS

http://docs.jquery.com/Selectors

properties,	the	jQuery	object	has	a	method	called	css(),	and	you	can	use	this	method	in
two	ways.

First,	you	can	pass	two	arguments	to	the	css()	method:	the	CSS	property’s	name	and	its
value.	For	example:

$("#myDiv").css("color",	"red");

This	code	sets	the	color	property	to	red,	thus	changing	the	element’s	text	color	to	red.	The
property	names	you	pass	to	the	css()	method	can	be	in	either	style	sheet	format	or	in
script	format.	That	means	if	you	want	to	change	an	element’s	background	color,	you	can
pass	background-color	or	backgroundColor	to	the	method,	like	this:

var	allParagraphs	=	$("p");

allParagraphs.css("background-color",	"yellow");	//	correct!

allParagraphs.css("backgroundColor",	"blue");	//	correct,	too!

This	code	changes	the	background	color	of	every	<p/>	element	in	the	page	to	yellow	and
then	to	blue.

NOTE	It’s	important	to	remember	that	jQuery’s	methods	work	with	one	or	multiple
elements.	It	doesn’t	matter	how	many	elements	are	referenced	by	a	jQuery	object,	a
method	like	css()	will	change	the	style	of	every	element	in	the	object.

Many	times,	however,	you	need	to	change	more	than	one	CSS	property.	Although	you	can
easily	accomplish	this	by	calling	css()	multiple	times	like	this:

//	don't	do	this

allParagraphs.css("color",	"blue");

allParagraphs.css("background-color",	"yellow");

a	better	solution	would	be	to	pass	an	object	that	contains	the	CSS	properties	and	their
values	to	the	css()	method.	The	following	code	calls	css()	once	and	achieves	the	same
results:

allParagraphs.css({

				color:	"blue",

				backgroundColor:	"yellow"

});

Here,	you	pass	an	object	that	has	color	and	backgroundColor	properties	to	the	css()
method,	and	jQuery	changes	the	element’s	or	elements’	text	color	to	blue	and	background
color	to	yellow.

Typically,	though,	if	you	want	to	change	an	element’s	style,	it’s	better	to	change	the
element’s	CSS	class	instead	of	individual	style	properties.

Adding	and	Removing	CSS	Classes
The	jQuery	object	exposes	several	methods	to	manipulate	an	element’s	className
property;	you	can	add,	remove,	and	even	toggle	the	classes	that	are	applied	to	an	element.

NOTE	Did	you	know	you	can	assign	multiple	CSS	classes	to	an	element?	Simply
separate	each	class	name	with	a	space!

Let’s	assume	that	the	following	HTML	is	in	one	of	your	web	pages:

<div	id="content"	class="class-one	class-two">

				My	div	with	two	CSS	classes!

</div>

This	HTML	defines	a	<div/>	element	with	two	CSS	classes,	class-one	and	class-two.
You	need	to	apply	two	more	classes	(class-three	and	class-four)	to	this	element,	and
jQuery	makes	that	very	easy	to	do	with	the	addClass()	method.	For	example:

var	content	=	$("#content");

content.addClass("class-three");

content.addClass("class-four");

This	code	first	retrieves	the	<div/>	element	and	then	calls	the	addClass()	method	to	add
the	desired	classes.	But	you	can	simplify	this	code	by	using	a	technique	called	method
chaining.	Most	jQuery	methods	return	a	jQuery	object,	so	it’s	possible	to	call	a	method
immediately	after	calling	another	method—essentially	chaining	the	method	calls	as
demonstrated	with	this	code:

content.addClass("class-three").addClass("class-four");

This	code	achieves	the	same	results	as	before	but	with	fewer	keystrokes.

NOTE	Most	jQuery	methods	return	a	jQuery	object,	allowing	you	to	immediately	call
methods	one	after	another.

But	you	can	simplify	this	code	even	more	because	you	can	pass	both	CSS	class	names	to
addClass(),	like	this:

content.addClass("class-three	class-four");

You	just	have	to	separate	the	class	names	with	a	space.

The	removeClass()	method	removes	one	or	multiple	classes:

content.removeClass("class-one");

This	code	uses	the	removeClass()	method	to	remove	the	class-one	class	from	the
element.	If	you	need	to	remove	multiple	classes,	simply	separate	them	with	a	space,	like
this:

content.removeClass("class-two	class-four");

As	you	can	see,	the	same	concepts	that	let	you	add	classes	to	an	element	apply	to
removing	classes.	But	there’s	one	very	important	difference:	The	arguments	you	pass	to

removeClass()	are	optional.	If	you	do	not	pass	any	arguments	to	removeClass(),	it	will
remove	all	classes	from	the	element:

content.removeClass();

This	code,	therefore,	removes	all	CSS	classes	from	the	element(s)	represented	by	the
content	object.

Toggling	Classes
Although	the	addClass()	and	removeClass()	methods	are	certainly	useful,	sometimes
you	need	to	just	toggle	a	class.	In	other	words,	you	remove	a	class	if	it’s	present	or	add	it
if	it’s	not.	jQuery	makes	this	easy	with	the	aptly	named	toggleClass()	method:

content.toggleClass("class-one");

This	code	first	toggles	the	class-one	class.	If	it	is	already	applied	to	the	element,	jQuery
removes	class-one.	Otherwise,	it	adds	class-one	to	the	element’s	class	list.

This	behavior	is	useful	when	you	need	to	add	or	remove	a	specific	class	from	the	element.
For	example,	the	following	code	is	vanilla	JavaScript	and	DOM	coding	to	add	and	remove
a	specific	CSS	class	depending	on	the	type	of	event:

var	target	=	e.target;

if	(e.type	==	"mouseover")	{

				target.className	=	"class-one";

}	else	if	(e.type	==	"mouseout")	{

				eSrc.className	=	"";

}

You	can	greatly	simplify	this	code	by	using	the	toggleClass()	method,	like	this:

var	target	=	$(e.target);

if	(e.type	==	"mouseover"	||	e.type	==	"mouseout")	{

				target.toggleClass("class-one");

}

Notice	how	the	$()	function	is	used	in	this	code:	It	passes	e.target,	a	DOM	object,	to
$().	This	can	at	first	seem	like	a	strange	thing	to	do,	but	remember	what	we	said	earlier:
$()	is	used	for	many	things.	One	of	those	things	is	to	wrap	a	normal	DOM	object	with	a
jQuery	object.

In	technical	terms,	we	call	the	resulting	jQuery	object	a	wrapper	object.	Wrapper	objects
are	typically	used	to	enhance	the	functionality	of	another	object.	With	jQuery,	you’re
wrapping	a	jQuery	object	around	an	element	object,	enabling	you	to	use	jQuery’s	API	to
manipulate	the	element.	In	the	case	of	this	code,	you’re	wrapping	a	jQuery	object	around
an	element	object	so	that	you	can	use	toggleClass()	to	toggle	the	class-one	class.

Checking	if	a	Class	Exists
The	last	CSS	class	method	is	the	hasClass()	method,	and	it	returns	true	or	false

depending	on	if	an	element	has	the	specified	CSS	class.	For	example:

var	hasClassOne	=	content.hasClass("class-one");

This	code	uses	hasClass()	to	determine	if	the	class-one	is	applied	to	content.	If	it	is,
hasClassOne	is	true.	Otherwise,	it’s	false.

Creating,	Appending,	and	Removing	Elements
Think	back	to	Chapter	9	and	how	you	create	and	append	elements	to	the	page.	The
following	code	will	refresh	your	memory:

				var	a	=	document.createElement("a");

				a.id	=	"myLink";

				a.setAttribute("href",	"http://jquery.com");

				a.setAttribute("title",	"jQuery's	Website");

				var	text	=	document.createTextNode("Click	to	go	to	jQuery's	website");

				a.appendChild(text);

				document.body.appendChild(a);

This	code	creates	an	<a/>	element,	assigns	it	an	id,	and	sets	the	href	and	title	attributes.
It	then	creates	a	text	node	and	assigns	the	object	to	the	text	variable.	Finally,	it	appends
the	text	node	to	the	<a/>	element	and	appends	the	<a/>	element	to	the	document’s
<body/>	element.	It	goes	without	saying	that	creating	elements	with	the	DOM	methods
requires	a	lot	of	code.

Creating	Elements
jQuery	simplifies	how	you	create	elements	with	JavaScript.	The	following	code	shows
you	one	way:

var	a	=	$("<a/>").attr({

				id:	"myLink",

				href:	"http://jquery.com",

				title:	"jQuery's	Website"

}).text("Click	here	to	go	to	jQuery's	website");

$(document.body).append(a);

Let’s	break	down	this	code	to	get	a	better	understanding	of	what’s	taking	place.	First,	this
code	calls	$()	and	passes	it	the	HTML	to	create.	In	this	case,	it’s	an	<a/>	element:

var	a	=	$("<a/>")

Next,	it	chains	the	attr()	method	to	set	the	<a/>	element’s	attributes:

.attr({

				id:	"myLink",

				href:	"http://jquery.com",

				title:	"jQuery's	Website"

})

The	attr()	method	is	a	lot	like	the	css()	method	in	that	you	can	set	an	individual
attribute	by	passing	it	the	attribute’s	name	and	value,	or	you	can	set	multiple	attributes	by
passing	an	object	that	contains	the	attributes	and	their	values.

The	code	then	chains	the	text()	method,	setting	the	element’s	text:

.text("Click	here	to	go	to	jQuery's	website");

You	can	also	create	the	same	element	by	passing	the	entire	HTML	to	$(),	like	this:

var	a	=	$(''	+

										"Click	here	to	go	to	jQuery's	website");

This	approach,	however,	can	become	less	of	a	benefit	and	more	of	a	hassle.	Not	only	do
you	have	to	keep	track	of	which	type	of	quote	you	use	where,	but	you	might	also	have	to
escape	quotes.

Appending	Elements
The	append()	method	is	similar	to	the	DOM	appendChild()	method	in	that	it	appends
child	nodes	to	the	parent	object.	The	similarities	end	there	because	jQuery’s	append()
method	is	much	more	flexible	than	its	DOM	counterpart.	The	append()	method	can
accept	a	DOM	object,	a	jQuery	object,	or	a	string	containing	HTML	or	text	content.
Regardless	of	what	you	pass	as	the	parameter	to	append(),	it	will	append	the	content	to
the	DOM	object.

The	previous	code	appends	the	jQuery-created	<a/>	element	to	the	document’s	body,	like
this:

$(document.body).append(a);

Once	again,	the	$()	function	wraps	a	jQuery	object	around	the	native	document.body
object	to	take	advantage	of	jQuery’s	simple	API.

Removing	Elements
Removing	elements	from	the	DOM	is	also	much	easier	with	jQuery	than	with	traditional
DOM	methods.	With	DOM	methods,	you	need	at	least	two	element	objects:	the	element
you	want	to	remove	and	its	parent	element.

As	with	everything	thus	far,	jQuery	simplifies	this	process.	The	only	thing	you	need	is	the
element	that	you	want	to	remove.	Simply	call	jQuery’s	remove()	method,	and	it	removes
the	element.	For	example:

$(".class-one").remove();

This	code	finds	all	elements	that	have	the	class-one	CSS	class	and	removes	them	from
the	document.

You	can	also	completely	empty,	or	remove	all	children	of,	an	element	with	the	aptly
named	empty()	method.	If	you	wanted	to	remove	every	element	within	the	<body/>,	you
could	use	the	following	code:

$(document.body).empty();

Most	DOM	changes	you’ll	make	are	in	response	to	something	the	user	did,	whether
moving	the	mouse	over	a	particular	element	or	clicking	somewhere	on	the	page.	So
naturally,	you’ll	have	to	handle	events	at	some	point.

Handling	Events
When	jQuery	was	created,	JavaScript	developers	had	to	contend	with	both	the	W3C
standard	and	legacy	IE	event	models.	Although	many	developers	wrote	and	used	their
own	event	utilities,	the	vast	majority	looked	to	third-party	tools	to	make	cross-browser
code	easier	to	write	and	maintain.	jQuery	was	one	such	tool,	and	while	standard	support
has	gotten	substantially	better	in	all	browsers,	jQuery’s	event	API,	specifically	the
methods	used	to	register	event	listeners,	is	still	easier	to	use.

All	jQuery	objects	expose	a	method	called	on()	that	you	use	to	register	event	listeners	for
one	or	more	events	on	the	selected	elements.	Its	most	basic	usage	is	very	simple,	as
demonstrated	here:

function	elementClick(e)	{

				alert("You	clicked	me!");

}

$(".class-one").on("click",	elementClick);

This	code	registers	a	click	event	listener	on	all	elements	that	have	a	class-one	CSS
class.	Therefore,	the	elementClick()	function	executes	when	the	user	clicks	any	of	these
elements.

You	can	also	register	multiple	event	listeners	with	the	same	event	handler	function	by
passing	multiple	event	names	in	the	first	argument.	Simply	separate	each	event	name	with
a	space,	like	this:

function	eventHandler(e)	{

				if	(e.type	==	"click")	{

								alert("You	clicked	me!");

				}	else	{

								alert("You	double-clicked	me!");

				}

}

$(".class-two").on("click	dblclick",	eventHandler);

This	code	registers	event	listeners	for	the	click	and	dblclick	events	on	all	elements	with
a	class-two	CSS	class.	The	code	inside	eventHandler()	determines	what	event	caused
the	function	to	execute	and	responds	appropriately.

Although	it	can	be	useful	to	use	a	single	function	for	handling	multiple	events,	jQuery	also
lets	you	define	multiple	event	listeners	with	different	functions.	Instead	of	passing	two
arguments	to	on()	as	shown	in	the	previous	examples,	you	pass	an	ordinary	JavaScript
object	in	which	the	properties	are	the	event	names,	and	their	values	are	the	functions	that
handle	the	events.	For	example:

function	clickHandler(e)	{

				alert("You	clicked	me!");

}

function	dblclickHandler(e)	{

				alert("You	double-clicked	me!");

}

$(".class-three").on({

				click:	clickHandler,

				dblclick:	dblclickHandler

});

This	code	registers	click	and	dblclick	event	listeners	for	every	element	with	the	class-
three	CSS	class;	different	functions	handle	the	click	and	dblclick	events.

Removing	event	listeners	is	equally	simple	with	the	off()	method.	Simply	supply	the
same	information	you	passed	to	on().	The	following	code	removes	the	event	listeners
registered	in	the	previous	examples:

$(".class-one").off("click",	elementClick);

$(".class-two").off("click	dblclick",	eventHandler);

$(".class-three").off({

				click:	clickHandler,

				dblclick:	dblclickHandler

});

You	can	also	use	the	off()	method	to	remove	all	event	listeners	for	the	selected	elements
by	not	passing	any	arguments	to	the	method:

$(".class-four").off();

The	jQuery	Event	Object
As	you	learned	in	Chapter	10,	some	big	differences	exist	between	the	standard	and	legacy
IE	event	models.	Remember	that	jQuery	was	created	to	make	cross-browser	JavaScript
easier	to	write	and	maintain.	So	when	it	came	to	events,	John	Resig,	the	creator	of	jQuery,
decided	to	create	his	own	Event	object	and	base	it	on	the	standard	DOM	Event	object.
This	means	that	you	do	not	have	to	worry	about	supporting	multiple	event	models;	it’s
already	done	for	you.	All	you	have	to	do	is	write	standard	code	inside	your	event	handlers.

To	demonstrate,	you	can	write	something	like	the	following	code,	and	it’ll	work	in	every
browser:

function	clickHandler(e)	{

				e.preventDefault();

				alert(e.target.tagName	+	"	clicked	was	clicked.");

}

$(".class-two").on("click",	clickHandler);

NOTE	For	a	complete	list	of	supported	events,	see	jQuery’s	website	at
http://docs.jquery.com/Events.

Rewriting	the	Tab	Strip	with	jQuery
You	have	learned	how	to	retrieve	elements	in	the	DOM,	change	an	element’s	style	by
adding	and	removing	classes,	add	and	remove	elements	from	the	page,	and	use	events
with	jQuery.

Now	you’ll	put	this	newfound	knowledge	to	work	by	refactoring	the	toolbar	from	Chapter
10.

				TRY	IT	OUT								Revisiting	the	Tab	Strip	with
jQuery
Open	your	text	editor	and	type	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	16:	Example	1</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

								.tabStrip	div	{

												float:	left;

												font:	14px	arial;

												cursor:	pointer;

								}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

http://docs.jquery.com/Events

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script	src="jquery-2.1.1.min.js"></script>

				<script>

								function	handleEvent(e)	{

												var	target	=	$(e.target);

												var	type	=	e.type;

												if	(type	==	"mouseover"	||	type	==	"mouseout")	{

																target.toggleClass("tabStrip-tab-hover");

												}	else	if	(type	==	"click")	{

																target.addClass("tabStrip-tab-click");

																var	num	=	target.attr("data-tab-number");

																showDescription(num);

												}

								}

								function	showDescription(num)	{

												var	text	=	"Description	for	Tab	"	+	num;

												$("#descContainer").text(text);

								}

								$(".tabStrip	>	div").on("mouseover	mouseout	click",	

handleEvent);

				</script>

</body>

</html>

Save	this	as	ch16_example1.html	and	open	it	in	your	browser	and	notice	that	its
behavior	is	identical	to	that	of	ch10_example17.html.

If	you	compare	this	example	with	ch10_example17.html,	you’ll	notice	quite	a	few
differences	in	the	code’s	structure.	Let’s	start	with	the	very	last	line	of	code	where	you
register	the	event	listeners.	Your	tab	strip	needs	to	respond	to	the	mouseover,
mouseout,	and	click	events	on	the	<div/>	elements	inside	of	the	tab	strip.	jQuery
makes	it	extremely	easy	to	register	event	listeners	on	these	<div/>	elements	for	the
desired	events:

$(".tabStrip	>	div").on("mouseover	mouseout	click",	handleEvent);

This	code	selects	all	“tab	elements”	in	the	document	with	jQuery’s	$()	function	and
uses	the	on()	method	to	register	the	mouseover,	mouseout,	and	click	event	listeners
on	those	elements.

jQuery	code	aside,	this	approach	is	different	from	the	original.	Here,	the	event

listeners	are	on	the	<div/>	elements	themselves	as	opposed	to	document.	This	will
simplify	the	handleEvent()	function.	Let’s	look	at	that	now.

The	first	two	lines	of	handleEvent()	do	two	things.	The	first	line	wraps	a	jQuery
object	around	the	event	target,	and	the	second	gets	the	type	of	event	that	occurred:

function	handleEvent(e)	{

				var	target	=	$(e.target);

				var	type	=	e.type;

In	the	original	version	of	this	code,	you	used	both	the	event	type	and	the	target’s	CSS
class	to	determine	which	new	CSS	class	you	assigned	to	the	element’s	className
property.	In	this	new	version,	you	only	need	to	know	the	event	type.	For	mouseover
and	mouseout	events,	you	simply	toggle	the	tabStrip-tab-hover	class:

				if	(type	==	"mouseover"	||	type	==	"mouseout")	{

								target.toggleClass("tabStrip-tab-hover");

				}

But	for	click	events,	your	new	code	closely	resembles	the	original’s.	First,	you	add
the	tabStrip-tab-click	class	to	the	element	using	jQuery’s	addClass()	method:

				else	if	(type	==	"click")	{

								target.addClass("tabStrip-tab-click");

								var	num	=	target.attr("data-tab-number");

								showDescription(num);

				}

Then	you	get	the	value	of	the	data-tab-number	attribute.	You	could	optionally	use
jQuery’s	data()	method	to	do	the	same	thing	by	passing	it	the	attribute	name	without
data-,	like	this:	data("tab-number").

Once	you	have	the	tab’s	number,	you	pass	it	on	to	showDescription().	This	function
did	not	change	much;	it	simply	uses	jQuery’s	API	to	accomplish	its	task:

function	showDescription(num)	{

				var	text	=	"Description	for	Tab	"	+	num;

				$("#descContainer").text(text);

}

After	you	build	the	description	text,	you	select	the	element	serving	as	the	description
container	and	set	its	text	using	jQuery’s	text()	method.

As	you	can	see	from	this	example,	jQuery	simplifies	DOM	manipulation	and	event
handling.	In	this	particular	example,	you	wrote	less	JavaScript	to	attain	the	same
results.	That’s	well	worth	the	time	of	learning	jQuery,	isn’t	it?

But	that’s	not	all;	jQuery	can	do	the	same	thing	for	your	Ajax	code.

Using	jQuery	for	Ajax

In	Chapter	14,	you	learned	about	Ajax	and	how	asynchronous	requests	require	you	to
write	a	lot	of	extra	code.	You	wrote	a	simple	utility	to	help	alleviate	the	complexity	of
Ajax	code,	but	jQuery	can	simplify	Ajax	even	more.

Understanding	the	jQuery	Function
The	jQuery	function	($())	is	the	doorway	into	all	things	jQuery,	and	you’ve	used	it	quite	a
bit	throughout	this	chapter.	However,	this	function	has	other	uses.

Functions	are	objects	and	they	have	a	property	called	prototype.	Like	all	other	objects,
you	access	a	Function	object’s	properties	and	methods	using	the	object.property	or
object.method()	syntax.	Well,	jQuery’s	$	function	has	many	methods,	and	some	of	them
are	for	making	Ajax	requests.	One	of	them	is	the	get()	method,	which	is	for	making	GET
requests.	The	following	code	shows	an	example:

$.get("textFile.txt");

This	code	makes	a	GET	request	to	the	server	for	the	textFile.txt	file.	But	this	code	isn’t
very	useful	because	it	doesn’t	do	anything	with	the	server’s	response.	So	like	the
HttpRequest	module	you	built	in	Chapter	14,	the	$.get()	method	lets	you	define	a
callback	function	that	handles	the	response	from	the	server:

function	handleResponse(data)	{

				alert(data);

}

$.get("textFile.txt",	handleResponse);

This	code	defines	a	function	called	handleResponse()	and	passes	it	to	$.get().	jQuery
calls	this	function	on	a	successful	request	and	passes	it	the	requested	data	(represented	by
the	data	parameter).

Remember	the	examples	from	Chapter	14?	You	created	a	form	that	checked	if	usernames
and	e-mail	addresses	were	available	using	Ajax,	and	you	sent	those	values	to	the	server	as
parameters	in	the	URL.	For	example,	when	you	wanted	to	test	a	username,	you	used	the
username	parameter,	like	this:

phpformvalidator.php?username=jmcpeak

With	the	$.get()	method,	you	can	do	the	same	thing	by	passing	an	object	containing	the
key/value	pairs	to	the	method.	For	example:

var	parms	=	{

				username	=	"jmcpeak"

};

function	handleResponse(json)	{

				var	obj	=	JSON.parse(json);

				//	do	something	with	obj

}

$.get("phpformvalidator.php",	parms,	handleResponse);

This	code	creates	a	new	object	called	parms,	and	it	has	a	username	property	with	the	value
of	jmcpeak.	This	object	is	passed	to	the	$.get()	method	as	the	second	argument,	with	the
handleResponse()	callback	function	passed	as	the	third.

You	can	send	as	many	parameters	as	you	need;	simply	add	them	as	properties	to	the
parameter	object.

Automatically	Parsing	JSON	Data
In	Chapter	14,	the	form	validator	PHP	file	returns	the	requested	data	in	JSON	format,	and
notice	that	the	previous	sample	code	expects	JSON	data	and	parses	it	with	the
JSON.parse()	method.	jQuery	can	eliminate	this	step	and	parse	the	response	for	you.
Simply	use	the	$.getJSON()	method	instead	of	$.get().	For	example:

var	parms	=	{

				username	=	"jmcpeak"

};

function	handleResponse(obj)	{

				//	obj	is	already	an	object

}

$.getJSON("phpformvalidator.php",	parms,	handleResponse);

This	code	is	almost	identical	to	the	previous	example	except	for	two	things.	First,	this
code	uses	$.getJSON()	to	issue	a	request	to	the	PHP	file.	By	doing	so,	you	are	expecting
JSON-formatted	data	in	the	response,	and	jQuery	will	automatically	parse	it	into	a
JavaScript	object.

The	second	difference	is	inside	the	handleResponse()	function.	Because	the	response	is
automatically	parsed,	you	don’t	have	to	call	JSON.parse()	in	handleResponse().

The	jqXHR	Object
As	you’ve	seen	in	the	previous	sections,	jQuery’s	get()	and	getJSON()	methods	do	not
actually	return	the	data	you	requested;	they	rely	upon	a	callback	function	that	you	provide
and	pass	the	requested	data	to	it.	But	these	methods	do,	in	fact,	return	something	useful:	a
special	jqXHR	object.

The	jqXHR	object	is	called	a	deferred	object;	it	represents	a	task	that	hasn’t	yet	completed.
When	you	think	about	it,	an	asynchronous	Ajax	request	is	a	deferred	task	because	it
doesn’t	immediately	complete.	After	you	make	the	initial	request,	you’re	left	waiting	for	a
response	from	the	server.

jQuery’s	jqXHR	object	has	many	methods	that	represent	different	stages	of	a	deferred	task,
but	for	the	sake	of	this	discussion,	you’ll	look	at	only	three.	They	are:

METHOD	NAME DESCRIPTION
done() Executes	when	the	deferred	task	successfully	completes
fail() Executes	when	the	task	fails
always() Always	executes,	regardless	if	the	task	completed	or	failed

These	methods	let	you	add	functions	to	what	are	called	callback	queues—collections	of
functions	that	serve	as	callbacks	for	a	specified	purpose.	For	example,	the	done()	method
lets	you	add	functions	to	the	“done”	callback	queue,	and	when	the	deferred	action
successfully	completes,	all	of	the	functions	in	the	“done”	queue	execute.

With	this	in	mind,	you	can	rewrite	the	previous	code	like	this:

var	parms	=	{

				username	=	"jmcpeak"

};

function	handleResponse(obj)	{

				//	obj	is	already	an	object

}

var	xhr	=	$.getJSON("phpformvalidator.php",	parms);

xhr.done(handleResponse);

Notice	that	in	this	code,	the	handleResponse()	function	isn’t	passed	to	the	getJSON()
method;	instead,	it’s	added	to	the	“done”	queue	by	passing	it	to	the	jqXHR	object’s	done()
method.	In	most	cases,	you’d	see	this	code	written	as	follows:

$.getJSON("phpformvalidator.php",	parms).done(handleResponse);

You	can	also	chain	these	method	calls	to	easily	add	multiple	functions	to	the	callback
queues:

$.getJSON("phpformvalidator.php",	parms)

									.done(handleResponse)

									.done(displaySuccessMessage)

									.fail(displayErrorMessage);

In	this	example,	two	functions,	handleResponse()	and	displaySuccessMessage(),	are
added	to	the	“done”	queue;	when	the	Ajax	call	successfully	completes,	both	of	these
functions	will	execute.	Additionally,	this	code	adds	the	displayErrorMessage()	function
to	the	“fail”	queue,	and	it	executes	if	the	Ajax	request	fails.

Using	these	callback	queue	methods	does	require	you	to	write	slightly	more	code,	but	they
make	your	code’s	intentions	absolutely	clear.	Plus,	using	them	is	generally	accepted	as	a
best	practice,	and	you’ll	find	them	used	in	most	modern	jQuery-based	code	that	you	read.

				TRY	IT	OUT								Revisiting	the	Form	Validator
Apply	what	you’ve	learned	and	modify	the	form	validator	from
ch14_example1.html.	Open	your	text	editor	and	type	the	following	code:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	16:	Example	2</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form>

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="jquery-2.1.1.min.js"></script>

				<script>

								function	checkUsername(e)	{

												e.preventDefault();

												var	userValue	=	$("#username").val();

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	parms	=	{

																username:	userValue

												};

												$.getJSON("ch14_formvalidator.php",	

parms).done(handleResponse);

								}

								function	checkEmail(e)	{

												e.preventDefault();

												var	emailValue	=	$("#email").val();

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	parms	=	{

																email:	emailValue

												};

												$.getJSON("ch14_formvalidator.php",	

parms).done(handleResponse);

								}

								function	handleResponse(response)	{

												if	(response.available)	{

																alert(response.searchTerm	+	"	is	available!");

												}	else	{

																alert("We're	sorry,	but	"	+	response.searchTerm	+

																						"	is	not	available.");

												}

								}

								$("#usernameAvailability").on("click",	checkUsername);

								$("#emailAvailability").on("click",	checkEmail);

				</script>

</body>

</html>

Save	this	as	ch16_example2.html	in	your	web	server’s	root	directory.	Like	the
examples	in	Chapter	14,	this	file	must	be	hosted	on	a	web	server	in	order	to	work
correctly.	Open	your	web	browser	to	http://yourserver/ch16_example2.html.
Type	jmcpeak	into	the	Username	field	and	click	the	Check	Availability	link	next	to	it.
You’ll	see	an	alert	box	telling	you	the	username	is	taken.

Now	type	someone@xyz.com	in	the	Email	field	and	click	the	Check	Availability	link
next	to	it.	Again,	you’ll	be	greeted	with	an	alert	box	stating	that	the	e-mail	is	already
in	use.	Now	input	your	own	username	and	e-mail	into	these	fields	and	click	the
appropriate	links.	Chances	are	an	alert	box	will	tell	you	that	your	username	and/or	e-
mail	is	available	(the	usernames	jmcpeak	and	pwilton	and	the	e-mails
someone@xyz.com	and	someone@zyx.com	are	the	only	ones	used	by	the	application).

The	HTML	and	CSS	in	this	example	are	identical	to	ch14_example1.html.	So,	let’s
dig	into	the	JavaScript	starting	with	the	final	two	lines	of	code	that	set	up	the	click
event	listeners	on	the	Check	Availability	links.	You	could	easily	reuse	the	code	from
the	original,	but	jQuery	makes	it	a	little	easier	to	set	up	events:

$("#usernameAvailability").on("click",	checkUsername);

$("#emailAvailability").on("click",	checkEmail);

You	select	the	elements	by	their	ID	and	use	jQuery’s	on()	method	to	register	the
click	event	on	those	elements.	Once	again,	checking	the	username	value	is	the	job	of
checkUsername(),	and	checkEmail()	is	responsible	for	checking	the	e-mail	value.

The	new	checkUsername()	function	is	somewhat	similar	to	the	original.	You	start	by
preventing	the	default	behavior	of	the	event	by	calling	e.preventDefault():

function	checkUsername(e)	{

				e.preventDefault();

Next,	you	need	to	get	the	value	of	the	appropriate	<input/>	element.	You	haven’t
learned	how	to	retrieve	the	value	of	a	form	control	with	jQuery,	but	don’t	worry—it’s
very	simple:

				var	userValue	=	$("#username").val();

				if	(!userValue)	{

								alert("Please	enter	a	user	name	to	check!");

								return;

				}

You	use	$()	to	select	the	appropriate	<input/>	element	and	call	the	val()	method.
This	retrieves	the	value	of	the	form	control	and	assigns	it	to	the	userValue	variable.

After	you	validate	the	user’s	input,	you’re	ready	to	start	issuing	a	GET	request	to	the
server.	First,	you	create	an	object	to	contain	the	information	you	want	to	send	to	the
server:

http://yourserver/ch16_example2.html

				var	parms	=	{

								username:	userValue

				};

You	call	this	object	parms	and	populate	it	with	the	username	property.	As	you	learned
earlier	in	this	chapter,	jQuery	will	add	this	property	and	its	value	to	the	query	string.

Now,	you	can	send	the	request	using	jQuery’s	getJSON()	method:

				$.getJSON("ch14_formvalidator.php",	parms).done(handleResponse);

}

You	add	the	handleResponse()	function	to	the	“done”	queue,	so	that	when	the
request	successfully	completes,	an	alert	box	will	display	the	search	results.

The	new	checkEmail()	function	is	very	similar	to	checkUsername().	The	two	main
differences,	of	course,	are	the	data	you	retrieve	from	the	form	and	the	data	you	send
to	the	server:

function	checkEmail(e)	{

				e.preventDefault();

				var	emailValue	=	$("#email").val();

				if	(!emailValue)	{

								alert("Please	enter	an	email	address	to	check!");

								return;

				}

				var	parms	=	{

								email:	emailValue

				};

				$.getJSON("ch14_formvalidator.php",	parms).done(handleResponse);

}

The	final	function,	handleResponse(),	is	mostly	unchanged	from	the	original
version.	Because	jQuery’s	getJSON()	method	automatically	parses	the	response	into	a
JavaScript	object,	the	new	handleResponse()	function	simply	uses	the	passed	data
as-is:

function	handleResponse(response)	{

				if	(response.available)	{

								alert(response.searchTerm	+	"	is	available!");

				}	else	{

								alert("We're	sorry,	but	"	+	response.searchTerm	+	"	is	not	

available.");

				}

}

jQuery	is	an	extensive	framework,	and	adequately	covering	the	topic	in	depth	requires
much	more	than	this	chapter	can	provide.	Entire	books	are	devoted	to	jQuery!	However,
the	jQuery	documentation	is	quite	good,	and	you	can	view	it	at	http://docs.jquery.com.
jQuery’s	website	also	lists	a	variety	of	tutorials,	so	don’t	forget	to	check	them	out	at

http://docs.jquery.com

http://docs.jquery.com/Tutorials.

http://docs.jquery.com/Tutorials

SUMMARY
This	chapter	introduced	you	to	jQuery,	the	most	popular	JavaScript	library.

You	learned	where	and	how	to	obtain	jQuery	and	reference	it	in	your	pages.

You	also	learned	about	jQuery’s	$()	function,	and	how	it	is	central	to	jQuery’s
functionality.

jQuery	popularized	using	CSS	selectors	to	find	elements	within	the	DOM,	and	you
learned	how	find	elements	with	the	$()	function.

You	can	change	element	styles	with	either	the	css()	method,	or	by	modifying	the
CSS	classes	with	the	addClass(),	removeClass(),	and	toggleClass()	methods.

Cross-browser	events	can	be	a	drag	when	dealing	with	older	browser	versions,	but
jQuery	make	registering	event	listeners	and	working	with	event	data	easy	(and
mostly	standards	compliant).

jQuery	also	simplifies	Ajax	with	its	get()	and	getJSON()	methods,	and	you	learned
that	getJSON()	automatically	parses	the	response	into	a	JavaScript	object.

You	learned	about	deferred	objects.	You	also	learned	about	the	“done,”	“fail,”	and
“always”	queues,	and	how	you	can	chain	them	together	to	assign	multiple	handlers	to
the	different	queues.

EXERCISES
1.	 Example	1	is	based	on	Chapter	10’s	Example	17,	and	as	you	probably	remember,	you

modified	that	example	in	response	to	one	of	Chapter	10’s	exercise	questions.	Modify
this	chapter’s	Example	1	so	that	only	one	tab	is	active	at	a	time.

2.	 There	is	some	repetitive	code	in	Example	2.	Refactor	the	code	to	reduce	the
duplication.	Additionally,	add	a	function	to	handle	any	errors	that	may	occur	with	the
request.

17
Other	JavaScript	Libraries
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Using	Modernizr	to	write	feature-specific	code

Loading	external	resources	for	browsers	that	do	not	support	certain	features

Using	Prototype	and	MooTools	to	perform	common	tasks,	such	as	DOM
manipulation	and	Ajax	requests

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

jQuery	is	the	most	popular	JavaScript	library	today.	It’s	used	on	hundreds	of	thousands	of
websites,	and	yet	it’s	not	the	only	library	JavaScript	developers	use.	In	fact,	thousands	of
JavaScript	libraries	and	utilities	are	available,	and	each	one	can	typically	be	categorized
into	two	groups:	general	and	specialty.

The	aim	of	general	frameworks	is	to	balance	the	differences	between	browsers	by	creating
a	new,	unified	API	to	perform	general	tasks	like	DOM	manipulation	and	Ajax
functionality	(jQuery	is	a	general	framework).	Specialty	frameworks,	on	the	other	hand,
focus	on	a	specific	ability,	such	as	feature	detection.	So	identify	what	it	is	you	want	to
achieve	and	choose	a	framework	based	on	that.	For	example,	if	you	wanted	to	perform
animations	and	only	animations,	the	script.aculo.us	framework
(http://script.aculo.us/)	could	be	a	good	choice	for	you.

This	chapter	looks	at	both	general	and	specific	frameworks.	When	deciding	which
framework	to	use,	look	at	the	framework’s	browser	support,	documentation,	and
community	involvement.	The	frameworks	covered	in	this	chapter	are	established,	stable,
popular,	and	compatible	with	every	major	modern	browser	(and	even	legacy	versions	of
IE).	You’ll	learn	about:

Modernizr:	A	library	designed	to	detect	HTML5	and	CSS	features	supported	by	the
browser.	(http://modernizr.com/)

Prototype:	A	framework	that	provides	a	simple	API	to	perform	web	tasks.	Although
it	offers	ways	of	manipulating	the	DOM,	Prototype’s	primary	aim	is	to	enhance	the
JavaScript	language	by	providing	class	definition	and	inheritance.
(http://www.prototypejs.org)

MooTools:	A	framework	that	aims	to	be	compact	while	offering	a	simple	API	to
make	common	tasks	easier.	Like	Prototype,	MooTools	also	aims	to	enhance	the
JavaScript	language—not	just	make	DOM	manipulation	and	Ajax	easier.	It	also
includes	a	lightweight	effects	component	originally	called	moo.fx.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com
http://script.aculo.us/
http://modernizr.com/
http://www.prototypejs.org

(http://www.mootools.net)

These	are	just	a	tiny	sampling	of	what	is	available	for	you	to	use	in	your	web	pages.	Some
other	solutions	not	covered	in	this	chapter	are:

Yahoo!	User	Interface	Framework	(YUI):	A	framework	that	ranges	from	basic
JavaScript	utilities	to	complete	DHTML	widgets.	Yahoo!	has	a	team	devoted	to
developing	YUI.	(http://developer.yahoo.com/yui/)

Ext	JS:	This	framework	started	as	an	extension	to	the	YUI.	It	offers	customizable	UI
widgets	for	building	rich	Internet	applications.	(http://www.extjs.com)

Dojo:	A	toolkit	designed	around	a	package	system.	The	core	functionality	resembles
that	of	any	other	framework	(DOM	manipulation,	event	normalization,	DHTML
widgets,	and	so	on),	but	it	provides	and	allows	a	way	to	add	more	functionality	by
adding	more	packages.	(http://www.dojotoolkit.org)

MochiKit:	A	framework	that	prides	itself	on	its	well-testedness	(hundreds	of	tests
according	to	the	MochiKit	site)	and	its	compatibility	with	other	JavaScript
frameworks	and	libraries.	(http://www.mochikit.com)

http://www.mootools.net
http://developer.yahoo.com/yui/
http://www.extjs.com
http://www.dojotoolkit.org
http://www.mochikit.com

DIGGING	INTO	MODERNIZR
As	you	undoubtedly	know	from	various	previous	chapters,	JavaScript	development	is	not
utopia.	It	never	has	been,	and	realistically,	it	never	will	be	simply	due	to	the	fact	that
multiple	browsers	exist	(which	is	a	good	thing—don’t	get	us	wrong),	and	there	is	a	certain
disparity	between	the	features	those	browsers	implement.	This	is	especially	true	as	new
features	are	developed	and	introduced	to	the	browser.	For	example,	HTML5	and	CSS3
introduce	many	new	features	that	some	browsers	haven’t	yet	implemented.	If	you	want	to
use	any	of	these	new	features	in	your	page	or	application,	you	have	to	ensure	that	the
browser	your	visitor	is	using	properly	supports	them.	Otherwise,	your	page	will	break.

In	Chapter	8,	you	learned	how	to	write	code	that	targets	specific	features	through	a	process
called	feature	detection,	and	although	feature	detection	is	a	time-tested	strategy,	two
problems	exist:

Some	features	can	be	difficult	to	detect.

Different	browsers	may	support	what	is	essentially	the	same	feature,	but	it	may	be
implemented	differently.

Modernizr	fixes	these	problems	by	providing	a	unified	API	for	detecting	HTML5	and	CSS
features	in	the	browser.

NOTE	Even	though	Modernizr	offers	many	CSS-based	features,	this	chapter	focuses
on	Modernizr’s	JavaScript	capabilities.	If	you	are	interested	in	its	CSS	capabilities,
see	http://modernizr.com/docs/	for	more	information.

Getting	Modernizr
Just	like	every	other	JavaScript	library	and	framework,	Modernizr	is	nothing	more	than	a
JavaScript	file	that	you	include	within	your	page.	It	comes	in	two	different	flavors:
development	(uncompressed)	and	production	(minified).	In	most	cases,	the	production
version	is	what	you	want	to	use	in	your	page	or	application	because	it	is	smaller	in	size,
but	the	development	version	could	prove	useful	in	certain	situations	where	you	need	to
debug	your	code	along	with	Modernizr’s	(you	learn	about	debugging	in	Chapter	18).

Modernizr	also	lets	you	pick	and	choose	the	tests	you	need	to	perform	in	your	page	or
application	(Figure	17.1).	For	example,	if	you	only	use	localStorage	or	native	drag	and
drop	in	your	page,	you	can	build	a	customized	version	of	Modernizr	that	contains	only	the
necessary	code	for	testing	the	browser’s	support	for	those	features.

http://modernizr.com/docs/

Figure	17.1

A	feature	that	Modernizr	includes	by	default	is	a	utility	called	HTML5	Shiv.	This	utility	is
only	for	legacy	versions	of	IE,	and	it	enables	you	to	style	HTML5	elements	that	are	not
supported	in	versions	prior	to	IE9.	If	you	do	not	plan	to	target	legacy	IE,	you	can	omit
HTML5	Shiv	in	your	customized	build.

Modernizr’s	download	experience	varies	depending	on	the	version	you	want	to	download.
The	development	version	includes	most	tests	by	default	(you	can	still	customize	the	build
if	that’s	your	thing),	but	the	download	page	also	has	an	easy-to-use	Download	button	(as
shown	in	Figure	17.1).	Simply	clicking	the	button	downloads	Modernizr	to	your
computer,	and	you	can	save	it	wherever	you	need	to.

The	production	version	is	just	as	simple	to	download.	Most	features	are	excluded	by
default,	forcing	you	to	pick	the	features	that	you	need	for	your	page	or	application.	This	is
actually	a	good	move	by	the	Modernizr	folks	because	you	want	a	customized	(and	thus
optimized)	build	for	your	specific	needs.	After	you	select	your	desired	features	and	click
the	Generate	button,	the	Download	button	appears.

NOTE	For	the	sake	of	simplicity,	you	can	find	the	full	production	version	(v2.8.3)	in
the	code	download	for	this	chapter.	You	can	also	download	it	at
http://beginningjs.com/modernizr.js.

Modernizr’s	developers	suggest	that,	for	best	performance,	you	reference	Modernizr’s
<script/>	element	inside	the	<head/>	and	after	your	style	sheet	references.

Modernizr’s	API
Modernizer	has	a	straightforward	API	that	revolves	around	a	single	object	called
Modernizr.	It	has	a	set	of	properties	and	methods	that	you	use	to	determine	if	a	browser

http://beginningjs.com/modernizr.js

supports	a	particular	feature.	For	example,	you	can	determine	if	a	browser	supports	the
geolocation	API	from	Chapter	8	like	this:

if	(Modernizr.geolocation)	{

				//	use	geolocation

}

At	first	glance,	it	looks	like	you	haven’t	gained	much	by	using	Modernizr	because	in
Chapter	8,	you	learned	that	you	can	do	the	same	thing	with	the	navigator	object,	like	this:

if	(navigator.geolocation)	{

				//	use	geolocation

}

But	remember	that	Modernizr	is	a	library	for	detecting	many	features,	even	those	that
require	a	bit	more	involvement	to	detect.	For	example,	the	code	for	determining	support
for	native	drag	and	drop	is	more	complex.	The	elements	in	browsers	that	support	native
drag	and	drop	have	a	draggable	attribute,	or	they	support	events	like	dragstart	and	drop.
That	means	the	code	needed	to	check	for	drag	and	drop	support	could	look	like	this:

var	el	=	document.createElement("span");

if	(typeof	el.draggable	!=	"undefined"	||

				(typeof	el.ondragstart	!=	"undefined"	&&

					typeof	el.ondrop	!=	"undefined"))	{

				//	use	native	drag	and	drop

}

This	code	creates	an	arbitrary		element	and	checks	if	it	has	a	draggable	property
or	ondragstart	and	ondrop	properties.	If	any	of	these	conditions	are	true,	the	browser
supports	drag	and	drop.

NOTE	The	aforementioned	test	is	written	to	accommodate	IE8	because	it	supports
native	drag	and	drop,	but	it	doesn’t	support	the	draggable	attribute/property.

This	code,	however,	is	cumbersome	to	write	and	read.	Modernizr	simplifies	it	to:

if	(Modernizr.draganddrop)	{

				//	use	drag	and	drop

}

Here,	you	check	the	browser’s	support	for	drag	and	drop	with	Modernizr’s	draganddrop
property,	and	you	get	the	same	results	as	the	previous	test.

Modernizr	checks	for	a	wide	variety	of	HTML5	(and	CSS3)	features.	The	following	table
lists	just	a	few:

HTML5	FEATURE MODERNIZR	PROPERTY
HTML5	Audio audio

M4A	Audio audio.m4a

MP3	Audio audio.mp3

OGG	Audio audio.ogg

WAV	Audio audio.wav

HTML5	Video video

H.264	Video video.h264

OGG	Video video.ogg

WebM	Video video.webm

Drag	and	Drop draganddrop

Local	Storage localstorage

Geolocation geolocation

In	addition	to	the	built-in	tests,	you	can	also	extend	Modernizr	with	your	own	tests.

Custom	Tests
You	can	add	your	own	tests	to	Modernizr	with	its	addTest()	method.	The	process	is
simple:	simply	call	Modernizr.addTest(),	pass	it	the	name	of	your	test,	and	pass	the
function	that	performs	the	test.

For	example,	it	was	mentioned	earlier	that	although	IE8	supports	native	drag	and	drop,	it
does	not	support	the	draggable	attribute/property.	You	can	extend	Modernizr	to	test	for
this	specific	functionality	like	this:

Modernizr.addTest("draggable",	function(){

				var	span	=	document.createElement("span");

				return	typeof	span.draggable	!=	"undefined"

});

This	code	adds	a	new	test	called	"draggable".	Its	function	creates	an	arbitrary	
element	and	checks	if	it	has	a	draggable	property.	In	modern	browsers,	the	draggable
property	defaults	to	false,	but	it	is	undefined	in	IE8.	Therefore,	when	you	use	the	test
like	this:

if	(!Modernizr.draggable)	{

				//	code	for	IE8

}

you	can	run	code	for	browsers	that	do	not	support	the	draggable	attribute/property.

Sometimes,	however,	you	don’t	want	to	use	an	if	statement	to	run	code	for	a	specific
browser	(or	a	set	of	browsers).	Instead,	wouldn’t	it	be	nice	if	you	could	load	an	external
JavaScript	file	for	browsers	that	passed	or	failed	a	certain	test?	Modernizr	can	do	that!

Loading	Resources
Modernizr	has	an	optional	method	called	load()	(you	can	omit	it	from	your	custom
build),	and	it’s	used	to	load	external	JavaScript	and	CSS	files	based	on	the	result	of	a	test.

The	load()	method’s	basic	usage	is	simple;	you	pass	it	an	object	that	describes	the	test
and	resources	you	want	to	load.	For	example:

Modernizr.load({

				test:	Modernizr.geolocation,

				nope:	"geo-polyfill.js",

				yep:	"geo.js"

});

This	code	calls	Modernizr.load()	and	passes	an	object	that	has	test,	nope,	and	yep	as
properties	(we’ll	call	this	a	yepnope	object).	The	test	property	contains	the	result	of	the
test.	If	it	passes,	Modernizr	loads	the	file	assigned	to	the	yep	property	(geo.js	in	this
example).	But	if	it	fails,	the	file	assigned	to	the	nope	property	(geo-polyfill.js)	is
loaded	instead.

NOTE	A	polyfill	is	a	third-party	JavaScript	component	that	replicates	the	standard
API	for	older	browsers.

The	yep	and	nope	properties	are	optional,	so	you	can	load	only	one	resource	if	you	need
to.	For	example,	the	following	code	loads	a	JavaScript	file	only	for	browsers	that	do	not
support	the	draggable	attribute/property:

Modernizr.load({

				test:	Modernizr.draggable,

				nope:	"draggable-polyfill.js"

});

This	type	of	behavior	is	ideal	in	these	situations.	You	don’t	want	or	need	to	load	a	polyfill
for	the	draggable	attribute/property	for	modern	browsers,	but	you	do	for	older	browsers,
like	IE8,	that	do	not	support	it.

Modernizr’s	load()	method	also	lets	you	run	multiple	tests.	Instead	of	passing	a	single
yepnope	object,	you	can	pass	an	array	of	them,	like	this:

Modernizr.load([{

				test:	Modernizr.draggable,

				nope:	"draggable-polyfill.js"

},

{

				test:	document.addEventListener,

				nope:	"event-polyfill.js"

}]);

This	code	passes	an	array	of	two	yepnope	objects	to	the	load()	method.	The	first	object	is
the	same	custom	draggable	test	from	the	previous	example.	The	second	object	checks	if
the	browser	supports	the	document.addEventListener()	method;	if	it	doesn’t,	Modernizr

loads	an	event	polyfill.

Modernizr	loads	external	resources	asynchronously.	This	means	that	the	browser	will
continue	to	load	the	rest	of	the	page	while	Modernizr	downloads	and	executes	the	external
resources.	This	can	cause	issues	if	your	page	relies	on	those	resources;	you	have	to	ensure
they	are	completely	loaded	before	you	attempt	to	use	them.

You	can	avoid	this	type	of	issue	by	adding	a	complete	property	to	your	yepnope	object.
This	property	should	contain	a	function,	and	it	executes	regardless	of	what	happens	when
all	(or	even	none)	of	the	resources	are	finished	loading.	For	example:

function	init()	{

				alert("Page	initialization	goes	here!");

}

Modernizr.load([{

				test:	Modernizr.draggable,

				nope:	"draggable-polyfill.js"

},

{

				test:	document.addEventListener,

				nope:	"event-polyfill.js",

				complete:	init

}]);

This	new	code	adds	two	changes	to	the	previous	example.	First,	it	defines	a	function
called	init().	This	function	would	normally	contain	code	to	initialize	the	JavaScript	used
on	the	page	(such	as	setting	up	event	listeners).

The	second	change	is	the	addition	of	the	complete	property	to	one	of	the	yepnope	objects.
It’s	set	to	the	aforementioned	init()	function,	and	it	always	executes—either	when	the
resources	are	completely	loaded,	or	immediately	for	browsers	that	do	not	need	the
resources.

				TRY	IT	OUT								Revisiting	Native	Drag	and	Drop
As	mentioned	earlier	in	this	section,	IE8	supports	native	drag	and	drop,	but	it	doesn’t
support	the	draggable	attribute/property.	In	this	example,	you	revisit
ch10_example21.html	and	use	Modernizr	to	load	two	polyfills:	one	to	support
draggable,	and	another	to	support	the	standard	DOM	event	model.

These	polyfills	are	written	by	Jeremy	and	are	provided	in	the	code	download.	They
are	event-polyfill.js	and	draggable-polyfill.js.	Both	are	open	source.	Loading
these	polyfills	will	make	this	example	work	with	minimal	modifications	to	the
existing	code.

Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Example	1</title>

				<style>

								[data-drop-target]	{

												height:	400px;

												width:	200px;

												margin:	2px;

												background-color:	gainsboro;

												float:	left;

								}

								.drag-enter	{

												border:	2px	dashed	#000;

								}

								.box	{

												width:	200px;

												height:	200px;

								}

								.navy	{

												background-color:	navy;

								}

								.red	{

												background-color:	red;

								}

				</style>

				<script	src="modernizr.min.js"></script>

</head>

<body>

				<div	data-drop-target="true">

								<div	id="box1"	draggable="true"	class="box	navy"></div>

								<div	id="box2"	draggable="true"	class="box	red"></div>

				</div>

				<div	data-drop-target="true"></div>

				<script>

								function	handleDragStart(e)	{

												e.dataTransfer.setData("text",	this.id);

								}

								function	handleDragEnterLeave(e)	{

												if	(e.type	==	"dragenter")	{

																this.className	=	"drag-enter";

												}	else	{

																this.className	=	"";

												}

								}

								function	handleOverDrop(e)	{

												e.preventDefault();

												if	(e.type	!=	"drop")	{

																return;

												}

												var	draggedId	=	e.dataTransfer.getData("text");

												var	draggedEl	=	document.getElementById(draggedId);

												if	(draggedEl.parentNode	==	this)	{

																this.className	=	"";

																return;

												}

												draggedEl.parentNode.removeChild(draggedEl);

												this.appendChild(draggedEl);

												this.className	=	"";

								}

								function	init()	{

												var	draggable	=	document.querySelectorAll("[draggable]");

												var	targets	=	document.querySelectorAll("[data-drop-

target]");

												for	(var	i	=	0;	i	<	draggable.length;	i++)	{

																draggable[i].addEventListener("dragstart",	

handleDragStart);

												}

												for	(i	=	0;	i	<	targets.length;	i++)	{

																targets[i].addEventListener("dragover",	

handleOverDrop);

																targets[i].addEventListener("drop",	handleOverDrop);

																targets[i].addEventListener("dragenter",	

handleDragEnterLeave);

																targets[i].addEventListener("dragleave",	

handleDragEnterLeave);

												}

								}

								Modernizr.addTest('draggable',	function	()	{

												var	span	=	document.createElement("span");

												return	typeof	span.draggable	!=	"undefined";

								});

								Modernizr.load([{

												test:	Modernizr.draggable,

												nope:	"draggable-polyfill.js"

								},

								{

												test:	document.addEventListener,

												nope:	"event-polyfill.js",

												complete:	init

								}]);

				</script>

</body>

</html>

Save	this	as	ch17_example1.html	and	load	it	into	any	browser	(you	can	also	view	it

at	http://beginningjs.com/examples/ch17_example1.html).	You’ll	see	that	it
behaves	exactly	like	ch10_example21.html,	and	if	you	can	view	it	in	IE8,	you’ll	see
that	it	works	there,	too.

This	code	is	almost	identical	to	ch10_example21.html,	so	let’s	just	go	over	the
new/changed	code.	First,	you	add	a	reference	to	Modernizr:

<script	src="modernizr.min.js"></script>

As	recommended	by	the	folks	at	Modernizr,	the	<script/>	element	resides	within	the
document’s	<head/>.

The	next	change	is	the	addition	of	the	init()	function.	The	function	itself	is	new,	but
the	code	it	executes	is	the	same	initialization	code	from	ch10_example21.html:

function	init()	{

				var	draggable	=	document.querySelectorAll("[draggable]");

				var	targets	=	document.querySelectorAll("[data-drop-target]");

				for	(var	i	=	0;	i	<	draggable.length;	i++)	{

								draggable[i].addEventListener("dragstart",	handleDragStart);

				}

				for	(i	=	0;	i	<	targets.length;	i++)	{

								targets[i].addEventListener("dragover",	handleOverDrop);

								targets[i].addEventListener("drop",	handleOverDrop);

								targets[i].addEventListener("dragenter",	handleDragEnterLeave);

								targets[i].addEventListener("dragleave",	handleDragEnterLeave);

				}

}

This	code	was	wrapped	within	the	init()	function	so	that	Modernizr	can	use	it	as	the
complete	callback	function,	therefore	setting	up	the	event	listeners	after	the	event-
polyfill.js	file	has	been	completely	loaded.	This	is	crucial	because	if	the	event
polyfill	isn’t	ready,	the	page	will	not	work	in	IE8.

The	final	two	additions	are	familiar	to	you;	the	first	creates	a	custom	Modernizr	test
called	draggable:

Modernizr.addTest('draggable',	function	()	{

				var	span	=	document.createElement("span");

				return	typeof	span.draggable	!=	"undefined";

});

The	second	calls	Modernizr’s	load()	method	to	load	the	necessary	polyfills	if	they’re
needed:

Modernizr.load([{

				test:	Modernizr.draggable,

				nope:	"draggable-polyfill.js"

},

{

				test:	document.addEventListener,

				nope:	"event-polyfill.js",

http://beginningjs.com/examples/ch17_example1.html

				complete:	init

}]);

We	should	admit	that,	in	the	case	of	this	example,	creating	the	custom	draggable	test
is	a	bit	overboard.	You	only	use	the	test	once,	so	it	would	be	slightly	more	efficient	to
omit	the	custom	test	and	write	the	first	yepnope	object	like	this:

{

				test:	typeof	document.createElement("span").draggable	!=	

"undefined",

				nope:	"draggable-polyfill.js"

}

At	the	same	time,	this	slightly	more	efficient	version	is	a	bit	uglier.	Ultimately,	the
choice	is	yours.	In	cases	like	this,	however,	many	people	create	the	custom	test	in	a
utility	file	because	it	could	be	reused	in	other	projects.

DIVING	INTO	PROTOTYPE
jQuery	is	the	most	popular	framework	today,	but	that	crown	used	to	sit	upon	Prototype’s
head.	Unlike	jQuery,	Prototype’s	focus	is	augmenting	the	way	you	program	with
JavaScript	by	providing	classes	and	inheritance.	It	does,	however,	also	provide	a	robust	set
of	tools	for	working	with	the	DOM	and	Ajax	support.

Getting	Prototype
Point	your	browser	to	Prototype’s	download	page	at	http://prototypejs.org/download.
Here,	you’ll	be	given	the	choice	to	download	the	latest	stable	version,	or	an	older	version.
The	examples	in	this	book	use	the	latest	stable	version	at	the	time	of	this	writing:	v1.7.2.

NOTE	The	stable	version	of	Prototype	1.7.2	is	provided	in	the	code	download.

No	compressed	versions	of	Prototype	exist.

Testing	Your	Prototype	Installation
The	largest	portion	of	the	Prototype	library	is	its	DOM	extensions.	Like	jQuery,	it
provides	a	variety	of	helpful	utility	functions	to	make	DOM	programming	a	bit	easier;	it
even	has	its	own	$()	function	(unlike	jQuery,	Prototype	doesn’t	have	a	special	name	for
this	function;	it’s	simply	called	the	dollar	function):

var	buttonObj	=	$("theButton");

Prototype’s	$()	function	only	accepts	element	id	attribute	values	or	DOM	element	objects
to	select	and	add	extra	functionality	to	DOM	objects.	Prototype	does	have	a	function	that
allows	you	to	use	CSS	selectors	to	select	elements;	you	learn	about	that	later.

Like	jQuery,	Prototype	provides	its	own	API	for	registering	event	listeners.	It	extends	the
Event	object	with	a	method	called	observe(),	which	is	not	unlike	the	evt.addListener()
method	you	wrote	in	Chapter	10.	For	example:

function	buttonClick()	{

				alert("Hello,	Prototype	World!");

}

Event.observe(buttonObj,	"click",	buttonClick);

The	Event.observe()	method	accepts	three	arguments:	The	first	is	the	DOM	or	BOM
object	you	want	to	register	an	event	listener	for,	the	second	is	the	event	name,	and	the
third	is	the	function	to	call	when	the	event	fires.	You	can	use	Event.observe()	to	register
an	event	listener	to	any	DOM	or	BOM	object.	You	look	at	this	method,	and	other	ways	to
listen	for	events,	later	in	this	chapter.

Like	jQuery,	you	can	chain	method	calls	together	on	wrapper	objects	created	with	the	$()
function.	Prototype’s	method	names,	however,	are	a	bit	more	verbose:

http://prototypejs.org/download

function	buttonClick	()	{

				$(document.body).writeAttribute("bgColor",	"yellow")

																				.insert("<h1>Hello,	Prototype!</h1>");

}

Event.observe(buttonObj,	"click",	buttonClick);

The	buttonClick()	function	now	modifies	the	<body/>	element	by	changing	the
background	color	to	yellow	and	adding	content	to	the	page.	Let’s	break	down	this
statement.

First,	you	pass	document.body	to	the	$()	function:

$(document.body)

This	extends	the	standard	<body/>	element	with	Prototype’s	extension	methods—one	of
which	is	the	writeAttribute()	method.	As	its	name	implies,	it	“writes”	or	sets	an
attribute	on	the	element:

writeAttribute("bgColor",	"yellow")

This	sets	the	body’s	bgColor	attribute	to	yellow.	The	writeAttribute()	method	returns
the	DOM	object	it	was	called	on,	the	extended	document.body	object	in	this	case.	So	you
can	call	another	extension	method,	called	insert(),	to	set	its	content:

insert("<h1>Hello,	Prototype!</h1>")

Let’s	use	this	as	the	basis	for	a	file	to	test	your	Prototype	installation.	Open	your	text
editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Example	2</title>

</head>

<body>

				<button	id="theButton">Click	Me!</button>

				<script	src="prototype.1.7.2.js"></script>

				<script>

								var	buttonObj	=	$("theButton");

								function	buttonClick()	{

												$(document.body).writeAttribute("bgColor",	"yellow")

																												.insert("<h1>Hello,	Prototype!</h1>");

								}

								Event.observe(buttonObj,	"click",	buttonClick);

				</script>

</body>

</html>

Save	this	as	ch17_example2.html	and	open	it	in	your	browser
(http://beginningjs.com/examples/ch17_example2.html).	You	should	see	something
like	Figure	17.2.	If	you	don’t,	make	sure	that	the	Prototype	JavaScript	file	is	in	the	same

http://beginningjs.com/examples/ch17_example2.html

directory	as	the	HTML	file.

Figure	17.2

Retrieving	Elements
Prototype’s	$()	function	is	very	different	from	jQuery’s.	If	you	remember	from	the
previous	chapter,	jQuery’s	$()	function	creates	a	jQuery	object	that	wraps	itself	around
one	or	multiple	DOM	element	objects.	In	contrast,	Prototype’s	$()	function	returns	the
actual	DOM	object	(much	like	document.getElementById()),	but	it	also	extends	the
element	object	with	many	new	properties	and	methods:

var	el	=	$("myDiv");

This	code	retrieves	the	element	with	an	id	of	myDiv,	and	you	can	use	this	object	just	like
you	use	any	other	element	object.	For	example,	the	following	code	alerts	the	element’s	tag
name	with	the	tagName	property:

alert(el.tagName);

You	can	also	extend	an	element	by	passing	the	element’s	object	to	the	dollar	function.	The
following	code	passes	the	document.body	object	to	the	dollar	function	in	order	to	extend
it:

var	body	=	$(document.body);

By	doing	this,	you	can	use	both	native	DOM	methods	and	properties	as	well	as
Prototype’s	methods.

NOTE	Prototype’s	dollar	function	returns	null	if	the	specified	element	cannot	be
found.	This	is	unlike	jQuery’s	$()	function	because	Prototype	returns	an	extended
DOM	element	object;	even	though	it	is	extended,	it	is	still	a	DOM	element	object.

Selecting	Elements	with	CSS	Selectors

As	mentioned	before,	Prototype’s	dollar	function	does	not	select	elements	based	upon	CSS
selectors;	it	only	accepts	element	id	values	and	element	objects.	Prototype	does,	however,
have	another	function	that	behaves	similarly	to	the	jQuery	function:	the	$$()	function.

You	can	use	the	$$()	function	to	locate	and	retrieve	elements	that	match	the	provided	CSS
selector.	For	example,	the	following	code	retrieves	all	<div/>	elements	in	the	page	and
returns	them	in	an	array:

var	divEls	=	$$("div");

The	$$()	function	always	returns	an	array—even	if	you	use	an	id	selector.	One	downside
to	$$()	is	that	it	returns	an	array	of	extended	elements;	so	if	you	want	to	perform	an
operation	on	every	element	in	the	array,	you	have	to	iterate	over	the	array	with	either	a
loop	or	an	iterative	Array	method	(from	Chapter	5).

Performing	an	Operation	on	Elements	Selected	with	$$()
Because	$$()	returns	an	array,	you	can	use	the	Array	methods	to	perform	iterative
operations.	For	example,	the	following	code	uses	the	forEach()	method	to	insert	content
into	each	element	in	the	array:

function	insertText(element)	{

				element.insert("This	text	inserted	using	the	forEach()	method.");

}

$$("div").forEach(insertText);

You	can	also	use	multiple	CSS	selectors	to	select	elements	with	the	$$()	function.	Instead
of	passing	a	single	string	that	contains	the	multiple	selectors,	you	pass	each	selector	as	an
argument	to	the	method,	like	this:

var	elements	=	$$("#myDiv",	"p	>	span,	.class-one");

This	code	selects	elements	based	upon	two	selectors:	#myDiv	and	p	>	span,	.class-one,
and	it	returns	an	array	that	contains	all	of	the	extended	element	objects	that	match	those
selectors.

NOTE	For	more	information	on	the	CSS	selectors	supported	in	Prototype,	see
http://prototypejs.org/doc/latest/dom/dollar-dollar/.

Manipulating	Style
Prototype	gives	you	several	methods	you	can	use	to	change	an	element’s	style.	The	most
basic	is	the	setStyle()	method,	which	sets	individual	style	properties.	To	use
setStyle(),	you	create	an	object	that	contains	the	CSS	properties	and	values	that	you
want	to	set.	For	example,	the	following	code	sets	an	element’s	foreground	and	background
colors:

var	styles	=	{

				color:	"red",

http://prototypejs.org/doc/latest/dom/dollar-dollar/

				backgroundColor:	"blue"

};

$("myDiv").setStyle(styles);

As	you	know	from	previous	chapters,	changing	an	element’s	style	in	this	manner	is
usually	undesirable.	A	better	solution	is	to	manipulate	the	CSS	classes	applied	to	an
element,	and	Prototype	gives	you	four	easy-to-use	methods	to	do	just	that.

The	first	method,	addClassName(),	adds	a	CSS	class	to	the	element.	The	following	code
adds	the	class-one	CSS	class	to	the	element:

$("myDiv").addClassName("class-one");

The	second	method,	removeClassName(),	removes	the	specified	class	from	the	element.
The	following	code	removes	the	class-two	CSS	class	from	the	element:

$("myDiv").removeClassName("class-two");

Next	is	the	toggleClassName()	method,	and	it	toggles	the	specified	class.	The	following
code	toggles	the	class-three	CSS	class.	If	it	is	already	applied	to	the	element,	the	class	is
removed.	Otherwise,	it	is	applied	to	the	element:

$("myDiv").toggleClassName("class-three");

The	final	method,	hasClassName(),	checks	if	the	specified	class	is	applied	to	the	element:

$("myDiv").toggleClassName("class-three");

Naturally,	if	the	class	exists,	the	toggleClassName()	method	returns	true.	Otherwise,	it
returns	false.

These	CSS	methods	are	very	similar	to	jQuery’s	CSS	class	manipulation	methods,	but
Prototype’s	methods	for	creating	and	inserting	elements	differ	greatly	from	jQuery’s
methods.	Removing	elements,	however,	is	very	similar	to	jQuery.

Creating,	Inserting,	and	Removing	Elements
Prototype	makes	it	easy	to	manipulate	the	DOM	because	it	extends	the	Element	object.
Let’s	start	by	creating	elements.

Creating	an	Element
Prototype	adds	a	constructor	for	the	Element	object,	and	it	accepts	two	arguments:	the
element’s	tag	name	and	an	object	containing	attributes	and	their	values.	The	following
code	creates	an	<a/>	element	and	populates	its	id	and	href	attributes:

var	attributes	=	{

				id	=	"myLink",

				href	=	"http://prototypejs.org"

};

var	a	=	new	Element("a",	attributes);

The	first	few	lines	of	this	code	create	an	object	called	attributes	and	define	its	id	and
href	properties.	They	then	create	an	<a/>	element	by	using	the	Element	object’s
constructor,	passing	"a"	as	the	first	argument	and	the	attributes	object	as	the	second.

Adding	Content
Prototype	extends	element	objects	with	two	methods	for	adding	content:	insert()	and
update().	The	aptly	named	insert()	method	inserts	new	content	at	the	end	of	the
element.	The	following	code	inserts	the	a	object	from	the	previous	example	into	the
document’s	body:

$(document.body).insert(a);

The	update()	method	replaces	all	existing	content	within	the	element.	The	following
code	updates	the	document’s	body	with	the	a	object,	thereby	replacing	the	existing	content
with	the	<a/>	element:

$(document.body).update(a);

It’s	important	to	remember	the	distinction	between	the	two	methods;	otherwise,	you	may
experience	unexpected	results	in	your	web	page.

Removing	an	Element
Prototype	makes	it	easy	to	remove	an	element	from	the	DOM;	simply	call	the	remove()
method	on	the	element	object	you	want	to	remove,	like	this:

a.remove();

Using	Events
When	you	extend	an	Element	object	with	the	$()	function,	you	gain	access	to	its
observe()	method.	Like	the	native	addEventListener()	method,	this	registers	an	event
listener	for	a	DOM	element,	and	it	accepts	two	arguments:	the	event	name	and	the
function	to	call	when	the	event	fires.	For	example,	the	following	code	registers	a	click
event	listener	that	executes	the	divClick()	function:

function	divClick(event)	{

				//	do	something

}

$("myDiv").observe("click",	divClick);

And	as	you	saw	earlier,	you	can	also	use	the	Event.observe()	method.	The	following
code	achieves	the	same	results	using	Event.observe():

function	divClick(event)	{

				//	do	something

}

Event.observe("myDiv",	"click",	divClick);

This	code	is	slightly	different	from	the	first	time	you	saw	Event.observe()	because	the
first	argument,	in	this	case,	is	a	string.	You	can	pass	the	id	of	an	element	or	a	DOM/BOM
object	as	the	first	argument	to	Event.observe().	This	method	is	particularly	useful	for
objects	like	window.	You	cannot	call	$(window).observe()	because	the	browser	will
throw	an	error.	Instead,	you	have	to	use	Event.observe().

Prototype	doesn’t	emulate	the	W3C	DOM	event	model.	Instead,	it	extends	the	event
objects	of	legacy-IE	and	standards-compliant	browsers	to	give	you	a	set	of	utility	methods
to	work	with	event	data.

For	example,	the	element()	method	returns	the	event	target	(the	srcElement	property	for
legacy-IE,	and	the	target	property	for	W3C	DOM	browsers).	The	following	code	uses
the	element()	method	to	retrieve	the	target	of	the	click	event	and	toggles	the	class-one
CSS	class:

function	divClick(e)	{

				var	target	=	e.element();

				target.toggleClassName("class-one");

}

$("myDiv").observe("click",	divClick);

The	element	returned	by	the	element()	method	is	already	extended	with	Prototype’s
methods;	so,	there’s	no	need	to	pass	it	to	$()	to	get	the	extra	functionality.

Rewriting	the	Tab	Strip	with	Prototype
You	now	know	how	to	retrieve	and	manipulate	elements,	add	and	remove	elements,	and
register	event	listeners	with	Prototype.	Let’s	adapt	the	jQuery	version	of	the	tab	strip	from
ch16_example2.html.

				TRY	IT	OUT								Revisiting	the	Toolbar	with
Prototype
Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Example	3</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

								.tabStrip	div	{

												float:	left;

												font:	14px	arial;

												cursor:	pointer;

								}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script	src="prototype.1.7.2.js"></script>

				<script>

								function	handleEvent(e)	{

												var	target	=	e.element();

												var	type	=	e.type;

												if	(type	==	"mouseover"	||	type	==	"mouseout")	{

																target.toggleClassName("tabStrip-tab-hover");

												}	else	if	(type	==	"click")	{

																target.addClassName("tabStrip-tab-click");

																var	num	=	target.getAttribute("data-tab-number");

																showDescription(num);

												}

								}

								function	showDescription(num)	{

												var	text	=	"Description	for	Tab	"	+	num;

												$("descContainer").update(text);

								}

								$$(".tabStrip	>	div").forEach(function(element)	{

												element.observe("mouseover",	handleEvent);

												element.observe("mouseout",	handleEvent);

												element.observe("click",	handleEvent);

								});

				</script>

</body>

</html>

Save	this	file	as	ch17_example3.html	and	load	it	into	your	browser
(http://beginningjs.com/examples/ch17_example3.html).	You’ll	notice	it
behaves	the	same	as	the	other	tab	strip	scripts.

Because	the	CSS	and	markup	remains	unchanged	in	the	jQuery	version,	let’s	focus	on
the	JavaScript	that	changed—starting	with	the	handleEvent()	function:

function	handleEvent(e)	{

				var	target	=	e.element();

Here,	you	get	the	event	target	using	the	element()	extension	method	and	assign	it	to
the	target	variable.

Next,	you	determine	the	type	of	event	that	took	place.	You	first	check	for	mouseover
and	mouseout	events:

				if	(type	==	"mouseover"	||	type	==	"mouseout")	{

								target.toggleClassName("tabStrip-tab-hover");

If	either	of	these	events	takes	place,	you	want	to	toggle	the	tabStrip-tab-hover	CSS
class.	For	mouseover	events,	this	CSS	class	is	applied	to	the	target	element,	and	for
mouseout,	the	class	is	removed.

Now	you	need	to	determine	if	the	click	event	fired:

				}	else	if	(type	==	"click")	{

								target.addClassName("tabStrip-tab-click");

If	so,	you	add	the	tabStrip-tab-click	CSS	class	to	the	target	element	to	change	its
style	to	that	of	a	clicked	tab.	Then,	you	need	to	get	the	tab’s	number	from	the
element’s	data-tab-number	attribute:

								var	num	=	target.getAttribute("data-tab-number");

								showDescription(num);

				}

}

You	use	the	native	getAttribute()	method	to	retrieve	that	attribute’s	value	and	pass
it	to	showDescription().

As	you	know,	the	showDescription()	function	adds	the	tab’s	description	to	the	page.

function	showDescription(num)	{

				var	text	=	"Description	for	Tab	"	+	num;

				$("descContainer").update(text);

}

Here,	you	select	the	element	representing	the	description	container	and	replace	its
contents	with	the	update()	method.

The	final	bit	of	code	sets	up	the	event	listeners	for	the	tab	elements.	Using	the	$$()
function,	you	retrieve	them	using	the	.tabStrip	>	div	selector:

$$(".tabStrip	>	div").forEach(function	(element)	{

				element.observe("mouseover",	handleEvent);

				element.observe("mouseout",	handleEvent);

				element.observe("click",	handleEvent);

});

You	use	the	Array	object’s	forEach()	method	to	iterate	over	the	array	returned	by
$$().	The	function	you	pass	to	forEach()	is	responsible	for	registering	the
mouseover,	mouseout,	and	click	event	listeners	on	each	element,	and	you	register
those	events	using	the	observe()	extension	method.

Prototype	isn’t	just	about	DOM	manipulation	and	language	enhancement.	It,	too,
provides	you	with	Ajax	capabilities	that	are	easy	to	learn	and	use.

Using	Ajax	Support
Unfortunately,	Prototype’s	Ajax	support	isn’t	as	straightforward	as	jQuery’s.	Prototype’s
Ajax	functionality	centers	on	its	Ajax	object,	which	contains	a	variety	of	methods	you	can
use	to	make	Ajax	calls.	This	object	is	much	like	the	jQuery	object	in	that	you	do	not
create	an	instance	of	Ajax;	you	use	the	methods	made	available	by	the	object	itself.

At	the	heart	of	the	Ajax	object	is	the	Ajax.Request()	constructor.	It	accepts	two
arguments:	the	URL	and	an	object	containing	a	set	of	options	that	the	Ajax	object	uses
when	making	a	request.	The	options	object	can	contain	a	variety	of	option	properties	to
alter	the	behavior	of	Ajax.Request().	The	following	table	describes	just	a	few	of	them.

OPTION DESCRIPTION
asynchronous Determines	whether	or	not	the	XMLHttpRequest	object	makes	the	request

in	asynchronous	mode.	The	default	is	true.
method The	HTTP	method	used	for	the	request.	The	default	is	"post".	"get"	is

another	valid	value.
onSuccess A	callback	function	invoked	when	the	request	completes	successfully
onFailure A	callback	function	invoked	when	the	request	completes,	but	results	in	an

error	status	code
parameters Either	a	string	containing	the	parameters	to	send	with	the	request,	or	an

object	containing	the	parameters	and	their	values

NOTE	For	a	complete	list	of	options,	visit	the	Prototype	documentation	at
http://prototypejs.org/doc/latest/ajax/.

Making	a	request	with	Prototype	looks	something	like	the	following	code:

function	requestSuccess(transport)	{

http://prototypejs.org/doc/latest/ajax/

				alert(transport.responseText);

}

function	requestFailed(transport)	{

				alert("An	error	occurred!	HTTP	status	code	is	"	+	transport.status);

}

var	options	=	{

				method:	"get",

				onSuccess:	requestSuccess,

				onFailure:	requestFailed

};

new	Ajax.Request("someTextFile.txt",	options);

The	first	few	lines	of	code	define	the	requestSuccess()	and	requestFailed()	functions.
These	functions	accept	a	parameter	called	transport—a	special	object	that	contains	the
server’s	response	(more	on	this	later).

After	the	function	definitions,	you	create	an	options	object	that	contains	properties	for	the
HTTP	method	option,	the	onSuccess	option,	and	the	onFailure	option.	Then,	you	finally
make	the	request	for	the	someTextFile.txt	file,	passing	the	options	object	to	the
Ajax.Request()	constructor	(don’t	forget	the	new	keyword!).

If	you	need	to	send	parameters	with	your	request,	you’ll	have	to	do	a	bit	more	preparation
before	calling	new	Ajax.Request().	Like	jQuery,	you	can	create	an	object	to	contain	the
parameter	names	and	values.	For	example,	if	you	need	to	send	a	parameter	called
username	with	your	request,	you	can	do	something	like	this:

var	parms	=	{

				username:	"jmcpeak"

};

options.parameters	=	parms;

When	you	send	the	request	by	creating	a	new	Ajax.Request	object,	the	parameters	are
added	to	the	URL	before	the	request	is	sent	to	the	server.

All	callback	functions	are	passed	a	parameter	containing	an	Ajax.Response	object,	an
object	that	wraps	around	the	native	XMLHttpRequest	object.	It	contains	a	variety	of	useful
properties	for	working	with	the	server’s	response.	It	emulates	the	basic	properties	of
XMLHttpRequest,	such	as	readyState,	responseText,	responseXML,	and	status.	But	it
also	exposes	a	few	convenience	properties,	as	outlined	in	the	following	table.

PROPERTY
NAME

PURPOSE

request The	Ajax.Request	object	used	to	make	the	request
responseJSON A	parsed	JSON	structure	if	the	response’s	Content-Type	header	is

application/json

statusText The	HTTP	status	text	sent	by	the	server
transport The	native	XMLHttpRequest	object	used	to	make	the	request

Now	that	you’ve	been	given	a	crash	course	in	Prototype’s	Ajax	functionality,	let’s	modify
the	Ajax	Form	Validator.

				TRY	IT	OUT								Revisiting	the	Form	Validator
with	Prototype
Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Example	4</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form>

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="prototype.1.7.2.js"></script>

				<script>

								function	checkUsername(e)	{

												e.preventDefault();

												var	userValue	=	$("username").value;

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	options	=	{

																method:	"get",

																onSuccess:	handleResponse,

																parameters:	{

																				username:	userValue

																}

												};

												new	Ajax.Request("ch14_formvalidator.php",	options);

								}

								function	checkEmail(e)	{

												e.preventDefault();

												var	emailValue	=	$("email").value;

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	options	=	{

																method:	"get",

																onSuccess:	handleResponse,

																parameters:	{

																				email:	emailValue

																}

												};

												new	Ajax.Request("ch14_formvalidator.php",	options);

								}

								function	handleResponse(transport)	{

												var	response	=	transport.responseJSON;

												if	(response.available)	{

																alert(response.searchTerm	+	"	is	available!");

												}	else	{

																alert("We're	sorry,	but	"	+	response.searchTerm	+

																						"	is	not	available.");

												}

								}

								$("usernameAvailability").observe("click",	checkUsername);

								$("emailAvailability").observe("click",	checkEmail);

				</script>

</body>

</html>

Save	this	as	ch17_example4.html	in	your	web	server’s	root	directory,	because	this
file	must	be	hosted	on	a	web	server	to	work	correctly.	Point	your	browser	to
http://yourserver/ch17_example4.html	and	test	out	the	form.

This	page	works	exactly	like	the	previous	versions.	Let’s	start	examining	this	version
with	the	checkUsername()	function.	As	you	know,	this	function	is	responsible	for
gathering	the	user	input	and	sending	it	to	the	server.

To	get	the	user’s	input,	you	retrieve	the	appropriate	<input/>	element	and	get	its
value:

function	checkUsername(e)	{

				e.preventDefault();

				var	userValue	=	$("username").value;

You	could	use	the	native	document.getElementById()	method	to	retrieve	the
<input/>	element,	but	Prototype’s	$()	function	is	much	easier	to	type.	It	returns	an
extended	Element	object,	but	you	use	the	standard	value	property	to	retrieve	the
element’s	value.

Next,	you	check	the	user	input	to	ensure	you	have	workable	data:

				if	(!userValue)	{

								alert("Please	enter	a	user	name	to	check!");

								return;

http://yourserver/ch17_example4.html

				}

If	the	function	makes	it	past	this	if	statement,	you	need	to	assemble	the	options
object	that	you	pass	to	the	Ajax.Request()	constructor:

				var	options	=	{

								method:	"get",

								onSuccess:	handleResponse,

								parameters:	{

												username:	userValue

								}

				};

This	options	object	has	the	required	method	and	onSuccess	properties,	and	you	also
include	the	parameters—setting	username	to	the	value	obtained	from	the	form.

Now	you’re	ready	to	send	the	request.	So,	you	call	the	Ajax.Request()	constructor
and	pass	it	the	URL	and	options	object.

As	the	last	step	in	this	function,	you	call	the	Ajax.Request()	constructor,	prepended
by	the	new	keyword,	and	pass	the	URL	to	formvalidator.php	and	the	options
object:

				new	Ajax.Request("ch14_formvalidator.php",	options);

}

The	checkEmail()	function	is	almost	identical	to	checkUsername().	First,	you
retrieve	the	e-mail	address	from	the	form	and	validate	it:

function	checkEmail(e)	{

				e.preventDefault();

				var	emailValue	=	$("email").value;

				if	(!emailValue)	{

								alert("Please	enter	an	email	address	to	check!");

								return;

				}

Next,	you	build	the	options	object:

				var	options	=	{

								method:	"get",

								onSuccess:	handleResponse,

								parameters:	{

												email:	emailValue

								}

				};

Once	again,	you	provide	the	obligatory	method	and	onSuccess	properties,	as	well	as
the	parameters	object.	You	set	the	email	parameter	property	to	the	e-mail	address
from	the	form.

Then,	you	issue	the	request	by	calling	the	Ajax.Request()	constructor:

				new	Ajax.Request("ch14_formvalidator.php",	options);

}

The	handleResponse()	function	is	not	left	untouched,	but	the	change	is	subtle:

function	handleResponse(transport)	{

				var	response	=	transport.responseJSON;

				if	(response.available)	{

								alert(response.searchTerm	+	"	is	available!");

				}	else	{

								alert("We're	sorry,	but	"	+	response.searchTerm	+	"	is	not	

available.");

				}

}

This	new	version	uses	Prototype’s	responseJSON	property	to	get	the	parsed	JSON.
You	can	use	this	property	because	ch14_formvalidator.php’s	Content-Type	header
is	set	to	application/json.	If	it	was	any	other	value,	like	text/plain,	then
responseJSON	would	be	null,	and	you	would	have	to	use	responseText	in
conjunction	with	JSON.parse(),	like	this:

var	response	=	JSON.parse(transport.responseText);

The	final	two	lines	of	code	in	this	example	register	the	click	event	listeners	on	the	two
<a/>	elements:

$("usernameAvailability").observe("click",	checkUsername);

$("emailAvailability").observe("click",	checkEmail);

You	retrieve	the	elements	using	Prototype’s	$()	function,	and	then	you	use	observe()
to	register	the	event	listeners.

Prototype	is	a	powerful	framework	that	provides	a	rich	set	of	utilities	to	change	the	way
you	write	JavaScript.	But	a	simple	section	such	as	this	is	far	too	small	to	cover	the
framework	adequately.	For	further	information	on	Prototype	and	the	utility	it	offers,	see
the	API	documentation	at	http://api.prototypejs.org/	and	the	tutorials	at
http://prototypejs.org/learn/.

http://api.prototypejs.org/
http://prototypejs.org/learn/

DELVING	INTO	MOOTOOLS
At	first	glance,	MooTools	looks	identical	to	Prototype,	and	rightly	so.	MooTools	was	first
developed	to	work	with	Prototype,	so	you	shouldn’t	be	surprised	to	see	some	striking
similarities	between	the	two.

However,	MooTools	is	more	of	a	cross	between	jQuery	and	Prototype	as	far	as	DOM
manipulation	is	concerned.	Like	Prototype,	MooTools’	goal	is	to	augment	the	way	you
write	JavaScript,	providing	tools	to	write	classes	and	inherit	from	them.	Also	like
Prototype,	MooTools	adds	in	a	rich	set	of	extensions	to	make	DOM	manipulation	easier,
and	you’ll	find	that	selecting	DOM	objects	in	MooTools	is	exactly	the	same	as	Prototype.
But	as	you’ll	see	in	the	following	sections,	the	extension	method	names	and	the	way	in
which	you	use	them	is	reminiscent	of	jQuery.

Getting	MooTools
You	can	download	MooTools	in	two	ways:	You	can	download	the	core,	or	you	can
customize	your	own	build.	The	MooTools’	core	contains	everything	you	need	to	perform
common	DOM	and	Ajax	operations,	but	if	you	don’t	need	the	full	power	of	core,	you	can
pick	and	choose	which	pieces	you	need	for	your	page	or	application.

Regardless	of	the	version	you	want,	you	can	download	both	at
http://mootools.net/core/builder.	Additionally,	you	can	choose	to	download	the
compressed	or	uncompressed	JavaScript	file.	The	code	download	includes	the	compressed
core	of	version	1.5.1.

Testing	Your	MooTools’	Installation
As	we	mentioned	earlier,	many	similarities	exist	between	MooTools	and	Prototype;	so,
testing	your	MooTools’	installation	will	look	very	similar	to	the	Prototype	test.

MooTools	has	a	$()	function,	just	like	Prototype’s:

var	buttonObj	=	$("theButton");

It	accepts	either	a	string	containing	an	element’s	id	or	a	DOM	element	and	returns	the
DOM	object	with	an	extended	set	of	methods	and	properties.	One	such	method	is	the
addEvent()	method	which,	as	you	probably	deduced,	registers	an	event	listener.

The	addEvent()	method	accepts	two	arguments:	the	event	name	and	the	function.	So,	you
can	register	an	event	listener	like	this:

function	buttonClick()	{

				alert("You	clicked	the	button!");

}

buttonObj.addEvent("click",	buttonClick);

MooTools’	extension	methods	provide	a	variety	of	methods	and	properties	for
manipulating	elements	in	the	page.	Most	of	the	methods	are	chainable,	therefore	allowing

http://mootools.net/core/builder

you	to	perform	multiple	operations	with	less	code.	For	example:

function	buttonClick()	{

				$(document.body).setProperty("bgColor",	"yellow")

																				.appendHTML("<h1>Hello,	MooTools!</h1>");

}

buttonObj.addEvent("click",	buttonClick);

You	can	set	an	element’s	attributes	with	the	setProperty()	method,	as	demonstrated	in
this	code.	This	method	returns	the	element	object,	so	you	can	then	immediately	append
content	to	the	element	by	calling	the	appendHTML()	method.

Use	this	code	to	test	your	MooTools’	installation.	Open	your	text	editor	and	type
thefollowing:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Example	5</title>

</head>

<body>

				<button	id="theButton">Click	Me!</button>

				<script	src="mootools-core-1.5.1-compressed.js"></script>

				<script>

								var	buttonObj	=	$("theButton");

								function	buttonClick()	{

												$(document.body).setProperty("bgColor",	"yellow")

																												.appendHTML("<h1>Hello,	MooTools!</h1>");

								}

								buttonObj.addEvent("click",	buttonClick);

				</script>

</body>

</html>

Save	this	as	ch17_example5.html	and	load	it	in	your	browser.	When	you	click	the	button,
the	background	color	should	change	to	yellow,	and	“Hello,	MooTools!”	should	display	in
the	page.	If	not,	make	sure	the	MooTools’	JavaScript	file	is	located	in	the	same	directory
as	your	HTML	page.

Finding	Elements
Earlier,	we	mentioned	that	MooTools’	$()	function	is	similar	to	Prototype’s.	Well,	let’s
clear	it	up	now;	they	are	exactly	the	same.	They	find	the	element	object	in	the	DOM	and
extend	it,	albeit	with	different	methods	that	you’ll	see	in	the	following	sections.	For
example,	the	following	code	finds	an	element	with	an	id	of	myDiv,	extends	it	with
MooTools’	methods	and	properties,	and	returns	it:

var	element	=	$("myDiv");

With	this	object,	you	can	use	MooTools’	extension	methods	as	well	as	the	native	DOM
methods	and	properties:

var	tagName	=	element.tagName;	//	standard	DOM

element.appendHTML("New	Content");	//	extension

If	an	element	with	the	given	id	does	not	exist,	$()	returns	null.

You	can	also	pass	a	DOM	object	to	the	$()	function	to	extend	it	as	well:

var	body	=	$(document.body);

Selecting	Elements	with	CSS	Selectors
MooTools	has	the	$$()	function	to	select	elements	with	CSS	selectors,	and	you	can	pass
multiple	CSS	selectors	to	retrieve	a	wide	variety	of	elements.	Like	Prototype,	you	pass
each	selector	as	an	argument	to	the	function:

var	classOne	=	$$(".class-one");

var	multiple	=	$$("div",	".class-one",	"p	>	div")

The	$$()	function	returns	an	array	of	extended	DOM	element	objects.	This	is	where
MooTools	and	Prototype	start	to	differ	because	while	both	frameworks	extend	the	Array
object	returned	by	$$(),	MooTools	adds	extension	methods	that	manipulate	the	elements
within	the	array.

Performing	Operations	on	Elements
MooTools’	$$()	is	a	cross	between	jQuery’s	$()	and	Prototype’s	$$()	in	that	it	returns	an
array	of	extended	element	objects	(like	Prototype),	but	you	can	use	a	variety	of	methods	to
work	with	those	elements	without	having	to	manually	iterate	the	array.	For	example,	you
can	change	the	style	of	all	elements	within	an	array	by	calling	the	setStyle()	method,
like	this:

$$("div",	".class-one").setStyle("color",	"red");

This	code	selects	multiple	types	of	elements	and	sets	their	text	color	to	red.	Contrast	that
with	Prototype:

//	Prototype

function	changeColor(item)	{

				var	styles	{

								color:	"red"

				};

				item.setStyle(styles);

}

$$("div",	".class-one").forEach(changeColor);

Note	that	you	could	use	this	technique	in	MooTools.	In	fact,	you	want	to	do	so	when
performing	multiple	operations	to	the	same	set	of	elements.	Remember	that	methods	like
MooTools’	setStyle()	and	jQuery’s	css()	are	iterative;	they	loop	over	the	array.

Chaining	iterative	methods	together	means	you	are	executing	multiple	loops,	which	is
inefficient.

Changing	Style
The	previous	MooTools’	code	example	introduced	you	to	the	setStyle()	method.	It
accepts	two	arguments:	the	first	is	the	CSS	property,	and	the	second	is	its	value.	Like
jQuery,	you	can	use	the	CSS	property	used	in	a	style	sheet	or	the	camel-case	version	used
in	script:

$("myDiv").setStyle("background-color",	"red");	//	valid

$("myDiv").setStyle("backgroundColor",	"red");	//	valid,	too

Both	lines	of	this	code	set	the	element’s	background	color	to	red;	so	you	can	use	either
property	name	to	set	individual	style	properties.

MooTools	also	has	a	setStyles()	method	for	changing	multiple	CSS	properties.	To	use
this	method,	pass	an	object	that	contains	the	CSS	properties	and	values,	like	this:

$("myDiv").setStyles({

				backgroundColor:	"red",

				color:	"blue"

});

This	is,	of	course,	not	the	ideal	way	to	change	an	element’s	style.	So,	MooTools	adds	the
addClass(),	removeClass(),	toggleClass(),	and	hasClass()	extension	methods	to
DOM	element	objects.

The	addClass()	and	removeClass()	methods	do	just	what	their	names	imply.	They	add	or
remove	the	specified	class	to	or	from	the	element:

var	div	=	$("myDiv");

div.addClass("class-one");

div.removeClass("class-two");

The	toggleClass()	method,	naturally,	toggles	a	class.

div.toggleClass("class-three");

This	code	toggles	the	class-three	CSS	class.	If	the	element	already	has	the	class,	it	is
removed	from	the	element.	Otherwise,	it	is	added.

The	hasClass()	method	returns	true	or	false	depending	on	whether	or	not	the	element
has	the	CSS	class:

div.hasClass("class-four");

This	code	returns	false	because	the	class-four	CSS	class	isn’t	applied	to	the	element.

Of	course,	changing	an	element’s	style	isn’t	the	only	DOM-related	things	MooTools	can
do;	you	can	also	create,	insert,	and	remove	elements	from	the	DOM.

Creating,	Inserting,	and	Removing	Elements
Like	Prototype,	MooTools	lets	you	create	elements	with	the	Element	constructor:

var	attributes	=	{

				id:	"myLink",

				href:	"mootools.net"

};

var	a	=	new	Element("a",	attributes);

When	you	call	the	constructor,	you	pass	the	tag	name	and	an	object	containing	your
desired	attributes.	The	preceding	code	creates	a	new	<a/>	element	and	populates	its	id	and
href	properties.	You	can	then	set	its	content	with	the	appendText()	or	appendHTML()
methods:

a.appendText("Go	to	MooTools'	Website");

MooTools	also	adds	a	set()	extension	method	that	lets	you	set	the	value	of	a	proprietary
“property.”	These	are	not	properties	in	the	sense	of	a	JavaScript	property	using
object.propertyName	syntax;	instead,	they’re	more	of	a	virtual	property.	For	example,
there	is	an	html	property	that	sets	the	HTML	of	an	element,	and	you	set	this	property	with
the	set()	method,	like	this:

a.set("html",	"Go	to	MooTool's	Website");

This	is	essentially	the	same	as	using	the	native	innerHTML	property,	and	in	most	cases,
you’d	want	to	use	innerHTML.

When	you’re	ready	to	add	the	element	to	the	page,	use	the	adopt()	method:

$(document.body).adopt(a);

This	code	appends	the	newly	created	<a/>	element	to	the	page’s	<body/>	element	with	the
adopt()	method.	Note	that	this	doesn’t	replace	existing	content;	it	simply	adds	new
content	to	the	page.	If	you	need	to	empty	an	element	of	its	children,	call	the	empty()
method:

$(document.body).empty();

You	can	also	remove	an	individual	element	with	the	dispose()	method:

a.dispose();

Using	Events
As	you	know,	the	$()	function	returns	an	extended	element	object.	One	of	the	extension
methods	is	the	addEvent()method,	which	registers	an	event	listener:

function	divClick(e)	{

				alert("You	clicked	me!");

}

$("myDiv").addEvent("click",	divClick);

The	addEvent()	method	accepts	two	arguments:	the	event	name	and	the	function	to
execute	when	the	event	fires.

You	can	also	register	multiple	event	listeners	with	the	addEvents()	method.	Instead	of
passing	a	single	event	name	and	function,	you	pass	an	object	that	contains	the	event	names
as	properties	and	the	functions	as	values.	For	example,	the	following	code	registers	event
handlers	for	the	mouseover	and	mouseout	events	on	an	element:

function	eventHandler(e)	{

				//	do	something	with	the	event	here

}

var	handlers	=	{

				mouseover:	eventHandler,

				mouseout:		eventHandler

};

$("myDiv").addEvents(handlers);

When	an	event	fires,	MooTools	passes	its	own	event	object	(of	type	DOMEvent)	to	the
event-handling	function.	This	object	has	a	hybrid	set	of	properties	and	methods:	Some	are
proprietary	but	most	are	standards-compliant.	The	following	table	lists	some	of	the
properties	available	with	MooTools’	Event	object.

PROPERTY DESCRIPTION
page.x The	horizontal	position	of	the	mouse	relative	to	the	browser	window
page.y The	vertical	position	of	the	mouse	relative	to	the	browser	window
client.x The	horizontal	position	of	the	mouse	relative	to	the	client	area
client.y The	vertical	position	of	the	mouse	relative	to	the	client	area
target The	extended	event	target
relatedTarget The	extended	element	related	to	the	event	target
type The	type	of	event	that	called	the	event	handler

NOTE	Visit	http://mootools.net/core/docs/1.5.1/Types/DOMEvent	for	a
complete	list	of	properties	of	MooTools’	DOMEvent	object.

For	example,	the	following	code	registers	a	click	event	listener	on	an	element	with	an	id
of	myDiv:

function	divClick(e)	{

				var	target	=	e.target.addClass("class-one");

				alert("You	clicked	at	X:"	+	e.client.x	+	"	Y:"	+	e.client.y);

}

$("myDiv").addEvent("click",	divClick);

http://mootools.net/core/docs/1.5.1/Types/DOMEvent

When	the	click	event	fires,	MooTools	passes	its	own	event	object	to	divClick().	The
first	line	of	the	function	calls	the	addClass()	method,	adding	the	class-one	CSS	class	to
the	element.

The	addClass()	method	returns	an	extended	element	object,	letting	you	both	add	the	CSS
class	and	assign	the	target	variable	with	the	extended	event	target.	You	then	use	an	alert
box	to	display	the	mouse	pointer’s	coordinates	by	using	the	client.x	and	client.y
properties.

Rewriting	the	Tab	Strip	with	MooTools
Now	that	you’ve	had	a	crash	course	in	MooTools,	let’s	rewrite	the	tab	strip!

				TRY	IT	OUT								Revisiting	the	Toolbar	with
MooTools
Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Example	6</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

								.tabStrip	div	{

												float:	left;

												font:	14px	arial;

												cursor:	pointer;

								}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script	src="mootools-core-1.5.1-compressed.js"></script>

				<script>

								function	handleEvent(e)	{

												var	target	=	e.target;

												var	type	=	e.type;

												if	(type	==	"mouseover"	||	type	==	"mouseout")	{

																target.toggleClass("tabStrip-tab-hover");

												}	else	if	(type	==	"click")	{

																target.addClass("tabStrip-tab-click");

																var	num	=	target.getAttribute("data-tab-number");

																showDescription(num);

												}

								}

								function	showDescription(num)	{

												var	text	=	"Description	for	Tab	"	+	num;

												$("descContainer").set("html",	text);

								}

								$$(".tabStrip	>	div").addEvents({

												mouseover:	handleEvent,

												mouseout:	handleEvent,

												click:	handleEvent

								});

				</script>

</body>

</html>

Save	this	file	as	ch17_example6.html,	and	open	it	in	your	browser
(http://beginningjs.com/examples/ch17_example6.html	is	available,	too).	Notice
that	this	page	works	just	like	all	the	other	versions.

Let’s	jump	right	into	the	code,	starting	with	the	handleEvent()	function:

function	handleEvent(e)	{

				var	target	=	e.target;

				var	type	=	e.type;

Everything	is	standards-compliant	code	until	you	get	to	the	if	statement;	that’s	when
you	use	MooTools’	toggleClass()	method	in	the	case	of	mouseover	and	mouseout
events:

				if	(type	==	"mouseover"	||	type	==	"mouseout")	{

								target.toggleClass("tabStrip-tab-hover");

If	it	is	one	of	these	events,	you	add	the	tabStrip-tab-hover	CSS	class	to	the	event
target.	But	if	the	event	is	a	click	event,	you	need	to	do	a	few	things.	First,	you	add
the	tabStrip-tab-click	CSS	class	to	the	element.	Then,	you	get	the	value	of	the
data-tab-number	attribute	because	you’ll	need	to	pass	that	to	the
showDescription()	function:

				}	else	if	(type	==	"click")	{

								target.addClass("tabStrip-tab-click");

								var	num	=	target.getAttribute("data-tab-number");

								showDescription(num);

				}

}

The	showDescription()	function	changed	very	slightly;	in	fact,	just	one	statement
needs	your	attention:

function	showDescription(num)	{

				var	text	=	"Description	for	Tab	"	+	num;

				$("descContainer").set("html",	text);

}

You	need	to	change	the	content	of	the	description	container	element.	Now,	you	can	do
that	in	a	variety	of	ways,	and	as	we	mentioned	earlier,	the	native	innerHTML	property
would	be	ideal.	However,	for	the	sake	of	this	example,	you	use	MooTools’	set()
method	to	set	the	virtual	html	property.

Finally,	you	register	your	listeners	for	the	mouseover,	mouseout,	and	click	events:

$$(".tabStrip	>	div").addEvents({

				mouseover:	handleEvent,

				mouseout:	handleEvent,

				click:	handleEvent

});

Here,	you	use	MooTools’	$$()	method	to	select	the	<div/>	elements	within	the	tab
strip.	Then	you	use	the	addEvents()	method	to	register	the	three	event	listeners.	As
an	alternative,	you	could	use	the	technique	demonstrated	in	the	Prototype	example:

$$(".tabStrip	>	div").forEach(function(item)	{

				item.addEvents({

								mouseover:	handleEvent,

								mouseout:	handleEvent,

								click:	handleEvent

				});

});

However,	there’s	no	real	need	to	do	so	in	this	example.	But	this	would	be	the	best	way
if	you	needed	to	perform	other	processes	on	each	element.	That	way,	you	iterate	over
the	elements	once	as	opposed	to	multiple	times.

Ajax	Support	in	MooTools
MooTools	has	three	objects	for	making	HTTP	requests,	each	targeting	a	specific	purpose:

Request:	Used	for	general	requests

Request.HTML:	Used	specifically	for	receiving	HTML

Request.JSON:	Specifically	used	for	receiving	JSON

Each	of	these	objects	is	similar	to	Prototype’s	Ajax.Request,	in	that	you	directly	create
them	by	calling	their	constructor	functions	with	the	new	operator	and	passing	an	object
that	contains	various	options:

var	request	=	new	Request({

				method:	"get",

				url:	"someFile.txt",

				onSuccess:	requestSuccess

});

This	code	creates	a	Request	object	that	makes	a	GET	request	for	someFile.txt	and	calls
the	requestSuccess()	function	on	a	successful	request.

You	can	pass	many	more	options	to	the	constructor;	the	following	table	lists	some	of	them.

OPTION DESCRIPTION
async Determines	whether	or	not	the	XMLHttpRequest	object	makes	the	request	in

asynchronous	mode.	The	default	is	true.
data An	object	containing	the	key/value	pairs	to	send	with	the	request
method The	HTTP	method	used	for	the	request.	The	default	is	"post".
onSuccess A	callback	function	invoked	when	the	request	completes	successfully
onFailure A	callback	function	invoked	when	the	request	completes,	but	results	in	an

error	status	code
url The	URL	to	send	the	request	to

NOTE	Visit	http://mootools.net/core/docs/1.5.1/Request/Request	for	a
complete	list	of	options	and	callback	functions.

Unfortunately,	creating	a	Request	object	doesn’t	automatically	send	the	request;	you	must
explicitly	send	it	with	the	send()	method:

request.send();

But	to	save	some	typing,	you	can	chain	the	send()	method	to	the	Request	constructor,
like	this:

var	request	=	new	Request({

				method:	"get",

				url:	"someFile.txt",

				onSuccess:	requestSuccess

http://mootools.net/core/docs/1.5.1/Request/Request

}).send();

You	can	also	use	one	of	the	many	aliases	for	send().	Their	names	mirror	those	of	the
different	HTTP	methods,	and	they	send	the	request	with	the	given	method.	For	example,
the	get()	method	sends	a	GET	request,	post()	sends	POST,	put()	is	a	PUT	request,	and
so	on.	Using	an	alias	eliminates	the	need	to	specify	the	method	option.	For	example:

var	request	=	new	Request({

				url:	"someFile.txt",

				onSuccess:	requestSuccess

});

request.get();	//	sends	the	request	as	GET

request.post();	//	sends	as	POST

You	can	send	data	with	your	request	in	two	different	ways.	First,	you	can	make	it	part	of
the	Request	object.	This	is	useful	if	you	need	to	send	the	same	data	with	every	request	you
make	with	a	single	Request	object.	To	do	this,	you	add	a	data	property	to	the	options
object	you	pass	to	the	constructor.	An	example	of	this	is:

var	request	=	new	Request({

				url:	"ch14_formvalidator.php",

				data:	{

								username:	userValue	//	assuming	userValue	is	assigned	a	value

				},

				onSuccess:	requestSuccess

});

The	second	approach	decouples	the	data	from	the	Request	object	so	that	you	can	reuse	the
same	Request	object	for	sending	different	data.	To	use	this	approach,	you	pass	the	data	to
the	send(),	or	other	alias,	method	like	this:

var	request	=	new	Request({

				url:	"ch14_formvalidator.php",

				onSuccess:	requestSuccess

}).get({

				data:	{

								username:	userValue

				}

});

The	onSuccess	callback	function	varies	between	the	different	types	of	requests.	For
ordinary	Request	objects,	the	onSuccess	callback	function	is	called	with	two	arguments—
the	responseText	and	responseXML:

function	requestSuccess(responseText,	responseXML)	{

				//	do	something	with	either	supplied	value

}

The	responseText	is	the	plain	textual	representation	of	the	server’s	response.	If	the
response	is	a	valid	XML	document,	the	responseXML	parameter	is	a	DOM	tree	containing
the	parsed	XML.

The	onSuccess	callback	is	a	bit	more	complicated	for	Request.HTML	objects:

function	requestHTMLSuccess(responseTree,	responseElements,

																												responseHTML,	responseJavaScript)	{

				//	do	something	with	the	data

}

The	four	parameters	are:

responseTree:	The	node	list	of	the	response

responseElements:	An	array	containing	the	elements	of	the	response

responseHTML:	The	string	content	of	the	response

responseJavaScript:	The	JavaScript	of	the	response

The	onSuccess	callback	for	Request.JSON	objects	is	much	simpler	than	Request.HTML’s:

function	requestJSONSuccess(responseJSON,	responseText)	{

				//	do	something	with	the	provided	data

}

The	responseJSON	parameter	is	an	object—the	parsed	JSON	structure.	So	you	won’t	need
to	call	JSON.parse().	The	responseText	parameter	is	the	plaintext	JSON	structure.
Honestly,	your	authors	don’t	know	why	you	would	need	the	responseText	with
Request.JSON,	but	it’s	there	just	in	case	you	need	it	(we	don’t	think	you	will).

Let’s	use	MooTools’	Ajax	utilities	to	modify	the	form	validator	from	the	previous	chapter
one	last	time!

				TRY	IT	OUT								Revisiting	the	Form	Validator
with	MooTools
Open	your	text	editor	and	type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Example	7</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form>

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="mootools-core-1.5.1-compressed.js"></script>

				<script>

								function	checkUsername(e)	{

												e.preventDefault();

												var	userValue	=	$("username").value;

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	options	=	{

																url:	"ch14_formvalidator.php",

																data:	{

																				username:	userValue

																},

																onSuccess:	handleResponse

												};

												new	Request.JSON(options).get();

								}

								function	checkEmail(e)	{

												e.preventDefault();

												var	emailValue	=	$("email").value;

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	options	=	{

																url:	"ch14_formvalidator.php",

																data:	{

																				email:	emailValue

																},

																onSuccess:	handleResponse

												};

												new	Request.JSON(options).get();

								}

								function	handleResponse(data,	json)	{

												if	(data.available)	{

																alert(data.searchTerm	+	"	is	available!");

												}	else	{

																alert("We're	sorry,	but	"	+	data.searchTerm	+	"	is	not	

available.");

												}

								}

								$("usernameAvailability").addEvent("click",	checkUsername);

								$("emailAvailability").addEvent("click",	checkEmail);

				</script>

</body>

</html>

Save	this	file	as	ch17_example7.html,	and	save	it	in	your	web	server’s	root	directory.
Open	and	point	your	browser	to	http://yourserver/ch17_example7.html	and	test
it.	You’ll	find	that	it	behaves	just	as	all	the	previous	versions	did.

http://yourserver/ch17_example7.html

This	version	is	very	similar	to	Example	4—the	Prototype	version.	In	fact,
checkUsername()	and	checkEmail()	are	identical	to	Example	4	except	for	the	request
code.	So	let’s	just	look	at	that,	starting	with	checkUsername().

After	you	get	and	validate	the	user	input	for	the	username,	you	build	your	options
object:

var	options	=	{

				url:	"ch14_formvalidator.php",

				data:	{

								username:	userValue

				},

				onSuccess:	handleResponse

};

You	set	the	url,	data,	and	onSuccess	properties	and	pass	the	object	to	the
Request.JSON()	constructor:

new	Request.JSON(options).get();

And	to	save	some	typing,	you	chain	the	get()	call	to	the	Request.JSON	constructor.

The	code	inside	checkEmail()	is	unsurprisingly	similar	(at	this	point,	what	is	about
this	example?).	First,	you	build	your	options	object:

var	options	=	{

				url:	"ch14_formvalidator.php",

				data:	{

								email:	emailValue

				},

				onSuccess:	handleResponse

};

Then	you	send	the	request:

new	Request.JSON(options).get();

The	handleResponse()	function	also	saw	a	few	changes.	Thanks	to	MooTools’	built-
in	support	for	JSON,	the	function	has	been	simplified:

function	handleResponse(data,	json)	{

				if	(data.available)	{

								alert(data.searchTerm	+	"	is	available!");

				}	else	{

								alert("We're	sorry,	but	"	+	data.searchTerm	+	"	is	not	

available.");

				}

}

The	data	passed	to	the	first	parameter,	data,	is	already	parsed	into	a	JavaScript	object.
So	you	simply	use	it	to	check	if	the	username	or	e-mail	is	available	and	display	the
correct	information	to	the	user.

Finally,	you	wire	up	the	events:

$("usernameAvailability").addEvent("click",	checkUsername);

$("emailAvailability").addEvent("click",	checkEmail);

You	find	the	<a/>	elements	in	the	document	and	register	their	click	event	listeners
with	MooTools’	addEvent()	method.

MooTools	is	a	popular	framework	because	it	offers	you	utility	similar	to	jQuery	while
maintaining	aspects	of	traditional	DOM	programming.	MooTools	also	has	an
animation/effects	component,	making	it	a	well-rounded	framework.	This	section	can
hardly	do	the	framework	justice,	so	make	sure	to	visit	the	API	documentation	at
http://mootools.net/core/docs/.

http://mootools.net/core/docs/

SUMMARY
This	chapter	introduced	you	into	the	rather	large	world	of	JavaScript	frameworks	and
libraries.

You	learned	that	two	types	of	libraries	and	frameworks	exist:	general	and	specific.
You	were	also	given	a	short	list	of	the	popular	solutions	available	today.

You	learned	where	to	obtain	the	files	needed	to	use	Modernizr,	Prototype,	and
MooTools.

You	learned	how	Modernizr	helps	you	write	feature-specific	code,	and	how	to	load
external	resources,	like	polyfills,	for	browsers	that	don’t	support	certain	features.

You	learned	the	basics	of	the	Prototype	framework—how	to	retrieve,	create,	and
manipulate	elements.	You	also	learned	how	to	register	event	listeners	and	send	Ajax
requests.

You	learned	how	to	use	MooTools	to	create,	select,	and	modify	elements,	as	well	as
wire	up	event	listeners	and	make	Ajax	requests.

EXERCISES
You	can	find	suggested	solutions	for	these	questions	in	Appendix	A.

1.	 Modify	the	answer	to	Chapter	14’s	Question	2	using	Prototype.	Also	add	error
reporting	for	when	an	error	occurs	with	the	Ajax	request.

2.	 If	you	guessed	that	this	question	would	be:	“Change	the	answer	to	Chapter	14’s
Question	2	using	MooTools,	and	add	error	reporting	for	when	an	error	occurs	with
the	Ajax	request”	then	you	won!!	Your	prize	is…	completing	the	exercise.

18
Common	Mistakes,	Debugging,	and	Error
Handling
WHAT	YOU	WILL	LEARN	IN	THIS	CHAPTER:																

Spotting	common	mistakes	that	everyone	makes—even	pros!

Handling	runtime	errors,	or	exceptions,	with	the	try…catch	statement

Debugging	JavaScript	with	the	development	tools	of	various	browsers

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER

You	can	find	the	wrox.com	code	downloads	for	this	chapter	at
http://www.wiley.com/go/BeginningJavaScript5E	on	the	Download	Code	tab.	You	can
also	view	all	of	the	examples	and	related	files	at	http://beginningjs.com.

Even	a	JavaScript	guru	makes	mistakes,	even	if	they	are	just	annoying	typos.	In	particular,
when	code	expands	to	hundreds	or	thousands	of	lines,	the	chance	of	something	going
wrong	becomes	much	greater.	In	proportion,	the	difficulty	in	finding	these	mistakes,	or
bugs,	also	increases.	In	this	chapter	you	look	at	various	techniques	that	will	help	you
minimize	the	problems	that	arise	from	this	situation.

You	start	by	taking	a	look	at	the	top	seven	JavaScript	coding	mistakes.	After	you	know
what	they	are,	you’ll	be	able	to	look	out	for	them	when	writing	code,	hopefully,	so	that
you	won’t	make	them	so	often!

Then	you	look	at	how	you	can	cope	with	errors	when	they	do	happen,	so	that	you	prevent
users	from	seeing	your	coding	mistakes.

Finally,	you	look	at	the	debugging	tools	in	Microsoft’s	Internet	Explorer	(IE11),	Firebug
(an	add-on	for	Firefox),	Chrome’s	Web	Inspector,	and	Opera’s	Dragonfly.	You	see	how
you	can	use	these	tools	to	step	through	your	code	and	check	the	contents	of	variables
while	the	code	is	running,	a	process	that	enables	you	to	hunt	for	difficult	bugs.	You	also
take	a	briefer	look	at	the	debugging	tools	available	for	Firefox.

http://www.wiley.com/go/BeginningJavaScript5E
http://beginningjs.com

D’OH!	I	CAN’T	BELIEVE	I	JUST	DID	THAT:	SOME
COMMON	MISTAKES
Several	common	mistakes	are	made	by	programmers.	Some	of	these	you’ll	learn	to	avoid
as	you	become	more	experienced,	but	others	may	haunt	you	forever!

Undefined	Variables
JavaScript	is	actually	very	easygoing	when	it	comes	to	defining	your	variables	before
assigning	values	to	them.	For	example,	the	following	will	implicitly	create	the	new	global
variable	abc	and	assign	it	to	the	value	23:

abc	=	23;

Although	strictly	speaking,	you	should	define	the	variable	explicitly	with	the	var	keyword
like	this:

var	abc	=	23;

Your	choice	of	whether	to	use	the	var	keyword	to	declare	a	variable	has	a	consequence	on
the	variable’s	scope;	so	it	is	always	best	to	use	the	var	keyword.	If	a	variable	is	used
before	it	has	been	defined,	an	error	will	arise.	For	example,	the	following	code	will	cause
the	error	shown	in	Figure	18.1	in	IE11	if	the	variable	abc	has	not	been	previously	defined
(explicitly	or	implicitly):

Figure	18.1

alert(abc);

In	other	browsers,	you’ll	need	to	look	in	the	JavaScript	console,	which	you	can	view	by

pressing	Ctrl+Shift+J	on	your	keyboard.	You	can	also	view	the	console	by	navigating
through	the	browser’s	menu.	You	learn	how	to	do	this	later.

In	addition,	you	must	remember	that	function	definitions	also	have	parameters,	which	if
not	declared	correctly	can	lead	to	the	same	type	of	error.

Take	a	look	at	the	following	code:

function	foo(parametrOne)	{

				alert(parameterOne);

}

If	you	call	this	function,	you	get	an	error	message	similar	to	the	one	shown	in	Figure	18.2.

Figure	18.2

The	error	here	is	actually	a	simple	typo	in	the	function	definition.	The	function’s
parameter	should	read	parameterOne,	not	parametrOne.	What	can	be	confusing	with	this
type	of	error	is	that	although	the	browser	tells	us	the	error	is	on	one	line,	the	source	of	the
error	is	on	another	line.

Case	Sensitivity
This	is	a	major	source	of	errors,	particularly	because	it	can	be	difficult	to	spot	at	times.

For	example,	spot	the	three	case	errors	in	the	following	code:

var	myName	=	"Jeremy";

If	(myName	==	"jeremy")	{

				alert(myName.toUppercase());

}

The	first	error	is	the	if	keyword;	the	code	above	has	If	rather	than	if.	However,
JavaScript	won’t	tell	us	that	the	error	is	an	incorrect	use	of	case,	but	instead	the	browser

will	tell	us	Object	expected	or	that	If	is	not	defined.	Although	error	messages	give
us	some	idea	of	what’s	gone	wrong,	they	often	do	so	in	an	oblique	way.	In	this	case	the
browser	thinks	you	are	either	trying	to	use	an	object	called	If	or	use	an	undefined	function
called	If.

NOTE	Different	browsers	use	different	wording	when	displaying	errors.	The	overall
meaning	is	the	same,	however,	so	you	can	identify	what	the	problem	is.

Okay,	with	that	error	cleared	up,	you	come	to	the	next	error,	not	one	of	JavaScript	syntax,
but	a	logic	error.	Remember	that	Jeremy	does	not	equal	jeremy	in	JavaScript,	so	myName
==	"jeremy"	is	false,	even	though	it’s	quite	likely	that	you	didn’t	care	whether	the	word
is	Jeremy	or	jeremy.	This	type	of	error	will	result	in	no	error	message	at	all	because	it	is
valid	JavaScript;	your	only	clue	is	that	your	code	will	not	execute	as	you’d	planned.

The	third	fault	is	with	the	toUpperCase()	method	of	the	String	object.	The	previous	code
uses	toUppercase,	with	the	C	in	lowercase.	IE	gives	us	the	message	Object	doesn't
support	this	property	or	method	and	Firefox	reports	that	myName.toUppercase	is
not	a	function.	On	first	glance	it	would	be	easy	to	miss	such	a	small	mistake	and	start
checking	your	JavaScript	reference	guide	for	that	method.	You	might	wonder	why	it’s
there,	but	your	code	is	not	working.	Again,	you	always	need	to	be	aware	of	case,
something	that	even	experts	get	wrong	from	time	to	time.

Incorrect	Number	of	Closing	Braces
In	the	following	code,	you	define	a	function	and	then	call	it.	However,	there’s	a	deliberate
mistake.	See	if	you	can	spot	where	it	is:

function	myFunction()

{

var	x	=	1;

var	y	=	2;

if	(x	<=	y)

{

if	(x	==	y)

{

alert("x	equals	y");

}

}

myFunction();

This	is	why	formatting	your	code	is	important—you’ll	have	a	much	easier	time	spotting
errors	such	as	this:

function	myFunction()	{

				var	x	=	1;

				var	y	=	2;

				if	(x	<=	y)	{

							if	(x	==	y)	{

										alert("x	equals	y");

							}

				}

myFunction();

Now	you	can	see	that	the	ending	curly	brace	of	the	function	is	missing.	When	you	have	a
lot	of	if,	for,	or	do	while	statements,	it’s	easy	to	have	too	many	or	too	few	closing
braces.	This	type	of	problem	is	much	easier	to	spot	with	formatted	code.

Incorrect	Number	of	Closing	Parentheses
Similarly,	not	having	the	correct	number	of	closing	parentheses	can	be	problematic.	Take	a
look	at	the	following	code:

if	(myVariable	+	12)	/	myOtherVariable	<	myString.length)

Spot	the	mistake?	The	problem	is	the	missing	parenthesis	at	the	beginning	of	the
condition.	You	want	myVariable	+	12	to	be	calculated	before	the	division	by
myOtherVariable	is	calculated,	so	quite	rightly	you	know	you	need	to	put	it	in
parentheses:

(myVariable	+	12)	/	myOtherVariable

However,	the	if	statement’s	condition	must	also	be	in	parentheses.	Not	only	is	the	initial
parenthesis	missing,	but	there	is	one	more	closing	parenthesis	than	opening	parentheses.
Like	curly	braces,	each	opening	parenthesis	must	have	a	closing	parenthesis.	The
following	code	is	correct:

if	((myVariable	+	12)	/	myOtherVariable	<	myString.length)

It’s	very	easy	to	miss	a	parenthesis	or	have	one	too	many	when	you	have	many	opening
and	closing	parentheses.

Using	Equals	(=)	Rather	than	Equality	(==)
The	equality	operator	is	a	commonly	confused	operator.	Consider	the	following	code:

var	myNumber	=	99;

if	(myNumber	=	101)	{

			alert("myNumber	is	101");

}	else	{

			alert("myNumber	is	"	+	myNumber);

}

At	first	glance,	you’d	expect	that	the	code	inside	the	else	statement	would	execute,	telling
us	that	the	number	in	myNumber	is	99.	It	won’t.	This	code	makes	the	classic	mistake	of
using	the	assignment	operator	(=)	instead	of	the	equality	operator	(==).	Hence,	instead	of
comparing	myNumber	with	101,	this	code	sets	myNumber	to	equal	101.

What	makes	things	even	trickier	is	that	JavaScript	does	not	report	this	as	an	error;	it’s
valid	JavaScript!	The	only	indication	that	something	isn’t	correct	is	that	your	code	doesn’t
work.	Assigning	a	variable	a	value	in	an	if	statement	may	look	like	an	error,	but	it’s
perfectly	legal.

When	embedded	in	a	large	chunk	of	code,	a	mistake	like	this	is	easily	overlooked.	Just
remember	it’s	worth	checking	for	this	error	the	next	time	your	program	doesn’t	do	what
you	expect.	Debugging	your	code	can	help	easily	spot	this	type	of	error.	You	learn	how	to
debug	your	code	later	in	this	chapter.

Using	a	Method	as	a	Property	and	Vice	Versa
Another	common	error	is	where	either	you	forget	to	put	parentheses	after	a	method	with
no	parameters,	or	you	use	a	property	and	do	put	parentheses	after	it.

When	calling	a	method,	you	must	always	have	parentheses	following	its	name;	otherwise,
JavaScript	thinks	that	it	must	be	a	pointer	to	the	method	or	a	property.	For	example,
examine	the	following	code:

var	nowDate	=	new	Date();

alert(nowDate.getMonth);

The	first	line	creates	a	Date	object,	and	the	second	line	uses	its	getMonth	property.	But
you	know	that	Date	objects	do	not	have	a	getMonth	property;	it’s	supposed	to	be	a
method.	Now,	this	is	valid	JavaScript	because	you	can	pass	a	function	pointer—which	is
what	nowDate.getMonth	is—to	another	function,	and	as	such,	the	browser	will	not	have
any	issues	executing	this	code.	And	in	many	cases,	you	want	to	do	that	(like	when
registering	event	listeners).	But	chances	are	very	good	that	we	intended	to	call
getMonth().	Therefore,	the	following	is	the	corrected	code:

var	nowDate	=	new	Date();

alert(nowDate.getMonth());

NOTE	To	perhaps	confuse	the	issue:	technically,	JavaScript	doesn’t	have	methods.
What	we	think	of	as	methods	are	actually	functions	assigned	to	an	object’s	properties.
But	it’s	generally	accepted	to	use	the	term	method	to	describe	such	properties.

Similarly,	another	common	mistake	is	to	type	parentheses	after	a	property,	making
JavaScript	think	that	you	are	trying	to	use	a	method	of	that	object:

var	myString	=	"Hello,	World!";

alert(myString.length());

The	second	line	uses	the	length	property	as	a	method,	and	JavaScript	will	attempt	to	treat
it	as	one.	When	this	code	executes,	you	will	see	an	error	because	length	cannot	be	called
as	a	method.	This	code	should	have	been	written	like	this:

var	myString	=	new	String("Hello");

alert(myString.length);

Missing	Plus	Signs	During	Concatenation
Ordinarily,	string	concatenation	is	a	straightforward	process,	but	it	can	become	confusing
when	working	with	many	variables	and	values.	For	example,	there’s	a	deliberate

concatenation	mistake	in	the	following	code.	Spot	it:

var	myName	=	"Jeremy";

var	myString	=	"Hello";

var	myOtherString	=	"World";

myString	=	myName	+	"	said	"	+	myString	+	"	"	myOtherString;

alert(myString);

There	should	be	a	+	operator	between	"	"	and	myOtherString	in	the	final	line	of	code.

Although	easy	to	spot	in	just	a	few	lines,	this	kind	of	mistake	can	be	more	difficult	to	spot
in	large	chunks	of	code.	Also,	the	error	message	this	type	of	mistake	causes	can	be
misleading.	Load	this	code	into	a	browser	and	you	you’ll	be	told	Error	:	Expected	';'
by	IE,	Missing	;	before	statement	by	Firefox,	and	SyntaxError:	Unexpected
identifier	in	Chrome.	It’s	surprising	how	often	this	error	crops	up.

These	most	common	mistakes	are	errors	caused	by	the	programmer.	Other	types	of	errors,
called	runtime	errors,	occur	when	your	code	executes	in	the	browser,	and	they	aren’t
necessarily	caused	by	a	typo	or	a	missing	curly	brace	or	parenthesis.	Runtime	errors	can
still	be	planned	for,	as	you	see	in	the	next	section.

ERROR	HANDLING
When	writing	your	programs,	you	want	to	be	informed	of	every	error.	However,	the	last
things	you	want	the	user	to	see	are	error	messages	when	you	finally	deploy	the	code	to	a
web	server	for	the	whole	world	to	access.	Of	course,	writing	bug-free	code	would	be	a
good	start,	but	keep	the	following	points	in	mind:

Conditions	beyond	your	control	can	lead	to	errors.	A	good	example	of	this	is	when
you	are	relying	on	Ajax	to	talk	to	the	web	server,	and	something	happens	to	the	user’s
network	connection.

Murphy’s	Law	states	that	anything	that	can	go	wrong	will	go	wrong!

Preventing	Errors
The	best	way	to	handle	errors	is	to	stop	them	from	occurring	in	the	first	place.	That	seems
like	stating	the	obvious,	but	you	should	do	a	number	of	things	if	you	want	error-free
pages:

Thoroughly	check	pages	in	as	many	browsers	as	possible.	This	is	easier	said	than
done	on	some	operating	systems.	The	alternative	is	for	you	to	decide	which	browsers
you	want	to	support	for	your	web	page,	and	then	verify	that	your	code	works	in	them.

Validate	your	data.	If	users	can	enter	dud	data	that	will	cause	your	program	to	fail,
then	they	will.	Make	sure	that	a	text	box	has	data	entered	into	it	if	your	code	fails
when	the	text	box	is	empty.	If	you	need	a	whole	number,	make	sure	that	the	user
entered	one.	Is	the	date	the	user	just	entered	valid?	Is	the	e-mail	address	mind	your
own	business	the	user	just	entered	likely	to	be	valid?	No,	so	you	must	check	that	it	is
in	the	format	something@something.something.

Okay,	so	let’s	say	you	carefully	checked	your	pages	and	there	is	not	a	syntax	or	logic	error
in	sight.	You	added	data	validation	that	confirms	that	everything	the	user	enters	is	in	a
valid	format.	Things	can	still	go	wrong,	and	problems	may	arise	that	you	can	do	nothing
about.	Here’s	a	real-world	example	of	something	that	can	still	go	wrong.

One	professional	created	an	online	message	board	that	relies	on	a	small	Java	applet	to
enable	the	transfer	of	data	to	and	from	the	server	without	reloading	the	page	(this	was
before	Ajax).	He	checked	the	code	and	everything	was	fine,	and	it	continued	to	work	fine
after	launching	the	board,	except	that	in	about	five	percent	of	cases	the	Java	applet
initialized	but	then	caused	an	error	due	to	the	user	being	behind	a	particular	type	of
firewall	(a	firewall	is	a	means	of	stopping	intruders	from	getting	into	a	local	computer
network,	and	many	block	Java	applets	because	of	Java’s	security	issues).	It’s	impossible	to
determine	whether	a	user	is	behind	a	certain	type	of	firewall,	so	there	is	nothing	that	can
be	done	in	that	sort	of	exceptional	circumstance.	Or	is	there?

In	fact,	JavaScript	includes	something	called	the	try…catch	statement.	This	enables	you	to
try	to	run	your	code;	if	it	fails,	the	error	is	caught	by	the	catch	clause	and	can	be	dealt
with	as	you	wish.	For	the	message	board,	this	professional	used	a	try…catch	clause	to
catch	the	Java	applet’s	failure	and	redirected	the	user	to	a	more	basic	page	that	still

http://something@something.something

displayed	messages,	but	without	using	the	applet.

The	try…catch	Statements
The	try…catch	statements	work	as	a	pair;	you	can’t	have	one	without	the	other.	You	use
the	try	statement	to	define	a	block	of	code	that	you	want	to	try	to	execute,	and	use	the
catch	statement	to	define	a	block	of	code	that	executes	when	an	exception	occurs	in	the
try	statement.	The	term	exception	is	key	here;	it	means	a	circumstance	that	is
extraordinary	and	unpredictable.	Compare	that	with	an	error,	which	is	something	in	the
code	that	has	been	written	incorrectly.	If	no	exception	occurs,	the	code	inside	the	catch
statement	never	executes.	The	catch	statement	also	enables	you	to	get	the	contents	of	the
exception	message	that	would	have	been	shown	to	the	user	had	you	not	caught	it	first.

Let’s	create	a	simple	example	of	a	try…catch	clause:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Example	1</title>

</head>

<body>

				<script>

								try	{

												alert("This	is	code	inside	the	try	clause");

												alert("No	Errors	so	catch	code	will	not	execute");

								}	catch	(exception)	{

												alert("The	error	is	"	+	exception.message);

								}

				</script>

</body>

</html>

Save	this	as	ch18_example1a.html	and	open	it	in	your	browser.

This	code	defines	the	try	statement,	and	as	with	all	other	blocks	of	code,	you	mark	out	the
try	block	by	enclosing	it	in	curly	braces.

Immediately	following	the	try	block	is	the	catch	statement,	and	notice	that	it	includes
exception	inside	a	set	of	parentheses.	This	exception	is	simply	a	variable	name,	and	it
stores	an	object	that	contains	information	about	any	exception	that	may	occur	inside	the
try	code	block.	We’ll	call	this	object	the	exception	object.	Although	the	word	exception
is	used	here,	you	can	use	any	valid	variable	name.	For	example,	catch(ex)	would	be	fine.

The	exception	object	contains	several	properties	that	provide	information	about	the
exception	that	occurred,	but	the	most	commonly	used	properties	are	name	and	message.
The	aptly	named	name	property	contains	the	name	of	the	error	type,	and	the	message
property	contains	the	error	message	the	user	would	normally	see.

Back	to	the	code	at	hand,	within	the	catch	block	is	the	code	that	executes	when	an
exception	occurs.	In	this	case,	the	code	within	the	try	block	will	not	throw	an	exception,
and	so	the	code	inside	the	catch	block	will	never	execute.

But	let’s	insert	a	deliberate	error.	Change	the	highlighted	line	in	the	following	code:

try	{

				alert("This	is	code	inside	the	try	clause");

				ablert("No	Errors	so	catch	code	will	not	execute");

}	catch	(exception)	{

				alert("The	error	is	"	+	exception.message);

}

Save	the	document	as	ch18_example1b.html	and	open	it	in	your	browser.

The	browser	will	start	executing	this	code	as	normal.	It	will	execute	the	first	call	to
alert()inside	the	try	block	and	display	the	message	to	the	user.	However,	the	call	to
ablert()	will	cause	an	exception.	The	browser	will	stop	executing	the	try	block,	and
instead	will	start	executing	the	catch	block.	You’ll	see	a	message	similar	to	“The	error
is	ablert	is	not	defined.”

Let’s	change	this	code	once	again	to	introduce	a	different	error.	As	before,	modify	the
highlighted	line	in	the	following	code:

try	{

				alert("This	is	code	inside	the	try	clause");

				alert('This	code	won't	work');

}	catch	(exception)	{

				alert("The	error	is	"	+	exception.message);

}

Save	this	as	ch18_example1c.html	and	open	it	in	your	browser.	You	will	not	see	any
alert	box	because	this	code	contains	a	syntax	error;	the	functions	and	methods	are	valid,
but	you	have	an	invalid	character.	The	single	quote	in	the	word	won't	has	ended	the	string
value	being	passed	to	alert().

Before	executing	any	code,	the	JavaScript	engine	goes	through	all	the	code	and	checks	for
syntax	errors,	or	code	that	breaches	JavaScript’s	rules.	If	the	engine	finds	a	syntax	error,
the	browser	deals	with	it	as	usual;	your	try	clause	never	runs	and	therefore	cannot	handle
syntax	errors.

Throwing	Errors
You	can	use	the	throw	statement	to	create	your	own	runtime	exceptions.	Why	create	a
statement	to	generate	an	exception,	when	a	bit	of	bad	coding	will	do	the	same?

Throwing	errors	can	be	very	useful	for	indicating	problems	such	as	invalid	user	input.
Rather	than	using	lots	of	if…else	statements,	you	can	check	the	validity	of	user	input,
then	use	throw	to	stop	code	execution	in	its	tracks	and	cause	the	error-catching	code	in	the
catch	block	of	code	to	take	over.	In	the	catch	clause,	you	can	determine	whether	the	error
is	based	on	user	input,	in	which	case	you	can	notify	the	user	what	went	wrong	and	how	to
correct	it.	Alternatively,	if	it’s	an	unexpected	error,	you	can	handle	it	more	gracefully	than
with	lots	of	JavaScript	errors.

You	can	throw	anything;	from	a	simple	string	or	number	to	an	object.	In	most	cases,
however,	you’ll	throw	an	object.	To	use	throw,	type	throw	and	include	the	object	after	it.
For	example,	if	you	are	validating	a	set	of	form	fields,	your	exception	object	could	contain

not	only	the	message,	but	the	id	of	the	element	that	has	invalid	data.	An	example	could
look	like	this:

throw	{

				message	:	"Please	type	a	valid	email	address",

				elementId	:	"txtEmail"

};

The	objects	you	throw	should	include	at	least	a	message	property;	most	error-handling
code	will	be	looking	for	it.

				TRY	IT	OUT								try…catch	and	Throwing	Errors
In	this	example	you	modify	ch16_example2.html	to	use	the	try…catch	and	throw
statements	to	validate	the	e-mail	and	username	fields.	Feel	free	to	use
ch16_example2.html	as	a	basis	for	this	new	file.	For	your	convenience,	the	following
code	listing	highlights	the	key	changes:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Example	2</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form>

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="jquery-2.1.1.min.js"></script>

				<script>

								function	checkUsername(e)	{

												e.preventDefault();

												var	userValue	=	$("#username").val();

												try	{

																if	(!userValue)	{

																				throw	{

																								message:	"Please	enter	a	user	name	to	check!"

																				};

																}

																var	parms	=	{

																				username:	userValue

																};

																$.getJSON("ch14_formvalidator.php",	

parms).done(handleResponse);

												}	catch	(ex)	{

																alert(ex.message);

												}

								}

								function	checkEmail(e)	{

												e.preventDefault();

												var	emailValue	=	$("#email").val();

												try	{

																if	(!emailValue)	{

																				throw	{

																								message:	"Please	enter	an	email	address	to	

check!"

																				};

																}

																var	parms	=	{

																				email:	emailValue

																};

																$.getJSON("ch14_formvalidator.php",	

parms).done(handleResponse);

												}	catch	(ex)	{

																alert(ex.message);

												}

								}

								function	handleResponse(response)	{

												if	(response.available)	{

																alert(response.searchTerm	+	"	is	available!");

												}	else	{

																alert("We're	sorry,	but	"	+	response.searchTerm	+

																						"	is	not	available.");

												}

								}

								$("#usernameAvailability").on("click",	checkUsername);

								$("#emailAvailability").on("click",	checkEmail);

				</script>

</body>

</html>

Remember	that	this	example	relies	upon	Ajax	in	order	to	work;	so,	be	sure	to	save
this	page	as	ch18_example2.html	in	your	web	server’s	root.	In	case	you	haven’t	set
up	a	web	server	yet,	see	Chapter	14	for	more	information.

You	know	how	this	example	works,	so	we’ll	focus	only	on	the	highlighted	code.

Let’s	first	look	at	the	checkUsername()	function.	It	has	been	rewritten	to	use	the	try…
catch	and	throw	statements	for	validating	the	username	<input/>	element,	and	the
majority	of	this	function’s	code	resides	within	the	try	block:

try	{

				if	(!userValue)	{

								throw	{

												message:	"Please	enter	a	user	name	to	check!"

								};

				}

				var	parms	=	{

								username:	userValue

				};

				$.getJSON("ch14_formvalidator.php",	parms).done(handleResponse);

}

Before	you	make	the	Ajax	request,	you	first	ensure	the	user	provided	a	value	to	the
username	field.	If	userValue	is	blank,	you	throw	a	new	object	detailing	the	cause	of
the	exception	with	its	message	property.	This	causes	the	JavaScript	engine	to	stop
executing	code	in	this	try	block	and	starts	executing	the	catch	block:

catch	(ex)	{

				alert(ex.message);

}

Here,	you	simply	alert	the	exception’s	message	property,	displaying	the	“Please
enter	a	user	name	to	check!”	message	to	the	user.

Naturally,	the	changes	made	to	the	checkEmail()	function	are	almost	identical	to
checkUsername():

try	{

				if	(!emailValue)	{

								throw	{

												message:	"Please	enter	an	email	address	to	check!"

								};

				}

				var	parms	=	{

								email:	emailValue

				};

				$.getJSON("ch14_formvalidator.php",	parms).done(handleResponse);

}	catch	(ex)	{

				alert(ex.message);

}

Once	again,	the	majority	of	the	function	code	resides	within	a	try	code	block.	If	the
e-mail	field	validation	fails,	you	throw	an	object	containing	the	exception	message
and	display	that	message	in	an	alert	box—the	result	of	executing	the	code	in	the
catch	block.

Nested	try…catch	Statements
So	far	you’ve	been	using	just	one	try…catch	statement,	but	it’s	possible	to	include	a	try…
catch	statement	inside	another	try	statement.	Indeed,	you	can	go	further	and	have	a	try…
catch	inside	the	try	statement	of	this	inner	try…catch,	or	even	another	inside	that,	the
limit	being	what	it’s	actually	sensible	to	do.

So	why	would	you	use	nested	try…catch	statements?	Well,	you	can	deal	with	certain
errors	inside	the	inner	try…catch	statement.	If,	however,	you’re	dealing	with	a	more
serious	error,	the	inner	catch	clause	could	pass	that	error	to	the	outer	catch	clause	by
throwing	the	error	to	it.

Here’s	an	example:

try	{

				try	{

							ablurt("This	code	has	an	error");

				}	catch(exception)	{

							var	name	=	exception.name;

							if	(name	==	"TypeError"	||	name	==	"ReferenceError")	{

										alert("Inner	try…catch	can	deal	with	this	error");

							}	else	{

										throw	exception;

							}

				}

}	catch(exception)	{

				alert("The	inner	try…catch	could	not	handle	the	exception.");

}

In	this	code	you	have	two	try…catch	pairs,	one	nested	inside	the	other.

The	inner	try	statement	contains	a	line	of	code	that	contains	an	error.	The	catch	statement
of	the	inner	try…catch	checks	the	value	of	the	error’s	name.	If	the	exception’s	name	is
either	TypeError	or	ReferenceError,	the	inner	try…catch	deals	with	it	by	way	of	an
alert	box	(see	Appendix	B	for	a	full	list	of	error	types	and	their	descriptions).
Unfortunately,	and	unsurprisingly,	the	type	of	error	thrown	by	the	browser	depends	on	the
browser	itself.	In	the	preceding	example,	IE	reports	the	error	as	a	TypeError	whereas	the
other	browsers	report	it	as	a	ReferenceError.

If	the	error	caught	by	the	inner	catch	statement	is	any	other	type	of	error,	it	is	thrown	up
in	the	air	again	for	the	catch	statement	of	the	outer	try…catch	to	deal	with.

finally	Clauses
The	try…catch	statement	has	a	finally	clause	that	defines	a	block	of	code	that	always
executes—even	if	an	exception	wasn’t	thrown.	The	finally	clause	can’t	appear	on	its
own;	it	must	be	after	a	try	block,	which	the	following	code	demonstrates:

try	{

				ablurt("An	exception	will	occur");

}	catch(exception)	{

				alert("Exception	occurred");

}	finally	{

				alert("This	line	always	executes");

}

The	finally	part	is	a	good	place	to	put	any	cleanup	code	that	needs	to	execute	regardless
of	any	exceptions	that	previously	occurred.

You’ve	seen	the	top	mistakes	made	by	developers,	and	you’ve	also	seen	how	to	handle

errors	in	your	code.	Unfortunately,	errors	will	still	occur	in	your	code,	so	let’s	take	a	look
at	one	way	to	make	remedying	them	easier	by	using	a	debugger.

DEBUGGING
JavaScript	is	traditionally	looked	upon	as	a	difficult	language	to	write	and	debug	due	to
the	lack	of	decent	development	tools.	This,	however,	is	no	longer	the	case	thanks	to	the
tools	made	available	through	the	browser:	the	debugging	tools	available	for	Internet
Explorer,	Firefox,	Chrome,	and	Opera.	With	these	tools,	you	can	halt	the	execution	of
your	script	with	breakpoints	and	then	step	through	code	line	by	line	to	see	exactly	what	is
happening.

You	can	also	find	out	what	data	is	being	held	in	variables	and	execute	statements	on	the
fly.	Without	debuggers,	the	best	you	can	do	is	use	the	alert()	method	in	your	code	to
show	the	state	of	variables	at	various	points.

Debugging	is	generally	universal	across	all	browsers,	and	even	languages.	Some
debugging	tools	may	offer	more	features	than	others,	but	for	the	most	part,	the	following
concepts	apply	to	any	debugger:

Breakpoints	tell	the	debugger	it	should	break,	or	pause	code	execution,	at	a	certain
point.	You	can	set	a	breakpoint	anywhere	in	your	JavaScript	code,	and	the	debugger
will	halt	code	execution	when	it	reaches	the	breakpoint.

Watches	enable	you	to	specify	variables	that	you	want	to	inspect	when	your	code
pauses	at	a	breakpoint.

The	call	stack	is	a	record	of	what	functions	and	methods	have	been	executed	to	the
breakpoint.

The	console	enables	you	to	execute	JavaScript	commands	in	the	context	of	the	page
and	within	the	scope	of	the	breakpoint.	In	addition,	it	catalogs	all	JavaScript	errors
found	in	the	page.

Stepping	is	the	most	common	procedure	in	debugging.	It	enables	you	to	execute	one
line	of	code	at	a	time.	You	can	step	through	code	in	three	ways:

Step	Into	executes	the	next	line	of	code.	If	that	line	is	a	function	call,	the
debugger	executes	the	function	and	halts	at	the	first	line	of	the	function.

Step	Over,	like	Step	Into,	executes	the	next	line	of	code.	If	that	line	is	a	function,
Step	Over	executes	the	entire	function	and	halts	at	the	first	line	outside	the
function.

Step	Out	returns	to	the	calling	function	when	you	are	inside	a	called	function.
Step	Out	resumes	the	execution	of	code	until	the	function	returns.	It	then	breaks
at	the	return	point	of	the	function.

Before	delving	into	the	various	debuggers,	let’s	create	a	page	you	can	debug:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Example	3</title>

</head>

<body>

				<script>

								function	writeTimesTable(timesTable)	{

												var	writeString;

												for	(var	counter	=	1;	counter	<	12;	counter++)	{

																writeString	=	counter	+	"	*	"	+	timesTable	+	"	=	";

																writeString	=	writeString	+	(timesTable	*	counter);

																writeString	=	writeString	+	"
";

																document.write(writeString);

												}

								}

								writeTimesTable(2);

				</script>

</body>

</html>

Save	this	as	ch18_example3.html.	You	will	need	to	open	this	file	in	each	browser	in	order
to	debug	it.

The	next	section	walks	you	through	the	features	and	functionality	of	Chrome’s	JavaScript
debugger.	Because	of	the	universal	nature	of	debugging	and	debuggers,	the	sections	for
Internet	Explorer,	Firefox,	and	Safari	will	merely	familiarize	you	with	the	UI	for	each
browser’s	debugger	and	point	out	any	differences.

Debugging	in	Chrome	(and	Opera)
Chrome	and	Opera	use	the	same	rendering	and	JavaScript	engine,	and	as	such,	they	also
share	the	same	development	tools.	For	the	sake	of	simplicity,	this	section	focuses	on
Chrome,	but	keep	in	mind	that	Opera	is	exactly	the	same.

You	can	access	Chrome’s	developer	tools	a	couple	of	ways.	You	can	click	the	“hamburger
menu”	in	the	top	right-hand	corner	of	the	window	and	select	More	Tools	➢	Developers
tools.	You	can	also	open	them	by	pressing	the	F12	key.

NOTE	You’ll	find	that	F12	opens	the	developer	tools	in	almost	every	browser.

By	default,	the	Developer	tools	opens	as	a	panel	in	Chrome	(see	Figure	18.3).

Figure	18.3

You	can	pop	it	out	to	its	own	window	by	clicking	the	icon	next	to	the	Close	button.

Open	ch18_example3.html	(either	from	your	computer	or	the	web)	in	Chrome	and	open
Chrome’s	developer	tools.

The	JavaScript	debugger	is	contained	in	the	Sources	tab,	and	it	is	made	up	of	three	panels
(Figure	18.4).	The	left	panel	contains	the	list	of	sources	to	choose	from.	You’ll	only	see
one	source	available	in	this	chapter	because	there	is	only	one	file	loaded	by	the	browser.
But	if	you	load	a	page	with	multiple	external	JavaScript	files,	you’ll	find	each	of	them
listed	in	the	left	panel.

Figure	18.4

The	center	panel	contains	the	source	code	of	the	selected	file,	and	it’s	here	that	you’ll	set
breakpoints	and	step	through	code.	The	code	displayed	in	this	panel	is	read-only;	if	you
want	to	change	it,	you	have	to	edit	the	file	in	your	text	editor	and	reload	the	page.

The	right	panel	contains	several	different	subpanels.	In	this	chapter,	we	focus	on
Breakpoints,	Scope	Variables,	Watch	Expressions,	and	Call	Stack:

Breakpoints:	Lists	all	breakpoints	that	you’ve	created	for	the	code	in	the	current
page

Scope	Variables:	Lists	the	variables	and	their	values	in	scope	of	the	breakpoint

Watch	Expressions:	Lists	the	“watches”	that	you	specify.	These	are	typically
variables	and/or	expressions	that	you	want	to	inspect	at	a	breakpoint.

Call	Stack:	Displays	the	call	stack

Setting	Breakpoints
As	mentioned	earlier,	breakpoints	tell	the	debugger	to	pause	code	execution	at	a	specific
point	in	your	code.	This	is	useful	when	you	want	to	inspect	your	code	while	it	executes.

Creating	breakpoints	is	straightforward.	Simply	left-click	the	line	number,	and	Chrome
highlights	the	line	number	with	a	blue	tag	icon.	This	highlight	denotes	a	breakpoint	in
Chrome.

You	can	also	hard-code	a	breakpoint	by	using	the	debugger	keyword	directly	in	your	code
(we’ll	use	this	a	bit	later).

Set	a	breakpoint	on	line	13:

writeString	=	writeString	+	(timesTable	*	counter);

Reload	the	page,	and	notice	Chrome	paused	code	execution	at	the	newly	created
breakpoint.	Chrome	highlights	the	current	line	of	code	in	blue.	This	line	hasn’t	been
executed	yet.

Look	at	the	Breakpoints	in	the	right	panel;	it	shows	you	the	list	of	breakpoints	(only	one	in
this	case).	Each	entry	in	the	list	consists	of	a	checkbox	to	enable/disable	the	breakpoint,
the	filename	and	line	number	of	the	source	file,	and	the	source	text	of	the	breakpoint.

Now	look	at	the	Scope	Variables.

Scope	Variables	and	Watches
The	Scope	Variables	pane	displays	variables	and	their	values	currently	in	scope	at	the
current	line.	Figure	18.5	shows	the	contents	of	the	Scope	Variables	pane	at	this	breakpoint.

Figure	18.5

Notice	that	the	counter,	timesTable,	and	writeString	variables	are	visible	(as	is	this).

Now	look	at	the	Watch	Expressions	pane.	There	are	currently	no	watch	expressions,	but
you	can	add	them	by	simply	clicking	the	add	icon	(the	plus	sign).	Type	the	variable	name
or	expression	you	want	to	watch,	and	press	the	Enter	key.

Go	ahead	and	create	a	watch	expression	for	counter	==	1.	You’ll	see	your	expression
followed	by	a	colon	and	the	value	of	the	expression.	At	this	point	in	time,	you	should	see
the	following	as	shown	in	Figure	18.6:

Figure	18.6

counter	==	1:	true

If	the	watch	is	in	scope,	the	expression’s	value	is	displayed.	If	the	variable	is	out	of	scope,

you’ll	see	“not	available.”

Although	this	information	is	helpful	when	you	want	to	see	what	exactly	is	going	on	in
your	code,	it’s	not	very	helpful	if	you	can’t	control	code	execution.	It’s	impractical	to	set	a
breakpoint	and	reload	the	page	multiple	times	just	to	advance	to	the	next	line,	so	we	use	a
process	called	stepping.

Stepping	through	Code
Code	stepping	is	controlled	by	four	buttons	in	the	upper-right	of	the	developer	tools
(Figure	18.7).

Continue	(shortcut	key	is	F8):	Its	function	is	to	continue	code	execution	until	either
the	next	breakpoint	or	the	end	of	all	code	is	reached.

Step	Over	(F10):	This	executes	the	current	line	of	code	and	moves	to	the	next
statement.	However,	if	the	statement	is	a	function,	it	executes	the	function	and	steps
to	the	next	line	after	the	function	call.

Step	Into	(shortcut	key	is	F11):	Executes	the	current	line	of	code	and	moves	to	the
next	statement.	If	the	current	line	is	a	function,	it	steps	to	the	first	line	of	the	function.

Step	Out	(Shift-F11):	Returns	to	the	calling	function.

Figure	18.7

Let’s	do	some	stepping;	follow	these	steps:

1.	 Step	Into	the	code	by	clicking	the	icon	or	pressing	F11.	The	debugger	executes	the
currently	highlighted	line	of	code	and	moves	to	the	next	line.

2.	 Look	at	the	value	of	writeString	in	the	Scope	Variables	pane;	it	is	"1	*	2	=	2".	As
you	can	see,	the	values	displayed	in	the	Watch	tab	are	updated	in	real	time.

3.	 One	nice	feature	of	Chrome’s	developer	tools	is	the	page	updates,	if	necessary,	as	you
step	through	code.	Click	Step	Into	two	more	times	to	see	this	in	action.	Figure	18.8
shows	the	page	updated	while	stepping	through	code.

Figure	18.8

You	may	find	that	the	function	you	stepped	into	is	not	the	source	of	the	bug,	in	which	case
you	want	to	execute	the	remaining	lines	of	code	in	the	function	so	that	you	can	continue
stepping	after	the	function.	Do	so	by	clicking	the	Step	Out	icon	to	step	out	of	the	code.
However,	if	you’re	in	a	loop	and	the	breakpoint	is	set	inside	the	loop,	you	will	not	step	out
of	the	function	until	you	iterate	through	the	loop.

There	may	also	be	times	when	you	have	some	buggy	code	that	calls	a	number	of
functions.	If	you	know	that	some	of	the	functions	are	bug-free,	you	may	want	to	just
execute	those	functions	instead	of	stepping	into	them.	Use	Step	Over	in	these	situations	to
execute	the	code	within	a	function	but	without	going	through	it	line	by	line.

Alter	your	times-table	code	in	ch18_example3.html	as	follows	so	you	can	use	it	for	the
three	kinds	of	stepping:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Example	4</title>

</head>

<body>

				<script>

								function	writeTimesTable(timesTable)	{

												var	writeString;

												for	(var	counter	=	1;	counter	<	12;	counter++)	{

																writeString	=	counter	+	"	*	"	+	timesTable	+	"	=	";

																writeString	=	writeString	+	(timesTable	*	counter);

																writeString	=	writeString	+	"
";

																document.write(writeString);

												}

								}

								for	(var	timesTable	=	1;	timesTable	<=	12;	timesTable++)	{

												document.write("<p>");

												writeTimesTable(timesTable);

												document.write("</p>");

								}

				</script>

</body>

</html>

Save	this	as	ch18_example4.html	and	open	it	in	your	browser.	The	following	instructions
walk	you	through	the	process	of	stepping	through	code:

1.	 Set	a	breakpoint	in	line	19,	the	for	loop	in	the	body	of	the	page,	and	reload	the	page.

2.	 Click	the	Step	Into	icon	and	code	execution	moves	to	the	next	statement.	Now	the
first	statement	inside	the	for	loop,	document.write("<p>"),	is	up	for	execution.

3.	 When	you	click	the	Step	Into	icon	again,	it	takes	you	to	the	next	line	(the	first	calling
of	the	writeTimesTable()	function).

4.	 You	want	to	see	what’s	happening	inside	that	function,	so	click	Step	Into	again	to
step	into	the	function.	Your	screen	should	look	similar	to	Figure	18.9.

5.	 Click	the	Step	Into	icon	a	few	times	to	get	the	gist	of	the	flow	of	execution	of	the
function.	In	fact,	stepping	through	code	line	by	line	can	get	a	little	tedious.	So	let’s
imagine	you’re	happy	with	this	function	and	want	to	run	the	rest	of	it.

6.	 Use	Step	Out	to	run	the	rest	of	the	function’s	code.	You’re	back	to	the	original	for
loop,	and	the	debugger	is	paused	on	line	22,	as	you	can	see	from	Figure	18.10.

7.	 Click	the	Step	Into	icon	to	execute	document.write()	(it	won’t	be	visible	because
it’s	a	closing	tag).

8.	 Click	Step	Into	four	more	times.	Execution	continues	through	the	condition	and
increments	parts	of	the	for	loop,	ending	back	at	the	line	that	calls
writeTimesTable().

9.	 You’ve	already	seen	this	code	in	action,	so	you	want	to	step	over	this	function.	Well,
no	prizes	for	guessing	that	Step	Over	is	what	you	need	to	do.	Click	the	Step	Over
icon	(or	press	the	F10	key)	and	the	function	executes,	but	without	stepping	through	it
statement	by	statement.	You	should	find	yourself	back	at	the	document.write("
</p>")	line.

Figure	18.9

Figure	18.10

If	you’ve	finished	debugging,	you	can	run	the	rest	of	the	code	without	stepping	through
each	line	by	clicking	the	Continue	icon	(or	pressing	F8)	on	the	toolbar.	You	should	see	a
page	of	times	tables	from	1*1=1	to	11*12=132	in	the	browser.

The	Console
While	you’re	stepping	through	code	and	checking	its	flow	of	execution,	it	would	be	really

useful	to	evaluate	conditions	and	even	to	change	things	on	the	fly.	You	can	do	these	things
using	the	console.
Follow	these	steps:

1.	 Remove	the	previously	set	breakpoint	by	clicking	it	and	set	a	new	breakpoint	at	line
15:

document.write(writeString);

2.	 Let’s	see	how	you	can	find	out	the	value	currently	contained	in	the	variable
writeString.	Reload	the	page.	When	the	debugger	stops	at	the	breakpoint,	click	the
Console	tab	and	type	the	name	of	the	variable	you	want	to	examine,	in	this	case
writeString.	Press	the	Enter	key.	This	causes	the	value	contained	in	the	variable	to
be	printed	below	your	command	in	the	command	window,	as	shown	in	Figure	18.11.

3.	 If	you	want	to	change	a	variable,	you	can	write	a	line	of	JavaScript	into	the	command
window	and	press	Enter.	Try	it	with	the	following	code:

writeString	=	"Changed	on	the	Fly
";

4.	 Click	the	Sources	tab,	remove	the	breakpoint,	and	then	click	the	Continue	icon.	You
see	the	results	of	your	actions:	Where	the	1*1	times	table	result	should	be,	the	text
you	changed	on	the	fly	has	been	inserted.

Figure	18.11

NOTE	This	alteration	does	not	change	your	actual	HTML	source	file.

The	console	can	also	evaluate	conditions.	Set	a	breakpoint	on	line	20	and	reload	the	page.
Leave	execution	stopped	at	the	breakpoint,	and	Step	Into	the	for	loop’s	condition.

Go	to	the	Console,	type	the	following,	and	press	Enter:

timesTable	<=	12

Because	this	is	the	first	time	the	loop	has	been	run,	as	shown	in	Figure	18.12,	timesTable
is	equal	to	1	so	the	condition	timesTable	<=	12	evaluates	to	true.

Figure	18.12

You	can	also	use	the	console	to	access	properties	of	the	BOM	and	DOM.	For	example,	if
you	type	location.href	into	the	console	and	press	Enter,	it	will	tell	you	the	web	page’s
URL.

NOTE	You	can	evaluate	any	JavaScript	in	the	console,	and	it	executes	within	the
scope	of	the	page	and/or	breakpoint.	This	makes	the	console	an	extremely	powerful
tool.

Call	Stack	Window
When	you	are	single-stepping	through	the	code,	the	call	stack	window	keeps	a	running	list
of	which	functions	have	been	called	to	get	to	the	current	point	of	execution	in	the	code.

Let’s	create	an	example	web	page	to	demonstrate	the	call	stack.	Open	your	text	editor	and
type	the	following:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Example	5</title>

</head>

<body>

				<input	type="button"	value="Button"	name="button1"	id="button1"	/>

				<script>

								function	firstCall()	{

												secondCall();

								}

								function	secondCall()	{

												thirdCall();

								}

								function	thirdCall()	{

												//

								}

								function	buttonClick()	{

												debugger;

												firstCall();

								}

								document.getElementById("button1")

																.addEventListener("click",	buttonClick);

				</script>

</body>

</html>

Save	this	file	as	ch18_example5.html	and	open	it	in	Chrome.	You’ll	see	a	page	with	a
simple	button.	With	the	development	tools	open,	click	the	button	and	examine	the	Call
Stack	pane.	You	should	see	something	like	Figure	18.13.

Figure	18.13

Chrome	adds	the	function	to	the	top	of	the	call	stack	for	every	function	call.	It	displays	the
name	of	the	function,	the	file	the	function	resides	in,	and	the	line	number	of	the	currently
executing	statement	within	the	function.	You	can	already	see	that	the	first	function	called
was	buttonClick(),	it	is	inside	ch18_example5.html,	and	the	execution	is	at	line	24.

Now	Step	Into	twice,	and	you’ll	be	taken	inside	the	firstCall()	function.	Once	again,
examine	the	Call	Stack	pane,	and	you’ll	see	something	similar	to	Figure	18.14.

Figure	18.14

You	can	click	each	entry	in	the	Call	Stack	pane	to	examine	where	the	JavaScript	engine	is
currently	executing	in	each	of	the	functions.	If	you	click	the	buttonClick	entry,	the
developer	tools	highlight	line	25,	the	line	inside	of	buttonClick()	that	is	currently
executing.

Now	step	into	secondCall(),	and	another	entry	is	added	to	the	call	stack.	One	more	step
takes	you	into	thirdCall(),	again	with	its	name	being	added	to	the	top	of	the	call	stack.

Step	Into	again,	and	as	you	leave	the	thirdCall()	you	will	see	that	its	corresponding
entry	is	removed	from	the	top	of	the	call	stack.	Yet	another	step	takes	you	out	of
secondCall().	Each	additional	step	takes	you	out	of	a	function	and	removes	its	name
from	the	call	stack,	until	eventually	all	the	code	has	been	executed.

This	demo	page	was	very	simple	to	follow,	but	with	complex	pages,	the	call	stack	can
prove	very	useful	for	tracking	where	you	are,	where	you	have	been,	and	how	you	got
there.

As	mentioned	earlier,	most	other	developer	tools	for	other	browsers	are	similar	to
Chrome’s	developer	tools	in	functionality,	but	as	you’ll	soon	see	with	IE11,	the	tools	can
look	a	bit	different.

Debugging	in	Internet	Explorer
Before	version	8,	developers	had	to	download	and	install	the	Microsoft	Script	Debugger
for	any	type	of	script	debugging.	Thankfully,	Microsoft	built	a	debugger	into	IE8,	and
every	subsequent	version	includes	a	suite	of	tools	to	ease	our	lives.

You	can	access	the	debugger	in	a	couple	of	ways,	the	easiest	being	to	press	the	F12	key.
However,	you	can	also	bring	up	the	development	tools	by	clicking	the	“gear”	menu	and
choosing	the	F12	Developer	Tools	option.

By	default,	the	F12	Developer	Tools	opens	as	a	panel	within	the	browser	window	(Figure
18.15),	but	as	with	Chrome’s	tools,	you	can	pop	it	out	with	the	icon	next	to	the	Close
button.

Figure	18.15

As	you	can	tell	from	Figure	18.15,	IE’s	tools	are	laid	out	much	differently	than	Chrome’s.
On	the	left-hand	side,	you	see	a	list	of	icons.	The	two	we	are	concerned	with	are	the
second	and	third	icons:	the	console	(Figure	18.16)	and	debugger	(Figure	18.17),
respectively.

Figure	18.16

Figure	18.17

As	you	can	see	in	Figure	18.17,	the	debugger	is	made	up	of	two	panels.	The	left	displays
the	source	code	of	the	file,	and	it	uses	a	tabbed	interface	to	display	the	source	of	multiple
files.	If	multiple	files	contain	JavaScript,	you	can	open	them	in	a	new	tab	using	the	file
selection	button.

The	right	panel	contains	two	subpanel	tabs:

Watches:	Lists	the	variables/expressions	and	their	values	you	specify	to	watch	at	the
breakpoint.	This	also	displays	the	variables	in	scope.

Breakpoints/Call	Stack:	Lists	all	breakpoints	that	you’ve	created	for	the	code	in	the
current	page.	You	can	click	“Call	Stack”	to	display	the	call	stack.

Now	load	ch18_example4.html,	and	you’ll	see	the	times	table	in	your	web	page.

Setting	Breakpoints
Creating	a	breakpoint	in	the	F12	Developer	Tools	is	as	simple	and	straightforward	as	it	is
in	Chrome,	except	that	instead	of	clicking	the	line	number,	you	want	to	click	the	gray	area
to	the	left	of	the	line	number	(the	gutter).

Set	a	breakpoint	on	line	12.	Breakpoints	are	denoted	by	a	red	circle	in	the	gutter,	and
notice	that	an	entry	was	added	in	the	list	of	breakpoints	in	the	breakpoints	subpanel
(Figure	18.18).	Each	entry	consists	of	a	checkbox	to	enable/disable	the	breakpoint,	the
filename	of	the	source	file,	and	the	line	number	the	breakpoint	is	on	(it	also	displays	the
column	of	that	line).

Figure	18.18

Adding	Watches
The	Watches	panel	lists	the	variables	and	expressions	you	want	to	watch,	as	well	as	the
variables	in	scope.	Adding	a	watch	is	very	similar	to	Chrome;	simply	click	the	new	watch
icon	and	type	the	variable	or	expression	you	want	to	watch.	Figure	18.19	shows	a	watch
for	the	expression	counter	==	1	when	the	debugger	is	paused	on	line	12.

Figure	18.19

Stepping	through	Code
At	the	top	of	the	debugger	window	is	a	set	of	buttons	that	control	code	execution	(see
Figure	18.20).

Figure	18.20

The	Continue	option	(shortcut	key	F5	or	F8)	continues	code	execution	until	either	the	next

breakpoint	or	the	end	of	all	code.	The	second	option,	Break,	lets	you	pause	execution.	This
is	useful	if	you	find	yourself	in	an	infinite	loop.	Next	are	the	Step	Into	(F11),	Step	Over
(F10),	and	Step	Out	(Shift+11)	buttons.

The	F12	Developer	Tools	debugger	denotes	the	current	line	by	highlighting	the	line	in
yellow	and	adds	a	yellow	arrow	in	the	gutter.	But	unlike	Chrome,	stepping	through	code
does	not	update	the	web	page.	The	JavaScript	executes,	but	you	will	not	see	the	results
until	all	code	is	executed.

The	Console
The	console	logs	JavaScript	errors	and	enables	you	to	execute	code	within	the	context	of
the	line	at	which	the	debugger	is	stopped.	Figure	18.21	shows	the	“Changed	on	the	Fly”
example.

Figure	18.21

Debugging	in	Firefox	with	Firebug
Firefox’s	story	is	an	interesting	one	because	its	toolset	is	relatively	new	to	the	browser.	For
many	years,	Firefox	did	not	have	native	developer	tools.	Instead,	developers	relied	upon	a
Firefox	extension	called	Firebug,	which	was	the	first	suite	of	browser-based	developer
tools.	The	tools	we	use	in	every	browser	today	are	directly	inspired	by	Firebug.

Even	though	Firefox	has	its	own	set	of	built-in	tools,	they	still	lack	a	lot	of	features	found
in	Firebug	(and	other	browsers’	tools).	So	for	this	section,	you	need	to	download	and
install	the	Firebug	extension.

To	install	Firebug,	open	Firefox	and	go	to	http://www.getfirebug.com.	Click	the	Install
button	on	the	web	page	and	follow	the	instructions.	In	most	cases,	you	will	not	need	to

http://www.getfirebug.com

restart	Firefox.

You	can	access	Firebug	by	clicking	the	Firebug	icon	in	the	toolbar	(Figure	18.22).	You	can
also	access	a	dropdown	menu	by	clicking	the	down	arrow	next	to	the	Firebug	icon	to
reveal	additional	settings.	Many	panels	are	disabled	by	default,	so	clicking	on	the	Enable
All	Panels	option	is	very	useful.

Figure	18.22

The	JavaScript	debugger	is	contained	in	the	Script	tab,	and	it	is	made	up	of	two	panels.
The	left	panel	contains	the	source	code,	and	the	right	panel	contains	three	different	views
to	choose	from:	Watch,	Stack,	and	Breakpoints.

Setting	Breakpoints
Creating	breakpoints	in	Firebug	is	easy;	simply	left-click	the	line	number	or	the	gutter.
Breakpoints	are	denoted	by	a	red	circle	in	the	gutter.

The	Breakpoints	tab	in	the	right	pane	displays	the	list	of	breakpoints	you	have	created,	and
it	shows	all	the	information	you	expect:	the	filename,	the	code	at	that	breakpoint,	and	the
line	number.	Figure	18.23	shows	a	breakpoint	on	line	12.

Figure	18.23

Now	click	the	Watch	tab.

Watches
The	Watch	tab	displays	variables	and	their	values	currently	in	scope	at	the	current	line,
and	you	can	add	your	own	watch	by	clicking	“New	watch	expression…,”	typing	the
variable	or	expression	you	want	to	watch,	and	pressing	the	Enter	key.	Watches	that	you
add	have	a	gray	background,	and	moving	your	mouse	over	them	reveals	a	red	Delete
button	(Figure	18.24).

Figure	18.24

Stepping	through	Code
At	the	top	of	the	debugger	window	are	the	icons	for	stepping	through	code	(see	Figure
18.25).

Figure	18.25

The	Continue	button	(F8)	is	first,	followed	by	Step	Into	(F11).	Next	are	the	Step	Over
(F10)	and	Step	Out	(Shift+11)	buttons.

As	you	step	through	code,	you	can	tell	the	current	statement	by	its	yellow	highlight.
Firebug	also	uses	a	yellow	arrow	in	the	gutter	to	indicate	the	current	line.	Like	Chrome,
stepping	through	code	updates	the	web	page.

The	Console
Firebug	provides	a	console	window	with	the	Console	tab	(Figure	18.26),	and	it	works	like
the	console	found	in	Chrome	and	IE.	You	can	inspect	any	variable	or	expression	within
the	context	of	the	scope	or	page,	and	you	can	use	it	to	execute	JavaScript.

Figure	18.26

Debugging	in	Safari
Safari’s	story	is	similar	to	IE’s.	Safari’s	rendering	engine	is	called	Webkit,	and	the	folks
that	write	and	maintain	Webkit	built	a	separate	tool,	codenamed	Drosera,	that	contained
the	tools	similar	to	the	other	browsers.	It	was	a	separate	download,	and	it	required	you	to

attach	it	to	a	specific	Safari/Webkit	window.	Today,	Safari	includes	a	tool	called	Web
Inspector,	and	it	provides	the	functionality	you	would	expect	from	a	browser-based	suite
of	tools.

Safari’s	Web	Inspector	is	disabled	by	default.	To	enable	it,	follow	these	steps:

1.	 Click	the	Settings	menu	button	and	choose	the	Preferences	option	(see	Figure	18.27).

2.	 In	the	Preferences	window,	click	the	Advanced	tab	and	select	the	Show	Develop
Menu	in	Menu	Bar	option	(see	Figure	18.28).	Close	the	Preferences	window.

3.	 Click	the	Settings	menu	button	and	select	the	Show	Menu	Bar	option.	This	displays
the	traditional	menus	at	the	top	of	the	window.

4.	 To	open	the	debugger,	select	Develop	➢	Start	Debugging	JavaScript	from	the	menu
bar.

Figure	18.27

Figure	18.28

Let’s	look	at	the	window	and	identify	the	separate	parts.	Figure	18.29	shows	the
JavaScript	debugger	when	it	was	first	opened	on	the	ch18_example4.html	file.

Figure	18.29

Safari’s	Web	Inspector	looks	a	lot	like	Chrome’s,	doesn’t	it?	That’s	because	Chrome	is
built	using	a	heavily	modified	version	of	WebKit.	The	Scripts	tab	is	much	like	Chrome’s
Sources	tab;	you	can	see	the	code,	watch	expressions,	call	stack,	scope	variables,	and
breakpoints	all	at	one	time.

Setting	Breakpoints
Creating	a	breakpoint	follows	the	same	procedure	in	Web	Inspector	as	Chrome:	Click	the
line	number	at	which	you	want	the	debugger	to	break.	Breakpoints	in	Web	Inspector	are

denoted	by	the	same	blue	tag	used	in	Chrome.	Create	one	on	line	12.	The	breakpoints’
subsection	lists	the	breakpoints	you	create,	and	it	displays	the	same	information	you
expect	it	to.

Adding	Watches
In	earlier	versions,	Web	Inspector	did	not	allow	you	to	add	watches.	But	in	Safari	5,	you
can	create	watches	to	inspect	variables	and	expressions.	Simply	click	the	Add	button	to
create	your	watch.	Figure	18.30	shows	the	watch	counter	==	1	when	the	debugger	is
paused	on	line	12.

Figure	18.30

To	remove	a	watch,	click	the	red	X	next	to	it.

Stepping	through	Code
The	code-stepping	buttons	are	at	the	top	of	the	right	panel	and	underneath	the	search	box
(see	Figure	18.31).

Figure	18.31

These	buttons	perform	the	same	functions	as	the	other	browser	tools.	You	have	the

Continue	button,	followed	by	Step	Over,	then	Step	In,	and	finally	Step	Out.

Like	Chrome	and	Firebug,	Web	Inspector	updates	the	page	as	you	step	through	code.	So
you	can	see	the	results	as	each	line	executes.

The	Console
The	console	serves	the	same	purpose	as	it	does	in	the	previous	tools.	You	can	check	the
value	of	a	variable	by	typing	the	variable	and	pressing	the	Enter	key.	You	can	also	execute
code	in	the	context	of	the	current	line	of	code.	Try	the	“Changed	on	the	Fly”	example	to
see	it	in	action.

SUMMARY
In	this	chapter	you	looked	at	the	less	exciting	part	of	coding,	namely	bugs.	In	an	ideal
world	you’d	get	things	right	the	first	time,	every	time,	but	in	reality	any	code	more	than	a
few	lines	long	is	likely	to	suffer	from	bugs.

You	first	looked	at	some	of	the	more	common	errors,	those	made	not	just	by
JavaScript	beginners,	but	also	by	experts	with	lots	of	experience.

Some	errors	are	not	necessarily	bugs	in	your	code,	but	in	fact	exceptions	to	the
normal	circumstances	that	cause	your	code	to	fail.	You	saw	that	the	try…catch
statements	are	good	for	dealing	with	this	sort	of	error,	and	that	you	can	use	the	catch
clause	with	the	throw	statement	to	deal	with	likely	errors,	such	as	those	caused	by
user	input.	Finally,	you	saw	that	if	you	want	a	block	of	code	to	execute	regardless	of
any	error,	you	can	use	the	finally	clause.

You	looked	at	the	debugging	tools	found	in	Chrome	(and	by	extension	Opera),
Internet	Explorer,	Firebug	for	Firefox,	and	Safari.	With	these	tools	you	can	analyze
code	as	it	executes,	which	enables	you	to	see	its	flow	step	by	step,	and	to	check
variables	and	conditions.	And	although	these	debuggers	have	different	interfaces,
their	principles	are	identical.

EXERCISES
You	can	find	suggested	solutions	to	these	questions	in	Appendix	A.

1.	 The	example	ch18_example4.html	has	a	deliberate	bug.	For	each	times	table	it
creates	only	multipliers	with	values	from	1	to	11.

Use	the	script	debugger	to	work	out	why	this	is	happening,	and	then	correct	the	bug.

2.	 The	following	code	contains	a	number	of	common	errors.	See	if	you	can	spot	them:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Question	2</title>

</head>

<body>

				<form	name="form1"	action="">

								<input	type="text"	id="text1"	name="text1"	/>

								

								CheckBox	1<input	type="checkbox"	id="checkbox2"	name="checkbox2"	/>

								

								CheckBox	1<input	type="checkbox"	id="checkbox1"	name="checkbox1"	/>

								

								<input	type="text"	id="text2"	name="text2"	/>

								<p>

												<input	type="submit"	value="Submit"	id="submit1"	name="submit1"	

/>

								</p>

				</form>

				<script>

								function	checkForm(e)	{

												var	elementCount	=	0;

												var	theForm	=	document.form1;

												while(elementCount	=<=	theForm.length)	{

																if	(theForm.elements[elementcount].type	==	"text")	{

																				if	(theForm.elements[elementCount].value()	=	"")

																								alert("Please	complete	all	form	elements");

																				theForm.elements[elementCount].focus;

																				e.preventDefault();

																				break;

																}

												}

								}

								document.form1.addEventListener("submit",	checkForm);

				</script>

</body>

</html>

A
Answers	to	Exercises
This	appendix	provides	the	answers	to	the	questions	you	find	at	the	end	of	each	chapter	in
this	book.

CHAPTER	2

Exercise	1	Question
Write	a	JavaScript	program	to	convert	degrees	centigrade	into	degrees	Fahrenheit,	and	to
write	the	result	to	the	page	in	a	descriptive	sentence.	The	JavaScript	equation	for
Fahrenheit	to	centigrade	is	as	follows:

degFahren	=	9	/	5	*	degCent	+	32

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2:	Question	1</title>

</head>

<body>

				<script>

								var	degCent	=	prompt("Enter	the	degrees	in	centigrade",	0);

								var	degFahren	=	9	/	5	*	degCent	+	32;

								document.write(degCent	+	"	degrees	centigrade	is	"	+	degFahren	+

											"	degrees	Fahrenheit");

				</script>

</body>

</html>

Save	this	as	ch2_question1.html.

Exercise	2	Question
The	following	code	uses	the	prompt()	function	to	get	two	numbers	from	the	user.	It	then
adds	those	two	numbers	and	writes	the	result	to	the	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2,	Question	2</title>

</head>

<body>

<script>

				var	firstNumber	=	prompt("Enter	the	first	number","");

				var	secondNumber	=	prompt("Enter	the	second	number","");

				var	theTotal	=	firstNumber	+	secondNumber;

				document.write(firstNumber	+	"	added	to	"	+	secondNumber	+

								"	equals	"	+	theTotal);

</script>

</body>

</html>

However,	if	you	try	out	the	code,	you’ll	discover	that	it	doesn’t	work.	Why	not?	Change
the	code	so	that	it	does	work.

Exercise	2	Solution
The	data	that	the	prompt()	actually	obtains	is	a	string.	So	both	firstNumber	and
secondNumber	contain	text	that	happens	to	be	number	characters.	When	you	use	the	+
symbol	to	add	the	two	variables	together,	JavaScript	assumes	that	because	it’s	string	data,
you	must	want	to	concatenate	the	two	and	not	sum	them.

To	make	it	explicit	to	JavaScript	that	you	want	to	add	the	numbers,	you	need	to	convert
the	data	to	numbers	using	the	parseFloat()	function:

var	firstNumber	=	parseFloat(prompt("Enter	the	first	number",""));

var	secondNumber	=	parseFloat(prompt("Enter	the	second	number",""));

var	theTotal	=	firstNumber	+	secondNumber;

document.write(firstNumber	+	"	added	to	"	+	secondNumber	+	"	equals	"	+

			theTotal);

Save	this	as	ch2_question2.html.

Now	the	data	returned	by	the	prompt()	function	is	converted	to	a	floating-point	number
before	being	stored	in	the	firstNumber	and	secondNumber	variables.	Then,	when	you	do
the	addition	that	is	stored	in	theTotal,	JavaScript	makes	the	correct	assumption	that,
because	both	the	variables	are	numbers,	you	must	mean	to	add	them	up	and	not
concatenate	them.

The	general	rule	is	that	where	you	have	expressions	with	only	numerical	data,	the	+
operator	means	“do	addition.”	If	there	is	any	string	data,	the	+	means	concatenate.

CHAPTER	3

Exercise	1	Question
A	junior	programmer	comes	to	you	with	some	code	that	appears	not	to	work.	Can	you	spot
where	he	went	wrong?	Give	him	a	hand	and	correct	the	mistakes.

var	userAge	=	prompt("Please	enter	your	age");

if	(userAge	=	0)	{;

				alert("So	you're	a	baby!");

}	else	if	(userAge	<	0	|	userAge	>	200)

				alert("I	think	you	may	be	lying	about	your	age");

else	{

			alert("That's	a	good	age");

}

Exercise	1	Solution
Oh	dear,	our	junior	programmer	is	having	a	bad	day!	There	are	two	mistakes	on	the	line:

if	(userAge	=	0)	{;

First,	he	has	only	one	equals	sign	instead	of	two	in	the	if’s	condition,	which	means
userAge	will	be	assigned	the	value	of	0	rather	than	userAge	being	compared	to	0.	The
second	fault	is	the	semicolon	at	the	end	of	the	line—statements	such	as	if	and	loops	such
as	for	and	while	don’t	require	semicolons.	The	general	rule	is	that	if	the	statement	has	an
associated	block	(that	is,	code	in	curly	braces),	no	semicolon	is	needed.	So	the	line	should
be:

if	(userAge	==	0)	{

The	next	fault	is	with	these	lines:

else	if	(userAge	<	0	|	userAge	>	200)

			alert("I	think	you	may	be	lying	about	your	age");

else	{

The	junior	programmer’s	condition	is	asking	if	userAge	is	less	than	0	OR	userAge	is
greater	than	200.	The	correct	operator	for	a	boolean	OR	is	│	│,	but	the	programmer	has
only	used	one	|.

Exercise	2	Question
Using	document.write(),	write	code	that	displays	the	results	of	the	12	times	table.	Its
output	should	be	the	results	of	the	calculations.

12	*	1	=	12

12	*	2	=	24

12	*	3	=	36…

12	*	11	=	132

12	*	12	=	144

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	3:	Question	2</title>

</head>

<body>

				<script>

								var	timesTable	=	12;

								for	(var	timesBy	=	1;	timesBy	<	13;	timesBy++)	{

												document.write(timesTable	+	"	*	"	+

																											timesBy	+	"	=	"	+

																											timesBy	*	timesTable	+	"
");

								}

				</script>

</body>

</html>

Save	this	as	ch3_question2.html.

You	use	a	for	loop	to	calculate	from	1	*	12	up	to	12	*	12.	The	results	are	written	to	the
page	with	document.write().	What’s	important	to	note	here	is	the	effect	of	the	order	of
precedence;	the	concatenation	operator	(the	+)	has	a	lower	order	of	precedence	than	the
multiplication	operator,	*.	This	means	that	the	timesBy	*	timesTable	is	done	before	the
concatenation,	which	is	the	result	you	want.	If	this	were	not	the	case,	you’d	have	to	put	the
calculation	in	parentheses	to	raise	its	order	of	precedence.

CHAPTER	4

Exercise	1	Question
Change	the	code	of	Question	2	from	Chapter	3	so	that	it’s	a	function	that	takes	as
parameters	the	times	table	required	and	the	values	at	which	it	should	start	and	end.	For
example,	you	might	try	the	four	times	table	displayed	starting	with	4	*	4	and	ending	at	4
*	9.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	4:	Question	1</title>

</head>

<body>

				<script>

								function	writeTimesTable(timesTable,	timesByStart,	timesByEnd)	{

												for	(;	timesByStart	<=	timesByEnd;	timesByStart++)	{

																document.write(timesTable	+	"	*	"	+	timesByStart	+	"	=	"	+

																			timesByStart	*	timesTable	+	"
");

												}

								}

								writeTimesTable(4,	4,	9);

				</script>

</body>

</html>

Save	this	as	ch4_question1.html.

You’ve	declared	your	function,	calling	it	writeTimesTable(),	and	given	it	three
parameters.	The	first	is	the	times	table	you	want	to	write,	the	second	is	the	start	point,	and
the	third	is	the	number	it	should	go	up	to.

You’ve	modified	your	for	loop.	First	you	don’t	need	to	initialize	any	variables,	so	the
initialization	part	is	left	blank—you	still	need	to	put	a	semicolon	in,	but	there’s	no	code
before	it.	The	for	loop	continues	while	the	timesByStart	parameter	is	less	than	or	equal
to	the	timesByEnd	parameter.	You	can	see	that,	as	with	a	variable,	you	can	modify
parameters—in	this	case,	timesByStart	is	incremented	by	one	for	each	iteration	through
the	loop.

The	code	to	display	the	times	table	is	much	the	same.	For	the	function’s	code	to	be
executed,	you	now	actually	need	to	call	it,	which	you	do	in	the	line:

writeTimesTable(4,	4,	9);

This	will	write	the	4	times	table	starting	at	4	times	4	and	ending	at	9	times	4.

Exercise	2	Question
Modify	the	code	of	Question	1	to	request	the	times	table	to	be	displayed	from	the	user;	the
code	should	continue	to	request	and	display	times	tables	until	the	user	enters	-1.
Additionally,	do	a	check	to	make	sure	that	the	user	is	entering	a	valid	number;	if	the
number	is	not	valid,	ask	the	user	to	re-enter	it.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	4:	Question	2</title>

</head>

<body>

				<script>

								function	writeTimesTable(timesTable,	timesByStart,	timesByEnd)	{

												for	(;	timesByStart	<=	timesByEnd;	timesByStart++)	{

																document.write(timesTable	+	"	*	"	+	timesByStart	+	"	=	"	+

																			timesByStart	*	timesTable	+	"
");

												}

								}

								var	timesTable;

								while	((timesTable	=	prompt("Enter	the	times	table",	-1))	!=	-1)	{

												while	(isNaN(timesTable)	==	true)	{

																timesTable	=	prompt(timesTable	+	"	is	not	a	"	+

																																				"valid	number,	please	retry",	-1);

												}

												if	(timesTable	==	-1)	{

																break;

												}

												document.write("
The	"	+	timesTable	+

																											"	times	table
");

												writeTimesTable(timesTable,	1,	12);

								}

				</script>

</body>

</html>

Save	this	as	ch4_question2.html.

The	function	remains	the	same,	so	let’s	look	at	the	new	code.	The	first	change	from
Question	1	is	that	you	declare	a	variable,	timesTable,	and	then	initialize	it	in	the
condition	of	the	first	while	loop.	This	may	seem	like	a	strange	thing	to	do	at	first,	but	it
does	work.	The	code	in	parentheses	inside	the	while	loop’s	condition:

(timesTable	=	prompt("Enter	the	times	table",-1))

is	executed	first	because	its	order	of	precedence	has	been	raised	by	the	parentheses.	This

will	return	a	value,	and	it	is	this	value	that	is	compared	to	-1.	If	it’s	not	-1,	then	the	while
condition	is	true,	and	the	body	of	the	loop	executes.	Otherwise	it’s	skipped	over,	and
nothing	else	happens	in	this	page.

In	a	second	while	loop	nested	inside	the	first,	you	check	to	see	that	the	value	the	user	has
entered	is	actually	a	number	using	the	function	isNaN().	If	it’s	not,	you	prompt	the	user	to
try	again,	and	this	will	continue	until	a	valid	number	is	entered.

If	the	user	had	entered	an	invalid	value	initially,	then	in	the	second	while	loop,	that	user
may	have	entered	-1,	so	following	the	while	is	an	if	statement	that	checks	to	see	if	-1	has
been	entered.	If	it	has,	you	break	out	of	the	while	loop;	otherwise	the	writeTimesTable()
function	is	called.

CHAPTER	5

Exercise	1	Question
Using	the	Date	type,	calculate	the	date	12	months	from	now	and	write	this	into	a	web
page.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5:	Question	1</title>

</head>

<body>

				<script>

								var	months	=	["Jan",	"Feb",	"Mar",	"Apr",	"May",	"Jun",

																						"Jul",	"Aug",	"Sep",	"Oct",	"Nov",	"Dec"];

								var	nowDate	=	new	Date();

								nowDate.setMonth(nowDate.getMonth()	+	12);

								document.write("Date	12	months	ahead	is	"	+	nowDate.getDate());

								document.write("	"	+	months[nowDate.getMonth()]);

								document.write("	"	+	nowDate.getFullYear());

				</script>

</body>

</html>

Save	this	as	ch5_question1.html.

Because	the	getMonth()	method	returns	a	number	between	0	and	11	for	the	month	rather
than	its	name,	an	array	called	months	has	been	created	that	stores	the	name	of	each	month.
You	can	use	getMonth()	to	get	the	array	index	for	the	correct	month	name.

The	variable	nowDate	is	initialized	to	a	new	Date	object.	Because	no	initial	value	is
specified,	the	new	Date	object	will	contain	today’s	date.

To	add	12	months	to	the	current	date	you	simply	use	setMonth().	You	get	the	current
month	value	with	getMonth(),	and	then	add	12	to	it.

Finally	you	write	the	result	out	to	the	page.

Exercise	2	Question
Obtain	a	list	of	names	from	the	user,	storing	each	name	entered	in	an	array.	Keep	getting
another	name	until	the	user	enters	nothing.	Sort	the	names	in	ascending	order	and	then
write	them	out	to	the	page,	with	each	name	on	its	own	line.

Exercise	2	Solution

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5:	Question	2</title>

</head>

<body>

				<script>

								var	inputName	=	"";

								var	namesArray	=	[];

								while	((inputName	=	prompt("Enter	a	name",	""))	!=	"")	{

												namesArray[namesArray.length]	=	inputName;

								}

								namesArray.sort();

								var	namesList	=	namesArray.join("
");

								document.write(namesList);

				</script>

</body>

</html>

Save	this	as	ch5_question2.html.

First	you	declare	two	variables:	inputName,	which	holds	the	name	entered	by	the	user,	and
namesArray,	which	holds	an	Array	object	that	stores	each	of	the	names	entered.

You	use	a	while	loop	to	keep	getting	another	name	from	the	user	as	long	as	the	user	hasn’t
left	the	prompt	box	blank.	Note	that	the	use	of	parentheses	in	the	while	condition	is
essential.	By	placing	the	following	code	inside	parentheses,	you	ensure	that	this	is
executed	first	and	that	a	name	is	obtained	from	the	user	and	stored	in	the	inputName
variable:

	(inputName	=	prompt("Enter	a	name",""))

Then	you	compare	the	value	returned	inside	the	parentheses—whatever	was	entered	by
the	user—with	an	empty	string	(denoted	by	"").	If	they	are	not	equal—that	is,	if	the	user
did	enter	a	value,	you	loop	around	again.

Now,	to	sort	the	array	into	order,	you	use	the	sort()	method	of	the	Array	object:

namesArray.sort();

Finally,	to	create	a	string	containing	all	values	contained	in	the	array	elements	with	each
being	on	a	new	line,	you	use	the	HTML	
	element	and	write	the	following:

var	namesList	=	namesArray.join("
")

document.write(namesList);

The	code	namesArray.join("
")	creates	the	string	where	a	
	is	between	each
element	in	the	array.	Finally,	you	write	the	string	into	the	page	with	document.write().

Exercise	3	Question

Example	8	uses	a	function	to	create	objects	using	literal	notation.	Modify	this	example	to
use	the	Person	data	type.

Exercise	3	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	5,	Question	3</title>

</head>

<body>

				<script>

								function	Person(firstName,	lastName)	{

												this.firstName	=	firstName;

												this.lastName	=	lastName;

								}

								Person.prototype.getFullName	=	function	()	{

												return	this.firstName	+	"	"	+	this.lastName;

								};

								Person.prototype.greet	=	function	(person)	{

												alert("Hello,	"	+	person.getFullName()	+

																		".	I'm	"	+	this.getFullName());

								};

								var	johnDoe	=	new	Person("John",	"Doe");

								var	janeDoe	=	new	Person("Jane",	"Doe");

								johnDoe.greet(janeDoe);

				</script>

</body>

</html>

Save	this	as	ch5_question3.html.

This	is	a	simple	matter	of	replacing	the	createPerson()	function	with	the	Person
reference	type	you	defined	at	the	end	of	Chapter	5.

To	create	your	Person	objects,	you	use	the	new	operator	when	calling	the	Person
constructor	function,	passing	in	the	first	and	last	names	of	the	people	you	want	to
represent.

CHAPTER	6

Exercise	1	Question
What	problem	does	the	following	code	solve?

var	myString	=	"This	sentence	has	has	a	fault	and	and	we	need	to	fix	it."

var	myRegExp	=	/(\b\w+\b)	\1/g;

myString	=	myString.replace(myRegExp,	"$1");

Now	imagine	that	you	change	that	code,	so	that	you	create	the	RegExp	object	like	this:

var	myRegExp	=	new	RegExp("(\b\w+\b)	\1");

Why	would	this	not	work,	and	how	could	you	rectify	the	problem?

Exercise	1	Solution
The	problem	is	that	the	sentence	has	“has	has”	and	“and	and”	inside	it,	clearly	a	mistake.
A	lot	of	word	processors	have	an	autocorrect	feature	that	fixes	common	mistakes	like	this,
and	what	your	regular	expression	does	is	mimic	this	feature.

So	the	erroneous	myString:

“This	sentence	has	has	a	fault	and	and	we	need	to	fix	it.”

will	become:

“This	sentence	has	a	fault	and	we	need	to	fix	it.”

Let’s	look	at	how	the	code	works,	starting	with	the	regular	expression:

/(\b\w+\b)	\1/g;

By	using	parentheses,	you	have	defined	a	group,	so	(\b\w+\b)	is	group	1.	This	group
matches	the	pattern	of	a	word	boundary	followed	by	one	or	more	alphanumeric	characters,
that	is,	a–z,	A–Z,	0–9,	and	_,	followed	by	a	word	boundary.	Following	the	group	you	have
a	space	then	\1.	What	\1	means	is	match	exactly	the	same	characters	as	were	matched	in
pattern	group	1.	So,	for	example,	if	group	1	matched	“has,”	then	\1	will	match	“has”	as
well.	It’s	important	to	note	that	\1	will	match	the	exact	previous	match	by	group	1.	So
when	group	1	then	matches	the	“and,”	the	\1	now	matches	“and”	and	not	the	“has”	that
was	previously	matched.

You	use	the	group	again	in	your	replace()	method;	this	time	the	group	is	specified	using
the	$	symbol,	so	$1	matches	group	1.	It’s	this	that	causes	the	two	matched	“has”	and	“and”
to	be	replaced	by	just	one.

Turning	to	the	second	part	of	the	question,	how	do	you	need	to	change	the	following	code
so	that	it	works?

var	myRegExp	=	new	RegExp("(\b\w+\b)	\1");

Easy;	now	you	are	using	a	string	passed	to	the	RegExp	object’s	constructor,	and	you	need
to	use	two	slashes	(\\)	rather	than	one	when	you	mean	a	regular	expression	syntax
character,	like	this:

var	myRegExp	=	new	RegExp("(\\b\\w+\\b)	\\1","g");

Notice	you’ve	also	passed	a	g	to	the	second	parameter	to	make	it	a	global	match.

Exercise	2	Question
Write	a	regular	expression	that	finds	all	of	the	occurrences	of	the	word	“a”	in	the
following	sentence	and	replaces	them	with	“the”:

“a	dog	walked	in	off	a	street	and	ordered	a	finest	beer”

The	sentence	should	become:

“the	dog	walked	in	off	the	street	and	ordered	the	finest	beer”

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6:	Question	2</title>

</head>

<body>

				<script>

								var	myString	=	"a	dog	walked	in	off	a	street	and	"	+

																							"ordered	a	finest	beer";

								var	myRegExp	=	/\ba\b/gi;

								myString	=	myString.replace(myRegExp,	"the");

								alert(myString);

				</script>

</body>

</html>

Save	this	as	ch6_question2.html.

With	regular	expressions,	it’s	often	not	just	what	you	want	to	match,	but	also	what	you
don’t	want	to	match	that	is	a	problem.	Here	you	want	to	match	the	letter	a,	so	why	not	just
write:

var	myRegExp	=	/a/gi;

Well,	that	would	work,	but	it	would	also	replace	the	“a”	in	“walked,”	which	you	don’t
want.	You	want	to	replace	the	letter	“a”	but	only	where	it’s	a	word	on	its	own	and	not
inside	another	word.	So	when	does	a	letter	become	a	word?	The	answer	is	when	it’s
between	two	word	boundaries.	The	word	boundary	is	represented	by	the	regular
expression	special	character	\b	so	the	regular	expression	becomes:

var	myRegExp	=	/\ba\b/gi;

The	gi	at	the	end	ensures	a	global,	case-insensitive	search.

Now	with	your	regular	expression	created,	you	can	use	it	in	the	replace()	method’s	first
parameter:

myString	=	myString.replace(myRegExp,"the");

Exercise	3	Question
Imagine	you	have	a	website	with	a	message	board.	Write	a	regular	expression	that	would
remove	barred	words.	(You	can	make	up	your	own	words!)

Exercise	3	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	6:	Question	3</title>

</head>

<body>

				<script>

								var	myRegExp	=	/(sugar)?candy|choc(olate|oholic)?/gi;

								var	myString	=	"Mmm,	I	love	chocolate,	I'm	a	chocoholic.	"	+

											"I	love	candy	too,	sweet,	sugar	candy";

								myString	=	myString.replace(myRegExp,"salad");

								alert(myString);

				</script>

</body>

</html>

Save	this	as	ch6_question3.html.

For	this	example,	pretend	you’re	creating	script	for	a	board	on	a	dieting	site	where	text
relating	to	candy	is	barred	and	will	be	replaced	with	a	much	healthier	option,	salad.

The	barred	words	are

chocolate

choc

chocoholic

sugar	candy

candy

Let’s	examine	the	regular	expression	to	remove	the	offending	words:

1.	 Start	with	the	two	basic	words,	so	to	match	“choc”	or	“candy,”	you	use:

candy|choc

2.	 Add	the	matching	for	“sugar	candy.”	Because	the	“sugar”	bit	is	optional,	you	group	it

by	placing	it	in	parentheses	and	adding	the	“?”	after	it.	This	means	match	the	group
zero	times	or	one	time:

	(sugar)?candy|choc

3.	 You	need	to	add	the	optional	“olate”	and	“oholic”	end	bits.	You	add	these	as	a	group
after	the	“choc”	word	and	again	make	the	group	optional.	You	can	match	either	of	the
endings	in	the	group	by	using	the	|	character:

	(sugar)?candy|choc(olate|oholic)?/gi

4.	 You	then	declare	it	as:

			var	myRegExp	=	/(sugar)?candy|choc(olate|oholic)?/gi

The	gi	at	the	end	means	the	regular	expression	will	find	and	replace	words	on	a	global,
case-insensitive	basis.

So,	to	sum	up:

/(sugar)?candy|choc(olate|oholic)?/gi

reads	as:

Either	match	zero	or	one	occurrences	of	“sugar”	followed	by	“candy.”	Or	alternatively
match	“choc”	followed	by	either	one	or	zero	occurrences	of	“olate”	or	match	“choc”
followed	by	zero	or	one	occurrence	of	“oholic.”

Finally,	the	following:

			myString	=	myString.replace(myRegExp,"salad");

replaces	the	offending	words	with	“salad”	and	sets	myString	to	the	new	clean	version:

	"Mmm,	I	love	salad,	I'm	a	salad.	I	love	salad	too,	sweet,	salad."

CHAPTER	7

Exercise	1	Question
Create	a	page	that	gets	the	user’s	date	of	birth.	Then,	using	that	information,	tell	her	on
what	day	of	the	week	she	was	born.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	7:	Question	1</title>

</head>

<body>

				<script>

								var	days	=	["Sunday",	"Monday",	"Tuesday",	"Wednesday",

																				"Thursday",	"Friday",	"Saturday"];

								var	year	=	prompt("Enter	the	four	digit	year	you	were	born.");

								var	month	=	prompt("Enter	your	birth	month	(1	-	12).");

								var	date	=	prompt("Enter	the	day	you	were	born.");

								var	birthDate	=	new	Date(year,	month	-	1,	date);

								alert(days[birthDate.getDay()]);

				</script>

</body>

</html>

Save	this	as	ch7_question1.html.

The	solution	is	rather	simple.	You	create	a	new	Date	object	based	on	the	year,	month,	and
day	entered	by	the	user.	Then	you	get	the	day	of	the	week	using	the	Date	object’s
getDay()	method.	This	returns	a	number,	but	by	defining	an	array	of	days	of	the	week	to
match	this	number,	you	can	use	the	value	of	getDay()	as	the	index	to	your	days	array.

Exercise	2	Question
Create	a	web	page	similar	to	Example	4,	but	make	it	display	only	the	hour,	minutes,	and
seconds.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	7,	Question	2</title>

</head>

<body>

				<div	id="output"></div>

				<script>

								function	updateTime()	{

												var	date	=	new	Date();

												var	value	=	date.getHours()	+	":"	+

																								date.getMinutes()	+	":"	+

																								date.getSeconds();

												document.getElementById("output").innerHTML	=	value;

								}

								setInterval(updateTime,	1000);

				</script>

</body>

</html>

Save	this	as	ch7_question2.html.

Displaying	only	the	hour,	minutes,	and	seconds	is	an	easy	task;	it	just	requires	a	little	extra
code.	You	modify	the	updateTime()	function	to	first	create	a	Date	object	to	get	the	time
information	from.

var	date	=	new	Date();

Then	you	build	a	string	in	hh:mm:ss	format:

var	value	=	date.getHours()	+	":"	+

												date.getMinutes()	+	":"	+

												date.getSeconds();

Finally,	you	output	that	string	to	the	page:

document.getElementById("output").innerHTML	=	value;

CHAPTER	8

Exercise	1	Question
Create	two	pages,	one	called	legacy.html	and	the	other	called	modern.html.	Each	page
should	have	a	heading	telling	you	what	page	is	loaded.	For	example:

<h2>Welcome	to	the	Legacy	page.	You	need	to	upgrade!</h2>

Using	feature	detection	and	the	location	object,	send	browsers	that	do	not	support
geolocation	to	legacy.html;	send	browsers	that	do	support	geolocation	to	modern.html.

Exercise	1	Solution
The	modern.html	page	is	as	follows:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2:	Question	1</title>

</head>

<body>

				<h2>Welcome	to	the	Modern	page!</h2>

				<script>

								if	(!navigator.geolocation)	{

												location.replace("legacy.html");

								}

				</script>

</body>

</html>

The	legacy.html	page	is	very	similar:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	2:	Question	1</title>

</head>

<body>

				<h2>Welcome	to	the	Legacy	page.	You	need	to	upgrade!</h2>

				<script>

								if	(navigator.geolocation)	{

												location.replace("modern.html");

								}

				</script>

</body>

</html>

These	two	pages	are	incredibly	simple.	Starting	with	the	legacy.html	page,	you	check	if
navigator.geolocation	is	a	truthy	value:

if	(navigator.geolocation)	{

				location.replace("modern.html");

}

If	it	is,	you	redirect	the	user	to	the	modern.html	page.	Note	that	you	use	replace()	rather
than	href,	because	you	don’t	want	the	user	to	be	able	to	click	the	browser’s	Back	button.
This	way	it’s	less	easy	to	spot	that	a	new	page	is	being	loaded.

The	modern.html	page	is	almost	identical,	except	that	in	your	if	statement	you	check	if
navigator.geolocation	is	falsey:

if	(!navigator.geolocation)	{

				location.replace("legacy.html");

}

If	so,	you	redirect	to	legacy.html.

Exercise	2	Question
Modify	Example	3	to	display	one	of	the	four	images	randomly.	Hint:	refer	to	Chapter	5
and	the	Math.random()	method.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	8,	Question	2</title>

</head>

<body>

				

				<script>

								function	getRandomNumber(min,	max)	{

												return	Math.floor(Math.random()	*	max)	+	min;

								}

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								var	random	=	getRandomNumber(0,	myImages.length);

								document.images[0].src	=	myImages[random];

				</script>

</body>

</html>

Save	this	as	ch8_question2.html.

The	key	to	this	solution	is	getting	a	random	number	between	0	and	the	length	of	the

myImages	array,	and	writing	a	function	to	generate	a	random	number	would	greatly	help
with	that.	So,	you	write	a	function	called	getRandomNumber():

function	getRandomNumber(min,	max)	{

				return	Math.floor(Math.random()	*	max)	+	min;

}

It	generates	a	random	number	within	the	range	of	min	and	max.	The	algorithm	was	copied
from	Chapter	5.

Now	you	can	use	getRandomNumber()	to	generate	a	number	for	you,	passing	0	as	the	min
and	the	length	of	the	array	as	the	max:

var	random	=	getRandomNumber(0,	myImages.length);

You	then	use	the	random	number	to	get	the	image:

								document.images[0].src	=	myImages[random];

CHAPTER	9

Exercise	1	Question
Here’s	some	HTML	code	that	creates	a	table.	Re-create	this	table	using	only	JavaScript
and	the	core	DOM	objects	to	generate	the	HTML.	Test	your	code	in	all	browsers	available
to	you	to	make	sure	it	works	in	them.	Hint:	Comment	each	line	as	you	write	it	to	keep
track	of	where	you	are	in	the	tree	structure,	and	create	a	new	variable	for	every	element	on
the	page	(for	example,	not	just	one	for	each	of	the	TD	cells	but	nine	variables).

<table>

				<tr>

								<td>Car</td>

								<td>Top	Speed</td>

								<td>Price</td>

				</tr>

				<tr>

								<td>Chevrolet</td>

								<td>120mph</td>

								<td>$10,000</td>

				</tr>

				<tr>

								<td>Pontiac</td>

								<td>140mph</td>

								<td>$20,000</td>

				</tr>

</table>

Exercise	1	Solution
It	seems	a	rather	daunting	example,	but	rather	than	being	difficult,	it	is	just	a	conjunction
of	two	areas,	one	building	a	tree	structure	and	the	other	navigating	the	tree	structure.	You
start	at	the	<body/>	element	and	create	a	<table/>	element.	Now	you	can	navigate	to	the
new	<table/>	element	you’ve	created	and	create	a	new	<tr/>	element	and	carry	on	from
there.	It’s	a	lengthy,	repetitious,	and	tedious	process,	so	that’s	why	it’s	a	good	idea	to
comment	your	code	to	keep	track	of	where	you	are.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9:	Question	1</title>

</head>

<body>

<script>

var	tableElem	=	document.createElement("table");

var	trElem1	=	document.createElement("tr");

var	trElem2	=	document.createElement("tr");

var	trElem3	=	document.createElement("tr");

var	tdElem1	=	document.createElement("td");

var	tdElem2	=	document.createElement("td");

var	tdElem3	=	document.createElement("td");

var	tdElem4	=	document.createElement("td");

var	tdElem5	=	document.createElement("td");

var	tdElem6	=	document.createElement("td");

var	tdElem7	=	document.createElement("td");

var	tdElem8	=	document.createElement("td");

var	tdElem9	=	document.createElement("td");

var	textNodeA1	=	document.createTextNode("Car");

var	textNodeA2	=	document.createTextNode("Top	Speed");

var	textNodeA3	=	document.createTextNode("Price");

var	textNodeB1	=	document.createTextNode("Chevrolet");

var	textNodeB2	=	document.createTextNode("120mph");

var	textNodeB3	=	document.createTextNode("$10,000");

var	textNodeC1	=	document.createTextNode("Pontiac");

var	textNodeC2	=	document.createTextNode("140mph");

var	textNodeC3	=	document.createTextNode("$14,000");

var	docNavigate	=	document.body;		//Starts	with	body	element

docNavigate.appendChild(tableElem);						//Adds	the	table	element

docNavigate	=	docNavigate.lastChild;					//Moves	to	the	table	element

docNavigate.appendChild(trElem1);								//Adds	the	TR	element

docNavigate	=	docNavigate.firstChild;				//Moves	the	TR	element

docNavigate.appendChild(tdElem1);								//Adds	the	first	TD	element	in	the

																																												//	heading

docNavigate.appendChild(tdElem2);								//Adds	the	second	TD	element	in	

the

																																												//	heading

docNavigate.appendChild(tdElem3);								//Adds	the	third	TD	element	in	the

																																												//	heading

docNavigate	=	docNavigate.firstChild;				//Moves	to	the	first	TD	element

docNavigate.appendChild(textNodeA1);					//Adds	the	second	text	node

docNavigate	=	docNavigate.nextSibling;			//Moves	to	the	next	TD	element

docNavigate.appendChild(textNodeA2);					//Adds	the	second	text	node

docNavigate	=	docNavigate.nextSibling;			//Moves	to	the	next	TD	element

docNavigate.appendChild(textNodeA3);					//Adds	the	third	text	node

docNavigate	=	docNavigate.parentNode;				//Moves	back	to	the	TR	element

docNavigate	=	docNavigate.parentNode;				//Moves	back	to	the	table	element

docNavigate.appendChild(trElem2);								//Adds	the	second	TR	element

docNavigate	=	docNavigate.lastChild;					//Moves	to	the	second	TR	element

docNavigate.appendChild(tdElem4);								//Adds	the	TD	element

docNavigate.appendChild(tdElem5);								//Adds	the	TD	element

docNavigate.appendChild(tdElem6);								//Adds	the	TD	element

docNavigate	=	docNavigate.firstChild;				//Moves	to	the	first	TD	element

docNavigate.appendChild(textNodeB1);					//Adds	the	first	text	node

docNavigate	=	docNavigate.nextSibling;			//Moves	to	the	next	TD	element

docNavigate.appendChild(textNodeB2);					//Adds	the	second	text	node

docNavigate	=	docNavigate.nextSibling;			//Moves	to	the	next	TD	element

docNavigate.appendChild(textNodeB3);					//Adds	the	third	text	node

docNavigate	=	docNavigate.parentNode;				//Moves	back	to	the	TR	element

docNavigate	=	docNavigate.parentNode;				//Moves	back	to	the	table	element

docNavigate.appendChild(trElem3);								//Adds	the	TR	element

docNavigate	=	docNavigate.lastChild;					//Moves	to	the	TR	element

docNavigate.appendChild(tdElem7);								//Adds	the	TD	element

docNavigate.appendChild(tdElem8);								//Adds	the	TD	element

docNavigate.appendChild(tdElem9);								//Adds	the	TD	element

docNavigate	=	docNavigate.firstChild;				//Moves	to	the	TD	element

docNavigate.appendChild(textNodeC1);					//Adds	the	first	text	node

docNavigate	=	docNavigate.nextSibling;			//Moves	to	the	next	TD	element

docNavigate.appendChild(textNodeC2);					//Adds	the	second	text	node

docNavigate	=	docNavigate.nextSibling;			//Moves	to	the	next	TD	element

docNavigate.appendChild(textNodeC3);					//Adds	the	third	text	node

</script>

</body>

</html>

Save	this	as	ch9_question1.html.

Exercise	2	Question
Modify	Example	6	so	that	the	amount	of	pixels	moved	in	either	direction	is	controlled	by
a	global	variable.	Call	it	direction.	Remove	the	switchDirection	variable,	and	change
the	code	to	use	the	new	direction	variable	to	determine	when	the	animation	should
change	directions.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	9,	Question	2</title>

				<style>

								#divAdvert	{

												position:	absolute;

												font:	12px	Arial;

												top:	4px;

												left:	0px;

								}

				</style>

</head>

<body>

				<div	id="divAdvert">

								Here	is	an	advertisement.

				</div>

				<script>

								var	direction	=	2;

								function	doAnimation()	{

												var	divAdvert	=	document.getElementById("divAdvert");

												var	currentLeft	=	divAdvert.offsetLeft;

												if	(currentLeft	>	400	||	currentLeft	<	0)	{

																direction	=	-direction;

												}

												var	newLocation	=	currentLeft	+	direction;

												divAdvert.style.left	=	newLocation	+	"px";

								}

								setInterval(doAnimation,	10);

				</script>

</body>

</html>

Save	this	as	ch9_question2.html.

This	modification	sounds	complex	at	first,	but	it	actually	simplifies	the	doAnimation()
function	because	one	variable	is	responsible	for:

the	amount	of	pixels	moved

the	direction	the	element	is	moved

First,	you	remove	the	switchDirection	variable	and	create	a	new	one	called	direction,
initializing	it	with	the	value	of	2:

var	direction	=	2;

Then	inside	the	doAnimation()	function,	you	change	the	value	of	direction	when	the
<div/>	element	reaches	one	of	its	bounds	(0	pixels	or	400	pixels):

if	(currentLeft	>	400	||	currentLeft	<	0)	{

				direction	=	-direction;

}

The	new	direction	value	is	simple;	you	simply	make	direction	negative.	So	if
direction	is	positive,	it	becomes	negative.	If	direction	is	negative,	it	becomes	positive
(remember:	a	negative	times	a	negative	is	a	positive).

You	then	calculate	the	new	left	position	and	change	the	element’s	style:

var	newLocation	=	currentLeft	+	direction;

divAdvert.style.left	=	newLocation	+	"px";

CHAPTER	10

Exercise	1	Question
Add	a	method	to	the	event	utility	object	called	isOldIE()	that	returns	a	boolean	value
indicating	whether	or	not	the	browser	is	old-IE.

Exercise	1	Solution
var	evt	=	{

				addListener:	function(obj,	type,	fn)	{

								if	(typeof	obj.addEventListener	!=	"undefined")	{

												obj.addEventListener(type,	fn);

								}	else	{

												obj.attachEvent("on"	+	type,	fn);

								}

				},

				removeListener:	function(obj,	type,	fn)	{

								if	(typeof	obj.removeEventListener	!=	"undefined")	{

												obj.removeEventListener(type,	fn);

								}	else	{

												obj.detachEvent("on"	+	type,	fn);

								}

				},

				getTarget:	function(e)	{

								if	(e.target)	{

												return	e.target;

								}

								return	e.srcElement;

				},

				preventDefault	:	function(e)	{

								if	(e.preventDefault)	{

												e.preventDefault();

								}	else	{

												e.returnValue	=	false;

								}

				},

				isOldIE:	function()	{

								return	typeof	document.addEventListener	==	"undefined";

				}

};

Save	this	as	ch10_question1.html.

You	have	many	ways	to	determine	if	the	browser	is	an	older	version	of	Internet	Explorer.
Your	author	chose	to	check	if	document.addEventListener()	is	undefined.	IE9+	supports
the	method,	whereas	IE8	and	below	do	not.

Exercise	2	Question

Example	15	exhibits	some	behavior	inconsistencies	between	standards-compliant
browsers	and	old-IE.	Remember	that	the	event	handlers	execute	in	reverse	order	in	old-IE.
Modify	this	example	to	use	the	new	isOldIE()	method	so	that	you	can	write	specific	code
for	old-IE	and	standards-compliant	browsers	(hint:	you	will	call	the	addListener()
method	four	times).

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Question	2</title>

</head>

<body>

				

				<div	id="status"></div>

				<script	src="ch10_question1.js"></script>

				<script>

								var	myImages	=	[

												"usa.gif",

												"canada.gif",

												"jamaica.gif",

												"mexico.gif"

];

								function	changeImg(e)	{

												var	el	=	evt.getTarget(e);

												var	newImgNumber	=	Math.round(Math.random()	*	3);

												while	(el.src.indexOf(myImages[newImgNumber])	!=	-1)	{

																newImgNumber	=	Math.round(Math.random()	*	3);

												}

												el.src	=	myImages[newImgNumber];

								}

								function	updateStatus(e)	{

												var	el	=	evt.getTarget(e);

												var	status	=	document.getElementById("status");

												status.innerHTML	=	"The	image	changed	to	"	+	el.src;

												if	(el.src.indexOf("mexico")	>	-1)	{

																evt.removeListener(el,	"click",	changeImg);

																evt.removeListener(el,	"click",	updateStatus);

												}

								}

								var	imgObj	=	document.getElementById("img0");

								if	(evt.isOldIE())	{

												evt.addListener(imgObj,	"click",	updateStatus);

												evt.addListener(imgObj,	"click",	changeImg);

								}	else	{

												evt.addListener(imgObj,	"click",	changeImg);

												evt.addListener(imgObj,	"click",	updateStatus);

								}

				</script>

</body>

</html>

Save	this	as	ch10_question2.html.

The	majority	of	the	code	is	identical	to	Example	15.	The	only	difference	is	how	you
register	the	event	listeners.	With	your	new	isOldIE()	method,	you	can	register	the	click
event	listeners	in	the	correct	order	(for	old-IE).	For	standards-compliant	browsers,	you
register	the	event	listeners	in	the	same	order	as	Example	15.

Exercise	3	Question
Example	17	had	you	write	a	cross-browser	tab	script,	but	as	you	probably	noticed,	it
behaves	peculiarly.	The	basic	idea	is	there,	but	the	tabs	remain	active	as	you	click	another
tab.	Modify	the	script	so	that	only	one	tab	is	active	at	a	time.

Exercise	3	Solution
Example	17	is	incomplete	because	the	script	doesn’t	keep	track	of	which	tab	is	active.
Probably	the	simplest	way	to	add	state	recognition	to	the	script	is	to	add	a	global	variable
that	keeps	track	of	the	tab	that	was	last	clicked.	This	particular	solution	uses	this	idea.
Changed	lines	of	code	are	highlighted.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	10:	Question	3</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

								.tabStrip	div	{

												float:	left;

												font:	14px	arial;

												cursor:	pointer;

								}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script	src="ch10_question1.js"></script>

				<script>

								var	activeTab	=	null;

								function	handleEvent(e)	{

												var	target	=	evt.getTarget(e);

												switch	(e.type)	{

												case	"mouseover":

																if	(target.className	==	"tabStrip-tab")	{

																				target.className	=	"tabStrip-tab-hover";

																}

																break;

												case	"mouseout":

																if	(target.className	==	"tabStrip-tab-hover")	{

																				target.className	=	"tabStrip-tab";

																}

																break;

												case	"click":

																if	(target.className	==	"tabStrip-tab-hover")	{

																				if	(activeTab)	{

																								activeTab.className	=	"tabStrip-tab";

																				}

																				var	num	=	target.getAttribute("data-tab-number");

																				target.className	=	"tabStrip-tab-click";

																				showDescription(num);

																				activeTab	=	target;

																}

																break;

												}

								}

								function	showDescription(num)	{

												var	descContainer	=	document.getElementById("descContainer");

												var	text	=	"Description	for	Tab	"	+	num;

												descContainer.innerHTML	=	text;

								}

								evt.addListener(document,	"mouseover",	handleEvent);

								evt.addListener(document,	"mouseout",	handleEvent);

								evt.addListener(document,	"click",	handleEvent);

				</script>

</body>

</html>

Save	this	as	ch10_question3.html.

This	solution	starts	with	a	new	global	variable	called	activeTab.	Its	purpose	is	to	contain
a	reference	to	the	tab	element	that	was	last	clicked,	and	you	initialize	it	as	null.

When	you	click	a	tab	element,	you	first	need	to	deactivate	the	currently	active	tab:

if	(activeTab)	{

				activeTab.className	=	"tabStrip-tab";

}

To	do	that,	you	first	check	if	you	have	an	active	tab,	and	if	so,	you	set	its	className
property	back	to	the	original	tabStrip-tab.	Then	after	you	activate	the	new	tab,	you
assign	it	to	the	activeTab	variable:

activeTab	=	target;

Simple,	but	effective.

CHAPTER	11

Exercise	1	Question
Using	the	code	from	the	temperature	converter	example	you	saw	in	Chapter	2,	create	a
user	interface	for	it	and	connect	it	to	the	existing	code	so	that	the	user	can	enter	a	value	in
degrees	Fahrenheit	and	convert	it	to	centigrade.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Question	1</title>

</head>

<body>

				<form	action=""	name="form1">

								<p>

												<input	type="text"	name="txtCalcBox"	value="0.0"	/>

								</p>

								<input	type="button"	value="Convert	to	centigrade"

															id="btnToCent"	name="btnToCent"	/>

				</form>

				<script>

								function	convertToCentigrade(degFahren)	{

												var	degCent	=	5	/	9	*	(degFahren	-	32);

												return	degCent;

								}

								function	btnToCentClick()	{

												var	calcBox	=	document.form1.txtCalcBox;

												if	(isNaN(calcBox.value)	==	true	||	calcBox.value	==	"")	{

																calcBox.value	=	"Error	Invalid	Value";

												}	else	{

																calcBox.value	=	convertToCentigrade(calcBox.value);

												}

								}

								document.getElementById("btnToCent")

																.addEventListener("click",	btnToCentClick);

				</script>

</body>

</html>

Save	this	as	ch11_question1.html.

The	interface	part	is	simply	a	form	containing	a	text	box	into	which	users	enter	the
Fahrenheit	value	and	a	button	they	click	to	convert	that	value	to	centigrade.	The	button
has	a	click	event	listener	that	executes	btnToCentClick()	when	the	event	fires.

The	first	line	of	btnToCentClick()	declares	a	variable	and	sets	it	to	reference	the	object
representing	the	text	box:

			var	calcBox	=	document.form1.txtCalcBox;

Why	do	this?	Well,	in	your	code	when	you	want	to	use	document.form1.txtCalcBox,	you
can	now	just	use	the	much	shorter	calcBox;	it	saves	typing	and	keeps	your	code	shorter
and	easier	to	read.

So:

alert(document.form1.txtCalcBox.value);

is	the	same	as:

alert(calcBox.value);

In	the	remaining	part	of	the	function	you	do	a	sanity	check—if	what	the	user	has	entered	is
a	number	(that	is,	it	is	not	NotANumber)	and	the	text	box	does	contain	a	value,	you	use	the
Fahrenheit-to-centigrade	conversion	function	you	saw	in	Chapter	2	to	do	the	conversion,
the	results	of	which	are	used	to	set	the	text	box’s	value.

Exercise	2	Question
Create	a	user	interface	that	allows	users	to	pick	the	computer	system	of	their	dreams,
similar	in	principle	to	the	e-commerce	sites	selling	computers	over	the	Internet.	For
example,	they	could	be	given	a	choice	of	processor	type,	speed,	memory,	and	hard	drive
size,	and	the	option	to	add	additional	components	like	a	DVD-ROM	drive,	a	sound	card,
and	so	on.	As	the	users	change	their	selections,	the	price	of	the	system	should	update
automatically	and	notify	them	of	the	cost	of	the	system	as	they	specified	it,	either	by	using
an	alert	box	or	by	updating	the	contents	of	a	text	box.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	11:	Question	2</title>

</head>

<body>

				<form	action=""	name="form1">

								<p>

												Choose	the	components	you	want	included	on	your	computer

								</p>

								<p>

												<label	for="cboProcessor">Processor</label>

												<select	name="cboProcessor"	id="cboProcessor">

																<option	value="100">Dual-core	2GHz</option>

																<option	value="101">Quad-core	2.4GHz</option>

																<option	value="102">Eight-core	3GHz</option>

												</select>

								</p>

								<p>

												<label	for="cboSsd">Solid-state	Drive</label>

												<select	name="cboSsd"	id="cboSsd">

																<option	value="200">250GB</option>

																<option	value="201">512GB</option>

																<option	value="202">1TB</option>

												</select>

								</p>

								<p>

												<label	for="chkDVD">DVD-ROM</label>

												<input	type="checkbox"	id="chkDVD"	name="chkDVD"	value="300"	/>

								</p>

								<p>

												<label	for="chkBluRay">Blu-ray</label>

												<input	type="checkbox"	id="chkBluRay"	name="chkBluRay"

																			value="301"	/>

								</p>

								<fieldset>

												<legend>Case</legend>

												<p>

																<label	for="desktop">Desktop</label>

																<input	type="radio"	id="desktop"

																							name="radCase"	checked	value="400"	/>

												</p>

												<p>

																<label	for="minitower">Mini-tower</label>

																<input	type="radio"	id="minitower"

																							name="radCase"	value="401"	/>

												</p>

												<p>

																<label	for="fulltower">Full-tower</label>

																<input	type="radio"	id="fulltower"

																							name="radCase"	value="402"	/>

												</p>

								</fieldset>

								<p>

												<input	type="button"	value="Update"

																			id="btnUpdate"	name="btnUpdate"	/>

								</p>

								<p>

												<label	for="txtOrder">Order	Summary:</label>

								</p>

								<p>

												<textarea	rows="20"	cols="35"	id="txtOrder"

																						name="txtOrder"></textarea>

								</p>

				</form>

				<script>

								var	productDb	=	[];

								productDb[100]	=	150;

								productDb[101]	=	350;

								productDb[102]	=	700;

								productDb[200]	=	100;

								productDb[201]	=	200;

								productDb[202]	=	500;

								productDb[300]	=	50;

								productDb[301]	=	75;

								productDb[400]	=	75;

								productDb[401]	=	50;

								productDb[402]	=	100;

								function	getDropDownInfo(element)	{

												var	selected	=	element[element.selectedIndex];

												return	{

																text:	selected.text,

																price:	productDb[selected.value]

												};

								}

								function	getCheckboxInfo(element)	{

												return	{

																checked:	element.checked,

																price:	productDb[element.value]

												};

								}

								function	getRadioInfo(elements)	{

												for	(var	i	=	0;	i	<	elements.length;	i++)	{

																if	(!elements[i].checked)	{

																				continue;

																}

																var	selected	=	elements[i];

																var	label	=	document.querySelector(

																															"[for="	+	selected.id	+	"]");

																return	{

																				text:	label.innerHTML,

																				price:	productDb[selected.value]

																};

												}

								}

								function	btnUpdateClick()	{

												var	total	=	0;

												var	orderDetails	=	"";

												var	theForm	=	document.form1;

												var	selectedProcessor	=	getDropDownInfo(theForm.cboProcessor);

												total	=	selectedProcessor.price;

												orderDetails	=	"Processor	:	"	+	selectedProcessor.text;

												orderDetails	=	orderDetails	+	"	$"	+

																											selectedProcessor.price	+	"\n";

												var	selectedSsd	=	getDropDownInfo(theForm.cboSsd);

												total	=	total	+	selectedSsd.price;

												orderDetails	=	orderDetails	+	"Solid-state	Drive	:	"	+

																											selectedSsd.text;

												orderDetails	=	orderDetails	+	"	$"	+	selectedSsd.price	+	"\n";

												var	dvdInfo	=	getCheckboxInfo(theForm.chkDVD);

												if	(dvdInfo.checked)	{

																total	=	total	+	dvdInfo.price;

																orderDetails	=	orderDetails	+	"DVD-ROM	:	$"	+

																				dvdInfo.price	+	"\n";

												}

												var	bluRayInfo	=	getCheckboxInfo(theForm.chkBluRay);

												if	(bluRayInfo.checked)	{

																total	=	total	+	bluRayInfo.price;

																orderDetails	=	orderDetails	+	"Blu-ray	:	$"	+

																				bluRayInfo.price	+	"\n";

												}

												var	caseInfo	=	getRadioInfo(theForm.radCase);

												total	=	total	+	caseInfo.price;

												orderDetails	=	orderDetails	+	caseInfo.text	+	"	:	$"	+

																				caseInfo.price;

												orderDetails	=	orderDetails	+	"\n\nTotal	Order	Cost	is	"	+

																											"$"	+	total;

												theForm.txtOrder.value	=	orderDetails;

								}

								document.getElementById("btnUpdate")

																.addEventListener("click",	btnUpdateClick);

								</script>

				</script>

</body>

</html>

Save	this	as	ch11_question2.html.

This	is	just	one	of	many	ways	to	tackle	this	question—you	may	well	have	thought	of	a
better	way.

Here	you	are	displaying	the	results	of	the	user’s	selection	as	text	in	a	textarea	box,	with
each	item	and	its	cost	displayed	on	separate	lines	and	a	final	total	at	the	end.

Each	form	element	has	a	value	set	to	hold	a	stock	ID	number.	For	example,	a	full	tower
case	is	stock	ID	402.	The	actual	cost	of	the	item	is	held	in	an	array	called	productDb.	Why
not	just	store	the	price	in	the	value	attribute	of	each	form	element?	Well,	this	way	is	more
flexible.	Currently	your	array	just	holds	price	details	for	each	item,	but	you	could	modify

it	that	so	it	holds	more	data—for	example	price,	description,	number	in	stock,	and	so	on.
Also,	if	this	form	is	posted	to	a	server	the	values	passed	will	be	stock	IDs,	which	you
could	then	use	for	a	lookup	in	a	stock	database.	If	the	values	were	set	to	prices	and	the
form	was	posted,	you’d	have	no	way	of	telling	what	the	customer	ordered—all	you’d
know	is	how	much	it	all	cost.

This	solution	includes	an	Update	button	which,	when	clicked,	updates	the	order	details	in
the	textarea	box.	However,	you	may	want	to	add	event	handlers	to	each	form	element
and	update	when	anything	changes.

Turning	to	the	function	that	actually	displays	the	order	summary,	btnUpdateClick(),	you
can	see	that	there	is	a	lot	of	code,	and	although	it	looks	complex,	it’s	actually	fairly
simple.	A	lot	of	it	is	repeated	with	slight	modification.	It	also	relies	upon	several	helper
functions	to	pull	various	information	from	the	selected	form	elements.

To	save	on	typing	and	make	the	code	a	little	more	readable,	this	solution	declares	the
theForm	variable	to	contain	the	Form	object	After	the	variable’s	declaration,	you	then	find
out	which	processor	has	been	selected	and	get	its	cost	and	text	with	the
getDropDownInfo()	function:

function	getDropDownInfo(element)	{

				var	selected	=	element[element.selectedIndex];

				return	{

								text:	selected.text,

								price:	productDb[selected.value]

				};

}

The	selectedIndex	property	tells	you	which	Option	object	inside	the	select	control	has
been	selected	by	the	user.	You	return	a	new	object	that	contains	the	selected	Option’s	text
and	the	price	from	the	product	database.

So	to	get	the	processor	information,	you	pass	theForm.cboProcessor	to
getDropDownInfo()	and	assign	the	resulting	object	to	selectedProcessor.	You	then
calculate	the	total	and	update	the	order	details:

var	selectedProcessor	=	getDropDownInfo(theForm.cboProcessor);

total	=	selectedProcessor.price;

orderDetails	=	"Processor	:	"	+	selectedProcessor.text;

orderDetails	=	orderDetails	+	"	$"	+	selectedProcessor.price	+	"\n";

The	same	principle	applies	when	you	find	the	selected	solid-state	drive,	so	let’s	turn	next
to	the	check	boxes	for	the	optional	extra	items,	looking	first	at	the	DVD-ROM	check	box:

var	dvdInfo	=	getCheckboxInfo(theForm.chkDVD);

if	(dvdInfo.checked)	{

				total	=	total	+	dvdInfo.price;

				orderDetails	=	orderDetails	+	"DVD-ROM	:	$"	+

								dvdInfo.price	+	"\n";

}

Again,	you	use	a	helper	function—this	one’s	called	getCheckboxInfo()—to	retrieve	the
information	about	the	given	check	box:

function	getCheckboxInfo(element)	{

				return	{

								checked:	element.checked,

								price:	productDb[element.value]

				};

}

This	returns	a	new	object	that	tells	you	the	price	of	the	component,	as	well	as	if	the	check
box	is	checked.

If	the	check	box	is	checked,	you	add	a	DVD-ROM	to	the	order	details	and	update	the
running	total.	The	same	principle	applies	for	the	Blu-ray	check	box.

Finally,	you	have	the	computer’s	case.	Because	only	one	case	type	out	of	the	options	can
be	selected,	you	used	a	radio	button	group.	Unfortunately,	there	is	no	selectedIndex	for
radio	buttons	as	there	is	for	check	boxes,	so	you	have	to	go	through	each	radio	button	in
turn	and	find	out	if	it	has	been	selected.	The	getRadioInfo()	helper	function	does	just
that:

function	getRadioInfo(elements)	{

				for	(var	i	=	0;	i	<	elements.length;	i++)	{

								if	(!elements[i].checked)	{

												continue;

								}

								var	selected	=	elements[i];

								var	label	=	document.querySelector("[for="	+	selected.id	+	"]");

								return	{

												text:	label.innerHTML,

												price:	productDb[selected.value]

								};

				}

}

It	loops	through	the	radio	button	group	and	checks	each	radio	button’s	checked	property.
If	it’s	false,	the	loop	iterates	with	the	continue	operator.	But	if	the	radio	button	is
checked,	you	need	to	get	the	text	associated	with	the	label	for	the	selected	radio	button	and
the	component’s	price	from	the	productDb	array.

So,	inside	the	btnUpdateClick()	function,	you	can	use	this	helper	function	to	get
everything	you	need	to	add	the	selected	computer	case	to	the	total	and	description:

var	caseInfo	=	getRadioInfo(theForm.radCase);

total	=	total	+	caseInfo.price;

orderDetails	=	orderDetails	+	caseInfo.text	+	"	:	$"	+

								caseInfo.price;

Finally,	set	the	textarea	to	the	details	of	the	system	the	user	has	selected:

orderDetails	=	orderDetails	+	"\n\nTotal	Order	Cost	is	"	+	total;

theForm.txtOrder.value	=	orderDetails;

CHAPTER	12

Exercise	1	Question
The	code	for	alerting	a	single	message	in	Example	1	isn’t	very	exciting.	Modify	the	code
to	display	a	random	message	from	a	set	of	three	possible	messages.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	12:	Question	1</title>

				<style>

								[data-drop-target]	{

												height:	400px;

												width:	200px;

												margin:	2px;

												background-color:	gainsboro;

												float:	left;

								}

								.drag-enter	{

												border:	2px	dashed	#000;

								}

								.box	{

												width:	200px;

												height:	200px;

								}

								.navy	{

												background-color:	navy;

								}

								.red	{

												background-color:	red;

								}

				</style>

</head>

<body>

				<div	data-drop-target="true">

								<div	id="box1"	draggable="true"	class="box	navy"></div>

								<div	id="box2"	draggable="true"	class="box	red"></div>

				</div>

				<div	data-drop-target="true"></div>

				<script>

								function	getRandomMessage()	{

												var	messages	=	[

																"You	moved	an	element!",

																"Moved	and	element,	you	have!	Mmmmmmm?",

																"Element	overboard!"

];

												return	messages[Math.floor((Math.random()	*	3)	+	0)];

								}

								function	handleDragStart(e)	{

												var	data	=	{

																elementId:	this.id,

																message:	getRandomMessage()

												};

												e.dataTransfer.setData("text",	JSON.stringify(data));

								}

								function	handleDragEnterLeave(e)	{

												if	(e.type	==	"dragenter")	{

																this.className	=	"drag-enter";

												}	else	{

																this.className	=	"";

												}

								}

								function	handleOverDrop(e)	{

												e.preventDefault();

												if	(e.type	!=	"drop")	{

																return;

												}

												var	json	=	e.dataTransfer.getData("text");

												var	data	=	JSON.parse(json);

												var	draggedEl	=	document.getElementById(data.elementId);

												if	(draggedEl.parentNode	==	this)	{

																this.className	=	"";

																return;

												}

												draggedEl.parentNode.removeChild(draggedEl);

												this.appendChild(draggedEl);

												this.className	=	"";

												alert(data.message);

								}

								var	draggable	=	document.querySelectorAll("[draggable]");

								var	targets	=	document.querySelectorAll("[data-drop-target]");

								for	(var	i	=	0;	i	<	draggable.length;	i++)	{

												draggable[i].addEventListener("dragstart",	handleDragStart);

								}

								for	(i	=	0;	i	<	targets.length;	i++)	{

												targets[i].addEventListener("dragover",	handleOverDrop);

												targets[i].addEventListener("drop",	handleOverDrop);

												targets[i].addEventListener("dragenter",	handleDragEnterLeave);

												targets[i].addEventListener("dragleave",	handleDragEnterLeave);

								}

				</script>

</body>

</html>

Save	this	as	ch12_question1.html.

This	solution	is	rather	simple.	It	introduces	a	new	function	called	getRandomMessage(),
which	returns	one	of	three	messages:

function	getRandomMessage()	{

				var	messages	=	[

								"You	moved	an	element!",

								"Moved	and	element,	you	have!	Mmmmmmm?",

								"Element	overboard!"

];

				return	messages[Math.floor((Math.random()	*	3)	+	0)];

}

And	you	use	this	function	when	you	assign	the	message	property	to	the	data	object	in
handleDragStart():

var	data	=	{

				elementId:	this.id,

				message:	getRandomMessage()

};

Sadly,	this	solution	still	doesn’t	add	much	excitement	to	the	example.	But	some	is	better
than	none,	right?

CHAPTER	13

Exercise	1	Question
Using	local	storage,	create	a	page	that	keeps	track	of	how	many	times	the	page	has	been
visited	by	the	user	in	the	last	month.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	13:	Question	1</title>

</head>

<body>

				<script>

								var	pageViewCount	=	localStorage.getItem("pageViewCount");

								var	pageFirstVisited	=	localStorage.getItem("pageFirstVisited");

								var	now	=	new	Date();

								if	(pageViewCount	==	null)	{

												pageViewCount	=	0;

												pageFirstVisited	=	now.toUTCString();

								}

								var	oneMonth	=	new	Date(pageFirstVisited);

								oneMonth.setMonth(oneMonth.getMonth()	+	1);

								if	(now	>	oneMonth)	{

												pageViewCount	=	0;

												pageFirstVisited	=	now.toUTCString();

								}

								pageViewCount	=	parseInt(pageViewCount,	10)	+	1;

								localStorage.setItem("pageViewCount",	pageViewCount);

								localStorage.setItem("pageFirstVisited",	pageFirstVisited);

								var	output	=	"You've	visited	this	page	"	+	pageViewCount	+

												"	times	since	"	+	pageFirstVisited;

								document.write(output);

				</script>

</body>

</html>

Save	this	as	ch13_question1.html.

The	first	two	lines	get	two	values	from	localStorage	and	store	them	in	variables.	The
first	holds	the	number	of	visits,	the	second	the	date	the	page	was	first	visited.	You	also
create	a	variable	to	contain	the	current	date:

var	pageViewCount	=	localStorage.getItem("pageViewCount");

var	pageFirstVisited	=	localStorage.getItem("pageFirstVisited");

var	now	=	new	Date();

If	the	pageViewCount	key	does	not	exist	in	localStorage,	the	variable	of	the	same	name
is	null,	and	you’ll	need	to	initialize	the	pageViewcount	and	pageFirstVisited	variables
with	0	and	the	current	date,	respectively.	Remember	that	localStorage	contains	only
string	data,	so	you	use	the	Date	object’s	toUTCString()	method	to	convert	the	date	to	a
string:

if	(pageViewCount	==	null)	{

				pageViewCount	=	0;

				pageFirstVisited	=	now.toUTCString();

}

You’re	only	tracking	the	number	of	visits	within	a	month’s	time	span.	So,	next	you	need	a
variable	to	contain	a	Date	object	one	month	from	the	first	visit:

var	oneMonth	=	new	Date(pageFirstVisited);

oneMonth.setMonth(oneMonth.getMonth()	+	1);

If	the	current	date	and	time	is	later	than	oneMonth,	it’s	time	to	reset	the	counter	and	visited
variables:

if	(now	>	oneMonth)	{

				pageViewCount	=	0;

				pageFirstVisited	=	now.toUTCString();

}

Then	you	increment	the	counter	and	store	it	and	the	first	visit	value	in	localStorage:

pageViewCount	=	parseInt(pageViewCount,	10)	+	1;

localStorage.setItem("pageViewCount",	pageViewCount);

localStorage.setItem("pageFirstVisited",	pageFirstVisited);

Finally,	write	information	to	the	page:

var	output	=	"You've	visited	this	page	"	+	pageViewCount	+

				"	times	since	"	+	pageFirstVisited;

document.write(output);

Exercise	2	Question
Use	cookies	to	load	a	different	advertisement	every	time	a	user	visits	a	web	page.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	13:	Question	2</title>

</head>

<body>

				<script>

								var	ads	=	[

												"Buy	Product	A!	You	won't	be	sorry!",

												"You	need	Product	B!	Buy	buy	buy!",

												"Don't	buy	Product	A	or	B!	Product	C	is	the	only	option	for	

you!"

];

								function	getRandomNumber(min,	max)	{

												return	Math.floor((Math.random()	*	max)	+	min);

								}

								var	lastAdNumber	=	localStorage.getItem("lastAdNumber");

								var	nextNumber	=	getRandomNumber(0,	ads.length);

								if	(lastAdNumber	==	null)	{

												lastAdNumber	=	nextNumber;

								}	else	{

												lastAdNumber	=	parseInt(lastAdNumber,	10);

												while	(lastAdNumber	==	nextNumber)	{

																nextNumber	=	getRandomNumber(0,	ads.length);

												}

								}

								localStorage.setItem("lastAdNumber",	nextNumber);

								document.write(ads[nextNumber]);

				</script>

</body>

</html>

Save	this	as	ch13_question2.html.

This	solution	is	loosely	based	on	similar	questions	in	previous	chapters	where	you	have
displayed	random	images	or	messages.	In	this	case	you	display	a	different	message	in	the
page	each	time	the	user	visits	it;	you’ll	never	see	the	same	message	displayed	two	times	in
a	row	in	the	same	browser.

You	store	the	last	number	of	the	previously	displayed	ad	in	localStorage	with	the	key
lastAdNumber.	So,	you	retrieve	that	value	and	generate	the	next	number	with	a
getRandomNumber()	helper	function	(you	know	this	algorithm):

var	lastAdNumber	=	localStorage.getItem("lastAdNumber");

var	nextNumber	=	getRandomNumber(0,	ads.length);

If	lastAdNumber	is	null,	you	can	use	the	value	in	nextNumber:

if	(lastAdNumber	==	null)	{

				lastAdNumber	=	nextNumber;

}

But	if	lastAdNumber	is	not	null,	you	need	to	generate	a	random	number	that	is	not
lastAdNumber.	So	first,	you	convert	lastAdNumber	to	a	number	with	the	parseInt()

function:

	else	{

				lastAdNumber	=	parseInt(lastAdNumber,	10);

				while	(lastAdNumber	==	nextNumber)	{

								nextNumber	=	getRandomNumber(0,	ads.length);

				}

}

Then	you	use	a	while	loop	to	generate	a	unique	random	number.	The	loop	iterates	if
lastAdNumber	is	equal	to	nextNumber,	and	it	continues	to	do	so	until	the	next	number	is
different	than	lastAdNumber.

Once	you	have	a	unique	next	number,	you	store	it	in	localStorage	and	display	the	ad	in
the	page:

localStorage.setItem("lastAdNumber",	nextNumber);

document.write(ads[nextNumber]);

CHAPTER	14

Exercise	1	Question
Extend	the	HttpRequest	module	to	include	synchronous	requests	in	addition	to	the
asynchronous	requests	the	module	already	makes.	You’ll	have	to	make	some	adjustments
to	your	code	to	incorporate	this	functionality.	(Hint:	Create	an	async	property	for	the
module.)

Exercise	1	Solution
function	HttpRequest(url,	callback)	{

				this.url	=	url;

				this.callBack	=	callback;

				this.async	=	true;

				this.request	=	new	XMLHttpRequest();

};

HttpRequest.prototype.send	=	function()	{

				this.request.open("GET",	this.url,	this.async);

				if	(this.async)	{

								var	tempRequest	=	this.request;

								var	callback	=	this.callBack;

								function	requestReadystatechange()	{

												if	(tempRequest.readyState	==	4)	{

																if	(tempRequest.status	==	200)	{

																				callback(tempRequest.responseText);

																}	else	{

																				alert("An	error	occurred	while	attempting	to	"	+

																								"contact	the	server.");

																}

												}

								}

								this.request.onreadystatechange	=	requestReadystatechange;

				}

				this.request.send(null);

				if	(!this.async)	{

								this.callBack(this.request.responseText);

				}

};

It’s	possible	to	add	synchronous	communication	to	your	HttpRequest	module	in	a	variety
of	ways.	The	approach	in	this	solution	refactors	the	code	to	accommodate	a	new	property
called	async,	which	contains	either	true	or	false.	If	it	contains	true,	the	underlying
XMLHttpRequest	object	uses	asynchronous	communication	to	retrieve	the	file.	If	false,
the	module	uses	synchronous	communication.

The	first	change	made	to	the	module	is	in	the	constructor	itself.	The	original	constructor
initializes	and	readies	the	XMLHttpRequest	object	to	send	data.	This	will	not	do	for	this
new	version,	however.	Instead,	the	constructor	merely	initializes	all	the	properties:

function	HttpRequest(url,	callback)	{

				this.url	=	url;

				this.callBack	=	callback;

				this.async	=	true;

				this.request	=	new	XMLHttpRequest();

};

You	have	three	new	properties	here.	The	first,	url,	contains	the	URL	that	the
XMLHttpRequest	object	should	attempt	to	request	from	the	server.	The	callBack	property
contains	a	reference	to	the	callback	function,	and	the	async	property	determines	the	type
of	communication	the	XMLHttpRequest	object	uses.	Setting	async	to	true	in	the
constructor	gives	the	property	a	default	value.	Therefore,	you	can	send	the	request	in
asynchronous	mode	without	setting	the	property	externally.

The	new	constructor	and	properties	are	actually	desirable,	because	they	enable	you	to
reuse	the	same	HttpRequest	object	for	multiple	requests.	If	you	wanted	to	make	a	request
to	a	different	URL,	all	you	would	need	to	do	is	assign	the	url	property	a	new	value.	The
same	can	be	said	for	the	callback	function	as	well.

The	majority	of	changes	to	the	module	are	in	the	send()	method.	It	is	here	that	the	module
decides	whether	to	use	asynchronous	or	synchronous	communication.	Both	types	of
communication	have	very	little	in	common	when	it	comes	to	making	a	request;
asynchronous	communication	uses	the	onreadystatechange	event	handler,	and
synchronous	communication	allows	access	to	the	XMLHttpRequest	object’s	properties
when	the	request	is	complete.	Therefore,	code	branching	is	required:

HttpRequest.prototype.send	=	function()	{

				this.request.open("GET",	this.url,	this.async);

				if	(this.async)	{

								//more	code	here

				}

				this.request.send(null);

				if	(!this.async)	{

								//more	code	here

				}

}

The	first	line	of	this	method	uses	the	open()	method	of	the	XMLHttpRequest	object.	The
async	property	is	used	as	the	final	parameter	of	the	method.	This	determines	whether	or
not	the	XHR	object	uses	asynchronous	communication.	Next,	an	if	statement	tests	to	see
if	this.async	is	true;	if	it	is,	the	asynchronous	code	will	be	placed	in	this	if	block.	Next,
the	XMLHttpRequest	object’s	send()	method	is	called,	sending	the	request	to	the	server.
The	final	if	statement	checks	to	see	whether	this.async	is	false.	If	it	is,	synchronous
code	is	placed	within	the	code	block	to	execute.

HttpRequest.prototype.send	=	function()	{

				this.request.open("GET",	this.url,	this.async);

				if	(this.async)	{

								var	tempRequest	=	this.request;

								var	callback	=	this.callBack;

								function	requestReadystatechange()	{

												if	(tempRequest.readyState	==	4)	{

																if	(tempRequest.status	==	200)	{

																				callback(tempRequest.responseText);

																}	else	{

																				alert("An	error	occurred	while	attempting	to	"	+

																								"contact	the	server.");

																}

												}

								}

								this.request.onreadystatechange	=	requestReadystatechange;

				}

				this.request.send(null);

				if	(!this.async)	{

								this.callBack(this.request.responseText);

				}

};

This	new	code	finishes	off	the	method.	Starting	with	the	first	if	block,	a	new	variable
called	callback	is	assigned	the	value	of	this.callBack.	This	is	done	for	the	same
reasons	as	with	the	tempRequest	variable—scoping	issues—because	this	points	to	the
requestReadystatechange()	function	instead	of	the	HttpRequest	object.	Other	than	this
change,	the	asynchronous	code	remains	the	same.	The	requestReadystatechange()
function	handles	the	readystatechange	event	and	calls	the	callback	function	when	the
request	is	successful.

The	second	if	block	is	much	simpler.	Because	this	code	executes	only	if	synchronous
communication	is	desired,	all	you	have	to	do	is	call	the	callback	function	and	pass	the
XMLHttpRequest	object’s	responseText	property.

Using	this	newly	refactored	module	is	quite	simple.	The	following	code	makes	an
asynchronous	request	for	a	fictitious	text	file	called	test.txt:

function	requestCallback(responseText)	{

				alert(responseText);

}

var	http	=	new	HttpRequest("test.txt",	requestCallback);

http.send();

Nothing	has	really	changed	for	asynchronous	requests.	This	is	the	exact	same	code	used
earlier	in	the	chapter.	If	you	want	to	use	synchronous	communication,	simply	set	async	to
false,	like	this:

function	requestCallback(responseText)	{

				alert(responseText);

}

var	http	=	new	HttpRequest("test.txt",	requestCallback);

http.async	=	false;

http.send();

You	now	have	an	Ajax	module	that	requests	information	in	both	asynchronous	and
synchronous	communication!

Exercise	2	Question
It	was	mentioned	earlier	in	the	chapter	that	you	could	modify	the	smart	forms	to	not	use
hyperlinks.	Change	the	form	that	uses	the	HttpRequest	module	so	that	the	Username	and
Email	fields	are	checked	when	the	user	submits	the	form.	Listen	for	the	form’s	submit
event	and	cancel	the	submission	if	a	username	or	e-mail	is	taken.

Exercise	2	Solution
First,	a	disclaimer:	Ideally,	the	service	provided	by	ch14_formvalidator.php	should
allow	you	to	check	both	the	username	and	e-mail	address	with	a	single	request.	That
would	greatly	simplify	this	solution.	However,	sometimes	you	need	to	make	multiple
requests,	and	each	request	is	sometimes	dependent	upon	the	outcome	of	a	previous
request.	This	question	and	solution	is	meant	to	emulate	that.

Additionally,	issuing	multiple	(and	linked)	asynchronous	operations	is	a	rather	complex
ordeal—a	condition	referred	to	”callback	hell.”	You’ll	get	a	taste	of	that	in	this	solution.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	14:	Question	2</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form	name="theForm">

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	id="btnSubmit"	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="ch14_question1.js"></script>

				<script>

								function	btnSubmitClick(e)	{

												e.preventDefault();

												checkUsername();

								}

								function	checkUsername()	{

												var	userValue	=	document.getElementById("username").value;

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	url	=	"ch14_formvalidator.php?username="	+	userValue;

												var	request	=	new	HttpRequest(url,	handleUsernameResponse);

												request.send();

								}

								function	checkEmail()	{

												var	emailValue	=	document.getElementById("email").value;

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	url	=	"ch14_formvalidator.php?email="	+	emailValue;

												var	request	=	new	HttpRequest(url,	handleEmailResponse);

												request.send();

								}

								function	handleUsernameResponse(responseText)	{

												var	response	=	JSON.parse(responseText);

												if	(!response.available)	{

																alert("The	username	"	+	response.searchTerm	+

																						"	is	unavailable.	Try	another.");

																return;

												}

												checkEmail();

								}

								function	handleEmailResponse(responseText)	{

												var	response	=	JSON.parse(responseText);

												if	(!response.available)	{

																alert("The	email	address	"	+	response.searchTerm	+

																						"	is	unavailable.	Try	another.");

																return;

												}

												document.theForm.submit();

								}

								document.getElementById("btnSubmit")

																.addEventListener("click",	btnSubmitClick);

				</script>

</body>

</html>

Save	this	as	ch14_question2.html.

In	the	HTML,	notice	that	the	links	for	checking	the	username	and	e-mail	address	are	gone.
There	is	no	need	for	them,	because	those	values	are	checked	when	the	user	clicks	the
Submit	button.	The	last	statement	of	the	JavaScript	code	registers	that	event	listener:

document.getElementById("btnSubmit")

								.addEventListener("click",	btnSubmitClick);

The	function	that	handles	the	button’s	click	event	is	called	btnSubmitClick().	It’s	a
simple	function	that	kicks	off	the	whole	process:

function	btnSubmitClick(e)	{

				e.preventDefault();

				checkUsername();

}

Its	first	statement	prevents	the	form	from	submitting.	This	is	important	because,	due	to	the
nature	of	asynchronous	processes,	btnSubmitClick()	cannot	be	responsible	for
submitting	the	form.	Therefore,	another	function	will	need	to	submit	the	form	if	both	the
username	and	e-mail	address	validate	and	are	available.

The	second	statement	calls	checkUsername(),	which	is	left	mostly	unchanged:

function	checkUsername()	{

				var	userValue	=	document.getElementById("username").value;

				if	(!userValue)	{

								alert("Please	enter	a	user	name	to	check!");

								return;

				}

				var	url	=	"ch14_formvalidator.php?username="	+	userValue;

				var	request	=	new	HttpRequest(url,	handleUsernameResponse);

				request.send();

}

In	fact,	the	only	change	to	this	function	is	the	callback	passed	to	the	HttpRequest
constructor.	It’s	a	new	callback	function	called	handleUsernameResponse(),	and	it
somewhat	resembles	the	original	handleResponse()	function:

function	handleUsernameResponse(responseText)	{

				var	response	=	JSON.parse(responseText);

				if	(!response.available)	{

								alert("The	username	"	+	response.searchTerm	+

														"	is	unavailable.	Try	another.");

								return;

				}

				checkEmail();

}

This	function	takes	the	response	and	parses	it	into	a	JavaScript	object.	If	the	username	is
not	available,	it	displays	the	error	message	to	the	user	and	returns.	Nothing	else	is
processed	when	the	username	is	unavailable,	but	if	it	is	available,	it	calls	checkEmail():

function	checkEmail()	{

				var	emailValue	=	document.getElementById("email").value;

				if	(!emailValue)	{

								alert("Please	enter	an	email	address	to	check!");

								return;

				}

				var	url	=	"ch14_formvalidator.php?email="	+	emailValue;

				var	request	=	new	HttpRequest(url,	handleEmailResponse);

				request.send();

}

This	function	is	also	largely	the	same.	The	only	difference	is	the	callback	function	passed
to	the	HttpRequest	constructor;	it’s	called	handleEmailResponse().	It	parses	the	request,
and	it	is	the	last	step	in	the	process:

function	handleEmailResponse(responseText)	{

				var	response	=	JSON.parse(responseText);

				if	(!response.available)	{

								alert("The	email	address	"	+	response.searchTerm	+

														"	is	unavailable.	Try	another.");

								return;

				}

				document.theForm.submit();

}

Once	again,	if	the	e-mail	address	is	not	available,	this	function	displays	the	error	message
to	the	user	and	returns.	But	if	the	e-mail	address	is	available,	the	form	is	finally	submitted.

CHAPTER	15

Exercise	1	Question
Being	able	to	control	playback	is	cool,	but	your	custom	UI	needs	to	also	control	volume.
Add	an	<input	type="range"	/>	element	to	Example	3	to	control	the	volume.
Remember	that	the	range	of	volume	supported	by	media	elements	is	0.0	to	1.0.	Look	back
at	Chapter	11	if	you	need	a	refresher	of	the	range	input	type.	This	unfortunately	will	not
work	in	IE.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	15:	Question	1</title>

</head>

<body>

				<div>

								<button	id="playbackController">Play</button>

								<button	id="muteController">Mute</button>

								<input	type="range"	id="volumeController"

															min="0"	max="1"	step=".1"	value="1"/>

				</div>

				<video	id="bbbVideo">

								<source	src="bbb.mp4"	/>

								<source	src="bbb.webm"	/>

				</video>

				<script>

								function	pauseHandler(e)	{

												playButton.innerHTML	=	"Resume";

								}

								function	playingHandler(e)	{

												playButton.innerHTML	=	"Pause";

								}

								function	volumechangeHandler(e)	{

												muteButton.innerHTML	=	video.muted	?	"Unmute"	:	"Mute";

								}

								function	playbackClick(e)	{

												video.paused	?	video.play()	:	video.pause();

								}

								function	muteClick(e)	{

												video.muted	=	!video.muted;

								}

								function	volumeInput(e)	{

												video.volume	=	volumeSlider.value;

								}

								var	video	=	document.getElementById("bbbVideo");

								var	playButton	=	document.getElementById("playbackController");

								var	muteButton	=	document.getElementById("muteController");

								var	volumeSlider	=	document.getElementById("volumeController");

								video.addEventListener("pause",	pauseHandler);

								video.addEventListener("playing",	playingHandler);

								video.addEventListener("volumechange",	volumechangeHandler);

								playButton.addEventListener("click",	playbackClick);

								muteButton.addEventListener("click",	muteClick);

								volumeSlider.addEventListener("input",	volumeInput);

				</script>

</body>

</html>

Save	this	as	ch15_question1.html.

This	solution	is	built	on	Example	3.	The	additions	are	highlighted	for	your	convenience.

The	volume	will	be	controlled	by	an	<input/>	element:

<input	type="range"	id="volumeController"

							min="0"	max="1"	step=".1"	value="1"/>

It’s	a	range	control,	and	it’s	set	to	a	minimum	value	of	0,	a	maximum	value	of	1,	and	the
step	is	.1.	Its	initial	value	is	set	to	1,	meaning	full	volume.

In	the	JavaScript	code,	you	retrieve	this	element	and	store	it	in	the	volumeSlider	variable:

var	volumeSlider	=	document.getElementById("volumeController");

And	you	register	an	input	event	listener:

volumeSlider.addEventListener("input",	volumeInput);

The	volumeInput()	function	handles	this	event,	and	it	is	responsible	for	setting	the
media’s	volume	to	the	slider’s	corresponding	value:

function	volumeInput(e)	{

				video.volume	=	volumeSlider.value;

}

Exercise	2	Question
Add	another	range	form	control	to	Question	1’s	answer,	and	program	it	to	seek	the	media.
It	should	also	update	as	the	media	plays.	Use	the	durationchange	event	to	set	the	slider’s
max	value,	and	the	timeupdate	event	to	update	the	slider’s	value.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	15:	Question	2</title>

</head>

<body>

				<div>

								<button	id="playbackController">Play</button>

								<button	id="muteController">Mute</button>

								<input	type="range"	id="volumeController"

															min="0"	max="1"	step=".1"	value="1"/>

				</div>

				<video	id="bbbVideo">

								<source	src="bbb.mp4"	/>

								<source	src="bbb.webm"	/>

				</video>

				<div>

								<input	type="range"	id="seekController"

															min="0"	step="1"	value="0"	/>

				</div>

				<script>

								function	pauseHandler(e)	{

												playButton.innerHTML	=	"Resume";

								}

								function	playingHandler(e)	{

												playButton.innerHTML	=	"Pause";

								}

								function	volumechangeHandler(e)	{

												muteButton.innerHTML	=	video.muted	?	"Unmute"	:	"Mute";

								}

								function	durationchangeHandler(e)	{

												seekSlider.max	=	video.duration;

								}

								function	timeupdateHandler(e)	{

												seekSlider.value	=	video.currentTime;

								}

								function	playbackClick(e)	{

												video.paused	?	video.play()	:	video.pause();

								}

								function	muteClick(e)	{

												video.muted	=	!video.muted;

								}

								function	volumeInput(e)	{

												video.volume	=	volumeSlider.value;

								}

								function	seekInput(e)	{

												video.currentTime	=	seekSlider.value;

								}

								var	video	=	document.getElementById("bbbVideo");

								var	playButton	=	document.getElementById("playbackController");

								var	muteButton	=	document.getElementById("muteController");

								var	volumeSlider	=	document.getElementById("volumeController");

								var	seekSlider	=	document.getElementById("seekController");

								video.addEventListener("pause",	pauseHandler);

								video.addEventListener("playing",	playingHandler);

								video.addEventListener("volumechange",	volumechangeHandler);

								video.addEventListener("durationchange",	durationchangeHandler);

								video.addEventListener("timeupdate",	timeupdateHandler);

								playButton.addEventListener("click",	playbackClick);

								muteButton.addEventListener("click",	muteClick);

								volumeSlider.addEventListener("input",	volumeInput);

								seekSlider.addEventListener("input",	seekInput);

				</script>

</body>

</html>

Save	this	as	ch15_question2.html.

Once	again,	the	changes	are	highlighted.	You	add	another	range	control	to	the	page:

<div>

				<input	type="range"	id="seekController"

											min="0"	step="1"	value="0"	/>

</div>

This	one	is	called	seekController.	It	is	set	to	a	minimum	value	of	0,	a	step	of	1,	and	an
initial	value	of	0.	A	maximum	value	is	not	set	because	you	do	not	yet	know	the	duration	of
the	video.	You	will,	however,	when	the	media’s	durationchange	event	fires.	You	register
a	listener	for	this	event;	it	calls	the	durationchangeHandler()	function	when	it	fires.

function	durationchangeHandler(e)	{

				seekSlider.max	=	video.duration;

}

It	simply	sets	the	slider’s	max	property	to	the	media’s	duration.

You	also	register	a	listener	for	the	media’s	timeupdate	event	with	the
timeupdateHandler()	function.	You	use	this	to	update	the	slider’s	value	when	the	media’s
current	time	changes:

function	timeupdateHandler(e)	{

				seekSlider.value	=	video.currentTime;

}

But	you	also	want	to	control	the	media’s	seek	with	the	slider,	so	you	listen	for	the	range
control’s	input	event:

function	seekInput(e)	{

				video.currentTime	=	seekSlider.value;

}

And	you	set	the	media’s	currentTime	property	to	the	slider’s	value.

CHAPTER	16

Exercise	1	Question
Example	1	is	based	on	Chapter	10’s	Example	17,	and	as	you	probably	remember,	you
modified	that	example	in	response	to	one	of	Chapter	10’s	exercise	questions.	Modify	this
chapter’s	Example	1	so	that	only	one	tab	is	active	at	a	time.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	16:	Question	1</title>

				<style>

								.tabStrip	{

												background-color:	#E4E2D5;

												padding:	3px;

												height:	22px;

								}

												.tabStrip	div	{

																float:	left;

																font:	14px	arial;

																cursor:	pointer;

												}

								.tabStrip-tab	{

												padding:	3px;

								}

								.tabStrip-tab-hover	{

												border:	1px	solid	#316AC5;

												background-color:	#C1D2EE;

												padding:	2px;

								}

								.tabStrip-tab-click	{

												border:	1px	solid	#facc5a;

												background-color:	#f9e391;

												padding:	2px;

								}

				</style>

</head>

<body>

				<div	class="tabStrip">

								<div	data-tab-number="1"	class="tabStrip-tab">Tab	1</div>

								<div	data-tab-number="2"	class="tabStrip-tab">Tab	2</div>

								<div	data-tab-number="3"	class="tabStrip-tab">Tab	3</div>

				</div>

				<div	id="descContainer"></div>

				<script	src="jquery-2.1.1.min.js"></script>

				<script>

								var	activeTab	=	null;

								function	handleEvent(e)	{

												var	target	=	$(e.target);

												var	type	=	e.type;

												if	(type	==	"mouseover"	||	type	==	"mouseout")	{

																target.toggleClass("tabStrip-tab-hover");

												}	else	if	(type	==	"click")	{

																if	(activeTab)	{

																				activeTab.removeClass("tabStrip-tab-click");

																}

																target.addClass("tabStrip-tab-click");

																var	num	=	target.attr("data-tab-number");

																showDescription(num);

																activeTab	=	target;

												}

								}

								function	showDescription(num)	{

												var	text	=	"Description	for	Tab	"	+	num;

												$("#descContainer").text(text);

								}

								$(".tabStrip	>	div").on("mouseover	mouseout	click",	handleEvent);

				</script>

</body>

</html>

Save	this	as	ch16_question1.html.

The	overall	logic	of	this	solution	is	identical	to	Chapter	10’s	Solution	3.	You	define	a
variable	to	track	the	active	tab:

var	activeTab	=	null;

Then	when	the	user	clicks	one	of	the	tabs,	you	remove	the	tabStrip-tab-click	CSS
class	from	the	active	tab	(if	one	exists):

if	(activeTab)	{

				activeTab.removeClass("tabStrip-tab-click");

}

And	then	you	set	the	current	tab	as	the	active	tab:

activeTab	=	target;

Exercise	2	Question
There	is	some	repetitive	code	in	Example	2.	Refactor	the	code	to	reduce	the	duplication.
Additionally,	add	a	function	to	handle	any	errors	that	may	occur	with	the	request.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	16:	Question	2</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form>

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td>

																				Check	

Availability

																</td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="jquery-2.1.1.min.js"></script>

				<script>

								function	checkUsername(e)	{

												e.preventDefault();

												var	userValue	=	$("#username").val();

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												makeRequest({

																username:	userValue

												});

								}

								function	checkEmail(e)	{

												e.preventDefault();

												var	emailValue	=	$("#email").val();

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												makeRequest({

																email:	emailValue

												});

								}

								function	makeRequest(parameters)	{

												$.getJSON("ch14_formvalidator.php",	parameters)

																.done(handleResponse)

																.fail(handleError);

								}

								function	handleError()	{

												alert("A	network	error	occurred.	Please	try	again	"	+

																		"in	a	few	moments.");

								}

								function	handleResponse(response)	{

												if	(response.available)	{

																alert(response.searchTerm	+	"	is	available!");

												}	else	{

																alert("We're	sorry,	but	"	+	response.searchTerm	+

																						"	is	not	available.");

												}

								}

								$("#usernameAvailability").on("click",	checkUsername);

								$("#emailAvailability").on("click",	checkEmail);

				</script>

</body>

</html>

Save	this	as	ch16_question2.html.

The	main	source	of	duplication	is	the	code	that	makes	the	actual	request:

$.getJSON("ch14_formvalidator.php",	parms).done(handleResponse);

Although	it’s	a	single	line	of	code,	it	can	be	moved	into	a	separate	function	to	make	it
easier	to	maintain.	Plus,	when	you	add	a	function	for	handling	Ajax	errors,	you	have	to
visit	only	one	function	as	opposed	to	two.

First	write	a	function	that	displays	a	message	to	the	user	when	the	Ajax	request	fails.	Call
it	handleError():

function	handleError()	{

				alert("A	network	error	occurred.	Please	try	again	"	+

										"in	a	few	moments.");

}

Now	write	a	function	that	performs	the	Ajax	request,	and	chain	a	fail()	call	to	done():

function	makeRequest(parameters)	{

				$.getJSON("ch14_formvalidator.php",	parameters)

								.done(handleResponse)

								.fail(handleError);

}

You	can	now	use	this	makeRequest()	function	inside	the	checkUsername()	function:

function	checkUsername(e)	{

				e.preventDefault();

				var	userValue	=	$("#username").val();

				if	(!userValue)	{

								alert("Please	enter	a	user	name	to	check!");

								return;

				}

				makeRequest({

								username:	userValue

				});

}

And	the	checkEmail()	function:

function	checkEmail(e)	{

				e.preventDefault();

				var	emailValue	=	$("#email").val();

				if	(!emailValue)	{

								alert("Please	enter	an	email	address	to	check!");

								return;

				}

				makeRequest({

								email:	emailValue

				});

}

You	can	also	eliminate	the	parms	variable	in	both	of	the	functions,	as	shown	in	this
solution.	Just	pass	the	object	literal	directly	to	makeRequest()	to	make	your	code	more
concise.

CHAPTER	17

Exercise	1	Question
Modify	the	answer	to	Chapter	14’s	Question	2	using	Prototype.	Also	add	error	reporting
for	when	an	error	occurs	with	the	Ajax	request.

Exercise	1	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Question	1</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form	name="theForm">

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td></td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td></td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	id="btnSubmit"	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="prototype.1.7.2.js"></script>

				<script>

								function	btnSubmitClick(e)	{

												e.preventDefault();

												checkUsername();

								}

								function	checkUsername()	{

												var	userValue	=	$("username").value;

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	options	=	{

																method:	"get",

																onSuccess:	handleUsernameResponse,

																onFailure:	handleError,

																parameters:	{

																				username:	userValue

																}

												};

												new	Ajax.Request("ch14_formvalidator.php",	options);

								}

								function	checkEmail()	{

												var	emailValue	=	$("email").value;

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	options	=	{

																method:	"get",

																onSuccess:	handleEmailResponse,

																onFailure:	handleError,

																parameters:	{

																				email:	emailValue

																}

												};

												new	Ajax.Request("ch14_formvalidator.php",	options);

								}

								function	handleUsernameResponse(transport)	{

												var	response	=	transport.responseJSON;

												if	(!response.available)	{

																alert("The	username	"	+	response.searchTerm	+

																								"	is	unavailable.	Try	another.");

																return;

												}

												checkEmail();

								}

								function	handleEmailResponse(transport)	{

												var	response	=	transport.responseJSON;

												if	(!response.available)	{

																alert("The	email	address	"	+	response.searchTerm	+

																								"	is	unavailable.	Try	another.");

																return;

												}

												document.theForm.submit();

								}

								function	handleError()	{

												alert("A	network	error	occurred.	Please	try	again	"	+

																		"in	a	few	moments.");

								}

								$("btnSubmit").observe("click",	btnSubmitClick);

				</script>

</body>

</html>

Save	this	as	ch17_question1.html.

This	solution	is	based	on	Chapter	14’s	Solution	2,	but	the	code	has	changed	to	use
Prototype’s	API.	There’s	also	a	new	function	called	handleError()	for	handling	errors:

function	handleError()	{

				alert("A	network	error	occurred.	Please	try	"	+

										"again	in	a	few	moments.");

}

This	function	is	called	handleError(),	and	it	simply	displays	a	message	to	the	user.	You’ll
assign	this	function	to	the	onFailure	option	when	you	make	your	Ajax	requests.

Making	a	request	is	many	more	lines	of	code	due	to	Prototype’s	Ajax	API:

var	options	=	{

				method:	"get",

				onSuccess:	handleEmailResponse,

				onFailure:	handleError,

				parameters:	{

								email:	emailValue

				}

};

new	Ajax.Request("ch14_formvalidator.php",	options);

This	excerpt	is	taken	from	checkUsername().	You	create	your	options	object	containing
the	method,	onSuccess,	onFailure,	and	parameters	properties,	and	then	you	issue	the
request.

On	a	successful	request,	the	handleUsernameResponse()	and	handleEmailResponse()
functions	execute.	They	no	longer	manually	parse	the	JSON	data	into	a	JavaScript	object;
instead,	they	use	the	responseJSON	property:

var	response	=	transport.responseJSON;

And	finally,	you	register	the	button’s	click	event	listener	using	the	observe()	method:

$("btnSubmit").observe("click",	btnSubmitClick);

Exercise	2	Question
If	you	guessed	that	this	question	would	be:	“Change	the	answer	to	Chapter	14’s	Question
2	using	MooTools,	and	add	error	reporting	for	when	an	error	occurs	with	the	Ajax
request”	then	you	won!!	Your	prize	is…completing	the	exercise.

Exercise	2	Solution
<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	17:	Question	2</title>

				<style>

								.fieldname	{

												text-align:	right;

								}

								.submit	{

												text-align:	right;

								}

				</style>

</head>

<body>

				<form	name="theForm">

								<table>

												<tr>

																<td	class="fieldname">

																				Username:

																</td>

																<td>

																				<input	type="text"	id="username"	/>

																</td>

																<td></td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Email:

																</td>

																<td>

																				<input	type="text"	id="email"	/>

																</td>

																<td></td>

												</tr>

												<tr>

																<td	class="fieldname">

																				Password:

																</td>

																<td>

																				<input	type="text"	id="password"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	class="fieldname">

																				Verify	Password:

																</td>

																<td>

																				<input	type="text"	id="password2"	/>

																</td>

																<td	/>

												</tr>

												<tr>

																<td	colspan="2"	class="submit">

																				<input	id="btnSubmit"	type="submit"	value="Submit"	/>

																</td>

																<td	/>

												</tr>

								</table>

				</form>

				<script	src="mootools-core-1.5.1-compressed.js"></script>

				<script>

								function	btnSubmitClick(e)	{

												e.preventDefault();

												checkUsername();

								}

								function	checkUsername()	{

												var	userValue	=	$("username").value;

												if	(!userValue)	{

																alert("Please	enter	a	user	name	to	check!");

																return;

												}

												var	options	=	{

																url:	"ch14_formvalidator.php",

																data:	{

																				username:	userValue

																},

																onSuccess:	handleUsernameResponse,

																onFailure:	handleError

												};

												new	Request.JSON(options).get();

								}

								function	checkEmail()	{

												var	emailValue	=	$("email").value;

												if	(!emailValue)	{

																alert("Please	enter	an	email	address	to	check!");

																return;

												}

												var	options	=	{

																url:	"ch14_formvalidator.php",

																data:	{

																				email:	emailValue

																},

																onSuccess:	handleEmailResponse,

																onFailure:	handleError

												};

												new	Request.JSON(options).get();

								}

								function	handleUsernameResponse(response)	{

												if	(!response.available)	{

																alert("The	username	"	+	response.searchTerm	+

																								"	is	unavailable.	Try	another.");

																return;

												}

												checkEmail();

								}

								function	handleEmailResponse(response)	{

												if	(!response.available)	{

																alert("The	email	address	"	+	response.searchTerm	+

																								"	is	unavailable.	Try	another.");

																return;

												}

												document.theForm.submit();

								}

								function	handleError()	{

												alert("A	network	error	occurred.	Please	try	again	"	+

																		"in	a	few	moments.");

								}

								$("btnSubmit").addEvent("click",	btnSubmitClick);

				</script>

</body>

</html>

CHAPTER	18

Exercise	1	Question
The	example	ch18_example4.html	has	a	deliberate	bug.	For	each	times	table	it	creates
only	multipliers	with	values	from	1	to	11.

Use	the	script	debugger	to	work	out	why	this	is	happening,	and	then	correct	the	bug.

Exercise	1	Solution
The	problem	is	with	the	code’s	logic	rather	than	its	syntax.	Logic	errors	are	much	harder
to	spot	and	deal	with	because,	unlike	with	syntax	errors,	the	browser	won’t	inform	you
that	there’s	such	and	such	error	at	line	so	and	so	but	instead	just	fails	to	work	as	expected.
The	error	is	with	this	line:

for	(var	counter	=	1;	counter	<	12;	counter++)

You	want	the	loop	to	go	from	1	to	12	inclusive.	Your	counter	<	12	statement	will	be	true
up	to	and	including	11	but	will	be	false	when	the	counter	reaches	12;	hence	12	gets	left
off.	To	correct	this,	you	could	change	the	code	to	the	following:

for	(var	counter	=	1;	counter	<=	12;	counter++)

Exercise	2	Question
The	following	code	contains	a	number	of	common	errors.	See	if	you	can	spot	them:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Question	2</title>

</head>

<body>

				<form	name="form1"	action="">

								<input	type="text"	id="text1"	name="text1"	/>

								

								CheckBox	1<input	type="checkbox"	id="checkbox2"	name="checkbox2"	/>

								

								CheckBox	1<input	type="checkbox"	id="checkbox1"	name="checkbox1"	/>

								

								<input	type="text"	id="text2"	name="text2"	/>

								<p>

												<input	type="submit"	value="Submit"	id="submit1"

																			name="submit1"	/>

								</p>

				</form>

				<script>

								function	checkForm(e)	{

												var	elementCount	=	0;

												var	theForm	=	document.form1;

												while(elementCount	=<=	theForm.length)	{

																if	(theForm.elements[elementcount].type	==	"text")	{

																				if	(theForm.elements[elementCount].value()	=	"")

																								alert("Please	complete	all	form	elements");

																				theForm.elements[elementCount].focus;

																				e.preventDefault();

																				break;

																}

												}

								}

								document.form1.addEventListener("submit",	checkForm);

				</script>

</body>

</html>

Exercise	2	Solution
The	bug-free	version	looks	like	this:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Chapter	18:	Question	2</title>

</head>

<body>

				<form	name="form1"	action="">

								<input	type="text"	id="text1"	name="text1"	/>

								

								CheckBox	1<input	type="checkbox"	id="checkbox2"	name="checkbox2"	/>

								

								CheckBox	1<input	type="checkbox"	id="checkbox1"	name="checkbox1"	/>

								

								<input	type="text"	id="text2"	name="text2"	/>

								<p>

												<input	type="submit"	value="Submit"	id="submit1"

																			name="submit1"	/>

								</p>

				</form>

				<script>

								function	checkForm(e)	{

												var	elementCount	=	0;

												var	theForm	=	document.form1;

												while(elementCount	<	theForm.length)	{

																if	(theForm.elements[elementCount].type	==	"text")	{

																				if	(theForm.elements[elementCount].value	==	"")	{

																								alert("Please	complete	all	form	elements");

																								theForm.elements[elementCount].focus();

																								e.preventDefault();

																								break;

																				}

																}

																elementCount++;

												}

								}

								document.form1.addEventListener("submit",	checkForm);

				</script>

</body>

</html>

Let’s	look	at	each	error	in	turn.	The	first	error	is	a	logic	error:

while(elementCount	=<	theForm.length)

Arrays	start	at	0	so	the	first	element	object	is	at	index	array	0,	the	second	at	1,	and	so	on.
The	last	object	has	an	index	value	of	4.	However,	theForm.length	will	return	5	because
there	are	five	elements	in	the	form.	So	the	while	loop	will	continue	until	elementCount	is
less	than	or	equal	to	5,	but	because	the	last	element	has	an	index	of	4,	this	is	one	past	the
limit.	You	should	write	either	this:

while(elementCount	<	theForm.length)

or	this:

while(elementCount	<=	theForm.length	-	1)

Either	is	fine,	though	the	first	is	shorter.

You	come	to	your	second	error	in	the	following	line:

if	(theForm.elements[elementcount].type	==	"text")

On	a	quick	glance	it	looks	fine,	but	it’s	JavaScript’s	strictness	on	case	sensitivity	that	has
caused	the	downfall.	The	variable	name	is	elementCount,	not	elementcount	with	a
lowercase	c.	So	this	line	should	read	as	follows:

if	(theForm.elements[elementCount].type	==	"text")

The	next	line	with	an	error	is	this:

if	(theForm.elements[elementCount].value()	=	"")

This	has	two	errors.	First,	value	is	a	property	and	not	a	method,	so	there	is	no	need	for
parentheses	after	it.	Second,	you	have	the	all-time	classic	error	of	one	equals	sign	instead
of	two.	Remember	that	one	equals	sign	means	“Make	it	equal	to,”	and	two	equals	signs
mean	“Check	if	it	is	equal	to.”	So	with	the	changes,	the	line	is:

if	(theForm.elements[elementCount].value	==	"")

The	next	error	is	the	failure	to	put	your	block	of	if	code	in	curly	braces.	Even	though
JavaScript	won’t	throw	an	error	because	the	syntax	is	fine,	the	logic	is	not	so	fine,	and	you

won’t	get	the	results	you	expect.	With	the	braces,	the	if	statement	should	be	as	follows:

if	(theForm.elements[elementCount].value	==	"")	{

				alert("Please	complete	all	form	elements")

				theForm.elements[elementCount].focus;

				formValid	=	false;

				break;

}

The	penultimate	error	is	in	this	line:

theForm.elements[elementCount].focus;

This	time	you	have	a	method	but	with	no	parentheses	after	it.	Even	methods	that	have	no
parameters	must	have	the	empty	parentheses	after	them	if	you	intend	to	execute	that
method.	So,	corrected,	the	line	is	as	follows:

theForm.elements[elementCount].focus();

Now	you’re	almost	done;	there	is	just	one	more	error.	This	time	it’s	not	something	wrong
with	what’s	there,	but	rather	something	very	important	that	should	be	there	but	is	missing.
What	is	it?	It’s	this:

elementCount++;

This	line	should	be	in	your	while	loop,	otherwise	elementCount	will	never	go	above	0
and	the	while	loop’s	condition	will	always	be	true,	resulting	in	the	loop	continuing
forever:	a	classic	infinite	loop.

B
JavaScript	Core	Reference
This	appendix	outlines	the	syntax	of	all	the	JavaScript	core	language	functions	and	objects
with	their	properties	and	methods.	If	changes	have	occurred	between	versions,	they	have
been	noted.

BROWSER	REFERENCE
The	following	table	outlines	which	JavaScript	version	is	in	use	and	in	which	browser	it	is
used.	Note	that	earlier	versions	of	Internet	Explorer	implemented	Jscript,	Microsoft’s
version	of	JavaScript.	However,	Jscript’s	features	are	relatively	the	same	as	JavaScript.

JAVASCRIPT
VERSION

MOZILLA
FIREFOX

INTERNET
EXPLORER

CHROME SAFARI OPERA

1.0 3.0
1.1
1.2
1.3 4.0
1.4
1.5 1.0 5.5,	6,	7,	8 1–10 3-5 6,	7,	8,	9
1.6 1.5
1.7 2.0 28
1.8 3.0 11.5
1.8.1 3.5
1.8.2 3.6
1.8.5 4 9 32 6 11.6

RESERVED	WORDS
Various	words	and	symbols	are	reserved	by	JavaScript.	These	words	cannot	be	used	as
variable	names,	nor	can	the	symbols	be	used	within	them.	They	are	listed	in	the	following
table.

abstract boolean break

byte case catch

char class const

continue debugger default

delete do double

else enum export

extends false final

finally float for

function goto if

implements import in

instanceof int interface

let long native

new null package

private protected public

return short static

super switch synchronized

this throw throws

transient true try

typeof var void

volatile while with

- ! ~

% / *

> < =

& ^ |

+ ?

Other	Identifiers	to	Avoid
It	is	best	to	avoid	the	use	of	the	following	identifiers	as	variable	names.

JavaScript	1.0
abs	acos	anchor	asin	atan	atan2	big	blink	bold	ceil	charAt	comment	cos	Date

E	escape	eval	exp	fixed	floor	fontcolor	fontsize	getDate	getDay	getHours

getMinutes	getMonth	getSeconds	getTime	getTimezoneOffset	getYear	indexOf

isNaN	italics	lastIndexOf	link	log	LOG10E	LOG2E	LN10	LN2	Math	max	min

Object	parse	parseFloat	parseInt	PI	pow	random	round,	setDate	setHours

setMinutes	setMonth	setSeconds	setTime	setYear	sin	slice	small	sqrt	SQRT1_2

SQRT2	strike	String	sub	substr	substring	sup	tan	toGMTString	toLocaleString

toLowerCase	toUpperCase	unescape	UTC

JavaScript	1.1
caller	className	constructor	java	JavaArray	JavaClass	JavaObject

JavaPackage	join	length	MAX_VALUE	MIN_VALUE	NaN	NEGATIVE_INFINITY	netscape

Number	POSITIVE_INFINITY	prototype	reverse	sort	split	sun	toString	valueOf

JavaScript	1.2
arity	callee	charCodeAt	compile	concat	exec	fromCharCode	global	ignoreCase

index	input	label	lastIndex	lastMatch	lastParen	leftContext	match	multiline

Number	Packages	pop	push	RegExp	replace	rightContext	search	shift	slice

splice	source	String	test	unshift	unwatch	watch

JavaScript	1.3
apply	call	getFullYear	getMilliseconds	getUTCDate	getUTCDay	getUTCFullYear

getUTCHours	getUTCMilliseconds	getUTCMinutes	getUTCMonth	getUTCSeconds

Infinity	isFinite	NaN	setFullYear	setMilliseconds	setUTCDate	setUTCFullYear

setUTCHours	setUTCMilliseconds	setUTCMinutes	setUTCMonth	setUTCSeconds

toSource	toUTCString	undefined

JAVASCRIPT	OPERATORS
The	following	sections	list	the	various	operators	available	to	you	in	JavaScript.

Assignment	Operators
Assignment	operators	allow	you	to	assign	a	value	to	a	variable.	The	following	table	lists
the	different	assignment	operators	you	can	use.

NAME INTRODUCED MEANING
Assignment JavaScript	1.0 Sets	variable	v1	to	the

value	of	variable	v2.var	v1
=	v2;

Shorthand	addition	or	Shorthand
concatenation	same	as	v1	=	v1	+	v2

JavaScript	1.0 v1	+=	v2

Shorthand	subtraction	same	as	v1	=	v1	−
v2

JavaScript	1.0 v1	−=	v2

Shorthand	multiplication	same	as	v1	=	v1
*	v2

JavaScript	1.0 v1	*=	v2

Shorthand	division	same	as	v1	=	v1	/	v2 JavaScript	1.0 v1	/=	v2

Shorthand	modulus	same	as	v1	=	v1	%	v2 JavaScript	1.0 v1	%=	v2

Shorthand	left-shift	same	as	v1	=	v1	<<
v2

JavaScript	1.0 v1	<<=	v2

Shorthand	right-shift	same	as	v1	=	v1	>>
v2

JavaScript	1.0 v1	>>=	v2

Shorthand	zero-fill	right-shift	same	as	v1
=	v1	>>>	v2

JavaScript	1.0 v1	>>>=	v2

Shorthand	AND	same	as	v1	=	v1	&	v2 JavaScript	1.0 v1	&=	v2

Shorthand	XOR	same	as	v1	=	v1	^	v2 JavaScript	1.0 v1	^=	v2

Shorthand	OR	same	as	v1	=	v1	|	v2 JavaScript	1.0 v1	|=	v2

Comparison	Operators
Comparison	operators	allow	you	to	compare	one	variable	or	value	with	another.	Any
comparison	statement	returns	a	boolean	value.

NAME INTRODUCED MEANING

Equal JavaScript	1.0 v1	==	v2

True	if	two	operands	are	strictly	equal	or	equal	once
cast	to	the	same	type.

Not	equal JavaScript	1.0 v1	!=	v2

True	if	two	operands	are	not	strictly	equal	or	not
equal	once	cast	to	the	same	type.

Greater	than JavaScript	1.0 v1	>	v2

True	if	left-hand	side	(LHS)	operand	is	greater	than
right-hand	side	(RHS)	operand.

Greater	than	or
equal	to

JavaScript	1.0 v1	>=	v2

True	if	LHS	operand	is	greater	than	or	equal	to	RHS
operand.

Less	than JavaScript	1.0 v1	<	v2

True	if	LHS	operand	is	less	than	RHS	operand.

Less	than	or
equal	to

JavaScript	1.0 v1	<=	v2

True	if	LHS	operand	is	less	than	or	equal	to	RHS
operand.

Strictly	equal JavaScript	1.3 v1	===	v2

True	if	operands	are	equal	and	of	the	same	type.

Not	strictly
equal

JavaScript	1.3 v1	!==	v2

True	if	operands	are	not	strictly	equal.

Arithmetic	Operators
Arithmetic	operators	allow	you	to	perform	arithmetic	operations	between	variables	or
values.

NAME INTRODUCED MEANING

Addition JavaScript	1.0 v1	+	v2

Sum	of	v1	and	v2.	(Concatenation	of	v1	and	v2,	if	either
operand	is	a	string.)

Subtraction JavaScript	1.0 v1	−	v2

Difference	between	v1	and	v2.

Multiplication JavaScript	1.0 v1	*	v2

Product	of	v1	and	v2.

Division JavaScript	1.0 v1	/	v2

Quotient	of	v2	into	v1.

Modulus JavaScript	1.0 v1	%	v2

Integer	remainder	of	dividing	v1	by	v2

.

Prefix
increment

JavaScript	1.0 ++v1	*	v2(v1	+	1)	*	v2

Note:	v1	will	be	left	as	v1	+	1.

Postfix
increment

JavaScript	1.0 v1++	*	v2(v1	*	v2)

v1	is	then	incremented	by	1.

Prefix
decrement

JavaScript	1.0 --	v1	*	v2(v1	–	1)	*	v2	Note:	v1	is	left	as	v1	-	1.

Postfix
decrement

JavaScript	1.0 v1—*	v2(v1	*	v2)

v1	is	then	decremented	by	1.

Bitwise	Operators
Bitwise	operators	work	by	converting	values	in	v1	and	v2	to	32-bit	binary	numbers	and
then	comparing	the	individual	bits	of	these	two	binary	numbers.	The	result	is	returned	as	a
normal	decimal	number.

NAME INTRODUCED MEANING

Bitwise
AND

JavaScript	1.0 v1	&	v2

The	bitwise	AND	lines	up	the	bits	in	each	operand	and
performs	an	AND	operation	between	the	two	bits	in	the	same
position.	If	both	bits	are	1,	the	resulting	bit	in	this	position	of
the	returned	number	is	1.	If	either	bit	is	0,	the	resulting	bit	in
this	position	of	the	returned	number	is	0.

Bitwise
OR

JavaScript	1.0 v1	|	v2

The	bitwise	OR	lines	up	the	bits	in	each	operand	and	performs
an	OR	operation	between	the	two	bits	in	the	same	position.	If
either	bit	is	1,	the	resulting	bit	in	this	position	of	the	returned
number	is	1.	If	both	bits	are	0,	the	resulting	bit	in	this	position
of	the	returned	number	is	0.

Bitwise
XOR

JavaScript	1.0 v1	^	v2

The	bitwise	XOR	lines	up	the	bits	in	each	operand	and
performs	an	XOR	operation	between	the	two	bits	in	the	same
position.	The	resulting	bit	in	this	position	is	1	only	if	one	bit
from	both	operands	is	1.	Otherwise,	the	resulting	bit	in	this
position	of	the	returned	number	is	0.

Bitwise
NOT

JavaScript	1.0 v1	~	v2

Inverts	all	the	bits	in	the	number.

Bitwise	Shift	Operators
These	work	by	converting	values	in	v1	to	32-bit	binary	numbers	and	then	moving	the	bits
in	the	number	to	the	left	or	the	right	by	the	specified	number	of	places.

NAME INTRODUCED MEANING

Left-shift JavaScript	1.0 v1	<<	v2

Shifts	v1	to	the	left	by	v2	places,	filling	the	new	gaps	in
with	zeros.

Sign-
propagating
right-shift

JavaScript	1.4 v1	>>	v2

Shifts	v1	to	the	right	by	v2	places,	ignoring	the	bits
shifted	off	the	number.

Zero-fill	right-
shift

JavaScript	1.0 v1	>>>	v2

Shifts	v1	to	the	right	by	v2	places,	ignoring	the	bits
shifted	off	the	number	and	adding	v2	zeros	to	the	left	of
the	number.

Logical	Operators
These	should	return	one	of	the	boolean	literals,	true	or	false.	However,	this	may	not
happen	if	v1	or	v2	is	neither	a	boolean	value	nor	a	value	that	easily	converts	to	a	boolean
value,	such	as	0,	1,	null,	the	empty	string,	or	undefined.

NAME INTRODUCED MEANING

Logical
AND

JavaScript	1.0 v1	&&	v2

Returns	true	if	both	v1	and	v2	are	true,	or	false	otherwise.
Will	not	evaluate	v2	if	v1	is	false.

Logical
OR

JavaScript	1.0 v1	││	v2

Returns	false	if	both	v1	and	v2	are	false,	or	true	if	one
operand	is	true.	Will	not	evaluate	v2	if	v1	is	true.

Logical
NOT

JavaScript	1.0 !v1

Returns	false	if	v1	is	true,	or	true	otherwise.

Object	Operators

JavaScript	provides	a	number	of	operators	to	work	with	objects.	The	following	table	lists
them.

NAME INTRODUCED MEANING

delete JavaScript	1.2 delete	obj

Deletes	an	object,	one	of	its	properties,	or	the	element	of
an	array	at	the	specified	index.	Also	deletes	variables	not
declared	with	the	var	keyword.

in JavaScript	1.4 for	(prop	in	somObj)

Returns	true	if	someObj	has	the	named	property.

instanceof JavaScript	1.4 someObj	instanceof	ObjType

Returns	true	if	someObj	is	of	type	ObjType;	otherwise,
returns	false.

new JavaScript	1.0 new	ObjType()

Creates	a	new	instance	of	an	object	with	type	ObjType.

this JavaScript	1.0 this.property

Refers	to	the	current	object.

Miscellaneous	Operators
The	following	table	lists	miscellaneous	operators.

NAME INTRODUCED MEANING

Conditional
operator

JavaScript	1.0 (evalquery)	?	v1	:	v2

If	evalquery	is	true,	the	operator	returns	v1;	otherwise	it
returns	v2.

Comma
operator

JavaScript	1.0 var	v3	=	(v1	+	2,	v2	*	2)

Evaluates	both	operands	while	treating	the	two	as	one
expression.	Returns	the	value	of	the	second	operand.	In
this	example,	v3	holds	the	resulting	value	of	v2	*	2.

typeof JavaScript	1.1 typeof	v1

Returns	a	string	holding	the	type	of	v1,	which	is	not
evaluated.

void JavaScript	1.1 void(eva1)

Evaluates	eval1	but	does	not	return	a	value.

Operator	Precedence
Does	1	+	2	*	3	=	1	+	(2	*	3)	=	7	or	does	it	equal	(1	+	2)	*	3	=	9?

Operator	precedence	determines	the	order	in	which	operators	are	evaluated.	For	example,
the	multiplicative	operator	(*)	has	a	higher	precedence	than	the	additive	operator	(+).
Therefore,	the	correct	answer	to	the	previous	question	is:

1	+	(2	*	3)

The	following	table	lists	the	operator	precedence	in	JavaScript	from	highest	to	lowest.	The
third	column	explains	whether	to	read	1+2+3+4	as	((1+2)+3)+4	(left	to	right)	or	1+(2+(3+
(4)))	(right	to	left).

OPERATOR
TYPE

OPERATORS EVALUATION	ORDER	FOR
LIKE	ELEMENTS

Member .	or	[] Left	to	right
Create
instance

new Right	to	left

Function	call () Left	to	right
Increment ++ N/a
Decrement -- N/a
Logical	not ! Right	to	left
Bitwise	not ~ Right	to	left
Unary	+ + Right	to	left
Unary	– – Right	to	left
Type	of typeof Right	to	left
Void void Right	to	left
Delete delete Right	to	left
Multiplication * Left	to	right
Division / Left	to	right
Modulus % Left	to	right
Addition + Left	to	right
Subtraction − Left	to	right
Bitwise	shift <<,	>>,	>>> Left	to	right
Relational <,	<=,	>,	>= Left	to	right
In in Left	to	right
Instance	of instanceof Left	to	right
Equality ==,	!=,	===,	!=== Left	to	right
Bitwise	AND & Left	to	right
Bitwise	XOR ^ Left	to	right
Bitwise	OR | Left	to	right
Logical	AND && Left	to	right
Logical	OR ││ Left	to	right
Conditional ?: Right	to	left
Assignment =,	+=,	-=,	*=,	/=,	%=,	<<=,	>>=,

>>>=,	&=,	^=,	|=

Right	to	left

Comma , Left	to	right

JAVASCRIPT	STATEMENTS
The	following	tables	describe	core	JavaScript	statements.

Block
JavaScript	blocks	start	with	an	opening	curly	brace	({)	and	end	with	a	closing	curly	brace
(}).	Block	statements	are	meant	to	make	the	contained	single	statements	execute	together,
such	as	the	body	of	a	function	or	a	condition.

STATEMENT INTRODUCED DESCRIPTION
{	} JavaScript	1.5 Used	to	group	statements	as	delimited	by	the	curly

brackets.

Conditional
The	following	table	lists	conditional	statements	for	JavaScript	as	well	as	the	version	in
which	they	were	introduced.

STATEMENT INTRODUCED DESCRIPTION
if JavaScript	1.2 Executes	a	block	of	code	if	a	specified	condition	is

true.
else JavaScript	1.2 The	second	half	of	an	if	statement.	Executes	a	block

of	code	if	the	result	of	the	if	statement	is	false.
switch JavaScript	1.2 Specifies	various	blocks	of	statements	to	be	executed

depending	on	the	value	of	the	expression	passed	in	as
the	argument.

Declarations
These	keywords	declare	variables	or	functions	in	JavaScript	code.

STATEMENT INTRODUCED DESCRIPTION
var JavaScript	1.0 Used	to	declare	a	variable.	Initializing	it	to	a	value	is

optional	at	the	time	of	declaration.
function JavaScript	1.0 Used	to	declare	a	function	with	the	specified

parameters,	which	can	be	strings,	numbers,	or	objects.
To	return	a	value,	the	function	must	use	the	return
statement.

Loop
Loops	execute	a	block	of	code	while	a	specified	condition	is	true.

STATEMENT INTRODUCED DESCRIPTION
do…while JavaScript	1.2 Executes	the	statements	specified	until	the	test

condition	after	the	while	evaluates	to	false.	The
statements	are	executed	at	least	once	because	the	test
condition	is	evaluated	last.

for JavaScript	1.0 Creates	a	loop	controlled	according	to	the	three
optional	expressions	enclosed	in	the	parentheses	after
the	for	and	separated	by	semicolons.	The	first	of	these
three	expressions	is	the	initial-expression,	the	second	is
the	test	condition,	and	the	third	is	the	increment-
expression.

for…in JavaScript	1.0 Used	to	iterate	over	all	the	properties	of	an	object	using
a	variable.	For	each	property	the	specified	statements
within	the	loop	are	executed.

while JavaScript	1.0 Executes	a	block	of	statements	if	a	test	condition
evaluates	to	true.	The	loop	then	repeats,	testing	the
condition	with	each	repeat,	ceasing	if	the	condition
evaluates	to	false.

break JavaScript	1.0 Used	within	a	while	or	for	loop	to	terminate	the	loop
and	transfer	program	control	to	the	statement	following
the	loop.	Can	also	be	used	with	a	label	to	break	to	a
particular	program	position	outside	of	the	loop.

label JavaScript	1.2 An	identifier	that	can	be	used	with	break	or	continue
statements	to	indicate	where	the	program	should
continue	execution	after	the	loop	execution	is	stopped.

Execution	Control	Statements
Code	execution	is	controlled	in	a	variety	of	ways.	In	addition	to	the	conditional	and	loop
statements,	the	following	statements	also	contribute	to	execution	control.

STATEMENT INTRODUCED DESCRIPTION
continue JavaScript	1.0 Used	to	stop	execution	of	the	block	of	statements	in	the

current	iteration	of	a	while	or	for	loop;	execution	of
the	loop	continues	with	the	next	iteration.

return JavaScript	1.0 Used	to	specify	the	value	to	be	returned	by	a	function.
with JavaScript	1.0 Specifies	the	default	object	for	a	block	of	code.

Exception	Handling	Statements
Errors	are	a	natural	part	of	programming,	and	JavaScript	provides	you	with	the	means	to
catch	errors	and	handle	them	gracefully.

STATEMENT INTRODUCED DESCRIPTION
Throw JavaScript	1.4 Throws	a	custom	exception	defined	by	the	user.
try…catch…

finally

JavaScript	1.4 Executes	the	statements	in	the	try	block;	if	any
exceptions	occur,	these	are	handled	in	the	catch	block.
The	finally	block	allows	you	to	stipulate	statements
that	will	be	executed	after	both	the	try	and	catch
statements.

Other	Statements
The	following	table	lists	other	JavaScript	statements	and	when	they	were	introduced.

STATEMENT INTRODUCED DESCRIPTION
//	single	line

comment

JavaScript	1.0 Single	lines	of	notes	that	are	ignored	by	the	script
engine	and	that	can	be	used	to	explain	the	code.

/*	multi-line

comment	*/

JavaScript	1.0 Multiple	lines	of	notes	that	are	ignored	by	the	script
engine	and	that	can	be	used	to	explain	the	code.

TOP-LEVEL	PROPERTIES	AND	FUNCTIONS
These	are	core	properties	and	functions,	which	are	not	associated	with	any	lower-level
object,	although	in	the	terminology	used	by	ECMAScript	and	by	Jscript,	they	are
described	as	properties	and	methods	of	the	global	object.

The	top-level	properties	were	introduced	in	JavaScript	1.3,	but	in	previous	versions,
Infinity	and	NaN	existed	as	properties	of	the	Number	object.

Top-Level	Properties

PROPERTY INTRODUCED DESCRIPTION
Infinity JavaScript	1.3 Returns	infinity.
NaN JavaScript	1.3 Returns	a	value	that	is	not	a	number.
undefined JavaScript	1.3 Indicates	that	a	value	has	not	been	assigned	to	a	variable.

Top-Level	Functions

FUNCTION INTRODUCED DESCRIPTION
decodeURI() JavaScript	1.5 Used	to	decode	a	URI	encoded	with

encodeURI().
decodeURIcomponent() JavaScript	1.5 Used	to	decode	a	URI	encoded	with

encodeURIComponent().
encodeURI() JavaScript	1.5 Used	to	compose	a	new	version	of	a	complete

URI,	replacing	each	instance	of	certain
characters.	It	is	based	on	the	UTF-8	encoding
of	the	characters.

encodeURIComponent() JavaScript	1.5 Used	to	compose	a	new	version	of	a	complete
URI	by	replacing	each	instance	of	the
specified	character	with	escape	sequences.
Representation	is	via	the	UTF	encoding	of	the
characters.

escape() JavaScript	1.0 Used	to	encode	a	string	in	the	ISO	Latin-1
character	set;	for	example,	to	add	to	a	URL.

eval() JavaScript	1.0 Returns	the	result	of	the	JavaScript	code,
which	is	passed	in	as	a	string	parameter.

isFinite() JavaScript	1.3 Indicates	whether	the	argument	is	a	finite
number.

isNaN() JavaScript	1.1 Indicates	if	the	argument	is	not	a	number.
Number() JavaScript	1.2 Converts	an	object	to	a	number.
parseFloat() JavaScript	1.0 Parses	a	string	and	returns	it	as	a	floating-

point	number.
parseInt() JavaScript	1.0 Parses	a	string	and	returns	it	as	an	integer.	An

optional	second	parameter	specifies	the	base
of	the	number	to	be	converted.

String() JavaScript	1.2 Converts	an	object	to	a	string.
unescape() JavaScript	1.0 Returns	the	ASCII	string	for	the	specified

hexadecimal	encoding	value.

JAVASCRIPT	CORE	OBJECTS
This	section	describes	the	objects	available	in	the	JavaScript	core	language	and	their
methods	and	properties.

Array
The	Array	object	represents	an	array	of	variables.	It	was	introduced	in	JavaScript	1.1.	An
Array	object	can	be	created	with	the	Array	constructor:

var	objArray	=	new	Array(10);												//	an	array	of	11	elements

var	objArray	=	new	Array("1",	"2",	"4");	//	an	array	of	3	elements

Arrays	can	also	be	created	using	array	literal	syntax:

var	objArray	=	[];

Literal	syntax	is	the	preferred	method	of	creating	an	array.

Properties

PROPERTY INTRODUCED DESCRIPTION
constructor JavaScript	1.1 Used	to	reference	the	constructor	function	for	the	object.
length JavaScript	1.1 Returns	the	number	of	elements	in	the	array.
prototype JavaScript	1.1 Returns	the	prototype	for	the	object,	which	can	be	used

to	extend	the	object’s	interface.

NOTE	Square	brackets	([])	surrounding	a	parameter	means	that	parameter	is
optional.

Methods

METHOD INTRODUCED DESCRIPTION
concat(value1	[,

value2,...])

JavaScript	1.2 Concatenates	two	arrays	and	returns	the
new	array	thus	formed.

every(testFn(element,

index,	array))

JavaScript	1.6 Iterates	over	the	array,	executing	testFn()
on	every	element.	Returns	true	if	all
iterations	return	true.	Otherwise,	it	returns
false.

filter(testFn(element,

index,	array))

JavaScript	1.6 Iterates	over	the	array,	executing	testFn()
on	every	element.	Returns	a	new	array	of
elements	that	pass	testFn().

foreach(fn(element,

index,	array))

JavaScript	1.6 Iterates	over	the	array,	executing	fn()	on
every	element.

indexOf(element	[,

startIndex])
JavaScript	1.6 Returns	an	index	of	the	specified	element	if

found,	or	-1	if	not	found.	Starts	at
startIndex	if	specified.

join([separator]) JavaScript	1.1 Joins	all	the	elements	of	an	array	into	a
single	string	delimited	by	a	separator	if
specified.

lastIndexOf(element[,

startIndex])

JavaScript	1.6 Searches	an	array	starting	at	the	last	element
and	moves	backwards.	Returns	an	index	of
the	specified	element	if	found,	or	–1	if	not
found.	Starts	at	startIndex	if	specified.

map(fn(element,	index,

array))

JavaScript	1.6 Iterates	over	the	array,	executing	fn()	on
every	element.	Returns	a	new	array	based
on	the	outcome	of	fn().

pop() JavaScript	1.2 Pops	the	last	element	from	the	end	of	the
array	and	returns	that	element.

push(value1	[,	value2,

...])

JavaScript	1.2 Pushes	one	or	more	elements	onto	the	end
of	the	array	and	returns	the	new	length	of
the	array.	The	array’s	new	length	is
returned.

reverse() JavaScript	1.1 Reverses	the	order	of	the	elements	in	the
array,	so	the	first	element	becomes	the	last
and	the	last	becomes	the	first.

shift() JavaScript	1.2 Removes	the	first	element	from	the
beginning	of	the	array	and	returns	that
element.

slice(startIndex	[,

endIndex])

JavaScript	1.2 Returns	a	slice	of	the	array	starting	at	the
start	index	and	ending	at	the	element	before
the	end	index.

some(testFn(element,

index,	array))

JavaScript	1.6 Iterates	over	the	array,	executing	testFn()
on	every	element.	Returns	true	if	at	least
one	result	of	testFn()	is	true.

sort([sortFn(a,b)]) JavaScript	1.1 Sorts	the	elements	of	the	array.	Executes
sortFn()	for	sorting	if	it	is	provided.

splice(startIndex	[,

length,	value1,	...)

JavaScript	1.2 Removes	the	amount	of	elements	denoted
by	length	starting	at	startIndex.	Provided
values	replace	the	deleted	elements.	Returns
the	deleted	elements.

toString() JavaScript	1.1 Converts	the	Array	object	into	a	string.
unshift(value1	[,

value2,	...])

JavaScript	1.2 Adds	elements	to	the	beginning	of	the	array
and	returns	the	new	length.

valueOf() JavaScript	1.1 Returns	the	primitive	value	of	the	array.

Boolean
The	Boolean	object	is	used	as	a	wrapper	for	a	boolean	value.	It	was	introduced	in
JavaScript	1.1.	It	is	created	with	the	Boolean	constructor,	which	takes	as	a	parameter	the
initial	value	for	the	object	(if	this	is	not	a	boolean	value,	it	will	be	converted	into	one).

Falsey	values	are	null,	undefined,	"",	and	0.	All	other	values	are	considered	truthy.

Properties

PROPERTY INTRODUCED DESCRIPTION
constructor JavaScript	1.1 Specifies	the	function	that	creates	an	object’s	prototype.
prototype JavaScript	1.1 Returns	the	prototype	for	the	object,	which	can	be	used

to	extend	the	object’s	interface.

Methods

METHOD INTRODUCED DESCRIPTION
toString() JavaScript	1.1 Converts	the	Boolean	object	into	a	string.
valueOf() JavaScript	1.1 Returns	the	primitive	value	of	the	Boolean	object.

Date
The	Date	object	is	used	to	represent	a	given	date-time.	It	was	introduced	in	JavaScript	1.0.

Properties

PROPERTY INTRODUCED DESCRIPTION
constructor JavaScript	1.1 Used	to	reference	the	constructor	function	for	the	object.
prototype JavaScript	1.1 Returns	the	prototype	for	the	object,	which	can	be	used

to	extend	the	object’s	interface.

Methods

METHOD INTRODUCED DESCRIPTION
getDate() JavaScript	1.0 Retrieves	the	date	in	the	month

from	the	Date	object.
getDay() JavaScript	1.0 Retrieves	the	day	of	the	week

from	the	Date	object.
getFullYear() JavaScript	1.3 Retrieves	the	full	year	from	the

Date	object.
getHours() JavaScript	1.0 Retrieves	the	hour	of	the	day

from	the	Date	object.
getMilliseconds() JavaScript	1.3 Retrieves	the	number	of

milliseconds	from	the	Date
object.

getMinutes() JavaScript	1.0 Retrieves	the	number	of	minutes
from	the	Date	object.

getMonth() JavaScript	1.0 Retrieves	the	month	from	the
Date	object.

getSeconds() JavaScript	1.0 Retrieves	the	number	of	seconds
from	the	Date	object.

getTime() JavaScript	1.0 Retrieves	the	number	of
milliseconds	since	January	1,
1970	00:00:00	from	the	Date
object.

getTimezoneOffset() JavaScript	1.0 Retrieves	the	difference	in
minutes	between	the	local	time
zone	and	universal	time	(UTC).

getUTCDate() JavaScript	1.3 Retrieves	the	date	in	the	month
from	the	Date	object	adjusted	to
universal	time.

getUTCDay() JavaScript	1.3 Retrieves	the	day	of	the	week
from	the	Date	object	adjusted	to
universal	time.

getUTCFullYear() JavaScript	1.3 Retrieves	the	year	from	the	Date
object	adjusted	to	universal
time.

getUTCHours() JavaScript	1.3 Retrieves	the	hour	of	the	day
from	the	Date	object	adjusted	to
universal	time.

getUTCMilliseconds() JavaScript	1.3 Retrieves	the	number	of
milliseconds	from	the	Date
object	adjusted	to	universal
time.

getUTCMinutes() JavaScript	1.3 Retrieves	the	number	of	minutes
from	the	Date	object	adjusted	to
universal	time.

getUTCMonth() JavaScript	1.3 Retrieves	the	month	from	the
Date	object	adjusted	to
universal	time.

getUTCSeconds() JavaScript	1.3 Retrieves	the	number	of	seconds
from	the	Date	object	adjusted	to
universal	time.

getYear() JavaScript	1.0 Retrieves	the	year	from	the	Date
object.

parse(dateString) JavaScript	1.0 Retrieves	the	number	of
milliseconds	in	a	date	since

January	1,	1970	00:00:00,	local
time.

setDate(dayOfMonth) JavaScript	1.0 Sets	the	date	in	the	month	for
the	Date	object.

setFullYear(year	[,	month,	day]) JavaScript	1.3 Sets	the	full	year	for	the	Date
object.

setHours(hours	[,	minutes,

seconds,	milliseconds])

JavaScript	1.0 Sets	the	hour	of	the	day	for	the
Date	object.

setMilliseconds(milliseconds) JavaScript	1.3 Sets	the	number	of	milliseconds
for	the	Date	object.

setMinutes(minutes	[,	seconds,

milliseconds])

JavaScript	1.0 Sets	the	number	of	minutes	for
the	Date	object.

setMonth(month	[,	day]) JavaScript	1.0 Sets	the	month	for	the	Date
object.

setSeconds(seconds	[,

milliseconds])

JavaScript	1.0 Sets	the	number	of	seconds	for
the	Date	object.

setTime(milliseconds) JavaScript	1.0 Sets	the	time	for	the	Date	object
according	to	the	number	of
milliseconds	since	January	1,
1970	00:00:00.

setUTCDate(dayOfMonth) JavaScript	1.3 Sets	the	date	in	the	month	for
the	Date	object	according	to
universal	time.

setUTCFullYear(year	[,	month,

day])

JavaScript	1.3 Sets	the	full	year	for	the	Date
object	according	to	universal
time.

setUTCHours(hours	[,	minutes,

seconds,	milliseconds])

JavaScript	1.3 Sets	the	hour	of	the	day	for	the
Date	object	according	to
universal	time.

setUTCMilliseconds(milliseconds) JavaScript	1.3 Sets	the	number	of	milliseconds
for	the	Date	object	according	to
universal	time.

setUTCMinutes(mintes	[,	seconds,

milliseconds])

JavaScript	1.3 Sets	the	number	of	minutes	for
the	Date	object	according	to
universal	time.

setUTCMonth(month	[,	day]) JavaScript	1.3 Sets	the	month	for	the	Date
object	according	to	universal
time.

setUTCSeconds() JavaScript	1.3 Sets	the	number	of	seconds	for
the	Date	object	according	to
universal	time.

setYear(year) JavaScript	1.0 Sets	the	year	for	the	Date
object.	Deprecated	in	favor	of
setFullYear().

toGMTString() JavaScript	1.0 Converts	the	Date	object	to	a
string	according	to	Greenwich
Mean	Time.	Replaced	by
toUTCString.

toLocaleString() JavaScript	1.0 Converts	the	Date	object	to	a
string	according	to	the	local
time	zone.

toString() JavaScript	1.1 Converts	the	Date	object	into	a
string.

toUTCString() JavaScript	1.3 Converts	the	Date	object	to	a
string	according	to	universal
time.

UTC(year,	month	[,	day,	hours,

minutes,	seconds,	milliseconds])

JavaScript	1.0 Retrieves	the	number	of
milliseconds	in	a	date	since
January	1,	1970	00:00:00,
universal	time.

valueOf() JavaScript	1.1 Returns	the	primitive	value	of
the	Date	object.

Function
Introduced	in	JavaScript	1.1,	a	Function	object	is	created	with	the	Function	constructor.

Functions	can	be	defined	in	a	variety	of	ways.	You	can	create	a	function	using	the
following	standard	function	statement:

function	functionName()	{

				//	code	here

}

You	can	also	create	an	anonymous	function	and	assign	it	to	a	variable.	The	following	code
demonstrates	this	approach:

var	functionName	=	function()	{

				//	code	here

};

The	trailing	semicolon	is	not	a	typo	because	this	statement	is	an	assignment	operation,	and
all	assignment	operations	should	end	with	a	semicolon.

Functions	are	objects,	and	thus	they	have	a	constructor.	It’s	possible	to	create	a	function
using	the	Function	object’s	constructor	as	shown	in	the	following	code:

var	functionName	=	new	Function("arg1",	"arg2",	"return	arg1	+	arg2");

The	first	arguments	to	the	constructor	are	the	names	of	the	function’s	parameters—you
can	add	as	many	parameters	as	you	need.	The	last	parameter	you	pass	to	the	constructor	is
the	function’s	body.	The	previous	code	creates	a	function	that	accepts	two	arguments	and
returns	their	sum.

There	are	very	few	instances	where	you	will	use	the	Function	constructor.	It	is	preferred
to	define	a	function	using	the	standard	function	statement	or	by	creating	an	anonymous
function	and	assigning	it	to	a	variable.

Properties

PROPERTY INTRODUCED DESCRIPTION
arguments JavaScript	1.1 An	array	containing	the	parameters	passed	into	the

function.
arguments.length JavaScript	1.1 Returns	the	number	of	parameters	passed	into	the

function.
constructor JavaScript	1.1 Used	to	reference	the	constructor	function	for	the

object.
length JavaScript	1.1 Returns	the	number	of	parameters	expected	by	the

function.	This	differs	from	arguments.length,
which	returns	the	number	of	parameters	actually
passed	into	the	function.

prototype JavaScript	1.1 Returns	the	prototype	for	the	object,	which	can	be
used	to	extend	the	object’s	interface.

Methods

METHOD INTRODUCED DESCRIPTION
apply(thisObj,

arguments)

JavaScript	1.3 Calls	a	function	or	method	as	if	it	belonged	to
thisObj	and	passes	arguments	to	the	function	or
method.	arguments	must	be	an	array.

call(thisObj,

arg1,	...)

JavaScript	1.3 Identical	to	apply(),	except	arguments	are	passed
individually	instead	of	in	an	array.

toString() JavaScript	1.1 Converts	the	Function	object	into	a	string.
valueOf() JavaScript	1.1 Returns	the	primitive	value	of	the	Function	object.

JSON
The	JSON	object	contains	methods	for	parsing	JavaScript	Object	Notation	(JSON)	into
objects	and	serializing	JavaScript	objects	into	JSON.	Introduced	in	JavaScript	1.8.5,	the
JSON	object	is	a	top-level	object,	which	can	be	accessed	without	a	constructor.

Methods

METHOD INTRODUCED DESCRIPTION
parse(json) JavaScript	1.8.5 Transforms	JSON	into	a	JavaScript	object	or	value.
stringify(obj) JavaScript	1.8.5 Transforms	a	JavaScript	object	or	value	into	JSON.

Math
The	Math	object	provides	methods	and	properties	used	for	mathematical	calculations.
Introduced	in	JavaScript	1.0,	the	Math	object	is	a	top-level	object,	which	can	be	accessed
without	a	constructor.

Properties

PROPERTY INTRODUCED DESCRIPTION
E JavaScript	1.0 Returns	Euler’s	constant	(the	base	of	natural	logarithms;

approximately	2.718).
LN10 JavaScript	1.0 Returns	the	natural	logarithm	of	10	(approximately

2.302).
LN2 JavaScript	1.0 Returns	the	natural	logarithm	of	2	(approximately

0.693).
LOG10E JavaScript	1.0 Returns	the	Base	10	logarithm	of	E	(approximately

0.434).
LOG2E JavaScript	1.0 Returns	the	Base	2	logarithm	of	E	(approximately

1.442).
PI JavaScript	1.0 Returns	pi,	the	ratio	of	the	circumference	of	a	circle	to

its	diameter	(approximately	3.142).
SQRT1_2 JavaScript	1.0 Returns	the	square	root	of	1/2	(approximately	0.707).
SQRT2 JavaScript	1.0 Returns	the	square	root	of	2	(approximately	1.414).

Methods

METHOD INTRODUCED DESCRIPTION
abs(x) JavaScript	1.0 Returns	the	absolute	(positive)	value	of	a	number.
acos(x) JavaScript	1.0 Returns	the	arccosine	of	a	number	(in	radians).
asin(x) JavaScript	1.0 Returns	the	arcsine	of	a	number	(in	radians).
atan(x) JavaScript	1.0 Returns	the	arctangent	of	a	number	(in	radians).
atan2(y,

x)

JavaScript	1.0 Returns	the	angle	(in	radians)	between	the	x-axis	and	the
position	represented	by	the	y	and	x	coordinates	passed	in
as	parameters.

ceil(x) JavaScript	1.0 Returns	the	value	of	a	number	rounded	up	to	the	nearest
integer.

cos(x) JavaScript	1.0 Returns	the	cosine	of	a	number.
exp(x) JavaScript	1.0 Returns	E	to	the	power	of	the	argument	passed	in.
floor(x) JavaScript	1.0 Returns	the	value	of	a	number	rounded	down	to	the	nearest

integer.
log(x) JavaScript	1.0 Returns	the	natural	logarithm	(base	E)	of	a	number.
max(a,	b) JavaScript	1.0 Returns	the	greater	of	two	numbers	passed	in	as

parameters.
min(a,	b) JavaScript	1.0 Returns	the	lesser	of	two	numbers	passed	in	as	parameters.
pow(x,	y) JavaScript	1.0 Returns	the	first	parameter	raised	to	the	power	of	the

second.
random() JavaScript	1.1 Returns	a	pseudo-random	number	between	0	and	1.
round(x) JavaScript	1.0 Returns	the	value	of	a	number	rounded	up	or	down	to	the

nearest	integer.
sin(x) JavaScript	1.0 Returns	the	sine	of	a	number.
sqrt(x) JavaScript	1.0 Returns	the	square	root	of	a	number.
tan(x) JavaScript	1.0 Returns	the	tangent	of	a	number.

Number
The	Number	object	acts	as	a	wrapper	for	primitive	numeric	values.	Introduced	in
JavaScript	1.1,	a	Number	object	is	created	using	the	Number	constructor	with	the	initial
value	for	the	number	passed	in	as	a	parameter.

Properties

PROPERTY INTRODUCED DESCRIPTION
constructor JavaScript	1.1 Used	to	reference	the	constructor	function	for	the

object.
MAX_VALUE JavaScript	1.1 Returns	the	largest	number	that	can	be

represented	in	JavaScript	(approximately
1.79E+308).

MIN_VALUE JavaScript	1.1 Returns	the	smallest	number	that	can	be
represented	in	JavaScript	(5E–324).

NaN JavaScript	1.1 Returns	a	value	that	is	“not	a	number.”
NEGATIVE_INFINITY JavaScript	1.1 Returns	a	value	representing	negative	infinity.
POSITIVE_INFINITY JavaScript	1.1 Returns	a	value	representing	(positive)	infinity.
prototype JavaScript	1.1 Returns	the	prototype	for	the	object,	which	can	be

used	to	extend	the	object’s	interface.

Methods

METHOD INTRODUCED DESCRIPTION
toExponential(fractionDigits) JavaScript	1.5 Returns	a	string	containing	the

exponent	notation	of	a	number.	The
parameter	should	be	between	0	and
20	and	determines	the	number	of
digits	after	the	decimal.

toFixed([digits]) JavaScript	1.5 The	format	number	for	digits
number	of	digits.	The	number	is
rounded	up,	and	0s	are	added	after
the	decimal	point	to	achieve	the
desired	decimal	length.

toPrecision([precision]) JavaScript	1.5 Returns	a	string	representing	the
Number	object	to	the	specified
precision.

toString() JavaScript	1.1 Converts	the	Number	object	into	a
string.

valueOf() JavaScript	1.1 Returns	the	primitive	value	of	the
Number	object.

Object
Object	is	the	primitive	type	for	JavaScript	objects,	from	which	all	other	objects	are
descended	(that	is,	all	other	objects	inherit	the	methods	and	properties	of	the	Object
object).	Introduced	in	JavaScript	1.0,	you	can	create	an	Object	object	using	the	Object
constructor	as	follows:

var	obj	=	new	Object();

You	can	also	create	an	object	using	object	literal	notation	like	this:

var	obj	=	{};

Literal	notation	is	the	preferred	method	of	creating	an	object.

Properties

PROPERTY INTRODUCED DESCRIPTION
constructor JavaScript	1.1 Used	to	reference	the	constructor	function	for	the	object.
prototype JavaScript	1.1 Returns	the	prototype	for	the	object,	which	can	be	used

to	extend	the	object’s	interface.

Methods

METHOD INTRODUCED DESCRIPTION
hasOwnProperty(propertyName) JavaScript	1.5 Checks	whether	the	specified

property	is	inherited.	Returns
true	if	not	inherited;	false	if
inherited.

isPrototypeOf(obj) JavaScript	1.5 Determines	if	the	specified
object	is	the	prototype	of
another	object.

propertyIsEnumerable(propertyName) JavaScript	1.5 Determines	if	the	specified
property	can	be	seen	by	a	for
in	loop.

toString() JavaScript	1.0 Converts	the	Object	object
into	a	string.

valueOf() JavaScript	1.1 Returns	the	primitive	value	of
the	Object	object.

RegExp
The	RegExp	object	is	used	to	find	patterns	within	string	values.	RegExp	objects	can	be
created	in	two	ways:	using	the	RegExp	constructor	or	a	text	literal.	It	was	introduced	in
JavaScript	1.2.

Some	of	the	properties	in	the	following	table	have	both	long	and	short	names.	The	short
names	are	derived	from	the	Perl	programming	language.

Properties

PROPERTY INTRODUCED DESCRIPTION
constructor JavaScript	1.2 Used	to	reference	the	constructor	function	for	the	object.
global JavaScript	1.2 Indicates	whether	all	possible	matches	in	the	string	are	to

be	made,	or	only	the	first.	Corresponds	to	the	g	flag.
ignoreCase JavaScript	1.2 Indicates	whether	the	match	is	to	be	case-insensitive.

Corresponds	to	the	i	flag.
input JavaScript	1.2 The	string	against	which	the	regular	expression	is

matched.
lastIndex JavaScript	1.2 The	position	in	the	string	from	which	the	next	match	is

to	be	started.
multiline JavaScript	1.2 Indicates	whether	strings	are	to	be	searched	across

multiple	lines.	Corresponds	with	the	m	flag.
prototype JavaScript	1.2 Returns	the	prototype	for	the	object,	which	can	be	used

to	extend	the	object’s	interface.
source JavaScript	1.2 The	text	of	the	pattern	for	the	regular	expression.

Methods

METHOD INTRODUCED DESCRIPTION
exec(stringToSearch) JavaScript	1.2 Executes	a	search	for	a	match	in	the	string

parameter	passed	in.
test(stringToMatch) JavaScript	1.2 Tests	for	a	match	in	the	string	parameter

passed	in.
toString() JavaScript	1.2 Converts	the	RegExp	object	into	a	string.
valueOf() JavaScript	1.2 Returns	the	primitive	value	of	the	RegExp

object.

Special	Characters	Used	in	Regular	Expressions

CHARACTER EXAMPLES FUNCTION
\ /n/	matches	n;/\n/

matches	a	linefeed
character;/^/	matches
the	start	of	a	line;
and/\^/	matches	^.

For	characters	that	are	by	default	treated	as
normal	characters,	the	backslash	indicates	that
the	next	character	is	to	be	interpreted	with	a
special	value.	For	characters	that	are	usually
treated	as	special	characters,	the	backslash
indicates	that	the	next	character	is	to	be
interpreted	as	a	normal	character.

^ /^A/	matches	the	first
but	not	the	second	A	in
“A	man	called	Adam.”

Matches	the	start	of	a	line	or	of	the	input.

$ /r$/	matches	only	the
last	r	in	“horror.”

Matches	the	end	of	a	line	or	of	the	input.

* /ro*/	matches	r	in
“right,”	ro	in	“wrong,”
and	“roo”	in	“room.”

Matches	the	preceding	character	zero	or	more
times.

+ /l+/	matches	l	in
“life,”	ll	in	“still,”
and	lll	in	“stilllife.”

Matches	the	preceding	character	one	or	more
times.	For	example,	/a+/	matches	the	a	in
“candy”	and	all	the	as	in	“caaaaaaandy.”

? /Smythe?/	matches
“Smyth”	and	“Smythe.”

Matches	the	preceding	character	once	or	zero
times.

. /.b/	matches	the	second
but	not	the	first	ob	in
“blob.”

Matches	any	character	apart	from	the	newline
character.

(x) /(Smythe?)/	matches
“Smyth”	and	“Smythe”	in
“John	Smyth	and	Rob
Smythe”	and	allows	the
substrings	to	be	retrieved
as	RegExp.$1	and
RegExp.$2,	respectively.

Matches	x	and	remembers	the	match.	The
matched	substring	can	be	retrieved	from	the
elements	of	the	array	that	results	from	the
match,	or	from	the	RegExp	object’s	properties
$1,	$2	…	$9,	or	lastParen.

x|y /Smith|Smythe/

matches	“Smith”	and
“Smythe.”

Matches	either	x	or	y	(where	x	and	y	are
blocks	of	characters).

{n} /l{2}/	matches	ll	in
“still”	and	the	first	two
ls	in	“stilllife.”

Matches	exactly	n	instances	of	the	preceding
character	(where	n	is	a	positive	integer).

{n,} /l{2,}/	matches	ll	in
“still”	and	lll	in
“stilllife.”

Matches	n	or	more	instances	of	the	preceding
character	(where	n	is	a	positive	integer).

{n,m} /l{1,2}/	matches	l	in
“life,”	ll	in	“still,”
and	the	first	two	ls	in
“stilllife.”

Matches	between	n	and	m	instances	of	the
preceding	character	(where	n	and	m	are
positive	integers).

[xyz] [ab]	matches	a	and	b;
[a-c]	matches	a,	b	and
c.

Matches	any	one	of	the	characters	in	the
square	brackets.	A	range	of	characters	in	the
alphabet	can	be	matched	using	a	hyphen.

[^xyz] [^aeiouy]	matches	s	in
“easy”;[^a-y]	matches
z	in	“lazy.”

Matches	any	character	except	those	enclosed
in	the	square	brackets.	A	range	of	characters
in	the	alphabet	can	be	specified	using	a
hyphen.

[\b] Matches	a	backspace.
\b /t\b/	matches	the	first	t

in	“about	time.”
Matches	a	word	boundary	(for	example,	a
space	or	the	end	of	a	line).

\B /t\Bi/	matches	ti	in Matches	when	there	is	no	word	boundary	in

“it	is	time.” this	position.
\cX /\cA/	matches	Ctrl+A. Matches	a	control	character.
\d /IE\d/	matches	IE4,

IE5,	etc.
Matches	a	digit	character.	This	is	identical	to
[0-9].

\D /\D/	matches	the
decimal	point	in
“3.142.”

Matches	any	character	that	is	not	a	digit.	This
is	identical	to	[^0-9].

\f Matches	a	form-feed	character.
\n Matches	a	line-feed	character.
\r Matches	a	carriage	return	character.
\s /\s/	matches	the	space

in	“not	now.”
Matches	any	white	space	character,	including
space,	tab,	line-feed,	etc.	This	is	identical	to	[
\f\n\r\t\v].

\S /\S/	matches	a	in	“a.” Matches	any	character	other	than	a	white
space	character.	This	is	identical	to	[^
\f\n\r\t\v].

\t Matches	a	tab	character.
\v Matches	a	vertical	tab	character.
\w /\w/	matches	O	in	“O?!”

and	1	in	“$1.”
Matches	any	alphanumeric	character	or	the
underscore.	This	is	identical	to	[A-Za-z0-9_].

\W /\W/	matches	$	in
“$10million”	and	@	in
“j_smith@wrox.”

Matches	any	non-alphanumeric	character
(excluding	the	underscore).	This	is	identical
to	[^A-Za-z0-9_].

()\n /(Joh?n)	and	\1/
matches	John	and	John
in	“John	and	John's
friend”	but	does	not
match	“John	and	Jon.”

Matches	the	last	substring	that	matched	the
nth	match	placed	in	parentheses	and
remembered	(where	n	is	a	positive	integer).

\octal\xhex /\x25/	matches	%. Matches	the	character	corresponding	to	the
specified	octal	or	hexadecimal	escape	value.

String
The	String	object	is	used	to	contain	a	string	of	characters.	It	was	introduced	in	JavaScript
1.0.	This	must	be	distinguished	from	a	string	literal,	but	the	methods	and	properties	of	the
String	object	can	also	be	accessed	by	a	string	literal,	because	a	temporary	object	will	be
created	when	they	are	called.

The	HTML	methods	in	the	last	table	are	not	part	of	any	ECMAScript	standard,	but	they
have	been	part	of	the	JavaScript	language	since	version	1.0.	They	can	be	useful	because
they	dynamically	generate	HTML.

Properties

PROPERTY INTRODUCED DESCRIPTION
constructor JavaScript	1.1 Used	to	reference	the	constructor	function	for	the	object.
length JavaScript	1.0 Returns	the	number	of	characters	in	the	string.
prototype JavaScript	1.1 Returns	the	prototype	for	the	object,	which	can	be	used

to	extend	the	object’s	interface.

Methods

METHOD INTRODUCED DESCRIPTION
charAt(index) JavaScript	1.0 Returns	the	character	at	the	specified	position

in	the	string.
charCodeAt(index) JavaScript	1.2 Returns	the	Unicode	value	of	the	character	at

the	specified	position	in	the	string.
concat(value1,

value2,	...)

JavaScript	1.2 Concatenates	the	strings	supplied	as
arguments	and	returns	the	string	thus	formed.

fromCharCode(value1,

value2,	...)

JavaScript	1.2 Returns	the	string	formed	from	the
concatenation	of	the	characters	represented	by
the	supplied	Unicode	values.

indexOf(substr	[,

startIndex])

JavaScript	1.0 Returns	the	position	within	the	String	object
of	the	first	match	for	the	supplied	substring.
Returns	-1	if	the	substring	is	not	found.	Starts
the	search	at	startIndex	if	specified.

lastIndexOf(substr

[,	startIndex])

JavaScript	1.0 Returns	the	position	within	the	String	object
of	the	last	match	for	the	supplied	substring.
Returns	-1	if	the	substring	is	not	found.	Starts
the	search	at	startIndex	if	specified.

match(regexp) JavaScript	1.2 Searches	the	string	for	a	match	to	the	supplied
pattern.	Returns	an	array	or	null	if	not	found.

replace(regexp,

newValue)

JavaScript	1.2 Used	to	replace	a	substring	that	matches	a
regular	expression	with	a	new	value.

search(regexp) JavaScript	1.2 Searches	for	a	match	between	a	regular
expression	and	the	string.	Returns	the	index	of
the	match,	or	-1	if	not	found.

slice(startIndex	[,

endIndex])

JavaScript	1.0 Returns	a	substring	of	the	String	object.

split(delimiter) JavaScript	1.1 Splits	a	String	object	into	an	array	of	strings
by	separating	the	string	into	substrings.

substr(startIndex	[,

length])

JavaScript	1.0 Returns	a	substring	of	the	characters	from	the
given	starting	position	and	containing	the
specified	number	of	characters.

substring(startIndex

[,	endIndex])

JavaScript	1.0 Returns	a	substring	of	the	characters	between
two	positions	in	the	string.	The	character	at
endIndex	is	not	included	in	the	substring.

toLowerCase() JavaScript	1.0 Returns	the	string	converted	to	lowercase.
toUpperCase() JavaScript	1.0 Returns	the	string	converted	to	uppercase.

HTML	Methods

METHOD INTRODUCED DESCRIPTION
anchor(name) JavaScript	1.0 Returns	the	string	surrounded	by	<a>...	tags

with	the	name	attribute	assigned	the	passed
parameter.

big() JavaScript	1.0 Encloses	the	string	in	<big>…</big>	tags.
blink() JavaScript	1.0 Encloses	the	string	in	<blink>…</blink>	tags.
bold() JavaScript	1.0 Encloses	the	string	in	…	tags.
fixed() JavaScript	1.0 Encloses	the	string	in	<tt>…</tt>	tags.
fontcolor(color) JavaScript	1.0 Encloses	the	string	in	…	tags	with

the	color	attribute	assigned	a	parameter	value.
fontsize(size) JavaScript	1.0 Encloses	the	string	in	…	tags	with

the	size	attribute	assigned	a	parameter	value.
italics() JavaScript	1.0 Encloses	the	string	in	<i>…</i>	tags.
link(url) JavaScript	1.0 Encloses	the	string	in	<a>…	tags	with	the

href	attribute	assigned	a	parameter	value.
small() JavaScript	1.0 Encloses	the	string	in	<small>…</small>	tags.
strike() JavaScript	1.0 Encloses	the	string	in	<strike>…</strike>	tags.
sub() JavaScript	1.0 Encloses	the	string	in	_…	tags.
sup() JavaScript	1.0 Encloses	the	string	in	[…]	tags	and

causes	a	string	to	be	displayed	as	superscript.

C
W3C	DOM	Reference
Because	JavaScript	is	primarily	used	to	program	the	browser	and	add	behavior	to	web
pages,	it’s	only	natural	to	include	a	reference	to	the	W3C	DOM.

The	following	pages	list	the	objects	made	available	by	the	W3C	DOM.

DOM	CORE	OBJECTS
This	section	describes	and	lists	objects	defined	by	the	DOM	standards—starting	with	the
lowest	level	of	DOM	objects.	All	objects	are	in	alphabetical	order.

Low-Level	DOM	Objects
The	DOM	specification	describes	the	Node,	NodeList,	and	NamedNodeMap	objects.	These
are	the	lowest-level	objects	in	the	DOM,	and	are	the	primary	building	blocks	of	higher-
level	objects.

Node
Defined	in	DOM	Level	1,	the	Node	object	is	the	primary	data	type	for	the	entire	DOM.	All
objects	in	the	DOM	inherit	from	Node.	There	are	12	different	types	of	Node	objects;	each
type	has	an	associated	integer	value.	The	following	tables	list	the	Node	object’s	type
values,	properties,	and	methods.

Node	Types

TYPE	NAME INTEGER
VALUE

INTRODUCED ASSOCIATED	DATA
TYPE

ELEMENT_NODE 1 Level	1 Element

ATTRIBUTE_NODE 2 Level	1 Attr

TEXT_NODE 3 Level	1 Text

CDATA_SECTION_NODE 4 Level	1 CDATASection

ENTITY_REFERENCE_NODE 5 Level	1 EntityReference

ENTITY_NODE 6 Level	1 Entity

PROCESSING_INSTRUCTION_NODE 7 Level	1 ProcessingInstruction

COMMENT_NODE 8 Level	1 Comment

DOCUMENT_NODE 9 Level	1 Document

DOCUMENT_TYPE_NODE 10 Level	1 DocumentType

DOCUMENT_FRAGMENT_NODE 11 Level	1 DocumentFragment

NOTATION_NODE 12 Level	1 Notation

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

attributes A	NamedNodeMap	containing	the	attributes	of	this
node	if	it	is	an	Element,	or	null	otherwise.

Level	1

childNodes A	NodeList	containing	all	children	of	this	node. Level	1
firstChild Gets	the	first	child	of	this	node.	Returns	null	if	no

child	exists.
Level	1

lastChild Gets	the	last	child	of	this	node.	Returns	null	if	no
child	exists.

Level	1

localName Returns	the	local	part	of	the	node’s	qualified	name
(the	part	after	the	colon	of	the	qualified	name	when
namespaces	are	used).	Used	primarily	in	XML
DOMs.

Level	2

namespaceURI The	namespace	URI	of	the	node,	or	null	if	not
specified.

Level	2

nextSibling Gets	the	node	immediately	following	this	node.
Returns	null	if	no	following	sibling	exists.

Level	1

nodeName Gets	the	name	of	this	node. Level	1
nodeType An	integer	representing	the	type	of	this	node.	See

previous	table.
Level	1

nodeValue Gets	the	value	of	this	node,	depending	on	the	type. Level	1
ownerDocument Gets	the	Document	object	this	node	is	contained	in.

If	this	node	is	a	Document	node,	it	returns	null.
Level	1

parentNode Gets	the	parent	node	of	this	node.	Returns	null	for
nodes	that	are	currently	not	in	the	DOM	tree.

Level	1

prefix Returns	the	namespace	prefix	of	this	node,	or	null	if
not	specified.

Level	2

previousSibling Gets	the	node	immediately	before	this	node.	Returns
null	if	no	previous	sibling.

Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
appendChild(newChild) Adds	the	newChild	to	the	end	of	the	list	of

children.
Level	1

cloneNode(deep) Returns	a	duplicate	of	the	node.	The
returned	node	has	no	parent.	If	deep	is	true,
this	clones	all	nodes	contained	within	the
node.

Level	1

hasAttributes() Returns	a	boolean	value	based	on	if	the
node	has	any	attributes	(if	the	node	is	an
element).

Level	2

hasChildNodes() Returns	a	boolean	value	based	on	whether
the	node	has	any	child	nodes.

Level	1

insertBefore(newChild,

refChild)

Inserts	the	newChild	node	before	the
existing	child	referenced	by	refChild.	If
refChild	is	null,	newChild	is	added	at	the
end	of	the	list	of	children.

Level	1

removeChild(oldChild) Removes	the	specified	child	node	and
returns	it.

Level	1

replaceChild(newChild,

oldChild)

Replaces	oldChild	with	newChild	and
returns	oldChild.

Level	1

NodeList
The	NodeList	object	is	an	ordered	collection	of	nodes.	The	items	contained	in	the
NodeList	are	accessible	via	an	index	starting	from	0.

A	NodeList	is	a	live	snapshot	of	nodes.	Any	changes	made	to	the	nodes	within	the	DOM
are	immediately	reflected	in	every	reference	of	the	NodeList.

Properties

PROPERTY	NAME DESCRIPTION INTRODUCED
length The	number	of	nodes	in	the	list. Level	1

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

item(index) Returns	the	item	at	the	specified	index.	Returns	null	if
the	index	is	greater	than	or	equal	to	the	list’s	length.

Level	1

NamedNodeMap
Objects	referred	to	as	NamedNodeMaps	represent	collections	of	nodes	that	can	be	accessed
by	name.	This	object	does	not	inherit	from	NodeList.	An	element’s	attribute	list	is	an
example	of	a	NamedNodeMap.

Properties

PROPERTY	NAME DESCRIPTION INTRODUCED
length The	number	of	nodes	in	the	map. Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
getNamedItem(name) Retrieves	a	node	by	the	specified	name. Level	1
removeNamedItem(name) Removes	an	item	by	the	specified	name. Level	1
setNamedItem(node) Adds	a	node	to	the	list	by	using	its	nodeName

property	as	its	key.
Level	1

High-Level	DOM	Objects
These	objects	inherit	Node	and	are	the	basis	for	even	higher-level	DOM	objects	as
specified	by	the	HTML	DOM.	These	objects	mirror	the	different	node	types.

The	following	objects	are	listed	in	alphabetical	order.	The	CDATASection,	Comment,
DocumentType,	Entity,	EntityReference,	Notation,	and	ProcessingInstruction
objects	are	purposefully	omitted	from	this	section.

Attr
The	Attr	object	represents	an	Element	object’s	attribute.	Even	though	Attr	objects	inherit
from	Node,	they	are	not	considered	children	of	the	element	they	describe,	and	thus	are	not
part	of	the	DOM	tree.	The	Node	properties	of	parentNode,	previousSibling,	and
nextSibling	return	null	for	Attr	objects.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

ownerElement Returns	the	Element	object	the	attribute	is
attached	to.

Level	2

name Returns	the	name	of	the	attribute. Level	1
value Returns	the	value	of	the	attribute. Level	1

Document
The	Document	object	represents	the	entire	HTML	or	XML	document.	It	is	the	root	of	the
document	tree.	The	Document	is	the	container	for	all	nodes	within	the	document,	and	each
Node	object’s	ownerDocument	property	points	to	the	Document.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

docType The	DocType	object	associated	with	this	document.
Returns	null	for	HTML	and	XML	documents
without	a	document	type	declaration.

Level	1

documentElement Returns	the	root	element	of	the	document.	For
HTML	documents,	the	documentElement	is	the
<html/>	element.

Level	1

implementation The	DOMImplementation	object	associated	with	the
Document.

Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
createAttribute(name) Returns	a	new	Attr	object

with	the	specified	name.
Level	1

createAttributeNS(namespaceURI,

qualifiedName)

Returns	an	attribute	with
the	given	qualified	name
and	namespace	URI.	Not
for	HTML	DOMs.

Level	2

createComment(data) Returns	a	new	Comment
object	with	the	specified
data.

Level	1

createCDATASection(data) Returns	a	new
CDATASection	object
whose	value	is	the
specified	data.

Level	1

createDocumentFragment() Returns	an	empty
DocumentFragment	object.

Level	1

createElement(tagName) Returns	a	new	Element
object	with	the	specified
tag	name.

Level	1

createElementNS(namespaceURI,

qualifiedName)

Returns	an	element	of	the
specified	qualified	name
and	namespace	URI.	Not
for	HTML	DOMs.

Level	2

createTextNode(text) Returns	a	new	Text	object
containing	the	specified
text.

Level	1

getElementById(elementId) Returns	the	Element	with
the	specified	ID	value.
Returns	null	if	the	element
does	not	exist.

Level	2

getElementsByTagName(tagName) Returns	a	NodeList	of	all
Element	objects	with	the
specified	tag	name	in	the
order	in	which	they	appear
in	the	DOM	tree.

Level	1

getElementsByTagNameNS(namespaceURI,

localName)

Returns	a	NodeList	of	all
elements	with	the	specified
local	name	and	namespace
URI.	Elements	returned	are
in	the	order	they	appear	in
the	DOM.

Level	2

importNode(importedNode,	deep) Imports	a	node	from
another	document.	The
source	node	is	not	altered
or	removed	from	its
document.	A	copy	of	the
source	is	created.	If	deep	is
true,	all	child	nodes	of	the
imported	node	are
imported.	If	false,	only
the	node	is	imported.

Level	2

DocumentFragment
The	DocumentFragment	object	is	a	lightweight	Document	object.	Its	primary	purpose	is
efficiency.	Making	many	changes	to	the	DOM	tree,	such	as	appending	several	nodes
individually,	is	an	expensive	process.	It	is	possible	to	append	Node	objects	to	a
DocumentFragment	object,	which	allows	you	to	easily	and	efficiently	insert	all	nodes
contained	within	the	DocumentFragment	into	the	DOM	tree.

The	following	code	shows	the	use	of	a	DocumentFragment:

var	documentFragment	=	document.createDocumentFragment();

for	(var	i	=	0;	i	<	1000;	i++)	{

				var	element	=	document.createElement(“div”);

				var	text	=	document.createTextNode(“Here	is	test	for	div	#”	+	i);

				element.setAttribute(“id”,	i);

				documentFragment.appendChild(element);

}

document.body.appendChild(documentFragment);

Without	the	DocumentFragment	object,	this	code	would	update	the	DOM	tree	1,000	times,
thus	degrading	performance.	With	the	DocumentFragment	object,	the	DOM	tree	is	updated
only	once.

The	DocumentFragment	object	inherits	the	Node	object,	and	as	such	has	Node’s	properties

and	methods.	It	does	not	have	any	other	properties	or	methods.

Element
Elements	are	the	majority	of	objects,	other	than	text,	that	you	will	encounter	in	the	DOM.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

tagName Returns	the	name	of	the	element.	The	same	as
Node.nodeName	for	this	node	type.

Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
getAttribute(name) Retrieves	the	attribute’s

value	by	the	specified
name.

Level	1

getAttributeNS(namespaceURI,

localName)

Returns	the	Attr	object	by
local	name	and	namespace
URI.	Not	for	HTML
DOMs.

Level	2

getAttributeNode(name) Returns	the	Attr	object
associated	with	the
specified	name.	Returns
null	if	no	attribute	by	that
name	exists.

Level	1

getElementsByTagName(tagName) Returns	a	NodeList	of	all
descendant	elements	with
the	specified	tagName	in
the	order	in	which	they
appear	in	the	tree.

Level	1

getElementsByTagNameNS(namespaceURI,

localName)

Returns	a	NodeList	of	all
the	descendant	Element
objects	with	the	specified
local	name	and	namespace
URI.	Not	for	HTML
DOMs.

Level	2

hasAttribute(name) Returns	a	boolean	value
based	on	whether	or	not	the
element	has	an	attribute
with	the	specified	name.

Level	2

hasAttributeNS(namespaceURI,

localName)

Returns	a	boolean	value
based	on	whether	the

Level	2

Element	has	an	attribute
with	the	given	local	name
and	namespace	URI.	Not
for	HTML	DOMs.

querySelector(selector) Retrieves	the	first	child
element	that	matches	the
specified	selector.

Level	3

querySelectorAll(selector) Retrieves	all	child	elements
that	match	the	specified
selector.

Level	3

removeAttribute(name) Removes	the	attribute	with
the	specified	name.

Level	1

removeAttributeNS(namespaceURI,

localName)

Removes	an	attribute
specified	by	the	local	name
and	namespace	URI.	Not
for	HTML	DOMs.

Level	2

removeAttributeNode(oldAttr) Removes	and	returns	the
specified	attribute.

Level	1

setAttribute(name,	value) Creates	and	adds	a	new
attribute,	or	changes	the
value	of	an	existing
attribute.	The	value	is	a
simple	string.

Level	1

setAttributeNS(namespaceURI,

qualifiedName,	value)

Creates	and	adds	a	new
attribute	with	the	specified
namespace	URI,	qualified
name,	and	value.

Level	2

setAttributeNode(newAttr) Adds	the	specified	attribute
to	the	element.	Replaces
the	existing	attribute	with
the	same	name	if	it	exists.

Level	1

setAttributeNodeNS(newAttr) Adds	the	specified	attribute
to	the	element.

Level	2

Text
The	Text	object	represents	text	content	of	an	Element	or	Attr	object.

Methods

METHOD	NAME DESCRIPTION INTRODUCED
splitText(indexOffset) Breaks	the	Text	node	into	two	nodes	at	the

specified	offset.	The	new	nodes	stay	in	the
DOM	tree	as	siblings.

Level	1

HTML	DOM	OBJECTS
In	order	to	adequately	interface	with	the	DOM,	the	W3C	extends	the	DOM	Level	1	and	2
specifications	to	describe	objects,	properties,	and	methods,	specific	to	HTML	documents.

Most	of	the	objects	you’ll	interface	with	as	a	front-end	developer	are	contained	in	this
section.

Miscellaneous	Objects:	The	HTML	Collection
The	HTMLCollection	object	is	a	list	of	nodes,	much	like	NodeList.	It	does	not	inherit	from
NodeList,	but	HTMLCollections	are	considered	live,	like	NodeLists,	and	are	automatically
updated	when	changes	are	made	to	the	document.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

length Returns	the	number	of	elements	in	the
collection.

Level	1

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

item(index) Returns	the	element	at	the	specified	index.	Returns
null	if	index	is	larger	than	the	collection’s	length.

Level	1

namedItem(name) Returns	the	element	using	a	name.	It	first	searches
for	an	element	with	a	matching	id	attribute	value.	If
none	are	found,	it	searches	for	elements	with	a
matching	name	attribute	value.

Level	1

HTML	Document	Objects:	The	HTML	Document
The	HTMLDocument	object	is	the	root	of	HTML	documents	and	contains	the	entire	content.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

anchors Returns	an	HTMLCollection	of	all	<a/>	elements	in	the
document	that	have	a	value	assigned	to	their	name
attribute.

Level	1

applets Returns	an	HTMLCollection	of	all	<applet/>	elements
and	<object/>	elements	that	include	applets	in	the
document.

Level	1

body Returns	the	element	that	contains	the	document’s
content.	Returns	the	<body/>	element,	or	the	outermost
<frameset/>	element	depending	on	the	document.

Level	1

cookie Returns	the	cookies	associated	with	the	document.
Returns	an	empty	string	if	none.

Level	1

domain Returns	the	domain	name	of	the	server	that	served	the
document.	Returns	null	if	the	domain	name	cannot	be
identified.

Level	1

forms Returns	an	HTMLCollection	of	all	<form/>	elements	in
the	document.

Level	1

images Returns	an	HTMLCollection	object	containing	all	
elements	in	the	document.

Level	1

links Returns	an	HTMLCollection	of	all	<area/>	and	<a/>
elements	(with	an	href	value)	in	the	document.

Level	1

referrer Returns	the	URL	of	the	page	that	linked	to	the	page.
Returns	an	empty	string	if	the	user	navigated	directly	to
the	page.

Level	1

title The	title	of	the	document	as	specified	by	the	<title/>
element	in	the	document’s	<head/>	element.

Level	1

URL The	complete	URL	of	the	document. Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
close() Closes	a	document. Level	1
getElementById(elementId) Returns	the	element	with	the	given

elementId	or	null	if	no	element	could
be	found.	Removed	in	DOM	Level	2
and	added	to	the	Document	object.

Level	1

getElementsByName(name) Returns	an	HTMLCollection	of	elements
with	the	specified	name	attribute	value.

Level	1

open() Opens	a	document	for	writing. Level	1
write() Writes	a	string	of	text	to	the	document. Level	1
writeln() Writes	a	string	of	text	to	the	document

followed	by	a	newline.
Level	1

HTML	Element	Objects
HTML	element	attributes	are	exposed	as	properties	of	the	various	HTML	element	objects.
Their	data	type	is	determined	by	the	attribute’s	type	in	the	HTML	4.0	specification.

Other	than	HTMLElement,	all	HTML	element	objects	are	described	here	in	alphabetical
order.	The	following	pages	do	not	contain	a	complete	list	of	HTML	element	object	types.
Instead,	only	the	following	element	object	types	are	listed:

HTMLAnchorElement

HTMLBodyElement

HTMLButtonElement

HTMLDivElement

HTMLFormElement

HTMLFrameElement

HTMLFrameSetElement

HTMLIFrameElement

HTMLImageElement

HTMLInputElement

HTMLOptionElement

HTMLParagraphElement

HTMLSelectElement

HTMLTableCellElement

HTMLTableElement

HTMLTableRowElement

HTMLTableSectionElement

HTMLTextAreaElement

HTMLElement
HTMLElement	is	the	base	object	for	all	HTML	elements,	much	like	how	Node	is	the	base
object	for	all	DOM	nodes.	Therefore,	all	HTML	elements	have	the	following	properties.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

className Gets	or	sets	the	value	of	the	element’s	class
attribute.

Level	1

id Gets	or	sets	the	value	of	the	element’s	id	attribute. Level	1

HTMLAnchorElement
Represents	the	HTML	<a/>	element.

Properties

PROPERTY	NAME DESCRIPTION INTRODUCED
accessKey Gets	or	sets	the	value	of	the	accessKey	attribute. Level	1
href Gets	or	sets	the	value	of	the	href	attribute. Level	1
name Gets	or	sets	the	value	of	the	name	attribute. Level	1
target Gets	or	set	the	value	of	the	target	attribute. Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
blur() Removes	the	keyboard	focus	from	the	element. Level	1
focus() Gives	keyboard	focus	to	the	element. Level	1

HTMLBodyElement
Represents	the	<body/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

aLink Deprecated.	Gets	or	sets	the	value	of	the	alink
attribute.

Level	1

background Deprecated.	Gets	or	sets	the	value	of	the
background	attribute.

Level	1

bgColor Deprecated.	Gets	or	sets	the	value	of	the	bgColor
attribute.

Level	1

link Deprecated.	Gets	or	sets	the	value	of	the	link
attribute.

Level	1

text Deprecated.	Gets	or	sets	the	value	of	the	text
attribute.

Level	1

vLink Deprecated.	Gets	or	sets	the	value	of	the	vlink
attribute.

Level	1

HTMLButtonElement
Represents	<button/>	elements.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

accessKey Gets	or	sets	the	value	of	the	accessKey	attribute. Level	1
disabled Gets	or	sets	the	value	of	the	disabled	attribute. Level	1
form Gets	the	HTMLFormElement	object	containing	the	button.

Returns	null	if	the	button	is	not	inside	a	form.
Level	1

name Gets	or	sets	the	value	of	the	name	attribute. Level	1
type Gets	the	value	of	the	type	attribute. Level	1
value Gets	or	sets	the	value	of	the	value	attribute. Level	1

HTMLDivElement
Represents	the	<div/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align
attribute.

Level	1

HTMLFormElement
Represents	the	<form/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

action Gets	or	sets	the	value	of	the	action	attribute. Level	1
elements Returns	an	HTMLCollection	object	containing	all	form

control	elements	in	the	form.
Level	1

enctype Gets	or	sets	the	value	of	the	enctype	attribute. Level	1
length Returns	the	number	of	form	controls	within	the	form. Level	1
method Gets	or	sets	the	value	of	the	method	attribute. Level	1
name Gets	or	sets	the	value	of	the	name	attribute. Level	1
target Gets	or	sets	the	value	of	the	target	attribute. Level	1

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

reset() Resets	all	form	control	elements	contained	within	the
form	to	their	default	values.

Level	1

submit() Submits	the	form.	Does	not	fire	the	submit	event. Level	1

HTMLFrameElement
Represents	the	<frame/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

contentDocument Gets	the	Document	object	for	the	frame.	Returns
null	if	one	isn’t	available.

Level	2

frameBorder Gets	or	sets	the	value	of	the	frameBorder	attribute. Level	1
marginHeight Gets	or	sets	the	value	of	the	marginHeight	attribute. Level	1
marginWidth Gets	or	sets	the	value	of	the	marginWidth	attribute. Level	1
name Gets	or	sets	the	value	of	the	name	attribute. Level	1
noResize Gets	or	sets	the	value	of	the	noResize	attribute. Level	1
scrolling Gets	or	sets	the	value	of	the	scrolling	attribute. Level	1
src Gets	or	sets	the	value	of	the	src	attribute. Level	1

HTMLFrameSetElement
Represents	the	<frameset/>	element.

Properties

PROPERTY	NAME DESCRIPTION INTRODUCED
cols Gets	or	sets	the	value	of	the	cols	attribute. Level	1
rows Gets	or	sets	the	value	of	the	rows	attribute. Level	1

HTMLIFrameElement
Represents	the	<iframe/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align
attribute.

Level	1

contentDocument Gets	the	Document	object	of	the	frame.	Returns	null
if	one	doesn’t	exist.

Level	2

frameBorder Gets	or	sets	the	value	of	the	frameBorder	attribute. Level	1
height Gets	or	sets	the	value	of	the	height	attribute. Level	1
marginHeight Gets	or	sets	the	value	of	the	marginHeight	attribute. Level	1
marginWidth Gets	or	sets	the	value	of	the	marginWidth	attribute. Level	1
name Gets	or	sets	the	value	of	the	name	attribute. Level	1
noResize Gets	or	sets	the	value	of	the	noResize	attribute. Level	1
scrolling Gets	or	sets	the	value	of	the	scrolling	attribute. Level	1
src Gets	or	sets	the	value	of	the	src	attribute. Level	1
width Gets	or	sets	the	value	of	the	width	attribute. Level	1

HTMLImageElement
Represents	the		element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align
attribute.

Level	1

alt Gets	or	sets	the	value	of	the	alt	attribute. Level	1
border Deprecated.	Gets	or	sets	the	value	of	the	border

attribute.
Level	1

height Gets	or	sets	the	value	of	the	height	attribute. Level	1
name Gets	or	sets	the	value	of	the	name	attribute. Level	1
src Gets	or	sets	the	value	of	the	src	attribute. Level	1
width Gets	or	sets	the	value	of	the	width	attribute. Level	1

HTMLInputElement
Represents	the	<input/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

accessKey Gets	or	sets	the	value	of	the	accessKey	attribute. Level	1
align Deprecated.	Gets	or	sets	the	value	of	the	align

attribute.
Level	1

alt Gets	or	sets	the	value	of	the	alt	attribute. Level	1
checked Used	when	type	is	checkbox	or	radio.	Returns	a

boolean	value	depending	on	whether	or	not	the
checkbox	or	radio	button	is	checked.

Level	1

defaultChecked Used	when	type	is	checkbox	or	radio.	Gets	or	sets
the	checked	attribute.	The	value	does	not	change
when	other	checkboxes	or	radio	buttons	are	checked.

Level	1

disabled Gets	or	sets	the	value	of	the	disabled	attribute. Level	1
form Gets	the	HTMLFormElement	object	containing	the

<input/>	element.	Returns	null	if	the	element	is	not
inside	a	form.

Level	1

maxLength Gets	or	sets	the	value	of	the	maxLength	attribute. Level	1
name Gets	or	sets	the	value	of	the	name	attribute. Level	1
readOnly Used	only	if	type	is	text	or	password.	Gets	or	sets

the	value	of	the	readonly	attribute.
Level	1

size Gets	or	sets	the	value	of	the	size	attribute. Level	1
src If	type	is	image,	this	gets	or	sets	the	value	of	the	src

attribute.
Level	1

type Gets	the	value	of	the	type	attribute. Level	1
value Gets	or	sets	the	value	of	the	value	attribute. Level	1

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

blur() Removes	keyboard	focus	from	the	element. Level	1
click() Simulates	a	mouse	click	for	<input/>	elements	with	type

button,	checkbox,	radio,	reset,	and	submit.
Level	1

focus() Gives	keyboard	focus	to	the	element. Level	1
select() Selects	content	of	<input/>	elements	with	type	text,

password,	and	file.
Level	1

HTMLOptionElement
Represents	the	<option/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

defaultSelected Gets	or	sets	the	selected	attribute.	The	value	of	this
property	does	not	change	as	other	<option/>
elements	in	the	<select/>	element	are	selected.

Level	1

disabled Gets	or	sets	the	value	of	the	disabled	attribute. Level	1
form Gets	the	HTMLFormElement	object	containing	the

<option/>	element.	Returns	null	if	the	element	is
not	inside	a	form.

Level	1

index Gets	the	index	position	of	the	<option/>	element	in
its	containing	<select/>	element.	Starts	at	0.

Level	1

label Gets	or	sets	the	value	of	the	label	attribute. Level	1
selected Returns	a	boolean	value	depending	on	whether	or

not	the	<option/>	element	is	currently	selected.
Level	1

text Gets	the	text	contained	within	the	<option/>
element.

Level	1

value Gets	or	sets	the	value	of	the	value	attribute. Level	1

HTMLOptionCollection
The	HTMLOptionCollection	object	was	introduced	in	DOM	Level	2.	It	contains	a	list	of
<option/>	elements.

PROPERTY
NAME

DESCRIPTION INTRODUCED

length Gets	the	number	of	<option/>	elements	in	the
list.

Level	2

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

item(index) Retrieves	the	<option/>	element	at	the	specified
index.

Level	2

namedItem(name) Retrieves	the	<option/>	element	by	the	specified
name.	It	first	attempts	to	find	an	<option/>	element
with	the	specified	id.	If	none	can	be	found,	it	looks
for	<option/>	elements	with	the	specified	name
attribute.

Level	2

HTMLParagraphElement
Represents	the	<p/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align
attribute.

Level	1

HTMLSelectElement
Represents	the	<select/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

disabled Gets	or	sets	the	value	of	the	disabled	attribute. Level	1
form Gets	the	HTMLFormElement	object	containing	the

<select/>	element.	Returns	null	if	the	element	is	not
inside	a	form.

Level	1

length Returns	the	number	of	<option/>	elements. Level	1
multiple Gets	or	sets	the	value	of	the	multiple	attribute. Level	1
name Gets	or	sets	the	value	of	the	name	attribute. Level	1
options Returns	an	HTMLOptionsCollection	object	containing

the	list	of	the	<option/>	elements.
Level	1

selectedIndex Returns	the	index	of	the	currently	selected	<option/>
element.	Returns	-1	if	nothing	is	selected	and	returns
the	first	<option/>	element	selected	if	multiple	items
are	selected.

Level	1

size Gets	or	sets	the	value	of	the	size	attribute. Level	1
type Gets	the	value	of	the	type	attribute. Level	1
value Gets	or	sets	the	current	form	control’s	value. Level	1

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

add(element[,

before])

Adds	an	<option/>	element	to	the	<select/>	element.
If	before	is	null,	then	element	is	added	at	the	end	of
the	list.

Level	1

blur() Removes	keyboard	focus	from	the	elements. Level	1
focus() Gives	keyboard	focus	to	the	element. Level	1
remove(index) Removes	the	<option/>	element	at	the	given	index.

Does	nothing	if	index	is	out	of	range.
Level	1

HTMLTableCellElement

Represents	the	<td/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align
attribute.

Level	1

bgColor Deprecated.	Gets	or	sets	the	value	of	the	bgcolor
attribute.

Level	1

cellIndex The	index	of	the	cell	in	the	row	in	DOM	tree	order. Level	1
colSpan Gets	or	sets	the	value	of	the	colspan	attribute. Level	1
height Deprecated.	Gets	or	sets	the	value	of	the	height

attribute.
Level	1

noWrap Deprecated.	Gets	or	sets	the	value	of	the	nowrap
attribute.

Level	1

rowSpan Gets	or	sets	the	value	of	the	rowSpan	attribute. Level	1
vAlign Gets	or	sets	the	value	of	the	valign	attribute. Level	1
width Deprecated.	Gets	or	sets	the	value	of	the	width

attribute.
Level	1

HTMLTableElement
Represents	the	<table/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align	attribute. Level	1
bgColor Deprecated.	Gets	or	sets	the	value	of	the	bgcolor

attribute.
Level	1

border Gets	or	sets	the	value	of	the	border	attribute. Level	1
cellPadding Gets	or	sets	the	value	of	the	cellPadding	attribute. Level	1
cellSpacing Gets	or	sets	the	value	of	the	cellSpacing	attribute. Level	1
rows Returns	an	HTMLCollection	containing	all	rows	in	the

table.
Level	1

tBodies Returns	an	HTMLCollection	of	the	defined	<tbody/>
element	objects	in	the	table.

Level	1

tFoot Returns	the	table’s	<tfoot/>	element	object
(HTMLTableSectionElement),	or	null	if	one	doesn’t
exist.

Level	1

tHead Returns	the	table’s	<thead/>	element	object
(HTMLTableSectionElement),	or	null	if	one	doesn’t
exist.

Level	1

width Gets	or	sets	the	value	of	the	width	attribute. Level	1

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

createTFoot() Creates	and	returns	a	<tfoot/>	element	if	one	does
not	exist.	Returns	the	existing	<tfoot/>	element	if
it	exists.

Level	1

createTHead() Creates	and	returns	a	<thead/>	element	if	one	does
not	exist.	Returns	the	existing	<thead/>	element	if
it	exists.

Level	1

deleteRow(index) Deletes	the	row	at	the	specified	index. Level	1
deleteTFoot() Deletes	the	table’s	footer	if	one	exists. Level	1
deleteTHead() Deletes	the	table’s	header	if	one	exists. Level	1
insertRow(index) Inserts	and	returns	a	new	row	at	the	specified

index.	If	index	is	-1	or	equal	to	the	number	of
rows,	the	new	row	is	appended	to	the	end	of	the
row	list.

Level	1

HTMLTableRowElement
Represents	the	<tr/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align
attribute.

Level	1

bgColor Deprecated.	Gets	or	sets	the	value	of	the	bgcolor
attribute.

Level	1

cells Returns	an	HTMLCollection	containing	the	cells	in
the	row.

Level	1

rowIndex The	index	of	the	row	in	the	table. Level	1
sectionRowIndex The	index	of	the	row	relative	to	the	section	it

belongs	to	(<thead/>,	<tfoot/>,	or	<tbody/>).
Level	1

vAlign Gets	or	sets	the	value	of	the	valign	attribute. Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
deleteCell(index) Deletes	the	cell	at	the	specified	index. Level	1
insertCell(index) Inserts	and	returns	an	empty	<td/>	element.	If

index	is	-1	or	equal	to	the	number	of	cells	in	the
row,	the	new	cell	is	appended	to	the	end	of	the
list.

Level	1

HTMLTableSectionElement
Represents	the	<thead/>,	<tbody/>,	and	<tfoot/>	elements.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

align Deprecated.	Gets	or	sets	the	value	of	the	align
attribute.

Level	1

rows Returns	an	HTMLCollection	containing	the	rows	of
the	section.

Level	1

vAlign Gets	or	sets	the	value	of	the	valign	attribute. Level	1

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

deleteRow(index) Deletes	the	row	at	the	specified	index	relative	to
the	section.

Level	1

insertRow(index) Inserts	and	returns	a	new	row	into	the	section	at	the
specified	index	(relative	to	the	section).	If	index	is
-1	or	equal	to	the	number	of	rows,	the	row	is
appended	to	the	end	of	the	list.

Level	1

HTMLTextAreaElement
Represents	the	<textarea/>	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

accessKey Gets	or	sets	the	value	of	the	accessKey	attribute. Level	1
cols Gets	or	sets	the	value	of	the	cols	attribute. Level	1
defaultValue Gets	or	sets	the	contents	of	the	element.	The	value	does

not	change	when	the	content	changes.
Level	1

disabled Gets	or	sets	the	value	of	the	disabled	attribute. Level	1
form Gets	the	HTMLFormElement	object	containing	the

<textarea/>	element.	Returns	null	if	the	element	is
not	inside	a	form.

Level	1

name Gets	or	sets	the	value	of	the	name	attribute. Level	1
readOnly Used	only	if	type	is	text	or	password.	Gets	or	sets	the

value	of	the	readonly	attribute.
Level	1

rows Gets	or	sets	the	value	of	the	rows	attribute. Level	1
type Gets	the	value	of	the	type	attribute.	Always	set	to

textarea.
Level	1

value Gets	or	sets	the	current	value	of	the	element. Level	1

Methods

METHOD	NAME DESCRIPTION INTRODUCED
blur() Removes	keyboard	focus	from	the	element. Level	1
focus() Gives	keyboard	focus	to	the	element. Level	1
select() Selects	the	contents	of	the	element. Level	1

HTML	Media	Objects
The	HTMLMediaElement	object	is	the	base	type	for	both	<video/>	and	<audio/>	elements.

HTMLMediaElement
Properties

PROPERTY	NAME DESCRIPTION INTRODUCED
autoplay Reflects	the	autoplay	attribute,	and	determines

where	playback	should	automatically	begin	as
soon	as	enough	media	is	available.

HTML5

buffered Gets	the	ranges	of	the	media	source	that	the
browser	has	buffered.

HTML5

controller Gets	or	sets	the	media	controller	associated
with	the	element;	returns	null	if	none	is	linked.

HTML5

controls Gets	or	sets	the	controls	attribute,	determining
if	the	browser’s	default	controls	are	displayed.

HTML5

currentSrc Gets	the	absolute	URL	of	the	media. HTML5
currentTime The	current	playback	time	in	seconds.	Setting

seeks	the	media	to	the	specified	time.
HTML5

defaultMuted Gets	or	sets	the	muted	attribute.	This	does	not
affect	the	audio	after	playback	starts.	Use	the
muted	property	for	that.

HTML5

defaultPlaybackRate The	speed	of	playback.	1.0	is	normal. HTML5
duration Gets	the	length	of	the	media	in	seconds. HTML5
ended Indicates	whether	the	media	element	has	ended

playback.
HTML5

error The	most	recent	error;	null	if	no	error	has
occurred.

HTML5

loop Gets	or	sets	the	loop	attribute;	indicates
whether	the	media	should	start	over	when	it
reaches	the	end.

HTML5

mediaGroup Gets	or	sets	the	mediagroup	attribute. HTML5
muted Mutes	or	unmutes	the	audio. HTML5
networkState The	current	state	of	fetching	the	media	over	the

network.
HTML5

paused Indicates	whether	the	media	element	is	paused. HTML5

playbackRate Gets	or	sets	the	current	playback	rate. HTML5
played Gets	the	ranges	that	the	media	source	has

played,	if	any.
HTML5

preload Gets	or	sets	the	preload	attribute. HTML5
readyState Gets	the	readiness	of	the	media. HTML5
seekable Gets	the	time	ranges	that	the	user	can	seek. HTML5

seeking Indicates	whether	the	media	is	in	the	process	of
seeking	to	a	new	position.

HTML5

src Gets	or	sets	the	src	attribute. HTML5
volume Gets	or	sets	the	volume	of	the	audio.	0.0	(silent)

to	1.0	(loudest)
HTML5

Methods

METHOD
NAME

DESCRIPTION INTRODUCED

canPlayType() Determines	the	likelihood	the	browser	can	play	the
given	media	type.

HTML5

load() Begins	loading	the	media	content	from	the	server. HTML5
pause() Pauses	the	media	playback. HTML5
play() Begins	or	resumes	the	media	playback. HTML5

HTMLAudioElement
The	<audio/>	element	does	not	have	any	unique	properties	or	methods	from
HTMLMediaElement.

HTMLVideoElement
The	<video/>	element	has	a	few	unique	properties.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

height Gets	or	sets	the	height	attribute,	determining	the	size	of
the	display	area.

HTML5

poster Gets	or	sets	the	poster	attribute,	specifying	the	image	to
show	while	no	video	data	is	available.

HTML5

videoHeight Gets	the	intrinsic	height	of	the	resource	in	CSS	pixels. HTML5
videoWidth Gets	the	intrinsic	width	of	the	resource	in	CSS	pixels. HTML5
width Gets	or	sets	the	width	attribute,	determine	the	size	of	the

display	area.
HTML5

DOM	EVENT	MODEL	AND	OBJECTS
The	DOM	event	model	was	introduced	in	DOM	Level	2.	It	describes	an	event	system
where	every	event	has	an	event	target.	When	an	event	reaches	an	event	target,	all
registered	event	handlers	on	the	event	target	are	triggered	for	that	specific	event.	The
following	objects	are	described	by	the	DOM	event	model.

EventTarget
The	EventTarget	object	is	inherited	by	all	HTMLElement	objects	in	the	DOM.	This	object
provides	the	means	for	the	registration	and	removal	of	event	handlers	on	the	event	target.

Methods

METHOD	Name DESCRIPTION
addEventListener(type,

listener,	useCapture)

Registers	an	event	handler	on	an	element.	type	is	the
event	type	to	listen	for,	listener	is	the	JavaScript
function	to	call	when	the	event	is	fired,	and	useCapture
determines	whether	the	event	is	captured	or	bubbles.

removeEventListener(type,

listener,	useCapture)

Removes	a	listener	from	the	element.

Event
When	an	event	fires,	an	Event	object	is	passed	to	the	event	handler	if	one	is	specified.
This	object	contains	contextual	information	about	an	event.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

bubbles Indicates	whether	or	not	the	event	is	a	bubbling
event.

Level	2

cancelable Indicates	whether	or	not	the	event	can	have	its	default
action	prevented.

Level	2

currentTarget Indicates	the	EventTarget	whose	listeners	are
currently	being	processed.

Level	2

target Indicates	the	EventTarget	object	to	which	the	event
was	originally	fired.

Level	2

timeStamp Specifies	the	time	(in	milliseconds)	at	which	the
event	was	fired.

Level	2

type The	name	of	the	event	(remember:	this	is	the	name
without	the	on	prefix).

Level	2

Methods

METHOD	NAME DESCRIPTION INTRODUCED
preventDefault() Cancels	the	event,	preventing	the	default	action

from	taking	place,	only	if	the	event	is	cancelable.
Level	2

stopPropagation() Prevents	further	propagation	of	an	event. Level	2

MouseEvent
The	MouseEvent	object	provides	specific	information	associated	with	mouse	events.
MouseEvent	objects	contain	not	only	the	following	properties,	but	also	the	properties	and
methods	of	the	Event	object.

Valid	mouse	events	are	shown	in	the	following	table.

EVENT
NAME

DESCRIPTION

click Occurs	when	the	mouse	button	is	clicked	over	an	element.	A	click	is	defined
as	a	mousedown	and	mouseup	over	the	same	screen	location.

mousedown Occurs	when	the	mouse	button	is	pressed	over	an	element.
mouseup Occurs	when	the	mouse	button	is	released	over	an	element.
mouseover Occurs	when	the	mouse	pointer	moves	onto	an	element.
mousemove Occurs	when	the	mouse	pointer	moves	while	it	is	over	the	element.
mouseout Occurs	when	the	mouse	pointer	moves	away	from	an	element.

Properties

PROPERTY
NAME

DESCRIPTION INTRODUCED

altKey Returns	a	boolean	value	indicating	whether	or	not	the
Alt	key	was	pressed	during	the	event’s	firing.

Level	2

button Indicates	which	mouse	button	was	pressed,	if
applicable.	The	number	0	represents	the	left	button,	1
indicates	the	middle	button,	and	2	indicates	the	right
button.	Left-hand-configured	mice	reverse	the	buttons
(right	is	0,	middle	is	1,	and	left	is	2).

Level	2

clientX The	horizontal	coordinate	relative	to	the	client	area. Level	2
clientY The	vertical	coordinate	relative	to	the	client	area. Level	2
ctrlKey Returns	a	boolean	value	indicating	whether	or	not	the

Ctrl	key	was	pressed	when	the	event	fired.
Level	2

relatedTarget Indentifies	a	secondary	EventTarget.	Currently,	this
property	is	used	with	the	mouseover	event	to	indicate
the	EventTarget	that	the	mouse	pointer	exited	and
with	the	mouseout	event	to	indicate	which
EventTarget	the	pointer	entered.

Level	2

screenX The	horizontal	coordinate	relative	to	the	screen. Level	2
screenY The	vertical	coordinate	relative	to	the	screen. Level	2
shiftKey Returns	a	boolean	value	indicating	whether	or	not	the

Shift	key	was	pressed	when	the	event	fired.
Level	2

MISCELLANEOUS	EVENTS
The	following	tables	describe	the	events	available	in	client-side	JavaScript.

Mouse	Events

EVENT DESCRIPTION
click Raised	when	the	user	clicks	an	HTML	control.
dblclick Raised	when	the	user	double-clicks	an	HTML	control.
mousedown Raised	when	the	user	presses	a	mouse	button.
mousemove Raised	when	the	user	moves	the	mouse	pointer.
mouseout Raised	when	the	user	moves	the	mouse	pointer	out	from	within	an	HTML

control.
mouseover Raised	when	the	user	moves	the	mouse	pointer	over	an	HTML	control.
mouseup Raised	when	the	user	releases	the	mouse	button.

Keyboard	Events

EVENT DESCRIPTION
keydown Raised	when	the	user	presses	a	key	on	the	keyboard.
keypress Raised	when	the	user	presses	a	key	on	the	keyboard.	This	event	will	be	raised

continually	until	the	user	releases	the	key.
keyup Raised	when	the	user	releases	a	key	that	had	been	pressed.

HTML	Control	Events

EVENT DESCRIPTION
blur Raised	when	an	HTML	control	loses	focus.
change Raised	when	an	HTML	control	loses	focus	and	its	value	has	changed.
focus Raised	when	focus	is	set	to	the	HTML	control.
reset Raised	when	the	user	resets	a	form.
select Raised	when	the	user	selects	text	in	an	HTML	control.
submit Raised	when	the	user	submits	a	form.

Window	Events

EVENT DESCRIPTION
load Raised	when	the	window	has	completed	loading.
resize Raised	when	the	user	resizes	the	window.
unload Executes	JavaScript	code	when	the	user	exits	a	document.

Media	Events

EVENT DESCRIPTION
abort Raised	when	playback	is	aborted.
canplay Sent	when	enough	data	is	available	that	the	media	can	be	played.
canplaythrough Fired	when	the	entire	media	can	be	played	without	interruption.
durationchange Raised	when	the	metadata	has	changed.
emptied Fires	when	the	media	has	become	empty.
ended Sent	when	playback	completes.
error Sent	when	an	error	occurs.
loadeddata The	media’s	first	frame	has	been	loaded.
loadedmetadata Fired	when	the	media’s	metadata	is	loaded.
loadstart Sent	when	downloading	begins.
pause Playback	has	been	paused.
play Playback	begins	after	a	pause.
playing Raised	when	media	begins	to	play.
progress Indicates	the	progress	of	the	media	download.
ratechange Fires	when	the	playback	rate	changes.
seeked Seeking	has	ended.
seeking Playback	is	being	moved	to	a	new	position.
stalled Raised	when	the	browser	tries	to	download	the	media,	but	receives	no

data.
suspend Sent	when	the	loading	of	the	media	is	suspended.
timeupdate The	media’s	currentTime	has	changed.
volumechange Fires	when	the	audio	volume	changes	(both	when	volume	is	set	and

when	muted).
waiting Raised	when	playback	is	paused	in	order	to	download	more	data.

Other	Events

EVENT DESCRIPTION
abort Raised	when	the	user	aborts	loading	an	image.
error Raised	when	an	error	occurs	loading	the	page.

D
Latin-1	Character	Set
This	appendix	contains	the	Latin-1	character	set	and	the	character	codes	in	both	decimal
and	hexadecimal	formats.	As	explained	in	Chapter	2,	the	escape	sequence	\xNN,	where	NN
is	a	hexadecimal	character	code	from	the	Latin-1	character	set	shown	here,	can	be	used	to
represent	characters	that	can’t	be	typed	directly	in	JavaScript.

DECIMAL	CHARACTER
CODE

HEXADECIMAL	CHARACTER
CODE

SYMBOL

32 20 Space
33 21 !
34 22 “
35 23 #
36 24 $
37 25 %
38 26 &
39 27 ‘
40 28 (
41 29)
42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8

57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F O
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [

92 5C \
93 5D]

94 5E ^
95 5F _
96 60 `
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C l
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w
120 78 x
121 79 y
122 7A z
123 7B {
124 7C |
125 7D }
126 7E ~

160 A0 Non-breaking
space

161 A1 ¡

162 A2 ¢
163 A3 £
164 A4 ¤
165 A5 ¥
166 A6 ¦
167 A7 §
168 A8 ¨
169 A9 ©
170 AA ª
171 AB «
172 AC ¬
173 AD Soft	hyphen
174 AE ®
175 AF ¯
176 B0 °
177 B1 ±

178 B2 2

179 B3 3

180 B4 ´
181 B5 μ
182 B6 ¶
183 B7 ·
184 B8 ¸
185 B9 1
186 BA °
187 BB »
188 BC ~QF
189 BD ~HF
190 BE ~TQF
191 BF ¿
192 C0 À
193 C1 Á

194 C2 Â
195 C3 Ã
196 C4 Ä
197 C5 Å
198 C6 Æ
199 C7 Ç
200 C8 È
201 C9 É
202 CA Ê
203 CB Ë
204 CC Ì
205 CD Í
206 CE Î
207 CF Ï
208 D0 Ð
209 D1 Ñ
210 D2 Ò
211 D3 Ó
212 D4 Ô
213 D5 Õ
214 D6 Ö
215 D7 ∞
216 D8 Ø
217 D9 Ù
218 DA Ú
219 DB Û
220 DC Ü
221 DD Ý
222 DE þ
223 DF ß
224 E0 à
225 E1 á
226 E2 â
227 E3 ã
228 E4 ä

229 E5 å
230 E6 æ
231 E7 ç

232 E8 è

233 E9 é
234 EA ê
235 EB ë
236 EC ì
237 ED í
238 EE î
239 EF ï
240 F0 ð
241 F1 ñ
242 F2 ò
243 F3 ó
244 F4 ô
245 F5 õ
246 F6 ö
247 F7 ÷
248 F8 ø
249 F9 ù
250 FA ú
251 FB û
252 FC ü
253 FD ý
254 FE þ
255 FF ÿ

BEGINNING	
JavaScript®

Fifth	Edition

Jeremy	McPeak

Paul	Wilton

Beginning	JavaScript®	5e

Published	by	
John	Wiley	&	Sons,	Inc.	
10475	Crosspoint	Boulevard	
Indianapolis,	IN	46256	
www.wiley.com

Copyright	©	2015	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-118-90333-9	
ISBN:	978-1-118-90343-8	(ebk)	
ISBN:	978-1-118-90374-2	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108
of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization
through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA
01923,	(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be	addressed	to	the
Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)
748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or	warranties	with
respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifically	disclaim	all	warranties,	including
without	limitation	warranties	of	fitness	for	a	particular	purpose.	No	warranty	may	be	created	or	extended	by	sales	or
promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for	every	situation.	This	work	is
sold	with	the	understanding	that	the	publisher	is	not	engaged	in	rendering	legal,	accounting,	or	other	professional
services.	If	professional	assistance	is	required,	the	services	of	a	competent	professional	person	should	be	sought.	Neither
the	publisher	nor	the	author	shall	be	liable	for	damages	arising	herefrom.	The	fact	that	an	organization	or	Web	site	is
referred	to	in	this	work	as	a	citation	and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the
publisher	endorses	the	information	the	organization	or	Web	site	may	provide	or	recommendations	it	may	make.	Further,
readers	should	be	aware	that	Internet	Web	sites	listed	in	this	work	may	have	changed	or	disappeared	between	when	this
work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department	within	the
United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included	with
standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to	media
such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this	material	at
http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2014958440

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Programmer	to	Programmer,	and	related	trade	dress	are
trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the	United	States	and	other
countries,	and	may	not	be	used	without	written	permission.	JavaScript	is	a	registered	trademark	of	Oracle,	Inc.	All	other
trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.,	is	not	associated	with	any	product	or
vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

This	book	is	dedicated	to	my	wife,	Starla,	and	my
sons,	Hayden,	Evan,	and	Jordan.	Thank	you	for	your
love,	support,	and	patience	during	the	writing	of	this
book.	To	my	parents:	Jerry	and	Judy.	Thank	you	for

your	love	and	support.

—	Jeremy	McPeak

In	memory	of	my	mum,	June	Wilton,	who	in	2006	lost
her	brave	battle	against	cancer.	She	was	always	very
proud	of	me	and	my	books	and	showed	my	books	to
anyone	and	everyone	she	happened	to	meet	however
briefly	and	whether	they	wanted	to	see	them	or	not!

She’s	very	much	missed.

—	Paul	Wilton

Credits
Project	Editor	
Kelly	Talbot

Technical	Editor	
Russ	Mullen

Production	Manager	
Kathleen	Wisor

Copy	Editor	
Kim	Cofer

Manager	of	Content	Development	&	Assembly	
Mary	Beth	Wakefield

Marketing	Director	
David	Mayhew

Marketing	Manager	
Carrie	Sherrill

Professional	Technology	&	Strategy	Director	
Barry	Pruett

Business	Manager	
Amy	Knies

Associate	Publisher	
Jim	Minatel

Project	Coordinator,	Cover	
Patrick	Redmond

Proofreader	
Nancy	Carrasco

Indexer	
Johnna	VanHoose	Dinse

Cover	Designer	
Wiley

Cover	Image	
©iStock.com/hamikus

	

About	the	Authors
Jeremy	McPeak	is	a	self-taught	programmer	who	began	his	career	by	tinkering	with
websites	in	1998.	He	is	the	author	of	JavaScript	24-Hour	Trainer	(Wiley	2010)	and	co-
author	of	Professional	Ajax,	2nd	Edition	(Wiley	2007).	He	also	contributes	to	Tuts+	Code
(http://code.tutsplus.com),	providing	articles,	video	tutorials,	and	courses	for
JavaScript,	C#,	and	ASP.NET.	He	is	currently	employed	by	an	oil	and	gas	company
building	in-house	conventional	and	web	applications.	Jeremy	can	be	contacted	via	the	p2p
forums,	his	website	(http://www.wdonline.com),	and	Twitter	(@jwmcpeak).

Paul	Wilton	started	as	a	Visual	Basic	applications	programmer	at	the	Ministry	of	Defense
in	the	UK	and	then	found	himself	pulled	into	the	Net.	Having	joined	an	Internet
development	company,	he	spent	three	years	helping	create	Internet	solutions.	He’s	now
running	his	own	successful	and	rapidly	growing	company	developing	online	holiday
property	reservation	systems.

http://code.tutsplus.com
http://www.wdonline.com
https://twitter.com/jwmcpeak

Acknowledgments
First	and	foremost,	I	want	to	thank	God	for	the	blessings	he	has	bestowed	upon	me,	and
thank	you,	dear	reader,	for	without	you	this	book	would	not	be	possible.	Also,	a	huge
thank	you	goes	to	my	wife	and	family	for	putting	up	with	me	as	I	spent	my	available
weekend	free-time	updating	this	book.

Writing	and	producing	a	book	requires	a	lot	of	people,	and	I	know	I	cannot	name	everyone
who	has	had	a	hand	in	this	project.	But	a	very	big	thank	you	goes	to	Jim	Minatel	and
Robert	Elliott	for	green-lighting	this	project.	Thank	you	Kelly	Talbot	for	keeping	me	on
track	and	putting	up	with	me.	To	the	editing	team,	thank	you	for	making	my	text	look
good.	And	to	Russ	Mullen,	thanks	for	keeping	me	honest.

—	JEREMY	MCPEAK

First,	a	big	thank	you	to	my	partner	Beci,	who,	now	that	the	book’s	finished,	will	get	to
see	me	for	more	than	10	minutes	a	week.

I’d	also	like	to	say	a	very	big	thank	you	to	the	editors,	who	worked	very	efficiently	on
getting	this	book	into	print.

Thanks	also	to	Jim	Minatel	for	making	this	book	happen.

Many	thanks	to	everyone	who’s	supported	and	encouraged	me	over	my	many	years	of
writing	books.	Your	help	will	always	be	remembered.

Finally,	pats	and	treats	to	my	German	Shepherd	Dog,	Katie,	who	does	an	excellent	job	of
warding	off	disturbances	from	door-to-door	salespeople.

—	PAUL	WILTON

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

	INTRODUCTION
	WHO THIS BOOK IS FOR
	WHAT THIS BOOK COVERS
	WHAT YOU NEED TO USE THIS BOOK
	CONVENTIONS
	SOURCE CODE
	ERRATA
	P2P.WROX.COM

	CHAPTER 1: INTRODUCTION TO JAVASCRIPT AND THE WEB
	INTRODUCTION TO JAVASCRIPT
	WHERE DO MY SCRIPTS GO?
	YOUR FIRST SIMPLE JAVASCRIPT PROGRAM
	WRITING MORE JAVASCRIPT
	A BRIEF LOOK AT BROWSERS AND COMPATIBILITY PROBLEMS
	SUMMARY

	CHAPTER 2: DATA TYPES AND VARIABLES
	TYPES OF DATA IN JAVASCRIPT
	VARIABLES—STORING DATA IN MEMORY
	USING DATA—CALCULATIONS AND BASIC STRING MANIPULATION
	DATA TYPE CONVERSION
	ARRAYS
	SUMMARY
	EXERCISES

	CHAPTER 3: DECISIONS AND LOOPS
	DECISION MAKING—THE IF AND SWITCH STATEMENTS
	LOOPING—THE FOR AND WHILE STATEMENTS
	SUMMARY
	EXERCISES

	CHAPTER 4: FUNCTIONS AND SCOPE
	CREATING YOUR OWN FUNCTIONS
	SCOPE AND LIFETIME
	FUNCTIONS AS VALUES
	SUMMARY
	EXERCISES

	CHAPTER 5: JAVASCRIPT—AN OBJECT-BASED LANGUAGE
	OBJECT-BASED PROGRAMMING
	JAVASCRIPT’S NATIVE OBJECT TYPES
	CREATING YOUR OWN CUSTOM OBJECTS
	CREATING NEW TYPES OF OBJECTS (REFERENCE TYPES)
	SUMMARY
	EXERCISES

	CHAPTER 6: STRING MANIPULATION
	ADDITIONAL STRING METHODS
	REGULAR EXPRESSIONS
	THE STRING OBJECT
	USING THE REGEXP OBJECT’S CONSTRUCTOR
	SUMMARY
	EXERCISES

	CHAPTER 7: DATE, TIME, AND TIMERS
	WORLD TIME
	TIMERS IN A WEB PAGE
	SUMMARY
	EXERCISES

	CHAPTER 8: PROGRAMMING THE BROWSER
	INTRODUCTION TO THE BROWSER’S OBJECTS
	DETERMINING THE USER’S BROWSER
	SUMMARY
	EXERCISES

	CHAPTER 9: DOM SCRIPTING
	THE WEB STANDARDS
	THE DOCUMENT OBJECT MODEL
	MANIPULATING THE DOM
	SUMMARY
	EXERCISES

	CHAPTER 10: EVENTS
	TYPES OF EVENTS
	CONNECTING CODE TO EVENTS
	THE STANDARD EVENT MODEL
	EVENT HANDLING IN OLD VERSIONS OF INTERNET EXPLORER
	WRITING CROSS-BROWSER CODE
	NATIVE DRAG AND DROP
	SUMMARY
	EXERCISES

	CHAPTER 11: HTML FORMS: INTERACTING WITH THE USER
	HTML FORMS
	TRADITIONAL FORM OBJECT PROPERTIES AND METHODS
	HTML5 FORM OBJECT PROPERTIES AND METHODS
	SUMMARY
	EXERCISES

	CHAPTER 12: JSON
	XML
	JSON
	SUMMARY
	EXERCISES

	CHAPTER 13: DATA STORAGE
	BAKING YOUR FIRST COOKIE
	CREATING A COOKIE
	GETTING A COOKIE’S VALUE
	COOKIE LIMITATIONS
	COOKIE SECURITY AND IE
	WEB STORAGE
	SUMMARY
	EXERCISES

	CHAPTER 14: AJAX
	WHAT IS AJAX?
	USING THE XMLHTTPREQUEST OBJECT
	CREATING A SIMPLE AJAX MODULE
	VALIDATING FORM FIELDS WITH AJAX
	THINGS TO WATCH OUT FOR
	SUMMARY
	EXERCISES

	CHAPTER 15: HTML5 MEDIA
	A PRIMER
	SCRIPTING MEDIA
	SUMMARY
	EXERCISES

	CHAPTER 16: JQUERY
	GETTING JQUERY
	jQUERY’S API
	SUMMARY
	EXERCISES

	CHAPTER 17: OTHER JAVASCRIPT LIBRARIES
	DIGGING INTO MODERNIZR
	DIVING INTO PROTOTYPE
	DELVING INTO MOOTOOLS
	SUMMARY
	EXERCISES

	CHAPTER 18: COMMON MISTAKES, DEBUGGING, AND ERROR HANDLING
	D’OH! I CAN’T BELIEVE I JUST DID THAT: SOME COMMON MISTAKES
	ERROR HANDLING
	DEBUGGING
	SUMMARY
	EXERCISES

	APPENDIX A: ANSWERS TO EXERCISES
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	CHAPTER 13
	CHAPTER 14
	CHAPTER 15
	CHAPTER 16
	CHAPTER 17
	CHAPTER 18

	APPENDIX B: JAVASCRIPT CORE REFERENCE
	BROWSER REFERENCE
	RESERVED WORDS
	JAVASCRIPT OPERATORS
	JAVASCRIPT STATEMENTS
	TOP-LEVEL PROPERTIES AND FUNCTIONS
	JAVASCRIPT CORE OBJECTS

	APPENDIX C: W3C DOM REFERENCE
	DOM CORE OBJECTS
	HTML DOM OBJECTS
	DOM EVENT MODEL AND OBJECTS
	MISCELLANEOUS EVENTS

	APPENDIX D: LATIN-1 CHARACTER SET
	TITLE PAGE
	COPYRIGHT
	DEDICATION
	CREDITS
	ABOUT THE AUTHORS
	ACKNOWLEDGMENTS
	ADVERT
	EULA

