
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Beginning Spring

ForewordS . xxvii

introduction . xxxi

chapter 1 POJO Programming Model, Lightweight Containers, and

Inversion of Control . 1

chapter 2 Dependency Injection with Spring . 17

chapter 3 Building Web Applications Using Spring MVC 63

chapter 4 JDBC Data Access with Spring . 103

chapter 5 Data Access with JPA Using Spring . 137

chapter 6 Managing Transactions with Spring . 175

chapter 7 Test‐Driven Development with Spring . 209

chapter 8 Aspect‐Oriented Programming with Spring 237

chapter 9 Spring Expression Language . 263

chapter 10 Caching . 285

chapter 11 RESTful Web Services with Spring . 305

chapter 12 Securing Web Applications with Spring Security 331

chapter 13 Next Stop: Spring 4 .0 . 369

appendix Solutions to Exercises . 385

index . 425

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Beginning

Spring

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Beginning

Spring

Mert Çalışkan
Kenan Sevindik

www.allitebooks.com

http://www.allitebooks.org

Beginning Spring

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-89292-3
ISBN: 978-1-118-89303-6 (ebk)
ISBN: 978-1-118-89311-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014954686

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

This is for you, Love.

—Mert Çalişkan

To my Mom, and to the memory of my Dad...

—Kenan Sevindik

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

aBout the authorS

Mert ÇaliŞkan is a Principle Software Architect living in Ankara, Turkey. He has more than 10
years of expertise in software development with the architectural design of Enterprise Java web
applications. Çalışkan is an open source advocate for software projects such as PrimeFaces, and he
is the co‐author of PrimeFaces Cookbook, first and second editions (Packt Publishing, 2013). He is
the founder of AnkaraJUG, which is the most active JUG in Turkey. Çalışkan is part‐time lecturer
at Hacettepe University about Enterprise Web Applications’ Architecture and Web Services. In
2014, he achieved the title of Java Champion. He shares his knowledge at national and international
conferences such as JDays 2015, JavaOne 2013, JDC2010, and JSFDays’08. You can follow him on
Twitter @mertcal.

kenan Sevindik specializes in architecting and developing enterprise applications using vari-
ous Java technologies. His experience with Java dates back to 1998 when he started developing
Java applets for online education programs at his university. He has been working with Spring
Application Framework and Spring Security Framework since their initial phases. Sevindik has a
bachelor’s degree in computer engineering. Currently he works with Harezmi IT Solutions, where
he develops enterprise software and gives training, mentoring, and consulting services about Java,
OOP, AOP, Spring, Spring Security, and Hibernate all over the world. You can read his technical
writings at http://blog.harezmi.com.tr and reach him at ksevindik@harezmi.com.tr.

http://blog.harezmi.com.tr
mailto:ksevindik@harezmi.com.tr

aBout the technical editor

chád (Shod) darBy is an author, instructor, and speaker in the Java development world. As a
recognized authority on Java applications and architectures, he has presented technical sessions
at software development conferences worldwide. In his fifteen years as a professional software
architect, he’s had the opportunity to work for Blue Cross/Blue Shield, Merck, Boeing, Red Hat
and a handful of startup companies. Chád is a contributing author to several Java books, including
Professional Java E‐Commerce (Wiley, 2001) and Beginning Java Networking (Wiley, 2001). Chád
has Java certifications from Sun Microsystems and IBM. He holds a B.S. in Computer Science from
Carnegie Mellon University. Visit Chád’s blog at www.luv2code.com to view his free video tutorials
on Java. You can also follow him on Twitter @darbyluvs2code.

http://www.luv2code.com

creditS

project editor
Charlotte Kughen

technical editors
Chád Darby
Krishna Srinivasan

production editor
Rebecca Anderson

copy editor
Kim Cofer

Manager of content development and
assembly
Mary Beth Wakefield

Marketing director
David Mayhew

Marketing Manager
Carrie Sherrill

professional technology and Strategy
director
Barry Pruett

Business Manager
Amy Knies

associate publisher
Jim Minatel

project coordinator, cover
Patrick Redmond

proofreader
Nancy Carrasco

indexer
Johnna VanHoose Dinse

cover designer
Wiley

cover image
©iStock .com/llandrea

acknowledgMentS

FirSt i would like to thank my friend, Kenan Sevindik, for joining me on this journey. Special
thanks go to the creators of the Spring Framework, Rod Johnson and Jürgen Höller, for crowning
our book with their Forewords. Without their ideas and inspirations that ignited all of us, this book
wouldn’t even exist.

I also would like to thank our associate publisher, Jim Minatel; project editor, Charlotte Kughen;
technical editors, Chád Darby and Krishna Srinivasan; copy editor, Kim Cofer; and production edi-
tor, Rebecca Anderson. These people accompanied us during the entire writing process and
made the book publication possible with their support, suggestions, and reviews.

Last but not the least, I would like to thank my mom, my dad, my Tugçe, and especially my beloved
Funda, who gives me her never‐ending support and enthusiasm.

—Mert Çalişkan

FirSt oF all, i would like to thank my wife, Betül, for her endless support while I was writing this
book. I also would like to thank my colleague, Muammer Yücel, for his encouragement and motiva-
tion. Although this book is a direct result of our extensive experience with the Spring Application
Framework, it wouldn’t be what it is without the help and valuable comments of our project editor,
Charlotte Kughen; technical editors, Chád Darby and Krishna Srinivasan; copy editor, Kim Cofer;
and production editor, Rebecca Anderson.

—Kenan Sevindik

Contents

Forewords xxvii

IntroductIon xxxi

Chapter 1: poJo programming model, lightweight
Containers, and inversion of Control 1

POJO Programming Model 2
Problems of the Old EJB Programming Model 2
Benefits of the POJO Programming Model 7

Lightweight Containers and Inversion of Control (IoC) 8
Lightweight Containers 8
Inversion of Control (IoC) 9

Dependency Injection 10
Setter Injection 11
Constructor Injection 11
Setter or Constructor Injection 12

Summary 12

Chapter 2: dependenCy inJeCtion with spring 17

Spring IoC Container 18
Configuration Metadata 18
Configuring and Using the Container 21

Dependency Injection 29
Setter Injection 30
Constructor Injection 31
Circular Dependencies 34
Dependency Resolution Process 35
Overriding Bean Definitions 36
Using the depends‐on Attribute 38
Autowiring 39
Bean Lookups 43

Spring‐Managed Beans 44
Naming Beans 44
Bean Instantiation Methods 45
Bean Scopes 48
Lazy Initialization 51

xviii

COntentS

Life-Cycle Callbacks 52
Bean Definition Profiles 54
Environment 56

Summary 59

Chapter 3: Building weB appliCations using spring mvC 63

Learning the Features and Benefits of Spring MVC 64
Using the Dispatcher Servlet Mechanism 65

Defining the Servlet 66
Accessing Servlet Context 67

Creating Your First Spring MVC Application 68
Configuring Spring MVC with Annotations 71
Handling Forms with JSP 73

Configuring the Form Tag Library 73
Understanding the Power of Binding 74
Working with Forms 74
Using Input Elements 75
Entering Dates 76
Selecting from a Drop‐Down 77
Selecting with Radio Buttons 78
Selecting with Checkboxes 78
Adding Labels 78
Placing Buttons 79
Styling 79

exploiting the Power of Annotations 84
@Controller 84
@RequestMapping 84
@ModelAttribute 84
@PathVariable 85
@ControllerAdvice 85
@InitBinder 85
@ExceptionHandler 85

Validating User Input 86
Uploading Files 90
Handling exceptions 93
Implementing Internationalization (i18n) 95
Using themes 97
Summary 100

www.allitebooks.com

http://www.allitebooks.org

xix

COntentS

Chapter 4: JdBC data aCCess with spring 103

Problems with Using Vanilla JDBC 104
Introducing Spring’s JDBC Support 105

Managing JDBC Connections 105
Embedded DB Support 108
Using a Connection‐Pooled DataSource 110
Initializing DB 111

Configuring and Using Spring’s JDBC Support 112
Performing Data Access Operations with Spring 114

Running Queries 114
Queries with Named Parameters 117
Writing Queries Using the IN Clause 118
Using PreparedStatements within JdbcTemplate 119
Inserting, Updating, and Deleting Records 121
Calling Stored Procedures and Stored Functions 124
Performing Batch Operations 126
Handling BLOB and CLOB Objects 126
Accessing Vendor‐Specific JDBC Methods 127
Executing DDL Operations 127

Modeling JDBC Operations as Java Objects 128
Encapsulating SQL Query Executions 128
Encapsulating SQL DML Operations 130
Encapsulating Stored Procedure Executions 131

exception Handling and error Code translation 132
Common Data Access Exception Hierarchy 132
Automatic Handling and Translation of SQLException 132

Summary 133

Chapter 5: data aCCess with Jpa using spring 137

Brief Introduction to ORM and JPA 138
Paradigm Mismatch 138
Building Blocks of an ORM Framework 139
What JPA Offers 139
Mapping the Object Model to the Relational Model 140

Defining Entities 140
Mapping Attributes to Columns 141
Creating Associations between Objects 142
Mapping Java Types to SQL Types 145

xx

COntentS

Configuring and Using JPA 147
Performing CRUD Operations on Objects 150
Querying with Object Query Language 155

Spring’s JPA Support 156
Setting Up JPA in Spring Container 156
Implementing DAOs Based on Plain JPA 161
Handling and Translating Exceptions 166
Further JPA Configuration in Spring Environment 167

JpaDialect 168
JpaVendorAdapter 168
JPA and Load Time Weaving 169
Dealing with Multiple Persistence Units 170

Summary 171

Chapter 6: managing transaCtions with spring 175

Understanding transaction Management 176
Spring’s transaction Abstraction Model 180

Local versus Global Transactions 182
PlatformTransactionManager Implementations 182
Advantages of Spring’s Abstract Transaction Model 183

Declarative transaction Management with Spring 183
Isolating the Service Layer from Data Access Technology Details 186
Customizing Default Transactional Behavior 189
Using @Transactional on the Class Level 190
Understanding Transaction Propagation Rules 191

Propagation REQUIRED 191
Propagation REQUIRES_NEW 192
Propagation NESTED 192
Propagation SUPPORTS 192
Propagation NOT_SUPPORTED 192
Propagation NEVER 193
Propagation MANDATORY 193

Using <tx:advice> for Declarative Transaction Management 195
Programmatic transaction Management
with Spring 197

Using the PlatformTransactionManager Approach 201
executing Custom Logic Before or After transactions 203

Advising Transactional Operations 203
Executing Logic after Transactions Using TransactionSynchronization 204

Summary 205

xxi

COntentS

Chapter 7: test‐driven development with spring 209

Configuring and Caching ApplicationContext 210
Using XML‐ and Java‐Based Context Configuration in Tests 210
Configuring Context with ApplicationContextInitializer 214
Inheriting Context Configuration 214
ApplicationContext Caching 216

Injecting Dependencies of test Fixtures 217
Using transaction Management in tests 219
testing Web Applications 222

Context Hierarchies in Tests 225
Testing Request‐ and Session‐Scoped Beans 225
Testing Spring MVC Projects 227

Testing Controllers 227
Testing Form Submit 228
Testing Exception Handlers 230
Printing Mock Request and Response 231

Using Mock Objects and Other Utilities for testing 231
Spring Provided Mock Objects for Testing 231
Other Utilities and Test Annotations 232

Summary 233

Chapter 8: aspeCt‐oriented programming with spring 237

Getting Started with AOP with Spring 239
Becoming Familiar with types of Advices 243

Before 245
After Returning 245
After Throwing 245
After (Finally) 246
Around 247

Defining Point‐Cut Designators 248
The Type Signature Expressions 248
The Method Signature Expressions 249
Other Alternative Point‐Cut Designators 249

Wildcards 250
Capitalizing on the Power of Annotations 250

@Before 250
@Pointcut 251
@After 252
@AfterReturning 252

xxii

COntentS

@AfterThrowing 252
@Aspect 253
@Around 253
@DeclareParents 254

Blending AspectJ with Spring 255
Configuring Spring AOP with Annotations 259
Summary 259

Chapter 9: spring expression language 263

Configuring Applications with SpeL 264
Creating a Parser 267
Invoking Methods 270

Calling Constructors 272
Calling Static Methods 272

Working with Variables and Functions 273
#root 273
#this 274
Accessing System Properties and Environment 274
Inline Lists 274
Registering Functions 274

Understanding SpeL Operators 275
Relational Operators 276
Arithmetic Operators 276
Logical Operators 276
Conditional Operators 277
Regular Expression Operator 278
Safe Navigation Operator 278
Collection Selection and Projection 279
Selecting the First and Last Element of a Collection 280

Using Utilities in SpeL 280
Accessing Spring Beans 280
<spring:eval> 281
Expressions in Caching 281

Summary 281

Chapter 10: CaChing 285

Building Your First Caching Application 286
Configuring the Cache Manager with a Different Name 289
Configuring the Caching Abstraction with Annotations 289

Working with Cache Annotations 290

xxiii

COntentS

@Cacheable 290
Key Generator 291
Conditional Caching 291

@CacheEvict 292
@CachePut 292
@Caching 293

Implementing Cache Managers 293
SimpleCacheManager 293
NoOpCacheManager 294
ConcurrentMapCacheManager 294
CompositeCacheManager 294

Casting Your SpeL on Caches 295
Initializing Your Caches Programmatically 296
Finding Alternative Cache Providers 298

Ehcache 299
Guava 302
Hazelcast 302

Summary 303

Chapter 11: restful weB serviCes with spring 305

Creating Your First ReSt Web Service 306
Returning Different HttP Status Codes
from ReSt Web Service 318
Learning an Annotation‐Based
Configuration Alternative 318
Using ReSt Web Services with XML 320
Using the exception Handling Mechanism 322
Unit testing ReStful Services 326
Summary 328

Chapter 12: seCuring weB appliCations with
spring seCurity 331

Why Spring Security? 332
Features of Spring Security 333
Configuring and Using Spring Security 334
Understanding the Fundamental Building Blocks of Spring Security 340
Authenticating Users 341

Unsuccessful Login Flow 342
Successful Login Flow 342
Anonymous Authentication 344

xxiv

COntentS

Customizing the Login Page 344
Logout Process 346
Accessing UserDetails Using JDBC 346
Encrypting Passwords 349
Remember‐Me Support 350
User Session Management 351
Basic Authentication 352

Authorizing Web Requests and Service Method Calls 353
Authorizing Web Requests 353
How Does Authorization Work? 355
Expression‐Based Authorization 357
Using JSP Security Tags 358

Authorize Tag 359
Authenticate Tag 359

Authorizing Service Methods 359
Summary 364

Chapter 13: next stop: spring 4.0 369

Keeping Up with the Latest: Java 8 and Java ee7 Support 370
Lambda Expressions 370

Method References 373
Bean Validation Integration 374
JSR 310: Date Time Value Type Support 374

Configuring Injection with Conditional Dependency 374
Ordering the elements of Autowired Collections 377
Repeating Annotations 379
Introducing new Annotations 381

Documenting with @Description 381
Using the @RestController Annotation 382

Summary 382

APPenDIX: SOLUtIOnS tO eXeRCISeS 385

Chapter 1 385
Chapter 2 388
Chapter 3 393
Chapter 4 393
Chapter 5 399
Chapter 6 403
Chapter 7 406
Chapter 8 409

xxv

COntentS

Chapter 9 411
Chapter 10 414
Chapter 11 417
Chapter 12 420
Chapter 13 423

Index 425

Foreword

I have fond memories of Wrox books. The Spring story started 12 years ago from a Wrox book.
Before that, I’d contributed chapters to several Wrox books and served as a reviewer on many others.

Some of these memories concern what the imprint has meant to me, but many relate to its phi-
losophy and format, a key reason I was excited to become a Wrox author in 2000. The distinctive
format offers an effective structure for imparting knowledge, encouraging the author to highlight
important points, and promoting systematic explanation. It emphasizes practical code examples—
the most valuable tool for teaching programming.

These virtues are evident in Mert Çalıskan’s and Kenan Sevindik’s Beginning Spring. It’s well struc-
tured, with plentiful examples that include clear instructions on getting the code running and step‐
by‐step explanations.

Spring—like building enterprise Java applications itself—is a broad subject, making it impossible for
an introductory book to cover even the core Spring Framework exhaustively. Mert and Kenan have
done a good job in selecting what to focus on. The scope of this book is well chosen to get you pro-
ductive as a Spring web developer: the core Dependency Injection container; the MVC framework
(with a special emphasis on REST); relational data access and transaction management; the use of
AOP and Spring EL to customize application behavior; and how Spring 4.0 embraces the important
language enhancements in Java 8. Although Spring Security is the only Spring subproject covered,
this book provides a solid base on which to build knowledge of the broad Spring ecosystem.

The level of the content is equally well targeted. There’s a judicious mix of important background
information (for example, the ACID properties of transactions) and specific detail about how to use
Spring to get things done. Although this book assumes no knowledge of Spring, it does not waste
time covering programming topics better served in more introductory books.

Although I’m no longer personally involved, I continue to observe Spring’s progress with pleasure.
Reading this book serves as a reminder of why Spring remains so relevant. The core concepts have
stood up well over the past 12 years: for example, the consistent, lightweight approach to transac-
tion management and the central principle of Dependency Injection. When you understand the
“Spring way,” you can master additional Spring technologies quickly.

If you’re a Java web developer as yet unfamiliar with Spring, you will find that Spring can make
your life much easier, and I recommend this book as a good way to get started with it.

—Rod Johnson

www.allitebooks.com

http://www.allitebooks.org

Foreword

The Java landscape keeps amazing me! Even after 11 years of leading the Spring Framework proj-
ect, I’m learning about new fields of applications, new scenarios to optimize for, and new system
architectures to consider. Software development constantly changes, and Spring doesn’t just follow
along—Spring keeps pushing. The Spring community often anticipates trends before they become
heavily debated; for instance, people had been building microservice architectures with Spring
long before the term microservice was coined. It is particularly interesting to see how many of the
original design decisions behind the framework show their strengths again in 2014: Mechanisms
introduced to decouple the framework from the application server infrastructure turn out to be very
useful in adapting to modern embedded middleware.

A key mission behind Spring is to keep bringing the latest Java programming model styles to the
widest possible range of deployment environments. In the Java community, we tend to put ourselves
into straightjackets, not allowing ourselves to use our own current generation of APIs and frame-
works. These constraints are primarily due to application server platforms, which contain outdated
versions of the JDK and Java EE APIs, lagging behind for way too many years. This situation is
particularly critical with Java 8 now: With lambda expressions, the new date‐time types, collection
streams, and so on, Java 8 has many things to offer that will change your source code style across
the codebase. As a community, we need to be able to bring those features into our immediate envi-
ronments—not just for development, but with full production support.

With Spring 4, we created a new baseline for 2014 and beyond. Spring’s comprehensive annotation‐
oriented programming model is battle‐tested, fine‐tuned, and as coherent as possible now, and it’s
designed to be a stable foundation for years to come. We will be extending and refining the frame-
work’s functionality in the course of Spring Framework 4.x releases every year, as natural and fully
compatible complements to the Spring 4 foundation. We will make a lot of this functionality avail-
able to JDK 6+ environments: for updates to existing applications, for deployments to existing data
centers, and for corporate environments with conservative JDK policies. At the same time, you will
see a strong focus on JDK 8+–oriented functionality with Spring, in particular toward stream‐
oriented programming and reactive system architectures.

Finally, I have a few personal recommendations to help you get the most out of Spring for your
newly started development projects:

 ➤ First of all, get a good book on core Spring and its design philosophy. With this book, you
are beyond that step already.

 ➤ Don’t make compromises up front. Design a clean application architecture based on your
understanding of your application’s domain.

 ➤ Start with the latest Java infrastructure that you can possibly bring into production: JDK 8,
Spring 4, Tomcat 8, Jetty 9, and so on.

xxx

Foreword

 ➤ Don’t forget to keep updating the frameworks and libraries along with the progress of your
own project: Spring, in particular, has been designed for easy upgrades within an application,
independent from any server installations.

Beginning Spring focuses on the key principles behind the Spring Framework 4 generation. It is a
great way to get started with modern‐day Spring development. So free yourself from artificial con-
straints, and enjoy developing with Spring!

—Jürgen Höller

IntroductIon

the SprIng Framework IS an open Source enterprISe applIcatIon framework licensed
under Apache License version 2.0, which provides an extensive toolset for building applications that
meet the enterprise demands. The idea itself came about because doing development with J2EE (the
former version of Java Enterprise Edition) introduced a good deal of complexity in the enterprise
world. Creating and deploying beans with Enterprise Java Beans (EJB) was a burden because, to
create one bean, you had to create home and component interfaces along with the bean definition.
Because the concept of dependency injection was also missing in the EJB world at those times, the
lookup approach was the only way to find objects or resources.

The first version of the Spring Framework was based on the code published within Expert One‐on‐
One J2EE Design and Development without EJB (Wrox, 2004) by Rod Johnson and Jürgen Höller.
The main idea for the book was to reduce this complexity of enterprise application development
with EJBs that was introduced to the EE world with J2EE. The first version of Spring was released
in 2002, and milestone releases followed in 2004 and 2005. Version 1.0 brought the lightweight
application framework along with features including JDBC abstraction, object relational mapping
tools support, transaction management, scheduling and mail abstraction implementations, and the
Model View Controller (MVC) web framework.

The 2.0 and 3.0 releases introduced important features to the framework, such as AspectJ support
and REST support. At the time of writing this book, version 4.0 was released, and it now complies
with the specifications provided by Java Enterprise Edition 7 and with Java 8 Standard Edition,
which are the latest versions of Java. Within the book we also try to cover the features of the frame-
work that ships with this latest edition.

Spring gained popularity with its core Dependency Injection (DI) pattern, which is also known as
Inversion of Control (IoC). Because object‐oriented programming introduces relationships between
the objects, the DI approach tries to achieve a loose‐coupled design by extracting the management of
these dependencies to lead to an easy and manageable implementation. Another spectacular feature
of Spring is provided by aspect‐oriented programming (AOP), which offers an elegant approach to
implementing the cross‐cutting concerns in your application. Every web application is in need of fea-
tures such as exception management, authentication and authorization, logging, and caching. The
DI and AOP concepts are covered in detail in Chapters 2 and 8, respectively.

With the help of these major features, Spring provides easily testable, reusable code with no vendor
lock‐in because it can be ported easily between application servers such as WebLogic, JBoss, and
Tomcat. With its layered architecture, it addresses different parts of complex enterprise application
development.

We can definitely say that the Spring Framework has become the de facto standard for developing
Java enterprise applications. In this book you will find all of the major features brought to the enter-
prise world by the framework.

xxxii

introduction

who thIS Book IS For

As the book’s title states, this book covers the Spring Framework on a beginner level, and it touches
on intermediate concepts wherever needed. It explains what the framework offers and also illustrates
the content by showing how these features actually work with comprehensive samples. The material
presented within the book is suitable for Enterprise application developers who haven’t tried the Spring
Framework yet or who don’t know the details of its core or the subprojects. The book will also be
helpful to middle‐level management, who will be enlightened about the ingredients of enterprise appli-
cation development and will get to taste the different flavors of the Spring Framework.

We assume that readers have some knowledge of Java language principles and the ability to develop
Java code with integrated development environments (IDEs) such as Eclipse, NetBeans, or others.

This book might not be suitable for people who are not familiar with the Java language and basic
object‐oriented programming concepts. We also believe that the book might be of no interest for
readers who are not keen on the enterprise application development world with Java.

what thIS Book coverS

Spring provides a comprehensive configuration model, both with XML and Java annotations.
Throughout the book we demonstrate both annotation‐based configuration and XML‐based con-
figuration so that we give all the possible configuration scenarios.

The book first focuses on the core concepts and features of the Spring Framework. You take a look
at the basic concepts, such as the non‐invasive Plain Old Java Object (POJO) programming model
approach, and then we define the Dependency Injection pattern (Inversion of Control). Spring also
provides a Model View Controller implementation to build web applications; we cover the provided
features in detail. The Java Database Connectivity and Java Persistence API features of the Spring
Framework are also covered along with the transaction mechanism that it provides. We then focus
on what Spring provides for doing test‐driven development. Next we cover aspect‐oriented pro-
gramming for giving the reader insight on how Spring handles the implementation for cross‐cutting
concerns of a system. Spring Expression Languages, caching, and RESTful web services provide
extensive features of the Spring Framework, and we cover them with real‐world examples that will
get you started on development within minutes. Then we dive into Spring Security, which became a
de facto standard for applying security constraints on enterprise applications.

The final chapter wraps up the book with the latest features provided by version 4.0 of the frame-
work. We describe the best of the breed because the book covers the major features of Spring by
focusing on the latest version of the framework.

The following sections give you just a little bit of detail about what’s covered in the 13 chapters of
this book.

dependency Injection and configuration of Spring
This book covers the core concepts of the Spring Framework such as DI (which is also known
as IoC) and its configuration model. The object‐oriented programming principles depict having

xxxiii

introduction

relationships between the objects that are instantiated. The main objective of the DI pattern is
to separate the behaviors of those objects from the way that they depend on each other. That
way the tenet of loose coupling is achieved with favoring usability and maintainability of the
code. The idea of DI originated with Martin Fowler and has become very popular and widely
adopted. It’s also implemented within popular frameworks such as PicoContainer, Guice, and
Spring.

The DI pattern resembles other patterns such as Factory or Strategy. We can say that with the
Factory pattern the instantiation of objects is still within the responsibility of the Factory defini-
tion, which is your code, but with the DI it’s externalized to another component/framework. On
the other hand, with the Strategy pattern, the current implementation gets replaced with the help
of multiple objects of a same interface, which contain that implementation inside. However, with
the DI, the objects that contain those implementations are wired regardless of the implementation
defined.

As of version 2.0 of the Spring Framework, the DI mechanism was being configured with the XML
schemas along with the support of custom namespaces. As of version 2.5, Spring leveraged the use
of Java 5 and the annotations to support auto discovery of components, annotation‐driven autowir-
ing of those components, and the life-cycle annotations to hook initialization and destruction call-
backs. We cover all of these annotations introduced by the framework.

Spring 4.0
Chapter 13 covers the cutting‐edge features of the latest version of Spring. Version 4.0 supports
Java 8 with features like lambda expressions and method expressions. It also provides annotation‐
driven date formatting for the new DateTime API. Version 4.0 also complies with Java EE 7 specifi-
cations such as JPA 2.1, JMS 2.0, JTA 1.2, Bean Validation 1.1, and others. We demonstrate these
features to give you insight about the best of breed of the most recent version.

Spring annotations
Spring provides XML‐based and annotation‐based configuration mainly for dependency injection
and also for the other features of the framework. We give the traditional XML configurations with
the samples to show the complexity and the burden that they put on the developer. Throughout the
book, we favor annotations wherever possible to ease your way and also to make the examples com-
prehensible in a practical way. We have tried to cover all of the annotations provided by the frame-
work within the samples.

As of Spring 2.5, the JSR‐250 Annotations API is also supported. It’s the Java Specification Request
that has the scope for annotation development, so it makes Spring more compliant with the EE edi-
tion of Java.

Spring persistency Support with JdBc, Jpa, and orm
Spring provides an abstraction to the developers for JDBC database access. It eases development
by reducing the boilerplate code for connection management, exception/transaction handling, and
preparation and execution of the statements.

xxxiv

introduction

Spring doesn’t provide a built‐in object relational mapping (ORM) framework, but it supports well‐
known ORM frameworks that comply with the JPA specification, such as Hibernate, EclipseLink,
TopLink, and others. The book covers all these features regarding JDBC, JPA, and ORM with step‐
by‐step working samples.

Spring expression language (Spel)
Spring Expression Language (SpEL) is a powerful expression language for navigating through object
graphs at run time. All of the SpEL expressions can be defined in XML configurations or with anno-
tations. The syntax used with SpEL resembles Unified EL, but it provides more enhanced features.

SpEL can be used to perform property or bean injections and method invocations. It also supports
mathematical and relational operators along with regular expressions. SpEL can be easily used with
other subprojects of Spring, such as Security or Caching. It’s also technology‐agnostic, so it can be
used separately without depending on the Spring context. We cover each of these features with self‐
contained working samples.

Spring transaction management and aop
Data integrity is one of the key points of every system that deals with the data. System behavior such
as incorrect account balances, lost orders, or missing entries in a document will definitely be consid-
ered unacceptable by the system’s users. Transaction management provides a way to achieve integrity
on the data. Spring provides extensive transaction management to ensure this data integrity and con-
sistency for enterprise applications. Chapter 6 uses sample code to show how Spring provides declara-
tive and programmatic transaction mechanisms, the differences in local and global transactions,
propagation rules on the transactions, and the commit/rollback architecture of the framework.

To implement the cross‐cutting concerns, Spring AOP provides easy definition of the elements of
AOP with XML configuration, but it also supports the AspectJ framework annotations to easily
configure the application.

Spring mvc and developing reStful web Services
With the Model View Controller (MVC) pattern, the enterprise application can be clearly defined
with three layers. Model is the part of the application that handles the logic for the application data.
View is the part that handles the display of the data, and Controller is the part that handles the
user interaction. Spring provides an MVC subproject to handle the HTTP requests by reducing the
boilerplate code needed for accessing request parameters, validations, and conversations and model
updates. It also provides a convenient way to define RESTful web services to be used with cutting‐
edge user‐interface frameworks to provide more responsive web applications.

Spring Security
Spring Security is the subproject that provides first‐class authentication and authorization support
for Java‐based enterprise applications. The project first started as codename Acegi and then merged
into the Spring portfolio. The project conforms to the Servlet API, so it’s easy to integrate it with a

xxxv

introduction

Java EE–based web application. It also provides optional integration with other Spring frameworks,
such as MVC, so it gives consistent usage on its features. In Chapter 12 we provide some neat exam-
ples for these feature foundations.

Spring cache
By starting with version 3.1, Spring Framework provides a transparent caching abstraction for enter-
prise applications by employing various caching frameworks, such as Ehcache and Hazelcast, in the
backend.

The main objective of caching is to reduce the execution of targeted methods by caching the results
of method returns with their executed parameters.

Note The Spring Framework is a comprehensive toolset that cannot be cov-
ered in a beginner‐level book with all of its subprojects and the whole set of
their features. This book might not be suitable for readers who seek a show-
down of Spring subprojects with an end‐to‐end explanation.

This book also focuses on version 4.0.5.RELEASE of the framework, which is
the most recent version at the time of writing. Thus the older versions of the
framework are not covered with their features in this book.

what You need to run the SampleS

To run the samples that reside in the book you will need

 ➤ Java Development Kit (JDK) 8.0

 ➤ Maven project build and management tool: You can find all the samples given in the book
at www.wrox.com/go/beginningspring on the Download Code tab with the Maven‐based
project structure.

Note Maven demands that the Java Development Kit be installed on your
local environment instead of the Java Runtime Environment.

 ➤ A Java web container: For running the web project samples given throughout the book we’ve
used Tomcat 8.0.12 and Jetty version 9.2.3.

 ➤ A Java IDE: The samples given in the book are implemented with Eclipse IDE, but because
Maven is used for the project structure, you could build the samples with other IDEs such as
NetBeans or IntelliJ IDEA without any difficulty.

http://www.wrox.com/go/beginningspring

xxxvi

introduction

conventIonS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

trY It out

The Try It Out is an exercise you should work through, following the text in the book.

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the instructions in the steps to complete the activity.

How It Works

After each Try It Out, the code you’ve typed is explained in detail.

WarNiNg Boxes like this one hold important, not‐to‐be forgotten informa-
tion that is directly relevant to the surrounding text.

Note Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italic like this.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show filenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that’s particularly important in the present
context.

Source code
As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All of the source code used in this
book is available for download at www.wrox.com/go/beginningspring. You will find that the code

http://www.wrox.com/go/beginningspring

xxxvii

introduction

snippets from the source code are accompanied by a download icon and note indicating the name of
the program so you know it’s available for download and can easily locate it in the download file.
Once at the site, simply locate the book’s title (either by using the Search box or by using one of the
title lists) and click the Download Code link on the book’s detail page to obtain all the source code
for the book.

Note Because many books have similar titles, you may find it easiest to
search by ISBN; this book’s ISBN is 978-1-118-89292-3.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list including links to each book’s errata is also available at www.wrox.com/
misc‐pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
 subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web‐based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e‐mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc%E2%80%90pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/misc%E2%80%90pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

xxxviii

introduction

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e‐mail with information describing how to verify your account and com-
plete the joining process.

Note You can read messages in the forums without joining P2P, but in order
to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e‐mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

www.allitebooks.com

http://p2p.wrox.com
http://www.allitebooks.org

Beginning

Spring

 1 1
 pOJO programming Model,
Lightweight Containers, and
Inversion of Control

 what yOu will learn in this ChaPter:

 ➤ Problems of the old EJB programming model that triggered the
birth of POJO movement

 ➤ Advantages of the POJO programming model

 ➤ What a container is and what services it provides to its deployed
applications

 ➤ Lightweight containers and what makes a container lightweight

 ➤ What Inversion of Control (IoC) means and its importance for
applications

 ➤ Relationship between IoC and dependency injection

 ➤ Dependency injection methods, setter and constructor injection

 ➤ Advantages and disadvantages of those different dependency
injection methods

 The Plain Old Java Object (POJO) movement started around the beginning of the 2000s and
quickly became mainstream in the enterprise Java world. This quick popularity is certainly
closely related with the open source movement during that time. Lots of projects appeared,
and most of them helped the POJO programming model become mature over time. This chap-
ter fi rst closely examines how things were before the POJO programming model existed in the
enterprise Java community and discusses the problems of the old Enterprise JavaBeans (EJB)
programming model. It’s important that you understand the characteristics of the POJO pro-
gramming model and what it provides to developers.

2 ❘ Chapter 1 POJO PrOgramming mOdel, lightweight COntainers, and inversiOn Of COntrOl

The second half of the chapter focuses on containers and the inversion of control patterns that are
at the heart of the lightweight containers we use today. You learn what a container is, what services
it offers, and what makes a container lightweight. You also learn how the inversion of control pat-
tern arises and its close relationship with dependency injection terms. The chapter concludes with an
examination of two different dependency injection methods and their pros and cons.

POJO PrOgramming mOdel

POJO means Plain Old Java Objects. The name was first coined by Martin Fowler, Rebecca
Parsons, and Josh MacKenzie to give regular Java objects an exciting‐sounding name. It represents a
programming trend that aims to simplify the coding, testing, and deployment phases of Java appli-
cations—especially enterprise Java applications.

You’ll have a better understanding of what problems the POJO programming model solves if you
first understand what problems the old EJB programming model had.

Problems of the Old eJB Programming model
The Enterprise JavaBeans (EJB) technology was first announced around 1997. It offered a distrib-
uted business component model combined with a runtime platform that provided all the necessary
middleware services those EJB components needed for their execution. It was a main specification
under the J2EE specification umbrella at the time.

Many people were really excited by the promise of the EJB technology and J2EE platform. EJBs
were offering a component model that would let developers focus only on the business side of the
system while ignoring the middleware requirements, such as wiring of components, transaction
management, persistence operations, security, resource pooling, threading, distribution, remoting,
and so on. Developers were told that services for middleware requirements could be easily added
into the system whenever there was any need of them. Everything seemed good and very promising
on paper, but things didn’t go well in practice.

The EJB 2.x specification required that the component interface and business logic implementa-
tion class extend interfaces from the EJB framework package. These requirements created a tight
coupling between the developer‐written code and the interface classes from the EJB framework
package. It also required the implementation of several unnecessary callback methods, such as
ejbCreate, ejbPassivate, and ejbActivate, which are not directly related to the main design
goal of EJB.

To develop an EJB component, developers had to write at least three different classes—one for
home, one for remote interfaces, and one for business objects, as shown here:

public interface PetClinicService extends EJBObject {
 public void saveOwner(Owner owner) throws RemoteException;
}

public interface PetClinicServiceHome extends EJBHome {
 public PetClinicService create() throws RemoteException, CreateException;

pOJO programming Model ❘ 3

}

public class PetClinicServiceBean implements SessionBean {
 private SessionContext sessionContext;
 public void ejbCreate() {
 }
 public void ejbRemove() {
 }
 public void ejbActivate() {
 }
 public void ejbPassivate() {
 }
 public void setSessionContext(SessionContext sessionContext) {
 this.sessionContext = sessionContext;
 }
 public void saveOwner() throws java.rmi.RemoteException {
 //implementation of saving owner instance...
 }
}

The preceding code snippet shows the minimum amount of code that needs to be written in order to
create an EJB component with only one method using the EJB2 application programming interface
(API). Although the remote interface defined the public API of the business object class to the outside
world, a non‐mandatory requirement in the specification asked that the business object class imple-
mentation not depend on the remote interface directly. When developers obeyed this warning, how-
ever, they were opening up a possibility that business object class implementation and its public API
remote interface would become unsynchronized whenever the method declarations were modified in
one of those classes. The solution was to introduce a fourth interface, which was implemented by the
business object class and extended by the remote interface to keep the remote interface and the busi-
ness object class implementation synchronized while not violating this non‐mandatory requirement.

There were actually two interfaces that defined the public API of the business object class: the
remote and local interfaces. Local interfaces were introduced to the EJB specification when people
realized that remote interfaces were causing unnecessary performance overheads in systems in
which there were no physically separated layers, and there was no direct access to the EJB layer from
another client in the architecture, except through servlets. However, when developers needed to
make EJB components remotely available they had to create a remote interface for them. Although
there was no direct dependency between the business object class and its remote interface, all public
methods of the business object implementation class had to throw RemoteException, causing the
business object implementation class to depend on EJB and remoting technologies.

Testability was one of the biggest problems of the old EJB programming model. It was almost impos-
sible to test session and entity beans outside the EJB container; for example, inside an integrated
development environment (IDE) using JUnit. This is because dependencies of those session beans were
satisfied through local or remote interfaces, and it was very hard—but not impossible—to test session
beans in a standalone environment. When it came time to run or test entity beans outside the con-
tainer, things were more difficult because the entity bean classes had to be abstract and their concrete
implementations were provided by the EJB container at deployment time. Because of such difficul-
ties, people tried to access the EJBs deployed in the container and test them using in‐container test

4 ❘ Chapter 1 POJO PrOgramming mOdel, lightweight COntainers, and inversiOn Of COntrOl

frameworks, such as Cactus. Nevertheless, such solutions were far from the simplicity and speed of
running tests within a standalone environment by right‐clicking and selecting Run As JUnit Test.

The deployment process was another time‐consuming and error‐prone phase of the EJB program-
ming model. Developers used deployment descriptor files in XML format to deploy developed EJB
components, but configuring their middleware requirements, such as transaction semantics, security
requirements, and so on, caused those files to become several hundred lines long. Developers usually
were trying to maintain the files by hand, and it was quite easy to make simple typos in package or
class names, and those errors wouldn’t be noticed until deployment time.

The following code snippet contains two EJB definitions, one depending on the other, and it includes
a container‐managed transaction configuration as well. Imagine how things can go wrong when you
have dozens of other EJB definitions, each having its own dependencies, transaction management,
security configurations, and so on:

<ejb-jar>
 <display-name>PetClinicEJB2</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>PetClinicService</ejb-name>
 <home>com.example.PetClinicServiceHome</home>
 <remote>com.example.PetClinicService</remote>
 <ejb-class>com.example.PetClinicServiceImpl</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <res-ref-name>jdbc/ds</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 <message-driven>
 <ejb-name>MessageSubscriber</ejb-name>
 <ejb-class>com.example.MessageSubscriber</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-destination-type>javax.jms.Topic</message-destination-type>
 <ejb-ref>
 <ejb-ref-name>ejb/PetClinicService</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.example.PetClinicServiceHome</home>
 <remote>com.example.PetClinicService</remote>
 <ejb-link>PetClinicService</ejb-link>
 </ejb-ref>
 </message-driven>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>PetClinicService</ejb-name>
 <method-name>saveOwner</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>

pOJO programming Model ❘ 5

 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

One very common task while coding EJBs was to access the Java Naming and Directory Interface
(JNDI) context in the J2EE environment and perform object lookups so that necessary dependencies
to other EJBs and DataSource instances could be satisfied. However, this was causing the EJB com-
ponent to become tightly coupled with the container, and unit testing was hard to perform because
of this environmental dependency. The following code snippets show how an EJB home object and
javax.sql.DataSource are looked up from a JNDI repository:

try {
 InitialContext context = new InitialContext();
 PetClinicServiceHome petClinicServiceHome = (PetClinicServiceHome)
 context.lookup("java:/comp/env/ejb/PetClinicService");
 PetClinicService petClinicService = petClinicServiceHome.create();
 //you can now access business methods of the component...
} catch (NamingException e) {
 throw new RuntimeException(e);
}

try {
 InitialContext context = new InitialContext();
 DataSource ds = (DataSource)context. lookup("java:/comp/env/jdbc/ds");
 //you can now obtain JDBC Connections via DataSource object...
} catch (NamingException e) {
 throw new RuntimeException(e);
}

Actually, JNDI lookup can be considered an early form of dependency injection, but, due to its pull‐
based nature, it was difficult to isolate components during unit testing because of the dependency to
the JNDI context.

Another problem of the old EJB programming model was that it diverted developers toward the
procedural programming style. Application behavior in this style of programming is mainly handled
within some methods, while data from and to those methods is carried with dumb domain model
objects. Unfortunately, data and behavior are separated from each other and are not in a cohesive
form in such a case. This is definitely a divergence from the object‐oriented programming perspec-
tive in which one of the important characteristics is encapsulation of data together with the related
behavior. After all, you are using an object‐oriented programming language called Java, and you
want to take advantage of all its abilities, don’t you?

The main reason for such a paradigm shift, while using an object‐oriented language, was the EJB
programming model. People usually were developing session‐ and message‐driven beans that were
stateless, monolithic, and heavyweight components in which all the business logic was implemented
with data access operations inside them. Entity EJBs were expected to represent the domain model,
but they had some subtle deficiencies that prevented them from being used at all. For example,
inheritance support was too limited, and recursive calls within entity beans were not supported; it
was not possible to transfer the entity bean instances as session and message‐driven bean method
inputs and return values, and so on.

6 ❘ Chapter 1 POJO PrOgramming mOdel, lightweight COntainers, and inversiOn Of COntrOl

People might think that procedural style is not a big problem for scenarios in which business logic is
simple. However, things don’t stay simple in real‐life enterprise application projects. As new require-
ments come along, things become more complex and written code
grows to be more and more of a maintenance headache. The pro-
cedural style of programming that was promoted by the old EJB
programming model caused the creation and use of dumb domain
objects, which were acting purely as data transfer objects between
the application layers and the network. Martin Fowler coined the
term anemic domain model for such problematic domain objects.
Anemic blood is missing vital ingredients; similarly, an anemic
domain model is also limited to only data transfer and persistence‐
related operations, and it contains hardly any behavioral code.
Unfortunately, the old EJB programming model was not able to
enforce operating on a fine‐grained and rich object model behind a
coarse‐grained component model.

Enterprise applications usually have layered architectures. They
are mainly composed of the web, service, and data access layers.
Figure 1-1 shows those logical layers and the relationships between
each.

Each layer should only know and interact with the layer just
beneath it. That way, upper layers aren’t affected by changes made
within other layers upon which they don’t directly depend. It also
becomes possible to easily replace layers because only one layer
depends on another, and only that dependent layer will have to be
changed if there is a need.

It is a desirable and correct approach to divide the system into sev-
eral logical layers. However, this doesn’t mean that there should
always be a one‐to‐one correspondence between physical layers.
Unfortunately, having an EJB container caused those web and ser-
vice layers to work using remote method invocation (RMI), which
is practically equivalent to having separate physical layers. Hence,
servlet and JavaServer Pages (JSP) components in the web layer have
complex and performance‐degrading interactions with the EJB com-
ponents in the service layers. Apart from inefficient network interac-
tion, developers also experienced class‐ and resource‐loading issues. The reason for these issues were
that the EJB container used a different ClassLoader instance than the web container.

Figure 1-2 shows a typical physical layering of a J2EE application. The application server has
separate web and EJB containers. Therefore, although they are located in the same server
instance, web components have to interact with EJB components as if they are in different phys-
ical servers using RMI. It is observed in many enterprise Java applications that RMI calls from
the web to the service layers create an unnecessary performance cost over time when the web
and EJB layers are located in the same physical machine, and the EJB layer is only accessed from
the web layers. As a result, local interfaces were introduced to get rid of RMI between those
layers.

Figure 1-1

Presentation/UI Layer

Controller Layer

Business Layer

Data Access Layer

DB

pOJO programming Model ❘ 7

Figure 1-2

J2EE Application Server

Client

DB

EJB

JSP

Servlet

EJBEJB
Container

Web
Container

Web Browser/
Applet

Application
Client

Legacy
System

The “write once and run everywhere” slogan was very popular at those times, and people expected
it to be true among J2EE environments as well. However, there were lots of missing and open issues
in EJB and J2EE specifications, so many enterprise projects had to develop solutions specific to their
application servers. Every application server had its own legacy set of features, and you had to per-
form server‐specific configurations, or code against a server‐specific API to make your application
run in the target environment. Actually, the slogan had turned into “write once and debug every-
where,” and this was a common joke among J2EE developers.

Most of the aforementioned problems were addressed in the EJB 3 and EJB 3.1 specifications.
The most important point during those improvements is that the POJO programming model
was taken as a reference by those newer EJB specifications. Session and message‐driven beans
are still available but much simpler now, and entity beans are transformed into POJO‐based
domain objects with the Java Persistence API (JPA). It is now much easier to implement, test,
and deploy them. The EJB programming model has become more and like the POJO program-
ming model over time.

Certainly, the biggest contribution to improve the EJB component model and J2EE environment has
come from POJO‐based, lightweight frameworks, such as Hibernate and Spring. We can safely say
that the EJB programming model mostly was inspired by those frameworks, especially Spring.

Benefits of the POJO Programming model
The most important advantage of the POJO programming model is that coding application classes is
very fast and simple. This is because classes don’t need to depend on any particular API, implement
any special interface, or extend from a particular framework class. You do not have to create any
special callback methods until you really need them.

Because the POJO‐based classes don’t depend on any particular API or framework code, they can
easily be transferred over the network and used between layers. Therefore, you don’t need to create
separate data transfer object classes in order to carry data over the network.

You don’t need to deploy your classes into any container or wait for long deployment cycles so that you
can run and test them. You can easily test your classes within your favorite IDE using JUnit. You don’t
need to employ in‐container testing frameworks like Cactus to perform integration unit tests.

8 ❘ Chapter 1 POJO PrOgramming mOdel, lightweight COntainers, and inversiOn Of COntrOl

The POJO programming model lets you code with an object‐oriented perspective instead of a pro-
cedural style. It becomes possible to reflect the problem domain exactly to the solution domain.
Business logic can be handled over a more fine‐grained model, which is also richer in terms of
behavioral aspects.

lightweight COntainers and inversiOn OF COntrOl
(iOC)

Despite all the difficulties and disadvantages of the old EJB programming model, there were still
some attractive points in the platform that caused many people to develop enterprise Java applica-
tions and deploy them into J2EE application servers. It was very important that several middleware
services crucial for applications to work were readily provided by the J2EE environment, and devel-
opers were able to utilize them in their applications. For example, the following actions are indepen-
dent from business logic, and it’s important that they are provided by a J2EE platform:

 ➤ Handling database connections outside the application codebase

 ➤ Enabling pooling capabilities, if necessary

 ➤ Performing transaction management with declarative means

 ➤ Working with a ready‐to‐use transaction management infrastructure

 ➤ Creating and wiring of components in the application

 ➤ Applying security constraints on the system

 ➤ Dealing with thread and scheduling issues

lightweight Containers
Some people were developing their applications without using EJBs while still leveraging many of
those middleware features mentioned earlier. On the other hand, they usually perceived that they
had to deploy their application to a full‐featured J2EE application server only so that they could
leverage those middleware services. This was quite a wrong opinion at the time. It is technically pos-
sible to develop an enterprise application without using a container at all. In that case, however, you
need to handle the creating and wiring of components and implement required middleware services
yourself. These tasks will definitely distract you from dealing solely with business requirements of
the system, and delay the completion time of it.

Therefore, in practice it is much better to have an environment by which all those components will
be created and wired and those required middleware services will be provided. Such an environ-
ment is called a container. The Java EE platform provides several such containers, each specialized
with services required by a particular layer in the application. For example, the Servlet container
creates and manages components of the web layer of an application, such as Servlets, JSPs, Filters,
and so on. The EJB container, on the other hand, focuses on the business layer of the application
and manages the EJB components of it. Similar to the Java EE platform, the Spring Container is
also a container in which components of an application are created, wired with each other, and the
middleware services are provided in a lightweight manner.

www.allitebooks.com

http://www.allitebooks.org

Lightweight Containers and Inversion of Control (IoC) ❘ 9

When we talk about containers, it is expected that any container should be capable of providing
several basic services to components managed in its environment. According to the seminal book
Expert One‐on‐One J2EE Development Without EJB by Rod Johnson and Jürgen Höller (Wrox,
2004), those expected services can be listed as follows:

 ➤ Life-cycle management

 ➤ Dependency resolution

 ➤ Component lookup

 ➤ Application configuration

In addition to those features, it will be very useful if the container is able to provide following
 middleware services:

 ➤ Transaction management

 ➤ Security

 ➤ Thread management

 ➤ Object and resource pooling

 ➤ Remote access for components

 ➤ Management of components through a JMX‐like API

 ➤ Extendibility and customizability of container

A lightweight container includes all of these features, but doesn’t require application code to depend
on its own API. That is, it doesn’t have invasive character, its startup time is very fast, it doesn’t
need to be deployed into a full‐featured Java EE application server to be able to provide those ser-
vices, and deploying components into it is a trivial process. The Spring Application Framework is
one of the most prominent lightweight containers in the enterprise world.

inversion of Control (ioC)
One of the most important benefits containers that provide with components they manage is plug-
gable architecture. Components implement some interfaces, and they also access services provided
by other components they need through similar interfaces. They never know concrete implementa-
tion classes of their services. Therefore, it becomes very easy to replace any component in the system
with a different implementation. The job of a container is to create those components and their
dependent services and wire them together.

Dependent components are never instantiated using a new operator within component classes. They
are injected into the component by the container instance at run time. Hence, control of dependen-
cies is moved out of components to the container. This pattern, therefore, is called Inversion of
Control, or IoC for short. IoC is an important concept in frameworks generally, and is best under-
stood through the Hollywood principle of “Don’t call us; we’ll call you.”

IoC is one of the fundamental features that is expected to be provided by any container. It has basi-
cally two forms: dependency lookup and dependency injection.

10 ❘ Chapter 1 POJO PrOgramming mOdel, lightweight COntainers, and inversiOn Of COntrOl

In dependency lookup, the container provides callback methods to the components it manages, and
the components interact with the container and acquire their dependencies explicitly within those
callback methods. In such a scenario, there is usually a lookup context that is used to access depen-
dent components and other resources managed by the container.

In dependency injection, components are provided with suitable constructors or setter methods so
that the container can inject dependent components. There is hardly ever an explicit lookup per-
formed within components. Most of the time dependencies are injected during creation of compo-
nents through those methods.

The method used during the early years of J2EE corresponds to dependency lookup. The lookup
context mentioned earlier was also called the JNDI context in this environment. EJB components
and other resources such as JDBC DataSource and JMS ConnectionFactory were accessed
through that JNDI context. Figure 1-3 depicts explicit interaction of various parts with the JNDI
repository in the J2EE platform via JNDI API.

Figure 1-3

J2EE
Application

Client

JNDI
API

JNDI
API

JNDI
API

JNDI
Repository

J2EE Application Server

EJB
Module

Web
Module

With the advent of the Spring Application Framework and other lightweight IoC frameworks, the depen-
dency injection method has become popular. In this scenario, how components are instantiated and what
dependent components they need are defined using a container’s own configuration mechanism. It is the
job of the container to process this configuration information to instantiate necessary components and
wire up their dependencies at run time. During the evolution process of J2EE toward Java EE, explicit
dependency lookup using JNDI has been transformed into the implicit dependency injection method.
Today, when IoC is mentioned, it is usually understood as dependency injection among developers.

dePendenCy inJeCtiOn

The fundamental principle of dependency injection is that application objects should not be respon-
sible for looking up the resources or collaborators on which they depend. Instead, an IoC container
should handle object creation and dependency injection, resulting in the externalization of resource
lookup from application code to the container.

Dependency Injection ❘ 11

Dependency injection has several benefits to the overall system. First of all, lookup logic is com-
pletely removed from application code, and dependencies can be injected into the target compo-
nent in a pluggable manner. Components don’t know the location or class of their dependencies.
Therefore, unit testing of such components becomes very easy because there is no environmental
dependency like the JNDI context, and dependent components can easily be mocked and wired up
to the component in the test case. Configuration of the application for different environments also
becomes very easy and achievable without code modification because no concrete class dependencies
exist within components. There is no dependence on the container API. Code can be moved from
one container to another, and it should still work without any modification in the codebase. There is
no requirement to implement any special interfaces at all. Written classes are just plain Java objects,
and it is not necessary to deploy those components to make them run.

Two dependency injection methods can be used. One is constructor injection, and the other is setter
injection. A good container should be able to support both at the same time, and should allow mix-
ing them.

setter injection
The setter methods are invoked immediately after the object is instantiated by the container. The
injection occurs during the component creation or initialization phase, which is performed much
earlier in the process than handling business method calls. Thus, there are no threading issues
related with calling those setter methods. Setter methods are part of the JavaBean specification, so
that they allow the outside world to change collaborators and property values of components. Those
JavaBean properties are also used to externalize simple properties such as int or boolean values.
This simplifies the code and makes it reusable in a variety of environments.

The most important advantage of setter injection is that it allows re‐configurability of the com-
ponent after its creation. The component’s dependencies can be changed at run time. Many exist-
ing classes can already be used with standard JavaBean‐style programming. In other words, they
offer getter and setter methods to access their properties. For example, Jakarta Commons DBCP
DataSource provides a commonly used DataSource implementation, and it can be managed via its
JavaBean properties within the container. It’s possible to use the standard JavaBeans property‐ editor
mechanism for type conversions whenever necessary. For example, a String value given in con-
figuration can easily be converted into a necessary typed value, or a location can be resolved into a
resource instance, and so on. If there is a corresponding getter for each setter, it becomes possible to
obtain the current state of the component and save it to restore for a later time. If the component has
default values for some or all of its properties, it can be configured more easily using setter injection.
You can still optionally provide some dependencies of it as well.

The biggest disadvantage of setter injection is that not all necessary dependencies may be injected
before use, which leaves the component in a partially configured state. In some cases, the order
of invocation of setter methods might be important, and this is not expressed in the component’s
contract. Containers provide mechanisms to detect and prevent such inconsistencies in component
states during their creation phase.

Constructor injection
With constructor injection, beans express their dependencies via constructor arguments. In this
method, dependencies are injected during component creation. The same thread safety applies for

12 ❘ Chapter 1 POJO PrOgramming mOdel, lightweight COntainers, and inversiOn Of COntrOl

constructor injection as well. You can also inject simple properties such as int or boolean values as
constructor arguments.

The biggest advantage of constructor injection is that each managed component in the container is
guaranteed to be in a consistent state and ready to use after it is created. Another good point is that
the amount of code written with constructor injection will be slightly less compared to the code
written when setter injection is used.

The biggest disadvantage of constructor injection is that it won’t be possible to reconfigure com-
ponents after their creation unless they provide a setter for those properties given as constructor
arguments. Having several overloaded constructors for different configuration options might be
confusing or even unavailable most of the time. Concrete inheritance can also be problematic unless
you are careful about overriding all of the constructors in the superclass.

setter or Constructor injection
Both methods have advantages as well as disadvantages, and it is not possible to use only one
method for any application. You might have classes especially written by third parties that don’t
have constructors that accept suitable arguments for your configuration case. Therefore, you might
first create a component with an available constructor that accepts arguments close to your needs,
and then inject other dependencies with setter methods. If the components need to be reconfigurable
at run time, having setters for their specific properties will be mandatory in that case. IoC contain-
ers are expected to allow developers to mix the two types of dependency injection methods for the
same component within the application configuration.

summary

In this chapter, you first learned the problems of the old‐school EJB programming model that caused
many enterprise Java projects to fail completely—or at least fail to satisfy their promises to some
degree. The main problems of the old EJB programming model was that developers had to write
several interfaces to create a business component, tight coupling between EJB and J2EE technologies
was necessary, you couldn’t run components outside the J2EE platform, there was difficulty in unit
testing outside the container, long and complex develop‐package‐deploy‐test cycles were required,
and the characteristics and limitations of J2EE technologies required promotion of the procedural
style of programming. Then you found out how those problems led to the creation of the POJO
programming model, how the POJO programming model solves the problems of the EJB program-
ming model, and how the POJO programming model helped J2EE to evolve into the new Java EE
environment.

This chapter discussed why so many people insisted on using J2EE technologies and tried to deploy
their enterprise applications despite all those obstacles in the J2EE environment. After identifying the
attractive points of the J2EE platform, we defined what a container is, listed fundamental features a
container should offer to its applications, and identified what makes a container lightweight by look-
ing at its characteristics.

The last part of the chapter focused on what IoC is, and what any container should offer as its core
services. We discussed how IoC helps make applications more modular and pluggable. The chapter

Summary ❘ 13

wrapped up with an explanation of dependency injection, which is a form of IoC, and its two differ-
ent types: setter injection and constructor injection.

exerCises

You can find possible solutions to the following exercises in Appendix A.

 1. Investigate the in‐container test frameworks available today. What are their biggest advan-
tages and disadvantages compared to testing outside the container?

 2. What IoC method is used by the new EJB programming model today?

 3. Which dependency injection method can handle “circular dependencies” and which cannot?

14 ❘ Chapter 1 POJO PrOgramming mOdel, lightweight COntainers, and inversiOn Of COntrOl

 ▸ what yOu learned in this ChaPter

tOPiC Key POints

POJO Plain Old Java Objects, a term devised to infer Java classes that don’t
depend on any environment‐specific classes or interfaces, and don’t
need any special environment to run in.

EJB Enterprise JavaBeans, the distributed business component model of
the J2EE platform.

J2EE, Java EE Java 2 Enterprise Edition, an umbrella specification that brings sev-
eral different technologies together and forms the enterprise Java
environment. Java Enterprise Edition (Java EE) is its newer name after
Java release 5.

Container, EJB Container,
Web Container

An environment in which components are created and wired together
in addition to utilizing middleware services offered by the container.

Middleware services Requirements that appear in every application, independent of busi-
ness requirements such as transaction, persistence, security, remot-
ing, threading, connection and resource pooling, caching, validation,
and clustering.

Home interface Special interface that needs to be implemented in the old EJB pro-
gramming model so that clients can obtain a handle of an EJB com-
ponent remotely.

Remote interface An interface that needs to be provided in the EJB programming
model so that clients can invoke business functions of an EJB compo-
nent remotely.

Local interface Similar to the remote interface but derived for efficient interaction
between the web layer and the EJB layer, which sit together in the
same application server and JVM.

Callback methods Methods that are implemented in the business implementation class
of the EJB component and invoked by the container to let the com-
ponent interact with the environment.

JNDI context Context available in every Java EE environment in which objects are
managed with their names and attributes and are accessible using JNDI.

Inversion of Control (IoC) Pattern that represents control of managing dependencies in a com-
ponent whose dependency management is taken out of it and given
to the environment—in other words, the container.

Dependency lookup A form of IoC that is based on callback methods, invoked by a container
at specific phases, and lets a component look up its dependencies using
a lookup context, like the JNDI context in the J2EE environment.

Summary ❘ 15

tOPiC Key POints

Dependency injection A second and more popular form of IoC in which components define
their dependencies and the container wires them during component
creation time.

Setter injection Dependency injection method that uses JavaBean specification setter
methods.

Constructor injection Dependency injection method that uses constructors.

 2
 Dependency Injection with
Spring

 What you WiLL Learn in thiS Chapter:

 ➤ Confi guring and using Spring Container

 ➤ Using different types of confi guration metadata to confi gure Spring
Container

 ➤ Understanding dependency resolution

 ➤ Learning the advantages and disadvantages of autowiring

 ➤ Performing explicit bean lookups in Spring Container

 ➤ Learning different bean instantiation methods

 ➤ Understanding scoped beans and available scopes

 ➤ Learning how lazy bean creation works

 ➤ Understanding life-cycle callbacks

 ➤ Using bean defi nition profi les to create conditional bean
confi gurations

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 2 download and individually named according to the
names throughout the chapter.

http://www.wrox.com/go/beginningspring

18 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

This chapter explains how you can apply dependency injection using the Spring Application Framework.
You first look at different formats of configuration metadata necessary for the Spring Container to cre-
ate and wire up objects in the system. The chapter includes examples for XML‐, annotation‐based, and
Java‐based configuration metadata formats. The chapter covers the two dependency injection methods
in detail—setter injection and constructor injection—and explains how the dependency resolution pro-
cess works in the container. You find out how you can override bean definitions, learn what autowiring
means, and discover different modes of autowiring that are available in the container.

The lifetimes of Spring‐managed beans can be different according to their scope definitions. This
chapter lists the scopes supported by the Spring Container and explains how different scopes behave
in the system. You can create Spring beans either during startup (eager initialization), or delay their
creation until they are needed in the system (lazy initialization). In this chapter you find out how
those bean initialization methods work, the pros and cons of each, and the different bean instantia-
tion methods provided by the Spring Container.

The chapter wraps up with coverage of new features, such as bean definition profiles and environ-
ment abstraction introduced in Spring 3.1, which helps you conditionally handle bean definitions
according to the runtime platform of the application or its environment.

Spring ioC Container

The core of the Spring Application Framework is its Inversion of Control (IoC) Container. Its job is to
instantiate, initialize, and wire up objects of the application, as well as provide lots of other features
available in Spring throughout an object's lifetime. The objects that form the backbone of your appli-
cation, and are managed by Spring Container, are called beans. They are ordinary Java objects—also
known as POJOs—but they are instantiated, assembled by the Spring Container, and managed within it.

Configuration Metadata
The Spring Container expects information from you to instantiate beans and to specify how to wire
them together. This information is called configuration metadata. Together with this configuration
metadata, the Spring Container takes classes written in the application and then creates and assem-
bles beans in it. Figure 2-1 depicts this process.

Figure 2-1

Configuration
metadata

Spring Container

Ready-to-use
system

Application classes

www.allitebooks.com

http://www.allitebooks.org

Spring IoC Container ❘ 19

The traditional form of configuration metadata is XML; however, it is not the only form.
Annotation‐based and Java‐based configuration metadata options are also available. The nice thing
is that the Spring Container is independent of the configuration metadata format. You can use any
format you like and even mix them together in the same application. The following code is an exam-
ple of XML configuration metadata:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="accountService" class="com.wiley.beginningspring.ch2.~CA
 AccountServiceImpl">
 <property name="accountDao" ref="accountDao"/>
 </bean>

 <bean id="accountDao" class="com.wiley.beginningspring.ch2.~CA
 AccountDaoInMemoryImpl">
 <!-- dependencies of accountDao will be defined here -->
 </bean>

</beans>

In this code, all beans are defined within the <beans> element, and each bean is defined using the
<bean> element. Beans have names defined with the id attribute. They are accessed using their
names either from the application or from another bean definition in the configuration metadata. In
the preceding example, the accountService bean has a property called accountDao, and this prop-
erty is satisfied with the accountDao bean defined in the configuration.

The next code snippet is an example of annotation‐based configuration metadata:

@Service("accountService")
public class AccountServiceImpl implements AccountService {
 private AccountDao accountDao;

 @Autowired
 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }
}

@Repository("accountDao")
public class AccountDaoInMemoryImpl implements AccountDao {

}

Here, beans are defined using Java annotations. The @Service and @Repository annotations are
used to define two beans. They are actually a more specialized form of the @Component annota-
tion. The @Autowired annotation is used to specify bean dependency that will be injected by the
Spring Container at run time. Annotation‐based configuration metadata was introduced with
Spring 2.5.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

20 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

The following code snippet exemplifies Java‐based configuration metadata:

@Configuration
public class Ch2BeanConfiguration {

 @Bean
 public AccountService accountService() {
 AccountServiceImpl bean = new AccountServiceImpl();
 bean.setAccountDao(accountDao());
 return bean;
 }

 @Bean
 public AccountDao accountDao() {
 AccountDaoInMemoryImpl bean = new AccountDaoInMemoryImpl();
 //depedencies of accountDao bean will be injected here...
 return bean;
 }
}

You define beans in a Java class annotated with @Configuration. Within that class each public
method marked with the @Bean annotation corresponds to a bean definition. Beans are instanti-
ated by invoking an appropriate constructor from their concrete classes, then their dependencies are
obtained by calling other bean definition methods, and those obtained dependencies are injected
into the bean. Java‐based configuration metadata was introduced with Spring 3.0.

In a big project, it's a good idea to divide configuration metadata into several different files so that it
can be managed easily and can be managed by different developers at the same time. This division
usually reflects the layers of the application. You create a separate bean definition file or class for each
layer in the application, and you also create some additional bean definition files or classes for other
container‐specific configuration tasks as well. Therefore, for a typical web application project that's
developed using Spring, it is very common to see bean definition files or classes similar to these:

 ➤ Beans that operate in the web/presentation layer of the application are defined in the
beans‐web.xml file or ConfigurationForWeb class.

 ➤ Beans that operate in the service/business layer of the application are defined in the
beans‐service.xml file or the ConfigurationForService class.

 ➤ Beans that operate in the data access layer of the application are defined in the beans‐dao
.xml file or the ConfigurationForDao class.

 ➤ Beans that are necessary for several container‐specific features to be activated are defined in
the beans‐config.xml file or the ConigurationForConfig class.

 ➤ Beans that are used for security requirements of the application are defined in the
beans‐security.xml file or the ConfigurationForSecurity class.

Your application doesn't have to have this exact collection of files. The number and granularity of
configuration metadata files varies according to the architecture and specific requirements of the tar-
get application. However, the files in this list are a good starting point, and you can always add new
ones and divide existing ones according to your needs.

Spring IoC Container ❘ 21

Configuring and using the Container
The Spring Container is also a Java object, which is created in the application at some specific point
and then allowed to manage the rest of the application. You can instantiate the Spring Container
in basically two different ways. In standalone applications, you use the programmatic approach. In
web applications, on the other hand, the declarative approach is preferable with the help of some
configuration within the web.xml file.

The following Try It Out shows how the Spring Container can be created and used in a standalone
environment using Java‐based configuration. We try to employ a simple form of layered architecture
by defining beans corresponding to each layer illustrated in the Figure 2-2:

Figure 2-2

Client Layer
(Main class)

Service Layer
(AccountService)

DAO Layer
(AccountDao)

Domain
Model

(Account)

In a layered architecture, each layer only talks to the layer beneath it, and they don't know the real
implementations of the beans they use from the layer they interact. Such an architectural approach
helps developers to make the application more modular and testable as well. Developers can create
different implementations corresponding to each layer, and they can replace them without causing
any problem in the upper layers as long as they stick with the contract declared by the interfaces
in each layer. Maintenance of the application also becomes easier because they only need to fix the
layer in which the problem exists. The only other layer that can be affected by this problem and its
fix might be the layer that is just one level above it.

try it out Creating and Using the Spring Container in a Standalone
environment with Java‐Based Configuration

In this Try It Out, you create and use an ApplicationContext with Spring's Java‐based configuration
in the standalone environment. You can find the source code within the project named
java‐based‐configuration in the spring‐book‐ch2.zip file. To begin, follow these steps:

 1. Create a Maven project with the following command:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch2

22 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

 2. Add the following Spring dependencies to your pom.xml file if they are not already available there:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Create a package named com.wiley.beginning.spring.ch2, and then create the following Java
classes in it:

public class Account {
 private long id;
 private String ownerName;
 private double balance;
 private Date accessTime;

 //getters & setters...
}

public interface AccountDao {
 public void insert(Account account);
 public void update(Account account);
 public void update(List<Account> accounts);
 public void delete(long accountId);
 public Account find(long accountId);
 public List<Account> find(List<Long> accountIds);
 public List<Account> find(String ownerName);
 public List<Account> find(boolean locked);
}

public class AccountDaoInMemoryImpl implements AccountDao {

 private Map<Long,Account> accountsMap = new HashMap<>();

 {
 Account account1 = new Account();
 account1.setId(1L);
 account1.setOwnerName("John");
 account1.setBalance(10.0);

 Account account2 = new Account();
 account2.setId(2L);
 account2.setOwnerName("Mary");
 account2.setBalance(20.0);

 accountsMap.put(account1.getId(), account1);
 accountsMap.put(account2.getId(), account2);

 }

 @Override
 public void update(Account account) {
 accountsMap.put(account.getId(), account);

Spring IoC Container ❘ 23

 }

 @Override
 public Account find(long accountId) {
 return accountsMap.get(accountId);
 }

 //other method implementations
}

public interface AccountService {
 public void transferMoney(
 long sourceAccountId, long targetAccountId, double amount);
 public void depositMoney(long accountId, double amount) throws Exception;
 public Account getAccount(long accountId);
}

public class AccountServiceImpl implements AccountService {
 private AccountDao accountDao;

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

 @Override
 public void transferMoney(
 long sourceAccountId, long targetAccountId, double amount) {
 Account sourceAccount = accountDao.find(sourceAccountId);
 Account targetAccount = accountDao.find(targetAccountId);
 sourceAccount.setBalance(sourceAccount.getBalance() - amount);
 targetAccount.setBalance(targetAccount.getBalance() + amount);
 accountDao.update(sourceAccount);
 accountDao.update(targetAccount);
 }

 @Override
 public void depositMoney(long accountId, double amount) throws Exception {
 Account account = accountDao.find(accountId);
 account.setBalance(account.getBalance() + amount);
 accountDao.update(account);
 }

 @Override
 public Account getAccount(long accountId) {
 return accountDao.find(accountId);
 }
}

 4. Create the following Java‐based bean definition class:

@Configuration
public class Ch2BeanConfiguration {

 @Bean
 public AccountService accountService() {

24 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

 AccountServiceImpl bean = new AccountServiceImpl();
 bean.setAccountDao(accountDao());
 return bean;
 }

 @Bean
 public AccountDao accountDao() {
 AccountDaoInMemoryImpl bean = new AccountDaoInMemoryImpl();
 //depedencies of accountDao bean will be injected here...
 return bean;
 }
}

 5. Create a Main class with the main method and instantiate the Spring Container by giving the Java‐
based configuration class you created in the previous step as the constructor argument:

public class Main {

 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
new AnnotationConfigApplicationContext(Ch2BeanConfiguration.class);

 }
}

 6. Access the accountService bean from within the Spring Container, and use it like so:

 AccountService accountService = applicationContext.getBean("accountService",
AccountService.class);

 System.out.println("Before money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1).getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2).getBalance());

 accountService.transferMoney(1, 2, 5.0);

 System.out.println("After money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1).getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2).getBalance());

How It Works

You first created a domain class named Account. Then you created the AccountDao inter-
face with the AccountDaoInMemoryImpl class—which corresponds to the DAO layer—and the
AccountService interface with the AccountServiceImpl class—which corresponds to the service
layer. AccountService declares a transferMoney method, which moves a given amount between
two Account objects identified by their accountIds. The AccountServiceImpl class needs to first
obtain those two Account objects and update them after the money transfer operation. Therefore,
AccountServiceImpl has a dependency to the AccountDao interface, which declares methods to per-
form basic persistence operations on a given Account, and finder methods to find Account instances
using some query parameters.

Spring IoC Container ❘ 25

You then created a Spring bean definition class named Ch2BeanConfiguration and marked it with the
org.springframework.context.annotation.Configuration annotation. This annotation tells Spring
that this class contains configuration metadata as well as itself as a bean. Within the configuration class,
you created two factory methods marked with the org.springframework.context.annotation.Bean
annotation. Those methods are called by the Spring Container during bootstrap, and their returning
values are treated as Spring‐managed beans. The method name is accepted as the bean name by default.
Within a factory method, you created a bean using its concrete class and returned it after setting its neces-
sary dependencies by calling its setter methods. Dependencies can also be given as constructor arguments.

Notice that the return type of the factory methods are defined as interfaces instead of concrete classes. Using
interfaces is not mandatory, but it's very useful to let the system easily be configured with different bean
implementation classes. For example, you can add another bean definition with a new configuration metadata
that returns a Java Database Connectivity (JDBC) implementation of the AccountDao interface, and your
AccountService bean keeps working without any change in its implementation or in its bean definition.

You might notice that the AccountDao dependency of the AccountService bean is obtained by calling
the accountDao() method within the AccountService() method. If other factory methods were also
calling the accountDao() method several times, wouldn't there be more than one accountDao bean
instance in the system, and wouldn't it be a problem if you wanted to have only one instance of those
beans as the common case for service and repository beans as well? The answer to these questions is
no, there won't be several bean instances for a bean definition in the system. By default, each bean has
a single instance, which is called singleton scope. (Bean scopes are covered in more detail later in this
chapter.) At this point, it is enough to know that there will be only one instance of the accountDao
bean, and several different method calls won't cause any more instances to be created. Spring handles
this by extending the @Configuration classes dynamically at run time and overriding factory methods
with the @Bean annotation. Therefore, several calls to a factory method either from within the class or
from another @Configuration class won't cause any new bean instances to be created after the first
call. For consecutive calls, the same bean instance will be returned from factory methods.

The next step was to create the Spring Container instance. As mentioned earlier, it is also a Java object
that manages other objects in your application. The org.springframework.context
.ApplicationContext interface represents the Spring Container; in fact, the terms the Spring
Container and ApplicationContext are often used interchangeably. Several different implementa-
tions of the ApplicationContext interface are available, distinguished by how and from where those
ApplicationContext instances process bean configuration metadata files or classes. The org
.springframework.context.annotation.AnnotationConfigApplicationContext
class is used to process Java‐based configuration metadata classes. Although you have pro-
vided only one, you can also provide several configuration classes as input arguments to the
AnnotationConfigApplicationContext class.

Spring Container (or ApplicationContext) is ready to use right after its creation. At this point you may
get beans from the Spring Container and use them to fulfill your system requirements. The process of
obtaining Spring‐managed beans is called “bean lookups.” You find out more about bean lookups later
in this chapter. Here, it is enough to say that you can obtain a reference to any bean using its name. The
ApplicationContext.getBean() method is used to perform bean lookups. The type argument next to
the bean name is given so that a returned bean instance will be downcasted to that type automatically.
After obtaining a reference to the bean, it is possible to invoke any method of the bean contract. You
invoked the transferMoney() method by giving accountIds and amount as input parameters.

26 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

You can also create XML‐based configuration metadata and use it as well. Follow along with the
next Try It Out activity to see how it's done.

try it out Creating and Using the Spring Container in a Standalone
environment with XML‐Based Configuration

 In this Try It Out, you create a Spring Container using XML‐based configuration metadata. You can find
the source code within the project named xml‐based‐configuration in the spring‐book‐ch2.zip file.
You can continue from the project you created for the earlier Try It Out. To begin, follow these steps:

 1. Create an XML bean definition file named ch2‐beans.xml in the com.wiley.beginningspring
.ch2 package with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="accountService" class="com.wiley.beginningspring.ch2. ↵
 AccountServiceImpl">
 <property name="accountDao" ref="accountDao"/>
 </bean>

 <bean id="accountDao" class="com.wiley.beginningspring.ch2. ↵
 AccountDaoInMemoryImpl">

 </bean>

</beans>

 2. Modify the main method in the Main class and instantiate the Spring Container by giving the XML
bean definition file as the constructor argument:

public class Main {

 public static void main(String[] args) {
 ClassPathXmlApplicationContext applicationContext = new ↵
ClassPathXmlApplicationContext("/com/wiley/beginningspring/ch2/ch2-beans.xml");

 }

}

 3. Access the accountService bean from within the Spring Container, and use it in the same way
you did in the previous Try It Out:

 AccountService accountService = applicationContext.getBean ↵
 ("accountService", AccountService.class);

 System.out.println("Before money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1). ↵

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Spring IoC Container ❘ 27

 getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2). ↵
 getBalance());

 accountService.transferMoney(1, 2, 5.0);

 System.out.println("After money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1). ↵
 getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2). ↵
 getBalance());

How It Works

You created the ApplicationContext instance with an XML bean definition file. In this case,
org.springframework.context.support.ClassPathXmlApplicationContext is used to load the
XML configuration metadata files, which reside in the classpath of the application. After creating
ApplicationContext, you performed a bean lookup by calling the ApplicationContext.getBean()
method and obtained the accountService bean. After obtaining the bean, you used it in the same way
as in the previous example.

The next Try It Out gives you the final example about container configuration, which uses Java
annotations. You are going to achieve the same results as before.

try it out Creating and Using the Spring Container in a Standalone
environment with a Java annotation‐Based Configuration

In this Try It Out, you create the Spring Container using Java annotation‐based configuration metadata. The
source code is within the project named annotation‐based‐configuration in the spring‐book‐ch2.zip
file. You can continue from the project you created for the earlier Try It Out. To begin, follow these steps:

 1. Put the org.springframework.stereotype.Service and org.springframework.stereotype
.Repository annotations on top of the AccountServiceImpl and AccountDaoInMemoryImpl
classes, respectively:

@Service
public class AccountServiceImpl implements AccountService {
//...
}

@Repository
public class AccountDaoInMemoryImpl implements AccountDao {
//...
}

 2. Put the org.springframework.beans.factory.annotation.Autowired annotation on top of
the setAccountDao() method in the AccountServiceImpl class:

@Service
public class AccountServiceImpl implements AccountService {

28 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

 private AccountDao accountDao;

 @Autowired
 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }
//...
}

 3. Create an XML‐based Spring bean configuration file named ch2‐beans.xml in the com.wiley
.beginningspring.ch2 package with the following content:

 <?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd">

 <context:component-scan base-package="com.wiley.beginningspring.ch2"/>

</beans>

 4. Modify the main method in the Main class and instantiate the Spring Container by giving the bean
definition file as the constructor argument:

public class Main {

 public static void main(String[] args) {
 ClassPathXmlApplicationContext applicationContext = new ↵
ClassPathXmlApplicationContext("/com/wiley/beginningspring/ch2/ch2-beans.xml");

 }

}

 5. Access the accountServiceImpl bean from within the Spring Container, and use it in the same
way you did in the previous Try It Out:

 AccountService accountService = applicationContext.getBean ↵
 ("accountServiceImpl", AccountService.class);

 System.out.println("Before money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1). ↵
 getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2). ↵
 getBalance());

 accountService.transferMoney(1, 2, 5.0);

 System.out.println("After money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1). ↵

www.allitebooks.com

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.allitebooks.org

Dependency Injection ❘ 29

 getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2). ↵
 getBalance());

How It Works

You used the @Service and @Repository annotations to define your Spring‐managed beans. They both
extend from the org.springframework.stereotype.Component annotation. The @Service annota-
tion has no special meaning apart from defining a bean from the class it used on top. @Repository,
on the other hand, enables additional functionality related to Spring data access, which is explained
in Chapter 5. By default, the bean names are derived from simple class names with a lowercase initial
character. Therefore, your beans have the names accountServiceImpl and accountDaoInMemoryImpl,
respectively. It is also possible to give a specific name with a value attribute in those annotations.

org.springframework.beans.factory.annotation.Autowired is used to tell Spring that the speci-
fied dependency should be satisfied from within the container if it's available. Therefore, Spring first
looks at the input argument type of the setter method onto which the @Autowired annotation is placed.
It then tries to find a Spring managed bean with that type in the container, and injects it into the target
bean by invoking the setter method. You can read about autowiring in detail in the “Autowiring” sec-
tion later in this chapter.

Spring tries to identify classes that have the @Component annotation and its derivations during bootstrap
by scanning classes that exist in the classpath. However, you first need to enable this component scan pro-
cess and narrow the classpath so that the bootstrap doesn't take too much time. Unrelated classes aren't
included in the bean creation process, either. Therefore, you put the <context:component‐scan/> ele-
ment into the bean configuration file. However, you first need to enable the context namespace capability
by adding its schema location directives into the <beans> element on top. The Spring namespace feature
was introduced in Spring 2.5 to ease the bean definition and configuration process within the container.
Each Spring module has its own namespace support and provides several namespace elements for differ-
ent purposes. The <context:component‐scan/> element's role is to scan classes in the classpath, create
beans with related annotations, and inject their dependencies.

In the last part, you again used ClasspathXmlApplicationContext to create the Spring Container and
gave ch2‐beans.xml as the constructor argument into it. It loads the specified XML configuration files
from the classpath and performs bootstrap. The container becomes ready to use right after its creation.
At this point, you looked up the accountServiceImpl bean and used its methods as before.

For Java‐based configuration, the <context:component‐scan/> namespace element has its org
.springframework.context.annotation.ComponentScan annotation counterpart. It is used at the type
level.

DepenDenCy injeCtion

Chapter 1 defined dependency injection as moving the creation of dependent components out of code and
managing them within an IoC Container. Chapter 1 also mentioned two types of dependency injection
methods—setter injection and constructor injection—and listed their pros and cons in the application.
This chapter explains in detail how dependency injection is performed within the Spring Container.

30 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

Setter injection
Setter injection is performed after a bean instance is created. All properties defined in the configura-
tion metadata of the bean are injected by calling setter methods corresponding to those properties. It is
possible to inject other bean dependencies and primitive values, strings, classes, enums, and so on.

References to other beans are specified with the ref attribute of the <property> element. For example:

<bean id="accountService" class="com.wiley.beginningspring.ch2.AccountServiceImpl">
 <property name="accountDao" ref="accountDao"/>
</bean>

The AccountService bean needs a bean with the type AccountDao. Therefore we specified the
accountDao bean name in the ref attribute. If there is no bean with the accountDao name in the con-
tainer, the bootstrap process fails. You can have several property elements in a bean definition, each
for a different dependency in the bean, and you don't need to follow any specific order among them.

It is also possible to specify dependency with a <ref bean=""/> child element of the <property>
element as shown in the following code snippet. You can use either the short form or the long form
without any difference:

<bean id="accountService" class="com.wiley.beginningspring.ch2.AccountServiceImpl">
 <property name="accountDao">
 <ref bean="accountDao"/>
 </property>
</bean>

To inject dependency values other than bean references, like int, Boolean, String, Enum, and so on,
you can use the value attribute of the <property> element as shown here:

<bean id="account1" class="com.wiley.beginningspring.ch2.Account">
 <property name="id" value="1" />
 <property name="ownerName" value="John" />
 <property name="balance" value="10.0"/>
 <property name="locked" value="false" />
</bean>

<bean id="account2" class="com.wiley.beginningspring.ch2.Account">
 <property name="id" value="2" />
 <property name="ownerName" value="Mary" />
 <property name="balance" value="20.0"/>
 <property name="locked" value="false" />
</bean>

Spring handles necessary type conversions as much as possible. For example, a "false" String value
is converted to a boolean type and injected into a locked property, or a "20.0" String value is first
converted into a double and then injected into the balance property. Spring achieves this with its
built‐in property editors, and you can add custom editors to handle other type conversions that
Spring cannot handle by default.

Spring allows you to inject Collection or Map values as well. Their elements can be either straight
values, such as Integer, Boolean, String and so on, or references to other beans in the container.

Dependency Injection ❘ 31

The following code snippet shows how a Map typed property can be populated. Similar to a <map>
element, you can use the <set>, <list>, or <array> elements to populate Collection typed prop-
erties (and arrays as well):

<bean id="accountDao" class="com.wiley.beginningspring.ch2.AccountDaoInMemoryImpl">
 <property name="accountsMap">
 <map>
 <entry key="1" value-ref="account1"/>
 <entry key="2" value-ref="account2"/>
 </map>
 </property>
</bean>

Constructor injection
Constructor injection is performed during component creation. Dependencies are expressed as con-
structor arguments, and the container identifies which constructor to invoke by looking at types of
those constructor arguments specified in the bean definition. The following Try It Out shows how
Spring beans can be configured using constructor injection.

try it out Configuring Beans Using Constructor Injection

In this Try It Out, you configure the beans in the Spring Container using constructor injection. You can
find the source code within the project named constructor‐injection in the spring‐book‐ch2.zip
file. You can continue from the project you created for the earlier Try It Out. To begin, follow these steps:

 1. Change your AccountServiceImpl class so that it has the following constructor, which expects an
object of type AccountDao:

public class AccountServiceImpl implements AccountService {
 private AccountDao accountDao;

 public AccountServiceImpl(AccountDao accountDao) {
 this.accountDao = accountDao;
 }
//...
}

 2. Your accountService bean definition using constructor injection should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="accountService" class="com.wiley.beginningspring.ch2. ↵
 AccountServiceImpl">
 <constructor-arg ref="accountDao"/>
 </bean>

 <bean id="accountDao" class="com.wiley.beginningspring.ch2. ↵

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

32 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

 AccountDaoInMemoryImpl">
 </bean>

</beans>

 3. Modify the main method in the Main class and instantiate the Spring Container by giving the XML
bean definition file as the constructor argument:

public class Main {

 public static void main(String[] args) {
 ClassPathXmlApplicationContext applicationContext = new ↵
ClassPathXmlApplicationContext("/com/wiley/beginningspring/ch2/ch2-beans.xml");

 }

}

 4. Access the accountService bean from within the Spring Container, and use it in the same way
you did in the previous Try It Out:

 AccountService accountService = applicationContext.getBean ↵
 ("accountService", AccountService.class);

 System.out.println("Before money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1). ↵
 getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2). ↵
 getBalance());

 accountService.transferMoney(1, 2, 5.0);

 System.out.println("After money transfer");
 System.out.println("Account 1 balance :" + accountService.getAccount(1). ↵
 getBalance());
 System.out.println("Account 2 balance :" + accountService.getAccount(2). ↵
 getBalance());

How It Works

There can be several constructors in the bean definition class. The Spring Container looks at the
<constructor‐arg/> elements in the bean definition, identifies types of dependencies specified using
the <constructor‐arg/> elements, and then tries to find a suitable constructor using Java reflection.
The order of the <constructor‐arg/> elements is not important. After the suitable constructor is iden-
tified, Spring Container invokes it by giving dependencies as input argument values.

The rest of the example is completely the same as before. You created ApplicationContext, per-
formed bean lookup using the getBean() method, and invoked the moneyTransfer() method of the
accountService bean.

Similar to setter injection, you can also provide straight values like int, Boolean, String, Enum, and
so on, in addition to references to other beans. The <constructor‐arg> element accepts the value
attribute to inject those values. The necessary conversions are handled by the Spring Container.

Dependency Injection ❘ 33

When several <constructor‐arg> elements are available in a bean definition, their placement order
is not important. Spring tries to find a suitable constructor by comparing types of dependencies with
argument types of available constructors in the bean class. This can sometimes cause problems. For
example, say you have the following three classes: Foo, Bar, and Baz. The Foo class has two con-
structors that accept objects from the other two types:

public class Foo {

 private Bar bar;
 private Baz baz;

 public Foo(Bar bar, Baz baz) {
 this.bar = bar;
 this.baz = baz;
 }

 public Foo(Baz baz, Bar bar) {
 this.bar = bar;
 this.baz = baz;
 }
}

public class Bar {

}

public class Baz {

}

When you attempt to create a bean configuration as follows, the Spring Container fails to instanti-
ate the foo bean because it won't be able to identify which constructor to invoke:

<bean id="foo" class="com.wiley.beginningspring.ch2.Foo">
 <constructor-arg ref="bar"/>
 <constructor-arg ref="baz"/>
</bean>

<bean id="bar" class="com.wiley.beginningspring.ch2.Bar"/>

<bean id="baz" class="com.wiley.beginningspring.ch2.Baz"/>

You need to help the Spring Container a bit, so that it can choose one constructor and create the
bean instance using it. You do this by giving an index attribute for each <constructor‐arg>
element in the bean definition:

<bean id="foo" class="com.wiley.beginningspring.ch2.Foo">
 <constructor-arg ref="bar" index="0"/>
 <constructor-arg ref="baz" index="1"/>
</bean>

In a bean definition, you can use both setter injection and constructor injection. Indeed, this
type of usage is very common in real‐world projects. Beans are first created by invoking suitable

34 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

constructors based on <constructor‐arg/> elements, and then other dependencies are injected
specified by <property> elements:

public class Foo {

 private Bar bar;
 private Baz baz;

 public Foo(Bar bar) {
 this.bar = bar;
 }

 public void setBaz(Baz baz) {
 this.baz = baz;
 }
//...
}

<bean id="foo" class="com.wiley.beginningspring.ch2.Foo">
 <constructor-arg ref="bar"/>
 <property name="baz" ref="baz"/>
</bean>

Circular Dependencies
One disadvantage of constructor injection is that it cannot handle circular dependencies. If, for
example, you have two beans, a and b, and they both have dependencies to each other through their
constructors, the Spring Container is not able to instantiate those two beans:

public class A {
 private B b;

 public A(B b) {
 this.b = b;
 }
}

public class B {
 private A a;

 public B(A a) {
 this.a = a;
 }
}

<bean id="a" class="com.wiley.beginningspring.ch2.A">
 <constructor-arg ref="b"/>
</bean>

<bean id="b" class="com.wiley.beginningspring.ch2.B">
 <constructor-arg ref="a"/>
</bean>

Dependency Injection ❘ 35

This is because, while the first bean is being created, it expects the second bean to be injected into
itself. However, the second bean is also in the creation phase and expecting the first bean as its
dependency as well. This results in a BeanCurrentlyInCreationException in the application.
Setter injection, on the other hand, is able to handle circularity. Although Spring allows circular
dependencies using setter injection, some of its other features won't be available for those beans that
have circular dependencies. Therefore, in general, it is not advisable to have circular dependencies in
your configuration.

Dependency resolution process
The Spring Container's bootstrap process can be divided into roughly two main phases. In the first
phase, the container processes configuration metadata and builds up bean definitions that exist in
the metadata. At this step, it also validates those bean definitions. For example, it checks whether
the correct bean references are given to the <property> or <constructor‐arg> elements, and so
on. However, at this step, beans are not created, and their properties are not injected. In the second
phase, bean creations are performed, and then dependency injections are performed. Actually, not
all beans are created; only singleton‐scoped beans are created during the container bootstrap pro-
cess. Later in this chapter, the “Bean Scopes” section discusses scopes in detail. The creation of a
bean actually triggers a bunch of other dependent beans to be created as well. Those other beans
also trigger creation of their dependencies, and so on.

A bean is not injected as a dependency before it is first fully created and its own dependencies are
injected. Therefore, you can be sure that bean dependencies that are injected into a bean are fully
configured and ready to use within the target bean. An exception for this is related to circular
dependencies. As mentioned earlier, circular dependencies can be handled by setter injection, but
there's one big deficiency because of the nature of circularity. Circular dependencies need to be
injected before they are fully configured. For example, Figure 2-3 illustrates a circular dependency
between two bean definitions:

Figure 2-3

Bean A Bean B

Let's assume you configured bean a so that bean b is injected into it via setter injection, and
bean b is also configured so that bean a is injected into it via setter injection as well. In that
case, the Spring Container first creates bean a and then goes to bean definition b to inject it into
the bean a and tries to create bean b as well. However, at this step, it notices that bean b has
a dependency to bean a, which is already in the creation phase. This time, it returns back to
the bean definition a and takes bean a instance to inject it into the bean b. However, depen-
dencies of bean a may not have been fully populated or its creation step is not finished yet. As
a result, bean b will have a reference to bean a, which may not be fully configured. Because
of this limitation, Spring highly discourages having circular dependencies in an application
configuration.

36 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

overriding Bean Definitions
It is possible to override a bean definition in the Spring Container. Beans have identities. Names of
the beans define their identities. If you create a bean definition with a name that is already given to
some other bean definition, the second definition overrides the first one.

The Spring Container provides two different forms of the bean override mechanism. The first
is on the bean configuration metadata file level. It is possible to divide configuration metadata
into several different files or classes, and then you can specify them together during creation of
ApplicationContext. In that case, the Spring Container merges all those bean definitions coming
from different configuration sources. During this merge, the order of configuration sources given to
the container becomes important. If two bean definitions with the same name are in two different
configuration sources, the bean definition coming from the second one in the given order overrides
the first one. This type of bean override is only possible if bean definitions with the same name are
placed into different configuration metadata sources. Spring doesn't allow redefining a bean in the
same configuration metadata file or class. The following Try It Out exemplifies how you override
beans in Spring Container.

try it out Overriding Bean Definitions

In this Try It Out, you configure the beans in the Spring Container using constructor injection. The
source code is within the project named bean‐definition‐override in the spring‐book‐ch2.zip
file. You can continue from the project you created for the earlier Try It Out. To begin, follow these
steps:

 1. Create the following Foo class:

public class Foo {
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

 2. Create two @Configuration classes, both with bean factory methods that create two foo beans
with the same name as follows:

@Configuration
public class Configuration1 {
 @Bean
 public Foo foo() {
 Foo foo = new Foo();
 foo.setName("my foo");
 return foo;
 }

Dependency Injection ❘ 37

}

@Configuration
public class Configuration2 {
 @Bean
 public Foo foo() {
 Foo foo = new Foo();
 foo.setName("your foo");
 return foo;
 }
}

 3. Modify the main method in the Main class, and instantiate ApplicationContext with the previ-
ously created @Configuration classes:

public class Main {

 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(
 Configuration1.class, Configuration2.class);
 }

}

 4. Access the foo bean available in ApplicationContext, and call its getName() method to see
which definition is used to create the bean instance:

 Foo foo = applicationContext.getBean(Foo.class);
 System.out.println(foo.getName());

 5. Change the order of the @Configuration classes during ApplicationContext instantiation and
retry the previous step:

AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(
 Configuration2.class, Configuration1.class);

How It Works

You created two @Configuration classes, each with the same foo() bean factory methods, but one
is creating the foo bean with the name my foo, and the other is creating it with the name your foo.
Then you passed them into AnnotationConfigApplicationContext as constructor arguments to cre-
ate ApplicationContext.

The Spring Container gets all configuration metadata sources and merges bean definitions in
those sources. Here, you have two foo() methods with the @Bean annotation coming from the
Configuration1 and Configuration2 classes. By looking at the order in which they are fed into the
ApplicationContext constructor, you can deduce that Spring makes use of the foo() method defined
in the Configuration2 class in the first try and ignores the other foo() method completely.

When you call the getBean() method of ApplicationContext by giving Foo.class as the method
parameter, you can tell the container to give you the bean with this type. The Spring Container looks at

38 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

the type and returns the appropriate bean instance if there is one, and only one, bean instance with that
type. If there were two it would fail with an exception.

In the second try you flipped the order of the @Configuration classes given into the
ApplicationContext constructor, and this time the returned Foo instance is created by the
method that resides in the Configuration1 class because it was the second one in the
argument list.

The second form of bean override is on the container level. ApplicationContext can have the par-
ent ApplicationContext, and it is possible to have two bean instances with the same name coex-
isting in both parent and child ApplicationContext instances. In that case, when you refer to the
bean with the repeating name, Spring provides the bean defined in the child ApplicationContext.
ApplicationContext hierarchies are common for web applications. Chapter 4 describes how Spring
is configured and used in web applications. In short, parent ApplicationContext in a web applica-
tion is usually created using org.springframework.web.context.ContextLoaderListener, and
child ApplicationContext is created by Spring MVC DispatcherServlet. DispatcherServlet
identifies the ApplicationContext instance created by the ContextLoaderListener if it's avail-
able, and it uses it as the parent ApplicationContext during its own ApplicationContext
instance creation.

using the depends‐on attribute
If bean a directly or indirectly depends on bean b, it is certain that the Spring Container will first
create bean b—guaranteed. However, if you have two bean definitions that have no dependency
on each other, either directly or indirectly, the order of their creation is internal to the Spring
Container. You cannot be sure that bean b will always be created before bean a. Sometimes, you
have beans that have no dependency on each other, but they require a specific bean creation order
among them. For example, a bean that performs a Java Virtual Machine (JVM)‐level initialization
needs to be created before some other beans that expect this initialization to be performed when
they are being initialized. In such scenarios, you can specify that bean b should be created before
bean a using the depends‐on attribute of the <bean> element in an XML‐based configuration:

<bean id="a" class="com.wiley.beginningspring.ch2.A" depends-on="b,c"/>

You can list several bean names in the depends‐on attribute. The depends‐on attribute also plays a
role during the bean destruction phase as well as during the bean initialization phase. In the case of
singleton beans only, the beans listed in the depends‐on attribute are destroyed after the bean that
has the depends‐on attribute. The bean destroy phase is discussed later in this chapter in the “Life-
Cycle Callbacks” section.

For Java‐ and annotation‐based configurations, the org.springframework.context.annotation
.DependsOn annotation is used for the same purpose. When the @DependsOn annotation is used on the
class level, it is processed during component scanning and the bean defined with it is created after the
beans specified within the @DependsOn annotation. Otherwise, it is simply ignored. When it is used on
the method level with the @Bean annotation, it takes effect during Java‐based configuration.

Dependency Injection ❘ 39

autowiring
You don't have to explicitly define dependencies in your bean definitions; you can let the Spring
Container inject them to your beans automatically. This is called autowiring. It is useful espe-
cially during development because bean definitions need to be updated as the codebase evolves.
Autowiring has three modes: byType, byName, and constructor.

In autowiring byType, Spring investigates properties of a bean definition by looking at its class via
Java reflection and tries to inject available beans in the container to the matching properties by their
types. It performs injection by calling setter methods of those properties. In XML‐based configura-
tion, autowiring is enabled with the autowire attribute of the <bean> element:

<bean id="accountService" class="com.wiley.beginningspring.ch2.AccountServiceImpl"
 autowire="byType"/>

<bean id="accountDao" class="com.wiley.beginningspring.ch2. ↵
 AccountDaoInMemoryImpl"/>

If more than one bean instance autowiring candidates are suitable for injection to a specific prop-
erty, dependency injection fails. The Spring Container needs a bit of help from you to decide which
one to inject. One way is to exclude other beans from autowiring candidates, and the remaining
bean is injected by the container. You can use the autowire‐candidate attribute of the <bean> ele-
ment for this purpose:

<bean id="accountService" class="com.wiley.beginningspring.ch2.AccountServiceImpl"
 autowire="byType"/>

<bean id="accountDao" class="com.wiley.beginningspring.ch2.AccountDaoInMemoryImpl"
 autowire-candidate="false"/>

<bean id="accountDaoJdbc"
 class="com.wiley.beginningspring.ch2.AccountDaoJdbcImpl"/>

The other option is to use autowiring mode byName if you have several candidate beans. In that
case, the container tries to match the property name with the bean name that it will be injected
into:

<bean id="accountService" class="com.wiley.beginningspring.ch2.AccountServiceImpl"
 autowire="byName"/>

<bean id="accountDao" class="com.wiley.beginningspring.ch2. ↵
 AccountDaoInMemoryImpl"/>

<bean id="accountDaoJdbc" class="com.wiley.beginningspring.ch2. ↵
 AccountDaoJdbcImpl"/>

What happens if there is no candidate bean in the Spring Container? In that case, no bean is injected
into the property, and its default value (most probably null) is left unchanged.

The third mode is constructor. It is very similar to byType, but in this case the Spring Container
tries to find beans whose types match with constructor arguments of the bean class. Again, if there
is more than one candidate bean for an argument, Spring fails to inject the argument.

40 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

Autowiring in a Java‐based bean configuration is very similar to XML‐based configuration. The
following Try It Out is an example.

try it out autowiring with a Java‐Based Bean Configuration

In this Try It Out, you configure the beans using autowiring in the Spring Container. The source code
is within the project named java‐based‐autowiring in the spring‐book‐ch2.zip file. You can
continue from the project you created for the earlier Try It Out. To begin, follow these steps:

 1. Create the AccountDaoJdbcImpl class, which implements the AccountDao interface, and leave all
method bodies empty:

public class AccountDaoJdbcImpl implements AccountDao {
//...
}

 2. Add an accountDaoJdbc() factory method with the @Bean annotation in the Ch2Configuration
class, create a bean instance from AccountDaoJdbcImpl, and return it from this method:

@Bean
public AccountDao accountDaoJdbc() {
 AccountDaoJdbcImpl bean = new AccountDaoJdbcImpl();
 return bean;
}

 3. Add the autowire attribute with the Enum value Autowire.AUTOWIRE_BY_TYPE to the
@Bean annotation of the accountService() factory method in the Ch2Configuration
class. Don't forget to remove the line that performs explicit dependency injection within the
accountService() method:

@Bean(autowire=Autowire.BY_TYPE)
public AccountService accountService() {
 AccountServiceImpl bean = new AccountServiceImpl();
 return bean;
}

 4. Try to run the main method and observe the result.

 5. Change the autowire value to Autowire.AUTOWIRE_BY_NAME and retry running the main
method:

@Bean(autowire=Autowire.BY_NAME)
public AccountService accountService() {
 AccountServiceImpl bean = new AccountServiceImpl();
 return bean;
}

How It Works

You first created another implementation of the AccountDao interface called AccountDaoJdbcImpl and
created a second bean using it. Removing the explicit accountDao injection in the accountService()
method and putting the autowire attribute in the @Bean annotation enabled autowiring in the container.

Dependency Injection ❘ 41

However, the container failed during bootstrap because it identified two candidate beans with the
AccountDao type, which can be auto‐injected into the accountDao property of the accountService
bean. After changing the autowire mode to byName, the container was able to inject the accountDao
bean into the target property because their names matched.

You can also trigger autowiring without adding the autowire attribute into the @Bean annotation.
When you place the org.springframework.beans.factory.annotation.Autowired annotation onto
the setter method of the accountDao property of AccountServiceImpl, the container automatically
tries to inject a suitable dependency. If there is more than one candidate, it fails as expected. In that
case, you need to tell the container which specific bean it should auto‐inject into the target bean. Spring
provides the org.springframework.beans.factory.annotation.Qualifier annotation for this
purpose. When you place the @Qualifier annotation together with the @Autowired and @Bean annota-
tions, autowiring behavior turns into byName mode:

public class AccountServiceImpl implements AccountService {
 private AccountDao accountDao;

 @Autowired
 @Qualifier
 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }
//...
}

@Configuration
public class Ch2BeanConfiguration {

 @Bean
 @Qualifier
 public AccountDao accountDao() {
 AccountDaoInMemoryImpl bean = new AccountDaoInMemoryImpl();
 //depedencies of accountDao bean will be injected here...
 return bean;
 }
//...
}

The @Qualifier annotation accepts a String value that helps you to change the default qualifier value,
which is the bean name, into something different. That way, any other bean whose name doesn't match
with the property name can be autowired based on the qualifier value.

Annotation‐based bean configuration also makes use of the @Autowired and @Qualifier annotations
to enable autowiring. Use of the @Autowired and @Qualifier annotations is the same as in Java‐based
configuration. However, if you want to assign a specific qualifier value other than the bean name, you
need to place the @Qualifier annotation on top of the class with the @Component annotation.

Another nice feature related to autowiring in Java‐ and annotation‐based configurations is that you
can also place @Autowired on fields. This removes the necessity of having setter methods for setter

42 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

injection. In such a case, the Spring Container performs dependency injection by direct field access
using the Java Reflection API.

Autowiring is only for dependencies to other beans. It doesn't work for straight values, such as
int, boolean, String, Enum, and so on. For such properties, you can use the
org.springframework.beans.factory.annotation.Value annotation either on the field level
or on the setter method level. The @Value annotation accepts a String value to specify the value
to be injected into the built‐in Java typed property. Necessary type conversion is handled by the
Spring Container. The @Value annotation can also be used for expression‐driven dependency
injection. In other words, you can place Spring expressions or placeholders in it, and the container
evaluates the expression or placeholder and injects the obtained value from the expression evalua-
tion or placeholder resolution.

In the following code snippet, the name attribute of the foo bean is set to the value obtained from
the evaluation of the SpEL expression (see Chapter 9 for more information about SpEL):

@Component
public class Foo {

 @Value("#{systemProperties.fooName}")
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

In addition to SpEL expressions, you can also give placeholders to the @Value annotation:

@Component
public class Foo {

 @Value("${fooName}")
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

${fooName} is a placeholder variable that is resolved by a special Spring infrastructural bean that
is configured with the <context:property‐placeholder/> namespace element. This namespace
element has a location attribute that accepts a list of Properties files that exist in a filesystem or

Dependency Injection ❘ 43

classpath location. Within those Properties files are key/value pairs, and values of keys match with
placeholders used in the bean configuration injected into the property:

<context:property-placeholder location="classpath:application.properties"/>

Bean Lookups
In any Spring‐enabled application, the aim should be increasing the number of Spring‐managed
beans as much as possible and decreasing the number of other objects that are outside the control
of the Spring Container. For beans that are managed within the Spring Container, except for the
marginal use cases, there is no need for explicit dependency lookup. Their dependencies are speci-
fied in bean definitions and are injected by the container during bean creation time. Figure 2-4 illus-
trates how the Spring Container's beans are obtained by the objects outside the control of Spring
Container.

Figure 2-4

JVM

getBean(name)Objects
outside

control of
Spring

Objects managed
by Spring

(Spring-managed beans)

However, no matter how hard you try, you come to a point at which you need to access beans
from other objects not under control of the Spring Container. In such cases, those objects
should first obtain a reference to the ApplicationContext instance in the environment. For
standalone applications, this is a task that should be handled by the developers explicitly. For
example, they can assign the ApplicationContext instance to a static variable that is glob-
ally accessible right after its creation. For web applications, Spring provides a utility class called
org.springframework.web.context.support.WebApplicationContextUtils, which has meth-
ods that return the ApplicationContext of the web application. In any case, after obtaining a
reference to the ApplicationContext instance, you can perform explicit bean lookups via various
getBean() methods available in the ApplicationContext interface.

At times you also need to perform explicit bean lookups within Spring‐managed beans as well.
There can be various reasons for this requirement. For example, one requirement is access-
ing a prototype‐scoped bean from a singleton‐scoped bean. Another example is that your bean
may need to invoke a specific method provided by a type that is also implemented by several
other Spring‐managed beans in the application, but that bean has no direct dependency on those

44 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

other beans. In any case, the same rule applies here as well. You first need a reference to the
ApplicationContext instance in the Spring‐managed bean as well so that its getBean()
method can be invoked to perform bean lookup. Spring provides the org.springframework
.context.ApplicationContextAware interface for this purpose:

public interface ApplicationContextAware extends Aware {
 void setApplicationContext(ApplicationContext applicationContext)
 throws BeansException;
}

If your bean class implements this interface, the Spring Container injects itself into the bean
instance during its creation. That way, your bean has access to its container. For Java‐ and
annotation‐based configuration, you don't even have to implement that interface. It is enough
just to place the @Autowired annotation either on the field level or on the setter method for the
injection to happen.

Spring‐ManageD BeanS

As stated in the beginning of the chapter, Java objects created and managed by Spring are called
beans. They are simply POJOs, but they are managed within the Spring Container. Therefore, it is
very common to call them Spring‐managed beans. The roots of this term date back to the beginning
of the POJO movement and the early days of the framework. Creators of the Spring Application
Framework wanted to differentiate POJOs managed within their containers from Enterprise Java
Beans (EJBs) managed by the EJB container, so they called them Spring “managed” beans in con-
trast to EJBs that are “managed” by the EJB container.

naming Beans
Beans are identified by their names. They have at least one name. If developers don't assign them
one, the Spring Container assigns an internal name. Beans are referenced by their names, either
from other bean definitions, or from the application code via explicit lookup. In XML‐based con-
figuration, the id attribute is used to assign a name to a bean. You cannot duplicate a name in the
same XML file. However, it is possible to give another bean definition the same name in a second
XML file. In that case, the bean override mechanism comes into play.

You can assign a bean more than one name in its definition and you can use the Name attribute for
that purpose. You can use spaces, commas, and semicolons to separate several names given to a
bean definition within the name attribute. Use of special characters such as commas and semicolons
is not allowed in the id attribute:

<bean name="accountDao,accountDaoInMemory"
 class="com.wiley.beginningspring.ch2.AccountDaoInMemoryImpl"/>

Names other than the first one are called aliases. You can also give aliases to beans in a place other
than their bean definitions. You use the <alias> element for this purpose:

Spring‐Managed Beans ❘ 45

<bean id="accountDaoInMemory" class="com.wiley.beginningspring.ch2.~CA
 AccountDaoInMemoryImpl"/>

<alias name="accountDaoInMemory" alias="accountDao"/>

TIP Bean aliasing is especially useful to configure already‐existing configura-
tion metadata sources that expect some beans with specific names to exist in
the container.

The annotation‐based configuration @Component and its derivatives accept a String value as the
bean name. If the name isn't given, a simple class name with a lowercase first character becomes the
bean name by default:

@Service("accountService")
public class AccountServiceImpl implements AccountService {
//...
}

In a Java‐based configuration, the @Bean annotation has a name attribute, which allows more than one
name to be given as a bean name. If no value is set, the factory method name becomes the bean name:

@Configuration
public class Ch2BeanConfiguration {

 @Bean(name={"accountDao,accountDaoInMemory"})
 public AccountDao foo() {
 AccountDaoInMemoryImpl bean = new AccountDaoInMemoryImpl();
 //depedencies of accountDao bean will be injected here...
 return bean;
 }
//...
}

Bean instantiation Methods
The most common way to create beans is to invoke one of the constructors available in their classes.
For example, the Foo class has the following default no arg constructor and a constructor accepting
the String name argument. Therefore, it is possible to create bean instances from the Foo class by
calling either of those two constructors in bean definitions:

public class Foo {
 private String name;

 public Foo() {
 }

 public Foo(String name) {

46 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

<bean id="foo1" class="com.wiley.beginningspring.ch2.Foo">
 <property name="name" value="foo1"/>
</bean>

<bean id="foo2" class="com.wiley.beginningspring.ch2.Foo">
 <constructor-arg value="foo2"/>
</bean>

The second option for creating beans is to invoke the static or instance factory methods that are
available. For example, the FooFactory class has two factory methods in the following code snip-
pet. The createFoo3() method has a static modifier. Therefore, it can be invoked without having
a FooFactory instance available at run time. The second factory method, createFoo4(), has no
static modifier. Therefore, it can only be invoked if there is an instance of FooFactory available at
run time:

public class FooFactory {

 public static Foo createFoo3() {
 Foo foo = new Foo();
 foo.setName("foo3");
 return foo;
 }

 public Foo createFoo4() {
 Foo foo = new Foo();
 foo.setName("foo4");
 return foo;
 }
}

In XML bean configuration, the <bean> element has a factory‐method attribute that accepts
a static factory method name as an argument value. The Spring Container, when the factory‐
method attribute is available, doesn't attempt to create a bean instance using the class attribute
but instead invokes the static factory method specified in the factory‐method attribute in that
class:

<bean id="foo3" class="com.wiley.beginningspring.ch2.FooFactory"
 factory-method="createFoo3"/>

Spring‐Managed Beans ❘ 47

To create a Foo instance using the instance factory method, the <bean> element has the factory‐bean
attribute in addition to the factory‐method attribute. That way, you can refer to the factory bean
in which the instance factory method resides:

<bean id="fooFactory" class="com.wiley.beginningspring.ch2.FooFactory"/>

<bean id="foo4" factory-bean="fooFactory" factory-method="createFoo4"/>

In annotation‐based configuration, first the FooFactory class needs to be annotated with the
@Component element. That way it becomes a regular Spring‐managed bean. After that, the static and
instance factory methods in the fooFactory bean are annotated with the @Bean annotation. This is
very similar to Java‐based configuration. In Java‐based configuration, it is enough to replace
@Component with the @Configuration annotation, and the rest will be the same:

@Component
public class FooFactory {

 @Bean(name="foo3")
 public static Foo createFoo3() {
 Foo foo = new Foo();
 foo.setName("foo3");
 return foo;
 }

 @Bean(name="foo4")
 public Foo createFoo4() {
 Foo foo = new Foo();
 foo.setName("foo4");
 return foo;
 }
}

The final option for bean creation is to use Spring's own FactoryBean interface:

public class FooFactoryBean implements FactoryBean<Foo> {

 @Override
 public Foo getObject() throws Exception {
 Foo foo = new Foo();
 foo.setName("foo5");
 return foo;
 }

 @Override
 public Class<?> getObjectType() {
 return Foo.class;
 }

 @Override
 public boolean isSingleton() {
 return true;
 }

48 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

}

<bean id="foo5" class="com.wiley.beginningspring.ch2.FooFactoryBean"/>

It is a special interface, and the Spring Container detects bean definition classes that implement
this interface at run time. If the bean class is of type FactoryBean, the bean is created by calling its
getObject() method. The type of the created bean is the type returned from getObjectType(),
not the FactoryBean implementation class. It is also commonly used by the Spring Framework
itself.

Bean Scopes
The lifetime of beans created by the Spring Container is called bean scope. By default, all beans cre-
ated by the Spring Container have singleton scope. In other words, only one bean instance is created
for a bean definition, and that instance is used by the container for the whole application lifetime.
This scope is very appropriate for beans that correspond to layers such as controller, service, and
data access object (DAO). They are usually stateless instances that serve several different requests at
the same time:

<bean id="commandManager" class="com.wiley.beginningspring.ch2.CommandManager"
 scope="singleton">
</bean>

You can use the scope attribute of the <bean> element to specify the scope of a bean definition.
Because its value is singleton by default, you don't need to use it for singleton‐scoped beans.

The second scope supported by Spring is prototype. It is very similar to creating an object using the
new operator in Java code. Beans with the prototype scope are created whenever they are accessed in
the container, either from other bean definitions via bean reference, or from within the application
code with explicit bean lookup using the ApplicationContext.getBean() method:

<bean id="command" class="com.wiley.beginningspring.ch2.Command" scope="prototype">

</bean>

Sometimes a singleton‐scoped bean may depend on a prototype‐scoped bean, and it may expect
to deal with a new instance whenever it uses the prototype‐scoped bean in its method calls. Bean
dependencies, however, are injected at bean creation time, and because the singleton‐scoped bean is
created and its dependencies are injected only once in its lifetime, its prototype scope dependency is
created once at that time and injected into it. After that time, no new prototype instance is created
and injected into that singleton‐scoped bean. Practically, prototype scope in that case behaves like
singleton scope. To overcome this limitation, you have to give up the dependency injection feature
provided by the Spring Container and perform explicit bean lookup within the singleton scope
instance whenever you need a new prototype instance.

public class CommandManager implements ApplicationContextAware {
 private ApplicationContext applicationContext;

Spring‐Managed Beans ❘ 49

 public void execute() {
 createCommand().execute(new CommandContext());
 }

 @Override
 public void setApplicationContext(ApplicationContext applicationContext)
 throws BeansException {
 this.applicationContext = applicationContext;
 }

 private Command createCommand() {
 return applicationContext.getBean(Command.class);
 }
}

Those two scopes have always existed in the Spring Framework. In Spring 2.5, additional scopes for
web applications have been introduced with a custom scope mechanism so that developers can also
introduce new scope types as necessary.

New scopes, introduced in Spring 2.5, are request and session. They can only be used in web
applications. Attempting to use them in a standalone application causes the Spring Container not to
bootstrap. A request‐scoped bean is created every time a new web request arrives at the application,
and that same bean instance is used throughout the request. A session‐scoped bean, as you may have
already guessed, is created each time a new HTTP Session is created, and that instance stays alive as
the session stays alive.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-4.0.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="userPreferences" class="com.wiley.beginningspring.ch2.~CA
 UserPreferences">
 <aop:scoped-proxy/>
 </bean>

</beans>

When you define request‐ and session‐scoped beans, you have to place the <aop:scoped‐proxy/>
element as a child element in the <bean> element. <aop:scoped‐proxy> is available in the aspect
oriented programming (AOP) namespace, and you can see how that namespace is activated in
the earlier XML snippet. This directive causes the Spring Container to generate a class extend-
ing from the bean definition class dynamically at run time, and a proxy object is created using
that dynamically generated class. The proxy object is then injected to other beans referencing the
scoped bean in the container. At run time, when a method call arrives to that proxy object, Spring
tries to obtain a real target bean instance in the current request or session. If there is an existing
bean, it is used to handle method invocation. Otherwise, a new instance is created and used for
that request or session.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.0.xsd
http://www.springframework.org/schema/aop/spring-aop-4.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

50 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

Two modes of proxy object creation exist. The Spring Container can either create a proxy class
by extending from the bean definition class, or it can use the interface‐based proxy mechanism
available in Java to implement interfaces that are already implemented by a target bean defini-
tion class. By default, it uses a class‐generation mechanism. You can change this behavior with the
proxy‐target‐class attribute of the <aop:scoped‐proxy/> element.

Table 2-1 summarizes the built‐in scopes supported by the Spring Application Framework.

taBLe 2-1: Built‐In Scopes Supported by Spring Application Framework

SCope naMe SCope DeFinition

singleton Only one instance from a bean definition is created. It is the default scope for
bean definitions.

prototype Every access to the bean definition, either through other bean definitions or
via the getBean(. .) method, causes a new bean instance to be created. It is
similar to the new operator in Java.

request Same bean instance throughout the web request is used. Each web request
causes a new bean instance to be created. It is only valid for web‐aware
ApplicationContexts.

session Same bean instance will be used for a specific HTTP session. Different HTTP
session creations cause new bean instances to be created. It is only valid for
web‐aware ApplicationContexts.

globalSession It is similar to the standard HTTP Session scope (described earlier) and applies
only in the context of portlet‐based web applications.

If you are using Spring MVC to handle web requests, you need to do nothing to make request‐ and
session‐scoped beans work properly. However, if your user interface (UI) technology is something
like JSF or Vaadin, in which requests are passing out of Spring MVC, you have to add the following
ServletRequestListener definition in your web.xml file so that request‐ and session‐scoped beans
can work properly:

<web-app>

 <listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>

//...
</web-app>

In annotation‐ and Java‐based configuration, the org.springframework.context.annotation.Scope
annotation is used to specify the scope of the current bean definition either on the class level or on
the factory method level. The @Scope annotation expects the String value that identifies the scope

Spring‐Managed Beans ❘ 51

of the bean definition. It can also accept a second argument, which can change the proxy‐generation
mode:

@Component
@Scope("protoype")
public class Command {
//...
}

@Component
@Scope(value="session",proxyMode=ScopedProxyMode.INTERFACES)
public class UserPreferences {
//...
}

Lazy initialization
The Spring Container, by default, creates beans during its startup. This is called eager bean initialization.
Its advantage is that you can see configuration errors as early as possible. For example, in XML‐based
configuration you may have had a typo in the class attribute of a bean definition, or you may refer
to an unavailable bean definition. On the other hand, it may slow down the bootstrap process if
you have lots of bean definitions or some special beans, such as Hibernate SessionFactory or JPA
EntityManagerFactory, whose initialization may take a considerable amount of time. Some beans may
only be required for specific use cases or alternative scenarios, and are not needed for other times. In
such cases, eager initialization may result in unnecessary heap memory consumption as well.

Spring also supports lazy bean initialization. If beans are configured by developers to be created
lazily, the container delays their creation until they are really needed. Their creation is triggered
either by a reference made from another bean that is already being created or by an explicit bean
lookup performed from within application code.

In XML‐based configuration, you can use the lazy‐init attribute in the <bean> element to define a
bean as lazy. To define all beans as lazy in an XML file, you can use the default‐lazy‐init attri-
bute of the <beans> element. Lazy behavior defined on the XML file level can be overridden on the
bean definition level as well.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"
 default-lazy-init="true">

 <bean id="accountService" class="com.wiley.beginningspring.ch2.~CA
 AccountServiceImpl">
 <property name="accountDao" ref="accountDao"/>
 </bean>

 <bean id="accountDao" class="com.wiley.beginningspring.ch2.~CA
 AccountDaoInMemoryImpl"

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

52 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

 lazy-init="false">

 </bean>
</beans>

In annotation‐ and Java‐based configuration, you can use the org.springframework.context
.annotation.Lazy annotation to enable lazy behavior. If the @Lazy attribute with a value of true is
present on the class level together with the @Component annotation, or on the factory method level
with the @Bean annotation, that bean definition is lazy:

@Service("accountService")
@Lazy(true)
public class AccountServiceImpl implements AccountService {
//...
}

@Configuration
public class Ch2BeanConfiguration {

 @Bean
 @Lazy(true)
 public AccountService accountService() {
 AccountServiceImpl bean = new AccountServiceImpl();
 return bean;
 }
//...
}

The advantage of lazy bean creation is that it speeds container bootstrap time and has a smaller
memory footprint. On the other hand, if bean configuration errors exist in the metadata, they may
remain unnoticed until their scenarios are tested.

Take care while you are defining beans as lazy. If one of their depending beans, either directly or
indirectly, is defined as eager, your lazy definition won't have any effect. Eager bean definition is
processed during startup, so it triggers processing lazy bean definition as well.

Life-Cycle Callbacks
Beans can define callback methods, which can be invoked by the container at specific points during
their lifetime. Those points are after their instantiation and just before termination of their defined
scopes. They are also called init and destroy methods. You have several different ways to define and
invoke such life-cycle callback methods.

XML‐based configuration <bean> elements have init‐method and destroy‐method attributes that
accept method names in the bean class as attribute values:

public class Foo {
 public void init() {
 System.out.println("init method is called");
 }

Spring‐Managed Beans ❘ 53

 public void destroy() {
 System.out.println("destroy method is called");
 }
}

<bean id="foo" class="com.wiley.beginningspring.ch2.Foo"
 init-method="init" destroy-method="destroy"/>

The init method is invoked by the container after the bean is created, and its properties are
injected. Because the bean instance is ready to use, you can perform anything within the init method
in which the bean's properties are involved. The destroy method is invoked just before the end of a
bean's lifetime. Because the lifetime of beans is changeable according to their scopes, the invocation
of destroy methods may be occur at different times. For example, the destroy methods of singleton‐
scoped beans are invoked at the shutdown of the whole Spring Container. The destroy methods of
request‐scoped beans are invoked at the end of the current web request, and the destroy methods of
session‐scoped beans are invoked at HTTP session timeout or invalidation. Prototype‐scoped beans,
on the other hand, are not tracked after their instantiation; therefore, their destroy methods cannot
be invoked.

Method names can be anything. There is no restriction; however, methods should return void and
accept nothing as input arguments. They can throw any type of exception.

Spring also supports the JSR‐250 Common Java annotations javax.annotation.PostConstruct
and javax.annotation.PreDestroy. When they are placed on top of init and destroy methods,
they are invoked at bean creation and destruction times as well. There is no restriction on the names
of those methods. The method names can be anything as long as they are annotated properly. To
activate processing of JSR‐250 annotations, you need to add the <context:annotation‐config/>
namespace element in your configuration metadata file for XML‐ and annotation‐based
configurations:

public class Bar {
 @PostConstruct
 public void init() throws Exception {
 System.out.println("init method is called");
 }

 @PreDestroy
 public void destroy() throws RuntimeException {
 System.out.println("destroy method is called");
 }
}

<bean class="com.wiley.beginningspring.ch2.Bar"/>

<context:annotation-config/>

There is a third option for life-cycle callback methods. The Spring Framework provides two
special interfaces called org.springframework.beans.factory.InitializingBean and
org.springframework.beans.factory.DisposableBean. They declare afterPropertiesSet()
and destroy() methods, respectively. If a bean implements the InitializingBean interface, the

54 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

Spring Container calls its afterPropertiesSet() method just after injection of its properties.
Similarly, if a bean implements the DisposableBean interface, its destroy method is called just
before the bean's destruction time—in other words, at the end of its scope:

public class Baz implements InitializingBean, DisposableBean {

 @Override
 public void afterPropertiesSet() throws Exception {
 System.out.println("init method invoked");
 }

 @Override
 public void destroy() throws Exception {
 System.out.println("destroy method invoked");
 }

}

<bean class="com.wiley.beginningspring.ch2.Baz"/>

Bean Definition profiles
Sometimes you need to define beans according to the runtime environment. For example, you may
use different databases for development and production environments. During development, you
may prefer to use a lightweight, possibly in‐memory database, such as H2, to quickly test your
codebase. In a production environment, on the other hand, you may prefer a more enterprise‐level
product, such as Oracle, DB2, or MySQL. In some other related case, you may define your own
javax.sql.DataSource‐typed bean for the development environment, or you may prefer to access
the DataSource object managed by the application server that provides some connection pooling
capabilities. Prior to Spring 3.1, you had to handle such platform‐ or environment‐specific bean defi-
nition issues as discussed next.

Because you can't have two bean definitions with the same name in a single configuration meta-
data file, you had to first create two different bean configuration metadata files in which your bean
definitions for that specific environment or platform should exist. For example, you would create a
dataSource‐dev.xml file with a dataSource bean definition that provides JDBC connections to a
lightweight, in‐memory H2 database:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="dataSource"
class="org.springframework.jdbc.datasource.SingleConnectionDataSource">
 <property name="driverClassName" value="org.h2.Driver"/>
 <property name="url" value="jdbc:h2:mem:test"/>
 <property name="username" value="sa"/>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Spring‐Managed Beans ❘ 55

 <property name="password" value=""/>
 </bean>

</beans>

For a production environment, you might have had another file called dataSource‐prod.xml in
which another dataSource bean was defined. But this time, instead of being created by the applica-
tion, it was obtained from the application server's JDBC context through JNDI lookup:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="java:comp/env/jdbc/DS"/>
 </bean>

</beans>

At this point, you need one of those two dataSource bean definitions selectively to be processed
according to the target runtime environment. If, for example, the target runtime environment is
development or test, the dataSource‐dev.xml file should be loaded by the container; otherwise,
dataSource‐prod.xml should be loaded. For this purpose, you usually created a third bean con-
figuration file with an import element that imports one of those two configuration metadata sources
according to the value of some platform‐specific value:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd">

 <context:property-placeholder/>

 <import resource="classpath:/dataSource-${targetPlatform}.xml"/>

 <bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
 <property name="dataSource" ref="dataSource" />
 </bean>
</beans>

In the preceding code snippet, the ${targetPlatform} placeholder is resolved either from the
operating system's environment variables or from JVM's system properties (for example, it can
be specified as the ‐DtargetPlatform=dev JVM argument). In either case, if it exists, the place-
holder is replaced with the value, and the configuration metadata file is resolved according to that
value.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd

56 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

Bean definition profiles were introduced in Spring 3.1. In XML‐based configuration, profile support
enables having a <beans> element within another <beans> element:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <beans profile="dev,test">
 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.SingleConnectionDataSource">
 <property name="driverClassName" value="org.h2.Driver" />
 <property name="url" value="jdbc:h2:mem:test" />
 <property name="username" value="sa" />
 <property name="password" value="" />
 </bean>
 </beans>

 <beans profile="prod">
 <bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="java:comp/env/jdbc/DS" />
 </bean>
 </beans>
</beans>

Child <beans> elements should be defined at the end of the parent <beans> element. In other
words, there cannot be any <bean> elements after a child <beans> element within a parent <beans>
 element. The <beans> element has the profile attribute. It can have comma‐separated profile
values. Beans defined within a child <beans> element are only created if any value given in profile
attribute is specified among active profile values during the container bootstrap process. You can
specify active profile values for your application in various ways. One easy way is to specify them as
the ‐Dspring.profiles.active JVM argument value. For web applications, you can also specify
them as spring.profiles.active context‐param. Spring also has a default profile values con-
cept. If active profile values are not specified, and if default profile values are available, they are used
as active profile values. Methods to specify default profile values are very similar to specifying active
profile values. You can specify them either with the ‐Dspring.profiles.default JVM argument
or with spring.profiles.default context‐param.

In annotation‐ and Java‐based configuration, you can use the org.springframework.context
.annotation.Profile annotation on either the type or method level to specify that related beans
will only be created if the specified profiles are the active ones.

environment
Spring 3.1 introduced a new org.springframework.core.env.Environment interface to represent
the environment in which your applications run. It enables you to manage profiles and properties

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Spring‐Managed Beans ❘ 57

information used by the application. The following Try It Out shows you how the application
Environment instance can be accessed and configured at run time.

try it out Configuring the application environment at run time

In this Try It Out, you configure the beans using the bean profile feature of the Spring Container and
activate one of those profiles defined in the bean configuration class. The source code is within the
project named configuring‐environment in the spring‐book‐ch2.zip file. You can continue from
the project you created for the earlier Try It Out. To begin, follow these steps:

 1. You should have a Foo class with the following content if you have already worked through the
“Overriding Bean Definitions” Try It Out. Otherwise, create a class Foo with the following content:

public class Foo {

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

 2. Create an @Configuration class, and add two factory methods as follows:

@Configuration
public class Ch2Configuration {

 @Bean
 @Profile("dev")
 public Foo devFoo(@Value("${name}") String name) {
 Foo foo = new Foo();
 foo.setName("dev " + name);
 return foo;
 }

 @Bean
 @Profile("prod")
 public Foo prodFoo(@Value("${name}") String name) {
 Foo foo = new Foo();
 foo.setName("prod " + name);
 return foo;
 }

}

 3. Add a static bean factory method in the configuration class, which will enable the property place-
holder resolve mechanism:

@Bean
public static PropertySourcesPlaceholderConfigurer propertyPlaceHolderConfigurer() {

58 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

 return new PropertySourcesPlaceholderConfigurer();
}

 4. Modify the main method in the Main class and create ApplicationContext using
AnnotationConfigApplicationContext, which loads the configuration class as follows:

public class Main {

 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext();
 applicationContext.register(Ch2Configuration.class);
 }

}

 5. Call the getEnvironment() method to obtain the Environment instance, and set the active profile
value "dev" via its setActiveProfiles() method:

 ConfigurableEnvironment environment = applicationContext.getEnvironment();
 environment.setActiveProfiles("dev");

 6. Call the getPropertySources() method of the environment instance to obtain
MutablePropertySources, and add a new MapPropertySource into it, which will serve as the
name placeholder from its Map object given as the constructor argument:

 MutablePropertySources propertySources = environment.getPropertySources();
 propertySources.addLast(new MapPropertySource("mapSource",
 Collections.singletonMap("name", (Object)"my foo")));

 7. Call the AbstractApplicationContext.refresh() method to initialize the Spring Container,
obtain the foo bean via bean lookup, and print its name to the console:

 applicationContext.refresh();

 Foo foo = applicationContext.getBean(Foo.class);
 System.out.println(foo.getName());

How It Works

You added the devFoo() and prodFoo() bean factory methods in the Ch2Configuration class. Those
methods are marked with the @Profile annotation, so that the devFoo() method is invoked to cre-
ate the foo bean instance if the dev value is available among active profiles. Otherwise, the prodFoo()
method is invoked if the prod value is available among them. In addition, those methods also accept
String input arguments, which are annotated with the @Value annotation that has the ${name} place-
holder as the value. This means that name placeholder should be resolved from the application environ-
ment, and its value should be used as the input method argument.

To activate the placeholder resolve mechanism, you added a static bean factory method in which you
created a bean instance from the org.springframework.context.support
.PropertySourcesPlaceholderConfigurer class. The reason for making that bean factory bean method
is that the returned bean instance is a special infrastructural bean that is used to process placeholders
defined in configuration metadata files or classes and replace those placeholders with the values of properties

Summary ❘ 59

found in PropertySources. Therefore, that bean instance should be instantiated without creating an
instance of the configuration class. The other option to activate the property placeholder mechanism would
be to use the <context:property‐placeholder/> namespace element in an XML‐based configuration file
as was shown in the “Bean Definition Profiles” section. You can then import that XML metadata file from
the configuration class using the type‐level org.springframework.context.annotation.ImportResource
annotation by specifying the location of the metadata file on top of the configuration class. That way, it is
also possible to mix up different metadata sources while configuring the Spring Container.

In step 4, you created a new Spring Container instance using the AnnotationConfigApplicationContext class.
However, you didn't give the configuration class as the constructor argument as you previously did in other
examples. This is because you don't want the container to be initialized when its constructor is just invoked;
you want to preconfigure it before its initialization. Therefore, the ApplicationContext instance is
obtained using the default no arg constructor. You specified the configuration class that is used as the meta-
data source by calling the AnnotationConfigApplicationContext.register() method.

The AbstractApplicationContext.getEnvironment() method returns the org.springframework
.core.env.ConfigurableEnvironment instance, which is a subtype of the Environment inter-
face. The ConfigurableEnvironment can be used to specify active or default profile values as
well as change the configuration of the org.springframework.core.env.PropertySource
instances, which are used to resolve property placeholders in the configuration metadata. The
ConfigurableEnvironment.getPropertySources() method returns org.springframework.core
.env.MutablePropertySources, which allows additional PropertySource instances to be registered
with a specific order or removes other instances as well. You created a MapPropertySource instance
that accepts a java.util.Map object as the source of its properties.

When configuration of the container was finished, you called the AbstractApplicationContext
.refresh() method. Invocation of this method initializes the Spring Container and causes beans to
be created and so on. When the container was ready to use, you performed a bean lookup using the
getBean() method to obtain a reference to the foo bean, and used that bean instance to see its name
value in the console.

SuMMary

This chapter explained how dependency injection using setter methods and constructors
can be performed within the Spring Container. Both setter injection and constructor injec-
tion have their pros and cons. You looked at those in detail with the provided examples. The
Spring Framework supports different configuration metadata formats to give information about
beans that will be created and wired up together within the container. You learned about those
three different configuration metadata formats—namely XML‐, annotation‐, and Java‐based
formats—and you worked through some code examples. The chapter explained what the
<context:component‐scan/> element performs and described the @Component annotation and
its derivatives @Service, @Repository, and @Controller, which are used to define beans in
annotation‐based configuration. You also saw how the @Configuration and @Bean annotations
are used to create Java‐based metadata. You learned about circular dependencies and why they
can only be handled with setter injection, but you also found out why it is better if you completely
avoid having them in your applications.

60 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

The chapter explained what autowiring means and covered different modes that are available in the
container. It also defined eager and lazy initializations and discussed their advantages and disadvan-
tages. You were introduced to different bean instantiation methods and saw examples of static and
instance factory methods using both XML‐ and annotation‐based configuration methods. The chap-
ter also introduced Spring's own FactoryBean interface. You learned that Spring‐managed beans
can interact with the ApplicationContext whenever necessary by injecting a container into them-
selves, and you discovered that the life-cycle callback methods are invoked at specific times during
their lifetimes by the container.

Spring beans are identified by their unique names, and you learned that beans can have more than
one name defined in the container. You saw how to override bean definitions in the container meta-
data. You've been introduced to scoping and different scopes—namely singleton, prototype,
request, and session, which are provided by the Spring Container—and their characteristics.
Finally, you looked at bean definition profiles that can be used to define beans according to the run-
time environment, and how Environment abstraction (which is introduced in Spring 3.1) can help
you configure active profiles and placeholder variables specific to the application.

exerCiSeS

You can find possible solutions to the following exercises in Appendix A.

 1. The <context:component‐scan> element supports extending the bean scanning mecha-
nism outside the @Component annotations. The <context:include‐filter/> child element
is available for this purpose. Create a sample application in which beans are defined with
<context:component‐scan/>, but without using the @Component annotations. Instead, beans
should be discovered by scanning the package in which bean classes are placed.

 2. Create a bean class that implements the InitializingBean interface and also create two other
init methods, one of them named init and annotated with @PostConstruct and the other
named initialize and defined as init-method in the XMLconfiguration. Examine in which
order those methods will be invoked while the bean is being instantiated.

 3. Try to create two beans depending on each other with the Java‐based configuration using set-
ter injection. What happens?

Summary ❘ 61

 ▸ What you LearneD in thiS Chapter

topiC Key pointS

Configuration metadata Information about beans that need to be created
and wired together to form a working system using
the Spring Container.

IoC Container Dependency injection container in which beans are
created and wired up together in addition to various
other services being applied to them.

@Component, @Service, @Repository,
@Controller annotations

Annotations that are used to define Spring‐
managed beans.

<beans> element and @Configuration
annotation

Root XML element for XML‐based configura-
tions under which individual <bean> elements are
defined. Annotation applied to the Java class in
which beans are defined with factory methods.

<bean> element and @Bean annotation XML element and Java annotation used to define
individual beans.

autowire attribute and @Autowired
annotation

XML attribute and Java annotation used to enable
dependency injection without any definition.

<context:component‐scan/> XML namespace element that enables annotation‐
based configuration with @Component annotations.

ClasspathXmlApplicationContext,
AnnotationConfigApplicationContext

Spring ApplicationContext implementations used
to create containers with XML‐, annotation‐, and
Java‐based metadata.

Bean name, bean aliasing Identifier of beans defined in the container, assign-
ing several names to a bean definition.

depends‐on attribute and @DependsOn
annotation

XML attribute and Java annotation to specify
order during bean creation among several bean
definitions.

lazy‐init attribute and @Lazy
annotation

XML attribute and Java annotation to specify instan-
tiation time of a bean.

scope attribute and @Scope annotation XML attribute and Java annotation to specify the
lifetime of a bean instance.

singleton, prototype, request, and
session scopes

Bean scopes supported by the Spring Container.

FactoryBean interface Special interface provided by Spring, which is used
to create beans.

continues

62 ❘ Chapter 2 DepenDency InjectIon wIth SprIng

topiC Key pointS

factory‐bean and factory‐method
attributes

XML attributes that are used to create beans with
static and instance factory methods.

init‐method and destroy‐method
attributes

XML attributes to specify life-cycle methods in a
bean definition.

InitializingBean, DisposableBean
interfaces

Special interfaces provided by Spring, which are
used to define life-cycle callbacks.

@PostConstruct and @PreDestroy
annotations

JSR‐250 annotations that are used to define life-
cycle callbacks.

profile attribute and @Profile
annotation

XML attribute and Java annotation used to create
conditional bean definition groups.

spring.profiles.active and spring
.profiles.default

Spring properties that are used to specify active and
default profile values for the run time.

Environment,
ConfigurableEnvironment

Spring interfaces that abstract the environment in
which an application works.

PropertySource and
MutablePropertySources

Spring interfaces that are used to provide property
key/value pairs from various sources.

(continued)

 3
 Building Web applications
Using Spring MVC

 what You wiLL Learn in this Chapter:

 ➤ Learning the features and benefi ts of Spring MVC

 ➤ Using the Dispatcher Servlet mechanism

 ➤ Creating your fi rst Spring MVC application

 ➤ Confi guring Spring MVC with annotations

 ➤ Handling forms with JSP

 ➤ Exploiting the power of annotations

 ➤ Validating user input

 ➤ Uploading fi les

 ➤ Handling exceptions

 ➤ Implementing Internationalization (i18n)

 ➤ Using themes

 CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/beginningspring on the Download Code tab. The code
is in the Chapter 3 download and individually named according to the names
throughout the chapter.

http://www.wrox.com/go/beginningspring

64 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

It’s viable to say that the World Wide Web has become the ultimate knowledge base ever built. Of
course, the web’s creators didn’t foresee that it would become an enormous organization. The begin-
ning of this information era first started with the need to share data between the teams attending
the experiments at CERN Labs. They all needed to share the data in a common way, and the data
needed to be accessed with a common format. To provide this communication link, Tim Berners
Lee, a computer scientist who was working for CERN at the time, came up with the idea of the
World Wide Web with its three core elements: HTML (HyperText Markup Language), HTTP
(HyperText Transfer Protocol), and URI (Uniform Resource Identifier).

So, that’s where it all began. Nowadays we, as the programmers, are building enterprise web appli-
cations by using other kinds of frameworks, but they all depend on those three founding elements.
The technologies have evolved over the years to become more sophisticated as the need for enter-
prise applications has increased.

The Spring Framework provides features for achieving enterprise web development, and Spring
MVC is the subproject that gathers these implementations under its hood. This chapter focuses on
Spring MVC, which complies with the Model View Controller pattern that is widely used among
the web application development frameworks.

Learning the Features and BeneFits oF spring MVC

Spring MVC is a layered Java web development framework. The Model View Controller pattern
offers a layered architecture in which each layer provides an abstraction on top of the other. Model
is the representation of the domain‐specific information that the application uses. View is the repre-
sentation of the domain model with user interface elements, like input elements and buttons, which
interact with the model. Controller is the part that interprets the user’s input and transforms it into
the model to be shown to the user again after the transformation. The main flow diagram for the
MVC pattern is shown in Figure 3-1.

Figure 3-1

transfers
Model

User

View Controller

manipulates

usessees

Spring MVC is an action‐based MVC framework. The framework itself highlights the request/
response characteristic of the HTTP protocol, where each request by the user states an action to
be performed within the framework. This is achieved by mapping each request URI to an execut-
able method. Request parameters are also mapped to the arguments of this method. The alternative
approach to an action‐based framework is a component‐based one in which the user interface is

Using the Dispatcher Servlet Mechanism ❘ 65

built up by components—similar to thick client applications—and with the users’ interaction with
these components, events get fired that are handled on an HTTP request/response basis.

Because Spring MVC is a subproject of Spring, it fully integrates with Spring’s core features, such as
the dependency injection mechanism. You can easily configure and use annotation‐based definitions
for the controllers. Later sections of this chapter discuss controllers, and you can read more about
dependency injection in Chapter 2.

Spring MVC provides a binding mechanism to extract the data from the user request, converts it
to the predefined data format, and maps it to a model class to construct an object. Spring MVC
achieves this binding mechanism by easily matching the request parameter names to the properties
of the Java classes, which makes the web development very easy and straightforward.

Spring MVC is view‐agnostic. You are not forced to use, say, JSP for the view layer. You can use
other view technologies such as Velocity templates, Tiles, Freemarker, and XSLT. That’s why Spring
MVC introduces its model architecture and avoids working directly with HTTP servlet requests to
prevent binding itself directly to them. Spring MVC is also non‐invasive because the business logic
code is separate from the framework itself.

Spring MVC provides an easy way to test its components because there is no need for a servlet
container to do the integration testing. You find out more about testing the MVC projects in the
“Testing Spring MVC Projects” section of Chapter 7 with the help of mock implementations and
fluent builder APIs provided by the spring‐test subproject.

Using in‐house solutions for building enterprise web projects is always an option, but using frameworks
that have proven themselves to the community by becoming de‐facto standards is a better approach for
doing the enterprise web development. Stay tuned until the end of the chapter to get the best of breed.

using the dispatCher serVLet MeChanisM

We can say that the core element of Spring MVC is the Dispatcher Servlet, which is the main serv-
let that handles all requests and dispatches them to the appropriate channels. With the Dispatcher
Servlet, Spring MVC follows the Front Controller pattern that provides an entry point for handling
all requests of web applications. Figure 3-2 shows this flow diagram.

Figure 3-2

User Controller
Front

Controller

View
Template

request

response

rendered
view

handle the request
and create the model

Servlet Container

delegate
request

model

model

66 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

The Dispatcher Servlet cooperates with handler mappings and view resolvers to determine which
business logic to execute upon user request and what to render at the end of the flow to return to the
user. HandlerMapping is an interface to be implemented by handler mapping objects that provide a
bridge between the mapping and the handler objects. ViewResolver is also an interface to be imple-
mented by the view resolver objects that resolve the views by name. Here’s the detailed definition of
the execution:

 1. With a user’s HTTP request, Dispatcher Servlet decides which controller to execute by commu-
nicating with handler mapping. Then Dispatcher Servlet invokes the actual handler method via
Handler Adapter, forwards the request, and expects a model and a view in return.

 2. The handler method within the controller is invoked for the business logic. The method sets
the model data, which is passed to the view and returns the view name to the Dispatcher
Servlet, which will be rendered to the user as a response.

 3. Dispatcher Servlet integrates with a view resolver to pick up the appropriate view based on
the resolver configuration.

 4. Dispatcher Servlet passes the model to the view, and the view gets rendered on the browser.

The default implementations for handler mapping, handler adapter, and view resolver are stored in
the DispatcherServlet.properties file that resides under the org.springframework.web
.servlet package of the spring‐webmvc subproject. The “Creating Your First Spring MVC
Application” section describes the ways of adding the subproject as a dependency to your project.

Spring MVC offers various handler mappings to integrate with your application.
ControllerClassNameHandlerMapping uses convention over configuration to map a requested
URL to the controller class. It takes the class name, trims the Controller part if it exists, and
returns what remains of the class name by lowercasing the first character and prefixing it with /.
BeanNameUrlHandlerMapping is the default implementation used by the Dispatcher Servlet along
with the DefaultAnnotationHandlerMapping. BeanNameUrlHandlerMapping maps the URL
requests to the name of the beans. So if the user requests /hello, the servlet dispatches it to the
HelloController class automagically.

defining the servlet
Definition of the Dispatcher Servlet occurs in the deployment descriptor file of the web application,
which is the web.xml file. The following is a sample definition for the servlet:

<servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>springmvc</servlet-name>
 <url-pattern>*.mvc</url-pattern>
</servlet-mapping>

Here, servlet‐mapping contains the definition of url‐pattern to route any URL requested with
the .mvc extension through itself in order to act as a gateway. During the initialization phase of the
servlet, it looks for a configuration XML file to get Spring’s application context, which is an imple-
mentation of WebApplicationContext, up and running. WebApplicationContext is an interface
that extends the famous ApplicationContext to provide the web‐centric features. A naming con-
vention is used by default for the resolver mechanism of this configuration file. The servlet looks for
the configuration file named {servlet‐name}‐servlet.xml under the WEB‐INF folder by default.
Because the servlet‐name is defined as springmvc, the springmvc‐servlet.xml file will be
resolved first. Of course, the location of the file can be changed easily. The contextConfigLocation
servlet initialization parameter provides this feature:

 <servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>

 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param‐value>classpath:springmvc‐servlet.xml</param‐value>
 </init-param>

 </servlet>

Here, the configuration file is resolved from the classpath of the application according to the defini-
tion stated in the highlighted code.

Note With Servlet 3.1, it’s also possible to define the servlets within
web‐fragment.xml files to introduce the pluggability to your application. So
having multiple modules within your application, where each contains a frag-
ment of the servlet definitions named as web‐fragment.xml, rather than having
a complete definition of web.xml, can achieve this.

accessing servlet Context
The beans that are registered within the WebApplicationContext can also access the Servlet
Context by implementing the ServletContextAware interface shown here:

package org.springframework.web.context;

public interface ServletContextAware extends Aware {
 void setServletContext(ServletContext servletContext);
}

This could be useful when you need to access configurations, such as context initialization param-
eters of the web application.

Using the Dispatcher Servlet Mechanism ❘ 67

68 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

Creating Your First spring MVC appLiCation

We have defined some of the bits, now let’s create a Maven‐based web application to demonstrate
the architecture of Spring MVC. This example first configures the Maven dependencies by adding
them to the pom.xml file, adding the servlet definition into the web.xml file, and finally defining the
application context XML file for the configuration of Spring MVC. As a last step, a Controller class
and a JSP are defined.

The application renders a Hello Reader! message to the user when a URL is accessed through the
browser. The following Try It Out explains the steps.

trY it out hello World Spring MVC application

Use the following steps to create your first Spring MVC application that will output a message on JSP.
You can find this project named as basic in the downloaded zip file.

 1. Create an empty Maven web application project from the archetype maven‐archetype‐webapp.
Add the spring‐webmvc dependency to your pom.xml file. At the time of writing this book the lat-
est version of Spring subprojects is 4.0.5.RELEASE:

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>4.0.5.RELEASE</version>
 </dependency>

 2. spring‐webmvc depends on the spring‐core, spring‐beans, spring‐context, and spring‐web
subprojects, so add them as dependencies to the project:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

Creating Your First Spring MVC application ❘ 69

 3. Define the Dispatcher Servlet with its URL mapping in web.xml:

<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 <servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>springmvc</servlet-name>
 <url-pattern>*.mvc</url-pattern>
 </servlet-mapping>
</web-app>

You defined the web.xml compatible with Servlet 3.1 as shown in the namespace definitions. If
you are not using a Java EE7 container you can define the web.xml compatible with Servlet 3.0 as
shown here:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
...
</web-app>

 4. Create the springmvc‐servlet.xml file for application context configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd">

 <context:component-scan base-package="com.wiley.beginningspring.ch3" />
 <context:annotation-config />

 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/pages/" />
 <property name="suffix" value=".jsp" />
 </bean>
</beans>

 5. Create a simple controller that adds a hello message to the model data and returns the name of the
UI page, helloReader.jsp, to show the message:

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd
http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd

70 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

@Controller
public class HelloReaderController {

 @RequestMapping(value = "/hello")
 public ModelAndView sayHello() {
 ModelAndView mv = new ModelAndView();
 mv.addObject("message", "Hello Reader!");
 mv.setViewName("helloReader");
 return mv;
 }
}

 6. Create the JSP file named helloReader under the /WEB‐INF/pages folder:

<html>
<body>
 ${message}
</body>
</html>

 7. Run the mvn package command to create a war file. Deploy your application on the web container
and request http://localhost:8080/hello.mvc to see the output as shown in Figure 3-3.

Figure 3-3

How It Works

The springmvc‐servlet.xml file configures Spring’s application context, and it’s being picked
up with this naming convention: {servletname}‐servlet.xml. Within the configuration file, the
<context:component‐scan> tag states that all the beans that reside under the package com
.wiley.beginningspring.ch3 will be registered to the application context automatically. The
<context:annotation‐config/> tag activates the annotations that are defined in the beans, which are
already registered within the context of the application.

Note Prior to Spring 3.2, the <mvc:annotation‐driven/> tag needed to be
declared in the XML configuration file to configure the dispatch of requests
to the controller classes. It registers the DefaultAnnotationHandlerMapping
and AnnotationMethodHandlerAdapter beans to the application context to
handle the requests. Starting from version 3.2, this configuration was depre-
cated for the registration part. As of Spring 4.0, it’s not necessary to register the
DefaultAnnotationHandlerMapping and AnnotationMethodHandlerAdapter
beans anymore because they are registered by default. But the configura-
tion is still needed for enabling annotation‐driven configuration, such as using
@DateTimeFormat on a date field, so keep that in mind and use it where necessary.

http://localhost:8080/hello.mvc

Configuring Spring MVC with annotations ❘ 71

You defined the Dispatcher Servlet with the URL mapping as *.mvc. When the user requests the URL
http://localhost:8080/hello.mvc, the DispatcherServlet is executed because it’s mapped to the
URLs suffixed with .mvc. It handles the incoming request and decides which controller should handle
this request with the help of handler mapping—in the example, the RequestMappingHandlerMapping
class. With Spring version 3.2, DefaultAnnotationHandlerMapping was deprecated in favor of
RequestMappingHandlerMapping. The controller is the part that interprets the user input and trans-
forms it into the model. (It’s the C in the MVC pattern.)

Handler mapping matches the requested URL with the handler methods annotated with @RequestMapping.
It compares the request path of the URL with the value attribute of the annotation. The values of
@RequestMapping annotations are parsed and stored, and Dispatcher Servlet accesses them while
handling the requests. @RequestMapping can be defined on the class level also, to map all the methods of
a controller to a URL. We’ll get to the details of the annotation in “Exploiting the Power of Annotations”
section.

The handler method of the matching controller, sayHello, creates an instance of the ModelAndView
class, sets the object to be passed to the view with a key (message), sets the name of the view
(helloReader), and returns it for the servlet to resolve the view that will be rendered to the user as the
response. An instance of the ModelAndView class could also be passed to the handler method. The sig-
nature of the handler methods annotated by @RequestMapping is very flexible. You can read the details
of it in the “Exploiting the Power of Annotations” section.

ModelAndView is a holder class for both the model and view. Model is represented as a map that collects
key/value pairs, and View is an interface that represents a web interaction.

Now it’s the servlet’s turn to resolve which view will be rendered to the user. It uses the
InternalResourceViewResolver class as the default implementation for its view resolution strat-
egy. This means that the user interface page that will be navigated from the controller will be
picked up with this view‐resolving mechanism. The InternalResourceViewResolver class extends
UrlBasedViewResolver, which provides prefix and suffix properties. In the example, you defined
prefix as /WEB‐INF/pages/ and suffix as .jsp. So the view name set by the handler method will be
prefixed and suffixed with these values to get the JSP.

tIP It’s a good practice to place all the view files in a folder under the WEB‐INF
folder to prevent direct access of the pages via URL.

ConFiguring spring MVC with annotations

It’s also possible to do the application context configuration with annotations instead of an XML
file. To demonstrate, you convert the XML configuration that is given in the “Creating Your First
Spring MVC Application” section into an annotation‐based one.

http://localhost:8080/hello.mvc

72 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

First you need to create a configurator class. The class will have the @Configuration annotation,
stating that it could contain one or more methods annotated with @Bean. You’ll use the @Bean
annotation to declare a Spring bean explicitly by returning an instance of the appropriate class—
InternalResourceViewResolver in this case—because you defined a bean of it in the XML
configuration.

For scanning components starting with a given base package you also need to use the @ComponentScan
annotation that does the same job with XML configuration’s <context:component‐scan> tag.

The whole definition of the configurator class is the following:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch3"})
public class AppConfig {

 @Bean
 public InternalResourceViewResolver getInternalResourceViewResolver() {
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/pages/");
 resolver.setSuffix(".jsp");
 return resolver;
 }
}

You should reconfigure the definition of the Dispatcher Servlet to load the application con-
text via class definition. With this approach the contextClass parameter refers to the
org.springframework.web.context.support.AnnotationConfigWebApplicationContext
class, which is an implementation of ApplicationContext. This class uses the
contextConfigLocation parameter to get the class annotated with @Configuration; in this
example, it is the fully qualified name of the AppConfig class. The following code snippet is the
new servlet definition:

<servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
 </init-param>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 com.wiley.beginningspring.ch3.config.AppConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

handling Forms with JSp ❘ 73

handLing ForMs with Jsp

Every web application needs to interact with forms to retrieve data from users by wrapping the input
fields with forms. Spring MVC provides form handling with its custom JSP form tag library in an
elegant way.

The form tag library supports creating the views with its custom tags, which also provide the binding
with the model classes. So the parameters in the HTTP requests submitted by the browser are mapped to
the model with the binding ability of the framework. This section covers how to use these tags in detail.

The form tag library offers many tags from input elements such as checkboxes, radio buttons, combo
boxes, and so on, to output elements for displaying informational data such as labels and errors.

Following is a list of tags. These custom tags correspond with the HTML tags that render matching
output. We’ll go through them with examples later in this section.

 ➤ form

 ➤ input

 ➤ password

 ➤ hidden

 ➤ select

 ➤ option

 ➤ options

 ➤ radiobutton

 ➤ radiobuttons

 ➤ checkbox

 ➤ checkboxes

 ➤ textarea

 ➤ errors

 ➤ label

 ➤ button

Configuring the Form tag Library
The form tag library needs some configuration to be used within the pages. You should add the defi-
nition of the tag library to the pages; the examples use mvc as the prefix for the library definition:

<%@taglib uri="http://www.springframework.org/tags/form" prefix="mvc" %>

The form tag library descriptor file, spring‐form.tld, resides under the META‐INF folder of the
spring‐webmvc subproject. By adding the project as a Maven dependency (as described in the
“Hello World Spring MVC Application” Try It Out) you will be ready to use it directly.

http://www.springframework.org/tags/form

74 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

For each tag definition in the tag library, the dynamic‐attributes tag is set to true. This means that
attributes that do not exist in the tag definition can still be defined and used because they will be ren-
dered as pass‐through attributes, so you will see them in the HTML output as you defined in the tags.

Spring MVC also provides another tag library for handling internationalization of the messages,
selecting resources from themes, and so on. The name of the tag library descriptor file for this
is spring.tld, and it also resides under the META‐INF folder of the spring‐webmvc subproject.
Definition of the tag library is shown here:

<%@ taglib uri="http://www.springframework.org/tags" prefix="spring" %>

The message and theme tags of the tag library are explained with examples in the “Implementing
Internationalization (i18n)” and “Using Themes” sections, respectively.

Now it’s time to move on to the binding ability of the input tags. This is one of the most important
concepts of Spring MVC.

understanding the power of Binding
Spring MVC provides powerful binding between its view and the model layer. The user sends the data
through the views, and they are automatically bound to the model. Because each interaction of the user is
an HTTP request on the web, Spring MVC binds the request parameters to the Command object, which
is a POJO/Java bean whose values are populated by the input of the user. The Command object is syn-
onymous with the Form object and the Form‐Backing object; you may also see these definitions online.

The main element for enabling the binding in the view layer is the path attribute of the tags. path
refers to the property of the class that is defined in a model. Here’s an example:

<mvc:input path="name" />

In the example, path refers to the name property of a class—let’s say User. The value input
by the user is automatically set to the name property of the User class instance. If the prop-
erty of a class defined by the path attribute does not exist, Spring MVC throws out the
error org.springframework.beans.NotReadablePropertyException, stating that the property is
not readable or has an invalid getter/setter method. path is a required attribute for most of the tags, so
you must define it to get the tag working. One exception is the errors tag, for which the path attri-
bute is not required. You can read more details about this in the “Handling Exceptions” section.

So path knows about the property but not the Command object itself. To better understand how the
values are set to the model automagically, you should take a look at the form tag in the next section.

working with Forms
The form tag renders an HTML form. By default, a form executes a GET method to a given action.
This means that the data input by the user will be sent to a URL stated within the form. The form
tag might contain one or more tags inside—such as input fields, radio buttons, or checkboxes—to
retrieve data from its user. We cover them one by one in this section.

To help with the binding, the form tag exposes a binding path to its inner tags with the
modelAttribute attribute of the form, which states under which name this model class will be
exposed to the view. So modelAttribute points to the model class, and path attributes of the input
tags defined inside that form point to the properties of the same model class. That’s how the input

http://www.springframework.org/tags

handling Forms with JSp ❘ 75

tags know about the model class; when it gets bound to a form, it is commonly called the Command
object as previously defined.

By default, the value of the modelAttribute is command, but it’s a good practice to set a specific name
to it rather than command. We mostly use the same name with the class—for example, if we have
the User class, the value for the modelAttribute is set to user. You can also use the commandName
attribute to set the reference name. But it’s a former usage that is supported with the versions of the
framework prior to 4.0, so the examples stick with the modelAttribute. The following code snippet
gives a sample form tag definition. Notice that in it mvc is used as the prefix for the tags:

<mvc:form modelAttribute="user" action="result.mvc">
 <table>
 <tr>
 <td><mvc:label path="name">Name</mvc:label></td>
 <td><mvc:input path="name" /></td>
 </tr>
 <tr>
 <td><mvc:label path="lastname">Last Name</mvc:label></td>
 <td><mvc:input path="lastname" /></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Submit" />
 </td>
 </tr>
 </table>
</mvc:form>

In this example, the form definition contains two input elements and a button element to submit the
form.

using input elements
You defined the form tag and the way to bind the model to the view; now you find out how to
retrieve the user data. Let’s first start with the input tag, which renders an HTML input tag with
the type attribute set to text. This enables the user to input free‐form text. Here is a simple defini-
tion for the tag that was mentioned previously:

<mvc:input path="name" />

Here, the binding to the model is done with the path attribute, and the input is set to the name prop-
erty of a model class. The HTML input tag rendered in the output uses the value of the path attri-
bute for its id and name attributes if they are not explicitly specified. This rule also applies for most
of the user input tags of the Spring MVC tag library.

As of Spring version 3.1, HTML5 types such as date, color, and email can be used with the type
attribute. Spring MVC leverages the use of HTML5 where possible.

To render a text area rather than an input, you can use the textarea tag. The following example
binds the detail property of a model class to the tag:

<mvc:textarea path="detail" />

76 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

To have a password field rendered on the view, you can use the password tag to render an HTML
input tag with the type attribute set to password. A sample usage is given in the next snippet,
which binds to the password property of a model class with the path attribute:

<mvc:password path="password" />

The showPassword attribute of the tag states that the HTML tag rendered in the view will have the
submitted data in the value attribute (true), or it will have the value of the attribute as "", which is
an empty string (false). The latter is the default value.

entering dates
With version 4.0 of Spring, it’s possible to use the java.time package of JDK 8. The annotation‐
driven date formatting enables the usage of the JSR310 Date‐Time API, and it enables you to replace
the java.util.Date/java.util.Calendar or joda‐time project classes.

You will use the @DateTimeFormat annotation on the java.time.LocalDate typed property of a
model class without the need of any extra configuration. Following is a sample JSP snippet and field
definition from the model class:

<mvc:input path="birthDate" />

@DateTimeFormat(pattern="yyyy-MM-dd")
private LocalDate birthDate;

Under the hood the Jsr310DateTimeFormatAnnotationFormatterFactory class automatically han-
dles these fields, and by default it applies to short date and short time, which would be like 6/30/09 7:03
AM. Of course, you can specify customized formatting with the help of the iso and pattern attributes.

Supported class types of the new JDK8 date‐time features are shown in Table 3-1.

taBLe 3-1: The List of Supported Class Types

CLass tYpe annotation ForMat

java.time.LocalDate @DateTimeFormat(iso = ISO.DATE) yyyy‐MM‐dd

java.time.LocalTime @DateTimeFormat(iso = ISO.TIME) HH:mm:ss.SSSZ

java.time

.LocalDateTime

@DateTimeFormat(iso = ISO

.DATE_TIME)

yyyy‐MM‐

dd'T'HH:mm:ss.SSSZ

java.time

.OffsetDateTime

@DateTimeFormat(iso = ISO

.DATE_TIME)

yyyy‐MM‐

dd'T'HH:mm:ss.SSSZ

java.time.OffsetTime @DateTimeFormat(iso = ISO.TIME) HH:mm:ss.SSSZ

java.time

.ZonedDateTime

@DateTimeFormat(iso = ISO

.DATE_TIME)

yyyy‐MM‐

dd'T'HH:mm:ss.SSSZ

handling Forms with JSp ❘ 77

Note To process @DateTimeFormat annotations, define
<mvc:annotation‐driven/> in Spring’s application context configuration file.

selecting from a drop‐down
To select data from a drop‐down, you can use the select tag, which renders an HTML select tag.
The following example displays a list of countries and selects one of them:

<mvc:select path="country" items="${countries}" />

Here, the selected data is bound to the country property of a model class with a path attribute. The
items attribute refers to the collection, array, or map of objects that will be used to generate the HTML
option tags within the select. You can set the countries list as an object to a ModelAndView
instance in the controller. You are setting three countries with the countries key in the following
sample:

fin al String[] countries = { "Turkey", "United States", "Germany" };
modelAndView.addObject("countries", countries);

If the list bound by the items attribute contains objects of a POJO—instead of String, for
instance—you can use the itemLabel and itemValue attributes to determine what will be displayed
to the user and what will be set as the value of the option tag, respectively.

Note To enable multiple select within the drop‐down, set the multiple
attribute to true.

Another way to add options to the select tag is to use the option or options tags by nesting them
within the select. Use option to add one element and options to add one or more elements into
the drop‐down. You can also use them together as shown here:

<mvc:select path="country">
 <mvc:option value="" label="--Select--"></mvc:option>
 <mvc:options items="${countries}"></mvc:options>
</mvc:select>

Note The items attribute overrides the usage of the option tag. But if the
items attribute and the options tag are used together, the content of both is
merged and rendered together to the user in the drop‐down.

78 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

selecting with radio Buttons
Spring MVC provides the radiobutton and radiobuttons tags that render an HTML input tag
with the type attribute set to radio. In the following example, two radio buttons are defined for
selecting gender. Here the path attribute is set to the gender property of a model class:

<mvc:radiobutton path="gender" label="Female" value="F" />
<mvc:radiobutton path="gender" label="Male" value="M" />

The value attribute defines what will be submitted and the label attribute states what will be
shown to the user. The example is submitting the string values F and M. You can also use the
radiobuttons tag to bind a list of values, as shown in the following example. items defines an
array of enum values and adds it as an object to an instance of ModelAndView:

<mvc:radiobuttons path="gender" items="${genders}" />

public enum Gender {
 MALE,
 FEMALE;
}

modelAndView.addObject("genders", Gender.values());

selecting with Checkboxes
The checkbox and checkboxes tags render the HTML input tag with the type attribute set to
checkbox. You use them in a similar way as the radio buttons. In the following example a Boolean
value is bound to the checkbox tag with its path attribute:

<mvc:checkbox path="nonSmoking" />

It’s also possible to bind an array of strings to the checkboxes tag with the items attribute.

adding Labels
The label tag renders the HTML5 label tag, which refers to an HTML input tag. While building
up forms, it’s essential to use the labels to identify what will be input by the user. In the following
example, a label and an input box are bound to the name property of a model class:

<mvc:label path="name">Name</mvc:label>
<mvc:input path="name" />

The tag itself wraps the text value that will be displayed—in the example, it’s Name. To refer to the
input element in HTML, the value of the path is used for the for attribute of the label tag. But
label also contains the attribute for, so if it’s defined it overrides the value given with the path
attribute in HTML output.

handling Forms with JSp ❘ 79

placing Buttons
The button tag renders an HTML5 button tag. It’s possible to put content, such as text or images,
within the button tag. It’s suggested to use the HTML input tag with type set to submit instead
of the button tag when a form will be submitted because different browsers may submit different
values. You should wrap the text of the button with the tags as shown here:

<mvc:button>Submit</mvc:button>

styling
Styling for the tags is provided by three main attributes: cssClass, cssStyle, and cssErrorClass.
cssClass is the equivalent of the HTML class attribute; cssStyle is the equivalent of the HTML
style attribute; and cssErrorClass is also the equivalent of the HMTL class attribute, but it’s
only rendered when errors exist in the application.

You can find detailed examples of using the styles in the “Validating User Input” section. The fol-
lowing Try It Out walks you through an example of handling a user registration form.

trY it out handling a User registration Form

Use the following steps to create an application that demonstrates the usage input fields like text field,
text area, combo box, radio button, and checkbox. You can find this project named as formelements
in the downloaded zip file.

 1. Create an empty Maven web application project from the archetype maven‐archetype‐webapp.
Add spring‐webmvc and its subproject dependencies to your pom.xml file. At the time of writing
this book the latest version for Spring projects is 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

80 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Define the Dispatcher Servlet with its URL mapping in your web.xml:

<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 <servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>springmvc</servlet-name>
 <url-pattern>*.mvc</url-pattern>
 </servlet-mapping>
</web-app>

 3. Create the springmvc‐servlet.xml file for application context configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

 <context:component-scan base-package="com.wiley.beginningspring.ch3" />
 <context:annotation-config />
 <mvc:annotation-driven />

 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/pages/" />
 <property name="suffix" value=".jsp" />
 </bean>
</beans>

 4. Create the UserController class:

@Controller
public class UserController {

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd

handling Forms with JSp ❘ 81

 private static final String[] countries = { "Turkey",
 "United States", "Germany" };

 @RequestMapping(value = "/form")
 public ModelAndView user() {
 ModelAndView modelAndView =
 new ModelAndView("userForm", "user", new User());
 modelAndView.addObject("genders", Gender.values());
 modelAndView.addObject("countries", countries);

 return modelAndView;
 }

 @RequestMapping(value = "/result")
 public ModelAndView processUser(User user) {
 ModelAndView modelAndView = new ModelAndView();
 modelAndView.setViewName("userResult");
 modelAndView.addObject("u", user);
 return modelAndView;
 }
}

 5. Create the userForm.jsp page under the /WEB‐INF/pages folder:

<%@ page contentType="text/html; charset=ISO-8859-1" %>
<%@taglib uri="http://www.springframework.org/tags/form" prefix="mvc" %>
<html>
<head>
 <title>Spring MVC Form Handling</title>
</head>
<body>

<h2>User Registration Form</h2>
<mvc:form modelAttribute="user" action="result.mvc">
 <table>
 <tr>
 <td><mvc:label path="name">Name</mvc:label></td>
 <td><mvc:input path="name" /></td>
 </tr>
 <tr>
 <td><mvc:label path="lastname">Last Name</mvc:label></td>
 <td><mvc:input path="lastname" /></td>
 </tr>
 <tr>
 <td><mvc:label path="password">Password</mvc:label></td>
 <td><mvc:password path="password" /></td>
 </tr>
 <tr>
 <td><mvc:label path="detail">Detail</mvc:label></td>
 <td><mvc:textarea path="detail" /></td>
 </tr>
 <tr>
 <td><mvc:label path="birthDate">Birth Date</mvc:label></td>
 <td><mvc:input path="birthDate" /></td>
 </tr>

http://www.springframework.org/tags/form

82 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

 <tr>
 <td><mvc:label path="gender">Gender</mvc:label></td>
 <td><mvc:radiobuttons path="gender" items="${genders}" /></td>
 </tr>
 <tr>
 <td><mvc:label path="country">Country</mvc:label></td>
 <td><mvc:select path="country" items="${countries}" /></td>
 </tr>
 <tr>
 <td><mvc:label path="nonSmoking">Non Smoking</mvc:label></td>
 <td><mvc:checkbox path="nonSmoking" /></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Submit" />
 </td>
 </tr>
 </table>
</mvc:form>
</body>
</html>

 6. Create the userResult.jsp page under the /WEB‐INF/pages folder:

<%@ page contentType="text/html; charset=ISO-8859-1" %>
<%@taglib uri="http://www.springframework.org/tags/form" prefix="mvc" %>
<html>
<head>
 <title>Spring MVC Form Handling</title>
</head>
<body>
 <h2>User Registration Result</h2>
 <table>
 <tr>
 <td>Name</td>
 <td>${u.name}</td>
 </tr>
 <tr>
 <td>Last name</td>
 <td>${u.lastname}</td>
 </tr>
 <tr>
 <td>Password</td>
 <td>${u.password}</td>
 </tr>
 <tr>
 <td>Detail</td>
 <td>${u.detail}</td>
 </tr>
 <tr>
 <td>Birth Date</td>
 <td>${u.birthDate}</td>
 </tr>
 <tr>

http://www.springframework.org/tags/form

handling Forms with JSp ❘ 83

 <td>Gender</td>
 <td>${u.gender}</td>
 </tr>
 <tr>
 <td>Country</td>
 <td>${u.country}</td>
 </tr>
 <tr>
 <td>Non-Smoking</td>
 <td>${u.nonSmoking}</td>
 </tr>
 </table>
</body>
</html>

 7. Run the mvn package command to create a war file. Deploy your application on the web container
and request http://localhost:8080/form.mvc. Fill up the form and submit it to see the output
as shown in Figure 3-4.

Figure 3-4

How It Works

When the user requests /form.mvc, the user() method is invoked and an empty User instance is set
into a ModelAndView instance along with the name of the view—userForm. The genders and countries
are also set to the model in the user() method, and they are accessed from the JSP with ${genders}
and ${countries}, respectively.

The location of the userForm JSP is resolved with the help of the InternalResourceViewResolver
definition. The modelAttribute of the form definition is set with the same value while creating the
ModelAndView instance in the user() method. When the user submits the form to /result.mvc,

http://localhost:8080/form.mvc

84 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

the processUser() method is invoked because the value of the @RequestMapping matches with
the /result. The user instance is passed as an argument to the processUser() method with the
submitted values. The binding takes care of the type conversion in here. The view name is set as
userResult to a ModelAndView instance. The retrieved user is also set to the model with the u key
value. It is accessed in the userResult page and the properties of the user are printed out as shown
in Figure 3-4.

expLoiting the power oF annotations

As of version 2.5, Spring MVC leveraged the use of annotations to define the controllers. This sec-
tion covers some of the annotations.

@Controller
@Controller is the main annotation that indicates the annotated class serves as a Controller of the
MVC framework. The Dispatcher Servlet scans classes annotated with it to map the web requests to
the methods annotated with @RequestMapping. @Controller inherits from the @Component anno-
tation like other Spring annotations, such as @Service and @Repository.

@requestMapping
@RequestMapping is the annotation that is used to map the user’s requests to handler classes
or methods. It can be applied on the class level and also on the method level. The methods
annotated with this annotation are allowed to have a very flexible signature. It can take HTTP
Servlet request/response objects, HTTP Session objects, InputStream/OutputStream objects,
PathVariable/ModelAttribute annotated parameters, BindingResult objects, and many others.
You can refer to the Javadoc of the class for the full documentation at http://docs.spring.io/
spring/docs/4.0.5.RELEASE/javadoc‐api/org/springframework/web/bind/annotation/

RequestMapping.html. Read more about the use of the annotation in the “Handling Forms with
JSP” section.

@Modelattribute
This annotation binds a return value to a parameter with a key to be exposed to the view. It can be
applied on the method level or on a method’s argument.

At the method level, it can easily help to load the reference data. In the “Handling a User
Registration Form” Try It Out, you were loading the genders into the model by setting an object
to it with a key. You can define a new method to set the gender values into the model with a key as
shown here:

@ModelAttribute("genders")
public Gender[] genders() {
 return Gender.values();
}

http://docs.spring.io/spring/docs/4.0.5.RELEASE/javadoc%E2%80%90api/org/springframework/web/bind/annotation/RequestMapping.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/javadoc%E2%80%90api/org/springframework/web/bind/annotation/RequestMapping.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/javadoc%E2%80%90api/org/springframework/web/bind/annotation/RequestMapping.html

exploiting the power of annotations ❘ 85

At the method’s argument level, the handler method gets a reference to the object, which contains
the data entered by the user with a form:

@RequestMapping(value = "/process")
public ModelAndView doSomeStuff(@ModelAttribute("value") MyObject object) {
...
}

The signature for the methods annotated with @ModelAttribute is also flexible like the handler
methods annotated with @RequestMapping. You can refer to the Javadoc of @RequestMapping for
full documentation at http://docs.spring.io/spring/docs/4.0.5.RELEASE/javadoc‐api/
org/springframework/web/bind/annotation/RequestMapping.html.

@pathVariable
This annotation binds a method parameter to a URI template. It’s helpful to execute the handler method
by retrieving data from the user via a request URL. So you can fetch the user data with the given userid
with @PathVariable and show it to the requested user in the handler method as shown here:

@RequestMapping(value = "/view/{userid}")
public ModelAndView fetchUser(@PathVariable String userid) {
...
}

Here the name of the method parameter matches the template so the example didn’t define the value
to the annotation, but you could also define it as @PathVariable("userid"). The @PathVariable
argument can be of any type, such as int, Date, String, and so on.

@Controlleradvice
This annotation enables you to centralize the code in one place and share it across the controllers. A
class annotated with @ControllerAdvice can contain methods with the @ExceptionHandler,
@InitBinder, and @ModelAttribute annotations, and they will be applied to all the methods with
the @RequestMapping annotation in the application. To see the @ControllerAdvice annotation in
detail, refer to the “Handling Exceptions” section.

@initBinder
This annotation determines the methods that initialize the WebDataBinder. It supports features
such as turning off automatic data binding from request parameters to model objects or registering
custom editors for parsing the date fields.

@exceptionhandler
This annotation defines the method that will handle the exceptions that occur in the controller class
in which it is defined. The detailed explanation and usage of the annotation are described in the
“Handling Exceptions” section.

http://docs.spring.io/spring/docs/4.0.5.RELEASE/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
http://docs.spring.io/spring/docs/4.0.5.RELEASE/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html

86 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

VaLidating user input

Spring MVC supports integration with the JSR349 Bean ValidationAPI, which offers extensive fea-
tures for validating the data through the layers of an application. Because the view layer is the first
layer that interacts with the user, doing the validation process at this point will make the data more
stable and less error prone. With the help of Bean Validation you can easily apply validation meta-
data onto your model classes and reflect the possible error outcomes to the user via the appropriate
view. The metadata can easily be defined with annotations, hence the validations will be much easier
to define. The following snippet is the User domain class to which some of the validation annota-
tions have been applied—such as the following:

 ➤ The @Size annotation that sets length of the username between 3 and 20

 ➤ The @Email annotation that validates the input with an appropriate regular expression for
an e‐mail

 ➤ The @CreditCardNumber that validates the input number with the Luhn algorithm

Note Luhn algorithm is a simple modulus‐10 checksum formula that can be
used to validate a variety of identification numbers.

 ➤ The @Pattern that validates the password according to a regular expression such as the
first character must be a letter and it must contain at least 4 characters and no more than 15
characters

For the sake of space, getter and setter methods are omitted in the code:

public class User {
 @Size(min=3, max=20)
 String username;

 @Email
 String email;

 @CreditCardNumber
 String ccNumber;

 @Pattern(regexp = "^[a-zA-Z]\\w{3,14}$")
 String password;

 //getters & setters
}

To enable the validation, you need to add an implementation of a Bean Validation to your project.
For the example, we have chosen the Hibernate Validator framework to provide the validation
features. At the time of writing, the latest version of the Hibernate Validator project was 5.1.1.Final;
you can easily add it as a Maven dependency like the one given in the following example. Hibernate
Validator also adds the Bean Validation API as a transitive dependency to the project so you don’t
need to take care of it explicitly:

Validating User Input ❘ 87

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>5.1.1.Final</version>
</dependency>

Note You can find the list annotations provided by the Hibernate Validator
and JSR 349 Bean Validation API at http://docs.jboss.org/hibernate
/validator/5.1/reference/en‐US/html_single/
#section‐builtin‐constraints.

Because you defined the model, you can move on with the JSP that will contain the form. The form
you defined in the page contains four input elements for the properties of the User class, respec-
tively, and it also contains four errors tags to display the possible errors that might occur for each
input field. The form submits to a method with a request mapping /result:

<%@ page contentType="text/html; charset=ISO-8859-1" %>
<%@taglib uri="http://www.springframework.org/tags/form" prefix="mvc" %>
<html>
<head>
 <title>Spring MVC Form Validation</title>
 <style type="text/css">
 .formFieldError { background-color: #FFC; }
 </style>
</head>
<body>

<h2>User Registration Form</h2>
<mvc:form modelAttribute="user" action="result.mvc">
 <table>
 <tr>
 <td><mvc:label path="username">User Name</mvc:label></td>
 <td><mvc:input path="username" cssErrorClass="formFieldError" /></td>
 <td><mvc:errors path="username" /></td>
 </tr>
 <tr>
 <td><mvc:label path="email">E-Mail</mvc:label></td>
 <td><mvc:input path="email" cssErrorClass="formFieldError" /></td>
 <td><mvc:errors path="email" /></td>
 </tr>
 <tr>
 <td><mvc:label path="ccNumber">Credit Card Number</mvc:label></td>
 <td><mvc:input path="ccNumber" cssErrorClass="formFieldError" /></td>
 <td><mvc:errors path="ccNumber" /></td>
 </tr>
 <tr>
 <td><mvc:label path="password">Password</mvc:label></td>
 <td><mvc:password path="password" cssErrorClass="formFieldError" /></td>
 <td><mvc:errors path="password" /></td>
 </tr>
 <tr>

http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html_single/#section-builtin-constraints
http://www.springframework.org/tags/form
http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html_single/#section-builtin-constraints
http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html_single/#section-builtin-constraints

88 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

 <td colspan="3">
 <input type="submit" value="Submit" />
 </td>
 </tr>
 </table>
</mvc:form>
</body>
</html>

For each errors tag you set the name of the property of the model class to its path attribute. But
for the errors tag the path attribute is not required. If it’s omitted, you will not see an error mes-
sage next to the related input field. If you want to display all the errors in one place you can set
the value of the path to * and put an errors tag on top of the form. This example also defines a
style‐sheet class formFieldError and sets the cssErrorClass attribute of each input field to it.
With this error class, when validation fails for an input field, the background color of the field will
be set to yellow.

The controller method that handles the form submit is shown here:

@RequestMapping(value = "/result")
public ModelAndView processUser(@Valid User user, BindingResult result) {
 ModelAndView modelAndView = new ModelAndView();
 modelAndView.addObject("u", user);

 if (result.hasErrors()) {
 modelAndView.setViewName("userForm");
 }
 else {
 modelAndView.setViewName("userResult");
 }

 return modelAndView;
}

The validation of the user is being triggered by the @Valid annotation that you set on the user
method parameter. The annotation gets applied recursively to the properties of the class. If this
annotation is missing, the bean validation will not be invoked.

The processUser method takes an extra parameter named result, which is an instance
of BindingResult. This parameter is used for checking whether any validation errors
occurred during the mapping of request parameters to the domain class properties, with the
method result.hasErrors(). You are setting the view according to this condition to stay on the
input page for showing the errors to the user.

Note If the method parameter of type BindingResult is omitted while using
the @Valid annotation on the model attribute, you might encounter the following
problem while submitting the form:
HTTP 400 ‐ The request sent by the client was syntactically
incorrect. Make sure that the method parameter of the BindingResult is not
missing.

Validating User Input ❘ 89

If you submit the form with empty input fields, you get the output shown in Figure 3-5.

Figure 3-5

The shaded box styling is coming from the cssErrorClass attribute. The error messages dis-
played in Figure 3-5 are set as default by the framework. To modify them you can set new messages
through annotations, such as for the password field:

@Pattern(regexp = "^[a-zA-Z]\\w{3,14}$", message = ↵
 "first character must be a letter and it must contain at least ↵
 4 characters and no more than 15 characters")
String password;

With this approach, the message makes more sense compared to the old one, but it still lacks inter-
nationalization because the message itself is hardcoded.

To configure the validation, first you need to add the LocalValidatorFactoryBean and
ReloadableResourceBundleMessageSource bean definitions into your web application’s context.
You also need to define the validator in the annotation‐driven tag of the mvc namespace:

<mvc:annotation-driven validator="validator" />

<bean id="messageSource"
class="org.springframework.context.support.ReloadableResourceBundleMessageSource">
 <property name="basename" value="classpath:messages" />
</bean>

<bean id="validator"
class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean">
 <property name="validationMessageSource" ref="messageSource"/>
</bean>

Here, ReloadableResourceBundleMessageSource refers to a properties file that contains the
messages as key/value pairs. The file should reside under the classpath of the application with the
basename messages as stated in the preceding code. If you are using Maven as your build tool, you
can create the properties file under the src/main/resources folder. The file could be differentiated
according to the locale such as messages_en_US.properties for a U.S. locale or messages_tr_
TR.properties for a Turkish locale, or you can just define it as messages.properties.

90 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

Now you can define the key for the message in annotation like this:

 @Pattern(regexp = "^[a-zA-Z]\\w{3,14}$", message = "{error.password}")
 String password;

With this approach, you need to add a message key to each annotation by wrapping it with a curly
bracket. Another intuitive option is to define the key value according to the annotation, model attri-
bute, and the pathname used. The notation for a key like this would be AnnotationName
.ModelAttributeName.PathName. Let’s sample this for a field. For the password field, which is
marked with the @Pattern annotation, the key value that should be defined in the properties file
will be Pattern.user.password. This approach is non‐obtrusive compared to the previous ones
because there is no hardcoded information in the code.

Note If both the annotation’s message attribute and implicit key definition are
applied to a field, the implicit definition takes precedence over the annotation’s
message attribute.

Note At the time of writing, Hibernate Validator does not provide full support
for validating the java.time.LocalDate type of JDK8. Keep that in mind while
applying validation metadata on the model classes.

upLoading FiLes

Spring provides two ways to process file upload, one with the Commons FileUpload multipart
request process and the other one with the Servlet 3.1 multipart request process. By default, Spring
does not handle any multipart requests, so to enable the file upload, you need to define some
configuration.

To enable multipart handling you first need to define a multipart resolver in the web application’s con-
text, which DispatcherServlet can access. The bean name should be given as multipartResolver.
The multipart resolver can either be specific to Commons FileUpload as shown here:

<bean id="multipartResolver"
 class="org.springframework.web.multipart.commons.CommonsMultipartResolver" />

or it can be specific to Servlet 3.1, like this:

<bean id="multipartResolver"
 class="org.springframework.web.multipart.↵
 support.StandardServletMultipartResolver" />

Uploading Files ❘ 91

Note If you do not provide any configuration for the multipart resolv-
ers of Spring, you might encounter some unexpected behaviors in your
code—for example, the uploaded file could be null or you can get
the exception java.lang.IllegalArgumentException: Expected
MultipartHttpServletRequest: is a MultipartResolver configured? in
the application’s console log.

When DispatcherServlet detects a file upload request, it delegates the job to one of the multipart
resolvers that you declared. Then the resolver parses the request into multipart files and parameters
to create an instance of the MultipartHttpServletRequest.

While using the Commons FileUpload approach, you can configure the upload process by defining
properties to the resolver. With Servlet 3.1, you need to configure the upload process within the defi-
nition of the DispatcherServlet by the tag multipart‐config.

CommonsMultipartResolver contains the following configuration parameters:

 ➤ uploadTempDir to set the temporary directory where uploaded files are saved. The default
value is the servlet container’s temporary directory for the web application.

 ➤ maxUploadSize to set the maximum allowed size (in bytes) before uploads get refused. The
default value is ‐1, which states that there is no limit.

 ➤ maxInMemorySize to set the maximum allowed size (in bytes) before uploaded files are saved
to the temporary folder. The default value is 10240, which is also in bytes.

The final configuration would be as follows:

<bean id="multipartResolver"
 class="org.springframework.web.multipart.commons.CommonsMultipartResolver">
 <property name="uploadTempDir" value="/tmp" />
 <property name="maxUploadSize" value="1048576" />
 <property name="maxInMemorySize" value="524288" />
</bean>

The multipart‐config tag contains the following inner tag definitions:

 ➤ location to set the directory location where uploaded files will be stored

 ➤ max‐file‐size to set the maximum size limit (in bytes) for uploaded files. The default value
is ‐1, which states that there is no limit.

 ➤ max‐request‐size to set the maximum size limit (in bytes) for multipart/form‐data requests.
The default value is ‐1, which states that there is no limit.

 ➤ file‐size‐threshold to set the maximum allowed size (in bytes) before uploaded files
are saved to the temporary folder. The default value is 0, which states that container should
never write bytes to disk.

92 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

The following snippet is a sample configuration with the definition of DispatcherServlet:

<servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 <multipart-config>
 <location>/tmp</location>
 <max-file-size>1048576</max-file-size>
 <max-request-size>2097152</max-request-size>
 <file-size-threshold>524288</file-size-threshold>
 </multipart-config>
</servlet>

Note If any of these limits is exceeded, Spring throws MultipartException
with detailed information stating under what circumstances the multipart
requests were rejected.

To use the Commons FileUpload resolver, you also need to add it as a dependency to your proj-
ect. At the time of writing the current latest version available for the project was 1.3.1. Here is the
Maven dependency definition that you can use to fetch the artifact:

<dependency>
 <groupId>commons-fileupload</groupId>
 <artifactId>commons-fileupload</artifactId>
 <version>1.3.1</version>
</dependency>

After handling the configuration with Servlet 3.1, you can define the view with a form that has the
enctype attribute set to multipart/form‐data to handle the multipart requests of the user. You
define a model class, named User, and set the model attribute of the form to user. The user class
contains a property that is a type of MultipartFile. After submitting the form, you retrieve the file
in the controller class set to this MultipartFile property. Then you can extract the byte[] out of it
and do whatever you need to do, like persisting the file in a folder or in the database.

The following is the definition of the User class:

public class User {

 private String name;
 private MultipartFile file;

 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }

handling exceptions ❘ 93

 public MultipartFile getFile() {
 return file;
 }
 public void setFile(MultipartFile file) {
 this.file = file;
 }
}

Here’s an example for the view definition:

<mvc:form modelAttribute="user" action="upload.mvc" enctype="multipart/form-data">
 <table>
 <tr>
 <td>Name</td>
 <td><mvc:input path="name" /></td>
 </tr>
 <tr>
 <td>Choose File</td>
 <td><mvc:input type="file" path="file" /></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit" /></td>
 </tr>
 </table>
</mvc:form>

The following snippet gives the controller method for handling the file upload. It puts username and
file size data back into the model and sends it back to the view:

@RequestMapping(value = "/upload")
public ModelAndView processUser(User user) throws IOException {
 ModelAndView modelAndView = new ModelAndView();
 modelAndView.setViewName("fileUpload");
 modelAndView.addObject("userName", user.getName());
 modelAndView.addObject("fileLength", user.getFile().getBytes().length);
 return modelAndView;
}

handLing exCeptions

Spring MVC provides a well‐defined exception handling mechanism to manage unhandled excep-
tions thrown by the application. It offers a controller‐based approach in which methods that
handle the exceptions can be defined with the @ExceptionHandler annotation in the controller
classes. To detail the scenario, the following example implements a custom exception class, named
UserNotFoundException, which extends Exception:

public class UserNotFoundException extends Exception {
 public UserNotFoundException(String name) {
 super("User not found with name: " + name);
 }
}

94 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

For simplicity, this exception will be thrown when the user searches for a user with a key that
doesn’t exist in the hash map, which simulates that the user cannot be found in the system. If the
user searches for a specific key, such as johndoe, a more generic exception is thrown, which is
treated in a global controller. You read more about that later at the end of this section.

@Controller
public class UserController {

 private Map<String, User> users = new HashMap<String, User>();

 @PostConstruct
 public void setup() {
 users.put("mert", new User("Mert", "Caliskan"));
 users.put("kenan", new User("Kenan", "Sevindik"));
 }

 @RequestMapping(value = "/form")
 public ModelAndView user() {
 return new ModelAndView("userForm", "user", new User());
 }

 @RequestMapping(value = "/result")
 public ModelAndView processUser(String name) throws Exception {
 ModelAndView modelAndView = new ModelAndView();
 User user = users.get(name);
 if ("johndoe".equals(name)) {
 throw new Exception();
 }
 if (user == null) {
 throw new UserNotFoundException(name);
 }
 modelAndView.addObject("u", user);
 modelAndView.setViewName("userResult");

 return modelAndView;
 }

 @ExceptionHandler
 public ModelAndView handleException(UserNotFoundException e) {
 ModelAndView modelAndView = new ModelAndView("errorUser");
 modelAndView.addObject("errorMessage", e.getMessage());
 return modelAndView;
 }
}

The handler method annotated with @ExceptionHandler is also defined in UserController.
This annotation can take the classes of the exception as its value parameter, such as
@ExceptionHandler(UserNotFoundException.class). If no class definition is provided within the
parenthesis, the handler intercepts the exceptions listed in its method arguments list as in the example.

Because handling exceptions should be treated in one common central place, a global method that
could handle exceptions would make more sense, and Spring MVC provides another annotation to

Implementing Internationalization (i18n) ❘ 95

achieve this: @ControllerAdvice. A class annotated with @ControllerAdvice can contain meth-
ods with the @ExceptionHandler, @InitBinder, and @ModelAttribute annotations, and they
will be applied to all the methods with the @RequestMapping annotation in the application. So the
more generic exceptions such as SQLException or IOException can easily be handled in a global
controller. For simplicity, the example uses the java.lang.Exception class in the processUser
method when the user searches for the keyword johndoe. The global controller with the method
that handles this exception is given in the following snippet. It just takes the user to a more generic
error page named errorGlobal.jsp:

@ControllerAdvice
public class GlobalExceptionHandler {

 @ExceptionHandler(Exception.class)
 public ModelAndView handleException() {
 return new ModelAndView("errorGlobal");
 }
}

iMpLeMenting internationaLization (i18n)

Spring MVC supports the internationalization (i18n) of a web application, which states that the
application should support multiple languages. The DispatcherServlet configures multilanguage
support according to the client’s locale by delegating the job to the provided locale resolvers in the
application.

To initialize the locale resolver, the DispatcherServlet looks for a Spring bean named
localeResolver in its application context. If no bean exists with the given name, the
AcceptHeaderLocaleResolver bean is configured for use.

The AcceptHeaderLocaleResolver bean extracts the locale information from the HTTP request
header with the key accept‐language. This is the locale information directly sent by the client’s
browser. A better approach for handling the locale information is to store it within the user’s ses-
sion. The SessionLocaleResolver class stores this information in a session with a predefined ses-
sion attribute name.

To demonstrate locale support, you create a view with two links that point to different locales as
shown in Figure 3-6.

Figure 3-6

96 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

When the user clicks one of the locale links, it sets the locale name as a request parameter that trig-
gers the LocaleChangeInterceptor for execution:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>
<head>
 <title>Spring MVC Internationalization</title>
</head>
<body>
 Language :
 English - Turkish
 <h2>
 <spring:message code="welcome" />
 </h2>
 Locale: ${pageContext.response.locale}
</body>
</html>

The message tag from the Spring tag library is used in the page to display a message from
the resource bundle. The code attribute is set to the key value that is defined in the properties
file.

The following snippet is from the application context configuration file for defining the locale
resolver and locale change interceptor:

<bean id="localeResolver"
 class="org.springframework.web.servlet.i18n.SessionLocaleResolver"/>

<bean id="messageSource"
class="org.springframework.context.support.ReloadableResourceBundleMessageSource">
 <property name="basename" value="classpath:messages" />
</bean>

<mvc:interceptors>
 <bean id="localeChangeInterceptor"
 class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
 <property name="paramName" value="lang" />
 </bean>
</mvc:interceptors>

The default locale could be set to SessionLocaleResolver with the defaultLocale property to
provide a fallback handler if no locale information is found in the user’s session—that is, the first
request to the page. If defaultLocale is also not defined, the resolver parses accept‐language
from the request header to set the locale and store it in session.

Note You should define the SessionLocaleResolver bean with the exact
bean name localeResolver.

http://www.springframework.org/tags"%

Using themes ❘ 97

localeChangeInterceptor is wrapped by the <mvc:interceptors> tag. This tag lists the ordered
set of interceptors that intercept HTTP requests handled by controllers. The paramName property is
the key value that is used to set the locale in the JSP.

The messageSource bean sets the path for locating properties files—in the example the basename
attribute sets them to be found under the classpath of the application with the name messages.
If you are using Maven as your build tool, you can locate the properties file under the src/main/
resources folder of the project. The files could be differentiated according to the locale, such as
messages_en_US.properties for a U.S. locale or messages_tr_TR.properties for a Turkish
locale, or you can just define it as messages.properties.

An alternative way to change the locale is to use the CookieLocaleResolver class, which searches
for a cookie on the client and sets the locale if a cookie is found. It’s feasible to use this resolver for
applications that don’t manage user sessions and act stateless. You can define the resolver like this:

<bean id="localeResolver"
 class="org.springframework.web.servlet.i18n.CookieLocaleResolver" />

Note Spring 4.0 introduced the LocaleContextResolver interface,
which extends LocaleResolver to support rich locale contexts. The
TimeZoneAwareLocaleContext type is one of these enriched locale contexts
that stores the locale and also the time zone.

using theMes

For a better user experience, Spring MVC provides theming support with a grouping of static
resources, such as images, styles, and so on. Theme architecture features three main mechanisms:
theme‐aware resource bundles, theme resolvers, and theme change interceptors. This section covers
these with an example that switches between two themes.

The theme‐aware resource bundle is an implementation of ThemeSource that loads properties files
from the classpath. A properties file lists all the theme resources with key/value pairs. The key is
a name to the resource, and the value is the URI to access the resource. Here is the content of the
dark.properties file that’s used in the example:

style=css/dark.css

Here, style is the key value and css/dark.css is the locator path of the appropriate style
sheet. You can prefix the properties files with a given value, such as theme‐dark.properties or
theme‐light.properties by setting the basenamePrefix property to theme of the resource bun-
dle definition.

The theme resolver determines which theme name will be resolved and which theme‐aware resource
bundle will be used by the application. To initialize it, the DispatcherServlet looks for a Spring
bean named themeResolver in its application context. If no bean exists with the given name, the
FixedThemeResolver bean is configured for use.

98 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

FixedThemeResolver is an implementation that uses a default theme for an application, and the
theme cannot be set to another one. If no theme name is specified, the default theme name is set
to theme. A better approach to store the theming information is to use the user’s session. The
SessionThemeResolver class stores this information in session with a predefined session attribute
name. We also give the definition of it within this section.

The example demonstrates the theme support by creating a view with two links—Light and Dark—
that point to two different themes as shown in Figure 3-7.

Figure 3-7

When the user clicks one of the theme links, the theme name is set as the request parameter and that
triggers the ThemeChangeInterceptor for execution. Here is the content of the JSP:

<%@ page contentType="text/html;charset=ISO-8859-9" %>
<%@taglib uri="http://www.springframework.org/tags/form" prefix="mvc" %>
<%@taglib uri="http://www.springframework.org/tags" prefix="spring" %>
<html>
<head>
 <title>Spring MVC Themes</title>
 <link rel="stylesheet" href="<spring:theme code="style"/>" type="text/css" />
</head>
<body>
Theme :
Light - Dark

<mvc:form modelAttribute="user" action="result.mvc">
 <table>
 <tr>
 <td><mvc:label path="username">User Name</mvc:label></td>
 <td><mvc:input path="username" /></td>
 <td><mvc:errors path="username" /></td>
 </tr>
 <tr>
 <td><mvc:label path="email">E-Mail</mvc:label></td>
 <td><mvc:input path="email" /></td>
 <td><mvc:errors path="email" /></td>
 </tr>
 <tr>
 <td><mvc:label path="ccNumber">Credit Card Number</mvc:label></td>
 <td><mvc:input path="ccNumber" /></td>
 <td><mvc:errors path="ccNumber" /></td>
 </tr>

http://www.springframework.org/tags/form
http://www.springframework.org/tags

Using themes ❘ 99

 <tr>
 <td><mvc:label path="password">Password</mvc:label></td>
 <td><mvc:password path="password" /></td>
 <td><mvc:errors path="password" /></td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="submit" value="Submit" />
 </td>
 </tr>
 </table>
</mvc:form>
</body>
</html>

As shown in the preceding snippet, the theme is set to the HTML link tag within the href attribute
by using the theme tag from the Spring tag library href attribute of a tag. The code attribute of the
theme tag specifies the key value that is defined in the theme properties file, which is style in the
example.

The snippet from the application context configuration file for defining the Theme Resolver and the
theme change interceptor is shown here:

<bean id="themeSource"
 class="org.springframework.ui.context.support.ResourceBundleThemeSource" />

<bean id="themeResolver"
 class="org.springframework.web.servlet.theme.SessionThemeResolver">
 <property name="defaultThemeName" value="dark" />
</bean>

<mvc:interceptors>
 <bean id="themeChangeInterceptor"
 class="org.springframework.web.servlet.theme.ThemeChangeInterceptor">
 <property name="paramName" value="theme"/>
 </bean>
</mvc:interceptors>

SessionThemeResolver sets the default theme that will be used at the user’s first request with the
defaultThemeName property.

Note The SessionThemeResolver bean should be defined with the exact
bean name themeResolver.

themeChangeInterceptor is wrapped by the <mvc:interceptors> tag. This tag lists the ordered
set of interceptors that intercept HTTP requests handled by controllers. The paramName property is
the key value that is used to set the theme in the JSP.

100 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

An alternative way to change the theme is to use the CookieThemeResolver class, which searches
for a cookie on the client and sets the theme if a cookie is found. It’s feasible that you can use
this resolver for applications that don’t manage user sessions and act stateless. You can define the
resolver like this:

<bean id="themeResolver"
 class="org.springframework.web.servlet.theme.CookieThemeResolver" />

suMMarY

In this chapter, you learned what the Model View Controller pattern is all about and how Spring
MVC provides features that comply with this pattern. The chapter started with the definition of the
Dispatcher Servlet, which acts as a gateway for all MVC‐based applications, and then created the
simplest application with the framework.

The chapter then gave the alternative annotation‐based configuration that is provided for the Spring
MVC. The next topic was handling forms in a web application with the tags provided by Spring
MVC. The chapter detailed how the binding mechanism works and how the flow between the views
and the controllers is constructed with the help of the model.

Examples in the chapter show the validation of the user input with the integration of the Bean
Validation API to Spring MVC. You saw the ways to handle exceptional cases in an application.
The examples are configured with the Spring MVC–based application with Servlet 3.1 and also with
Commons FileUpload so that it can handle the file uploads.

The chapter wrapped up by showing you how to integrate internationalization and theming into
your web application so that the user can switch between locales and themes.

exerCises

You can find possible solutions to these exercises in Appendix A.

 1. Which Spring annotation should be used to support Java 8’s java.time.LocalDateTime?

 2. What’s the best approach for handling locale changes in a Spring MVC–based application that
doesn’t manage user sessions and works as stateless?

 3. Define a global exception handler that will handle all exceptions that would derive from the
RuntimeException class and that will redirect to the view uppsie.mvc.

Summary ❘ 101

 ▸ what You Learned in this Chapter

topiC KeY points

Model View Controller A design pattern where model represents the
domain‐specific information, view represents the
domain model with user interface elements, and
controller is the part that interprets the input by the
user and transforms it into the model to be shown to
the user via the view.

Dispatcher Servlet The main servlet that handles HTTP requests and dis-
patches those requests to appropriate channels with
the help of handler mappings and view resolvers.

HandlerMapping The interface that is used to determine which handler
method will be executed according to the user’s
request. The Dispatcher Servlet uses its implementa-
tions to decide on which controller to execute.

ViewResolver The interface that resolves a view according to its
view name. The Dispatcher Servlet uses its imple-
mentations to determine the view to be shown to the
user.

Command object A POJO/Java bean whose values are populated by
the input of the user through a form. It’s synonymous
with the Form object and Form‐Backing object.

spring‐form.tld The form tag library descriptor file that contains input
tags, such as form, input, radiobutton, checkbox,
and output tags, such as label and errors.

path The attribute of the form tags for enabling the bind-
ing between the view layer and the model.

@Controller The annotation that marks the classes, which will
serve as controllers of the MVC concept.

@RequestMapping The annotation that is used to map user requests to
handler classes or methods.

@ModelAttribute Binds a return value to a parameter with a key to
be exposed to the view. It can be applied on the
method level or on a method’s argument.

@ExceptionHandler Defines the annotated method that will handle the
exceptions that occur in the controller class in which
the method is defined.

continues

102 ❘ Chapter 3 Building WeB ApplicAtions using spring MVc

topiC KeY points

@ControllerAdvice The annotation that allows you to centralize the code
in one place and share it across the controllers.

BindingResult The interface that represents the binding results.
It can be used to retrieve the validation errors that
occur on the model.

StandardServletMultipartResolver The Servlet 3.1 implementation of the
MultipartResolver interface. It gets configured as
a Spring bean.

CommonsMultipartResolver The Commons FileUpload implementation of the
MultipartResolver interface. It gets configured as
a Spring bean.

AcceptHeaderLocaleResolver The implementation that extracts the locale infor-
mation from the HTTP request header with the
accept‐language key.

SessionLocaleResolver The implementation that stores the locale informa-
tion in session with a predefined session attribute
name.

FixedThemeResolver The implementation that uses a default theme for an
application and the theme cannot be set to another
one.

SessionThemeResolver The implementation that stores theme information in
session with a predefined session attribute name.

@ContextConfiguration The annotation that defines the location configura-
tion file, which will be loaded for building up the
application context.

@WebAppConfiguration The annotation that defines that the application con-
text will be a web application context, which will be
loaded by @ContextConfiguration.

MockMvc The main implementation class that is used in tests.
It’s built up with a WebApplicationContext, and it
performs the mock HTTP request operations.

(continued)

 4
 what yoU will learn in this ChaPter:

 ➤ Problems with using vanilla JDBC access

 ➤ Advantages of Spring’s JDBC support

 ➤ Confi guring and using Spring’s JDBC support

 ➤ Properly handling and translating SQLExceptions and SQL error
codes

 ➤ Confi guring and managing connections and initializing the
database

 ➤ Performing queries and batch operations, updating databases,
accessing native JDBC methods, and calling stored procedures

 ➤ Modeling JDBC operations as Java objects

 JDBC Data access with Spring

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 4 download and individually named according to the
names throughout the chapter.

 You can use various data access technologies to perform persistence operations, and JDBC is
among the fi rst used in enterprise applications. However, using JDBC directly has some draw-
backs, and this chapter fi rst focuses on the problems of using vanilla JDBC. The starting point
of using Spring JDBC support is to defi ne a DataSource bean, and you learn about several dif-
ferent methods for creating a DataSource within your application or obtaining one managed
by your application server through JNDI lookup. This chapter also explains how to initialize a
database by populating data during system bootstrap.

http://www.wrox.com/go/beginningspring

104 ❘ Chapter 4 JDBC Data aCCess with spring

Later in the chapter you are introduced to Spring’s JDBC support. The chapter explains and gives
examples of several of its uses, such as executing queries; data manipulation operations like insert,
update, and delete using Spring’s infamous JdbcTemplate class; calling stored procedures and
stored functions; and performing batch operations. You also see how Spring tries to help you handle
checked SQLExceptions and translate them into a common data access exception hierarchy
provided by Spring.

Problems with Using Vanilla JDbC

Almost every application has to deal with data at some point in its lifetime, and enterprise applica-
tions mostly keep their data stored in relational databases. The relational database world has SQL for
querying and dealing with persistent data in databases, but, unfortunately, there is no standard way
of accessing and executing SQL operations on those databases. You have to follow different ways to
connect to a database system; execute SQL operations; fetch and process query results; and demar-
cate transactions compared to any other database system in the market if you use a proprietary API.

When developing enterprise applications using Java became popular, developers needed an API to
work with those relational databases. At that time, the designers of Java introduced an API, called
the Java Database Connectivity (JDBC) API, to help Java programmers easily connect, work with,
and abstract away all differences among those databases.

According to the JDBC 4.0 specification, JDBC 4 drivers must support ANSI SQL 2003. Thus, as
long as you use a JDBC 4–compliant driver then you can use ANSI SQL 2003 in a portable fashion.
However, it is important to note that JDBC doesn’t completely abstract away the differences in SQL
notations across different database vendors. If a developer, for example, wants to use DB‐specific
SQL‐like “decode” on Oracle, he can do that because the Oracle JDBC driver supports it. But this
is tied to Oracle, and the Oracle‐specific SQL will not work anywhere else. In general, you need to
write your SQL statements specific to your relational database vendor. However, it provides a stan-
dardized API to connect, execute SQL operations, fetch and process query results, demarcate trans-
actions, and properly close up database resources, such as connections.

When we are working with JDBC, we almost always follow a similar pattern in our data access
layer:

try {
 //obtain database connection
 //start a transaction
 //create and execute the query
 //process query result
 //commit the transaction
} catch (SQLException e) {
 //handle SQL exceptions, perform transaction rollback
} finally {
 //close db resources like connections, statements
}

The preceding (partly) pseudo‐code block shows a recurring pattern. We start working with JDBC
by obtaining a database connection using database connection URL and database authentica-
tion credentials. When a connection is obtained, if necessary, we start a transaction and create a

Introducing Spring’s JDBC Support ❘ 105

statement object to execute our SQL. If the SQL operation returns a result set, we create a while
loop to iterate over this result set, and process each row returned from the database. We need to per-
form those operations within a try‐catch‐finally block so that if an error occurs in any of those
steps listed earlier, we can handle the error within the catch block. It is best practice to close the
open connection and any other resources within the finally block. Failing that leads to a resource
leak that would impact the performance of the application.

Unfortunately, this boilerplate code scatters every point in our data access layer, and things get more
painful in the long term if teams don’t pull up that repetitive code to a common place, like a utility
class. If they instead employ a copy‐paste approach, maintenance becomes a nightmare; adding or
changing existing logic has the potential to cause already existing parts to fail easily. Although data-
base errors are mostly unrecoverable, people are forced to code to handle them. Inappropriate SQL
exception handling operations appear; connections are left open, which causes database resources to
exhaust; and out‐of‐memory problems occur in the application. People spend considerable amounts
of time converting data obtained as rows and columns into a more object‐oriented form, such as a
network of objects, to use in their business logic. More importantly, even though persistence opera-
tions have no relation with the core of the business logic, a lot of time is spent dealing with data per-
sistence operations, and they are mixed with the business logic.

introDUCing sPring’s JDbC sUPPort

One of the main reasons Spring has become so popular in the enterprise Java world is probably
its extensive data access support, and JDBC is definitely at the center of that. Spring provides data
access operations performed with JDBC using three main approaches:

 ➤ Using Template Method pattern‐based utility classes, namely JdbcTemplate and
NamedParameterJdbcTemplate, to perform JDBC operations more easily by removing
repetitive data access code blocks in the application, properly handling resource cleanups,
and so on.

 ➤ Using database metadata to simplify queries using classes such as SimpleJdbcInsert and
SimpleJdbcCall. That way you need to provide only a table or stored procedure name and
a map of parameters corresponding to column names to perform an SQL operation.

 ➤ Using MappingSqlQuery, SqlUpdate, and StoredProcedure classes to represent database
operations as reusable Java objects so that you can use them over and over again by provid-
ing only different query parameters each time.

managing JDbC Connections
To start working with JDBC and utilizing Spring’s JDBC support, you first need to obtain a data-
base connection. You have basically two ways to obtain database connections within the JDBC
API. The first option is to use DriverManager, and the other is to use DataSource. DataSource is
preferable because it is a generalized connection factory that enables you to hide database connec-
tion parameters, connection pooling, and transaction management issues from the application. (See
the following Try It Out for an example of using DataSource to obtain a database connection.)

106 ❘ Chapter 4 JDBC Data aCCess with spring

Spring uses DataSource to obtain a connection to the underlying database. Actually, Spring owns
several implementations of the DataSource interface, in addition to providing mechanisms to access
DataSources defined and managed by application servers through JNDI.

try it oUt Configuring DataSource to Obtain JDBC Connections

You can find the source code within the project named configuring‐datasource in the
spring‐book‐ch4.zip file.

In this Try It Out, you configure a DataSource object to obtain a JDBC connection. To begin, follow
these steps:

 1. Create a Maven project with the following Maven command:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch4

 2. Add the following Spring <dependency> elements into your pom.xml:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Use an H2 database. Add the following <dependency> element into your pom.xml:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.175</version>
</dependency>

 4. Find the org.h2.tools.Console class of the H2 database from the project classpath, and run it
as a Java application within your IDE. When it runs, the browser automatically appears on your
screen with the database console. Select Generic H2 Server and log in to it using sa as the user-
name with an empty password.

 5. Prepare the database schema. You are going to create an ACCOUNT table with the following data
definition language (DDL) statement. You can execute it from your database console:

CREATE TABLE ACCOUNT (
 ID BIGINT IDENTITY PRIMARY KEY,
 OWNER_NAME VARCHAR(255),
 BALANCE DOUBLE,
 ACCESS_TIME TIMESTAMP,
 LOCKED BOOLEAN
)

Introducing Spring’s JDBC Support ❘ 107

 6. Create a Spring bean configuration class as follows, and define a dataSource bean using the
org.springframework.jdbc.datasource.DriverManagerDataSource class:

@Configuration
public class Ch4Configuration {
 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }
}

 7. You can now create a Main class having a main method with the following contents:

public class Main {
 public static void main(String[] args) throws SQLException {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch4Configuration.class);
 DataSource dataSource =
 applicationContext.getBean("dataSource", DataSource.class);

 Connection connection = dataSource.getConnection();
 System.out.println(connection.isClosed());
 connection.close();
 System.out.println(connection.isClosed());
 }
}

How It Works

H2 is a simple, lightweight, file‐based database implementation that you can easily run in your environ-
ment. You first added its library into your classpath as a Maven dependency and ran it using its org.
h2.tools.Console main class. The H2 database console application immediately launches a browser
window so that you can log in to the database.

You defined a dataSource bean using Spring’s DriverManagerDataSource class. The
DriverManagerDataSource class is a simple implementation of the javax.sql.DataSource interface.
It returns a new connection every time the getConnection() method is called. This is primarily for test
and standalone environments. You need to feed it some configuration parameters—driverClassName,
url, username, and password properties—so that it can connect to the H2 database.

To test your dataSource bean configuration, you created a Main class with a main method, which basi-
cally loads your Configuration class and obtains the dataSource bean from ApplicationContext.
Inside the main method you called DataSource.getConnection() to obtain a Connection and check
whether it is open.

Another implementation of the javax.sql.DataSource interface, called org.springframework.jdbc
.datasource.SingleConnectionDataSource, is also suitable for test and standalone environments.

tcp://localhost/~/test

108 ❘ Chapter 4 JDBC Data aCCess with spring

It reuses the same connection over and over again. You could have defi ned the dataSource bean using
SingleConnectionDataSource class as well:

 public class Ch4Configuration {
 @Bean
 public DataSource dataSource() {
 SingleConnectionDataSource dataSource = new SingleConnectionDataSource();
 dataSource.setSuppressClose(true);
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }
 }

 Setting the supressClose property to true causes a proxy Connection instance to be returned, which
intercepts close() method calls. This is important if your data access technology or framework calls
the close() method.

 Do not Use DriVermanagerDatasoUrCe in yoUr ProDUCtion
enVironment

 DriverManagerDataSource has no connection‐pooling capability. Therefore, it
tries to open a new physical JDBC Connection whenever it is asked for it. Opening
JDBC connections is an expensive process, so it’s better to use another DataSource
implementation that provides connection‐pooling capability. C3P0 or Apache
Commons DBCP libraries are good open source candidates for this purpose.
Application servers also let you confi gure DataSource instances with connection‐
pooling capability, and you can access confi gured DataSource instances from
within Spring Container via JNDI lookup.

 You can fi nd more information about the C3P0 connection pool library and down-
load it at http://sourceforge.net/projects/c3p0 .

 You can fi nd more information about the Apache Commons DBCP connection pool
library and download it at http://commons.apache.org/proper/commons‐dbcp/ .

 embedded DB Support
 Spring has nice support for easily creating and using lightweight database instances, and it provides
the EmbeddedDatabase interface for this purpose. Currently, it supports implementations for H2,
HSQL, and Derby for development and testing, but you can also create your custom implementa-
tion, as well. The EmbeddedDatabase interface extends the javax.sql.DataSource interface.
Therefore, it can also be defi ned and used as an ordinary dataSource bean. You can create and
initialize an embedded database engine using XML‐based confi guration as follows:

tcp://localhost/~/test
http://sourceforge.net/projects/c3p0
http://commons.apache.org/proper/commons%E2%80%90dbcp/

Introducing Spring’s JDBC Support ❘ 109

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-4.0.xsd">

 <jdbc:embedded-database id="FileName_dataSource" type="H2">
 <jdbc:script location="classpath:schema.sql"/>
 <jdbc:script location="classpath:data.sql"/>
 </jdbc:embedded-database>

</beans>

Libraries of the database instance you specified in the type attribute must exist in the project
classpath. For example, if you specify H2 as a database, h2.jar must be available in the proj-
ect classpath. You need to add JDBC schema namespace support of Spring to be able to use the
<jdbc:embedded‐database/> element in the preceding code within the XML configuration file.

It is also possible to perform this configuration programmatically, as shown in the following JUnit4
unit test code:

public class EmbeddedDataSourceTest {
 private DataSource dataSource;

 @Before
 public void setUp() {
 dataSource = new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.H2)
 .addScript("classpath:schema.sql")
 .addScript("classpath:data.sql").build();
 }

 @Test
 public void testDataAccessLogic() throws SQLException {
 Connection connection = dataSource.getConnection();
 Assert.assertFalse(connection.isClosed());
 connection.close();
 }

 @After
 public void tearDown() {
 ((EmbeddedDatabase)dataSource).shutdown();
 }
}

note You can populate your embedded database with SQL scripts, which
can be given as input parameters. You need to create schema.sql and data
.sql script files within your root classpath for the preceding test class to work.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-4.0.xsd

110 ❘ Chapter 4 JDBC Data aCCess with spring

Using a Connection‐pooled DataSource
For enterprise Java production environments, it is more suitable to use a DataSource instance
that has connection‐pooling capabilities. DataSource instances managed by application servers
usually have this feature. However, you can easily define a connection‐pooled DataSource bean
from a third‐party connection‐pooling library, such as C3P0 or Apache Commons DBCP, as
follows:

@Configuration
public class Ch4ConfigurationForPooledDS1 {

 @Bean(destroyMethod="close")
 public DataSource dataSource() {
 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }
}

@Configuration
public class Ch4ConfigurationForPooledDS2 {

 @Bean(destroyMethod="close")
 public DataSource dataSource() throws Exception {
 ComboPooledDataSource dataSource = new ComboPooledDataSource();
 dataSource.setDriverClass("org.h2.Driver");
 dataSource.setJdbcUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUser("sa");
 dataSource.setPassword("");
 return dataSource;
 }
}

You must add the following dependency elements into your pom.xml file to create the bean defini-
tions shown in the preceding code:

<dependency>
 <groupId>commons-dbcp</groupId>
 <artifactId>commons-dbcp</artifactId>
 <version>1.4</version>
</dependency>

<dependency>
 <groupId>com.mchange</groupId>
 <artifactId>c3p0</artifactId>
 <version>0.9.2.1</version>
</dependency>

If you want to use a DataSource instance managed by an application server, you can access it via
JNDI lookup using JEE schema namespace support of Spring as follows:

tcp://localhost/~/test
tcp://localhost/~/test

Introducing Spring’s JDBC Support ❘ 111

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-4.0.xsd">

 <jee:jndi-lookup jndi-name="jdbc/pooledDS" id="FileName_dataSource"/>

</beans>

Initializing DB
It is also quite easy to initialize a database using some SQL scripts during application startup time
using Spring:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-4.0.xsd">

 <jdbc:initialize-database data-source="dataSource">
 <jdbc:script location="classpath:schema.sql"/>
 <jdbc:script location="classpath:data.sql"/>
 </jdbc:initialize-database>

</beans>

You assign your DataSource bean name to the data‐source attribute, and the initialization step is
executed after DataSource bean creation.

It is important to note that the preceding initialization scripts will work every time the application
is started. If you only want to perform this initialization once then you must either execute them
outside the application—for example, using a database tool like SQL Plus—or you can run the ini-
tialization conditionally as follows:

<jdbc:initialize-database data-source="dataSource"
 enabled="#{systemProperties.INIT_DB}">
 <jdbc:script location="classpath:schema.sql"/>
 <jdbc:script location="classpath:data.sql"/>
 </jdbc:initialize-database>

The <initialize‐database> element has the enabled attribute, which can have either a true or
false value. Initialization happens only if the enabled attribute value is true. In the preceding
code snippet, the enabled attribute value is a Spring Expression that queries for the INIT_DB prop-
erty among system properties or environment variables. You can define the Java system property
with ‐DINIT_DB=true while running the application with the java command.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee-4.0.xsd
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-4.0.xsd

112 ❘ Chapter 4 JDBC Data aCCess with spring

Configuring and Using spring’s JDbC support
The core class of Spring’s JDBC support is JdbcTemplate. It simplifies the use of JDBC and
helps to avoid common errors. JdbcTemplate can be used to execute SQL queries or insert,
update, and delete statements. It executes core JDBC workflow, initiating iteration over
ResultSets and catching JDBC exceptions and translating them to the generic, more informa-
tive DataAccessException hierarchy defined by Spring. Application code only needs to provide
SQL and ResultSet processing logic if necessary. The following Try It Out shows you how to
configure and use JdbcTemplate.

try it oUt Configuring and Using Spring Jdbctemplate

You can find the source code within the project named configuring‐and‐using‐jdbctemplate in the
spring‐book‐ch4.zip file.

In this Try It Out, you first create an Account domain class and an AccountDao interface to define
persistence operations that will be performed over those Account objects. Second, you define a
JdbcTemplate bean and inject it into your accountDao bean to perform data access operations
later. You can continue from the project you created for the earlier Try It Out. To begin, follow
these steps:

 1. Create an Account domain class, and AccountDao interface to define persistence operations that
will be performed over those Account objects:

public class Account {
 private long id;
 private String ownerName;
 private double balance;
 private Date accessTime;
 private boolean locked;

 //getters & setters...
}

public interface AccountDao {
 public void insert(Account account);
 public void update(Account account);
 public void update(List<Account> accounts);
 public void delete(long accountId);
 public Account find(long accountId);
 public List<Account> find(List<Long> accountIds);
.... public List<Account> find(String ownerName);
 public List<Account> find(boolean locked);
}

 2. Create an AccountDaoJdbcImpl class that implements the previously defined AccountDao inter-
face. You can leave method bodies empty or return a null value for the moment. You implement
them one by one in the following sections.

Introducing Spring’s JDBC Support ❘ 113

public class AccountDaoJdbcImpl implements AccountDao {

 private JdbcTemplate jdbcTemplate;

 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 //method implementations...
}

 3. Define the jdbcTemplate bean using the org.springframework.jdbc.core.JdbcTemplate class
and satisfy its DataSource dependency using the previously defined dataSource bean:

@Configuration
public class Ch4Configuration {
 @Bean
 public JdbcTemplate jdbcTemplate() {
 JdbcTemplate jdbcTemplate = new JdbcTemplate();
 jdbcTemplate.setDataSource(dataSource());
 return jdbcTemplate;
 }

 4. Define your accountDao bean using the AccountDaoJdbcImpl class and inject the jdbcTemplate
bean into it:

 @Bean
 public AccountDao accountDao() {
 AccountDaoJdbcImpl accountDao = new AccountDaoJdbcImpl();
 accountDao.setJdbcTemplate(jdbcTemplate());
 return accountDao;
 }
}

 5. You can now perform a lookup to the accountDao bean in the main method:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch4Configuration.class);
 AccountDao accountDao = applicationContext.getBean(AccountDao.class);
 }
}

How It Works

JdbcTemplate is defined as a Spring-managed bean. It is thread safe and can be shared across dif-
ferent data access objects; therefore, it is defined as a singleton. The main dependency it needs is a
DataSource object, and you already created a DataSource bean in the previous example. You injected
that bean into the jdbcTemplate.

114 ❘ Chapter 4 JDBC Data aCCess with spring

At the last step, you injected the jdbcTemplate bean into your accountDao bean, which is
defined using the AccountDaoJdbcImpl class. You can now use the JdbcTemplate instance within
AccountDaoJdbcImpl to perform various data access operations.

Performing Data aCCess oPerations with sPring

This section mainly focuses on using JdbcTemplate and its more specialized form,
NamedParameterJdbcTemplate, to show how various data access operations can be performed.
However, this section also includes information about other classes provided by Spring as well. For
example, SimpleJdbcCall is used to simplify queries using database metadata. MappingSqlQuery,
SqlUpdate, and StoredProcedure classes are used to show how SQL operations can be modeled as
Java objects and used over and over again.

running Queries
JdbcTemplate offers various methods with overloaded versions to execute queries and handle
results as different types of objects in your application. You usually make use of the query(..),
queryForObject(..), queryForList(..), queryForMap(..), and queryForRowSet(..) methods
with several different overloaded versions of them that accept different input arguments such as
query string, query input parameter values, their types, result object type, and so on. You can use
any version suitable for your specific query at hand. The following Try It Out demonstrates how to
run queries with JdbcTemplate.

try it oUt running Queries with Jdbctemplate

You can find the source code within the project named running‐queries‐with‐jdbctemplate in the
spring‐book‐ch4.zip file.

In this Try It Out, you implement the find(long accountId) method of the AccountDaoJdbcImpl
class using JdbcTemplate. You can continue from the place you left off in the previous Try It Out. To
begin, follow these steps:

@Override
public Account find(long accountId) {

 1. Use the JdbcTemplate.queryForObject(..) method for this purpose. It expects an SQL query,
an org.springframework.jdbc.core.RowMapper object, and a varargs Object as query input
parameters, if any exist:

 return jdbcTemplate.queryForObject(
 "select id,owner_name,balance,access_time,locked from account where id = ?",
 new RowMapper<Account>() {

 2. Create an anonymous class from the RowMapper interface with the Account generic type param-
eter. Its mapRow(..) method returns an Account object:

performing Data access Operations with Spring ❘ 115

 @Override
 public Account mapRow(ResultSet rs, int rowNum) throws SQLException {

 3. Create an Account instance inside the mapRow(..) method and populate its properties with values
obtained from the ResultSet object given as the input parameter to the mapRow(..) method:

 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs.getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 return account;
 }

 }, accountId);
}

 4. Insert sample account data into the database with the following SQL statement:

insert into account (id,owner_name,balance,access_time,locked) values ~CA
 (100,'john doe',10.0,'2014-01-01',false);

 5. Now you can use the accountDao bean to fetch the account record within the main method:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch4Configuration.class);
 AccountDao accountDao = applicationContext.getBean(AccountDao.class);

 Account account = accountDao.find(100L);

 System.out.println(account.getId());
 System.out.println(account.getOwnerName());
 System.out.println(account.getBalance());
 System.out.println(account.getAccessTime());
 System.out.println(account.isLocked());
 }
}

How It Works

JdbcTemplate implements the Template Method pattern. The Template Method pattern, in general,
tries to encapsulate the main steps of an algorithm, enabling the developer to change individual parts of
it by passing them via method parameters.

You have already seen the following pseudocode block in the section that discussed the problems of
using vanilla JDBC. If you closely examine the recurring code block, you see that only two parts within
this code block change across different data access methods. The first one is the executed query and its
parameters; the second one is the result set processing logic. If the query returns a list of rows, you need
to set up a while loop, and process each row by iterating over the result set.

116 ❘ Chapter 4 JDBC Data aCCess with spring

try {
 //obtain database connection
 //start a transaction
 //create and execute the query
 //process query result
 //commit the transaction
} catch (SQLException e) {
 //handle SQL exceptions, perform transaction rollback
} finally {
 //close db resources like connections, statements
}

You pass result set processing logic into the template method using callback objects. Callback objects
usually have one known method in which data access–specific result set processing logic is imple-
mented. Callbacks are usually implemented as anonymous classes and immediately passed into the
template method as an input parameter, and then the template method calls their well‐known method
whenever necessary.

JdbcTemplate, as an implementation of the Template Method pattern, encapsulates all of the earlier
data access logic within its query execution methods. The query(..) and queryForObject(..)
methods of JdbcTemplate follow exactly the same approach. They accept query string, query
parameters, and callback object of type RowMapper as input parameters.

RowMapper is used to map each row returned in a ResultSet to a result object. It is usually
used as an input parameter given to JdbcTemplate, but it can also be used as your parameter
of a stored procedure. Its mapRow(ResultSet rs, int rowNum) method is called within a while
loop inside JdbcTemplate for each row in the ResultSet, converting them into corresponding
result objects.

RowMapper implementations are stateless and reusable. Therefore, it is always good practice to create a
RowMapper implementation for each different domain object and use it in several different places.

Input arguments with the org.springframework.jdbc.core.ResultSetExtractor interface are also
accepted as input arguments by several JdbcTemplate.query(..) methods. However, that interface is
mainly used within the JDBC framework itself. Hence, it is almost always better to use RowMapper
instead.

Another interface called org.springframework.jdbc.core.RowCallbackHandler is also used to pro-
cess the ResultSet on a per‐row basis. Compared to the other two interfaces, RowCallbackHandler
implementations are stateful. They keep the result state for later use. For example, you can implement a
RowCallbackHandler to count rows or create an XML document from the ResultSet.

The queryForList(..) and queryForMap(..) methods use a simpler approach. The
queryForList(..) method executes the query and returns a List whose elements are Map with
column names as keys. The queryForMap(..) method, on the other hand, returns Map as a result;
again keys of the Map are column names. It is useful if you don’t have a corresponding domain object
that can be used for row mapping.

performing Data access Operations with Spring ❘ 117

The queryForRowSet(..) method returns org.springframework.jdbc.support.rowset
.SqlRowSet, which is a disconnected version of the ResultSet object. You can access your data
after your connection is closed. It is actually a mirror interface for javax.sql.RowSet. Its main
advantage over RowSet is that it doesn’t throw an SQLException, so you don’t have to deal with
checked SQLExceptions in your code. It also extends the java.io.Serializable interface; there-
fore, its implementations usually can be stored and retrieved later on.

Queries with named Parameters
Instead of using the classic “?” placeholder, you can use named parameters, each starting with a
column, within your SQL statements, as shown in the following Try It Out. Spring provides org
.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate for this purpose.
NamedParameterJdbcTemplate actually wraps up JdbcTemplate, so almost all the hard work is
actually done by JdbcTemplate.

try it oUt Using Named parameters within Queries

You can find the source code within the project named using‐namedparameters in the
spring‐book‐ch4.zip file.

In this Try It Out, you use named parameters within a query instead of the positional parameters used
in the preceding example. You can continue from the place you left at the previous Try It Out. To
begin, follow these steps:

 1. Add a property with type NamedParameterJdbcTemplate in AccountDaoJdbcImpl, and initialize
it within the setJdbcTemplate(..) method as follows:

public class AccountDaoJdbcImpl implements AccountDao {

 private JdbcTemplate jdbcTemplate;
 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(jdbcTemplate);
 }

 2. Instead of using JdbcTemplate, use NamedParameterJdbcTemplate to implement the
AccountDaoJdbcImpl.find(String ownerName) method:

@Override
public Account find(String ownerName) {
 return namedParameterJdbcTemplate.queryForObject(
"select id,owner_name,balance,access_time,locked from account where owner_name = ~CA
 :ownerName",
 Collections.singletonMap("ownerName", ownerName),

 3. The RowMapper parameter is an instance created from an anonymous class. You implement its
mapRow(..) method, and create and return the Account instance whose properties are obtained
from the ResultSet given to the mapRow(..) method:

118 ❘ Chapter 4 JDBC Data aCCess with spring

 new RowMapper<Account>() {
 @Override
 public Account mapRow(ResultSet rs, int rowNum) throws SQLException {
 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs.getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 return account;
 }
 });
 }
}

 4. Use the accountDao bean to fetch the account records within the main method:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch4Configuration.class);
 AccountDao accountDao = applicationContext.getBean(AccountDao.class);

 Account account = accountDao.find("john doe").get(0);

 System.out.println(account.getId());
 System.out.println(account.getOwnerName());
 System.out.println(account.getBalance());
 System.out.println(account.getAccessTime());
 System.out.println(account.isLocked());
 }
}

How It Works

You can pass in named parameters using either an ordinary Map or an org.springframework.jdbc
.core.namedparam.SqlParameterSource instance. The SqlParameterSource interface has several
different implementations. MapSqlParameterSource is one of them. It actually wraps up an ordinary
Map within it, so keys are named parameter names, and values are named parameter values. You can
also use a BeanPropertySqlParameterSource implementation as well. This implementation wraps a
JavaBean object, and properties of that JavaBean object are used as named parameter values.

writing Queries Using the in Clause
SQL supports running queries based on an expression that includes a variable number of input parame-
ter values. For example, you can write a query like SELECT FROM ACCOUNT WHERE ID IN (1,2,3,4,5).
Unfortunately, JDBC doesn’t directly support this feature, so you cannot declare a variable number
of placeholders in your query. To overcome this limitation, you can either write several different ver-
sions of your query with a different number of input parameter values, or generate your SQL query

performing Data access Operations with Spring ❘ 119

with a variable number of input parameters dynamically at run time. Spring’s JdbcTemplate and
NamedParameterJdbcTemplate classes handle this for you. They enable you to pass in input parameters
of type List of primitive values, and they generate the query dynamically at run time with the exact
number of placeholders by looking at the size of the List object. The following code snippet shows an
implementation of the AccountDaoJdbcImpl.find(List <Long> accountIds) method:

@Override
public List<Account> find(List<Long> accountIds) {
 SqlParameterSource sqlParameterSource =
 new MapSqlParameterSource("accountIds", accountIds);
 return namedParameterJdbcTemplate.query(
 "select * from account where id in (:accountIds)", sqlParameterSource,
 new RowMapper<Account>() {

 @Override
 public Account mapRow(ResultSet rs, int rowNum) throws SQLException {
 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs.getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 return account;
 }

 });
}

Warning You need to be careful because the SQL standard doesn’t sup-
port more than 100 placeholders as query parameters in the IN clause.
Therefore, your query may fail depending on the database you are using.
Each database vendor has its own max limit. For example, Oracle supports
1,000. If your input List size exceeds this limit, you need to split your List
elements into appropriate chunks, and execute the query several times for
each group separately.

Using Preparedstatements within Jdbctemplate
When you execute a query using java.sql.Statement, the database first gets the query string, and
then parses, compiles, and computes an execution plan for it before the execution. If you are executing
the same query many times, this preprocess step might be a performance bottleneck. The preprocess
phase is performed only once if you use java.sql.PreparedStatement. Therefore, it will probably
yield better execution times. The other advantage of using PreparedStatements over creating query
strings dynamically each time is protecting the system against SQL injection attacks. Because query
parameters are not given during query construction, queries executed with PreparedStatements
are safer to use. JdbcTemplate query methods support executing queries using PreparedStatement
objects. The following Try It Out demonstrates how to use PreparedStatements.

120 ❘ Chapter 4 JDBC Data aCCess with spring

try it oUt Using preparedStatements within Jdbctemplate

You can find the source code within the project named using‐preparedstatements in the
spring‐book‐ch4.zip file.

In this Try It Out, you implement the AccountDaoJdbcImpl.find(Boolean locked) method using
java.sql.PreparedStatment. You can continue from the place you left at the previous Try It Out. To
begin, follow these steps:

 1. JdbcTemplate.query(..) methods expect the org.springframework.jdbc.core
.PreparedStatementCreator instance to obtain a PreparedStatement. Spring provides the
org.springframework.jdbc.core.PreparedStatementCreatorFactory class that efficiently
helps you create multiple PreparedStatement objects with different parameters based on an SQL
statement and a single set of parameter declarations:

@Override
public List<Account> find(boolean locked) {
 PreparedStatementCreatorFactory psCreatorFactory =
 new PreparedStatementCreatorFactory(
 "select * from account where locked = ?",new int[]{Types.BOOLEAN});

 2. You can now invoke the query(..) method with the PreparedStatementCreator instance
obtained using the previously mentioned PreparedStatementCreatorFactory object and
RowMapper parameters:

 return jdbcTemplate.query(psCreatorFactory.newPreparedStatementCreator(
 new Object[]{locked}),

 3. The RowMapper parameter is an instance created from an anonymous class. Implement its
mapRow(..) method, and then create and return the Account instance whose properties are
obtained from the ResultSet given to the mapRow(..) method:

new RowMapper<Account>() {
 @Override
 public Account mapRow(ResultSet rs, int rowNum) throws SQLException {
 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs.getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 return account;
 }

 });
}

How It Works

You first need to create the factory object and initialize it by giving SQL and parameter type
declarations. After that you can use its newPreparedStatementCreator(..) methods to create

performing Data access Operations with Spring ❘ 121

actual PreparedStatementCreator instances by giving input parameter values to those method
calls.

PreparedStatementCreator implementations are responsible for providing SQL and any necessary
parameters. It is also possible for them to implement the org.springframework.jdbc.core
.SqlProvider interface. By implementing this interface, the PreparedStatementCreator implementa-
tions can expose the SQL used for PreparedStatement creation to the outside, resulting in better con-
textual information in case of exceptions.

JdbcTemplate.query(..) methods also accept an instance from the org.springframework.jdbc
.core.PreparedStatementSetter interface in order to be used as a callback interface. It is used to
set parameter values on the PreparedStatement object provided by JdbcTemplate. JdbcTemplate
creates PreparedStatement, and this callback is responsible only for setting parameter values:

@Override
public List<Account> find(final boolean locked) {
 return jdbcTemplate.query(
 "select * from account where locked = ?", new PreparedStatementSetter() {

 @Override
 public void setValues(PreparedStatement ps) throws SQLException {
 ps.setBoolean(1, locked);
 }
 }, new RowMapper<Account>() {

 @Override
 public Account mapRow(ResultSet rs, int rowNum) throws SQLException {
 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs.getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 return account;
 }

 });
}

If you need to create PreparedStatements manually, it might be the only case to implement the
PreparedStatementCreator interface; otherwise, it is almost always easier and better to use the
PreparedStatementSetter interface.

inserting, Updating, and Deleting records
JdbcTemplate has several overloaded update(..) methods that each accepts different parameters
such as an SQL statement, input parameter values, their types, and so on. They can be used to per-
form data manipulation language (DML) operations like inserting, updating, or deleting rows in the
database (see the following Try It Out for an example).

122 ❘ Chapter 4 JDBC Data aCCess with spring

try it oUt Inserting, Updating, and Deleting records Using Jdbctemplate

You can find the source code within the project named inserting‐updating‐deleting‐records in
the spring‐book‐ch4.zip file. In this Try It Out, you implement insert, update, and delete methods
of the AccountDaoJdbcImpl class using JdbcTemplate. You can continue from the place you left off in
the previous Try It Out. To begin, follow these steps:

 1. The primary key of the account table is autogenerated, so you need to obtain it after the insert
operation. Use the org.springframework.jdbc.support.KeyHolder interface that Spring pro-
vides for this purpose:

@Override
public void insert(Account account) {
 PreparedStatementCreatorFactory psCreatorFactory =
 new PreparedStatementCreatorFactory(
 "insert into account(owner_name,balance,access_time,locked) values(?,?,?,?)",
 new int[] { Types.VARCHAR, Types.DOUBLE, Types.TIMESTAMP,
 Types.BOOLEAN });
 KeyHolder keyHolder = new GeneratedKeyHolder();
 int count=jdbcTemplate.update(
 psCreatorFactory.newPreparedStatementCreator(new Object[] {
 account.getOwnerName(), account.getBalance(),
 account.getAccessTime(), account.isLocked() }), keyHolder);

 2. Create the following exception to throw if the insert operation fails:

public class InsertFailedException extends DataAccessException {
 public InsertFailedException(String msg) {
 super(msg);
 }
}

 3. Check the returned value from the update(..) method and throw InsertFailedException:

 if(count != 1) throw new InsertFailedException("Cannot insert account");

 4. Set the id value obtained from keyHolder to the Account instance:

 account.setId(keyHolder.getKey().longValue());
}

 5. Create the following exception to throw if the update operation fails:

public class UpdateFailedException extends DataAccessException {
 public UpdateFailedException(String msg) {
 super(msg);
 }
}

 6. Next perform the update operation in a similar way:

@Override
public void update(Account account) {
 int count = jdbcTemplate
 .update(

performing Data access Operations with Spring ❘ 123

"update account set (owner_name,balance,access_time,locked) = (?,?,?,?) where id=?",
 account.getOwnerName(), account.getBalance(),
 account.getAccessTime(), account.isLocked(),
 account.getId());
 if(count != 1) throw new UpdateFailedException("Cannot update account");
}

 7. Create the following exception to throw if the delete operation fails:

public class DeleteFailedException extends DataAccessException {
 public DeleteFailedException(String msg) {
 super(msg);
 }
}

 8. Use the JdbcTemplate.update(..) method to perform the delete operation as well, and throw
DeleteFailedException if the delete is unsuccessful:

@Override
public void delete(long accountId) {
 int count = jdbcTemplate.update("delete account where id = ?",accountId);
 if(count != 1) throw new DeleteFailedException("Cannot delete account");
}

 9. You can now create a new account, update its balance, and finally delete it within the main
method.

Account account = new Account();
account.setOwnerName("Joe Smith");
account.setBalance(20.0);
account.setAccessTime(new Date());
account.setLocked(false);

accountDao.insert(account);

account = accountDao.find(account.getId());

System.out.println(account.getId());
System.out.println(account.getOwnerName());
System.out.println(account.getBalance());
System.out.println(account.getAccessTime());
System.out.println(account.isLocked());

account.setBalance(30.0);

accountDao.update(account);

account = accountDao.find(account.getId());
System.out.println(account.getBalance());

accountDao.delete(account.getId());

List<Account> accounts = accountDao.find(Arrays.asList(account.getId()));

System.out.println(accounts.size());

124 ❘ Chapter 4 JDBC Data aCCess with spring

How It Works

All insert, update, and delete SQL operations are performed with update(..) methods of
JdbcTemplate. Because you needed to obtain the autogenerated primary key value at the end of the
insert operation, you first created a PreparedStatementCreatorFactory so that you can obtain a
PreparedStatementCreator, and instantiated a KeyHolder from the GeneratedKeyHolder class.
After the update operation you called the keyHolder.getKey() method to fetch an autogenerated
value, and set it to the Account’s id property.

You defined exceptions to throw when the related data access operation fails. Spring provides an
abstract base class org.springframework.dao.DataAccessException. You use it to create a common
base to handle various kinds of data access exceptions that occur while using different data access
technologies through Spring Data Access support.

All those insert, update, and delete DML operations are performed using the update(..) method of
the JdbcTemplate. You need to check the returned value from the update(..) methods. The returned
value gives the number of records that are affected by executed DML operations. If an unexpected num-
ber returns, you should throw an appropriate exception to indicate this error to the upper layer in your
application.

Calling stored Procedures and stored functions
You can call stored procedures and stored functions defined in your database using Spring’s
org.springframework.jdbc.core.simple.SimpleJdbcCall and org.springframework.jdbc
.object.StoredProcedure classes. See the following Try It Out for an example.

try it oUt Calling Stored procedures with SimpleJdbcCall

You can find the source code within the project named calling‐storedprocedures in the
spring‐book‐ch4.zip file.

In this Try It Out, you call a stored procedure available in the database using SimpleJdbcCall. You
can continue from the place you left off in the previous Try It Out. To begin, follow these steps:

 1. Create a SimpleJdbcCall instance:

SimpleJdbcCall simpleJdbcCall = new SimpleJdbcCall(jdbcTemplate);

 2. Specify a procedure name to be executed and declare its input and output parameters:

simpleJdbcCall
 .withProcedureName("concat")
 .withoutProcedureColumnMetaDataAccess()
 .declareParameters(
 new SqlParameter("param1", Types.VARCHAR),
 new SqlParameter("param2", Types.VARCHAR))

 3. If your procedure/function returns a ResultSet, you can assign a name to it and specify
RowMapper to process it as follows:

 .returningResultSet("result",new SingleColumnRowMapper<String>(String.class));

performing Data access Operations with Spring ❘ 125

 4. Compile the procedure by calling its compile() method:

simpleJdbcCall.compile();

 5. After compiling the SimpleJdbcCall instance, create a Map to pass input parameters and call its
execute(..) method:

Map<String, Object> paramMap = new HashMap<String, Object>();
paramMap.put("param1", "hello ");
paramMap.put("param2", "world!");
Map<String,Object> resultMap = simpleJdbcCall.execute(paramMap);

 6. Access the result List via the result key from within the Map that’s returned, and iterate over the
List with a for loop:

List<String> resultList = (List<String>) resultMap.get("result");
for(String value:resultList) {
 System.out.println(value);
}

How It Works

SimpleJdbcCall expects a DataSource or JdbcTemplate instance to operate. However, it is better to
initialize it with a JdbcTemplate instance to benefit from the automatic exception translation feature
that Spring provides. You can use it to invoke both stored procedures and stored functions in a very
similar way. You set the procedure name by calling the withProcedureName(..) method. If it is a
function, you can call the withFunctionName(..) method instead. SimpleJdbcCall can obtain names
of in and out parameters by looking at database metadata, so that you don’t need to declare them
explicitly. Currently, Spring supports Derby, DB2, MySQL, MS SQL, Oracle, and Sybase. You can still
declare parameters by yourself, for example, if you have a parameter like ARRAY or STRUCT that cannot
be mapped to a Java class automatically, or your database might not be among the supported databases
for Spring’s metadata lookup functionality. To disable automatic metadata discovery, you can call
withoutProcedureColumnMetaDataAccess() as shown earlier.

You can declare input parameters with SqlParameter, output parameters with SqlOutParameter,
and input‐output parameters with SqlInOutParameter classes. They all accept the name assigned
to the parameter defined. Otherwise it becomes an anonymous parameter definition, and when call-
ing a stored procedure or stored function the order of parameter values becomes important. If you’ve
assigned names, you can create a Map to give input parameter values during execution. If your procedure
or function returns a ResultSet, you can assign it a name to access it later from the returned result
Map, and specify a RowMapper instance to process the ResultSet by calling returningResultSet(..).
If this ResultSet is defined as an out parameter of type ref cursor, the name given must be the same
as the out parameter declared with SqlOutParameter in the parameter‐declaration step.

Before execution, as the last step, you invoke the compile() method. By calling compile, a java.sql
.CallableStatement is created in the back end and prepared for execution. You execute the proce-
dure by calling execute(..), and input parameters are given within a Map. If it is a stored function,
you can also invoke it by calling its executeFunction(..). When the execution is completed, it
returns a Map in which any return value(s) are contained. If it is a function, it will return a function
result instead of the result Map.

126 ❘ Chapter 4 JDBC Data aCCess with spring

Performing batch operations
You can group several update operations and execute them together within a single
PreparedStatement object created by JdbcTemplate. This is called batching. Batch operations
reduce the number of round trips to the database and help you improve data access performance of
the application. JdbcTemplate has several batchUpdate(..) methods for this purpose:

@Override
public void update(final List<Account> accounts) {
 int[] counts = jdbcTemplate.batchUpdate(
"update account set(owner_name,balance,access_time,locked)=(?,?,?,?) where id=?",
 new BatchPreparedStatementSetter() {

 @Override
 public void setValues(PreparedStatement ps, int i) throws SQLException {
 Account account = accounts.get(i);
 ps.setString(1, account.getOwnerName());
 ps.setDouble(2, account.getBalance());
 ps.setTimestamp(3, new Timestamp(account.getAccessTime().getTime()));
 ps.setBoolean(4, account.isLocked());
 ps.setLong(5, account.getId());
 }

 @Override
 public int getBatchSize() {
 return accounts.size();
 }
 });
 int i = 0;
 for(int count:counts) {
 if(count == 0) throw new UpdateFailedException("Row not updated :" + i);
 i++;
 }
}

The preceding code snippet illustrates how you can perform batch update by implementing
the AccountDaoJdbcImpl.update(List<Account> accounts) method. You need to create a
BatchPreparedStatementSetter instance to set parameter values of each update operation to
be executed within a single PreparedStatement, and this is usually provided as an anonymous
class object. It has two methods: one is getBatchSize(), which returns the number of opera-
tions performed in the batch, and the other is setValue(..), within which you set the param-
eters of each row.

handling blob and Clob objects
You can store binary data–like images, videos, or documents that have large sizes. Such data is
called large object (LOB)—more specifically, binary large object (BLOB) if it is binary data or
character large object (CLOB) if it is textual data. Spring provides the org.springframework
.jdbc.support.lob.LobHandler and org.springframework.jdbc.support.lob.LobCreator
interfaces to deal with LOB values.

performing Data access Operations with Spring ❘ 127

The org.springframework.jdbc.support.lob.DefaultLobHandler class implements the
LobHandler interface. You can use it to access LOB values from the result set:

LobHandler lobHandler = new DefaultLobHandler();
byte[] binaryContent = lobHandler.getBlobAsBytes(rs, 1);
String textualContent = lobHandler.getClobAsString(rs, 2);

By calling its getLobCreator() method, you can obtain the LobCreator instance as well and use it
to set LOB values in the PreparedStatement:

jdbcTemplate.update(
 "update account set (owner_photo,account_desc) = (?,?) where id = ? ",
 new PreparedStatementSetter() {

 @Override
 public void setValues(PreparedStatement ps) throws SQLException {
 LobCreator lobCreator = lobHandler.getLobCreator();
 lobCreator.setBlobAsBytes(ps, 1, binaryContent);
 lobCreator.setClobAsString(ps, 2, textualContent);
 ps.setInt(3,accountId);
 }
});

accessing Vendor‐specific JDbC methods
You may sometimes need to access vendor‐specific features that are available only in your database
implementation and which you cannot access over the standard JDBC API. DataSource implemen-
tations usually wrap Connection, Statement, and ResultSet objects with their own implementa-
tions. Therefore, you need a mechanism to extract wrapped native instances. Spring provides the
NativeJdbcExtractor interface for this purpose. You can select an implementation of it according
to your runtime environment, although most of the time the SimpleNativeJdbcExtractor class is
enough. You just need to set it in your JdbcTemplate:

Connection con = jdbcTemplate.getDataSource().getConnection();
Connection nativeCon = jdbcTemplate.
 getNativeJdbcExtractor().getNativeConnection(con);
//you can now access your vendor specific features over native connection...

executing DDl operations
Various execute(..) methods provided by JdbcTemplate enable you to execute DDL operations
like the CREATE TABLE and ALTER TABLE statements in addition to implementing arbitrary data
access operations within Spring’s managed JDBC environment:

jdbcTemplate.execute(
"CREATE TABLE ACCOUNT (ID BIGINT IDENTITY PRIMARY KEY,
 OWNER_NAME VARCHAR(255), BALANCE DOUBLE,
 ACCESS_TIME TIMESTAMP, LOCKED BOOLEAN,
 OWNER_PHOTO BLOB, ACCOUNT_DESC CLOB)");

128 ❘ Chapter 4 JDBC Data aCCess with spring

That way, your data access operations still participate in Spring’s managed transactions, and
SQLException conversion takes place automatically. Those execute(..) methods can return a
result object: for example, a domain object, a collection of domain objects, or nothing, which is the
case when DDL operations are executed.

moDeling JDbC oPerations as JaVa obJeCts

Spring JDBC provides support for accessing databases in a more object‐oriented manner. For exam-
ple, you can define an object that represents a specific SQL query, then execute it and obtain the
result as a list of business objects whose properties are mapped with corresponding column names.
You can also represent insert, update, and delete SQL operations, or call stored procedures as Java
objects in a similar way, and reuse those objects over and over again.

encapsulating sQl Query executions
You can encapsulate any arbitrary SQL query as a Java object using Spring. It provides the abstract
MappingSqlQuery class for this purpose. The primary advantage of using this technique is that it
helps you to encapsulate SQL queries as Java objects and reuse them in several different places. Such
query objects are thread safe and can be shared by several other DAO objects in your application.
The following Try It Out shows you how to encapsulate SQL queries using MappingSQLQuery.

try it oUt encapsulating SQL Queries Using MappingSqlQuery

You can find the source code within the project named encapsulating‐sql‐queries in the
spring‐book‐ch4.zip file.

In this Try It Out, you create a class to encapsulate the SQL query and then use it within the DAO
bean. You can continue from the place you left off with the Try It Out. To begin, follow these steps:

 1. Create a class named AccountByIdQuery that extends from the MappingSqlQuery abstract class.
Provide the type of object that will be returned as the query result:

public class AccountByIdQuery extends MappingSqlQuery<Account> {

 2. Create a constructor that accepts DataSource as an input parameter:

 public AccountByIdQuery(DataSource dataSource) {

 3. Pass in a DataSource object and the SQL query to be executed to the super class:

 super(dataSource,
 "select id,owner_name,balance,access_time,locked from account where id = ?");

 4. Declare any input parameters, and, as the last step, call the compile() method in the constructor:

 declareParameter(new SqlParameter(Types.BIGINT));
 compile();
 }

Modeling JDBC Operations as Java Objects ❘ 129

 5. Implement the mapRow(..) method, create an Account instance by getting property values from
the ResultSet and return the populated Account instance from the mapRow(..) method:

 @Override
 protected Account mapRow(ResultSet rs, int rowNum) throws SQLException {
 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs.getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 return account;
 }

 6. Add a property with the MappingSqlQuery type to the AccountDaoJdbcImpl class:

private MappingSqlQuery<Account> accountByIdQuery;

public void setAccountByIdQuery(MappingSqlQuery<Account> accountByIdQuery) {
 this.accountByIdQuery = accountByIdQuery;
}

 7. Define a bean for this AccountByIdQuery and inject DataSource as the constructor argument.
Next, inject this MappingSqlQuery bean into the accountDao bean:

@Configuration
public class Ch4Configuration {
 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 @Bean
 public JdbcTemplate jdbcTemplate() {
 JdbcTemplate jdbcTemplate = new JdbcTemplate();
 jdbcTemplate.setDataSource(dataSource());
 return jdbcTemplate;
 }

 @Bean
 public MappingSqlQuery<Account> accountByIdQuery() {
 AccountByIdQuery query = new AccountByIdQuery(dataSource());
 return query;
 }

 @Bean
 public AccountDao accountDao() {
 AccountDaoJdbcImpl accountDao = new AccountDaoJdbcImpl();
 accountDao.setJdbcTemplate(jdbcTemplate());
 accountDao.setAccountByIdQuery(accountByIdQuery());

tcp://localhost/~/test

130 ❘ Chapter 4 JDBC Data aCCess with spring

 return accountDao;
 }

}

 8. Call the accountbyIdQuery.findObject(..) method inside the AccountDaoJdbcImpl
.find(long accountId) method as follows:

@Override
public Account find(long accountId) {
 return accountByIdQuery.findObject(accountId);
}

How It Works

The first step in implementing such a reusable query object is to pass an available dataSource bean into
its super constructor together with an SQL query statement. After this step, you need to provide it with
SQL parameters using SqlParameter instances by calling its declareParameter(..) method. The
final step in the constructor is to call the compile() method. At this point your query statement is pre-
pared and becomes ready for use. After the compilation phase, the query object is thread safe and can
be shared among several different data access objects in the application. AccountDaoJdbcImpl defines
a property with the MappingSqlQuery type, and your accountByIdQuery bean is injected into it.
It can then be used within the find(..) method of the DAO object to fetch Account using the given
accountId input parameter.

encapsulating sQl Dml operations
The SqlUpdate class is used to encapsulate insert, update, and delete operations as reusable Java
objects. Those Java objects can be defined as Spring-managed beans, injected into several DAO
beans, and can be used for persistence operations:

public class AccountInsert extends SqlUpdate {
 public AccountInsert(DataSource dataSource) {
 super(dataSource,
 "insert into account(owner_name,balance,access_time,locked) values(?,?,?,?)");
 setParameters(new SqlParameter[] {
 new SqlParameter(Types.VARCHAR),
 new SqlParameter(Types.DOUBLE),
 new SqlParameter(Types.TIMESTAMP),
 new SqlParameter(Types.BOOLEAN) });
 setReturnGeneratedKeys(true);
 setGeneratedKeysColumnNames(new String[]{"id"});
 compile();
 }
}

The preceding code snippet gives an example of how you can extend SqlUpdate to encapsulate the
insert SQL operation as a Java object. Similar to MappingSqlQuery, you give a DataSource bean
and SQL insert statement as constructor parameters to the super(..) call of the AccountInsert

Modeling JDBC Operations as Java Objects ❘ 131

class. After defining input parameters of the SQL insert statement and generated key values, if any,
you call the compile() method to make the insert object ready for use.

The following classes are for encapsulation of update and delete SQL operations as well. They both
look very similar to the AccountInsert class:

public class AccountUpdate extends SqlUpdate {
 public AccountUpdate(DataSource dataSource) {
 super(dataSource,
"update account set (owner_name,balance,access_time,locked)=(?,?,?,?) where id=?");
 setParameters(new SqlParameter[] {
 new SqlParameter(Types.VARCHAR),
 new SqlParameter(Types.DOUBLE),
 new SqlParameter(Types.TIMESTAMP),
 new SqlParameter(Types.BOOLEAN),
 new SqlParameter(Types.BIGINT)});
 compile();
 }
}

public class AccountDelete extends SqlUpdate {
 public AccountDelete(DataSource dataSource) {
 super(dataSource, "delete account where id = ?");
 setParameters(new SqlParameter[]{new SqlParameter(Types.BIGINT)});
 compile();
 }
}

To use those insert, update, and delete objects, you can define them as ordinary Spring beans, inject
them into other beans—for example, your accountDao bean—and call their update(..) methods
by passing any necessary input parameter values.

encapsulating stored Procedure executions
You can use the StoredProcedure class to encapsulate stored procedure or stored function execu-
tions in a very similar way to how you used the SqlUpdate class previously:

public class ConcatStoredProcedure extends StoredProcedure {
 public ConcatStoredProcedure(DataSource dataSource) {
 setDataSource(dataSource);
 setSql("concat");
 declareParameter(new SqlParameter("param1",Types.VARCHAR));
 declareParameter(new SqlParameter("param2",Types.VARCHAR));
 compile();
 }

 public String execute(String param1, String param2) {
 Map<String,Object> inParams = new HashMap<String,Object>();
 inParams.put("param1", param1);
 inParams.put("param2", param2);
 Map<String, Object> map = execute(inParams);
 List<Map> list = (List<Map>) map.get("#result-set-1");
 return list.get(0).values().iterator().next().toString();
 }
}

132 ❘ Chapter 4 JDBC Data aCCess with spring

The StoredProcedure class is an abstract class; therefore, you need to extend it and set its sql property
together with in and out parameters before calling the compile() method. You also need to add a public
method so that it calls one of its protected execute(..) methods and extracts and returns the result.

ConcatStoredProcedure storedProcedure =
 applicationContext.getBean(ConcatStoredProcedure.class);

String result = storedProcedure.execute("hello ", "world!");

System.out.println(result);

exCePtion hanDling anD error CoDe translation

Spring tries to encapsulate data access logic and abstracts away its technical details from the rest of
the application. You can use different technologies in your data access layer, and even mix several of
them in your application at the same time. Each data access technology has its own exception types,
and what Spring does here is to handle technology‐specific exceptions—such as SQLException for
direct JDBC access, HibernateException used by native Hibernate, or EntityException used by
JPA—and translate them into its own exception hierarchy.

Spring JDBC also processes SQL error codes and state information and tries to map those SQL‐
specific error codes to more meaningful exceptions.

Common Data access exception hierarchy
All the exceptions thrown by the Spring JDBC are subclasses of DataAccessException,
which is a type of RuntimeException, so you don’t need to handle it explicitly. Any checked
SQLException when thrown by the underlying JDBC API will be mapped to any of the
subclasses of the DataAccessException framework. As a result, you are relieved from the burden
of handling checked exceptions, and technology‐specific details won’t leak to the upper layers as
well. If you need to handle data access exceptions in any of those layers, you can simply
create a try‐catch block, and it will be enough to just catch Spring’s DataAccessException.
For example, if a violation of integrity constraint occurs while you perform insert or update using
Spring JDBC, it handles the SQLException and decides to throw org.springframework
.dao.DataIntegrityViolationException by examining the SQL error code contained
in the SQLException. The original SQLException is also included while rethrowing
DataIntegrityViolationException. In a similar way, assume that you use Hibernate over
Spring ORM support to perform similar inserts and updates in the database. When Hibernate
throws org.hibernate.exception.ConstraintViolationException, Spring ORM sup-
port handles the HibernateException and decides to rethrow this exception by wrapping with
DataIntegrityViolationException. You can always access the original exception thrown by the
specific data access technology and examine it through the DataAccessException instance.

automatic handling and translation of sQlexception
Spring’s JDBC support provides SQLExceptionTranslator to perform automatic translation of
SQLException into a Spring‐specific DataAccessException. The SQLExceptionTranslator class
is actually an interface, and it has several implementations.

Summary ❘ 133

The default implementation used by Spring is SQLErrorCodeSQLExceptionTranslator, which
uses vendor‐specific error codes. Error codes are obtained from the SQLErrorCodesFactory class.
This factory class loads an sql‐error‐codes.xml file from the project classpath. Error code map-
pings are defined separately for each database. Spring identifies the database product name from
the DatabaseMetadata obtained from the JDBC Connection. This file is by default located under
org.springframework.jdbc.support package; however, it can be overridden through a file with
the same name located in the root classpath or WEB‐INF/classes folder.

You also can extend the SQLErrorCodeSQLExceptionTranslator class and override its
customTranslate(..) method. Within this method, you can check the error code, which you can
obtain through the SQLException.getErrorCode() method, and return a DataAccessException
instance specific to your needs.

Another common implementation of the SQLExceptionTranslator interface is
SQLStateSQLExceptionTranslator, which uses SQL state information in the SQLException
thrown. It looks at the first two digits of the SQL error code, and tries to diagnose the problem. It
cannot diagnose all problems, but its main advantage is portability. It doesn’t depend on a special
database vendor to translate error codes. Actually, SQLErrorCodeSQLExceptionTranslator uses
SQLStateSQLExceptionTranslator as a fallback.

JdbcTemplate by default creates and uses SQLErrorCodeSQLExceptionTranslator
if the dataSource dependency of JdbcTemplate is satisfied; otherwise, it uses
SQLStateSQLExceptionTranslator. As a result, if your data access object is using JdbcTemplate,
you will have automatic exception translation capability by default. You can also set your custom
SQLErrorCodeSQLExceptionTranslator by calling the JdbcTemplate.setExceptionTranslator(..)
method as well.

sUmmary

In this chapter, you learned what sorts of problems and deficiencies might occur within your code-
base if you try to use JDBC without any preparation. You also learned the general steps that repeat-
edly arise while working with the JDBC API. The chapter explained the Template Method pattern
as a cure to this recurring problem in the system. It also mentioned the javax.sql.DataSource
concept and how it is used to obtain database connections. You learned several different ways of
defining DataSource beans within the Spring environment, together with a facility to initialize the
database during startup.

You learned that JdbcTemplate is the central point in Spring JDBC support and how to per-
form queries and execute insert, update, and delete operations using it. You also saw how those
query results and return values of data manipulation operations can be processed. The chap-
ter provided some examples that showed you how to use the RowMapper interface as a callback
to handle query results and transform rows into Java objects. You were also introduced to
NamedParameterJdbcTemplate, which helps you write queries using named parameters. The chap-
ter explained several advantages of using PreparedStatement objects over Statement objects and
showed you how to create PreparedStatement instances and execute them using JdbcTemplate.
You saw how to call stored procedures and stored functions defined in the database and process
their ResultSet objects, which are usually returned as cursors. The chapter provided a brief
explanation and code examples about batch SQL processing, executing DDL statements, how to

134 ❘ Chapter 4 JDBC Data aCCess with spring

access vendor‐specific features of your JDBC driver, and dealing with BLOB and CLOB
data types.

Near the end of the chapter you saw some classes provided by Spring—MappingSqlQuery,
SqlUpdate, and StoredProcedure—so that you can encapsulate your queries and data manipula-
tion operations. You also saw stored procedures as Java objects and how to call those classes. Then
you found out how Spring handles checked SQLExceptions and automatically translates them into
its own data access exception hierarchy by looking at SQL error codes and SQL states.

exerCises

You can find possible solutions to the following exercises in Appendix A.

 1. Define a new method called findByOwnerAndLocked(String ownerName, boolean locked)
in the AccountDao interface and implement it within the AccountDaoJdbcImpl class using the
named parameter support of Spring.

 2. Define beans for the AccountInsert, AccountUpdate, and AccountDelete classes; inject
them into the accountDao bean; and then change the implementation of the insert, update,
and delete methods of AccountDaoJdbcImpl so that it will use those new beans for its SQL
operations.

 3. Add a new property called byte[] ownerPhoto into the Account domain class, and a cor-
responding BLOB column with the name owner_photo. Modify the AccountByIdQuery,
AccountInsert, and AccountUpdate classes so that they will handle this new property.

Summary ❘ 135

 ▸ what yoU learneD in this ChaPter

toPiC Key Points

DataSource JDBC Connection factory object that abstracts
away database connection–specific details

DriverManagerDataSource Spring’s DataSource implementation that returns a
new SQL Connection each time its getConnection
method is called

jee:jndi‐lookup Namespace element that you can use to obtain
application server–managed DataSource instances

JdbcTemplate Template Method pattern implementation of Spring
to support working with JDBC

RowMapper Callback interface to process ResultSet row values,
and convert each row into a Java object

NamedParameterJdbcTemplate Spring’s class to support named parameters

SqlParameterSource Interface to pass named parameter values into
NamedParameterJdbcTemplate

PreparedStatementCreator and
PreparedStatementCreatorFactory

Interface to create PreparedStatement objects
and factory method to create instances from default
implementation

MappingSqlQuery Abstract class provided by Spring to encapsulate
SQL queries as Java objects

SimpleJdbcCall Class that you use to invoke stored procedures and
stored functions

SqlUpdate Concrete class to encapsulate insert, update, and
delete SQL operations

StoredProcedure Abstract class to encapsulate calling stored proce-
dures and stored functions

LobHandler & LobCreator Interfaces to deal with BLOB and CLOB data types

NativeJdbcExtractor Interface to extract native Connection, Statement,
and ResultSet instances specific to database
vendors

SQLExceptionTranslator Interface to translate checked SQLException
instances to Spring’s unchecked
DataAccessException instances

SQLErrorCodeSQLExceptionTranslator Default implementation of
SQLExceptionTranslator that looks up SQL error
code values for exception translation

 5
 Data access with Jpa Using
Spring
 What you Will learn in thiS chaPter:

 ➤ Introducing the ORM world

 ➤ Learning the role of JPA and what Spring offers

 ➤ Confi guring and using Spring’s JPA support

 ➤ Making use of PersistenceContext and PersistenceUnit annotations

 ➤ Learning the role of JpaDialect and load-time weaving in JPA
confi guration

 ➤ Properly handling and translating ORM exceptions

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 5 download and individually named according to the
names throughout the chapter.

 Object‐oriented programs deal with hierarchies of objects. They create objects; make associa-
tions between objects; modify their attributes; and so on. At some point they need to store
states of those objects so that those objects can later be restored with the saved state. This
state is usually kept in relational databases as records in tables. Enterprise applications, there-
fore, use data access strategies; for example, Java Database Connectivity (JDBC) fetches the
data in a relational database, processes it in the application layer, and shows it to their users,

http://www.wrox.com/go/beginningspring

138 ❘ Chapter 5 Data access with JPa Using sPring

or it accepts some data from a user, processes it again, and stores it in the database using JDBC.
Hence, some sort of translating between objects and relational data is continuously performed in
such systems. Object‐relational mapping (ORM) tools try to automate this translation process and
let developers focus only on the object model.

The Java Persistence API (JPA) is the Java EE specification that defines how such object‐relational
mapping tools and frameworks should handle persistence‐related tasks in Java applications. It
defines what features they should offer to their users, and tries to standardize persistence opera-
tions that could be performed in those applications. This chapter discusses what JPA offers in
brief detail. It also gives examples of persistence operations that are performed over objects, and
discusses Spring’s role in facilitating use of JPA as a data access technology in enterprise Java
applications.

Brief introduction to orM and JPa

ORM stands for object‐relational mapping. It is a general term for data access technologies that
try to handle persistent data on the application side. It is placed between the business layer and the
database. By doing so, the database becomes more isolated from applications, and it is expected that
developers will be able to think in a more object‐oriented way and focus more on business logic.

The object world is composed of objects associated with each other either with composition or
with inheritance hierarchies. Attributes inside objects are used to hold their current states. The
relational world, on the other hand, is composed of tables, columns inside those tables, and for-
eign keys among those tables that create relationships between the tables. At first sight, those two
worlds look similar to each other, and you might think that it is an easy job to bridge between them.
Unfortunately, it is not an easy job to sit between the business layer and the database and translate
the object model to the relational model and vice versa. There is a paradigm mismatch. The follow-
ing section looks at what constitutes that mismatch.

Paradigm Mismatch
The first problem is that objects have associations with other objects, and those associations have
direction information as well. If an association is unidirectional, that means that it is only possible
to navigate from the source object to the target object, but not the other way around. On the other
hand, if an association is bidirectional, it is possible to navigate from both sides to the other. In the
relational world, associations among tables are represented with foreign keys. However, they don’t
keep any direction information.

The second problem is granularity. There can be no exact one‐to‐one map between a class and a
table. For example, a user table can consist of columns that hold data about a user, and his home
address as well. However, you might model your objects so that you have two separate classes: one
for the user and the other for his address. As object‐oriented enthusiasts we tend to make our object
model more fine grained, but database gurus try to decrease the number of joins among tables;
therefore, they tend to combine related data in one table.

The third problem is related to inheritance and polymorphic behavior. You can create object hierar-
chies that involve several different types, and you can establish associations against abstract types,

Brief Introduction to OrM and Jpa ❘ 139

which results in relationships of objects with more than one concrete type at run time. On the other
hand, the relational world has no concept of inheritance. You can only create foreign key relation-
ships between tables. You can map several different types in a hierarchy with different numbers of
tables in the database. Handling polymorphic associations is also problematic because, to create
a polymorphic association, you might have to create foreign key relationships to several different
tables from a table. All of those foreign keys represent that same polymorphic association on the
object side.

Finally, traversal of the object network on demand and the data‐fetch approach in the relational
world are not a good fit for one another. In the object world, relationships are traversed node
by node. This means the state of the target object is needed only when you attempt to access it.
However, in the relational world, best practice is to decrease the number of SQL queries by joining
tables so that all of the data needed for the execution of the current scenario is fetched with a mini-
mum number of queries. This results in a performance improvement. This obviously conflicts with
on‐demand traversal of the object network and causes memory problems on the application side. If
you try to fetch data table by table, on the other hand, you have performance problems on the data-
base side.

Building Blocks of an orM framework
In short, an ORM framework tries to solve the problems explained in the preceding section.
Therefore, a full‐fledged ORM tool should offer the following facilities:

 ➤ Metadata mapping between the object model and the relational model

 ➤ A Create, Read, Update, Delete (CRUD) API for operations that need to be performed over
objects

 ➤ An object query language

 ➤ Different fetch strategies and object network traversal facilities to improve memory usage
and performance of data fetch times

What JPa offers
The Java Persistence API, or JPA for short, is for handling persistence operations in Java. It tries
to standardize ORM features and functionalities in the enterprise Java world. It defines an API for
mapping the object model with the relational model, CRUD operations that can be performed on
objects, an object query language, and a criteria API to fetch data over an object graph.

Several JPA implementations are available, such as Hibernate, OpenJPA, DataNucleus, EclipseLink,
and so on. Hibernate is one of the most popular options. EclipseLink is the reference implementa-
tion for JPA. However, this book uses Hibernate in the examples.

JPA has several benefits over using proprietary ORM tools directly. It provides automatic metadata
discovery, standardized and simplified configuration, and standardized data access support. As a
result, switching between different JPA implementations is much easier than switching between
different proprietary ORM tools, and ORM knowledge within the Java community becomes more
homogenized and widespread.

140 ❘ Chapter 5 Data access with JPa Using sPring

Mapping the object Model to the relational Model
Any ORM tool tries to map the object model to the relational model. This mapping is a must to
perform other runtime operations—such as performing CRUD operations or querying data with an
object query language—using the tool. Object relational mapping occurs between the following:

 ➤ Classes and tables

 ➤ Attributes of a class and columns in a table

 ➤ Object associations and foreign keys

 ➤ Java types and SQL types

Defining entities
An object that has a corresponding record on the database side with its own primary key is called
an entity. There is usually a one‐to‐one mapping between an entity class and its corresponding data-
base table. However, an entity may be mapped to more than one table as well. The following code
illustrates how an entity class is defined:

@Entity
@Table(name="users")
public class User {

 @Id
 @GeneratedValue
 private Long id;

}

Entity classes should be top‐level classes. They don’t have to extend from special super classes or
implement any interfaces. You don’t need to make them serializable, either. They should have at
least a package visible default no arg constructor, and they should not be marked as final. This is
because some ORM providers may extend from entity classes to create corresponding proxy classes
at run time. You don’t need to create public getter/setter methods for persistent fields. ORM provid-
ers can access persistent field values directly. That way, you can put business logic into your getters
and setters. Your public methods should also be not marked as final because of the proxying opera-
tion mentioned earlier.

JPA provides Java annotations for mapping purposes. Those annotations are in the javax
.persistence package. The @Entity annotation defines that the User class is a persistent type
that has a corresponding table. The @Table annotation specifies the name of the table. If not
specified, the class name is used. Each entity in the JPA configuration should have a unique name.
By default, it is equal to the simple name of the class. If there happens to be more than one class
with the same name but they are in different packages, you need to distinguish among their names
with the name attribute value in the @Entity annotation.

The @Id annotation marks the primary key attribute. The name of the primary key column matches
the name of the property. If the column name is different, you can use the @Column annotation
to change its name. Primary keys can be composed of more than one column, and they contain

Brief Introduction to OrM and Jpa ❘ 141

meaningful values for the business. Those primary keys are called natural primary keys. However,
having a single primary key column and assigning it totally meaningless value in terms of the
business perspective is a more popular solution, and it has several benefits over the natural key
approach. Such primary keys are called surrogate or synthetic primary keys, and the application
doesn’t deal with producing their values. Instead their values are assigned by the JPA vendor during
new record insertion. The @GeneratedValue annotation tells JPA that the application won’t deal
with assigning values, and the JPA vendor should handle it instead.

There are different ID‐generation strategies that can be used by the JPA vendor to assign values to
surrogate primary keys. Identity, sequence, and UUID are some examples of those ID‐generation
strategies. The javax.persistence.GenerationType enum type has values that are supported by
all JPA vendors. The ID‐generation strategy of an entity class is specified with the strategy attri-
bute of the @GeneratedValue annotation. If it’s not specified, the JPA vendor uses the default strat-
egy of the underlying database provider. For example, it will be SEQUENCE for Oracle or IDENTITY
for MySQL.

Mapping attributes to Columns
By default, any attribute defined in a class is assumed to be persistent. In other words, JPA seeks a
corresponding column in the table. If you want an attribute not to be considered as persistent, you
can either mark it with the @Transient annotation or with the transient modifier.

For example, the following code snippet shows several attributes with or without JPA annotations.
The username field is persistent by default. The password field is also persistent, but JPA annota-
tions are used to customize its mapping. The selected attribute, on the other hand, is marked with
the transient modifier. Therefore, it is ignored by the JPA provider.

private String username;

@Basic(optional=false)
@Column(name="passwd",nullable=false,length=128)
private String password;

private transient Boolean selected;

If you don’t use any annotation over attributes, they are mapped with table columns with names
equal to the attributes’ names. If you want to differentiate between attribute and column names, you
can use the @Column annotation as shown in the preceding code. You can also change other attri-
butes of a column, such as its nullability, length, unique constraint, and so on.

You can place JPA annotations either on fields or getter methods of those fields. This identifies the
access strategy of JPA during entity loading, persisting, and so on. If you prefer field‐level access,
JPA doesn’t need getters/setters to access values of persistent fields in the entity, instead it sets and
gets values directly on fields via the Reflection API. In addition, it becomes easier to see and exam-
ine JPA configuration in a large Java class, and getter/setter methods are freed to be used for busi-
ness purposes as well.

JPA determines the access strategy by looking at the location of @Id annotation. If it is used on
a field, access strategy is field level, otherwise it is getter. If you prefer getter‐level access, JPA

142 ❘ Chapter 5 Data access with JPa Using sPring

performs data access via getter and setter methods instead. In that case, you need to provide public
getter/setter methods for those persistent fields.

Access strategy in an entity class cannot be changed. However, it can be different among entities.

Creating associations between Objects
You can examine associations between objects from different perspectives. Multiplicity and directionality
are two perspectives explained in this section. Multiplicity defines the number of associated instances on
each side of the association. Directionality defines the direction from which that association is navigable—
that is, from which instance you should start so that you can reach the other side of the navigation.

There can be several different types of associations between objects in terms of multiplicity:

 ➤ One‐to‐one (1:1)

 ➤ Many‐to‐one (M:1)

 ➤ One‐to‐many (1:M)

 ➤ Many‐to‐many (M:N)

One‐to‐One Associations
In one‐to‐one associations, two objects are associated only with each other. For example, if a user
has only one address, there can be a 1:1 association between user and address:

@Entity
public class User {

 //...

 @OneToOne
 @JoinColumn(name="address_id")
 private Address address;
}

@Entity
public class Address {
 //...
}

The @OneToOne annotation is used for this purpose. @JoinColumn specifies the foreign key relation-
ship between tables corresponding to the User and Address entities. It is the column in the user
table that references the address table.

Many‐to‐One Associations
In many‐to‐one associations several objects can refer to the same instance. For example, an
employee and company relationship is an M:1 association. In other words, there can be several
employees working for a company:

@Entity
public class Employee {

Brief Introduction to OrM and Jpa ❘ 143

 //...

 @ManyToOne(optional=false)
 @JoinColumn(name="company_id")
 private Company company;
}

@Entity
public class Company {
 //...
}

The @ManyToOne annotation is used here. @JoinColumn is again used to specify the foreign key
relationship between two tables. The optional=false attribute means this association is required
by the Employee type; that is, the Employee instance cannot exist without being associated with a
Company instance.

One‐to‐Many Associations
In one‐to‐many associations, an instance can have a relationship with more than one object of
the same type. Let’s say a student has several books, and those books only belong to one student.
Hence, the student/book relationship is considered to be 1:M:

@Entity
public class Student {
 //...

 @OneToMany
 @JoinColumn(name="student_id")
 private Set<Book> books = new HashSet<Book>();
}

@Entity
public class Book {
 //...
}

The @OneToMany annotation creates a 1:M relationship between the Student and Book entities. A type
from the Java Collection API is used to define the variable type. You can use Set, List, Collection,
and Map types, each with different semantics that you need to consider before deciding on which one
to use during the analysis or design phase. @JoinColumn is again used to specify the foreign key col-
umn. However, this time its value indicates the column that exists in the table of the Book entity.

Many‐to‐Many Associations
In many‐to‐many associations, several objects of a type can refer to several other objects of another type.
For example, products can be placed in more than one category, and in any category there can be several
different types of products. Therefore, a product and category relationship is an M:N relationship:

@Entity
public class Product {
 // ...
 @ManyToMany

144 ❘ Chapter 5 Data access with JPa Using sPring

 @JoinTable(name = "product_catalog", joinColumns = @JoinColumn(
 name = "product_id"), inverseJoinColumns = @JoinColumn(name = "catalog_id"))
 private Set<Catalog> catalogs = new HashSet<Catalog>();
}

@Entity
public class Catalog {
 //...
}

The annotation for creating an M:N relationship is @ManyToMany, as you may easily guess. However,
this example used @JoinTable instead of @JoinColumn because several instances on each side can
be associated with an instance on the other side. Therefore, you cannot keep association data in a
column that is referring to the other side’s table. Instead, you need an intermediate table, called an
association table, between those two tables, that contains references to primary key columns in each
table. In this example, the association table is named product_catalog, and the joinColumns and
inverseJoinColumns attributes specify column names that exist in the product_catalog table and
references to primary keys of product and catalog tables, respectively.

Directionality in Associations
You also need to take into account the direction of associations between objects. Two possibilities exist:

 ➤ Unidirectional

 ➤ Bidirectional

In unidirectional associations, navigation is only possible from one side to the other—that is, only
from the source object of the association to the target object. For bidirectional associations, naviga-
tion is possible in both directions. You can start from either node, and reach the other node in the
association. A bidirectional one‐to‐many association is actually a many‐to‐one association from the
other side, and vice versa.

In the following code, for example, we added a one‐to‐one association from the Address entity
to the User entity, which already has an association from User to Address. At this stage, the
User‐Address association becomes bidirectional. We can start navigating the object tree from either
node and can reach the other side:

@Entity
public class User {

 //...

 @OneToOne
 @JoinColumn(name="address_id")
 private Address address;
}

@Entity
public class Address {

 //...

 @OneToOne(mappedBy="address")

Brief Introduction to OrM and Jpa ❘ 145

 private User user;
}

In terms of managing associations between two User and Address instances, it is enough for the
JPA to look at only one of those two attributes. It looks at the value of the attribute specified with
the mappedBy attribute during run time so that a new association is created, or an already existing
association between two instances is removed. Except for the @ManyToOne annotation, all other mul-
tiplicity annotations have a mappedBy attribute. By looking at its value, JPA identifies the attribute
that it looks at to manage association between two entities. The side on which mappedBy is used can
be seen as a mirror, or read‐only. Setting a value on this mirror property has no effect on creating or
removing associations.

Mapping Java types to SQL types
Java has its own types, such as primitives, wrapper types for primitives, String, Date, Enum,
BigInteger, BigDecimal, and so on. Databases, on the other hand, have their own SQL types as
well, such as char, varchar, number, bigint, clob, blob, datetime, and so on. The JPA tries to
map a Java type to the most appropriate SQL type. However, developers sometimes intervene.

Table 5-1 shows how Java types are mapped to the corresponding SQL types. The column in the
middle shows the corresponding ORM types used in XML‐based mapping metadata. However, they
are not needed when Java annotation‐based mappings are used because the JPA provider is able to
find the corresponding SQL type just by looking at the Java type of the persistent field.

taBle 5-1: Java ‐ SQL Type Mappings Table

Java tyPe orM tyPe SQl tyPe

int / java.lang.Integer integer INTEGER

long / java.lang.Long long BIGINT

short / java.lang.Short short SMALLINT

float / java.lang.Float float FLOAT

double / Java.lang.Double double DOUBLE

java.math.BigDecimal big_decimal NUMERIC

java.lang.String character CHAR(1)

java.lang.String string VARCHAR

byte / java.lang.Byte byte TINYINT

boolean / java.lang.Boolean boolean BIT

boolean / java.lang.Boolean yes_no CHAR(1)

boolean / java.lang.Boolean true_false CHAR(1)

continues

146 ❘ Chapter 5 Data access with JPa Using sPring

Java tyPe orM tyPe SQl tyPe

java.util.Date / java.sql.Date date DATE

java.util.Date / java.sql.Time time TIME

java.util.Date / java.sql.Timestamp timestamp TIMESTAMP

java.util.Calendar calendar TIMESTAMP

java.util.Calendar calendar_date DATE

byte[] binary VARBINARY

java.lang.String text CLOB

java.sql.Clob clob CLOB

java.sql.Blob blob BLOB

java.lang.Serializable serializable VARBINARY

java.lang.Class class VARCHAR

java.util.Locale locale VARCHAR

java.util.Timezone timezone VARCHAR

java.util.Currency currency VARCHAR

For example, Java has the java.util.Date type for handling date values. It contains the date value
in millisecond precision. However, SQL has three different types for handling temporal values:
date, time, and timestamp. date only keeps the year, month, and day parts. time keeps the hour,
minute, and second parts. timestamp keeps the date and time together with nanosecond precision.
By default, JPA maps attributes with the java.util.Date type to timestamp. However, according
to your requirements and available SQL column type in the database, you may need to specify a dif-
ferent temporal SQL type. You do this with @Temporal annotation (as shown in the following code
snippet), and you can specify which TemporalType should be used in the mapping. DATE, TIME, and
TIMESTAMP are available values for TemporalType:

@Temporal(TemporalType.DATE)
private Date birthDate;

By default, JPA handles Java enum types and maps them with ordinal values to the database col-
umns with numeric SQL types. However, you can change that. If you want the name of the enum
value to be persisted, you can use the @Enumerated annotation with the EnumType.STRING attribute
value:

@Enumerated(EnumType.STRING)
private Gender gender;

taBle 5-1 (continued)

Brief Introduction to OrM and Jpa ❘ 147

The String Java type is by default mapped to varchar on the SQL side, and varchar has an upper
limit that can be unsuitable for fields in which a large amount of character data is to be kept. In that
case, you can change the type mapping using the @Lob annotation. From now on, the description
value will be kept in a column with the SQL type CLOB:

@Lob
private String description;

There can be attributes having more than one value in entities. For example, an entity may have
several telephone numbers, each of which can be stored in text form. If there was only one telephone
number, it could have been stored in a String attribute corresponding to a varchar column in an
entity table. However, as there might be more than one telephone number of an entity, you need
another table to store telephone number values of each entity. Such associations are called as collec-
tion values. They can be mapped with the @ElementCollection annotation. The table in which col-
lection values are kept is specified with @CollectionTable annotation:

@ElementCollection
@CollectionTable(name="user_phone_numbers",joinColumns=@JoinColumn(name="user_id"))
private Set<String> telephoneNumbers = new HashSet<>();

ORM mapping is much more detailed and deeper than explained here. However, this amount
of mapping information is enough to introduce you to JPA. Now, you can focus on the runtime
part of ORM. The ORM mapping metadata briefly explained earlier is very crucial for ORM’s
runtime functionality. Mappings should be made correctly so that the ORM tool runs properly
at run time.

configuring and using JPa
To perform runtime operations, you first need to configure JPA. The examples here use Hibernate
as the JPA provider. We are going to use Hibernate version 4.3.1.Final, which implements JPA
version 2.1 in our examples.

Check out how it is done with the following Try It Out.

try it out Configuring Jpa and hibernate

You can find the source code within the project named configuring‐jpa in the spring‐book‐ch5
.zip file.

In this Try It Out, you configure Hibernate to use as the JPA provider. To begin, follow these steps:

 1. Create a Maven project with the following Maven command:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch5

 2. Add the necessary dependencies to the pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-orm</artifactId>

148 ❘ Chapter 5 Data access with JPa Using sPring

 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. In order to use Hibernate as the JPA provider, also add the following dependencies into pom.xml:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>4.3.1.Final</version>
</dependency>

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>4.3.1.Final</version>
</dependency>

 4. The example uses the H2 database. If its dependency is not already added, add the following
<dependency> element to the pom.xml file:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.175</version>
</dependency>

 5. Create a META‐INF/persistence.xml file with the following content. That file should be located
under the root classpath of the project:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="test-jpa" transaction-type="RESOURCE_LOCAL">
 <properties>
 <property name="hibernate.connection.driver_class" value="org.h2.Driver"/>
 <property name="hibernate.connection.url" value="jdbc:h2:tcp://localhost/ ↵
 ~/test"/>
 <property name="hibernate.connection.username" value="sa" />
 <property name="hibernate.connection.password" value="" />
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="update" />
 </properties>
 </persistence-unit>
</persistence>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
tcp://localhost/

Brief Introduction to OrM and Jpa ❘ 149

 6. Find the org.h2.tools.Console class of the H2 database from the project classpath, and run
it as a Java application from your integrated development environment (IDE). When it runs, the
browser automatically appears with the database console.

 7. Create a Main class having a main method, and load the persistence unit with the test‐jpa name.
If it runs successfully, it means that you have successfully configured your JPA environment:

public class Main {

 public static void main(String[] args) {
 EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("test-jpa");
 System.out.println(entityManagerFactory.isOpen());
 }
}

How It Works

META‐INF/persistence.xml is the main entry point for the JPA configuration. There can be several
different JPA configurations in an application, and different JPA providers can co‐exist at the same
time. Each configuration is called a persistence unit, and each persistence unit has its own name. That
name is used to access the configuration at run time.

Transactions are crucial in order for JPA to operate. Transactions group several data access opera-
tions and help you to execute them together as a single unit. Either all of them succeed, with changes
reflected to the database, or none of them succeed. In the case of failure, no change happens in the
database. JPA has two transactional modes: one is RESOURCE_LOCAL and the other is JTA. The first
means local transaction—only a single database is involved in data access operations—and the sec-
ond one means global transaction, in which there can be several databases on which the data access
operations are performed. You can read more about transactions in Chapter 6. This example uses
local transactions; we set the RESOURCE_LOCAL value to the transaction‐type attribute of the
<persistence‐unit> element.

The JPA provider can connect to the database in different ways. It can use a javax.sql.DataSource
instance, or it can open connections directly with DriverManager. For the sake of simplicity, this
example uses the second option and provides the following Hibernate properties for connection
management:

<property name="hibernate.connection.driver_class" value="org.h2.Driver" />
<property name="hibernate.connection.url" value="jdbc:h2:tcp://localhost/~/test"/>
<property name="hibernate.connection.username" value="sa" />
<property name="hibernate.connection.password" value="" />

ORM tools are laid on top of the database layer, and they can operate with different databases. With
the help of a JDBC driver class, they identify the currently operating database and generate the neces-
sary SQL statements suitable for that database at run time. A dialect class is used to create correct SQL
for the specific database at hand. The following property defines which dialect class is to be used by
Hibernate:

<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect" />

tcp://localhost/~/test"/

150 ❘ Chapter 5 Data access with JPa Using sPring

Actually, providing a dialect is optional if the connection is managed directly by Hibernate. Because
Hibernate can understand which database is used by looking at the JDBC driver class, it can then
deduce the corresponding dialect class by itself. However, if you had used the DataSource approach to
obtain connections, Hibernate has no clue for guessing correct dialect; therefore, it becomes compul-
sory to provide it explicitly.

JPA auto‐detects mapping metadata in the classpath and loads it. Hibernate also provides a means to
automatically create or update the database schema with the help of that mapping metadata. The fol-
lowing <property> element tells Hibernate that it should update the schema to synchronize it with the
mapping metadata:

<property name="hibernate.hbm2ddl.auto" value="update" />

Allowing Hibernate to create or update the database schema is great for development and test environ-
ments. However, it shouldn’t be used during production. By default, it does nothing, but you can also
give a none value to disable schema creation or the update facility.

The last step is to check whether that persistence unit configuration is loaded. The javax.persistence
.Persistence class offers a method to create an EntityManagerFactory by giving the persistence unit
name as the input argument:

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("test-jpa");

The EntityManagerFactory instance, which is obtained for the corresponding persistence unit, is
usually created once and used throughout the application lifetime. Therefore, it is common practice to
execute the preceding code within a class statically, and assign the returned instance to a static variable
so that it can be accessed from anywhere in the application code.

performing CrUD Operations on Objects
JPA provides a CRUD API to perform data access and manipulation operations that is used to oper-
ate on entities at run time. You can use that API to select an entity by using its type and primary key
value, insert a new entity into the table, update its changed attributes, or delete it. Those operations
are provided by the JPA EntityManager. EntityManager is called a persistence context because it’s
available at run time. The persistence context is the bridge between application and database run
times. Using persistence context, you can solely operate on entities, load them, change their states,
persist new ones, or delete already loaded ones. It helps you to manage transactions and so on. Have
a look at some of those CRUD methods offered by EntityManager with an example.

try it out Using Jpa to persist entities and Create associations

You can find the source code within the project named configuring‐and‐using‐jdbctemplate in the
spring‐book‐ch5.zip file.

In this Try It Out, you first create two persistent entities called Student and Book, and you associ-
ate those two classes. Later, you create an EntityManager and an active transaction to persist some
Student and Book instances. You can continue from where you left off with the previous Try It Out. To
begin, follow these steps:

Brief Introduction to OrM and Jpa ❘ 151

 1. First, create the following Book entity class:

@Entity
public class Book {
 @Id
 @GeneratedValue
 private Long id;

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Long getId() {
 return id;
 }
}

 2. Create the following Student entity class. There will be a unidirectional 1:M association between
those two classes:

@Entity
public class Student {
 @Id
 @GeneratedValue
 private Long id;

 private String firstName;

 private String lastName;

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumn(name="student_id")
 private Set<Book> books = new HashSet<Book>();

 public Long getId() {
 return id;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public Set<Book> getBooks() {

152 ❘ Chapter 5 Data access with JPa Using sPring

 return books;
 }
}

 3. Create a new EntityManager by using an EntityManagerFactory instance in the main method:

public class Main {

 public static void main(String[] args) {
 EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("test-jpa");
 EntityManager entityManager = entityManagerFactory.createEntityManager();

 4. Start a new transaction from EntityManager:

 EntityTransaction transaction = entityManager.getTransaction();
 transaction.begin();

 5. Create a new Student instance and two Book instances:

 Student student = new Student();
 student.setFirstName("John");
 student.setLastName("Doe");
 Book book1 = new Book();
 book1.setName("Book 1");
 Book book2 = new Book();
 book2.setName("Book 2");

 6. Add those books into the Student’s collection, and persist the student using EntityManager:

 student.getBooks().add(book1);
 student.getBooks().add(book2);

 entityManager.persist(student);

 7. Commit the transaction and close the EntityManager instance:

 transaction.commit();
 entityManager.close();
 }
}

How It Works

The Student and Book classes are defined as persistent entities using the @Entity annotation. Their
ID property is marked as a primary key with the @Id annotation. The primary key is automati-
cally generated during an entity persist operation, as indicated with @GeneratedValue, and how
it is to be produced is determined according to the specific database vendor. Several different pri-
mary‐key generation strategies exist, such as identity, autoincrement, sequence, uuid, and so on.
Not all databases support all methods, and each database has a default strategy assigned within its
dialect. Because the example uses the H2 database and @GeneratedValue has no strategy defined,
the primary‐key generation strategy is sequence by default. If you were using MySQL, it would be
autoincrement, and so on.

Brief Introduction to OrM and Jpa ❘ 153

The 1:M association between Student and Book is defined with the @OneToMany annotation, and the
foreign key is on the student_id column of the Book table.

When the application is run, Hibernate
automatically creates the Student and
Book tables and a foreign key relation-
ship between those two tables. Figure 5-1
shows how those tables would look as an
entity‐relationship (ER) diagram.

There is an attribute called cascade defined in the @OneToMany annotation. Its purpose is to instruct
JPA to repeat the persistence context operation performed on the source entity—such as persist, merge,
or delete—on the target entity of the association as well. For example, it helps JPA to decide what it will
do with the books of a student when the student entity is persisted, updated, or deleted. As a result, you
don’t have to explicitly deal with each of those books associated with the student entity. This is called
transitive persistence in the ORM world, and it is one of the very useful features of JPA. In this example
you gave the CascadeType.ALL value to that attribute. This means that any JPA operation performed on
the source entity, in this case the Student instance, is repeated on each of the Book instances one by one.

This example creates an EntityManager and an EntityTransaction instance, respectively. It is crucial
that you execute insert, delete, and update operations of JPA within an available active transaction.
Otherwise, it will fail with an exception. Later, the fourth and fifth steps create a Student with two
separate Book instances. The entityManager.persist(student); statement will persist Student and
Book entities in the database. You don’t need to call persist on each Book instance separately because
of the cascade attribute value defined in the mapping.

At the end of the scenario you have to commit the transaction if everything goes well up to that
point. You do this with the transaction.commit(); statement. It is also important not to keep the
EntityManager instance open too long because it may cause state data problems for the current ses-
sion, and you should call entityManager.close(); at the end of the scenario.

If you inspect the H2 database contents via its console at this point, you will see student and book
records inserted in the related tables.

After being able to persist entities together with their associations, you can now try to find, update,
and delete entities via the JPA API in the following Try It Out.

try it out Using Jpa to Find, Update, and Delete entities

You can find the source code within the project named configuring‐and‐using‐jdbctemplate in the
spring‐book‐ch5.zip file.

In this Try It Out, you use the EntityManager API to query a database for entities and then update and
delete those entities. You can continue from where you left off with the previous Try It Out. To begin,
follow these steps:

 1. It is just enough to remove the lines between the transaction begin and commit operations in the
preceding example:

Student

id:bigint
firstName:varchar
lastName:varchar

Book

id:bigint
name:varchar
student_id:int

figure 5-1

154 ❘ Chapter 5 Data access with JPa Using sPring

public static void main(String[] args) {
 EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("test-jpa");
 EntityManager entityManager = entityManagerFactory.createEntityManager();
 EntityTransaction transaction = entityManager.getTransaction();
 transaction.begin();

 2. Find Student and the second Book instances using their primary key values via EntityManager:

 Student student = entityManager.find(Student.class, 1L);
 Book book2 = entityManager.getReference(Book.class, 2L);

 3. Change the student’s firstName:

 student.setFirstName("Joe");

 4. Delete the second book using EntityManager:

 entityManager.remove(book2);

 5. Commit the transaction and close the EntityManager instance:

 transaction.commit();
 entityManager.close();
}

How It Works

The JPA API provides two different finder methods to load entities from databases using their per-
sistent classes and their primary key values: the find(..) and getReference(..) methods of
EntityManager. Those two methods look very similar in terms of loading specified entity instances.
However, there is an important difference between those two. The entityManager.find(Student
.class,1L); method call causes the specified entity to be fetched and returned immediately if it exists
in the database. If there is no corresponding record in the database, it returns null. The second method,
getReference(..), does not access the database immediately, and it returns a proxy instance in place
of the target entity instance. Therefore, JPA is able to defer database queries related with the entity
until the entity instance is really needed. As a consequence of not hitting the database immediately and
returning a proxy in place of a real entity, this method may throw an exception if the record doesn’t
exist when the related SQL query is executed.

Another important feature of JPA or ORM in general is transparent persistence. JPA tracks changes
performed on entity instances loaded with the EntityManager instance. Changed entities are marked as
dirty. This process is also called automatic dirty checking. Changes performed on entities result in update
statements, and JPA executes those update statements when the developer commits the transaction.
Entities are tracked so long as they are connected with their EntityManager instance, and it is kept open.
When it is closed, loaded entities become detached, and their state changes won’t be tracked at all. You
need to either reload or re‐associate them with a new EntityManager instance using the merge operation.

entityManager.remove(book2); causes the book2 entity to be deleted from the database. The impor-
tant point here is that you can only delete already associated entities; you are not allowed to delete
detached entities.

Brief Introduction to OrM and Jpa ❘ 155

Querying with Object Query Language
JPA also offers an object query language whose structure is similar to SQL, but instead of using
table column names, you are able to use entity names and properties in Java classes. It also transpar-
ently handles some joins that would need to be done between tables if you were using SQL directly
to fetch data. The following Try It Out shows you how you can query the database using JPA Query
Language (QL) with an example.

try it out Querying a Database with Jpa QL

You can find the source code within the project named configuring‐and‐using‐jdbctemplate in the
spring‐book‐ch5.zip file.

In this Try It Out, you create a JPA query and execute it via EntityManager. You can continue from
the previous Try It Out. To begin, follow these steps:

 1. Open an EntityManager within the main method:

public static void main(String[] args) {
 EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("test-jpa");
 EntityManager entityManager = entityManagerFactory.createEntityManager();

 2. Create a query using EntityManager by giving the query string as follows:

 Query query = entityManager.createQuery(
 "select s from Student s where s.firstName like ?");

 3. Provide the query with an input parameter:

 query.setParameter(1, "Jo%");

 4. Run the query, and display the returned result via the console:

 List<Student> students = query.getResultList();
 Student s = students.get(0);
 System.out.println(students.size());
 System.out.println(s.getFirstName());

 5. Close the EntityManager:

 entityManager.close();
}

How It Works

You opened an EntityManager instance as usual. However, this time you didn’t need to open a new
EntityTransaction because JPA doesn’t require having an active transaction while executing JPA que-
ries only. entityManager.createQuery(..); expects a JPA QL and creates and returns a Query object.
After setting any necessary parameters, a Query instance is executed either with the getResultList()
method, which returns a list of entities, or with getSingleResult(), which returns a single entity.

156 ❘ Chapter 5 Data access with JPa Using sPring

For more information about JPA QL, you can visit http://docs.oracle.com/javaee/7/
tutorial/doc/persistence‐querylanguage.htm.

SPring’S JPa SuPPort

Spring adds significant enhancements to your application if you are using JPA. Following are several
benefits of using Spring’s JPA support in your data access layer:

 ➤ Easier and more powerful persistence unit configuration

 ➤ Automatic EntityManager management

 ➤ Easier testing

 ➤ Common data access exceptions

 ➤ Integrated transaction management

Persistence unit configuration with Spring—that is, the EntityManagerFactory configuration—is
much easier, more powerful, and more flexible than configuring it without using Spring. With Spring
ORM support, it is possible to configure JPA without a META‐INF/persistence.xml file and it is
easier to enable vendor‐specific features. The EntityManager instance is managed automatically, and
can be injected into data access object (DAO) beans; so you don’t need to manage it manually in your
application code. Testing JPA‐related code becomes easier and is possible without an application server
or deploying the application to the server. Exceptions specific to the JPA layer are automatically trans-
lated into Spring’s data access exception hierarchy. That way, you can mix several different data access
strategies in your DAO layer, and you won’t have to bother dealing with each of their proprietary
exception hierarchies in upper layers. Spring’s JPA support is naturally integrated with its transaction
management infrastructure. You can employ declarative and programmatic transaction management
approaches without depending on a JPA‐specific EntityTransaction API at all. You will also be able
to mix up different data access strategies in the same transaction.

Setting up JPa in Spring container
Spring offers three different options to configure EntityManagerFactory in a project:

 ➤ LocalEntityManagerFactoryBean

 ➤ EntityManagerFactory lookup over JNDI

 ➤ LocalContainerEntityManagerFactoryBean

LocalEntityManagerFactoryBean is the most basic and limited one. It is mainly used for testing
purposes and standalone environments. It reads JPA configuration from /META‐INF/persistence
.xml, doesn’t allow you to use a Spring‐managed DataSource instance, and doesn’t support distrib-
uted transaction management.

Following is the Java‐based JPA configuration. You need to create a Java instance from
LocalEntityManagerFactoryBean and set the persistence unit name to it:

@Configuration
public class Ch5Configuration {
 @Bean

http://docs.oracle.com/javaee/7/tutorial/doc/persistence-querylanguage.htm
http://docs.oracle.com/javaee/7/tutorial/doc/persistence-querylanguage.htm

Spring’s Jpa Support ❘ 157

 public LocalEntityManagerFactoryBean entityManagerFactory() {
 LocalEntityManagerFactoryBean factoryBean =
 new LocalEntityManagerFactoryBean();
 factoryBean.setPersistenceUnitName("test-jpa");
 return factoryBean;
 }
}

The XML equivalent of the preceding configuration is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="FileName_entityManagerFactory"
 class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="test-jpa" />
 </bean>
</beans>

Use EntityManagerFactory lookup over JNDI if the run time is Java EE 5 Server. A Java EE
5-compatible server autodetects the persistence unit across the application java archive (JAR) files
and registers them to the appropriate JNDI location. The Spring EntityManagerFactory bean is
merely a delegate to the persistence unit obtained from JNDI.

You need to activate the JEE namespace in your application context configuration file in order to
perform EntityManagerFactory instance lookup over the JEE 5 container’s JNDI repository:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-4.0.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jee:jndi-lookup id="FileName_entityManagerFactory" jndi-name="persistence/test-jpa"/>

</beans>

It is possible to perform Java‐based JNDI object lookup using Spring’s org.springframework
.jndi.JndiObjectFactoryBean class:

@Configuration
public class Ch5Configuration {
 @Bean
 public JndiObjectFactoryBean entityManagerFactory() {
 JndiObjectFactoryBean factoryBean = new JndiObjectFactoryBean();
 factoryBean.setJndiName("persistence/test-jpa");
 return factoryBean;
 }
}

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee-4.0.xsd
http://www.springframework.org/schema/jee/spring-jee-4.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

158 ❘ Chapter 5 Data access with JPa Using sPring

LocalContainerEntityManagerFactoryBean is the most powerful and flexible JPA configuration
approach Spring offers. It gives full control over EntityManagerFactory configuration, and it’s suitable
for environments where fine‐grained control is required. It enables you to work with a Spring‐managed
DataSource, lets you selectively load entity classes in your project’s classpath, and so on. It works both
in application servers and standalone environments. The following example shows you how to create an
EntityManagerFactory bean using LocalContainerEntityManagerFactoryBean support.

try it out Configuring and Using Jpa with
LocalContainerentityManagerFactoryBean

You can find the source code within the project named configuring‐and‐using‐jdbctemplate in the
spring‐book‐ch5.zip file.

In this Try It Out, you configure JPA using LocalContainerEntityManagerFactoryBean. You can
continue from the previous Try It Out. To begin, follow these steps:

 1. Create a Configuration class:

@Configuration
public class Ch5Configuration {

 2. You are going to configure EntityManagerFactory without a META‐INF/persistence.xml file
and make it use a Spring‐managed DataSource bean. Therefore, create a DataSource bean defini-
tion similar to the following:

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 3. You may need to pass some JPA configuration properties, such as dialect class, schema generation
mode, and so on. For this purpose, create a helper method that returns Map, putting your configu-
ration properties as key/value pairs into that map:

 private Map<String,?> jpaProperties() {
 Map<String,String> jpaPropertiesMap = new HashMap<String,String>();
 jpaPropertiesMap.put("hibernate.dialect","org.hibernate.dialect.H2Dialect");
 jpaPropertiesMap.put("hibernate.hbm2ddl.auto", "update");
 return jpaPropertiesMap;
 }

 4. Create a method in which you instantiate the LocalContainerEntityFactoryBean object and
return it as follows:

 @Bean
 public LocalContainerEntityManagerFactoryBean entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =

tcp://localhost/~/test

Spring’s Jpa Support ❘ 159

 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
 factoryBean.setDataSource(dataSource());
 factoryBean.setPackagesToScan("com.wiley.beginningspring.ch5");
 factoryBean.setJpaPropertyMap(jpaProperties());
 return factoryBean;
 }
}

 5. Create a Spring ApplicationContext in the main method with the Configuration class you cre-
ated previously:

public class Main {
 public static void main(String[] args) {
 ApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch5Configuration.class);

 6. You can now get EntityManagerFactory instance from the container with bean lookup and use it
to perform JPA operations as follows:

 EntityManagerFactory entityManagerFactory =
 applicationContext.getBean(EntityManagerFactory.class);
 EntityManager entityManager = entityManagerFactory.createEntityManager();
 EntityTransaction transaction = entityManager.getTransaction();
 transaction.begin();

 Student student = new Student();
 student.setFirstName("John");
 student.setLastName("Smith");

 entityManager.persist(student);

 transaction.commit();
 entityManager.close();
 }
}

How It Works

First, you created a DataSource bean definition. This bean will be used by EntityManagerFactory
to obtain JDBC connections. The second auxiliary bean definition is called jpaProperties. It is of
type java.util.Map, and its role is to provide JPA‐specific configuration parameters. The example
has two JPA vendor‐specific properties in it. The first one is with a key named hibernate.dialect.
It is required by Hibernate to generate correct SQL statements for the underlying database. Because
the example uses the H2 database, its value here is given as org.hibernate.dialect.H2Dialect.
Hibernate provides dialect implementations for every database vendor in the market. You can also
implement your own dialect or extend from the available ones.

The second property is hibernate.hbm2ddl.auto, and it is an optional property. It tells Hibernate to
perform a database schema update by employing ORMmetadata. Its values could be create, update,
create‐drop, none, and so on. The update value causes changes in entity mapping metadata that are

160 ❘ Chapter 5 Data access with JPa Using sPring

not satisfied on the database side to be reflected onto. If you set its value to create, a database schema
would be created, deleting all data in the database during the EntityManagerFactory bootstrap pro-
cess. Although it is a very useful property for the development or testing phase, it could be dangerous
for production environments. Its default value, if not specified, is none.

The main bean definition is made by using the LocalContainerEntityManagerFactoryBean class.
The previously created dataSource and jpaProperties beans are injected into it. JPA in the Java
EE environment automatically scans the classpath to find and load classes with JPA @Entity annota-
tions. On the other hand, it is not a must for standalone or non‐Java EE environments—for example,
Tomcat. However, when used as a JPA vendor, Hibernate carries this automatic mapping metadata
discovery process to these environments as well. By default, classes with mapping metadata will
be sought starting from the root classpath. If you want to limit the search area, Spring provides
an attribute to specify packages to scan for. The last property in the FactoryBean wire‐up is the
HibernatePersistenceProvider class. It is an implementation of the javax.persistence
.PersistenceProvider interface of the JPA SPI. Its role is to create an actual EntityManagerFactory
instance specific to the JPA vendor.

You created an ApplicationContext instance using the Configuration class in the main method.
You then obtained the EntityManagerFactory bean using bean lookup and used it to create an
EntityManager. The rest is the same as in the previously explained JPA operations.

You employed a Java‐based configuration in this Try It Out. You could achieve the same result with an
XML‐based configuration as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="FileName_entityManagerFactory"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource"/>
 <property name="packagesToScan" value="com.wiley.beginningspring.ch5"/>
 <property name="persistenceProviderClass"
value="org.hibernate.jpa.HibernatePersistenceProvider"/>
 <property name="jpaPropertyMap">
 <map>
 <entry key="hibernate.dialect"
value="org.hibernate.dialect.H2Dialect"/>
 <entry key="hibernate.hbm2ddl.auto" value="update"/>
 </map>
 </property>
 </bean>

 <bean id="FileName_dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="org.h2.Driver"/>
 <property name="url" value="jdbc:h2:tcp://localhost/~/test"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
tcp://localhost/~/test"/

Spring’s Jpa Support ❘ 161

 </bean>
</beans>

implementing daos Based on Plain JPa
Previous versions of Spring offered two support classes to help work with JPA or Hibernate. They
are JpaTemplate and HibernateTemplate, respectively. They were similar to JdbcTemplate in
functionality. However, with the improvements in Hibernate and JPA, they have become obsolete.
At present, Spring discourages using them to perform ORM operations. Indeed, JpaTemplate has
been removed from Spring completely, and HibernateTemplate is mainly kept for easy migration of
older Hibernate projects.

With the current version of Spring, you can implement your DAO layer purely based on the plain
persistence technology API and persistence annotations, while still benefiting from Spring’s data
access enrichments. You can obtain EntityManagerFactory or EntityManager from a container
via dependency injection, and you can automatically participate in the current transaction. ORM
vendor‐specific exceptions are also converted into Spring’s custom exception hierarchies. More
about this exception translation is explained in the next section.

JPA has two annotations to obtain container‐managed EntityManagerFactory or EntityManager
instances within Java EE environments. The @PersistenceUnit annotation expresses a dependency
on an EntityManagerFactory, and @PersistenceContext expresses a dependency on a container‐
managed EntityManager instance, too. Spring supports those two annotations as well.

You need to configure the PersistenceAnnotationBeanPostProcessor of Spring in order for
those annotations to be processed. You can either define it as bean, or enable a context namespace
and add <context:annotation‐config/> or <context:component‐scan/> elements into your
XML bean configuration file. Those XML namespace elements actually configure a default
PersistenceAnnotationBeanPostProcessor on your behalf.

Both @PersistenceContext and @PersistenceUnit annotations can be used at either the field or
method level. Visibility of those fields and methods doesn’t matter. In the following example, you
obtain an EntityManagerFactory instance using the @PersistenceUnit annotation.

try it out Using @persistenceUnit to Obtain entityManagerFactory

You can find the source code within the project named configuring‐and‐using‐jdbctemplate in the
spring‐book‐ch5.zip file.

In this Try It Out, you inject the EntityManagerFactory bean into your DAO bean using the @
PersistenceUnit annotation, create an EntityManager from it, and use it to perform persistence
operations in your DAO bean. You can continue from the preceding Try It Out. To begin, follow these
steps:

 1. Create a StudentDaoJpaImpl class:

public class StudentDaoJpaImpl {

162 ❘ Chapter 5 Data access with JPa Using sPring

 2. Define an EntityManagerFactory field in the class and place an @PersistenceUnit annotation onto it:

 @PersistenceUnit
 private EntityManagerFactory entityManagerFactory;

 3. Add a save method to the StudentDaoJpaImpl class; accepting a transient Student entity. Within
the save method, create an EntityManager instance and start a new EntityTransaction:

 public void save(Student student) {
 EntityManager entityManager = entityManagerFactory
 .createEntityManager();
 EntityTransaction transaction = entityManager.getTransaction();
 transaction.begin();

 4. Persist the transient student instance given by calling the entityManager.persist(student)
method:

 entityManager.persist(student);

 5. Commit the transaction and close the entityManager instance:

 transaction.commit();
 entityManager.close();
 }
}

 6. Define a bean for this DAO class in the Spring bean Configuration class:

@Bean
public StudentDaoJpaImpl studentDao() {
 StudentDaoJpaImpl dao = new StudentDaoJpaImpl();
 return dao;
}

 7. Perform a bean lookup in the main method and use it to persist a Student entity:

public static void main(String[] args) {
 ApplicationContext applicationContext = new AnnotationConfigApplicationContext(
 Ch5Configuration.class);

 StudentDaoJpaImpl dao = applicationContext.getBean(StudentDaoJpaImpl.class);

 Student student = new Student();
 student.setFirstName("Joe");
 student.setLastName("Smith");

 dao.save(student);
}

How It Works

The @PersistenceUnit annotation causes the entityManagerFactory bean defined in Spring
Container to be injected. As stated earlier, you don’t need to define a public setter method. You can
place the annotation onto a private field, and Spring assigns a bean instance to that field via the

Spring’s Jpa Support ❘ 163

Reflection API. Because you need to have an active transaction in order to perform data manipulation
operations using JPA, you created one and managed the transaction appropriately. Within the active
transaction, you called entityManager.persist(student) to insert a new transient student instance.
Finally, you committed the transaction and closed the entityManager at hand.

@PersistenceUnit has a unitName attribute. Its value is optional; however, it can be used to inject
another entityManagerFactory bean defined in the container.

Similar to the preceding Try It Out, the following example shows you how to obtain an
EntityManager instance managed by Spring Container using the @PersistenceContext annota-
tion and use it to perform persistence operations within your DAO beans.

try it out Using @persistenceContext to Obtain entityManager

To be able to use @PersistenceContext you need to have an active transaction managed either by
Spring Container or EJB CMT. Chapter 6 covers transactions in detail.

You can find the source code within the project named configuring‐and‐using‐jdbctemplate in the
spring‐book‐ch5.zip file.

In this Try It Out, you obtain a transactional EntityManager instance using the
@PersistenceContext annotation in your DAO bean, and use it to perform persistence operations.
You can continue from the previous Try It Out. To begin, follow these steps:

 1. For now, create the following transactionManager bean definition and enable the Spring
Container-managed transaction by placing the @EnableTansactionManagement annotation on top
of your bean configuration class:

@Configuration
@EnableTransactionManagement
public class Ch5Configuration {
 @Bean
 @Autowired
 public PlatformTransactionManager transactionManager(
 EntityManagerFactory entityManagerFactory) {
 JpaTransactionManager transactionManager = new JpaTransactionManager();
 transactionManager.setEntityManagerFactory(entityManagerFactory);
 return transactionManager;
 }
//...
}

 2. Create a BookDao interface with the save(Book book) method in it, and create the
BookDaoJpaImpl class that implements this interface:

public interface BookDao {
 public void save(Book book);

164 ❘ Chapter 5 Data access with JPa Using sPring

}

public class BookDaoJpaImpl implements BookDao {
 @Override
 public void save(Book book) {
 }
}

 3. Define an EntityManager field in the DAO class and place the @PersistenceContext annotation
onto it:

 @PersistenceContext
 private EntityManager entityManager;

 4. Persist the transient book instance given by calling the entityManager.persist(book) method
within the save(..) method of BookDaoJpaImpl:

 @Override
 public void save(Book book) {
 entityManager.persist(book);
 }

 5. Transaction management should be handled at the service layer. Therefore, first cre-
ate a BookService interface with the save(Book book) method in it, and then create a
BookServiceImpl class implementing the BookService interface and place the @org
.springframework.transaction.annotation.Transactional annotation on top of it:

public interface BookService {
 public void save(Book book);
}

@Transactional
public class BookServiceImpl implements BookService {
 @Override
 public void save(Book book) {
 }
}

 6. Add a property with type BookDao, and using that DAO bean, perform a save operation within the
service class:

 private BookDao bookDao;

 public void setBookDao(BookDao bookDao) {
 this.bookDao = bookDao;
 }

 @Override
 public void save(Book book) {
 bookDao.save(book);
 }

 7. Define the bookDao and bookService beans, and inject the bookDao bean into the bookService
bean in the Configuration class:

 @Bean
 public BookDao bookDao() {

Spring’s Jpa Support ❘ 165

 BookDaoJpaImpl bean = new BookDaoJpaImpl();
 return bean;
 }

 @Bean
 public BookService bookService() {
 BookServiceImpl bean = new BookServiceImpl();
 bean.setBookDao(bookDao());
 return bean;
 }

 8. Perform a bean lookup to bookService in the main method, create a Book entity, and persist it as
follows:

public class Main {
 public static void main(String[] args) {
 ApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch5Configuration.class);

 BookService bookService = applicationContext.getBean(BookService.class);

 Book book = new Book();
 book.setName("book1");
 bookService.save(book);
 }
}

How It Works

The first and second steps are required to enable Spring Container–managed transactions. The
transactionManager() method creates a bean from the JpaTransactionManager class and sets the
EntityManagerFactory instance taken with autowiring into it. @EnableTansactionManagement
makes Spring recognize @Transactional annotations. Therefore in step 3, you put an @Transactional
annotation on top of the BookDao class so that methods defined inside this class are transactional. As
stated earlier, you look at this part in detail in Chapter 6. That’s enough for you to have an active trans-
action and use a shared EntityManager instance managed by Spring Container.

@PersistenceContext is put onto the private EntityManager entityManager; field definition. At
run time, Spring Container creates an EntityManager bound to the currently active transaction and
injects that instance into this field.

After defining the bookDao and bookService beans within the Configuration class, in the last step
you created a Main class, and loaded the ApplicationContext within its main method. Finally, the
Book instance is persisted with the obtained bookService bean in the main method.

Note that if you try to call entityManager.getTransaction(); through this shared entityManager
instance, you get an IllegalStateException mentioning that you can only have an active transaction
either via Spring or EJB CMT.

166 ❘ Chapter 5 Data access with JPa Using sPring

 handling and translating exceptions
 Each data access technology has its own exception types and hierarchy to express that errors or
misusages happened while performing data access operations. When using JPA, you have to spe-
cifi cally deal with javax.persistence.PersistenceException typed exceptions. You also need
to take care of JPA vendor‐specifi c exceptions that may be thrown during run time, including
 IllegalArgumentException and IllegalStateException exception types as well. What can be
more frustrating is that if you mix different data access technologies—for example, use JDBC and
JPA to perform some operations—you also have to deal with java.sql.SQLException , in addition
to javax.persistence.PersistenceException .

 Spring eases life here by handling different types of data access exceptions thrown from the data‐
access layer, and translates them into a standard data access exception hierarchy defi ned by Spring.
Therefore, you won’t need to know which specifi c exceptions might be thrown while using a specifi c
method of your particular data access technology. The only exception hierarchy you need to
handle is Spring’s org.springframework.dao.DataAccessException . It is of type java.lang
.RuntimeException . Thus, you use a try...catch block only when you need to handle those data
access exceptions. For example, the following code snippet shows how DataAccessException s can
be handled within the service layer:

 @Transactional
 public class BookServiceImpl implements BookService {

 private BookDao bookDao;

 public void setBookDao(BookDao bookDao) {
 this.bookDao = bookDao;
 }

 @Override
 public void save(Book book) {
 try {
 //perform some business logic here...
 bookDao.save(book);
 } catch(DataAccessException ex) {
 //handle the data access exception,
 //without depending on particular

 tranSactional verSuS extended PerSiStence context

 @PersistenceContext has a type attribute whose value can be
 PersistenceContextType.TRANSACTION or PersistenceContextType.EXTENDED .
In stateless beans it is safe to use only the PersistenceContextType.TRANSACTION
value for a shared EntityManager to be created and injected into for the current active
transaction’s scope. If the value were EXTENDED , the shared EntityManager instance
wouldn’t be bound to the active transaction and might span more than one transaction.
 PersistenceContextType.EXTENDED is purposefully designed to support beans, like
stateful EJBs, session Spring beans, or request‐scoped Spring beans. The default value
of the type attribute in @PersistenceContext annotation is TRANSACTION .

Spring’s Jpa Support ❘ 167

 //data access technology used beneath...
 }
 }
}

To use the exception handling and translation feature of Spring, you need to mark your DAO beans
with the @Repository annotation as follows:

@Repository
public class BookDaoJpaImpl implements BookDao {
//...
}

Then, you need to create a bean definition from the PersistenceExceptionTranslationPostProcessor
class, so that Spring advises your DAO beans, catches technology‐specific data access exceptions, and
translates them to its own DataAccessException hierarchy.

You can define this bean either using class‐based configuration or XML‐based configuration. If you
prefer class‐based configuration, you need to define the factory method as static:

@Configuration
public class Ch5Configuration {

 @Bean
 public static PersistenceExceptionTranslationPostProcessor
 persistenceExceptionTranslationPostProcessor() {
 PersistenceExceptionTranslationPostProcessor bean =
 new PersistenceExceptionTranslationPostProcessor();
 return bean;
 }

 //...

}

<bean class="org.springframework.dao.annotation. ↵
 PersistenceExceptionTranslationPostProcessor
"/>

The PersistenceExceptionTranslationPostProcessor bean tries to identify all beans implement-
ing the PersistenceExceptionTranslator interface in the application context and uses them dur-
ing the exception translation phase. Several implementations of PersistenceExceptionTranslator
are provided by Spring, and the LocalEntityManagerFactoryBean and
LocalContainerEntityManagerFactoryBean classes are among them. Therefore, you don’t need to
perform any translator bean configuration by default.

further JPa configuration in Spring environment
Spring provides some additional means to configure JPA within Spring Container. Those additional
features help you enable some advanced features of JPA, usually in a vendor‐specific manner. In this
section, you examine those additional features of JPA configuration.

168 ❘ Chapter 5 Data access with JPa Using sPring

JpaDialect
Spring has the JpaDialect interface, which is used to enable some advanced features for the JPA
environment, usually in a JPA vendor‐specific manner. Those features are listed in Spring Reference
Documentation as follows:

 ➤ Applying specific transaction semantics such as custom isolation level or transaction timeout

 ➤ Retrieving the transactional JDBC Connection for exposure to JDBC‐based DAOs

 ➤ Advanced translation of PersistenceExceptions to Spring DataAccessExceptions

You can inject a custom JpaDialect instance into JpaTransactionManager,
LocalEntityManagerFactoryBean, or LocalContainerEntityManagerFactoryBean.
Default implementation of it is called DefaultJpaDialect, and it doesn’t provide any of
the listed special capabilities. If you need the features listed earlier, you have to specify
the appropriate dialect. For example, because you are using Hibernate as the JPA pro-
vider, you can create an instance from the HibernateJpaDialect class and inject it into the
LocalContainerEntityManagerFactoryBean.

JpaVendoradapter
While configuring JPA, you may need to provide several different vendor‐specific properties with
Spring’s EntityManagerFactory creators. For example, you have to set the PersistenceProvider
implementation class, some vendor‐specific properties within a Map, or a JpaDialect instance in
order to activate some vendor‐dependent advanced features. Instead of specifying them separately,
it is also possible for you to configure and manage them from a single point. Spring offers the
JpaVendorAdapter interface for this purpose. Several implementations of it exist that correspond to
each different JPA vendor. Therefore, the following lines in the entityManagerFactory bean cre-
ation steps become useless and are reduced to one line as follows:

@Bean
public LocalContainerEntityManagerFactoryBean entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setDataSource(dataSource());
 //factoryBean.setJpaPropertyMap(jpaProperties());
 //factoryBean.setPersistenceProviderClass(HibernatePersistenceProvider.class);
 //factoryBean.setJpaDialect(new HibernateJpaDialect());

 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 return factoryBean;
}

@Bean
private JpaVendorAdapter jpaVendorAdapter() {
 HibernateJpaVendorAdapter jpaVendorAdapter = new HibernateJpaVendorAdapter();
 jpaVendorAdapter.setGenerateDdl(true);
 jpaVendorAdapter.setDatabase(Database.H2);
 return jpaVendorAdapter;
}

Spring’s Jpa Support ❘ 169

Jpa and Load-time Weaving
JPA specification defines some requirements about lazy loading of associations and monitoring
of entities. However, the specification doesn’t say anything about how these features will be
implemented. Therefore, some JPA vendors employ proxy class generation, and some other
byte code enhancement to handle lazy loading of object associations, and so on. OpenJPA, for
example, prefers byte code enhancement. Hibernate, on the other hand, is not one of those JPA
providers. It employs a class‐based proxy mechanism instead. If a class‐based proxy mechanism
is used, you, as a developer, don’t have to do anything at all. However, if your ORM vendor
employs byte code enhancement, you need to modify domain classes either at compile time or at
run time.

If you choose to modify domain classes during the class load process, you can usually achieve this
using Java 5 javaagent support. You can specify Java agents using a virtual machine (VM) argu-
ment called ‐javaagent.

Spring tries to ease the class transformation at run time. It has a special interface called
LoadTimeWeaver, and this interface has several distinct implementations for different plat-
forms. Spring tries to detect the target application runtime platform, and defines the correct
LoadTimeWeaver instance as a bean automatically. The following code snippet shows an XML‐
based configuration to enable load-time weaving:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd">

 <context:load-time-weaver/>

</beans>

The following code snippet shows the Java‐based configuration to enable load-time weaving:

@Configuration
@EnableLoadTimeWeaving
public class Ch5Configuration {
}

After load-time weaving is enabled using either an XML‐based or Java‐based configura-
tion as shown earlier, Spring identifies a target runtime platform and then registers the correct
LoadTimeWeaver implementation as a bean in the container. From now on, you can apply byte code
enhancement using this LoadTimeWeaver instance.

LocalContainerEntityManagerFactoryBean, for example, implements the LoadTimeWeaverAware
interface, and Spring automatically injects the loadTimeWeaver bean into that bean. In that case,
the entityManagerFactory bean uses loadTimeWeaver to perform byte code enhancement to
domain classes.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd

170 ❘ Chapter 5 Data access with JPa Using sPring

Dealing with Multiple persistence Units
Sample applications may depend on several different persistent unit locations. Each of those persistence
unit files may come from different jar files in the classpath. The discovery process of those persistence
unit files is an expensive process. Spring provides a mechanism so that all those different persistence unit
locations are discovered once during bootstrap and can be accessed via persistent unit names.

PersistenceUnitManager is the interface of that mechanism that acts as a central
repository for those persistent unit locations. There is a default implementation called
DefaultPersistenceUnitManager, and it allows access to those persistent units via their names.
You need to define a bean as persistenceUnitManager and inject it into entityManagerFactory
beans similar to the following code snippet:

<bean id="FileName_persistenceUnitManager"
 class="org.springframework.orm.jpa.persistenceunit.DefaultPersistenceUnitManager">
 <property name="persistenceXmlLocations">
 <list>
 <value>classpath:META-INF/persistence.xml</value>
 <value>classpath:/my/package/*/test-persistence.xml</value>
 </list>
 </property>
 <property name="dataSources">
 <map>
 <entry key="localDataSource" value-ref="h2DataSource" />
 <entry key="remoteDataSource" value-ref="oracleDataSource" />
 </map>
 </property>

Warning Behind the scenes, actual work is done by
ClassFileTransformers registered at ClassLoader via loadTimeWeaver.
However, for ClassFileTransformers to be registered successfully,
ClassLoader, in use, must support this feature. Unfortunately, this is not the
case for all application runtime platforms. For instance, Tomcat and Resin web
containers don’t offer such a ClassLoader implementation. In such cases, you
can use Spring’s InstrumentationSavingAgent VM agent to enable load-time
weaving. It will be just enough to add the following line to your VM arguments:

java ‐javaagent:/path/to/spring‐instrument.jar ...

InstrumentationSavingAgent just saves the java.lang.instrument
.Instrumentation instance during JVM startup. From Java 5 on, the
Instrumentation interface is used to provide services to enhance Java
byte codes. If your runtime application platform is either Tomcat or Resin
Spring, it automatically detects the environment and decides on using
the InstrumentationLoadTimeWeaver implementation. You can then use
this instance to register related ClassFileTransformer instances via the
Instrumentation interface.

Summary ❘ 171

 <property name="defaultDataSource" ref="remoteDataSource" />
</bean>

<bean id="FileName_entityManagerFactory1"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitManager" ref="persistenceUnitManager" />
 <property name="persistenceUnitName" value="test-jpa" />
</bean>

<bean id="FileName_entityManagerFactory2"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitManager" ref="persistenceUnitManager" />
 <property name="persistenceUnitName" value="prod-jpa" />
</bean>

DefaultPersistenceUnitManager seeks /META‐INF/persistence.xml files by default.
The preceding example listed both /META‐INF/persistence.xml and classpath:/my/
package/*/test‐persistence.xml files. It loads all the persistence units found within
those files and makes them available to the entityManagerFactory beans. Actually,
LocalContainerEntityManagerFactoryBean creates a PersistenceUnitManager unless a bean of
this type has not been injected.

SuMMary

This chapter first gave a brief introduction to ORM and JPA and explained the paradigm mismatch
between the object world and the relational world. Then it continued with the fundamental building
blocks of an ORM framework. You walked through OR mapping constructs used to map an object
model to a relational model and saw how to define entities, map their attributes to columns, and cre-
ate associations between entities. The chapter also exposed you to some details about mapping Java
types to SQL data types.

Later, the chapter introduced persistence unit and persistence context concepts in JPA, and gave
some examples to show how to configure and use JPA in a nutshell. The chapter explained several
different persistence operations and queries that you can perform using EntityManager.

After this brief introduction to ORM and JPA, you saw different ways of handling
EntityManagerFactory bean configuration, and learned about their pros and cons. After config-
uring a persistence unit in Spring Container, you saw how to implement DAOs using the JPA API
directly. The chapter explained @PersistenceUnit and @PersistenceContext annotations and
showed their usages. It also explained how Spring helps you when a persistence‐related exception
occurs, and how it tries to handle and convert those different types of persistence exceptions to its
DataAccessException hierarchy.

The chapter concluded with some further information about how to configure JPA, such as using the
JpaDialect and JpaVendorAdapter interfaces of Spring. You also learned about byte code enhance-
ment and when it is necessary to perform byte code enhancement while using JPA; load-time weaving,
which is a method to perform byte code enhancement; and how Spring tries to help you perform byte
code enhancement using load-time weaving in different application runtime environments.

172 ❘ Chapter 5 Data access with JPa Using sPring

exerciSeS

You can find possible solutions to the following exercises in Appendix A.

 1. Try to configure your environment so that it uses a different JPA vendor—for example,
EclipseLink—to perform persistence operations.

 2. Create EntityManagerFactory using the LocalContainerEntityManagerFactoryBean, which
loads a META-INF/my-persistence.xml file as its only JPA configuration.

 3. Try to perform a persistence operation using JPA outside of an active transaction and observe
the exception thrown.

 Summary ❘ 173

 ▸ What you learned in thiS chaPter

toPic Key PointS

@Entity Annotation representing the persistent domain
class that has a corresponding table in a database

@Id Annotation representing the primary key attribute
of the persistent class

@OneToOne, @OneToMany, @ManyToOne,
@ManyToMany

Annotations used to map 1:1,1:M, M:1, and N:M
associations in a database

@JoinColumn, @JoinTable Annotations used to map foreign keys and asso-
ciation tables

@Temporal, @Enumerated, @Lob Annotations used to map Date, Time, Timestamp,
Enum, and byte[] Java types to corresponding
SQL data types

META‐INF/persistence.xml Default JPA persistence unit configuration file

javax.persistence.Persistence Class that is used to load persistence unit configu-
rations and to create an EntityManagerFactory

persistence unit, EntityManagerFactory Instance that represents persistence unit con-
figuration used to obtain persistence context
instances

persistence context, EntityManager Bridge between the application and database that
is used to perform persistence operations

LocalContainerEntityManagerFactoryBean Spring’s FactoryBean implementations to cre-
ate an EntityManagerFactory bean in the
ApplicationContext

javax.persistence.PersistenceProvider Java SPI interface that is actually used to create an
EntityManagerFactory instance

@PersistenceUnit Annotation used to inject a managed
EntityManagerFactory instance

@PersistenceContext Annotation used to inject a managed
EntityManager instance

JpaTransactionManager Spring’s PlatformTransactionManager imple-
mentation for JPA data access strategy used in
local transactions

PersistenceException,
DataAccessException

Base exceptions for JPA and Spring’s DAO opera-
tions, respectively

174 ❘ Chapter 5 Data access with JPa Using sPring

toPic Key PointS

PersistenceExceptionTranslator Interface used to handle and translate data
access strategy‐specific exceptions into a generic
DataAccessException hierarchy of Spring

JpaDialect, JpaVendorAdapter Interfaces used to perform JPA vendor‐specific
configurations persistence unit creation

Byte code enhancement Dynamically modifying class definitions either at
compile time or at run time

Load-time weaving, LoadTimeWeaver Modifying class definitions at run time and the
Spring interface for this purpose

javaagent Java 5 feature to perform JVM‐related operations
at run time

java.lang.instrument.Instrumentation Java 5 class used to perform class definition modi-
fications on ClassLoader instances

InstrumentationSavingAgent Spring’s Java agent implementation used to
expose Instrumentation instances in JVM

InstrumentationLoadTimeWeaver LoadTimeWeaver implementation that uses the
Instrumentation interface to perform class defi-
nition modifications

 Managing transactions
with Spring

 what yoU will learn in this chapter:

 ➤ Understanding how transaction management works

 ➤ Advantages of Spring’s transaction abstraction

 ➤ Performing declarative and programmatic transaction management
with Spring

 ➤ Differences between local and global transactions

 ➤ Choosing among different transaction managers

 ➤ Differences between various transaction propagation rules

 ➤ Executing custom logic after transaction commits or rollbacks

 6

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 6 download and individually named according to the
names throughout the chapter.

 Protecting the integrity of data in an enterprise application is probably the most important
thing. After all, an application that corrupts balances of its customers during a money transfer
operation is certainly unacceptable, despite how fast that application operates or how nice it
looks to its users.

http://www.wrox.com/go/beginningspring

176 ❘ Chapter 6 Managing TransacTions wiTh spring

Database transactions protect the integrity of data that is operated on. They are managed by the
application, and several data access operations performed within their boundaries are seen as a
single atomic unit. They are either persisted or discarded altogether, according to the outcome of
the business scenario. Atomicity is one of the several defining properties of transactions, along with
consistency, isolation, and durability. Each characteristic plays an important role in protecting the
integrity of application data.

This chapter first explains the fundamental features of transactions and how transactions are cre-
ated and managed using JDBC. Later, the chapter focuses on Spring’s transaction abstraction and
how declarative and programmatic transaction demarcations are performed using Spring. You will
see different propagation rules that can be used when several transactional methods call each other.
You will also see some interesting features that Spring’s transaction subsystem offers, such as exe-
cuting custom business logic before or after transaction demarcations.

Understanding transaction ManageMent

Any system that deals with data must protect its integrity. A system that causes incorrect account bal-
ances, lost orders, missing entries in a document, or other errors will definitely be deemed unaccept-
able by its users. You need a way to protect data integrity, and transactions offer a mechanism for this
purpose. Transactions define a boundary for data‐related operations and group them together so that
the final outcome of those operations never leaves the underlying data in an inconsistent state.

ACID (atomicity, consistency, isolation, and durability) is an old acronym that expresses how a reli-
able transaction management system should behave in order to protect data integrity across multiple
concurrent user operations while not sacrificing performance requirements. Jim Gray defined these
properties in the late 1970s, and he also developed technologies to demonstrate how to achieve them
automatically. In 1983, Andreas Reuter and Theo Härder coined the acronym ACID to describe
them. Let’s look at them briefly:

 ➤ Atomicity: Several operations might be performed over data in any transaction. Those opera-
tions must all succeed or commit, or, if something goes wrong, none of them should be per-
sisted; in other words, they all must be rolled back. Atomicity is also known as unit of work.

 ➤ Consistency: For a system to have consistency, at the end of an active transaction the under-
lying database can never be in an inconsistent state. For example, if order items cannot exist
without an order, the system won’t let you add order items without first adding an order.

 ➤ Isolation: Isolation defines how protected your uncommitted data is to other concurrent
transactions. Isolation levels range from least protective, which offers access to uncommit-
ted data, to most protective, at which no two transactions work at the same time. Isolation
is closely related to concurrency and consistency. If you increase the level of isolation, you
get more consistency but lose concurrency—that is, performance. On the other hand, if you
decrease the level, your transaction performance increases, but you risk losing consistency.

 ➤ Durability: A system has durability when you receive a successful commit message, and you
can be sure that your changes are reflected to the system and will survive any system failure
that might occur after that time. Basically, when you commit, your changes are permanent
and won’t be lost.

Understanding transaction Management ❘ 177

Before going into details of transaction management using Spring’s transaction support, it would be
better to examine how a transaction is started and completed using JDBC API directly. This would
help you understand what is actually brought by Spring’s transaction support. In the following
example, you see how a transaction can be managed using JDBC API.

try it oUt Defining transaction Boundary Using JDBC apI

You can find the source code within the project named defining‐transaction‐with‐jdbc in the
spring‐book‐ch6.zip file.

In this Try It Out, you create a simple method that transfers some amount of money from a source
account to a target account and make it transactional with pure JDBC API. To begin, follow these
steps:

 1. Create a Maven project with the following Maven command:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId= com.wiley.beginningspring -DartifactId=spring-book-ch6

 2. Open the H2 database. Add the following <dependency> element into your pom.xml file:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.176</version>
</dependency>

 3. Find the org.h2.tools.Console class of the H2 database from the project classpath, and run it as
a Java application from your IDE. When it runs, the browser automatically appears in your screen
with the database console. You can select Generic H2 Server and log in to it using “sa” as the
username with an empty password.

 4. Prepare your database schema. Create an ACCOUNT table with the following DDL statement (you
can execute it from your database console):

CREATE TABLE ACCOUNT (
 ID BIGINT IDENTITY PRIMARY KEY,
 OWNER_NAME VARCHAR(255),
 BALANCE DOUBLE,
 ACCESS_TIME TIMESTAMP,
 LOCKED BOOLEAN
);

 5. Insert two account entries into the ACCOUNT table:

INSERT INTO ACCOUNT(ID,OWNER_NAME,BALANCE, ACCESS_TIME , LOCKED)
 VALUES(100,'owner-1',10,'2014-01-01',false);
INSERT INTO ACCOUNT(ID,OWNER_NAME,BALANCE, ACCESS_TIME , LOCKED)
 VALUES(101,'owner-2',0,'2014-01-01',false);

 6. Define an AccountService interface that has the transferMoney(..) method in which you trans-
fer a specified amount from a source account to a target account:

178 ❘ Chapter 6 Managing TransacTions wiTh spring

public interface AccountService {
 public void transferMoney(
 long sourceAccountId, long targetAccountId, double amount);
}

 7. Create an AccountServiceJdbcTxImpl class that implements the AccountService interface:

public class AccountServiceJdbcTxImpl implements AccountService {
 public void transferMoney(long sourceAccountId, long targetAccountId,
 double amount) {
 Connection connection = null;
 try {
 DriverManager.registerDriver(new Driver());
 connection = DriverManager.getConnection(
 "jdbc:h2:tcp://localhost/~/test", "sa", "");
 connection.setAutoCommit(false);

The point at which you call connection.setAutoCommit(false) marks the beginning of your
transaction boundary with JDBC API:

 Statement statement = connection.createStatement();
 statement.executeUpdate("update account set balance = balance - "
 + amount + " where id = " + sourceAccountId);
 statement.executeUpdate("update account set balance = balance + "
 + amount + " where id = " + targetAccountId);
 connection.commit();
 }

When your data manipulation operations are over, you need to call connection.commit(). This
line indicates successful termination of your transaction demarcation, and the changes you’ve
made so far are reflected to the database:

 catch (SQLException e) {
 try {
 connection.rollback();
 } catch (SQLException ex) {
 //you can ignore the exception thrown here
 }
 throw new RuntimeException(e);
 }

On the other hand, if something goes wrong during the course of data manipulation operations,
you catch the resulting error and call connection.rollback(). This tells JDBC to discard any
changes you made so far:

 finally {
 try {
 connection.close();
 } catch (SQLException e) {
 //you can ignore the exception thrown here
 }
 }
 }
}

tcp://localhost/~/test

Understanding transaction Management ❘ 179

 8. Create a Main class with the main method as follows:

public class Main {
 public static void main(String[] args) {
 AccountService accountService = new AccountServiceJdbcTxImpl();
 accountService.transferMoney(100L,101L, 5.0d);
 }
}

When you run the test method and then look up the ACCOUNT table from within the H2 Console,
you see that account balances have been changed.

How It Works

The DriverManager.registerDriver(..) method call is used to register the H2 JDBC Driver to
DriverManager. It is also possible to load a JDBC Driver class using the Class.forName("org
.h2.Driver") method as well. Even though, the Class.forName(..) approach is more common
in Java projects, we chose to use DriverManager.registerDriver(..) in order to make the JDBC
Driver registration step more explicit. You can use the one that best suits your needs.

You begin a transaction differently depending on the data access technology you use. In JPA, for exam-
ple, you would use entityManager.beginTransaction(). Here, as you are using JDBC API directly, it
is connection.setAutoCommit(false) that causes a new transaction to begin.

Normally, each data manipulation SQL operation is executed separately and is completely indepen-
dent from the others. Therefore, unless you call connection.setAutoCommit(false), two update
statements will execute separately, and their changes will be reflected immediately to the database
and become visible to other users. If something goes wrong—for example, while executing the second
update statement—there will probably be no change caused by the second statement, but because the
first one already executed successfully, its changes are permanent. The system will be in an inconsistent
state from now on.

However, calling connection.setAutoCommit(false) makes the transaction active, and JDBC
waits to reflect changes until the end of the transaction. At this point you decide how the trans-
action ends, either with success by issuing connection.commit() or with failure by issuing
connection.rollback(). A commit reflects changes to the underlying database, changes are made
permanent, and they become visible to other users. A rollback discards changes made so far, and data is
left unchanged in the underlying database.

For example, if you had thrown an exception just before executing the second SQL update, nothing
would be changed in the database. Alternatively, if you hadn’t started the transaction here, the first
account’s balance would be updated but the second one would not, resulting in a data loss.

Almost every method call in JDBC API throws checked java.sql.SQLException. Therefore, you
have to deal with those checked exceptions in your code by either handling them with a catch block
or by adding a throws clause in your method definition. If you prefer to catch the checked excep-
tion, as was the case here with the SQLException, you should either try to recover from the error or
rethrow it by wrapping a new exception, usually with an instance of RuntimeException. That way,
upper layers in the application won’t bother with those checked exceptions at all. Here, in the example

180 ❘ Chapter 6 Managing TransacTions wiTh spring

code, we haven’t defined a separate custom RuntimeException subclass; instead we instantiated a
RuntimeException, wrapped the SQLException instance, and rethrew it in order to keep the example
focused on how the transaction is demarcated using JDBC API.

spring’s transaction abstraction Model

Each data access technology has its own transaction mechanism. In other words, they provide
different APIs to begin a new transaction, commit the transaction when data operations fin-
ish with success, or roll it back in case an error occurs. This is called transaction demarcation.
Spring’s role here is to abstract away those different transaction demarcation steps from your
code and provide a standard API to demarcate transactions either programmatically or declara-
tively. That way, as your system becomes isolated from the underlying data access technology, it
becomes easier to switch among them and even use more than one data access technology at the
same time.

Spring’s transaction abstraction model is based on the PlatformTransactionManager
interface. Different concrete implementations of it exist, and each one corresponds to one
particular data access technology. As a developer, your responsibility is to decide which
PlatformTransactionManager implementation will be used by Spring Container. This decision
results in a bean definition called transactionManager, by default.

By depending on Spring’s PlatformTransactionManager API you secure your code from
changes in data access technologies, even though you have the chance to mix different ones
in the same transaction. That way, when you decide to change your data access strategy, you
don’t need to modify your transactional code. It is enough to just change the bean definition of
transactionManager.

The following Try It Out shows you how to activate Spring’s transaction mechanism while using
JDBC as your data access strategy.

try it oUt Configuring the platformtransactionManager Bean in Spring Container

You can find the source code within the project named configuring‐platform‐tx‐manager in the
spring‐book‐ch6.zip file.

In this Try It Out, you activate Spring’s transaction mechanism while using JDBC as the data access
strategy beneath it. You can continue with the project you created for the previous Try It Out. To begin,
follow these steps:

 1. Add the following dependencies into your project’s pom.xml file if they are not already available
among your dependency list:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>4.0.5.RELEASE</version>

Spring’s transaction abstraction Model ❘ 181

</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Create the following bean configuration class in your Spring Container:

@Configuration
public class Ch6Configuration {

 3. Transaction management for JDBC operations are performed by Spring’s org.springframework
.jdbc.datasource.DataSourceTransactionManager. It expects a bean with type javax.sql
.DataSource, so add the following into the bean configuration class:

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 4. Add the following transactionManager bean definition into the configuration class:.

 @Bean
 public PlatformTransactionManager transactionManager() {
 DataSourceTransactionManager transactionManager =
 new DataSourceTransactionManager();
 transactionManager.setDataSource(dataSource());
 return transactionManager;
 }
}

 5. Create a Spring Container within the main method to check that the bean configuration is valid and
ready to use to perform transaction management:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch6Configuration.class);
 PlatformTransactionManager transactionManager =
 applicationContext.getBean(PlatformTransactionManager.class);
 System.out.println(transactionManager != null);
 }
}

tcp://localhost/~/test

182 ❘ Chapter 6 Managing TransacTions wiTh spring

How It Works

As the Spring’s DataSourceTransactionManager class expected a bean of type javax.sql
.DataSource, you defined a dataSource bean. You used Spring’s DriverManagerDataSource class
to define it. It is an implementation of the javax.sql.DataSource type. Properties given during bean
definition are the values that are required to connect to the underlying database. After that, you defined
the transactionManager bean.

Applications need to obtain new JDBC Connections via Spring’s DataSourceUtils
.getConnection(DataSource) instead of directly calling DataSource.getConnection() or
DriverManager.getConnection() methods. That way, transactionManager is able to operate on the
same Connection instance you obtain to perform your JDBC operations. Spring’s JdbcTemplate class
also makes use of DataSourceUtils.getConnection(DataSource) behind the scenes.

The application, at this point, is ready to make use of Spring’s transaction support. You will see how
transaction management is performed using both programmatic and declarative methods in the following
sections. In either way, behind the scenes the transactionManager bean changes the JDBC Connection
instances’ autoCommit mode to false so that transaction demarcation starts at appropriate positions.

local versus global transactions
Local transaction means that your application works with a single database, and your transactions
only control DML operations performed on that single database. Global transaction, on the other
hand, means distributed transaction management. More than one database may be involved in a
transaction. JEE offers JTA to deal with global transactions, and EJBs by default use JTA to perform
transaction management. JTA causes considerable overhead to the system because of its two‐phase
commit (2PC) strategy. You also need to work with a full‐featured JEE application server to have JTA
capability. Although a few standalone JTA implementations are available, they are not so common.

On the other hand, many applications just don’t work with multiple databases, or at least they
don’t need to in a single transaction. They just need to access a single database, and perform DML
operations on that single database within their transactions. Therefore, it becomes unnecessary to
pay the performance price of JTA’s 2PC without actually needing it. Those applications are also
usually servlet‐based web applications, and they again don’t need most of the other features of a
full‐featured JEE application server. All they need is a simple servlet container to work with.

As a result, it would be very nice to help those applications to just run on a lightweight web con-
tainer, such as Tomcat or Jetty, and provide them with a transaction management mechanism that
doesn’t need JTA in the first place. Here, Spring comes to the rescue. With its abstract platform
transaction model, it becomes possible to just start with local transactions and run on a lightweight
web container until global transaction requirements arise.

platformtransactionManager implementations
The most important part in configuring transactionManager is to choose the correct
PlatformTransactionManager implementation according to your data access strategy.

Spring provides several implementations for different data access technologies, as shown in Table 6-1.

Declarative transaction Management with Spring ❘ 183

table 6-1: PlatformTransactionManager Implementations Corresponding to Data Access Technologies

transactionManager class data access technology

DataSourceTransactionManager Suitable if you are only using JDBC.

JpaTransactionManager Suitable if you are using JPA. It is also possible to use JDBC
at the same time with this implementation.

HibernateTransactionManager Suitable if you are using Hibernate without JPA. It is
also possible to use JDBC at the same time with this
implementation.

JdoTransactionManager Suitable if you are using JDO. It is also possible to use JDBC
at the same time with this implementation.

JtaTransactionManager Suitable if you are using global transactions—that is, the dis-
tributed transaction management capability of your applica-
tion server. You can use any data access technology.

advantages of spring’s abstract transaction Model
Spring’s abstract platform transaction model provides several benefits to the application. First, it
enables you to use several data access technologies in the same application. It is possible to use both
declarative and programmatic transaction models simultaneously.

If you need to change your application’s data access technology, all you need to change is the
transactionManager bean definition. It doesn’t matter whether you use programmatic or declara-
tive transactions. It is possible to change declarative rollback rules, and you can execute custom
logic before and after transactions.

It is very easy to switch from local transactions to global ones, or vice versa. You only need to define the
corresponding transactionManager suitable for the data access strategy, and the rest is handled by Spring
itself. For example, you might be switching from local transactions using JDBC to global transactions using
Hibernate. You just reconfigure your transactionManager bean definition in your bean configuration. As
Spring’s PlatformTransactionManager API isolates the underlying transaction management technology
from your application, you don’t need to touch your already‐written application logic at all.

declarative transaction ManageMent with spring

As stated earlier in this chapter, transactions have boundaries. In other words, you need to define
where a transaction starts, perform business logic that needs to execute inside the transaction, and
finish it at some point either with a commit or a rollback. Here is a pseudo‐code that represents the
general structure of the transactional methods:

try
 begin transaction
 execute transactional code block
 commit transaction

184 ❘ Chapter 6 Managing TransacTions wiTh spring

} catch(Exception e) {
 handle exception
 rollback transaction
} finally {
 do resource clean up
}

This pattern repeats itself in every method that needs transactional behavior around the system.
Transaction management is a cross‐cutting concern, and cross‐cutting concerns are best handled
with aspect‐oriented programming (AOP). Spring employs aspect‐oriented programming techniques
to do transaction management as well.

For declarative transaction management, Spring only expects you to specify which methods of your
Spring‐managed beans will be transactional. You can do this via Java annotations or from within XML
configuration files. Basically, when those specified methods are called, Spring begins a new transaction,
and when the method returns without any exception it commits the transaction; otherwise, it rolls back.
Hence, you don’t have to write a single line of transaction demarcation code in your method bodies.

In the following example, you see how transactions are enabled declaratively using Spring’s transac-
tion support.

try it oUt enabling Declarative transaction Management in Spring

You can find the source code within the project named enabling‐declarative‐tx‐management in the
spring‐book‐ch6.zip file.

In this Try It Out, you employ declarative transaction management to your transferMoney method.
You can continue with the previous Try It Out. To begin, follow these steps:

 1. Tell Spring you are going to use Java annotations to specify on which methods you apply declara-
tive transaction management. You should place the @EnableTransactionManagement annotation
on top of the configuration class for this purpose:

@Configuration
@EnableTransactionManagement
public class Ch6Configuration {
//...
}

 2. Instead of replacing already written code in the AccountServiceJdbcTxImpl class, create a new
class called AccountServiceJdbcTxImplWithSpring. Add a property with type javax.sql
.DataSource into this class together with its setter method:

public class AccountServiceJdbcTxImplWithSpring implements AccountService {

 private DataSource dataSource;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @Override
 public void transferMoney(

Declarative transaction Management with Spring ❘ 185

 long sourceAccountId, long targetAccountId, double amount) {

 }

}

 3. Mark your transferMoney with the org.springframework.transaction.annotation
.Transactional annotation:

 @Transactional
 public void transferMoney(long sourceAccountId, long targetAccountId,
 double amount) {
 //...
 }

 4. Change the implementation of transferMoney so that it will employ Spring’s DataSourceUtils
.getConnection(DataSource) to obtain the JDBC connection, and execute SQL update
statements:

@Override
@Transactional
public void transferMoney(long sourceAccountId, long targetAccountId, double amount) {
 Connection connection = DataSourceUtils.getConnection(dataSource);
 try {
 Statement statement = connection.createStatement();
 statement.executeUpdate("update account set balance = balance - "
 + amount + " where id = " + sourceAccountId);
 statement.executeUpdate("update account set balance = balance + "
 + amount + " where id = " + targetAccountId);
 } catch (SQLException e) {
 throw new RuntimeException(e);
 } finally {
 DataSourceUtils.releaseConnection(connection, dataSource);
 }
}

 5. Define AccountService as a Spring‐managed bean:

@Configuration
@EnableTransactionManagement
public class Ch6Configuration {

 //...
 @Bean
 public AccountService accountService() {
 AccountServiceJdbcTxImplWithSpring bean =
 new AccountServiceJdbcTxImplWithSpring();
 bean.setDataSource(dataSource());
 return bean;
 }
}

 6. Access the accountService bean from within Spring Container, and call its transferMoney
method within the main method as follows:

186 ❘ Chapter 6 Managing TransacTions wiTh spring

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch6Configuration.class);
 AccountService accountService =
 applicationContext.getBean(AccountService.class);

 accountService.transferMoney(100L, 101L, 5.0d);
 }
}

How It Works

The @EnableTransactionManagement annotation activates annotation‐based declarative transaction
management. Spring Container scans managed beans’ classes for the @Transactional annotation.
When the annotation is found, it creates a proxy that wraps your actual bean instance. From now on,
that proxy instance becomes your bean, and it’s delivered from Spring Container when requested.

When you call the accountService bean’s transferMoney method, first the proxy instance intercepts
the call. It checks whether the transaction needs to be started, and if it does it begins the transaction.
It then calls the real target bean’s transferMoney method to execute business logic. When the target
bean’s method returns, the proxy commits the transaction, and it also returns.

On the other hand, when an exception is thrown from within the body of the transactional method,
Spring checks the exception type in order to decide if the transaction will commit or rollback. By
default, java.lang.RuntimeException and exceptions that inherit from it cause transaction rollback.
Such exceptions are called as system or unchecked exceptions. However, java.lang.Exception and
exceptions that inherit from it cause transaction commit. Such exceptions are called as application or
checked exceptions. This behavior is the same as with the EJB specification and is preserved by Spring,
as well. You can change this behavior so that application exceptions can also cause transaction rollback
using rollback rules in the @Transactional annotation.

isolating the service layer from data access technology
details

In previous Try It Outs you performed JDBC data access operations within your service class. This
was for illustrating how transaction management can be performed using JDBC directly, or by using
Spring’s transaction management support. You had transactional behavior, but your service layer
was coupled with the implementation details of the data access technology you used. It would be
better if you had encapsulated data access operations below another layer and let the service layer
focus on its own tasks, such as coordinating business logic, demarcating transactions, applying
security restrictions, doing validations, and so on. You can achieve this by adding another layer,
called the data access layer, or DAO layer for short. The service layer individually requests data
access operations from this layer, and data access-specific implementation details are completely
hidden behind its interface. Service objects depend on one or several different data access objects
through their interfaces, and they make use of those DAO objects while executing their business
tasks at hand.

Declarative transaction Management with Spring ❘ 187

The biggest problem in achieving such isolation occurs when transferring transactional resources
among several layers. For example, let’s say you work with JDBC as the data access technology.
Therefore, you start a transaction using the JDBC Connection object in your service layer and then
need to pass this resource to the DAO layer below somehow, so that persistence operations performed
using this resource will participate in the same transaction. You must develop a mechanism to share
such resources among several layers while keeping each layer unaware of the implementation details
of the layer beneath it. Spring, with its declarative transaction management mechanism, actually helps
you define those layers and separates them from each other while each layer solely focuses on its own
job without exposing technology‐specific details to upper layers. The following example shows how
this separation can be achieved easily with the help of Spring’s declarative transactional mechanism.

try it oUt Separating the Service Layer from the Data access Layer

You can find the source code within the project named separating‐service‐layer in the
spring‐book‐ch6.zip file.

In this Try It Out, you use the AccountDao interface and implementation you created in Chapter 4 to per-
form JDBC operations within the transactional service layer so that they will automatically participate in
the active transaction. You can continue from the previous Try It Out. To begin, follow these steps:

 1. Copy the classes you created in Chapter 4’s “Inserting, Updating, and Deleting Records Using
JdbcTemplate” Try It Out example into this project. You can find the source code of the
Chapter 4 Try It Out in the project named inserting‐updating‐deleting‐records in the
spring‐book‐ch4.zip file.

 2. Create a service class called AccountServiceImpl, and create a property of type AccountDao
within that class:

public class AccountServiceImpl implements AccountService {

 private AccountDao accountDao;

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

 @Override
 public void transferMoney(long sourceAccountId, long targetAccountId,
 double amount) {

 }

}

 3. Mark the transferMoney(..) method of the service class with the @Transactional annota-
tion, and implement the transferMoney(..) method. Use the AccountDao
.find(long accountId) method to find the source and target accounts from the database.
Perform balance modifications, and then update the accounts using the AccountDao
.update(Account account) method:

 @Override
 @Transactional

188 ❘ Chapter 6 Managing TransacTions wiTh spring

 public void transferMoney(long sourceAccountId, long targetAccountId,
 double amount) {
 Account sourceAccount = accountDao.find(sourceAccountId);
 Account targetAccount = accountDao.find(targetAccountId);
 sourceAccount.setBalance(sourceAccount.getBalance() - amount);
 targetAccount.setBalance(targetAccount.getBalance() + amount);
 accountDao.update(sourceAccount);
 accountDao.update(targetAccount);
 }

 4. Change the accountService bean creation method so that it instantiates the service object
from AccountServiceImpl and injects an accountDao bean into it. You can use the
Ch4Configuration class instead of repeating DAO‐specific bean definitions.

@Configuration
@EnableTransactionManagement
@Import(Ch4Configuration.class)
public class Ch6Configuration {

 //...

 @Bean
 @Autowired
 public AccountService accountService(AccountDao accountDao) {
 AccountServiceImpl bean = new AccountServiceImpl();
 bean.setAccountDao(accountDao);
 return bean;
 }

}

 5. At this point you can test your new implementation within the main method:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch6Configuration.class);
 AccountService accountService =
 applicationContext.getBean(AccountService.class);

 accountService.transferMoney(100L, 101L, 5.0d);
 }
}

How It Works

Spring’s declarative transaction management performs the hard part. When the service method is called,
it begins the transaction if one doesn’t exist. Then the transactional resource, here the Connection
object, is stored in a ThreadLocal data structure, which can be accessible from any other location in the
codebase. You don’t need to know how to access this ThreadLocal data structure directly.

In AccountDaoJdbcImpl, you employed Spring’s JDBC support, which is mainly based on the
JdbcTemplate class. JdbcTemplate performs data access operations while being aware of any

Declarative transaction Management with Spring ❘ 189

active transaction demarcation in the environment. Indeed, JdbcTemplate actually uses the same
DataSourceUtils class previously used to illustrate how a Connection object, participating to the
current transaction, can be obtained. The DataSourceUtils class deals with that thread's local data
structure, and returns an open Connection.

In the end, the service class doesn’t contain any technology‐specific dependency in it. Everything is bur-
ied in the DAO implementation class. The service bean works as long as any DAO bean that satisfies
the interface contract is provided.

During configuration you employed the org.springframework.context.annotation.Import
annotation so that bean definitions in another Configuration class will be loaded when the cur-
rent Configuration class is processed. The accountDao bean, for example, is defined within the
Ch4Configuration class, but it is injected into the accountService bean with an autowire mecha-
nism. The org.springframework.beans.factory.annotation.Autowired annotation on top of the
bean creation method causes the accountDao bean to be passed as a method input parameter during
the bean‐creation method call.

customizing default transactional behavior
@Transactional annotation has the set of default attributes used during transaction demarcation.
Developers can change this default transactional behavior according to their specific needs in their
applications. The following are the default values of @Transactional annotation:

 ➤ propagation: REQUIRED

 ➤ isolation: DEFAULT

 ➤ timeout: TIMEOUT_DEFAULT

 ➤ readOnly: false

 ➤ rollbackFor: java.lang.RuntimeException or its subclasses

 ➤ noRollbackFor: java.lang.Exception or its subclasses

The propagation attribute defines the scope of the transaction, whether it spans multiple method invo-
cations, and so on. Its values can be REQUIRED, REQUIRES_NEW, NESTED, SUPPORTS, NOT_SUPPORTED,
MANDATORY, or NEVER. More information about how propagation works is given in the next section.

The isolation attribute specifies the underlying database system’s isolation level. Possible values are
READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, and SERIALIZABLE. However, you must be
aware that the underlying database system should have support for the given value to be active.

The timeout value specifies the transaction timeout period. It is directly passed into the underlying
database system.

The readOnly attribute is actually a hint to the underlying transaction subsystem, and it tells the
transaction subsystem that the method performs only read operations but the transaction should
still be active. If the underlying subsystem doesn’t understand, it causes no harm to the current
transaction, and changes reflect to the database.

190 ❘ Chapter 6 Managing TransacTions wiTh spring

 The rollbackFor and noRollbackFor attributes expect classes, and they specify what happens
when an exception occurs while executing the transactional method.

 If you need to customize any of these attributes, just add the corresponding attribute in your
 @Transactional annotation.

 Using @transactional on the class level
 You can place an @Transactional annotation not only on methods but also on classes as well. If
it is placed on the class level, all public methods of the class become transactional. Otherwise, only
public methods with the @Transactional annotation become transactional. It is possible to over-
ride the transactional behavior defi ned on class level using the @Transactional annotation, by plac-
ing the @Transactional annotation on the method level as well. For example:

 @Transactional
 public class AccountServiceImpl implements AccountService {

 @Override
 public void transferMoney(
 long sourceAccountId, long targetAccountId, double amount) {
 //...
 }

 @Override
 @Transactional(rollbackFor=Exception.class)
 public void depositMoney(long accountId, double amount) throws Exception {
 //...
 }

 @Override
 @Transactional(readOnly=true)
 public Account getAccount(long accountId) {
 //...
 }
 }

 In the preceding example, the AccountServiceImpl class has an @Transactional attribute with
its default values. This makes all of its public methods transactional. On the other hand, the
 getAccount(..) method’s transaction is changed as readOnly=true . The depositMoney(..)
method’s default rollback rule has changed so that java.lang.Exception also causes rollback.
 transferMoney(..) has no annotation defi ned on it, so therefore, values from the class‐level
annotation will apply.

 properly place @transactional annotations

 It is good practice to put @Transactional annotations on a class and on its public
methods. It is possible to place an @Transactional annotation on an interface and
on its methods, too. However, doing so is discouraged because of Spring’s proxy
generation mechanism. Spring has interface‐based and class‐based proxy generation
mechanisms. If class‐based proxy generation is used, the generated proxy class inher-
its from your bean’s class, and that proxy won’t inherit annotations from its interface.

Declarative transaction Management with Spring ❘ 191

 Understanding transaction propagation rules
 Propagation rules defi ne transaction scope, when the transaction triggers, whether to suspend the
existing transaction, or fail if there is no transaction when the method is called, and so on.

 propagation reQUIreD
 Propagation REQUIRED starts a new transaction if there
is no transaction when a method is called. If there is an
active transaction started by another method call, that
transaction is kept and the second method call is executed
within the same transaction. Figure 6-1 shows the case
that both methods have the Propagation REQUIRED
attribute, so they share the same physical transaction.

 If the second method throws an exception that causes
rollback, the whole transaction rolls back. It doesn’t mat-
ter if the fi rst transaction handles that exception or not.

 how to perForM transaction rollbacK withoUt throwing
an exception

 Spring’s declarative transaction management subsystem commits the current trans-
action if the method returns without an exception. To roll back, fi rst there must be
an exception thrown by the method. Then Spring examines the type of the excep-
tion and decides on commit or rollback based on the type of exception and rollback
rules of the current transaction.

 Sometimes you may want to make a declarative transaction management subsystem
roll back the current transaction without throwing an exception from within your
service method. You can achieve this as follows:

 public class SomeService {
 @Transactional
 public void transactionalMethod() {
 try {
 //perform business logic which may cause exceptions...
 } catch(Exception e) {
 Tra nsactionAspectSupport.currentTransactionStatus()

.setRollbackOnly();
 }
 }
 }

 Here, you obtain the current transaction, which is represented by the TransactionStatus
object via TransactionAspectSupport ’s static currentTransactionStatus()
method, and set its rollbackOnly attribute to true. As a result, the transaction man-
agement subsystem checks on this attribute at the end of the method call and rolls
back if its value is true even though the method returns with success.

 FigUre 6-1

Single physical TX

Method A Method B

192 ❘ Chapter 6 Managing TransacTions wiTh spring

When an exception that causes rollback in the second method occurs and it crosses that method,
the physical transaction is marked for rollback. If the first method handles the exception and
returns with success, the transaction management subsystem tries to perform a commit on the
current transaction. However, because those two methods share the same physical transaction,
and it was marked for rollback previously, the transaction management subsystem will throw an
UnexpectedRollbackException.

propagation reQUIreS_NeW
Propagation REQUIRES_NEW always starts a new
transaction regardless of whether there is already an
active one. Figure 6-2 shows the case that the second
method has the Propagation REQUIRES_NEW attribute, so
it causes a new physical transaction to start.

Both methods have their own transactions. Therefore,
if the second method throws an exception that causes
rollback, only its transaction is affected. The first
method still has a chance to commit if it handles that
exception.

propagation NeSteD
Propagation NESTED is similar to the REQUIRES_
NEW rule, but instead of having two separate trans-
actions, there is only one active transaction that
spans method calls. JDBC 3.0 support is required for
this rule to work, and Propagation NESTED is only
available if your persistence technology is JDBC. In
other words, it won’t work if you are using JPA or
Hibernate. Figure 6-3 shows that the second method
has the Propagation NESTED attribute, so it causes a
savepoint to be created at the point that the second
method is invoked.

JDBC savepoints are used to mark new method calls.
When an exception occurs in the second method, the
transaction until the last savepoint is rolled back.

propagation SUppOrtS
This rule makes the current method work in a transaction if one already exists. Otherwise, the
method will work without any transaction.

propagation NOt_SUppOrteD
If there is an active transaction when the method is called, the active transaction is suspended until
the end of the method call.

FigUre 6-2

Physical TX 1 Physical TX 2

Method A Method B

FigUre 6-3

Single physical TX

JDBC savepoint

Method A Method B

Declarative transaction Management with Spring ❘ 193

 propagation NeVer
 An error occurs if there is an active transaction in the system when the method is called. You have
to call the method without any active transaction in the system.

 propagation MaNDatOrY
 An error occurs if there is not an active transaction in the system when the method is called. You
have to make sure that there is already a transaction created before accessing this method.

 Table 6-2 summarizes what happens when the currently invoked method has the specifi c propaga-
tion rule in case there is and is not an active transaction at the run time.

 table 6-2: Transaction Propagation Rule Behaviors

propagation rUle no active tx, so

starts a new tx?

worKs with the active tx?

REQUIRED Yes Yes

REQUIRES_NEW Yes No, suspends the active TX, and
always creates a new TX

NESTED Yes Yes, but creates a savepoint at the
new method call

SUPPORTS No Yes

NOT_SUPPORTED No No, and suspends the active TX

NEVER No No, and throws an exception if
there is an active TX

MANDATORY No No, and throws an exception if
there isn’t any active TX

 invoKing transactional Methods FroM another
transactional Method in the saMe bean

 Spring performs declarative transaction management using proxies. Client code is
not aware that it is actually calling methods of a proxy instance that handles trans-
action logic. The proxy instance handles the transaction logic, before delegating the
method invocation to the actual target bean. When the actual bean method invoca-
tion completes, the proxy decides whether to commit or roll back the transaction
according to the outcome of the method call . Proxy instances are generated during
bean instantiation, wrap the target bean, and are injected into client beans in place
of an actual target bean.

continues

194 ❘ Chapter 6 Managing TransacTions wiTh spring

 However, sometimes an
actual bean instance may
need to invoke its own
transactional methods with
different transaction attri-
butes from within some
other transactional method
that is called from the cli-
ent. In that case, the second
method call isn’t able to
trigger a new transaction
behavior because that call happens inside the target bean, and it won’t pass through
the proxy bean. Figure 6-4 illustrates this case.

 To solve this problem, you can allow the target bean to access its current proxy
instance inside its fi rst method’s body and perform the second method call over that
proxy instance. This time, the second method call also passes through the proxy
instance, and the transaction demarcation occurs properly:

 public class SomeService {

 @Transactional
 public void transactionalMethod() {
 //do some business operation...
 ((S omeService)AopContext.currentProxy())

.anotherTransactionalMethod();
 }

 @Transactional(propagation=Propagation.REQUIRES_NEW)
 public void anotherTransactionalMethod() {
 //do some other business operation...
 }
 }

 The AopContext.currentProxy() static method call returns the currently active
proxy object. After casting it to the specifi c type, you can invoke the second
method appropriately. However, the Spring Framework doesn’t expose proxies by
default because there is a performance cost of doing so. If you need this feature,
you need to enable it via an <aop:aspectj‐autoproxy expose‐proxy="true"/>
element in your Spring bean confi guration fi le.

 Currently, as of Spring 4.0.5.RELEASE, the @EnableAspectJAutoProxy annota-
tion, which is the Java‐based confi guration counterpart of the
 <aop:aspectj‐autoproxy/> XML element, doesn’t support this attribute.

continued

 FigUre 6-4

Client

Proxy

Target

Declarative transaction Management with Spring ❘ 195

Using <tx:advice> for declarative transaction Management
Besides the annotation‐driven declarative transaction management Spring provides, there is also an
XML‐based alternative that you can use. Actually, it was the primary way to make beans transac-
tional before Java 5. After the introduction of annotations into Java 5, Spring also introduced the
@Transactional annotation, and it became more popular. However, it is still possible to make use
of an XML‐based approach as well, especially if you want to apply transactional behavior to some
beans whose classes you cannot change, or you don’t want to depend on Spring’s API at all. In that
case, XML is the way to go. The following Try It Out demonstrates how it is applied.

try it oUt Using <tx:advice> for Declarative transaction Management

You can find the source code within the project named using‐txadvice‐for‐declarative‐tx in the
spring‐book‐ch6.zip file.

In this Try It Out, you use the <tx:advice> XML element to enable transactional behavior in your ser-
vice methods. You can continue from the previous Try It Out. To begin, follow these steps:

 1. Add the following <dependency> element into your pom.xml file:

<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>1.6.11</version>
</dependency>

 2. Create a Spring bean configuration file—for example, named beans‐tx.xml—in the project class-
path, and then enable tx and aop namespaces as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd">

 3. Add <tx:advice> to configure transaction attributes:

 <tx:advice id="FileName_txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="*" propagation="REQUIRED"/>
 </tx:attributes>
 </tx:advice>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd

196 ❘ Chapter 6 Managing TransacTions wiTh spring

 4. Specify on which public methods of Spring beans they will be applied using <aop:config>:

 <aop:config>
 <aop:advisor advice-ref="txAdvice" pointcut="bean(accountService)"/>
 </aop:config>

</beans>

 5. Comment out or remove the @Transactional annotation in your AccountServiceImpl class:

public class AccountServiceImpl implements AccountService {

 private AccountDao accountDao;

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

 @Override
 //@Transactional
 public void transferMoney(long sourceAccountId, long targetAccountId,
 double amount) {
 Account sourceAccount = accountDao.find(sourceAccountId);
 Account targetAccount = accountDao.find(targetAccountId);
 sourceAccount.setBalance(sourceAccount.getBalance() - amount);
 targetAccount.setBalance(targetAccount.getBalance() + amount);
 accountDao.update(sourceAccount);
 accountDao.update(targetAccount);
 }
}

 6. Configure your Configuration class so that it also loads your previously created XML bean
configuration file during container startup using the @ImportResource annotation. You can also
remove @EnableTransactionManagement because transactional behavior is not specified with the
@Transactional annotation:

@Configuration
@Import(Ch4Configuration.class)
@ImportResource("classpath:/beans-tx.xml")
public class Ch6Configuration {

 @Bean
 public PlatformTransactionManager transactionManager() {
 DataSourceTransactionManager transactionManager =
 new DataSourceTransactionManager();
 transactionManager.setDataSource(dataSource());
 return transactionManager;
 }

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");

tcp://localhost/~/test

programmatic transaction Management with Spring ❘ 197

 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 @Bean
 @Autowired
 public AccountService accountService(AccountDao accountDao) {
 AccountServiceImpl bean = new AccountServiceImpl();
 bean.setAccountDao(accountDao);
 return bean;
 }

}

 7. You can now run the main method and see that accountService bean works as expected.

How It Works

<tx:advice> is used to define transaction attributes for public methods of specific Spring beans. Spring
beans are specified with the pointcut attribute of the <aop:advisor> element. Those public methods
will be intercepted during run time, and transaction behavior will be applied to them. Default attri-
butes of <tx:advice> are the same as the default attributes of the @Transactional annotation, and
you can change values of those attributes by using the name attribute of the <tx:method> element. You
can use the wildcard character (*) in the name attribute of the <tx:method> element so that you can
specify methods with patterns. If you name your transaction manager bean transactionManager, you
don’t need to add the transactionManager attribute of <tx:advice>.

The second important step was to tie up that <tx:advice> part with the Spring bean so that public
methods of the Spring bean are intercepted and a tx proxy is generated around the target bean using
<aop:advisor> in the <aop:config> element. Advisors are Spring‐specific constructs that bring a
reusable advice with a pointcut together. More information about advisors and advices are provided in
Chapter 8.This example uses the bean() pointcut construct, which is only available in Spring AOP.

Finally, you load beans‐tx.xml with the help of the @ImportResource annotation. @ImportResource
is used to load Spring Container configuration files in which you perform some bean configuration that
cannot go into Java‐based configuration.

prograMMatic transaction ManageMent
with spring

Spring also provides a mechanism to control transactions programmatically. That way, you can
decide where a transaction begins and ends. For example, there might be a big method, and you may
want only some part of that method to be transactional.

Following are two approaches to programmatic transaction management:

 ➤ Using TransactionTemplate, which is recommended by Spring

198 ❘ Chapter 6 Managing TransacTions wiTh spring

 ➤ Using PlatformTransactionManager directly, which is low level, and it is similar to how
you managed the transaction boundary using JDBC API in the beginning of the chapter

The following Try It Out shows how to use the TransactionTemplate approach.

try it oUt Using programmatic transaction Management with
transactiontemplate

You can find the source code within the project named using‐transaction‐template in the
spring‐book‐ch6.zip file.

In this Try It Out, you use TransactionTemplate to perform programmatic transaction management
in your service methods. You can continue from the previous Try It Out. To begin, follow these steps:

 1. Add a TransactionTemplate property together with its setter into the AccountServiceImpl class:

public class AccountServiceImpl implements AccountService {

 private AccountDao accountDao;
 private TransactionTemplate transactionTemplate;

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

 public void setTransactionTemplate(TransactionTemplate transactionTemplate) {
 this.transactionTemplate = transactionTemplate;
 }

 2. Call the TransactionTemplate.execute(TransactionCallback) method within
the transferMoney(..) method, while creating an anonymous class from the
TransactionCallbackWithoutResult class and giving it as an input parameter to the
execute(..) method:

 @Override
 public void transferMoney(final long sourceAccountId,
 final long targetAccountId,final double amount) {
 transactionTemplate.execute(new TransactionCallbackWithoutResult() {

 @Override
 protected void doInTransactionWithoutResult(TransactionStatus status) {
 Account sourceAccount = accountDao.find(sourceAccountId);
 Account targetAccount = accountDao.find(targetAccountId);
 sourceAccount.setBalance(sourceAccount.getBalance() - amount);
 targetAccount.setBalance(targetAccount.getBalance() + amount);
 accountDao.update(sourceAccount);
 accountDao.update(targetAccount);
 }
 });
 }
}

programmatic transaction Management with Spring ❘ 199

Notice that there is no @Transactional annotation on either the class or method level.

 3. Define the transactionTemplate bean by injecting transactionManager into its constructor in
your Configuration class:

@Configuration
@Import(Ch4Configuration.class)
public class Ch6Configuration {
 @Bean
 public TransactionTemplate transactionTemplate() {
 TransactionTemplate transactionTemplate = new TransactionTemplate();
 transactionTemplate.setTransactionManager(transactionManager());
 return transactionTemplate;
 }

Notice that you haven’t used the @EnableTransactionManagement or @ImportResource("classpath:/
beans‐tx.xml") annotations in the Configuration class. You don’t need them because you manage
the transaction boundary by yourself in the service method. However, you keep defining
transactionManager and dataSource beans as before:

 @Bean
 public PlatformTransactionManager transactionManager() {
 DataSourceTransactionManager transactionManager =
 new DataSourceTransactionManager();
 transactionManager.setDataSource(dataSource());
 return transactionManager;
 }

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 4. Inject transactionTemplate into the accountService bean in which you use it to execute
transactions:

 @Bean
 @Autowired
 public AccountService accountService(AccountDao accountDao) {
 AccountServiceImple bean = new AccountServiceImpl ();
 bean.setAccountDao(accountDao);
 bean.setTransactionTemplate(transactionTemplate());
 return bean;
 }
}

 5. At this point you can test your new implementation by running the main method in the Main class:

tcp://localhost/~/test

200 ❘ Chapter 6 Managing TransacTions wiTh spring

 public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch6Configuration.class);
 AccountService accountService =
 applicationContext.getBean(AccountService.class);

 accountService.transferMoney(100L, 101L, 5.0d);
 }
 }

 How It Works

TransactionTemplate is actually based on the Template Method pattern. This pattern is useful
when the main fl ow of an algorithmic process is predefi ned and fi xed. You just need to add chang-
ing parts into it via callbacks so that they can be executed within that fl ow of logic at the right time.
TransactionTemplate forms a fl ow of logic similar to the following:

try
 begin transaction
 execute transactional code block
 commit transaction
 } catch(Exception e) {
 handle exception
 rollback transaction
 } finally {
 do resource clean up
 }

 You only need to provide the highlighted part as a callback instance. That callback instance should
implement the TransactionCallback interface. TransactionCallbackWithoutResult also extends
the TransactionCallback interface, and it can be used if the transactional code block doesn’t need to
return anything.

 You can change default transaction attribute values of TransactionTemplate as follows:

 transactionTemplate.setTimeout(60);
 transactionTemplate.setPropagationBehavior ↵
 (TransactionDefinition.PROPAGATION_REQUIRES_NEW);
 transactionTemplate.setIsolationLevel(TransactionDefinition.ISOLATION_ ↵
 REPEATABLE_READ);

 rollbacK behavior oF transactionteMplate

 The default attributes of TransactionTemplate are the same as those of the
 @Transactional annotation, except for the rollback rules when an exception
occurs. Although it is possible to change rollback and no‐rollback rules for an
 @Transactional annotation, TransactionTemplate doesn’t provide a mechanism
for this purpose, and it treats all exceptions as equal. In other words, it performs
rollback both on unchecked and checked exceptions.

programmatic transaction Management with Spring ❘ 201

Using the platformtransactionManager approach
You can also perform programmatic transaction management by accessing
PlatformTransactionManager directly. This is called the low‐level approach. Transaction demar-
cation begins and ends via your calls to the PlatformTransactionManager API.

The following Try It Out shows how to use the PlatformTransactionManager approach.

try it oUt Using programmatic transaction Management with the
platformtransactionManager apI

You can find the source code within the project named using‐platform‐tx‐manager in the
spring‐book‐ch6.zip file.

In this Try It Out, you use the PlatformTransactionManager API to perform programmatic transaction man-
agement in your service methods. You can continue from the previous Try It Out. To begin, follow these steps:

 1. Add a PlatformTransactionManager property together with its setter method into the
AccountServiceImpl class:

public class AccountServiceImpl implements AccountService {

 private AccountDao accountDao;
 private PlatformTransactionManager transactionManager;

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

 public void setTransactionManager(
 PlatformTransactionManager transactionManager) {
 this.transactionManager = transactionManager;
 }

 2. Create a new TransactionDefinition object to obtain a TransactionStatus in the
transferMoney(..) method using PlatformTransactionManager:

 @Override
 public void transferMoney(long sourceAccountId, long targetAccountId,
 double amount) {
 TransactionDefinition definition = new DefaultTransactionDefinition();
 TransactionStatus status = transactionManager.getTransaction(definition);

 3. Perform data access operations using AccountDao methods, which need to be executed within an
active transaction:

 try {
 Account sourceAccount = accountDao.find(sourceAccountId);
 Account targetAccount = accountDao.find(targetAccountId);
 sourceAccount.setBalance(sourceAccount.getBalance() - amount);
 targetAccount.setBalance(targetAccount.getBalance() + amount);
 accountDao.update(sourceAccount);
 accountDao.update(targetAccount);

202 ❘ Chapter 6 Managing TransacTions wiTh spring

 4. If everything goes well, commit via a transactionManager bean:

 transactionManager.commit(status);
 } catch (Exception e) {

 5. Otherwise, handle the exception and decide whether to roll back again using the
transactionManager bean:

 transactionManager.rollback(status);
 throw new RuntimeException(e);
 }
 }
}

 6. Inject transactionManager into an accountService bean in which you will use it to execute
transactions:

@Configuration
@Import(Ch4Configuration.class)
public class Ch6Configuration {
 @Bean
 public PlatformTransactionManager transactionManager() {
 DataSourceTransactionManager transactionManager =
 new DataSourceTransactionManager();
 transactionManager.setDataSource(dataSource());
 return transactionManager;
 }

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/~/test");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 @Bean
 @Autowired
 public AccountService accountService(AccountDao accountDao) {
 AccountServiceImpl bean = new AccountServiceImpl ();
 bean.setAccountDao(accountDao);
 bean.setTransactionManager(transactionManager());
 return bean;
 }
}

 7. At this point you can test your new implementation by running the main method in the Main class:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch6Configuration.class);

tcp://localhost/~/test

executing Custom Logic Before or after transactions ❘ 203

 AccountService accountService =
 applicationContext.getBean(AccountService.class);

 accountService.transferMoney(100L, 101L, 5.0d);
 }
}

How It Works

The TransactionDefinition instance represents your current transaction configuration, which is
valid during service method execution. You can set its propagation behavior, readOnly status, and so
on. Default values are the same as for the @Transactional annotation.

Using this definition object, you obtain an actual transaction instance by calling transactionManager
.getTransaction(definition). At this point you can assume that your transaction has been started.
After executing business logic you come to the point at which you commit the transaction by calling
transactionManager.commit(status). If there is an exception, you handle it within the catch block
and roll back the transaction again, giving TransactionStatus as the input parameter to the trans-
actionManager.rollback(status) method. Notice that TransactionStatus roughly corresponds to
the underlying transaction instance of the system, and you end the transaction by using it.

execUting cUstoM logic beFore or aFter
transactions

One of the distinguishing features of Spring’s transaction management abstraction compared to
EJB’s is its ability to allow application developers to register a custom business logic that will be exe-
cuted before or after current transaction demarcations. You can achieve such requirements in two
ways. One is using the AOP features of Spring, and the other is to register a callback instance that is
executed at the end of the current transaction. They are explained in the following two sections.

advising transactional operations
As stated earlier, Spring’s transaction infrastructure is built up on top of the Spring AOP module.
However, for the most part you don’t need to understand the details of Spring AOP to have transac-
tional ability.

Spring actually handles the transaction functionality as an AOP advice, and in that respect it is
no different than any other Spring AOP advice. For example, you may also need to execute some
profiling logic to monitor execution times of current methods and want that logic also to count on
the time spent during transaction demarcation as well. Therefore, you may want that logic to start
before your transaction starts and end right after your transaction completes. You can create a pro-
filing advice to monitor method executions. The following code block illustrates how such advice
can be implemented using the org.aopalliance.intercept.MethodInterceptor interface:

public class Profiler implements MethodInterceptor {
 @Override
 public Object invoke(MethodInvocation invocation) throws Throwable {

204 ❘ Chapter 6 Managing TransacTions wiTh spring

 Long start = System.currentTimeMillis();
 try {
 return invocation.proceed();
 } finally {
 Long end = System.currentTimeMillis();
 System.out.println("Execution time of method " +
 invocation.getMethod().getName() + " :" + (end - start) + " msec");
 }
 }
}

Note that MethodInterceptor interface is included in the aopallience.jar dependency,
and it normally comes automatically with the spring‐aop.jar dependency. Basically,
MethodInterceptor is used to intercept a method invocation, and it lets you perform extra opera-
tions before or after the invocation. After implementing your profiling logic, you need to register it
as an advice and define at which methods it is triggered. You do this using <aop:advisor> inside
the <aop:config> element inside a bean configuration XML file, similar to the <tx:advice>
configuration shown earlier in the section “Using <tx:advice> for Declarative Transaction
Management”:

<bean id="profiler" class="com.wiley.beginningspring.ch6.Profiler"/>

<aop:config>
 <aop:advisor advice-ref="profiler" pointcut="bean(accountService)" order="1"/>
 <aop:advisor advice-ref="txAdvice" pointcut="bean(accountService)" order="2"/>
</aop:config>

As you can see, you need to define Profiler as a bean and then refer to it from <aop:advisor> and
give a pointcut value to specify the points to which it will be applied. The more important thing here
is the order attribute given to both advisors. That attribute specifies the order of advices that will be
applied to the accountService bean methods.

executing logic after transactions Using
transactionsynchronization

In this method, you employ a callback mechanism to specify a custom code block that needs to be
executed at the end of the current transaction. Custom business logic that is executed at the specified
points of the current transaction is represented as a TransactionSynchronization object. It is an
interface provided by Spring, and it has several methods to be implemented. We are more interested
in the following methods right at the moment:

public interface TransactionSynchronization extends Flushable {
 int STATUS_COMMITTED = 0;

 int STATUS_ROLLED_BACK = 1;

 int STATUS_UNKNOWN = 2;

 void beforeCommit(boolean readOnly);

Summary ❘ 205

 void afterCommit();

 void afterCompletion(int status);
}

The beforeCommit(readOnly) method is called before the current transaction commits. However,
it is not certain that the current transaction will commit after this point. Here is the excerpt taken
from the Spring Javadoc comments of this method:

This callback does not mean that the transaction will actually be committed. A
rollback decision can still occur after this method has been called. This callback is
rather meant to perform work that’s only relevant if a commit still has a chance to
happen, such as flushing SQL statements to the database.

It is also important to note that any exceptions thrown from this method are passed to the
caller, and they also affect the outcome of the current transaction according to rollback rules.
afterCommit() is executed right after the current transaction has successfully committed.
afterCompletion(status) is called after the current transaction has either committed or rolled
back. You can check the status input parameter to identify the outcome of current transaction
demarcation.

Spring also offers the TransactionSynchronizationAdapter class, which implements
TransactionSynchronization with empty methods. Therefore, you can extend from that class
instead and only override the necessary method or methods for your purpose instead of implement-
ing all of them.

After you implement your custom business logic that needs to be executed after a
current transaction, you need to register it to the transaction infrastructure. You
do this using the TransactionSynchronizationManager class. It has a
static registerSynchronization(TransactionSynchronization synchronization)
method to register your synchronization instance. It is important to perform registration
within an active transaction. Otherwise, you get an IllegalStateException.

You can register more than one TransactionSynchronization instance to the current transaction.
If you need to apply an order among those instances, you also need to implement Spring’s Ordered
interface and give an order to your implementation. Spring orders instances by looking at their order
numbers if they implement this interface; otherwise, the TransactionSynchronization instance is
put at the end of the queue. The TransactionSynchronizationAdapter class also implements the
Ordered interface.

sUMMary

In this chapter, you learned what transaction means, and its fundamental properties—atomicity,
consistency, isolation, and durability (ACID). You learned Spring’s PlatformTransactionManager,
different implementations that correspond to different data access technologies, and how to specify
the correct implementation among them in Spring Container. You configured Spring Container to
perform declarative transactions both with annotation and XML‐based configurations. You learned
how to configure transaction attributes of methods using the @Transactional annotation and

206 ❘ Chapter 6 Managing TransacTions wiTh spring

<tx:advice>. You looked closely at different propagation rules, and how method calls affect each
other’s transaction context by using propagation rules.

In addition, you performed programmatic transaction management with two different approaches:
one using TransactionTemplate and the other using PlatformTransactionManager directly.
Finally, you saw how custom business logic could be executed before or after transaction demarca-
tions. You used MethodInterceptor and advisors to execute custom logic before transaction demar-
cation, and the TransactionSynchronization interface of Spring after transaction demarcation.

exercises

You can find possible solutions to these exercises in Appendix A.

 1. Configure your system using JpaTransactionManager and implement the depositMoney(long
accountId, double amount) method of the AccountServiceImpl class using JPA. The
AccountServiceImpl class is written in the "Using @Transactional on Class Level" section of
Chapter 6.

 2. What needs to be done to switch from local transactions to JTA—that is, global transactions?

 3. Implement a TransactionSyncronization class containing a logic that will be executed after a
transaction rolls back. This logic can be a simple System.out.println() statement that prints
the current transaction status to the console.

Summary ❘ 207

 ▸ what yoU learned in this chapter

topic Key points

ACID Fundamental features of transactions: atomicity, con-
sistency, isolation, durability

Transaction boundary Where to start and end a transaction

@EnableTransactionManagement Enables annotation‐based declarative transaction
management

@Transactional Marks methods as transactional

PlatformTransactionManager Spring’s transaction manager abstraction

TransactionTemplate Template method to perform transactional operations

TransactionCallback Callback interface to pass transactional logic

Propagation rules Defines transaction scope

Local versus global transactions Transactions that access a single database or transac-
tions accessing and coordinating multiple databases

<aop:aspectj‐autoproxy

expose‐proxy="true"/>
Exposes current proxy via threadlocal

AopContext.currentProxy() Enables you to obtain the current proxy instance

setRollbackOnly TransactionStatus rollback status flag

<tx:advice> Transaction attribute definition for XML‐based
configuration

<aop:config> AOP config element to configure tx:advices

<aop:advisor> Combines tx:advice with pointcut

MethodInterceptor Interface to intercept actual method calls and execute
custom logic before or after those method calls

TransactionSynchronization Callback interface that is used to execute custom busi-
ness logic after a transaction

TransactionSynchronizationAdapter Adapter class for the TransactionSynchronization
interface

TransactionSynchronizationManager Used to register synchronization instances to the cur-
rently active transaction

 7
 test‐Driven Development
with Spring

 What you Will learn in this Chapter:

 ➤ Confi guring and caching ApplicationContext

 ➤ Injecting dependencies of test fi xtures

 ➤ Working with transaction management in tests

 ➤ Testing web applications

 ➤ Using mock objects and other utilities for testing

 CODE DOWNLOADS The wrox.com code downloads for this chapter are found at
 www.wrox.com/go/beginningspring on the Download Code tab. The code is in the
Chapter 7 download and individually named according to the names throughout the
chapter.

 Applying the Inversion of Control (IoC) pattern alone in an application makes the codebase suit-
able for unit testing. You can easily create mock dependencies and set them into the object that is
being tested. For unit testing, the central unit under focus is the class or the method under test.
There should be no environmental dependency—such as a database, a network, or even an IoC
container—during unit testing. However, it is not enough to test units separately. Testing units
separately is like testing the tires, engine, and doors of a car separately under the assumption
that everything will work as expected when you assemble those parts and build the car.

 You need to bring some parts of the whole system together to see if they will work. Those
parts in a software system usually include objects from several layers, such as existing

http://www.wrox.com/go/beginningspring

210 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

transactional context and database, network interaction, security context, or IoC container. It
would be great if integration testing could be performed without deploying and running the whole
application onto an application server.

Spring provides first‐class integration testing support to help developers write integration tests
without deploying and running the whole system. Called the Spring TestContext Framework,
it is completely independent of the actual test framework, and you can employ it while running
tests in a standalone environment. Therefore, you can use either JUnit or TestNG to run your
tests.

The main goal of the Spring TestContext Framework is to ease configuration and creation of the
Spring Container, while injecting dependencies into beans as well as test suites. It also aims to help
test database interactions and object‐relational mapping (ORM) codes within an existing transac-
tional context so that developers can be sure that their ORM mappings are done correctly, queries
are valid and returning expected results, and so on. It is also very easy to test web functionality
without deploying the application code into a web container.

This chapter focuses on these features of the Spring Application Framework that help you test your
code in a standalone environment. You first find out how context management and dependency
injection are handled for test classes. Later, the chapter discusses transaction demarcation provided
in test methods and how web applications can be tested out of a web container or application server
environment. The chapter ends with an overview of mock objects and other utilities provided by the
framework.

Configuring and CaChing appliCationContext

Spring enables automatic creation and management of ApplicationContext while running your
tests. You can use different formats of configuration metadata: XML based, annotation based, or
Java based. Moreover, you can use more than one configuration metadata format in any application.
The Spring TestContext Framework supports loading of all those different formats of configuration
metadata while running integration tests.

using xMl‐ and Java‐Based Context Configuration in tests
The first Try It Out activity shows you how you can create an integration test with the expectation
that ApplicationContext will be created and made available during testing.

try it out Configuring applicationContext within the test Using JUnit

You can find the source code within the project named context‐configuration‐and‐caching in the
spring‐book‐ch7.zip file.

Use the following steps to create and configure an integration test case using the Spring TestContext
Framework, and then run it with JUnit.

 1. Create a Maven project with the following Maven command:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch7

Configuring and Caching applicationContext ❘ 211

 2. Add the following Spring dependencies to your pom.xml file if they are not already available there:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
</dependency>

 3. Create a package called com.wiley.beginningspring.ch7 in the src/main/java source
folder.

 4. Create the classes already listed in step 3 of the “Creating and Using the Spring Container in a
Standalone Environment with Java‐Based Configuration” Try It Out activity in Chapter 2. They
should be created in the package from step 3.

 5. Create the applicationContext.xml bean configuration file in src/main/resources with the
following content:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="accountService"
 class="com.wiley.beginningspring.ch7.AccountServiceImpl">
 <property name="accountDao" ref="accountDao" />
 </bean>

 <bean id="accountDao"
 class="com.wiley.beginningspring.ch7.AccountDaoInMemoryImpl"/>

</beans>

 6. Create a package called com.wiley.beginningspring.ch7 in the src/test/java source folder.

 7. Create a class called AccountIntegrationTests with the following content in that package:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class AccountIntegrationTests {

 @Autowired

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
mailto:@ContextConfiguration("/applicationContext.xml

212 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

 private AccountService accountService;

 @Test
 public void accountServiceShouldBeInjected() {
 Assert.assertNotNull(accountService);
 }
}

 8. Run the test with JUnit.

How It Works

The Spring TestContext Framework is configured using several annotations. First you had to specify
a JUnit runner class with which this test class will be run. The org.junit.runner.RunWith annota-
tion is used for this purpose. You provided it with the org.springframework.test.context
.junit4.SpringJUnit4ClassRunner class. The SpringJUnit4ClassRunner class is used to create
and manage ApplicationContext and also to perform dependency injections into the test suite. The
second annotation is the org.springframework.test.context.ContextConfiguration class. It
is used to specify which configuration metadata sources will be used to create the Spring Container
while running tests. The example uses "/applicationContext.xml" as the input argument. It will
be loaded from the root classpath and used to create the ApplicationContext instance. More than
one file can be given with the locations attribute. If nothing is provided, Spring tries to load a file
with a name pattern <TestClassName>‐context.xml in the same package as the test class.

Within the test class you defined a variable with the AccountService type and annotated it
with org.springframework.beans.factory.annotation.Autowired. Spring automatically injects
that dependency into the test class before running test methods. It is also possible to inject that depen-
dency by creating a setter method for the variable and putting the @Autowired annotation on top of
that setter, but field‐level autowiring is more convenient for integration tests. The next section discusses
more about injecting dependencies into test suites.

org.junit.Test is placed on top of the test method. When the test method is run,
ApplicationContext is created, and any dependencies are injected into the test instance. Test methods
within the test instance are then run with the injected dependencies by the JUnit.

The core of the Spring TestContext Framework consists of the TestContext, TestContextManager,
TestExecutionListener, ContextLoader, and SmartContextLoader classes in the org
.springframework.test.context package. Although you don’t interact with those classes while using
the framework, it is still beneficial to know what is going on behind the scenes. When tests are run, a
TestContextManager is created for the execution of each test method. One of its roles is to manage the
TestContext object that holds the context of the current test. ContextLoader or SmartContextLoader
is responsible for loading ApplicationContext for the test class. Actual test execution is preprocessed by
various TestExecutionListener objects that provide dependency injection, transaction management,
and so on. TestExecutionListener actually defines an application programming interface (API) for
reacting to test execution events published by TestContextManager. By default, the framework registers
four listeners: ServletTestExecutionListener, DependencyInjectionTestExecutionListener,
DirtiesContextTestExecutionListener, and TransactionalTestExecutionListener. It is also pos-
sible to disable default listeners or register custom versions using the org.springframework.test
.context.TestExecutionListeners annotation on the test class level.

Configuring and Caching applicationContext ❘ 213

Instead of XML‐based configuration metadata, you can use Java‐based configuration metadata in
the test configuration. The @ContextConfiguration annotation has the classes attribute, with
which you can specify Java‐based configuration classes as follows:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes={Ch7Configuration.class})
public class AccountIntegrationTestsWithJavaConfig {
//...
}

In the preceding code snippet, the Ch7Configuration class contains bean definitions. It is listed in
the classes attribute of the @ContextConfiguration annotation.

In some cases you need to provide both XML‐ and Java‐based configuration metadata in the same
test class as well. However, @ContextConfiguration accepts either XML‐ or Java‐based configura-
tions, but not both in the same test class. You can easily overcome this limitation by using the org
.springframework.context.annotation.ImportResource annotation in configuration classes to
load XML‐based configuration metadata:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes={Ch7Configuration.class,Config.class})
public class AccountIntegrationTestsWithMixedConfig {

 @Configuration
 @ImportResource("classpath:/applicationContext.xml")
 static class Config {
 }
//...
}

The preceding code snippet created a static inner class with the @Configuration annota-
tion. It is also marked with the @ImportResource annotation, which specifies "classpath:/
applicationContext.xml" as the configuration metadata. Then the Config class together with the
Ch7Configuration class is listed in @ContextConfiguration on top of the test class.

TIP You may have created some bean configurations that are expected to be
enabled when their corresponding profiles are enabled in the environment. To
load and test such bean definition configurations in the test environment, the
Spring TestContext Framework provides the org.springframework.test
.context.ActiveProfiles annotation:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/applicationContext.xml")
@ActiveProfiles(profiles={"test","c3p0"})
public class IntegrationTests {

} continues

214 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

Configuring Context with applicationContextinitializer
There is also a fourth way to configure ApplicationContext instances while executing integration
tests. Spring has the org.springframework.context.ApplicationContextInitializer interface,
which enables you to configure ApplicationContext instances prior to their initialization:

public interface ApplicationContextInitializer<C extends
 ConfigurableApplicationContext> {
 void initialize(C applicationContext);
}

You can specify configuration metadata sources in addition to other environmental initializations on
the ApplicationContext instance during this pre‐initialization phase. The important thing is that the
generic parameter for the initializer class must be of type GenericApplicationContext from which
ApplicationContext is instantiated by the test infrastructure. The following code snippet shows this:

public class TestInitializer implements
ApplicationContextInitializer<GenericApplicationContext> {

 @Override
 public void initialize(GenericApplicationContext applicationContext) {
 XmlBeanDefinitionReader reader =
 new XmlBeanDefinitionReader(applicationContext);
 reader.loadBeanDefinitions("classpath:/applicationContext.xml");
 }

}

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(initializers={TestInitializer.class})
public class AccountIntegrationTestsWithInitializer {
//...
}

In the preceding code snippet, an XML‐based configuration metadata file is loaded by the initial-
izer. The @ContextConfiguration annotation has the initializers attribute, which accepts a list
of ApplicationContextInitializer classes.

inheriting Context Configuration
In a big project there exist lots of test classes. Those test classes may share some code and other
configurations with other classes. Therefore, there might be some base or intermediate classes from

You can use the @ActiveProfile annotation on the test‐class level to specify
which profiles should be activated when Spring ApplicationContext is loaded by
the TestContext Framework. For example, in the preceding test class, test and
c3p0 profiles are activated with the annotation.

continued

Configuring and Caching applicationContext ❘ 215

which other test classes inherit. The Spring TestContext Framework supports inheriting configura-
tion from base test classes, as demonstrated by the next Try It Out activity.

try it out Inheriting Context Configuration

You can find the source code within the project named context‐config‐inheritance in the
spring‐book‐ch7.zip file.

Use the following steps to create two test classes that have an inheritance relationship between them so
that subclass inherits the test configuration from its parent. You can continue from the place you left off
in the previous Try It Out.

 1. Create the following two classes in the com.wiley.beginningspring.ch7 package:

public class Foo {

}

public class Bar {

}

 2. Create an XML‐based configuration file named baseContext.xml in the src/main/resources
source folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="foo" class="com.wiley.beginningspring.ch7.Foo"/>

</beans>

 3. Create an XML‐based configuration file named subContext.xml in the src/main/resources
source folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="bar" class="com.wiley.beginningspring.ch7.Bar"/>

</beans>

 4. Create the BaseTest class with the following content in the com.wiley.beginningspring.ch7
package:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/baseContext.xml")
public class BaseTest {

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

216 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

 @Autowired
 protected Foo foo;
}

 5. Create the ChildTest class with the following content in the com.wiley.beginningspring.ch7
package:

@ContextConfiguration("classpath:/subContext.xml")
public class ChildTest extends BaseTest {
 @Autowired
 private Bar bar;

 @Test
 public void dependenciesShouldBeAvailable() {
 Assert.assertNotNull(foo);
 Assert.assertNotNull(bar);
 }
}

 6. Run the test method in the ChildTest class with JUnit. Note that the BaseTest class cannot be
run as a test case because it doesn’t contain a unit test method. However, it is possible that it can
contain test methods, too. In that case, BaseTest also becomes runnable by JUnit as well.

How It Works

By default, the configuration of the ChildTest class inherits XML‐based configuration metadata loca-
tions, Java‐based configuration classes, and any initializers available in the @ContextConfiguration
annotation of its superclass BaseTest. Consequently, when the Spring TestContext Framework cre-
ates the ApplicationContext for the ChildTest class, it loads both the baseContext.xml and
subContext.xml files.

The @ContextConfiguration annotation has the inheritLocations and inheritInitializers
attributes, whose default values are true. If you need to disable this feature, you can set their values
to false in child test classes so that the child tests will no longer inherit any configuration information
from their superclass.

applicationContext Caching
If the exact same XML locations and configuration classes are specified by several test classes, the
Spring TestContext Framework creates the ApplicationContext instance only once and shares it
among those test classes at run time:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class FooTests {
 @Test
 public void testFoo1() {

 }

mailto:@ContextConfiguration("/applicationContext.xml

Injecting Dependencies of test Fixtures ❘ 217

 @Test
 public void testFoo2() {

 }
}

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class BarTests {
 @Test
 public void testBar() {

 }
}

In the preceding code snippet, two test classes each specified the same XML configuration location
file, "/applicationContext.xml", in their @ContextConfiguration annotation. In that case,
when you run those two tests together within the IDE, Spring creates ApplicationContext only
once, caches it, and reuses it while running test methods within each test class.

The cache is kept in a static variable. Therefore, test suites need to be run in the same process. If, for
example, you run tests using a build tool such as Ant, Maven, or Gradle, you need to be sure that
the build tool won’t fork between tests.

In some cases, the cached ApplicationContext instance needs to be discarded after a test method
or test suite is run. Spring provides the org.springframework.test.annotation.DirtiesContext
annotation for this purpose. You can use it on the test‐method or test‐class level, and it tells the
Spring TestContext Framework that it should discard the current ApplicationContext instance
just after running that test method or test class and reload ApplicationContext for the next test
method.

inJeCting dependenCies of test fixtures

The Spring TestContext Framework can inject beans resolved from the configured
ApplicationContext into properties of test instances. To indicate which property to inject as
a dependency, you can use the @Autowired annotation as well as the @Resource and @Inject
annotations, as shown in the following Try It Out activity. You can choose setter or field‐level
injection.

try it out Injecting Dependencies of test Fixtures

You can find the source code within the project named dependency‐injection‐in‐tests in the
spring‐book‐ch7.zip file.

Use the following steps to perform dependency injection into the test class. You can continue from the
place you left off in the previous Try It Out.

 1. Create the following two classes:

mailto:@ContextConfiguration("/applicationContext.xml

218 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

public class Foo {

}

public class Bar {

}

 2. Create the following Java‐based configuration class:

@Configuration
public class Ch7ConfigurationForDependencyInjection {
 @Bean
 public Foo foo1() {
 return new Foo();
 }

 @Bean
 public Foo foo2() {
 return new Foo();
 }

 @Bean
 public Bar bar1() {
 return new Bar();
 }
}

 3. Create a test class:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=Ch7ConfigurationForDependencyInjection.class)
public class DependencyInjectionTests {

}

 4. Add the following properties into the test class:

 @Autowired
 @Qualifier("foo1")
 private Foo foo1;

 @Resource
 private Foo foo2;

 @Resource
 private Bar bar;

 5. Create a test method that has assertions to check whether dependencies are injected as expected:

 @Test
 public void testInjections() {
 Assert.assertNotNull(foo1);

Using transaction Management in tests ❘ 219

 Assert.assertNotNull(foo2);
 Assert.assertNotNull(bar);
 }

 6. Run the test method using JUnit.

How It Works

By default, @Autowired performs dependency injection by type. Because you have two bean definitions
of the Foo class, you used the @Qualifier annotation to specify which bean will be injected into which
property in the test. The @Resource annotation, on the other hand, can be used to perform dependency
injection based on the name of the property. If there is only one bean available in the container,
@Resource behaves the same as @Autowired by type.

The @Inject and @Named annotations were introduced with the JSR‐330 Dependency Injection for
Java specification. They correspond to the @Autowired and @Qualifier annotations, respectively.
You need to add the necessary javax.inject.jar library to your classpath so that you can use those
annotations in your tests for dependency injection.

As shown in the following code snippet, it is also possible to inject ApplicationContext into the
test instance and do explicit bean lookup by yourself via the ApplicationContext.getBean()
method:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class DependencyInjectionTests {
 @Autowired
 private ApplicationContext applicationContext;
 //...
}

using transaCtion ManageMent in tests

The Spring TestContext Framework provides support to execute tests within an active
transactional context. You find out how transaction management is configured and used
in Chapter 6. The TestContext Framework needs an active transactionManager bean of
type PlatformTransactionManager defined in the container for that feature. You also need
to place the @Transactional annotation either on the test‐class level or on individual test
methods.

In the following code snippet, the @Transactional annotation is used on the class level. Therefore,
all test methods in that class are executed within an active transaction. Each test method is run
within a separate transaction. It is assumed that the transactionManager bean is properly config-
ured in the applicationContext.xml file:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/applicationContext.xml")
@Transactional

220 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

public class TransactionalTests {

 @Test
 public void transactionalTestMethod1() {
 //...
 }

 @Test
 public void transactionalTestMethod2() {
 //...
 }
}

In the next code snippet, we instead placed the @Transactional annotation on the method level. In
this case, only that method with the @Transactional annotation is run within the active transaction:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/applicationContext.xml")
public class IntegrationTests {

 @Test
 public void nonTransactionalTestMethod() {
 //...
 }

 @Test
 @Transactional
 public void transactionalTestMethod() {
 //...
 }
}

The main philosophy of unit tests is “expect a clean environment before you run, and leave that
environment clean after you finish execution.” In accordance with this philosophy, the Spring
TestContext Framework’s transaction supports rollbacks at the end of test methods instead of com-
mitting. That way, changes in the database don’t cause any side effects in later tests that interact
with the database as well. In some cases, you may want the transaction to commit, though. For that
purpose, you can use the @Rollback(false) annotation on the test‐method or test‐class level, as
shown in the following code:

 @Test
 @Transactional
 @Rollback(false)
 public void transactionalTestMethod() {
 //...
 }

JUnit provides @Before and @After annotations to run code snippets before and after the
execution of each test method. They are called setup and teardown methods. However, those
methods will execute within an active transaction if the test method is configured to run so.
Occasionally you may want to execute some setup and teardown code outside the current

Using transaction Management in tests ❘ 221

transaction. The org.springframework.test.context.transaction.BeforeTransaction and
org.springframework.test.context.transaction.AfterTransaction annotations are pro-
vided for this purpose:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/applicationContext.xml")
public class TransactionalTests {

 @BeforeTransaction
 public void setUp() {
 //setup code that will run before transaction initiation...
 }

 @AfterTransaction
 public void tearDown() {
 //cleanup code that will run after transaction completion...
 }

 @Test
 public void nonTransactionalTestMethod() {
 //...
 }

 @Test
 @Transactional
 public void transactionalTestMethod() {
 //...
 }
}

WarnIng If the method is not running within an active transaction, meth-
ods marked with @BeforeTransaction and @AfterTransaction won’t work
before and after execution of that test method either. For example, in the
preceding code snippet, the setUp() and tearDown() methods only run for
transactionalTestMethod().

The default configuration of the TestContext Framework is to look for a bean with the exact
name transactionManager in the container and perform rollbacks at the end of the test methods.
However, you can change this behavior using the org.springframework.test.context
.transaction.TransactionConfiguration annotation. It is used to define class‐level metadata
to specify which bean name should be used during look up, and what to perform (either commit or
rollback) at the end of the test methods.

In the following code snippet, the bean responsible for the transaction management is specified as
myTxManager. Therefore, the TestContext Framework looks for a bean with that name in the con-
tainer, and it commits transactions because defaultRollback is set to false in
@TransactionConfiguration:

222 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/applicationContext.xml")
@Transactional
@TransactionConfiguration(transactionManager="myTxMgr",defaultRollback=false)
public class TransactionalTests {

//...

}

When working with any ORM framework, such as Hibernate or JPA, you need to flush the current
Hibernate Session or JPA EntityManager at the end of the test method. This is because ORM
frameworks accumulate persistence operations in their internal states—in Hibernate Session or in
JPA EntityManager. They execute those accumulated operations at some specific point of time, cre-
ating, updating, or deleting records in the database, usually at transaction commit time. However,
the Spring TestContext Framework performs rollback instead of commit at the end of the test
method. Because of this, unless you manually perform a flush in your current Hibernate Session or
JPA EntityManager, your persistence operations executed within the test method aren’t translated
into the corresponding SQL instructions, and there isn’t any interaction with the database. Hence,
some tests that would fail if there were a database interaction—for example, because of constraint
violations—pass in the test environment, and this causes you to incorrectly assume that your appli-
cation will run in production as expected. However, your application will most probably fail in pro-
duction instead.

In the next code snippet, SessionFactory is injected into the test class, and it is used to obtain the
current Session to perform a manual flush at the end of the test method. That way, SQL operations
are executed in the database, although no change persists because the current transaction is rolled
back by the TestContext Framework:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/applicationContext.xml")
@Transactional
@TransactionConfiguration(transactionManager="myTxMgr",defaultRollback=false)
public class TransactionalTests {

 @Autowired
 private SessionFactory sessionFactory;

 @Test
 public void testMethod() {
 //persistence operations...
 sessionFactory.getCurrentSession().flush();
 }
}

testing WeB appliCations

One of the nicest features of the Spring TestContext Framework is that it enables you to load
WebApplicationContext in integration tests, as shown in the following Try It Out activity.

testing Web applications ❘ 223

try it out Loading WebapplicationContext

You can find the source code within the project named loading‐webapplicationcontext in the
spring‐book‐ch7.zip file.

In this Try It Out, you configure the test class so that Spring creates a WebApplicationContext in the
standalone environment. To begin, follow these steps:

 1. Create a Maven webapp project with the following Maven command:

mvn archetype:maven-archetype-webapp -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch7-webapp

 2. Add the following Spring dependencies to your pom.xml file if they are not already available there:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
</dependency>

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.1.0</version>
</dependency>

 3. Create an empty XML configuration metadata file named applicationContext.xml in the src/
main/resources folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

224 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

 4. Create the src/test/java source folder and put the com.wiley.beginningspring.ch7 package in it.

 5. Create the following test class in that package:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class WebApplicationTests {

}

 6. Place the org.springframework.test.context.web.WebAppConfiguration annotation on top
of the test class:

@WebAppConfiguration
public class WebApplicationTests {

}

 7. Create two variables from the org.springframework.web.context.WebApplicationContext
and org.springframework.mock.web.MockServletContext types and annotate them with
@Autowired in the test class:

 @Autowired
 private WebApplicationContext applicationContext;

 @Autowired
 private MockServletContext servletContext;

 8. Create a test method and assert that both of those fields are injected at run time:

 @Test
 public void testWebApp() {
 Assert.assertNotNull(applicationContext);
 Assert.assertNotNull(servletContext);
 }

 9. Run the test with JUnit.

How It Works

Spring provides the org.springframework.test.context.web.WebAppConfiguration annotation
to enable loading WebApplicationContext in standalone integration tests. It is used on the
test‐class level. Behind the scenes, a ServletContext instance from org.springframework.mock
.web.MockServletContext is created and made available to tests. By default, ServletContext’s
base resource path is assumed to be the src/main/webapp folder. You can always override this
by simply providing an alternative path to @WebApplicationConfiguration. For example,
@WebApplicationConfiguration("classpath:/com/wiley/beginningspring/ch7") changes the
root context path to the /com/wiley/beginningspring/ch7 package in your classpath.

mailto:@ContextConfiguration("/applicationContext.xml

testing Web applications ❘ 225

The Spring TestContext Framework also creates the HttpServletRequest and
HttpServletResponse instances from the org.springframework.mock.web
.MockHttpServletRequest and org.springframework.mock.web.MockHttpServletResponse
classes. They are created per the test method in a test suite and put into Spring Web’s thread local
RequestContextHolder at the beginning of the test method. After the test method is complete, the
thread local variable is cleared.

Context hierarchies in tests
Chapter 3 discusses more about context hierarchies and Spring Web MVC. However, to under-
stand context hierarchy support of the TestContext Framework, it is enough to know here that in
a typical web application developed using the Spring Framework, a WebApplicationContext is
usually created using ContextLoaderListener. This WebApplicationContext usually becomes
the root ApplicationContext of your web application. If you also employ Spring Web MVC
in your web application, you also have a DispatcherServlet configuration that has its own
WebApplicationContext instance. This second one becomes the child ApplicationContext of the
previous one, which is created by ContextLoaderListener.

By default, the Spring TestContext Framework creates a single ApplicationContext or
WebApplicationContext instance that is made available to the tests. Most of the time it is sufficient
to test against a single context, but sometimes you need to create the exact context hierarchy that will
exist at run time. It is possible to write integration tests that use context hierarchies by declaring the
context configuration via the org.springframework.test.context.ContextHierarchy annotation.

In the following code snippet, we declare two @ContextConfiguration annotations, each load-
ing a different Java‐based configuration class within the @ContextHierarchy annotation. In this
case, Spring creates a parent WebApplicationContext using ParentConfig.class and a child
WebApplicationContext using ChildConfig.class. If we define a WebApplicationContext prop-
erty and mark it with @Autowired, the child WebApplicationContext will be injected into the test
instance at run time. It will always be the lowest one in the defined hierarchy.

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextHierarchy({
 @ContextConfiguration(classes = ParentConfig.class),
 @ContextConfiguration(classes = ChildConfig.class)
})
public class WebAppTests {

 @Autowired
 private WebApplicationContext applicationContext;

 // ...
}

testing request‐ and session‐scoped Beans
Although request‐ and session‐scoped beans are supported for a long time, testing those beans in
standalone integration tests becomes much easier after introduction of @WebAppConfiguration. To
test request‐ and session‐scoped beans you first need to enable creation of WebApplicationContext

226 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

by placing @WebAppConfiguration on top of the test class. Then you can inject
MockHttpServletRequest and MockHttpSession instances into your test so that you can prepare
the current request or session object for the use of scoped beans.

In the following code snippet, XML‐based configuration has the loginAction bean, which is
request‐scoped, and its username and password properties are resolved with Spring Expression
Language (SpEL) from the current request. The other scoped bean is userPreferences. It is defined
as session‐scoped, and its theme property is resolved from the current session.

noTe You can read more about SpEL in Chapter 9.

<bean id="loginAction" class="com.wiley.beginningspring.ch7.LoginAction"
 scope="request">
 <property name="username" value="#{request.getParameter('username')}"/>
 <property name="password" value="#{request.getParameter('password')}"/>
 <aop:scoped-proxy/>
</bean>

<bean id="userPreferences" class="com.wiley.beginningspring.ch7.UserPreferences"
 scope="session">
 <property name="theme" value="#{session.getAttribute('theme')}"/>
 <aop:scoped-proxy/>
</bean>

<bean id="userService" class="com.wiley.beginningspring.ch7.UserService">
 <property name="loginAction" ref="loginAction"/>
 <property name="userPreferences" ref="userPreferences"/>
</bean>

Before accessing any of the properties of those scoped beans, you need to populate current web
objects with necessary parameters and attributes. For that purpose, within the test class in the
following snippet, we injected current request and session instances that are mock objects man-
aged by the TestContext Framework. That way, we are able to access those properties of scoped
beans whose values are resolved from current HttpServletRequest and HttpSession objects at
run time:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("classpath:/applicationContext.xml")
public class ScopedBeanTests {
 @Autowired
 private UserService userService;

 @Autowired
 private MockHttpServletRequest httpServletRequest;

 @Autowired
 private MockHttpSession httpSession;

 @Test
 public void testScopedBeans() {

testing Web applications ❘ 227

 httpServletRequest.setParameter("username", "jdoe");
 httpServletRequest.setParameter("password", "secret");

 httpSession.setAttribute("theme", "blue");

 Assert.assertEquals("jdoe",userService.getLoginAction().getUsername());
 Assert.assertEquals("secret", userService.getLoginAction().getPassword());
 Assert.assertEquals("blue", httpSession.getAttribute("theme"));
 }
}

testing spring MVC projects
Spring offers extensive testing features out of the box, and for Spring MVC it’s no different. With
version 3.2, it brought new testing features that ease a web application developer’s life. It enables
you to do testing by invoking DispatcherServlet for requests made by the test code. You can say
that it’s similar to integration tests that run without the servlet container.

If you encounter ClassNotFoundException for the ServletContext class while running the tests,
you need to add the servlet‐api dependency to your project, as shown in the next snippet. For the
version of the dependency, we used 3.1 because Spring 4 is solely focused on Java EE7. But if you are
running Java EE6, you can use version 3.0.1. Note that scope is set to provided:

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.1.0</version>
 <scope>provided</scope>
</dependency>

testing Controllers
As stated earlier in this chapter, Spring TestContext Framework provides mock implementations of
the Servlet API, and with the builders provided it’s possible to set values of these mock instances.

To do the integration tests, first you create an abstract base class that integrates with JUnit and loads
the application context from the test configuration file. All of your test classes will extend from it:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/springmvc-servlet.xml")
public abstract class BaseControllerTests {
}

The @WebAppConfiguration annotation defines that the application context will be a web applica-
tion context, which will be loaded by the @ContextConfiguration.

A simple controller test for the first controller example, which is given in the “Your First Spring
MVC Application” section of Chapter 3, is shown here:

public class HelloReaderControllerTests extends BaseControllerTests {

 @Autowired

228 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
 }

 @Test
 public void helloReaderControllerWorksOk() throws Exception {
 mockMvc.perform(get("/hello"))
 .andExpect(status().isOk())
 .andExpect(model().attribute("message", "Hello Reader!"))
 .andExpect(view().name("helloReader"));
 }
}

HelloReaderControllerTests extends the base class that you defined. Because you created
WebApplicationContext by annotation, you can easily inject it because you have the component‐
scan definition in the configuration file. The @Before annotation of JUnit creates an instance of the
MockMvc class with the help of the builders. MockMvc is the main class that you will be using for the
controller tests.

In the helloReaderControllerWorksOk method annotated with @Test, you are first sending an
HTTP request to "/hello"—which is a mapped URL in the controller. This HTTP request is speci-
fied as a GET method by calling the perform method of the mockMvc instance and then setting expecta-
tions stating that the HTTP response status should be 200 (ok). The model should have the message
attribute with the value "Hello Reader!" and the response view name should be helloReader.

MockMvcRequestBuilders and MockMvcResultMatchers are the two main static factory classes that
are used to build the request and then assert the result with matching outputs. With the fluent API
provided with these classes, it’s easy to read the code and understand what the test method is all about.

testing Form Submit
Submitting form data to a controller method is an everyday job for developers working on Spring
MVC projects, so with no exception you should test those controller methods in detail. Spring
TestContext Framework supports the HTTP POST method for perform(), and you can also set the
parameters of the form with param(). You will test the UserController class that is provided in
the “Validating User Input” section of Chapter 3:

public class UserControllerTests extends BaseControllerTests {

 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();

testing Web applications ❘ 229

 }

 @Test
 public void formSubmittedSuccessfully() throws Exception {
 this.mockMvc.perform(
 post("/result")
 .param("username", "johndoe")
 .param("email", "john@doe.com")
 .param("ccNumber", "5245771326014172")
 .param("password", "TestR0ck"))
 .andExpect(status().isOk())
 .andExpect(view().name("userResult"))
 .andExpect(model().hasNoErrors())
 .andExpect(model().attribute("u",
 hasProperty("username", is("johndoe"))))
 .andExpect(model().attribute("u",
 hasProperty("email", is("john@doe.com"))))
 .andExpect(model().attribute("u",
 hasProperty("ccNumber", is("5245771326014172"))))
 .andExpect(model().attribute("u",
 hasProperty("password", is("TestR0ck"))));
 }
}

In the preceding code you set the username, email, ccNumber, and password input parameters of
the form and expect them to be set to the properties of the User model class. The hasProperty()
method is a static import from the org.hamcrest.Matchers class, and it does not exist in the
hamcrest‐core library. To use it, you need you add the hamcrest‐all dependency to the project.

But this is a happy path for the form submit, and everything works smoothly. What if a validation
error occurs with an input field, such as the length of the characters for the username is not met? You
can also test these behaviors in the controller tests. The following snippet shows an example test case.
Here you’re submitting just "ok" for the username, and it doesn’t meet the validation criteria:

@Test
public void formSubmittedSuccessfullyButContainsValidationErrors()
 throws Exception {
 this.mockMvc.perform(
 post("/result")
 .param("username", "ok"))
 .andDo(print())
 .andExpect(status().isOk())
 .andExpect(view().name("userForm"))
 .andExpect(model().hasErrors());
}

With the model().hasErrors() method, you’re asserting that the model has the validation error
with the input data submitted.

While running the tests of your project, if you encounter an exception in your console like this:

Caused by: javax.validation.ValidationException: HV000183: Unable to load
'javax.el.ExpressionFactory'. Check that you have the EL dependencies
on the classpath

mailto:john@doe.com
mailto:john@doe.com

230 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

it means that you need to add the el‐api and el‐ri dependencies to your project’s test classpath
along with a provided dependency to servlet‐api. The reference implementation that you used for
this Expression Language 3.0 API is from Glassfish:

<dependency>
 <groupId>javax.el</groupId>
 <artifactId>javax.el-api</artifactId>
 <version>3.0.0</version>
 <scope>test</scope>
</dependency>

<dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.el</artifactId>
 <version>3.0.0</version>
 <scope>test</scope>
</dependency>

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.1.0</version>
 <scope>provided</scope>
</dependency>

testing exception handlers
It’s also possible to test the exception handlers within test cases. The next example tests the
UserController class from the “Handling Exceptions” section in Chapter 3. The test method sub-
mits the form with username johndoe to raise the exception in the controller. For the assertion, you
check for the errorMessage attribute in the model with an exception message as its value:

public class UserControllerTests extends BaseControllerTests {

 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
 }

 @Test
 public void userNotFoundExceptionHandledSuccessfully() throws Exception {
 this.mockMvc.perform(get("/findUser").param("name", "johndoe"))
 .andExpect(status().isOk())
 .andExpect(view().name("errorUser"))
 .andExpect(model().attribute("errorMessage",
 "User not found with name: johndoe"));
 }
}

Using Mock Objects and Other Utilities for testing ❘ 231

printing Mock request and response
While executing the test code, it’s possible to print the content of the MockHttpServletRequest and
MockHttpServletResponse with the print() method. The usage of the method is highlighted for
the helloReaderControllerWorksOk() method in the following snippet:

 @Test
 public void helloReaderControllerWorksOk() throws Exception {
 mockMvc.perform(get("/hello"))
 .andExpect(status().isOk())
 .andDo(print())
 .andExpect(model().attribute("message", "Hello Reader!"))
 .andExpect(view().name("helloReader"));
 }

using MoCk oBJeCts and other utilities for testing

No useful objects exist alone. They need other objects in their environments to operate. They col-
laborate with each other and form more complex object networks within the application. Those
objects that an object needs for its expected behavior are called its dependencies. There might be
several dependencies of an object that are needed during execution of an operation. Some of those
dependent objects may interact with a database; some may interact with the filesystem; or some may
involve network communication.

On the other hand, unit tests need to focus on only the object that is under the test. The operation that
is being tested should work without any other dependency. It should be enough for the test scenario to
provide only the necessary input to the method under test, then call it, and check the returned value—
if any exists—against the expected results. If the object under the test were wired with all of its depen-
dent objects, it would also be required that all those dependent objects need to be wired with their
dependencies and so on. However, the operation under the test may need to connect to the database or
establish a network connection via another dependent object to fulfill the request.

Therefore, the unit test wires up the object under test with its expected dependencies so that the
object can operate without any problem. However, those dependent objects injected into the object
under test are just substitutes for their real counterparts. They actually don’t connect to the data-
base or establish a network connection, but they act as if they are doing so. Such objects are called
mock objects. Mock objects can be trained to behave according to the scenario that is being tested.
Therefore, when the object under test interacts with those mock objects, mock objects just return the
expected values so that the object can continue to operate for the specific scenario to complete. After
the method under test completes, the state of the mock objects can also be queried in order to check
that the object under test interacted with them as expected.

spring provided Mock objects for testing
The org.springframework.mock package contains several different sub‐packages that contain dif-
ferent mock object implementations for various kinds of API and service provider interface (SPI)
dependencies. They help you to write unit and integration tests for code that depends on those APIs
or SPIs.

232 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

The org.springframework.mock.env package contains mock implementations of Spring’s
org.springframework.core.env.Environment and org.springframework.core.env
.PropertySource abstractions. You can use the MockEnvironment and MockPropertySource
classes for developing out‐of‐container tests to test code that depends on those abstractions.

Spring helps you to set up a simple Java Naming and Directory Interface (JNDI) environment for
testing purposes or standalone applications. There is a mock implementation of the JNDI SPI in the
org.springframework.mock.jndi package. You can use the mock JNDI SPI implementation to
bind objects into the JNDI registry and obtain them later in your application through javax
.naming.InitialContext. The following code snippet shows how an object can be bound to the
JNDI registry:

SimpleNamingContextBuilder builder = new SimpleNamingContextBuilder();
DataSource ds = new DriverManagerDataSource(
 "jdbc:h2:tcp://localhost/∼/test","sa","");
builder.bind("java:comp/env/jdbc/myds", ds);
builder.activate();

Spring provides a comprehensive set of mock objects for the Servlet API. They are located in the
org.springframework.mock.web package. You can use them to test your Spring MVC controllers in a
standalone environment. They are usually more convenient to use than creating dynamic mock objects
for HttpServletRequest, HttpServletResponse, HttpSession, and so on. @WebAppConfiguration
also enables injection of web objects of those mock types into integration tests.

other utilities and test annotations
The org.springframework.test.util.ReflectionTestUtils class has a collection of reflection‐
based utility methods to access and set nonpublic fields or to invoke nonpublic setter methods when
testing application code. Such code usually appears when working with ORM frameworks, such as
JPA and Hibernate, or when dependency injection annotations such as @Autowired, @Inject, and
@Resource are used on private fields or nonpublic setter methods.

org.springframework.test.jdbc.JdbcTestUtils contains JDBC‐related utility methods to sim-
plify JDBC‐related testing scenarios.

The Spring TestContext Framework offers several other annotations to help out unit and integration
testing scenarios. You can use the org.springframework.test.annotation.Timed annotation to
set a time limit for tests to execute. Unless the tests execute within that time limit, they fail. You can
use the org.springframework.test.annotation.Repeat annotation to run a test method a speci-
fied number of times. With the org.springframework.test.annotation.IfProfileValue anno-
tation you can enable or disable tests according to some property value. Tests only run if a property
value obtained from the environment equals the value or values specified in the @IfProfileValue
annotation.

In the following code snippet, @IfProfileValue is defined with the runTest property expecting the
value "true". The test only runs if it is run with the ‐DrunTest=true JVM argument. By default,
profile values are searched from system properties. However, it can be customized with the org
.springframework.test.annotation.ProfileValueSourceConfiguration annotation. You can
use the @IfProfileValue annotation both on the test‐class and test‐method levels:

tcp://localhost/%E2%88%BC/test%00%00%00

Summary ❘ 233

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("classpath:/applicationContext.xml")
@IfProfileValue(name="runTest",value="true")
public class IntegrationTests {
 @Test
 public void testMethod() {
 //...
 }
}

suMMary

From this chapter, you have learned that Spring provides first‐class integration testing support for
applications. It is very easy to create and manage ApplicationContext for test classes. Dependency
injection is automatically performed by the TestContext Framework. For performance reasons,
ApplicationContext is cached and reused among several test classes. Testing database‐ and
persistence‐related code had always been problematic due to data modifications that cause side
effects to other tests. However, Spring provides automatic transaction demarcation for tests, and
it solves this side‐effect problem with transaction rollback at the end of the test method so that no
data modification will remain when test execution finishes.

This chapter discussed how you can configure and customize transaction demarcation features
according to the specific needs of your application. It also examined how WebApplicationContext
can be bootstrapped in a standalone environment using the TestContext Framework, and how web
functionality can be tested by accessing mock web objects such as HTTP request, response, session,
and so on.

The chapter finished with a short overview of mock objects provided for testing application code,
which depends on various APIs and SPIs, and some other utility annotations available in the
TestContext Framework.

exerCises

You can find possible solutions to these exercises in Appendix A.

 1. How can you disable TestExecutionListeners configured by default and see that no depen-
dency injection is performed at all?

 2. Create a test class that loads both XML‐based and Java‐based bean configurations.

 3. Register a Java object into JNDI Context using SimpleNamingContextBuilder, and then look it
up using javax.naming.InitialContext in your test class.

234 ❘ Chapter 7 TesT‐Driven DevelopmenT wiTh spring

 ▸ What you learned in this Chapter

topiC key points

@RunWith JUnit annotation to specify a custom JUnit Runner
class with which to execute test classes

SpringJUnit4ClassRunner JUnit Runner implementation of the Spring
TestContext Framework that executes tests

@ContextConfiguration Annotation used to specify configuration metadata
to create ApplicationContext specific for test
fixtures

@ActiveProfiles Annotation to specify what profile values will be
active while creating ApplicationContext

@DirtiesContext Annotation to tell the TestContext Framework that it
should discard ApplicationContext before execut-
ing the next test

@Autowired, @Inject, @Resource Dependency injection annotations that can be used
to inject test fixtures into test classes

ApplicationContextInitializer API to configure ApplicationContext during its
initialization

@TransactionConfiguration Annotation to configure and customize transaction
management configuration of the framework

@Rollback Annotation to control the outcome of current trans-
action demarcation at the end of test methods

@BeforeTransaction,
@AfterTransaction

Setup and teardown annotations that indicate that
such code should be executed outside the current
transaction demarcation

@WebAppConfiguration Annotation to bootstrap WebApplicationContext
in a standalone test environment

@ContextHierarchy Annotation to create parent‐child
ApplicationContext hierarchies in the test
environment

MockHttpServletRequest,
MockHttpServletResponse,
MockHttpSession,
MockServletContext,
MockServletConfig

Servlet API mock objects provided by the
Spring TestContext Framework to help test web
functionality

@IfProfileValue Annotation to run the test conditionally

Summary ❘ 235

topiC key points

@Timed Annotation to run the test within a time limit

@Repeat Annotation to run the test several times
consecutively

MockMvc Main implementation class that is used in tests. It’s
built up with a WebApplicationContext and per-
forms the mock HTTP request operations.

 aspect‐Oriented programming
with Spring

 8
 what yOu will learn in thiS chaPter:

 ➤ Getting started with AOP with Spring

 ➤ Becoming familiar with types of advices

 ➤ Defi ning point‐cut designators

 ➤ Capitalizing on the power of annotations

 ➤ Blending AspectJ with Spring

 ➤ Confi guring Spring AOP with annotations

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 8 download and individually named according to the
names throughout the chapter.

 With the dawn of object‐oriented programming (OOP), software systems started to be repre-
sented as a collection of discrete classes with each class defi ned with a clearly stated task. This
paradigm had replaced the procedural approach of programming, but it also introduced short-
ages on parts like cross‐cutting abilities where a feature can affect most parts of a system. The
most prominent example of this might be a logging facility where detailed information for
each method execution is logged for auditing, or you can think of exception handling where

http://www.wrox.com/go/beginningspring

238 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

errors that occur across the layers of the application are handled at a single point and applicable
measures are immediately taken to address the issues. One last example that we can give is the
Declarative Transaction Management, which allows us to make the transaction configuration in a
non‐obtrusive way without doing any coding for each code part that has an access to the database.
Of course, there are lots of similar cases and features—such as logging facility, exception handling,
or declarative transaction management—that could be implemented across each class that needs
to be applied, but doing so would violate the good old principle that each class should have a well‐
defined responsibility.

This is where Aspect‐Oriented Programming (AOP) kicks in. In OOP the unit of modularity is the
class, and in AOP the unit of modularity is an aspect. You can think of an aspect as the common
feature that implements the cross‐cutting parts of a software system in separate entities. The aim
here is to increase the modularity by separating these cross‐cutting concerns. Also it conforms to the
Don’t Repeat Yourself (DRY) principle for avoiding the code duplication.

note The premise of the DRY principle is to reduce multiple occurrences of
any code blocks, especially within a multilayered architecture.

In addition to aspect, AOP terminology introduces some other new keywords that explain
what’s going on under the hood. The following list briefly defines the semantics of AOP
with these words, and sections later in the chapter cover the concepts in detail and provide
examples:

 ➤ Join‐point: The point within the actual code where the aspect gets executed to insert
additional logic into the application.

 ➤ Advice: The action—or the chunk of code—that is executed by the aspect at a specific
join‐point.

 ➤ Point‐cut: An expression that selects one or more join‐points for execution. You can think of
a point‐cut as a group of join‐points.

 ➤ Target: The object where its execution flow is modified by an aspect so it is meant to be the
actual business logic.

 ➤ Weaving: The process of wiring aspects to the target objects, which can be done at three dif-
ferent levels: compile time, load time, or run time:

 ➤ Compile‐time weaving is the simplest method. The compiler passes through the
source code of the application and creates woven classes.

 ➤ Load‐time weaving is the process where the specific class loaders weave the class
while loading it.

 ➤ Runtime weaving is a more dynamic approach compared to the compile‐time and
load‐time weaving processes. Spring AOP uses this method by utilizing the Proxy
pattern, which is covered in the next section.

Getting Started with aOp in Spring ❘ 239

GettinG Started with aOP in SPrinG

Spring provides a subproject, the Spring AOP, which offers a pure Java solution for defining method
execution join points on the target object—the Spring beans—by employing the Proxy pattern.
You can think of the proxy objects as the wrappers around the actual objects, so the features can
be introduced before, after, or around the method calls of the originator objects. Figure 8-1 briefly
describes the Proxy pattern. The client makes call to a proxy object, which delegates the actual job
to another one.

FiGure 8-1

Client

Proxy

Action

DoAction()+

DoAction()+

RealAction

DoAction()+

<<interface>>

<<calls>>
<<inherits>> <<inherits>>

<<delegates>>

Spring AOP only applies runtime weaving while creating the proxy object mentioned, so there is no
need to do any processing at the compilation time of the classes. Configuration of the AOP within
the Spring framework could either be done in XML or with the help of annotations. Upcoming sec-
tions of this chapter cover both of these methods. Spring AOP is the second most important part of
the Spring framework; only dependency injection, which is covered Chapter 2, is more important.

Under the hood, Spring AOP leverages the use of AspectJ, which is one of the most popular AOP
frameworks that became a de facto standard in the industry. It provides an easy approach for defin-
ing aspects with AspectJ annotations easily with the help of the weaver integration mechanism.
Despite Spring AOP’s dynamic, runtime weaving, AspectJ provides static, compile‐time, and load‐
time weaving on the target objects. But most of the popular Java AOP frameworks offer creating the
proxy classes at run time as Spring AOP does.

With Spring AOP, either JDK dynamic proxy mechanism or CGLIB proxy mechanism is used to cre-
ate the proxy classes. If a Spring bean implements an interface, all the implementation of that inter-
face will be proxied by the JDK, and if the bean does not implement any interface, CGLIB proxying
is applied to the concrete class objects. It’s also possible to use the CGLIB proxy mechanism at all
times with the configuration. This feature is mentioned in the “Blending AspectJ with Spring” section
at the end of this chapter. Unlike AspectJ, Spring AOP only provides method execution point‐cuts
that reside inside the Spring beans, so it’s not possible to apply aspects to your domain object classes.

To better understand how an aspect is defined in Spring AOP along with the point‐cut and advisor
definitions; check out the sample implementation in the next Try It Out.

240 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

try it Out Logging Method execution times

This example logs the method execution times with an aspect for any public method defined within an
application. You can find the source code of the project in the executiontimelogging file in the code
downloads.

 1. Create an empty Maven web application project from the archetype, maven‐archetype‐quickstart.
Add spring‐aop dependency to your pom.xml file. At the time of writing, the latest version of
Spring subprojects was the 4.0.5.RELEASE.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aop</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. spring‐aop depends on spring‐core and spring‐beans subprojects, so you need to add them.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Add spring‐context as a dependency to your project.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 4. Add aspectjweaver as a dependency to your project.

<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>1.8.1</version>
</dependency>

 5. Implement the executionTimeLoggingSpringAop advice bean under package com.wiley
.beginningspring.ch8, which is the actual implementation that calculates the time spent for each
method execution.

public class ExecutionTimeLoggingSpringAOP
 implements MethodBeforeAdvice, AfterReturningAdvice {

 long startTime = 0;

 @Override
 public void before(Method method, Object[] args, Object target)

Getting Started with aOp in Spring ❘ 241

 throws Throwable {
 startTime = System.nanoTime();
 }

 @Override
 public void afterReturning(Object returnValue, Method method,
 Object[] args, Object target) throws Throwable {
 long elapsedTime = System.nanoTime() - startTime;
 String className = target.getClass().getCanonicalName();
 String methodName = method.getName();
 System.out.println("Execution of " + className + "#" + methodName
+ " ended in " + new BigDecimal(elapsedTime).divide(
new BigDecimal(1000000)) + " milliseconds");
 }
}

 6. Create an application context configuration file that provides advice and point‐cut definitions,
under the classpath with the folder /src/main/resources.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-4.0.xsd">

 <context:component-scan base-package="com.wiley.beginningspring.ch8" />
 <context:annotation-config />

 <bean id="executionTimeLoggingSpringAop"
 class="com.wiley.beginningspring.ch8.aspect.ExecutionTimeLoggingSpringAOP" />

 <aop:config>
 <aop:pointcut id="executionTimeLoggingPointcut"
 expression="execution(public * *(..))" />

 <aop:advisor id="executionTimeLoggingAdvisor"
 advice-ref="executionTimeLoggingSpringAop"
 pointcut-ref="executionTimeLoggingPointcut" />
 </aop:config>

</beans>

 7. Create the MyBean and MyOtherBean spring beans under package com.wiley.beginningspring.
ch8.

@Component
public class MyBean {

 public void sayHello() {
 System.out.println("Hello..!");

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.0.xsd

242 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

 }
}

@Component
public class MyOtherBean {

 public void sayHelloDelayed() throws InterruptedException {
 Thread.sleep(1000);
 System.out.println("Hello..!");
 }
}

 8. Create the Main class for invoking the beans’ methods.

public class Main {

 public static void main(String... args) throws InterruptedException {
 ApplicationContext context = new ClassPathXmlApplicationContext(
 "/applicationContext.xml", Main.class);
 MyBean myBean = context.getBean(MyBean.class);
 myBean.sayHello();

 MyOtherBean myOtherBean = context.getBean(MyOtherBean.class);
 myOtherBean.sayHelloDelayed();
 }
}

 9. The final output of the application will be the following:

Hello..!
Execution of com.wiley.beginningspring.ch8.bean.MyBean#sayHello ended
in 15.656 milliseconds
Hello..!
Execution of com.wiley.beginningspring.ch8.bean.MyOtherBean#sayHelloDelayed ended
in 1010.071 milliseconds

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you
added the dependencies for spring‐aop along with the spring‐core and spring‐beans proj-
ects because spring‐aop transitively depends on them. You also added spring‐context as a
dependency because you used the @Component annotation to create your sample beans in the
project. Finally you added the aspectjweaver dependency because Spring AOP reuses some of
the classes from this project; the dependency was needed to overcome any type of java.lang.
ClassNotFoundException. At the time of writing, the latest available version of project aspec-
tjweaver was 1.8.1.

After configuring the dependencies, you implemented the spring bean of ID
executionTimeLoggingSpringAop. This bean implemented two advice interfaces—the
MethodBeforeAdvice and AfterReturningAdvice—with the following signatures:

public interface MethodBeforeAdvice extends BeforeAdvice {
 void before(Method method, Object[] args, Object target) throws Throwable;

Becoming Familiar with types of advices ❘ 243

}

public interface AfterReturningAdvice extends AfterAdvice {
 void afterReturning(Object returnValue, Method method, Object[] args,
 Object target) throws Throwable;
}

The MethodBeforeAdvice advice is invoked before the actual method is invoked, and
AfterReturningAdvice advice is invoked on return of the actual method if no exception is thrown from
the method. So these two advices give you the ability to log the start and finish execution times of any
public method that matches with the pattern public * *(..). The method signatures given in the inter-
faces also take an argument of type java.lang.reflect.Method to access the information about the
actual method, such as its name, declared annotations, and so on. Another important parameter is the
target object that is an instance of java.lang.Object to access the weaved Spring bean. After collecting
the timings in the before() and afterReturning() methods, you calculated the difference in between to
print out the actual method execution times in milliseconds along with the class and method names.

The application context configuration file contains the executionTimeLoggingSpringAop bean defini-
tion. The AOP configurations—which reside inside the <aop:config> tag that provides a section for
defining aspects, point‐cuts, and so on—contains the point‐cut definition of ID
executionTimeLoggingPointcut with the expression execution(public * *(..)). Here the key-
word execution is used to filter the methods that match the method signature given. In your sample
definition, it’s stated that any public scoped method with any return type, class name, and parameters
will be advised. The use of the point‐cut expressions is explained further in the “Defining Point‐Cut
Designators” section later in this chapter. Finally you define executionTimeLoggingAdvisor that ref-
erences to the executionTimeLoggingSpringAop advice and executionTimeLoggingPointcut point‐
cut definitions. Its job is to match the advice with a given point‐cut.

You created two different Spring beans—MyBean and MyOtherBean—which have two public methods,
sayHello() and sayHelloDelayed(), respectively. The method named with the Delayed suffix pauses
the current thread for one second to make the elapsed time longer when compared to the other method.
You also create a Main class that creates the application context from the given configuration file and
then accesses these two beans to call their public methods. The aspect intercepts these public method
calls and collects the elapsed time for their executions as stated in the preceding steps.

note It should be noted that the advice wouldn’t get applied for the methods that
are being invoked from an advice‐applied method if all reside in the same class.

BecOminG Familiar with tyPeS OF adviceS

In the Try It Out activity in the preceding section, the usage of MethodBeforeAdvice and
AfterReturningAdvice interfaces are demonstrated by logging the method execution times. Spring
AOP also provides other types of advices, and you can find the full list of them in Table 8-1 along
with the execution point they have. There are working examples of each one later in this section.

244 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

taBle 8-1: The List of Advices

tyPe interFace executiOn POint

Before MethodBeforeAdvice The advice gets executed before the
join‐point.

After Returning AfterReturningAdvice The advice gets executed after the execu-
tion of the join‐point finishes.

After Throwing ThrowsAdvice The advice gets executed if any exception
is thrown from the join‐point.

After (Finally) N/A The advice gets executed after the execu-
tion of the join‐point whether it throws an
exception or not.

Around N/A The advice gets executed around the
join‐point, which means that it is invoked
before the join‐point and after the execu-
tion of the join‐point.

Figure 8-2 shows a sketch of the execution flow for the advice types.

Before

After

Around

Call

Method

Return Throw

Result

After Returning

After Throwing

FiGure 8-2

Becoming Familiar with types of advices ❘ 245

Before
The Before advice is invoked before the actual method call. To get it working, the aspect should
implement the MethodBeforeAdvice interface shown here:

public interface MethodBeforeAdvice extends BeforeAdvice {
 void before(Method method, Object[] args, Object target) throws Throwable;
}

Refer to the Try It Out activity in the preceding section for a detailed example of this advice.

after returning
The After Returning advice is invoked after the execution of the actual method. If an exception is
thrown from the advised method, the advice is not executed. To get it working, the aspect should
implement the AfterReturningAdvice interface as shown here:

public interface AfterReturningAdvice extends AfterAdvice {
 void afterReturning(Object returnValue, Method method,
 Object[] args, Object target) throws Throwable;
}

The Try It Out activity in the “Getting Started with AOP Programming in Spring” section demon-
strates a detailed example of this advice.

after throwing
You can use the After Throwing advice to define any specific business logic for execution when an
exception is thrown and right before it is caught in the invoker method. You need to implement
the ThrowsAdvice interface to use this advice, but the interface does not contain any method sig-
nature because it’s just a marker interface. So while implementing the interface, one of the follow-
ing methods should also be implemented in the advice, and that very method will be invoked by
reflection:

public void afterThrowing(Exception ex);
public void afterThrowing(RemoteException);
public void afterThrowing(Method method, Object[] args,
 Object target, Exception ex);
public void afterThrowing(Method method, Object[] args,
 Object target, ServletException ex);

We selected the third method signature, and the implementation of the advice that contains this
method is shown here:

public class ExecutionTimeLoggingThrowsAdvice implements ThrowsAdvice {

 public void afterThrowing(Method method, Object[] args,
 Object target, Exception ex) {

246 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

 String className = target.getClass().getCanonicalName();
 String methodName = method.getName();
 System.out.println("Execution of " + className + "#" + methodName
+ " ended with exception: " + ex.getMessage());
 }
}

With the preceding code, we’re accessing the message of the exception easily. The configuration for
the advice, point‐cut, and advisor is the following:

<bean id="executionTimeLoggingThrowsAdvice"
class="com.wiley.beginningspring.ch8.aspect.ExecutionTimeLoggingThrowsAdvice" />

<aop:config>
 <aop:pointcut id="executionTimeLoggingPointcut"
 expression="execution(public * *(..))" />

 <aop:advisor id="executionTimeLoggingAdvisor"
 advice-ref="executionTimeLoggingThrowsAdvice"
 pointcut-ref="executionTimeLoggingPointcut" />
</aop:config>

Warning Keep in mind that if an exception gets thrown within one of the
methods of ThrowsAdvice, it overrides the original exception.

after (Finally)
The After (Finally) advice is executed regardless of the execution of the join‐point. It could either
return normally or throw an exception, but the advice code is executed no matter what.

The following code snippet shows the implementation of the advice with its configuration. Here
we’re passing an instance of JoinPoint to the advice method:

public class ExecutionTimeLoggingWithAfterAdvice {

 public void executiontimeLogging(JoinPoint jp) throws Throwable {
 String className = jp.getTarget().getClass().getCanonicalName();
 String methodName = jp.getSignature().getName();

 System.out.println("Execution of " + className + "#" + methodName
+ " ended");
 }
}

The definition of the advice with the XML configuration is a little bit different compared to others.
Within the <aop:config> we used the aspect tag and defined point‐cut and after tags inside
it. Notice that the method attribute of the <aop:after> matches the method name defined in the
advice.

Becoming Familiar with types of advices ❘ 247

<bean id="executionTimeLoggingWithAfterAdvice"
class="com.wiley.beginningspring.ch8.aspect.ExecutionTimeLoggingWithAfterAdvice" />

<aop:config>
 <aop:aspect ref="executionTimeLoggingWithAfterAdvice">
 <aop:pointcut id="logPointCut" expression="execution(public * *(..))" />
 <aop:after pointcut-ref="logPointCut" method="executiontimeLogging" />
 </aop:aspect>
</aop:config>

around
The Around advice is a more popular approach used in the AOP programming where it is
executed before and after the join‐point, which is practically around the join‐point by sur-
rounding it.

The following is the implementation of logging method execution times with the Around advice
instead of the Before and After Returning advice types.

public class ExecutionTimeLoggingWithAroundAdvice {

 public void executiontimeLogging(ProceedingJoinPoint jp) throws Throwable {
 long startTime = System.nanoTime();
 String className = jp.getTarget().getClass().getCanonicalName();
 String methodName = jp.getSignature().getName();

 jp.proceed();

 long elapsedTime = System.nanoTime() - startTime;
 System.out.println("Execution of " + className + "#" + methodName
+ " ended in " + new BigDecimal(elapsedTime).divide(
new BigDecimal(1000000)) + " milliseconds");
 }
}

The advice does not implement any interface as was done in the examples before with
the MethodBeforeAdvice and AfterReturningAdvice. Instead it takes an instance of
ProceedingJoinPoint that is used to execute the actual method. ProceedingJoinPoint extends
the JoinPoint interface, and it is passed as an argument to the Around advice. From a join‐point
we can access the target object with getTarget(), the method signature with getSignature(), and
the arguments of the method with the getArgs() methods.

The definition of the advice with the XML configuration is a little bit different compared to others.
Within the <aop:config> we used the aspect tag and defined point‐cut and around tags inside
it. Notice that the method attribute of the <aop:around> matches the method name defined in the
advice.

<bean id="executionTimeLoggingWithAroundAdvice"
class="com.wiley.beginningspring.ch8. ↵
 aspect.ExecutionTimeLoggingWithAroundAdvice" />
<aop:config>

248 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

 <aop:aspect ref="executionTimeLoggingWithAroundAdvice">
 <aop:pointcut id="logPointCut" expression="execution(public * *(..))" />
 <aop:around pointcut-ref="logPointCut" method="executiontimeLogging" />
 </aop:aspect>
</aop:config>

note Keep in mind that ProceedingJoinPoint is only supported for
Around advices, and you cannot use it for the other ones, say, After (Finally)
advices.

note When multiple advices of type Before, After Returning, After
(Finally), and Around are applied on the same join‐point, the execution
order can be defined according to their precedence. To provide the prior-
ity, aspects can implement the org.springframework.core.Ordered inter-
face, and the order can be specified by the getOrder() method. The lowest
value returned by this method has the highest precedence for the Before
advices and the lowest precedence for the After advices. For AspectJ
advice annotations, the order of the advices can also be set with the
@Order annotation.

deFininG POint‐cut deSiGnatOrS

Spring AOP provides various matcher expressions in order to filter methods for applying the advices
to Spring beans. These are also called point‐cut designators. We’ve already used the execution
expression in our previous examples. In this section we try to cover the rest by starting with the type
signature expressions that could be used for package name– or class name–based filtering; method
signature expressions that could be used for filtering methods based on their actual signatures; and
bean name expressions that could be used for filtering methods, which reside in a bean given with
a name pattern. It’s also possible to blend the expressions with grammatical operators: and, or, and
not (or with &&, ||, and !). So the sky is the limit in the designator world!

the type Signature expressions
For filtering methods according to its types—like interfaces, class names, or package names—Spring
AOP provides the within keyword. The type signature pattern is as follows, and type name could
be replaced with package name or class name.

within(<type name>)

Here are some examples for the type signature usages:

 ➤ within(com.wiley..*): This advice will match for all the methods in all classes of the
com.wiley package and all of its subpackages.

Defining point‐Cut Designators ❘ 249

 ➤ within(com.wiley.spring.ch8.MyService): This advice will match for all the methods in
the MyService class.

 ➤ within(MyServiceInterface+): This advice will match for all the methods of classes that
implement the MyServiceInterface.

 ➤ within(com.wiley.spring.ch8.MyBaseService+): This advice will match for
MyBaseService class and for all of its subclasses.

the method Signature expressions
For filtering according to the method signatures, the execution keyword can be used. Its pattern is
stated as follows:

execution(<scope> <return-type> <fully-qualified-class-name>.*(parameters))

Here the methods that match with the given scope, return type, fully qualified class name, and
parameter will have the specified advice applied. The scope of the methods could either be public,
protected, or private. To bypass the parameter filtering, you can specify two dots .., as we did for
the advice definition in the earlier Try It Out activity, to say that the method could have any number
and type of parameters. The following are descriptions of the sample method signatures:

 ➤ execution(* com.wiley.spring.ch8.MyBean.*(..)): This advice will match for all the
methods of MyBean.

 ➤ execution(public * com.wiley.spring.ch8.MyBean.*(..)): This advice will match for
all the public methods of MyBean.

 ➤ execution(public String com.wiley.spring.ch8.MyBean.*(..)): This advice will
match for all the public methods of MyBean that return a String.

 ➤ execution(public * com.wiley.spring.ch8.MyBean.*(long, ..)): This advice will
match for all the public methods of MyBean with the first parameter defined as long.

Other alternative Point‐cut designators
This part lists the designators that are supported by the Spring AOP. AOP only supports a subset of
the designators that are available in the other AOP projects.

 ➤ bean(*Service): It’s possible to filter beans according to their names with the bean key-
word. The point‐cut expression given above will match for the beans that have the suffix
Service in their names.

 ➤ @annotation(com.wiley.spring.ch8.MarkerMethodAnnotation): It’s possible to filter
the methods according to an annotation applied on. The point‐cut expression here states that
the methods that have the MarkerMethodAnnotation annotation will be advised.

 ➤ @within(com.wiley.spring.ch8.MarkerAnnotation): While point‐cut expressions with
the within keyword match a package, class, or an interface, it’s also possible to restrict filter-
ing of the classes according to an annotation that the class would have. Here, the classes with
the MarkerAnnotation will be advised by the @within keyword.

 ➤ this(com.wiley.spring.ch8.MarkerInterface): This point‐cut expression will filter the
methods of any proxy object that implements the MarkerInterface.

250 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

Wildcards
While defining expressions we have used wildcards like, *, .., or +. Table 8-2 describes these wildcards.

taBle 8-2: The List of Wildcards

wildcard deFinitiOn

.. This wildcard matches any number of arguments within method definitions,
and it matches any number of packages within the class definitions.

+ This wildcard matches any subclasses of a given class.

* This wildcard matches any number of characters.

caPitalizinG On the POwer OF annOtatiOnS

Doing aspect‐oriented development becomes an easy job with the help of Spring AOP and AspectJ
cooperation. To define an aspect, advice, or a point‐cut, we did some XML configuration in our
examples, but because Spring AOP also employs the annotations provided by AspectJ, the definition
of the aspects can be done with pure Java code instead of the bloated XML. This section covers the
annotations that you can use to implement AOP.

@Before
With this annotation, the annotated advice methods are invoked before the actual method call
according to the expression given.

@Before("execution(public * *(..))")
public void before(JoinPoint joinPoint) {
}

Here, advice intercepts the public methods of the Spring beans. You can also access the information
such as the advised method signature, the intercepted target object, and so on, from the instance of
the JoinPoint passed as a parameter.

Within the advice, it’s also possible to access a parameter that is passed to the actual method. To
achieve this you need to bind the method argument name into the filter expression with the args()
keyword. The following is an example definition of the target object:

@Component
public class MyBean {
 public void sayHello(String param) {
 System.out.println("Actual method execution with param: " + param);
 }
}

The next snippet shows the definition of the advice. Here we’re defining a string method argument
with the name param, and it’s defined in the filter expression as args(param). So we can access the
parameter passed to the actual method within our advice definition.

Capitalizing on the power of annotations ❘ 251

@Component
@Aspect
public class ExecutionOrderBefore {

 @Before(value = "execution(public * *(..)) and args(param)")
 public void before(JoinPoint joinPoint, String param) {
 System.out.println("Before Advice. Argument: " + param);
 }
}

note If the first argument of the method is a type of JoinPoint or
ProceedingJoinPoint, there is no need to define the name of that argument
in the args() description of the filter expression.

@Pointcut
Point‐cuts can be defined with this annotation by providing a method declaration. The return type
of the method should be void and the parameters of the method should match the parameters of the
point‐cut. There is no need to define the method body because it will be omitted. In the following
snippet, the sample given for the @Before annotation with the @Pointcut has been rewritten:

@Pointcut("execution(public * *(..))")
public void anyPublicMethod() {
}

@Before("anyPublicMethod()")
public void beforeWithPointcut(JoinPoint joinPoint) {
}

The point‐cut defined here applies on any public method with any return type, method name, and
parameters. Because the name of the method declared with the annotation is given as
anyPublicMethod(), this method name is directly used within the @Before annotation definition,
and that’s how we’re binding the point‐cut definition with the advice that we have.

Point‐cuts can also be combined with the boolean operators to create one large point‐cut. We stated
two point‐cut definitions with two different expressions; one applies for any public method with any
return type, method name, and parameters, and the other one applies for the methods annotated
with the @MarkerAnnotation.

@Pointcut("execution(public * *(..))")
public void anyPublicMethod() {
}

@Pointcut("@annotation(com.wiley.beginningspring.ch8.MarkerAnnotation)")
public void annotatedWithMarkerAnnotation() {
}

So these point‐cut definitions can be used on an advice as shown in the following code. The &, |, &&,
and || operators can be used to join the point‐cuts.

252 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

@After(value = "anyPublicMethod() && annotatedWithMarkerAnnotation()")
public void afterWithMultiplePointcut(JoinPoint joinPoint) {
}

The @annotation used within the point‐cut definition here is called a point‐cut designator, which is
covered in detail in the “Defining Point‐Cut Designators” section.

@after
With this annotation, the annotated advice methods are invoked after the actual method call, and
they will be called either when the method is returned successfully or if an exception is thrown from
the method. The following is an example for the advice definition:

@After("execution(public * *(..))")
public void after(JoinPoint joinPoint) {
}

Here, any public method that resides in a Spring bean will be intercepted. From the instance of JoinPoint
you can access information such as the advised method signature and the intercepted target object.

@afterreturning
This annotation defines an advice that will be executed after the execution of the join‐point finishes.
If an exception is thrown from the advised method, the advice is not executed. The following exam-
ple defines an advice that is applied to any public method declared in a spring bean.

@AfterReturning(value = "execution(public * *(..))")
public void after(JoinPoint joinPoint) {
 System.out.println("After Returning Advice.");
}

It’s also possible to access the value returned by the join‐point by defining the returning attribute
of the @AfterReturning advice. Here’s an example:

@Component
@Aspect
public class ExecutionOrderAfterReturning {

 @AfterReturning(value = "execution(public * *(..))", returning = "result")
 public void after(String result) {
 System.out.println("After Returning Advice with result: " + result);
 }
}

Here the value of the returning attribute is set to result. This matches with the name of the
advice method argument, which is also set as result.

@afterthrowing
With this annotation it’s possible to intercept an exception after it’s thrown and right before it’s
caught in the invoker method. The AfterThrowing advice definition will only intercept the methods
of MyBean class as shown here:

Capitalizing on the power of annotations ❘ 253

@AfterThrowing(value = "within(com.wiley.beginningspring.ch8.bean.MyBean)",
 throwing = "t")
public void afterThrowing(JoinPoint joinPoint, Throwable t) {
}

Here you can also access the exception as an instance of Throwable with the advice configuration
parameter throwing. The name of the parameter should match with the method argument’s name,
which is set as t in the example.

@aspect
This is the annotation that declares the aspect. It should be applied on the class level of a Spring
bean, which should also be annotated with @Component or with derivatives of it. Following is an
example of an aspect definition along with a Before advice:

@Component
@Aspect
public class ExecutionOrderBefore {

 @Before(value = "execution(public * *(..))")
 public void before(JoinPoint joinPoint) {
 }
}

By default, there will be only one instance of each aspect declared within the application context
that conforms to the singleton instantiation model.

note Keep in mind that implementing business logic with aspects introduces
an overhead on the method execution times. Thus, they should be applied
carefully.

@around
This annotation enables the execution of the advice method both before and after the execution of
the target method, which means literally around the join‐point. Here’s an example for the advice
definition:

@Around("execution(public * *(..))")
public void around(ProceedingJoinPoint jp) throws Throwable {
 System.out.println("Before proceeding part of the Around advice.");
 jp.proceed();
 System.out.println("After proceeding part of the Around advice.");
}

As you can see in the method signature, an instance of ProceedingJoinPoint is passed to the
method. ProceedingJoinPoint extends the JoinPoint interface, and it can only be used in the
Around type of advices.

254 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

@declareParents
In Spring AOP, it’s possible to make the target objects implement an interface dynamically by also
providing a concrete class of that interface. This is called Introduction, and it enables the path to do
“multiple inheritance” in Java, as described in this section.

Figure 8-3 defines a domain model with three classes to demonstrate the feature.

In Figure 8-3 we have the Pegasus class that extends the
Horse and the Bird classes. Pegasus is a creature from the
Greek mythology, which can be described as a winged stal-
lion, so it has both the ability to walk and the ability to fly.
Here, we will make an implementation so that the Pegasus
class extends the Horse and Bird classes at the same time,
which is not possible in Java.

Let’s first define our Pegasus Spring bean with the @Component.

@Component
public class Pegasus extends Horse {
}

The Horse class that the Pegasus class extends from is shown in the following snippet. It contains
the implementation of the ride() method.

public class Horse {
 public void ride() {
 System.out.println("Pegasus is wandering..!");
 }
}

The next snippet shows you the implementation of the Bird class with its interface definition IBird.
The Bird class contains the implementation of the fly() method.

public interface IBird {
 void fly();
}

public class Bird implements IBird {

 @Override
 public void fly() {
 System.out.println("Pegasus is flying..!");
 }
}

Because Pegasus class knows nothing about the IBird interface and Bird class, we introduce them
by defining them in an aspect, class GreekMythologyIntroducer, which contains the
@DeclareParents annotation on top of a static interface definition.

@Component
@Aspect
public class GreekMythologyIntroducer {
 @DeclareParents(

FiGure 8-3

Horse

<extends) <extends)

Bird

Pegasus

Blending aspectJ with Spring ❘ 255

 value = "com.wiley.beginningspring.ch8.bean.Pegasus+",
 defaultImpl = Bird.class)
 public static IBird iBird;
}

Here with the value of the @DeclareParents annotation we’re stating that for the Pegasus class
and all of its subclasses the aspect will apply the interface IBird along with the concrete implemen-
tation, Bird.

Now we can retrieve the Pegasus Spring bean from the application context, cast it to the Horse
class and IBird interface, and then invoke the ride() and fly() methods respectively.

public class Main {

 public static void main(String... args) {
 ApplicationContext context = new ClassPathXmlApplicationContext(
"/applicationContext.xml", Main.class);
 Object pegasus = context.getBean("pegasus");

 ((Horse) pegasus).ride();
 ((IBird) pegasus).fly();
 }
}

So our bean became an instance of Horse and Bird at the same time and started to behave like that.
The following is the output of the application:

Pegasus is wandering..!
Pegasus is flying..!

BlendinG aSPectJ with SPrinG

AspectJ framework offers an easy way for handling the implementation of AOP programming with the
help of annotations. Spring AOP provides the feature for using AspectJ annotations, such as @Aspect,
@Pointcut, and @Around, @Before, @After and so on, within the Spring container run time, and the
next Try It Out activity shows you an example of logging method execution times with AspectJ.

try it Out Logging Method execution times with aspectJ

In this Try It Out, you re‐implement the example given in the earlier activity that logs the method exe-
cution times in a pure annotation‐based configuration to demonstrate the AspectJ approach. You can
find the source code of the project in the executiontimeloggingaspectj file of the code downloads.

 1. Add a spring‐aop dependency to your pom.xml file. At the time of writing this book the latest ver-
sion of Spring subprojects was the 4.0.5.RELEASE.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aop</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

256 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

 2. spring‐aop depends on the spring‐core and spring‐beans subprojects, so you need to add
them.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Also add spring‐context as a dependency to your project.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 4. Finally add the aspectjweaver dependency to your project.

<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>1.8.1</version>
</dependency>

 5. Implement the ExecutionTimeLoggingAspectJ advice bean under package com.wiley
.beginningspring.ch8, which is the actual implementation that calculates the time spent for each
method execution.

@Component
@Aspect
public class ExecutionTimeLoggingAspectJ {

 @Around("execution(public * *(..))")
 public Object profile(ProceedingJoinPoint pjp) throws Throwable {
 long startTime = System.nanoTime();

 String className = pjp.getTarget().getClass().getCanonicalName();
 String methodName = pjp.getSignature().getName();

 Object output = pjp.proceed();
 long elapsedTime = System.nanoTime() - startTime;
 System.out.println("Execution of " + className + "#" + methodName
+ " ended in " + new BigDecimal(elapsedTime).divide(
new BigDecimal(1000000)) + " milliseconds");

 return output;
 }
}

Blending aspectJ with Spring ❘ 257

 6. Create the application context configuration file that provides aspect auto‐proxy configuration,
under the classpath with the folder /src/main/resources.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-4.0.xsd">

 <context:component-scan base-package="com.wiley.beginningspring.ch8"/>
 <context:annotation-config/>

 <aop:aspectj-autoproxy/>

</beans>

 7. Create the MyBean and MyOtherBean Spring beans under the package com.wiley.beginning-
spring.ch8.

@Component
public class MyBean {

 public void sayHello() {
 System.out.println("Hello..!");
 }
}

@Component
public class MyOtherBean {

 public void sayHelloDelayed() throws InterruptedException {
 Thread.sleep(1000);
 System.out.println("Hello..!");
 }
}

 8. Create the Main class for demonstration purposes.

public class Main {

 public static void main(String... args) throws InterruptedException {
 ApplicationContext context = new ClassPathXmlApplicationContext(
 "/applicationContext.xml", Main.class);
 MyBean myBean = context.getBean(MyBean.class);
 myBean.sayHello();

 MyOtherBean myOtherBean = context.getBean(MyOtherBean.class);
 myOtherBean.sayHelloDelayed();
 }
}

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.0.xsd

258 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the
dependencies for spring‐aop along with spring‐core and spring‐beans projects because
spring‐aop transitively depends on them. You also added spring‐context as a dependency because
you used the @Component annotation to create sample beans in the project. Finally you added the
aspectjweaver dependency to the project.

Then you implemented the advice bean, ExecutionTimeLoggingAspectJ with the @Component. The bean
also annotated with @Aspect to define it as an aspect. Both of these annotations are required, but @Component
can be omitted by reconfiguring the component‐scan tag in the application context configuration as

<context:component-scan base-package="com.wiley.beginningspring.ch8">
 <context:include-filter type="annotation"
 expression="org.aspectj.lang.annotation.Aspect"/>
</context:component-scan>

The aspect contains a method annotated with @Around, which contains the point‐cut expression for weaving
the public methods. The method takes an instance of ProceedingJoinPoint that is used to execute the actual
method. You can find the details of this advice in the “Becoming Familiar with Types of Advices” section.

The @Aspect and @Around annotations are coming from the AspectJ implementation. You can find the
list of all the possible annotations in the “Capitalizing on the Power of Annotations” section.

For the application context configuration, you only added one new tag definition:
<aop:aspectj‐autoproxy/>. This enabled the usage of annotations and created the Spring AOP prox-
ies. It just allows the use of annotations and does not involve any usage of the AspectJ run time.

The <aop:aspectj‐autoproxy/> tag contains the attribute proxy‐target‐class that forces the CGLIB
proxies to be created instead of dynamic JDK proxies by setting the attribute value to true. As of Spring 4,
CGLIB‐based proxy classes do not require a default constructor with the help of the objenesis library.

note The classes of objenesis and CGLIB projects were repackaged into the
org.springframework.objenesis and org.springframework.cglib pack-
ages, respectively, under the spring‐core project. So there is no need for
third‐party dependencies to include for creating CGLIB based proxy classes.

You created two different spring beans: MyBean and MyOtherBean. To dem-
onstrate the usage you also created a Main class that creates the application
context and then accesses these two beans to call their public methods. The
implementations of all these three classes are the same as given in the previous
Try It Out activity. The final output of the application is the following:

Hello..!
Execution of com.wiley.beginningspring.ch8.bean.MyBean#sayHello
ended in 15.889 milliseconds
Hello..!
Execution of com.wiley.beginningspring.ch8.bean. ↵
MyOtherBean#sayHelloDelayed
ended in 1008.861 milliseconds

Summary ❘ 259

cOnFiGurinG SPrinG aOP with annOtatiOnS

It’s also possible to do the application context configuration with annotations instead of an XML
file. To demonstrate it, we convert the XML configuration that is given in the Try It Out activity
from the preceding section into an annotation‐based one.

First we need to create a configurator class. The class will have the @Configuration annotation,
stating that it could contain one or more methods annotated with @Bean. For scanning components
starting with a given base package, we use the @ComponentScan annotation that does the same job
with the XML configuration <context:component‐scan> tag.

The @EnableAspectJAutoProxy does the same job with the <aop:aspectj‐autoproxy> tag, which
enables the usage of AspectJ annotations. The whole definition of the configurator class will be as
follows:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch8"})
@EnableAspectJAutoProxy
public class ApplicationConfig {
}

Now we need to load this configuration in the Main class and access the methods of the beans as

public class Main {

 public static void main(String... args) throws InterruptedException {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);
 MyBean myBean = context.getBean(MyBean.class);
 myBean.sayHello();

 MyOtherBean myOtherBean = context.getBean(MyOtherBean.class);
 myOtherBean.sayHelloDelayed();
 }
}

To define the aspects and advices, we can use the annotations shipping with the AspectJ framework.
The “Capitalizing on the Power of Annotations” section explains the use of these annotations.

Summary

This chapter briefly defined what Aspect‐Oriented Programming is and how it’s different from
object‐oriented programming. You were introduced to the concept of the AOP and its terminol-
ogy. The chapter explained what Spring AOP offers with its runtime weaving by utilizing the Proxy
Pattern, and the first Try It Out activity gave a self‐contained example that logs the public method
execution times for all defined Spring beans.

The chapter described the types of advices supported with Spring AOP: Before, After Returning,
After Throwing, After (Finally), and Around. You saw samples of their uses with the implementa-
tion of interfaces and the XML configuration needed to make them run.

Later, you were introduced to the details of the filter expressions that can be used for the point‐cuts.

260 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

Because Spring AOP employs AspectJ annotations to define aspects, point‐cuts, and advices, the
chapter detailed them in a separate section with sample codes. The second Try It Out activity
showed you how to convert the earlier example into an annotation‐based configuration.

Finally, the chapter explained how you can configure the Spring AOP with a pure annotation–based
approach and remove the entire XML configuration.

exerciSeS

You can find possible solutions to these exercises in Appendix A.

 1. Create a new application that employs the Around advice for logging method execution times.

 2. Define an aspect that point‐cuts before the methods that are annotated with @MyAnnotation.

Summary ❘ 261

 ▸ what yOu learned in thiS chaPter

tOPic Key POintS

AOP It stands for Aspect‐Oriented Programming, which increases the
modularity of an application by employing aspects to meet the
cross‐cutting concerns across the application.

aspect It’s the common feature that implements the cross‐cutting parts of
a software system in separate entities. It’s the unit of modularity in
AOP as compared to the class in OOP.

advice It is the action, or the chunk of code, that is executed by the aspect
at a specific join‐point.

join‐point It’s point within the actual code where the aspect gets executed to
insert additional logic into the application.

point‐cut Point‐cut is an expression that selects one or more join‐points for
execution. It can be thought of as a group of join‐points.

target It’s the object where its execution flow is modified by an aspect, so
it is meant to be the actual business logic in your application.

weaving It can be defined as the process of wiring aspects to the target
objects, and it can be done at three different levels: compile time,
run time, or load time.

AspectJ It’s one of the most popular AOP frameworks that became a de
facto standard in the industry. Spring AOP provides integration
with AspectJ and its annotations so that they can be used to define
aspects, advices, join‐points, and so on within the application.

Before It’s the advice that is executed before the join‐point.

After Returning It’s the advice that is executed after the execution of the join‐point
finishes.

After Throwing It’s the advice that is executed if any exception is thrown from the
join‐point.

After (Finally) It’s the advice that is executed after the execution of a join‐point
whether it throws an exception or not.

Around It’s the advice that is executed around the join‐point, which means
it is invoked before the join‐point and after the execution of the
join‐point.

within It’s the keyword that can be used for filtering methods according to
its types: interfaces, class names, or package names.

execution It’s the keyword that can be used for filtering methods according to
their method signatures.

continues

262 ❘ Chapter 8 Aspect‐Oriented prOgrAmming with spring

tOPic Key POintS

bean It’s the keyword for filtering Spring beans according to their names.

@Aspect This is the annotation that declares the aspect. It should be applied
on the class level of a Spring bean.

@Pointcut This is the annotation that defines the point‐cut with the filter
expression. A method declaration with a void return type can be
annotated with it so that it can be used by an advice.

@DeclareParents It’s the annotation that makes the target objects implement an inter-
face dynamically by also providing the concrete class of that interface.

@EnableAspectJAutoProxy This is the annotation that makes the usage of AspectJ annotations in
an application that employs an annotation‐based Spring configuration.

(continued)

 Spring expression Language

 whAt you will lEArn in this ChAptEr:

 ➤ Confi guring applications with SpEL

 ➤ Creating a parser

 ➤ Invoking methods

 ➤ Working with variables and functions

 ➤ Understanding SpEL operators

 ➤ Using utilities in SpEL

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 9 download and individually named according to the
names throughout the chapter.

 An expression language (EL) is a special type of programming language that provides for the
compilation and evaluation of expressions. With its simple syntax it offers an extensive set of
features, including various operators, functions, and variables. The EL is also commonly used
in web application frameworks, where these expressions help link the presentation layer with
the application data. The fi rst versions of EL derived from other languages like ECMAScript
and XPath, but they didn’t meet the requirements of enterprise development, so each frame-
work brought its own implementation of EL into the fi eld.

 9

http://www.wrox.com/go/beginningspring

264 ❘ Chapter 9 Spring ExprESSion LanguagE

In the history of Java web development, EL was first introduced with JSTL version 1.0, which
helped to bridge the application data with the view layer. Nowadays the Enterprise Java ecosystem
offers a good deal of options when it comes to the EL. Presentation layer frameworks such as JSF
and JSP adopted the Unified Expression Language (UEL); other frameworks such as Struts and
Tapestry used Object Graph Navigation Language (OGNL) under the hood. JBoss EL, MVEL, and
JEXL are other alternatives that are available, and they can be also used for dynamic expression
evaluation.

Spring Expression Language, or SpEL, is also an expression language that provides an extensive
set of features to interact with objects within the run time of a Spring‐based application. It provides
functionalities similar to UEL and OGNL, and it’s based on a technology‐agnostic API; thus, other
EL implementations can also be integrated. For all the subprojects in the Spring portfolio, SpEL
offers the use of expression languages for features such as accessing the nested beans, system proper-
ties, and so on, with its dynamic expression syntax. Because of this, it can be seen as a cross‐cutting
subproject that provides utility features.

With Java EE7, UEL version 3.0.0 was also introduced with a solid overhaul of its features, and it
is one of the closest matches to what SpEL offers to its developers. UEL is a union of the expression
languages from JSP and JSF. Unlike the previous versions, it supports new features such as method
invocation. But because SpEL is tightly integrated with the Spring subprojects, it’s very convenient to
use it in a Spring‐based application instead of dealing with the integration of UEL.

You can use SpEL both within the XML configuration and within the programmatic Java code.
In the next section you see demonstrations of the features of SpEL that use these two approaches.

Configuring AppliCAtions with spEl

While writing an XML configuration or doing annotation‐based configuration for an application
context, things could get complicated, and you might need a more powerful way to wire the beans
or set their property values. SpEL offers a more dynamic approach here in which you can do arith-
metic calculations or invoke methods to set values to beans’ properties.

This section shows you the simplest SpEL usage with both XML‐ and annotation‐based configura-
tion. The rest of the features that are introduced in this chapter can be applied to both of these con-
figurations, which means that you can use the same pattern of SpEL in your configuration easily. In
the following Try It Out, you use SpEL to create a simple XML‐based application to inject a system
property into a bean’s field.

try it out System property Injection via SpeL

Follow these steps to create a simple application that has XML‐based configuration using SpEL
to inject a system property into a bean’s field. You can find the source code of the project in the
 xmlconfig file of the code downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quickstart.
Add a spring‐expression dependency to your pom.xml file. At the time of writing this book the
latest version of Spring subprojects was the 4.0.5.RELEASE:

Configuring applications with SpeL ❘ 265

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-expression</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. spring‐expression depends on the spring‐core subproject, so you need to add it:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Add the spring‐context dependency to the project:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 4. Create the applicationContext.xml context configuration file under the src/main/resources
folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd">

 <bean id="show1" class="com.wiley.beginningspring.ch9.MyBean">
 <property name="message" value="#{systemProperties['user.language']}" />
 </bean>
</beans>

 5. Create the MyBean class under the com.wiley.beginningspring.ch9 package:

public class MyBean {
 private String message;

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

 6. Create the Main class under the com.wiley.beginningspring.ch9 package and execute the main
method:

public clas Main {

 public static void main(String... args) {

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd

266 ❘ Chapter 9 Spring ExprESSion LanguagE

 ApplicationContext context =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 MyBean myBean = context.getBean(MyBean.class);
 System.out.println(myBean.getMessage());
 }
}

How It Works

First you created an empty Java project with the quick‐start maven archetype. Then you added the
dependencies for spring‐expression along with spring‐core and spring‐context. spring‐expression
transitively depends on the core, and you used the ClassPathXmlApplicationContext class, which
resides under spring‐context, to initialize the application context from the configuration file.

You defined one bean, named myBean. The message field of the bean is set by an expression, and its literal
is wrapped with #{...} in order to be evaluated. Here you’re getting the user.language system property
and setting the value to the message field via setter injection. systemProperties is a reserved word and is
used to retrieve the properties of the system with a key value (such as a property name). You can find more
information on reserved words later in the chapter in the “Working with Variables and Functions” section.

The output of the application would probably be as follows (depending on your machine’s locale):

en

You can create the same configuration given in the preceding Try It Out using only annotations.
Following is the application configuration class:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch9"})
public class ApplicationConfig {
}

The MyBean class is defined as a Spring bean with @Component. Here you are using the
@Value annotation on the message field that is used to set a default value when the bean is
instantiated. The same expression that you used to retrieve the user language system property,
#{systemProperties['user.language']}, is used again here to set the value:

@Component
public class MyBean {

 @Value("#{systemProperties['user.language']}")
 private String message;

 public String getMessage() {
 return message;
 }
}

note It is possible to use the @Value annotation on a field of a class or on
arguments of constructors and methods of it.

Creating a parser ❘ 267

CrEAting A pArsEr

We’ve defined the bits of SpEL and stated a simple scenario for both XML‐based and annotation‐
based configurations for a Spring application. This section gives you a look at the foundational fea-
tures that SpEL offers, starting with the parsing.

Every expression defined within the context of SpEL gets parsed and then evaluated. The pars-
ing process is handled by the parsers, which implement the ExpressionParser interface.
SpelExpressionParser is an implementation of ExpressionParser provided by the SpEL, and it
parses the string expressions into compiled Expression objects. The instance of a parser becomes
thread‐safe when created so it can be reused in many places without a problem.

You can easily create a parser for yourself as shown here:

ExpressionParser parser = new SpelExpressionParser();

After creating the parser, an expression can be parsed with the parseExpression method provided
by the ExpressionParser interface. The expression that will be parsed is treated as an expression
template, and the template is used to define an evaluation block. An evaluation block is determined
when a literal is delimited by a prefix and a suffix. By default in SpEL, the prefix is '#{' and the
suffix is '}'. If no prefix and suffix are provided, the expression string is treated as a plaintext lit-
eral. (This is valid only for an XML configuration. Programmatic parsing does not require a prefix
and suffix unless the default values have been overridden.) As shown in the XML configuration part
of the “Configuring Applications with SpEL” section, the evaluation block definition should be done
carefully. After creating the parser, the expression can be parsed as in the following:

Expression expression = parser.parseExpression("'Hello World!'");

With the expression instance created, you can invoke the getValue() method to evaluate the
expression in the standard evaluation context. (You find out about the purpose of the context in
a bit.) The getValue() method contains numerous overloaded versions, and one of them is the
getValue(Class<T> desiredResultType), which takes a java.lang.Class argument in order to
set the return type. For the string that you parsed you can set the return type to String like this:

String value = expression.getValue(String.class);

The Expression class also contains the setValue() method, so it’s also possible to set the property
of an object that exists in the evaluation context.

The parser can handle the parsing of the literal expressions with different types, such as strings,
dates, or numeric values. An instance of the org.springframework.core.convert
.ConversionService is employed by SpEL to handle these conversion operations:

assertThat(parser.parseExpression("'2001/01/01'").
 getValue(Date.class), is(getTime()));
assertThat(parser.parseExpression("0xABCDEF").
 getValue(Integer.class), is(11259375));
assertThat(parser.parseExpression("false").getValue(Boolean.class), is(false));
assertThat(parser.parseExpression("null").getValue(), nullValue());

The parser optionally takes a second argument—an instance of the ParserContext. This context
can also identify the prefix and the suffix that denotes the start and end of an expression. So by

268 ❘ Chapter 9 Spring ExprESSion LanguagE

providing the context, it’s possible to change the default values for the prefix and suffix. The follow-
ing test method defines _ as prefix and suffix and the expression is parsed according to that:

@Test
public void helloWorldParsedWithDifferentPrefixAndSuffix() {
 Expression exp = parser.parseExpression(
 "_'Hello World!'_", new TemplateParserContext("_", "_"));
 String value = exp.getValue(String.class);
 assertThat(value, is("Hello World!"));
}

note While doing XML coding for the application context configuration, you
have probably come across two syntaxes: #{...} and ${...}. Both of these
definitions are valid and defined for different purposes, and they do not cancel
each other.

You can use ${...} to define property placeholders, like reading values from a
property file and replacing the occurrences with the defined values.

Use #{...} to define a Spring expression that will be evaluated dynamically.

Previously we referred to the evaluation context and its usage while evaluating the expressions.
While evaluating an expression, any references that exist within the expression are resolved through
a context, which is an instance of the EvaluationContext interface. The default implementation
that is provided by the SpEL is an instance of the StandardEvaluationContext. The fields and
methods are resolved by the reflection from this context. Variables can also be set to the evaluation
context, and they can be accessed while parsing the expression. You can read about examples of this
in the “Working with Variables and Functions” section later in the chapter.

In the next Try It Out you create your first programmatic parsing application from scratch.

try it out parsing hello World with SpeL

Follow these steps to create a programmatic parsing application that evaluates the most fashionable string
literal: Hello World. You can find the source code of the project in the helloworld file in the code downloads.

 1. Create an empty maven application project from the archetype maven‐archetype‐quickstart.
Add a spring‐expression dependency to your pom.xml file. At the time of writing this book the
latest version of Spring subprojects was the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-expression</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. spring‐expression depends on the spring‐core subproject, so add it as shown here:

<dependency>
 <groupId>org.springframework</groupId>

Creating a parser ❘ 269

 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Add a junit dependency in test scope to the project:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

 4. Create a src/test/java folder if it does not already exist in the project.

 5. Create the test class underneath it, HelloWorldTest:

public class HelloWorldTest {

 ExpressionParser parser;

 @Before
 public void setup() {
 parser = new SpelExpressionParser();
 }

 @Test
 public void helloWorldParsedOK() {
 Expression exp = parser.parseExpression("'Hello World!'");
 String value = exp.getValue(String.class);
 assertThat(value, is("Hello World!"));
 }
}

 6. Run a test class within your IDE to see the test status bar go green.

How It Works

First you created an empty Java project with the quick‐start maven archetype. Then you added the
dependencies for spring‐expression along with the spring‐core project because
spring‐expression transitively depends on the core. You also added the junit dependency to your
project because you’ll be showing the features of the SpEL within a test class. At the time of writing
this book the latest version of the JUnit framework was 4.11.

Then you created the test class to create a parser in the setup method of the test and then parse the
'Hello World!' string. Because you are parsing a string literal you wrapped the expression with single
quotes.

After parsing the literal and getting an instance of Expression, you evaluated the value with the getValue
method by providing a String class type. If any problem occurs during the evaluation, an evaluation excep-
tion will be thrown by the method. For instance, if you try to evaluate the value as an integer like this:

Integer value = exp.getValue(Integer.class);

270 ❘ Chapter 9 Spring ExprESSion LanguagE

you get a SpelEvaluationException stating the following:

Type conversion problem, cannot convert from java.lang.String to java.lang.Integer

The final statement in the test method is the assertion that states the value evaluated is equal to Hello World!.

invoking MEthods

SpEL provides ways to invoke the constructors, methods, or the static methods of classes by evalu-
ating expressions. The following Try It Out activity demonstrates this by invoking a method on a
Spring bean and setting the returned value into a property of the same bean.

try it out Invoking a Spring Bean’s Method via SpeL

 Follow these steps to create two beans and set the property of one of them by invoking a method with
a given expression. You can find the source code for the project in the methodinvocation file in the
code downloads.

 1. Create an empty maven application project from the archetype, maven‐archetype‐quickstart.
Add a spring‐expression dependency to your pom.xml file. At the time this book was written,
the latest version of Spring subprojects was the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-expression</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. spring‐expression depends on the spring‐core subproject, so add its definition:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Add a spring‐context dependency to the project:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 4. Create the applicationContext.xml context configuration file under the src/main/resources
folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

Invoking Methods ❘ 271

 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd">

 <bean id="show1" class="com.wiley.beginningspring.ch9.Show">
 <property name="instrument" value="Piano" />
 <property name="song" value="Turning Tables" />
 </bean>

 <bean id="show2" class="com.wiley.beginningspring.ch9.Show">
 <property name="instrument" value="Guitar" />
 <property name="song" value="#{show2.guitarSong()}" />
 </bean>
</beans>

 5. Create the Show class under the com.wiley.beginningspring.ch9 package:

public class Show {

 private String instrument;
 private String song;

 public void setInstrument(String instrument) {
 this.instrument = instrument;
 }

 public void setSong(String song) {
 this.song = song;
 }

 public String guitarSong() {
 return "More Than Words";
 }

 public void present() {
 System.out.println("Playing " + song + " with instrument " + instrument);
 }
}

 6. Create the Main class under the com.wiley.beginningspring.ch9 package and execute the main method:

public class Main {

 public static void main(String... args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 Show show1 = (Show) context.getBean("show1");
 show1.present();
 Show show2 = (Show) context.getBean("show2");
 show2.present();
 }
}

How It Works

You created an empty Java project with the quick‐start maven archetype. Then you added the depen-
dencies for spring‐expression along with spring‐core and spring‐context. spring‐expression

http://www.springframework.org/schema/beans/spring-beans-4.0.xsd

272 ❘ Chapter 9 Spring ExprESSion LanguagE

transitively depends on the core, and you used the ClassPathXmlApplicationContext class, which
resides under spring‐context, to initialize the application context from the configuration file.

You defined two beans—show1 and show2—which are the instances of the Show class. The bean defi-
nitions take values for instrument and song as properties. Here, the value for show1 is hard‐coded,
and the song property definition for show2 refers to an expression string. For the instrument Guitar,
you are setting the value for the song by invoking the guitarSong method on the bean show2. You’re
dynamically setting the value of the property by getting the returned value of the method. The expres-
sion is wrapped with #{...} in order to be evaluated.

The Main class creates the application context, accesses the show1 and show2 beans, and then invokes
the present method on both. The output will be as follows:

Playing Turning Tables with instrument Piano
Playing More Than Words with instrument Guitar

It’s also possible to invoke a method on the string literal. The following snippet concatenates two
strings and then does an assertion to match the string result, Hello World!:

@Test
public void helloParsedAndConcatenatedWithWorld() {
 Expression exp = parser.parseExpression("'Hello'.concat(' World!')");
 String value = exp.getValue(String.class);
 assertThat(value, is("Hello World!"));
}

You can also chain invocations to access nested methods or properties. The following test method
demonstrates the invocation of the length method after the concat method that is also invoked:

@Test
public void helloParsedAndConcatenatedWithWorldAndThenLengthMethodInvoked() {
 Expression exp = parser.parseExpression("'Hello'.concat(' World!').length()");
 Integer value = exp.getValue(Integer.class);
 assertThat(value, is(12));
}

Calling Constructors
Within an expression, you can create an object by calling its constructor and providing an argu-
ment. The following code creates an expression that creates a Double object with the value of pi
given as an argument:

 Expression exp = parser.parseExpression("new Double(3.141592)");

Calling static Methods
With the T() operator, SpEL offers a simple way to invoke a static method. By wrapping the fully
qualified class name with T, you can define the expression as in the following snippet. But the class
types that reside under the java.lang package do not need to be fully qualified for giving a reference:

Expression exp = parser.parseExpression("T(java.lang.Math).random()");
Double value = exp.getValue(Double.class);

Working with Variables and Functions ❘ 273

The preceding example invoked the random method of the Math class, which returns a double value.
It’s also possible to access a static constant field on a given class as shown here:

Expression exp = parser.parseExpression("T(java.lang.Math).PI");
Double value = exp.getValue(Double.class);

note If you would like to access a nested class that resides in a class, you can
concatenate the simple name with $ like so:

Expression exp = parser.parseExpression(
 "T(com.wiley.beginningspring.ch9.
 domain.MyClass$MyNestedClass).VALUE");

working with vAriAblEs And
funCtions

SpEL uses a context, StandardEvaluationContext, to look up any variables that exist within an
expression. In an expression, you can reference the registered variables by placing a hashtag prefix
(#) in front of the variable name. The test method in the following snippet registers a variable with
the message keyword to the context, and then an expression is parsed that contains a reference to
the variable:

@Test
public void variableRegisteredOK() {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.setVariable("message", "Hello World!");
 String value = parser.parseExpression("#message").
 getValue(context, String.class);
 assertThat(value, is("Hello World!"));
}

#root
You can also set a root object in the evaluation context, which will be used by the framework
to look up when an unknown method or a property is encountered within an expression. You
can access the root object with the #root notation, and it does not change while evaluating the
 expression. The test method in the following snippet sets a root object to the context with the
setRootObject() method:

@Test
public void rootVariableRegisteredOK() {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.setRootObject(new MyBean());
 assertTrue(parser.parseExpression("#root").
 getValue(context) instanceof MyBean);
}

274 ❘ Chapter 9 Spring ExprESSion LanguagE

#this
While iterating through a collection in an expression, the #this variable offers access to the current
evaluation. It can be changed during this evaluation, unlike the #root object. The use of #this is
explained in the “Collection Selection and Projection” section later in this chapter.

Accessing system properties and Environment
For accessing system properties or environment variables, SpEL offers built‐in predefined variables:
systemProperties and systemEnvironment. Actually they are two beans implicitly defined in the
AbstractApplicationContext, so in the programmatic approach they need to be accessed with
the @ prefix, but in XML definitions you can access them directly by wrapping the expression with
#{...}.

Use the following code to access the java.version system property:

parser.parseExpression("@systemProperties['java.version']").getValue(context);

To access the JAVA_HOME system environment variable, use this:

parser.parseExpression("@systemEnvironment[JAVA_HOME]").getValue(context);

Note that JAVA_HOME does not need to be defined as a string literal.

inline lists
{} represents a list in an expression. {1,2,3} defines a list of integers. It’s also possible to create a
list of lists as {{1,2},{3,4},{5,6}}. The test methods that demonstrate the creation of lists and
the inline lists are shown here:

@Test
public void inlineListCreatedOK() {
 List<Integer> value = parser.parseExpression("{1,2,3}").getValue(List.class);
 assertThat(value, hasItems(1, 2, 3));
}

@Test
public void inlineListOfListsCreatedOK() {
 List<List<Integer>> value = parser.parseExpression("{{1,2},{3,4},{5,6}}").
 getValue(List.class);
 assertThat(value, hasItems(Arrays.asList(1,2), Arrays.asList(3,4),
 Arrays.asList(5,6)));
}

registering functions
SpEL enables registering user‐defined methods into the evaluation context with the
registerFunction(String name, Method method). The following snippet demonstrates this
feature by registering the capitalize method that exists in the org.springframework
.util.StringUtils class. You can invoke the registered function by prefixing its name with
the hashtag (#):

Understanding SpeL Operators ❘ 275

@Test
public void functionRegisteredOK() throws NoSuchMethodException {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.registerFunction("capitalize",
 StringUtils.class.getDeclaredMethod("capitalize",
 new Class[] { String.class }));

 String value = parser.parseExpression("#capitalize('hello')").getValue(context,
 String.class);
 assertThat(value, is("Hello"));
}

undErstAnding spEl opErAtors

SpEL provides a wide range of operators from arithmetic and logical operators to relational and
conditional ones, such as ternary or elvis. Table 9-1 lists all the operators that can be used in an
expression. The operators defined with symbols can also be determined with a corresponding
textual representation if applicable; they are listed after the symbols. The text options are case‐
insensitive, which means you can blend upper‐ and lowercase characters together.

tAblE 9-1: Expression Language Operator List

typE opErAtors

Relational <, >, <=, >=, ==, !=, lt, gt, le, ge, eq, ne

Arithmetic +, ‐, *, /, %, ^

Logical &&, ║, !, and, or, not, between, instanceof

Conditional ? : (ternary), ?: (elvis)

Regular Expression matches

Other Types ?. (safe navigation), ?[...] (selection),

![...] (projection), ^[...] (first element), $[...] (last element)

note The textual representations of the operators are reserved words, so try
to avoid using them in package names in your project. You may face excep-
tions while parsing an expression that contains the textual representation of
an operation in a fully qualified class name. For example, the following snippet
contains the eq operator:

Expression exp = parser.parseExpression(
"T(com.wiley.beginningspring.ch9.eq.MyClass).HI");

276 ❘ Chapter 9 Spring ExprESSion LanguagE

relational operators
Expressions that use the relational operators always evaluate to a boolean result. The following test
method details the relational operators in action with assertions:

@Test
public void relationalOperatorsWorkOK() {
 assertThat(p.parseExpression("1<2").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("2>1").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3<=3").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3>=3").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3==3").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3!=4").getValue(Boolean.class), is(true));

 assertThat(p.parseExpression("1 lt 2").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("2 gt 1").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3 le 3").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3 ge 3").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3 eq 3").getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("3 ne 4").getValue(Boolean.class), is(true));
}

Arithmetic operators
The arithmetic operators are shown in the following test method. Only the modulus operator (%)
has a corresponding textual representation (mod):

@Test
public void arithmeticOperatorsWorkOK() {
 assertThat(p.parseExpression("1+1").getValue(Integer.class), is(2));
 assertThat(p.parseExpression("1-1").getValue(Integer.class), is(0));
 assertThat(p.parseExpression("2*2").getValue(Integer.class), is(4));
 assertThat(p.parseExpression("2/2").getValue(Integer.class), is(1));
 assertThat(p.parseExpression("5%2").getValue(Integer.class), is(1));
 assertThat(p.parseExpression("2^3").getValue(Integer.class), is(8));

 assertThat(p.parseExpression("5 mod 2").getValue(Integer.class), is(1));
}

logical operators
The next test method lists the logical operators:

@Test
public void logicalOperatorsWorkOK() {
 assertThat(p.parseExpression("true && false").getValue(Boolean.class),
 is(false));
 assertThat(p.parseExpression("true || false").getValue(Boolean.class),
 is(true));
 assertThat(p.parseExpression("!false").getValue(Boolean.class),
 is(true));

 assertThat(p.parseExpression("true and false").getValue(Boolean.class),
 is(false));

Understanding SpeL Operators ❘ 277

 assertThat(p.parseExpression("true or false").getValue(Boolean.class),
 is(true));
 assertThat(p.parseExpression("not false").getValue(Boolean.class),
 is(true));

 assertThat(p.parseExpression("3 between {2,5}").getValue(Boolean.class),
 is(true));
}

The between and instanceof operators are different from the other logical operators. The between
operator compares the left‐hand operator with the list given as the right‐hand operator. The list
should be a two‐element list and can be defined with the curly braces.

SpEL provides instanceof to check as it is done in Java, with the keyword instanceof. In the following
test method, T() operator checks for the given string literal to see whether it is an instance of the java
.lang.String class. The T() operator should wrap the class given on the right side of the expression:

@Test
public void instanceOfCheckWorksOK() {
 Expression exp = parser.parseExpression("'Hello' instanceof T(String)");
 Boolean value = exp.getValue(Boolean.class);
 assertThat(value, is(true));
}

Conditional operators
SpEL supports both the ternary and elvis operators. The elvis operator is a simplified form of the
ternary operator that eliminates the necessity of recurrence of the variable. For the following test
methods, a User class is defined with a property called name. With the ternary operator definition,
if the name field of a user object is not null, the name is set to Mert, and if it’s null it’s set to Funda.
The same rule applies for the elvis operator, and it has a more simplified usage compared to the ter-
nary operator. When the name field of the user object is not null, the name of the user object is used
as the return value of the expression, which is also Mert in this example. And if the name field is set
to null, the value Funda is used as the return value:

public class User {

 private String name;

 public User() {}

 public User(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

@Test
public void ternaryOperatorWorksOK() {

278 ❘ Chapter 9 Spring ExprESSion LanguagE

 User user1 = new User();
 StandardEvaluationContext context1 = new StandardEvaluationContext(user1);
 assertThat(p.parseExpression("Name != null ? 'Mert' : 'Funda'").
 getValue(context1, String.class), is("Funda"));

 User user2 = new User("Mert");
 StandardEvaluationContext context2 = new StandardEvaluationContext(user2);
 assertThat(p.parseExpression("Name != null ? 'Mert' : 'Funda'").
 getValue(context2, String.class), is("Mert"));
}

@Test
public void elvisOperatorWorksOK() {
 User user1 = new User();
 StandardEvaluationContext context1 = new StandardEvaluationContext(user1);
 assertThat(p.parseExpression("Name ?: 'Funda'").
 getValue(context1, String.class), is("Funda"));

 User user2 = new User("Mert");
 StandardEvaluationContext context2 = new StandardEvaluationContext(user2);
 assertThat(p.parseExpression("Name ?: 'Funda'").
 getValue(context2, String.class), is("Mert"));
}

regular Expression operator
The matches operator uses java.util.regex.Matcher to match a given operand with a regular
expression. The following is a test method that matches the number 35 with regex [0‐9]+ and the
string literal John with regex [A‐Za‐z]+:

@Test
public void relationalOperatorsWorkOK() {
 assertThat(p.parseExpression("35 matches '[0-9]+'").
 getValue(Boolean.class), is(true));
 assertThat(p.parseExpression("'John' matches '[A-Za-z]+'").
 getValue(Boolean.class), is(true));
}

safe navigation operator
The safe navigation operator (?.) provides navigation on the nested properties without getting any
exception when a null value is evaluated from any of the properties iterated. Suppose that you have
two domain classes named Employee and Address with a one‐to‐one reference in between that
states that the employee has an address. The test for the operator creates an employee with a name
but no address value. With the help of the operator, the evaluation of the Address?.Name expres-
sion that tries to navigate to the name field of a null address object returns a null value instead of
throwing the SpelEvaluationException.

@Test
public void safeNavigationOperatorsWorkOK() {
 Employee employee = new Employee("Mert");
 StandardEvaluationContext context = new

Understanding SpeL Operators ❘ 279

StandardEvaluationContext(employee);

 assertThat(p.parseExpression("Address?.Name").
 getValue(context, String.class), is(nullValue()));
}

Collection selection and projection
With SpEL, it’s possible to iterate through a collection in an expression and select some of its ele-
ments or transform the collection into another one by doing projection on it. The #this predefined
variable is the essence of these operations where you can access the current evaluation.

For doing a selection on the even numbers that exist in the collection
{1, 2, 3, 4, 5, 6, 7, 8, 9}, we defined the expression as #root.?[#this%2 == 0 ?:
false]. It also uses the elvis operator to simplify the conditional matching because the expression
that resides inside the brackets should evaluate to a boolean value:

@Test
public void collectionSelectedOK() {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.setRootObject(Arrays.asList(1,2,3,4,5,6,7,8,9));
 List<Integer> evenNumbers = parser.parseExpression(
 "#root.?[#this%2 == 0 ?: false]").getValue(context, List.class);
 assertThat(evenNumbers, hasItems(2, 4, 6, 8));
}

By using ![...],you can project a collection into a new one. For the following User class we fetch
the countries of the users’ birthplaces and create a new list:

public class User {

 private String name;
 private Country birthPlace;

 public User(String name, Country birthPlace) {
 this.name = name;
 this.birthPlace = birthPlace;
 }

 public String getName() {
 return name;
 }

 public Country getBirthPlace() {
 return birthPlace;
 }
}

public enum Country {
 TR,
 USA,
 DE
}

280 ❘ Chapter 9 Spring ExprESSion LanguagE

@Test
public void collectionProjectedOK() {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.setRootObject(Arrays.asList(
 new Worker("Mert", Country.DE),
 new Worker("Funda", Country.TR),
 new Worker("Tugce", Country.USA)));
 List<Country> birthPlaces = parser.parseExpression(
 "#root.![#this.birthPlace]").getValue(context, List.class);
 assertThat(birthPlaces, hasItems(Country.TR, Country.USA, Country.DE));
}

selecting the first and last Element of a Collection
SpEL also provides operators for selecting the first and the last element of a collection according to a
given selection criterion. To select the first element, use the ^[...] operator; use the $[...] opera-
tor to select the last element of the collection. The following test methods filter the first and the last
elements, which are 4 and 9, respectively:

@Test
public void collectionFirstElementAccessOK() {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.setRootObject(Arrays.asList(1,2,3,4,5,6,7,8,9));
 Integer element = parser.parseExpression("#root.^[#this>3]").
 getValue(context, Integer.class);
 assertThat(element, is(4));
}

@Test
public void collectionLastElementAccessOK() {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.setRootObject(Arrays.asList(1,2,3,4,5,6,7,8,9));
 Integer element = parser.parseExpression("#root.$[#this>3]").
 getValue(context, Integer.class);
 assertThat(element, is(9));
}

using utilitiEs in spEl

This section covers the utility features that SpEL offers to access Spring beans and to evaluate
expressions within JSP pages.

Accessing spring beans
While programmatically resolving expressions, it’s possible to access Spring beans by putting the
@ prefix before the bean name. To resolve the bean you need to register a bean resolver to the evalu-
ation context first. The bean resolver gets a bean factory as a constructor argument, so with the fol-
lowing test method we instantiated an application context with the annotation‐based configuration
and passed it as a parameter to the bean resolver:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch9"})

Summary ❘ 281

public class ApplicationConfig {
}

@Test
public void instanceOfCheckWorksOK() {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.setBeanResolver(new BeanFactoryResolver(
 new AnnotationConfigApplicationContext(ApplicationConfig.class)));
 Expression exp = parser.parseExpression("@myBean.sayHello()");
 String value = exp.getValue(context, String.class);
 assertThat(value, is("Hello!"));
}

<spring:eval>
With the <spring:eval> tag that resides under the spring.tld tag library definition, it’s possible
to render an evaluated value to a JSP page or to assign the value to a variable. The following snippet
is the definition of the myBean bean that contains the sayHi() method and the corresponding JSP
page that uses the eval tag:

@Component
public class MyBean {
 public String sayHi() {
 return "hello";
 }
}

<%@ page contentType="text/html;charset=ISO-8859-9" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>
<body>
 <spring:eval expression="@myBean.sayHi()" />
</body>
</html>

Expressions in Caching
For the key attribute of the @Cacheable annotation, it’s also possible to use SpEL expressions to
evaluate the value dynamically. SpEL usage also applies for the condition attribute. Here’s a sample
definition:

@Cacheable(key="#user.name", condition="#user.name.length = 30")

suMMAry

This chapter explained the aim of the expression languages and how Spring Expression Language
(SpEL) provides features to meet the enterprise demands. First you saw XML‐based and annotation‐
based configurations that demonstrated the use of a simple expression in a Spring‐based project.

Then you created a parser and evaluated your first expression. The chapter mentioned the evalu-
ation context and how it’s used to resolve references that exist in an expression. It also explained

mailto:parser.parseExpression("@myBean.sayHello
http://www.springframework.org/tags"%
mailto:expression="@myBean.sayHi

282 ❘ Chapter 9 Spring ExprESSion LanguagE

the difference between ${} and #{}. Because SpEL has the capability to invoke methods, you were
introduced to the ways to invoke methods, constructors, and static methods.

The chapter explained how a variable can be defined in an expression, covered what #this and
#root are about, and listed the predefined variables systemProperties and systemEnvironment. It
also detailed the function registration feature that is provided by SpEL.

You were introduced to the extensive set of operators provided by SpEL—from arithmetic and logi-
cal operators to relational and conditional ones—and you saw examples of operators for doing safe
navigation, collection selection, and projection.

Keep in mind that SpEL expressions are just string literals, so there is no type safety or compile‐time
check while doing development.

ExErCisEs

You can find possible solutions to these exercises in Appendix A.

 1. Inject system property 'user.country' via annotation into a property of the bean.

 2. Implement a method that reverses a given string and registers it as an EL function.
Demonstrate the code within a test method by providing a string to it.

Summary ❘ 283

 ▸ whAt you lEArnEd in this ChAptEr

topiC kEy points

Expression language (EL) A special type of programming language that provides the
compilation and evaluation of expressions based on string
literals.

Unified Expression Language
(UEL)

An expression language that is featured in the Java Enterprise
Edition Specification. JSF and JSP adopted UEL and have been
using it under the hood. Version 3.0.0 was introduced with
Java EE7.

Spring Expression Language
(SpEL)

An expression language that provides an extensive set of ways
to interact with objects within the run time of a Spring‐based
application.

@Value An annotation that can be used on a field of a class or on
arguments of constructors and methods of it. It’s possible to
provide Spring expressions by this annotation in order to set
default values into the fields.

SpelExpressionParser Default parser implementation provided by SpEL that parses
the string expressions into compiled Expression objects.

Expression Interface class that encapsulates the details of the parsed
expression string literal.

getValue(Class<T>

desiredResultType)
Parser method that evaluates the value from the Expression
object. It takes a java.lang.Class argument in order to set
the return type.

${...} Symbol that defines static expressions like the property place-
holders in the XML configuration.

#{...} Symbol that defines dynamic expressions like the Spring
expressions in an XML configuration, which will be evaluated
dynamically at run time.

StandardEvaluationContext The context from where references that exist within the
expression are resolved.

T() Operator that gets an instance of java.lang.Class as an
argument and it can be used to invoke static methods on the
given classes.

#root Variable that refers to the root object where any references for
an unknown method or property is looked up.

#this Variable that refers to the current evaluation while iterating
through a collection in an expression.

continues

284 ❘ Chapter 9 Spring ExprESSion LanguagE

topiC kEy points

systemProperties A predefined variable to access system properties with a key
value.

systemEnvironment A predefined variable to access system environment variables
with a key value.

registerFunction(String

name, Method method)
Method of the StandardEvaluationContext class that can
be used to register a user‐defined function to be used within
an expression string.

lt Less than operator.

gt Greater than operator.

le Less than or equal to operator.

ge Greater than or equal to operator.

eq Equal to operator.

ne Not equal to operator.

<spring:eval> A JSP tag that renders an evaluated value to a JSP page or
assigns the value to a variable.

(continued)

 10
 Caching

 What You Will learn in this Chapter:

 ➤ Building your fi rst caching application

 ➤ Working with cache annotations

 ➤ Implementing cache managers

 ➤ Casting your SpEL on caches

 ➤ Initializing your caches programmatically

 ➤ Finding alternative cache providers

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 10 download and individually named according to the
names throughout the chapter.

 We can defi ne cache as a storage mechanism that holds the data in one place to be served for
future requests in a faster way. One of the common use cases of employing cache mechanisms
in an application is avoiding multiple executions of the methods to overcome the performance
drawbacks. You can achieve this by caching the outcome data of methods according to the input
values given. Of course, you can apply this process to deterministic methods that produce the
same output every time, for the exact input given regardless of the numerous executions. If any
of the methods contain any implementation of a random calculation computing, for instance,
caching will lead to drastic problems, and caching these randomized methods should be avoided.

 To boost performance in the enterprise applications, Spring also provides a caching abstraction
that offers method‐level caching. By employing aspect‐oriented programming (AOP) principles,
methods are weaved, and if they have already been executed for the supplied arguments, cached

http://www.wrox.com/go/beginningspring

286 ❘ Chapter 10 CaChing

results are returned without execution of actual methods. To enable the weaving, proxy classes are gener-
ated for all the classes of the application that have the methods marked with the caching annotations.

Spring caching just provides an abstraction and does not involve providing any implementation for
the caching infrastructure. A vast number of caching frameworks are available in the Enterprise
Java land. This chapter focuses on the features of Spring caching, demonstrates them with examples,
and also gives details for integrating third‐party caching frameworks such as Ehcache, Guava, and
Hazelcast. So stay tuned to boost your applications’ performance!

Building Your First CaChing appliCation

The Try It Out in this section demonstrates caching ability with a simple application. You utilize the
Java Development Kit’s (JDK) caching under the hood by employing its ConcurrentMap class.

trY it out Caching Service Layer Methods

Use the following steps to create your first application with a Maven archetype and then apply caching
on the service layer with Spring caching annotations. You can find the source code for the project in the
simplecachemanager file in the code downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quickstart.
Add spring‐core and spring‐context dependencies to your pom.xml file. At the time of writing
the latest version of Spring subprojects was the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Create the User domain class under package com.wiley.beginningspring.ch10:

public class User {

 private int id;
 private String name;

 public User(int id, String name) {
 this.id = id;
 this.name = name;
 }

 @Override
 public String toString() {
 return "User{" + "id=" + id +", name='" + name + '\'' + '}';
 }
}

Building Your First Caching application ❘ 287

 3. Create the UserService class under the package com.wiley.beginningspring.ch10:

public class UserService {

 private Map<Integer, User> users = new HashMap<>();
 {
 users.put(1, new User(1, "Kenan"));
 users.put(2, new User(2, "Mert"));
 }

 @Cacheable(value = "users")
 public User getUser(int id) {
 System.out.println("User with id " + id + " requested.");
 return users.get(id);
 }
}

 4. Create the applicationContext.xml configuration file under the src/main/resources
folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache-4.0.xsd">

 <cache:annotation-driven />

 <bean id="userService" class="com.wiley.beginningspring.ch10.UserService" />

 <bean id="cacheManager"
 class="org.springframework.cache.support.SimpleCacheManager">
 <property name="caches">
 <set>
 <bean id="users"
 class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" />
 </set>
 </property>
 </bean>
</beans>

 5. Create the Main class and execute the main method:

public class Main {
 public static void main(String… args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 UserService userService = context.getBean(UserService.class);
 User userFetch1 = userService.getUser(1);

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache-4.0.xsd

288 ❘ Chapter 10 CaChing

 System.out.println(userFetch1);

 User userFetch2 = userService.getUser(1);
 System.out.println(userFetch2);
 }
}

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the depen-
dencies for spring‐core and spring‐context. Spring caching abstraction is not bundled in a separate
JAR artifact. The classes—such as the cache annotations—reside under the spring‐context JAR bundle.

You created a simple domain class named User, which consists of the id and name fields. You created
a service class, UserService, with one method, getUser(int id), for retrieving a user with its ID.
The class initializes a user hash map with two elements in an initializer block during its creation. The
getUser method is marked with the @Cacheable annotation, which states that the return value of the
method will be cached according to its argument.

While defining the application configuration file, you first declared the <cache:annotation‐driven>
tag, which states that the cache configuration will be done with annotations applied on the bean classes
or on their methods. This configuration enables the use of the @Cacheable, @CacheEvict, @CachePut,
and @Caching annotations. Because caching abstraction employs AOP principles, the proxy classes
will be created automatically when aforementioned annotations are encountered on the beans. You
then declared the userService bean as a singleton in the configuration file. Finally, you declared the
c acheManager bean as an instance of SimpleCacheManager. The “Implementing Cache Managers”
section gives variations of the managers.

Note If you forget to declare the cacheManager bean, you will encounter a
NoSuchBeanDefinitionException such as:

org.springframework.beans.factory.NoSuchBeanDefinitionException:
No bean named 'cacheManager' is defined

So the cache manager should always be defined if you are using caching annotations in your applica-
tion. And it should be defined with the name cacheManager unless you’ve defined it with a different
name explicitly using the <cache:annotation‐driven> tag.

cacheManager contains the definition of the cache regions determined with the caches attri-
bute. Here, you set an inner bean into caches with the ID users. This is an instance of the class
ConcurrentMapCacheFactoryBean. The cacheManager uses ConcurrentMap from the JDK as its
backing storage. Out of the box, Spring caching supports JDK’s ConcurrentMap with its factory bean
approach. The tricky part here is the ID of the inner bean (users) should match the value attribute of
the @Cacheable annotation that is used (users). So with this naming convention, you are binding the
cache region to the annotation used.

You defined the userService bean in the configuration file, and its corresponding class is the
UserService class. UserService contains the getUser method, which is annotated with @Cacheable.
Beware that the getUser method is defined with public visibility.

Building Your First Caching application ❘ 289

In the Main class, you are retrieving the userService bean from the context and then invoking the
getUser(1) method two times. The method prints out a message with the template "User with
id " + id + " requested." to specify which user is requested with a given identifier. The output of
the execution is shown here:

User with id 1 requested.
User{id=1, name='Kenan'}
User{id=1, name='Kenan'}

As shown in the output, the getUser method is executed only once because you’re seeing the mes-
sage from the method just once. At first invocation, the method return value is cached, and when you
invoked the method with the same argument a second time, the result was returned from the users
cache.

Configuring the Cache Manager with a different name
When you define the cache manager bean with the ID/name cacheManager, the caching abstraction
automatically picks it up. It’s also possible to explicitly specify the cache manager with a different
ID/name. You can do this with the cache‐manager attribute of the configuration tag as follows:

<cache:annotation-driven cache-manager="myCacheManager" />
<bean id="myCacheManager"
 class="org.springframework.cache.support.SimpleCacheManager">
 ...
</bean>

Configuring the Caching abstraction with annotations
Instead of the XML configuration that you used in the previous section, you can also use annota-
tions to enable the caching mechanism for the getUser method. To achieve this you need to create a
configuration class first, which contains the annotations needed. The @EnableCaching annotation
does the same job as the <cache:annotation‐driven> tag, which states that the cache configura-
tion will be done with annotations applied on the bean classes or on their methods:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch10"})
@EnableCaching
public class ApplicationConfig {

 @Bean
 public CacheManager cacheManager() {
 SimpleCacheManager cacheManager = new SimpleCacheManager();
 cacheManager.setCaches(Arrays.asList(new ConcurrentMapCache("users")));
 return cacheManager;
 }
}

You still need to declare the cacheManager bean inside the configuration class as you did in the
application configuration file, so you used the @Bean annotation on a public method that creates a
SimpleCacheManager and sets a new ConcurrentMapCache with the name users in it.

290 ❘ Chapter 10 CaChing

By doing this you match the caching storage definition given in the earlier Try It Out activity. After
configuring the ApplicationConfig class, you can easily create the application context and invoke
the userService twice as shown here:

public class Main {

 public static void main(String… args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);
 UserService userService = context.getBean(UserService.class);
 User userFetch1 = userService.getUser(1);
 System.out.println(userFetch1);
 User userFetch2 = userService.getUser(1);
 System.out.println(userFetch2);
 }

Note The Spring caching abstraction employs AOP principles, so proxy
classes are created for the classes that contain caching annotations. Invocation
of the cached methods from the methods that reside in the same proxy class
does not lead to the caching interception even if the invoked method is
marked with @Cacheable.

Working With CaChe annotations

Caching provides four essential annotations that can be used on either the method level or the
class level. Annotations define the methods whose return values are going to be cached to or
evicted from the cache storage. The method must be defined with public visibility to be cached.
private methods, protected methods, or methods with the default modifier are not cached.
When annotations are applied on a class, every public method of that class is cached to/evicted
from the storage given. This section gives details about the four annotations with their usage and
supported properties.

@Cacheable
@Cacheable is the main annotation, and it defines that the result of an executed method is cached
in a given cache storage. The name of the storage is a required value, and it must be given with the
declaration of the annotation. The name could either be defined by its own quotation marks or with
the value attribute. The following definitions show you the declaration of the users cache storage
along with the annotation:

@Cacheable("users")
@Cacheable(value = "users")

It’s also possible to provide multiple cache storages as a list with their names separated with commas
and wrapped by curly braces. The definition of two storages in an @Cacheable annotation with the
names cache1 and cache2 are given here:

@Cacheable(value = {"cache", "cache2"})

Working with Cache annotations ❘ 291

A proper definition of how the @Cacheable annotation is applied on a method is given in the fol-
lowing code snippet. The getUser method is given and caches the users into the users storage with
their id, which is also the parameter of the method. It’s also possible to provide custom keys for
getting your data stored in a region. The details about the key generation are covered in the “Key
Generator” section.

@Cacheable(value = "users")
public User getUser(int id) {
 return users.get(id);
}

Key Generator
When you look at it from another perspective, you can also call a cache a collection of key/value
pairs. By default, the caching abstraction uses the method signature and arguments’ values as a key
value and stores the key by pairing it with the result of the method invocation. It’s possible to cus-
tomize the key value because the @Cacheable annotation provides the key attribute for this feature
where you can specify your custom keys with the Spring Expression Language (SpEL). Following is
an example of caching users according to their national identification values. The details of SpEL
features are given in the “Casting Your SpEL on Caches” section.

@Cacheable(value = "users", key = "#user.nationalId")
public User getUser(User user) {
 return users.get(user.getId());
}

Conditional Caching
With the condition attribute of the @Cacheable annotation, it’s possible to apply caching to a
method according to a given condition. condition makes use of SpEL expressions so it’s possible
to refer to the method’s arguments to evaluate the conditions dynamically. Read the “Casting Your
SpEL on Caches” section for information about the SpEL evaluation context.

For the getUser method that was declared by @Cacheable, you are going to apply a condition to
enable the caching for users whose age is less than 35:

@Cacheable(value = "users", condition = "#user.age < 35")
public User getUser(User user) {
 System.out.println("User with id " + user.getId() + " requested.");
 return users.get(user.getId());
}

In the definition, the hash tag (#) defines the variable user, which has the same name as the meth-
od’s argument. After accessing the argument, you are accessing the age property by navigating to
it with a dot. The condition declared for an annotation gets evaluated before the invocation of the
method, so there is no redundant execution if the condition is not met.

Like condition, you can use the unless attribute to veto the caching process according to a given
SpEL expression. The following example rejects caching the users whose age is more than or equal
to 35:

@Cacheable(value = "users", unless = "#user.age >= 35")
public User getUser(User user) {

292 ❘ Chapter 10 CaChing

 System.out.println("User with id " + user.getId() + " requested.");
 return users.get(user.getId());
}

@Cacheevict
The @CacheEvict annotation defines that the method is responsible for evicting a value from a given
cache storage. Most of the caching frameworks offer the expiration of the cache data in a timely
manner, but with this annotation it’s possible to explicitly remove stale data from the cache storage
immediately. This annotation is often used where the user manipulates the existing data with the
update or delete operations. The following method definition removes a user from a map, and the
@CacheEvict annotation does the same job by removing the cached user from the users storage:

@CacheEvict("users")
public void removeUser(int id) {
 users.remove(id);
}

As with @Cacheable, @CacheEvict provides key and condition attributes where you can specify
your custom key and condition with SpEL expressions. The condition attribute is not provided
with @CacheEvict.

Two different attributes are specific to @CacheEvict. The allEntries attribute defines whether all
entries from the cache are evicted. The default behavior is not to evict them. The beforeInvocation
attribute defines whether eviction is done before the invocation of the method or after. By default,
the @CacheEvict process runs after the invocation of the method, unlike what happens with
@Cacheable.

Note Using the @Cacheable and @CacheEvict annotations on the same
method and pointing them to the same cache storage will not make any sense
because the data is cached and evicted immediately afterward, so try to avoid
using them together.

@Cacheput
The @CachePut annotation does the same job as @Cacheable, but it always gets the method exe-
cuted first and then puts the return value into the cache. This is a feasible approach when you always
want to update your cache storage with the method return value, as shown here:

@CachePut(value = "users")
public User getUser(int id) {
 System.out.println("User with id " + id + " requested.");
 return users.get(id);
}

The getUser method in the preceding snippet is executed first, and then the outcome value is put
into the users cache. @CachePut also offers key, condition, and unless attributes, like the
@Cacheable annotation.

Implementing Cache Managers ❘ 293

@Caching
@Caching is a group annotation where you can provide arrays of @Cacheable, @CacheEvict, or
@CachePut for one method definition. To demonstrate this, let’s define a domain graph with the
Person, Teacher, and Studentclasses. There is a simple hierarchy in between where Person is an
abstract class, and the Teacher and Student classes are extending it.

The ClassroomService class in the following snippet is a Spring service bean, and it contains the
getPerson method. We declare two @Cacheable annotations and point them to two different cache
storages: students and teachers. The method’s argument is checked against the conditions of
the two @Cacheable definitions to see if it’s an instance of the Teacher or the Student class. So
according to the instance type of the parameter, the object is either stored in the teachers region or
students region:

public class ClassroomService {

 @Caching(cacheable = {
 @Cacheable(value = "students",
condition = "#obj instanceof T(com.wiley.beginningspring.ch10.Student)"),
 @Cacheable(value = "teachers",
condition = "#obj instanceof T(com.wiley.beginningspring.ch10.Teacher)")
 })
 public Person getPerson(Person obj) {
 return ppl.get(obj.getId());
 }
}

iMpleMenting CaChe Managers

CacheManager is the Service Provider Interface (SPI) that provides methods for accessing the cache
names and the cache object itself by its name. It’s the managing implementation behind the scenes
where handling the caching and the eviction take place. This section lists the cache manager imple-
mentations that are offered by the caching framework.

simpleCacheManager
SimpleCacheManager is the cache manager implementation that provides a way to set a list of
caches and utilize them for caching operations. Because it’s the simple version of a cache manager,
we used this implementation in our examples throughout this chapter. The following code snippet
is a sample configuration example for the cache manager. For the cache definition here, we use the
ConcurrentMapCacheFactoryBean class, which instantiates an instance of ConcurrentMapCache.
Under the hood this instance employs JDK’s ConcurrentMap implementation for storage:

<bean id="cacheManager"
class="org.springframework.cache.support.SimpleCacheManager">
 <property name="caches">
 <set>
 <bean id="storage"
class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" />

294 ❘ Chapter 10 CaChing

 </set>
 </property>
</bean>

noopCacheManager
NoOpCacheManager is an implementation that is mostly used for testing purposes where it actually
doesn’t cache any items in the storage. The configuration definition of the cache manager is given in
the following code. As shown, there is also no cache list provided for the manager:

<bean id="cacheManager"
 class="org.springframework.cache.support.NoOpCacheManager" />

ConcurrentMapCacheManager
ConcurrentMapCacheManager is the cache manager implementation that offers the use of JDK’s
ConcurrentMap under the hood. It offers the same ability with the SimpleCacheManager configu-
ration described earlier, but here we don’t need to define the cache storages as we did before. The
cache manager definition is shown here:

<bean id="cacheManager"
 class="org.springframework.cache.concurrent.ConcurrentMapCacheManager" />

CompositeCacheManager
CompositeCacheManager enables us to define multiple cache managers with a single cache man-
ager definition. While declaring the <cache:annotation‐driven> tag within the context of an
application, it’s only possible to provide one cache manager. The composite cache manager defini-
tion makes it possible to extend this ability by grouping the cache manager definitions in one place.
CompositeCacheManager also provides a mechanism for falling back to the NoOpCacheManager if
needed with the fallbackToNoOpCache boolean property. The definition in the following snippet
is a composite cache manager definition that bundles a simple cache manager with the Hazelcast
cache manager. The simple cache manager defines the teachers cache storage, and the Hazelcast
cache manager defines the cache storage for students. The details of configuring the Hazelcast
cache manager are in the “Alternative Cache Providers” section later in this chapter. The following
example shows that you can store different types of objects in different cache storages, which are
also managed by different cache managers:

<bean id="cacheManager"
 class="org.springframework.cache.support.CompositeCacheManager">
 <property name="cacheManagers">
 <list>
 <bean class="org.springframework.cache.support.SimpleCacheManager">
 <property name="caches">
 <set>
 <bean id="teachers"
class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" />
 </set>
 </property>
 </bean>

Casting Your SpeL on Caches ❘ 295

 <bean class="com.hazelcast.spring.cache.HazelcastCacheManager">
 <constructor-arg ref="hazelcast" />
 </bean>
 </list>
 </property>
</bean>

Casting Your spel on CaChes

Spring’s caching abstraction leverages the use of SpEL in annotations’ attributes such as key,
 condition, and unless. This provides dynamic generation of the values for the attributes and pro-
vides flexibility. The method in the following code caches users according to their national identifi-
cation number. For the key attribute, the expression is used for custom key generation.

@Cacheable(value = "users", key = "#user.nationalId")
public User getUser(User user) {
 return users.get(user.getId());
}

We can also apply a condition in the following code snippet to enable the caching for users whose
age is lower than 35:

@Cacheable(value = "users", condition = "#user.age < 35")
public User getUser(User user) {
 System.out.println("User with id " + user.getId() + " requested.");
 return users.get(user.getId());
}

SpEL evaluates the expressions in a context, and with caching abstraction it provides cache‐specific
built‐in parameters that are relative to the root object. Table 10-1 describes the expressions.

taBle 10-1: List of Possible Expressions on #root

expression detail

#root.methodName The name of the method being invoked.

#root.method The method itself being invoked. The method part of the expression will
be an instance of java.lang.reflect.Method. The name of the return
type of the method can be accessed as #root.method.returnType
.name.

#root.target The target object instance that contains the method being invoked.

#root

.targetClass
The class of the target object that contains the method being invoked.

#root.args The arguments array passed to the method being invoked.

#root.caches The collection of caches that is mapped by the method being invoked via
annotations.

continues

296 ❘ Chapter 10 CaChing

You can read more about the features of SpEL in Chapter 9.

initializing Your CaChes prograMMatiCallY

Sometimes you might need to fill up the cache storages before hitting them with requests. A promi-
nent example of this is loading your data into the caches while getting your application up and
running. It’s possible to implement this approach by accessing the cache manager first and then man-
ually putting the data into cache storages that are differentiated with names. In the following Try It
Out, you load a list of users into a cache region while initializing the context of the application.

trY it out Bootstrapping Cache Storages

Use the following steps to create an application with the Maven archetype that initializes the users
cache storage in an @PostConstruct annotated method of a Spring bean. The bean also contains the
getUser method that is annotated for caching. You can find the source code for the project in the
 initialisecache file in the code downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quickstart.
Add the spring‐core and spring‐context dependencies to your pom.xml file. At the time of
writing, the latest version of Spring subprojects was the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

expression detail

#result The result of the method being invoked. It can be used with

 ➤ The unless attribute of @Cacheable

 ➤ The @CachePut annotation

 ➤ @CacheEvict with beforeInvocation set to false

#p<argIndex> The argument of the method being invoked. argIndex refers to the argu-
ment index, and it starts from 0.

#<argument name> Name of the argument passed to the method being invoked. Example
usages would be

 ➤ #id

 ➤ #name

 ➤ #user

 ➤ #address

taBle 10-1: (continued)

Initializing Your Caches programmatically ❘ 297

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Create the User domain class under the package com.wiley.beginningspring.ch10:

public class User {

 private int id;
 private String name;

 public User(int id, String name) {
 this.id = id;
 this.name = name;
 }

 @Override
 public String toString() {
 return "User{" + "id=" + id +", name='" + name + '\'' + '}';
 }
}

 3. Create the UserService class under the package com.wiley.beginningspring.ch10:

@Service
public class UserService {

 private Map<Integer, User> users = new HashMap<>();
 {
 users.put(1, new User(1, "Kenan"));
 users.put(2, new User(2, "Mert"));
 }

 @Autowired
 private CacheManager cacheManager;

 @PostConstruct
 public void setup() {
 Cache usersCache = cacheManager.getCache("users");
 for (Integer key : users.keySet()) {
 usersCache.put(key, users.get(key));
 }
 }

 @Cacheable(value = "users")
 public User getUser(int id) {
 System.out.println("User with id " + id + " requested.");
 return users.get(id);
 }
}

 4. Create the ApplicationConfig class:

@Configuration

298 ❘ Chapter 10 CaChing

@ComponentScan(basePackages = {"com.wiley.beginningspring.ch10"})
@EnableCaching
public class ApplicationConfig {
 @Bean
 public CacheManager cacheManager() {
 SimpleCacheManager cacheManager = new SimpleCacheManager();
 cacheManager.setCaches(Arrays.asList(new ConcurrentMapCache("users")));
 return cacheManager;
 }
}

 5. Create the Main class and execute the main method:

public class Main {

 public static void main(String… args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);
 UserService userService = context.getBean(UserService.class);

 User userFetch1 = userService.getUser(1);
 System.out.println(userFetch1);
 User userFetch2 = userService.getUser(2);
 System.out.println(userFetch2);
 }
}

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the depen-
dencies for spring‐core and spring‐context. You created the User class as a domain object and the
UserService class as a Spring service bean. UserService auto‐wires CacheManager into itself, and in an
@PostConstruct method, it puts all the data into the cache with the key value that will be used for
retrieval. You can think of this sample scenario like loading a list of users from the database on application
startup and putting them into the cache before waiting for the users to log in to the system to get cached.

In the Main class, you retrieved the userService bean from the context and then invoked getUser(1)
and getUser(2) consecutively. The method will not print out the messages given here because all users
exist in the cache:

User with id 1 requested.
User with id 2 requested.

Finding alternative CaChe providers

Because an enterprise application demands enterprise features, using a cache provider other than
SimpleCacheManager is what most developers do. Spring caching offers integration with various
Cache frameworks in the land of Enterprise Java.

Finding alternative Cache providers ❘ 299

ehcache
Ehcache is one of the widely used Java caching libraries. The following Try It Out shows ways of
integrating with it by employing Spring’s caching abstraction.

trY it out Integrating with ehcache Cache Manager

Use the following steps to create an application with a Maven archetype that integrates with the
Ehcache for the creation of the users cache storage. You can find the source code for the project in the
ehcacheintegration file in the code downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quickstart.
Add the spring‐core, spring‐context, and spring‐context‐support dependencies to your
pom.xml file. At the time of writing this book, the latest version of Spring subprojects was the
4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Add the Ehcache dependency to your project. The latest version available at the time of writing was
2.8.3:

<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>2.8.3</version>
</dependency>

 3. Create the User domain class under the package com.wiley.beginningspring.ch10:

public class User {

 private int id;
 private String name;
 private String phoneNumber;
 private int age;

 public User(int id, String name, String phoneNumber, int age) {

300 ❘ Chapter 10 CaChing

 this.id = id;
 this.name = name;
 this.phoneNumber = phoneNumber;
 this.age = age;
 }

 public int getId() {
 return id;
 }

 public int getAge() {
 return age;
 }
}

 4. Create the UserService class under the package com.wiley.beginningspring.ch10:

public class UserService {

 private Map<Integer, User> users = new HashMap<Integer, User>();
 {
 users.put(1, new User(1, "Kenan", "5554332088", 37));
 users.put(2, new User(2, "Mert", "5552345060", 34));
 }

 @Cacheable(value = "users", condition = "#user.age < 35")
 public User getUser(User user) {
 System.out.println("User with id " + user.getId() + " requested.");
 return users.get(user.getId());
 }
}

 5. Create the applicationContext.xml configuration file under the src/main/resources folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache-4.0.xsd">

 <cache:annotation-driven />

 <bean id="userService" class="com.wiley.beginningspring.ch10.UserService" />

 <bean id="cacheManager"
 class="org.springframework.cache.ehcache.EhCacheCacheManager">
 <property name="cacheManager" ref="ehcache" />
 </bean>
 <bean id="ehcache"
 class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean">

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache-4.0.xsd

Finding alternative Cache providers ❘ 301

 <property name="configLocation" value="classpath:ehcache.xml"/>
 </bean>
</beans>

 6. Create the ehcache.xml configuration file under the src/main/resources folder:

<ehcache>
 <cache name="users" maxElementsInMemory="1000" />
</ehcache>

 7. Create the Main class and execute the main method:

public class Main {

 public static void main(String… args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 UserService userService = context.getBean(UserService.class);

 User user1 = new User(2, "Mert", "5552345060", 34);
 User userFetch1 = userService.getUser(user1);
 System.out.println(userFetch1);
 User userFetch2 = userService.getUser(user1);
 System.out.println(userFetch2);

 User user2 = new User(1, "Kenan", "5554332088", 37);
 User userFetch3 = userService.getUser(user2);
 System.out.println(userFetch3);
 User userFetch4 = userService.getUser(user2);
 System.out.println(userFetch4);

 }
}

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added
the dependencies for spring‐core, spring‐context, and spring‐context‐support. With the
spring‐context‐support artifact, Spring ships with the Ehcache cache manager for out‐of‐the‐box
integration.

You created a simple domain class named User and a service class named UserService that contains
one method, getUser(int id), for retrieving a user with its ID. The class initializes a user hash map
with two elements during its creation. The getUser method is marked with the @Cacheable annotation
stating that the return value of the method will be cached according to its argument. The annotation
also contains the condition attribute stating that only users who are younger than 35 will be cached.

You declared the userService bean as a singleton in the configuration file and also declared the
cacheManager bean. With Ehcache, defining cacheManager is simple and straightforward. It just wraps
another bean named ehcache that configures itself with the ehcache.xml configuration file.

The simplest ehcache.xml configuration file given contains the definition for the users cache storage.

302 ❘ Chapter 10 CaChing

guava
With Spring version 4.0, Guava is a supported framework with its own cache manager. Guava is
an open source common library set that also provides caching features under the hood. The Maven
dependency for Guava is shown in the following snippet. The latest version available at the time of
writing was 18.0:

<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>18.0</version>
</dependency>

Configuring GuavaCacheManager is pretty straightforward. Defining the cacheManager bean is
enough for getting the configuration up and running. There is no need for defining cache storages
because they will be created on demand:

<bean id="cacheManager"
 class="org.springframework.cache.guava.GuavaCacheManager" />

hazelcast
Hazelcast is one of the most popular in‐memory data grid solutions available in the industry.
Like other frameworks, Hazelcast also provides its own cache manager based on Spring’s caching
abstraction. The Maven dependency for Hazelcast is given in the following snippet. At the time of
writing, the latest version available was 3.3:

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-all</artifactId>
 <version>3.3</version>
</dependency>

Currently HazelcastCacheManager resides under the hazelcast‐all artifact and is
not included inside the spring‐context‐support. As shown in the following code, the
HazelcastCacheManager refers to another bean as its wrapped cacheManager:

<bean id="cacheManager" class="com.hazelcast.spring.cache.HazelcastCacheManager">
 <constructor-arg ref="hazelcast" />
</bean>

Note Ehcache also provides features like TTL or Eviction Policy, which you
can configure. The configuration should be done directly by the cache provider
because the caching abstraction does not provide any configuration for these
features (they might not be supported with different providers, such as JDK’s
ConcurrentMap). Please refer to the documentation of Ehcache for further
configuration.

Summary ❘ 303

With the hazelcast bean, you are doing the configuration for Hazelcast by creating your usual
users cache storage:

 <hz:hazelcast id="hazelcast">
 <hz:config>
 <hz:map name="users">
 <hz:map-store enabled="true"
 class-name="com.wiley.beginningspring.ch10.User"
 write-delay-seconds="0"/>
 </hz:map>
 </hz:config>
 </hz:hazelcast>

The hz namespace can be defined with its schema location, as shown here:

xmlns:hz=http://www.hazelcast.com/schema/spring
...
xsi:schemaLocation="http://www.hazelcast.com/schema/spring
 http://www.hazelcast.com/schema/spring/hazelcast-spring-3.3.xsd">

Note Hazelcast expects your domain classes to implement the Serializable
interface and to contain the default constructor if it’s not implemented in your class.

suMMarY

This chapter explained what Spring offers with its Caching Abstraction. You created an application
that defines a simple cache manager, which employs JDK’s ConcurrentMap under the hood. The
chapter explained how to configure the cache manager with a different name and also showed you a
full‐blown annotation‐based configuration that corresponds with the XML configuration.

The chapter detailed the four essential annotations (@Cacheable, @CacheEvict, @CachePut, and
@Caching) that can be used to cache the data or evict it from the storage. It listed the cache manag-
ers you can use with the abstraction and emphasized the importance of expressions in defining the
cache regions by giving examples from Spring Expression Language. You also saw how to initial-
ize the cache storages automatically in the application startup, which is a common use case among
enterprise applications. The final section listed alternative cache providers—such as Ehcache,
Guava, and Hazelcast—and detailed their integrations with Spring’s Caching Abstraction.

exerCises

You can find possible solutions to these exercises in Appendix A.

 1. Create domain class Course with properties id and name. Create a cache manager in Spring
configuration and use Hazelcast as your cache provider. Create a CourseService bean and
implement the findById service that returns the course for a given ID. Within the service,
cache all the courses that have the name starting with the BBM keyword.

 2. What’s the main difference between the @Cacheable and @CachePut annotations? Will it be
possible to use either of these annotations on methods with void return types?

http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring/hazelcast-spring-3.3.xsd

304 ❘ Chapter 10 CaChing

 ▸ What You learned in this Chapter

topiC keY points

cache A storage mechanism that holds the data in one
place to be served for future requests in a faster
way.

<cache:annotation‐driven> Configuration tag that defines that the cache con-
figuration will be done with annotations applied on
the bean classes or on their methods.

@Cacheable Annotation that defines the result of an executed
method will be cached in a given cache storage.

@CachePut Annotation that does the same job as @Cacheable,
but it always gets the method executed first and
then puts the return value into the cache.

@CacheEvict Annotation that defines the method that will be
responsible for evicting a value from a given cache
storage.

@Caching A group annotation where arrays of @Cacheable,
@CacheEvict, or @CachePut can be provided for
one method definition.

SpEL Spring Expression Language

@EnableCaching Does the same job as the
<cache:annotation‐driven> tag, which states that
cache configuration will be done with annotations
applied on the bean classes or on their methods.

SimpleCacheManager Cache manager implementation that provides a way
to set a list of caches and utilize them for caching
operations.

NoOpCacheManager Cache manager implementation that is mostly used
for testing purposes where it actually doesn’t cache
any items in the storage.

ConcurrentMapCacheManager Cache manager implementation that offers the use
of JDK’s ConcurrentMap under the hood.

CompositeCacheManager Cache manager implementation that allows defining
multiple cache managers with a single cache man-
ager definition.

 11
 reStful Web Services
with Spring

 WHat You Will learn in tHis CHaPter:

 ➤ Creating your fi rst REST web service

 ➤ Returning Different HTTP Status Codes from REST Web Service

 ➤ Learning an annotation‐based confi guration alternative

 ➤ Using REST web services with XML

 ➤ Using the exception handling mechanism

 ➤ Unit testing RESTful services

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 11 download and individually named according to the
names throughout the chapter.

 REST stands for REpresentational State Transfer . It is an architectural principle based
on top of HTTP to represent resources by doing operations on them. You can defi nitely
say that it’s neither a specifi cation nor a standard. It’s a way of representing data and
manipulating a resource that resides on the server. REST web services solely depend on
the HTTP methods. For each method, respective operations on a resource take place.

http://www.wrox.com/go/beginningspring

306 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

The GET method is used to retrieve a resource or a collection of resources. The POST method is
used to create. The PUT method is used to update, and the DELETE method is used to remove the
resource from the system.

Providing REST web services within a web application is one of the most popular approaches
for offering your application programming interface (API) to third‐party applications. Popular
sites such as Facebook, Twitter, and LinkedIn offer REST web services for accessing stored data.
Consuming REST web services is also a widely adopted approach in mobile applications for con-
necting the server‐side components with the mobile applications.

Since version 3.0, Spring MVC also offers the creation of RESTful services with the help of data
validation, serialization, and de‐serialization. In the context of Spring, all requests go through
the Dispatcher Servlet, which is the main servlet that handles all requests and dispatches to the
appropriate channels. The Dispatcher Servlet follows the Front Controller pattern that provides
an entry point for handling all requests. You can find more details of the Dispatcher Servlet in
Chapter 3.

This chapter shows you how easy it is to create RESTful web services with Spring MVC. So sit up
and enjoy the REST in peace!

Creating Your First rest Web serviCe

With the Try It Out in this section you create a simple web application that contains one REST web
service. You are going to create a domain class and construct service operations to interact with the
domain through the REST approach. Figure 11-1 shows a diagram of the service. In the diagram,
you see the URLs requested along with the HTTP methods right next to them, and these requests
point out the corresponding methods of the REST controller class.

You use SoapUI for testing these service methods. It’s one of the leading tools available for func-
tional API testing. The Try It Out explains the details of installing and using the SoapUI.

Figure 11-1

/basic/rest/users <<GET>>

/basic/rest/users/{id} <<GET>>

/basic/rest/users/{id} <<PUT>>

/basic/rest/users/{id} <<DELETE>>

/basic/rest/users <<POST>>
save(User user)

User
Rest

Controller

list()

get(int id)

update(int id, User user)

delete(int id)

Creating Your First reSt Web Service ❘ 307

trY it out CrUD Operations with reSt Web Services

Use the following steps to create a web application that contains a REST web service and to consume
service via SoapUI. You can find the source code of the project in the basic file in the code downloads.

 1. Create an empty Maven web application project from the archetype maven‐archetype‐webapp.
Add the spring‐webmvc dependency to your pom.xml file. At the time of writing, the latest version
of Spring subprojects is the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. spring‐webmvc depends on the spring‐core, spring‐beans, spring‐context, and spring‐web
subprojects, so you need to add them as dependencies to the project:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Add the jackson‐core and jackson‐databind dependencies to your pom.xml file. At the time of
writing, the latest version of the Jackson projects is 2.4.0:

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-core</artifactId>
 <version>2.4.0</version>
</dependency>

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>

308 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

 <version>2.4.0</version>
</dependency>

 4. Create the User domain class under the com.wiley.beginningspring.ch11 package:

public class User {

 private int id;
 private String name;

 public User() {}

 public User(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }
}

 5. Create the UserRepository class under the com.wiley.beginningspring.ch11 package:

@Repository
public class UserRepository {

 private Map<Integer, User> users = new HashMap<Integer, User>();

 @PostConstruct
 public void setup() {
 users.put(1, new User(1, "Mert Caliskan"));
 users.put(2, new User(2, "Kenan Sevindik"));
 }

 public void save(User user) {
 users.put(user.getId(), user);
 }

 public List<User> findAll() {
 return new ArrayList<User>(users.values());
 }

 public User find(int id) {
 return users.get(id);
 }

 public void update(int id, User user) {
 users.put(id, user);
 }

Creating Your First reSt Web Service ❘ 309

 public void delete(int id) {
 users.remove(id);
 }
}

 6. Create the UserRestController class under the com.wiley.beginningspring.ch11 package:

@RestController
@RequestMapping("/rest")
public class UserRestController {

 @Autowired
 private UserRepository userRepository;

 @RequestMapping(value = "/users", method=RequestMethod.POST)
 public void save(@RequestBody User user) {
 userRepository.save(user);
 }

 @RequestMapping(value = "/users", method=RequestMethod.GET)
 public List<User> list() {
 return userRepository.findAll();
 }

 @RequestMapping(value="/users/{id}", method=RequestMethod.GET)
 public User get(@PathVariable("id") int id) {
 return userRepository.find(id);
 }

 @RequestMapping(value="/users/{id}", method=RequestMethod.PUT)
 public void update(@PathVariable("id") int id, @RequestBody User user) {
 userRepository.update(id, user);
 }

 @RequestMapping(value="/users/{id}", method=RequestMethod.DELETE)
 public ResponseEntity<Boolean> delete(@PathVariable("id") int id) {
 userRepository.delete(id);
 return new ResponseEntity<Boolean>(Boolean.TRUE, HttpStatus.OK);
 }
}

 7. Create the springmvc‐servlet.xml configuration file under the src/main/webapp/WEB‐INF
folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context"http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd
 http://www.springframework.org/schema/mvc

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/context/spring-context-4.0.xsd

310 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

 http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

 <context:component-scan base-package="com.wiley.beginningspring.ch11" />
 <context:annotation-config />

 <mvc:annotation-driven />
</beans>

 8. Define the Dispatcher Servlet with its URL mapping in your web.xml file:

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">

 <servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>springmvc</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

 We defined the web.xml compatible with Servlet 3.1 as shown in the namespace definitions. If you are not
using a Java EE7 container then you can define the web.xml file compatible with Servlet 3.0 as shown here:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
...
</web-app>

 9. Deploy the application on a web container. You can use Tomcat 8.0.12 or Jetty 9.2.3 as a con-
tainer for deploying the application. After deploying, simply run the container.

 10. Install SoapUI by downloading it from http://sourceforge.net/projects/soapui/files/
soapui/5.0.0. At the time of writing, the latest version of SoapUI is 5.0.0.

 11. From the File menu of SoapUI, select New REST Project. You see the screen shown in Figure 11-2.
Enter http://localhost:8080/basic/rest/users into the URI field.

 12. After clicking OK, REST Project 1 is added to the list of Projects on the left side of the SoapUI as
shown in Figure 11-3.

 13. Open Request 1 as shown in Figure 11-4. Make sure that you’re at the JSON tab on the right for the output.

http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd
http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd
http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://sourceforge.net/projects/soapui/files/soapui/5.0.0
http://localhost:8080/basic/rest/users
http://sourceforge.net/projects/soapui/files/soapui/5.0.0

Creating Your First reSt Web Service ❘ 311

Figure 11-2

Figure 11-3

Figure 11-4

312 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

Figure 11-5

Figure 11-6

 14. In the projects view, right‐click the resource to add a new method to test adding a new user, as
shown in Figure 11-5.

 15. In the Method Name field, enter New User and select POST as the HTTP Method as shown in
Figure 11-6.

Creating Your First reSt Web Service ❘ 313

 16. For the request, select application/json as the media type and enter {"id":3,"name":"Funda Bayulu"}
into the text area. When you click the Run button you won’t get any response as JSON. Just check
for response time at the bottom of the screen as indicated in Figure 11-7.

Figure 11-7

 17. Execute the previous request of the Users method to see the newly added user in the JSON
response, as shown in Figure 11-8.

 18. Add a new method with the name Update User and select PUT as the HTTP Method.

 19. Enter /basic/rest/users/3 as the Resource, select application/json as the Media Type, and enter
{"id":3,"name":"Funda Caliskan"} into the text area as shown in Figure 11-9. Click the Run
button. Again, you won’t get any response as JSON. Just check the response time at the bottom of
the screen.

 20. Execute the first GET method request to see the updated user with ID 3. You should see the JSON
output as shown here:

[
 {
 "id": 1,
 "name": "Mert Caliskan"
 },
 {

314 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

Figure 11-8

Figure 11-9

Creating Your First reSt Web Service ❘ 315

 "id": 2,
 "name": "Kenan Sevindik"
 },
 {
 "id": 3,
 "name": "Funda Caliskan"
 }
]

 21. Add a new method with the name Delete User and select DELETE as the HTTP Method.

 22. Enter /basic/rest/users/3 as the Resource and click the Run button as shown in Figure 11-10.
You should see true as the JSON response.

Figure 11-10

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the
dependency for the spring‐webmvc. Because the spring‐webmvc artifact depends on spring‐core,
spring‐beans, spring‐context, and spring‐web, you also added them as dependencies.

You then added the Jackson dependencies, which is the framework for handling serialization/
deserialization and mapping of the objects to JSON. Jackson provides two branches: one tagged for 1.x,
and the other for the 2.x versions. At the time of writing this book, 2.x is the active development track,
and with Spring 4 this branch is currently being supported. Dropping the Jackson artifacts on the class

316 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

path automatically enables the use of the message converters for serializing/deserializing to JSON. You
can state that this integration demands zero configurations. Spring offers two different converters per
branch: MappingJackson2HttpMessageConverter and MappingJacksonHttpMessageConverter. The
converter class with 2 in its name supports the 2.x branch.

You created a simple domain class named User, which consists of the id and name fields. You implemented a
repository class, UserRepository, which acts as a data access layer object. It stores two users in a map; the
users are instantiated within the @PostConstruct method. UserRepository offers four methods:

 ➤ void save(User user): Saves a user within the map by using its ID as the key

 ➤ List<User> findAll(): Returns the list of all users from the map

 ➤ User find(int id): Returns a specific user from the map given by its ID

 ➤ void delete(int id): Removes a specific user from the map given by its ID

The third and final class was UserRestController, which is a REST web service controller that
exposes the service methods. It autowires the repository instance into itself and again offers four meth-
ods that correspond to the methods of the repository.

With Spring 4.0, the @ResponseBody annotation has been moved to the type level, so it can be added
to interfaces, classes, or other annotations. With the help of @ResponseBody, Spring 4.0 introduced
@RestController, a convenience annotation that composes the @Controller and @ResponseBody
annotations together in one place. Our REST controller class contains this annotation on its
class level so we did not need to define the @ResponseBody on each method of the controller. @
ResponseBody is responsible for automatic conversion of the response to a JSON string literal by
applying the serialization on the return value of the method. @Controller is an annotation that
inherits from @Component, which provides the creation of the Spring beans via annotations.

As previously stated, the UserRestController class contains four methods that are mapped with the
@RequestMapping annotations. Their signatures are given in the following code snippet:

@RequestMapping(value = "/users", method=RequestMethod.POST
void save(@RequestBody User user);

@RequestMapping(value = "/users", method=RequestMethod.GET)
List<User> list();

@RequestMapping(value="/users/{id}", method=RequestMethod.GET)
User get(@PathVariable("id") int id);

@RequestMapping(value="/users/{id}", method=RequestMethod.PUT)
void update(@PathVariable("id") int id, @RequestBody User user);

@RequestMapping(value="/users/{id}", method=RequestMethod.DELETE)
ResponseEntity<Boolean> delete(@PathVariable("id") int id);

@RequestMapping enables the mapping of web requests onto these handler methods. The class itself
also contains the @RequestMapping annotation, which enables a base mapping URI for all the methods
that reside inside the class. So the template URI for the requests would be like this:

Creating Your First reSt Web Service ❘ 317

http://<server‐name>:<server‐port>/<servlet‐context>/<base‐mapping>/<handler‐method‐mapping>

If you want to invoke the list() method, you need to request a URI with an HTTP POST method as
shown here:

http://localhost:8080/basic/rest/users

Of course, doing these test requests with web browsers might not be suitable for all cases. Thus you
used SoapUI for testing the REST web services. SoapUI has become a de facto functional testing tool
in the industry, and it eases doing the requests with different HTTP methods because of its friendly
user interface. You can read more about the usage scenarios of the SoapUI later in this Try It Out
and also in the following Try It Out sections of this chapter. You can also use curl if you want; it’s
a command‐line tool for doing HTTP requests. The curl version of retrieving the user list is the
following:

curl -i -X GET -H "Content-Type:application/json" ↵
 http://localhost:8080/basic/rest/users

You created the springmvc‐servlet.xml file under the WEB‐INF folder of the web application,
and it configures the Spring application context. It’s being picked up with the naming convention
{servletname}‐servlet.xml. Within the configuration file, the <context:component‐scan> tag
states that all the beans that reside under the package com.wiley.beginningspring.ch11 will be
registered to the application context automatically. The <context:annotation‐config/> tag acti-
vates the annotations that are defined in the beans, which are already registered within the context of
the application. The <mvc:annotation‐driven /> tag configures the annotation‐driven Spring MVC
Controller programming model. In this case, by default, it enables features such as the registration of
message converters that were mentioned earlier for the Jackson framework.

In the web.xml file, you defined the Dispatcher Servlet with the URL mapping as /*. So all the requests
go through the Dispatcher Servlet. It handles the incoming request and decides which controller should
handle the request with the help of the Handler Mappings.

After deploying the application on a web container you tested it with the SoapUI tool. The following is
a list of tested URLs with the corresponding HTTP methods:

 ➤ URI: http://localhost:8080/basic/rest/users

 ➤ HTTP Method: GET

 ➤ Activity: Returns the list of all users

 ➤ URI: http://localhost:8080/basic/rest/users

 ➤ HTTP Method: POST

 ➤ Activity: Adds a new user

 ➤ URI: http://localhost:8080/basic/rest/users/3

 ➤ HTTP Method: PUT

 ➤ Activity: Updates the user specified with its id

http://localhost:8080/basic/rest/users
http://localhost:8080/basic/rest/users
http://localhost:8080/basic/rest/users
http://localhost:8080/basic/rest/users
http://localhost:8080/basic/rest/users/3

318 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

 ➤ URI: http://localhost:8080/basic/rest/users/3

 ➤ HTTP Method: DELETE

 ➤ Activity: Deletes the user specified with its id

The test methods given in the steps of the Try It Out are self‐explanatory. Note the URI syntax for the
PUT and DELETE methods where you specify the URI template {id} to pass the parameter to the method
with @PathVariable annotated method argument. With the test cases you are setting the value 3 for
the ID value to update and delete a user.

returning DiFFerent HttP status CoDes
From rest Web serviCe

Spring MVC offers the HttpStatus enumeration class that conforms to the HTTP status codes, from
1xx to 5xx, which is from 100 to 500. In the earlier Try It Out you returned HTTP code 200 (OK) in
the delete method to inform the user about the action result. Table 11-1 lists the categories of the
status codes. The codes fall into one of these five different categories.

table 11-1: The List of HTTP Status Codes

CoDe Detail

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

learning an annotation‐baseD
ConFiguration alternative

It’s also possible to do the application context configuration only with annotations instead of using
any XML. The Try It Out in this section is a redo of the earlier Try It Out. It uses a pure annota-
tion‐based configuration.

Note REST web services provided by Spring MVC are not compliant with
the JAX‐RS specification. So annotations like @Path, @GET, @POST, and many
others that come with the JAX‐RS specification are not supported by Spring
MVC.

http://localhost:8080/basic/rest/users/3

Learning an annotation‐Based Configuration alternative ❘ 319

trY it out reSt Web Services with annotation Configuration

Use the following steps to create an application that contains REST web services, which are configured
by annotations. You can find the source code for the project in the basicwithannotations file in the
code downloads.

 1. Follow steps 1 through 6 of the first Try It Out.

 2. Instead of defining the XML configuration given in step 7 of the earlier Try It Out, create the AppConfig
class given in the following snippet under the package com.wiley.beginningspring.ch11:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch11"})
@EnableWebMvc
public class AppConfig {
}

 3. Define the Dispatcher Servlet with its URL mapping in your web.xml file. The servlet also refers to
the AppConfig class that does the actual context configuration:

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">

 <servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
 </init-param>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 com.wiley.beginningspring.ch11.config.AppConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>springmvc</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 </web-app>

 4. Follow steps 9 to 22 of the earlier Try It Out. Throughout the steps specified, the servlet context
path will be basicwithannotations instead of basic.

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd

320 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

How It Works

To configure the application with annotations you first created the AppConfig class that is marked with
@Configuration. This class is provided as a parameter in web.xml; you read more about that later in
this section. For scanning components starting with a given base package you also used the
@ComponentScan annotation that does the same job with XML’s <context:component‐scan> tag. One
final annotation used on the configurator class is @EnableWebMvc, which does the same job as XML’s
<mvc:annotation‐driven> tag for enabling MVC‐centric features.

You also reconfigured the definition of the Dispatcher Servlet to load the application context via a class
definition. With this approach the contextClass parameter refers to the org.springframework.web
.context.support.AnnotationConfigWebApplicationContext class, which is an implementation of
ApplicationContext. This class uses the contextConfigLocation parameter to get the class anno-
tated with @Configuration; in the example, it is the fully qualified name of the AppConfig class.

using rest Web serviCes WitH Xml

JSON stands for JavaScript Object Notation, which is a language‐independent text format that
enables you to represent objects as name/value pairs in an easily readable format. It’s widely adopted
in the industry, and many API providers have shifted from XML to JSON. XML is another option
for formatted messaging between systems, and it provides features such as extensible architecture
with name spacing, verbosity with its opening and closing tags, and validation of its content with
predefined rules. Compared to JSON, it’s our opinion that XML is harder to read with human eyes
and slower to parse by computers. Because XML provides a more structured representation of the
data, both of these message mechanisms offer usage scenarios with different pros and cons.

One misconception for REST web services is that they can only generate JSON responses. On the
contrary—Spring MVC offers the architecture for enabling message converters that handle XML
requests/responses with REST web services. In the following Try It Out you modify the first Try It
Out to provide XML output instead of JSON.

trY it out reSt Web Services with XML response

Use the following steps to create an application to produce an XML response out of a REST web service.
You can find the source code for the project in the basicwithxml file in the code downloads.

 1. Follow steps 1 and 2 of the “CRUD Operations with REST Web Services” Try It Out.

 2. Create the following User class under the com.wiley.beginningspring.ch11 package:

@XmlRootElement
public class User {

 @XmlElement
 private int id;
 @XmlElement
 private String name;

 public User() {}

 public User(int id, String name) {

Using reSt Web Services with XML ❘ 321

 this.id = id;
 this.name = name;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }
}

 3. Follow steps 5 through 10 of the first Try It Out.

 4. From the File menu of SoapUI, select New REST Project. You see the screen shown in
Figure 11-11. Enter http://localhost:8080/basicwithxml/rest/users/1 into the URI
field.

Figure 11-11

 5. Enter /basicwithxml/rest/users/1 in the Resource field and click the Run button. You should
see XML output for the user as shown in Figure 11-12.

How It Works

Because you won’t be generating any JSON output you omitted defining the Jackson project dependen-
cies. You defined your User class annotated with the JAXB annotations such as @XmlRootElement and
@XmlElement. You haven’t added any dependencies for using these annotations because they come out
of the box with the JDK.

With SoapUI, you made a request similar to the one you made with JSON. JAXB automatically
created the XML tags for you with the User class name and the name of the properties that reside in
the class.

http://localhost:8080/basicwithxml/rest/users/1

322 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

using tHe eXCePtion HanDling meCHanism

Because REST web services work on HTTP methods, they also embody HTTP status codes in the
response to the state of the result of the request. It is one of the best practices to use these codes in
the RESTful API design, but they provide more generic data about an error rather than giving a
detailed description on a particular problem. It’s vital to give as much information as possible to API
consumers because the easier it is to consume an API, the more likely it will be widely adopted and
used.

With the Try It Out in this section you modify the get method that exists in the “CRUD Operations
with REST Web Services” Try It Out to throw an exception when the requested user cannot be
found. This exception is globally handled, and a custom JSON response is generated in order to
return a response.

trY it out exception handling in reSt Web Services

Use the following steps to create an application that handles an exception that occurred in a REST
web service. You can find the source code for the project in the exceptionhandling file in the code
downloads.

 1. Follow the steps 1 through 5 of the “CRUD Operations with REST Web Services” Try It Out
earlier in this chapter.

Figure 11-12

Using the exception handling Mechanism ❘ 323

 2. Create the UserRestController class that contains the modified get method under the com
.wiley.beginningspring.ch11 package:

@RestController
@RequestMapping("/rest")
public class UserRestController {

 @Autowired
 private UserRepository userRepository;

 @RequestMapping(value = "/users", method=RequestMethod.POST)
 public void save(@RequestBody User user) {
 userRepository.save(user);
 }

 @RequestMapping(value = "/users", method=RequestMethod.GET)
 public List<User> list() {
 return userRepository.findAll();
 }

 @RequestMapping(value="/users/{id}", method=RequestMethod.GET)
 public User get(@PathVariable("id") int id) {
 User user = userRepository.find(id);
 if (user == null) {
 throw new RestException(1, "User not found!",
 "User with id: " + id + " not found in the system");
 }
 return user;
 }

 @RequestMapping(value="/users/{id}", method=RequestMethod.PUT)
 public void update(@PathVariable("id") int id, @RequestBody User user) {
 userRepository.save(user);
 }

 @RequestMapping(value="/users/{id}", method=RequestMethod.DELETE)
 public ResponseEntity<Boolean> delete(@PathVariable("id") int id) {
 userRepository.delete(id);
 return new ResponseEntity<Boolean>(Boolean.TRUE, HttpStatus.OK);
 }
}

 3. Create the RestErrorMessage class under the com.wiley.beginningspring.ch11 package:

public class RestErrorMessage {

 private HttpStatus status;
 private int code;
 private String message;
 private String detailedMessage;
 private String exceptionMessage;

 public RestErrorMessage(HttpStatus status, int code, String message,
 String detailedMessage, String exceptionMessage) {
 this.status = status;

324 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

 this.code = code;
 this.message = message;
 this.detailedMessage = detailedMessage;
 this.exceptionMessage = exceptionMessage;
 }

 public HttpStatus getStatus() {
 return status;
 }

 public int getCode() {
 return code;
 }

 public String getMessage() {
 return message;
 }

 public String getDetailedMessage() {
 return detailedMessage;
 }

 public String getExceptionMessage() {
 return exceptionMessage;
 }
}

 4. Create the RestException class under the com.wiley.beginningspring.ch11 package:

public class RestException extends RuntimeException {

 private int code;
 private String message;
 private String detailedMessage;

 public RestException(int code, String message, String detailedMessage) {
 this.code = code;
 this.message = message;
 this.detailedMessage = detailedMessage;
 }

 public int getCode() {
 return code;
 }

 public String getMessage() {
 return message;
 }

 public String getDetailedMessage() {
 return detailedMessage;
 }
}

Using the exception handling Mechanism ❘ 325

 5. Create the RestExceptionHandler class under the com.wiley.beginningspring.ch11 package:

@ControllerAdvice
public class RestExceptionHandler extends ResponseEntityExceptionHandler {

 @ExceptionHandler(Exception.class)
 protected ResponseEntity<Object> handleInvalidRequest(RestException e,
 ServletWebRequest request) {
 RestErrorMessage error =
 new RestErrorMessage(HttpStatus.valueOf(request.getResponse().getStatus()),
 e.getCode(),
 e.getMessage(),
 e.getDetailedMessage(),
 e.toString());

 HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON);

 return handleExceptionInternal(e, error, headers, HttpStatus.OK, request);
 }
}

 6. Follow steps 7 through 9 of the “CRUD Operations with REST Web Services” Try It Out.

 Request the URL http://localhost:8080/exceptionhandling/rest/users/3.

 7. See the output in the browser as shown here:

{
 "status":"OK",
 "code":1,
 "message":"User not found!",
 "detailedMessage":"User with id: 3 not found in the system",
 "exceptionMessage":"com.wiley.beginningspring.ch11.exception.RestException: ↵
 User not found!"
}

How It Works

Within the UserRestController class you modified the get method in order to throw an excep-
tion when the repository does not contain the requested user. The type of this exception is
RestException, which extends the RuntimeException. Within the constructor of the exception, you
provided code, message, and detailedMessage to give details about the exception to the requester.
These values were converted with RestExceptionHandler into an instance of RestErrorMessage.
The RestExceptionHandler extends the class ResponseEntityExceptionHandler, which is
a base class that offers common methods for handling exceptions to return the instance of a
ResponseEntity. The RestExceptionHandler class is annotated with @ControllerAdvice, and it
enables you to centralize the code in one place and share it across the controllers. Thus, the
handleInvalidRequest method annotated with @ExceptionHandler is invoked for all the excep-
tions thrown from all controllers. For the detailed usage of the annotation, read “Exploiting the
power of annotations” section in Chapter 3.

http://localhost:8080/exceptionhandling/rest/users/3

326 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

The handleExceptionInternal method is defined in the ResponseEntityExceptionHandler class,
and it offers a single entry point to construct the response body for all exception types.

After doing the request through the browser, the result will be rendered with HTTP code 200, depict-
ing a meaningful response by containing all the details about the exception.

unit testing restFul serviCes

Spring provides a template class, named RestTemplate, for accessing a REST web service through cli-
ent code. RestTemplate provides methods for making HTTP requests with types like GET, POST, PUT,
DELETE, and so on. The names of these methods are defined according to a convention—the first word of
the method maps to the name of the HTTP method that is being invoked—as described in Table 11-2.

table 11-2: RestTemplate Methods Mapped to HTTP Methods

HttP metHoD RestTemplate metHoD

GET getForObject(String, Class, String...)

PUT put(String, Object, String...)

POST postForLocation(String, Object, String...)

DELETE delete(String, String...)

HEAD headForHeaders(String, String...)

OPTIONS optionsForAllow(String, String...)

 In this section’s Try It Out you implement test methods for the controller methods given in the
“CRUD Operations with REST Web Services” Try It Out.

trY it out Unit testing of reSt Web Services

Use the following steps to create test classes that test listing, adding, updating, and deleting of users
through a live web application URL, which is deployed on a container. You can find the source code for
the project in the testing file in the code downloads.

 1. Follow the steps 1 through 9 of the “CRUD Operations with REST Web Services” Try It Out ear-
lier in the chapter.

 2. Add the JUnit dependency to your pom.xml file. At the time of writing, the latest version of the
JUnit project is 4.11:

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>

Unit testing reStful Services ❘ 327

 3. Create the UserRestControllerTestSuite test suite class and the ListUsersTest,
AddUserTest, UpdateUserTest, DeleteUserTest test classes under the com.wiley
.beginningspring.ch11 package in the folder src/test/java:

@RunWith(Suite.class)
@Suite.SuiteClasses({
 ListUsersTest.class,
 AddUserTest.class,
 UpdateUserTest.class,
 DeleteUserTest.class
})
public class UserRestControllerTestSuite {

}

public class ListUsersTest {

 @Test
 public void listUsersWorksOK() {
 RestTemplate template = new RestTemplate();
 ResponseEntity<List> result =
 template.getForEntity("http://localhost:8080/basic/rest/users", List.class);
 assertNotNull(result);
 assertNotNull(result.getBody());
 assertThat(result.getBody().size(), is(2));
 }
}

public class AddUserTest {

 @Test
 public void addUserWorksOK() {
 RestTemplate template = new RestTemplate();
 User user = new User(3, "Funda Bayulu");
 ResponseEntity<Void> resultSave = template.postForEntity ↵
 ("http://localhost:8080/basic/rest/users", user, Void.class);
 assertNotNull(resultSave);
}

public class UpdateUserTest {

 @Test
 public void updateUserWorksOK() {
 RestTemplate template = new RestTemplate();
 User user = new User(3, "Funda Caliskan");
 template.put("http://localhost:8080/basic/rest/users/3", user);
 }
}

public class DeleteUserTest {

 @Test
 public void deleteUserWorksOK() {
 RestTemplate template = new RestTemplate();

mailto:@Suite.SuiteClasses
http://localhost:8080/basic/rest/users
http://localhost:8080/basic/rest/users
http://localhost:8080/basic/rest/users/3

328 ❘ Chapter 11 RESTful WEb SERvicES WiTh SpRing

 template.delete("http://localhost:8080/basic/rest/users/3");

 ResponseEntity<List> resultList =
 template.getForEntity("http://localhost:8080/basic/rest/users", List.class);
 assertNotNull(resultList);
 assertNotNull(resultList.getBody());
 assertThat(resultList.getBody().size(), is(2));
 }
}

 4. Run the test suite as a unit test within your integrated development environment (IDE) and expect
all test methods to pass. The Servlet container should be up and running while running the unit
tests.

How It Works

After configuring the project and adding the JUnit dependency, you created your four test classes to list,
add, update, and delete users. Each test class employs RestTemplate, and you did GET, POST, PUT, and
DELETE requests, respectively. You defined the test suite in order to execute the test classes in a specified
order.

summarY

This chapter showed you what Spring MVC offers for creating REST‐based web services. You first
created a REST web service for exposing CRUD operations on a domain object. You used SoapUI
for testing the REST web services because using the browser directly wouldn’t be enough for testing
operations such as POST. You also did an annotation‐based configuration for the application context
to get your REST web services up and running.

To dispel the myth that REST is all about JSON notation, you saw an example for converting your
REST web service to provide XML output instead of JSON. The chapter detailed the ways for
handling exceptions in REST web services by also providing meaningful JSON output data to the
requester.

Unit testing is a robust way to improve the code quality so you went through the RestTemplate
class and worked through examples for doing HTTP method calls like GET, POST, PUT, and DELETE.

eXerCises

You can find possible solutions to these exercises in Appendix A.

 1. Is it possible to produce XML output with REST web services?

 2. Create the User domain class with properties id, name, and address. Create a REST web ser-
vice that outputs a User domain object list as JSON. While doing JSON conversion, omit the
address field from the output.

http://localhost:8080/basic/rest/users/3
http://localhost:8080/basic/rest/users

Summary ❘ 329

 ▸ WHat You learneD in tHis CHaPter

toPiC KeY Points

REST REpresentational State Transfer

JSON JavaScript Object Notation

SoapUI Functional API testing tool that can be used
for testing SOAP‐based and REST‐based web
services

MappingJackson2HttpMessageConverter Jackson 2.x converter class that provides
 serializing/deserializing of the object graph to
JSON

@RestController A convenience annotation that composes the
@Controller and @ResponseBody annotations
together in one place

@RequestMapping Annotation that enables the mapping of web
requests onto these handler methods

curl A command‐line tool for doing HTTP requests

@EnableWebMvc <mvc:annotation‐driven> tag that enables
MVC‐centric features

RestTemplate Base class that provides methods for handling
HTTP methods in REST client code

 12
 Securing Web applications
with Spring Security

 What you Will learn in thiS chapter:

 ➤ Examining the features Spring Security provides

 ➤ Confi guring and using Spring Security

 ➤ Authenticating users

 ➤ Authorizing web requests

 CODE DOWNLOAD The wrox.com code downloads for this chapter are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Chapter 12 download and individually named according to the
names throughout the chapter.

 Most applications today are multiuser, and they are usually accessed over insecure networks,
such as the Internet. Therefore, security requirements for applications must be carefully
thought out, and they must be implemented starting at day zero of the project development
process. Unfortunately, many people mistakenly think that security features could be added at
later steps of the project development, and teams delay working on them until a considerable
amount of time has been spent on project development. As a result, applications lack some of
the most fundamental security features, which causes some architectural changes and rework
when developers attempt to cover those features gradually. One of the reasons for such delays
is that teams usually don’t have enough understanding of security concepts of multiuser enter-
prise web applications, and they usually choose to implement those security requirements by
themselves as they discover and learn them over time.

 Such an approach, however, results in legacy in‐house security solutions that are lacking some
fundamental security enforcements that must exist in any typical multiuser web application and

http://www.wrox.com/go/beginningspring

332 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

that have not been thoroughly tested against attacks. It is much wiser to employ a prebuilt security
framework that is specialized to handle all those security requirements and has extension points so that
application‐specific customizations can easily be added onto it. Such an off‐the‐shelf security solution
is also much more robust compared to a legacy solution because it is used by hundreds of thousands of
different projects. All those different projects probably run over various target platforms, which become
natural test and verification environments of that security framework. This same level of testing and
verification is definitely hard, though not impossible, to achieve with any legacy in‐house solution.

This chapter examines one of those ready‐to‐use security frameworks. Spring Security Framework is
specialized for providing multiuser web applications that employ Spring as their backbone with their
security requirements.

Why Spring Security?

Spring Security is a very popular and widely used security framework in Spring‐enabled enterprise
web applications. The Java and Java EE platforms have offered some standards‐based solutions,
namely Java Authentication and Authorization Service (JAAS) and web.xml security, to handle
security requirements of those applications. However, they have failed at satisfying some of the most
fundamental needs of those kinds of applications.

Security requirements can be divided into two main feature sets: authentication and authorization.
Authentication means letting users present their identities to the target application and validating those
presented identities against trusted credentials information available on the system. Authorization deals
with what operations authenticated users are allowed or not allowed to perform in the target application.

JAAS is the standard security application programming interface (API) of the Java platform.
However, it depends heavily on policy file configuration in the target Java Runtime Environment
(JRE) onto which the web application is deployed. This means that when you want to deploy a tar-
get web application to several different JREs, you have to arrange policies of each of those JREs,
which creates a very inconvenient and unportable deployment environment. The authentication part
of JAAS is based on the pluggable authentication module (PAM) concept, and various authentica-
tion mechanisms can be used even in the same application. However, you need to implement your
module so that it will obtain user credentials both from the user request and the user repository
by itself. There is no ready‐to‐use module implementation for various authentication methods, and
there is no code available to access different user repositories. The authorization part of JAAS is also
based on fine‐grained permissions that are defined in policy files and checked against the codebase.
Unfortunately, it doesn’t provide a high‐level authorization API to protect against various kinds of
resources, such as URL, method invocation, or domain objects.

Web.xml security has a similar story. It is defined by the Servlet Specification and implemented by
any Java EE–compliant web container by default. However, the specification has left open how
user information will be obtained from user repositories, and the result is that different applica-
tion servers have different APIs to provide access to user repositories during the authentication
process. You may either need to create an application server–specific configuration or code against
a server‐specific API to integrate your application with the web.xml security part of the target web
container. Consequently, it is not possible to create a ready‐to‐use web artifact bundle that can be
dropped into the web container and be run without any modification in the target environment.

Features of Spring Security ❘ 333

The authorization part of web.xml security is also missing some critical features. It only has a pro-
tection mechanism against URL resources, which completely leaves out method‐level and domain
object–level authorization requirements, which are features that many applications need in addition
to having protection for URL resources. URL resource protection is based on request path pattern
matching; however, it is not very advanced in handling various kinds of request paths that have dif-
ferent parameters at run time. As a result, developers usually develop their own authentication and
authorization subsystems that partly depend on web.xml security.

Since its early days, the aim of the Spring Security Framework has been to enable developers to cre-
ate a portable web artifact that can easily be deployed over several different target web containers
without any modification to the artifact or application server. It provides lots of authentication and
authorization features that can be used out of the box, or you can easily customize or extend them
through pluggable extension points in the framework. All those customizations and extensions can
be bundled into a WAR file and deployed into different application servers.

FeatureS oF Spring Security

Spring Security Framework offers the following features:

 ➤ It supports several different authentication methods, such as classical login form–based
authentication, authentication with X509 user certificates, LDAP authentication, Windows
authentication over legacy NTLM or Kerberos methods, and basic and digest authentica-
tions. You can employ several different authentication methods in the same application as
well. For example, a group of secure web resources could be available for access after form‐
based authentication, and some other group of secure web resources could be accessed after
basic authentication.

 ➤ Authentication methods and access to user repositories are completely independent from each
other. You can perform login form–based authentication while retrieving your user infor-
mation from the active directory or relational database. It is also possible and very easy to
implement your own user repository access logic and configure it in the framework.

 ➤ It is very well integrated with several different single sign‐on (SSO) solutions, such as Central
Authentication Service (CAS), OpenID, Siteminder, and OAuth. Authentication can be del-
egated completely to those SSO systems, whereas Spring Security handles the authorization
parts by itself.

 ➤ It provides anonymous authentication or guest login. That way, a valid authentication token
is always available in the security context, and configuration of secure methods is more con-
sistent looking.

 ➤ It has built‐in remember‐me support so that you can close your browser and reopen it to be
automatically logged in to your application. Spring Security can also differentiate among
different kinds of authentications so that users who are automatically logged in using
 remember‐me support could be prevented from accessing some of the more secure parts of
the system. Access to such areas could be enforced with interactive authentication only.

 ➤ It has integration support with javax.servlet.request.HttpServletRequest so that
the getRemoteUser() and isUserInRole(String) methods will work with the underlying

334 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

Spring Security–provided authentication information. It is also possible to delegate authenti-
cation to web.xml security or JAAS so that Spring Security deals exclusively with the authori-
zation part.

 ➤ You can enforce your users to access your web application using secure HTTP only. It is also
possible to make this enforcement partly in the application so that some resources are acces-
sible without SSL and some others are accessible only using HTTPS.

 ➤ It has built‐in support for keeping passwords encrypted in user repositories. That way, your
users’ passwords aren’t exposed to your developers or database admins. It also has a passport
to prevent dictionary attacks using system‐wide or user property–specific salt mechanisms.

 ➤ It provides built‐in protection against session fixation attacks by changing the HTTP session
used during the login process. It also tracks logged‐in users’ sessions and provides concurrent
user session management so that you can restrict your users’ maximum concurrent access
counts from different locations.

 ➤ It is possible to separately control access to URL resources, service method calls, and domain
objects. You can also add roles to logged‐in users temporarily at run time so that they can
access some restricted areas with those additional roles.

conFiguring and uSing Spring Security

Spring Security is based heavily on servlet filters for proper functioning. Servlet filters are used to
intercept and transform requests to web resources. There might be several different filters that may
intercept requests to the same web resource. They can completely change the response, or even redi-
rect the request to a different location. You can find more information about them at http://docs
.oracle.com/javaee/6/tutorial/doc/bnagb.html.

Each different security filter has a specific role in the framework. Some filters depend on other fil-
ters to function properly. Therefore, you need to configure them in a specific order. This section
examines the filters one by one and describes what roles they perform in the framework. Figure 12-1
shows security filters and their roles in the framework.

When a web request arrives, it flows through the security filters. First, it hits ChannelProcessingFilter.
This filter checks the web request’s HTTP scheme, and if the request is asked to be HTTPS and the
arriving request’s scheme is HTTP, the request is redirected to HTTPS.

ConcurrentSessionFilter performs concurrent user session management.

SecurityContextPersistenceFilter stores the authentication token in HttpSession in between
requests, and puts it into SecurityContextHolder at the beginning of the next request so that the
authentication token becomes available to the application during the request processing.

If the request URL matches the logout URL (the default is /j_spring_security_logout),
LogoutFilter performs the logout, clears the authentication token, invalidates HttpSession, and
redirects the user to the logout success URL.

Authentication is performed by UsernamePasswordAuthenticationFilter, which is one of the
concrete subclasses of AbstractAuthenticationProcessingFilter. There can be one of its

http://docs.oracle.com/javaee/6/tutorial/doc/bnagb.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnagb.html

Configuring and Using Spring Security ❘ 335

Figure 12-1

HTTP Request

secureWebPage.jsp

It manages
user’s session

ChannelProcessing
Filter

ConcurrentSession
Filter

SecurityContext
PersistenceFilter

LogoutFilter

UsernamePassword
AuthenticationFilter

SecurityContextHolder
AwareRequestFilter

RememberMe
AuthenticationFilter

Anonymous
AuthenticationFilter

ExceptionTranslation
Filter

FilterSecurity
Interceptor

Performs
logout

Integrates Spring security
with web container so

that request getRemoteUser(),
isUserInRole()

methods return from
SecurityContext

Translates security
exceptions and

redirects the user to
related error pages

Enforces secure
(HTTPS) access

Stores
authentication in

HttpSession
between requests

Performs
authentication

task

Checks if
remember-me cookie

exists and triggers
remember-me
authentication

Performs
anonymous

authentication

Performs
authorization of

target web
resource

different implementations in that place according to the authentication method. If a login form–
based authentication method is preferred, UsernamePasswordAuthenticationFilter is configured
so that it grabs the username and password information from the URL when the request path is
/j_spring_security_check, and it performs authentication.

SecurityContextHolderAwareRequestFilter wraps the current HttpServletRequest object
so that its getRemoteUser() and isUserInRole(String) method invocations could return

336 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

information available in Spring Security Context. That way, application code that depends on
the Servlet API security check method will continue to function properly without noticing Spring
Security beneath.

RememberMeAuthenticationFilter checks cookies sent from the client. If a remember‐me cookie
exists and if it is valid, the remember‐me authentication is performed.

AnonymousAuthenticationFilter creates a guest authentication token, unless there is a valid
authentication token at that point, and places it into org.springframework.security.core
.context.SecurityContext.

ExceptionTranslationFilter maps security exceptions to different URLs so that the user
request is redirected to a target web page if a specific security exception occurs during the request
processing.

FilterSecurityInterceptor is the last one in the security filter chain, and it performs authoriza-
tion of web resources so that only allowed users will be able to access a secure web resource that is
requested.

Some other filters may come and go, but most of the time any web request flows through
the previously described filters. Actually, those filters create a layer above the core features
of Spring Security Framework. For example, UsernamePasswordAuthenticationFilter
doesn’t perform whole authentication, but it delegates the work to AuthenticationManager
at some point. Similarly, FilterSecurityInterceptor delegates the authorization to
AccessDecisionManager. The configuration of the framework consists of configuring those
filters with all their dependencies. Because of all those dependencies and the necessity to config-
ure those filters in a very specific order, Spring Security Framework provides some conventions
and facilities so that you can easily and correctly configure security features in applications, as
shown in the next Try It Out.

try it out Configuring and Using Spring Security

In this Try It Out, you create a web application and configure Spring Security in that web application.
You can find the source code within the project named configuring‐and‐using‐spring‐security in
the code downloads. To begin follow these steps:

 1. Create a Maven web application project using the maven‐archetype‐webapp archetype.

 2. Add the following Spring Security dependencies into the pom.xml of the project:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-web</artifactId>
 <version>3.2.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>3.2.5.RELEASE</version>
</dependency>

Configuring and Using Spring Security ❘ 337

 3. Add the org.springframework.web.context.ContextLoaderListener listener element into the
web.xml file of the project:

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

 4. Create an applicationContext.xml file in the WEB‐INF folder of the project.

 5. Add the following namespace element into the <beans> element of the applicationContext.xml
file to enable the Spring Security namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:security="http://www.springframework.org/schema/security"
 xsi:schemaLocation="http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.2.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

</beans>

 6. Add the following Spring Security namespace elements to configure Spring Security with minimal
configuration settings:

<security:user-service id="userService">
 <security:user name="user1" password="secret" authorities="ROLE_USER"/>
 <security:user name="user2" password="secret" authorities="ROLE_USER,ROLE_EDITOR"/>
</security:user-service>

<security:authentication-manager>
 <security:authentication-provider user-service-ref="userService"/>
</security:authentication-manager>

<security:http pattern="/favicon.ico" security="none"/>

<security:http auto-config="true">
 <security:intercept-url pattern="/**" access="ROLE_USER"/>
</security:http>

 7. Add the following filter configuration into the web.xml file of the project:

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>

<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

338 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

 8. You can easily run and test your web application’s security features by running it within a Jetty
server. Jetty can be run using Maven. Add the following Jetty plug‐in configuration into the
<build><plugins>...</plugins></build> part of the pom.xml file:

<plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.2.1.v20140609</version>
 <configuration>
 <scanIntervalSeconds>2</scanIntervalSeconds>
 <webApp>
 <contextPath>/</contextPath>
 </webApp>
 </configuration>
</plugin>

 9. Start Jetty with the jetty:run Maven goal.

 10. Try to access the web application from your favorite browser using http://localhost:8080 as
the address.

 11. Enter username user1 and password secret into the login form and click the Login button to log in
to the application. You should see the "Hello World!" message.

How It Works

First you created a web application project using the Maven archetype maven‐archetype‐webapp, and
you added the minimum necessary Spring Security dependencies into the pom.xml file so that it runs
with a login form–based authentication mechanism.

In the second step you needed to configure Spring and bootstrap it in the web application. To achieve
this you added the ContextLoaderListener element into the web.xml file. ContextLoaderListener
creates Spring WebApplicationContext by loading applicationContext.xml, which is located in the
WEB‐INF folder during web container startup.

Spring Security Filters don’t need to be defined directly in the web.xml file. Indeed, it would be too
impractical to do so because of their dependencies to other beans and their various configuration options.
Instead, you will define those filters and other security‐related beans in a Spring‐bean configuration file.
However, it would still be very difficult and error prone to try to define all those filters and their various
dependencies one by one. To ease all those security‐related bean configuration issues, Spring Security
offers security namespace support. You enabled that security namespace by adding a related XSD schema
location configuration into the <beans> element of the applicationContext.xml file.

The first element, <security:user‐service>, creates a user repository bean named userService of
type org.springframework.security.core.userdetails.UserDetailsService. It actually con-
tains two sample users so that your configuration will work without needing any relational database or
Active Directory integration to provide user information. The job of the userService bean is to return
the org.springframework.security.core.userdetails.UserDetails object given its username.

The second element of security configuration is <security:authentication‐manager>. It defines a
bean of type AuthenticationManager, which coordinates the actual authentication process. It contains

http://localhost:8080

Configuring and Using Spring Security ❘ 339

a child element of <security:authentication‐provider/>, which also refers to the userService
bean you previously defined. This element adds a bean of type org.springframework.security
.authentication.AuthenticationProvider, which compares the given password of a user against
the password property of the UserDetails object obtained via the userService bean.

The third and last element is <security:http/>. It creates a Spring Security Filter chain bean in Spring
ApplicationContext. Its auto‐config="true" element by default enables several security‐related fea-
tures, such as login form–based authentication, autogenerated login form, logout, guest authentication,
and so on. The <security:http> element has a child element of <security:intercept‐url/>. It con-
figures the FilterSecurityInterceptor filter bean in the security filter chain by defining what URL
resources could be accessible with which roles owned by the current authenticated user.

The <security:http pattern="/favicon.ico" security="none"/> element is added to make
Spring Security discard web requests coming for favicon.ico. Without this, the Firefox browser
throws a 404 not found error.

At this point you’d finished the security‐related bean configuration. However, you needed a hook‐up
mechanism so that web requests coming into the web container will first pass through your Spring
Security filter chain. For this purpose, Spring provides a special javax.servlet.Filter implementa-
tion of type org.springframework.web.filter.DelegatingFilterProxy. This filter actually acts
as a proxy in front and delegates web requests to the Spring Security Filter chain bean defined by the
<security:http> element. Figure 12-2 illustrates this flow.

Figure 12-2

Web
client

Delegating
FilterProxy

Web
resource

ApplicationContext

Filter
1

Filter
2

Filter
n

Servlet container

springSecurityFilterChain

Its name must be defined exactly as springSecurityFilterChain in the web.xml file because
that same name is also used by Spring Security while defining a filter chain as a bean in the
ApplicationContext via the <security:http> element. When the request arrives in the
springSecurityFilterChain bean, it passes it into Spring Security Filters enabled within the element.
At the end of the chain, the FilterSecurityInterceptor filter bean is located, and its job is to per-
form access control of URL resources. You added only one <security:intercept‐url/> element
whose pattern is /** and access attribute is ROLE_USER. This means that when a request arrives into
FilterSecurityInterceptor, it should first be matched against a given pattern. Here, any web
request matches against pattern /**. When the match occurs, the request is allowed to access the URL
resource if the current user’s assigned roles contain ROLE_USER.

340 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

To test your security configuration, you added jetty‐maven‐plugin and configured it so that the
contextPath of the application will be / when Jetty is run. You issued the jetty:run Maven goal to
run Jetty and entered http://localhost:8080/ as the URL to your browser to access the welcome
page of the web application. Because the <security:intercept‐url/> element disallows unauthor-
ized access, you were presented with a login page generated by Spring Security Framework. Spring
Security generates a login form to help you rapidly configure and start using the framework in applica-
tions. In the “Customizing the Login Page” section later in this chapter, you find out how to replace this
 autogenerated login form with a custom login form. When you enter user1 as the username and secret
as the password, you are able to log in to the application to see the welcome page message in the browser.

underStanding the Fundamental Building BlockS
oF Spring Security

Before going into detail about how authentication and authorization work, you should have some
more information about some fundamental pieces in Spring Security Framework.

Figure 12-3 shows some basic elements of the Spring Security domain model and their relationships
between the elements. The UserDetailsService interface was previously mentioned. This inter-
face abstracts access to the user repository from which user data can be obtained in the form of the
UserDetails interface. Its default implementation class is org.springframework.security.core
.userdetails.User. User class represents user‐specific data in the system. This data is used during
the authentication process and can later be accessed through the org.springframework.security
.core.Authentication object available in the system. The org.springframework.security
.core.GrantedAuthority interface abstracts roles assigned to users to represent their grants to
secure resources. A simple implementation of GrantedAuthority is the org.springframework
.security.core.authority.SimpleGrantedAuthority class in the framework.

Authentication information is represented by the Authentication interface. It is created during the
authentication process and kept within a SecurityContext object during request handling. Several
different Authentication implementations exist, and each corresponds to the authentication method
available in the framework. For example, the org.springframework.security
.authentication.UsernamePasswordAuthenticationToken implementation is used during login
form authentication. That token is created by UsernamePasswordAuthenticationFilter, and is
authenticated by org.springframework.security.authentication.dao
.DaoAuthenticationProvider. The Authentication object contains current user information in the
form of UserDetails, user credentials, and access rights in the form of GrantedAuthority objects.

SecurityContext abstracts a simple data holder in which Authentication data is kept dur-
ing request handling. It is stored in HttpSession in between two different requests. When
a request arrives, SecurityContextPersistenceFilter checks whether HttpSession con-
tains a SecurityContext. If the SecurityContext exists within HttpSession, then that
SecurityContext is put into SecurityContextHolder. SecurityContextHolder keeps
SecurityContext in a java.lang.ThreadLocal variable within itself. That way, any code block
can easily access the current authentication token without passing it as method parameters
through several method invocations if one is available during the current request. At the end of

http://localhost:8080/

authenticating Users ❘ 341

 Figure 12-3

SecurityContextHolder

SecurityContext
Authentication authorities

<<realize>>

<<realize>>

User

SimpleGrantedAuthority

GrantedAuthority

getAuthority() : String

authentication

SessionContextPresistenceFilter

UserDetailsService

loadUserByUsername(username : String) : UserDetails

isAuthenticated() : boolean
getCredentials() : Object

principal

UserDetails

getUsername() : String
getPassword() : String
getAuthorities() : Collection

1

1
0..*

1

1

1

context
1

1

1 1

1

1

 Securitycontext With a valid authentication token

 For the Spring Security Framework, it is enough to see that there is a valid
 Authentication token within the SecurityContext that is accessible from
 SecurityContextHolder during request processing. Spring Security doesn’t deal
with how this valid Authentication token is placed into that SecurityContext
object.

the current request, SecurityContextPersistenceFilter clears out SecurityContextHolder
after storing the current SecurityContext in HttpSession until the next request arrives from the
current user.

 authenticating uSerS

 The authentication process is triggered by a concrete implementation of
 AbstractAuthentication ProcessingFilter in the chain, and it’s coordinated by the
 AuthenticationManager object behind the scenes. The following sections explain what is going on
during this process by describing unsuccessful and successful login fl ows.

342 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

unsuccessful login Flow
When a request comes to a secure resource, FilterSecurityInterceptor at the end of the
filter chain intercepts the request and delegates access control to AccessDecisionManager.
AccessDecisionManager is actually a coordinator for authorization. You find out what is going on
during the authorization process in detail later in this chapter in the “Authorizing Web Requests”
 section. At this point, it is enough to know that AccessDecisionManager throws org
.springframework.security.access.AccessDeniedException when the access control
check fails.

ExceptionTranslationFilter catches the AccessDeniedException exception thrown
and decides to redirect the request to the authentication entry point, which by default is
/spring_security_login.

When the request is redirected to the authentication entry point, a login form is displayed. The user is asked to
provide his username and password. The form is submitted to a special URL /j_spring_ security_check.
When a request comes with that URL path, UsernamePasswordAuthenticationFilter intercepts the
request, creates a UsernamePasswordAuthenticationToken, and delegates the authentication process to
AuthenticationManager.

AuthenticationManager is actually a coordinator for the authentication process. There might be
several AuthenticationProvider objects registered to handle different kinds of authentication
tokens. AuthenticationManager asks each AuthenticationProvider if it can authenticate the
current token. If the AuthenticationProvider doesn’t recognize the token, it returns null so that
the next provider is asked for.

DaoAuthenticationProvider, which is registered by default when the <security:
authentication‐provider/> element is put into <security:authentication‐manager>, recognizes
UsernamePasswordAuthenticationToken. It fetches UserDetails using the UserDetailsService
object and compares credentials of UserDetails to those that the user entered. If the password
comparison fails, it throws org. springframework.security.core.AuthenticationException.
When that exception is thrown, UsernamePasswordAuthenticationFilter forwards the request to
the authentication failure URL, which is /spring_security_login?login_error by default.

Figure 12-4 depicts the unsuccessful login flow.

Successful login Flow
The scenario for a successful login flow is the same as the one described in the preceding section until it
reaches the point of password check‐in with DaoAuthenticationProvider. If two passwords match,
DaoAuthenticationProvider creates a new valid UsernamePasswordAuthenticationToken and
returns it. UsernamePasswordAuthenticationFilter notices that authentication is successful, places
a valid authentication token into SecurityContext via SecurityContextHolder, and redirects the
request to the target URL, which is asked for before the authentication flow begins. Sometimes, the target
URL might not be available. For example, the user might have logged in by directly accessing the login
page or the security configuration doesn’t allow storing the target URL in HttpSession. In such a case,
UsernamePasswordAuthenticationProcessingFilter redirects to the default target URL.

Figure 12-5 depicts the successful login flow.

authenticating Users ❘ 343

Figure 12-4

1: HTTP request
to editor.jsp

3: Throws
AccessDeniedException

AccessDecision
Manager

FilterSecurity
Interceptor

UsernamePassword
Authentication

Filter

Authentication
Manager

Exception
TranslationFilter

7: Throws
AuthenticationException

6: Tries to
authenticate user

2: Checks if secure
resource is accessible

5: Submit form
to: /j_spring_security_check

4: Redirects to authentication
entry point: /spring_security_login

6: Redirects to authentication failure
url: /spring_security_login?login_error

Figure 12-5

1: HTTP request
to editor.jsp

3: Throws
AccessDeniedException

AccessDecision
Manager

FilterSecurity
Interceptor

UsernamePassword
Authentication

Filter

Authentication
Manager

SecurityContextHolder

Exception
TranslationFilter

7: Returns a valid
Authentication

token

6: Tries to
authenticate user

2: Checks if secure
resource is accessible

5: Submit form
to: /j_spring_security_check

4: Redirects to authentication
entry point: /spring_security_login

8: Stores
Authentication

token
9: Redirects to

defaultTargetUrl:/

9: Redirects to
targetUrl if exists

344 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

anonymous authentication
An anonymous authentication mechanism creates an org.springframework.security
. authentication.AnonymousAuthenticationToken and validates it automatically. The default
principal user and granted authority that are accessible from this token are anonymous String,
and the GrantedAuthority object with the ROLE_ANONYMOUS name. Anonymous authentication is
triggered by AnonymousAuthenticationFilter unless there is an Authentication token in the
SecurityContext when the request arrives.

Conceptually, authenticating a request anonymously is no different than not authenticating it at all,
but it guarantees that there will always be an Authentication token in the SecurityContext, and
the <security:intercept‐url> definitions for some public URLs will be made more easily and
in a consistent manner in the configuration. The following code snippet shows how the anonymous
authentication mechanism is configured:

<security:http>
 <security:anonymous/>
</security:http>

Anonymous authentication is enabled by adding the <security:authentication/> element in
<security:http>. You can change the default principal and role names of the anonymous authentica-
tion token using the username and granted‐authority attributes of the <security:anonymous/>
element.

customizing the login page
You have already seen that Spring Security automatically generates a login page for quick bootstrap
of the framework. However, you will probably replace it with your custom login page, which is quite
easy. First you have to create an HTML or JSP page that has a form similar to the following:

 <form action="j_spring_security_check" method="post">
 Username:<input name="j_username" type="text" />

 Password:<input name="j_password" type="password" />

 <input type="submit" value="Login">
 </form>

As you can see, the form should be posted to /j_spring_security_check URL with the
j_username and j_password input elements that carry username and password values entered
by the user. It is important that the form method should be POST. Spring Security does accept
GET requests made to that URL. Spring Security also expects a URL to which the user will
be forwarded when authentication fails. People usually don’t create a separate page for this;
instead, they use the same login page during authentication failure. After creating a login form
page and a page that will be used when authentication fails, you need to add the following
<security:form‐login/> namespace element into <security:http> as follows so that the
custom login page can be recognized by the framework:

<security:http>
 <security:form-login login-page="/login.jsp"

authenticating Users ❘ 345

 authentication-failure-url="/login.js?login_error"/>
</security:http>

You can also customize the login form processing URL, username, and password input elements’
names as well via the <security:form‐login> element’s related attributes.

The important point during form login page customization is that the login page and authentica-
tion failure URLs should be publicly accessible. This is because the login page and the authentica-
tion failure URLs will also be checked by FilterSecurityInterceptor for access control, and an
intercept‐url pattern like /** will definitely match with those two URLs as well, resulting in an
AccessDeniedException with a redirect to the login page. At some point, you will come up with a
message such as Page is not redirecting properly in your browser.

You have two solutions for this problem, and you can employ either one. The first option is to
enable anonymous authentication and add an intercept‐url with the ROLE_ANONYMOUS value in
its access attribute for the login page. This makes the login page accessible for unauthenticated
requests as well:

<security:http>
 <security:form-login login-page="/login.jsp"
 authentication-failure-url="/login.js?login_error"/>
 <security:anonymous/>
 <security:intercept-url pattern="/login.jsp" access="ROLE_ANONYMOUS"/>
 <security:intercept-url pattern="/**" access="ROLE_USER"/>
</security:http>

You can also define this intercept‐url with the access attribute value IS_AUTHENTICATED_
ANONYMOUSLY as shown here:

<security:intercept-url pattern="/login.jsp"
 access="IS_AUTHENTICATED_ANONYMOUSLY"/>

The important thing here is that the order among intercept‐url elements is important, and they
must be ordered from the most specific pattern to the most general one.

The second solution is to disable security for requests that try to access the login page. You can add
several different <security:http> elements with different pattern attributes. The following exam-
ple shows this:

<security:http pattern="/login.jsp" security="none"/>

<security:http>
 <security:form-login login-page="/login.jsp"
 authentication-failure-url="/login.js?login_error"/>
 <security:intercept-url pattern="/**" access="ROLE_USER"/>
</security:http>

Similar to the intercept‐url elements, the order of the <security:http> elements is also impor-
tant. They must also be ordered from the most specific pattern to the most general one. If you don’t
use the pattern attribute, the <security:http> element matches with any URL.

346 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

logout process
LogoutFilter manages the logout process, and you can configure it by adding the <security:logout/>
element in <security:http> as follows:

<security:http>
 <security:logout/>
</security:http>

By default, logout is triggered with /j_spring_security_logout URL, and the application is
redirected to / after logout. However, both of them can be customized using the logout‐url and
 logout‐success‐url attributes of the element.

When logout‐url is requested, LogoutFilter intercepts it and starts the logout process. It
invokes a sequence of registered LogoutHandler beans and delegates them to an implementation of
LogoutSuccessHandler at the end.

The <security:logout> element registers SecurityContextLogoutHandler and
SimpleUrlLogoutSuccessHandler instances to the LogoutFilter instance.
SecurityContextLogoutHandler clears Authentication in SecurityContext and also invalidates
HttpSession. SimpleUrlLogoutSuccessHandler is called after processing LogoutHandlers, and it
redirects to a URL specified with logout‐success‐url.

accessing userdetails using JdBc
Spring Security accesses UserDetails information via the UserDetailsService interface. Therefore,
user information can be fetched from any location, such as the Active Directory or a relational data-
base. Spring Security provides built‐in support for keeping user information in a relational database.
The following Try It Out shows how UserDetails information can be accessed using JDBC API.

try it out accessing UserDetails Using JDBC

In this Try It Out, you configure Spring Security so that it will access UserDetails information via
JDBC. You can continue from where you left off in the preceding Try It Out, and you can find the
source code within the project named accessing‐user‐details‐using‐jdbc in the code downloads.
To begin follow these steps:

 1. Add the following dependencies to the pom.xml file:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.175</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

authenticating Users ❘ 347

 2. Enable the JDBC namespace by adding the following parts into the <beans> element of the
 applicationContext.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:security="http://www.springframework.org/schema/security"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-4.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.2.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

</beans>

 3. Create a security.sql script file in the classpath with the following content:

create table users(
username varchar_ignorecase(128) not null primary key,
password varchar_ignorecase(512) not null,
enabled boolean not null);

create table authorities (
username varchar_ignorecase(128) not null,
authority varchar_ignorecase(128) not null);

create unique index idx_auth_username on authorities (username,authority);

create table groups (
id bigint not null,
group_name varchar_ignorecase(128) not null);

alter table groups add constraint pk_groups primary key(id);

create table group_authorities (
group_id bigint not null,
authority varchar_ignorecase(128) not null,
constraint fk_group_authorities_group foreign key(group_id) references groups(id));

create table group_members (
id bigint not null,
username varchar_ignorecase(128) not null,
group_id bigint not null,
constraint fk_group_members_group foreign key(group_id) references groups(id));

alter table group_members add constraint pk_group_members primary key(id);

insert into users(username,password,enabled) values ('user1','secret',true);
insert into users(username,password,enabled) values ('user2','secret',true);

insert into authorities(username,authority) values ('user1','ROLE_USER');

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/security
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-4.0.xsd
http://www.springframework.org/schema/jdbc/spring-jdbc-4.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

348 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

insert into authorities(username,authority) values ('user2','ROLE_USER');
insert into authorities(username,authority) values ('user2','ROLE_EDITOR');

 4. Define a javax.sql.DataSource bean with a <jdbc:embedded‐database> element in the
 applicationContext.xml file as follows:

<jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script execution="INIT" location="classpath:security.sql"/>
</jdbc:embedded-database>

 5. Remove the <security:user‐service> element and add the <security:jdbc‐user‐service>
element in the applicationContext.xml file as follows:

<security:jdbc-user-service data-source-ref="dataSource" id="userService"/>

 6. Start Jetty with the jetty:run Maven goal.

 7. Try to access the web application from your favorite browser using the http://localhost:8080
address.

 8. Enter the username user1 and the password secret into the login form and click the Login button to
log in to the application. You should see the Hello World! message.

How It Works

First you defined a dataSource bean with the <jdbc:embedded‐database/> element of Spring JDBC
namespace support. It creates an in‐memory H2 database for demonstration purposes. You also created
an SQL script file called security.sql and placed it into the project classpath. During initialization,
the script is loaded by the database. The SQL script creates the tables shown in Figure 12-6, and it
populates the users and authorities tables with two sample users.

Figure 12-6

users authorities

groups group_authoritiesgroup_members

• usersname varchar • usersname varchar

• id bigint • group_id bigint

• authority_ varchar

• authority varchar

• id bigint

• password varchar

• username varchar
• group_id bigint

• group_name varchar

• enabled boolean

Instead of creating a UserDetailsService bean that looks up users from memory, you defined one
using the <security:jdbc‐user‐service/> element. You also injected the dataSource bean so that it
can connect to the database.

The security schema you just created represents what is expected by the JDBC implementation of
the UserDetailsService bean as a minimum. It is always possible to have different tables in your

http://localhost:8080

authenticating Users ❘ 349

application. In such a case, it is enough to customize related queries of the userService bean.
<security:jdbc‐user‐service> has three attributes for this purpose: users‐by‐username‐query,
authorities‐by‐username‐query, and group‐authorities‐by‐username‐query.

Spring Security expects users‐by‐username‐query to return the username, password, and enabled
properties of UserDetails given username as a query parameter. It expects authorities‐by‐
username‐query to return username and authority given username as a query parameter, and finally
group‐authorities‐by‐username query is expected to return group_id, group_name, and authority
given username as the input parameter.

However, only authority names are used from the second and third queries. Therefore, as long as you
return authority as the second element from the second query and as the third property in the third
query, you can return whatever you want in place of other properties in those queries.

By default, the authority group feature is disabled. If you want to enable it you need to provide a query
string with the group‐authorities‐by‐username attribute of the <security:jdbc‐user‐service>
element even if the query is the same as the default one.

encrypting passwords
One of the most common security weaknesses observed in applications is that user passwords are
kept in clear text in user repositories, such as relational databases. Anyone who has access rights to
the repositories can read the passwords. This definitely disrupts the privacy of users. No passwords
should be kept in clear‐text format.

Luckily, Spring Security provides an easy mechanism to keep passwords encrypted in user reposito-
ries. The main interface for this purpose is org.springframework.security.crypto.password
.PasswordEncoder. It provides an encode method that accepts a clear‐text password with a ran-
domly generated salt value and returns an encrypted password. The salt value is used as a safeguard
against dictionary attacks. If an attacker steals encrypted passwords, he might iterate over words in
a dictionary to try to match their encrypted forms against the stolen encrypted passwords. To com-
plicate this process, you can add a secret salt value during encryption. Spring Security provides the
org.springframework.security.authentication.dao.SaltSource interface for this purpose.

Spring provides two different implementations of the salt source interface: org.springframework
.security.authentication.dao.SystemWideSaltSource and org.springframework.security
.authentication.dao.ReflectionSaltSource. SystemWideSaltSource uses the same secret value
for all passwords; ReflectionSaltSource obtains the salt value from a specific property of the cur-
rent UserDetails object. That way, each user’s password is encrypted with a different salt value.

You can enable the password‐encoding feature by adding the <security:password‐encoder> ele-
ment in <security:authentication‐provider> as follows:

<security:authentication-provider user-service-ref="userService">
 <security:password-encoder hash="sha-256">
 <security:salt-source system-wide="keep it secret"/>
 </security:password-encoder>
</security:authentication-provider>

<security:password‐encoder> has the hash attribute, which accepts different encoding algo-
rithms available in the framework. You can also implement your own encoding scheme and use it by

350 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

defining it as a bean in the ApplicationContext and referring to it from the
<security:password‐encoder> element with the ref attribute.

The important point to note is that the password entered by the user is encrypted on the server side
before the authentication check. Therefore, it is transferred over the network in clear‐text format,
such as during login form submission. Hence, authentication methods in which the user enters the
password should only be used over a secure transport layer, such as HTTPS.

remember‐me Support
A very common security feature is to let the user close his browser without logging out from the sys-
tem; when he opens his browser again, he is automatically logged in to the application. This func-
tion is performed by Spring Security with remember‐me authentication. You enable it by adding the
<security:remember‐me> element into <security:http> as follows:

<security:http >
 <security:remember-me/>
</security:http>

Remember‐me support is based on a cookie mechanism. A cookie containing the username is
installed from the server to the client during the login process. When the user closes his browser
and then opens it again, this cookie stored in the client machine is sent to the server. If no valid
Authentication token exists in SecurityContext, RememberMeAuthenticationFilter
extracts the username from the cookie and creates a RememberMeAuthenticationToken.
RememberMeAuthenticationProvider registered to AuthenticationManager is responsible for
automatically validating this Authentication token, and the user is logged in without being asked
for a password. Remember‐me cookies are valid for a set period of time, and they are invalidated
when explicit logout is triggered via LogoutFilter.

The remember‐me cookie installed in the client will be active for two weeks by default. You can cus-
tomize it via the token‐validity‐seconds attribute as follows:

<security:http >
 <security:remember-me token-validity-seconds="1209600"/>
</security:http>

Storing the username in the client within a cookie can be considered a security weakness because
an attacker may steal cookies stored in the client machine, decode them, and learn the username.
Learning one of the usernames existing in the target system might be a starting point for the attack,
even though that cookie had expired long before the attempted attack. Spring Security has a solu-
tion against this threat, too. It creates a token and replaces this token with the username in the
 remember‐me cookie. The token and username pair is stored in the relational database table so
that when the next request arrives with the cookie available, it extracts a token and obtains the
corresponding username from the database table used for storing the token. This table is called
 persistent_logins, and you can create it with the following DDL SQL statement:

create table persistent_logins (
 username varchar(128) not null,
 series varchar(64) primary key,

authenticating Users ❘ 351

 token varchar(64) not null,
 last_used timestamp not null);

To configure the remember‐me mechanism to use the persistent token mechanism, you need to inject
the javax.sql.DataSource bean into RememberMeAuthenticationFilter. You can do this via the
<security:remember‐me> element’s data‐source‐ref attribute:

<security:http>
 <security:remember-me data-source-ref="dataSource"/>
</security:http>

The persistent token is changed during every request so that any theft of the remember‐me cookie
isn’t useful for the attacker if another request by the user is performed just after the theft, because
the stolen token expires and becomes useless when the user makes the new request.

user Session management
Spring Security provides two separate session management features for web applications. The
first one is support for invalidating HttpSession used during login, either with creating or
changing its ID just after the login process. This is a protection against session fixation attacks.
With session fixation attacks, a malicious user causes an HttpSession in the web application
to be created. He then obtains the session ID and sends a legitimate user a URL containing this
ID. When the legitimate user logs in using that URL, the malicious user also gains access to the
system through that HttpSession. Web applications should never allow the HttpSession that
is used during the login phase to be used after the login step. Web applications should either
create a new HttpSession or change the session ID after login. You configure session fixation
prevention by placing the <security:session‐management> element in <security:http> as
follows:

<security:http>
 <security:session-management/>
</security:http>

The <security:session‐management> element has a session‐fixation‐protection attri-
bute, which can accept one of the following values: none, newSession, migrateSession, or
changeSessionId. The default value is none; it doesn’t touch the current HttpSession that was
created before the login process. When newSession is used, a new HttpSession is created after
login. If migrateSession is used, a new HttpSession is created, and attributes in the old one are
moved into the new one. The last value, changeSessionId, has been introduced recently. It is based
on Servlet API 3.1. HttpServletRequest has the changeSessionId() method, and it just replaces
the old session ID with a new one in the current HttpSession object.

The second feature is managing the number of concurrent sessions opened by the same user.
Spring Security can track how many open sessions belong to a user, and you can limit the num-
ber. You enable the mechanism by adding the <security:concurrency‐control> element in
<security:session‐management>. It provides two different behaviors. One behavior terminates
the oldest session of the user when the maximum allowed session limit is exceeded. The following
code snippet shows how you can enable this behavior:

352 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

<security:session-management>
 <security:concurrency-control
 error-if-maximum-exceeded="false"
 expired-url="/sessionExpired.jsp" max-sessions="1" />
</security:session-management>

When the error‐if‐maximum‐exceeded attribute is set to false, Spring Security expires the oldest
session of the user who opened up a new login session from somewhere else. When the user of that
expired session tries to access the application the next time, she will be redirected to the specified
expired‐url.

The other behavior prevents a new login from occurring if the limit has been exceeded. Spring
Security tracks session information using a bean of type org.springframework.security.core
.session.SessionRegistry. The following code snippet shows how you can enable this behavior:

<security:session-management>
 <security:concurrency-control
 error-if-maximum-exceeded="true" max-sessions="1" />
</security:session-management>

For the second behavior to operate successfully, you need to add the following listener element into
the web.xml file of the application:

<listener>
 <listener-class>
 org.springframework.security.web.session.HttpSessionEventPublisher
 </listener-class>
</listener>

HttpSessionEventPublisher is an implementation of javax.servlet.HttpSessionListener, and it’s
invoked at HttpSession creation and destruction times. It publishes HttpSessionCreatedEvent
and HttpSessionDestroyedEvent in instances in the ApplicationContext. The SessionRegistryImpl
class, which is an implementation of SessionRegistry, is also an ApplicationListener that
listens for HttpSessionDestroyedEvent instances published in the ApplicationContext. When
such an event is received, the corresponding session information is removed from the registry, and
an open session count is managed accordingly. Unless HttpSessionEventPublisher is defined in
the web.xml file and users leave their applications by just closing their browser windows, Spring
Security won’t be notified of expired HttpSessions. As a result, when the maximum allowed ses-
sion limit is exceeded by a user, new logins won’t be permitted at all.

Basic authentication
Basic authentication is a very popular authentication mechanism used for authenticating state-
less web services. It is quite common to use it with login form authentication where the appli-
cation is used through a browser and its services are accessed over the web, such as through a
RESTful API.

Basic authentication is defined by RFC 1945, and the Spring Security implementation conforms
to it. Its popularity comes from its broad acceptance among user agents and from its very simple
implementation. User credentials are encoded with Base64 encoding, and they are carried in an

authorizing Web requests and Service Method Calls ❘ 353

HTTP header. This simplicity also becomes its weakness because users’ passwords can easily be
obtained by a third party who observes network traffic. Therefore, it should only be used over a
secure transport layer, such as HTTPS.

Basic authentication is configured with the <security:http‐basic> element in <security:http>
as follows:

<security:http>
 <security:http-basic/>
</security:http>

When basic authentication is required, org.springframework.security.web.authentication
.www.BasicAuthenticationEntryPoint just places the following headers in the HTTP response:

HTTP/1.1 401 Full authentication is required to access this resource
WWW-Authenticate: Basic realm="Spring Security Application"

This response header causes the browser to display its own login dialog box. When the user enters
his username and password and submits the information, the request is sent with the following
header:

Authorization: Basic dXNlcjE6c2VjcmV0

The encoded part is a Base64‐encoded form of username:password entered by the user. If you try
to access a web service resource via an HTTP client other than the web browser, you need to encode
username:password with a Base64 encoder and place it into an HTTP request using your client’s
facilities.

On the server side, BasicAuthenticationFilter is responsible for processing credentials presented in the
request header. It extracts the username and password to create a UsernamePasswordAuthenticationToken,
and it delegates the task to the AuthenticationManager bean. The rest of the process is the same as login
form authentication. BasicAuthenticationFilter only triggers authentication if the Authorization
request header is present with a value starting with a “Basic” string.

authorizing WeB requeStS and Service
method callS

Authorization checks whether the currently authenticated user has the appropriate rights to per-
form operations on a secure resource. A secure resource can be any of the URL resources, a service
method call, or a domain object. Operations that authorization checks for include access to a web
page; invocation of a service method; or performance of an operation, such as reading, creating,
updating, or deleting a domain object.

authorizing Web requests
One of the most common authorization requirements of web applications is to protect web pages or
web resources, in general, from unauthorized access. The following Try It Out shows you how it is
achieved using Spring Security Framework.

354 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

try it out authorizing Web requests

In this Try It Out, you configure the Spring Security so that it will authorize web requests made to some
protected web pages. You can continue from where you left off in the preceding Try It Out, and you
can find the source code within the project named authorizing‐web‐requests in the code downloads.
To begin, follow these steps:

 1. Create the editor.jsp page in the src/main/webapp folder:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>
editors only page
</body>
</html>

 2. Add the following <security:intercept‐url> to protect editor.jsp:

<security:http auto-config="true">
 <security:intercept-url pattern="/editor.jsp" access="ROLE_EDITOR"/>
 <security:intercept-url pattern="/**" access="ROLE_USER"/>
</security:http>

 3. Run the application with jetty:run.

 4. Log in to the application with user1 and the password secret. Then try to access editor.jsp by
typing http://localhost:8080/editor.jsp in the browser address bar. You should see a 403
access denied page.

 5. Log out from the application by typing http://localhost:8080/j_spring_security_logout.

 6. Log in to the application again, but this time use user2 and the password secret. Again try to access
editor.jsp. You should now see the editor.jsp page.

How It Works

You created an editor.jsp page in the src/main/webapp folder and placed the
<security:intercept‐url/> element in <security:http> so that it can only be accessed by users
defined as ROLE_EDITOR. The important point here is that there can be several <security:intercept‐url>
elements defining roles for different resource patterns, and their order is important. Here the
<security:intercept‐url> element with pattern="/editor.jsp" should come before other ele-
ments with pattern="/**". If it was the other way around, because pattern="/**" matches requests
to the /editor.jsp page as well, the page would be accessible to users without the ROLE_EDITOR
authority. Figure 12-7 shows what is going on when a request is performed by user1.

http://www.w3.org/TR/html4/loose.dtd
http://localhost:8080/editor.jsp
http://localhost:8080/j_spring_security_logout

authorizing Web requests and Service Method Calls ❘ 355

When the request arrives at the web application, SecurityContextPersistenceFilter
restores the Authentication token by grabbing it from HttpSession and putting it into
SecurityContext via SecurityContextHolder. Then it lets the request flow in. When the
request comes at FilterSecurityInterceptor, it asks for AccessDecisionManager to autho-
rize the request. AccessDecisionManager checks the rights for user1 and decides that she
has not been granted access to editor.jsp. It throws AccessDeniedException. At this point
ExceptionTranslationFilter comes in to the scene to catch the exception and show the access
denied page.

When user2 performs the same request, the same thing happens until the AccessDecisionManager bean’s
decision. At this point, it allows the user to access the resource. As a result, FilterSecurityInterceptor
lets the request arrive at the editor.jsp page.

how does authorization Work?
The main object of the authorization process is AccessDecisionManager. It decides whether the
attempted action by the current user will be allowed. Figure 12-8 shows a general flowchart of the
authorization process.

Delegation of access control checks to AccessDecisionManager is handled by a proxy object that
intercepts the request or method call to the secure resource. The proxy object for web resources is
FilterSecurityInterceptor. It is a servlet filter that is the last element in the security filter chain.
For service method calls, the proxy object is MethodSecurityInterceptor. Both extend from
AbstractSecurityInterceptor.

Figure 12-7

AccessDecisionManager

FilterSecurity
Interceptor

SecurityContextHolder

Exception
TranslationFilter

SecurityContext
PersistenceFilter

1: HTTP request from user1 with
ROLE_USER to editor.jsp

2: Restores
authentication token
in SecurityContext

4: Throws AccessDeniedException
3: Asks for
authorization

5: AccessDeniedException
causes request to be redirected
to accessDenied page

356 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

During configuration time, it is expected that you define what roles are allowed to access
or perform a specific operation on the secure resource. Those definitions are called
org.springframework.security.access.ConfigAttribute. In other words, secure objects
are associated with several ConfigAttribute instances. At run time, when access occurs to the
secure resource, AbstractSecurityInterceptor obtains ConfigAttribute values associated
with the secure object, and it also obtains the current Authentication token that resides in
SecurityContext.

The next step is to delegate the task to AccessDecisionManager, which han-
dles ConfigAttribute objects and the Authentication to perform authorization.
AccessDecisionManager is actually in the coordinator position. It contains several org
.springframework.security.access.AccessDecisionVoter objects. Each
AccessDecisionVoter is asked if it grants or denies access to a secure object by examining avail-
able ConfigAttribute values and a current Authentication token. AccessDecisionVoter
beans can be of different types. They are classified according to the type of ConfigAttribute
values they can handle. If AccessDecisionVoter cannot process ConfigAttribute, it just
returns ACCESS_ABSTAIN. If it can process ConfigAttribute, it then checks whether the cur-
rent Authentication token satisfies ConfigAttribute. If the check is successful, it returns
ACCESS_GRANTED; otherwise it returns ACCESS_DENIED. AccessDecisionManager performs the
final decision according to those answers returned by AccessDecisionVoter beans.

The three built‐in implementations of the AccessDecisionManager interface are

 ➤ org.springframework.security.access.vote.AffirmativeBased, which allows access
when at least one AccessDecisionVoter returns ACCESS_GRANTED

 ➤ org.springframework.security.access.vote.UnanimousBased, which allows access
when all the voters return ACCESS_GRANTED

 ➤ org.springframework.security.access.vote.ConsensusBased, which compares the
sum of ACCESS_GRANTED answers with the sum of ACCESS_DENIED answers, and it decides
according to the result

Figure 12-8

Access to
secure object

Config
attribute

Secure
object

AbstractSecurity
Interceptor

AccessDecisionManager

SecurityContext

Authentication

AccessDecision
Voter

authorizing Web requests and Service Method Calls ❘ 357

By default, the <security:http> element registers the AffirmativeBased AccessDecisionManager
implementation with two AccessDecisionVoter implementations: org.springframework.security
.access.vote.RoleVoter and org.springframework.security.access.vote.AuthenticatedVoter.

The RoleVoter implementation understands ConfigAttribute objects whose getAttribute() method
returns a String value starting with the ROLE_ prefix. Unless the ConfigAttribute value starts with
ROLE_, it returns ACCESS_ABSTAIN. If a given ConfigAttribute returns such a String value, it then
tries to compare it with names of GrantedAuthority objects available in the current Authentication
token. If the match occurs, it returns ACCESS_GRANTED; otherwise it returns ACCESS_DENIED.

The second one defined by default is AuthenticatedVoter. It understands special key-
words that represent the current Authentication status: IS_AUTHENTICATED_REMEMBERED,
IS_AUTHENTICATED_ANONYMOUSLY, and IS_AUTHENTICATED_FULLY. If the access attribute of
<security:intercept‐url> contains any of those keywords, AuthenticatedVoter checks the
type of the Authentication token. If the ConfigAttribute value is IS_AUTHENTICATED_FULLY,
it then expects the Authentication token to be only UsernamePasswordAuthenticationToken.
Otherwise it returns ACCESS_DENIED. In other words, it disallows logins with the remember‐
me feature and forces the user to log in interactively. If the value is IS_AUTHENTICATED_
REMEMBERED, it then accepts either UsernamePasswordAuthenticationToken or
RememberMeAuthenticationToken, but it denies AnonymousAuthenticationToken. As previously
stated, conceptually, anonymous authentication is no different than being unauthenticated. Finally,
if the attribute value is IS_AUTHENTICATED_ANONYMOUSLY, it accepts any valid Authentication
token present in the SecurityContext.

expression‐Based authorization
It is possible to employ Spring Expression Language (SpEL) in defining ConfigAttribute val-
ues. This is called expression‐based authorization. It is disabled by default. To enable it, add the
use‐expressions="true" attribute to the <security:http> element as follows:

<security:http auto-config="true" use-expressions="true">
 <security:intercept-url pattern="/**"
 access="hasRole('ROLE_USER') and hasIpAddress(192.168.1.0/24)"/>
</security:http>

It then becomes possible to use a SpEL expression in access attributes of <security:intercept‐url>.
Spring Security provides some built‐in functions for authorization checks and for specifying the
expected type of Authentication token. Table 12-1 lists some common expressions available for use.

Note AffirmativeBased allows access when at least one
AccessDecicionVoter returns ACCESS_GRANTED. UnanimousBased, on the
other hand, allows access when all the voters return ACCESS_GRANTED.
If any one of them returns ACCESS_DENIED, UnanimousBased will throw
AccessDeniedException. The last one, ConsensusBased, compares the sum
of ACCESS_GRANTED answers with the sum of ACCESS_DENIED answers, and it
decides according to the result.

358 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

taBle 12-1: Common Built‐In Expressions

expreSSion deScription

hasRole('ROLE_USER') Returns true if current Authentication has the specified role

hasAnyRole('ROLE_

USER','ROLE_EDITOR')
Returns true if current Authentication has at least one of the
specified roles

hasAuthority('ROLE_

USER')
Same as hasRole()

hasAnyAuthority('ROLE_

USER','ROLE_EDITOR')
Same as hasAnyRole()

hasIpAddress

('192.168.1.0/24')
Returns true if the current user accesses from a specified IP
address or address range

principal Allows access to the principal object representing the current
user within the current Authentication token

authentication Allows access to the current Authentication token in
SecurityContext

permitAll Always evaluates to true

denyAll Always evaluates to false

isAnonymous() Returns true if the principal is an anonymous user

isRememberMe() Returns true if the principal is a remember‐me user

isAuthenticated() Returns true if the principal is not an anonymous user

isFullyAuthenticated() Returns true if the principal is not an anonymous or
remember‐me user

Note When you enable an expression in the <security:http> element, an
org.springframework.security.web.access.expression
.WebExpressionVoter is registered at AccessDecisionManager instead of
RoleVoter and AuthenticatedVoter.

using JSp Security tags
Spring Security has its own JavaServer Pages (JSP) tag library that provides basic support for dis-
playing current authentication information and applying authorization checks within JSP pages.
To use the security tag library, after adding the spring‐security‐taglibs dependency in your
pom.xml file, you must also declare it in the JSP page as follows:

<%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>

http://www.springframework.org/security/tags

authorizing Web requests and Service Method Calls ❘ 359

authorize tag
The authorize tag is used to determine whether the content written between the <sec:authorize>
tags should be evaluated by the JSP. It can be used to display individual HTML elements—such as
buttons—in the page, according to the granted authorities of the current user. The following code
snippet shows how an HTML link can be made available in the web page if the current user has
specified authorities:

<sec:authorize ifAllGranted="ROLE_EDITOR">
Editors only

</sec:authorize>

If all roles listed in the ifAllGranted attribute are available among granted authorities of the
current user, the Editors Only link is visible. It also has the ifAnyGranted and ifNotGranted
attributes that can be used similarly. It is possible to use expressions with an access attribute.
For this feature to work, you must enable expression support in the <security:http> element.
Actually, the ifAllGranted, ifAnyGranted, and ifNotGranted attributes were recently deprecated
in favor of access attribute, which has support for SpEL expressions as well. The following code
shows how the access attribute can be used:

<sec:authorize access="hasRole('ROLE_EDITOR')">
Editors only

</sec:authorize>

The authorize tag also has a url attribute. If you place a URL in that attribute, Spring Security
tries to check the URL against the <security:intercept‐url/> elements. If the current user is
allowed to access the specified URL, the content of the tag is visible. Here’s an example:

<sec:authorize url="/editor.jsp">
Editors only

</sec:authorize>

authenticate tag
The authenticate tag is used to access the contents of the current Authentication token in
SecurityContext. It can be used to display information about the current user in the page as shown
here:

<sec:authentication property="principal.username"/>

principal.username is resolved through the Authentication token’s principal property.

<sec:authentication property="name"/>

The name value is resolved directly from the Authentication token.

authorizing Service methods
You can secure your service layer methods using Spring Security. It provides support for various
annotations that can be used to specify who is allowed to execute the service method. First of all, it

360 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

has always been possible to secure method calls with the @Secured annotation. Pre/post authorize
annotations are added to the security framework for supporting expression based security in version
3. It is also possible to use JSR‐250 annotations as well.

Method‐level security is enabled by adding the following namespace element in the bean configuration
file. By default, neither of the supported annotation methods is enabled. You can enable them as follows:

<security:global-method-security
 jsr250-annotations="enabled" secured-annotations="enabled"
 pre-post-annotations="enabled">
</security:global-method-security>

JSR‐250 security annotations consist of @RolesAllowed, @PermitAll, and @DenyAll. The @Secured
annotation is the framework’s own annotation, which is similar to JSR‐250 @RolesAllowed. Pre/
post annotations are @PreAuthorize, @PostAuthorize, @PreFilter, and @PostFilter. Except for
@PreAuthorize, the annotations are usually used with access control list (ACL) domain object secu-
rity. It is possible to use these annotations both on the class and method levels, as well as mix them
in the same bean. The following Try It Out shows how method‐level security can be configured in
Spring Security and used to secure service bean method calls.

try it out authorizing Service Methods

In this Try It Out, you configure the method‐level security feature of Spring Security to secure ser-
vice bean method calls. You then test whether it works using JUnit tests in a standalone environment.
You can find the source code within the project named authorizing‐service‐methods in the code
downloads. To begin follow these steps:

 1. Create a simple Maven Java project.

 2. Add the following dependencies to the pom.xml file:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-web</artifactId>
 <version>3.2.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>3.2.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.1.1</version>
</dependency>

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.1.0</version>

authorizing Web requests and Service Method Calls ❘ 361

</dependency>

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>4.0.5.RELEASE</version>
 <scope>test</scope>
</dependency>

 3. Create a Spring bean configuration file called applicationContext.xml in the src/main/
resources folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:security="http://www.springframework.org/schema/security"
 xsi:schemaLocation="http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.2.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

</beans>

 4. Add the following bean configurations to the applicationContext.xml file:

<security:authentication-manager>
 <security:authentication-provider ref="testingAuthenticationProvider"/>
</security:authentication-manager>

<bean id="testingAuthenticationProvider"
class="org.springframework.security.authentication.TestingAuthenticationProvider"/>

<security:global-method-security secured-annotations="enabled"/>

 5. Create the com.wiley.beginningspring package and create the following class in it:

public class BusinessService {
 @Secured("ROLE_USER")
 public void secureMethod() {
 System.out.println("secure method");
 }
}

 6. Create a bean definition for the BusinessService class:

 <bean id="businessService" class="com.wiley.beginningspring.BusinessService"/>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

362 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

 7. Create the com.wiley.beginningspring package in the src/test/java source folder and create
the following class in it:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class MethodLevelSecurityTests {
 @Autowired
 private BusinessService businessService;

 @After
 public void tearDown() {
 SecurityContextHolder.clearContext();
 }

 @Test(expected=AuthenticationCredentialsNotFoundException.class)
 public void testSecureMethodWithoutAuthentication() {
 businessService.secureMethod();
 }

 @Test(expected=AccessDeniedException.class)
 public void testSecureMethodWithoutAppropriateAuthority() {
 TestingAuthenticationToken authentication =
 new TestingAuthenticationToken("user1", "secret");
 SecurityContextHolder.getContext().setAuthentication(authentication);

 businessService.secureMethod();
 }

 @Test
 public void testSecureMethodWithAppropriateAuthority() {
 TestingAuthenticationToken authentication =
 new TestingAuthenticationToken("user1", "secret","ROLE_USER");
 SecurityContextHolder.getContext().setAuthentication(authentication);

 businessService.secureMethod();
 }

}

 8. Run the tests using JUnit.

How It Works

You created a simple Java project and added the necessary dependencies to configure and run Spring
Security for method‐level security. Afterward, you created a bean configuration file and enabled the
security namespace in it.

You added the <security:global‐method‐security/> element with the secured‐annotations="enabled"
attribute. That way, you can use the @Secured annotation over your Spring‐man-
aged beans’ classes or their methods. This element causes Spring Security to configure
an AccessDecisionManager bean of AffirmativeBased, including the RoleVoter and
AuthenticatedVoter voter instances.

authorizing Web requests and Service Method Calls ❘ 363

Spring Security expects an Authentication token to be presented in SecurityContext to
assume that authentication is performed but doesn’t care who put it there. It provides an
org.springframework.security.authentication.TestingAuthenticationProvider for this purpose. If you
create an Authentication token of type org.springframework.security.authentication.Testing
AuthenticationToken and place it into SecurityContext, TestingAuthenticationProvider—assuming
it is among the configured AuthenticationProvider instances of AuthenticationManager—automatically
validates it and authentication finishes with success. Hence, it is easy to test method‐level security fea-
tures within standalone test environments.

You can just create a TestingAuthenticationToken with the necessary principal and GrantedAuthority
objects for the test case, and the rest is handled by TestingAuthenticationProvider. Therefore, you cre-
ated a bean called testingAuthenticationProvider from the TestingAuthenticationProvider
class and referenced it via the <security:authentication‐provider> element within
<security:authentication‐manager>. It is advisable to remove the TestingAuthenticationProvider
bean from among the configured AuthenticationProvider instances in production because of secu-
rity reasons. It is solely for testing purposes.

After finishing the bean configuration in the ApplicationContext file, you created a class called
BusinessService and defined a bean for it. Within that class, you added a method with the @
Secured annotation on it. The @Secured annotation has a value of ROLE_USER. This means that
this method is only accessible for users who have ROLE_USER among their GrantedAuthority
instances.

Then you created a test method and configured it with Spring TestContext so that it loads the
ApplicationContext when tests are run. You injected BusinessService within the test class using the
@Autowired annotation.

Within the test class, you created three test methods. Let’s look at them in detail:

 ➤ testSecureMethodWithoutAuthentication() just invokes businessService.secureMethod()
without creating an AuthenticationToken and putting it into SecurityContext.
When the test method is run using JUnit, Spring Security throws
AuthenticationCredentialsNotFoundException.

 ➤ testSecureMethodWithoutAppropriateAuthority() creates a TestingAuthenticationToken
and places it into SecurityContext through SecurityContextHolder. However, the created
token doesn’t contain an Authority with the value ROLE_USER. Therefore, when you run the test
method, Spring Security throws AccessDeniedException.

 ➤ testSecureMethodWithAppropriateAuthority() creates a TestingAuthenticationToken
object providing it with Authority information. Therefore, that test method is able to invoke
secureMethod() when it is run.

One important thing while coding those test methods is that you should clear SecurityContext after
each test method runs. Otherwise, the Authentication token will stay in SecurityContext after the
test method finishes, and this may cause a side effect to other methods that run together as a test suite.
Therefore, we have added a tearDown() method that has the JUnit @After annotation and we have
cleared SecurityContext within it.

364 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

You can also secure service beans in which you cannot employ Java annotations using the
<security:protect‐pointcut> element in <security:global‐method‐security> as shown here:

<security:global-method-security>
 <security:protect-pointcut access="ROLE_USER" expression=
 "execution(* com.wiley.beginningspring.BusinessService.secureMethod(..))"/>
</security:global-method-security>

Assume that you don’t or can’t use any of those annotations supported by Spring Security in your
BusinessService class. In that case, you can add the <security:protect‐pointcut> element, with the
roles listed in the access attribute. The expression attribute of the <security:protect‐pointcut>
element expects an AspectJ pointcut expression. Therefore, you must add the spring‐aspects.jar
dependency into your classpath to be able to run this feature.

Summary

This chapter first quickly showed you the security features provided by Spring Security Framework
for web applications. Then you examined the Spring Security filter chain and its constituting ele-
ments by which those features are provided. The first Try It Out demonstrated how you can con-
figure Spring Security within a web application. The chapter explained that Spring Security can be
configured with some of its features enabled by default so that web applications can satisfy some of
the most common, basic security requirements, and then developers can gradually customize those
features and add new ones as well.

The chapter talked about primary building blocks of the framework, such as Authentication,
UserDetails, UserDetailsService, SecurityContext, and SecurityContextHolder,
and then it walked through successful and unsuccessful login flows to explain in detail
how the authentication process works. During this part, you delved into the details of
AuthenticationManager, which is the coordinator of the authentication process. You also read
about the role of AuthenticationProvider objects and how Authentication tokens are related to
AuthenticationProvider implementations. After discovering how to successfully protect the appli-
cation via an autogenerated login form, you found out how to customize the login page. The chapter
explained how logout works and talked about how its parts can be customized as well.

The chapter provided an explanation of how authorization works and discussed the fundamental
building blocks of the authorization process. The chapter focused on AccessDecisionManager, which
is the main actor of the authorization process, and its voters to which it asks if the ConfigAttribute
values of the currently accessed secure object can be satisfied by the granted authorities of the authen-
ticated user. The second part of the authorization process was about how to secure service method
calls of Spring‐managed beans in the ApplicationContext. The chapter explained the different anno-
tations that you can use to specify the ConfigAttribute values of method call, and what you can do
to secure methods if it is not possible to employ those annotations over them. You learned that Spring
Security introduced expression‐based access control so that access to secure resources can be protected
by employing SpEL expressions as ConfigAttribute values.

The chapter finished with a look at how service method calls can be tested within a standalone envi-
ronment and how integration tests can be run in which SecurityContext is populated with a valid

Summary ❘ 365

Authentication token. As a result, developers can check method‐level security features without
deploying the whole application into the application server.

exerciSeS

You can find possible solutions to these exercises in Appendix A.

 1. Configure concurrent session management so that a user can open at most one session in the
application, and any other login attempt from the same user should result in an error message.

 2. Configure Spring Security to use a basic authentication method (instead of form‐based
authentication) to protect access to URL resources.

 3. Instead of using the @Secured annotation to protect access to BusinessService
.secureMethod(), enable pre/post annotations and use @PreAuthorize to protect it.

366 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

 ▸ What you learned in thiS chapter

topic key pointS

springSecurityFilterChain Filter chain that consists of several security filters

DelegatingFilterProxy Filter implementation class defined in the
web.xml file so that actual Filter beans can be
defined within the Spring ApplicationContext

Authentication Token that represents authentication information
in the system

UserDetails Principal information that represents the current
user

UserDetailsService UserDetails access interface that allows differ-
ent user repositories to be used to manage user
information

SecurityContext Data structure in which the Authentication
object is stored

SecurityContextHolder Data structure in which SecurityContext is held
and the current Authentication token is made
accessible during the request

AuthenticationManager Coordinator bean of the authentication process

AuthenticationProvider Beans that are used to validate various types of
Authentication tokens during the authentica-
tion process

DaoAuthenticationProvider AuthenticationProvider implementation that vali-
dates UsernamePasswordAuthenticationToken

UsernamePasswordAuthenticationToken Authentication token implementation that
contains the username and password informa-
tion submitted by the user during authentica-
tion, and also the GrantedAuthority objects
of the current user when authentication is
successful

UsernamePasswordAuthenticationFilter Concrete subclass of
AuthenticationProcessingFilter that
handles login form submission, creates the
Authentication token, and triggers the authen-
tication process

SecurityContextPersistenceFilter Security filter that saves the Authentication
token between web requests

Summary ❘ 367

topic key pointS

FilterSecurityInterceptor Authorization filter that protects access to URL
resources

LogoutFilter Security filter that performs logout

PasswordEncoder Interface to create encoded form of user
passwords

SaltSource Interface to provide a salt value during the
 password‐encoding process to complicate
 dictionary attacks

BasicAuthenticationFilter Security filter that manages the HTTP basic
authentication process

RememberMeAuthenticationToken Authentication token that represents the
remember‐me token

RememberMeAuthenticationFilter Security Filter that handles the remember‐me
cookie and creates an Authentication token
out of it

RememberMeAuthenticationProvider AuthenticationProvider implementation that
handles the RememberMeAuthenticationToken

ConcurrentSessionFilter Security filter that manages session replacement
or migration during the login process and con-
current session management of users from differ-
ent locations

Session fixation attacks Security attack that tries to exploit keeping
HttpSession open after the login process

HttpSessionEventPublisher Servlet listener that helps to track HttpSession
timeouts and to update SessionRegistry to
manage concurrent sessions

AccessDecisionManager Coordinator bean of the authorization process

AffirmativeBased Default implementation of
AccessDecisionManager that allows access
if at least one ACCESS_GRANT is issued by
AccessDecisionVoters

AccessDecisionVoter Interface to create voters that are consulted
by AccessDecisionManager to evaluate
ConfigAttribute values of secure objects
against granted Authority objects of the cur-
rent user

continues

368 ❘ Chapter 12 Securing Web ApplicAtionS With Spring Security

topic key pointS

RoleVoter Implementation of AccessDecisionVoter that
handles ConfigAttribute values starting with
the ROLE_ prefix

AuthenticatedVoter Implementation of AccessDecisionVoter
that handles ConfigAttribute val-
ues of IS_AUTHENTICATED_FULLY,
IS_AUTHENTICATED_REMEMBERED, and
IS_AUTHENTICATED_ANONYMOUSLY

MethodSecurityInterceptor Concrete subclass of
AbstractSecurityInterceptor that is used to
secure service method calls

@Secured, @PreAuthorize Security annotations that are used to specify
ConfigAttribute values of service methods

TestingAuthenticationToken Implementation of Authentication token
that is used to create a valid authentication
object that expects principal, credential, and
GrantedAuthority objects during its construc-
tion. It is used in standalone integration tests.

TestingAuthenticationProvider Implementation of AuthenticationProvider that
is used to handle TestingAuthenticationToken
instances

(continued)

 13
 Next Stop: Spring 4.0

 what yoU wiLL Learn in this Chapter:

 ➤ Keeping up with the latest: Java 8 and Java EE7 support

 ➤ Confi guring injection with conditional dependency

 ➤ Ordering the elements of autowired collections

 ➤ Repeating annotations

 ➤ Introducing new annotations

 CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/beginningspring on the Download Code tab. The code
is in the Chapter 13 download and individually named according to the names
throughout the chapter.

 It’s been more than four years since the last major release of the Spring Framework, which
was version 3.0. Versions 3.1 and 3.2 followed up by bringing features such as Java 7 and Java
EE6 support into the enterprise world. Now the producers of Spring offer the best of the breed
with version 4.0, which offers full support of Java 8 and Java EE7. This chapter covers the new
features introduced by the framework as well as the features added for supporting the new
versions of Java.

 Even though Spring 4.0 is compatible with the latest versions of Java SE and Java EE, it still
supports the older versions. Going back to JDK6 update 18 and Java EE6, the framework
offers the functionality for former versions. Servlet 2.5 is also supported especially for deploy-
ment on Google App Engine, which means that Java EE5 support is also on board. But devel-
opers of the framework strongly suggest that you move onto at least Java EE6 so that you can
experience better testing integration.

http://www.wrox.com/go/beginningspring

370 ❘ Chapter 13 Next Stop: SpriNg 4.0

Keeping Up with the Latest: Java 8 and
Java ee7 sUpport

The codebase has been pruned with Spring 4, and deprecated methods, classes, and packages have
been removed. The specifications supported by the framework have also been incremented by ver-
sion, so the latest features of Java 8 and Java EE 7—such as JPA 2.1, JSR 349 – Bean Validation 1.1,
JTA 1.2, and JMS 2.0—are now supported with version 4.0.

This section goes through these features and details them with examples so you get to know them
with real‐world working samples.

Lambda expressions
Lambda expressions are anonymous function code blocks with parameters that can be executed
once or multiple times. The benefits of lambda expressions include reduced typing and increased
code readability. With version 4, the Spring classes within the application programming interface
(API), such as JdbcTemplate, MessageTemplate, and TransactionTemplate, provide integration
with lambda expressions.

The Try It Out in this section demonstrates the use of lambda expressions with the new version of
JdbcTemplate. For the sake of simplicity, we have rewritten the activity from the “Configuring and
Using Spring Jdbctemplate” Try It Out in Chapter 4 using lambda expressions.

try it oUt Integrating Jdbctemplate with Lambda expressions

Use the following steps to create a domain class, its DAO, and the database configurations to use
the lambda expressions in the DAO implementation to fetch data through JdbcTemplate. You
can find the source of the project named as lambdaexpressions within the zip file of the code
downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quick-
start. Add the spring‐core, spring‐context, and spring‐jdbc dependencies to your
pom.xml file. At the time of writing this book, the latest version of Spring subprojects was the
4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

Keeping Up with the Latest: Java 8 and Java ee7 Support ❘ 371

 2. Add the H2 database driver class dependency. At the time of writing this book the latest version of
it was 1.3.175:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.175</version>
</dependency>

 3. Create the files create.sql and populate.sql under the src/main/resources folder:

create.sql

CREATE TABLE ACCOUNT (
 ID BIGINT IDENTITY PRIMARY KEY,
 OWNER_NAME VARCHAR(255),
 BALANCE DOUBLE,
 ACCESS_TIME TIMESTAMP,
 LOCKED BOOLEAN
);

populate.sql

insert into account(id, owner_name,balance,access_time,locked)
 values(100, 'mertcaliskan',10000,CURRENT_DATE ,1);

 4. Create the Account class under the com.wiley.beginningspring.ch13 package:

public class Account {

 private long id;
 private String ownerName;
 private double balance;
 private Date accessTime;
 private boolean locked;

 public Account(long id, String owner_name, double balance,
 Timestamp access_time, boolean locked) {
 this.id = id;
 this.ownerName = owner_name;
 this.balance = balance;
 this.accessTime = access_time;
 this.locked = locked;
 }

 @Override
 public String toString() {
 return "Account{" +
 "id=" + id +
 ", ownerName='" + ownerName + '\'' +
 ", balance=" + balance +
 ", accessTime=" + accessTime +
 ", locked=" + locked +
 '}';
 }
}

372 ❘ Chapter 13 Next Stop: SpriNg 4.0

 5. Create the AccountDao interface under the com.wiley.beginningspring.ch13 package:

public interface AccountDao {
 Account find(long accountId);
}

 6. Create the AccountDaoJdbcImpl class under the com.wiley.beginningspring.ch13 package:

public class AccountDaoJdbcImpl implements AccountDao {

 private JdbcTemplate jdbcTemplate;

 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 public Account find(long accountId) {
 return jdbcTemplate.queryForObject("select id, owner_name, balance,
 access_time,locked from account where id = " + accountId,
 (rs, rowNum) -> new Account(rs.getLong("id"),
 rs.getString("owner_name"),
 rs.getDouble("balance"),
 rs.getTimestamp("access_time"),
 rs.getBoolean("locked")));
 }
}

 7. Create the ApplicationConfig class under the com.wiley.beginningspring.ch13 package:

@Configuration
public class ApplicationConfig {

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:mem:test;INIT=runscript from ∼CA
 'classpath:create.sql'\\;runscript from 'classpath:populate.sql'");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 @Bean
 public JdbcTemplate jdbcTemplate() {
 JdbcTemplate jdbcTemplate = new JdbcTemplate();
 jdbcTemplate.setDataSource(dataSource());
 return jdbcTemplate;
 }

 @Bean
 public AccountDao accountDao() {
 AccountDaoJdbcImpl accountDao = new AccountDaoJdbcImpl();
 accountDao.setJdbcTemplate(jdbcTemplate());

Keeping Up with the Latest: Java 8 and Java ee7 Support ❘ 373

 return accountDao;
 }
}

 8. Create the Main class under the com.wiley.beginningspring.ch13 package:

public class Main {
 public static void main(String... args) throws SQLException {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);

 AccountDao accountDao = applicationContext.getBean(AccountDao.class);
 Account account = accountDao.find(100L);

 System.out.println(account);
 }
}

 9. Execute the main method of the Main class and you should see output similar to what’s shown here
(the date may differ):

Account{id=100, ownerName='mertcaliskan', balance=10000.0,
 accessTime=2014-10-29 00:00:00.0, locked=true}

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the
dependencies for spring‐core, spring‐context, and spring‐jdbc.

You used the H2 database for creating tables and putting sample data into it. Thus, you also added its
Maven dependency. H2 offers table creation and sample data creation while connecting via JDBC. So
you defined two files: create.sql and populate.sql. They are provided as the URL parameter in the
dataSource bean creation method of the ApplicationConfig class.

As the domain object, you created the Account class that contains fields such as the name of the owner,
the balance, and so on. You then created a DAO interface and JDBC implementation of that interface
class that contains the find method, which finds an account according to a given ID.

You rewrote the find method with lambda expressions so that you can easily parse a ResultSet and
create the Account object. The syntax of the expression (rs, rowNum) maps to the mapRow method’s
signature stated in the RowMapper interface, which is T mapRow(ResultSet rs, int rowNum). So
you can say that you’re creating an anonymous row mapper to map your result set into the fields of the
Account class by instantiating that row mapper.

Method references
The new method reference feature introduced by Java 8 offers the same feature as lambda expres-
sions, but it makes it possible to reuse any existing methods you have. The find method stated in
the following snippet is a rewrite of the one in the AccountDaoJdbcImpl class given in the previous
Try It Out activity:

374 ❘ Chapter 13 Next Stop: SpriNg 4.0

public Account find(long accountId) {
 return jdbcTemplate.queryForObject("select id, owner_name, balance,
 access_time,locked from account where id = " + accountId,
 this::mapAccount);
}

private Account mapAccount(ResultSet rs, int rowNum) throws SQLException {
 return new Account(rs.getLong("id"),
 rs.getString("owner_name"),
 rs.getDouble("balance"),
 rs.getTimestamp("access_time"),
 rs.getBoolean("locked"));
}

Here, you are using your existing mapAccount row mapping method and referring to it within the
queryForObject method with the ContainingClass :: MethodName syntax.

Bean Validation Integration
JSR 349 – Bean Validation 1.1 is officially supported with Spring 4. You can easily use Hibernate
Validator as the reference implementation of JSR 349 – Bean Validation 1.1 as described in the
“Validating User Input” section of Chapter 3.

JSr 310: Date time Value type Support
Because Java 8 is supported with the latest version of Spring, it’s now possible to use the
@DateTimeFormat annotation on top of classes coming from the java.time package of the Java
Development Kit (JDK), such as LocalDate, LocalTime, LocalDateTime, and so on. You can find
the details of this in the “Handling Forms with JSP” section of Chapter 3.

ConfigUring inJeCtion with ConditionaL
dependenCy

Spring 4 offers the Conditional Bean Definition Model, which interacts with the container to pro-
vide dynamic composition of an application’s configuration. With the @Conditional annotation
and the Condition interface, it’s possible to handle creation of a bean and its dependency injection
under certain circumstances, as shown in the following Try It Out.

try it oUt Conditional Bean autowiring according to a Given System property

Use the following steps to create an application that demonstrates dynamic bean injection according to
a specified argument. You can find the source of the project named as conditional within the zip file
in the code downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quickstart.
Add the spring‐core and spring‐context dependencies to your pom.xml file. At the time of
writing this book, the latest version of Spring subprojects was the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>

Configuring Injection with Conditional Dependency ❘ 375

 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Create the EmailNotificationCondition class under the com.wiley.beginningspring.ch13
package:

public class EmailNotificationCondition implements Condition {

 @Override
 public boolean matches(ConditionContext context,
 AnnotatedTypeMetadata metadata) {
 return context.getEnvironment().
 getProperty("notificationSystem").contains("email");
 }
}

 3. Create the SmsNotificationCondition class under the com.wiley.beginningspring.ch13
package:

public class SmsNotificationCondition implements Condition {

 @Override
 public boolean matches(ConditionContext context,
 AnnotatedTypeMetadata metadata) {
 return context.getEnvironment().
 getProperty("notificationSystem").contains("sms");
 }
}

 4. Create the NotificationService interface under the com.wiley.beginningspring.ch13
package:

public interface NotificationService {

 void notify(String username);
}

 5. Create the EmailNotificationService class under the com.wiley.beginningspring.ch13
package:

public class EmailNotificationService implements NotificationService {

 @Override
 public void notify(String username) {
 System.out.print("Notifying user: " + username + " with e-mail.");
 }
}

376 ❘ Chapter 13 Next Stop: SpriNg 4.0

 6. Create the SmsNotificationService class under the com.wiley.beginningspring.ch13
package:

public class SmsNotificationService implements NotificationService {

 @Override
 public void notify(String username) {
 System.out.print("Notifying user: " + username + " with SMS.");
 }
}

 7. Create the ApplicationConfig class under the com.wiley.beginningspring.ch13 package:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch13"})
public class ApplicationConfig {

 @Bean(name="notificationService")
 @Conditional(EmailNotificationCondition.class)
 public NotificationService emailNotifier() {
 return new EmailNotificationService();
 }

 @Bean(name="notificationService")
 @Conditional(SmsNotificationCondition.class)
 public NotificationService smsNotifier() {
 return new SmsNotificationService();
 }
}

 8. Create the Main class under the com.wiley.beginningspring.ch13 package:

public class Main {

 public static void main(String... args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);
 NotificationService notificationService =
 (NotificationService) context.getBean("notificationService");
 notificationService.notify("johndoe");
 }
}

 9. Execute the main method by providing the virtual machine (VM) argument as shown here:

‐DnotificationSystem=sms

 See the following output:

Notifying user: johndoe with SMS.

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the
dependencies for spring‐core and spring‐context.

Ordering the elements of autowired Collections ❘ 377

Then you implemented your condition classes that predicate the matching. The
EmailNotificationCondition class checks for the system property notificationSystem, and if it’s
set to email it returns true. The SmsNotificationCondition class returns true by checking against
the same system property (notificationSystem) as set to sms.

For the notification services, you first created the NotificationService interface with the notify
method. The EmailNotificationService and SmsNotificationService classes just implemented
this interface and printed out a notification message for the purposes of demonstration. Both of
the notification service beans were configured within the ApplicationConfig class by an @Bean
annotation. And both definitions contain the same bean name, so you can think of it like this:
You have one notification service, and it can easily be configured according to the value of the
notificationSystem system property. It can either be an e‐mail notification service or an SMS
notification service.

The Main class just accesses the notification service it has abstracted from the underlying bean, so it
makes the notify method invocation regardless of the bean definition.

note You can also use Spring Bean Profiles as an alternative to the Conditional
Bean Definition Model.

ordering the eLements of aUtowired CoLLeCtions

It’s possible to autowire all the beans of a specified type into a collection or an array with
the @Autowired annotation in Spring. While doing this wiring, the order of injection was disre-
garded until version 4.0. Now, by applying @Order on the bean, you can provide an injection order
for the collection. The following Try It Out demonstrates an example of this.

try it oUt Ordering elements on autowired Collections

Use the following steps to create an application that instantiates multiple beans and injects them
according to a specified order. You can find the source of the project named as beanorder within the
zip file in the code downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quickstart.
Add the spring‐core and spring‐context dependencies to your pom.xml file. At the time of
writing this book, the latest version of Spring subprojects was the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

378 ❘ Chapter 13 Next Stop: SpriNg 4.0

 2. Create the Person abstract class under the com.wiley.beginningspring.ch13 package:

public abstract class Person {
}

 3. Create the Instructor class under the com.wiley.beginningspring.ch13 package:

@Component
@Order(value = 1)
public class Instructor extends Person {
}

 4. Create the StudentOne class under the com.wiley.beginningspring.ch13 package:

@Component
@Order(value = 3)
public class StudentOne extends Person {
}

 5. Create the StudentTwo class under the com.wiley.beginningspring.ch13 package:

@Component
@Order(value = 2)
public class StudentTwo extends Person {
}

 6. Create the Classroom class under the com.wiley.beginningspring.ch13 package:

@Component
public class Classroom {

 @Autowired
 private List<Person> classroomList;

 public List<Person> getClassroomList() {
 return classroomList;
 }
}

 7. Create the ApplicationConfig class under the com.wiley.beginningspring.ch13 package:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch13"})
public class ApplicationConfig {
}

 8. Create the Main class under the com.wiley.beginningspring.ch13 package and execute the
main method:

public class Main {

 public static void main(String... args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);

repeating annotations ❘ 379

 Classroom classroom = context.getBean(Classroom.class);

 System.out.println(classroom.getClassroomList());
 }
}

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the
dependencies for spring‐core and spring‐context.

You created the Person abstract class and then implemented Instructor, StudentOne, and
StudentTwo as subclasses of it by defining them as Spring beans. The beans are also annotated with
@Order to specify an order with an integer value as follows:

 1. Instructor

 2. StudentTwo

 3. StudentOne

Your final domain object is Classroom, which contains a list of Person objects injected into it.

After doing the application context configuration, you retrieved the Classroom bean from the context and
accessed its classroom list. The output should be similar to the bean order given and resemble the following:

[com.wiley.beginningspring.ch13.bean.Instructor@52525845,
 com.wiley.beginningspring.ch13.bean.StudentTwo@3b94d659,
 com.wiley.beginningspring.ch13.bean.StudentOne@24b1d79b]

repeating annotations

With the former versions of Spring, it was impossible to declare @Scheduled annotations more than
once on a method. Because version 4.0 tightly integrates itself with Java 8, it brings support for the @
Repeatable annotation, which enables the declaration of one annotation multiple times on a given
method. The Try It Out in this section demonstrates the repeating annotations with a simple application.

try it oUt Using @Scheduled Multiple times on a Method

Use the following steps to create an application that contains multiple @Scheduled annotations
on a method with the help of Java 8. You can find the source of the project named as
repeatableannotations within the zip file in the code downloads.

 1. Create an empty Maven application project from the archetype maven‐archetype‐quickstart.
Add the spring‐core and spring‐context dependencies to your pom.xml file. At the time of
writing this book, the latest version of Spring subprojects was the 4.0.5.RELEASE:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>

380 ❘ Chapter 13 Next Stop: SpriNg 4.0

</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Create the SchedulerBean class under the com.wiley.beginningspring.ch13 package:

@Service
public class SchedulerBean {

 @Scheduled(fixedDelay = 3000)
 @Scheduled(cron="0 00 01 * * *")
 public void doStuff() {
 System.out.println("Hi there!");
 }
}

 3. Create the ApplicationConfig class under the com.wiley.beginningspring.ch13 package:

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring.ch13"})
@EnableScheduling
public class ApplicationConfig {
}

 4. Create the Main class under the com.wiley.beginningspring.ch13 package and execute the
main method:

public class Main {

 public static void main(String... args) {
 new AnnotationConfigApplicationContext(ApplicationConfig.class);
 while(true);
 }
}

How It Works

First you created an empty Java project with the quick‐start Maven archetype. Then you added the
dependencies for spring‐core and spring‐context.

You created a singleton service class named SchedulerBean that contains the doStuff method marked
with two @Scheduled annotations. So according to the definitions given, this method will be fired
every three seconds after each execution ends, and also it will be fired at 1:00 a.m. every morning.

You did the application context configuration with the ApplicationConfig class. It enables the com-
ponent scan under the com.wiley.beginningspring.ch13 package and then also enables the schedul-
ing of specified methods with the @EnableScheduling annotation.

In the Main class, you first configured the application context, and then that went into an infinite loop
to get the scheduling on the method to work. So every three seconds you see the output Hi there!
along with the output Hi there! at 1:00 a.m.

Introducing New annotations ❘ 381

note The @Scheduled annotation refers to the @Schedules annotation as its
container with the @Repeatable annotation. So if you are not using Java 8, you
can still define multiple @Scheduled annotations with the help of this container
as shown here:

@Schedules(value = {
 @Scheduled(fixedDelay = 3000),
 @Scheduled(cron="0 00 01 * * *")
})
public void doStuff() {
 System.out.println("Hi there!");
}

With Java 8, this container annotation is being created implicitly when multiple
@Scheduled annotations are declared more than once on a method.

note If you experience a problem like the following error while you’re compil-
ing the source code of the example,

SchedulerBean.java:[15,4] error: repeated annotations are not
supported in -source {0}

it might be because the JAVA_HOME environment is not set on your machine.
Even if you installed Java 8 on your local, you also need to set the environment
variable because it’s directly being used by Maven.

introdUCing new annotations

Spring 4.0 introduced new annotations into the framework. Aside from the annotations introduced
in the previous section, a couple of others also exist, which are described in this section.

documenting with @description
The @Description annotation enables defining a textual description for the beans defined
with the @Component or @Bean annotations. It’s useful for documentation and to improve the
code readability. A sample definition for a bean annotated with both @Component and @Order
follows:

@Component
@Order(value = 1)
@Description("Instructor for the lecture BBM490 - Enterprise Web Architecture")
public class Instructor extends Person {
}

382 ❘ Chapter 13 Next Stop: SpriNg 4.0

Using the @restController annotation
For creating REST‐based web services, you can use the new @RestController annotation on con-
troller classes. It’s a convenience annotation that composes the @Controller and @ResponseBody
annotations together in one place. You can find details in the “Creating Your First REST Web
Service” section of Chapter 11.

sUmmary

This chapter described what Spring 4.0 brought to the developers with the latest integration with
Java 8 and Java EE7. You learned about lambda expressions and how they improved the use of row
mappers in the JDBC template mechanism. You also saw the method reference version of the lambda
expression to elaborate the usage of the Java 8.

The chapter then defined what the Conditional Bean Definition Model is and how you declare bean
autowiring based on given conditions. You examined a scenario of applying order on the autowiring
of the same types into collections. A Try It Out demonstrated the repeatable annotations with an
example that defined multiple @Scheduled annotations on the same method.

tip It’s highly recommended that you upgrade to Spring 4 because the version
3.2 branch has been moved to the maintenance state.

exerCises

You can find possible solutions to these exercises in Appendix A.

 1. What are the two alternative methods that are introduced with Spring 4 for mapping row ele-
ments instead of by implementing a RowMapper?

 2. Instead of defining a wrapper annotation for the repeating annotations, what is a better way
offered by Spring 4?

Summary ❘ 383

 ▸ what yoU Learned in this Chapter

topiC Key points

Lambda expression An anonymous function code block with parameters
that can be executed once or multiple times.

Method reference A feature that is similar to lambda expressions but
makes it possible to reuse the existing methods in
the code.

Conditional Bean Definition Model Implementation that interacts with the container to
provide dynamic composition of an application’s
configuration.

@Conditional Annotation that indicates that a component is only
eligible for registration to the application context
when all given conditions match.

@Repeatable Annotation that enables the declaration of one
annotation multiple times on a given method.

@Description Annotation that enables defining a textual descrip-
tion for the beans defined with the @Component or
@Bean annotations. It’s useful for documentation and
code readability.

 appENDIX

Solutions to exercises

 This chapter gathers the solutions to the exercises given in the chapters. We have recapped the
exercises along with their possible solutions. You can also download the working code samples
as stated in the Code Download section.

 CODE DOWNLOAD The wrox.com code downloads for this appendix are
found at www.wrox.com/go/beginningspring on the Download Code tab. The
code is in the Appendix A download and individually named according to the
names throughout the appendix.

 ChaptEr 1

 Exercise 1
 Investigate the in‐container test frameworks available today. What are their biggest advantages
and disadvantages compared to testing outside the container?

 Solution to Exercise 1
 Few in‐container server‐side testing frameworks are available. One of them is Arquillian,
developed at JBoss.org. It enables developers to write integration tests for business objects exe-
cuted inside a container. The container may be a Java EE application server, or a Servlet/Web
Container. You can fi nd more information about Arquillian at http://arquillian.org/ .

 The other in‐container test framework available is the Jersey Test Framework. Jersey is the ref-
erence implementation of the JAX‐RS specifi cation, and the Jersey Test Framework is used to
test RESTful web applications developed using Jersey remotely. You can fi nd more information

http://www.wrox.com/go/beginningspring
http://arquillian.org/

386 ❘ Appendix A SolutionS to ExErciSES

about the Jersey Test Framework at https://jersey.java.net/documentation/latest/
test‐framework.html.

Advantages of in‐container testing include the following:

 ➤ You deploy the application and run the tests in the actual full stack environment compared
to a mocked‐up environment that is partly built during test setup.

 ➤ Tests written for and run within the target environment enable you to check real usage
scenarios as opposed to mocked‐up tests that might be totally unrelated to actual user
experiences.

Disadvantages of in‐container testing include the following:

 ➤ It is much slower than running tests out of the container, because it takes time to deploy and
run the application in the target environment.

 ➤ It might consume more resources like CPU time and memory space because it brings up the
entire application at run time.

 ➤ It is easy to get distracted from test‐driven programming because you are more inclined to
first code up the components and then bring them together to test in the container.

Exercise 2
What IoC method is used by the new EJB programming model today?

Solution to Exercise 2
Java EE uses Context and Dependency Injection (CDI) as its dependency injection method. It has
been standardized via JSR‐299. CDI provides type‐safe and annotation‐driven dependency injec-
tion capabilities for the Java EE platform. Besides dependency injection features, CDI enhances the
Java EE programming model in two more important ways. First, it allows you to use EJBs directly
as JSF backing beans. Second, CDI allows you to manage the scope, state, life cycle, and context for
objects in a declarative way. JSR 299 utilizes the Dependency Injection for Java (JSR 330) specifica-
tion as its foundational API, primarily by using JSR 330 annotations such as @Inject, @Qualifier,
and @ScopeType. You can find more information about CDI at https://docs.oracle.com/
javaee/6/tutorial/doc/giwhl.html.

Exercise 3
Which dependency injection method can handle “circular dependencies” and which cannot?

Solution to Exercise 3
Constructor injection cannot handle circular dependencies. Assume you have the following bean
configuration:

https://jersey.java.net/documentation/latest/test-framework.html
https://docs.oracle.com/
https://jersey.java.net/documentation/latest/test-framework.html

Chapter 1 ❘ 387

<bean id="foo" class="com.wiley.beginningspring.exercises.ch1.Foo">
 <constructor-arg ref="bar"/>
</bean>

<bean id="bar" class="com.wiley.beginningspring.exercises.ch1.Bar">
 <constructor-arg ref="foo"/>
</bean>

When the foo bean is being created, Spring Container tries to obtain the bar bean to inject it into
the foo bean via constructor of the Foo class. It then tries to create the bar bean, but this time it
tries to obtain the foo bean in order to inject it into the bar bean similar to Foo class. At this point
the foo bean cannot be obtained for injection because it is not ready for dependency injection yet.
As a result, Spring throws BeanCurrentlyInCreationException to indicate the circular depen-
dency problem.

Setter injection, on the other hand, can handle it. Let’s examine the following bean configuration:

<bean id="foo" class="com.wiley.beginningspring.exercises.ch1.Foo">
 <property name="bar" ref="bar"/>
</bean>

<bean id="bar" class="com.wiley.beginningspring.exercises.ch1.Bar">
 <property name="foo" ref="foo"/>
</bean>

Spring Container first creates the foo bean by calling the default constructor of the Foo class and
then it attempts to inject its bar dependency. It then goes to the bar bean definition and starts creat-
ing the bar bean to perform dependency injection on the foo bean. This time Spring Container is
able to create the bar bean by calling the default constructor of the Bar class and tries to inject its
foo dependency. The foo bean is already created at the first step, so Spring Container obtains it and
injects it into the bar bean. Now the bar bean is ready for dependency injection, and it is obtained
by the container and injected into the foo bean as the last step.

However, many Spring features won’t be available on your circularly dependent beans even if
you are able to create and inject their dependencies using setter injection because many of the
middleware features, such as transaction, validation, caching, and security, provided by the Spring
Container depend on BeanPostProcessors, which are special infrastructural beans of Spring itself.
Those infrastructural beans postprocess application‐level beans, such as the foo and bar beans,
after they are created and their dependencies are injected so that middleware features are applied
before those application‐level beans become ready to be injected as dependencies to the other beans
in the container. As you may have already noticed in the preceding example, the foo bean is not
fully initialized for postprocessing when it is injected into the bar bean. Therefore, if it is configured
to have such middleware features, they won’t be available on the foo bean instance that is injected
into the bar bean.

Therefore, it is almost always preferable to break circular dependencies in your appli-
cation so that your beans will be able to benefit from those middleware features pro-
vided by the Spring Container. You can also disable cyclic dependency resolution with
AbstractRefreshableApplicationContext.setAllowCircularReferences(false) to prevent
such problems.

388 ❘ Appendix A SolutionS to ExErciSES

ChaptEr 2

Exercise 1
The <context:component‐scan> element supports extending the bean‐scanning mecha-
nism outside the @Component annotations. The <context:include‐filter/> child element
is available for this purpose. Create a sample application in which beans are defined with
<context:component‐scan/>, but without using the @Component annotation. Instead
beans should be discovered by scanning packages in which bean classes are placed.

Solution to Exercise 1
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch2-exercise1

 2. Add the following dependencies to your pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Create the com.wiley.beginningspring.exercises.ch2 package in the src/main/java
folder.

 4. Create the Foo class in that package:

public class Foo {
}

 5. Create an applicationContext.xml file with the following content in the src/main/
resources folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.wiley.beginningspring">
 <context:include-filter type="assignable" expression="java.lang.Object"/>
 </context:component-scan>
</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

Chapter 2 ❘ 389

 6. Create a Main class with the following main method contents in the same package:

public class Main {
 public static void main(String[] args) {
 ClassPathXmlApplicationContext applicationContext =
 new ClassPathXmlApplicationContext("/applicationContext.xml");
 boolean containsFoo = applicationContext.containsBean("foo");
 System.out.println(containsFoo);
 }
}

 7. Run the main method and observe the result from your console.

The component‐scan element is configured to search within the com.wiley.beginningspring
package and all of its subpackages for candidate components. However, we also added the
include‐filter child element to make it consider any class extending from java.lang.Object as
a candidate besides the @Component annotation and its stereotypes. Because the Foo class, actually
any Java class, extends from java.lang.Object, it is used to create a bean in the container. Note
that we haven’t used any @Component annotations on the Foo class.

Exercise 2
Create a bean class that implements the InitializingBean interface, and also create two other
methods—one of them named init and annotated with @PostConstruct and the other named
initialize and defined as init‐method in the XML configuration. Examine in which order those
methods will be invoked while the bean is being instantiated.

Solution to Exercise 2
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch2-exercise2

 2. Add the following dependencies to your pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Create the com.wiley.beginningspring.exercises.ch2 package in the src/main/java
folder.

 4. Create a Foo class so that it implements InitializingBean as follows:

public class Foo implements InitializingBean {
 @Override

390 ❘ Appendix A SolutionS to ExErciSES

 public void afterPropertiesSet() throws Exception {
 System.out.println("afterPropertiesSet method is called");
 }
}

 5. Create an init method within the Foo class and annotate the method with the @PostConstruct
annotation:

@PostConstruct
public void init() {
 System.out.println("init method is called");
}

 6. Create a second method with the name initialize and define it as default‐init‐method
in the applicationContext.xml file. The initialize method should be invoked automati-
cally during bean creation:

public void initialize() {
 System.out.println("initialize method is called");
}

 7. Create an applicationContext.xml file with the following content in the src/main/
resources folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd"
 default-init-method="initialize">
 <context:component-scan base-package="com.wiley.beginningspring">
 <context:include-filter type="assignable" expression="java.lang.Object"/>
 </context:component-scan>
</beans>

 8. Create a Main class with a main method containing the following content:

public class Main {
 public static void main(String[] args) {
 ClassPathXmlApplicationContext applicationContext =
 new ClassPathXmlApplicationContext("/applicationContext.xml");
 }
}

 9. Run the main method and observe the result from your console. You should see a console
output similar to the following:

init method is called
afterPropertiesSet method is called
initialize method is called

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

Chapter 2 ❘ 391

Initialization of a bean is performed after its dependencies are injected by the Spring Container.
There may be several initialization methods defined in a bean class. Spring invokes them in
a specific order. First the initialization method specified with the @PostConstruct annota-
tion is invoked. Then the afterPropertiesSet() method is called if the bean implements the
InitializingBean interface. Finally, the initialization method specified within the bean configu-
ration file is invoked. We specified the initialization method in the <beans> element that applies
to all beans defined in that XML file. It is equally possible to specify the initialization method on
each bean element.

Exercise 3
Try to create two beans that depend on each other with Java‐based configuration using setter injec-
tion. What happens?

Solution to Exercise 3
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch2-exercise3

 2. Add the following dependencies to your pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Create the com.wiley.beginningspring.exercises.ch2 package in the src/main/java
folder.

 4. Create the Foo and Bar classes in the com.wiley.beginningspring.exercises.ch2 pack-
age as follows:

public class Foo {
 private Bar bar;

 public void setBar(Bar bar) {
 this.bar = bar;
 }
}

public class Bar {
 private Foo foo;

 public void setFoo(Foo foo) {
 this.foo = foo;
 }
}

392 ❘ Appendix A SolutionS to ExErciSES

 5. Create a Configuration class as follows:

@Configuration
public class Ch2Exercise3Configuration {
 @Bean
 public Foo foo() {
 Foo foo = new Foo();
 foo.setBar(bar());
 return foo;
 }

 @Bean
 public Bar bar() {
 Bar bar = new Bar();
 bar.setFoo(foo());
 return bar;
 }
}

 6. Create a Main class with a main method as follows:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext();
 applicationContext.register(Ch2Exercise3Configuration.class);
 applicationContext.refresh();
 }
}

 7. Run the main method and observe the result from your console.

 When you run the main method, you get an exception because of the circular bean factory
method invocations in the configuration class. You can fix this error by employing autowir-
ing as follows:

@Configuration
public class Ch2Exercise3Configuration {
 @Bean
 @Autowired
 public Foo foo() {
 Foo foo = new Foo();
 //foo.setBar(bar());
 return foo;
 }

 @Bean
 @Autowired
 public Bar bar() {
 Bar bar = new Bar();
 //bar.setFoo(foo());
 return bar;
 }
}

Chapter 4 ❘ 393

ChaptEr 3

Exercise 1
Which Spring annotation should be used to support Java 8’s java.time.LocalDateTime?

Solution to Exercise 1
The @DateTimeFormat annotation should be used with iso format as
@DateTimeFormat(iso = ISO.DATE_TIME).

Exercise 2
What’s the best approach for handling locale changes in a Spring MVC–based application that
doesn’t manage user sessions and works as stateless?

Solution to Exercise 2
Using the bean of class org.springframework.web.servlet.i18n.CookieLocaleResolver that
depends on a cookie on the client enables setting the locale with the help of a cookie as a locale
resolver.

Exercise 3
Define a global exception handler that will handle all exceptions that would derive from the
RuntimeException class and that will redirect to the view uppsie.mvc.

Solution to Exercise 3
The following code gives the GlobalExceptionHandler class definition annotated with the
@ControllerAdvice:

@ControllerAdvice
public class GlobalExceptionHandler {

 @ExceptionHandler(RuntimeException.class)
 public ModelAndView handleException() {
 return new ModelAndView("uppsie");
 }
}

ChaptEr 4

Exercise 1
Define a new method called List<Account> findByOwnerAndLocked(String ownerName,
boolean locked) in the AccountDao interface and implement it within the AccountDaoJdbcImpl
class using the named parameter support of Spring.

394 ❘ Appendix A SolutionS to ExErciSES

Solution to Exercise 1
You can continue with the project you started in the “Configuring and Using Spring JdbcTemplate”
Try It Out in Chapter 4. Use the following steps:

 1. Modify the AccountDaoJdbcImpl class so that it creates a NamedParameterJdbcTemplate
object using the JdbcTemplate bean injected into it as follows:

public class AccountDaoJdbcImpl implements AccountDao {

 private JdbcTemplate jdbcTemplate;
 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(jdbcTemplate);
 }
 //other method implementations...
}

 2. Use the NamedParameterJdbcTemplate object to perform the query in the
findByOwnerAndLocked(..) method as follows:

@Override
public List<Account> findByOwnerAndLocked(String ownerName, boolean locked) {
 Map<String, Object> paramMap = new HashMap<String, Object>();
 paramMap.put("ownerName", ownerName);
 paramMap.put("locked", locked);
 return namedParameterJdbcTemplate.query(
"select id,owner_name,balance,access_time,locked from account where owner_name = ↵
 :ownerName and locked = :locked",
 paramMap,
 new RowMapper<Account>() {
 @Override
 public Account mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs
 .getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 return account;
 }
 });
}

Exercise 2
Define beans for the AccountInsert, AccountUpdate, and AccountDelete classes, inject them into
the accountDao bean, and then change the implementation of the insert, update, and delete methods
of AccountDaoJdbcImpl so that it will use those new beans for its SQL operations.

Chapter 4 ❘ 395

Solution to Exercise 2
You can continue with the project you started in the “Encapsulating SQL Queries Using
MappingSqlQuery” Try It Out in Chapter 4. Use the following steps:

 1. Create the following classes:

public class AccountInsert extends SqlUpdate {
 public AccountInsert(DataSource dataSource) {
 super(dataSource,
 "insert into account(owner_name,balance,access_time,locked) values(?,?,?,?)");
 setParameters(new SqlParameter[] {
 new SqlParameter(Types.VARCHAR),
 new SqlParameter(Types.DOUBLE),
 new SqlParameter(Types.TIMESTAMP),
 new SqlParameter(Types.BOOLEAN) });
 setReturnGeneratedKeys(true);
 setGeneratedKeysColumnNames(new String[]{"id"});
 compile();
 }
}

public class AccountUpdate extends SqlUpdate {
 public AccountUpdate(DataSource dataSource) {
 super(dataSource,
"update account set (owner_name,balance,access_time,locked)=(?,?,?,?) where id=?");
 setParameters(new SqlParameter[] {
 new SqlParameter(Types.VARCHAR),
 new SqlParameter(Types.DOUBLE),
 new SqlParameter(Types.TIMESTAMP),
 new SqlParameter(Types.BOOLEAN),
 new SqlParameter(Types.BIGINT)});
 compile();
 }
}

public class AccountDelete extends SqlUpdate {
 public AccountDelete(DataSource dataSource) {
 super(dataSource, "delete account where id = ?");
 setParameters(new SqlParameter[]{new SqlParameter(Types.BIGINT)});
 compile();
 }
}

 2. Modify the AccountDaoJdbcImpl class as follows:

public class AccountDaoJdbcImpl implements AccountDao {

 private SqlUpdate accountInsert;
 private SqlUpdate accountUpdate;
 private SqlUpdate accountDelete;

 public void setAccountInsert(SqlUpdate accountInsert) {
 this.accountInsert = accountInsert;
 }

396 ❘ Appendix A SolutionS to ExErciSES

 public void setAccountUpdate(SqlUpdate accountUpdate) {
 this.accountUpdate = accountUpdate;
 }

 public void setAccountDelete(SqlUpdate accountDelete) {
 this.accountDelete = accountDelete;
 }

 //...
}

 3. Define the Spring‐managed accountInsert, accountUpdate, and accountDelete beans for
those classes created in the first step and inject them into the accountDao bean as follows:

@Configuration
public class Ch4Configuration {
 @Bean
 public SqlUpdate accountInsert() {
 AccountInsert accountInsert = new AccountInsert(dataSource());
 return accountInsert;
 }

 @Bean
 public SqlUpdate accountUpdate() {
 AccountUpdate accountUpdate = new AccountUpdate(dataSource());
 return accountUpdate;
 }

 @Bean
 public SqlUpdate accountDelete() {
 AccountDelete accountDelete = new AccountDelete(dataSource());
 return accountDelete;
 }

 @Bean
 public AccountDao accountDao() {
 AccountDaoJdbcImpl accountDao = new AccountDaoJdbcImpl();
 accountDao.setJdbcTemplate(jdbcTemplate());
 accountDao.setAccountByIdQuery(accountByIdQuery());
 accountDao.setAccountInsert(accountInsert());
 accountDao.setAccountUpdate(accountUpdate());
 accountDao.setAccountDelete(accountDelete());
 return accountDao;
 }

 //...
}

 4. Use those beans within the related methods of AccountDaoJdbcImpl to perform JDBC
operations:

public class AccountDaoJdbcImpl implements AccountDao {
 public void insert(Account account) {
 GeneratedKeyHolder keyHolder = new GeneratedKeyHolder();

Chapter 4 ❘ 397

 int count = accountInsert.update(new Object[]{
 account.getOwnerName(),account.getBalance(),
 account.getAccessTime(),account.isLocked()},keyHolder);
 if (count != 1)
 throw new InsertFailedException("Cannot insert account");
 account.setId(keyHolder.getKey().longValue());
 }

 public void update(Account account) {
 int count = accountUpdate.update(
 account.getOwnerName(),account.getBalance(),
 account.getAccessTime(),account.isLocked(),account.getId());
 if (count != 1)
 throw new UpdateFailedException("Cannot update account");
 }

 public void delete(long accountId) {
 int count = accountDelete.update(accountId);
 if (count != 1)
 throw new DeleteFailedException("Cannot delete account");
 }

 //...
}

Exercise 3
Add a new property called byte[] ownerPhoto into the Account domain class, and a correspond-
ing BLOB column with the name owner_photo. Modify the AccountByIdQuery, AccountInsert,
and AccountUpdate classes so that they handle this new property.

Solution to Exercise 3
You can continue with the code of Exercise 2. Use the following steps:

 1. Modify the Account class as follows:

public class Account {
 private byte[] ownerPhoto;

 public byte[] getOwnerPhoto() {
 return ownerPhoto;
 }
 public void setOwnerPhoto(byte[] ownerPhoto) {
 this.ownerPhoto = ownerPhoto;
 }

 //...
}

 2. Execute the following DDL SQL statement to alter the account table:

ALTER TABLE ACCOUNT ADD OWNER_PHOTO BLOB

398 ❘ Appendix A SolutionS to ExErciSES

 3. Modify the AccountByIdQuery, AccountInsert, and AccountUpdate classes as follows:

public class AccountByIdQuery extends MappingSqlQuery<Account> {

 private LobHandler lobHandler = new DefaultLobHandler();

 public AccountByIdQuery(DataSource dataSource) {
 super(dataSource,
"select id,owner_name,balance,access_time,locked,owner_photo from account ↵
 where id = ?");
 declareParameter(new SqlParameter(Types.BIGINT));
 compile();

 }

 @Override
 protected Account mapRow(ResultSet rs, int rowNum) throws SQLException {
 Account account = new Account();
 account.setId(rs.getLong("id"));
 account.setOwnerName(rs.getString("owner_name"));
 account.setBalance(rs.getDouble("balance"));
 account.setAccessTime(rs.getTimestamp("access_time"));
 account.setLocked(rs.getBoolean("locked"));
 account.setOwnerPhoto(lobHandler.getBlobAsBytes(rs, "owner_photo"));
 return account;
 }
}

public class AccountInsert extends SqlUpdate {

 public AccountInsert(DataSource dataSource) {
 super(dataSource,
 "insert into account(owner_name,balance,access_time,locked,owner_photo) ↵
 values(?,?,?,?,?)");
 setParameters(new SqlParameter[] {
 new SqlParameter(Types.VARCHAR),
 new SqlParameter(Types.DOUBLE),
 new SqlParameter(Types.TIMESTAMP),
 new SqlParameter(Types.BOOLEAN),
 new SqlParameter(Types.BLOB)});
 setReturnGeneratedKeys(true);
 setGeneratedKeysColumnNames(new String[]{"id"});
 compile();
 }
}

public class AccountUpdate extends SqlUpdate {
 public AccountUpdate(DataSource dataSource) {
 super(dataSource,
"update account set (owner_name,balance,access_time,locked, owner_photo) = ↵
 (?,?,?,?,?) where id=?");
 setParameters(new SqlParameter[] {
 new SqlParameter(Types.VARCHAR),
 new SqlParameter(Types.DOUBLE),

Chapter 5 ❘ 399

 new SqlParameter(Types.TIMESTAMP),
 new SqlParameter(Types.BOOLEAN),
 new SqlParameter(Types.BIGINT),
 new SqlParameter(Types.BLOB)});
 compile();
 }
}

ChaptEr 5

Exercise 1
Try to configure your environment so that it uses a different JPA vendor—for example,
Eclipselink—to perform persistence operations.

Solution to Exercise 1
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch5-exercise1

 2. Add the following dependencies to your pom.xml file:

<dependency>
<groupId>org.eclipse.persistence</groupId>
<artifactId>org.eclipse.persistence.jpa</artifactId>
<version>2.5.2</version>
</dependency>
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.175</version>
</dependency>

 3. Create a META‐INF/persistence.xml file with the following content in the src/main/
resources source folder:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="test-jpa" transaction-type="RESOURCE_LOCAL">
 <properties>
 <property name="javax.persistence.jdbc.url"
 value="jdbc:h2:tcp://localhost/~/test" />
 <property name="javax.persistence.jdbc.driver"
 value="org.h2.Driver" />

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
tcp://localhost/~/test

400 ❘ Appendix A SolutionS to ExErciSES

 <property name="javax.persistence.jdbc.username" value="sa" />
 <property name="javax.persistence.jdbc.password" value="" />
 </properties>
 </persistence-unit>
</persistence>

 4. Create the com.wiley.beginningspring.ch5 package in the src/main/java source folder.

 5. Create a Main class with the following content in that package:

public class Main {
 public static void main(String[] args) {
 EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("test-jpa");
 System.out.println(entityManagerFactory.isOpen());
 }
}

 6. Run org.h2.tools.Console to start H2 Server if it is not already started. After that, run the
main method and observe the result.

Exercise 2
Create EntityManagerFactory using LocalContainerEntityManagerFactoryBean, which will
load a META‐INF/my‐persistence.xml file as its only JPA configuration.

Solution to Exercise 2
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch5-exercise2

 2. Add the following dependencies to your pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-orm</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>4.3.1.Final</version>
</dependency>

Chapter 5 ❘ 401

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>4.3.1.Final</version>
</dependency>

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.175</version>
</dependency>

 3. Create the META‐INF/my‐persistence.xml file in the src/main/resources folder with the
following content:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="test-jpa" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.hibernate.jpa.HibernatePersistenceProvider
 </provider>
 <properties>
 <property name="hibernate.connection.driver_class"
 value="org.h2.Driver" />
 <property name="hibernate.connection.url"
 value="jdbc:h2:tcp://localhost/~/test" />
 <property name="hibernate.connection.username" value="sa" />
 <property name="hibernate.connection.password" value="" />
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect" />
 <property name="hibernate.hbm2ddl.auto" value="update" />
 </properties>
 </persistence-unit>
</persistence>

 4. Create the com.wiley.beginningspring.exercises.ch5 package in the src/main/java
folder.

 5. Create a Configuration class in that package with the following content:

@Configuration
public class Ch5Configuration {
 @Bean
 public LocalContainerEntityManagerFactoryBean entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPersistenceXmlLocation(
 "classpath:/META-INF/my-persistence.xml");
 return factoryBean;
 }
}

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
tcp://localhost/~/test

402 ❘ Appendix A SolutionS to ExErciSES

 6. Create a Main class as follows:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch5Configuration.class);
 EntityManagerFactory entityManagerFactory =
 applicationContext.getBean(EntityManagerFactory.class);
 System.out.println(entityManagerFactory.isOpen());
 }
}

Exercise 3
Try to perform a persistence operation using JPA outside of an active transaction and observe the
exception thrown.

Solution to Exercise 3
You can continue with the project you created for Exercise 2. Use the following steps:

 1. Create the following persistent domain class in the com.wiley.beginningspring
.exercises.ch5 package:

@Entity
public class Foo {
 @Id
 @GeneratedValue
 private Long id;
}

 2. Modify the main method as follows to insert a new Foo instance without an active transac-
tion and then run the method:

public class Main {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(Ch5Configuration.class);
 EntityManagerFactory entityManagerFactory =
 applicationContext.getBean(EntityManagerFactory.class);
 System.out.println(entityManagerFactory.isOpen());
 EntityManager entityManager = entityManagerFactory.createEntityManager();

 Foo foo = new Foo();

 entityManager.persist(foo);

 entityManager.flush();
 entityManager.close();
 }
}

Chapter 6 ❘ 403

ChaptEr 6

Exercise 1
Configure your system using JpaTransactionManager and implement the depositMoney(long
accountId, double amount) method of the AccountServiceImpl class using JPA. The
AccountServiceImpl class is written in the “Using @Transactional on Class Level” section of Chapter 6.

Solution to Exercise 1
You can continue with the project you created for Exercise 2 of Chapter 5. Use the following steps:

 1. Add the following dependency element into the pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 2. Create the com.wiley.beginningspring.ch6 package in the src/main/java source folder.

 3. Create the following Account class in that package:

@Entity
public class Account {
 @Id
 @GeneratedValue
 private long id;
 private String ownerName;
 private double balance;
 private Date accessTime;
 private boolean locked;
 private byte[] ownerPhoto;

 //getters & setters...
}

 4. Create the following AccountService interface and AccountServiceImpl class in the same
package:

public interface AccountService {
 public void transferMoney(long sourceAccountId, long targetAccountId,
 double amount);
 public void depositMoney(long accountId, double amount) throws Exception;
 public Account getAccount(long accountId);
}

@Transactional
public class AccountServiceImpl implements AccountService {

 @PersistenceContext

404 ❘ Appendix A SolutionS to ExErciSES

 private EntityManager entityManager;

 @Override
 public void transferMoney(
 long sourceAccountId, long targetAccountId, double amount) {
 //...
 }

 @Override
 @Transactional(rollbackFor=Exception.class)
 public void depositMoney(long accountId, double amount) throws Exception {
 Account account = entityManager.find(Account.class, 100L);
 account.setBalance(account.getBalance() + amount);
 }

 @Override
 @Transactional(readOnly=true)
 public Account getAccount(long accountId) {
 return null;
 }
}

 5. Create the following Configuration class in the same package:

@Configuration
@EnableTransactionManagement
public class Ch6Configuration {

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean
 public PlatformTransactionManager transactionManager() {
 JpaTransactionManager transactionManager = new JpaTransactionManager();
 transactionManager.setEntityManagerFactory(entityManagerFactory);
 return transactionManager;
 }

 @Bean
 public AccountService accountService() {
 AccountServiceImpl accountService = new AccountServiceImpl();
 return accountService;
 }
}

 6. Execute the following DDL and DML SQLs in order to populate the database:

create table Account (
 id bigint generated by default as identity,
 accessTime timestamp, balance double not null,
 locked boolean not null, ownerName varchar(255),
 ownerPhoto binary(255), primary key (id));

insert into Account
 values(100,'2014-01-01 00:00:00',10.0,false,'John Doe',null);

Chapter 6 ❘ 405

 7. Create the following Main class in the com.wiley.beginningspring.ch6 package in which
you obtain the accountService bean and use it to deposit money to an account:

public class Main {
 public static void main(String[] args) throws Exception {
 AnnotationConfigApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(
 Ch5Configuration.class, Ch6Configuration.class);
 AccountService accountService =
 applicationContext.getBean(AccountService.class);
 accountService.depositMoney(100, 10.0);
 }
}

Exercise 2
What needs to be done to switch from local transactions to JTA—that is, global transactions?

Solution to Exercise 2
It is enough to configure the transactionManager bean as follows:

<bean id="transactionManager"
 class="org.springframework.transaction.jta.JtaTransactionManager"/>

Exercise 3
Implement a TransactionSyncronization class containing a logic that will be executed after a
transaction rolls back. This logic can be a simple System.out.println() statement that prints the
current transaction status to the console.

Solution to Exercise 3
You can continue from where you left off in Exercise 2 of Chapter 6. Use the following steps:

 1. Create the following class:

public class MyTxSync implements TransactionSynchronization {

 //other methods of TransactionSynchronization interface

 @Override
 public void afterCompletion(int status) {
 switch (status) {
 case TransactionSynchronization.STATUS_COMMITTED:
 System.out.println("tx commited");
 break;
 case TransactionSynchronization.STATUS_ROLLED_BACK:
 System.out.println("tx rollbacked");
 break;
 default:
 System.out.println("unknown status :" + status);
 }
 }
}

406 ❘ Appendix A SolutionS to ExErciSES

 2. Modify the depositMoney(..) method of AccountServiceImpl as follows:

@Override
@Transactional(rollbackFor=Exception.class)
public void depositMoney(long accountId, double amount) throws Exception {
 TransactionSynchronizationManager.registerSynchronization(new MyTxSync());

 Account account = entityManager.find(Account.class, 100L);
 account.setBalance(account.getBalance() + amount);

 if(true) throw new RuntimeException("thrown to test tx sync");
}

 3. Run the main method, and observe the result. You can also test it after commenting the state-
ment at which RuntimeException is thrown so that the transaction commits.

ChaptEr 7

Exercise 1
How can you disable TestExecutionListeners configured by default and see that no dependency
injection is performed at all?

Solution to Exercise 1
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch7-exercise1

 2. Add the following dependencies to your pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
</dependency>

 3. Create the com.wiley.beginningspring.ch7 package in the src/main/java source folder
and add the following class to it:

public class Foo {
}

Chapter 7 ❘ 407

 4. Create the com.wiley.beginningspring.ch7 package in the src/test/java source folder
and add the following test class to it:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
@TestExecutionListeners(listeners={})
public class Ch7Exercise1Tests {
 @Autowired
 private Foo foo;

 @Test
 public void testFooIsNotAvailable() {
 Assert.assertNull(foo);
 }
}

 5. Create the com.wiley.beginningspring.ch7 package in the src/test/resources source
folder and a Spring bean configuration file called Ch7Exercise1Tests‐context.xml in that
package with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="foo" class="com.wiley.beginningspring.ch7.Foo"/>

</beans>

 6. Run the test method using JUnit to see the result. You can also comment
@TestExecutionListeners(listeners={}) and observe that the test fails, indicating that
the foo bean is injected.

Exercise 2
Create a test class that loads both XML‐based and Java‐based bean configurations.

Solution to Exercise 2
You can continue with the project you already created for Exercise 1. Use the following steps:

 1. Create the following classes in the com.wiley.beginningspring.ch7 package in the src/
main/java source folder:

public class Bar {
}

@Configuration
public class Ch7Configuration {
 @Bean
 public Bar bar() {
 return new Bar();
 }
}

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

408 ❘ Appendix A SolutionS to ExErciSES

 2. Create a Spring bean configuration file named applicationContext.xml in the src/main/
resources source folder with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="foo" class="com.wiley.beginningspring.ch7.Foo"/>
</beans>

 3. Create the following test class in the com.wiley.beginningspring.ch7 package in the src/
test/java source folder:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(
classes={Ch7Configuration.class, Ch7Exercise2Tests.Config.class})
public class Ch7Exercise2Tests {

 @Configuration
 @ImportResource("classpath:/applicationContext.xml")
 static class Config {
 }

 @Autowired
 private Foo foo;

 @Autowired
 private Bar bar;

 @Test
 public void testDependenciesAreInjected() {
 Assert.assertNotNull(foo);
 Assert.assertNotNull(bar);
 }
}

 4. Run the test method using JUnit to see the result.

Exercise 3
Register a Java object into JNDI Context using SimpleNamingContextBuilder and then look it up
using javax.naming.InitialContext in your test class.

Solution to Exercise 3
You can continue with the project you already created for Exercise 1. Use the following steps:

 1. Create the following test class in the com.wiley.beginningspring.ch7 package of the
src/test/java source folder:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=Ch7Exercise3Tests.Config.class)

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Chapter 8 ❘ 409

public class Ch7Exercise3Tests {

 @Autowired
 private Foo foo;

 @Configuration
 static class Config {
 @Bean
 public Foo foo() {
 return new Foo();
 }
 }

 @Before
 public void setUp() throws NamingException {
 SimpleNamingContextBuilder builder = new SimpleNamingContextBuilder();
 builder.bind("foo", foo);
 builder.activate();
 }

 @Test
 public void testJNDIContextAccess() throws NamingException{
 InitialContext initialContext = new InitialContext();
 Foo foo2 = (Foo) initialContext.lookup("foo");

 Assert.assertSame(foo, foo2);
 }
}

 2. Run the test method using JUnit to see the result.

ChaptEr 8

Exercise 1
Define an aspect that pointcuts before the methods that are annotated with @MyAnnotation.

Solution to Exercise 1
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch2-exercise1

 2. Add the following dependencies to the pom.xml file and remove all the previously declared
dependencies that exist:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>

410 ❘ Appendix A SolutionS to ExErciSES

</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aop</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>1.8.1</version>
</dependency>

 3. Create the following classes under the com.wiley.beginningspring package in the
src/main/java source folder:

@Target(value = {ElementType.METHOD, ElementType.TYPE})
@Retention(value = RetentionPolicy.RUNTIME)
public @interface MyAnnotation {
}

public interface MyBean {
 void sayHi();
}

@Component
public class MyBeanImpl implements MyBean {

 @MyAnnotation
 public void sayHi() {
 System.out.println("Hi..!");
 }
}

@Component
@Aspect
public class AfterPointcut {

 @Pointcut("@annotation(com.wiley.beginningspring.MyAnnotation)")
 public void annotatedWithMyAnnotation() {
 }

 @After(value = "annotatedWithMyAnnotation()")
 public void afterWithMultiplePointcut() {
 System.out.println("Method intercepted with @MyAnnotation");

Chapter 9 ❘ 411

 }
}

public class App {
 public static void main(String... args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);

 MyBean myBean = context.getBean(MyBean.class);
 myBean.sayHi();
 }
}

 4. Run the main method in the App class. You see the following output:

Hi..!
Method intercepted with @MyAnnotation

Exercise 2
Create a pointcut expression where all beans under the com.wiley.beginningspring.ch8
.service package are intercepted but only the ones that have the class name suffixed as Bean.

Solution to Exercise 2
The pointcut definition would be as follows:

@Pointcut("within(com.wiley.beginningspring.ch8.service.*)
 && execution(public * com.wiley.beginningspring.*Bean.*(..))")

Here we used the && operator to join two match cases. It’s possible to blend the expressions with
grammatical operators such as and, or, and not (or with corresponding &&, ||, and !).

ChaptEr 9

Exercise 1
Inject the user.country system property into a property of a Spring bean with the @Value
annotation.

Solution to Exercise 1
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-quickstart
 -DgroupId=com.wiley.beginningspring -DartifactId=ch9-exercise1

412 ❘ Appendix A SolutionS to ExErciSES

 2. Add the following dependencies to the pom.xml file and remove all the previously declared
dependencies that exist:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-expression</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

 3. Create the following classes under the com.wiley.beginningspring package in the src/
main/java source folder:

@Component
public class MyBean {

 @Value("#{systemProperties['user.country']}")
 private String message;

 public String getMessage() {
 return message;
 }
}

@Configuration
@ComponentScan(basePackages = {"com.wiley.beginningspring"})
public class ApplicationConfig {
}

public class App {

 public static void main(String... args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ApplicationConfig.class);
 MyBean myBean = context.getBean(MyBean.class);
 System.out.println(myBean.getMessage());
 }
}

 4. Run the main method in the App class.

Exercise 2
Implement a method that reverses a given string and registers it as an Expression Language (EL)
function. Demonstrate the code within a test method by providing a sample string.

Chapter 9 ❘ 413

Solution to Exercise 2
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-quickstart
 -DgroupId=com.wiley.beginningspring -DartifactId=ch9-exercise2

 2. Add the following dependencies to the pom.xml file and remove all the previously declared
dependencies that exist:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-expression</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

 3. Create the following classes under the com.wiley.beginningspring package in the src/
main/java source folder:

public class MyStringUtils {

 public static String reverse(String str) {
 return new StringBuilder(str).reverse().toString();
 }
}

 4. Create the following classes under the com.wiley.beginningspring package in the src/
test/java source folder:

public class ReverseFunctionTests {

 ExpressionParser parser;

 @Before
 public void setup() {

414 ❘ Appendix A SolutionS to ExErciSES

 parser = new SpelExpressionParser();
 }

 @Test
 public void reverseFunctionRegisteredOK() throws NoSuchMethodException {
 StandardEvaluationContext context = new StandardEvaluationContext();
 context.registerFunction("reverse",
 MyStringUtils.class.getDeclaredMethod("reverse",
 new Class[] { String.class }));

 String value = parser.
 parseExpression("#reverse('hello')").getValue(context, String.class);
 assertThat(value, is("olleh"));
 }
}

 5. Run the test method using JUnit to see the passing test result.

ChaptEr 10

Exercise 1
Create domain class Course with properties id and name. Create a cache manager in Spring con-
figuration and use Hazelcast as your cache provider. Create a CourseService bean and implement
the findById service that returns the course for a given ID. Within the service, cache all the courses
that have the name starting with the BBM keyword.

Solution to Exercise 1
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-quickstart
 -DgroupId=com.wiley.beginningspring -DartifactId=ch10-exercise1

 2. Add the following dependencies to the pom.xml file and remove all the previously declared
dependencies that exist:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>

Chapter 10 ❘ 415

 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-all</artifactId>
 <version>3.3</version>
</dependency>

 3. Create the following classes under the com.wiley.beginningspring package in the src/
main/java source folder:

public class Course implements Serializable {

 private int id;
 private String name;

 public Course(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }
}

public class CourseService {

 private Map<Integer, Course> courses = new HashMap<>();
 {
 courses.put(1, new Course(1, "BBM490 - Enterprise Web Architecture"));
 courses.put(2, new Course(2, "ART101 - Introduction Photography"));
 }

 @Cacheable(value = "courses", condition = "#course.name.startsWith('BBM')")
 public Course getCourse(Course course) {
 System.out.println("Course with id " + course.getId() + " requested.");
 return courses.get(course.getId());
 }
}

public class App {

 public static void main(String... args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 CourseService courseService = context.getBean(CourseService.class);

 Course course1 = new Course(1, "BBM490 - Enterprise Web Architecture");
 Course courseFetch1 = courseService.getCourse(course1);

416 ❘ Appendix A SolutionS to ExErciSES

 System.out.println(courseFetch1);
 Course courseFetch2 = courseService.getCourse(course1);
 System.out.println(courseFetch2);

 Course course2 = new Course(2, "ART101 - Introduction Photography");
 Course courseFetch3 = courseService.getCourse(course2);
 System.out.println(courseFetch3);
 Course courseFetch4 = courseService.getCourse(course2);
 System.out.println(courseFetch4);
 }
}

 4. Create the following file under the src/main/resources source folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xmlns:hz="http://www.hazelcast.com/schema/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache-4.0.xsd
 http://www.hazelcast.com/schema/spring
 http://www.hazelcast.com/schema/spring/hazelcast-spring-3.3.xsd">

 <cache:annotation-driven />

 <hz:hazelcast id="hazelcast">
 <hz:config>
 <hz:map name="users">
 <hz:map-store enabled="true"
 class-name="com.wiley.beginningspring.Course" write-delay-seconds="0"/>
 </hz:map>
 </hz:config>
 </hz:hazelcast>

 <bean id="userService" class="com.wiley.beginningspring.CourseService" />

 <bean id="cacheManager"
 class="com.hazelcast.spring.cache.HazelcastCacheManager">
 <constructor-arg ref="hazelcast" />
 </bean>
</beans>

 5. Run the main method in the App class to see an output similar to the following:

Course with id 1 requested.
com.wiley.beginningspring.Course@1f010bf0
com.wiley.beginningspring.Course@177bea38
Course with id 2 requested.
com.wiley.beginningspring.Course@7f132176
Course with id 2 requested.
com.wiley.beginningspring.Course@7f132176

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/cache
http://www.hazelcast.com/schema/spring
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache-4.0.xsd
http://www.springframework.org/schema/cache/spring-cache-4.0.xsd
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring
http://www.hazelcast.com/schema/spring/hazelcast-spring-3.3.xsd

Chapter 11 ❘ 417

Exercise 2
What’s the main difference between the @Cacheable and @CachePut annotations? Will it be pos-
sible to use either of these annotations on methods with void return types?

Solution to Exercise 2
The @CachePut annotation always gets the method executed first compared to the @Cacheable
annotation. So this is a feasible approach where you always want to update your cache storage with
the method return value. Because @CachePut uses the method’s return value as the cached value, it
doesn’t make sense to use it on methods with the void return type.

ChaptEr 11

Exercise 1
Is it possible to produce XML output with REST web services?

Solution to Exercise 1
Yes, Spring MVC provides message converters that will handle XML requests and responses. To
achieve this you need to annotate your domain objects with JAXB annotations like
@XmlRootElement and @XmlElement. Also there is no need to define any extra dependency because
these annotations ship with the JDK.

Exercise 2
Create the User domain class with the properties id, name, and address. Create a REST web
service that outputs a User domain object list as JSON. While doing JSON conversion, omit the
address field from the output.

Solution to Exercise 2
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-webapp
 -DgroupId=com.wiley.beginningspring -DartifactId= ch11-exercise2

 2. Add the following dependencies to the pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

418 ❘ Appendix A SolutionS to ExErciSES

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>4.0.5.RELEASE</version>
</dependency>

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-core</artifactId>
 <version>2.4.0</version>
</dependency>

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.4.0</version>
</dependency>

 3. Replace the content of the web.xml file with the following:

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">

 <servlet>
 <servlet-name>springmvc</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>springmvc</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd

Chapter 11 ❘ 419

 4. Create springmvc‐servlet.xml under the src/main/webapp/WEB‐INF folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-4.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

 <context:component-scan base-package="com.wiley.beginningspring" />
 <context:annotation-config />

 <mvc:annotation-driven />
</beans>

 5. Create the following classes under the com.wiley.beginningspring package in the src/
main/java source folder:

public class User {

 private int id;
 private String name;
 @JsonIgnore
 private String address;

 public User(int id, String name, String address) {
 this.id = id;
 this.name = name;
 this.address = address;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public String getAddress() {
 return address;
 }
}

@RestController
@RequestMapping("/rest")
public class UserRestController {

 @RequestMapping(value = "/users", method= RequestMethod.GET)
 public List<User> list() {

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd

420 ❘ Appendix A SolutionS to ExErciSES

 List<User> users = new ArrayList<User>();
 users.add(new User(1, "Mert Caliskan", "Izmir"));
 users.add(new User(2, "Kenan Sevindik", "Ankara"));
 return users;
 }
}

 6. Add the following part as a child element of the <build> element in the pom.xml file:

<plugins>
 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.2.1.v20140609</version>
 <configuration>
 <scanIntervalSeconds>2</scanIntervalSeconds>
 <webApp>
 <contextPath>/</contextPath>
 </webApp>
 </configuration>
 </plugin>
</plugins>

 7. Run the application using the Maven jetty:run goal and request the URL

http://localhost:8080/rest/users in your browser.

You should see the output of JSON as shown here with omitted address values:

[{"id":1,"name":"Mert Caliskan"},{"id":2,"name":"Kenan Sevindik"}]

ChaptEr 12

Exercise 1
Configure the concurrent session management so that a user can open at most one session in the
application, and any other login attempt from the same user results in an error message.

Solution to Exercise 1
Use the following steps:

 1. Use the following Maven command to create a project:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-webapp
 -DgroupId=com.wiley.beginningspring -DartifactId=spring-book-ch12-exercise1

 2. Add the following dependencies to the pom.xml file:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-web</artifactId>

http://localhost:8080/rest/users

Chapter 12 ❘ 421

 <version>3.2.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>3.2.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.1.1</version>
</dependency>
<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.1.0</version>
</dependency>

 3. Add the following part as a child element of the <build> element in the pom.xml file:

<plugins>
 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.2.1.v20140609</version>
 <configuration>
 <scanIntervalSeconds>2</scanIntervalSeconds>
 <webApp>
 <contextPath>/</contextPath>
 </webApp>
 </configuration>
 </plugin>
</plugins>

 4. Replace the content of the web.xml file with the following:

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">
 <display-name>Archetype Created Web Application</display-name>
 <filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
 </filter>

 <filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <listener>

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd

422 ❘ Appendix A SolutionS to ExErciSES

 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <listener>
 <listener-class>
 org.springframework.security.web.session.HttpSessionEventPublisher
 </listener-class>
 </listener>
</web-app>

 5. Create a Spring bean configuration file named ApplicationContext.xml in the src/main/
webapp/WEB‐INF folder with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:security="http://www.springframework.org/schema/security"
 xsi:schemaLocation="http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.2.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <security:user-service id="userService">
 <security:user name="user1" password="secret" authorities="ROLE_USER"/>
 <security:user name="user2" password="secret"
 authorities="ROLE_USER,ROLE_EDITOR"/>
 </security:user-service>

 <security:authentication-manager>
 <security:authentication-provider user-service-ref="userService"/>
 </security:authentication-manager>

 <security:http auto-config="true">
 <security:intercept-url pattern="/**" access="ROLE_USER"/>
 <security:session-management>
 <security:concurrency-control
 error-if-maximum-exceeded="true" max-sessions="1"/>
 </security:session-management>
 </security:http>

</beans>

 6. Run the application using the Maven jetty:run goal and try to log in to it using a browser
with the URL http://localhost:8080. You can use user1/secret as credentials. Open
another browser and try to log in to the application with the same user and observe the
result.

Exercise 2
Configure Spring Security to use the basic authentication method (instead of form‐based authentica-
tion) to protect access to URL resources.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/security/spring-security-3.2.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://localhost:8080

Chapter 13 ❘ 423

Solution to Exercise 2
You can continue with the project you created for Exercise 1. Use the following steps:

 1. Modify the <security:http> element in applicationContext.xml as follows:

<security:http auto-config="false">
 <security:http-basic />
 <security:intercept-url pattern="/**" access="ROLE_USER" />
 <security:session-management>
 <security:concurrency-control
 error-if-maximum-exceeded="true" max-sessions="1" />
 </security:session-management>
</security:http>

 2. Run the application using the Maven jetty:run goal and try to log in to it using a browser
with the URL http://localhost:8080. You can use user1/secret as credentials.

Exercise 3
Instead of using the @Secured annotation to protect access to BusinessService.secureMethod(),
enable pre‐post annotations and use @PreAuthorize to protect it.

Solution to Exercise 3
You can continue with the project you created for the “Authorizing Service Methods” Try It Out in
Chapter 12. Use the following steps:

 1. Modify the <security:global‐method‐security> element in applicationContext.xml
as follows:

<security:global-method-security
 secured-annotations="enabled" pre-post-annotations="enabled"/>

 2. Modify the test methods in the MethodLevelSecurityTests class so that it will invoke
secureMethod2(), which is already annotated with @PreAuthorize. Just be careful that you
change the assigned role to ROLE_EDITOR in the last test as follows:

@Test
public void testSecureMethodWithAppropriateAuthority() {
 TestingAuthenticationToken authentication =
 new TestingAuthenticationToken("user1", "secret","ROLE_EDITOR");
 SecurityContextHolder.getContext().setAuthentication(authentication);

 businessService.secureMethod2();
}

ChaptEr 13

Exercise 1
What are the two alternative methods that are introduced with Spring 4 for mapping row elements
instead of by implementing a RowMapper?

http://localhost:8080

424 ❘ Appendix A SolutionS to ExErciSES

Solution to Exercise 1
The lambda expressions introduced with Java 8 are utilized by Spring 4 to enable creating row map-
pers with anonymous code blocks:

public Account find(long accountId) {
 return jdbcTemplate.queryForObject("select id, owner_name, balance,
 access_time,locked from account where id = " + accountId,
 (rs, rowNum) -> new Account(rs.getLong("id"),
 rs.getString("owner_name"),
 rs.getDouble("balance"),
 rs.getTimestamp("access_time"),
 rs.getBoolean("locked")));
}

The same implementation can be done with method references, which are also introduced by Java
8 and makes it possible to reuse the existing methods that you have. So you can easily do the row
mapping within your custom method implementation:

public Account find(long accountId) {
 return jdbcTemplate.queryForObject("select id,owner_name, balance, access_time,
 locked from account where id = " + accountId, this::mapAccount);
}
private Account mapAccount(ResultSet rs, int rowNum) throws SQLException {
 return new Account(rs.getLong("id"),
 rs.getString("owner_name"),
 rs.getDouble("balance"),
 rs.getTimestamp("access_time"),
 rs.getBoolean("locked"));
}

Exercise 2
Instead of defining a wrapper annotation for the repeating annotations, what is a better way offered
by Spring 4?

Solution to Exercise 2
Spring 4 supports the @Repeatable annotation, which ships with Java 8, and this annotation has
already been integrated with the @Scheduled and @PropertySource annotations that are offered by
version 4 of the framework. So you can just use multiple @Scheduled or @PropertySource annota-
tions on the same method instead of wrapping them with another annotation.

425

Index

A

AcceptHeaderLocaleResolver bean, 95
AccessDecisionManager, 355–357
accountDao() method, 25
AccountDaoInMemoryImpl class, 24
AccountDaoJdbcImpl class, 112–113
AccountService bean, 25
ACID acronym

atomicity, 176
consistency, 176
durability, 176
isolation, 176

advice in AOP, 238
Before, 244, 245
After (Finally), 244, 246–247
After Returning, 244, 245
After Throwing, 244, 245–246
AfterReturningAdvice,

242–244
Around, 244, 247–248
MethodBeforeAdvice, 242–244
ThrowsAdvice, 244

After (Finally) advice type, 244
@After annotation, 252
After Returning advice type, 244
After Throwing advice type, 244
@AfterReturning annotation, 252
AfterReturningAdvice, 242–244
@AfterThrowing annotation,

252–253
<alias> element, 44–45
aliases, 44–45
anemic domain model, 6

annotations
AOP

@After, 252
@AfterReturning, 252
@AfterThrowing, 252–253
@Around, 253
@Aspect, 253
@Before, 250–251
@DeclareParents, 254–255
@Pointcut, 251–252

@Autowired, 19
@Bean, 20
@Cacheable, 290–291
@CacheEvict, 292
@CachePut, 292
@Caching, 293
caching abstraction, 289–290
@Component, 19, 266
@Configuration, 20
configuration, RESTful services, 319–320
@ContextConfiguration, 213, 225
@Controller, 84
@ControllerAdvice, 85
@CreditCardNumber, 86
@Description, 381
@Email, 86
@EnableTransactionManagement, 186
@Entity, 140
@ExceptionHandler, 85, 93–95
@Id, 140
@ImportResource, 213
@InitBinder, 85
@Inject, 219
@JoinColumn, 142

426

annotations (continued) – associations

annotations (continued)
@ManyToMany, 144
@ManyToOne, 143
@ModelAttribute, 84–85
MVC configuration, 71–72
@OneToMany, 143
@OneToOne, 142
@PathVariable, 85
@Pattern, 86
@PersistenceContext, 161
@PersistenceUnit, 161
@PostConstruct, 296–298
@Qualifier, 219
repeating, 379–381
@Repository, 19
@RequestMapping, 84, 317
@Resource, 219
@ResponseBody, 316
@RestController, 316, 381
@Service, 19
@Size, 86
@Table, 140
testing and, 232–233
@Transactional, 186, 190–191, 219
@WebAppConfiguration, 226

anonymous authentication, 333, 344
AOP (aspect-oriented programming), 184,

237–239
advice, 238

AfterReturningAdvice, 242–244
MethodBeforeAdvice, 242–244
ThrowsAdvice, 244

annotations
@After, 252
@AfterReturning, 252
@AfterThrowing, 252–253
@Around, 253
@Aspect, 253
@Before, 250–251
configuration and, 259
@DeclareParents, 254–255
@Pointcut, 251–252

AspectJ, 239
caching and, 285–286
CGLIB proxy mechanism, 239

configuration, annotations and, 259
JDK dynamic proxy mechanism, 239
join-point, 238
methods, logging execution times, 240–243
point-cut, 238

alternative designators, 249
method signature expressions, 249
type signature expressions, 248–249
wildcards, 250

proxy objects, 239
Proxy pattern, 239
quick-start Maven archetype, 242
target, 238
weaving, 238

AOP (aspected-oriented programming), advice
Before, 245
After (Finally), 246–247
After Returning, 245
After Throwing, 245–246
Around, 247–248

APIs (application programming interfaces)
EJB2, 3
JPA (Java Persistence API), 138

application exceptions, 186
ApplicationConfig class, 290
ApplicationContext, 21

caching, 216–217
configuration

ApplicationContextInitializer
interface, 214

Java-based, 210–214
XML-based, 210–214

JUnit, 210–214
ApplicationContext interface, 25
ApplicationContextInitializer

interface, 214
arithmetic operators, SpEL, 276
Around advice type, 244
@Around annotation, 253
@Aspect annotation, 253
AspectJ, 239

methods, logging execution times, 255–258
association tables, 144
associations

directionality, 142

427

atomicity – @CachePut annotation

multiplicity, 142
objects

directionality, 144–145
many-to-many, 143–144
many-to-one, 142–143
one-to-many, 143
one-to-one, 142

atomicity (ACID), 176
attributes
depends-on, 38
destroy-method, 52–53
init-method, 52–53
lazy-init, 51
mapping to columns, 141–142

authenticate tag, 359
authentication, 332, 341

anonymous, 333, 344
basic, 352–353
CAS (Central Authentication Service), 333
login flow, 342–243

page customization, 344–345
OAuth, 333

AuthenticationManager, 342
authorization, 332

expression-based, 357–358
service methods, 359–364
web requests, 353–355

authorize tag, 359
automatic dirty checking, 154
@Autowired annotation, 19
autowired collections, 377–379
autowiring, 39–43

B

batch operations, JdbcTemplate, 126
batchUpdate() method, 126
@Bean annotation, 20
bean scope, 48–51
Bean Validation 1.1, 374
Bean Validation API, 86–90
beans, 18

access, SpEL, 280–281
configuration, constructor injection and,

31–32

definition profiles, 54–56
definitions, overriding, 36–38
instantiation, 45–48
naming, 44–45
request-scoped, testing, 225–227
scopes, 25
session-scoped, testing, 225–227

<beans> element, 19
Before advice type, 244
@Before annotation, 250–251
between operator, 277
bidirectional associations, 138–139
BLOBs (binary large objects), 126–127
bootstrapping cache storage, 296–298
boundaries, transactions, 177–180
built-ins

expressions, 358
scopes, 50

buttons on MVC forms, 79

C

cache annotations
@Cacheable, 290–291

conditional caching, 291–292
keys, 291

@CacheEvict, 292
@CachePut, 292
@Caching, 293

cache managers, 298
CompositeCacheManager, 294–295
ConcurrentMapCacheManager, 294
configuration, different name, 289
Ehcache, 299–302
Guava, 302
Hazelcast, 302–303
NoOpCacheManager, 294
SimpleCacheManager, 293–294

@Cacheable annotation, 290–291
conditional caching, 291–292
keys, 291

@CacheEvict annotation, 292
cacheManager, 286–289
@CachePut annotation, 292

428

caching – databases

caching, 285
abstraction, annotations and configuration,

289–290
application building

annotations and, 289–290
cache manager name, 289
service layer method caching, 286–289

ApplicationContext, 216–217
expressions in, 281
initialization, programmatically, 296–298
SpEL, 281

expressions, 295–296
storage bootstrapping, 296–298

@Caching annotation, 293
callback methods, life cycle callback methods, 52–53
callback objects, 116
capitalize method, 274–275
CAS (Central Authentication Service), 333
CGLIB proxying, 239
checkboxes in MVC forms, 78
checked exceptions, 186
circular dependencies, 34–35
CLOBs (character large objects), 126–127
collections

autowired, 377–370
operators, 279–280

first and last element, 280
Command object, 74
Commons FileUpload, 90–93
@Component annotation, 19, 266
CompositeCacheManager, 294–295
conditional caching, @Cacheable annotation,

291–292
conditional dependency, injection and, 374–377
conditional operators, SpEL, 277–278
configuration

annotations, RESTful services, 319–320
AOP, annotations and, 259
ApplicationContext

ApplicationContextInitializer
interface, 214

beans, constructor injection, 31–32
cache manager, different name, 289
context, 214

inheriting, 214–216

environments, at runtim, 56–59
MVC

annotations and, 71–72
form tag library, 73–74

PlatformTransactionManager bean,
180–182

SpEL and, 264–266
Spring Container, 21–25
Spring Security, 334–340

@Configuration annotation, 20
configuration metadata, 18–20
consistency (ACID), 176
constructor injection, 11–12, 31–34

bean configuration, 31–32
<constructor-arg> element, 32–33
constructors, calling, 272
containers. See also Spring Container

lightweight, 8–9
context configuration, 214

inheriting, 214–216
context hierarchies, 225
@ContextConfiguration annotation, 213, 225
ContextLoaderListener, 225
@Controller annotation, 84
@ControllerAdvice annotation, 85
controllers, MVC, testing, 230
@CreditCardNumber annotation, 86
CRUD (Create, Read, Update, Delete), 139

objects and, 150–153
RESTful services and, 307–318

d

data access, queries, 114–116
databases

embedded, 108–109
initializing, 111
queries

IN clause, 118–119
JdbcTemplate, 114–116
named parameters, 116–118

records
deleting, 121–124
inserting, 121–124
updating, 121–124

429

DataNucleus – files

stored functions, calling, 124–125
stored procedures, calling, 124–125

DataNucleus, 139
DataSource, 110–111
DataSource object, 106–108
dates, MVC forms, 76–77
DDL operations, 127–128
Declarative Transaction Management,

183–186, 238
@DeclareParents annotation, 254–255
DELETE method, 306
dependency injection, 10–11, 18

autowiring, 39–43
bean

lookups, 43–44
overriding definitions, 36–38

circular dependencies, 34–35
conditional dependency, 374–377
constructor injection, 31–34
dependency resolution process, 35
depends-on attribute, 38
MVC and, 65
setter injection, 29–31
test fixtures, 217–219

dependency lookup, 10
depends-on attribute, 38
deployment, EJB model, 4
@Description annotation, 381
destroy-method attribute, 52–53
devFoo() method, 58
directionality associations, 142, 144–145
Dispatcher Servlet, 65–66, 306

definition, 66–67
Servlet Context, 67

domain objects, anemic domain model, 6
DriverManagerDataSource class, 107–108
drop-downs, forms, 77
DRY (Don’t Repeat Yourself), 238
durability (ACID), 176

e
eager initialization, 18, 51
EBJ2 API, 3
EclipseLink, 139

Ehcache cache manager, 299–302
EJB (Enterprise JavaBeans), 1–2

definitions, 4–5
deployment, 4

EL (expression language), 263
operators, 275
SpEL (Spring Expression Language), 264

@Email annotation, 86
EmbededDatabase interface, 108–109
@EnableTransactionManagement

annotation, 186
encapsulation, SQL queries, MappingSqlQuery

class and, 128–132
encryption

passwords, 349–350
Spring Security, 334

entities, ORM, 140–141
@Entity annotation, 140
EntityManager, 163
EntityManagerFactory, 161–163
environments, configuration, at runtime, 56–59
exception handling, 166–167

JDBC, 132–133
MVC, 93–95

testing, 230
RESTful services, 322–326

@ExceptionHandler annotation, 85, 93–95
exceptions

application, 186
checked, 186
system, 186
unchecked, 186

execution keyword, 249
exercise solutions, 385–425
expression templates, 267
expression-based authorization, 357–358
expressions

built-in, 358
caching, 281
lambda expressions, 370–374

ExpressParser interface, 267

F

FactoryBean interface, 47–48
files, uploading, 90–93

430

filters – Java

filters, Spring Security, 338
fixation attacks, Spring Security, 334
foo() method, 37
Form object, 74
form tab library (MVC), 73–74
form tag, 74–75
Form-Backing object, 74
forms, submitting, testing, 230
Front Controller, 65–66
functions

registering, 274–275
SpEL, 273–275
stored, calling, 124–125

G

GET method, 306
getBean() method, 37
getConnection() method, 107
getRemoteUser() method, 333–334
getValue() method, 267
global transactions, 182
Guava cache manager, 302

H

handler mappings, 66
HandlerMapping interface, 66
Hazelcast cache manager, 302–303
Hello World

MVC, 68–71
parsing, SpEL and, 268–270

Hibernate, 139, 147–150
HibernateTemplate class, 161–166
hierarchies, context, testing and, 225
HTML (HyperText Markup Language), 64
HTTP (HyperText Transfer Protocol), 64

status codes, RESTful services, 318

I

@Id annotation, 140
@ImportResource annotation, 213
IN clause, 118–119
inheritance, context configuration, 214–216

@InitBinder annotation, 85
initialization

caches, 296–298
eager initialization, 18, 51
lazy, 18, 51–52

init-method attribute, 52–53
@Inject annotation, 219
injection

conditional dependency and, 374–377
constructor injection, 11–12
dependency injection, 10, 18

test fixtures, 217–219
setter methods, 11, 12
system properties, SpEL and, 264–266

inline lists, 274
input, validation, 86–90
input elements, MVC forms, 75–76
instanceof operator, 277
instantiation, beans, 45–48
interfaces
ApplicationContext, 25
ApplicationContextInitializer, 214
EmbededDatabase, 108–109
ExpressParser, 267
FactoryBean, 47–48
HandlerMapping, 66
JpaDialect, 168
JpaVendorAdapter, 168
MethodInterceptor, 204
ServletContextAware, 67
UserDetailsService, 340–341

internationalization, MVC, 95–97
IoC (Inversion of Control), 8, 9–10

configuration metadata, 18–20
isolation (ACID), 176
isUserInRole() method, 333–334

J

JAAS (Jave Authentication and Authorization
Service), 332

Java
EJB (Enterprise JavaBeans), 1–2
JNDI (Java Naming and Directory Interface), 5
JSP (JavaServer Pages), 6

431

Java 8 – JSP

mapping Java types to SQL types, 145–147
POJO (Plain Old Java Object), 1–2

Java 8, 370–374
Java Annotation-based configuration, 27–29
Java EE7, 370–374
Java-based configuration, 21–26
JDBC (Java Database Connectivity)

batch operations, 126
BLOBs (binary large objects), 126–127
callback objects, 116
classes

JdbcTemplate, 105
MappingSqlQuery, 105
NamedParameterJdbcTemplate, 105
SimpleJdbcCall, 105
SimpleJdbcInsert, 105
SqlUpdate, 105
StoredProcedure, 105

CLOBs (character large objects), 126–127
connection management, 105–111
databases

deleting records, 121–124
inserting records, 121–124
updating records, 121–124

DataSource instance, 110–111
DataSource object, 106–108
DDL operations, 127–128
embedded databases, 108–109
EmbededDatabase interface, 108–109
exception handling, 132–133
initializing databases, 111
JdbcTemplate, configuration, 112–113
methods, vendor-specific, 127
operations as Java objects, 128–132
problems with, 104–105
queries, 114–116

IN clause, 118–119
named parameters, 116–118

stored functions, calling, 124–125
stored procedures, calling, 124–125
transactions, boundaries, 177–180

JdbcTemplate, 370–374
batch operations, 126
callback objects, 116
configuration, 112–113

deleting records, 121–124
inserting records, 121–124
PreparedStatement, 119–121
queries, 114–116
updating records, 121–124

JdbcTemplate class, 105
JDK (Java Development Kit)

caching, 286–289
proxying, 239

JNDI (Java Naming and Directory Interface), 5
mock objects for testing, 232

@JoinColumn annotation, 142
join-point in AOP, 238
JPA (Java Persistence API), 138

associations, 150–153
configuration, 147–156
container setup, 156–160
DAO implementation, 161–166
deleting entities, 153–154
finding entities, 153–154
Hibernate, 147–150
implements, 139
load time weaving, 169–170
persistence, 150–153
QL (Query Language), 155–156
updating entities, 153–154

JpaDialect interface, 168
JpaTemplate class, 161–166
JpaVendorAdapter interface, 168
JRE (Java Runtime Environment), 332
JSON (JavaScript Object Notation), 320
JSP (JavaServer Pages), 6

MVC forms, 73
binding, 74
buttons, 79
checkboxes, 78
classes, 76–77
dates, 76–77
drop-downs, 77
form tab library, 73–74
input elements, 75–76
labels, 78
radio buttons, 78
styles, 79–84

security tags, 358–359

432

JUnit – MVC

JUnit, 3–4
ApplicationContext, 210–214
runner class, 212

K

keys, primary keys
natural primary keys, 141
surrogate primary keys, 141
synthetic primary keys, 141

keywords
within, 248–249
execution, 249

L

labels, MVC forms, 78
lambda expressions, 370–374
lazy initialization, 18, 51–52
lazy-init attribute, 51
life cycle callback methods, 52–53
lightweight containers, 8–9
lists, inline lists, 274
load time weaving, 169–170
local transactions, 182
LocalEntityManagerFactoryBean, 156–160
logical operators, SpEL, 276–277
login

authentication, 342–243
customization, 344–345

logout, 346
lookups

bean lookups, 43–44
dependency lookups, 10

M

Main class, 24
main method, 24
MANDATORY propagation, 192
@ManyToMany annotation, 144
many-to-many associations, 143–144
@ManyToOne annotation, 143
many-to-one associations, 142–143
MappingSqlQuery class, 105

query encapsulation, 128–132

Maven project, 242
creating, 21–22

metadata, configuration metadata, 18–20
method references, 373–374
method signature expressions (AOP), 249
MethodBeforeAdvice, 242–244
MethodInterceptor interface, 204
methods
accountDao(), 25
batchUpdate(), 126
callbacks, life cycle callback methods,

52–53
capitalize, 274–275
DELETE, 306
devFoo(), 58
foo(), 37
GET, 306
getBean(), 37
getConnection(), 107
getRemoteUser(), 333–334
getValue(), 267
isUserInRole(), 333–334
logging execution times

AOP, 240–243
AspectJ, 255–258

main, 24
parseExpression, 267
POST, 306
prodFoo(), 58
PUT, 306
setRootObject(), 273
setter methods, 11
setup, 220–221
setValue(), 267
SpEL, 270–273
static, calling, 272–273
teardown, 220–221
vendor-specific, 127

mock objects, testing and, 231–232
@ModelAttribute annotation, 84–85
multiplicity associations, 142
MVC (Model View Controller), 64–65

annotations
@Controller, 84
@ControllerAdvice, 85

433

NamedParameterJdbcTemplate class – operators

@CreditCardNumber, 86
@Email, 86
@ExceptionHandler, 85, 93–95
@InitBinder, 85
@ModelAttribute, 84–85
@PathVariable, 85
@Pattern, 86
@RequestMapping, 84
@Size, 86

configuration, annotations and, 71–72
dependency injection and, 65
Dispatcher Servlet, 65–66
exception handling, 93–95
file uploads, 90–93
form tab library, 73–74
forms

binding, 74
buttons, 79
checkboxes, 78
classes, 76–77
dates, 76–77
drop-downs and, 77
form tag, 74–75
input elements, 75–76
JSP and, 73–84
labels, 78
radio buttons, 78
styles, 79–84

Front Controller, 65–66
handler mappings, 66
Hello World application, 68–71
input validation, 86–90
internationalization, 95–97
mock reqest/response, printing, 231
testing

controllers, 227–228
exception handlers, 230
form submission, 228–230

themes, 97–100
view resolvers, 66

n

NamedParameterJdbcTemplate class, 105
naming beans, 44–45

natural primary keys, 141
navigation, safe navigation operator (SpEL),

278–279
NESTED propagation, 192
NEVER propagation, 192
NoOpCacheManager, 294
NOT_SUPPORTED propagation, 192

O

OAuth, 333
object query language, 139
objects

associations, 138–139
directionality, 144–145
many-to-many, 143–144
many-to-one, 142–143
one-to-many, 143
one-to-one, 142

BLOBs (binary large objects), 126–127
callback objects, 116
CLOBs (character large objects), 126–127
Command, 74
CRUD operations, 150–153
Form, 74
Form-Backing, 74
mock objects for testing, 231–232
TransactionSynchronization, 204–205

OGNL (Object Graph Navigation Language), 264
@OneToMany annotations, 143
one-to-many associations, 143
@OneToOne annotation, 142
one-to-one associations, 142
OpenID, 333
OpenJPA, 139
operators
between, 277
EL (expression language), 275
instanceof, 277
SpEL

arithmetic, 276
collection, 279–280
conditional, 277–278
logical, 276–277
projection, 279–280

434

operators (continued) – records

operators (continued)
regular expression, 278
relational, 276
safe navigation, 278–279
selection, 279–280

T(), 272–273
ORM (object-relational mapping), 138

associations between objects, 142–145
entities, 140–141
framework, 139
Jave types to SQL types, 145–147
mapping attributes to columns, 141–142
mapping Java types to SQL types, 145–147

P

PAM (pluggable authentication module), 332
parameters, queries, 116–118
parseExpression method, 267
parsing, SpEL and, 267–270
passwords

encryption, 349–350
Spring Security, 334

@PathVariable annotation, 85
@Pattern annotation, 86
patterns, Template Method, 115
persistence, 153
persistence context, 150
persistence unit, 149

multiple, 170–171
@PersistenceContext annotation, 161
@PersistenceUnit annotation, 161
PlatformTransactionManager, 201–203
PlatformTransactionManager API, 180

implementations, 182–183
PlatformTransactionManager bean,

configuration, 180–182
@Pointcut annotation, 251–252
point-cut in AOP, 238

alternative designators, 249
method signature expressions, 249
type signature expressions, 248–249
wildcards, 250

POJO (Plain Old Java Object), 1–2
programming model

benefits, 7–8
problems, 2–7

POST method, 306
@PostConstruct annotation, 296–298
PreparedStatement, 119–121
primary keys

natural primary keys, 141
surrogate primary keys, 141
synthetic primary keys, 141

procedures, stored, calling, 124–125
prodFoo() method, 58
profiles, beans, 54–56
projection, operators, 279–280
projects, Maven, creating, 21–22
propagation rules

MANDATORY, 192
NESTED, 192
NEVER, 192
NOT_SUPPORTED, 192
REQUIRED, 191––192
REQUIRED_NEW, 192
SUPPORTS, 192

<property> element, 30
proxy objects, 239
Proxy pattern, 239
PUT method, 306

Q

QL (Query Language), 155–156
@Qualifier annotation, 219
queries
IN clause, 118–119
JdbcTemplate, 114–116
parameters, named, 116–118
SQL

encapsulation, 128–132
MappingSqlQuery class and,

128–132

R

radio buttons, MVC forms, 78
records (databases)

deleting, 121–124

435

regular expression operator – SpEL

inserting, 121–124
updating, 121–124

regular expression operator, SpEL, 278
relational operators, SpEL, 276
remember-me support, 350–351
@Repository annotation, 19
@RequestMapping annotation, 84, 317
request-scoped beans, testing, 225–227
REQUIRED propagation, 191––192
REQUIRED_NEW propagation, 192
@Resource annotation, 219
@ResponseBody annotation, 316
REST (REpresentational State Transfer), 305
DELETE method, 306
GET method, 306
POST method, 306
PUT method, 306

@RestController annotation, 316
RestException class, 324
RestExceptionHandler class, 325
RESTful services, 306

annotation configuration, 319–320
CRUD operations, 307–318
exception handling, 322–326
HTTP, status codes, 318
unit testing, 326–328
web services, creating, 306–318
XML and, 320–322

RestTemplate class, 326–328
RMI (remote method invocation), 6
#root, 273
RowMapper, 116
runtime, environment configuration, 56–59

S

safe navigation operator (SpEL), 278–279
savepoints, 192
scopes

bean scope, 48–51
built-in, 50
singleton, 25

security, 331–332
authentication, 332
authorization, 332

CAS (Central Authentication Service), 333
OAuth, 333
OpenID, 333
Siteminder, 333
web.xml, 332–333

SecurityContext object, 341
selection, operators, 279–280

first and last element, 280
@Service annotation, 19
service layers, caching methods, 286–289
Servlet Context, 67
Servlet Specification, web.xml security, 332–333
ServletContextAware interface, 67
session management in Spring Security, 351–352
SessionLocalResolver class, 95
session-scoped beans, testing, 225–227
setRootObject() method, 273
setter injection, 31–34
setter methods, 11, 12
setup methods, 220–221
setValue() method, 267
SimpleCacheManager, 293–294
SimpleJdbcCall, 124–125
SimpleJdbcCall class, 105
SimpleJdbcInsert class, 105
singleton scope, 24
Siteminder, 333
@Size annotation, 86
SoapUI, service methods, 306–307
SpEL (Spring Expression Language), 226, 264

authorization and, 357–358
caching, 281

expressions, 295–296
configuration and, 264–266
functions, 273–275

registering, 274–275
Hello World, parsing, 268–270
inline lists, 274
methods, invoking, 270–273
operators, 275

arithmetic, 276
collection, 279–280
conditional, 277–278
logical, 276–277
projection, 279–280

436

SpEL (Spring Expression Language) (continued) – TestContext framework

SpEL (Spring Expression Language) (continued)
regular expression, 278
relational, 276
safe navigation, 278–279
selection, 279–280

parsers, creating, 267–270
<spring:eval>, 281
system properties, 274
system property injection, 264–266
utilities, bean access, 280–281
variables, 273–275

environment, 274
#root, 273
system properties, 274
#this, 274

SpelExpressionParser, 267
Spring 4.0, 369

Java 8, 370–374
Java EE7, 370–374

Spring Container
configuration, 21–25

Java Annotation-based configuration,
27–29

standalone environment
Java-based configuration, 21–26
XML-based configuration,

26–27
Spring Security

authentication, 333, 341
anonymous, 333
basic, 352–353
login, 342–243

authorization, service methods, 359–364
CAS (Central Authentication Service), 333
configuration, 334–340
encryption, 334

passwords, 349–350
features, 333–334
filters, 338
fixation attacks, 334
integration support, 333–334
JSP tags, 358–359
logout, 346
OAuth, 333
OpenID, 333

passwords, 334
encrypting, 349–350

remember-me support, 333, 350–351
secure HTTP, 334
service method authorization, 359–364
session management, 351–352
Siteminder, 333
SSO solutions, 333
UserDetails, 346–347
UserDetailsService interface, 340
web requests, authorization, 353–355

<spring:eval>, 281
SQL (Structured Query Language)

DML operations, encapsulation, 130–131
mapping Java types to, 145–147
queries

encapsulation, 128–132
MappingSqlQuery class and,

128–132
stored procedures, encapsulations, 131–132

SqlUpdate class, 105, 130–131
SSO (single sign-on) solutions, 333
static methods, calling, 272–273
storage, cache bootstrapping, 296–298
stored functions, calling, 124–125
stored procedures, calling, 124–125
StoredProcedure class, 105
styles, MVC forms, 79–84
SUPPORTS propagation, 192
surrogate primary keys, 141
synthetic primary keys, 141
system exceptions, 186
system properties, injecting, SpEL and, 264–266
systemEnvironment variable, 274
systemProperties variable, 274

T

T() operator, 272–273
@Table annotation, 140
target in AOP, 238
teardown methods, 220–221
Template Method pattern, 115
templates, expression templates, 267
TestContext framework, 219–225

437

testing – web applications

testing
annotations, 232–233
context hierarchies and, 225
dependency injection, 217–219
mock objects, 231–232
MVC

controllers, 227–228
exception handlers, 230
form submission, 228–230

request-scoped beans, 225–227
RESTful services and, 326–328
session-scoped beans, 225–227
transaction management, 219–222
utilities, 232–233
web applications, 222–223

WebApplicationContext, 222–224
TextContext Framework, 204–205
themes, MVC, 97–100
#this, 274
ThrowsAdvice, 244
transaction abstraction model, 180–182

advantages, 183
transaction management

ACID acronym, 176
boundaries, 177–180
data access layer separation, 186–189
declarative, 183–186
default behavior, 189–190
layer isolation, 186–189
programming

PlatformTransactionManager,
201–203

TransactionTemplate, 198–200
propagation rules

MANDATORY, 192
NESTED, 192
NEVER, 192
NOT_SUPPORTED, 192
REQUIRED, 191––192
REQUIRED_NEW, 192
SUPPORTS, 192

service layer separation, 186–189
<tx:advice>, 195–197

@Transactional annotation, 186, 219
class level, 190–191

transactions, 176
local versus global, 182
logic execution, 203–205
PlatformTransactionManager bean,

configuration, 180–182
transaction demarcation, 180–182

TransactionSynchronization object,
204–205

TransactionTemplate,
198–200

transferMoney method, 24
transitive persistence, 153
transparent persistence, 154
<tx:advice>, 195–197

U

UEL (Unified Expression Language), 264
unchecked exceptions, 186
unidirectional associations, 138–139
unit testing, RESTful services, 326–328
uploading files, 90–93
URI (Uniform Resource Identifier), 64
user input, validation, 86–90
UserDetails, 346–347
UserDetailsService, 340–341, 348
UserRestController class, 316
utilities

SpEL, bean access, 280–281
for testing, 232–233

V

validation, user input, 86–90
variables, SpEL, 273–275
vendor-specific methods, 127
view resolvers, 66

W

weaving in AOP, 238
web applications, testing

222-223
WebApplicationContext,

222–224

438

web requests – XML-based configuration

web requests, authorization, 353–355
web services, creating, 306–318
@WebAppConfiguration annotation,

226
WebApplicationContext, loading,

222–224
web.xml security, 332–333
wildcards, AOP, 250

within keyword, 248–249
World Wide Web, 64

x‑Y‑Z

XML (eXtensible Markup Language), 19
RESTful services and, 320–322

XML-based configuration, 26–27

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Beginning Spring
	CONTENTS
	FOREWORDS
	INTRODUCTION
	CHAPTER 1: POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL
	POJO Programming Model
	Problems of the Old EJB Programming Model
	Benefits of the POJO Programming Model

	Lightweight Containers and Inversion of Control (IoC)
	Lightweight Containers
	Inversion of Control (IoC)

	Dependency Injection
	Setter Injection
	Constructor Injection
	Setter or Constructor Injection

	Summary

	CHAPTER 2: DEPENDENCY INJECTION WITH SPRING
	Spring IoC Container
	Configuration Metadata
	Configuring and Using the Container

	Dependency Injection
	Setter Injection
	Constructor Injection
	Circular Dependencies
	Dependency Resolution Process
	Overriding Bean Definitions
	Using the depends-on Attribute
	Autowiring
	Bean Lookups

	Spring-Managed Beans
	Naming Beans
	Bean Instantiation Methods
	Bean Scopes
	Lazy Initialization
	Life-Cycle Callbacks
	Bean Definition Profiles
	Environment

	Summary

	CHAPTER 3: BUILDING WEB APPLICATIONS USING SPRING MVC
	Learning the Features and Benefits of Spring MVC
	Using the Dispatcher Servlet Mechanism
	Defining the Servlet
	Accessing Servlet Context

	Creating Your First Spring MVC Application
	Configuring Spring MVC with Annotations
	Handling Forms with JSP
	Configuring the Form Tag Library
	Understanding the Power of Binding
	Working with Forms
	Using Input Elements
	Entering Dates
	Selecting from a Drop-Down
	Selecting with Radio Buttons
	Selecting with Checkboxes
	Adding Labels
	Placing Buttons
	Styling

	Exploiting the Power of Annotations
	@Controller
	@RequestMapping
	@ModelAttribute
	@PathVariable
	@ControllerAdvice
	@InitBinder
	@ExceptionHandler

	Validating User Input
	Uploading Files
	Handling Exceptions
	Implementing Internationalization (i18n)
	Using Themes
	Summary

	CHAPTER 4: JDBC DATA ACCESS WITH SPRING
	Problems with Using Vanilla JDBC
	Introducing Spring’s JDBC Support
	Managing JDBC Connections
	Embedded DB Support
	Using a Connection-Pooled DataSource
	Initializing DB

	Configuring and Using Spring’s JDBC Support

	Performing Data Access Operations with Spring
	Running Queries
	Queries with Named Parameters
	Writing Queries Using the IN Clause
	Using PreparedStatements within JdbcTemplate
	Inserting, Updating, and Deleting Records
	Calling Stored Procedures and Stored Functions
	Performing Batch Operations
	Handling BLOB and CLOB Objects
	Accessing Vendor-Specific JDBC Methods
	Executing DDL Operations

	Modeling JDBC Operations as Java Objects
	Encapsulating SQL Query Executions
	Encapsulating SQL DML Operations
	Encapsulating Stored Procedure Executions

	Exception Handling and Error Code Translation
	Common Data Access Exception Hierarchy
	Automatic Handling and Translation of SQLException

	Summary

	CHAPTER 5: DATA ACCESS WITH JPA USING SPRING
	Brief Introduction to ORM and JPA
	Paradigm Mismatch
	Building Blocks of an ORM Framework
	What JPA Offers
	Mapping the Object Model to the Relational Model
	Defining Entities
	Mapping Attributes to Columns
	Creating Associations between Objects
	Mapping Java Types to SQL Types

	Configuring and Using JPA
	Performing CRUD Operations on Objects
	Querying with Object Query Language

	Spring’s JPA Support
	Setting Up JPA in Spring Container
	Implementing DAOs Based on Plain JPA
	Handling and Translating Exceptions
	Further JPA Configuration in Spring Environment
	JpaDialect
	JpaVendorAdapter
	JPA and Load Time Weaving
	Dealing with Multiple Persistence Units

	Summary

	CHAPTER 6: MANAGING TRANSACTIONS WITH SPRING
	Understanding Transaction Management
	Spring’s Transaction Abstraction Model
	Local versus Global Transactions
	PlatformTransactionManager Implementations
	Advantages of Spring’s Abstract Transaction Model

	Declarative Transaction Management with Spring
	Isolating the Service Layer from Data Access Technology Details
	Customizing Default Transactional Behavior
	Using @Transactional on the Class Level
	Understanding Transaction Propagation Rules
	Propagation REQUIRED
	Propagation REQUIRES_NEW
	Propagation NESTED
	Propagation SUPPORTS
	Propagation NOT_SUPPORTED
	Propagation NEVER
	Propagation MANDATORY

	Using <tx:advice> for Declarative Transaction Management

	Programmatic Transaction Management with Spring
	Using the PlatformTransactionManager Approach

	Executing Custom Logic Before or After Transactions
	Advising Transactional Operations
	Executing Logic after Transactions Using TransactionSynchronization

	Summary

	CHAPTER 7: TEST-DRIVEN DEVELOPMENT WITH SPRING
	Configuring and Caching ApplicationContext
	Using XML- and Java-Based Context Configuration in Tests
	Configuring Context with ApplicationContextInitializer
	Inheriting Context Configuration
	ApplicationContext Caching

	Injecting Dependencies of Test Fixtures
	Using Transaction Management in Tests
	Testing Web Applications
	Context Hierarchies in Tests
	Testing Request- and Session-Scoped Beans
	Testing Spring MVC Projects
	Testing Controllers
	Testing Form Submit
	Testing Exception Handlers
	Printing Mock Request and Response

	Using Mock Objects and Other Utilities for Testing
	Spring Provided Mock Objects for Testing
	Other Utilities and Test Annotations

	Summary

	CHAPTER 8: ASPECT-ORIENTED PROGRAMMING WITH SPRING
	Getting Started with AOP with Spring
	Becoming Familiar with Types of Advices
	Before
	After Returning
	After Throwing
	After (Finally)
	Around

	Defining Point-Cut Designators
	The Type Signature Expressions
	The Method Signature Expressions
	Other Alternative Point-Cut Designators
	Wildcards

	Capitalizing on the Power of Annotations
	@Before
	@Pointcut
	@After
	@AfterReturning
	@AfterThrowing
	@Aspect
	@Around
	@DeclareParents

	Blending AspectJ with Spring
	Configuring Spring AOP with Annotations
	Summary

	CHAPTER 9: SPRING EXPRESSION LANGUAGE
	Configuring Applications with SpEL
	Creating a Parser
	Invoking Methods
	Calling Constructors
	Calling Static Methods

	Working with Variables and Functions
	#root
	#this
	Accessing System Properties and Environment
	Inline Lists
	Registering Functions

	Understanding SpEL Operators
	Relational Operators
	Arithmetic Operators
	Logical Operators
	Conditional Operators
	Regular Expression Operator
	Safe Navigation Operator
	Collection Selection and Projection
	Selecting the First and Last Element of a Collection

	Using Utilities in SpEL
	Accessing Spring Beans
	<spring:eval>
	Expressions in Caching

	Summary

	CHAPTER 10: CACHING
	Building Your First Caching Application
	Configuring the Cache Manager with a Different Name
	Configuring the Caching Abstraction with Annotations

	Working with Cache Annotations
	@Cacheable
	Key Generator
	Conditional Caching

	@CacheEvict
	@CachePut
	@Caching

	Implementing Cache Managers
	SimpleCacheManager
	NoOpCacheManager
	ConcurrentMapCacheManager
	CompositeCacheManager

	Casting Your SpEL on Caches
	Initializing Your Caches Programmatically
	Finding Alternative Cache Providers
	Ehcache
	Guava
	Hazelcast

	Summary

	CHAPTER 11: RESTFUL WEB SERVICES WITH SPRING
	Creating Your First REST Web Service
	Returning Different HTTP Status Codes from REST Web Service
	Learning an Annotation-Based Configuration Alternative
	Using REST Web Services with XML
	Using the Exception Handling Mechanism
	Unit Testing RESTful Services
	Summary

	CHAPTER 12: SECURING WEB APPLICATIONS WITH SPRING SECURITY
	Why Spring Security?
	Features of Spring Security
	Configuring and Using Spring Security
	Understanding the Fundamental Building Blocks of Spring Security
	Authenticating Users
	Unsuccessful Login Flow
	Successful Login Flow
	Anonymous Authentication
	Customizing the Login Page
	Logout Process
	Accessing UserDetails Using JDBC
	Encrypting Passwords
	Remember-Me Support
	User Session Management
	Basic Authentication

	Authorizing Web Requests and Service Method Calls
	Authorizing Web Requests
	How Does Authorization Work?
	Expression-Based Authorization
	Using JSP Security Tags
	Authorize Tag
	Authenticate Tag

	Authorizing Service Methods

	Summary

	CHAPTER 13: NEXT STOP: SPRING 4.0
	Keeping Up with the Latest: Java 8 and Java EE7 Support
	Lambda Expressions
	Method References
	Bean Validation Integration
	JSR 310: Date Time Value Type Support

	Configuring Injection with Conditional Dependency
	Ordering the Elements of Autowired Collections
	Repeating Annotations
	Introducing New Annotations
	Documenting with @Description
	Using the @RestController Annotation

	Summary

	APPENDIX: SOLUTIONS TO EXERCISES
	INDEX
	EULA

